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SUMMARY  



Summary 

      Helicobacter pylori infection is associated with various gastroduodenal diseases that 

affect half of the world population irrespective of races and geographical regions. 

However, the pathogenetic mechanism of H. pylori infection has not been well established. 

Among the virulence factors of H. pylori reported, heat shock protein (HSP) has been 

identified to play an important role in protein stabilization and bacterial survival.  

      In this study, a 20kDa protein was identified as a homologue of HslV in the heat shock 

protein family and termed as heat shock protein 20 (HSP20). It has been found mainly in 

the spiral form of H. pylori. hsp20 gene of H. pylori NCTC 11637 was cloned and 

expressed.  Expressed His-tag fused recombinant HSP20 (rHSP20) in E. coli was purified 

by affinity chromatography and used as antigen to raise antibody in rabbit. HSP20 was 

shown to localize on the cell surface of H. pylori as analyzed by Western blotting and 

immuno-gold labeled transmission electron microscopy using rabbit anti-rHSP20 antibody.  

     hsp20-isogenic H. pylori SS1 was genetically engineered by the insertion of kanamycin 

cassette. Interestingly, hsp20-isogenic H. pylori retained 75% - 92% adherence ability as 

compared to that of the wild type bacteria by in vitro adhesion assay. However, when 

introduced separately into BALB/c mice, unlike the wild type H. pylori, hsp20-isogenic 

bacteria lost the ability to colonize in the stomach of the animals. This indicates that 

HSP20 might be involved in the colonization of H. pylori in mice. However, the role of 

HSP20 in bacterial colonization is independent of other known adhesins (e.g., OipA, HopZ 

and SabA) in H. pylori.  

      By co-immunoprecipitation, CagA (cytotoxin associated immuno-dominant protein) 

was found to interact with HSP20 in wild type H. pylori but not in the hsp20-isogenic 

mutant. Through RT-PCR, Western blotting and ELISA analyses, it was found that HSP20 

 xiii



Summary 

 xiv

did not affect the expression of cagA in H. pylori but influenced the presentation of CagA 

on the surface of H. pylori. These findings may imply that HSP20 could function as a 

“chaperon” for the presentation and stabilization of CagA in H. pylori, indicating the 

indirect association of HSP20 with pathogenesis of H. pylori through CagA.     

      The probable contribution of HSP20 in the process of H. pylori infection led to the 

DNA analysis of 227 H. pylori isolates which shows that hsp20 gene is conserved in all 

strains tested. The phylogram based on the DNA sequences highlighted two geographical 

clusters: Asian and non-Asian groups. The distinctive substitution clusters of M-G-G and 

F-D-N clusters at 14th – 16th amino acid residues exhibited a strong association with these 

two geographical groupings as well as “close” association with PUD and NUD, 

respectively. The simple and unique 3 amino acid substitutions of HSP20 indicate its 

potential of being used as an epidemiological and gastroduodenal disease differentiating 

marker for H. pylori infection.  

      This study shows the novel function of HSP20 as a surface localized protein that 

participates in the bacterial colonization and as a chaperonic protein to the surface 

presentation of CagA in H. pylori. Furthermore, the uniqueness and simplicity of HSP20 

for use in H. pylori epidemiology has also been demonstrated. The information obtained 

has thereby enriched our understanding on interactions between H. pylori and host. 



 
 
 
 
 
 

 
1. INTRODUCTION 



Introduction  

1.1   Helicobacter pylori and gastroduodenal diseases 

      Helicobacter pylori is a gram-negative, spiral-shaped microaerophilic bacteria which 

colonizes the human gastric mucosa. Since the successful isolation of H. pylori by 

Warren and Marshall in 1983, it has provided an opportunity for scientists to study the 

association of H. pylori with various gastro-duodenal diseases. Persistent colonization of 

H. pylori on human gastric mucosa has been strongly associated with gastric diseases 

ranging from gastritis, non-ulcer dyspepsia, and peptic ulcer to the increased risk of 

gastric cancer. As one of the human pathogens, H. pylori infection is the most common 

gastric bacterial diseases worldwide that has infected half of the world population across 

continents, races and age groups (Taylor & Blaser, 1991). 

       In the past two decades, great effort has been devoted into the study of H. pylori with 

respect to its bacteriology, physiology, genetics, pathogenesis and epidemiology of 

infection. Based on the studies conducted (Dunn et al., 1997), it is noted that H. pylori is 

a unique bacterial species that differs vastly from other bacteria. Some of these unique 

features are dimorphism of the bacteria cells, surface localization of cytoplasmic proteins 

and high genetic diversity among natural isolates (Moss & Sood, 2003).  

 

1.2   Characteristics of Helicobacter pylori  

       Two morphological forms of H. pylori cells were observed: spiral form and coccoid 

form. Spiral-shaped H. pylori is the active form which is capable of colonization and 

infection while the coccoid form is viable but non-culturable and has been considered as 

the resting state of bacteria (Benaissa et al., 1996; Ren et al., 1999). Under unfavorable 

conditions, morphological conversion from spiral to coccoid can be observed in in vitro 
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culture such as depletion of nutrients, addition of antibiotics or stress stimuli (low pH or 

high temperature) (Catrenich & Makin, 1991). However, the resuscitation from coccoid 

to spiral has not been established in in vitro conditions but recovery had been reported in 

mice (Bode et al., 1993; Censini et al., 1996; Wang et al., 1997). Hence, it is a 

controversial issue among researchers as some regarded coccoids as dead bacterial cells 

(Kusters et al., 1997; Enroth et al., 1999) while others believed that coccoids are viable 

but non-culturable (Zheng et al., 1999; Ren et al., 1999; Saito et al., 2003).  

      The spiral form of H. pylori expresses a great number of proteins, which participate in 

various bacterial metabolic activities: e.g. cell survival & proliferation, adhesion, 

colonization and transportation of macromolecules. However, in the coccoid form, 

protein expression is significantly reduced while DNA and RNA are randomly degraded; 

only the basic metabolism (cell respiration, maintaining cellular integrity & DNA 

synthesis) is retained (Kusters et al., 1997; Narikawa et al., 1997; Costa et al., 1999). 

Therefore, it is widely believed that the dormant coccoid form is involved in the 

transmission of H. pylori infection or as in vivo cells responsible for treatment failure 

(Hua & Ho, 1996; Zheng et al., 1999; Andersen et al., 2000; Ng et al., 2003) while the 

spiral form is responsible for the pathogenesis of H. pylori infection (Dubois, 1995).  

 

1.3   Virulence factors of Helicobacter pylori 

      Several proteins have been identified to be associated with H. pylori virulence and 

pathogenesis in the past decades. The most intensively studied virulence factors are 

cytotoxin-associated immuno-dorminant protein (CagA), vacuolating toxin A (VacA), 

adhesins, flagella, urease and heat shock proteins (HSPs). They act independently from 

 2



Introduction  

each other in the process of H. pylori infection but are essential for bacterial pathogenesis 

(Prinz et al., 2003).   

      It has been shown that CagA is one of the major virulence factors in H. pylori 

(McGee & Mobley, 1999). The gene encoding CagA is located in the “pathogenicity 

island (PAI)” of DNA segment that includes a cluster of 31 genes correlated with H. 

pylori specific type IV secretion system (Censini et al., 1996). CagA protein can be 

translocated into the epithelial cells to trigger a cascade of signal transduction pathways 

(Segal et al., 1999). Similarly, other major virulence factors like VacA has been 

demonstrated to be associated with tissue damages (Ricci et al., 1996). The best-known 

effect of VacA is its ability to induce cytoplasmic vacuoles in various eukaryotic cells 

(Telford et al., 1994).  

      Among the various virulence factors, outer membrane proteins (OMP) are important 

in mediating receptor-ligand recognition between H. pylori and host. Many OMPs have 

been identified as “adhesins” of H. pylori that are associated with bacterial adhesion and 

colonization. These include blood-group-antigen-binding adhesin (BabA) which is an 

adhesin of H. pylori interacting with the blood group antigen – Lewis antigen on gastric 

epithelial cells (Ilver et al., 1998); SabA (sialic acid-binding adhesin) that is responsible 

for the binding of H. pylori to sialyl-Lewis x antigens in gastric epithelium in humans 

(Mahdavi et al., 2002); OipA (outer inflammatory protein) and HopZ (homologue of 

porin) which are associated with the adhesion and colonization of H. pylori in vitro and in 

vivo (Yamaoka et al., 2002).  The outer membrane associated flagella is responsible for 

the motility of H. pylori cells which is necessary for bacterial survival on the viscous 

mucus layer (Josenhans et al., 1995) while surface localized urease is an enzyme needed 
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to maintain a neutral pH microenvironment for the survival of H. pylori in the acidic 

stomach (Perez-Perez et al., 1992). 

      Heat shock proteins (HSPs) are another group of virulence factors, which are 

important for bacterial survival. HSPs are highly conserved and widely expressed in both 

eukaryotes and prokaryotes that are detected in folding, transporting and stabilization of 

proteins in cells. As one of the virulence factors, HSPs are indispensable for maintaining 

the normal functions of H. pylori proteins, assisting H. pylori in combating against stress 

and survival in the stomach (Kamiya et al., 1998).  

 

1.4   Heat shock proteins (HSPs) of Helicobacter pylori  

      1.4.1   Known species of heat shock proteins in H. pylori  

      In the study of H. pylori heat shock proteins, several HSPs have been identified. 

These include 58.2 kDa - HSP60 (Dunn et al., 1992); 13 kDa - HSPA (Suerbaum et al., 

1994) and 70 kDa - HSP70 (Evans, Jr. et al., 1992) Among these, most studies have been 

carried out on HSP60.  

      H. pylori HSP60 has been shown to be involved in protein folding as well as 

exporting as a chaperonin but also demonstrated immunogenic property in H. pylori 

infections. Barton et al. (1998) detected circulating antibodies against H. pylori HSP60 in 

patients with different gastro-duodenal diseases and the seropositivity to H. pylori HSP60 

is strongly correlated with the degree of chronic inflammation (Vorobjova et al., 2001). 

The study of Gobert et al. (2004) and Yamaguchi et al. (1999) demonstrated that HSP60 

also participates in the induction of various cytokines (interleukin-6; interleukin-8), 

enhances T-cell activation and interacts with Toll-like receptors (TLR-2- and TLR-4-). It 
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is suggested that H. pylori HSP60 may play a role in triggering the inflammatory process 

in gastric mucosa. A cross-reactive epitope was found in H. pylori HSP60 and its 

homologue in human by both Kansau & Labigne (1996) and Yamaguchi et al. (2000). It 

was speculated that H. pylori HSP60 might be responsible for molecular mimicry causing 

autoimmune response in host (Kansau & Labigne, 1996).  

      In addition, Amini et al. (1996) and Yamaguchi et al. (1996) reported that H. pylori 

HSP60 is translocated from cytoplasm onto the bacterial cell surface and associated with 

the adhesion of H. pylori to human epithelial cells. Surface localized HSP60 might have 

an essential role on the growth of H. pylori (Yamaguchi et al., 1997). It was reported to 

participate in the extra-cellular assembly and/or protection of other proteins against the 

hostile environment of stomach (Evans, Jr. et al., 1992; Yamaguchi et al., 1998).  

      The 13 kDa HSPA as described by Suerbaum et al. (1994) was shown to be related to 

the host immune response during H. pylori infection (Perez-Perez et al., 1996). Recent 

study by Eamranond et al. (2004) reported that the seropositivity for HSPA may be a 

consequence of prolonged H. pylori infection and is age-specific. Interestingly, the nickel 

binding ability of HSPA might be associated with urease (Kansau et al., 1996).  

       The other known heat shock protein is HSP70 firstly described by Evans, Jr. et al. 

(1992). The expression of HSP70 was induced in the reactive oxygen metabolite-

mediated cell damage in cultured gastric mucosal cells (Hahm et al., 1997) but decreased 

upon gastric adaptation to aspirin during H. pylori infection (Konturek et al., 2001).  It 

was also found that HSP70 might be a stress-induced surface adhesin mediating sulfatide 

recognition (Huesca et al., 1998). 
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      Based on the knowledge acquired from heat shock proteins in H. pylori, it indicates 

that heat shock protein is an important factor that is crucial for survival of the 

microorganism. Furthermore, it also modulates the interactions between H. pylori and 

host such as the involvement in bacterial adherence to human epithelial cells as well as 

initiation of host immune response.     

 

      1.4.2   A new member of heat shock protein in Helicobacter pylori 

      Heat shock protein 20 (HSP20, HP 0515) is a newly identified member of heat shock 

protein family based on the open reading frame annotated by Tomb et al. (1997). It was 

predicted as a homologue of HslV in E. coli that is proven to be a component of ATP-

dependent protease involving in the degradation of cell division inhibitor, SulA (Seong et 

al., 1999). The primary structure of HSP20 shows 49% identity to HslV while 34% 

similarity to human β type subunits of 20S proteosome. However, the function of this 

protein has not been reported.  

      The absence of SulA homologue in H. pylori and the < 50% similarity to HslV imply 

that HSP20 might function differently in H. pylori. Furthermore, the similarity between 

HSP20 and human β type subunits of 20S proteosome may imply a role of HSP20 in 

molecular mimicry of H. pylori infection and host immune response akin to that of 

HSP60. Therefore, it is useful to study the unique role of HSP20 as a protein mainly 

expressed in the spiral form of H. pylori that might be involved in the process of H. 

pylori infection or/and pathogenesis.   

 

 

 6



Introduction  

 7

1.5   Objectives of this study 

       This project aims to characterize HSP20 and its probable function(s) in H. pylor. The 

goals of the project were: 

     • To clone and express hsp20; 

      • To raise specific antibody against recombinant HSP20; 

      • To identify the sub-cellular localization of HSP20 in H. pylori; 

      • To construct hsp20-isogenic H. pylori SS1 mutant; 

      • To investigate the role of HSP20 in adhesion and colonization;  

      • To examine proteins interacting with HSP20 in H. pylori; 

      • To explore the possibility of using HSP20 as an epidemiological marker.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

 
2. LITERATURE REVIEW 



Literature Review 

2.1   Helicobacter pylori – the organism  

      2.1.1   Basic features of H. pylori  

      The isolation of Helicobacter pylori in 1983 opens a new chapter in microbiology 

(Marshall, 1983) Helicobacters are a new genus of bacteria, inhabiting the interface 

between mucosa and gastric epithelial cells. H. pylori is the first specie of the 

helicobacters genus described. It is Gram negative, microaerophilic, spiral shaped, 

flagellated and urease positive. It is a nutritionally fastidious microorganism forming 

about 1 mm transparent colony on enriched agar plate supplemented with 5 – 10% blood 

after 3 –5 days of incubation (Marshall and Warren, 1984). H. pylori is also an oxygen 

sensitive microorganism which only grows in the presence of 5 – 10% carbon dioxide (5-

10% CO2, 90-95% O2) at 35 – 37°C under humidified conditions but not in regular 

atmosphere or under obligate anaerobic conditions (Goodwin et al., 1986). It is major 

pathogenic species in humans (Ormand et al., 1991). 

        

      2.1.2   Nutrition requirement of H. pylori  

      H. pylori can grow in both non-selective and selective media supplemented with 

antibiotics since it possesses different susceptibility to some of the antibiotics (e.g., 

nalidixic acid, cephalothin) (Goodwin et al., 1989). The addition of appropriate 

antibiotics developed by Skirrow and Dent (Dent and McNulty, 1988; Hazell et al., 1989) 

has improved the growth of H. pylori on the selective media. H. pylori can be cultivated 

on solid agar plate or in liquid broth media. The selective solid media containing 

antibiotics is widely used for the isolation of H. pylori from biopsy tissues. The growth of 

H. pylori in liquid media (generally with the supplementation of yeast extract and serum) 
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is relatively slower but is desirable for the studies on physiology and metabolism 

(Goodwin et al., 1986; Ho and Vijayakumari, 1993). 

 

      2.1.3   Differentiated forms of H. pylori 

      The ultrastructure of H. pylori is of particular interest to researchers as these features 

would reveal the unique structure of this pathogen and provide vital information on the 

correlation with pathogenesis. Based on electron microscopy study, two major 

morphological forms were observed: spiral and coccoid. In an early study of Benaissa et 

al. (1996), the conversion of spiral to coccoid via U-shaped transition form is clearly 

observed under the transmission electron microscopy. Thereafter, similar observations of 

morphological conversion were demonstrated in the later study by other researchers 

(Kusters et al., 1997; Costa et al., 1999).  

      The spiral shaped H. pylori possesses 4 – 6 polar-sheathed flagella and is highly 

motile (Goodwin et al., 1985). These basic characters (spiral shape and flagella) favor the 

motility of the bacteria in the viscous gastric mucus layer. The ultrathin sections of H. 

pylori under electron microscope also exhibited the typical cell wall structure of gram-

negative bacterium that consists of outer and inner membrane, condensed cytoplasm 

containing nucleoid material and ribosome (Costa et al., 1999). Among the many proteins 

that are found to be associated with outer membrane, urease was the first identified 

surface located protein (Bode et al., 1989; Hawtin et al., 1990) followed by the 

identification of other outer membrane proteins e.g., HSP60 (Doig et al., 1992; Austin et 

al., 1992; Doig and Trust, 1994).  
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      However, the round shaped coccoid form of H. pylori is believed to be degenerative 

and dead cells (Kusters et al., 1997). There is another group of researchers suggested that 

the coccoid from is viable but non-culturable (Hua and Ho, 1996; Aleljung et al., 1996; 

Saito et al., 2003). Substantial modifications in cell wall, surface protein profile and 

DNA contents were detected during the transition of coccoid (Benaissa et al., 1996; 

Costa et al., 1999). This phenomenon may indicate that the two forms of H. pylori cells 

may have different roles in H. pylori infections.     

 

      2.1.4   Morphological structure of H. pylori   

      Cell surface is an important component of extra cellular pathogenic bacteria like H. 

pylori. There are various virulence factors involving in the bacterial infection that are 

located or associated with the cell surface structure of H. pylori (Moran, 1995). Among 

these factors, there are two major groups that are related to adhesion and colonization as 

well as cell damage and bacterial survival, respectively.  

       A group of bacterial factors involving in the adhesion & colonization of H. pylori 

includes flagella that are responsible for motility (Jones et al., 1997; Clyne et al., 2000), 

urease (Tsuda et al., 1994; Karita et al., 1995), catalase & various oxidases (Harris et al., 

2003) which are enzymes responsible for different biochemical degradation; outer 

membrane proteins with or without known function (Yamaoka et al., 2002); 

phospholipase (Dorrell, 1999) and adhesins (BabA) (Boren et al., 1993). Mutations in 

these genes in H. pylori have been reported to reduce the adherence capability or 

colonization ability of bacteria onto the gastric mucoca in animals. 
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      The other major group of factors functioning in tissue damages includes vacuolating 

cytotoxin A (VacA); cag pathogenicity island (PAI) which have been shown to be related 

with peptic ulcer and the immune response of host (Appelmelk et al., 1996; Cover, 1998; 

Pai et al., 1999; Pelicic et al., 1999; Le’Negrate et al., 2001; Choi et al., 2001). Besides 

the above factors, there are some other proteins that are related to the bacterial survival, 

such as heat shock proteins (e.g., HSP60, HSPA, HSPR, HSP70) that are necessary for 

the bacteria in combating against the hostile environments (Kansau et al., 1996; 

Kawahara et al., 1999; Konturek et al., 2001; Spohn et al., 2002).       

      The findings on studying the bacterial structure revealed that H. pylori possesses a 

number of unique features necessary for colonization onto the human gastric mucus layer 

and survival in the hostile acid environment. Successful attachment of H. pylori ensures 

the persistence of H. pylori infection in gastroduodenal track. H. pylori infection would 

incite various extents of immune responses of host that is attributed to the cross-talk of 

factors between host and bacteria.   

 

      2.1.5   H. pylori and gastroduodenal diseases  

      H. pylori infections are closely associated with the induction of various 

gastroduodenal diseases such as gastritis, non-ulcer dyspepsia, gastric ulcer, duodenal 

ulcer and increased risk of gastric cancer. About 90% of chronic gastritis is caused by H. 

pylori (Dixon and Sobala, 1992). The association of non-ulcer dyspepsia (NUD) and H. 

pylori infection has been controversial among researchers (Pieramico et al., 1993). 

However, dyspepsia symptoms correlated with the infection of virulent H. pylori strains 

(Treiber et al., 2004). H. pylori remains the main etiological agent of peptic ulcer 
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including gastric ulcer (GU) and duodenal ulcer (DU) (Moss and Calam, 1993; Mauch et 

al., 1993). The eradication of H. pylori enhances the healing process of a bleeding peptic 

ulcer (Arkkila et al., 2003). Interestingly, the prevalence of H. pylori increased in patients 

with gastric cancer (De Koster et al., 1994). Thus, it signifies that the infection of H. 

pylori and related diseases is complicated, which challenges the progress of research 

work. 

 

2.2   Epidemiology of H. pylori infection 

      It is reported that about 50% of the world population is infected with H. pylori 

(Taylor & Blaser, 1991). The prevalence of H. pylori infection varies with different 

regions, races, and age groups. There is a significant difference in the prevalence of H. 

pylori infection between developing and developed countries. For example, the infection 

rate in developing countries could be as high as 70 – 90% whereas the prevalence in the 

developed countries would be as low as 20 – 40% (Bardhan, 1997). In a multiethnic, 

Singapore, a Southeast Asian nation, it was noted that the infection rate of H. pylori in 

Chinese and Indian is higher than the other races i.e., Malay or Eurasian (Committee on 

Epidemic Diseases 1996; Goh, 1997; Kang et al., 1997), which suggests that racial 

differences, genetic predisposition and other environmental factors (e.g., diet) may be 

involved in H. pylori infection.  

      A prospective study from infancy to adulthood (Malaty et al., 2002) demonstrated 

that H. pylori infection could happen at the early stage of life before age 10. This 

indicates that the acquisition of H. pylori is possible during the childhood and transmitted 

vertically through the intrafamilial route (e.g., from parents to children). This is supported 
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by the findings of several studies (Taneike et al., 2001; Roma-Giannikou et al; 2003; Ng, 

et al., 2003).  

