
SYNTHESIS OF NON-REGULAR ARCHITECTURAL FORMS

NG CHU MING

(B.Eng.(Computer Engineering)(Hons), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2006

Name: Ng Chu Ming

Degree: Master of Science

Dept: Department of Computer Science

Thesis Title: Synthesis of Non-Regular Architectural Forms

Abstract

This thesis presents an interactive system for synthesizing non-regular architectural

forms that features a growth-based approach for rapidly constructing architectural mod-

els in the large scale, while complementing it with intelligent form completion for rapid

design synthesis on the small scale. Our growth-based strategy for large scale synthesis

allows the incorporation of different behavioral growth routines to generate building

units meeting the requirements of view and shape variation. In maximizing views, we

exploit the capability of the GPU to achieve good speedup of the computation. For de-

signing in the smaller scale, our system supports fast generation of design plans, rapid

form completion and synthesis. Besides optimizing these requirements, our approach ex-

hibits emerging behavior with outputs having complex but useful inter-lockings. These

emergent features suggest clever utilization of space as, for example, suspended open

spaces, mid-air gardens and ventilation corridors that are of good architectural value.

On the whole, our work advances interactive generative design with objective measures

that are hard, if not impossible, to achieve manually. It contributes towards rapid pro-

totyping and in taking design of forms beyond monotonous cookie-cutter architecture.

Keywords: modeling, building design, architecture, GPU

ii

Acknowledgments

It took great effort earning this honor of being bestowed the liberty to have one page in

my piece of scholarly work in which to dedicate to all the people important in my life.

Thank you very much to everyone who has accompanied me in this wonderful journey

of trials, tribulations and most importantly, one of great fun and fulfilment in pursuing

my passion.

My deepest gratitude goes to thesis advisor and friend, A/P Tan Tiow Seng for

having faith in me and taking me into the research group. I am deeply impressed by

the professionalism and passion that you have for your work. Your belief in integrity in

one’s work and your meticulous eye for detail never fails to amaze me and will always

be the shining example of what I shall always try to emulate. Thank you so much and

I would not be where I am today without you.

My faithful friend Quek Boon Kiat, thanks so much for being my best confidante

and being always there for me. You are the best!

To my friends in graduate school, Ng Wee Teck, Geoffrey Koh, Koh Chung Haur,

Donny Soh and also Low Joo Kai for all the fun times that made graduate student life

more bearable. Thanks for all the encouragement in times of self doubt!

To the Wushu Family - Goh Wah Ing, Thien Vui Khien, Tiew Ghim Chuan and Lau

Yiehui for being such a wonderful bunch of people with whom wushu training will never

be the same. And thanks for helping me out when I’m in trouble.

iii

I would also like to thank Ms Joanna Koh without whom I will not be a better

person that I am today. Thanks for your love in that four years.

My deepest gratitude also to Ms Koh Yihan. I absolutely wouldn’t be able to make

it without you. You are my guardian angel!

Finally, I would like to dedicate this work to my most beloved parents, whose care,

concern, support and love I will always be grateful for. Hopefully, one day I will be able

to honor them and write yet another page of acknowledgements again.

Till then...

Carpe Diem. And keep believing in your Rendezvous with Destiny...

iv

Contents

Abstract ii

Acknowledgments iii

Summary xi

1 Introduction 1

2 Related Work 4

2.1 Shape Grammars . 4

2.2 Split Grammars . 6

2.3 L-Systems . 6

3 Architecture Primer 8

3.1 Terminology . 8

3.2 Architectural Criteria . 9

3.3 Specific Considerations . 10

4 The Growth-Based System 12

4.1 System Components . 12

4.1.1 The Simulation Process . 14

5 Growth Strategies 17

v

5.1 Shape Operators . 17

5.2 View Guided Growth . 18

5.3 Shape Considerations . 20

6 The ShapeTree Data Structure 23

6.1 A Tree-based Representation . 23

6.2 Face Advancement . 25

6.3 Face Split . 25

6.4 Primitive operations and Corresponding Tree Manipulation 26

6.5 Properties of the tree-based representation 28

7 The Form Completion Engine 31

7.1 Design Representation . 32

7.2 A Measure of Form Complexity . 33

7.2.1 Monotonicity of Quality Measure 35

7.3 The Completion Procedure . 37

7.3.1 Topology Generation . 37

7.3.2 Rectangular Cartogram Construction 41

7.3.3 Incidence Assignment and Realization 45

7.3.4 Geometry Sizing . 48

8 Experimental Results 51

9 Concluding Remarks 59

vi

List of Tables

8.1 Table of statistics on space use for generated models. 52

vii

List of Figures

1.1 Moshe Safdie’s Habitat ’67, in Montreal, Canada. 2

2.1 Illustration of production of shapes using Shape Grammar. 5

3.1 Left: Variation in height of unit. Center: Using other a unit’s roof as

another’s outdoor space. Right: Multiple views available in units. 9

4.1 The growth-based system. 13

4.2 Simulation Process Flow . 15

5.1 Form generation via a series of applications of the two primitive shape

operators. 17

5.2 Locking of different faces to result in the variation of shape. 21

5.3 Collide-and-extrude feature to achieve intriguing interlocking more intu-

itively and rapidly. 22

5.4 Collide-and-extrude feature used to create a unique double storey unit

that utilizes an existing staircase’s roof as its stair base to the second level. 22

6.1 Tree based representation. 23

6.2 Evolution of the tree based representation under unit shape change. . . 24

6.3 Illustration of floorplan and the Face Advance operation. 25

6.4 Illustration of the Face Split operation. 26

viii

6.5 Modifications to the tree structure due to FaceSplit. 27

6.6 Modifications to the tree structure due to FaceAdvance. 27

6.7 Shape-tree and components decomposition. 29

6.8 A decomposition of each shapetree in the floorplan into rectangular sub-

units. 30

7.1 An illustration of five completed units with entrances colored in green. . 31

7.2 A configuration of shapes and their tree based representation. 32

7.3 The evolution of the floorplan and the creation of new nodes and new

links in the corresponding data structure. 33

7.4 Various set of shapes and their form complexity measure. 33

7.5 An illustrated example of the computation of quality measure for an ar-

rangement of three interlocking units. 34

7.6 Various set of shapes and their form complexity measure. 35

7.7 A counter example for the initial quality measure that is greater than 1/2. 36

7.8 An illustration of a chosen design and its different completed forms. Pink

squares represent entry points to units. 37

7.9 The starting configuration of 5 canonical units, and the steps in generating

form with complexity in the range of 0.36 to 0.38. Red points represent

possible split points to increase form complexity. 37

7.10 Illustration of the constructive proof procedure of collapsing staircases. . 40

7.11 Illustration of the constructive proof procedure of collapsing staircases. . 41

7.12 Computing the boundary path and decomposing the sea into rectangles. 42

7.13 Cases to consider for the boundary path tracing algorithm. 43

7.14 Illustration of creating a decomposition of the “sea” region into rectangles

using the method of collapsing steps. 44

ix

7.15 Special cases to be handled by the algorithm for rectangular decomposition. 44

7.16 An illustration of effect of an cascading edge move on the bold edge while

maintaining the relative positioning of p and q. 47

7.17 Illustration of effect of the cascading move operation. 47

7.18 An illustration of effect of a staircase edge move on e1 that induces a

move of e2 and other part of the design. 48

7.19 Comparison of good and bad unit sizings. 48

7.20 Illustration of moving segment heuristic. 49

8.1 Screenshot of the initial and final stages of largescale model generation

using our system. 51

8.2 Initial and final generated form of our Beta model. 52

8.3 Demonstration of user interface capabilities for object slicing. 54

8.4 Demonstration of user interface capabilities of collide and extrude. The

highlighted blocks in the screenshots are the one being extruded. 55

8.5 Demonstration of shadowing capabilities of our system implemented using

the techniques of shadow mapping. The top right widget allows the user

to interactively alter the placement of the light source allowing architects

to envision how a generated model respond to sun paths. 56

8.6 Demonstration of system and its use in generating floorplan and the au-

tomatic integration of generated floorplan into the existing model. . . . 57

8.7 Artist’s impression of possible realization of generated model. 58

x

Summary

This thesis present an interactive system for synthesizing non-regular architectural forms

that features a growth-based approach for rapidly constructing architectural models

in the large scale, while complementing it with intelligent form completion for rapid

design synthesis on the small scale. Our growth-based strategy for large scale synthesis

allows the incorporation of different behavioral growth routines to generate building

units meeting the requirements of view and shape variation. In maximizing views,

we exploit the capability of the GPU to achieve good speedup of the computation. For

designing in the smaller scale, our system supports fast generation of design plans, rapid

form completion and synthesis. Besides optimizing these requirements, our approach

exhibits emerging behavior with outputs having complex but useful inter-lockings. These

emergent features suggest clever utilization of space as, for example, suspended open

spaces, mid-air gardens and ventilation corridors that are of good architectural value. On

the whole, our work advances interactive generative design with objective measures that

are hard, if not impossible, to achieve manually. It contributes towards rapid prototyping

and in taking design of forms beyond monotonous cookie-cutter architecture.

xi

Chapter 1

Introduction

As civilization progresses, the notion of a Housing Unit or, simply unit in one aspect of

the modern ideology was seen in utilitarian terms as a facility that could be capable of

removing waste, providing light and space for use. But beyond such provisions which

have become basic requirements prevalent in the contemporary context, there are more

important issues to appeal to the occupant of a dwelling. What are other important

necessities and functional qualities with respect to spatial arrangements of units, termed

architectural forms or forms, that are appealing to their owners or residents? To this end,

this thesis studies generative design of non-regular form that incorporates architectural

qualities such as views and shape variations.

