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Summary 

  

Finite impulse response (FIR) digital filters are preferred in most of the wireless 

communication systems and biomedical applications due to its linear phase properties. A 

major drawback of the FIR filters is the large number of arithmetic operations needed for 

its implementation, which limits the speed of the filter and requires high power. It is well 

known that the coefficients of an FIR filter can be quantized into sum or difference of 

signed powers-of-two (SPoT) values leading to a multiplication-free implementation. In 

the application-specific integrated circuit (ASIC) implementation, a long FIR filter can 

operate at high speed without pipelining if it is factorized into several short filters whose 

coefficients are in the form of SPoT terms. Such implementation reduces the hardware 

cost and lowers the power consumption significantly as it converts multiplication to a 

small number of shift and add operations. However, the design of FIR filter with SPoT 

coefficient values is a complex process requiring excessive computer resources, 

especially in situations where several filters have to be jointly designed.  

In this thesis, several optimization schemes based on the artificial intelligence techniques 

are presented for the design of high-speed FIR filters with SPoT coefficient values. 

Firstly, genetic algorithm (GA) based optimization methods are proposed for the design 

of low power high-speed FIR digital filters. The high-speed and low power features are 

achieved by factorizing a long filter into several cascaded subfilters each with SPoT 



   

 viii

coefficients. Significant savings on hardware cost are achieved due to the fact that the 

information which is related to hardware requirement is affiliated to the fitness function 

as an optimization criterion. An adaptive genetic algorithm (AGA) with varying 

population size and probabilities of genetic operations is proposed to improve the 

optimization performance of conventional GA. Secondly, two hybrid algorithms are 

presented for the synthesis of very sharp linear phase FIR digital filters with SPoT 

coefficients based on frequency response masking technique (FRM). They are generated 

by combining the GA with an oscillation search (OS) algorithm and with the simulated 

annealing (SA) algorithm, respectively. The OS and SA algorithms are used to improve 

the convergence speed of the GA and prevent premature convergence. Thirdly, an 

efficient algorithm is proposed for the design of general FIR filters with SPoT coefficient 

values, where AGA, SA and tabu search (TS) techniques cooperate during the 

optimization process. The proposed algorithm achieves not only the improvement of 

solution quality but also the considerable reduction on computational efforts. Fourthly, a 

modified micro-genetic algorithm (MGA) is applied to overcome the drawbacks of the 

conventional GA of long computation time by utilizing a small population. To avoid 

entrapment in local optimum, the MGA is modified to adjust the probabilities of 

crossover and mutation during the evolutionary process. The proposed method can design 

digital FIR filters with SPoT coefficient values in much higher speed than conventional 

GA.  
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Chapter 1 

Introduction 

 

Digital signal processing (DSP) techniques have been increasingly applied in most 

engineering and science fields due to the explosive development in digital computer 

technology and software development. Digital filters are basic building blocks for DSP 

systems. There are two types of filters: finite impulse response (FIR) filters and infinite 

impulse response (IIR) filters. Since FIR filters possess many desirable features such as 

exact linear phase property, guaranteed stability, free of limit cycle oscillations, and low 

coefficient sensitivity [64-66], they are preferred in most of the wireless communication 

systems and biomedical applications. However, the order of an FIR filter is generally 

higher than that of a corresponding IIR filter meeting the same magnitude response 

specifications. Thus, FIR filters require considerably more arithmetic operations and 

hardware components - delay, adder and multiplier. This makes the implementation of 

FIR filters, especially in applications demanding narrow transition bands, very costly. 

When implemented in VLSI (Very Large Scale Integration) technology, the coefficient 

multiplier is the most complex and the slowest component. The large number of 

arithmetic operations in the implementation also increases the power consumption. In the 

modern applications, such as military devices, wearable devices and portable mobile 



Chapter 1 Introduction 

 - 2 -

communication devices, the portability and low power dissipation play a very important 

role.  

To address the problem, considerable attention and efforts have been made on reducing 

the complexities and power consumptions for the DSP systems. The cost of 

implementation of an FIR filter can be reduced by decreasing the complexity of the 

coefficients [1, 4-5, and 67]. Coefficient complexity reduction includes reducing the 

coefficient word length and representing coefficients in effective form. One of the most 

efficient ways is to design filters with coefficients restricted to the sum or difference of 

signed powers-of-two values [1]. This leads to a so-called multiplication-free 

implementation, i.e. the filter’s coefficient multipliers can be replaced by simple shift-and-

add circuits. Thus, the implementation complexity can be reduced, resulting in significant 

increase in the speed and reduction in power dissipation.  

 

1.1 Signed Powers-of-Two Based Filter Design  

To design FIR digital filters over the signed powers-of-two (SPoT) discrete space was 

firstly proposed by Lim and Constantinides [68]. Extensive research has shown that the 

complexity of an FIR digital filter can be reduced by quantizing its coefficients into SPoT 

values. This converts multiplication to simple operations of shift and add.  Relatively 

small chip area is required in VLSI realization, resulting in low cost, high speed, and high 

yield. This section briefly describes the SPoT number characteristics and existing 

optimization techniques for the design of digital filters subject to SPoT coefficients. 



Chapter 1 Introduction 

 - 3 -

A number, S, is called an SPoT number in this thesis, if it is represented to a precision 2Q 

by R - Q ternary digits s(i) according to  

        { }
1

( )2 ,  ( ) -1,0,1 ,  1,
R

i

i Q

S s i s i Q i R
−

=

= ∈ ≤ ≤ −∑                                  (1.1) 

where R and Q are integers. Each nonzero digit term, s(i) ≠ 0, is counted as a SPoT term. 

The word length of S is (R-Q) bits. S is discrete values in increments of 2Q
 in the range 

2 2 2 2 ,R Q R QS− + ≤ ≤ −      (1.2) 

in which there are 12 1R Q− + − distinct values.  

Preliminary studies have showed that only a limited number of SPoT terms are required 

to meet a respectable set of specifications if a good optimization technique exists. Hence, 

to represent the coefficients of a filter in this way, the coefficient multipliers can be 

replaced by a small number of add/subtract-shift operations. The hardware complexity as 

well as power consumption is thus largely reduced.  

During the last three decades, there has been significant research interest in the design of 

digital filters with discrete coefficients [1, 3-14, 69-74]. In [3] Munson has proposed a 

method to obtain discrete coefficients by simply rounding the real valued coefficients of 

the desired filter, which provides an optimal solution in the time domain error norm or in 

the output minimal mean-square error norm sense. Considering the optimal design 

solution in the frequency domain, Kodek [4] has introduced integer linear programming 

(ILP) to solve the filter design problem. However, relatively long coefficient word length 

and exponentially increased computer time with respect to the filter length make ILP 

only suitable for the design of low-order FIR filters. To improve the performance of ILP 

for designing high-order FIR filters with discrete coefficients, a mixed-integer linear 
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programming (MILP) technique has been proposed by Kodek. Although optimal design 

in the minimax sense can be found using MILP, the application of this technique is 

limited by high computing cost. Considerable efforts for the improvement of MILP have 

been made to reduce its computational complexity for high-order FIR filter design in [4]. 

In [1], Lim and Parker proposed an improved MILP method for the design of FIR filters 

with SPoT coefficient values. It is reported that their method can be efficiently used in 

the design of filters with lengths up to 70 [5]. However, this is not long enough for some 

designs, e.g. a filter with very sharp transition band.  It is shown in [69] that MILP can 

minimize the total number of SPoT terms if the problem is appropriately formulated, thus 

leading to a filter with minimal implementation cost. However, MILP requires excessive 

computing resources if the filter length is long. The computational cost required increases 

exponentially with the number of variables to be optimized. 

In [6], Zhao and Tadokoro proposed a suboptimal design for powers-of-two coefficient 

based FIR filters. This algorithm is composed of two methods. The first is a suboptimal 

design which preserves a proportional relation between the conventional FIR filters and 

the powers-of-two coefficient based FIR filters, referred to as the proportional relation-

preserve method (PRP). The second is the application of the simple symmetric-

sharpening method (SSS) which is applied when the PRP method cannot realize the 

given filter specifications. It is shown in [6] that with the help of the PRP and SSS 

methods, FIR filters with lengths greater than 200 can be efficiently designed with 

powers-of-two coefficient values, which addresses the very high computational cost of 

the MILP.  
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An improved algorithm for the optimization of FIR filter with SPoT coefficient value is 

proposed by Samueli in [7], which allocates an additional nonzero digit in the canonic 

signed-digit (CSD) code to the larger coefficients to compensate for the non-uniform 

nature of CSD coefficient distribution. The two-stage algorithm consists of search for an 

optimum scale factor and a bivariate local search in the neighborhood of the scaled and 

rounded CSD coefficients. It is illustrated that a significant improvement in the frequency 

response can be obtained at the price of minimal increase in filter complexity resulting 

from the additional CSD digits.  

Tree search with weighted least-squares criteria [70-71] is proposed in the design of 

certain types of filters, which replaces the linear programming algorithm in tree search 

method by a suitable weighted least-squares algorithm. In such algorithms, the filter's 

coefficient values are quantized one at a time. The remaining un-quantized coefficients 

are optimized in the weighted least-squares sense. The computing time required is 

approximately proportional to the cube of the number of filter coefficients to be 

optimized but the optimal solution is not guaranteed. 

In the quantization guided by coefficient sensitivity analysis technique [72-73], each 

coefficient is first set to its nearest single-SPoT-term number. The second-SPoT-term is 

then allocated to the filters' coefficients one at a time in decreasing order of the 

coefficient sensitivity, until the frequency response meets the given specification. 

Coefficient sensitivity is defined as the sum of the increase in the peak passband ripple 

value and the increase in the peak stopband ripple value when the coefficient is set to its 
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nearest single-SPoT-term number. A modified sensitivity criterion considers the average 

ripple magnitude changes over all the frequency grid points in the passband and stopband. 

In [35], a SPoT term allocation scheme is proposed, where each coefficient of the filter is 

allocated a certain number of SPoT terms according to the coefficient's statistical 

quantization step-size and sensitivity subject to a given total number of SPoT terms. 

After the assignment of the SPoT terms, MILP is used to optimize the coefficient values. 

In [8], Li et al. proposed a polynomial-time algorithm for designing FIR filter with SPoT 

coefficient values. In [8], SPoT terms are dynamically allocated to the currently most 

deserving coefficient, one at a time, to minimize the L∞
distance between the SPoT 

coefficients and their corresponding infinite word length values. Since the complexity of 

the algorithm is polynomial-time, the computation time to design a FIR filter is rather 

short. The computational complexity increases linearly with the increase of the word 

length of filter coefficients. Hence, the algorithm is suitable to design filters with high 

order and long word length of coefficients.  In [74], each coefficient is firstly assigned 

SPoT terms using the technique of [8]. Subsequently, a pool of SPoT terms is created for 

each coefficient according to the coefficient's infinite precision value. A dynamic 

programming technique is used to allocate SPoT terms taken from the coefficient's pool 

of SPoT terms to each coefficient. 

Artificial intelligence (AI) techniques have been widely used to solve optimization 

problems which are not easy to handle by conventional optimization approaches. 

Recently, techniques such as genetic algorithm (GA), and simulated annealing (SA) 

received increasing attention in science and engineering fields. Many techniques based 
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on AI [9-14] have been proposed for the design of FIR filters with discrete coefficients. 

In [9-10], the SA based method is proposed. However, due to the numerous local optimal, 

many runs of the design for the same filter were needed to find a satisfying solution if the 

filter length was longer than 39. The GA proposed by J.H. Holland [16] is an artificial 

system based on the principle of natural selection where stronger individuals are the 

likely winners in a competitive environment. As a stochastic algorithm, the GA is a 

robust and powerful optimization method for solving problems with a large search space 

which are not easily solved by exhaustive methods. Many publications [11-14] have 

reported that the GA is effective for the design and optimization of FIR digital filters 

with SPoT coefficients due to its properties such as multi-objective, coded variables and 

natural selection. In [11], Lee and Ahmadi demonstrated the design of 1-D FIR filters 

using the GA. They examined the usefulness of various error norms and coding schemes 

applied to the filter coefficients and their impact on convergence rate and optimal results. 

To improve the optimization performance and increase the calculation efficiency, some 

modifications have been made on the conventional GA, such as improved genetic 

operators [12-13], efficient coding schemes [14-15] and new natural selection process 

[16]. In these publications, they all presented useful development on the GA and 

demonstrated that their algorithms can outperform the conventional GA in FIR filter 

design.  

However, the optimal design of FIR filters in the SPoT space is very complicated. It is 

shown in [10] that there are many local optima existing in the design of filters with length 

greater than 39. Although these AI based algorithms are global optimization techniques 
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in theory, they risk finding a suboptimal solution and has low convergence speed in 

complex applications.  

 

1.2 Research Objectives and Major Contribution of this Thesis 

The major drawback for the SPoT based FIR filters is the complexity associated with the 

quantization of each coefficient into SPoT space. The process requires huge amount of 

computer resources and takes very long time to find the optimal SPoT coefficients, 

especially for high-order filters. Searching the optimal coefficients in a discrete space can 

be formulated as a nonlinear optimization problem. If the desired objective of 

minimization is the normalized peak ripple magnitude, the quotient of the peak ripple 

magnitude and passband gain should be used as the objective function to be optimized [5]. 

Since this quotient is nonlinear, the objective function is a nonlinear function. This makes 

linear programming or simple iterative methods usually lead to sub-optimal designs, 

except exhausted search. Unacceptable computational cost makes it impractical to utilize 

exhausted search even for middle-length filter design. Although the GA and SA have 

potential to find global optima solutions, they risk finding suboptimal solutions due to the 

following reasons.  

1) Global optimal solutions can be possibly achieved when all parameters are jointly 

optimized. This further puts a high demand on optimization methods with the 

increase of problem dimension and solution space. The large search space 

associated with high problem dimension leads to numerous local optima, where a 
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general purpose optimization algorithm may be unable to jump out of a local 

optimum without external help.  

2) The GA and SA belong to a class of stochastic optimization techniques. They find 

solutions without incorporating any rules of the problem to be optimized. This is a 

great advantage and also a biggest disadvantage of these algorithms. Therefore, 

they do not always evolve towards a good solution; they only evolve away from 

bad circumstances. That is why they risk finding a suboptimal solution and have 

low convergence speed in complex applications. Each optimization problem has 

its own properties. It is possible to boost the optimization performance if these 

properties are incorporated into optimization process.   

3) Many control parameters, e.g. population pool size and the probabilities of 

genetic operations in the GA, should be set up before applying these algorithms. 

The suitable settings of these parameters are critical to the performance of 

optimization. How to set these parameters for a special optimization problem is 

still an open issue. Also, parameter settings optimal in the earlier stages of the 

search typically become inefficient during the later stages. 

Furthermore, the performance of a filter with discrete valued coefficients is also limited 

by the number of bits used in the quantization process. It was shown in [2] that the peak 

ripple of the amplitude response decreases with increasing filter length up to a certain 

length when an FIR filter with discrete valued coefficients is implemented in the direct 

form. Significant reduction in peak ripple beyond that limit cannot be attained easily 

without increasing the coefficient precision. In order to reduce the peak ripple while 
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keeping the precision of the coefficient values unchanged, other forms of realization must 

be considered. It has been reported in [2] that the reduction on peak ripple can be 

possibly achieved by implementing the filter in cascade form. Factorizing a long FIR 

filter into several short direct form filters can also shorten the critical path, which leads to 

higher throughput. The factorization coupled with SPoT based coefficients yields a cost 

effective high-speed FIR filter. However, there lacks of systematic methods to deal with 

the design complexity rising from the joint optimization of several subfilters each with 

SPoT coefficients.  

The frequency-response masking (FRM) technique [36-48] is one of the most 

computationally efficient ways for the synthesis of arbitrary bandwidth sharp linear phase 

FIR digital filters. A great benefit of the FRM approach is significant reduction in the 

number of multiplications which can be as high as 98% as reported in [37]. Combining 

FRM and SPoT techniques, it is possible to implement a high speed FIR filter using 

either Field Programmable Gate Array (FPGA) devices or application-specific integrated 

circuit (ASIC) as in [56]. In one stage FRM structure, there are three subfilters, i.e. the 

bandedge shaping filter and a pair of masking filters 1 . The optimization process is 

extremely complicated if at least 3 subfilters have to be jointly designed.  

In this thesis, the research objectives are to develop efficient approaches based on AI 

techniques to address the above problems in the design of FIR filters with SPoT 

coefficients.  Several tailor-made optimization algorithms are developed to improve the 

design performance, which suit the need of different design requirements.  

                                                 
1 The bandedge shaping filter in FRM structure is used to synthesize the sharp transition band, which can be much 
longer than two masking filters in a single stage FRM design; and a pair of masking filters together with the 
complement of interpolated bandedge shaping filter construct the arbitrary bandwidth of the overall filter.  
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The following is claimed to be the contributions of the thesis. 

1. An adaptive genetic algorithm (AGA) with adjustable population size and genetic 

operation probabilities is proposed to improve the convergence performance of 

the traditional GA. A systematic optimization method based on the AGA is 

proposed for the design of cascade form FIR filters. By factorizing a long filter 

into several short filters each with SPoT coefficients, a cost effective high-speed 

FIR filter can be yielded. To reduce the word lengths of the output signals, several 

of the least significant bits are truncated from the output of cascaded subfilters. 

The instructions for the design of cascade form filters with truncation are derived 

from simulation. An empirical equation to estimate optimal truncation margin is 

proposed.  

2. Two novel hybrid algorithms are proposed for the design of FRM FIR filters. The 

oscillation search genetic algorithm (OSGA) is generated by integrating the GA 

with an oscillation search (OS) algorithm that is proposed according to the 

properties of filter coefficients, which can be efficiently utilized to jointly design 

the bandedge shaping filter and masking filters in FRM structure. By combining 

the GA and SA, another hybrid algorithm (GSA) is proposed for the design of 

high-speed FRM FIR filters, where the long bandedge shaping filter is replaced by 

several cascaded short filters.  

3. Compared with FRM filters that have very sharp transition bands, general FIR 

filters with relative broad transition bands have simple objective function. 

Without the need of conducting complicated computation of objective function, 
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the research for general FIR filter design is focused on the solution quality and 

algorithm stability.  To this end, a novel hybrid genetic algorithm (AGSTA) is 

developed for the optimal design of FIR filters. 

4. To find acceptable solutions with the least computational cost, a modified micro-

genetic algorithm (MGA) is proposed to reduce the computational cost by 

utilizing a very small population. To avoid entrapment in local optima, the 

proposed MGA includes a strategy that adjusts the probabilities of crossover and 

mutation during the evolutionary process. The modified MGA can be efficiently 

applied in the design of discrete valued filters.  

 

1.3 Organization of the Thesis 

This thesis is organized as follows.   

1. Chapter one gives an introduction to the problems considered in this thesis. The 

signed powers-of-two coefficient property and the existing SPoT coefficient 

design techniques are also reviewed. The research objective and major 

contributions made in this thesis are presented at the end of this chapter. 

2. In Chapter two, GA based approaches are presented for the design of low power 

high-speed FIR digital filters. The high-speed and low power features are 

achieved by factorizing a long filter into several cascaded subfilters each with 

SPoT coefficient values. With the help of genetic encoding scheme, the 

coefficients of all subfilters are quantized into SPoT values simultaneously. The 
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proposed methods reduce the hardware cost significantly as the information 

which is related to hardware requirement is affiliated to the fitness function as an 

optimization criterion. To further reduce the hardware cost, the signal is truncated 

at the output of subfilters. Some useful guidelines for truncation are presented. An 

empirical equation to estimate the optimal truncation margin is derived. To 

improve the convergence performance of the conventional GA, an AGA is 

proposed in this chapter, which adaptively adjusts the population size and the 

probabilities of genetic operations during optimization process. It is shown by 

means of examples that significant savings in terms of hardware cost are achieved 

by using the proposed methods. 

3. In Chapters three and four, two hybrid algorithms are proposed for the design and 

optimization of very sharp linear phase FIR digital filters with discrete valued 

coefficients based on the FRM technique. The first algorithm, OSGA, integrates 

the OS algorithm into the optimization process of the GA. The OS algorithm is 

developed according to the properties of filter coefficients, which is used to 

reduce the computational cost required by the conventional GA. Furthermore, it 

can also help prevent GA from premature convergence by escaping from local 

optima. The second algorithm, GSA, combines the GA with the SA for the design 

of FRM filters, where the FRM filter structure has been modified to improve the 

throughput by replacing the long bandedge shaping filter with several cascaded 

short filters. The coefficients of all subfilters are designed with SPoT values 

resulting significant reduction in both hardware cost and power consumption. The 
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hardware cost is reduced due to the fact that the coefficient word length is 

included as one of the terms in the fitness function during the optimization. The 

performance of these two algorithms is illustrated through design examples.  

4. For general FIR filter design with broad transition bands, a hybrid algorithm, 

AGSTA, is proposed in Chapter five. Generating the AGA and the features of SA 

and TS technology leads to a hybrid genetic scheme, where the AGA is used as 

the basis of the hybrid algorithm. The SA algorithm is applied to optimize a 

certain number of chromosomes with better fitness values when the further 

improvement of fitness cannot be achieved for a pre-specified number of 

generations in optimization process. The use of the SA algorithm is to help escape 

from the local optima and to prevent premature convergence. In the AGSTA, the 

concept of tabu is used to improve the convergence speed by reducing search 

space according to the properties of filter coefficients. Compared with other 

algorithms, the proposed AGSTA achieves not only an improved solution quality 

but also the considerable reduction of computational effort.   

5. Although designing FIR filters is more than a job that can be done off-line, the 

computational complexity does become an issue. To find acceptable solutions 

with the least computational cost, a modified micro-GA is presented in Chapter 

six. The MGA overcomes the drawbacks of the conventional GA of long 

computation time by utilizing a small population. To avoid trapping into local 

optima, the proposed MGA is modified to adjust the probabilities of crossover 

and mutation during the evolution. It is suitable in the design of FIR filters in both 
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direct form and cascade form. With the help of the MGA, considerable savings on 

computational cost can be achieved in comparison with the conventional GA.   