 

2.3   Genetics of Helicobacter pylori  

      The prevalence of H. pylori infection varies in different graphical regions, ethnic 

background, socioeconomic conditions and age groups (Covacci et al., 1999), which 

could possibly be contributed by the diversified bacterial genotypes of the natural 

isolates. Although H. pylori is regarded as a big homogenous group of microorganism, 

the heterogeneity is widely observed among the genotype of clinical isolates and bacterial 

populations within the infected hosts (Blaser, 1997). The genotypic variation among H. 

pylori strains includes point mutations in conserved genes, differences in gene 

organization, mosaicism of conserved genes and integration of different transposable 

elements. The variation in bacterial population can be observed in individuals infected 

with more than one H. pylori strains ((Blaser, 1997). The formation of genotypic 

diversity in H. pylori may be related to the presence of multiple strains within one host as 

plural cohabitation favors the occurrence of free intraspecies recombination.        

      

      2.3.1   Genetic diversity of H. pylori  

      With the development of DNA recombination technology, the genetic diversity of H. 

pylori isolates in nature is uncovered. Upon the analyses, the comparison of DNA 

sequences of the same gene between H. pylori strains reveals that it is rare for 

orthologous genes from different H. pylori isolates to have the same sequences 

(panmictic structure). This finding was based on the studies of different H. pylori 

 13



Literature Review 

essential genes (ureA, ureB, flaA, flab), virulence factor genes (cagA, vacA) and 

transposable elements (IS605) (Salaun et al., 1998; Suerbaum et al., 1998; Falush et al., 

2001). Similar findings were also observed in the studies of other housekeeping genes of 

H. pylori such as atpA, efp, mutY, ppa, trpC, ureI, yphC, atpD, glnA, scoB, recA 

(Achtman et al., 1999; Maggi et al., 2001) or antibiotic resistance gene [rdxA - 

metronidazole resistance (Solca et al., 2000); gyrA - Ciprofloxacin resistance (Glocker & 

Kist, 2004)]. The detection of nucleotide diversity among different genes from different 

isolates indicates the existence of high level of genetic diversity in H. pylori. 

      With the availability of two complete genomes of H. pylori, 26695 and J99 (Tomb et 

al., 1997; Alm et al., 1999), it was found that the two genomes are highly similar to each 

other at the gene size and gene order with a limited number of discrete regions that are 

organized differently. When viewed in a genome wide manner, there was about 6 – 7% of 

the annotated genes which are strain specific but are absent from each other with no 

identifiable homologue in the databases (Alm et al., 1999). 

      As a major virulence factor, vacuolating cytotoxin (vacA) alleles show mosaic 

features among H. pylori isolates (Atherton et al., 1995). About 60% of H. pylori isolates 

harbor vacA gene, among which there are at least four different families of signal 

sequences (s1a, s1b, s1c and s2) and two different families of middle-region alleles (m1 

and m2) (Van Doorn et al., 1999). Different combinations between s and m regions were 

identified in H. pylori strains isolates worldwide.  

      Another important virulence factor is cag pathogenicity island (cag PAI) that is a ~40 

kb long chromosomal region including 31 open reading frames which encode type IV 

secretion system (Rohde et al., 2003). There is only a part of H. pylori isolates having 
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cag PAI (Mobley, 1997). The genetic diversities of both vacA and cag PAI indicate that 

genetic recombination and transfer may occur spontaneously among H. pylori strains 

(Atherton et al., 1999; Kersulyte et al., 1999). 

      The existence of different insertion sequences (IS) in genome can be the best 

evidence of interspecies DNA recombination and is thus valuable in bacterial taxonomy 

(Mahillon & Chandler, 1998). Kersulyte et al. (1998; 2000; 2002) and Hook-Nikanne et 

al. (1998) reported four types of insertion sequences in H. pylori isolates in the last few 

years. These insertion sequences are IS605, IS606, IS607 and IS608. The function, 

genetic organization and distribution of these insertion sequences have been well studied 

in H. pylori strains from different geographical regions. IS605 is the prevalent insertion 

sequence in H. pylori strains (~ 30%). The remaining types (IS606, 607 & 608) are only 

retained by 10 – 20% H. pylori isolates. Among these, IS 605 has also been reported to be 

involved in the deletion and insertion of cag PAI in bacterial genome (Bereswill, et al., 

2000).   

 

      2.3.2   The affiliation of genetic diversity and geographical origins  

      Since the existence of high level of genetic polymorphism among H. pylori 

population, it is found that the clusters of H. pylori strains are likely to link with the 

status of gastroduodenal diseases, such as the presence of cag PAI and vacA alleles or 

other virulence factor genes that are closely associated with peptic ulcer diseases 

(Stephens et al., 1998; Arents et al., 2001).  

      Besides the association with gastroduodenal diseases, the genetic diversity of 

virulence factor genes, transposable elements and some of the housekeeping genes of H. 
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pylori also show distinctive affiliation with geographical origins. Falush et al. (2003) 

distinguished five major H. pylori populations: East Asian; Europe 1; Europe 2; African 1 

and African 2, among which several subgroups were observed. Similar observations have 

been consecutively found in several studies carried out by different researchers around 

the world. Achtman et al. (1999) reported the existence of two weakly clonal groupings 

in H. pylori strains: Asian & Western. Ji et al. (2002) demonstrated a separate clustering 

of Chinese and Western isolates. All these findings were based on the phylogenetic 

analysis of a few housekeeping genes, virulence factors genes (cagA and vacA alleles). 

Apart from the housekeeping genes and the virulence factor genes, transposable elements 

(IS605, IS606 & IS608) are also a powerful marker to differentiate H. pylori strains from 

different geographical regions. Kersulyte et al. (2000; 2002) explored the use of IS606 

and IS608 to examine the geographical distribution of H. pylori isolates respectively. 

Meanwhile, Maggi Solca et al. (2001) used IS605 combined with other genes found the 

geographical clusters of H. pylori strains (USA/Europe, East Asian and South African). 

Hence, based on these findings, it is presumed that free recombination at different gene 

loci has masked the evolution relationship among H. pylori strains.  

      Furthermore, Ando et al. (2002) found that an outer membrane protein HP0638 also 

exhibited geographical polymorphism and correlated with the presence of cagA. The 

geographical clusters of East Asian and Western H. pylori strains are able to be 

delineated by the in-frame & out-of-frame status that is determined by the CT 

dinucleotide repeat patterns of HP0638. The status is also strongly correlated with the 

presence of cagA in H. pylori strains. This indicates that as a surface protein, HP0638 
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could serve as a new genotyping system to distinguish H. pylori strains for 

epidemiological purposes.  

 

      2.3.3   Approaches for the detection of genetic diversity of H. pylori  

      Different approaches have been developed over the past decades to detect the 

genomic diversity of H. pylori isolates. The ultimate goal of these different techniques is 

to attempt in generating the physical maps of bacterial genome and demonstrate the 

extent of genetic diversity between different genomes. However, different methods have 

shown different sensitivity and limitation.  

      Before the completion of genomic DNA sequencing, several methods based on 

nuclease digestion were developed simultaneously for detecting the genetic diversity of 

bacterial genome. For example, ribotyping is a method used for analyzing the restriction 

enzyme digestion patterns of rRNA genes of H. pylori (16s & 23s rRNA) (Tee et al., 

1992). Another enzyme-digest based method is pulsed-field gel electrophoresis (PFGE). 

It is used to examine the macrorestriction patterns and study the DNA homology of H. 

pylori genomic DNA (Takami et al., 1994; Smith et al., 2003).  

      Other than the enzyme-digest based methods, various PCR based methods were used 

to effectively and efficiently differentiating H. pylori strains. Such methods include PCR 

based randomly amplified polymorphic DNA (RAPD) and restriction fragment length 

polymorphism (RFLP). In PCR-RAPD analysis, the display of strain-specific arrays of 

DNA products is amplified using the arbitrarily chosen oligonucleotide primers based on 

genomic DNA of different H. pylori isolates (Marshall et al., 1995; Han et al., 2003). 

PCR-RFLP is to assess the restriction fragment length polymorphisms (RFLPs) in several 
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PCR-amplified gene segments (Akopyanz et al., 1992; Clayton et al., 1993; Fujimoto et 

al., 1994). Both methods are sensitive and useful detection approaches for analyzing a 

large number of H. pylori strains.  

      With the completion of H. pylori genome in 1997, sequencing the representative 

DNA segments of H. pylori genome is the most extensively used techniques to analyze 

the genetic diversity between strains accurately. This is because sequencing can provide 

the detailed and additional information for each DNA fragment that makes the analysis of 

polymorphism more rapid, direct and accurate. It is therefore the most reliable technique. 

A number of phylogenetic studies of H. pylori strains have been carried out based on 

different gene fragments such as housekeeping genes; virulence factor genes (cagA, 

vacA) and transposable elements (Kersulyte et al., 1999; Atherton et al., 1999; Achtman 

et al., 1999; Maggi et al., 2001; Falush et al., 2003).  

      The existence of high-level genetic polymorphism among H. pylori population and its 

affiliation with geographical origins or disease outcomes provide useful information for 

studying the evolution of H. pylori and epidemiology of H. pylori infection.   

 

      2.3.4   Evolutionary change of DNA sequences 

      2.3.4.1   Synonymous and non-synonymous substitutions 

      Synonymous substitution is the change of nucleotide that does not result in the 

change of amino acid encoded, whereas if the encoded amino acid is changed by the 

nucleotide substitution, this nucleotide substitution is termed non-synonymous. To 

evaluate the evolution of nucleotide sequences, it is necessary to calculate the rates of 

synonymous (Ks) and non-synonymous (Ka) substitutions (Nei & Kumar, 2000). The 
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ratio of Ka/Ks is an indicator to test the different selection on genes during evolution. If 

Ka/Ks = 1, gene is under the neutral selection; if Ka/Ks < 1 (or Ks/Ka > 1), gene is under 

negative selection and conserved; if Ka/Ks > 1 (or Ks/Ka < 1), gene is under positive 

selection and diverged (Hurst, 2002).    

      Calculation of Ks and Ka of genes has been extensively used in analyzing the 

phylogenetic relationship of H. pylori strains. In the study by Achtman et al. (1999) and 

Maggi et al. (2001), the Ks, Ka and ratio of Ks/Ka of some housekeeping genes from 

different H. pylori strains were employed. The Ks of these genes studied showed a broad 

range from 0% to 43% while Ka was in a narrow range of below 10%. The ratio of Ks/Ka 

varies among different housekeeping genes and the values were greater than 1. This 

implies that different housekeeping genes are under different negative selection pressures 

and well conserved in H. pylori strains.  

      Besides the housekeeping genes, other virulence factor genes of H. pylori were also 

studied for the rate of nucleotide substitutions. For example, cagA gene of different H. 

pylori strains showed high level of non-synonymous substitution rate (Ka) that was as 

high as 13% (Achtmen et al., 1999). Hence, the Ks/Ka ratio was considerably lower for 

this gene than that for the housekeeping genes. The other virulence factors gene is vacA. 

Atherton et al. (1999) examined the Ks, Ka and Ka/Ks of vacA alleles m1 and m2. The 

results showed that the greatest difference was present in the comparison between m1 and 

m2 but not within m1 or m2. Since the greatest Ks value between m1 and m2, this 

suggested that divergence of m1 from m2 was the most ancient.         
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      2.3.4.2   Nucleotide divergence between populations 

      The estimation of DNA divergence/difference is used to evaluate the influence of 

DNA polymorphism between populations (Nei & Kumar, 2000). This has been 

extensively used in the study of H. pylori populations. van der Ende et al. (1998) utilized 

cagA gene as a marker to study the geographical groupings of H. pylori. Based on the 

calculated divergence of cagA at the nucleotide level (average 13.3%) and amino acids 

level (average 17.9%), it showed that the average differences between the Dutch and 

Chinese isolates was the highest. They therefore concluded that cagA-positive H. pylori 

populations in China and the Netherlands are distinct. Similarly, in the study of vacA 

alleles by Atherton et al. (1999), it was shown that the nucleotide differences between m1 

and m2 clusters was 24.9% - 25.9% which was significantly higher than that within m1 

or m2 cluster (both of which were below 10%). Hence, calculated nucleotide divergence 

is a useful parameter in analyzing different H. pylori populations.  

 

2.4   Pathogenesis of Helicobacter pylori infection  

      Great diversity of H. pylori infections exists among different geographical regions 

around the world. Acquired from childhood (Malaty et al., 2002), H. pylori would be 

remained in the human stomach for many years as a “commensal” or an “opportunistic” 

pathogen. Several studies reported that only a small number of people who carries H. 

pylori would finally develop clinical symptoms. It is believed that the pivotal feature of 

H. pylori might be its capability to persist within the host rather than to damage the host 

tissue (Mobley, 1997; Marshall, 2002; Lamarque & Peek, 2003; Blaser & Atherton, 

2004).  
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      In the past ten years, much effort has been devoted into the study of H. pylori 

pathogenesis. The identification of potential virulence factors is intriguing. The identified 

virulence factors can be sorted into different groups mediating different biochemical 

reactions. This includes the outer membrane proteins: adhesins (e.g., BabA) (Boren et al., 

1993), immunogenic antigens (CagA, urease, LPS) (Tummuru et al., 1993; Tsuda et al., 

1994; Karita et al., 1995; Appelmelk et al., 1996) proteins involved in adherence and 

colonization (HP0638; phospholipase A) (Dorrell et al., 1999; Yamaoka et al., 2002); 

cytotoxins (CagA, VacA, NAP) (Evans, Jr. et al., 1995; Pelicic et al., 1999; Choi et al., 

2001; Le’Negrate et al., 2001); motility machinery (flagella) (Jones et al., 1997; Clyne et 

al., 2000); anti-oxidant related proteins (catalase, SOD) (Seyler, Jr. et al., 2001; Harris et 

al., 2003) and others cytoplasmic proteins, e.g., heat shock proteins (Kansau et al., 1996; 

Kawahara et al., 1999).    

 

      2.4.1   Adherence and colonization of H. pylori 

      Prior to the expression of disease by H. pylori, adhesion and colonization of the bacteria 

on the gastric mucus layer is essential. Hence, bacterial adherence and colonization 

become the prerequisite for the persistence of H. pylori on the gastric epithelial cells and 

the subsequent immune responses of the host. To begin with, adherence of H. pylori on 

the gastric epithelium is the initial step before colonization. In fact, H. pylori possesses 

different apparatus to cope with the intricate structure of the gastric mucus. It has been 

reported that the flagella help to “swim’ in the viscous gastric environment (Luke et al., 

1990). Urease hydrolyzes urea to create a neutralized microenvironment in the acid-pH 

conditions (Labigne et al., 1991). Adhesins mediate receptor-ligand recognition to 
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facilitate the attachment of bacteria onto the gastric epithelium (Tomb et al., 1997). 

Beside the adhesins, there are other factors e.g., phospholipase A, SOD, catalase to join 

the stabilization of bacteria on gastric epithelia (Langton & Cesareo, 1992; Mori et al., 

1997; Figura & Valassina, 1999).  

       

      2.4.1.1   Role of flagella  

      H. pylori is endowed with 4 – 6 polar based sheathed flagella. Luke et al. (1990) 

showed that flagellum is a complex of outer membrane polypeptides of various molecular 

weights (MW) under electron microscopy and SDS-PAGE. Two major flagellin species, 

FlaA and FlaB with MW of 56 kDa and 57 kDa respectively were found in the flagellar 

filaments (Kostrzynska et al., 1991). It was shown that flaA and/or flaB –disrupted H. 

pylori mutants demonstrated the loss of motility function and failure of such bacterial 

mutant to colonize in animal stomach (Josenhans et al., 1995; Andrutis et al., 1997). 

Another study conducted on examining the antibody against H. pylori showed that there 

was a cross-reaction of monoclonal antibody against flagella and human tissue. This 

implies the possible involvement of flagella proteins in autoimmune responses of host 

during H. pylori infections (Ko et al., 1997).  

 

      2.4.1.2   Role of Urease  

      Urease is one of the most extensively studied proteins in H. pylori. Two urease 

subunits genes were initially cloned in 1990 by Clayton et al. (1990) that encode 26 kDa 

(subunits A) and 60 kDa (subunit B), respectively. The urease gene cluster of H. pylori 

was revealed by the complete sequenced bacterial genome in 1997 (Tomb et al., 1997). 

 22



Literature Review 

Study by Voland et al. (2003) summarizes the functional elements of urease gene cluster: 

encoding catalytic subunits (ureA/B), an acid-gated urea channel (ureI) and accessory 

assembly proteins (ureE-H).  

      The constructed H. pylori isogenic urease mutant demonstrated that urease may 

protect H. pylori against acidic environment of stomach (Segal et al., 1992). Later studies 

found that urease would affect the colonization of H. pylori in nude mice (Tsuda et al., 

1994; Karita et al., 1995) but did not act as an adhesin (Clyne & Drumm, 1996).  

      The antigenicity of urease in bacterial infection and host immune response has been 

well documented. It was found that urease protein is an immunodorminant antigen in H. 

pylori (Stacey et al., 1990). The antigenic epitope of urease was identified by Hirota et al. 

in 2001, which showed its capability of enticing the production of neutralizing antibody 

in host.  

 

      2.4.1.3   Role of adhesins 

      Adhesins play a vital role in H. pylori infection and the development of 

gastroduodenal diseases as they are integrated components of bacterial adherence. Many 

adhesins have been identified or predicted by the annotation of ORF (open reading 

frame) in H. pylori genome (Tomb et al., 1997). Adhesins are mainly outer membrane 

proteins that mediate receptor-ligand interaction between bacteria and host escorting the 

adhesion of H. pylori on the mucus layer. Among which, blood group A antigen-binding 

adhesin (BabA) is extensively studied. BabA is involved in the binding to the blood 

group antigen Lewis b surface epitopes of host and encoded by allelic babA2 gene (Boren 

et al., 1993; Ilver et al., 1998).  
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      Another newly identified adhesin is SabA (sialic acid-binding adhesin) for binding to 

sialyl-Lewis x antigens in gastric epithelium in humans (Mahdavi et al., 2002). The 

adherence of H. pylori to sialylated glycoconjugates expressed during chronic 

inflammation thereby contributing to the virulence and the extraordinary chronicity of H. 

pylori infection (Mahdavi et al., 2002).  

      Besides the two adhesins described above, the other adhesins reported to be involved 

in the adherence of H. pylori onto the gastric epithelium are OipA (outer inflammatory 

protein, HP0638) (Yamaoka et al., 2000); HopZ (homologue of porin) (Peck et al., 

1999). It is noted that there are different number of CT dinucleotide repeats in the signal 

sequences of these adhesins genes (oipA, hopZ and sabA) which determine the functional 

status of genes. It was reported that when the CT dinucleotide repeats are in frame, the 

function of expressing the adhesins is turned “on”. However, upon insertion or deletion 

would have caused these repeats out of frame, the function is then turned “off” (Yamaoka 

et al., 2000). This functional status (“on” / “off”) of oipA, hopZ and sabA were found to 

affect the adherence and colonization of H. pylori (Yamaoka et al., 2000).  

 

      2.4.1.4   Other factors related to the colonization of H. pylori 

      The additional crucial steps after adhering to the gastric epithelium for bacterial 

establishment would be colonization so as to facilitate the proliferation of H. pylori in the 

host. Other than the adhesive proteins identified, some other proteins have also shown 

their relevance to colonization of H. pylori in stomach, like pospholipase A (Dorrell et 

al., 1999), SOD, catalase (Seyler, Jr. et al., 2001), γ-glutamyl transpeptidase (GGT) 

(Chevalier et al., 1999).  
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      Phospholipase A (PldA) of H. pylori is an enzyme capable of hydrolysing gastric 

mucosal phospholipids that is believed to be involved in the mucus damage and 

ulceration (Langton & Cesareo, 1992). The mutagenesis study of H. pylori PldA 

(phospholipases A) demonstrated that phospholipase plays a role in bacterial colonization 

in terms of damaging the gastric mucus and tissue but not the host immune responses in 

mice (Dorrell et al., 1999).   

      Superoxide dismutase (SOD), a major defense mechanism against oxidative damage, 

catalyzes the breakdown of superoxide radicals while catalase catalyzes the reaction to 

decompose the hydrogen peroxide. Both enzymes are strictly cytoplasmic localized 

proteins in other bacteria.  However, it was found that these two enzymes are secreted 

onto the cell surface of H. pylori (Mori et al., 1997). The isogenic H. pylori mutants of 

these two proteins and the absence of the capability of colonization in mice suggest that 

the ability of the anti-oxidative agent might affect the bacterial colonization and bacterial 

survival (Seyler, Jr. et al., 2001; Harris et al., 2003).   

      The study of Chevalier et al. (1999) showed that γ-glutamyl transpeptidase (GGT) is 

essential for bacterial colonization in mice. However, its role is controversial as shown in 

a later study carried out by McGovern et al. (2001) where GGT was reported to affect the 

H. pylori load in colonized piglet and mice but not colonization. Other enzymes (e.g., 

alcohol dehydrogenase, neuraminidase) could promote tissue erosion and ulceration by 

destroying the integrity of mucus, inducing lipid peroxidation and the like, which might 

be also closely related to bacterial adhesion and colonization (Figura, 1997).  

      Host factor like secretory IgA has been reported to inhibit the adhesion of H. pylori 

(Falk et al., 1993).  Similarly, host super oxide dismutase (SOD) had shown to be 
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depleted significantly in the ulcer edge of peptic ulcer patients  (Klinowski et al., 1996). 

In the process of H. pylori adhesion and colonization, chemotaxins (e.g. IL-8) are also 

involved in host tissue damage (Mobley 1997). In addition, H. pylori promote PMN 

adhesion to endothelial cells in gastrointestinal track (Yoshida et al., 1993) while gastric 

epithelial cells acted as antigen presenting cells in activating proinflammatory cytokines 

(Maekawa et al., 1997). These two factors may play important roles in the humoral immune 

response of host during H. pylori infection.    

       Based on the knowledge obtained, it is noted that a number of factors are involved in 

the adhesion and colonization of H. pylori. It further addresses that the successful 

establishment of H. pylori on gastric mucus is the prerequisite for the persistence of H. 

pylori infection.  