Often, due to standardization for economies of scale, units in a precinct such as in

a multi-storey building do not vary in spatial configuration and have repetitive struc-

tures. Such cookie-cutter approach to housing architecture confine residents to their

standardized units. Consequently, housing accommodation is viewed merely as satisfy-

ing quantitative parameters of housing a certain number of residents on a given land

area. As civilization progresses, housing standards have transcended the mentioned pro-

visions, and architects now deliberately vary the design and layout of units to provide

residents with unique living environments beyond just a facility. Overall, there are ef-

1

forts toward creating non-regular architectural forms such as the famous Moshe Safdie’s

Habitat’67 in Figure 1.1 [Safdie, 1967]. Such designs are, however, rare as they are

complex to conceptualize and visualize and realize manually.

Alpha Model

Figure 1.1: Moshe Safdie’s Habitat ’67, in Montreal, Canada.

In view of these changes, building architects and designers are constantly exploring

new ways of using computational means to materialize novel designs. However, in this

aspect, computational tools for design generation remain rudimentary and difficult to

use. Commercial computer-aided design tools till present day remain synonymous with

popular software packages, such as Autodesk’s AutoCAD c© and Revit c© [Inc., 2005].

These are mainly drafting tools that are hardly generative in nature.

Existing research work in generating forms often produce outputs that are regular

2

or ones that still require much post-processing by the architect before it is in a form in

which is physically realizable. As such, the design process places tremendous load on the

shoulders of architects. Thus, the task of creating unique forms and spatial arrangements

is an arduous endeavor that quickly overwhelms the designer. At the same time, the

architecture community is still fervently embracing new paradigm shifts in designing

non-regular architectural forms, as attested to in [Schittich, 2004] and [Herr, 2003].

In this thesis, we introduce a novel growth-based approach to generative design,

and develop a prototype interactive system. The approach begins with seeds of units

planted in space to allow them to claim space as time progresses in a simulation manner

to eventually end as units of the architectural form. Such approach is flexible as the

control of units and their spatial configuration can be incorporated as programmable

growth strategies. This growth-based synthesis method is complemented with our form

completion engine which allows for rapid interactive synthesis of forms for localized

regions in the building model. The final architectural form generated, firstly, consists of

units in near-production form that optimize on view and shape variation within preset

room proportions, and secondly, among units with emergent features that occupy space

in an overall site volume.

The rest of the thesis is organized as follows. Chapter 2 presents related work in

generative designs. Chapter 3 discusses architectural issues and states our goals on

architectural forms generated. Chapter 4 describes our system components and the

process to generate forms. Chapter 5 details the growth strategies of view and shape

variation. Chapter 6 describes our data structure for representing floorplan. Chapter 7

describes the form completion engine and Chapter 7.3 details the completion procedure.

Chapter 8 showcases our experimental results, and Chapter 9 concludes with future

work.

3

Chapter 2

Related Work

The field of design computing is rapidly gaining relevance and in this chapter, we review

a few existing works in generative design. They were considered but found unsuitable

in dealing with our problem of optimizing attribute values while generating non-regular

architectural forms.

2.1 Shape Grammars

The most prominent method of design generation is that of shape grammars [Chase,

1989]. The power of shape grammar lies in its simplicity and yet ability to produce rela-

tively complicated but coarse designs. It operates via a rule-based reproduction system

that is of some similarity in function to L-systems. Figure 2.1 shows an example of the

workings of a shape grammar rule (middle diagram) applied to two simple rectangular

shapes. Using the reference points (shown as red and grey dots) as indication of relative

positioning, the grammar replicates the structure presented by the rule specified. This

process is repeated down to rotation symmetries of the specified shapes in the diagram.

The output of the shape grammar rule is the final configuration of shapes on the right

of Figure2.1

4

Figure 2.1: Illustration of production of shapes using Shape Grammar.

However, there is no concept of structural constraint abidance neither is there con-

cept of optimization of form attributes. As yet there are no obvious ways to augment

shape grammar to generate housing units that obey structural constraints and optimize

on attribute values. Structural constraints embody requirements such as unit to corridor

or unit to lift core connection. Attribute values denote unit assessment figures such as

the number of units having multiple views of the environment.

Furthermore, it is difficult to produce meaningful 3D forms by extending the shape

grammar concept to handle 3D reproduction of shapes. As such, shape grammar remains

a design tool that only generates coarse spatial layouts of a building which is still far

from the final form of an actual physical design that can be realized. It is often unclear

as to which are the actual units, which are the corridors and circulation, as well as where

the support structure for the building should be.

[Loomis, 2002] presents a synergy of shape grammar and genetic algorithms for im-

provement in design generation. It is driven by the insight that though shape grammars

effectively define a design space, it offers no method of systematically exploring that

space. By using a genetic algorithm to cross-breed two of the existing designs so that

5

good design properties can be inherited by the new design, the shapes generated can

be effectively explored by the iterations of the genetic algorithm. However, a metric

for quantifying the goodness of forms is not available and thus the system requires user

input at every generation to indicate the better designs from the rest of the population.

Similarly, designs remain coarse due to the basis of using shape grammars as the under-

lying representation for the generation of coarse forms. To use the system for the design

of an entire building will not be straightforward.

2.2 Split Grammars

In the work of [Wonka et al., 2003], split grammars are used to generate 3D build-

ing models. In their system, a large database of grammar rules is first created and

designs are generated based on repeated application of compatible rules. The system

intelligently sieves out and apply only those rules that maintain structure coherence

and order like that observed in real buildings. Their approach is able to rapidly gener-

ate large cityscapes with complicated 3D building facades in a fully automatic manner.

However, it is noted in their paper that the system only generates a description of the

syntatic and spatial framework for the final building. It is not clear how the system could

be extended to handle attribute values such as floor area requirements, multiple views

and non-standard housing units. Furthermore, since split grammars work by splitting

an initial basic shape into sub-shapes from its vocabulary, it is difficult to extend it for

generating non-standard building forms such as that in Moshie Safdie’s Habitat ’67.

2.3 L-Systems

L-systems [Prusinkiewicz and Lindenmayer, 1990] is another notable generative design

technique with production rules. Such modeling places its emphasis on generating the

6

topological structure of objects. It is popular in modeling structures appearing in nature

such as plants and trees. For example, [Měch and Prusinkiewicz, 1996] use L-systems to

model plant growth with some form of environmental awareness. In the work of [Parish

and Müller, 2001], an extension to L-systems is used for rapid procedural generation of

large city scapes. However in building design, there are more imperative requirements

such as form attributes that require attention during design generation. This resembles

in some sense an optimization of certain quality criteria. Such requirements are however,

irrelevant to those objects that L-systems are being used to model, and consequently,

production and re-writing systems based on grammar are not well-suited for the synthesis

of non-regular architectural forms. For our purpose of generating architectural forms, we

utilize relatively more complex optimization criteria than that possible with L-systems.

Also, geometric units under our consideration do not exhibit recurring substructure

properties that might lend itself toward modeling via L-systems or its variants.

Our problem of generative design with optimization criteria requires fine grained

decisions in generating units (that are competing with each other on gaining good at-

tribute values) than that offered by existing grammar and production rules. In exploring

possible solutions to the problem, we experimented with a näıve method of generating

forms with a set of predefined units. The method iteratively computes plausible place-

ment of units at various free spatial locations until a certain number of desirable units

have been placed. However, our experience with this was not successful - it results in

very low utilization of space due to the limited choices of units in claiming usable space

that is highly fragmented, and it is expensive computationally in its search for usable

space. With the above, we thus arrive at our step-by-step growing of units that can

accommodate and compromise on the requirements of all concurrently.

7

Chapter 3

Architecture Primer

In this chapter, we provide a general overview of architectural concerns in building

design as well as some architecture terminology for describing major core components of

a building form. A discussion of the several objective criteria (termed attribute values)

used by architects for assessing the quality of form shape is also provided.

3.1 Terminology

In the layout of apartment blocks, the main structural components of a building form

are rationalized as follows:

• Cores. These are major shafts running through the entire height of the architec-

tural form. They function as support structure of the form. The most common

examples here are the lift cores.

• Circulation. These refer to stairs and corridors structures that serves to connect

to the units in a building.

• Units. The actual habitable blocks of space.

• Site Envelop. This demarcates a 3D volume of space within which the building

8

can be build. Conventionally, this is a rectilinear box but arbitrary envelop shapes

can also be handled.

There are other major components such as power and sanitation pipes in an architec-

tural form. These are, however, less pertinent to our work here as our primary interest

is to generate the main appearance parts of a form.