6. The seventh chapter consists of the conclusions of the thesis and some 

recommendations for future research. 
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Chapter 2 

Design of Cascade Form FIR Filters  

 

2.1 Introduction 

To design an FIR digital filter over the signed powers-of-two (SPoT) discrete space leads 

to a so-called multiplication-free implementation, i.e., the filter's coefficient multipliers 

can be replaced by simple shift-and-add circuits. Thus, the computational complexity of 

the filter is reduced. Significant increase in the speed and reduction in power 

consumption can be achieved. Many methods have been developed for optimizing the 

frequency response of a digital filter subject to SPoT constrains imposed on its 

coefficient values, which have been introduced in Chapter 1.  

In SPoT based filter design, global optimal solutions can possibly be achieved if all 

parameters are jointly optimized. This puts a high demand on optimization methods. 

When existing AI based optimization techniques such as the GA and SA are utilized, the 

high problem dimension and large search space may cause high probability of premature 

convergence and low convergence speed. Suboptimal solutions are usually achieved due 

to the tradeoff between the searching speed and solution quality. It has been shown in [10] 

that it starts providing many local optimal solutions if the number of filter coefficients is 

higher than 39. If the SA was applied in such design, many more runs were needed to 
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find a good solution [10], which further increased computational cost. Furthermore, there 

are several control parameters in AI based algorithms, which critically control the 

optimization performance. The setting of these parameters itself is a complex 

optimization problem. It is most important to develop suitable ways to find optimal 

values for these parameters.  

The quantization performance is limited by the coefficient precision. In a direct form 

filter, after the filter length increases to a certain bound, it is difficult to attain significant 

reduction in peak ripple of the amplitude response without increasing the coefficient 

word length [2]. However, increasing the filter length and coefficient word length will 

increase the hardware cost in filter implementation and reduce the operation speed of the 

filter. It is reported in [2] that by implementing the filter in cascade form, smaller peak 

ripple can be possibly achieved without increasing the coefficient precision. Furthermore, 

the throughput of a long filter can be improved by factorizing it into several short direct 

form filters. Quantizing the coefficients of an FIR filter into SPoT terms and factorizing a 

long filter into several short filters will lead to a VLSI implementation with less power 

dissipation, lower cost, and higher speed.  

When two identical filters are cascaded together, the peak passband ripple magnitude of 

the cascaded filter will be twice as large as that of the individual filters. Twicing [75] and 

sharpening [76] are two methods to improve the performance of a filter by both 

increasing stopband rejection and decreasing passband error. Fig. 2.1 shows the block 

diagrams of twicing and sharpening schemes, where Hin(f) denotes the frequency 

responses of the prototype filter. The transformed filter, Hout(f), is given by 
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( ) ( )[2 ( )]out in inH f H f H f= −   in twicing scheme and 2( ) ( )[3 2 ( )]
inout inH f H f H f= −  in 

sharpening scheme. The major idea of the twicing and sharpening schemes is to do a 

better job of filtering by suitably combining the results of several passes through the 

same filter. 

Hin ( f ) Hin ( f )+   -

 +

Input Output

 

(a) Twicing 

Hin ( f ) Hin ( f )+   -

 +

Input Output
Hin ( f )2

3  

(b) Sharpening 

Fig. 2. 1 Block diagrams of twicing and sharpening schemes.  

It is demonstrated in [17] that, if the filters to be cascaded are not identical and they can 

be jointly designed, the peak passband ripple magnitude of the cascaded filter might be 

smaller than those of the individual filters. Thus, the saving in the filter length can be 

produced in comparison with the filter constructed using identical filters.  

However, the optimal design of cascaded discrete coefficient filters is a nonlinear process 

requiring excessive computer resources, even for small designs [1]. An iterative 

optimization approach has been introduced in [2] where each subfilter is optimized 

separately by using the linear programming techniques. In this method, one of the 

subfilters is fixed and the other subfilter is designed as an equalizer to compensate for the 

ripples of the fixed one. The roles of the fixed filter and the equalizer are interchanged 
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and the respective filter redesigned. The process is continued until convergence. The 

method works very well for breaking a long filter into two, but it becomes very 

complicated if the number of subfilters goes beyond two. There is no guarantee that the 

filter synthesized by the technique reaches the global optimum. In [18], the author 

presented a method based on the SA technique to factorize a long filter into several 

cascaded subfilters of 2- or 4-order in continuous space. However, there are two 

limitations in their methods. First, they cannot design a filter with any desired number of 

cascaded subfilters; second, they cannot be directly utilized to design filters with discrete 

valued coefficients.   

In this chapter, we will address the design of cascade form FIR filters with SPoT 

coefficients based on the evolutionary algorithms.  In our approaches, all subfilters are 

jointly designed to meet the given specifications, where the peak ripple in each band is 

simultaneously minimized by global optimization techniques. To overcome the 

drawbacks of the conventional GA, an adaptive genetic algorithm (AGA) is proposed, 

which adaptively adjusts the control parameters during the evolutionary process. Several 

of the least significant bits are truncated from the outputs of intermediate stages to 

decrease the word length of output signal. 

This chapter is organized as follows. A high-speed filter structure is presented in Section 

2.2. Following that, a method to factorize a long FIR Filter into cascaded short filters 

with optimal quantization noise is discussed. The GAs are introduced in Section 2.4 as 

the major optimization technique utilized in this chapter, as well as in this thesis. The 

implementation details for the design of high-speed low power FIR filters using the GA 
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is discussed in the following section. The AGA with varying population size and 

probabilities of crossover and mutation is proposed in Section 2.6. A systematic method 

based on the AGA is proposed in Section 2.7, where the method presented in Section 2.5 

is further improved. Finally, the conclusions are exposed.  

 

2.2 A High-Speed Filter Structure 

Most of the FIR filters can be implemented using either Direct Form I or II structures.  

The Direct Form II is preferred for the high-speed filter implementation due to its 

relatively short critical path from the input to the output. The simple carry save adders 

(CSA) can be used in the accumulation path to eliminate the propagation of carry signals 

in a full adder that speed up the arithmetic operations. There are two drawbacks for such 

a structure. First, the input is broadcasted to each filter tap simultaneously that requires 

very large fan-out from the input source. In most implementations, buffers are inserted in 

the input path to reduce the loading of input signal and to increase the speed. Second, the 

word length of each delay element is increased significantly as it is the sum of the word 

length of coefficient and input signal. As a result, large amounts of D flip-flops and full 

adder cells are needed.  

In a Direct Form I implementation, the critical path depends on the length of the 

accumulation path that adds all delay-weighted input samples. For an odd length filter of 

length N, the number of adders in the accumulation path is equal to (N+1)/2 taking into 

account of the symmetric property of a linear phase FIR filter. A traditional way to 
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improve the speed for such a structure is to employ pipeline or parallel process 

techniques at the cost of increasing hardware complexity. It is obvious that the critical 

path in a Direct Form I can be shortened if the filter length is reduced. This prompts to 

consider the factorization of a long filter into several short filters as shown in Fig. 2.2. 

The shorter each subfilter is, the higher the throughput is. Such a cascaded structure is 

well suited for both Direct Form I and II structures. The improvement of the speed 

depends on the number of factorized subfilters. Furthermore, to design a filter in a 

cascaded structure, it is possible to reduce the peak ripple without increasing the 

coefficient precision. The factorization coupled with SPoT based coefficients yields a 

cost effective high-speed low power FIR filter. The design of such a filter has posed a 

challenge to the filter designers as the global optimization can be achieved only if all 

subfilters are optimized simultaneously in a discrete space.  

A digital FIR filter is characterized by the following z-transform transfer function 
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where h(n) represents the filter coefficients. The zero phase frequency response of the 
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where Trig(n,ω) is a trigonometric function depended on the type of filter used.  

If the filter is constructed by p cascaded subfilters shown in Fig. 2.2, its z-transform 

transfer function is given by 

               
1

( ) ( ),  
p

i
i

H z H z
=

=∏                           (2.3) 



Chapter 2 Design of Cascade Form FIR Filters 

 - 23 -

where Hi(z) is the z-transform transfer function of the ith subfilter. 

Let hi(n) be  the coefficients of ith subfilter and Ni  be its length., the frequency response 

of the overall filter, H(z), can be expressed as 
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where Trigi (n, ω) is trigonometric function.  

The design of cascade form discrete valued coefficient filter is a discrete optimization 

problem of finding a set of discrete valued {hi (n)}, so that H(ejω) is a best approximation 

to a desired function with respect to a given criterion; the criterion used here is the 

minimax one. Equation (2.4) is nonlinear in the coefficients and is difficult to optimize in 

the discrete space [1]. This render the optimal design of cascaded discrete coefficient 

filter a nonlinear process. To address the problem, the methods based on AI techniques 

will be presented in the later sections.  

 

 

Fig. 2. 2 A cascade form filter consisting of p subfilters. 

 

2.3 Quantization Noise Reduction for Cascaded FIR Filters 

Using Simulated Annealing  

In practical applications, finite word length effects in terms of quantization errors 

degrade the performance of cascade connection structures. Since arithmetic quantization 
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occurs at the output of each subfilter, the corruption of the signal at an early subfilter can 

be enhanced by subsequent subfilters resulting in overall quantization noise that is 

unacceptably large. In this section, a method to factorize a long FIR filter into several 

cascaded subfilters with minimum quantization noise is presented.   

To reduce the quantization noise, all subfilters should be jointly designed to make the 

ripples of each subfilter compensate each other. One of the possible ways to solve the 

problem is to find optimal solutions by using exhaustive search, but it is extremely time-

consuming and impractical even for moderate filters [18]. In [18], a method based on 

simulated annealing is proposed to factorize a long filter into combination of second and 

fourth-order subfilters. It is reported in [18] that their method can find comparable 

solutions with much shorter computational time in comparison with exhaustive search. 

However, the method proposed in [18] can only factorize a long filter into second and 

fourth order subfilters, which largely limits the application of the method. Simply 

cascading adjacent second and fourth order subfilters to construct a longer subfilter will 

largely change the quantization noise. This prompts the modification of the method in [18] 

to factorize a long filter into any desired number of subfilters. More freedom to select the 

factorization structure is given to the designers. In the modified method, after the order of 

zero-sets each containing 2 or 4 zeros of the long FIR filter are achieved, instead of 

constructing a cascaded subfilter using one zero-set like the method in [18], several 

successive zero-sets are grouped to form a subfilter. The quantization noise is calculated 

based on the resultant cascade structure. By this way, a filter can be factorized into any 

desired and reasonable number of subfilters. 
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2.3.1 Simulated Annealing Algorithm  

Before we present the way to factorize a long filter, let us review the simulated annealing 

(SA) technique [19]. The SA derives its name from analogy with an annealing process in 

physics/chemistry where we start the process at high temperature and then lower the 

temperature slowly while maintaining thermal equilibrium. This technique makes use of 

stochastic methods via computer-generated pseudorandom numbers to find the optimum 

values of the cost functions that characterize large-scale and complex systems. It is 

especially suited for solving combinatorial optimization problems whose objective is to 

minimize the cost function of a finite discrete system that has a large number of possible 

solutions. 

In the SA algorithm, the system starts from a high temperature and the temperature 

lowers slowly while maintaining thermal equilibrium. A cooling scheme is utilized in SA 

to avoid entrapment in local minima, which can also simplify and speed up the complex 

computation by eliminating the need of large computer memory. The search process 

terminates when the system becomes stable. There are two important parameters in SA 

algorithm, i.e. energy E and temperature T.  The energy E is interpreted as a numerical 

cost and the temperature T as a control parameter. The numerical cost assigns to each 

configuration in the combinatorial optimization problem, a scalar value that describes 

how desirable that particular configuration is to the solution. The simulated annealing 

process will converge to a configuration of minimal energy provided that the temperature 

is decreased no faster than logarithmically. However, such an annealing schedule is too 

slow to be of practical use. In practice, we must resort to a finite-time approximation of 
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the asymptotic convergence of the algorithm. The price paid for the approximation is that 

the algorithm is no longer guaranteed to find a global minimum, but it can always 

produce near optimum for most practical application.  

2.3.2 Minimization of Quantization Noise  

Assuming a long FIR filter denoted as H(z) is factorized into p numbers of short filter, its 

z-transform transfer function is shown in (2.3). The controllable quantization noise gain 

[18] is defined as 
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where p is the number of cascaded subfilters, Hip(z) represents the z-transform transfer 

function from the input of the ith subfilter to the output of the pth subfilter, i.e. 
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=∏ , and Hip(ejω) is the frequency response of Hip(z). The energy (E) is set 

to be the controllable quantization noise gain (gqn), i.e. E=gqn.  

To avoid overflow at the output of each subfilter, it must be scaled to meet the following 

condition according to L∞ -norm scaling [18]: 
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i iH H e i pω ω π∞ ≤ ≤ ≤ ≤                        (2.6)                               

A program is developed based on this method, which accepts the continuous-time 

domain based coefficient values of a filter as input and outputs the optimal or sub-

optimal factorization solution. There are three steps in the procedure. 

1. Calculate the zeros of the long FIR filter H(z) 

First, the real valued coefficients of the long filter H(z) is designed by using REMEZ 

exchange algorithm. In this thesis, direct form filters with real valued coefficients are all 
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designed by using REMEZ algorithm. The zeros of H(z) are found and grouped into 

different sets according to their types by using the method in [20]. Each set consists of 2 

or 4 zeros according to their location in the complex z-plane and all sets are arranged in 

an arbitrary ordering.  

2. Calculate the initial data for simulated annealing algorithm 

This step is used to reduce the quantization noise gain to a certain level which is 

acceptable to the SA algorithm, where the sequence of the zero-sets are reordered in an 

iterative manner. The best noise gain calculated in this part is recorded as initial value of 

noise gain and temperature for the simulated annealing process. The reordering process is 

to choose a random length subsequence from a random position in the current zero 

sequence, either to replace it with the same subsequence in reversed order or to shift it to 

another random position between two sets of zeros in the current zero sequence with 

equal probability [21-22]. After each reordering process, the zeros are grouped according 

to their positions, i.e., the earliest several sets of zeros are put together into the first group, 

and construct a subfilter using all zeros in the same group. The number of the zero groups 

is equal to the number of the subfilters specified by the designers. The quantization noise 

gain based on the subfilter sequence is calculated using the cost function (2.5). If the 

noise gain is lower than the current lowest value in the early iterations, the noise gain and 

its associative zeros ordering and subfilter sequence are recorded as the current optimum 

results that will be used in the next reordering iteration process. 

In this stage, the convergence condition is defined as the maximal number (Lit) of 

reordering iterations. The choice of Lit depends on the length of the overall filter, i.e. the 
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number of decision variables. More iteration loops are required when the filter order is 

higher, where the solution space is larger. However, since it is only a stage before the SA 

and also the computational cost is relative low, the set of Lit is not very much important. 

According to the experience, through about 100 reordering iterations (i.e. Lit = 100), the 

quantization noise gain can be reduced to an acceptable level, which can be utilized as 

initial solution in the SA algorithm.  

3. Simulated annealing  

Simulated annealing is applied in this step. The best noise gain and associated ordering of 

zero sets calculated in the second part are used as the initial solution. The value of 

temperature T is set to be the minima energy value calculated from the second part. Begin 

with these initial values, the reordering iterations are repeated, where the same method as 

used in the second part are applied to reorder the sequence of zero sets. In each 

reordering loop, the energy and its associated ordering of zeros and form of subfilter will 

be recorded as new best results to replace the current ones (such loop is called as 

successful one) only when one of the following two conditions are met. First, the energy 

value is smaller than the current best value; second, a generated random number which is 

uniformly distributed on (0, 1) is less than the value of exp (-∆E/T), where ∆E denotes 

the change of the energy value. The aim of the second condition is to prevent SA from 

entrapping in local optima.  In a successful loop, the temperature T would decreases by a 

specified factor (dfT). It can be chosen between 0.7 and 0.99, which gradually decreases 

the temperature to avoid trapping in a local optimum. Smaller dfT speeds up convergence 

while larger dfT may find better solutions at the cost of long computation time.  
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In [18], the authors used consecutive “misses” (the number of rejection of new ordering) 

as an indication of convergence. The SA process terminates if the number of consecutive 

misses reaches a given maximal value. However, such convergence criterion may not be 

sufficient without the control of T. 

In our program, the reordering process terminates if one of the following two conditions 

is satisfied: 

1) The temperature is smaller than a specified ending temperature (Tend).  

2) There is no more improvement in the best energy value for the given number (Lend) of 

the continuous iteration process.   

Smaller Tend provides SA more chances to find better solutions at the cost of 

computational effort, while larger Tend may make SA “miss” the optimal solutions by 

conducting less reordering loops. Tend should be chosen by considering the trade-off 

between computational cost and solution quality. Based on the simulation study, suitable 

value of Tend can be chosen from 10E-1 to 10E-6. It is found that the value of Tend is 

dependent on the number of the subfilters, i.e. smaller Tend is more competent for the 

design of high-order filters with more number of subfilters.  

The choice of Lend is also based on the consideration of the trade-off between 

computational cost and solution quality. It can be seen from simulation study that if the 

best energy cannot be improved in 100 continuous iterations the improvement can be 

achieved only with a very small probability. Therefore, Lend can be set to be 100. Larger 

values are preferred if computational complexity is less important. However, the 

simulation study shows that larger value than 500 is unnecessary. 
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By grouping the successive zero-sets and minimizing the quantization noise based on the 

set of longer subfilter, an FIR filter can be factorized into the desired number of subfilters 

with near optimal arithmetic quantization noise gain, which largely reduces the frequency 

response deterioration caused by quantization. After achieving the optimization solution 

in continuous space, linear programming can be applied to quantize each coefficient into 

SPoT space for all subfilters. However, linear programming can only individually 

quantize the coefficients for each subfilter, which hinders the quantization from reaching 

optimal. In the following sections, systematic methods to jointly optimize all subfilters 

will be proposed.  

In the next section, we will briefly review GAs before a new optimization scheme that 

employs a GA to optimize all subfilters in a discrete space is presented.  

 

2.4 Genetic Algorithms (GAs) 

Genetic algorithms (GAs) are proposed by J.H. Holland [16] in the early 1970’s, whose 

basic idea and mechanism are borrowed from genetic evolution and natural selection, 

where the potential solutions to an optimization problem are evolved through selection, 

breeding and genetic variation. According to the principle of natural selection, in GAs, 

the stronger individuals are likely the winners in a competing environment. With the 

development of low cost and high speed computers, GAs, as a tool for search and 

optimization have reached a mature stage. In the last decade, GAs have found its 
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applications in a broad range of fields such as music generation, genetic synthesis, 

strategy planning, machine learning and VLSI technology. 

In GAs, the potential solution for the optimization problem is represented by a set of 

encoded variables which are equivalent to the genetic material of individuals in nature. 

All variables are concatenated as the genes of a chromosome. Grouping a specified 

number of chromosomes generates a population which is manipulated by GAs to solve an 

optimization problem. GAs are based on the heuristic assumptions that the best solutions 

can be found in regions of the search space containing a relatively high proportion of 

good solutions and that these regions can be explored by the genetic operations of 

selection crossover and mutation. For each problem, there is a unique fitness function to 

provide the mechanism for evaluating the performance of each chromosome. Each 

solution is associated with a fitness value that reflects how good it is. The fitter 

chromosome with higher fitness value means a better solution to the optimization 

problem, which has a higher chance of survival and a tendency to produce good quality 

offspring. Since the new generation is possible to have better characteristics than the old 

one, an optimum solution for the given problem can be obtained. The following shows 

the summary of the basic genetic algorithm structure.  

Genetic algorithm () [23] 

{ 

Initialize population; 

Evaluate population; 

While termination criterion not reached 
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 { 

 select solutions for next population; 

 perform crossover and mutation; 

 evaluate population; 

 } 

} 

There are three operators: reproduction, crossover, and mutation in the basic GAs 

structure. 

1) Reproduction  

In reproduction operation, fitter chromosomes are selected from the current population 

and copied into a mating pool for further genetic operation according to a given parent 

selection scheme. A chromosome with a higher fitness value has a higher probability to 

contribute one or more offspring in the next generation. It means highly fit chromosomes 

have better characteristic and have more chance to be chosen and allowed to mate. 

Roulette Wheel Selection is one of the most commonly used techniques for selection 

mechanism.  

The Roulette Wheel Selection procedure is as follows: 

A. Sum the fitness of all individuals in the population, named as total fitness (fT). 

B. Generate a random number, n, between 0 and fT. 

C. Return the first individual whose fitness, added to the fitness of the preceding 

individuals, is greater than or equal to n.  

2) Crossover 
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Crossover is the basic operation for yielding new chromosomes. The gene information 

contained in the two chosen parents is recombined to generate two children which 

expected to have useful information from their parents. In GAs implementation, a certain 

binary strings of two parent’s chromosomes are exchanged to yield two children 

chromosomes with specific crossover probability ranging from 0 to 1.  

Basically, there are three methods to carry out crossover, i.e. single-point crossover, 

multipoint crossover and uniform crossover. Single-point crossover is the simplest 

implementation method, where crossover is carried out at a single point. Multipoint 

crossover is similar to single point crossover except that several crossover points are 

randomly selected. Uniform crossover is performed over the entire string length of bits. 

Firstly, a mask with the same length as the chromosome is generated randomly which 

consists of a bit string of “0” or “1”. The children are generated according to the 

information in the mask, i.e. if the ith bit of mask is 0, the ith bit of Child 1 is the same as 

Parents 1 and the ith bit of Child 2 is the same as Parents 2; if the ith bit of mask is 1, the 

ith bit of Child 1 is the same as Parents 2 and the ith bit of Child 2 is the same as Parents 1. 