 

      2.4.2   Major virulence factors of H. pylori   

      2.4.2.1   cag Pathogenicity Island (cag PAI)   

      It is a pathogenicity island (PAI) of approximately 40 kb encoding 31 genes and 

present in a subset of H. pylori (Mobley, 1997). cag PAI is associated with the virulence 

of H. pylori since it encodes a putative secretory system – type IV secretion system that is 

responsible for translocating proteins (e.g., CagA) from H. pylori into the host cell 

(Censini et al., 1996). The strains containing the PAI are more virulent than those without 

and it has shown a positive association with peptic ulcer and gastric cancer (Covacci et al., 

1993; Blaser et al., 1995; Akopyants et al., 1998; Figura & Valassina, 1999). cag PAI is 

likely to have acquired horizontally and integrated into the chromosomal of H. pylori that 

is involved in the activation of cell signal transduction cascade of host including the 

induction of the transcription factor NF-κB with the consequent secretion of 
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proinflammatory cytokine IL-8; in addition, to inducing the rearrangement of 

cytoskeleton with pedestal formation (Segal et al., 1996, 1997).  

      cagA gene product was the first identified protein of cag PAI which encodes a 

cytotoxicity associated immunodorminant antigen with MW of about 128 kDa  

(Tummuru et al., 1993). As a cytotoxin associated protein and major virulence factor, the 

remarkable feature of CagA is its immunogenicity that elicits strong immune response in 

the host during H. pylori infection. High titer antibody against CagA could be detected in 

the patients with various gastroduodenal diseases, especially those with peptic ulcer 

disease (DU & GU) and gastric cancer patients (Klaamas et al., 1996; Ching et al., 1996; 

Matsukura et al., 1997; Miehlke et al., 1998; Vaucher et al., 2000). It suggests the 

importance of CagA in the pathogenesis of H. pylori infection.  

      On the other hand, CagA has been reported to disrupt the tight junction proteins of 

host cells, which occurs at the site of H. pylori attachment (Amieva et al., 2003). Hence, 

as a cytotoxin associated antigen, the vital role of CagA in H. pylori is highly significant 

in the pathogenesis of H. pylori infection.  

 

      2.4.2.2   Vacuolating cytotoxin (VacA)  

      Vacuolating cytotoxin is another extensively studied virulence factor in H. pylori 

which induces cytoplasmic vacuolation in eukaryotic cells. The mature cytotoxin is 

88kDa which is further cleaved into two subunits: p33 and p55. The subunit p55 is 

important in binding of VacA to host cells (Reyrat et al., 1999). Two receptor tyrosine 

phosphatases RPTP alpha and RPTP beta identified as the receptors of VacA in gastric 

cell lines (Padilla et al., 2000; Yahiro et al., 2003). VacA also can be translocated 
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through the “IgA protease-type of exoprotein similar system” from  bacterial membrane 

into the infected host cell cytosol. This causes a lesion of the late endosomal/lysosomal 

compartments by altering the protein trafficking (Schmitt & Haas, 1994; Fischer et al., 

2001). However, vacA isogenic H. pylori mutant did not show deficiency of bacterial 

colonization in animals (Eaton et al., 1997; Wirth et al., 1998). Interestingly, the antibody 

level against VacA was shown to be higher in patients with peptic ulcer (Donati et al., 

1997). The latest study shows that VacA will inhibit the activation of T lymphocytes by 

mimicking the activity of the immunosuppressive drug FK506 thereby inducing the local 

immune suppression during the chronic inflammation of H. pylori infection (Gebert et 

al., 2003). These results showed that VacA is one of the major virulence factors related to 

the tissue damage during H. pylori infection.  

 

      2.4.2.3 Other virulence factors 

      Other factors involved in the pathophysiological processes of H. pylori infection are 

neutrophil-activating protein (NAP) that plays an important role in inducing gastric 

inflammatory response of H. pylori (Evans, Jr. et al., 1995) and alkyl hydroperoxide 

reductase (AhpC), a protein catalyzing the reduction of organic peroxides, functions to 

assist the microaerophilic pathogen to survive oxidative and aerobic stress (Baillon et al., 

1999). Besides these, other probable virulence factors like mucinase (homologue of Hap 

of V. cholerae), Lewis antigens and LPS have been reported (Moran, 1996; Figura, 

1997).  

      Based on the findings obtained, it is apparent that the progression of H. pylori 

infection is a complicated but elaborately regulated process where multiple factors are 
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involved. Although great effort has been incessantly dedicated in the study H. pylori, the 

pathogenic mechanism of H. pylori infection remains a mystery.  

 

2.5   Surface localized proteins of Helicobacter pylori  

      As an extracellular pathogen, the communication between H. pylori and host cells is 

vital. During the process of H. pylori infection, the interactions between bacteria and host 

are throughout the entire progress and directly related to the severity of inflammation 

induced. In this process, surface structures of H. pylori and host are the core components. 

A great variety of bio-molecules are present on the cell surface of H. pylori. These 

include small phospholipid components forming the double layer membrane scaffold; 

proteins with various sizes inserted into the double layer or protruded facing internally or 

externally and carbohydrates coat for protection. Generally, protein molecules faced 

internally would be coupled with other molecules to trigger the signal cascade while the 

proteins faced externally would receive the stimuli and pass down the information. 

Therefore, the surface proteins of pathogens are crucial messengers in transferring the 

information between microorganism and host during the infection.  

      In essence, surface proteins of H. pylori are important for the implementation of 

pathogenesis. The surface proteins of H. pylori are unique among bacterial species, where 

the surface localized cytoplasmic proteins is an unusual phenomenon restricted within H. 

pylori strains. There are a number of proteins which are strictly distributed in cytoplamsic 

regions in other bacterial species but found localized on the surface in H. pylori 

bacterium cells (Hawtin et al., 1990; Evans, Jr. et al., 1992; Mori et al., 1997). It is 

widely believed that this is functionally significant and important for H. pylori. 
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      Urease is one such protein that was first found to be surface associated in H. pylori 

cells. The surface localized urease was identified by Hawtin et al. (1990) using indirect 

immunogold electron microscopy labeling technique. Due to the urease enzyme activity, 

it was demonstrated that generation of ammonia from urea hydrolyzed by urease in the 

stomach would cause damages to the gastric mucosa (Murakami et al., 1990). Further 

study has shown that surface localized urease possesses capability of activating 

monocytes for stimulation of IL-8 production in epithelial cell lines (Harris et al., 1996). 

      HSP60 homologue was later found to be associated with urease enzyme in the crude 

preparation of bacterial surface fraction (Evans, Jr. et al., 1992). Urease-associated 

HSP60 was believed to participate in the extracellular assembly and/or protection of 

urease against inactivation in the hostile environment of the stomach. Surface localized 

HSP60 also showed its ability to entice the antibody and cytokines responses (Sharma et 

al., 1997). In addition, further study showed that cell surface HSP60 would mediate 

sulfatide recognition by H. pylori under the stress conditions (Huesca et al., 1996).  

       Many cell surface associated proteins, e.g., catalase and SOD (Mori et al., 1997) are 

important for the bacterial survival under the stressed conditions (acidic and/or 

oxidative). The surface localized proteins are not only related to the bacterial survival and 

resistant against the hostile environment, but also closely corelated with the host immune 

responses (antibody and/or cytokines productions).   

       The importance of surface localized proteins signifies a particular “hiding” 

mechanism for the translocation of proteins from cytoplasm to cell surface in H. pylori. 

Phadnis et al. (1996) found that urease and HSP60 became outer-membrane-associated 

after the autolysis of bacteria cells as revealed by cryo-immunoelectron microscopy. 
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They also found that H. pylori underwent spontaneous autolysis during in vitro 

cultivation suggesting that the surface structure of H. pylori must be unique for the 

absorption of cytoplasmic proteins. The bacterial autolysis and surface associated urease 

& HSP60 were also demonstrated in human gastric biopsies (Dunn et al., 1997) thereby 

further strengthening the possible programmed bacterial autolysis process in vivo.  

      The proposed altruistic autolysis model of H. pylori was prevailing for a period of 

time until 1998 when Vanet and Labigne (1998) showed the evidence for the existence of 

specific secretion mechanism. In their study, urease and HSP60 homologue were utilized 

for the analysis. Relying on the subcellular fractionation approach associated with 

quantitative Western blot analyses, Vanet and Labigne showed that the releasing process 

of cytoplamic proteins is selective. Some cytoplasmic proteins (beta-galactosidase 

homolog) were strictly present in the cytoplasmic fraction but not urease & HSP60, 

which were present in both cytoplasmic and surface factions. Hence, they suggested that 

a specific selective mechanism(s) is involved in the secretion of some H. pylori antigens 

while bacterial autolysis does not seem to make a major contribution.   

      However, many researchers observed that both mechanisms would exist for this 

particular process in H. pylori cells: non-selective (autolysis, spontaneously occurred 

during bacterial cultivation in vitro) and selective (by specific secretory system). 

Whichever mechanism is involved in the surface associated cytoplasmic proteins, 

releasing proteins extracellularly by H. pylori would be an important adaptation that 

facilitates the persistence of H. pylori in the human gastric mucus layer. The entry of 

these proinflammatory proteins from H. pylori into the gastric mucosa may contribute to 

the induction of a mucosal inflammatory response (Cao et al., 1998; Schraw et al., 1999). 
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2.6   Immuno-labeled transmission electron microscopy (TEM) and protein  

        localization in Helicobacter pylori   

      With the development of antibody techniques and electron microscope, immuno-

labeled electron microscopy becomes a useful tool to display the ultrastructure location of 

protein molecules in cells or tissues. It is widely used in studying the localization of 

proteins in eukaryotes and prokaryotes (Herrera, 1992). Immunolabeling TEM is the 

most commonly used technique to visualize the precise localization of molecules in cells. 

Protein A-gold conjugates are generally used as a probe for immuno-staining where the 

gold particles can be easily seen under electron microscopy (EM).  

      Immuno-gold labeled TEM was widely used in studying the proteins localization in 

H. pylori. In 1990, Hawtin et al. used the monoclonal antibodies of urease to image the 

localization of urease in H. pylori. Later, Drouet et al. (1991) and Drouet et al. (1993) 

demonstrated the surface localization of 19 kDa outer membrane protein and 

polysaccharide of H. pylori. The localization of various proteins of H. pylori was 

resolved by different researchers using immuno-gold labeling TEM techniques (Lelwala-

Guruge et al., 1993; O’Toole et al., 1994; Jones et al., 1997; Chirica et al., 2002). 

Phadnis et al. (1996) improved on the immuno-gold electron microscopy by using cryo-

immuno-electron microscopy show the surface association of cytoplasmic proteins in H. 

pylori where urease and HSP60 of H. pylori were found to localize on the bacterial cell 

surface and cytoplamsic regions.  

      It can be shown that the immuno-labeling TEM is a powerful tool in studying the 

localization of proteins in H. pylori. With this technique, it can clearly visualize the exact 
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location of macromolecules in H. pylori. The localization of molecules provides 

important information on their possible functions in H. pylori infection.  

 

2.7   Homology modeling of protein structure 

      Homology modeling is also called comparative protein modeling or knowledge-based 

modeling. It is the process where a 3D model of a target protein sequence is built based 

on a homologue (preferably with at lest 30% similarity) with experimentally resolved 

protein structure (by X-ray crystallography or nuclear magnetic resonance, NMR) (Baker 

& Sali, 2001). With the development of computer (and or information) technology, 

availability of protein database (PDB) and experimentally resolved protein structures, it is 

possible for researchers to carry out the prediction of protein structure based on the 

similarity between homologues to facilitate the study of function of proteins.  

      In recent years, homology modeling of protein structure in H. pylori has been carried 

out. In the study carried out by Marsich et al. (2002), a gene encoding an autolytic 

enzyme was cloned and its structure was predicted by molecular modeling. This gene was 

almost identical to the HP0339 of H. pylori 26695. It is a homologue of bacterial 

bacteriophage T4 lysozyme showing >95% identity to each other. The protein structure 

encoded by this gene was predicted using molecular modeling based on the resolved 

structure of bacteriophage T4 lysozyme. Through the modeling, this novel protein of H. 

pylori showed typical lysozyme folding and catalytic cleft suggesting that this protein 

belongs to the bacterial lysozyme family.  

      Similarly, DnaA of H. pylori has been identified to be involved in the initiation of H. 

pylori chromosome replication. Although DnaA of H. pylori is a homologue of DnaA in 
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E. coli, it showed lower DNA binding specificity. Through the comparative molecular 

modeling of DnaA (36% identify to DnaA of Aquifex aeolicus), it showed that there are 9 

residues within the binding domain of this protein that are possible determinants for the 

reduced H. pylori DnaA binding specificity (Zawilak et al., 2003).     

 

2.8   Gene mutagenesis study in Helicobacter pylori  

      The advance development of molecular biological techniques in early 1990’s has 

made it possible to study and understand the function of protein in H. pylori with the 

construction of specific isogenic gene mutant. The isogenic urease-negaitve H. pylori 

mutants were initially constructed by Ferrero et al. (1992) through allelic replacement. In 

the targeting vector, cloned urease genes (ureA & ureB) were disrupted by the insertion 

of a mini-Tn3-Km transposon where the kanamycin resistant gene (Km) was derived 

from Campylobacter. The allelic exchange occurred between targeting vector and 

chromosome of H. pylori at urease gene loci after electrotransformation. The mutant was 

resistance to kanamycin and identified using Southern hybridization and immunoblot. It 

was noted from this study that only part of H. pylori isolates were competent for 

transformation. This genetic engineered urease mutant was helpful in the study on the 

role of urease in the pathegnesis of H. pylori infection.  

      It was reported that aflagellated mutants of H. pylori were generated using transposon 

shuttle mutagenesis (Haas et al., 1993). In their study, it was found that some of H. pylori 

clinical isolates were naturally competent for genetic transformation with the 

transformation frequency of 5 x 10–4 and 4 x 10-6. The targeting vector contained the 

cloned flaA gene that was interrupted by insertion of TnMax1, a mini-Tn1721 transposon 
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carrying a modified chloramphenicol-acetyltransferase gene (catGC cassette). Similarly, 

the mutant was obtained after natural transformation and identified using Southern 

blotting and immunoblotting. The phenotypical characterization was further 

demonstrated under the electron microscopy. From this study, it provides the opportunity 

to construct transposon shuttle mutagenesis for H. pylori based on natural competence.  

      Over the past decade, various isogenic genes mutants of H. pylori through allelic 

exchange mediated by electroporation or natural transformation have been constructed. 

These included nixA isogenic mutant which has reduced nickel transport and urease 

activity (Bauerfeind et al., 1996); ABC transporter gene mutant which affects production 

of a catalytically active urease (Hendricks & Mobley, 1997); aliphatic amidase gene 

mutant which reveals the role of amidase in intracellular ammonia production of H. 

pylori (Skouloubris et al., 1997); cdrA gene mutant was shown to be related to the cell 

division of H. pylori (Takeuchi et al., 1998); rpoN (encoding RNA-polymerase sigma54 

subunit in H. pylori) gene mutant (Fujinaga et al., 2001) and catalase gene mutant (Harris 

et al., 2002). From these studies, it is noted that allelic exchange is a primary yet only 

method in constructing the isogenic mutant of H. pylori. The selection markers 

commonly used are kanamycin resistant and chloramphenicol-acetyltransferase (catGC 

cassette) genes.  

     

2.9   Animal model of Helicobacter pylori 

      As a human pathogen, the study of H. pylori in animals is helpful in the 

understanding on/of the pathogenesis of H. pylori infection in vivo. Therefore, the 

establishment of animal models for H. pylori infection is important. Pig model was 
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initially established to study the gastritis type B induced by H. pylori by Engstrand et al. 

(1990). In this study, the pigs were intragastrically inoculated with suspensions of 107 to 

1010 CFU of H. pylori. The infected pigs were examined for H. pylori infection up to 12 

weeks. H. pylori and antibody against H. pylori was detected in 11 out of 15 pigs infected 

throughout the observation time. Furthermore, the superficial, focal gastritis was 

developed in the infected pigs observed immunohistologically. This indicates the 

usefulness of animal model in studying H. pylori related human diseases. 

      Meanwhile, the ferrets infected with H. mustelae became an animal model for H. 

pylori induced gastritis in humans (Fox et al., 1990). The colonization of H. mustelae on 

gastric mucosa in ferrets was 100% and heavily at the duodenum and antrum. Significant 

immune response to this organism was detected. Superficial gastritis was noted. 

However, ferrets lack the polymorphonuclear-cell response that is generally seen in the 

active chronic gastritis typically described with H. pylori gastritis in humans. The lesion 

in ferrets does closely resemble the diffuse antral gastritis seen in human with H. pylori 

induced gastritis. The ferret model provides the possibility to study multiple host and 

environmental variables during H. pylori colonization and the progression of 

gastroduodenal diseases.  

      Mice infected with H. felis, a microorganism isolated from cat and found to be closely 

related to H. pylori became a small animal model for H. pylori (Lee et al., 1990). 

Similarly, significant histopathology was seen in H. felis infected mice. During the period 

of infection, infected mice showed progression from acute inflammation to persistent 

acute on chronic inflammation (active chronic) that is similar as seen in human infection 

with H. pylori. Since then, H. mustelae infected gnotobiotic rats (Fox et al., 1991); H. 
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pylori infected piglets (Bertram et al., 1991; Eaton et al., 2001); H. pylori infected 

monkeys (Fujioka et al., 1994); H. pylori infected rats (Ross et al., 1992) and guinea pigs 

(Shomer et al., 1998) became animal models for studying H. pylori infection and the 

pathogenesis of human gastroduodenal diseases.  

     In order to develop a convenient and experimental rodent model, both BALB/c nude 

and BALB/c euthymic mice were used. Karita et al. (1991) challenged them with 2 × 108 

H. pylori. After 20 weeks incubation, the animals were infected with H. pylori. Resulting 

from colonization of H. pylori, gastritis and duodenitis were observed. Beside the 

BALB/c mice used, C57 mice infected with H. pylori had also been used as an animal 

model for studying H. pylori infection (Smythies et al., 2000; Suresh et al., 2000). 

However, C57 mouse model showed different susceptibility to H. pylori infection as 

compared with BALB/c (Smythies et al., 2000; Suresh et al., 2000). As a small animal 

model, the murine model for H. pylori infection was not only used for studying H. pylori 

associated diseases but also used to study the immune responses or cytokines production 

of host during H. pylori infection (Wadstrom et al., 1994; Ferrero et al., 1995; 1998). 

Compared with other animal models, small rodent like mouse provide an efficient way to 

study the pathogenesis of H. pylori. The infection of H. pylori in mice is rapid (could 

occur as short as 2 weeks after inoculation), stable and reproducible. This animal model 

is not only “time-saving” but also “cost-saving” for studying the H. pylori and related 

human diseases. Since the colonization of H. pylori in mouse could occur as early as 2 

weeks of post-inoculation, it is especially useful to differentiate the factors that affect the 

early events of H. pylori infection in vivo. However, there are some limitations in the use 

mouse model. Karita et al, (1994) noted that only temporary colonization was detected in 
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the “non-germ free” mice as compared to the “germ free” mice. In addition, lower 

bacterial count was found in the euthymic mice than that of the athymic mice (Karita et 

al, 1994). Variations in the severity of disease induced by H. pylori infection were 

observed when different types of mouse strains used (Lee, 1995; Mohammadi et al., 

1996).   

 
 
 
 



 
 
 
 
 
 

 
3. MATERIALS & METHODS 



Materials & Methods 

3.1   Propagation of bacteria and cell lines  

      3.1.1   H. pylori and E. coli 

      H. pylori strains used in this study included: H. pylori NCTC 11637, H. pylori SS1 

(mouse adapted strain) and 225 clinical H. pylori isolates obtained from different 

geographical regions. Among these, 103 strains were isolated from Singapore and 122 

strains were from 9 different countries (Japan, 43; India, 6; Hong Kong, 6; Sweden, 16; 

Spain, 14; Peru, 12; Lithuania, 12; Costa Rica, 9 and Australia, 4). 

      H. pylori can grow either in broth medium or on agar plate. In liquid culture, H. 

pylori was grown in liquid culture of brain heart infusion (BHI, Oxoid) broth 

supplemented with 0.4% yeast extract (Oxoid) and 10% horse serum (Gibco). On solid 

medium, H. pylori was cultured on chocolate blood agar (CBA) plates containing Blood 

Agar base No. 2 (Oxoid) supplemented with 5% horse blood (Quad Five). The CBA 

plates were supplemented with four antibiotics: vancomycin 3 µg/ml, trimethoprim 5 

µg/ml, nalidixic acid 10 µg/ml and amphotericin 2µg/ml (All antibiotics were purchased 

from Sigma). The broth and solid cultures were incubated at 37°C in an atmosphere of 

5% CO2 (95% O2) in a humidified incubator (Forma Scientific) for 3 days. All culturing 

procedures were carried out under biosafety level 2 conditions within a biohazard 

cabinet.   

      E. coli Top10 and BL-21 strains were used in this study. E. coli was grown in LB 

broth or on agar plates (Appendix 9). The growth of E. coli cells transformed with 

plasmid DNA was cultured in LB medium supplemented with the appropriate 

concentration of corresponding antibiotics (i.e. ampicilin 50 µg/ml or kanamycin 25 

µg/ml).  
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      3.1.2   Gastric carcinoma cell lines 

      Two gastric carcinoma cell lines used in this study were KATO III and AGS. Both 

were obtained from ATCC (USA). All culturing procedures were carried out under 

biosafety level 2 conditions in tissue culture room within a biohazard cabinet.   

      KATO III cell line (semi–adherent cell line) was grown in RPMI 1640 medium 

(Sigma) supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin-

streptomycin (Sigma). The cells were incubated at 37°C with 5% CO2 for 3 – 4 days. 

Sub-culturing was carried out when confluent monolayer of cells was formed. The grown 

cells were digested with 1 × trypsin solution (5mg/ml) (Sigma) for 1 minute and 

resuspended in appropriate volume of fresh culture medium. The ratio of sub-culturing 

was 1:2 – 1:3.   