3.2 Architectural Criteria

With contemporary architecture’s move towards non-regular forms of housing units, var-

ious criteria have surfaced in the architectural field as objective design goals in designing

forms. (For more details, the reader can refer to [Schittich, 2004].) In technical terms,

these are attribute values we seek to optimize. We provide a brief overview of some

common goals below:

Ventilation Corridor

Figure 3.1: Left: Variation in height of unit. Center: Using other a unit’s roof as
another’s outdoor space. Right: Multiple views available in units.

Shape Variation With cubic meter instead of square meter to quantify a unit, an

architect describes more about the spatial possibilities of the unit. Variation in

room sizes also allow for families to change its accommodation as family size

increases or income increases but still stay within the vicinity. Similarly, variation

in room heights can accommodate different needs of the residents (See left of

Figure 3.1). We also introduce the concept of form complexity (chapter 7) on the

floorplan level for characterizing different designs.

9

Multiple Views In any site context, the layout and orientation of a house relates key

interior spaces to preferred views. This is perhaps more imperative a consideration

than its response to sun paths and wind directions on its site. But standardized

housing blocks have its views fixed by one or both of its two window walls. Nev-

ertheless, units are now planned for multiple views as a reaction to the problem of

obstructed view. Multiple views are sought in form to enhance spaciousness while

also achieve good ventilation in the living environment. See the right picture of

Figure 3.1.

Suspended Open Spaces In conventional apartments of multi-storey architectural

form, units at high levels have little or no good relationship to ground floor ameni-

ties. A garden in the mid-air utilizing communal terrace or widened access deck is

thus a valuable asset to units nearby. Small play areas within sight of most units

are also very desirable for family type units. To achieve this, the concept of using

one unit’s roof as another unit’s garden in the air is a useful concept. See middle

of Figure 3.1.

Ventilation Good ventilation is crucial in multi-storey architectural form to provide

good indoor air quality and thus healthy living environment to its residents. Con-

ventional point block design compromises indoor air quality and eventually proved

detrimental to the occupant’s health. Non-regular architectural forms with sus-

pended open spaces give rise to a new means of ventilation not normally available

in conventional design, hence improving air quality. See right of Figure 3.1.

3.3 Specific Considerations

In this work, we focus primarily on using our system to address the issue of generating

forms with the aim of optimizing attribute values. Specifically, we address the issues of

10

generating units with the following requirements:

• Floor Area attribute. User specified requirement in m2

• Multiple View attribute. Calculated as the total amount of unobstructed view

out of the unit.

• Shape Variation. Create units with variation of single and double volume as

well as units with non-rectilinear floorplans.

Our growth approach to generating design focuses primarily on the criteria of mul-

tiple views and variation of shape. Specifically, we adapt two simple shape operators

(Chapter 5.1) to advance faces to grow view and to split faces to generate variation of

shape. These operators also work in conjunction with our measure of form complexity

defined for a group of units. On the other hand, the desires of suspended open spaces

and good ventilation interestingly appear as emergent spatial features in our architec-

tural forms. These are consequences of the use of non-regular units in our forms and are

of value to architects attempting complex configurations which cannot be pre-visualized

in their minds.

11

Chapter 4

The Growth-Based System

Our growth-based system works by utilizing a growth mechanism in a time based sim-

ulation framework. The initial setup for the simulation comprises cores and circulation

with the placement of seed units at exit locations along the circulation. Seed units are

units of small initial volumes and with possibly configurable behaviors. All these in-

put can be interactively specified or automatically generated by the system within user

controls. The major components of the proposed growth-based system are as shown in

Figure 4.1.

4.1 System Components

To present an intuitive understanding of the working of our entire system, we describe

the major components of our system and subsequently outline the interplay of each

component in one single execution of a simulation cycle.

Growth Simulation Engine This is the brain of the whole system. It handles the

running of the entire simulation framework and coordinates the interactions of the

various components in the system during the simulation.

Arbitration Rule Handler Means of arbitration is important for ensuring that the

12

Arbitration Handler Form Assessor

Growth Simulation Engine

Constraint

Enforcer

Unit Behavior Manager

Physical

Constraints

Site

Constraints

Structural

Constraints
User Growth Routines

Form Completion

 Engine

Topology

Generator

Figure 4.1: The growth-based system.

order of invocation of the growth routines is fair and random, since even fixed

order invocation can present starvation of growth. Our framework provides for

the incorporation of user-defined arbitration routines which can for example favor

units with small current floor area, whose growth routine invocation will be more

frequent than the rest. Other possibilities include favoring units of different quality

classes or giving priority to units with more imminent need to improve their view

quantifier. In our particular implementation we prioritize according to view since

it indirectly influences the floor area.

Form Assessment Component There are numerous architectural criteria for assess-

ing the quality of individual units and our framework supports handling of differ-

ent criteria by registering callback functions which evaluate individual unit quality

based any user desired computation. This component calculates the attribute val-

ues of each unit and assesses the implication of these as compared to their goal

values. For example, the ratio of the current view to the goal view can influence

the priority of the unit in its subsequent growth. Our current implementation cal-

culates mainly the view values for all units by exploiting the capability of modern

GPU (see Chapter 5.2).

13

Constraint Enforcer Constraints are needed to ensure the generated design is near

production form. These constraints are, for example, physical where design has to

be geometrically plausible, site related where design has to be constrained to grow

within the site envelope, and structural where units has to have certain amount

of clearance from the cores. Only valid moves of growth checked by the constraint

enforcer will be committed.

Unit Behavior Manager This Manager realizes the grow behavior specified for each

unit and among different units. It manages the registration of user defined callback

functions that comprises routines which determine the “behavior” of units. These

set of callback functions can then be assigned to different units in the model

thereby changing their growth behavior during the simulation. The advantage of

of such a callback framework is its flexibility to allow some user experimentation

in controlling the assignment of different behavior functions to groups of different

units in space. The user can then experiment with a variety of different ways

to grow units. Typically, a unit is to firstly grow to a certain volume and then

considers varying the shape into multiple storeys. In more advanced cases, two or

more units can grow into an interlocking pattern with good attribute values.

Form Completion Engine The Form Completion Engine enables rapid synthesis of

floorplan (adhering to user specified form complexity) within a small region of a

form. It can serve to fill up voids left from the growth process, or can be used to

generate intriguing interlocking pattern. The synthesized small form can possibly

be a module to be replicated in other regions of the form.

4.1.1 The Simulation Process

The initial setup for the entire simulation process comprises the specification of cores

and circulation (staircases) with the placement of seed units at exit locations along the

14

Form Attribute Update

Arbitration

Constraint Validation

Behavoir Invocation

Figure 4.2: Simulation Process Flow

circulation. For an example of such a setup see left most diagram in Figure 1.1.

The growth process then commences with repeated execution of the simulation loop.

The process flow diagram of a single simulation run is shown in Figure 4.2, and it

comprises of the following phases:

1. Arbitration Process - In the beginning of every simulation time step, the system

first performs an arbitration process that determines an ordering of the units based

on their form quantifiers. On completion, the growth engine is notified on the

sequence of execution of unit callback functions for the next simulation run.

2. Behavior Invocation - The growth engine invokes the callback functions of using

the call sequence produced by the previous step. Each callback function then

generates a candidate move list which will be passed to the constraint enforcer for

validation. Details on the behavior routines will be given in Chapter 5.3.

3. Constraint Violation Check - With each move list generated by the unit call-

back function, the constraint checker verifies move validity by checking against the

defined constraint set. Moves that violate constraint rules are discarded and the

remaining list of valid moves is returned to the unit callback routine.

4. Form Quantifier Update - From the valid move list each unit determines the

15

quality of each move based on their own user-specified assessment criteria. Each

unit then selects the best move which the grow engine will then commit. At the

end of all units’ move commitment, the growth engine updates the form quantifiers

(floor area, view) of each unit and the simulation run then repeats.

The simulation runs will evolve the units over time and units that have satisfied their

own termination criteria will then be removed from the callback list. The simulation

stops when all units have reached termination condition.

16

Chapter 5

Growth Strategies

This chapter presents in detail our implemented strategies to grow units. In particular,

Chapter 5.1 discusses two primitive operators in our growing process, and Sections 5.2

and Chapter 5.3 present our strategies to gain view and shape variation.

5.1 Shape Operators

The geometric representation of our architectural form is a 3D mesh in the CGAL library

[CGAL, 2005]. We design the following two operators to manipulate the 3D mesh as

needed during the simulation loop.

Face Split Face Advance Face Split Face Advance

Figure 5.1: Form generation via a series of applications of the two primitive shape
operators.

Face Advance. For a face F defined by a chain of vertices with face normal ~n, the

operator Advance(F, α) moves the vertices of F in the direction of ~n by a magnitude of

17

α. The value of α is a user parameter that controls how much each face is to be moved.

A conservative value of between 0.2m to 0.5m is used in our implementation.

Face Split. For a face F defined by a chain of vertices v1, v2, . . . , vi, the operator

Split(F) introduces two new vertices v′ and v′′ on edges vjvj+1 and vkvk+1 respectively, to

result in two new smaller faces with the chain of vertices v1, v2, . . . , vj , v
′, v′′, vk+1, . . . , vi

and v′, vj+1, . . . , vk, v
′′.