3) Mutation 

The offspring from crossover operation is sent to mutation operation that introduces new 

genetic material into the population to maintain the diversity of population. In GAs 

implementation, the mutation operation examines every bit contained in the offspring and 

randomly alters it with a very small probability. The mutation probability is typically in 

the range 0.001-0.05, which is dependent on the size of population and the length of 

individual chromosome.  
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In the GAs implementation, there are several control parameters which critically affect 

the optimization performance of the GAs, i.e. population size, the probabilities of 

crossover and mutation. With small population, the GAs easily converge into local 

optima; while with large population the optimization process requires long computation 

time and huge amount of computer resource to find optimal solutions. As for crossover 

and mutation operations, increasing the crossover probability increases the recombination 

of parents’ information but it also increases the disruption of good strings; increasing the 

mutation probability tends to transform the genetic search into a random search but it also 

helps introduce new genetic material. The trade-off between solution quality and 

computational cost should be carefully considered in the implementation of GAs. A 

number of guidelines have been recommended for choosing these parameters, e.g. in [23-

29]. However, these guidelines are inadequate as the choice of the optimal parameters 

becomes specific to the problems to be optimized. Many researchers have put 

considerable efforts into the variation of the simple GA by relieving the users of the 

burden of specifying the values of these parameters [27]. Greferstellt [27] has taken the 

choice of probabilities of crossover and mutation as an optimization problem and 

recommended the use of a second-level GA to determine these parameters. However, 

since two levels of GA are needed to run simultaneously, Greferstellt’s approach is 

proven to be computationally expensive. The idea of adapting crossover and mutation 

operators to improve the performance of GAS has been employed in [30-33], which 

adaptively adjust these parameters according to the optimization performance or the 

scattering characteristic of the population. Many researchers have proposed useful 
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variations on genetic operations by hybridizing GA with other algorithms, e.g. in [59-62]. 

Although many researchers have proposed valuable ideas in the implementation of 

adaptive GAs or hybrid GAs, with the increasing complexity of optimization problems in 

real world, better technologies for GA implementation are still in need. In the Section 2.6, 

an effective adaptive GA is introduced for the optimization of FIR filters in a discrete 

space. 

 

2.5 GA for the Design of Low Power High-Speed FIR Filters  

2.5.1 GA Implementation 

The optimal design of cascade form filters can be possibly achieved if all subfilters are 

jointly optimized. High problem dimension and large search space lead to numerous local 

optima, which increases the computational complexity. This is especially serious for 

high-order filters. The GA may provide a solution due to three reasons. First, all 

subfilters can be simultaneously designed.  Second, the coefficients can be quantized in 

SPoT space without rounding process as the GA directly deals with coded variables in a 

discrete space. Third, the information directly related to hardware cost can be affiliated to 

the fitness function as an optimization criterion.  

When the GA is applied to design a digital filter in cascaded realization, the coefficients 

of all subfilters are encoded and concatenated to represent the chromosomes of filters as a 

string of ternary encoding digits [11]. The word length of filter coefficient is equal to the 

ternary string length. Cascading the encoded coefficients of all subfilters forms a vector 
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of ternary bit stream, named as chromosome. Such chromosomes proceed to the genetic 

operation and the new generation of chromosomes is produced as a potential solution to 

the optimization problem.  

Three important issues on the design technique, such as initialization, objective function 

and fitness function, and replacement strategies are covered here. 

A. Initialization 

Before coming to the optimization process, several design parameters should be decided, 

such as the number of subfilters, the lengths of subfilters and the initial population.  

The z-transform transfer function of the overall filter, H(z), is given in EQ. (2.3), which is 

constructed by p cascaded subfilters shown in Fig. 2.2. The value of p can largely affect 

the hardware cost involved in filter implementation. We shall show this through a design 

example. Let us consider the design of a linear phase FIR low-pass filter that meets the 

following specifications: the normalized passband and stopband edges of the filters are 

0.15 and 0.22, respectively, the maximum passband ripple and minimum stopband 

attenuation are 0.01 and 40 dB, respectively. The overall length of the filter with SPoT 

coefficient values is 53 [2]. To check how the number of subfilters affects the hardware 

cost, the filters are designed with 2, 3, 4 and 5 cascaded subfilters, respectively. The 

hardware cost is calculated based on the following assumptions. First, all subfilters are 

implemented by Direct-Form I; Second, the input signal word length is 8-bit; Third, each 

delay element is implemented by D-flip-flop with 8 transistors; Fourth, all adders are 

carry ripple adders with 28 transistors for each 1-bit full adder cell. In this thesis, the 

calculation of hardware cost is all based on these assumptions. Fig. 2.3 shows the 
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relationship between hardware cost in terms of the number of transistors and the number 

of subfilters in the cascaded filters. It is clear from the figure that the number of subfilters 

largely affects the hardware cost. It can be seen that the relationship between the number 

of subfilters and the number of transistors is not a linear one. In a cascade from filter, the 

output signal of the earlier stage is taken as the input signal of the later stage, which 

causes an increase in the word length of the overall output signal, consequently, an 

increase in hardware requirement. Such situation is increasingly serious with the increase 

of the number of subfilters. Hence, there is an increase trend for the hardware cost when 

a filter is factorized into more subfilters. However, to realize a filter in cascade form, it is 

possible to use shorter word length to represent the coefficients while still keeping the 

peak ripple [2]. Therefore, more subfilters possibly leads to shorter word lengths, which 

can in turn reduce the hardware requirement. Hence, with the increase of the number of 

subfilters, the hardware requirement in terms of the number of transistors may be 

increased and also may be decreased. This can explain why it is not a linear relationship 

in Fig. 2.3. It is interesting and reasonable to assume that there is an optimal factorization 

mode that minimizes the hardware cost. In this example, the filter consisting of 3 

cascaded subfilters requires fewest transistors. The simulation study shows that p can be 

set to be 3 for the designs with middle lengths ranging from 20-60, which is a safe choice.  

The lengths of subfilters depend on three factors. The first is the overall filter length 

denoted as N; the second is the value of p; and the third is the zeros of the overall filter. If 

the lengths of the subfilters in Fig. 2.2 are denoted as Ni, i=1, 2,…p, the relationship 

between N  and Ni can be given as 
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1

1.
p

i
i

N N p
=

= − +∑                  (2.7) 

Here, we assume that the overall filter length keeps unchanged when it is implemented in 

both cascade form and direct form.  For example, we can factorize a 26-order filter into 

two 13-order subfilters, such that the length of the overall filter is still 27, i.e. 27=14×2-

2+1.  

When selecting the lengths of subfilters, we try to avoid large differences among the 

subfilters. Furthermore, the lengths of subfilters are also dependent on the distribution of 

zeros of the filter with real valued coefficients. In other words, we need to keep the 

integrity of the zero-sets grouped according to their location in the complex z-plane. The 

length of each subfilter is chosen according to the above considerations.  

In the GA, the initial population as seeds to start the optimization process can affect the 

optimization performance to a certain degree. In our implementation, a long filter is 

firstly designed in cascaded realization with real valued coefficients using the method 

proposed in Section 2.3 and then these coefficients are simply rounded to the pre-

specified coefficient precision. By this way, an initial filter with discrete coefficients can 

be obtained. The coefficient values of this filter are perturbed to achieve the initial 

population.  
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Fig. 2. 3 The relationship between hardware cost and the number of subfilters. 

 

B. Objective function and fitness function 

The objective function is a main source to provide the mechanism for evaluating the 

status of each chromosome. This is an important link between the GA and the problem to 

be optimized. It takes chromosomes as input and produces objective values as 

measurement to the chromosomes’ performance.  

According to the minimax error criterion, the objective function of an FIR filter can be 

written as 

          
[0, ] [ , ]

max [ ( ) | ( ) ( ) |  ],
p s

j j
dO k H e H eω ω

ω ω ω π
ω

∈ ∪
= −             (2.8) 

where ωp and ωs are the passband and stopband edges, respectively, k(ω) is the required 

positive weight in each band, and H(ejω) and Hd(ejω) are the frequency responses of the 

filter under design and desired filter, respectively.  
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The fitness value calculated from the fitness function is used to reflect the degree of 

excellence of a chromosome. The information about the number of bits and the number 

of SPoT terms used in the coefficients is added to the fitness function as an optimization 

criterion. The fitness function is defined as 

                     1
2

1 1+  ,p

T

af a
O S Diff

= + ×                        (2.9) 

where ST represents the total number of the SPoT terms used in all subfilters, p is the 

number of subfilters, and Diff can be expressed as 

                                 [ ]
1

max | | min | |  ,
p

i i
i

Diff h h
=

= −∏           (2.10)  

where hi is the coefficients of the ith subfilter. In the fitness function, a1 and a2 are 

positive weighting coefficients which affect the optimization results by controlling the 

contribution of an individual term in the fitness function. The first term in fitness 

function plays a major role, which controls the minimization of the peak ripples. The 

second term is used to minimize the number of SPoT terms and the third term is to 

minimize the number of bits used to represent the coefficients of each subfilter. It is 

important to assign proper values to the weighting coefficients, a1 and a2, such that the 

second and third terms in (2.9) play a minor role. Usually at the beginning of the 

evolutionary process, the fitness value of first term is very small, i.e. less than 1, 

especially in the case where the initial population is randomly obtained. Hence, a1 and a2 

should be chosen in a way that the sum of the second and third terms in (2.9) is less than 

1 for all acceptable solutions.  Since the second term is related to the number of SPoT 

terms, the value of a1 can be a function of the pre-specified maximal number of SPoT 
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terms used in all subfilters, i.e. a1 = αSS, where SS is the pre-specified maximal number of 

SPoT terms. To find the two coefficients a1 and a2, a large number of filters with lengths 

ranging from 20 to 70, ripple from 0.1- 0.0001, and coefficient word length from 2 to 12 

bits, are designed. If there is no special statement, these specifications are also used to 

collect simulation data in the later sections. We obtained the suitable values of a1 and a2 

for various filters with these specifications through multiple trials. Based on the data 

collected, a1 and a2 are found to have close relationship with the filter length. From 

simulation study, we derived the following equations to compute the weighting 

coefficients, a1 and a2:  
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=
                (2.11) 

where NT is the total length of all subfilters. To express theses parameters using equations 

is better than to give fixed values or suitable ranges for the choice of these values. It is 

more flexible and can avoid multiple trials to find the correct values. With the definition 

of the fitness function such as EQ. (2.9), the GA not only minimizes the peak ripples of 

the overall filter but also minimizes the total number of SPoT terms and the number of 

bits for all subfilters; consequently, the arithmetic operations of the filter is minimized.   

C. Replacement strategies 

Replacement is an important stage in the evolutionary process of the GA, which decides 

how to replace the current population to form the new population after the offspring is 

produced by genetic operations. In our implementation, generation-replacement [34] is 

used as the main replacement strategy. In this strategy, each population generates the 
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same number of new chromosomes to form the population in the next generation that 

replaces all individuals in the previous generation. To increases the convergence speed, 

the generation-replacement strategy is combined with the elitist strategy [34] where two 

best chromosomes in old generation are copied into the succeeding one. Steady-state 

reproduction [34] is another strategy for replacement, where only a few worst 

chromosomes of old generation are replaced to produce the next generation. According to 

our observation, if the population size is larger than 100, the generation-replacement has 

higher fitness value and convergence speed, resulting in better optimization performance. 

It can be seen from the simulation results of Fig. 2.4, where the first 300 generations are 

observed in a design of an FIR filter of order 20. In Fig. 2.4 (a), the generation-

replacement strategy is used and the population and mating size are both 200. In Fig. 2.4 

(b), the steady-state reproduction is applied and the population and mating size are 600 

and 200, respectively. It is clear that the performance of the generation-replacement is 

better than that of steady-state reproduction. 
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(a) Generation-Replacement 
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(b) Steady-State Reproduction 

Fig. 2. 4 The convergence results by using Generation-Replacement and Steady-State 
Reproduction. 
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2.5.2 Design Example 

To illustrate the proposed technique, the design of a linear phase FIR low-pass filter that 

meets the following specifications is considered: 

Normalized passband edge: 0.15 

Normalized stopband edge: 0.22 

Maximum passband ripple:  0.01  

Minimum stopband attenuation: 40 dB 

An FIR filter of length 30 with real valued coefficients satisfies the given specifications. 

The filter length will increase to 53 if each coefficient is quantized into 3 terms of 7-bit 

SPoT. If such a filter is factorized into 2 subfilters by method in [2], the subfilter lengths 

of H1(z) and H2(z) are both 27. The coefficients of H1(z) are represented by 2 terms of 5-

bit SPoT and H2(z) is represented by 6-bit SPoT. The minimum stopband attenuation of 

the overall filter is 40.28 dB. When the filter is designed using the proposed method, the 

lengths of H1(z) and H2(z) are also both 27. Two terms of 5 bits SPoT term is sufficient to 

represent the coefficients H1(z) and H2(z). The stopband attenuation is 40.25 dB. The 

frequency responses of the two subfilters and overall filter are shown in Fig. 2.5.  

If the filter is factorized into three subfilters by using the proposed method, the lengths of 

H1(z), H2(z) and H3(z) are 19, 17 and 19, respectively. The coefficients of H1(z) and H2(z) 

use 3 terms of 4 bits SPoT, and 2 terms of 4 bits SPoT, respectively. The coefficients of 

H3(z) use 2 terms of 3 bits SPoT. The stopband attenuation is 41.46 dB. The frequency 

responses of three subfilters and overall filter are shown in Fig. 2.6. The coefficient 

values of three subfilters are listed in Table 2.1. 
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A comparison on hardware cost for the above filters are listed in Table 2.2. From the 

table, the filter consisting of 3 subfilters designed by the proposed method uses 7.21% 

less D flip-flops and 24.24% less full adders than the one including 2 subfilters designed  

by the iterative approach in [2]. This is mainly because the GA optimizes all subfilters 

simultaneously while the linear programming does it separately. Moreover, the 

minimization of the coefficient word length is also incorporated as an optimization 

criterion. It can be seen from Table 2.2 that compared with the filter designed by [2], the 

proposed method achieves about 20.74% savings in terms of the number of the transistors. 

 

Table 2. 1 List of filter coefficients in three-subfilter structure 

 

 

 

 

 

Table 2. 2 A comparison of hardware cost among different designs 

 

h1 h2 h3 

h(0) = h(18) = 20 
h(1) = h(17) = 21 
h(2) = h(16) =-21 
h(3) = h(15) = 0 
h(4) = h(14) =-20 
h(5) = h(13) = 21 
h(6) = h(12) = 20 

h(7) = h(11) =-21 

h(8) = h(10) =-23+20 
h(9) =-23-22+ 20 

h(0) = h(16) = 20 
h(1) = h(15) = 21 
h(2) = h(14) = 20 
h(3) = h(13) = 0 
h(4) = h(12) =-20 
h(5) = h(11) = 0 
h(6) = h(10) = 22 

h(7) = h(9)  = 23 

h(8) =23+21 
 

h(0) = h(18) =-20 
h(1) = h(17) = 20 
h(2) = h(16) = 0 
h(3) = h(15) = 20 
h(4) = h(14) =-20 
h(5) = h(13) = 0 
h(6) = h(12) = 0 

h(7) = h(11) = 22-20 

h(8) = h(10) =-22+20 
h(9) =-22-20 

 Single filter 

H(z) 

Iterative 

approach [2] 

H1(z) H2(z) 

Proposed 

H1(z) H2(z) 

Proposed 

H1(z) H2(z) 

H3(z) 

Stopband attenuation (dB) 41.06 40.28 40.25 41.46 

No. of  bits 7 5,6 5,5 4,4,3 

Total No. of SPoT 36 35 33 30 

No. of D flip-flops 780 832 806 772 

No. of 1-bit full adders 780 920 819 697 

No. of transistors 28080 32416 29380 25692 
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(a) Two subfilters H1(z) and H2(z) whose orders are both 26. 
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(b) Overall filter whose order is 52. 

Fig. 2. 5 The frequency responses of the two subfilters (a) and overall filter (b). 
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(a) Three subfilters H1(z), H2(z) and H3(z) whose orders are 18, 16, 18, respectively. 
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(b) Overall filter whose order is 52. 

Fig. 2. 6 The frequency responses of the three subfilters (a) and overall filter (b). 
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2.6 An Adaptive Genetic Algorithm (AGA)  

In Sections 2.4 and 2.5, the GA has been introduced and applied in the design of cascade 

form filters with SPoT coefficients, respectively. The most difficult thing in the 

implementation of the GA is the choice of control parameters which are problem-

dependent and critical to optimization performance. The balance between optimization 

performance and computational cost should be carefully considered when choosing the 

suitable parameters for an optimization problem. Moreover, the optimal settings of 

parameters in the earlier search stages typically become inefficient in the later stages. 

To address the problem, an adaptive genetic algorithm (AGA) is proposed in this section. 

Instead of using fixed population size and probabilities of genetic operations, the 

proposed AGA automatically adapts the population size and the probabilities of genetic 

operations to the change of optimization performance and population dynamics during 

the evolutionary process. It is, therefore, named as “adaptive genetic algorithm”. The 

parameter-free characteristic avoids multiple trials to find optimal settings for these 

control parameters.  

2.6.1 Adaptive Population Size  

The size of the population is one of the most important parameters, which is critical in 

GA applications. The population size is dependent on the sizes of chromosome and the 

search space. Increasing the population size increases its diversity and reduces the 

probability that the GA prematurely converges to local optima, while it increases the 

computation time required for large population to converge to optimal regions in search 
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space. To ensure the satisfying optimization performance as well as enhance the 

calculation efficiency, in the proposed AGA, the population size adaptively varies 

according to the average improvement of the best fitness values during a specified 

number of generations. In our implementation, during two successive evolution periods, 

if the average fitness value of the fittest individuals in the second period is larger than 

that in the first period, the size of the population pool will decrease. On the other hand, 

the population size will increase if the average value in the second period is smaller than 

that in the first period. The adaptive change of the population size (denoted as ∆P) 

depends on the improvement quantity, which is expressed as 
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                         (2.12) 

Porg is the current population size, fbesti is the best fitness value in ith generation, GS is the 

starting generation, and favgo and favgn are the average of the best fitness values during a 

pre-specified number (denoted as G) of generations, i.e. from GS
th generation to (GS+G-

1)th generation and the same number of offspring generations, i.e. from (GS+G)th 

generation to (GS+2G-1)th generation, respectively..When ∆P is a positive value, the 

population size will increase; when ∆P is a negative value, the population size will 

decrease; when ∆P is zero, the population size will remain unchanged. The absolute 

value of ∆P is equal to the change of the population size.  
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At the beginning, the population size is chosen to be small. During the evolutionary 

process, the population size increases or decreases according to the average improvement 

of the best fitness values between two consecutive periods each with the same pre-

specified number of generations as defined in EQ. (2.12). Upper and lower bounds are 

specified for the population size, e.g. the lower bound can be set to be 10 and the upper 

bound to be 1000. If the change of population size calculated from EQ. (2.12) makes the 

population size larger than the upper bound or smaller than the lower bound, the 

population size will be set to be the upper bound or lower bound, respectively, which 

ensures that the population size is always in the reasonable range.  

2.6.2 Adaptive Probabilities of Crossover and Mutation  

In the evolutionary process of the GA, crossover and mutation are two important genetic 

operations used to produce new members for the offspring, which occur according to the 

probabilities of crossover and mutation, denoted as pc and pm, respectively. The 

performance of the GA is largely dependent on the choice of pc and pm. The higher the 

value of pc is, the faster the introduction of new material is. However, increasing pc also 

increases the disruption of good chromosomes. The large value of pm tends to transform 

the GA optimization process into a random search, but it also helps prevent the GA from 

premature convergence.  

In the AGA, the method in [30] for the adaptive adjustment of pc and pm is adopted, 

where pc and pm increase when the population tends to get stuck at a local optimum and 

decrease when the population is scattered in the search space 
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where fmax and favg, respectively, are the maximum and average fitness values in the 

current population, f ’ is the larger fitness value of the two chromosomes to be crossed 

and f is the fitness value of the mutated chromosome. According to [30], the weighting 

coefficients, k1 and k3  are chosen to be 1.0 and k2 and k4  to be 0.5. 

 

2.7 AGA for the Design of Low Power High-Speed FIR Filters 

with Truncation Effect 

In Section 2.5, a GA has been presented for the design and optimization of high-speed 

low power FIR filters, where the filters are implemented by cascading several short 

subfilters. Design example has shown that significant savings on hardware cost can be 

achieved. However, we would like to know whether there are still rooms for 

improvement. 

Let us examine the filter structure of Fig. 2.2. When the input signal passes through a 

filter implemented with a series of cascaded subfilters, the output signal of the earlier 

stage is taken as the input signal of the later stage. Hence, the word length of the overall 

output signal is the sum of the word lengths of the input signal and all subfilters.  It can 

be illustrated by using the following example, shown in Fig. 2.7. The word lengths of 

input signals are both 8 bits in the two cases. If the filter is implemented in the direct 
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form with coefficients of 7 bits SPoT terms, the word length of the output signal is 15 

bits; while if the filter is designed with 3 cascaded subfilters with coefficients of 4, 4, and 

3 bits, respectively, the word length of the output signal is increased to 19 bits due to the 

accumulation of the word lengths of the input signal and each cascaded subfilter.   

 

 

(a) The cascade form filter 

 

(b) The direct form filter 

Fig. 2. 7 The word lengths of the output signals in different forms of realization. 

 

The increase in the word length of the output signal will result in an increase in the 

memory to store the signal. To address this problem, a certain number of the least 

significant bits are considered to be truncated from the output signal of subfilters. 

However, this would necessarily introduce quantization errors to the output signal. 

Moreover, such approach increases the complexity of the optimization process, leading to 

very long computation time. In this section, a systematic method is proposed, where 

several least significant bits are truncated from the output signals of the subfilters. To 
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improve the optimization performance, the AGA proposed in the previous section is 

utilized to jointly optimize each coefficient in all subfilters.  

2.7.1 AGA Implementation for Cascaded FIR Filter Design  

The chromosome form and initialization process are the same as the method presented in 

Section 2.5. The only difference is instead of using a fixed number of SPoT terms for all 

coefficients in one subfilter, the coefficients are allocated with different numbers of SPoT 

terms subject to a given total number of SPoT terms.  

In a cascade form filter shown in Fig. 2.2, the frequency response of the output signal can 

be expressed as 

     ( ) ( ) ( ),j j jY e X e H eω ω ω=                                           (2.15) 

where X(ej ω ) is the frequency response of the input signal. An impulse signal is used as 

input to determine the frequency response of the filter. When the impulse signal passes 

through the system, truncating several least significant bits from the output is performed 

at each stage of cascaded subfilters if applicable. .  