      AGS cell line (adherent cell line) was grown in Ham’s F12K medium (Gibco) [2 mM 

L-glutamine (Sigma) adjusted to contain 1.5 g/L sodium bicarbonate] supplemented with 

10% fetal bovine serum and 1% penicillin-streptomycin. Similarly, the cells were kept at 

37°C with 5% CO2 incubator for 2 – 3 days. When monolayer of cells formed, the grown 

cells were digested with 1× trypsin solution (5mg/ml) for 5 minutes and resuspended with 

fresh Ham’s F12K medium. The ratio of sub-culture was carried out at 1:3 – 1:5.     

      The cells grew either in disposable flasks (25 cm2 or 75 cm2) or 6-well plates 

(NUNC).  
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3.2   Genomic study 

      3.2.1   Extraction of H. pylori genomic DNA 

      Genomic DNA of H. pylori isolate was extracted according to the method described 

by Hua et al. (1999). Briefly, the 3-day old H. pylori plate culture was harvested and 

transferred into a microfuge tube and washed twice with TE buffer (pH 8.0, Appendix 

16) at 8000 × g for 5 minutes. The cell pellet (about 109 cells) was resuspended in 300 - 

400 µl TE buffer. The cell suspension was treated with 100 µl of 10 mg/ml lysozyme 

(Sigma) at 37°C for 30 minutes to break down the cell wall and outer-membrane. The 

resultant spheroplasts were then lysed with 100 µl of 10% SDS for additional 30 minutes 

at 37°C followed by further treatment with 5 µl of 10 mg/ml proteinase K (Gibco) at 

56°C for 1 hour. The DNA solution was extracted twice with equal volume of phenol and 

once with equal volume of chloroform. DNA was precipitated overnight with two 

volumes of absolute ethanol and 1/10 volume of 3 M sodium acetate (pH 4.8) at - 20°C. 

The DNA was pelleted at 12000 × g for 15 minutes and washed twice with 70% alcohol. 

The dried DNA pellet was resuspended in appropriate volume of TE buffer (pH 8.0) and 

digested with RNase (20 µg/ml) at 37°C for 30 minutes. The DNA concentration was 

measured spectrophotometrically at 260 and 280 nm.  

 

      3.2.2   Transformation of E. coli cells 

      3.2.2.1   Preparation of E. coli competent cells 

      Calcium chloride was used in the procedure of preparation of competent cells as 

described by Sambrook et al. (1989). A single bacterial colony of E. coli was inoculated 

into 50 ml of LB medium in a 500 ml (PYREX) flask and incubated at 37°C for 
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approximately 3 hours on a shaker incubator (B. Braun) at 200rpm. The growth of 

bacteria was monitored by measuring at OD600 every 30 minutes. The cells were 

harvested when OD600 reached ~ 0.3.      

      Bacterial culture was then transferred into a sterile disposable ice-cold 50 ml 

centrifuge tube (Falcon) and cooled on ice for 10 minutes. Cell pellet was collected at 

5000 × g for 5 minutes at 4°C. The resultant supernatant was discarded. Excess liquid 

was drained by inverting the tube on a pad of absorbent paper. Cell pellet was 

resuspended by swirling in 30 ml of ice-cold 0.1M CaCl2 (filtered with 0.2 µm sterile 

filter) and incubated on ice for 30 minutes. The CaCl2-treated cells were spun down at 

5000 × g for 5 minutes at 4°C. The cell pellet was resuspended in 2 ml ice-cold 0.1 M 

CaCl2 and the cell suspension was aliquoted in 200 µl amount. The competent cell 

aliquots were stored at – 80°C until use.  

 

      3.2.2.2   Transformation of plasmid DNA with insert  

      DNA (no more than 50 ng in a volume of 10 µl or less) was added into 200 µl 

competent cell suspension and mixed by gentle tapping. The mixture was placed on ice 

bath for 30 minutes. The competent cells were then heat shocked by incubating at 42°C 

for exactly 90 seconds and rapidly transferred the tube onto ice bath for 1 – 2 minutes. 

Aliquot of 800 µl LB broth was added into the DNA-cell suspension and incubated at 

37°C for 30 – 45 minutes with shaking (200 rpm). From the DNA-cell medium 

suspension, 200 µl was withdrawn and spread onto a fresh LB agar plate containing 

appropriate concentration of antibiotics (i.e. ampicilin 50 µg/ml or kanamycin 25 µg/ml) 

and incubated overnight at 37°C.  
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      3.2.3   Mini-preparation of plasmid DNA  

      The protocol for plasmid DNA preparation was carried out as described by Sambrook 

et al. (1989). A single colony of plasmid transformed E. coli was inoculated into 5 ml of 

LB broth containing appropriate concentration of antibiotic. The culture was shaken 

overnight at 37°C.   

      An aliquot of 1.5 ml overnight culture was transferred into a microfuge tube and spun 

down at 5000 × g for 5 minutes. The supernatant was discarded while the cell pellet was 

resuspended in 100 µl ice-cold solution I (Appendix 4) and vortexed vigorously. An 

aliquot of 200 µl freshly prepared alkaline lysis solution II (Appendix 4) was then added 

into the cell suspension and the content was mixed by inverting gently for 5 times. After 

incubation for 10 minutes on ice, 150 µl of ice-cold solution III (Appendix 4) was added 

into the bacterial lysate and mixed well by inverting 10 times. The tube was kept on ice 

for additional 10 minutes. The bacterial cell lysate was centrifuged at 10,000 × g for 10 

minutes at 4°C. The resultant supernatant was transferred into a fresh microfuge tube. 

The DNA was extracted with equal volume of phenol, phenol:chloroform and chloroform 

respectively at 4°C.         

      Plasmid DNA was precipitated from the supernatant by adding 2 volumes of ice-cold 

absolute ethanol and 1/10 volume of 3 M sodium acetate (pH 4.8). DNA was pelleted at 

12,000 × g for 10 minutes at 4°C followed by washing with 70% alcohol. The dried DNA 

pellet was dissolved in 50 µl of TE buffer (pH 8.0) containing 20 µg/ml RNase. The 

DNA solution was store at - 20°C or analyzed by agarose gel electrophoresis.       
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      3.2.4   Construction of recombinant HSP20 expression vector  

      3.2.4.1   PCR amplification of hsp20 gene fragment  

      H. pylori NCTC 11637 genomic DNA was used as the template. Primers were 

designed according to HslV of H. pylori genomic sequence (Tomb et al., 1997). The 

forward primer used was 5’-AAAGGATCCGTTTGAAGCGACGACG-3’ while the 

reverse primer used was 5’-AAAGGATCCTTAAAGCTCCAAAATTTTAATATT-3’. 

Two BamHI restriction sites (underlined) were introduced in both 5’ and 3’ ends for 

insertion into the expression vector downstream of His-tag. The PCR amplification 

condition was set as denaturation at 94°C for 5 minutes followed by 30 cycles of 94°C 

for 30 seconds, 55°C for 30 seconds, 72°C for 30 seconds and with additional extension 

at 72°C for 10 minutes. The PCR cycles were carried out on GeneAmp PCR system 2400 

(Perkin Elmer). The PCR amplified gene fragment obtained was extracted by PCR 

purification kit (Qiagen).  

 

      3.2.4.2   Ligation of hsp20 gene with expression vector pET16b  

      pET16b expression vector (Novagen) in E. coli was used for the construction of 

hsp20 gene expression (Figures 3.1 & 3.2). Both purified PCR product of hsp20 gene 

fragment and pET16b plasmid DNA were digested with BamHI restriction enzyme 

(Promega) and extracted by agarose gel extraction kit (Qiagen). T4 DNA ligase 

(Promega) was used to ligate the digested plasmid DNA and hsp20 gene fragment at 

various molar ratios (vector: gene fragment =1:3, 1:5 & 1:10) at 16°C overnight. The 

ligated products were transformed into E. coli Top10 competent cells according to the 

protocol as described in section 3.2.2.2.  
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Figure 3.1 Physical map of expression vector pET16b (Novagen) 

 

 

Figure 3.2 Diagrammatical representation of the construction of pET16–hsp20 

recombinant expression vector 
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      3.2.4.3   Identification of pET16b-hsp20 recombinant plasmid  

      The procedure for identification of recombinant plasmid was carried out as described 

by Sambrook et al. (1989). Single colony of transformed bacteria on LB-ampicilin agar 

plate was transferred into 5 ml of LB broth containing 50 µg/ml of ampicilin (Sigma). 

The inoculated culture was shaken at 37°C overnight. The plasmid was extracted 

according to the protocol as described in section 3.2.3 and digested with BamHI to screen 

for the presence of hsp20 gene fragment in pET16b vector. XhoI and SspI restriction 

enzymes were used to digest so as to determine hsp20 gene orientation in the vector. The 

correct pET16b-hsp20 recombinant plasmid was sequenced using BigDye TM Terminator 

Cycle Sequencing Ready Reaction Kit (Perkin Elmer) in ABI 100 model 377 DNA 

sequencer (Perkin Elmer). 

 

      3.2.5   Construction of hsp20::aphA gene-targeting vector   

      The cloning vector used in the construction was pBluescript SK (+) (Stratagene, 

Figure 3.3). aphA gene (Kanamycin resistant gene) was inserted into hsp20 (HP0515) 

that was flanked by HP0513 – HP0517.  
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Figure 3.3 Physical map of E. coli cloning vector pBluescript SK(+) (Stratagene) 

 
 

      3.2.5.1   PCR amplification of flanking sequences of targeting vector 

      Genomic DNA of H. pylori SS1 was used as the template for amplification. Four 

primers (KO1, 2, 3 & 4, Table 3.1) were designed according to the known H. pylori 

26695 DNA sequences (Tomb et al., 1997) for the amplification of two flanking DNA 

sequences. The 5’ flanking DNA fragment of 2700 bp was amplified using KO1 & 2 

primers. This fragment included HP0513, HP0514 and the initial 270 bp of HP0515 of H. 

pylori 26695 DNA sequences (Tomb et al., 1997) with BamHI and PstI sites at 5’ and 3’ 

ends respectively. The 3’ fragment was 2549 bp long including the rest of the 273 bp of 

HP0515, HP0516 and HP0517 (Tomb et al., 1997) with SalI and ApaI sites at 5’ and 3’ 

ends respectively. This fragment was amplified using KO3 & 4 primers (Figure 3.4 and 

Table 3.1). PCR amplification was performed by an initial denaturation at 94°C for 5 

minutes followed by 94°C, 30 seconds, 50°C or 55°C, 1 minute, 72°C, 1 minute and 30 

seconds for 30 cycles with additional extension at 72°C for 10 minutes. The PCR cycles 

were carried out on GeneAmp PCR system 2400 and the PCR amplified flanking DNA 

fragments were extracted by PCR purification kit.   
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Table 3.1 Primers used for amplification of two flanking DNA fragments of hsp20 
(HP0515) 

 
Name Sequences (5’ – 3’) Length of 

fragment 

Tm 

(°C) 

KO1 

 

KO2 

CGGGATCCATGAACGGACATTTTATCGGTT   

       (BamHI) 

AACTGCAGCCATTCTTTACTGAAATCCACC  

          (PstI) 

 

2700 bp 

 

55 

KO3 

 

KO4 

ACGCGTCGACCGCAAAGATAAGTATTTACGC 

              (SalI) 

TCCGGGCCCTCAATCCCTATTCCTTCTATGGA 

           (ApaI) 

 

2549 bp 

 

50 

Restriction enzyme sites were underlined. 
 

 

 
Figure 3.4 Schematic construction  of hsp20::aphA gene-targeting vector  

A, the location of genes in genome of H. pylori 26695; four primers were designed based on the known sequences; B, 

two flanking DNA fragemnts were amplified using H. pylori SS1 genomic DNA as template; C, the insertion of two 

flanking fragments and aphA gene in pBluescript SK (+); the full length of targeting vector is 9589bp. 
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     3.2.5.2   The selective marker – Kanamycin resistant gene (aphA)  

     Kanamycin resistant gene (aphA cassette with its own promoter region, 1340 bp) was 

excised from plasmid pILL600 by EcoRI (Promega) restriction enzyme digestion. 

pILL600 plasmid was kindly provided by A. Labigne (Pasteur Institute, Paris, France) 

(Ferrero et al., 1992). The aphA gene obtained was purified by gel extraction kit. 

 

3.2.5.3 Ligation of two flanking DNA fragments and aphA gene  

      Cloning vector pBluescript-SK(+) (Stratagene, Figure 3.3) was used in the 

construction of hsp20 gene targeting vector. Firstly, two flanking DNA fragments (5’ & 

3’) was inserted into pBluescript SK(+) plamid at the corresponding sites BamHI & PstI 

and SalI & ApaI for 5’ and 3’ flanking fragments, respectively (recombinant plasmid: 

pBS-5’ & pBS-3’). aphA gene were inserted into pBluescript SK(+) plamid at EcoRI site 

(recombinant plasmid: pBS-aphA). The two flanking DNA fragments were then excised 

from the two individual recombinant plasmids (pBS-5’ & pBS-3’) and inserted into pBS-

aphA for construction of recombinant targeting vector (pBS-5’-aphA-3’, Figure 3.4). The 

procedure for ligation and transformation were performed as described in section 3.2.4.2 

and 3.2.2.2, respectively. 

       

3.2.5.4   Identification of hsp20::aphA gene-targeting vector 

      The procedure for identification of all recombinant plasmids was carried out as 

described in section   3.2.4.3.  The presence of respective DNA fragments in recombinant 

plasmids was screened using corresponding restriction enzyme digestions (5’ fragment: 

BamHI & PstI; 3’ fragment: SalI & ApaI; aphA gene: EcoRI). The 3 recombinant 
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plasmids containing 3 digestible corresponding fragments were assumed to have correct 

insertion and then sequenced using BigDye TM Terminator Cycle Sequencing Ready 

Reaction Kit in ABI 100 model 377 DNA sequencer. 

 

      3.2.6   Transformation of H. pylori with the gene-targeting vector 

      The protocol for transformation of H. pylori with plasmid DNA was carried out as 

described by Heuermann & Haas (1998). Briefly, 2- 3 days old H. pylori SS1 cells grown 

were harvested from CBA plates and suspended in BHI broth to obtain a cell density of 

109 - 1010 CFU/ml. An aliquot of 200 µl H. pylori cell suspension was then transferred 

into a sterilize microfuge tube and 1 µg targeting plasmid DNA (pBS-5-aphA-3’) was 

added to the H. pylori cells. The mixture (200 µl) was spotted on the surface of CBA 

plate (without antibiotics) and incubated at 37°C with 5% CO2 for 4 hours before 

spreading the bacterial mixture over the whole plate. After incubation at 37°C with 5% 

CO2 for 16 - 18 hours, the lawn of cells was transferred onto a fresh CBA plate 

containing 25 µg/ml kanamycin using inoculation loop and further incubated at 37°C 

with 5% CO2 for 3 – 4 days. The colonies that grown on the kanamycin containing CBA 

plate were selected and sub-cultured for a few rounds to purify hsp20::aphA transformed 

H. pylori mutants. The purified hsp20-isogenic H. pylori mutant was preserved in BHI 

broth medium supplemented with 10% horse serum and 20% glycerol and stored at - 

80°C for further analysis.  
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      3.2.7   Identification of hsp20-isogenic H. pylori  

      The identification of hsp20-isogenic H. pylori was performed as described by 

Goodwin et al. (1998). PCR amplification (using different primers, Table 3.2) and 

Southern blot hybridization (using different probes, aphA gene fragment & pBluescript 

plasmid DNA) were employed to identify the mutant. Western blotting was used to 

analyze the expression of HSP20 in the mutant. 

 

Table 3.2 Primers used for the identification of aphA insertion in the H. pylori 
genome 

 
Name  Sequences (5’ – 3’) Length of DNA 

fragment (bp) 

Tm 

(°C) 

HSPF 

 

HSPR 

CGGGATCCATGTTTGAAGCGACGACGATTTTAGGC 

 

CGGGATCCTTAAAGCTCCAAAATTTTAATATTCGTG

 

1883 

 

58 

KmF 

 

KmR 

CGGGATCCGATAAACCCAGCGAACCATTTGAG 

 

CGGGATCCAAGCTTTTTAGACATCTAAATCTAGGT 

 

1340 

 

55 

HSPF 

 

KmR 

CGGGATCCATGTTTGAAGCGACGACGATTTTAGGC 

 

CGGGATCCAAGCTTTTTAGACATCTAAATCTAGGT 

 

1612 

 

52 

KO3 

 

T7 

ACGCGTCGACCGCAAAGATAAGTATTTACGC 

 

GTAATACGACTCACTATAGGGC 

 

2614 

 

52 

Km: Kanamycin resistant gene (aphA).  

 

3.2.7.1   PCR amplification  

      The genomic DNA of hsp20-isogenic H. pylori was extracted according to the 

protocol as described in section 3.2.1. Different pairs of primers (Table 3.2) were used in 

the amplification to identify the insertion of aphA gene in the genome. One pair of 
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primers (forward: HSPF & reverse: HSPR) was based on hsp20 gene sequences of H. 

pylori 26695 (Tomb et al., 1997) while another pair of primers (5’ primer: KmF & 3’ 

primer: KmR) was based on the sequences of aphA gene (Ferrero et al., 1992). T7 

promoter primer was based on the sequences of pBluescript SK(+) DNA. The genomic 

DNA of wild type H. pylori was used as the negative control while targeting vector (pBS-

5-aphA-3’) was used as the positive control. The PCR cycles were carried out on 

GeneAmp PCR system 2400 according to the conditions described in section 3.2.5.1. 

 

      3.2.7.2   Southern blotting hybridization  

      Southern blot hybridization was carried out using ECL Direct™ Nucleic Acid 

Labeling and Detection System (Amersham BioScience). The procedure was performed 

according to the instruction provided by the manufacturer. In brief, 5 µg genomic DNA 

was digested with EcoRI restriction enzyme overnight at 37°C. The digested genomic 

DNA was loaded in the wells of agarose gel (6× loading buffer, Appendix 1) and ran with 

1× TAE buffer (Appendix 17) at 50 volts for 4 – 5 hours. The image of the gel was 

recorded using camera under UV illuminator. The gel with DNA samples was treated 

with depurination (250mM HCl) and denaturation (1.5M NaCl & 0.5M NaOH) solutions 

for 10 and 25 minutes respectively. The gel was kept in neutralizing solution with 

agitation for 30 minutes on a shaker with one change of neutralizing solution and further 

agitated for 15 minutes before blotting. The same size of Hybond N+ nylon membrane 

(Amersham BioScience) was soaked in 20× SSC for at least 10 minutes prior to use. 

Three sheets of 3M paper cut to the same size as the nylon membrane were pre-wetted 

with 10× SSC. The capillary blotting was assembled as shown in Figure 3.5. The blotted 
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membrane after overnight blotting was rinsed with 6× SSC and baked at 80°C for 2 

hours. Horseradish peroxidase (HRP) conjugate specific probes were prepared according 

to the instruction provided by manufacturer at concentration of 100 ng/10 µl. 

Hybridization was carried out overnight in hybridization glass tubes with gentle rotation 

in an hybridization oven (Amersham BioScience) at 42°C. Two stringent washes were 

applied at 42°C. The hybridization signal was generated with the addition of detection 

buffers (Amersham BioScience) before exposing onto the autoradiography film in 

cassette in the dark at various time intervals. The genomic DNA of wild type H. pylori 

was used as the negative control. hsp20 gene-targeting vector (pBS-5-aphA-3’) (10 ng) 

was used as the positive control.    

 

 

 
 

Figure 3.5 Capillary blotting assembly (Amersham) 
 

 

 

 

 53



Materials & Methods 

3.3   Proteomic analysis 

      3.3.1   Bio-rad protein assay 

The protocol was carried out according to the manufacturer’s instruction (Bio-rad). 

The dye reaction solution was prepared by mixing 1 part of concentrated dye solution 

(acidic solution of Coomassie Brilliant Blue G-250) with 4 part of deionized water and 

filtered through Whatman filter paper. In this study the reaction volume of dye was 

minimized to 1 ml. BSA protein standards were prepared (0.2 – 1 mg/ml). Mixed each 20 

µl protein standard and sample with 1 ml diluted dye reagent and incubated at room 

temperature for at least 5 minutes. The protein concentration of the sample was calculated 

based on the standard curve plotted by protein standards against OD595.  

When measuring the concentration of proteins prepared by lysis buffer [lysis buffer: 8 

M urea, 4% CHAPS, 40mM Tris-Cl pH 8.8, protease inhibitor cocktail (Roche) and 

freshly prepared 50 mM DTT], a modified protein assay was used in which an additional 

10 µl of lysis buffer and 10 µl of 0.1 M HCl were added into the reactions for correction.         

 

      3.3.2   SDS-PAGE 

      SDS-PAGE analyses were performed according to the method as described by Bollag 

et al. (1996).       

 

      3.3.2.1   Preparation of gel 

      A 1mm slab gel consists of stacking and separation gels is prepared according to the 

method as described by Bollag et al. (1996). The final concentration of acrylamide used 
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in stacking gel is 5% and separation gel ranges from 10 – 15%. The recipe used for gel 

preparation is listed in Appendix 15 (Bollag et al., 1996). 

 

      3.3.2.2   Sample preparation and gel running       

      A desired amount of protein was mixed with 2× SDS sample buffer (100 mM Tris-

HCl pH 6.8; 200 mM DTT; 4% SDS; 0.2% bromaphenol blue; 20% glycerol), denatured 

by boiling for 5 minutes and loaded into the wells of the slab gel placed in a mini-

PROTEAN 3 or PROTEAN II vertical electrophoresis system (Bio-rad). The gel was ran 

using 1× Tris-glycine buffer (25 mM Tris base; 250 mM glycine; 0.1% SDS; pH 8.3) at 

room temperature for 1 –2 hours at 100 volts with PowerPac basic (Bio-rad) till the front 

line of dye reached the bottom of the gel.  

 

      3.3.2.3   Gel staining and visualization of protein bands 

      The gel with protein bands was stained by coomassie blue (R-250) or silver nitrate. 

The protocols for staining were carried out as described by Bollag et al. (1996). 