Interestingly, a combination of these two operators are able to model virtually all

commonly encountered shapes for our purposes; see Figure 5.1 for an illustration on

their uses. In particular, face advance is used in growing view, while face split in shape

variation. The same operations (for 2D) are used in the generation of forms meeting a

desirable form complexity in Chapter 7.

5.2 View Guided Growth

For a vertical face of a unit, its view is defined as the total area of the portions of the face

that are visible when viewed, along the normal direction of the face under orthographic

projection, from outside the site envelope. The view of a unit is the sum of all the views

of its vertical faces. In our current implementation, each unit is bounded by axis-aligned

vertical faces (orthogonal to x-axis or z-axis). Thus, we only measure views of units

along 4 directions, i.e. the positive and negative x-axis and z-axis.

View Map Computation For efficient view computation, we use an image-based ap-

proach to simultaneously compute views for all units and store them as a view map.

To do so, we project all units (i.e. of the current version of form) orthogonally

along each of the mentioned four axes. During rendering, we activate a vertex

program to store alongside with each pixel the identity of the unit occupying the

pixel. If there are no more than 256 units, a single byte is enough to store the

18

identity. In such a case, the four passes of rendering can be packed into the four

RGBA channels of a texture, i.e. as the view map. From the view map, the total

view of a unit is obtained by summing up all the pixels in the four channels storing

the identity of the unit.

Gain in View For an operation of Advance(F, α) on face F of a unit, each face of the

unit sharing an edge vivj with F is enlarged by an area of α|vivj |. Each increase

in area for a vertical face is potentially an increase in view of the unit owning the

face. To facilitate the calculation of gain in view, we store a depth map of the

scene along each of the four projection directions while generating the view map.

Each pixel, due to one projection of the enlarged part of a face, is a gain in view if

its depth is smaller than that in the corresponding pixel found in the depth map

under the same projection. The gain in view of Advance(F, α) is then defined as

the sum of gain in views of all faces incident to F . In our implementation, we

regard the move with largest gain in view as the best.

View Conflict An operation of Advance(F, α) on face F can increase the view of its

unit, but can also decrease the view of other units. Our experience shows that

it would be too restrictive in the growth process if we do not allow one unit to

intrude the views of the other. Therefore, we introduce a threshold τ as a user

parameter to control the amount of views a unit allows the other to intrude into.

Consequently, Advance(F, α) on face F of a unit can be a valid move only if the

enlarged area of each face incident to F does not introduce a violation of τ of all

the other units. Also, we can penalize a move of a unit that intrudes views of

other units.

19

5.3 Shape Considerations

With selection of the growing face based entirely on view, we have experienced biased

growth of units in one particular projection direction, leading to elongated ones which

are not usable space in practice. This problem is resolved when we consider shape

variation during the growth of a unit.

Shape Variation in General At the beginning of the simulation, each seed unit is set

to either automatically or manually a target minimum and/or maximum volume

(or floor area) among others. To achieve shape variation, one possible way is to

build randomness into the various stages of the growth as follows. We may start

by dividing the needed target volume into a few, say 2 to 3, usable sub-units (of

having at least the standard of 3m × 3m) to grow, one after the other. While

growing one sub-unit till at least a usable volume, we may again split a face at

random locations to grow the next sub-unit. With randomness, we can sometimes

favor a move that maintains a good aspect ratio of the unit to one that improves

the largest view.

Choice of Splitting Face Extending for a unit u from one of its sub-unit ui to include

another of its sub-unit uj , we choose an arbitrary face of ui to split and subse-

quently advance (either one of the two new faces) to create uj . Generally there

are many faces available for splitting. To maximize on the chances of growing uj ,

we select the face F of u that has the largest clearance from all existing faces. In

other words, F is such that, among all faces of u, its closest distance (measured

parallel to the x-z plane) to all the other faces (inclusive of the faces of the site

envelope) is the largest.

Choice of Locked Faces To better control the generation of some specific class of

units, we incorporate a mechanism to disable the splitting and advancing of one

20

Locked faces

Figure 5.2: Locking of different faces to result in the variation of shape.

or more faces of a unit. In other words, a face that is locked will maintain its

shape throughout the rest of the simulation or until it is unlocked, while its area

may still grow due to the advances of faces incident to it. See Figure 5.2.

Choice of Unit Height Units of non-standard heights further enhance the variation

in the architectural form. To support this, we allow splitting and advancing of

floor or ceiling faces of a unit into a volume with height of up to twice (i.e., double

volume) the standard height. We use a similar clearance consideration as in the

last paragraph (but now measured parallel to the y axis) to pick a face to split

and then advance. Note that height larger than double volume is also possible to

implement.

Collide-and-Extrude As units are allowed to grow autonomous to each other, col-

lision can occur between units and between units and cores. A straightforward

way to handle collision is to lock the faces involved to prevent overlapping volume.

Alternatively, we introduce the collide-and-extrude feature to generate more inter-

esting spatial arrangements. On this, we exploit the Boolean operations (polygon

difference) from the CGAL library to create extrusions that are novel in the usage

of space. For example, Figure 5.3 shows a way to generate intriguing interlocking

more intuitively and rapidly, either by the simulation steps or with a few mouse

motions. Also, Figure 5.4 shows an example use of the top faces of an external

staircase as the base faces of an internal staircase of a unit.

21

Figure 5.3: Collide-and-extrude feature to achieve intriguing interlocking more intu-
itively and rapidly.

Figure 5.4: Collide-and-extrude feature used to create a unique double storey unit that
utilizes an existing staircase’s roof as its stair base to the second level.

Look-ahead The left of Figure 5.4 illustrates a scenario where a unit has to decide

whether to occupy either whole of the top of the staircase or none at all. A partial

occupancy of the staircase is not useful to the unit. In some cases, a step-by-step

growth may result in a space too small to be of any practical uses. We implement

the support of a query by a unit to the Growth Simulation Engine of whether there

is a clearance for advancing a face till the end of a certain number of simulation

loops. This is computed as a conservative estimate derived from potential growths

of other units in the proximity. With this, as in our example, the unit can better

decide whether to venture into occupying the whole of the top of the staircase or

to lock the colliding face.

22

Chapter 6

The ShapeTree Data Structure

In this chapter, we digress for a brief introduction of our novel representation that forms

the core data structure crucial for supporting the implementation of the form completion

engine described in the next Chapter.

6.1 A Tree-based Representation

The ShapeTree is a tree-based representation that provides an implicit encoding of the

shape of a given rectilinear unit in 2D. Our new representation features some interesting

properties such as component decomposition and history (useful for user interaction)

which will be presented later in the Chapter.

a

d b

c
a b c d

Figure 6.1: Tree based representation.

For any shape, its representation is a tree with a set of nodes V = (v1, v2, . . . , vi)

and a set of corresponding weights W = (w(v1), w(v2), . . . , w(vi)) to keep for example,

the lengths of edges. The leaf nodes of the tree at any point in time correspond to edges

23

of the current 2D geometric shape, while internal nodes implicitly record a history of

unit shape variation, as well as providing an immediate decomposition into constituent

boxes. Subtrees also represent a decomposition into sub-shapes. The face advance and

face split operations in Chapter 5.1 translate straightforwardly to the 2D case to work

on the shapetree (See Figure 6.6).

Figure 6.1 shows an example of a unit square with its corresponding tree. For any

node n of the ShapeTree, there is an associated weight value w(n) that represents the

length of the edge represented by that node. Each node is labeled with a, b, c or d

which corresponds to the directions north, east, south, west. For example, aij is used to

denote some j-th north facing edge of Shapetree i. Figure 6.2 shows a more complicated

example of how the shapetree changes with the evolution of unit shape from (i) to (iv).

b2b1 a1

a2 d1 a3

dc

a

b1

a2

d2

c1
d3

a3

b2

c

d

a

c

b1

b2

a1

a

b

a b dc

a1

dc

b2b1

c

d

a

b1

a2

d1

b2

c

d

d

a b

a3

b2b1 a1

a2 d1 a3

d2 c1 d3

a b dca b

(i) (ii)

(iii) (iv)

Figure 6.2: Evolution of the tree based representation under unit shape change.

A Shapetree is used to represent the 2D footprint of the unit and the actual 3D poly-

hedron is obtained by extruding the 2D footprint of the unit by a height displacement

h. Figure 6.3 shows a unit with an L-shaped footprint extruded vertically.

24

6.2 Face Advancement

Floorplan F

Figure 6.3: Illustration of floorplan and the Face Advance operation.