By considering the truncation effect in the filter output, the objective function is 

formulated as 

                        
[0, ] [ , ]

max ( ) | ( ) ( ) | ,
p s

j j
dO k Y e Y eω ω

ω ω ω π
ω

∈ ∪
⎡ ⎤= −⎣ ⎦                           (2.16) 

where k(ω) is defined as the required ratio in each band, and Y(ej ω) and Yd(ejw) are the 

frequency response of the output sequence from the designed filter and ideal one, 

respectively.  
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Since zero-value coefficients reduce the hardware cost, an additional item to maximize 

the number of zero-value coefficient is added to the fitness function of EQ. (2.9), shown 

as 

                 1
2 3

1 1 + + ,p
T

T

afitness a a Z
O S Diff

= + × ×                     (2.17) 

where ZT  is the total number of zero-value coefficients. 

Since the new terms is related to the number of zero-value coefficients and the maximal 

number of such coefficients is the total length of all subfilters, the value of a3 can be a 

function of NT, where NT is defined as the total length of all subfilters. Through similar 

simulation approach, it is found that the definition of a1 and a2 are the same as in EQ. (2.9) 

and a3 can be defined as 
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Na
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=                             (2.18) 

2.7.2 Truncation Effect on the Cascaded Structure 

It is important to understand the characteristics of truncation, e.g. how many bits can be 

truncated from the output of different stages. To this end, filters with different 

specifications are designed using the method presented in this section with length ranging 

from 21 to 65, peak ripple from 0.01 to 0.001 and the word lengths from 2 to 12 bits. 

From simulation study, some useful observations are concluded below. 

1. The maximal number of bits to be truncated increases with the increase of the 

number of cascaded subfilters. However, the difference among the word lengths of 

the overall output in the filters with different number of subfilters is very small. 

Obviously, more bits to be truncated lead more savings of hardware cost. However, 
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the hardware cost may be high if a filter is factorized into too many subfilters. It is 

caused by the accumulation of the word lengths of the input signal and all 

subfilters. Therefore, as shown in Fig. 2.3, factorizing a filter into too many 

subfilters, e.g. larger than 3 subfilters, may require relatively high hardware cost. 

However, the relationship between the hardware cost and the number of subfilters 

is not a linear one. Thus, our conclusion here is not contradict with Table 2.2 

which shows that the hardware cost of the filter consisting of 3 cascaded subfilters 

is less than that consisting of 2 cascaded subfilters. It is shown in Section 2.5 that 

there is an optimal point where the filter can be implemented with the minimal 

hardware cost. It is interesting to find that the optimal points in the designs with 

truncation and without truncation are usually similar. In other words, the quantity 

relationship between the number of subfilters and the hardware cost may not be 

changed via truncation.   

2. The word length of the overall output in the direct form filter is often shorter 

than that in the cascade form filter.  However, by using the proposed approach, the 

cascade form filter can be designed with nearly the same word length of the 

overall output as that in the corresponding direct form filter.  

3. The truncation sensitivities of the subfilters located in different cascaded 

stages are different. It is meaningful to find how many bits can be truncated from 

each cascaded subfilters. Since the truncation effect in an earlier stage will 

propagate to all later stages which are stationed after it, the earlier stage has less 

truncation margin and more sensitive than the later stages. It is found that the first 
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subfilter is most sensitive, from which nearly no bit can be truncated. An empirical 

equation to estimate the truncation margin will be given in Section 2.7.3. 

2.7.3 Optimal Truncation Margin  

There are lots of design parameters which affect the truncation margin, i.e. the coefficient 

word lengths, filter lengths, the number of subfilters, and real valued coefficients. Since 

the earlier stages may have less truncation margin than those in later stages, the ratio (j/p) 

can be considered as one of factors that affect the truncation margin if j is defined as jth 

subfilter in a chain of cascaded filters and p is the total number of subfilters.  Based on 

the same reason, it is possible that the ratio (Nsub/N) can be used as an indication for 

truncation margin if Nsub is the sum of the lengths of 1st to jth subfilters (i.e.
1

j

sub i
i

N N
=

=∑ , 

where Ni is the length of the ith subfilter) and N  is the length of the overall filter. Besides 

the above two ratios, it is easy to conclude that the truncation margin should be 

proportional to the number of bits used. Putting all three factors together and based on 

data collected from the design of filters with the specifications given in the previous 

section, we propose an empirical equation below where TMj represents the maximal 

number of bits which may be truncated from the output of jth cascaded subfilter. 

   

    

2 2

1

2 2

1

2 ,    for 1, 2,..., ,
2max

2 ,    for 1,..., ,
2max

j

j

B j
i

j
ij

B j
i

j
ij

Nj p pTM j
p N jh

Nj p pTM j p
p N jh

=

=

⎢ ⎥⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎢ ⎥⎢ ⎥= + =⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎢ ⎥⎢ ⎥= + = +⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥

∑

∑
    

(2.19)                



Chapter 2 Design of Cascade Form FIR Filters 

 - 57 -

where hj presents the coefficients of the jth subfilter in continuous space computed using 

the method proposed in Section 2.3, Bj is the number of bits to represent the coefficients 

of the jth subfilter, and i and j are ith and jth subfilters, respectively. EQ. (2.19) is an 

experimental equation which can help to estimate the approximate truncation margin.  

Three examples with relative short, medium and long filter lengths are used to show the 

veracity of EQ. (2.19). The specifications of the three filters are listed in Table 2.3. The 

comparisons on truncation margin between simulation and computation results are 

illustrated in Table 2.4. The simulation results are the maximal truncation margin that we 

can achieve using the method proposed in Section 2.7.1, and the computation results is 

from EQ. (2.9). It is clear that the equation can provide an approximate estimation on 

truncation margin where the error is no more than 1 bit.  

 

Table 2. 3 The specifications of three filters with short, medium and long lengths 

 

 

Overall filter 

length  

Normalized 

passband 

edge 

Normalized 

stopband edge

Maximum 

passband 

ripple 

Minimum 

stopband 

attenuation 

Short filter 21 0.15 0.27 0.01 40 dB 

Medium filter 35 0.15 0.24 0.01 40 dB 

Long filter 53 0.15 0.22 0.01 40 dB 

 
 

Table 2. 4 A comparisons of truncation margin between simulation and computation 
results 

 (a) Short filter 
 

 

  

 2 subfilters 3 subfilters 4 subfilters 

Simulation results (No. of bits) 0,5 0,2,3 0,0,4,5 

Calculation results (No. of bits) 0,5 0,2,3 0,0,3,4 
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(b) Medium filter 

   
(c) Long filter 

 
 

2.7.4 Design Example 

To illustrate the proposed technique, the design of the linear phase FIR low-pass filter in 

Section 2.5 is considered. When the filter is designed with three subfilters using the 

method proposed in this section, the lengths of H1(z), H2(z) and H3(z) are 21, 19 and 15, 

respectively. The coefficients of H1(z) and H2(z) use average 2 terms of 4 bits SPoT and 

the coefficients of H3(z) use average 2 terms of 3 bits SPoT. The stopband attenuation is 

40.47 dB. The frequency responses of three subfilters and the overall filter are shown in 

Fig. 2.8. The initial size of the population pool and mating pool are both 50. The lower 

and upper bounds are set to be 10 and 1000, respectively. Smaller population than 10 is 

usually used in a variation of the GA, i.e. micro-GA that works in a different way. Larger 

population than 1000 requires considerable computational cost. Therefore, the limitation 

of population size is chosen to be within 10-1000. Generation-Replacement combined 

with the elitist strategy is used as Replacement Strategies; and selection mechanism is 

Roulette Wheel Selection, which are used in all algorithms proposed in the thesis except 

 2 subfilters 3 subfilters 4 subfilters 5 subfilters 

Simulation results (No. of bits) 0,3 0,1,4 0,0,2,3 0,0,2,2,3 

Calculation results (No. of bits) 0,3 0,2,5 0,0,2,3 0,0,2,2,3 

 2 subfilters 3 subfilters 4 subfilters 5 subfilters 6 subfilters

Simulation results (No. of bits) 0,2 0,2,2 0,0,2,3 0,0,1,2,4 0,0,1,2,2,3 

Calculation results (No. of bits) 0,2 0,2,3 0,0,2,3 0,0,1,2,3 0,0,1,2,2,3 
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the MGA in Chapter 6 where the tournament selection strategy is used. The cycle of 

evolution is repeated until the desired objective value is obtained, i.e. 0.01 in this 

example, or the best fitness value of the population remains unchanged in 2000 

generations. By using the proposed method, zero, two and two bits can be truncated from 

the output of H1(z), H2(z), and H3(z), respectively.  This decreases the word length of the 

overall output and reduces the hardware requirement in implementation.  

A comparison of hardware cost is given in Table 2.5. It can be seen from the table that 

the system designed by the GA with 3 subfilters uses 7.93% less D flip-flops and 36.30% 

less full adders than the one optimized using the iterative approach with 2 subfilters in [2]. 

Compared with the method in [2], the proposed method achieves about 30.49% savings 

in terms of the number of the transistors; compared with the method proposed in Section 

2.5, 12.28% savings can be achieved. 

We also designed the filter with 2, 4, 5 and 6 subfilters. The frequency responses of these 

filters are shown in Figs. 2.9-2.12. Table 2.6 shows the comparisons of hardware cost in 

terms of the number of D-flip flops, 1-bit full adders and transistors for the designs of 

pre-truncation and post-truncation. It can be seen that the filter consisting of 3 cascaded 

subfilters requires the least hardware cost. The coefficients of the filters with 2, 3, 4, 5 

and 6 subfilters are listed in Table 2.7.   
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2.8 Conclusion 

In this chapter, the design schemes based on evolutionary optimization algorithms are 

presented for the design of high-speed low power FIR filters. The high-speed and low 

power features are achieved by factorizing a long filter into several cascaded subfilters 

each with coefficients constrained to sum or difference of power-of-two terms. The 

proposed method reduces the hardware cost significantly as the information which is 

related to hardware requirement is affiliated to the fitness function as an optimization 

criterion. To reduce the word length of the overall output, several of the least significant 

bits are truncated from the outputs of cascaded subfilters. An adaptive genetic algorithm 

(AGA) is proposed to improve the convergence performance of the GA, which 

adaptively adjusts the population size and the probabilities of crossover and mutation 

during the evolutionary process according to the optimization performance and 

population dynamics. Multiple trials to find suitable values for these parameters can be 

avoided. With the help of the proposed methods, considerable savings on hardware cost 

can be achieved. 
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(a) Three subfilters H1(z), H2(z) and H3(z) whose orders are 20, 18 and 14, respectively. 
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(b) The overall filter whose order is 52. 

Fig. 2. 8 The frequency responses of the three subfilters (a) and overall filter (b). 
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(a) Two subfilters H1(z) and H2(z) whose orders are both 26.  
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(b) The overall filter whose order is 52.  

Fig. 2. 9 The frequency responses of the two subfilters (a) and overall filter (b). 
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(a) Four subfilters H1(z), H2(z), H3(z) and H4(z) whose orders are 14, 14, 12 and 12, 

respectively. 
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(b) The overall filter whose order is 52. 

Fig. 2. 10 The frequency responses of the four subfilters (a) and overall filter (b). 
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(a) Five subfilters H1(z), H2(z), H3(z), H4(z) and H5(z) whose orders are 12, 10, 10, 10 

and 10, respectively. 
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(b) The overall filter whose order is 52. 

Fig. 2. 11 The frequency responses of the five subfilters (a) and overall filter (b). 
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(a) Six subfilters H1(z), H2(z), H3(z), H4(z), H5(z) and H6(z) whose orders are 10, 10, 8, 

8, 8 and 8, respectively.  
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(b) The overall filter whose order is 52. 

Fig. 2. 12 The frequency responses of the six subfilters (a) and overall filter (b). 
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Table 2. 5 A comparison of hardware cost among different designs 
 

 

Table 2. 6 A comparison of hardware cost between pre-truncation and post-truncation  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Single filter

H(z) 

Iterative approach 

[2 ] 

H1(z) H2(z)  

Proposed in 

Section 2.5 

H1(z) H2(z) H3(z) 

Proposed in 

Section 2.7 

H1(z) H2(z) H3(z)

Stopband attenuation (dB) 41.06 40.28 41.46 40.47 

No. of  bits 7 5,6 4,4,3 4,4,3 

Total No. of SPoT 36 35 30 30 

No. of D flip-flops 780 832 772 766 

No. of  1-bit full adders 780 920 697 586 

No. of transistors 28080 32416 25692 22536 

No. of subfilters 2 3 4 5 6 

No. of  bits 5,5 4,4,3 3,4,4,2 4,4,2,3,3 4,4,3,3,3,2

Stopband ripple(dB) -40.00 -40.47 -40.17 -40.15 -40.02 

No. of D-flip flops for pre-truncation 806 794 844 934 1024 

No. of D-flip flops for post-truncation 806 766 820 894 952 

No. of 1-bit full-adders for  pre-truncation 731 646 966 1136 997 

No. of 1-bit full-adders for post-truncation 691 586 898 1033 921 

No. of transistors for pre-truncation 26916 24440 33800 39280 36108 

No. of transistors for post-truncation 25796 22536 31704 36076 33404 
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Table 2. 7 List of the coefficients of filters with 2 (a), 3 (b) and 4 (c), 5 (d) and 6 (e) 
subfilters 

 
(a) Two subfilters  

 

 

 

 

 

 

 

(b) Three subfilters 
 

 

 

 

 

 

(c) Four subfilters 

 
 
 
 
 

h1 h2 

h(0) = h(26) = 20 
h(1) = h(25) = 0 
h(2) = h(24) =-20 
h(3) = h(23) =-20 
h(4) = h(22) = 20 
h(5) = h(21) = 20 
h(6) = h(20) = 0 

h(7) = h(19) =-21 

h(8) = h(18) = 0 

h(9) = h(17) = 21+20 
h(10)= h(16) = 20 
h(11)= h(15) =-21 
h(12)= h(14) =-23-20 
h(13)=-24-20 

h(0) = h(26) = 20 
h(1) = h(25) = 0 
h(2) = h(24) = 0 
h(3) = h(23) =-20 
h(4) = h(22) =-20 
h(5) = h(21) = 0 
h(6) = h(20) = 21 

h(7) = h(19) = 21 

h(8) = h(18) =-20 
h(9) = h(17) =-22 

h(10)= h(16) =-21 
h(11)= h(15) = 22+21 

h(12)= h(14) = 24-20 
h(13)= 24+22-20 

h 1 h 2 h 3 

h(0) = h(20) = 21 
h(1) = h(19) =-21 
h(2) = h(18) =-20 
h(3) = h(17) = 0 
h(4) = h(16) = 0 
h(5) = h(15) = 0 
h(6) = h(14) = 0 

h(7) = h(13) =-21 

h(8) = h(12) = 22+20 

h(9) = h(11) = 23+22+20 

h(10) = 23+22+21+20 

h(0) = h(18) =-20 
h(1) = h(17) = 0 
h(2) = h(16) = 0 
h(3) = h(15) = 22 
h(4) = h(14) = 0 
h(5) = h(13) =-22 

h(6) = h(12) =-22 

h(7) = h(11) = 22 

h(8)= h(10) = 23+20 
h (9)=23+22-20 

h(0) = h(14)= 0 
h(1) = h (13)= 20 
h(2) = h(12)=-20 
h(3) = h(11)= 0 
h(4) = h(10)=-20 
h(5) = h(9) = 0 
h(6) = h(8) = 22+21 

h(7) = 22+20 

 

h 1 h 2 h 3 h 4 

h(0) = h(14)= 22 -20 
h(1)= h(13)= 20 
h(2)= h(12)=-22 +20 
h(3)= h(11)= 22 -20 
h(4)= h(10)= 0 
h(5)= h(9) =-22 +20 

h(6)= h(8) =-22 -21 -20  
h(7)=-22 -21 -20 

h(0) = h(14)= 22 
h(1) = h(13)=-20 
h(2) = h(12)=-22 +20 
h(3) = h(11)=-22 +20 
h(4) = h(10)=-22 -21 -20 
h(5) = h(9) = 21 
h(6) = h(8) = 23 
h(7) = 23+21 

h(0) = h(12)= 20 
h(1) = h(11)= 22 -20 
h(2) = h(10)= 21 
h(3) = h(9) = 20 
h(4) = h(8) = 21 
h(5) = h(7) = 23  
h(6) = 23+20 
 

h(0) = h(12)=-21 
h(1) = h(11)= 20 
h(2) = h(10)= 0 
h(3) = h(9) = 20 
h(4) = h(8) = 0 
h(5) = h(7) =-21 -20 
h(6) =-21 -20 
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(d) Five subfilters 
 

h1 h2 h3 
h(0) = h(12)= 20 
h(1) = h(11)= 20 
h(2) = h(10)= 0 
h(3) = h(9) = 20 

h(4) = h(8) = 23 -21 
h(5) = h(7) = 23+22+21+20 
h(6) = 23+22+21+20 

h(0) = h(10)= 21 
h(1) = h(9) =-22 
h(2) = h(8) =-22 

h(3) = h(7) = 21 

h(4) = h(6)= 22+20 
h(5)  = 23 

 

h(0) = h(10)=-21 
h(1) = h(9) = 21 
h(2) = h(8) = 21+20 

h(3) = h(7) =-21-20 

h(4) = h(6) =-20 

h(5) =-21-20 

h4 h5 

h(0) = h(10)= 22-20 

h(1) = h(9) =-22 
h(2) = h(8) = 0 
h(3) = h(7) = 0 

h(4) = h(6) = 22 -20 
h(5) = 22+21+20 

 

h(0) = h(10)= 20 
h(1) = h(9) = 22-20 

h(2) = h(8) = 0 
h(3) = h(7) = 22-20 

h(4) = h(6) = 22 +21 
h(5) =22+21+20 

 
 

(e) Six subfilters 
 

h1 h2 h3 

h(0) = h(10) = 22+21 
h(1) = h(9) =-21 
h(2) = h(8) =-23-21 

h(3) = h(7) = 23-20 

h(4) = h(6) = 23+22-20 

h(5) = 23+20 

h(0) = h(10)=-21 
h(1) = h(9) = 22+21

h(2) = h(8) = 21 

h(3) = h(7) =-22+20 

h(4) = h(6) =-23-20 
h(5) =-23+20 

h(0) = h(8) = 22-21 
h(1) = h(7) = 0 
h(2) = h(6) =-20 

h(3) = h(5) = 22+21+20 

h(4) =22-20 

h4 h5 h6 

h(0) = h(8) = 0 
h(1) = h(7) = 0 
h(2) = h(6) =-21 

h(3) = h(5) = 20 

h(4) = 22+21 

h(0) = h(8)=-20 
h(1) = h(7) =-20 
h(2) = h(6) = 0 

h(3) = h(5) = 22+21 

h(4) =22+21 

h(0) = h(8) = 0 
h(1) = h(7) = 0 
h(2) = h(6) = 0 

h(3) = h(5) =-21-20 

h(4) =-20 
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Chapter 3 

Design of Frequency Response Masking Filter 
Using an Oscillation Search Genetic 
Algorithm  

 

3.1 Introduction 

The frequency-response masking (FRM) technique [36-48] is one of the most 

computationally efficient ways for the synthesis of arbitrary bandwidth sharp linear phase 

FIR digital filters. It utilizes an interpolated bandedge shaping filter to form the sharp 

transition-band of the overall filter. A pair of masking filters together with the 

complement of interpolated bandedge shaping filter construct the arbitrary bandwidth of 

the overall filter. The sparse coefficient vector of the bandedge shaping filter results great 

savings in arithmetic operations at the cost of longer group delay when synthesizes a very 

sharp FIR filter.  

As discussed in the previous chapter, the coefficients of an FIR filter can be quantized 

into SPoT values leading to a so-called multiplication-free implementation [1]. However, 

the quantization process requires considerably large computer resources and takes very 

long time to search for a set of optimal SPoT coefficients, which is especially serious for 
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the design of FRM based FIR filter. To achieve the global optimal solutions, more than 3 

subfilters have to be jointly designed. Recently, several nonlinear optimization techniques 

were introduced for the design of FRM filters [49-53]. These methods are able to jointly 

optimize all subfilters in a single stage FRM approach and produce considerable savings 

in terms of the number of arithmetic operations in comparison with traditional iterative 

design methods [36-38]. However, these methods cannot be directly applied in the design 

of FRM filters with discrete coefficients. In [54], a method based on iterative mixed 

integer programming (MILP) is proposed to design FRM filter with SPoT coefficients. It 

deals with the bandedge shaping filter and masking filters in two separate steps leading to 

a sub-optimum solution. In [13], the GA is applied in the design of FRM filters. However, 

since there are several subfilters to be jointly designed in the synthesis of FRM filters 

which makes the optimization very complicated with a large number of decision 

variables. The possibility of entrapment in local optima, therefore, is very high. When the 

GA is utilized in such complex applications, it usage is limited by the high probability of 

premature convergence as well as low convergence speed caused by searching large 

solution space. A sub-optimal solution is usually produced if there is no exterior strength 

to lead GA out of local optima.  

To solve a complex optimization problem, the most effective way is to design a tailor-

made algorithm that suits the needs of it. To this end, a hybrid GA is proposed in this 

chapter, which jointly designs all subfilters each with SPoT coefficients in the FRM 

structure. An algorithm named as oscillation search algorithm (OS) is developed, which 

is tailor-made for the design of digital filters in discrete space. The proposed hybrid 
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algorithm is formed by integrating the GA and OS, named as oscillation search genetic 

algorithm (OSGA). The whole optimization is based on the GA. The OS algorithm is 

utilized to optimize some fitter chromosomes during the evolutionary process of the GA. 

The application of the OS algorithm improves the convergence performance of the GA 

by preventing premature convergence and reducing computational complexity.  

In the OSGA, instead of using the AGA presented in Chapter 2, the GA with fixed 

control parameters is employed. To adjust the population size and probabilities of genetic 

operations in the AGA, more function evaluations should be conducted. In the FRM filter 

design, the function evaluation involves the calculation of the frequency response of each 

subfilter and the synthesis of the overall filter. Since the transition band of the FRM filter 

is very sharp, it is necessary to use very fine grid of frequency points for the calculation 

of frequency response. Due to the complex structure and very fine grid used in the 

calculation, the computational cost for function evaluation is very high. Therefore, 

additional computation time to adjust control parameters is not preferred in FRM filter 

design.  

It is shown by means of example that large savings in computation resources can be 

achieved by the proposed method. The coefficient word length in each subfilter has also 

been reduced significantly.   

This chapter is organised as follows: The FRM technique is introduced in Section 3.2. 