      In coomassie blue staining, the gel was soaked in 0.1% coomassie blue R-250 

solution [0.1% (W/V) coomassie blues R-250; 50% methanol; 5% acetic acid and 45% 

distilled water] with gentle shaking for 2 hours. The gel was washed with destaining 

solution (40% methanol; 10% acetic acid and 50% distilled water) until the background 

became clear.  

      In silver staining, the gel was fixed with fixation solution (50% methanol; 5% acetic 

acid and 45% distilled water) for 30 minutes and rinsed in distilled water for 1 hour with 

3 changes. The fixed gel was sensitized with 0.02% (W/V) sodium thiosulfate (Sigma) at 
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room temperature for 2 minutes and rinsed in distilled water twice at 1 minute per 

washing. The gel was then stained with 0.1% (W/V) silver nitrate (Sigma) for additional 

20 minutes in the dark and rinsed twice with distilled water. The stained gel was 

developed with solution [2% (W/V) sodium carbonate; 0.04% (V/V) 37% formaldehyde] 

until the desired intensity was achieved. The reaction was then stopped with 5% (W/V) 

acetic acid solution.        

      The protein bands on the gels were scanned with GS-710 calibrated Densitometer 

(Bio-rad) and analyzed using Quantity One program (Bio-rad). 

 

      3.3.3   Two dimensional gel electrophoresis (2-DE) 

      Processing steps of 2-DE were carried out according to the manufacturer’s instruction 

as described by Berkelman & Stenstedt (1998). There are two main steps included in the 

first dimension of 2-DE, these are rehydration and focusing.  

In the step of rehydration, the required amount of protein sample (e.g. 20 – 30 µg for 

a 7cm IPG strip; 80 – 500 µg  for a 17cm IPG strip) was mixed with rehydration buffer. 

The rehydration buffer comprises 8 M urea, 4% CHAPS (Roche), 10 mM DTT and 0.2% 

(W/V) Biolytes 3/10 (Bio-rad). DTT and Biolytes were added freshly. The mixture of 

protein sample in rehydration buffer was loaded into the IPG strip holder (Bio-rad) that 

contained the IPG strip of appropriate pH range and size (Bio-rad) before the addition of 

mineral oil. The process of rehydration was carried out at room temperature at 50 volts 

for 10 - 12 hours in PROTEAN IEF System (Bio-rad). 

      At the end of the rehydration step, the protein sample absorbed in the IPG strip was 

then proceeded to iso-electric focusing (IEF). The IEF was carried out in PROTEAN IEF 
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System under different conditions according to the size of IPG strip (Table 3.3). When 

the process of IEF was completed, the IPG strip was removed from the strip holder and 

stored at –20°C until use or directly run on the second dimension SDS-PAGE.             

      Before running SDS-PAGE, the IPG strip was washed with equilibration buffer/DTT 

followed by washing with equilibration buffer/iodoacetamide (IAA) once, each for 15 

minutes. The equilibration buffer used consists of 6 M urea, 0.375 M Tris-Cl (pH 8.8), 

2% SDS, 20% glycerol and 2% (W/V) DTT or 2.5% (W/V) IAA (DTT or IAA added 

freshly).  

      SDS-PAGE was run on the vertical electrophoresis system: Mini-PROTEAN 3 or 

PROTEAN xi/XL Vertical Electrophoresis Cells (Bio-rad) depending on the length of the 

strip. The protocols for SDS-PAGE were the same as described in section 3.3.2. 

 
Table 3.3 Optimal IEF conditions for different sizes of IPG strips 

 
Steps 7 cm IPG strip 11 cm IPG strip 17 cm IPG strip 

1 300 volts 1hour  300 volts 1 hour  300 volts 1 hour 

2 1000 volts 1 hour 1000 volts 1 hour  1000 volts 1 hour 

3 3000 volts 1 hour  3000 volts 1 hour  3000 volts 1 hour  

4 4000 volts 12000 volthours 5000 volts 35000 volthours 6000 volts 60000 volthours

5 500 volts hold 500 volts hold 500 volts hold 

       

      3.3.4   Protein identification by mass spectrometry (MS) 

      The protein sample (spot from 2D gel and band from SDS-PAGE) of interest as 

observable by coomassie blue staining was digested with modified sequencing grade 

trypsin (Promega) according to the protocol of in-gel trypsin digestion as suggested by 
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Shevchenko et al. (1996). All the reagents used for digestion must be HPLC grade. The 

target protein band was excised from the coomassie blue stained gel and was grinded into 

small pieces in a micro-centrifuge tube. Aliquot of 100 µl of 50 mM ammonium 

bicarbonate (NH4HCO3)/50% (V/V) acetonitrile (MERCK) was added to immerse the gel 

pieces, votexed and let stand for 5 minutes. The solution was removed by micropipette 

and the same step was repeated for 2 - 3 times. The bleached gel pieces were then treated 

with 50 µl actetonitrile for 5 minutes. After removing the acetonitrile, the gel pieces were 

dried in a vacuum-speed (Heto).  

      Aliquot of 50 µl of 10 mM DTT in 100 mM ammonium bicarbonate was added to 

reduce the disulfide bonds at 57°C for 1 hour. The excess DTT solution was removed 

then alkalized by adding 55 mM iodoacetamide (IAA) in 100 mM ammonium 

bicarbonate. The reaction was carried out at room temperature in the dark for 1 hour. 

After alkylation, the gel pieces were washed with 100 µl of 100 mM ammonium 

bicarbonate for 5 minutes and dehydrated with the same volume of acetonitrile. The same 

operation was repeated. The dried gel pieces were re-swelled in 15 – 30 µl digestion 

solution (12.5 ng/µl trypsin in 50 mM ammonium bicarbonate) and incubated at 4°C for 

30 – 60 minutes. The excess trypsin solution was removed and 15 µl of 50 mM 

ammonium bicarbonate was added. The digestion was continued overnight at 37°C.  

      The digested gel pieces in micro-centrifuge tube were spun at 6000 × g for 5 minutes 

and the supernatant was transferred into a fresh micro-centrifuge tube. The gel pieces 

were further treated with 10 – 20 µl of 20 mM ammonium bicarbonate and 5% formic 

acid in 50% aqueous acetonitrile, 5 minutes for each treatment. The supernatant collected 

were combined and dried to the desired volume by vacuum speed.  
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      The protein sample obtained was sent to the Proteins and Proteomics Centre, National 

University of Singapore for protein identification by mass spectrometry. Matrix-assisted 

laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) 

(Voyager-DE™ STR Biospectrometry™) (Applied Biosystem) based on the mass 

fingerprinting of trypsin-digested peptides was used for the identification of protein 

isolated in the later study (e.g. CO-IP). Quadrupole time of flight mass spectrometry (Q-

TOF MS) (Micromass Q-Tof Tandem Mass Spectrometer) (Applied Biosystem) that is 

based on both mass fingerprinting of peptides and sequencing of representative peptide 

was used for the identification of recombinant HSP20.  

 

3.4   Immunological analysis 

      3.4.1   Enzyme-linked immunosorbent assay (ELISA) 

      Indirect ELISA analysis used was as described by Delves (1995). Briefly, the 

required antigen was diluted with carbonate coating buffer (pH 9.6, Appendix 6) to the 

concentration of 1 – 10 µg/ml. Aliquot of 100 µl of the diluted antigen was coated onto 

each well of the microtitre plate (NUNC) and incubated overnight at 4°C. The coated 

plate was washed three times with PBS-T buffer (Appendix 12) and blocked with 5% 

(W/V) BSA–PBS-T at 37°C for 2 hours. Aliquots of 100 µl primary antibody PBS-T 

diluents (ranging from 1:100 – 500) were added in triplicates and incubated at 37°C for 

additional 2 hours. Amount of 100 µl of diluted HRP conjugated secondary antibody 

(DAKO, 1:2000) was added to each well and incubated for 2 hours. The plate was then 

washed with PBS-T for 3 × 5mins. The substrate, 0.4% O-phenylenediamine 

dihydrochloride (OPD) was added for the enzymatic reaction (substrate buffer) before it 
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was stopped by the addition of stopping buffer (2M H2SO4).  The result was read at OD492 

in a Labsystems Multiskan Ascent microtitre plate reader (Vantaa). 

 

      3.4.2   Western blotting  

Antibodies from different sources [antibody against rHSP20 (raised in this study), 

anti-serum against H. pylori HSP60 (kindly provided by Lund University of Sweden), 

anti-serum against rCagA (prepared for this study), antibody against H. pylori (DAKO), 

goat anti-rabbit HRP conjugate (DAKO) and goat anti-mouse HRP conjugate (DAKO)] 

were used to detect the presence of specific protein in the protein mixture. The protocols 

for Western blotting analysis were carried out as described by Sambrook et al. (1989). 

   

      3.4.2.1   SDS-PAGE of protein samples  

      The required amount of protein samples (15 – 30 µg) were denatured by mixing it 

with 2× SDS sample buffer and boiled at 100°C for 5 minutes. The samples were then 

run on SDS-PAGE gel according to the protocol as described in section 3.3.2.  

       

      3.4.2.2   Blotting  

      PVDF membrane (Millipore) that was of the same size as the gel was activated by 

soaking in methanol for 20 seconds before immersing in transfer buffer (48 mM Tris 

base, 39 mM glycine, 0.037% SDS, 20% methanol) until use.  Eight pieces of Whatman 

filter paper of the same size as the gel were soaked in the transfer buffer. A stack of 

“sandwich” consisting of 4 sheets of filter paper, PVDF membrane, SDS-PAGE gel and 

another 4 sheets of filter paper was assembled in the order as described and placed on the 
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blotting cell (Bio-rad). The blotting process was carried out at room temperature for 1 

hour at 150 mA (Bio-rad). When the blotting was complete, the membrane was 

transferred into PBST buffer. The gel was then stained with coomassie blue solution to 

examine if the blotting was complete.  

       

      3.4.2.3   Incubation with primary and secondary antibodies 

      The blotted membrane was rinsed with PBS-T buffer three times for 5 minutes each 

and blocked with 5% (W/V) skim milk–PBS-T at 37°C for 2 hours or at 4°C overnight. 

After blocking, the membrane was washed three times with PBS-T to remove the skim 

milk. The membrane was incubated with primary antibody and secondary antibody – 

HRP conjugate consecutively at 37°C for 2 hours for each reaction. There were three 

washing with PBS-T buffer of 5 minutes each in between each incubation period. The 

antibody-conjugated membrane was stained with 4-chloro-napthol (4-CN) as a substrate 

or by using ECL detection kit (Amersham Biosciences) according to the instructions 

provided by manufacturer.   

 

      3.4.3   Flow cytometry  

      This method was used to analyze the fluorescence dye labeled antigens on the cells 

surface. The protocol for fluorescence labeling was performed as proposed by Blom et al. 

(2001). The 3 days old H. pylori cells pellet was suspended in appropriate volume of ice-

cold 0.1% (W/V) BSA-PBS buffer. The appropriately diluted primary antibody (rabbit 

anti-H. pylori, DAKO, 1:20000 diluted) was added. The mixture of cells and antibody 

was incubated on ice for 30 minutes with occasional inversion. The cells were spun down 
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at 5000 × g for 5 minutes and washed twice with 0.1% BSA-PBS buffer at 4°C. 

Similarly, the diluted secondary antibody FITC-conjugate (goat anti-rabbit IgG FITC 

conjugate, Sigma, 1:500 diluted) was added into the primary antibody labeled cell 

suspension and incubated for additional 30 minutes on ice. The antibody labeled cells 

were washed twice with 0.1% BSA-PBS at 4°C and fixed with 0.5% (V/V) 

paraformaldehyde-PBS buffer before running on Coulter Epics Elite ESP flow cytometer 

(Spectron Corp). The data obtained were analyzed by program WinMDI Version 2.8.  

 

3.5   Preparation of different Helicobacter pylori sub-cellular fractions 

      3.5.1   Total protein (TP) 

      H. pylori cells were lysed according to the method as described by Berkelman & 

Stenstedt (1998). A 3-day old H. pylori culture was washed three times with ice-cold PBS 

and resuspended in 300 – 400 µl of lysis buffer per 109 cells [lysis buffer: 8 M urea, 4% 

CHAPS, 40mM Tris-Cl pH 8.8, protease inhibitor cocktail (Roche) and freshly prepared 

50 mM DTT]. The cell suspension was left on ice for 1 hour, vortexed occasionally. 

DNase (20U) and RNase (20U) were added into the cell suspension and left on ice for 

additional 10 minutes before centrifuging at 10,000 × g for 10 minutes at 4°C. The 

resultant supernatant was transferred into fresh micro-centrifuge tube and stored at -80°C 

until use. The lysed fraction consists primarily of total protein of H. pylori. The protein 

concentration was measured by using modified Bio-rad protein assay as described in 

section 3.3.1.  
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      3.5.2   Acid glycine extract (AGE) 

      The protocol for preparation of AGE was carried out according to the modified 

method as described by Ho & Jiang (1995). In brief, 3-day old H. pylori culture grown in 

BHI broth or chocolate blood agar plate (108/ml) was harvested and lysed by using 0.2 M 

acid glycine (pH 2.2) with constant stirring for 30 minutes at 4°C. The resultant cell 

lysate was then centrifuged at 10,000 × g for 15 minutes at 4°C.  Supernatant collected 

was dialysed against PBS buffer at 4°C overnight in dialysis tubing (Gibco). The AGE 

mainly comprises cell membrane and membrane associated proteins. The protein 

concentration of the dialysate was measured using Bio-rad protein assay.  

 

      3.5.3.   Outer membrane protein (OMP) 

      OMP of H. pylori was isolated according to the method as described by Ascencio et 

al., 1998). Harvested 3-day old H. pylori cells (108/ml) were broken by sonication (30s × 

3) in a Soniprep sonicator (Sanyo). Unbroken cells were removed by centrifugation at 

5000 × g for 30 minutes at 4°C. The supernatant was further centrifuged at 20,000 × g for 

90 minutes at 4°C. The pellet was suspended in 150 µl of distilled water. Samples were 

treated with 8 volumes of 2% sodium N-laurylsarcosine (Sigma) for 1 hour at room 

temperature. The insoluble OMP was pelleted twice by centrifugation at 20,000 × g for 

60 minutes at 4°C and washed twice with 2 ml deionized water to remove the excess 

detergent. Finally, the pellet was resuspended in 50 µl of distilled water.  The protein 

concentration was measured as described in section 3.3.1. 
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      3.5.4   Cytoplamic protein (CP)  

      CP protein fraction of H. pylori cells was extracted according to Chmiela et al. 

(1996). Briefly, a 3-day old H. pylori culture was harvested and the cell pellet was 

resuspended in appropriate volume of PBS buffer (to give ~ 109cells/ml), followed by 

sonication for 3 cycles of 30 seconds each. The cell suspension was centrifuged at 20,000 

× g for 90 minutes at 4°C. The resultant supernatant was collected and sterilized by 

filtration through 0.2 µm filter (Sartorius). The protein concentration was measured by 

Bio-rad protein assay as described in section 3.3.1.  

 

3.6   Expression and purification of recombinant HSP20 (rHSP20)  

      3.6.1   Induced expression of recombinant protein (rHSP20) 

The recombinant protein (rHSP20) was induced as recommended by the manufacturer 

(pET System Manual, Novagen, 2001). The constructed recombinant expression vector 

pET16b-hsp20 was transformed into E. coli expression strain BL-21 (DE3). To optimize 

the conditions for induction, a single colony was picked from the plate of transformed 

BL-21 bacteria and inoculated into 50 ml of LB medium supplemented with 50 µg/ml 

ampicilin (Sigma). The culture was shaken vigorously (200 rpm) at 37°C until OD600 of 

0.5 was reached. IPTG at 0.4 mM was added into the medium. The induced cells were 

collected at different time points over 4 hours of incubation. The harvested cells were 

then lysed with 2 × SDS sample buffer and subjected to SDS-PAGE analysis as described 

in section 3.3.2.    

      The large scale of expression of recombinant protein was carried out in 1L LB 

medium according to the optimized conditions for induction.  
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      3.6.2   Purification of rHSP20 by affinity chromatography 

      Upon achieving the maximum expression, E. coli cells were harvested at 5000 × g for 

5 min at 4°C and resuspended in 20 mM phosphate saline buffer (PSB, Appendix 11). 

The cell suspension (108/ml) was subjected to sonication for 10×15s at 5 MHz amplitude 

in a Soniprep 150 sonicator (Sanyo) on ice-bath. The whole cell lysate was centrifuged at 

10,000 × g for 10 minutes at 4°C. Both supernatant & pellet were used for SDS-PAGE 

analysis to determine the location of expressed recombinant protein. The results showed 

that the expressed rHSP20 was found to exist as inclusion body in host cells. Therefore, 

the inclusion body collected was further washed twice with ice-cold PSB buffer and 

dissolved overnight in 6M urea - PSB at 4°C. The dissolved content was centrifuged at 

12,000 × g for 15 minutes at 4°C and filtered through 0.45 µm syringe filter (Millipore). 

Purification of rHSP20 was carried out by using affinity chromatography through nickel 

chelating column (Amersham Biosciences) under denatured conditions according to 

manufacturer’s instructions. The buffers (charge, binding, wash, elution and stripping 

buffers) used for affinity chromatography are included in Appendix 3. The targeted 

protein in nickel column was eluted in ascending gradient with imidazole ranging from 

0.3 – 1M. Purified recombinant HSP20 (rHSP20) was refolded through dialysis against 

20 mM PSB at 4°C. All fractions collected throughout purification procedure were 

subjected to SDS-PAGE analysis and protein concentration was measured by Bio-rad 

protein assay (section 3.3.1). The purified rHSP20 was identified by Q-TOF mass 

spectrometry as described in section 3.3.4 
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3.7   Raising antibody against rHSP20 in rabbits 

      3.7.1   Immunization procedure of rabbit with rHSP20 

      Antibody against rHSP20 was raised in rabbits and immunization procedure was 

followed as recommended by Coligan et al. (2001). The study was approved by the 

Animal Experimental Ethic Committee, National University of Singapore. The mixture of 

purified rHSP20 (two doses: 120 µg & 150 µg) and Freud’s incomplete adjuvant (Sigma, 

USA) was injected into New Zealand white rabbits (~ 1.2 kg) intramuscularly. Two 

boosters were given at the 5th week after the 1st immunization and 3 weeks after the 2nd 

immunization. Blood was drawn from the rabbits at the time of immunizations and every 

7 days after the 2nd booster (Table 3.4). Serum was separated from whole blood and 

antibody titer was assayed by indirect ELISA method using 0.5 µg purified rHSP20 as 

antigen.  

 
Table 3.4 Immunization procedures for raising antibodies against rHSP20 in rabbits 

 
 1st immunization 2nd immunization 

(1st booster) 

3rd immunization 

(2nd booster) 

Time  1st week 5th week 7th week  

Dosages of Ag 120 and150 µg 120 and150 µg 120 and150 µg 

Adjuvant FIA  FIA  FIA  

Amount of blood drawn 10 -15 ml 10 – 15ml 10 ml at each time at 

weekly interval upon 

12th weeks 

Method of Ab detection  ELISA ELISA ELISA 
FIA: Freud’s incomplete adjuvant; Ab: antibody; Ag: antigen; ELISA: enzyme linked immuno-absorbance assay. 
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      3.7.2   Purification of antibody  

      Protein A sepharose CL-4B (Amersham Biosciences) affinity column was used to 

purify IgG from anti-serum (Coligan et al., 2001) because of the specific binding 

between Protein A and Fc portion of IgG. The purification was carried out as described 

according to the manufacturer’s instructions. The serum was diluted with 4 volumes of 50 

mM Tris-HCl buffer (pH 7.0) and loaded onto the column. The specific IgG was eluted 

by 0.1 M glycine-HCl buffer pH 3.0 and neutralized with 1 M Tris-HCl pH 9.0 (50-

100µl/ml fraction) immediately after elution. All buffers used must be kept at 4°C or on 

ice-bath during the operation. The purified IgG was analyzed by SDS-PAGE and protein 

concentration was measured by Bio-rad protein assay (section 3.3.1). The antibody 

solution was stored at -80°C until use.   

 

      3.7.3   Characterization of antibody  

      Antibody obtained was characterized on its binding specificity using Western blotting 

on different protein fractions of H. pylori cells according to the method as described by 

(Delves, 1995). The fractions of TP, AGE, OMP and CP of H. pylori cells were 

examined. The rabbit anti-serum against H. pylori HSP60 (kindly provided by Prof T. 

Wadstrom, Lund University, Sweden) was used as an unrelated positive control in testing 

the localization of HSP20 by Western blotting. 

 

 
3.8   Immuno-gold labeled transmission electron microscopy (TEM) 

      Pre-embedding labeling was employed for immuno-gold labeled TEM as described 

by Polak & Varndel (1984). In this experiment, purified polyclonal rabbit IgG against 
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rHSP20 (25 µg/ml) was used as the primary antibody while the second antibody used was 

5 nm, 10 nm or 20 nm gold-Protein A conjugate (1:20 dilution, Ted Pella). H. pylori 

NCTC 11637 3-day old broth culture was harvested and washed with PBS, then fixed in 

4% paraformaldehyde, 0.1% glutaraldehyde, with or without Triton X-100 (0.5%). 

Neutralization was done by incubating the cell pellet in 0.05 M glycine-PBS for 15 

minutes and washed with PBS. The fixed cells were blocked with 0.5% (W/V) BSA-PBS 

buffer and then conjugated with the primary antibody at 37°C for 2 hours followed by 

incubating with the secondary antibody at 37°C for additional 2 hours. The immuno-gold 

labeled cells were further fixed in 2% glutaraldehyde at room temperature for 2 hours. 

The fixed immuno-gold labeled cells were processed through dehydration, infiltration 

and embedding in Low Viscosity Epoxy Resin (LVER) (Agar Scientific). Ultra-thin 

sections (70 – 100 nm) were viewed under Philips 208S electronic microscope. The 0.5% 

Triton X-100 (Hannah et al., 1998) was used to partially solubilize the cell membrane for 

10 or 20 minutes during the fixation step before the addition of secondary antibodies. The 

pre-immune serum and the secondary antibody added alone were served as negative 

controls. In testing the effectiveness of solubilization of cell membrane using Triton X-

100 treatment, E. coli cells labeled with anti-rHSP20 (25 µg/ml) were used as negative 

control while anti-H. pylori HSP60 antiserum (1:20) labeled H. pylori served as the 

internal positive control.  