Each unit floorplan is represented by nodes in the Shapetree, which correspond

to edges of the 2D geometric shape. Specifically, each edge Ei is defined by a pair

of vertices (u0, u1) and a face Fi of the unit is defined by a chain of vertices, Fi =

{u0, u1, u0 + h̄, u1 + h̄} where h̄ = (0, h, 0)T . The face advancement operator Adv(F, α)

perturbs the vertices of Fi in the direction of its face normal Ni by a magnitude of

α. This face advancement operation corresponds an increase of the node weights in the

implicit tree representation. Let v be the node in the tree corresponding to the face that

is being advanced. Let vn and vp represent the next and previous nodes corresponding

to the next and previous edges of the moved face in the floor plan. Then the face

advancement operation is conceptually as follows,

Adv(F, α) => vi = vi + αNi

and this maps to the tree operations,

w(vn) = w(vn) + α and w(vp) = w(vp) + α

6.3 Face Split

Conceptually, the face split operation in 3D introduces two new vertices and creates two

new faces F1 and F2 from an existing face F . Let F = {v1, · · · , vn} be some face of

the polyhedron, the face split operation Facesplit(F) then introduce two new vertices

25

v′ and v′′ with the following restrictions,

v′ = αvi + (1− α)vi+1, such that e1(vi, vi+1) is an edge .

v′′ = βvj + (1− β)vj+1, such that e2(vj , vj+1) is an edge .

∠(vi, v
′, v′′) =

π

2
and ∠(v′, v′′, vj+1) =

π

2
and e1||e2

The above formulation enforce that the face split is done along a cut that is orthogonal

to the edges of the face. Figure 6.4 shows how an L-shaped unit can be created via a face

split operation followed by a face advance operation. The reverse application of these

operations will facilitate history and undo GUI features required of most interactive

design tools. The geometric behavior of units will be defined in terms of a combination

of primitive operations coupled with simple decision procedures.

6.4 Primitive operations and Corresponding Tree Manip-

ulation

The 2D analogue of primitive shape operators maps elegantly to tree operations as

described below. For the FaceSplit operation, child nodes are introduced into the node

of the tree representing the current face being split. Two types of nodes are created,

normal tree nodes representing the newly created faces and virtual nodes that will be

Figure 6.4: Illustration of the Face Split operation.

26

used to capture shape changes induced by subsequent FaceAdvance operations. An

illlustration of primitive operations and their corresponding modifications to the tree

structure is illustrated in the following figures.

a b dc

d b

c

a

FaceSplit

a

d

b1

b2

a b dc

b2b1

c

Figure 6.5: Modifications to the tree structure due to FaceSplit.

As illustrated in Figure 6.5, the FaceSplit operation creates two new child nodes

b1 and b2 as well as a virtual node (shown in dotted lines) that is to be used later to

capture shape modifications due to FaceAdvance operations. Figure 6.6 shows how the

FaceAdvance operation modifies the virtual node previously created into an actual child

node of the parent b.

a b dc

b2b1

a

d

b1

b2

c

d

a

b1

b2

c

a1

a b dc

b2b1 a1

FaceAdvance

Figure 6.6: Modifications to the tree structure due to FaceAdvance.

27

A particular shape is represented by a set of splits on the node set V . To constrain

the shape to a particular class, a set of constraints is placed on the weights of the nodes

as well as the number of splits for each subtree of the ShapeTree. To control the number

of face splits, we can use the following constraint

∑

i

SplitCount(vi) ≤ SplitCount(vx) (6.1)

where SplitCount(vx) denotes the number of split operations allowed at the subtree

rooted at x and vi denotes the i-th child node of vx.

6.5 Properties of the tree-based representation

Representing the unit shapes using a tree provides a number of useful properties that

both facilitate shape understanding as well as enable easy implementation of certain

user interaction commands such as history and undo. In the following, we highlight

some of the properties of the tree structure as well as its uses.

History and Undo The tree based representation extends naturally to capturing user

interaction history since modifications to the tree encodes exactly the steps taken

by the user to achieve the final state of the shape that is currently represented. Any

intermediate state of the tree represents an intermediate shape that is encountered

during user manipulation or software guided modification. Although such a state

might represented a group of out-of-order undo operations, the tree-based structure

still facilitates history based undo with just minimum modifications and book-

keeping.

Shape Decomposition into Components Using the tree-based representation, any

subtree of the Shape-Tree represents a sub-component of the entire shape. Fig-

ure 6.7 shows an illustration of a shape and its component. We note though that

28

b2b1 a1

a2 d1 a3

d2 c1 d3

a b dc

a

b1

a2

d2

c1
d3

a3

b2

c

d

a2
d2

c1
d3

a3

b2

c

Figure 6.7: Shape-tree and components decomposition.

the subtree in itself does not sufficiently describe it shape entirely. To complete

its shape description, it requires node c, which is the next leaf node from the left

to right traversal of the tree. The node c, together with node b1, completes the

full description of the component shape.

The ability to decompose a shape into components and the possibility of represent-

ing it as a subtree of it Shape-tree opens up the possibility of shape modification

and mutation. Synthesis of new shapes by crossing mutating their shape tree is

then possible and such mutation may possibly be guided by some quality met-

ric. Generation of ‘interesting’ shapes are then possible if some heuristic can be

conceived to control the cross mutation of shape trees.

Shape Decomposition into Boxes A decomposition of the shapetree into constituent

boxes is immediately obtained from the shapetree data structure without the need

for any additional computation. This is simply achieved by keeping track of the

face-split operations performed. Such a decomposition is potentially useful in the

architecture context in which the boxes can conceptually be a partition of the unit

into rooms. The ability to obtain such a decomposition is also crucial to our form

29

completion approach described in Chapter 7. See Figure 6.8 for an illustration of

the resultant rectangular decomposition for a given floorplan

Figure 6.8: A decomposition of each shapetree in the floorplan into rectangular subunits.

30

Chapter 7

The Form Completion Engine

Lift Core
Circulation Unit

Figure 7.1: An illustration of five completed units with entrances colored in green.

The form completion engine provides an interactive tool that aids the user in synthe-

sizing various completed forms corresponding to a selected number of partially grown

units or seed units. It can be used as a stand-alone tool for rapid design synthesis, or

can also serve to complement the growth process to better claim gaps (voids) in space

for units; see Figure 7.1 for a simple illustration. Before presenting the working of

the completion procedure in Chapter 7.3, we first discuss our design representation in

Chapter 7.1 to support the completion procedure, and a form complexity measure in

Chapter 7.2 to categorize designs.

31

7.1 Design Representation

a21

b21d21

c 21

a21 b21 c 21 d21

a11

b11

c 11

d11

a11 b11 c 11 d11

a33

b31

c 31

d31

a32

d32

a31 b31 c 31 d31

a32
d32

a33

T1

T2

T3

T1

T2

T3

Figure 7.2: A configuration of shapes and their tree based representation.

For the purposes of intuitive manipulation and ease of conceptually visualizing de-

signs mentally by the user, we adopt a representation based on 2D floorplans, which

will eventually be synthesized as 3D volumes. This is entirely adequate as a form design

work spans at most 2 to 3 levels at a time.

To represent a particular configuration of floorplan with n units, we use a set of n

shapetrees S = {T1, T2, · · · , Tn} with additional graph edges linking some node of Ti

to another node of Tj for any incidence relation between the two faces in the floorplan.

The general setup is a set of trees connected at their leave nodes via graph edges, see

Figure 7.2.

As the units in the floorplan evolve, the data structure for the floorplan is updated by

introducing new links joining the appropriate new nodes created to their incident edges.

These operations are efficient and also support backtracking during design search. In

Figure 7.3, we show how the data structure is updated when a face of the unit T2 is

being split and subsequently advanced. When the node d21 in Figure 7.2 is split, three

new nodes d23, c22 and d22 are created. The graph edge (shown in gray in Figure 7.3)

32

linking nodes b11 and d21 is removed and new graph edges are created linking the pairs

(b11, d23) and (a11, c22). The weights of c22 and a21 are also updated following the face

advance operation on node d22.

a21

b21

c 21

a21 b21 c 21 d21

a11

b11

c 11

d11

a11 b11 c 11 d11

a33

b31

c 31

d31

a32

d32

a31 b31 c 31 d31

a32
d32

a33

T1

T2

T3

T1

T2

T3

d22

d23

c 22

d23 c 22
d22

Figure 7.3: The evolution of the floorplan and the creation of new nodes and new links
in the corresponding data structure.

We have considered other planar graph representations for our floorplan designs,

but found this simple representation by a set of shapetrees sufficient (and efficient) in

manipulating topological designs in our process. Our representation is not merely ad

hoc but carefully designed to accommodate the algorithmic operations crucial to our

form completion approach.

7.2 A Measure of Form Complexity

0.333 0.250.3125 0.285 0.1250.25

Figure 7.4: Various set of shapes and their form complexity measure.

For purposes of generating a spectrum of shape configurations from simple to com-

33

plex for a variety of applications, we introduce a form complexity measure that character-

izes intriguing interlockings of two or more units. Our measure captures the proportion

of the total number of faces that are interlock (incident) to other units. Specifically,

for a set of shapes S = {s1, s2, . . . sk}, with |si| denoting the number of faces of si, the

complexity measure Fq of S is determined as

Fq(S) =
1∑ |si|

k∑

i=1

k∑

j=i+1

Cij

where Cij is the total number of incident faces of si and sj . We have Fq(S) being

trivially 0 for a set of shapes that do not interlock.

s1

s2

s3

=
1

14
[C 12 + C 13 + C 23

=
1

14
[2 + 1 + 1] = 0.285

F q(S)]

Figure 7.5: An illustrated example of the computation of quality measure for an ar-
rangement of three interlocking units.