The OSGA for the design and optimization of FRM filters in SPoT space is discussed in 

Section 3.3. Section 3.4 is dedicated to the design example. A summary is given in 

Section 3.5. 
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3.2 Frequency-Response Masking Technique 

The FRM technique employs an interpolated bandedge shaping filter to form the sharp 

transition width for an FIR filter and utilizes the delay-complementary concept to realize 

arbitrary bandwidth. Fig. 3.1 shows one of the possible realization structures for FRM.  

In this figure, Ha(z) is referred as bandedge shaping filter which is a symmetrical impulse 

response linear phase low-pass filter with odd length Na and its complementary filter Hc(z) 

can be expressed as 

         
1

2( ) ( ).
aN

c aH z z H z
−

−
= −                                              (3.1) 

The frequency response of Ha(z), is shown in Fig. 3.2(a). A pair of complementary 

interpolated bandedge shaping filters Ha(zM) and Hc(zM) can be derived by replacing each 

delay element of both Ha(z) and Hc(z) by M delays. The frequency responses of Ha(zM) 

and Hc(zM) are shown in Fig. 3.2(b). The transition-band widths of Ha(zM) and Hc(zM) are 

a factor of M narrower than that of Ha(z). Two masking filters HMa(z) and HMc(z), whose 

frequency responses are shown in Figs.3.2(c) and 3.2(e), are cascaded to Ha(zM) and 

Hc(zM), as shown in Fig. 3.1, to remove periodic repetitions of Ha(zM) and Hc(zM) in the 

stopband, respectively. The outputs of Ha(zM)HMa(z) and Hc(zM)HMc(z ) are summed to 

form the overall system, denoted by H(z) , as shown in Figs. 3.2(d) and 3.2(f). The z-

transform transfer function of the overall filter is given by 

     ( ) ( ) ( ) ( ) ( ).M M
a Ma c McH z H z H z H z H z= +                              (3.2)        
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Note that the lengths of HMa(z) and HMc(z) in (3.2) are assumed to be the same. If they are 

not, zero coefficients should be padded into the short filter. The joint design of all 

subfilters with SPoT coefficients is a nonlinear process since the objective function based 

on EQ. (3.2) is nonlinear.  

 

       
         

Fig. 3. 1 A realization structure for FRM approach. 
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Fig. 3. 2 The frequency responses of various subfilters in the FRM technique. 
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3.3 Oscillation Search Genetic Algorithm (OSGA) 

As a stochastic search method, the GA finds an optima solution through evolution 

without incorporating any rules of the problem to be optimized and the whole process is 

problem-independent. This is a great advantage and also a disadvantage of the GA. The 

GA does not always evolve towards a good solution; it only evolves away from bad 

circumstances. Therefore, the GA risks finding a suboptimal solution and has low 

convergence speed in complex applications. It is possible to boost GA’s performance and 

improve its convergence speed if some properties of our problem can be taken into 

consideration. Three properties of filter coefficients are considered. First, although direct 

rounding of real valued coefficients deteriorates the frequency response, they usually 

have the same sign as the optimal discrete coefficients. Second, it is well known that the 

centre coefficient has larger absolute value and the coefficients near to the beginning and 

end are smaller. For example, if 10 bits are used to represent the filter coefficients, it is 

impossible for the first coefficient value h(0) to be about 1023, while it is also impossible 

for the centre coefficient to be less than 100 in most situations. Third, in a symmetrical 

filter the frequency response is usually more sensitive to the approximation of the 

coefficients located near the centre. Little change of these coefficients can largely 

influence the frequency response of the filter, while similar changes of those coefficients 

near to the beginning and end can only slightly influence its frequency response. 

Therefore, it is reasonable to optimize the coefficients of a filter from high coefficient 

sensitivity to low sensitivity. An oscillation search algorithm is developed based on the 
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above properties, whose basic principle is to find better coefficient values by oscillating 

around the initial values. In the oscillation search scheme, each subfilter in FRM 

structure is optimized individually. Each time the algorithm only optimizes one 

coefficient of one subfilter and moves to the next coefficient upon the completion of the 

optimization for the current one. However, globally optimal solutions are possibly 

achieved if all variables are jointly optimized. The OS algorithm that optimizes each 

coefficient individually difficultly finds global optimal solutions. To address this, it is 

integrated with the GA to generate a hybrid algorithm, OSGA, where the GA is used as 

the basis of the global optimization and OS is applied to optimize elitist members during 

the evolutionary process. The detailed information on the implementation is given in the 

following sub-sections. 

3.3.1 The Implementation of GA 

In the OSGA, the GA is employed in the whole optimization process. The coefficients of 

the subfilters in the FRM structure are encoded and concatenated to represent the 

chromosomes as a string of ternary encoding digits. By this way, the coefficients of all 

the subfilters can be jointly optimized through the evolutionary process of the GA.  

The main objective of the optimization in the design of FRM filters is to find the 

coefficients of each subfilter which can minimize the peek ripple in all bands. Hence, the 

objective function, O, can be defined as the same as that in EQ. (2.8), where H(ejω) and 

Hd(ejω) are the frequency responses of the H(z) in (3.2) and desired filter, respectively. 

Besides the minimization of the overall ripple, the hardware cost is also to be minimized 
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by decreasing the number of bits and the number of SPoT terms and increasing the 

number of zero-value coefficients. The fitness function is defined as     

                     31
2

max

1 ,T
T

aaf a Z
O S Diff

= + + × +           (3.3) 

where the definitions of ST and ZT are the same as those in EQ. (2.17) and Diffmax is 

expressed as 

      max max( , , ),
where max | | min | | .

a Ma Mc

P P P

Diff Diff Diff Diff
Diff h h
=

= −
                 (3.4) 

Here, hp represents the coefficients of the pth subfilters, where p can be a, Ma or Mc; in 

other words, hp denotes the coefficients of the bandedge shaping filter or two masking 

filters. The three positive weighting coefficients are defined as 

1 2 3
50.1 ,  ,  2,S

T

a S a a
N

= = =                  (3.5) 

where SS is the pre-specified maximal number of SPoT terms and NT is the total length of 

all subfilters.  

3.3.2 Oscillation Search (OS) Algorithm  

The basic principle of the OS algorithm is to find better coefficient values by oscillating 

around the initial values. In the OS scheme, all subfilters in FRM structure are optimized 

individually. Each time the algorithm optimizes only one coefficient of one subfilter and 

moves to the next coefficient after the optimization for the current one is finished. The 

coefficient to be optimized is gradually increased until the maximal bound is reached and 

then decreased until the minimal bound is reached. The optimal value of the coefficient is 

the one with the largest objective value during the increasing and decreasing processes, 
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which will be used in the subsequent optimization process. In a subfilter, the optimization 

order is from high coefficient sensitivity to low sensitivity. An optimization round is 

defined as the process during which all subfilters are optimized once. If an improvement 

of the objective value can be obtained in the current round, a new one will be started 

upon the completion of the current one. The OS algorithm is considered to reach 

convergence if there is no improvement during a whole round. 

During the evolutionary process of the GA, the OS algorithm is applied when one of the 

two conditions is met:  

a) For every a pre-specified number (GOS) of generations, the OS will join according to 

a probability (pos); 

b) If the fitness improvement cannot be obtained in a specific number of generations.  

Here, pos controls the involvement of the OS algorithm, which is introduced to avoid 

disturbing the GA evolution. If pos is chosen to be 1, the OS algorithm will be applied 

after every GOS generations. This may disturb the GA evolution. We can avoid this by 

choosing a larger value of GOS. However, the fixed application frequency of the OS 

algorithm leads to the loss of flexibility. The use of po, offers more flexibility to the 

search. The setting of pos is related to the choice of GOS. It is usually chosen within 0.5-

0.8 when GOS is within 100-500.  

The objective function of the OS algorithm is formulated as 

        1020 log ( ).OSO O= −                             (3.6) 

In the OS algorithm, better solutions have larger objective values. According to the 

definition of the O, smaller O means smaller peak ripple, and also better design. Thus, we 
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need an inverse form of O to express its objective function. Here, we define it as EQ. (3.6) 

because such definition can directly tell us the peak ripple level in dB measurement.  

The three subfilters Ha(z), HMa(z) and HMc(z) in FRM structure can be characterized by 

the z-transform transfer function of EQ. (2.1). For symmetrical filters, we just need to 

optimize half of N or (N+1) coefficients, i.e. h(n), n = 0,…,(N-1)/2 for odd length filters 

or h(n), n = 0,…,(N-2)/2 for even length filters. For each subfilter, the coefficients are 

optimized one by one from high coefficient sensitivity to low sensitivity. The 

optimization is performed from h((N-1)/2) for odd length filter or h((N-2)/2) for even 

length filter to h(0).  

The steps are shown as follows: 

1) Choose a “fitter” chromosome from the GA population.  

2) Calculate its OS objective value using EQ. (3.6). 

3) Optimize one coefficient of Ha(z) at a time from h((N-1)/2) to h(0). Assume that the 

coefficient to be optimized is denoted as h(i), where i = (N-1)/2, …, 1, 0. Increase the 

value of h(i) by 1 and calculate the OS objective value. If the new objective value is 

larger than the best one found so far, the new value is recorded as the best one and the 

set of coefficient values of Ha(z), HMa(z) and HMc(z) are used in the subsequent 

optimization. The search step is set to be 1, which avoids missing better solutions. 

Repeat the process until the maximum bound of h(i) is reached. In parallel, the initial 

value of h(i) is also decreased by 1 at each time until the minimal bound is reached to 

check if better solutions can be found. We define the maximal and the minimal 

bounds of the OS search as 
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                           (3.7) 

where horg(i) is the initial value of h(i), B is the word length of the coefficient, and b 

is used to control the search space of the OS. Working in the way of local search, the 

OS algorithm searches the neighborhood area of horg(i). The maximal and minimal 

bounds are employed to limit the search. Enlarging the search space by increasing the 

value of b requires more computation time for the OS process. However, small search 

space associated with a small value of b may make the OS miss better solutions. The 

suitable choice of b is based on the consideration of trade-off between computation 

time and and solution quality. In our implementation, b is set to be 3. The search 

space is within horg(i)± 23 or the permitted maximal/minimal values.  

After all coefficients h(i) in Ha(z), where i = 0,…,(N-1)/2, are optimized, go to the 

next step.  

4) Repeat Step 3 for the optimization of HMa(z) and HMa(z). 

5) If there is no improvement in an optimization round, the search terminates and goes 

to Step 6 to record data; otherwise a new optimization round will be started by going 

to Step 3.  

6) Record coefficient values of Ha(z), HMa(z) and HMc(z) which have the best OS 

objective value found through the above steps. Encode them to form a string of 

ternary digits and construct a chromosome of GA. Replace the worst chromosome in 

the population with this one.  
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Through Step 1-6, it is possible to improve the quality of the GA population by refining 

better individuals and replacing worse ones. By this way, it is likely to find a global 

optimal solution. Furthermore, the OS algorithm can be used to improve the initial 

population obtained either by rounding the real valued coefficients or by randomly 

generating. Since it is developed according to the properties of filter coefficients, it can 

reduce the computational cost required by purely stochastic search of the GA.  

 

3.4 Design Example 

To illustrate the proposed technique, let us consider the design of a narrow transition 

width low-pass filter that is also taken as an example in [13]. The filter meets the 

following specifications: the normalized passband and stopband edges are 0.3 and 0.305, 

respectively; the permitted maximum passband and stopband deviations are 0.01. The 

estimated value of M corresponding to the lowest complexity is 6, and the lengths of 

Ha(z), HMa(z) and HMc(z) with infinite coefficients are 67, 19 and 33, respectively [36]. 

To meet the specifications, the filter lengths of Ha(z), HMa(z) and HMc(z) have to be 

increased to be 69, 21 and 35, respectively, when each subfilter is quantized with 12 bits 

SPoT coefficients using linear programming [36]. The numbers of SPoT terms in Ha(z), 

HMa(z) and HMc(z) are 92, 29 and 57, respectively. The stopband attenuation of the overall 

filter is 40.64 dB.  

If the filter is designed using the OSGA, the probabilities of crossover and mutation are 

set to be 0.7 and 0.01, respectively. The OS algorithm is applied to the top 5% 
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individuals in the population for every 200 generations with a probability of 0.6 or when 

there is no fitness improvement for 300 generations. The cycle of evolution is repeated 

until the desired objective value is obtained, i.e. 0.01 in this example, or the fitness 

improvement cannot be achieved for 2000 generations. The lengths of Ha(z), HMa(z) and 

HMc(z) are 67, 19 and 33, respectively, which are the same as those with real valued 

coefficients. Ha(z) uses 10 bits SPoT and HMa(z) and HMc(z) both use 11 bits SPoT. The 

stopband attenuation of the overall filter is 40.21 dB. The total number of SPoT terms 

used in Ha(z), HMa(z) and HMc(z) are 75, 32 and 50, respectively. The frequency responses 

of Ha(z6), HMa(z), HMc(z) and the overall filter are shown in Figs. 3.3 - 3.5, respectively. It 

is clear that proposed algorithm can effectively reduce the coefficient word length. The 

coefficient values of the subfilters are listed in Table 3.1. 

To evaluate the performance of each chromosome in the population, the fitness function 

has to be evaluated for (P×G) times during the whole optimization process, where P is 

the population size and G is the total number of generations. The calculation of the 

frequency response for all subfilters and the synthesis of the overall filter are involved in 

the objective function. Due to the sharp transition band, very fine grid of frequency 

points is required in calculation, which increases the complexity of function evaluation. 

To partially solve the problem, a small population is preferred to reduce the 

computational cost. However, in the GA, a small population usually leads to high 

probability of premature convergence, especially when the solution space is large. 

Therefore, in [13], a big population pool and mating pool are employed in the design of 

the above filter, namely, 4000 and 800, respectively. With the same lengths of Ha(z), 



Chapter 3 Design of Frequency Response Masking Filter Using an Oscillation Search 
Genetic Algorithm 

 

 - 83 -

HMa(z) and HMc(z), the evolutionary process evolved to 38 dB after 4287 generations, 

where all coefficients are represented by average 2 terms of 11 bits SPoT. With the help 

of the OSGA, the population pool size and mating pool size can be reduced to 200. We 

achieve 38.12 dB after 1505 generations and the coefficients of Ha(z), HMa(z) and HMc(z) 

are represented by 8, 9 and 9 bits SPoT, respectively. The frequency responses of Ha(z6), 

HMa(z), HMc(z) and the overall filter are shown in Figs. 3.6 - 3.8. Table 3.2 shows the 

comparisons among the designs from different methods, i.e. the method in [36], GA [13] 

and proposed OSGA. The coefficient values of the subfilters are listed in Table 3.3. 

Compared with the results in [13], the following improvements can be claimed: 

1) Require much fewer generations.  

2) Use much smaller population. Fewer generations coupled with smaller population 

size mean less computational cost.  

3) Reduce the coefficient wordlengths for all subfilters.  

Although the number of bits and computation time are largely reduced, the total number 

of SPoT terms in each subfilters is slightly more than the one using average 2-term by 2, 

3 and 5 terms, respectively. The increase is mainly caused by the OS that searches the 

neighborhood by increasing or decreasing 1 in each step. If minimizing the coefficient 

wordlength is a major goal, our method is most effective. The excellent performance of 

the OSGA makes it promising to solve other integer problems.  
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3. 5 Conclusion 

In this chapter, a hybrid optimization scheme is proposed for the design of FRM filters in 

a discrete space.  The coefficients of the subfilters are quantized to signed power-of-two 

(SPoT) values in order to replace multiplications with a limited number of shift-and-add 

operations. The hybrid algorithm (OSGA) is generated by integrating the genetic 

algorithm (GA) with an oscillation search (OS) algorithm. The optimization process is 

based on the GA. The OS that is developed based on the properties of filter coefficients is 

used as a separate process to refine the elitist individuals achieved from the GA. All 

subfilters are simultaneously designed each with SPoT coefficients. It has shown that the 

proposed OSGA is both more efficient and more effective than the GA by requiring less 

computational cost and identifying higher quality solutions.  
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Fig. 3. 3 The frequency response of Ha(z6) with the overall filter stopband attenuation of 
40.21 dB. 
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Fig. 3. 4 The frequency responses of HMa(z) and HMc(z) with the overall filter stopband 
attenuation of 40.21 dB. 
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Fig. 3. 5 The frequency response of the overall filter with the overall filter stopband 
attenuation of 40.21 dB. 
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Fig. 3. 6 The frequency response of Ha(z6) with the overall filter stopband attenuation of 
38.12 dB. 
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Fig. 3. 7 The frequency responses of HMa(z) and HMc(z) with the overall filter stopband 
attenuation of 38.12 dB. 
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Fig. 3. 8 The frequency response of the overall filter with the overall filter stopband 
attenuation of 38.12 dB. 
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Table 3. 1 List of filter coefficients of Ha(z), HMa(z) and HMc(z) with the overall filter 
stopband attenuation of 40.21 dB 

 
ha(n) 

h(0) = h(66) = 23+22-20 
h(1) = h(65) =-24+22 
h(2) = h(64) = 23-20   
h(3) = h(63) =-23-22+20 

h(4) = h(62) = 23+21 

h(5) = h(61) =-20 
h(6) = h(60) = 22 

h(7) = h(59) =-23-20 

h(8) = h(58) =-22+20 

h(9) = h(57) = 0 
h(10)= h(56) = 23+20 
h(11)= h(55) = 22-20 

h(12)= h(54) =-23+21 

h(13)= h(53) =-24+22 

h(14)= h(52) =-21 

h(15)= h(51) = 24-22-20 
h(16)= h(50) = 24-22 
h(17)= h(49) =-22 

h(18)= h(48) =-24-21 

h(19)= h(47) =-24+22 
h(20)= h(46) =-24+22 -20    
h(21)= h(45) = 25-23+20 

h(22)= h(44) = 23-21 
h(23)= h(43) =-25+23+20 
 

h(24)= h(42) =-25-21 

h(25)= h(41) = 22 
h(26)= h(40) = 25+23+20 
h(27)= h(39) = 25+23-20 

h(28)= h(38) =-25+22 

h(29)= h(37) =-26-24-22-20 
h(30)= h(36) =-25+23-20 
h(31)= h(35) = 24+20 

h(32)= h(34) = 29-27+24+22+21 
h(33)= 29+22 

hMa(n)  

h(0) =h(18) =-23+21 
h(1) =h(17) = 25+21+20 
h(2) =h(16) = 23-20 
h(3) =h(15) =-26+24 

h(4) =h(14) = 25-22 

h(5) =h(13) = 27-23-22+20 

h(6) =h(12)=-27-22+20 

h(7) =h(11) =-27-25-22+20 

h(8) =h(10) = 29+27-25+23+20 

h(9) = 210+27+25+23-21 

 
 hMc(n) 

h(0) =h(32) = 25 
h(1) =h(31) =-24+22+20 
h(2) =h(30) =-24-22+20 
h(3) =h(29) = 25+23-20 

h(4) =h(28) =-21 
h(5) =h(27) =-26+24 

h(6) =h(26) = 26+24+22+20 

h(7) =h(25) = 23+21 

h(8) =h(24) =-26-24-20 

h(9) =h(23) = 26+25-22 

h(10)=h(22) = 25+23+22-20 

h(11)=h(21) =-27-24-20 

h(12)=h(20) = 27+25-21 

h(13)=h(19) = 26-23-20 

h(14)=h(18) =-28-25-23+20 

h(15)=h(17) = 29+25+21 

h(16) = 210+29-27+24+23 

 

Table 3. 2 A comparison among different designs from the method in [36], GA [13] and 
OSGA 

(a) Filter specifications 

 
(b) GA parameters 

 

 

 

 Ripple Filter length No. of bits No. of term 

Method [36] 38.12 dB 67, 21, 35 11, 11, 11 72, 27, 44 

GA [13] 38 dB 67, 19, 33 11, 11, 11 Avg. 2 

OSGA 38.12 67, 19, 33 8, 9, 9 70, 23, 39 

 Population 
pool size 

Mating 
pool size 

Generations 

GA[13] 4000 800 4287 

OSGA 200 200 1505 
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Table 3. 3 List of filter coefficients of Ha(z), HMa(z) and HMc(z) with the overall filter 
stopband attenuation of 38.12 dB 

 
ha(n) 

h(0) = h(66) = 22+20 
h(1) = h(65) =-23+20 
h(2) = h(64) = 22   
h(3) = h(63) =-22-20 

h(4) = h(62) = 22+21 
h(5) = h(61) =-20 
h(6) = h(60) = 22-20 

h(7) = h(59) =-22-20 

h(8) = h(58) =-20 

h(9) = h(57) = 0 
h(10)=h(56) = 22+20 
h(11)=h(55) = 20 

h(12)= h(54) =-22+20 

h(13)= h(53) =-22-21 

h(14)= h(52) = 0 

h(15)= h(51) = 22+21 
h(16)= h(50) = 22+21 
h(17)= h(49) =-21 

h(18)= h(48) =-23-20 

h(19)= h(47) =-22-21 

h(20)= h(46) = 22+21      
h(21)= h(45) = 23+22+20 

h(22)= h(44) = 21 

h(23)= h(43) =-23-22+20 

h(24)= h(42) =-24 

h(25)= h(41) = 22-20 
h(26)= h(40) = 24+22+20 
h(27)= h(39) = 24+22 

h(28)= h(38) =-24+20 

h(29)= h(37) =-25-23-21 
h(30)= h(36) =-24+22-20 
h(31)= h(35) = 23-20 

h(32)= h(34) = 27+26+24-21-20 
h(33) = 27+26+25+24+23+21+20 
 

 hMa(n) 

h(0) = h(18) =-21 
h(1) = h(17) = 23+20 
h(2) = h(16) = 21 
h(3) = h(15) =-23-22 

h(4) = h(14) = 23-20 

h(5) = h(13) = 25-21 

h(6) = h(12) = 25-20 

h(7) = h(11) =-25-23-20 

h(8) = h(10) = 27+25-22-20 

h(9) = 28+25+23+20 

 
hMc(n) 

h(0) = h(32) = 23 
h(1) = h(31) =-22+20 
h(2) = h(30) =-22-20 
h(3) = h(29) = 23+21 

h(4) = h(28) = 0 
h(5) = h(27) =-23-22 

h(6) = h(26) = 25-23-20 

h(7) = h(25) = 21 

h(8) = h(24) =-24-22 

h(9) = h(23) = 25-23-20 

h(10)= h(22) = 23+21+20 

h(11)= h(21) =-25-22 

h(12)= h(20) = 25+23-20 

h(13)= h(19) = 23+22 

h(14)= h(18) =-28-23-21 

h(15)= h(17) = 27+23+20 

h(16)= 28+26+25+22+21 
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Chapter 4 

Design of Modified FRM filters Using the Genetic 

Algorithm and Simulated Annealing 

 

4.1 Introduction 

In Chapter 3, we have proposed a hybrid algorithm OSGA for the design of FRM based 

FIR filter. A great benefit of the FRM approach is the significant reduction in the number 

of multiplication which can be as high as 98% as reported in [37]. This feature makes the 

FRM technique one of the best candidates for the design of high speed FIR filters.  