  

3.9   Detection of antibody against HSP20 in patients with gastroduodenal diseases  

      In this study, rHSP20 was used as the antigen to detect the presence of antibody 

against HSP20 in sera obtained from patients with different gastro-duodenal diseases by 
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ELISA as described in section 3.4.1. A total of 57 sera samples from patients (peptic 

ulcer: 25 and non-ulcer dyspepsia: 32 respectively) were tested. The disease status of the 

patients was confirmed earlier by histological examinations and serological testing. Sera 

from 32 normal subjects without any gastroduodenal complaint served as negative 

control. All samples were randomly selected. Data obtained were analyzed statistically by 

Student t-test. 

 

3.10   In vitro adhesion assay 

      The adhesion assay of H. pylori to human gastric carcinoma cell lines, Kato III and 

AGS, was performed according to the methods as described by Yamaguchi et al. (1996). 

Either wild type H. pylori or hsp20-isogenic H. pylori mutant was added at different 

ratios of bacteria to cells (bacteria : cells = 50:1, 100:1 and 200:1). Cells and bacteria 

were suspended in RPMI:BHI (1:1) medium and co-incubated at 37°C for 1 hour in 

micro-centrifuge tubes with gentle shaking. Non-adherent bacteria were removed by 

washing with 9 volumes of 15% sucrose-PBS solution at 1000 × g for 5 minutes at 4°C. 

The adherent bacteria were detected by ELISA or flow cytometry methods as described 

in section 3.4.1 or 3.4.3, respectively. The primary antibody used for detection was rabbit 

anti-H. pylori IgG (1:20000 diluted, DAKO) and the secondary antibodies used were goat 

anti-rabbit IgG, HRP conjugate (1:2000 diluted, DAKO) or goat anti-rabbit, FITC 

conjugate (1:500 diluted, Sigma). 
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3.11   Animal study of Helicobacter pylori 

      3.11.1   Inoculation procedure of H. pylori in mice 

      The animal study was approved by the Animal Experimental Ethic Committee, 

National University of Singapore. Both H. pylori SS1 hsp20 wild type and H. pylori SS1 

hsp20::aphA deficient strains were inoculated into BALB/c mice (20 – 25 g, < 4 weeks of 

age & single sex type, female). The inoculation procedure was followed as suggested by 

Smythies et al. (2000). After overnight fasting, 1 × 108 CFU H. pylori BHI broth culture 

in 300 µl was administrated into each animal, three successive challenges were carried 

out on alternate days. A total of 15 mice were inoculated for each H. pylori strain and 9 

mice fed with BHI broth alone serving as negative controls (Table 3.5). At 2, 4 and 8 

weeks after inoculation, mice were sacrificed, stomachs were removed and dissected 

longitudinally into three equal parts for the detection of H. pylori by microbiological, 

histopathological and RT-PCR assays. Whole blood from the sacrificed mice was drawn 

and antibody responses to H. pylori were analyzed. 

 
Table 3.5 Procedures for challenging mice with H. pylori 

 
 wild type H. pylori 

SS1 

hsp20-isogenic H. 

pylori SS1  

Negative control  

Number of bacteria 

inoculated (CFU) 

1 × 108 to each animal 

per dose; 3 doses on 

alternate day  

1 × 108 to each animal 

per dose; 3 doses on 

alternate day  

BHI broth 

 

 

No of animals inoculated 

 

15  

 

15  

 

9 

 

Sacrificing schedule (weeks) 

 

2, 4 & 8  

 

2, 4 & 8  

 

2, 4 & 8 
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      3.11.2   Analysis of mouse gastric biopsy 

      3.11.2.1   Microbiological analysis 

      One third of the stomach mucosa (washed with PBS buffer four times) was minced using 

glass slide in 50 µl BHI broth, the minimum suspension was swabbed onto CBA plates 

supplemented with 4 antibiotics: vancomycin 3 µg/ml, trimethoprim 5 µg/ml, nalidixic 

acid 10µg/ml and amphotericin 2µg/ml (Sigma) as described in the section 3.1.1. The 

plates were incubated at 37°C with 5% CO2 for up to 7 days. After swabbing, the 

stomach piece was directly transferred into the microfuge tube containing urease test 

reagent for detecting the presence of H. pylori urease.  

      Following incubation, the plates were examined for the bacterial growth; the 

suspected H. pylori colonies were examined by gram staining, urease, oxidase and 

catalase tests. The stomach was considered as positive for H. pylori when the following 

three criteria were met: (1) growth of pinpoint, transparent and non-hemolytic colonies 

on the chocolate blood agar plates; (2) presence of gram negative spiral under the 

microscope; (3) pin point colonies showed the presence of urease, oxidase and catalase.  

      The standard protocols were followed for gram staining (Gerald, 1994), urease, 

oxidase and catalase tests (Clayton & Mobley, 1997). For the urease test, the reagent used 

comprised 2% (W/V) urea; 1.5 mM NaH2PO4 • H2O; 4 mM Na2HPO4; 0.075% (V/V) 

phenol red, the pH of the solution was adjusted to 6.8. When the color of reagent was 

changed from yellow to pink in the presence of the mice stomach, it was considered as 

urease positive. For the catalase test, the reagent used was 3% hydrogen peroxide. It was 

considered as catalase positive when effervescence was observed in the reagent in the 

presence of bacteria. For the oxidase test, 1% tetro-methyl-p-phenylenediamine-
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dihydrochloride aqueous solution was used as substrate. When bacteria culture was 

placed onto the filter paper soaked with oxidase reagent, the presence of a deep blue color 

indicated oxidase positive.    

 

      3.11.2.2   Histological analysis  

      The paraffin-embedded stomach biopsy blocks were prepared at the Department of 

Pathology, National University Hospital, Singapore. The presence of H. pylori in the 

sections of mice gastric tissue was detected using immunohistochemistry technique as 

described by Jonkers et al. (1997). Rabbit anti-H. pylori IgG (1:50 diluted, DAKO) and 

goat anti-rabbit IgG HRP conjugate (1:100 diluted, DAKO) were used as the primary and 

secondary antibody, respectively in the immuno-staining. 3,3-diaminobenzidine 

tetrahydrochloride (DAB) was used as the substrate in the enzymatic reaction. The 

presence of brown color, spiral, rod-shaped bacteria on the luminal surface were 

considered as histological positive for H. pylori.  

   

      3.11.2.3   Total RNA extraction and RT-PCR analysis 

      Total RNA was extracted from a piece of mouse stomach by RNeasy Mini kit 

(Qiagen) according to the manufacturer’s instructions. RNA (~1µg) was digested with 

RNase free DNase. Reverse transcribed into the first strand of cDNA was carried out at 

42°C for 1 hour using random hexamer as primer and AMV Reverse Trancriptase 

(Promega). The transcribed cDNA was used as the template to amplify H. pylori 16S 

rRNA and ureC gene fragments by PCR while the amplification of GAPDH gene 

fragment was used as the internal control. The primers for the amplification of specific 
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gene fragments were listed in Table 3.6. The PCR amplification was performed by 

denaturation at 94°C for 5 minutes followed by 94°C, 30 seconds, 55°C or 50°C or 52°C, 

30 seconds, 72°C, 30 seconds for 35 cycles with additional extension at 72°C for 5 

minutes.  The PCR cycles were carried out on GeneAmp PCR system 2400. 

 
Table 3.6 Primers used in the RT-PCR analysis 

 
Name  Sequences (5’ – 3’) Length of DNA 

fragment (bp)  
Tm 
(°C) 

References  

 
16s 

rRNA 
 
 

Forward: 
GGAGGATGAAGGTTTTAGGATTG 
 
Reverse: 
TCGTTTAGGGCGTGGACT 

 
 

390 

 
 

55 

 
Rokbi et al., 

2001 

 
 

ure C 
 
 

Forward: 
AAGCTTTTAGGGGTGTTAGGGGTTT 
 
Reverse: 
AAGCTTACTTTCTAACACTAACGC 

 
294  

 
50 

 
Labigne et al., 

1991 

 
 

GAPDH 
 
 

Forward: 
ACCACAGTCCATGCCATCAC 

 
Reverse: 
TCCACCACCCTGTTGCTGTA 

 
451  

 
52 

 
Ye et al., 

1997 
 

 

 

      3.11.3   Detection of antibody against H. pylori  

      BALB/c mice inoculated with H. pylori were sedated and the whole blood was drawn 

from the sedated mice by cardiac puncture followed the guidelines provided by 

Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC), U.S.A. Serum was extracted and stored at - 20°C until use. Acid glycine 

extracted H. pylori SS1 protein (prepared according to section 3.5.2.) was used as antigen 

to detect the antibody level against H. pylori in inoculated mice using ELISA as 

described in section 3.4.1. An aliquot of 0.5 µg acid glycine extract (AGE) antigen in 100 
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µl coating buffer was added into each well of microtiter plate. Different dilutions of mice 

primary antibody (1:100; 1:200; 1:500 & 1:1000) were added in triplicates. Goat anti-

mouse immuno-globulin HRP conjugate (1:2000 diluted, DAKO) was used as the 

secondary antibody.  

 

3.12   Protein profile of Helicobacter pylori  

      To examine the protein profiles of wild type and hsp20-isogenic mutant H. pylori, the 

total protein exact of both H. pylori cells were analyzed on SDS-PAGE and 2D gel 

electrophoresis. The total protein extract of H. pylori was extracted according to the 

protocol as described in section 3.5.1.  

      For SDS-PAGE, a total of 15 µg protein extract from each H. pylori strain was loaded 

on 12%  gel. The gel with separated protein bands was then stained by silver nitrate. The 

running of SDS-PAGE and staining of gel followed the protocols as described in section 

3.3.2. 

      For 2D gel electrophoresis, a total of 150 µg protein extract from each H. pylori strain 

was applied. The IPG strip of broad pH range from 3 to 10 was used in the analysis. The 

procedure for 2D gel electrophoresis was followed as described in section 3.3.3. The 2D 

gel of both wild type and the isogenic mutant H. pylori was transblot onto PVDF 

membrane for Western blotting analysis. The protocol for Western blotting was followed 

as described in section 3.4.2. The primary antibody used was anti-rHSP20 antibody 

(1:800 diluted) while secondary antibody used was goat-anti rabbit IgG (DAKO, 1:2000).   
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3.13   Status of genes encoding for Helicobacter pylori adhesins 

      3.13.1   DNA sequencing of dinucleotide repeats  

      To examine the gene status (in-frame or out-of-frame) of three major adhesins [OipA 

(outer inflammatory protein, HP0638), HopZ (homologue of porin, HP0009), SabA (sialic 

acid-binding adhesin, HP0725)], the CT dinucleotide repeat regions in the signal 

sequence of these genes were amplified by PCR. Genomic DNAs of both wild type and 

hsp20-isogenic H. pylori strains were used as templates. The conditions for PCR 

amplification was followed as described by de Jonge et al. (2004). The PCR amplified 

fragments were sequenced using the same method as described in section 3.2.4. The 

primers used for PCR amplification and DNA sequencing were listed in Table 3.7.  

 
Table 3.7 Primers used for detecting the functional status of H. pylori adhesins 

 
Names Sequences (5’ – 3’) Genes References 

oipA-Fs CAA GCG CTT AAC AGA TAG GC HP0638 de Jonge et al., 2004 

oipA-Rs AAG GCG TTT TCT GCT GAA GC HP0638 de Jonge et al., 2004 

hopZ-Fs GCC TGA TAT GGG TGG CAT GGG HP0009 de Jonge et al., 2004 

hopZ-Rs ATT TGA TAG CCC GCG CTG AT HP0009 de Jonge et al., 2004 

sabA-Fs TTT TTG TCA GCT ACG CGT TC HP0725 Lehours et al., 2004 

sabA-Rs ACC GAA GTG ATA ACG GCT TG HP0725 Lehours et al., 2004 

 

      3.13.2   RT-PCR analysis  

      To examine the transcription of these adhesins in H. pylori cells, total RNAs were 

extracted from both wild type and hsp20-isogenic H. pylori strains using RNeasy Mini kit 

(Qiagen). The reverse transcription of RNA was carried out as described in section 
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3.11.2.3. The transcribed cDNA was used as template to amplify the presence of adhesins 

genes by PCR; the amplification of 16s rRNA gene fragment of H. pylori was used as the 

internal control. The PCR amplifications for oipA, hopZ and sabA gene fragments were 

conducted by denaturation at 94°C for 5 minutes followed by 94°C, 30 seconds; 50°C or 

52°C, 30 seconds and 72°C, 30 seconds for 35 cycles with additional extension at 72°C 

for 5 minutes. The primers used in RT-PCR analysis were listed in Table 3.8. 

      The presence of babA2 gene was also examined using PCR. The PCR amplification 

for babA2 gene fragment was carried out by denaturation at 94°C for 5 minutes followed 

by 94°C, 1 minute; 50°C, 1 minute and 72°C, 1 minute for 35 cycles with additional 

extension at 72°C for 10 minutes. The primers used were in Table 3.8. 

 
Table 3.8 Primers used for RT-PCR of various H. pylori adhesins 

 
Names  Sequences (5’ – 3’) Length of 

DNA 
fragments  

(bp) 

Tm 
(°C) 

References 

oipA-F 

oipA-R 

ATGAGCTCAGCTTTGGGTATAA 

GCGATCAATATCGTATTCATCA 

 

457 

 

50 

 

Tomb et al., 1997 

hopZ-F 

hopZ-R 

ACTACTACTACTACTAATGACG 

AATCCTTAAGGCTGCCTCTAAA 

 

611 

 

50 

 

Tomb et al., 1997 

sabA-F 

sabA-R 

ATCCACTAATTACCCAACGCAAT 

GTCGTTATAGGCGGTTACGATT 

 

643 

 

52 

 

Tomb et al., 1997 

* babA2-F 

 * babA2-R 
AATCCAAAAAGGAGAAAAAGTATGAAA 

TGTTAGTGATTTCGGTGTAGGACA 
 

810 

 

50 

 

Gerhard et al., 1999 

* These are the primers used for regular PCR.  
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3.14   Identification of protein interacting with HSP20 in Helicobacter pylori 

      3.14.1   Co-immunoprecipitation (CO-IP) using antibody against rHSP20 

      The procedure for co-immunoprecipitation analysis was according to that as 

described by Voland et al. (2003). Wild type H. pylori and hsp20-isogenic H. pylori 

mutant cells were used in this study. The 3-day old H. pylori cells were harvested and 

washed three times with PBS buffer. The cell pellet was suspended in co-

immunoprecipetation (CO-IP) buffer and incubated on ice-bath for 1 hour with 

occasional inversion. The CO-IP buffer comprises 50 mM Tris-HCl pH 7.8, 0.5% (W/V) 

Triton X-100, 0.5 M NaCl, 10 mM EDTA, freshly prepared 1 mM DTT and protease 

inhibitor cocktail (Roche). The resultant protein supernatant was subjected to the 

procedure of co-immunoprecipitation with antibody against rHSP20 (1 µg) and incubated 

on ice for 2 hours with gentle inversion occasionally. The antibody complex was then 

pulled down by Protein A sepharose (50 µl slurry) on ice for an additional hour. Protein 

A beads with antibody complex were settled down by centrifugation briefly and washed 

three times with CO-IP buffer at 4°C. Then the beads were re-suspended in 50 µl of 2 × 

SDS sample buffer and subjected to SDS-PAGE analysis as described in section 3.3.2. 

The isolated protein band on SDS-PAGE gel was excised and sent for identification using 

MALDI-TOF mass spectrometry as described in section 3.3.4.  Total proteins of E. coli 

Top10 cells and rabbit pre-immune serum were used as the negative control and internal 

control, respectively. Four independent experiments were repeated.  
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      3.14.2   Western blotting analysis of CO-IP using different antibodies 

     According to the results obtained from protein identification, mouse antiserum against 

rCagA (rCagA: his-tag fused CagA protein fragment corresponding to 1st – 285th amino 

acids of H. pylori 26695 as prepared for this study) and antibody against rHSP20 were 

used for the Western blotting analysis of CO-IP. Wild type H. pylori, hsp20-isogenic H. 

pylori mutant and CagA negative H. pylori strain 1024 (clinical isolate, served as 

negative control) were used for this test.  

      The same procedure for CO-IP was performed as described in section 3.14.1. The 

CO-IP protein-antibody mixture was subjected to SDS-PAGE and blotted onto the PVDF 

membrane. Western blotting was then carried out according to the procedure as described 

in section 3.4.2. In the Western blotting analysis of CO-IP, mouse antiserum against 

rCagA (1:800 diluted) and antibody against rHSP20 (0.5 µg/ml) were used as the primary 

antibody for probing respectively. Goat anti-mouse Ig HRP conjugate (1:2000 diluted, 

DAKO) and goat anti-rabbit IgG HRP conjugate (1:2000 diluted, DAKO) were used as 

the secondary antibody. DAB was used as the substrate for the enzymatic reactions. 

       

      3.14.3   RT-PCR analysis of cagA transcription in H. pylori 

      Both wild type and hsp20-isogenic H. pylori strains were used in this test. In RT-PCR 

analysis, H. pylori cells of different ages (3rd & 4th days) were harvested from plates. 

Total RNA was extracted from each sample using RNeasy Mini kit (Qiagen). The reverse 

transcription of RNA was carried out as described in section 3.11.2.3. The transcribed 

cDNA was used as template to amplify the presence of H. pylori cagA gene by PCR; the 

amplification of 16s rRNA gene fragment and hsp20 gene fragment were used as the 
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internal control. The primers for the amplification of cagA gene fragment were based on 

the known sequences of H. pylori 26695 (Tomb et al., 1997). The forward primer used 

was: 5’>GGAACGCCATATGATGACTAACGAAACCATTG<3’; the reverse primer 

used was: 5’>CGCGGATCCTTAATCAATGTCAGCGACTCCC<3’. The PCR 

amplification conditions for cagA gene fragment was carried out by denaturation at 94°C 

for 5 minutes followed by 94°C, 30 seconds, 52°C, 30 seconds, 72°C, 45 seconds for 35 

cycles with additional extension at 72°C for 10 minutes.  The target cagA gene fragment 

was 852 bp. The primers for amplification of 16s rRNA was the same as in Table 3.7 and 

PCR amplification was performed as described in section 3.11.2.3. The primers and PCR 

amplification for hsp20 gene fragment was followed as described in section 3.2.4.1.  

 

      3.14.4   Detection of CagA in different H. pylori sub-cellular fractions  

      Wild type H. pylori, hsp20-isogenic H. pylori and CagA negative H. pylori 1024 

(served as negative control) were used in this test. To analyze the presence of CagA 

protein in H. pylori, different sub-cellular fractions of H. pylori [total protein (TP), acid 

glycine extract (AGE) and outer membrane fraction (OMP)] were extracted according to 

the methods as described in section 3.5. The same amount of protein (10µg) from each 

fraction was subject to SDS-PAGE and Western blotting as described in section 3.4.2. 

The primary antibody used was antiserum against rCagA while rabbit antiserum against 

HSP60 was used as the internal control. The secondary antibody used was goat anti-

mouse immunoglubilin HRP conjugate and goat anti rabbit IgG HRP conjugate (DAKO, 

1: 2000 diluted). DAB was used as the substrate for the enzymatic reactions. 
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      To examine whether the presence of HSP20 affects the presence of CagA protein in 

different H. pylori sub-cellular fractions, a test was further carried out with the addition 

of rHSP20 in H. pylori cultures. The same experiment was carried out for the H. pylori 

cultured with the addition of different concentrations of rHSP20 (0.1 µg/ml, 0.5 µg/ml 

and 1 µg/ml) in the culture media.  All cultures were incubated for further 24 hours after 

the addition of rHSP20.   

 

      3.14.5   Detection of antibody against CagA in H. pylori inoculated mice 

      ELISA methods were employed in this study as described in section 3.4.1. 

Recombinant CagA (rCagA: His-tag fused CagA protein fragment corresponding 1st – 

285th amino acids of H. pylori 26695) prepared earlier in our lab was used as the antigen 

to detect the antibody against CagA protein in H. pylori infected mice in section 3.11. An 

aliquot of 0.5 µg (rCagA) in 100 µl coating buffer was added into each well of micro-titer 

plates. Different dilutions of mice primary antibody (1:100; 1:200; 1:500 & 1:1000) were 

added in triplicates. Goat anti-mouse Ig HRP conjugate (1:2000 diluted, DAKO) was 

used as the secondary antibody for detection. The detection of antibody against Le (X) 

and Le (Y) in H. pylori infected mice was served as the internal control. The antigens 

used were synthetic Le (X) and (Y) (IsoSep, Sweden) at 0.1 µg/well. The procedure for 

the detection was carried out according to the protocols as described by Zheng et al. 

(2000). 
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3.15   DNA sequencing of hsp20 gene  

      A total of 225 H. pylori isolates obtained from different geographical regions and 

ethnic origins were included in this testing (Table 3.9). Among these, 103 strains were 

isolated from Singapore and 122 strains were from 9 different countries. All H. pylori 

isolates were cultured on CBA plates as described in section 3.1.1.  