Figure 7.5 shows the computation of the complexity measure for an arrangement of

three interlocking units. In Figure 7.4 we show further examples of various sets of shapes

and their corresponding form complexity measure. Its is apparent from the examples in

Figure 7.4 that our complexity measure provides an intuitive sense of the complexity of

interlocking in a set of units in an arrangement. This formalism is inspired by the work of

[Gero and Kazakov, 2004] on qualitative symbolic modeling. Configurations of shapes

are distinguished as a class rather than as instances with quantitative descriptions.

This is to say that actual dimensions of the shape are not taken into account during

classification via our complexity measure.

34

7.2.1 Monotonicity of Quality Measure

In this section, we examine an interesting property of the quality measure under shape

enumeration using the set of moves described in the previous section. We show that our

measure will always increase monotonically when the shape configurations are subject

to the previously introduced moves. We consider the behavior of the quality measure

under the application of the two operators of face split and face advance applied only

to the following two complexity split arrangements in a set of shapetrees in a design

configuration. See Figure7.6.

complexity increasing split type I

a

b

complexity increasing split type II

Figure 7.6: Various set of shapes and their form complexity measure.

Consider the initial condition of two cubes with touching each other on one of their

faces, the complexity measure Fq(S) is 1/8. With each application of the complexity

increasing move (Type I) described above, the quality measure forms a series:

R = {1
8
,

2
10

,
3
12

, · · · }.

In general, the (k + 1)th term is related to the kth term by

rk+1 =
xk + 1
yk + 2

, with rk =
xk

yk
, xk = xk−1 + 1, yk = yk−1 + 2.

The nominator of the fraction is the summation term in the formula for Fq while the

denominator is the Ns term. The kth term can be written as

rk =
x0 +

∑k
1 1

y0 +
∑k

1 2
=

x0 + k

y0 + 2k

35

Consider

rk+1 − rk =
x0 + k + 1
y0 + 2k + 2

− x0 + k

y0 + 2k

=
y0 − 2x0

(y0 + 2k + 2)(y0 + 2k)

From the above we can see that the moves will improve the complexity so long as

y0− 2x0 is positive. Going back to the case of two cubes with one of their faces incident

to each other, we have the initial condition of y0 = 8 and x0 = 1. Hence the moves

we introduced previously will always improve the complexity measure. For the case of

three cubes in the initial configuration, the worse case values are y0 = 12 and x0 = 3,

which still gives a positive value for y0− 2x0. (*Note : In general, the above is not true

for any configuration of N cubes, see counter example in Figure 7.7).

Initial Config : F (S) = 17/32 > 1/2q

Figure 7.7: A counter example for the initial quality measure that is greater than 1/2.

Using a similar analysis as described previously, it is found that for complexity

increasing move (Type II), the initial conditions are 2y0 − 4x0 > 0 and 3y0 − 4x0 > 0

for both cases of Figure 7.6 respectively. Thus, combining all these restrictions, we end

up with the criteria that initial configurations must satisfy x0/y0 < 1/2.

36

Initial Configuration chosen design
sized and fitted to

initial units

a different sizing and fitting

of the same design

Figure 7.8: An illustration of a chosen design and its different completed forms. Pink
squares represent entry points to units.

7.3 The Completion Procedure

For simplicity of discussion and without loss of generality, we model the problem setup

for partially completed units or initial seed units alike and assume there are N canonical

units which we accept as input to the form completion engine (Refer to Figure 7.8).

These can be thought of as entrances to the units which has to belong to some particular

unit in the floorplan after the completion process.

There are four steps to complete a form. First, user selects a required form complex-

ity to generate forms (Chapter 7.3.1). Second, a processing step converts the selected

design into a rectangular cartogram (Chapter 7.3.2). Third, a form is selected to link

up with the initial seeds (Chapter 7.3.3). Finally, the form is sized into useful units

(Chapter 7.3.4). The resulting form of these steps can further be modified (such as

adding some balcony features) by users depending on their needs.

7.3.1 Topology Generation

p

q

r

Figure 7.9: The starting configuration of 5 canonical units, and the steps in generating
form with complexity in the range of 0.36 to 0.38. Red points represent possible split
points to increase form complexity.

37

With n input seeds and an input form complexity, the system (by default) starts

with n canonical units to start enumerating forms of the required form complexity;

see Figure 7.9. To do this, the system first identifies split positions (shown as red

points in Figure 7.9) that can increase form complexity, then select one or more among

them to perform the actual split and face advance operations. The selection takes

into account considerations such as equal distribution of unit shape complexity. With

different initial arrangement of canonical units or different choices in the split and face

advance operations, the system generates a pre-defined number of forms for selection to

proceed onto the next step.

Spanning of Configuration Space. With an initial setup of trees representing an

initial configuration, new configurations can be obtained via the application of the two

primitive operations of face advance and face split. It can be shown that using the

previous two operations, all possible configurations of units are derivable.

To prove the spanning of configuration space, we first make the following important

observations,

• Each unit is a rectilinear shape representable by a shapetree.

• There exist a shapetree representation for all possible rectilinear unit shapes.

• For every shape tree representation above, there exist a sequence (not neccessarily

unique) of face split and face advance operations leading from an initial canonical

unit to the final unit shape.

It suffices to prove that for each unit in the final floorplan, there exists some sequence

of operations leading to the final unit shape. We will show that using the ‘collapsing

steps’ operation described in Figure 7.14, it is possible to obtain a constructive proof of

the above claim. The essence of the proof is similar to that of ear cutting for polygon

triangulation.

38

For any existing unit in the floorplan, we begin by creating a set of tree nodes

V = {v1, · · · , vn}, with each vi corresponding to some edge ei in the geometric shape of

the current unit. The procedure of the constructive proof then proceeds as follows,

• While ∃ nodes (vi, vj , vk) such that they form a ‘staircase’ arrangement.

1. ‘Collapse’ the staircase arrangement, merging (vi, vj , vk) into a new node v′

2. Insert v′ into the set V

Clearly the above algorithm terminates and at the end of the above procedure, we

are left with the four top level nodes representing the initial canonical unit. The crucial

thing to observe is that the stair collapsing operation and merging procedure is exactly

the reverse operation of the spliting and advancing a face. Hence, we have shown by a

constructive proof that there exists a sequence of face split and advance operations that

allows the evolution of any initial shape to a final rectilinear shape. This is by virtue of

the fact that we have shown that a procedure exists for the collapsing any existing shape

systematically to the initial square, and that the collapsing and face splits are reverse

operations of each other. Figure 7.10 illustrates an examples of the constructive proof

procedure on a given unit, which iteratively performs merging of nodes by randomly

selecting stair arrangements to collapse. It should be noted that the order of collapsing

is unimportant and the procedure produces a canonical unit no matter the choice of

merging. Multiple ways of evolving a unit exists and each permutation of the order of

merging represents a different valid sequence producing the same shape.

39

v18

v15

v1

v2

v3
v4

v5

v6

v8

v7

v9v10v11

v12

v13

v14

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14}

v15

v1

v2

v3
v4

v5

v6

v8

v7

v9v10v11

v15

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,

v12 v13 v14

}

v16

v1

v2

v3

v16

v8

v7

v9v10v11

v15

V = {v1, v2, v3,

v4

,

v5 v6

v7, v8, v9, v10, v11 v15

v12 v13 v14

}v16 ,

v17

v1

v2

v17

v8

v9v10v11

v15
V = {v1, v2, , v8 , v9 , v10 , v11 }

v3

v4 v5 v6

v7v16

v17

,

v15

v12 v13 v14

,

v1

v2

v17

v8

v18

v15V = {v1, v2, , v8, v18

v9 v10 v11

}

v3

v4 v5 v6

v7v16

v17 v15

v12 v13 v14

,

v19

v19

v8

v18

v15
V = { , v8, v18 }v15v19

Figure 7.10: Illustration of the constructive proof procedure of collapsing staircases.

40

The diagram in Figure 7.11 shows the fully reconstructed shapetree from the merging

procedure performed in Figure 7.10. The shapetree depicted in the figure is one possible

way of the creating the shape, among the many other possible ways that might be found

depending the order of merging performed.

v1

v2

v3
v4

v5

v6

v8

v7

v9v10v11

v12

v13

v14

v2

v8 v18

v9 v10 v11

v3

v4 v5 v6

v7v16

v17

v15

v12 v13 v14

v19

v1

T

Figure 7.11: Illustration of the constructive proof procedure of collapsing staircases.

7.3.2 Rectangular Cartogram Construction

For the next two steps, the system needs to maintain the form chosen by the user. To

this end, we define the topology of a form in the following discussion. A form (as shown

in Figure 7.9) is lying within a smallest bounding box. The form of each unit (from the

starting n canonical units) consists of sub-units (that are boxes) that resulted from split

and face advance operations as captured in the shapetree. The empty space outside of

all sub-units within the bounding box is considered as the sea region.