It was demonstrated in [55-56] that it is possible to increase the speed of an FRM filter 

with a modified structure and SPoT techniques. The modified FRM structure utilizes 

several cascaded short filters to replace the long bandedge shaping filter resulting in faster 

speed and less hardware. However, the design of such a filter is rather complicated owing 

to the lack of a systematic design procedure in factorizing a long filter into several short 

filters and in searching for a set of optimal SPoT coefficients.  

In Chapter 2, the design of cascade form filters with SPoT coefficients has been discussed. 

By utilizing the methods proposed in Chapter 2 together with the linear programming, all 

subfilters in the modified FRM structure can be designed in SPoT space. The drawbacks 
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are that the bandedge shaping filters and two masking filters are designed separately and 

the optimizations for all subfilters are done in an iterative way that does not guarantee a 

global optimal solution. It is interesting to know whether there is a way to design all 

subfilters simultaneously.  

In Chapter 3, by integrating the GA and OS algorithm, a hybrid algorithm OSGA has 

been generated for the design of FRM filters. However, the observation from simulation 

shows that it is possible to find better method for the design of modified FRM filters due 

to the following reasons. There are two levels of subfilters in the modified FRM structure: 

first level is the bandedge shaping filter and a pair of masking filters and the second level 

is the short cascaded subfilters. In such complex structure, the OS algorithm may not 

bring enough diversity to the population. Moreover, the coefficient properties for direct 

form filters are not always true for cascade form filters.  

To address the problem, a new hybrid genetic algorithm, GSA, is proposed in this chapter. 

The GSA combines the GA with the SA technique to produce an optimal solution. The 

GA is used as the basis of the algorithm and the SA is applied, when necessary, to 

optimize a certain number of fitter chromosomes to improve the convergence of GA. Due 

to the same reason discussed in Chapter 3, AGA is not used in the GSA. It is shown, by 

means of examples, that the proposed GSA can significantly reduce the coefficient word 

length in comparison with other methods.  

This chapter is organized as follows. A modified FRM structure is introduced in Section 

4.2. In Section 4.3, the hybrid genetic algorithm, GSA, is presented. Following that, the 
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GSA is applied for simultaneous design of all subfilters in the modified FRM structure. 

The design example is given is Section 4.5. Section 4.6 is dedicated to a conclusion.  

 

4.2 A Modified FRM Structure 

In a single stage FRM design, the length of the bandedge shaping filter Ha(z) can be 

much longer than those of two masking filters HMa(z) and HMc(z). In some designs, the 

filter length of Ha(z) can be 2 to 4 times longer than those of HMa(z) or HMc(z). With the 

unmatched filter length among Ha(z), HMa(z), and HMc(z), the operation speed of an FRM 

filter mainly depends on the longest filter if all subfilters are implemented in a direct-

form without employing pipeline. To improve the throughput of the overall system, a 

modified FRM structure is presented in [56] where the long bandedge shaping filter is 

replaced by several cascaded short filters. The z-transform transfer function of the 

modified FRM filter can be written as              

1 2( ... )
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= − + ×∏                 (4.1)   

where p is the number of short filters factorized from Ha(z) and Nai (i=1,2,…, p) is the 

lengths of the corresponding short filters. 
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Fig. 4. 1 A realization structure for a modified frequency response masking approach. 



Chapter 4 Design of Modified FRM filters Using the Genetic Algorithm and Simulated 
Annealing 

 - 93 -

 

Fig. 4.1 shows one of possible realization structures for the modified FRM approach, 

where Ha(z) is factorized into two short cascaded subfilters, Ha1(z) and Ha2(z), 

respectively. The process of factorizing the bandedge shaping filter into several short 

filters is a time consuming process and is done in a heuristic manner, except for 

factorizing the long filter into two where interleave method [2] can be applied. That 

hinders the factorization from reaching optimal. Furthermore, a filter with SPoT 

coefficients is highly desired if high-speed is one of the design goals because the 

multiplication of data with a SPoT coefficient can be done with the help of a few adders. 

To this end, we present an efficient hybrid algorithm in the next section that optimizes all 

subfilters jointly in a discrete space.  

 

4.3 A Hybrid Genetic Algorithm (GSA) 

When conventional GA is used to solve the problem, it may not produce an optimum 

solution based on reasons given below. First, the chromosomes that represent the 

coefficients of all subfilters are very long due to the number of filters involved, e.g. at 

least four filters to be jointly optimized in the modified FRM filter. The population size 

has to be large enough to produce a useful result. This leads to very long computation 

time. Second, the determination of a good chromosome relies on the evaluation of a 

fitness function which involves the calculation of frequency responses of at least 4 

subfilters. The large search space combined with the evaluation of a complicated fitness 

function puts an even high demand on computer resources leading to unacceptable 
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computation time. Third, the cascaded connection of bandedge shaping filters coupled 

with ripple compensation effect in an FRM filter makes the coefficients very sensitive to 

the changes of chromosome, in other words, the change of chromosome should be carried 

out gradually and large probabilities of crossover and mutation should be avoided. This is 

equivalent to an increase in population size prolonging computation time.  

To address the above problems, it is necessary to reduce the population size in order to 

shorten the computation time. One of the possible ways is to introduce new operations 

for the chromosomes during the GA process while keeping the continuity of the 

evolution. We seek the help of another artificial intelligence algorithm, simulated 

annealing. The SA technique has shown its effectiveness of optimization in the 

factorization of a long filter in Section 2.3. By integrating the main features of SA into 

the GA process, an effective hybrid algorithm named as GSA is created. The introduction 

of the SA moves the GA away from local optima and prevents the GA from the 

premature convergence. At the same time, it helps to reduce population size of the GA.  

In the hybrid GA, the optimization process is mainly governed by GA. The SA comes 

into the picture only when there is a sign showing slowdown in convergence of the GA 

process, i.e. no improvement for a pre-specified number of generations during the GA 

evolution.  The SA can be considered as an external force that drives the GA away from a 

local minimum. As a result, the population size can be significantly reduced without 

affecting the effectiveness of the optimization algorithm. The role of the SA is to create 

variations of population by changing the collocations of digits to find optima 

configurations. In the GA approach, the coefficients of all subfilters are represented by a 
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chromosome which contains three digits, i.e. ‘1’, ‘-1’ and ‘0’. The GA operates on 

chromosomes by performing crossover and mutation that affects the number of ‘1s’, ‘-1s’ 

and ‘0s’ in a chromosome. Unlike the GA, the SA does not change the number of ‘1s’, ‘-

1s’ and ‘0s’ in chromosomes obtained from the GA. It merely swaps the bits within a 

chromosome to check whether such actions lead to a better fitness value for a given 

chromosome. In the GSA, the GA can be viewed as a vertical evolution process while the 

SA can be seen as a horizontal evolution process.   

There are two levels of convergence criteria in a GSA process. The first one is to check if 

the local optimum is reached and SA should be applied to current population to prevent 

the premature of the GA. The SA starts only if there is no improvement for a pre-

specified number (denoted as GSA) of generations during GA evolutions. Too small GSA 

may destroy the evolution process of the GA while too large GSA reduces the benefit of 

the SA. The reasonable range for GSA is 100-500 for our problem. A more effective way 

is to change GSA during the optimization process, i.e. randomly pick a value from 100 to 

500 as GSA during each convergence check. The second level convergence criterion is 

used to control the termination of the optimization process. The process terminates if one 

of the following two conditions is satisfied in the order given:  

1. The desired objective value is reached.  

2. There is no improvement in fitness value for a pre-specified maximum number of 

iterations. 

The main steps of the algorithm are summarized as follows:  
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1. Create an initial population by randomly generating a set of feasible solutions 

(chromosomes).  

2. Evaluate the fitness value for each chromosome in the population. 

3. Apply GA operators, i.e. reproduction, crossover and mutation, to generate new 

populations.  

4. Apply Replacement Strategies which combine Generation-Replacement with the 

elitist strategy, where two best chromosomes from the current population are 

copied to replace two worst chromosomes in the new population. 

5. Check the first level convergence criterion. If it is satisfied, the SA is involved. 

Otherwise go to Step 3. The SA process includes two steps: first, we make a pre-

specified number of copies of chromosomes whose fitness values are high among 

all chromosomes in the current population; second, apply the SA to optimize 

these chromosomes. If their fitness values are improved, we use them to replace 

the old chromosomes with worse fitness values in the current population. 

6. Check the second level convergence criterion to decide if the optimization 

process should be continued, i.e. go to Step 3 or stopped.  

To illustrate the effectiveness of the proposed GSA, let us design a linear phase low-pass 

FIR filter with normalized passband and stopband edges at 0.15 and 0.25, respectively. 

The maximum passband ripple is 0.01 and the minimum stopband attenuation is 40 dB. 

The filter length is 31 and all coefficients are represented using average 2 terms of 7 bits 

SPoT.  The filter is synthesized by the GA and GSA, respectively, where GSA is set to be 

50 and the two level convergence conditions are checked for every 20 generations.  The 
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convergence trends for the GA and GSA within the first 500 generations are shown in 

Fig. 4.2. At the first 100 generations, the two processes have nearly the same 

convergence trends, since they use the same initial population which is calculated from 

the real valued coefficients. At the 100th generation, the GSA finds much better solution 

due to the involvement of the SA, while the GA does not show any improvement on the 

best fitness value until 168th generation. It is clear that the GSA provides much better 

convergence performance than that of the GA.  
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(b) GSA 

Fig. 4. 2 The convergence trends of the GA (a) and GSA (b) within the first 500 
generations. 
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4.4 GSA for the Design of Modified FRM Filters 

When the GSA is utilized to design the modified FRM filters, the chromosome is the 

encoded coefficients of all subfilters in the form of ternary encoding strings. Filter 

coefficients are allocated with different number of SPoT terms while keeping the total 

number of SPoT terms fixed.  

Assume that Ha(z) is factorized into p numbers of short filters, where p depends on the 

difference between the lengths of bandedge shaping filter and the longer masking filter. 

EQ. (2.8) is used as the objective function, where H(ejω) and Hd(ejω) are the frequency 

responses of the H(z) in (4.1) and the desired filter, respectively. The fitness function is 

defined as           

                  1
2

1 .T
T

af a Z
O S

= + + ×                          (4.2)  

There are only three items in EQ. (4.2) while 4 items are included in EQ. (3.3). The 

fourth item in EQ. (3.3) is used to minimize the word lengths of the subfilters. In the 

modified FRM structure the bandedge shaping filter is factorized into several short filters. 

If the bandedge shaping filter and two masking filter are viewed as the first level 

subfilters, the short cascaded filters are viewed as the second level. To minimize their 

word lengths together according to the comparisons on the difference of their maximal 

and minimal absolute values, therefore, may not produce an optimal solution.  

In the GSA, when there is no improvement in the best fitness value for a pre-specified 

number of generations in the GA evolution process, the SA algorithm is applied in the 
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current population. The energy E in the SA is defined to be the same as the objective 

function in EQ. (2.8) as  

            
[0, ] [ , ]

max [ ( ) | ( ) ( ) |  ].
p s

j j
dE k H e H eω ω

ω ω ω π
ω

∈ ∪
= −                  (4.3) 

With this definition of E, the SA is able to find better chromosome configurations 

according to the minimax error criterion.    

In the SA process, a fitter chromosome is chosen from current population as an initial 

solution. Its energy value is calculated as initial energy. The initial value of temperature T 

is set to be the initial energy value. The SA process is similar to that presented in Section 

2.3. The major step is repeated here. Beginning with the initial solution and parameters of 

E and T, the reordering of bits in a chromosome is performed in an iterative manner. In 

the reordering process, a random length subsequence is firstly chosen from a random 

position in the chromosome. Then it is either replaced with the same subsequence in 

reversed order or is shifted to another random position between two genes in the 

chromosome with equal probability [21-22]. The energy value based on reordered 

chromosome is calculated. The new energy value and the corresponding chromosome 

configuration will be recorded as new best results to replace the current ones (such 

iteration process is called as a successful one) only when the energy value is smaller than 

the current best value or when a generated random number uniformly distributed within 

(0, 1) is less than the value of e-∆E/T (where ∆E denotes the change of the energy value). 

For each successful iteration process, the temperature T would decrease by a specified 

factor. The reordering process is repeated until there is no more improvement in the 

energy value for the given number (Lend) of continuous iteration process or the 
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temperature is smaller than a specified ending temperature (Tend). The choices of Lend and 

Tend  have been discussed in Section 2.3.2. A modified FRM filter consists of at least 4 

subfilters and the effective length is very long. Hence, Lend is set to be 300 and Tend to be 

10E-3, which is also validated using simulation examples.  

 

4.5 Design Example 

A. Example 1 

To illustrate the proposed approach, let us consider the design of a narrow transition band 

low-pass FIR filter and compare our results with those in [56-58]. The filter meets the 

following specifications: normalized passband and stopband edges are at 0.2 and 0.21, 

respectively. The passband and stopband ripples are both 0.01. A minimax design needs 

195 real coefficients to satisfy the above specifications. Using original FRM approach, 

the filter lengths of Ha(z), HMa(z) and HMc(z) are 55, 17 and 31, respectively. The 

optimum interpolation factor is 4. Each coefficient is quantized into three terms of 10 bits 

powers-of-two value.  

Since the bandedge shaping filter Ha(z) consists of about 3 times more taps than the 

masking filter HMa(z) and HMc(z), Ha(z) can be factorized into three short filters. The 

lengths of factorized filters Ha1(z), Ha2(z) and Ha3(z) are 21, 19 and 17, respectively. The 

GSA is employed to optimize all subfilters, i.e. Ha1(z), Ha2(z), Ha3(z), HMa(z) and HMc(z). 

The coefficients of Ha1(z) use average 2 terms of 6 bits SPoT, Ha2(z) uses average 2 terms 

of 5 bits SPoT and Ha3(z) uses average 3 terms of 5 bits SPoT. The coefficients of HMa(z) 
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and HMc(z) need average 2 terms of 7 bits SPoT. The total number of SPoT terms used in 

Ha1(z), Ha2(z), Ha3(z), HMa(z) and HMc(z) are 19, 17, 21, 18 and 32 terms, respectively. 

The population pool size and the mating pool size are both 300. The crossover and 

mutation probabilities are set to be 0.6 and 0.001, respectively. For every 100 generations, 

the convergence conditions are checked and SA process is applied into the top 10% of 

current population when there is no improvement on GA evolution process for 200 

generations. The cycle of evolution is repeated until the desired objective value is 

obtained, i.e. 0.01 in this example, or the fitness value of the population remains 

unchanged for 3000 generations. The stopband attenuation of the overall filter is 40.05 

dB. The frequency responses of Ha(z) and its subfilters, masking filters, and overall filter 

are shown in Figs. 4.3 - 4.5 respectively. Tables 4.1 and 4.2 list the coefficient values of 

Ha1(z), Ha2(z), Ha3(z), HMa(z) and HMc(z). The convergence curve is shown in Fig. 4.6. 

The optimization performance in the earlier stage, i.e. fitness<80, is much better than that 

in the later stage. It can be seen from Fig. 4.6 that the evolution process evolved to 40.05 

dB after 5600 generations when the convergence condition was met, i.e. the desired 

objective value is achieved.  

For comparison, we also design the FRM filter using two other methods. First, the SA 

technique introduced in Section 2.3 is utilized to factorize the long bandedge shaping 

filter and linear programming is applied to quantize all coefficients into SPoT space in an 

iterative manner. The bandedge shaping filter with infinite precision coefficients and two 

masking filters with SPoT coefficients are designed firstly, and then Ha(z) is factorized 

into p subfilters using the method presented in Section 2.3 followed by quantizing the 
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coefficients of each short filter into SPoT values using linear programming, finally the 

two masking filters are designed separately by taking the other subfilters as prefilters.  

Second, the GA based method proposed in Section 2.5 is applied for the design of 

bandedge shaping filter Ha(z) with SPoT coefficient values. The two masking filters are 

designed separately by taking the other subfilters as prefilters in an interleaved procedure. 

The detailed information on the two methods can refer to [57] and [58], respectively. 

Table 4.3 is the comparison of word lengths of subfilters designed by using different 

methods, such as linear program in [56], SA [57] and GA [58] based methods, and the 

proposed GSA. It is shown that the GSA significantly reduces the coefficient word length 

for each subfilter in a modified FRM structure. This is mainly due to the joint 

optimization of all subfilters in the modified FRM structure in a discrete space. 

 B. Example 2 

The design of an FRM filter specified in Section 3.4 is used as the example. The 

specifications are repeated here, i.e. the normalized passband and stopband edges are 0.3 

and 0.305, respectively; the permitted maximum passband and stopband deviations are 

0.01. It is reported in [36] that the lowest complexity can be achieved when the 

interpolation factor is chosen to be 6 or 9. In Section 3.4, we have presented the design 

with interpolation factor of 6. Here, we will show the design with interpolation factor of 

9, where the lengths of Ha(z), Hma(z) and Hmc(z) with real valued coefficients are 45, 38 

and 30, respectively, [36]. When the filter coefficients are quantized into SPoT by MILP, 

the lengths of Ha(z), Hma(z) and Hmc(z) are  47, 43, 35, respectively. The word lengths of 

each coefficient in Ha(z), Hma(z) and Hmc(z) are of 11, 12 and 12 bits with 3 terms of 



Chapter 4 Design of Modified FRM filters Using the Genetic Algorithm and Simulated 
Annealing 

 - 103 -

SPoT, respectively. When the filter is designed using the OSGA and GSA, similar 

solutions are achieved with stopband attenuation of 40.27 dB. The lengths of Ha(z), Hma(z) 

and Hmc(z) are  45, 41 and 33, respectively, and the word lengths of each coefficient in 

Ha(z), Hma(z) and Hmc(z) are of 10, 11 and 11 bits with average three terms of SPoT, 

respectively. If the filter is designed using conventional GA, the stopband attenuation of 

the final solution is 38.59 dB with the same coefficient word length. Table 4.4 lists the 

designs achieved by different methods. To find the average performance of the OSGA 

and GSA, ten independent runs of each algorithm are performed for each design. Table 

4.5 lists the best and worst solutions achieved by the OSGA and GSA. The sizes of 

population pool and the probabilities of crossover and mutation are the same as those in 

Example 1. It can be seen from the table that the best solutions from the OSGA and GSA 

are similar, while the worst solution from OSGA is better than that from GSA. The 

average performance of OSGA is, therefore, better than that of GSA. It is because that 

the OS algorithm works based on the rule of filter coefficients, while the SA algorithm 

works in a stochastic model. When all subfilters are implemented in the direct form, 

therefore, the optimization performance of the OSGA is better than that of the GSA. 

However, if not all the subfilters are implemented in direct form, the performance of 

GSA is better than that of the OSGA.  If the filter in Example 1 is design using the 

OSGA, the desired filter meeting the given specifications cannot be achieved with the 

same word lengths as those from GSA. 
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4.6 Conclusion 

In this chapter, a novel hybrid genetic algorithm has been proposed to jointly optimize all 

subfilters in a modified FRM structure in a discrete space. The proposed GSA integrates 

the main features of SA into the GA optimization process, where GA handles the overall 

optimization while SA is applied to prevent GA from the premature convergence. The 

FRM filters designed by the proposed GSA show reductions in hardware cost due to the 

fact that the total number of SPoT terms is included as one of terms in the fitness 

function during the optimization. The overall filter with powers-of-two coefficients is 

suitable for the low power VLSI implementations of high speed digital filters. 

 

Table 4. 1 List of filter coefficients of Ha1(z), Ha2(z) and Ha3(z) 
 

ha1(n) ha2(n) ha3(n) 

h(0) = h(20) = 24-20 
h(1) = h(19) =-22 
h(2) = h(18)  -24+22 
h(3) = h(17) = 20 

h(4) = h(16) =-23 
h(5) = h(14) =-22+20 

h(6)=h(14)= -22+20 

h(7) = h(13) =-24-22+20 

h(8) = h(12) = 20 

h(9) = h(11) = 25 

h(10)= 25+22+20 

h(0) = h(18) =-20 
h(1) = h(17) =-23 
h(2) = h(16) = 23-21 
h(3) = h(15) = 23-20 
h(4) = h(14) = 22-20 
h(5) = h(13) =-21 
h(6) = h(12) =-20 

h(7) = h(11) = 23+20 

h(8) = h(01) = 24+22-20 

h(9) = 24+20 

h(0) = h(16) = 23+21 
h(1) = h(15) = 22+21 
h(2) = h(14) = 22+21 
h(3) = h(13)=-22+20  

h(4) = h(12) =-21 
h(5) = h(11) =-20 

h(6) = h(10) = 24-22-20 

h(7) = h(9) = 24+23+21+20 

h(8) = 24+23+22+20 
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Table 4. 2 List of filter coefficients of HMa(z) and HMc(z) 

 
hMa(n) 

h(0)=h(16)= 22+21 
h(1)=h(15)= -22 
h(2)=h(14)= -22 
h(3)=h(13)= -22 
 

h(4)=h(12)= -24-21 
h(5)=h(11)= 24+22-20 
h(6)=h(10)= 25+22 
h(7)=h(9)=26-23-22 
h(8)= 26+25-23 
 

hMc(n) 

h(0)=h(30)=-20 
h(1)=h(29)= 20 
h(2)=h(28)= 20 
h(3)=h(27)=-20 
h(4)=h(26)=-22 
h(5)=h(25)= 22-20 
h(6)=h(24)= 22-20 

h(7)=h(23)=-21 

 

h(8)=h(22)=-23-21 

h(9)= h(21)= 22+20 

h(10)=h(20)= 23+22-20 
h(11)=h(19)=-22+20 
h(12)=h(18)=-25+22 
h(13)=h(17)= 23-20 

h(14)=h(16)= 26+24-21 
h(15) = 26+25+24+23+22+20

 
 

Table 4. 3 A comparison on the word lengths of subfilters designed by using different 
methods 

 Method 

in [56] 

SA in 

[57] 

GA in 

[58] 

GSA 

Filter length 19 21 21 21 

Average No. of SPoT term 3 3 3 2 

Ha1(z) 

Coefficient 

word length No. of bits 11 5 5 6 

Filter length 19 19 19 19 

Average No. of SPoT term 2 3 3 2 

Ha2(z) 

Coefficient 

word length No. of bits 9 6 5 5 

Filter length 19 17 17 17 

Average No. of SPoT term 2 3 3 3 

Ha3(z) 

Coefficient 

word length No. of bits 9 7 6 5 

Filter length 17 17 17 17 

Average No. of SPoT term 3 3 3 2 

HMa(z) 

Coefficient 

word length No. of bits 10 8 8 7 

Filter length 31 31 31 31 

Average No. of SPoT term 3 3 3 2 

HMc(z) 

Coefficient 

word length No. of bits 10 8 8 7 
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Table 4. 4  A comparison among the designs achieved by using different methods. No. 
Gen is the required number of generations to achieve the final solutions. 