      A pair of primers corresponding to 50 bp upstream and downstream of hsp20 

(HP0515) of H. pylori 26695 genomic sequences was used (Tomb et al., 1997). The 

forward primer was: 5’> CGGAATTCAGATTGAAGTCAAGC <3’ while the reverse 

primer was: 5’> CGGGATCCTGCCCAATGATGTATT <3’. The genomic DNAs were 

extracted according to the protocol as described in section 3.2.1 and were used as the 

templates for PCR amplification. The PCR amplification was carried out by an initial 

denaturation at 94°C for 5 minutes followed by 94°C, 30 seconds, 50°C, 30 seconds, 

72°C, 30 seconds for 30 cycles with additional extension at 72°C for 5 minutes. The PCR 

amplified 643 bp gene fragments were purified by PCR product purification kit and 

sequenced using BigDye TM Terminator Cycle Sequencing Ready Reaction Kit and 

sequenced using ABI 100 model 377 DNA sequencer. 
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Table 3.9   Geographical distribution and clinical status of 225 strains used for 

hsp20 gene sequencing 
 

Regions Countries Clinical diagnosis No of strains 

Asian Singapore (n=103) NUD 28 

  PUD 75 

 Japan (n=43) NUD 20 

  PUD 23 

 India (n=6) NUD 2 

  PUD 4 

 Hong Kong (n=6) N.K. 6 

    

Non-Asian Sweden (n=16) NUD 6 

  PUD 10 

 Peru (n=12) NUD 12 

 Spain (n=14) N.K 14 

 Lithuania (n=12) NUD 6 

  PUD 6 

 Costa Rica (n=9) N.K. 9 

 Australia (n=4) NUD 1 

  N.K. 3 

NUD: non-ulcer dyspepsia; PUD: peptic ulcer; NK: not known.  
 

3.16   Phylogenetic analysis 

      The DNA sequences of hsp20 from 225 H. pylori isolates obtained and the two 

known genomic DNA sequences strains (H. pylori 26695, genebank accession no: 

AE000566, Tomb et al., 1997; H. pylori J99, Genebank accession no: AE001480, Alm et 

al., 1999) were aligned and the corresponding amino acid sequences were deduced by 

using program Bioedit (Hall, 1999). Multiple alignments of sequences were conducted by 

ClustalX (ver 1.81) (Thompson et al., 1997). The GC content, polymorphic sites, 

percentages of the mean differences between pairs of strains at synonymous nucleotide 
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positions (KS) and nonsynonymous nucleotide positions (Ka) were calculated using 

DNASP version 3.5 (Rozas & Rozas, 1999).  

      PHYLIP (the PHYLogeny Inference Package) Version 3.6 was used to generate 

phylogram (Felsenstein, 1989) based on the hsp20 gene of 227 H. pylori strains. The 

maximum likelihood (ML) algorithm was chosen and performed following the 

procedures proposed by Baxevanis & Oullette (2001). A bootstrap analysis (100 

replicates) was performed to evaluate the topology of the phylogenetic trees. The 

nucleotide divergence between groups was estimated by using Jukes-Cantor methods in 

DNASP 3.5.    

 

3.17   HSP20 protein structure predicted by homology modeling 

      Homology modeling (also called comparative protein modeling) was chosen to 

predict the structure of HSP20 protein. It is a process by which the building of a 3-D 

model of a target sequence is based on a homologue (with at least 30% identity) which 

structure has been experimentally solved (either by X-ray crystallography or solution 

nuclear magnetic resonance, NMR). Homology modeling is a rapid way to identify the 

(“probable homologous”) structure of a protein and its possible function based on 

homologous protein (Baker & Sali, 2001). In the process of homology modeling, the 

sequence of target protein with unknown 3-D structure is used as a query to search the 

defined database (e.g. Protein Data Bank, PDB); when the appropriate template with 

resolved structure is matched, an alignment between the sequences of target and template 

will be created and the possible structure will be predicted based on the alignments. This 
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process can be completed with a special program (e.g. Protein Explorer) in which a 

specific database is defined and incorporated with tools of visualization for 3-D structure.  

      In this study, SWISS-MODEL Server (an automated comparative protein modeling 

server) (Guex & Peitsch, 1997) available at http://www.expasy.org/swissmod/ was used 

to predict protein structure of HSP20. The amino acid sequence of HSP20 (HP0515 of H. 

pylori 26695, Tomb et al., 1997) was used as a query for matching homologous templates 

from ExPDB database. The two best-scored templates chosen for modeling are ATP-

dependent protease HslV of Haemophilus influenzae showing 57% identity (PDB 

accession code: 1kyiL, Sousa et al., 2002) and HslV of Escherichia coli showing 49% 

identity (PDB accession code: 1e94A, Song et al., 2000). The predicted protein structure 

was evaluated by WHATCHECK program (Rodriguez et al., 1998) that suggested the 

stereochemistry and energetic parameters of the model was acceptable.  

 

3.18   Structure comparison of substitutions at 14th – 16th amino acid residues of  

          HSP20  

       To examine whether the substitutions at 14th – 16th amino acid residues affect the 

protein structure of HSP20, the amino acids sequences of hsp20 that represent seven 

major types of substitutions respectively were used for homology modeling using 

SWISS-MODEL as described in section 3.16. Various types of amino acid substitutions 

were examined based on its position in the 3-D structure and secondary structure 

predicted. 

 

 

http://www.expasy.org/swissmod/


 
 
 
 
 
 

 
4. RESULTS 



Results 

4.1   Preparation of recombinant HSP20 (rHSP20)  

      4.1.1   Construction of rHSP20 expression vector 

      hsp20 was cloned into pET 16b expression vector as shown in Figure 4.1A. The 543 

bp hsp20 gene fragment of H. pylori NCTC 11637 as amplified by PCR as shown in 

Figure 4.1B. The target gene fragment was inserted into pET 16b expression vector at 

BamHI restriction enzyme site that was fused at the downstream of Histidine-tag. The 

total length of recombinant plasmid is 6255 bp as shown in Figure 4.1C. The clone with 

the correct gene orientation was shown to have a 533bp fragment (Fig 4.1C, lane 3). 

Complete DNA sequences of hsp20 and its deduced amino acids sequences are illustrated 

in Figure 4.2.  

 

                                A. 

 
                B. 

 

         C. 

 
 

 
Figure 4.1 Construction and identification of hsp20 expression vector  

A, Diagrammatic representation of pET-16b-hsp20 plasmid; X, XhoI; B, BamHI; S, SspI; B, PCR amplified hsp20 

gene fragment; lane 1, target gene fragment (543bp). C, Dissection of recombinant pET16b-hsp20 plasmid 

identification; lane1, uncut recombinant palsmid (pET16b + hsp20, 6255bp; lane 2, recombinant plasmid digested with 

BamHI; lane 3, recombinant plasmid digested with XhoI + SspI giving a fragment of 533bp; lane M, λ Hind III DNA 

marker.  
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Figure 4.2 DNA sequence of hsp20 and deduced amino acid sequence of Helicobacter 

pylori NCTC11637 HSP20   

The full length of hsp20 is 543 bp encoding 180 amino acids. 
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      4.1.2   Expression and purification rHSP20 protein 

      The maximum expression level of recombinant HSP20 (rHSP20) was achieved at 3 

hours after induction with 0.4 mM IPTG in E. coli BL-21 cells (Figure 4.3A). The 

expressed rHSP20 was about 10% – 15% of total proteins after induction. The estimated 

molecular weight of expressed rHSP20 protein is 23 kDa (Figure 4.3A). The expressed 

rHSP20 protein existed mainly in inclusion body and dissolved in 6 M urea-PBS buffer 

(Figure 4.3B). Recombinant HSP20 was eluted from His-tag affinity chromatography 

column with imidazole at the concentration gradient range of 0.3 – 1 M in the presence of 

6 M urea (Figure 4.3B). The estimated percentage of expressed rHSP20 in total cell 

extracts ranged from 5% -10% based on total protein and recovery efficiency of inclusion 

body was about 20%. Through MS Q-TOF analysis, the amino acid sequence of 

recombinant rHSP20 was identified as heat shock protein HslV (HP0515) (Figure 4.4).  

 

4.2   Preparation and characterization of antibody against rHSP20 

      Antibody against rHSP20 raised in two immunized rabbits was detected using ELISA 

as shown in Figure 4.5. It is shown that the antibody titer was increased at 4 weeks for the 

rabbit immunized with 120 µg antigen. In contrast, the antibody titer only increased after 

6 weeks for the rabbit immunized with 150 µg. There is a bimolar peak of antibody 

production at the 72nd and 85th days for the rabbit immunized with 120 µg rHSP20.  

However, there is only one peak at the 72nd day in rabbit immunized with 150 µg 

rHSP20.  The highest antibody titer detected was over 1:6400 regardless of the dosage of 

antigen used. However, it was shown that immunizing with 120 µg produced higher 

antibody titer throughout the course of immunization (Figure 4.5).  
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                            A. 

       
  
 

                            
                         B. 

            
 
 
 

Figure 4.3 Expression and purification of recombinant HSP20 in E.coli BL-21  
A, Expressed rHSP20 by IPTG induction as run on 10% SDS-PAGE; lanes 1 & 2, proteins of un-induced cells; lanes 3 

& 4, IPTG induction for 3 hours; lanes 5 & 6, IPTG induction for 4 hours. B, Purified rHSP20 as run on 15% SDS-

PAGE; lane 1, supernatant of sonicated cells; lane 2, cell pellet  solubilized by 6 M Urea; lanes 3 – 9, fractions eluted 

from His-tag column in ascending gradient with concentration of imidazole ranged from 0.3 – 1M (in the presence of 

6M Urea); M, Prestained Precision Protein Standards (Biorad). 
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A. 

MGHHHHHHHHHHSSGHIEGRHMLEDPFEATTILGYRGELNHKKFALIGGDGQVTLGNCVVK

ANATKIRSLYHNQVLSGFAGSTADAFSLFDMFERILESKKGDLFKSVVDFSKEWRKDKYLRR 

LEAMMIVLNFDHIFILSGMGDVLEAEDNKIAAIGSGGNYALSAARALDHFAHLEPRKLVEESL 

KIAGDLCIYTNTNIKILEL 

 
 
B. 

 

 
 
 

Figure 4.4 Protein identification of rHSP20 by MS Q-TOF analysis 
A, The 7 matched peptides (6 – 18 aa) with HP0515 were highlighted in various colors; two representative sets of 

peptides were identified by mass spectrometry manually. The amino acids in box denote the fused His-tag. B, The mass 

spectrum of the representative peptides (the mass of the peptides were indicated in asterix).   
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      Western blotting (WB) analysis showed different affinity to various H. pylori cellular 

fractions in assaying the binding specificity of antibody to antigens. An intense protein 

band of ~18 kDa was shown in AGE preparation as compared to proteins extracted by 

lysis buffer (Figures 4.6A & B). A specific band of the similar molecular weight was 

observable in the outer membrane protein fraction as shown in Figure 4.6A. Similarly, in 

the WB of cytoplasmic fraction, a dim band of ~ 18 kDa showed up (Figure 4.6C). In 

contrast, when HSP60 antiserum was used as the internal control probe, a band of slightly 

> 50 kDa was detected in both AGE and cytoplasmic fractions (Figure 4.6C).  

      Interestingly, two-dimensional gel electrophoresis (2-DE) showed the presence of a 

specific protein spot (Figure 4.7A) with the help of WB using rHSP20 antibody as probe. 

The specific protein spot at pH of ~5.5 with a molecular weight of ~18 kDa was evident 

(Figure 4.7B).  

 

 
 

Figure 4.5 Antibody production profile  
Antibody titer against rHSP20 detected at different time points. The graph was plotted based on the values of 1:100 

diluted serums (showing peak at 72nd day when immunized with 150 µg rHSP20 and at 72nd & 85th day when 

immunized with 120 µg rHSP20). 
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A.  

 

 
 
 

Lanes 1 & 2, purified rHSP20 protein (2 µg/ lane was 

loaded, used as positive control); lane 3, H. pylori outer 

membrane protein fraction (15 µg/lane was loaded); lanes 

4 & 5, H. pylori acid glycine extract (15 µg/lane was 

loaded). 

B. 

 
 

 

 

 

Lanes 1 & 2, H. pylori cells total proteins extracts (15 

µg/lane was loaded); lanes 3 & 4, purified rHSP20 protein 

(2µg/lane was loaded, positive control). 

 

C. 
 

 
 

 

 

Lanes 1 & 3, acid glycine extract (AGE) of H. pylori (15 

µg/lane was loaded); lanes 2 & 4, cytoplasmic fraction 

(CF) of H. pylori (15 µg/lane was loaded); M1, 

Kaleidoscope Polypeptide Standards (Biorad); M & M2, 

Prestained Precision Protein Standards (Biorad); lanes 1& 

2 were probed with rHSP20 antibody; lanes 3 & 4 were 

probed with H. pylori - HSP60 antiserum. 
 

 
Figure 4.6 Western blotting of different sub-cellular fractions of H. pylori using 

antibody against rHSP20 as probe  
A 15% SDS-PAGE was used for the analysis. 
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                                A. 

 
 
 

                                           B. 

                           
 

 
 
Figure 4.7 Two-dimensional gel electrophoresis and Western blotting of acid glycine 

extract of H. pylori 
Based on the ProtParam tool, HSP20 shows preponderance for pI ~6, the linear 7-cm, pH 5-8 IEF strips (Bio-rad) were 

used ; 15% SDS-PAGE was run for Western blotting analysis and 15 µg protein was applied for each test. A, 2-DE of 

AGE (silver staining); B, Western blotting of 2-DE of AGE; M, unstained Precision Protein Standards (Biorad). 
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4.3   Localization of HSP20 in Helicobacter pylori 

4.3.1   Identified by Western blotting 

      The results of Western blotting using antibody against rHSP20 to probe different H. 

pylori cellular fractions showed that HSP20 is mainly present in the surface fraction of H. 

pylori as identified in the AGE and OMP fractions (Figures 4.6A). In contrast, using anti-

serum against HSP60 as the internal control, HSP60 is present in both AGE and 

cytoplasmic fractions (Figure 4.6C).   

 

     4.3.2   Identified by immuno-gold label TEM 

     In the immuno-gold labeled TEM study, there was no gold particle observed on the 

two negative controls, where H. pylori was probed with Protein A-gold alone or 

incubated with pre-immune rabbit serum and probed with Protein A-gold (Figures 4.8A 

& B). In contrast, when H. pylori was incubated with antibody against rHSP20 and 

Protein A-gold, gold particles of 10nm and 20nm were observed to localize on the cell 

surface of H. pylori (Figures 4.8C & D). Upon Triton X-100 treatment, the cell 

membrane was partially broken; hence the gold particles were also observed on the 

remnants of cell membrane (Figure 4.9A & B). However, in Triton X-100 treated E. coli 

cells (serving as the negative control), there was no gold particle observed (Figure 4.9C). 

But, when Triton X-100 treated H. pylori cells were labeled with HSP60 antiserum and 

5nm immuno-gold (serving as the internal control), particles were observed mainly in the 

cytoplasmic regions with some on the surface (Figure 4.9D).   
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                                      A. 

 
 

                                       
                                      B. 
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                                      C. 

 
 
 

                                      D. 

 
 

Figure 4.8 TEM of H. pylori NCTC 11637 cells labeled with different antibodies 
A, labeled with immuno-gold alone (negative control); B, labeled with preimmune rabbit IgG and immnuo-gold 

(negative control); C, labeled with antibody against rHSP20 IgG and 10 nm immuno-gold particles; D, labeled with 

antibody against rHSP20 and 20 nm immuno-gold particles. Arrows show sites of localization of HSP20. 
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                                      A. 

 
 
 

                                      B.  
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                                           C. 

 
 
 

                                            D. 

 
 

Figure 4.9 TEM of H. pylori NCTC 11637 cells labeled with different antibodies 

after Triton X-100 treatment 
A, labeled with rHSP20 antibody and 10 nm immuno-gold after 10 minutes treatment with Triton X-100; B, labeled 

with rHSP20 antibody and 10 nm immuno-gold after 20 minutes treatment with Triton X-100: C, E. coli cells labeled 

with rHSP20 antibody after treatment; D, labeled with HSP60 antiserum and 5nm immuno-gold after treatment. Single 

arrows show the surface localization, double arrows show the cytoplasmic localization. 
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4.4   Antibody titer against HSP20 in patients with gastroduodenal diseases 

      It is noted that there was no significant difference (p>0.3) examined in the antibody 

level against rHSP20 between the control subjects and patients with different 

gastroduodenal diseases. In the disease group, the antibody level against rHSP20 was the 

same for all patients with or without H. pylori infections as well as the normal subjects 

tested (Table 4.1).  

 

Table 4.1 Sero-prevalence to HSP20 in patients with different gastroduodenal 

diseases with or without H. pylori infection Mean OD492 

 Patients with gastroduodenal diseases Healthy 

individuals 

 PUD NUD  

H. pylori status1 Positive Negative Positive Negative ND 

OD492  

(CI)2 

0.211  

(0.191-0.232) 

0.216  

(0.202-0.230) 

0.220  

(0.190-0.249) 

0.231  

(0.228-0.233) 

0.234  

(0.195-0.259) 

No. of cases 17 8 17 15 32 

p value3 0.661 0.324 0.574 

1, Positive or negative status based on histological examination; 2, Optical density at 492 nm and 95% 
confident interval of OD value. 3, All p values are from two sided tests. PUD: duodenal ulcer & gastric 
ulcer; NUD: gastritis & non-ulcer dyspepsia; ND: not done. 
 

 

4.5   Construction of hsp20-isogenic Helicobacter pylori  

      4.5.1   Construction of the gene-targeting vector 

      Two flanking DNA fragments were amplified by PCR based on H. pylori SS1 

genomic DNA, 5’ fragment is 2700 bp long while the 3’ fragment is 2549 bp as shown in 
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Figures 4.10A & B. Kanamycin resistant gene (aphA) was obtained by digestions with 

EcoRI restriction enzyme on vector pILL 600 (kindly provided by A Labigne, Pasteur 

Institute, Paris, France) as shown in Figure 4.10C.  

      These three DNA fragments were separately inserted into cloning vector pBluescript 

SK(+) by BamHI + PstI, SalI + ApaI and EcoRI sites respectively and identified by 

resctirction enzyme digestion and sequencing (Figure 4.11). Recombinant pBluescript 

SK(+) with insertion of aphA gene (pBS- aphA) which was 4340 bp in length was chosen 

as backbone for ligation of the two flanking fragments. The total length of recombinant 

vector with insertion of aphA gene and 5’ fragment (pBS-5’-aphA) was 7040 bp, which 

was identified by BamHI + PstI restriction enzyme digestion as shown in Figure 4.12A. 

The recombinant vector with insertion of aphA gene together with both 5’ and 3’ flanking 

fragments (pBS-5’-aphA-3’) was 9589 bp, which was identified by SalI + ApaI 

restriction enzyme digestion (Figure 4.12B) and sequencing. The sequences of HP0513 

from H. pylori SS1 shows 90% identity to H. pylori 26695 while the rest HP0514 shows 

96%; HP0515 shows 97%, HP0516 shows 98% and HP0517 shows 92% identity 

respectively to the corresponding gene fragments of H. pylori 26695.  
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            A. 

 
 

             B. 

 
 

                                                                C. 

 
 
 

Figure 4.10 Amplification of flanking DNA fragments and extraction of aphA gene  
A, PCR amplification of 5’ flanking fragment of HP0513, 0514 & part of 0515 which was 2700 bp (lanes 1 & 2); B, 

PCR amplification of 3’ flanking fragment of part of HP0515, 0516 & 0517 which was 2549 bp (lanes 1 & 2); C, 

Kanamycin resistant gene (aphA) fragment as digested by EocRI on pILL600 which was 1340 bp (lane 1); M, 1 kb 

DNA ladder (NEBiolabs, Beverly, MA, USA). 
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                A.    

 
 

         B. 

 
 

                                                     C. 

 
 
 

Figure 4.11 Identification of recombinant plasmids 
A, Recombinant plasmid with insertion of 5’ flanking fragment digested with BamHI + PstI (lane 1); B, Recombinant 

plasmid with insertion of 3’ flanking fragment digested with SalI + ApaI (lane 1); C, Recombinant plasmid with 

insertion of aphA gene from pILL600 digested with EcoRI (lanes 1 & 2); M, 1 kb DNA ladder. 
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A. 

 
 
 

 

A, Identification of recombinant plasmid 

with insertion of 5’ flanking fragment & 

aphA gene (pBS-5’-aphA)  

 

Lanes 1 & 2, pBS-5’-aphA digested with 

BamHI & PstI respectively giving a single 

7040 bp fragment; lane 3, pBS-5’-aphA 

digested with BamHI + PstI releasing the 5’ 

fragment of 2700 bp from the vector; lane 4, 

pBS-5’-aphA digested with EcoRI releasing 

the aphA fragment of 1340 bp from the 

vector; M, 1 kb DNA ladder. 

 

B. 

 
 

 

B, Identification of recombinant plasmid 

with insertion of two flanking fragments 

and aphA gene (pBS-5’-aphA-3’) 

 

 Lane 1, uncut recombinant plasmid pBS-5’-

aphA-3’; lane 2, pBS-5’-aphA-3’ digested 

with SalI + ApaI releasing the 3’ fragment of 

2549 bp from the vector pBS-5’-aphA; lane 

3 & 4, pBS-5’-aphA-3’ digested with SalI & 

ApaI respectively giving a single 9589bp 

fragment; M, 1 kb DNA ladder. 

 

 
Figure 4.12 Identification of recombinant plasmid pBluesript SK with insertion of various 

gene fragments  
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      4.5.2   Identification of hsp20-isogenic H. pylori  

      After the transformation of H. pylori SS1 with hsp20::aphA gene-targeting vector, 5 

kanamycin resistant colonies were selected from the kanamycin containing (25 µg/ml) 

chocolate blood agar (CBA) plates. The genomic DNA of these 5 clones showed DNA 

fragments that contain aphA gene fragment of different sizes when amplified using 

different primers (Figure 4.13A-C). When a pair of primers T7 (from vector) and KO3 

(from 3’ flanking fragment) were used, there was no band amplified from the genomic 

DNA of the 5 clones as compared with the positive control in which there was a band of 

2614 bp amplified based on the targeting vector (Figure 4.13D). This result excluded the 

possibility of the integration of targeting vector in H. pylori genome. 

      When the genomic DNA of the 5 kanamycin resistant clones were Southern blotted, 

the genomic DNA fragments with insertion of kanamycin resistant cassette were 

highlighted by the probe of aphA gene (1.34 kb) while the band was absent in the 

negative control of H. pylori SS1 genomic DNA (Figure 4.14A). Similarly, there was no 

signal detected in the 5 clones when probed with pBluescript SK plasmid DNA (Figure 

4.14B). This result further confirmed that the acquisition of kanamycin resistance in the 5 

selected H. pylori clones is not caused by the integration of targeting vector in bacterial 

genome but by the insertion of kanamycin resistant gene at hsp20 gene locus in H. pylori 

genome. 