Processing the sea region

For the purpose of facilitating the sizing algorithm described in the next chapter, there

is a need to decompose the “sea” region. These are the regions within the bounding

box of the floor plan but are not part of any one of the units. We can conceptually

partition the sea region by sweeping a vertical plane from left to right to generate a

unique set of rectangular boxes (as shown in Figure 7.9(bottom left)). Analogously, we

41

can do a partitioning with horizontal plane sweeping from top to bottom. However, for

efficiency purposes, we describe a more efficient and elegant way of decomposing the

region as follows. Firstly, the extremal edges (shown in thick rectangles in Figure 7.12)

are computed. We let et, eb, el and er denote the top, bottom, left and right extremal

edges respectively.

Figure 7.12: Computing the boundary path and decomposing the sea into rectangles.

Computing the boundary path. The computation of the boundary path begins

by tracing the route from one extremal segment to the next, i.e. from et → er, er → eb,

eb → el and el → et. Since the units are always connected, we are certain that such a

path always exists. The data structure for representing the floor plan allows the traversal

of the edges of the units as well as jumping from unit-to-unit using their adjacency links

on faces whereby the units contact. Each edge e is associated with two vertices v1 and

v2 and is directed from v1 to v2. All edges are oriented in clockwise manner.

The computation of the boundary path uses two edge pointers prevedge and curedge

(denoted p and c resp.) to traverse the shapetree data structure. Down to symmetry,

there are 4 cases to consider during the traversal of the data structure. The 4 cases are

illustrated in Figure 7.13 and the algorithm for tracing the boundary path is described

in Algorithm 1. Figure 7.12 shows the result (in red colored paths) of applying the

above algorithm to compute the four boundary paths of the given configuration.

42

Algorithm 1: Computing the boundary path.
Input: Pointers to start and end edges.
Output: A list of edges forming the boundary.
computePath(edge e start, edge e end)
prevedge ← e start
curedge ← e start.nextedge
while (curedge! = e end)

if curedge’s incidence list is empty
path.add(new edge(prevedge.v2, curedge.v2))
prevedge ← curedge
curedge ← curedge.nextedge

else
if (curedge.v1 is in the interval of some edge e in the incidence list)

curedge ← e
else if (there exist some edge e to the right of prevnode.v2)

path.add(new edge(prevedge.v2, e.v2))
prevedge ← e
curedge ← prevnode.nextedge

else
path.add(new edge(prevedge.v2, curedge.v2))
prevedge ← curedge
curedge ← curedge.nextedge

p

cLAND

SEA

LAND
SEA

LAND

LAND
SEA

LAND
LAND

LAND

V1

V2

V1 V2

LAND

p

c

p

c
p

c

V1

V1

V1

V1

V1

V2

V2

V2
V2 V2V1

Edge Added To Boundary Path by Algorithm

Figure 7.13: Cases to consider for the boundary path tracing algorithm.

43

Rectangular decomposition of sea region

1

2

3
4

1 1

2

Figure 7.14: Illustration of creating a decomposition of the “sea” region into rectangles
using the method of collapsing steps.

With the boundary path computed, a rectangular decomposition of the sea is ob-

tained from the simple method of “collapsing steps” (See Figure 7.14 for an illustration).

The algorithm for decomposition is described below:

Algorithm 2: Computing the rectangular decomposition.
Input: A pointer to the starting edge e start.
Output: A list of rectangles comprising the decomposition

computeRectDecomp(edge e start)
curedge ← e start
while (Number of edges < 2)

if curedge is a step region
Collapse the step.
Add the collapsed rectangle to the list.
curedge ← curedge.nextedge

else
curedge ← curedge.nextedge

Add final rectangle resulting from last 2 edges.

Special cases. The algorithm above needs some additional checks to handle the

following special cases.

curedge

curedge

(a)

curedge

(b)

curedge

(c) (d)

CASE I

CASE II

Figure 7.15: Special cases to be handled by the algorithm for rectangular decomposition.

44

For the case in Figure 7.15(a), the curedge is advanced two links forward as shown

in Figure 7.15(b). For the other case shown in Figure 7.15(c), the curedge is reversed

two links backward as shown in Figure 7.15(d). This is so that no change is required to

the orientation and coordinates of the edges to handle these cases.

7.3.3 Incidence Assignment and Realization

In this step, we are required to manipulate the chosen form in such a way that preserves

the topology of the generated floorplan. Firstly, we provide a formal explanation of

what maintaining of topology means.

Let E be the set of all the edges of the sub-units and rectangular boxes of the sea

region, resulted from both the vertical and horizontal sweep planes. Edges in E are used

to construct paths from some corner (vertex) of a sub-unit to another corner (vertex).

In the following, for simplicity, we ignore the case where corners p and q are endpoints

of an edge or are connected by a chain of vertical edges or a chain of horizontal edges -

for this special case, we just need to modify the consideration accordingly. Two corners

p and q of possibly different sub-units are such that p ≺x q if, and only if, there exists

a path in E from p to q with no horizontal edge oriented towards the negative x axis.

Similarly, q ≺x p if, and only if, there exists a path in E from p to q with no horizontal

edge oriented towards positive x axis. If both of the above do not exist, then p and q

are not comparable under ≺x. Analogously, we can define the relationship ≺z in the

z direction between two corners. See the example in lower left of Figure 7.9 where we

have p ≺x q, and r is not comparable to q under ≺x. To maintain the topology of a

form in the next two steps, we maintain the relationships ≺x and ≺z of all the corners.

With the definition of topology taken care of, the main function of this step is to

take a chosen form to assign correspondences of some of its edges (or corners) on the

boundary to some edges (or corners) in the initial configuration. It stretches the form

45

to fit into the initial configuration obeying the mentioned correspondences of edges

or corners, while maintaining the topology. The correspondences can be interactively

assigned or autonomously performed by the system. Näıve methods of automatically

assignment may not result in a physically realizable form. On the other hand, it can also

be the case that multiple choices of realizable correspondences can exist; see Figure 7.8.

For a boundary path starting at corner p and ending at corner q with p ≺x q and

p ≺z q, a realizable correspondence of p to p′ = (p′x, p′z) and q to q′ = (q′x, q′z) is one such

that p′x < q′x and p′z < q′z. Analogously, we can define realizable correspondences for all

the other configuration of ≺x and ≺z. When p and q are not comparable under ≺x (≺z,

respectively), then there is no constraint on the relationship of p′x and q′x (p′z and q′z,

respectively). With this, it is easy to validate manual correspondences specified by the

user, or to generate valid correspondences automatically.

Following realizable correspondences, the system computes a physical realization

iteratively by moving one by one edges of sub-units to their constrained locations. The

edge moving process uses two operations to preserve the topology of the form. In

cascading edge move (Figure 7.17), the movement of an edge can result in movement of

other edges so as to maintain non-zero area for each sub-unit and rectangle in the sea

region. In staircase edge move (Figure 7.18), the movement of an edge can bring along

a movement of another parallel edge (separated by just one orthogonal edge) when the

separation between the edges violates some minimum separation requirement. These

edge moves can propagate to other affected sub-units.

Cascading Edge Move. Refer to Figure 7.16. Conventionally, moving edge e1 with

the aim of constraining p to p′ will decrease the edge lengths of the affected adjacent

rectangles (see first two diagrams of Figure 7.16). However, beyond a specified threshold

d, we can invoke the operation of moving the previous edge of d (denoted e2) by the same

incremental amount in the same direction. This effectively ‘shifts’ the entire affected

46

de1

p p’

de1

p p’

de1

p p’

de1

p p’

e2 e2
e2e2

Figure 7.16: An illustration of effect of an cascading edge move on the bold edge while
maintaining the relative positioning of p and q.

geometry to the right, with the same operation propagated to other affected parts of

the floorplan.

p

q
A

B

q

B

A

p

Figure 7.17: Illustration of effect of the cascading move operation.

Figure 7.17 shows the effects of the cascading edge move used to move the bold edge

in the diagrams. We note here the special property of cascading edge move operation

coupled with the rectangular decomposition of the sea region is such that the topological

structure of the layout is always preserved. For example, the relative positions point

p and q are always preserved. This is a property of the way the sea region is being

decomposed. In particular, it is because of the way the special cases are handled that

rectangles A and B are created in their particular arrangement. In the special cases, the

“lowest level” are “filled” first and hence this construction, coupled with the cascading

move operation ensures that the relative positions of p and q will always be preserved

due to the existence of A and B.

47

e1

d

e2
e1

e2
e1

Figure 7.18: An illustration of effect of a staircase edge move on e1 that induces a move
of e2 and other part of the design.

Staircase Edge Move. Consider the case shown in Figure 7.18. As the edge e1

moves such that its vertical separation from e2 violates some specified threshold d, a

move is also induced in the edge e2, which will be in turn propagated to other affected

parts of the floor plan. This ensures that the topology of the incidences between units

are always preserved.

7.3.4 Geometry Sizing

With a realized topology, the next step of the completion process constitute the sizing

of the topology, the aim of which is to size each sub-unit to one that is sufficiently

large enough to be a room of some architectural use. Since our system is to provide

a rapid prototyping tool for previewing a particular instance of floorplan, we require a

fast method for computing good sizing of the floorplan and subsequently synthesize the

geometry for visualization.

Figure 7.19: Comparison of good and bad unit sizings.