 
Filter Length Coefficient word length Average No. of SPoT term

 

Stopban

d ripple 

(dB) 

No. 

of 

Gen.  
Ha(z) Hma(z) Hmc(z) Ha(z) Hma(z) Hmc(z) Ha(z) Hma(z) Hmc(z)

GA -38.59 3965 45 41 33 10 11 11 3 3 3 

GSA -40.27 1989 45 41 33 10 11 11 3 3 3 

OSGA -40.27 1763 45 41 33 10 11 11 3 3 3 

MILP -40.47  47 43 35 11 12 12 3 3 3 

 

Table 4. 5 A comparison of the average performance between OSGA and GSA over ten 
independent runs. Successful runs refer to those which converge to the desired solutions 

while unsuccessful runs refer to the runs which cannot find desired solutions. 
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(a) Three subfilters  

 Stopband ripple (dB) No. of runs 

 Best  Worst  Average Best  Successful runs Unsuccessful runs

GSA -40.27 -39.15 -39.99 3 7 3 

OSGA -40.27 -39.84 -40.12 4 7 3 
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(b) Overall filter  

Fig. 4. 3 The frequency responses of the three subfilters (a) and overall filter (b) of Ha(z). 
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Fig. 4. 4 The frequency responses of HMa(z) and HMc(z). 
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Fig. 4. 5 The frequency response of the overall filter. 
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Fig. 4. 6 The convergence trend of the GSA. 
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Chapter 5 

An Efficient Hybrid Genetic Algorithm for the 

Optimal Design of FIR Filters  

 

5.1 Introduction 

The design of FIR filters with SPoT coefficients is a complex process, where numerous 

local optima lead to high probability of premature convergence. The convergence speed 

is also very low, especially when the number of decision variables is large, e.g. the 

synthesis of FRM filters with very sharp transition band. In Chapters 3 and 4, two novel 

hybrid algorithms are proposed for the design of FRM filters with SPoT coefficients, 

which integrate the GA with the OS and SA algorithms, respectively.  The results 

reported in the chapters are much better than those from the existing methods. However, 

due to the complicated computation of the objective function in FRM filter design, 

complex implementation of the optimization algorithm is not preferred. This why the 

AGA presented in Chapter 2 is not adopted in the OSGA and GSA.  

In many DSP systems, the filter is not required to have sharp bandwidth. Compared with 

the FRM filters that have very sharp transition band, general FIR filters with relative 

broad transition bands have simple objective functions. Without the need of conducting 
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complicated computation of objective function, the research for general FIR filter design 

is focused on the solution quality and algorithm stability.  

To this end, a hybrid genetic algorithm, AGSTA, is proposed, which is generated by 

combining the AGA, SA and tabu search (TS) algorithms. Compared with the GSA 

presented in Chapter 4, two enhancements are proposed in the AGSTA.. 

1) The AGA is used as the basis of the hybrid algorithm AGSTA, while the 

conventional GA is used in the GSA. Adaptive population size and probabilities of 

genetic operations not only improve the optimization performance but also increase the 

convergence speed. 

 2) The concept of “Tabu” in the TS technique is utilized to reduce the search space by 

considering the properties of filter coefficients. During the evolution process, the tabu-

check is performed for each new solution. All infeasible solutions rejected by tabu-check 

will be repaired according to the repair mechanism before they are released to the new 

population.  

In Chapter 3, we proposed a hybrid algorithm, which employs the OS algorithm to boost 

the performance of the GA. The OS algorithm is developed based on the coefficient 

properties of FIR filters. Since the TS technique is applied in the AGSTA to reduce the 

search space also according to the coefficient properties, the OS algorithm associated 

with the TS may limit the population diversity. It can be seen from the simulation study 

that the SA algorithm working in a stochastic model, is more suitable to be applied in the 

AGSTA. 
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The rest of the chapter is organized as follows. The hybrid genetic algorithm AGSTA is 

presented in Section 5.2. To show the effectiveness of the AGSTA, several design 

examples are given in Section 5.3. Section 5.4 is dedicated to a summary. 

 

5.2 A Hybrid Genetic Algorithm (AGSTA)  

In the previous chapters, the algorithms based on the GA and SA have been presented for 

the design of FIR filters. As discussed before, with the advancement of low cost and high 

speed computers, the GA, as a tool for search and optimization, has reached a mature 

stage. However, there are mainly three disadvantages, which prevent the GA from being 

applied in more applications, which have been covered in the previous chapter. First, the 

function of the GA can be visualized as a balanced combination of exploration of new 

regions in the search space and exploitation of already sampled regions. This balance, 

which critically controls the performance of the GA, is determined by the right choice of 

control parameters, i.e. the population size and the probabilities of crossover and 

mutation. The optimal control parameters are largely dependent on the optimization 

problem. Usually, multiple trials are needed to find optimal parameters for a special 

problem. Furthermore, parameter settings optimal in the earlier stages of the search 

typically become inefficient during the later stages. Hence, fixed parameters may 

deteriorate the efficiency of the GA. Second, the high probability of premature 

convergence is the major disadvantage of the conventional GA. It is especially serious 

when the GA is applied in complex applications with high problem dimension and large 
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search space. In these applications, the GA tends to produce a sub-optimal solution if 

there is no exterior “strength” or “instruction” to lead the GA out of local optima. Third, 

the convergence rate of GA is low if the search space is large. Numerous repetitive 

evaluations of candidature solutions should be carried out during the optimization 

process before the final solution can be found. This is the leading reason to explain the 

low convergence speed of the GA. To address these issues, a genetic approach based 

hybrid algorithm is proposed in this chapter. The main features of the AGA, SA and TS 

algorithms are integrated to yield a hybrid scheme that is abbreviated to AGSTA. 

5.2.1 The Overview of AGSTA   

In the AGSTA, the optimization process is mainly governed by the AGA proposed in 

Chapter 2. The adaptation of these control parameters not only improves the optimization 

performance of the GA but also avoids multiple trials of finding optimal control 

parameters. The SA comes to the picture when there is an indication that the AGA has 

entrapped in local optima, i.e. when better solutions cannot be found through a large 

number of evolution loops. The SA is served as exterior strength to help the AGA escape 

from the local optima, which is similar to the GSA. Some of better individuals in the 

population are chosen to perform the SA optimization and the new solutions found by the 

SA replace the worse members in the population. With the help of the SA, the population 

quality is improved by introducing better members and removing worse ones.  

The large search space is one of the major reasons causing low convergence speed. This 

prompts us to consider if we can reduce the search space by avoiding impossible 

solutions. As pointed in Chapter 3, the coefficients located in the middle part have larger 
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absolute values and coefficients near to the beginning and end have smaller absolute 

values.  According to the properties of filter coefficients, the concept of tabu in the TS 

technology is introduced to reduce the search space in the AGSTA. In each generation, 

tabu-check is performed on the new solutions in the population. If a new solution belongs 

to tabu, it may be accepted or rejected based on the judgment of aspiration criteria. The 

aspiration criteria allow overriding of tabu status. If its fitness value is better than the best 

one which has been found so far, it will be accepted; otherwise it is accepted according to 

the acceptance probability. The rejected candidates are repaired to make them feasible 

after tabu-check. 

There are two level convergence criteria in the proposed algorithm. The first one is used 

to check whether AGA has entrapped in local optimum and SA should be applied. In the 

implementation, SA is applied if better solutions cannot be found for a pre-specified 

number of evolution iterations. The second level convergence criterion is used to control 

the termination of the whole search, which is defined as the same as that in the GSA.  

The main steps of the algorithm are summarized as follows:  

1) Specify the control parameters in the AGSTA, i.e. initial population size, 

maximal and minimal population size, and initial probabilities of genetic 

operations.  

2) Create an initial population. The initial population is achieved from the real 

valued coefficients of the desired filter. The filter is designed with the given 

specifications in continuous space and quantized according to the specific word 

length. By this way a filter with discrete coefficient values can be obtained.  The 
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initial population of filters is produced by perturbing the encoded ternary bits of 

the discrete coefficients.  

3) Evaluate the fitness value for each chromosome in the population. 

4) Apply AGA operations, i.e. reproduction, crossover and mutation, to generate 

offspring.  

5) Check the first level convergence criterion to decide whether the AGA has 

reached a local optimum. If the condition is satisfied, apply the SA to a pre-

specified number of better individuals in the offspring. The individuals with 

worse fitness values in population are replaced by the new members obtained 

from the SA.   

6) Apply tabu-check to each individual found in this loop. If it is rejected by tabu-

check, the repair mechanism is applied to make it feasible. The repaired one will 

be released to the offspring and replace the original one.    

7) Copy two best chromosomes from the old population to replace two worst 

chromosomes in the offspring. Update the new population using the offspring.    

8) Check the second level convergence criterion to decide whether the optimization 

process continues or terminates.  

Fig. 5.1 shows the flow chart of the proposed AGSTA.  

The implementation of the AGA and SA algorithm has been presented in Chapters 2 and 

4, respectively. The objective function and fitness function in the GA and the energy 

function in the SA are defined as the same as EQ. (2.8), EQ. (2.17) and EQ. (4.3), 
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respectively. In the next sub-section, the implementation on how to reduce the search 

space by using the tabu search technology is presented. 

5.2.2 Tabu-Check and Repair Mechanism  

 

The diversity of population associated with large search space slows down the 

convergence speed of the GA. To speed up it, one efficient way is to reduce the search 

space by avoiding impossible solutions. Tabu search is an efficient optimization method 

that has been successfully utilized to solve a number of combinatorial optimization 

problems. Some researchers have combined Tabu Search and Genetic Algorithm to form 

hybrid tabu search genetic algorithm [62]. In the AGSTA, the concept of “tabu” is 

utilized to reduce the search space according to the properties of filter coefficients. For 

SPoT based FIR filter design, the tabu move can be defined as a string with the same 

length of a chromosome, where the earlier bits of the coefficients that is located near to 

the beginning and end are set to be “1” and the other parts of the string are set to be “*” 

according to the coefficient properties. For example, if a 10-order systematic lowpass 

filter is designed and each coefficient is represented using 5 bits SPoT terms, the tabu 

move can be defined as “111** 111** 11*** ***** ***** *****”. 

In the AGSTA, tabu-check is applied to each of new individuals in the population. If it 

belongs to tabu, this individual may be accepted or rejected according to aspiration 

criteria which allow overriding of tabu status. If its fitness value is better than the best 

one found so far, it will be accepted；otherwise it can only be accepted according to an 

acceptance probability Pa. To reduce the search space as well as keep the population 



Chapter 5 An Efficient Hybrid Genetic Algorithm for the Optimal Design of FIR Filters 

 - 116 -

diversity, we define an adaptive acceptance probability that is adjusted according to the 

population diversity. Here, the population diversity is reflected using the ratio of the sum 

of the real fitness values and the imaginary values assuming that all members have 

maximal fitness. A weighting coefficient that is larger than 1 is used in the denominator 

to reduce the ratio to make it suitable to define the acceptance probability. It was chosen 

to be 2.65 according to simulation study. Therefore, the adaptive acceptance probability 

is defined as 
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where CP is the population size and fi is the fitness value of the ith individual. Although 

we cannot claim that it is the optimal definition, it can work very well in simulation. 

Larger pa indicates smaller diversity of population. To increase the population diversity, 

the new member that belongs to tabu is accepted with a larger probability; to increase the 

convergence speed, it is accepted with a small probability.  

After tabu-check, the rejected members are repaired, where the OR operation is 

performed between the rejected chromosome and a repair string. The repair string has the 

same length as the chromosome and is constructed in such a way that has value of 0 in 

the genes expected to be 0 and has 1 in the other parts. If the previous example is 

considered, the repair string can be defined as: 00011 00011 00111 11111 11111 11111.  

Fig.5.2 shows the procedure of Tabu-check and repair. 
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Yes

Calculate the fitness values for the current
population

 

Fig. 5. 1 The flow chart of AGSTA. 
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Accept the ith member?

Apply repair mechanism to make it qualified to
acceptance

Accept the ith member to form the population
of new generation

Yes

No

Yes

No

Yes

No

i>=CP?

Check the ith member(i=1,...,
CP)

 Compute the acceptance probability pa

The ith member  belongs to tabu?

fi is smaller than the best fitness value
found in previous iterations ?

Check whether accept the ith member or
reject it according to pa

No

End Tabu-Check

Yes

i=i+1

Start Tabu-Check with i=1

 

Fig. 5. 2 The flow chart of TS implementation. 
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5.3 Design Example 

To illustrate the proposed technique, let us consider the design of two linear phase FIR 

low-pass filters. Our results are compared with those obtained from the MILP [1], 

polynomial-algorithm [8] and SA [10]. The average performance of the GA and AGSTA 

are also compared based on ten independent runs of each algorithm.  

A. Example 1 

The first example is designed in [1, 6, 7, 8 and 10] that is a linear phase FIR low-pass 

filter meeting the following specifications: 

      Normalized passband edge: 0.15 

      Normalized stopband edge: 0.25 

      Maximum passband ripple:  0.01  

      Minimum stopband attenuation: 40 dB 

An FIR filter of length 22 with infinite precision coefficients satisfies the given 

specifications. If such a filter is designed by the method in [8], the filter length is 23 

when the coefficients are represented by average 2 terms of 8-bit SPoT. The minimum 

stopband attenuation is 41.35 dB. When the filter is designed with the same length of 23 

by using the proposed method, the filter coefficients only use average 2 terms of 7 bits 

SPoT. The stopband attenuation is 40.19 dB. The frequency response of the filter is 

shown in Fig. 5.3. In the AGSTA, the initial population pool size is 50. The lower bound 

and the upper bound of population are set to be 10 and 1000, respectively. For every 100 

generations, the convergence conditions are checked. If the first level convergence 



Chapter 5 An Efficient Hybrid Genetic Algorithm for the Optimal Design of FIR Filters 

 - 120 -

condition is met such that no further improvement  can be achieved for 200 generations 

in the evolution process, the SA process is applied into the top 10% of current population. 

The cycle of evolution is repeated until the desired objective value is obtained or the best 

fitness cannot be improved for 1000 generations.  

The comparison of hardware cost between the filters designed by the polynomial-time 

algorithm [8] and the proposed AGSTA are listed in Table 5.1.  It can be seen that the 

filter designed by the AGSTA uses 6.25% less D flip-flops and 12.5% less full adders 

than the one obtained from the polynomial-time algorithm. Assuming that each delay 

element is implemented by D-flip-flop with 8 transistors and all adders are carry ripple 

adders with 28 transistors for 1-bit full adder cell, the AGSTA achieves about 11.42% 

savings in terms of the number of the transistors in comparison with the method in [8]. 
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Fig. 5. 3 The frequency response of the filter with length of 23. 
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Table 5. 1 A comparison of hardware cost between the designs using AGSTA and 
polynomial-time algorithm [8]  

 No. of bits No. of SPoT terms     D-flip-flop full adders 

Proposed AGSTA 7 20 330 420 

Polynomial-Time algorithm  8 22 352 480 

Achieved savings  1 2 6.25% 12.50% 

 

In order to compare the AGSTA with the methods proposed in [8] and [10], the same 

design parameters as those in [8] and [10] are chosen. The word length is 9 excluding 

sign bit. The filter is designed with different lengths ranging from 27 to 35. Table 5.2 

summarizes the results for these designs, where we compare our results with those 

obtained from MILP [1], polynomial-algorithm [8], SA [10] and GA. It is illustrated from 

Table 5.2 that the normalized peak ripples of the filters designed by the AGSTA are up to 

9.81 dB, 1.29 dB and 7.58 dB and 4.40 dB smaller than those from the MILP [1], 

polynomial-algorithm [8] and SA [10], and GA, respectively. The frequency responses of 

the filters with lengths of 27, 28, 29, 31 and 33 designed using the AGSTA are shown in 

Fig. 5.4. It is clear that the proposed hybrid algorithm AGSTA can find much better 

solutions than the individual implementation of SA and GA and outperforms the 

polynomial-algorithm on the improvement of normalized peak ripples.  

The filter is also designed with 25-tap as that in [1], [6] and [7]. The coefficients are 

represented by fixed 2 terms of 9 bits in [1] and [6] and average 2 terms of 9 bits in [7]. 

According to [7], the filter designed using MILP techniques [1] had a stopband 

attenuation of 41 dB approximately, the filter designed using the local search technique 

[6] had a stopband attenuation of 38 dB approximately, and the filter designed using the 

improved local search technique [7] had a stopband attenuation of 43.8 dB.  If the filter is 
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designed by using the proposed algorithm, the normalized peak ripple is 44.4 dB with the 

same coefficient word length.  

B. Example 2 

The second filter was specified in [8 and 10] that meets the following specifications: the 

normalized passband and stopband edge of 0.15 and 0.22, respectively; the ratio in 

passband and stopband equals one. With the same coefficient precision, the filter is 

designed with different lengths ranging from 31 to 41. The results are listed in Table 5.3. 

It can be seen that the normalized peak ripples of the filters designed by the AGSTA are 

up to 7.08dB, 0.91dB and 5.52dB smaller than those from MILP, polynomial-algorithm 

and SA, respectively. The frequency responses of the filters with lengths of 31, 33, 35, 37, 

39 and 41 designed using AGSTA are shown in Fig. 5.5. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-140

-120

-100

-80

-60

-40

-20

0

20

Normalized Frequency

G
ai

n,
 d

b

 

 

H1(N=27)
H2(N=29)
H3(N=31)
H4(N=33)
H5(N=35)

 

Fig. 5. 4 The frequency responses of the filters with lengths of 27, 28, 29, 31 and 33. 
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Table 5. 2 A comparison of normalized peak ripples (NPR) among different methods. 
The word length (excluding sign bit) is 9. The designs from MILP [1] use fixed 2 SPoT 
terms for each coefficient. Total of SPoT terms is 2N for the designs from polynomial 

algorithm [8], SA [10] and GA. 

 

 

 

Fig. 5. 5 The frequency responses of the filters with lengths of 31, 33, 35, 37, 39 and 41. 

Infinite 
word 
length 

MILP Polynomial-
algorithm 

SA  GA Proposed AGSTAFilter 
length 

N 
NPR(dB) NPR(dB) NPR(dB) NPR(dB) NPR(dB) No. of 

SPoT 
terms   

NPR(dB) No. of  
SPoT 
terms

27 -47.74 -40.41 -45.77 -41.3 -44.50 27 -47.06 30 

29 -53.04 -41.88 -50.19 -43.1 -46.28 35 -50.68 32 

31 -53.35 -41.88 -50.97 -43.1 -46.21 33 -50.46 33 

33 -57.84 -42.09 -53.64 -44.7 -48.28 33 -51.90 31 

35 -60.12 -44.22 -51.56 -44.7 -48.43 37 -51.84 36 
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Table 5. 3 A comparison of normalized peak ripples (NPR) among different methods. 
The word length (excluding sign bit) is 9. The designs from MILP [1] use fixed 2 SPoT 
terms for each coefficient. Total of SPoT terms is 2N for the designs from polynomial 

algorithm [8] and SA [10]. 

 

 

Due to the probabilistic nature of artificial intelligence based optimization algorithms, the 

stability of convergence performance in different runs is an important indicator 

concerning the optimality of the algorithms. Ten independent runs of the GA and 

AGSTA are performed for every design to achieve their average performance. The 

following parameters are recorded for each design to assess the convergence performance: 

the mean number of function evaluations in 10 runs and the mean NPR of the best filters 

found in the 10 runs. The comparison is based on the average performance, which is 

listed in Table 5.4. It is shown from this table that the AGSTA can find better solutions 

with smaller mean values of NPR using much fewer function evaluations. The statistic 

shows that the solutions found in 10 runs are only slightly different, which encourages 

the confidence in the quasi-optimality of our results. Furthermore, at least 6 runs out of 

10 can converge to the best solution, which illustrates the optimization stability of the 

Infinite word 
length 

 MILP  Polynomial-
algorithm  

SA  Proposed AGSTA Filter 
Length 

 N NPR(dB) NPR(dB) NPR(dB) NPR(dB) NPR(dB) No. of SPoT 
terms 

31 -42.29 -36.86 -40.36 -39.7 -41.27 33 

33 -42.82 -37.81 -41.36 -39.7 -41.67 37 

35 -44.83 -38.43 -42.31 -41.0 -42.77 39 

37 -47.73 -39.61 -44.87 -41.5 -45.13 39 

39 -48.31 -40.20 -45.91 -41.6 -45.51  41 

41 -51.53 -41.14 -48.20 -42.7 -48.22 42 
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AGSTA. Compared with the GA, the AGSTA achieves not only the improved solution 

quality but also the considerable reduction of computational effort. 

Table 5. 4 A comparison between GA and AGSTA over 10 independent runs.  Successful 
runs refer to the runs where the best solutions can be found. 

  

5.4 Conclusion  

A novel hybrid genetic algorithm (AGSTA) is proposed for digital FIR filter design, 

which integrates the main features of the AGA, SA and TS algorithms. The AGA with 

adjustable population size and probabilities of genetic operations is used as the basis of 

the algorithm. The SA is applied when it is implied that the evolutionary process has 

reached a local optimum. The use of SA algorithm is to help the AGA escape from the 

local optima and prevent it from premature convergence. The TS is introduced to 

improve the convergence speed by reducing the search space according to the properties 

of filter coefficients. It is shown by means of examples that the normalized peak ripples 

of filters can be reduced with the help of the AGSTA. In comparison with other genetic 

algorithm, the AGSTA can not only improve the solution quality but also reduce the 

computational effort.  

GA Proposed AGSTA Filter 

Length 

 N 

Mean NPR 

(dB) 

Mean Function 

Evaluations 

Mean NPR 

(dB) 

Mean Function 
Evaluations 

No. of 
desired run 

31 -39.79 387,000 -41.17 219,736 8 

33 -39.84 429,500 -41.43 224,745 7 

35 -40.85 441,000 -42.59 245,529 8 

37 -41.91 478,500 -45.02 274,372 8 

39 -42.03 534,500 -45.27 290,530 6 

41 -43.46 569,000 -48.12 312,949 8 
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Due to the excellent optimization performance, the proposed AGSTA, can also be 

utilized in the design of FRM filters. However, we should note two points in such 

applications. First, due to the reason pointed in Chapters 3 and 4, the AGA may not be 

suitable when the computation of fitness function is too complex. Hence, compared with 

the AGA, the GA may be more competent in FRM filter design. Second, in the modified 

FRM structure, the bandedge shaping filter is replaced by several cascaded subfilters. 

However, the coefficient properties of direct form filters may not be applicable in 

cascade form filters. Thus, the Tabu-check may only be applied to the masking filters. 
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Chapter 6 

A Modified Micro-Genetic Algorithm for the 

Design of FIR Filters  

 

6.1 Introduction 

As a stochastic algorithm, the GA is a robust and powerful optimization technique which 

has been applied into the design of digital signal processing systems by many researchers 

[11-15]. In the previous chapters, several novel algorithms based on the GA have been 

proposed for the design of FIR filters with different design requirements and structures. 

However, the main drawback of the GA is that long computation time is required for the 

repetitive evaluations of a large population of candidature solutions. Although designing 

FIR filters is more than a job that can be done off-line, the computational complexity 

does become an issue. Therefore, how to find acceptable solutions with the least 

computational cost is worth being investigated. A micro-genetic algorithm (MGA) [63] 

has been proposed to overcome the drawbacks of low convergence speed of the GA, 

which utilizes a very small population to reduce the computation time. However, there is 

a high likelihood that the MGA entraps into a local optimum when the MGA is applied in 
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complex applications. To address this issue, the MGA is modified to include a strategy 

that varies the probabilities of crossover and mutation during the evolutionary process. 

The modified MGA is utilized for the design of digital FIR filters both in direct 

realization and cascade realization with SPoT coefficient values. The effectiveness of the 

modified MGA can be shown by the design examples.  

This chapter is organized as follows. The modified micro-genetic algorithm with varying 

probabilities of crossover and mutation is proposed in Section 6.2. In Section 6.3, the 

modified MGA is utilized in the design of digital FIR filters in direct realization with 

SPoT coefficient values. In the following section, the modified MGA is applied for the 

design of high speed FIR filter in cascade realization with SPoT coefficients. In Chapters 

2-6, several algorithms are developed for different design problems and requirements 

concerning FIR digital filter design with SPoT coefficients. To gain an overall 

impression on these algorithms, a comparison among the AGA, OSGA, GSA, AGSTA 

and MGA are given in Section 6.5. A summary is presented in Section 6.6. 

 

6.2 A Modified MGA with Varying Probabilities of Crossover 

and Mutation  

The MGA starts with a population of, say, five randomly generated individuals. The 

individual with the largest fitness value is copied to the next generation and the other four 

individuals are determined with the tournament selection strategy. The four individuals 

are paired randomly and adjacent individuals in a pair compete to produce the children 

individuals in the subsequent generation using the GA operations,, except that the 
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crossover probability is set to 1.0 and the mutation probability is 0. After that the 

convergence of the small population is checked. If the population converges, a new 

population is generated by randomly initiated four new individuals and the fittest 

individual from the previous generation. Otherwise the previous generation is used to 

produce the subsequent generation by genetic operations. In the MGA, the mutation 

operation is not employed since enough diversity is introduced by generating the new 

individuals after convergence of a population. The optimization process of the MGA is 

different from that of the conventional GA. The convergence speed of the small 

population is very high with the crossover probabilities 1.0 and mutation probabilities 

zero. The introduction of the new population after convergence and the retention of the 

previous fittest individual make it possible to find better solution for the problem under 

optimization. 

In the GA, the convergence criteria control how often new population are generated. In 

our implementation, the convergence condition is defined as the sum of the differences 

between the fittest individual and each of the rest four individuals are less than 5% in 

terms of number of bits in the chromosomes, i.e., the individuals in the whole population 

are moved towards the fittest individual. If the convergence condition is met, a new 

population is generated by randomly initiated four new individuals and the fittest 

individual from the previous generation. The MGA process is terminated if there is no 

improvement on the fitness values for 3000 generations.  

However, the performance of the MGA will be affected when the lengths of 

chromosomes are very long. It is because MGA with a small population size and the 
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probabilities of crossover and mutation 1.0 and 0 is easy to become premature to a local 

optimal solution. In the filter design, we usually face such cases where very long 

chromosomes are needed. To address this problem, the MGA is modified to avoid 

trapping into local optima by adjusting the probabilities of crossover and mutation in 

different convergence stages instead of the crossover probabilities 1.0 and mutation 

probabilities zero for the whole evolutionary process. The probabilities of crossover and 

mutation will be changed according to the degree that the convergence criterion is met. 

The crossover probability is set to be 0.9 and the mutation probability is 0.001 when the 

similarity between the best individuals and the rest is more than 30%. The crossover 

probabilities is set to be 0.8 and mutation probabilities is 0.01 when the similarity is more 

than 50%. The probabilities of crossover and mutation are changed to 0.7 and 0.015, 

respectively, when the similarity is increased up to 70%. The two probabilities are 

changed to 0.6 and 0.02, respectively, when the differences between the fittest individual 

and each of the rest 4 individuals are less than 10%. Different probabilities in different 

evolution stages can prevent premature convergence of the MGA and improve the 

convergence speed for long chromosomes optimization cases. The principal is to increase 

population diversity by adjusting operation probabilities with the increase of 

chromosome uniformity. These values are chosen within the reasonable ranges of the 

probabilities of genetic operations, i.e. 0.6-0.9 for crossover probability and 0.001-0.02 

for mutation probability. The validation is performed by simulation study. With the 

varying probabilities of crossover and mutation, the MGA can efficiently deal with the 

optimization problems with long chromosomes.  
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6.3 MGA for the Design of Digital FIR Filters with SPoT 

Coefficients 

In this section, the modified MGA is applied in the design of digital FIR filters with 

SPoT coefficient values. The definitions of the objective function and fitness function are 

the same as those in Chapter 5. The design of a linear phase FIR low-pass filter is 

considered to illustrate the proposed technique, which meets the following specifications: 

the normalized passband and stopband edges are 0.18 and 0.27, respectively; the 

maximum passband ripple is 0.01 and the minimum stopband attenuation is 40 dB. 

An FIR filter of length 24 with infinite precision coefficients satisfies the given 

specifications. If such a filter is designed by the proposed method, the filter length 

increases to 27. The minimum stopband attenuation of the overall filter is 40.37 dB when 

each coefficient is quantized into 2 terms of 8-bit SPoT. The frequency response of the 

filter is shown in Figure. 6.1. The total number of fitness function evaluations is 26,560.  

To compare the proposed MGA with the conventional GA, the same filter is designed by 

the GA. The population pool size and the mating pool size are both 100. The crossover 

and mutation probabilities are set to be 0.8 and 0.01, respectively. The cycle of evolution 

is repeated until the fitness value of the population remains unchanged for 1000 

generations. A similar set of coefficients was found, after the fitness function was 

evaluated for 243,700 times.  
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Table 6.1 lists the details of the filter designed using the modified MGA and GA. It is 

seen that the MGA takes much less computation time to find the same design than the 

GA.  

Table 6. 1 A comparison between the filters designed by using GA and MGA  
 Stopband 

attenuation 
Lengths No. of bits No. of fitness function 

evaluations 

GA 40.37 dB 27 8 243,700 

MGA 40.37 dB 27 8 26,560 
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Fig. 6. 1 The frequency response of the direct form filter designed by using MGA. 

 

6.4 MGA for the Complexity Reduction of High-Speed FIR 

Filters 

As discussed in Chapter 2, to design high speed FIR filter, one of the useful approaches is 

to factorize a long filter into several short filters each with SPoT coefficients. For the 
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optimal design of a cascade discrete coefficient filter, the GA is a good candidate as it is 

capable of solving nonlinear optimization problems which are essential for factorizing a 

long filter and quantizing the coefficients. However, huge amount of computer resource 

and long computation time are required when conventional GA is applied in such 

optimization problems. In this section, the modified MGA is applied for the design of 

cascade form filters with SPoT coefficients, resulting in very short computation time. The 

objective function and the fitness function are the same as EQ. (2.8) and EQ. (2.17), 

respectively. 

A linear phase FIR low-pass filter that meets the following specifications is designed by 

using the proposed technique: the normalized passband and stopband edges are 0.15 and 

0.27; the maximum passband ripple is 0.01 and the minimum stopband attenuation is 40 

dB. An FIR filter of length 19 with infinite precision coefficients satisfies the given 

specifications. The filter length increases to 21 if each coefficient is quantized into 2 

terms of 8-bit SPoT. 

If such a filter is designed with two cascaded subfilters by the proposed method, the 

subfilter lengths of H1(z) and H2(z) are 13 and 9, respectively. The minimum stopband 

attenuation of the overall filter is 40.81 dB when coefficients of H1(z) and H2(z) are 

represented by 3 terms of 6-bit SPoT and 2 terms of 6-bit SPoT, respectively. The 

frequency responses of two subfilters and the overall filter are shown in Fig. 6.2. Using 

the proposed method to factorize the filter into three subfilters, the lengths of H1(z), H2(z) 

and H3(z) are 9, 7 and 7, respectively. The coefficients of H1(z), H2(z) and H3(z) use 2 

terms of 4-bit SPoT, 5-bit SPoT and 4-bit SPoT, respectively. The stopband attenuation is 
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40.63 dB. The frequency responses of three subfilters and the overall filter are shown in 

Fig. 6.3. When the same filter is factorized into 4 cascaded subfilters, the lengths of H1(z), 

H2(z), H3(z) and H4(z) are 7, 7, 5, and 5, respectively. The coefficients of H1(z) use 2 

terms of 5-bit SPoT, H2(z) uses 2 terms of 4-bit SPoT, H3(z) uses 2 terms of 4-bit SPoT, 

and H4(z) uses 2 terms of 3-bit SPoT. The stopband attenuation is 40.38 dB. The 

frequency responses of four subfilters and the overall filter are shown in Fig. 6.4. 

Table 6.2 lists the details of each design from the conventional GA and modified MGA. 

The computation effort for different cases in terms of the number of function evaluations 

are shown in Table 6.2. It is clear that considerable savings on computational effort can 

be achieved by using the MGA. 
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(a) Two subfilters 
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(b) Overall filter 

Fig. 6. 2 The frequency responses of the two subfilters (a) and overall filter (b). 
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(a) Three subfilters 
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(b) Overall filter 

 Fig. 6. 3 The frequency responses of the three subfilters (a) and overall filter (b). 
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(a) Four subfilters 
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(b) Overall filter 

Fig. 6. 4 The frequency responses of the four subfilters (a) and overall filter (b). 
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Table 6. 2 A comparison among the filters with 2, 3, and 4 subfilters designed by using 
GA and MGA 

 
No. of factorized filters 2 3 4 

GA 40.01 dB 41.54 dB 40.61 dB Stopband 

attenuation 
MGA 40.81 dB 40.63 dB 40.38 dB 

GA 13,9 9,7,7 7,7,5,5 Lengths 

MGA 13,9 9,7,7 7,7,5,5 

GA 6,6 6,4,4 5,4,4,4 No. of bits 

MGA 6,6 4,5,4 5,4,4,3 

GA 267,100 213,900 271,400 No. of Function 

evaluations MGA 286,20 21,440 143,60  

 

 

6.5 A Comparison among Proposed AGA, OSGA, GSA, 

AGSTA, and MGA 

In Chapters 2 - 6 of the thesis, several novel algorithms are proposed for the design of 

FIR filters with SPoT coefficients. The AGA with adaptive population size and genetic 

operation probability, which offers enhancement in terms of design performance and 

efficiency, is proposed in Chapter 2. In Chapters 3 and 4, two new hybrid genetic 

algorithms named as OSGA and GSA that integrate the GA with an oscillation search 

algorithm and with the SA, respectively, are developed for the design of FRM FIR filters. 

In Chapter 5, an efficient hybrid algorithm, AGSTA adopting the GA, SA, and TS 

techniques, is proposed for the global optimization of FIR filters with SPoT coefficients. 
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In this chapter, a modified MGA is proposed to considerably increase the convergence 

speed.  

These algorithms are developed for different design problems and requirements 

concerning FIR digital filter design with discrete coefficients. Therefore, we cannot 

simply conclude that one is better than another or which one is the best. However, to gain 

an overall impression, the low-pass linear phase FIR filter specified in Section 5.3 is 

designed by using all proposed algorithms, i.e. AGA, OSGA, GSA, AGSTA, and MGA. 

The specifications are repeated here, i.e. the normalized passband and stopband edges of 

the filter are 0.15 and 0.22, respectively; the ratio in passband and stopband equals one. 

The filter is designed with different lengths ranging from 31 to 41. The corresponding 

data from other methods can refer to Section 5.3. Ten independent runs of each algorithm 

are performed for every design to check the optimization stability. The comparison is 

based on the average performance. The following parameters are recorded for each 

design to assess the convergence performance: the mean number of function evaluations 

in 10 runs and the mean NPR of the best filters found in the 10 runs. The results from GA, 

AGA, OSGA, GSA, AGSTA, and MGA are listed in Table 6.3. It can be seen from this 

table that except MGA, all proposed algorithms can achieve better performance than the 

GA. In this example, the mean values of NPR achieved by the AGSTA are smallest, 

while the convergence speed of MGA is highest. The average performance of the OSGA 

is better than that of the GSA. The OS and SA both belong to the class of local search. 

The OS algorithm works based on the rule of filter coefficients, while the SA algorithm 

works in a stochastic model. Thus, when they are applied in the design of direct form FIR 
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filters, the optimization performance of the OSGA is better. It can be seen that the MGA 

can achieve slightly better solutions than the GA when the filter length is relative short, 

i.e. shorter than 35. Although the solutions from the MGA are not as good as those from 

other algorithms, considerable savings on computational effort can be achieved by using 

the MGA. Thus, the MGA will be more competent when the computational cost is the 

most important design requirement.  

Table 6. 3 A comparison among the designs from the GA, AGA, OSGA, GSA, AGSTA, 
and MGA over 10 runs 

 

GA AGA OSGA Filter 

Length 

 N 

Mean 

NPR (dB)

Mean Function 

Evaluations 

Mean 

NPR (dB)

Mean 

Function 

Evaluations 

Mean 

NPR (dB) 

Mean Function 
Evaluations 

31 -39.79 387,000 -40.14 322,473 -40.80 285,710 

33 -39.84 429,500 -40.37 335,294 -40.92  308,584 

35 -40.85 441,000 -41.10 361,821 -42.06 332,680 

37 -41.91 478,500 -43.08 412,769 -44.13 379,276 

39 -42.03 534,500 -43.40 464,288 -44.84 423,872 

41 -43.46 569,000 -45.95 502,396 -46.71 471,952 

GSA AGSTA MGA Filter 

Length 

 N 

Mean 

NPR (dB)

Mean Function 

Evaluations 

Mean 

NPR (dB)

Mean 

Function 

Evaluations 

Mean 

NPR 

(dB) 

Mean Function 
Evaluations 

31 -40.68 301,796 -41.17 219,736 -39.81 28,632 

33 -40.79 329,837 -41.43 224,745 -39.88 29,180 

35 -41.92 340,744 -42.59 245,529 -40.64 31,024 

37 -43.82 396,157 -45.02 274,372 -41.47 31,940 

39 -44.53 458,521 -45.27 290,530 -41.65 32,980 

41 -46.23 489,285 -48.12 312,949 -43.07 33,089 
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6.6 Conclusion 

In this chapter, a modified micro-genetic algorithm is presented for the design of digital 

FIR filters with SPoT coefficient values. The MGA overcomes the drawback of long 

computation time by utilizing a small population. To avoid entrapment in local optima, 

the MGA is modified to include a strategy that varies the probabilities of crossover and 

mutation during the evolution. The modified MGA can be successfully applied in the 

design of discrete valued filters in both direct form and cascade form. Compared with the 

conventional GA, the modified MGA speeds up the optimization process significantly. 

To gain an overall impression, a comparison among the AGA, OSGA, GSA, AGSTA and 

MGA proposed in Chapters 2-6 is presented. 
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Chapter 7 

Conclusion 

 

7.1 Summary 

It is a well known fact that the coefficients of an FIR filter can be quantized into sum or 

difference of signed powers-of-two values leading to a so-called multiplication-free 

hardware implementation where multiplications can be carried out by simply using 

adders and data shifters. The quantization of each coefficient into SPoT space is a 

complicated process requiring excessive computer resources. It may have multiple 

feasible regions and multiple locally optimal points. It is impractical to exhaustively 

enumerate all of the possible solutions and pick the best one, even on a fast computer. AI 

based algorithms are good candidatures to solve global optimization problems. In this 

thesis, design techniques for the SPoT based FIR filters are proposed. Several novel 

methods based on AI technique are proposed for different design requirements and 

structures.   

In Chapter 2, the methods are proposed for the design of low power high-speed FIR 

digital filters, where a long filter is factorized into several cascaded short filters each with 

SPoT coefficient values. The coefficients of all subfilters are quantized into SPoT values 
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simultaneously with the help of genetic encoding scheme. Since the information which is 

related to hardware requirement is affiliated to the fitness function as an optimization 

criterion, the proposed methods reduce the hardware cost significantly. Truncating 

several of the least significant bits from the outputs of intermediate stages in cascaded 

subfilters is introduced to reduce the word length of output signal from the overall filter. 

An empirical equation for truncation margin is given. An adaptive genetic algorithm, 

AGA with varying population size and varying probabilities of genetic operations, is 

proposed to overcome the drawbacks of the conventional GA. Significant savings on 

hardware cost can be achieved when the filters are optimized using the proposed methods.  

The FRM technique is one of the most computationally efficient ways for the synthesis of 

arbitrary bandwidth sharp linear phase FIR digital filters. In one stage FRM structure, 

there are one bandedge shaping filter and two masking filters. The simultaneous 

quantization of at least three subfilters is very complicated. To address the problem, a 

novel hybrid algorithm, OSGA, is proposed in Chapter 3, which is formed by integrating 

an OS algorithm with the GA. The OS algorithm is developed according to the properties 

of filter coefficients and used to improve the convergence performance of the GA. The 

example shows that the coefficient word lengths of subfilters can be significantly reduced. 

The computational cost is much less than those required by the GA.  

It is possible to increase the speed of an FRM filter with a modified FRM structure and 

SPoT techniques, where the long bandedge shaping filter is replaced by several cascaded 

short filters each with SPoT coefficients. In Chapter 4, an effective hybrid algorithm, 

GSA, is proposed for the joint design of all subfilters in the modified FRM structure with 
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SPoT coefficients. In the GSA, the GA handles the overall optimization while the SA is 

applied to help escape from local optima and to prevent the premature convergence of the 

GA. It is shown by means of example that the proposed methods can significantly reduce 

the word lengths of the subfilters in comparison with linear programming.     

In Chapter 5, integrating the AGA, SA and TS algorithms leads to a hybrid genetic 

scheme. The AGA is used as the basis of the hybrid algorithm. The SA algorithm comes 

to the picture when it is indicated that the AGA may get stuck in a local optimum. The 

TS technique is used to improve the convergence speed by reducing the search space 

according to the properties of filters coefficients. Simulation study shows that the 

normalized peak ripples of filters can be largely reduced with the help of the proposed 

algorithm. Compared with the GA, the AGSTA achieves not only the improved solution 

quality but also the considerable reduction of computational effort.  

To speed up the design process and overcome the drawbacks of low convergence speed 

of the conventional GA, a modified micro-genetic algorithm with very small population 

is proposed in Chapter 6. To improve the high probability of premature convergence 

usually associated with small population, the MGA is modified to adjust the probabilities 

of crossover and mutation during the evolution. It was illustrated by examples that the 

modified MGA is about several times faster than the conventional when it is applied for 

the design of discrete valued filters in both direct form and cascade form. 
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7.2 Future Work 

Although many optimization techniques have been proposed for the design of FIR filters 

with SPoT coefficients in the thesis, there are still rooms to improve the design 

performance from the following aspects.  

For optimization algorithms: 

1. Develop encoding schemes to reduce the chromosome length as well as the solution 

space, resulting in high convergence speed. Instead of using fixed chromosome 

length, variable lengths can be considered. 

2. Develop new mechanism of genetic operations to improve convergence performance 

by considering the properties of the desired filters.  

For FIR filter design: 

1. In this thesis, the OS algorithm is developed based on the properties of filter 

coefficients, where the optimization order of one subfilter is from high coefficient 

sensitivity to low sensitivity. For FRM filters, the sensitivity of the coefficients has 

been less studied. It is expected that the OS optimization order based on sensitivity 

would not separate the subfilters. It relays on clearly understanding FRM filter 

coefficient sensitivity, which will certainly improve the design.  

2. How to arrange the subfilters, i.e. the order of subfilters, is important in the design of 

cascade form filters. Although some researchers have contribute much in this topic. It 

is still an open issue.  

3. The mathematical analysis on the quantization noise with truncation in the design of 

cascade form FIR filters with discrete coefficients is worth being investigated. 
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