Defining Good Sizings. To arrive at some measure for discerning architecturally

useful designs from the rest, we employ the concept of equally-sized subunits (See Fig-

ure 7.19). From the diagram, it is easy to see that units with evenly distributed subunit

areas are more desirable than those with large differences in their subunit areas.

48

With the mentioned edge moving operations, the user can manually size each sub-

unit. As for automatic sizing, we aim for equally-size sub-units (see Figure 7.19). The

algorithmic problem is as follows. For an input set of rectangles R = {r1, r2, . . . , rk}

with initial areas A0, A1, . . . , Ak, we want to change the areas of each ri into a targeted

value A′i. For our problem, we assign to those rectangles belonging to sub-units a large

target value M (which can be the total area of the bounding box of the design over the

number of sub-units in the design) whereas those to the sea region a small positive value

m.

A

B

C

A

B

C

Figure 7.20: Illustration of moving segment heuristic.

To size our floorplan, the algorithm in [Kreveld and Speckmann, 2004], which is

based on the moving segment heuristic is used with appropriate modifications. Refer to

Figure 7.20, the vertical segment of A shared between B and C can be moved to the

right to increase the area of A. It can also be moved to the left achieving the opposite

effect. The sizing algorithm iteratively loops over all such segments in the floorplan and

move them in direction which decreases the maximum errors of the adjacent regions.

Intuitively, after a number of iterations, all the segments would have moved to a locally

optimum position. Such an iterative process, adapted from [Kreveld and Speckmann,

2004], with some bound on the number of iterations, is performed to size each sub-unit

while maintaining the topology of the form. The process gives priority to size sub-unit

with the largest difference to its target size.

With the four-step process described in the last few sections, we are able to rapidly

generate completed forms for units in small regions in the building model. Figure 7.1

49

shows an example of an actual model of the form completed level generated by our

program.

50

Chapter 8

Experimental Results

Figure 8.1: Screenshot of the initial and final stages of largescale model generation using
our system.

Our system is implemented with the CGAL library on a Pentium IV 3.0GHz, 1GB

DDR2 RAM and nVidia GeForce 6600 GT with 128M DDR3 video memory. Figure 8.1

shows the screenshot of our system during the initial and final stages of the generation

of our large scale models.

Alpha and Beta (Figure 1.1(top) and Figure 8.2) are two large scale models, gener-

ated using our system with their input cores as shown too. These models are generated

in less than 5 minutes in an interactive session. See the accompanying video for an

animation of the generation process of the Beta model. A partial example of the form

51

Figure 8.2: Initial and final generated form of our Beta model.

 Model Site Area No. of Units Total No. of Occupants Occupancy Ratio

Alpha 90m x 50 m 71 213 0.0095

Beta 100m x 60m 134 364 0.0101

Type B Units Type C Units

Alpha 15 28
Beta 31 61

 Two Views Three Views

Alpha 17 29
Beta 34 54

Alpha 25 27

Beta 47 5760.5m2

Units with

Double Volume

 Units with

Outdoor Space
Average Floor Area

25m

62.2m2

Multiple View Units
Average View

28m

Type A Units

28

42

2

2

Table 8.1: Table of statistics on space use for generated models.

completion method is shown as Figure 7.1. See the accompanying video for a more

comprehensive illustration of the process.

Table 8.1 summarizes the statistics on the use of space by the Alpha and Beta

models. We note that Swedish housing standards [Swedish Regulation] specify that the

minimum comfortable dwelling area is at 30 to 50m2 for one person (Type C), at 50 to

85m2 for three (Type B), and at greater than 85m2 for a family of five (Type A). With

these, we can calculate the number of total occupants for Alpha and Beta. To appreciate

the occupancy ratio, we note a typical cookie-cutter building of about 32m×27m has

52

4 units per storey. Assuming each unit houses 4 persons, we then have 16 persons in

one storey, which gives an occupancy ratio of 0.0185 person per square meter. Our (5

storey) Alpha and (6 storey) Beta forms can achieve about half the efficiency in usage

of space compared to a typical conventional cookie-cutter building.

Apparently, the efficiency in space usage in the conventional way is traded to create

outdoor space of good attribute values in Alpha and Beta; see for example the insert to

Figure 1.1 on the possible usage of suspended open spaces. Table 8.1 also summaries

the statistics on the view and shape variation of Alpha and Beta. Indeed, we observe

that about half the number of units have good suspended open spaces. In addition,

the average view of all the units are considered high as it is close to half the size of

the average floor area. As for shape variation, we also observe good percentage of units

having attractive double volume and multiple views. Due to the non-regular units, there

are many ventilation corridors in both Alpha and Beta from our visual inspection.

The system also features some other shape manipulation features such as object

slicing (See Figure 8.3), shadows and shadow placement control (See Figure 8.4) as well

as the collision and extrude feature (See Figure 8.5).

Other than large scale model generation, the other major component of the system is

the form completion engine for rapid prototyping of local regions of the model. Refer to

Figure 8.7 for screenshots of the system used to generate the floorplans from which the

user can choose from and subsequently integrated (semi)automatically into the existing

model being built.

On the whole, we demonstrate the possibility (see Figure 8.7 for an artist’s illustra-

tion of of creating forms that look beyond the usual occupancy ratio but a premium

type of housing units with good views and variation of shapes to provide for quality

living in modern housing.

53

Figure 8.3: Demonstration of user interface capabilities for object slicing.

54

Figure 8.4: Demonstration of user interface capabilities of collide and extrude. The
highlighted blocks in the screenshots are the one being extruded.

55

Figure 8.5: Demonstration of shadowing capabilities of our system implemented using
the techniques of shadow mapping. The top right widget allows the user to interactively
alter the placement of the light source allowing architects to envision how a generated
model respond to sun paths.

56

Figure 8.6: Demonstration of system and its use in generating floorplan and the auto-
matic integration of generated floorplan into the existing model.

57

Figure 8.7: Artist’s impression of possible realization of generated model.

58

Chapter 9

Concluding Remarks

This thesis proposes a growth-based approach for generative design in an interactive

environment. The approach incorporates consideration of views and variation of shapes

in generating units. It also has emergent spatial features to create units with suspended

open spaces and good ventilation. Interestingly, the system relies on only two primitive

shape operators of face splitting and face advancing to synthesize a variety of forms. The

outputs of the system are physically valid and meeting building constraints. Our system

also demonstrates the exciting possibility of rapidly synthesizing non-regular forms on

the small scale using our completion engine.

There remain possible improvements to our current prototype system. Firstly, we

can consider the possibility of fine tuning or defining alternative architectural criteria

and growth strategies. For example, view may be modified to define with view volume

truncated at some finite distance rather than the stringent, näıve infinite orthogonal

projection. This has implication on how GPU can be used to speed up the view com-

putation. Another example of possible work is to examine growth strategy involving

a coupling of two or more units to form specific patterns of form. Secondly, on the

architectural aspect, it would be interesting to look into a quantitative case study of

comparing and contrasting the attribute values of our outputs with existing non-regular

59

forms (should detailed architectural information be available) such as Habitat’67.

60

Bibliography

CGAL. The CGAL Consortium. Computational Geometry Algorithms Library., 2005.

URL http://www.cgal.org.

S C Chase. Shapes and shape grammars : from mathematical model to computer

implementation. In Environment and Planning B : Planning and Design B, volume 16,

pages 215–242, 1989.

John Gero and Vladimir Kazakov. On measuring the visual complexity of 3d solid

objects. In International Journal of Design Sciences and Technology., 2004.

Christiane M. Herr. Using cellular automata to challenge cookie-cutter architecture. In

The Proceedings of the 5th Conference on Generative Art 2003, pages 72–81, 2003.

AutoDesk Inc. http://www.autodesk.com, 2005.

Marc Kreveld and Bettina Speckmann. On rectangular cartograms. In LNCS, volume

3321, pages 724–735, 2004.

Benjamin A. Loomis. A user driven genetic algorithm for evolving non-deterministic

shape grammars. In MIT Department of Architecture Technical Report, 2002.

Radomér Měch and Przemyslaw Prusinkiewicz. Visual models of plants interacting with

their environment. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on

Computer Graphics and Interactive Techniques, pages 397–410, New York, USA, 1996.

ACM Press. ISBN 0-89791-746-4.

61

Yoav I. H. Parish and Pascal Müller. Procedural modeling of cities. In SIGGRAPH

’01: Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pages 301–308, New York, USA, 2001. ACM Press. ISBN 1-58113-374-X.

doi: http://doi.acm.org/10.1145/383259.383292.

P. Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants. Springer-

Verlag New York, Inc., New York, USA, 1990. ISBN 0-387-97297-8.

Moshe Safdie. Habitat ‘67, 1967. URL http://www.habitat67.com/.

Christian Schittich. High-density housing : concepts, planning, construction. Birkhäuser,

2004.

Swedish Regulation. Swedish housing standards. URL

http://www.johngilbert.co.uk/resources/swedish.html.

Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky. Instant archi-

tecture. ACM Transactions on Graphics, Vol. 22(3):669–677, 2003. ISSN 0730-0301.

doi: http://doi.acm.org/10.1145/882262.882324.

62