      One of the clones was chosen for the expression of HSP20 using Western blotting. By 

Western blotting, the protein band about ~ 18 kDa was absent from the clone but a dark 

band of 18 kDa was present in the positive control (H. pylori SS1) when probed with 

antibody against rHSP20 (Figure 4.15A). As the internal control, a specific intensive 
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band ~ 60 kDa was present in both kanamycin resistant clone and the positive control 

when probed with anti-HSP60 serum (Figure 4.15B).  

      The results of PCR amplification, Southern blotting and Western blotting show that 

homologous recombination occurred between the targeting vector and the bacterial 

genome at the gene locus of hsp20. The transcription of hsp20 gene was disrupted by 

kanamycin resistant gene (aphA). The obtained 5 kanamycin resistant clones were shown 

to be hsp20-isogenic H. pylori.  
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              A. 
 

 
 

 
 

 

             B. 

 
 

 

 

             C. 

 
 

 

 

           D.  

    

 

 

 
 

Figure 4.13 PCR identification of kanamycin resistant H. pylori clones 
The left hand spanel shows the PCR amplification of different fragments using various primers; the right hand panel is 

a diagrammatic representation of the positions of primers in the targeting vector.  

Lanes 1 – 5, the amplifications were based on the genomic DNA of 5 kanamycin resistant H. pylori clones (labeled as 1 

–5); N, negative control, the amplification was based on H. pylori SS1 genomic DNA; P, positive control, the 

amplification was based on targeting vector DNA; M, 1 kb DNA ladder. Blue arrows indicates the position of primers 

used.      
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   A. 

  B. 

 
  C. 

 

 
 
 
 

 

Figure 4.14 Identification of 

kanamycin resistant H. pylori clones 

by Southern blotting 

 
A, DNA gel image before blotting; B, Southern 

blotting probed with aphA gene (1.34kb), the 

fragment containing aphA gene was detected as 

indicated by arrow; C, Southern blotting probed by 

pBluescript SK plasmid DNA; lane 1 – 5, digested 

genomic DNA of 5 kanamycin resistant H. pylori 

clones; N, digested genomic DNA of H. pylori SS1 

serving as a negative control, P, targeting vector 

DNA serving as a positive control.    

 

 

 

 

 

 
Figure 4.15 Expression of HSP20 in 

hsp20-isogenic H. pylori analyzed 

using Western blotting  
5 µg proteins were loaded on SDS-PAGE and 

blotted on PVDF membrane; specific bands were 

indicated by arrows.  A, WB probed with 

antibody against rHSP20, B, WB probed with 

antiserum against HSP60. P, positive control 

(AGE of H. pylori SS1); T, kanamycin resistant 

H. pylori clone. 
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4.6   Adherence and colonization study of HSP20 in Helicobacter pylori  

4.6.1   Adhesion of H. pylori to cell lines 

      The adhesion assay of H. pylori to Kato III and AGS cells analyzed using ELISA and 

flow cytometry showed that the adherence of hsp20-isogenic H. pylori to cells was 8 – 

25% lower than that of wild type H. pylori (Table 4.2). However, no significant 

difference (p>0.1) in adherence of the two H. pylori (wild type and hsp20-isogenic 

mutant) strains to cell lines was observed in vitro based on the statistical analysis.  

 

Table 4.2 Adherence of hsp20-isogenic H. pylori compared with the wild type  

Adherence to KATO III (%) Adherence to AGS (%) Assays Bacteria: cell 

ratio Mutant / WT  Mutant /WT 

50:1 83.2 ± 1.9  88.3 ± 1.0  

100:1 86.5 ± 0.9  91.6 ± 0.8 

ELISA 

200:1 74.9 ± 1.1  86.3 ± 1.2 

50:1 86.7 ± 0.5 86.4 ± 0.5  

100:1 85.6 ± 0.4  83.9 ± 0.6 

Flow 

Cytometry 

200:1 91.6 ± 0.4  88.0 ± 0.5 

Mutant: hsp20-isogenic H. pylori; WT: wild type H. pylori.   (p>0.1) 

 

      4.6.2   Analysis of H. pylori colonization in mice  

      4.6.2.1   Microbiological analysis 

      The results of microbiological analysis of mice biopsy samples are shown in Table 

4.3. The growth of pinpoint, transparent colonies on the agar plate are as shown in Figure 
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4.16A. Using Gram stain, gram-negative bacteria were stained as pink spiral organism 

(Figure 4.16B). The urease test was positive as indicated by the color change from yellow 

to pink; oxidase positive bacteria developed deep blue color on the filter paper with 

oxidase reagent while catalase positive bacteria produced effervescence in the presence 

of 3% H2O2.  

 

      4.6.2.2   Histological analysis 

       Immunohistological stained gastric tissue sections from representative tissues are 

shown in Figure 4.17. Wild type H. pylori inoculated mice revealed brown color, spiral, 

rod-shaped bacteria on the luminal surface (Figure 4.17B) where bacteria were scattered 

throughout the corpus and were commonly embedded in mucus layer. However, in the 

sections of hsp20-isogenic H. pylori mutant inoculated mice stomach, there was no 

distinguishable bacterial cell observed and the gastric mucus layer was relatively intact 

and clear (Figure 4.17C) as negative control of mice stomach (Figure 4.17A) when 

compared with that of the wild type (Figure 4.17B). The results of histological analysis 

are as shown in Table 4.3. 

 

      4.6.2.3   RT-PCR analysis  

      The amplified 16s rRNA and urease C gene fragment of H. pylori from mice biopsy 

samples were 390 bp and 294 bp respectively as shown in Figures 4.18A & B. The 

amplification of GAPDH gene fragment from gastric tissue was 451 bp as shown in 

Figure 4.18C which was serving as the internal control. The results of RT-PCR analysis 

of mice biopsy samples are as shown in Table 4.3. 

 108



Results 

 

Table 4.3 Analysis of H. pylori inoculated mice biopsy samples 

H. pylori  Assays Rate of H. pylori detected Total 

inoculated  2 weeks 4 weeks 8 weeks  

Microbiological 5/5  5/5  5/5  15/15 (100%) 

Histological 5/5 5/5 5/5 15/15 (100%) 

Wild Type 

H. pylori 

RT-PCR 5/5  5/5  5/5  15/15 (100%) 

      

Microbiological 0/5 0/5 0/5 0/15 (0%) 

Histological 0/5 0/5 0/5 0/15 (0%) 

hsp20-isogenic 

H. pylori  

RT-PCR 0/5 0/5 0/5 0/15 (0%) 

 
 

 

 

A. 

 

B. 

 
 

 
Figure 4.16 Morphological features of H. pylori  

A, The pinpoint colonies of H. pylori on chocolate blood agar plate; B, gram staining of a 3-day old H. pylori culture 

(1,000 × magnifications). Pink color of spiral-shaped bacteria indicates that it’s gram-negative bacteria (as arrows 

shown in a very crowded smear).   
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 A. 

 
 

 B. 

 

                                             C. 

 
 

 
Figure 4.17 Immunohistological detection of H. pylori in mice biopsy samples 

A, negative control of mice biopsy samples; B, wild type H. pylori inoculated mice biopsy sample, arrows show the 

location of H. pylori; C, hsp20-isogenic H. pylori inoculated mice biopsy sample.  (1000 × magnification).   
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      A. 

 

     B.  

 

 
                             C.  

 
 

 
Figure 4.18 RT-PCR analysis of H. pylori infected mice biopsy samples 

A, Amplification of 16s rRNA gene fragment (390 bp) of H. pylori; B, Amplification of urease C gene fragment (294 

bp) of H. pylori; C, Amplification of GAPDH gene fragment (451 bp). In A & B, lanes 1 – 5, samples from wild type 

H. pylori infected mice; P, positive control using H. pylori SS1 genomic DNA as template. In C, lanes 1 – 3, samples 

from mice negative controls; lanes 4 – 8, samples from wild type H. pylori infected mice; lanes 9 – 13, samples from 

hsp20-isogenic H. pylori infected mice. M, 100 base pair DNA ladder. 
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      4.6.2.4   Antibody detection in H. pylori inoculated mice 

      The total antibody against H. pylori in serum were detected throughout the course of 

H. pylori infection in mice as monitored using ELISA. The total antibody level in mice 

inoculated with wild type H. pylori was significantly higher (p<0.01) than that in the 

hsp20-isogenic H. pylori inoculated mice as shown in Figure 4.19A. However, there was 

no difference in the antibody level against HSP20 in both H. pylori inoculated mice as 

illustrated in Figure 4.19B.  

 

A. B. 

 
Figure 4.19 ELISA analysis of antibody level in H. pylori inoculated mice 

A, Total antibody (IgM + IgG) against H. pylori detected in both H. pylori inoculated mice; B, Antibody level against 

HSP20 in mice. WT, wild type H. pylori inoculated mice; MUTANT, hsp20-isogenic H. pylori inoculated mice; 

NEGATIVE, negative control mice fed with BHI broth alone. * The differences between wild type and hsp20-isogenic 

H. pylori mutant inoculated mice were compared and statistically significant (p<0.01). 

 

4.7   Protein profile of Helicobacter pylori  

      To examine whether disrupted HSP20 would affect the expression of any proteins in 

hsp20-siogenic H. pylori mutant, the protein profiles of both wild type and the isogenic 

mutant H. pylori were analyzed on SDS-PAGE and 2D gel electrophoresis (2DE). The 
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results showed that the protein profiles of the isogenic mutant were visually similar as 

those of the wild type H. pylori on both SDS-PAGE and 2DE (Figure 4.20A, B & C). 

Interestingly, a clear spot was demonstrated in the Western blotting of wild type 2DE but 

not that of the isogenic mutant when probed with antibody against rHSP20 (Figure 4.20 

D &E).  

 
              A. SDS-PAGE of Hp 

 
 

          C. 2-DE of hsp20-isogenic Hp 
 

                B. 2-DE of wild type Hp 
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D. WB of wild type 2-DE 

 

E. WB of hsp20-isogenic mutant 2-DE 

 
 

Figure 4.20   Protein profiles of H. pylori 
A, SDS-PAGE of H. pylori total protein extract. WT, wild type H. pylori, Mu, hsp20-isogenic H. pylori; 

B, Two dimensional gel electrophoresis of wild type H. pylori total protein extract; 

C, Two dimensional gel electrophoresis of hsp20-isogenic H. pylori total protein extract. 

M, Prestained Precision Protein Standards (Biorad). 

 

4.8   Functional status of Helicobacter pylori adhesins  

      The DNA sequencing results showed that there were 6, 7 and 7 CT repeats in the 

signal sequences of oipA, hopZ and sabA genes respectively (Table 4.4). The CT repeats 

were consistent in both wild type H. pylori and hsp20-isogenic H. pylori mutant for each 

gene (Table 4.4). Based on the deduced amino acids in this region, it showed that the 

open reading frames (ORF) of these three genes are in-frame (“on” status) in both wild 

type and hsp20-isogenic H. pylori strains. 

      RT-PCR showed that all these three genes (oipA, hopZ and sabA) are transcribed in 

both wild type and hsp20-isogenic H. pylori strains tested (Figure 4.21A). This further 

confirms the “on” status of these genes based on the results obtained from DNA 
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sequencing. However, babA2 gene was absent in both wild type and the isogenic H. 

pylori. As the internal control, the transcription of 16s rRNA gene was consistent in both 

wild type and the isogenic H. pylori (Figure 4.21B). 

 
 

Table 4.4 Functional status of H. pylori adhesins 

Gene Strain Partial DNA sequences Number 
of CT 

repeats 

Gene 
status

Wild 
type 

H. pylori 

ATGAAAAAAGCTCTCTTACTAACTCTCTCTCTCTCGTTTTGG 
 M    K      K      A    L     L     L      T    L      S    L     S     F     W 
 

6 On  
 

oipA 
(HP0638) hsp20-

isogenic 
H. pylori 

ATGAAAAAAGCTCTCTTACTAACTCTCTCTCTCTCGTTTTGG 
 M    K      K      A    L     L     L      T    L      S    L     S     F     W 
 

6 On  

Wild 
type 

H. pylori 
 

ATGAAAAAAACCCTTTTACTCTCTCTCTCTCTCGCTTCATCG 
 M     K      K      T     L     L     L     S    L     S     L     A     S      S 
 

7 On   

HopZ 
(HP0009) hsp20-

isogenic 
H. pylori 

 

ATGAAAAAAACCCTTTTACTCTCTCTCTCTCTCGCTTCATCG 
 M     K      K      T     L     L     L     S    L     S     L     A     S      S 
 

7 On  

Wild 
type 

H. pylori  
ATGAAAAAGACAATTCTGCTCTCTCTCTCTCTCGCTTCATCG 
 M     K     K     T      I        L     L      S     L      S     L     A     S      S 
 

7 On   
 

sabA 
(HP0725) hsp20-

isogenic 
H. pylori 

 

ATGAAAAAGACAATTCTGCTCTCTCTCTCTCTCGCTTCATCG 
 M     K     K     T      I        L     L      S     L      S     L     A     S      S 
 

7 On  

The CT dinucleotide repeats are highlighted in green colour.  

 

          A.  

 
 

                B.  

 

 
Figure 4.21 RT-PCR analysis of wild type and hsp20-iosgenic H. pylori adhesins  
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A, RT-PCR analysis of three adhesins of H. pylori; lanes 1 & 2, oipA gene fragment (457 bp); lanes 3 & 4, hopZ gene 

fragment (611 bp); lanes 5 & 6, sabA gene fragment (643 bp); lanes 1, 3 & 5, RT-PCR amplified based on wild type H. 

pylori; lanes 2, 4 & 6, RT-PCR amplified based on hsp20-isogenic H. pylori. M1, 1 kb DNA ladder; M2, 100 based 

pair DNA ladder. 

B, RT-PCR analysis of 16s rRNA gene fragment (390 bp); WT, RT-PCR amplified based on wild type H. pylori; Mu, 

RT-PCR amplified based on hsp20-isogenic H. pylori; M, 100 base pair DNA ladder. 

 

 

4.9   Analysis of protein interacting with HSP20 

      4.9.1   Co-immunoprecipitation and Western blotting analysis   

      A specific band with molecular weight of 100-150 kDa was pulled down by antibody 

against rHSP20 from the total protein extract of hsp20 wild type H. pylori as shown in 

Figure 4.22. This specific protein band was only present in the CO-IP with wild type H. 

pylori but absent from hsp20-isogenic H. pylori protein extract. The same results were 

replicated under four independent experiments.  

This specific protein band was identified as the cytotoxicity associated 

immunodominant antigen (120 kDa, CagA) of H. pylori by mass spectrometry which 

accession No in NCBI protein database is P55746. The matched peptides and spectrum 

are shown in Figure 4.23. The same results were obtained in four independent 

experiments.    

      Based on the results obtained from CO-IP and protein identification, Western blotting 

analysis using different antibodies was carried out for CO-IP test. In the Western blotting 

analysis probed with antiserum against rCagA, a specific band with molecular weight of 

100 – 150 kDa was lighted up in the CO-IP protein mixture of wild type H. pylori but 

absent in both hsp20-isogenic H. pylori and CagA negative H. pylori strains (Figure 

4.24A). When WB probed with antibody against rHSP20, a specific protein band of ~ 18 
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kDa was recognized in the CO-IP protein mixture of both wild type and CagA negative 

H. pylori strains but absent in hsp20-isogenic H. pylori (Figure 4.24B). These results 

further confirmed the results obtained from protein identification based on MS.   

 

=  
 

Figure 4.22 SDS-PAGE (12%) analysis of CO-IP 
SDS-PAGE of CO-IP with antibody against rHSP20; lane 1, CO-IP of E. coli cells with rHSP20 antibody (negative 

control); lane 2, CO-IP of wild type H. pylori proteins with pre-immune rabbit serum (internal negative control); lane 3, 

CO-IP of hsp20-isogenic H. pylori proteins with rHSP20 antibody; lane 4, CO-IP of wild type H. pylori proteins with 

rHSP20 Ab. M, prestained Precision Protein Standards (Biorad).  
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Figure 4.23 Protein identification in CO-IP by MS MALDI-TOF 
Upper, Amino acids sequences of CagA (acc. P55746 in NCBI) identified; the matched peptides were in gray 

color and underlined. Lower, spectrum of trypsin digested protein; 11 out of 34 peptides matched with 32% identity. 

 

 

                                       A.  

 
 

                                       B.  

 
 

 
Figure 4.24 Western blotting analysis of CO-IP 

A, WB probed with antiserum against rCagA; B, WB probed with antibody against rHSP20. Lane 1, CO-IP of wild 

type H. pylori; lane 2, CO-IP of CagA negative H. pylori; lane 3, CO-IP of hsp20-isogenic H. pylori; M, prestained 

Precision Protein Standards (Biorad). 
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      4.9.2   Transcription of cagA in H. pylori detected by RT-PCR 

      The transcription of cagA gene in both wild type and hsp20-isogenic H. pylori cells 

was detected using RT-PCR analysis. As shown in Figure 4.25A, the fragment of CagA 

(852 bp) was amplified in both H. pylori cells irrespective of ages of culture. As the 

internal controls, the amplification of 16s rRNA was detected in both H. pylori cells as 

shown in Figure 4.25B while the amplification of hsp20 gene was only detected in wild 

type H. pylori as shown in Figure 4.25C. 

 

            A. 

 

                B. 

 
                                                             C. 

 
 

Figure 4.25 cagA transcription in H. pylori analyzed by RT-PCR  
A, Amplification of cagA gene fragment (852 bp) in H. pylori; B, Amplification of 16s rRNA gene fragment (390 bp) 

C, Amplification of hsp20 gene fragment (543 bp). Lanes 1 & 2, RT-PCR based on 2-day and 3-day old wild type H. 

pylori, respectively: Lanes 3 & 4, RT-PCR based on 2-day and 3-day old hsp20-isogenic H. pylori, respectively; M1, 

100 bp DNA ladder; M2, 1 kb DNA ladder.  
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4.9.3   Identification of CagA in different H. pylori sub-cellular fractions  

      CagA protein was detected in all fractions extracted (TP, AGE & OMP) from wild 

type H. pylori when probed with antiserum against rCagA (Figure 4.26A upper, lanes 1 – 

3). However, CagA was only detected in TP and OMP fractions but absent in AGE 

fraction of hsp20-isogenic H. pylori (Figure 4.26A upper, lanes 7 – 9). Furthermore, the 

intensity of CagA protein band detected in OMP fraction of the mutant is significantly 

lower than that of the wild type when equal amount of protein was loaded. Using CagA 

negative strain as a negative control, CagA protein was not detected in all the tested 

fractions (TP, AGE & OMP) (Figure 4.26A upper, lanes 4 – 6). As an internal control, 

HSP60 was detected in all test fractions of wild type, CagA negative and hsp20-isogenic 

H. pylori strains (Figure 4.26A lower).   

     In order to determine whether the presence of HSP20 affects the presence of CagA in 

H. pylori, rHSP20 was added into respective H. pylori (wild type, the isogenic and CagA 

negative) cultures. Interestingly, with the addition of rHSP20, CagA protein was detected 

in all the fractions (TP, AGE & OMP) of both wild type and hsp20-isogenic H. pylori 

strains (Figure 4.26B upper, lanes 1 –3 & 7 – 9) using Western blotting. Furthermore, the 

CagA protein band detected in all fractions of both wild type and the isogenic H. pylori 

showed similar intensity regardless of various concentrations of rHSP20 added (0.1 – 1 

µg). There was no CagA detected in any of the fractions of CagA negative H. pylori 

(Figure 4.26B upper, lanes 4 – 6). As the internal control, HSP60 was also detected in 

every fraction of wild type, the isogenic and CagA negative H. pylori strains (Figure 

4.26B lower).  
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                              A.  

 

                            B.  

 
 

 
Figure 4.26 Presence of CagA in different H. pylori sub-cellular fractions 

A, H. pylori grown under normal conditions (broth culture); B, representative of CagA partition in H. pylori grown 

with the addition of rHSP20 for 24 hours. Lanes 1, 4 & 7, total protein (TP) extract; lanes 2, 5 & 8, acid glycine extract 

(AGE), lanes 3, 6 & 9, outer membrane protein (OMP) extract. Lanes 1 –3, protein extracts of wild type, lanes 4 – 6, 

protein extracts of CagA-negative; lanes 7 – 9, protein extracts of hsp20-isogenic mutant. M, prestained Precision 

Protein Standards (Biorad). An amount of 10 µg protein was loaded per lane in 10% SDS-PAGE. 

 

      4.9.4   Antibody against CagA in H. pylori infected mice 

      The antibody levels against CagA in the isogenic mutant infected mice detected were 

significantly lower (p<0.05) than that of the mice infected with wild type H. pylori 

(Figure 4.27A). However, the antibody against Le (X) and Le (Y) were insignificant 

between the mice infected with H. pylori wild type and the isogenic mutant (Figure 4.27B 

& C). As bacterial Lewis antigen has been reported to be involved in the adhesion of H. 

pylori (Edwards et al., 2000), the presence of antibodies against Le (X) and Le (Y) is 
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suggested to be induced during the adhesion of H. pylori prior to the releasing of 

virulence factors.  

  

A.  
 

 
 

B.  

 

C.  

 

 
Figure 4.27 Antibody against CagA detected in H. pylori inoculated mice 

A, antibody against CagA detected in H. pylori infected mice.  B, antibody against Le (X) antigen in H. pylori infected 

mice; C, antibody against Le (Y) antigen in H. pylori infected mice. WT, wild type H. pylori inoculated mice; 

MUTANT, hsp20-isogenic H. pylori inoculated mice; NEGATIVE, negative control mice fed with BHI broth alone.  

* The difference between wild type H. pylori inoculated mice and mutant was statistically significant (p<=0.05). 

 

4.10   Use of HSP20 for the epidemiological study in Helicobacter pylori 

      4.10.1   Nucleic acid sequences analyses 

      The nucleic acid sequences of hsp20 from 227 H. pylori isolates showed an open 

reading frame of 540 bp with neither deletion nor insertion. However, upon comparison 

there were a total of 219 polymorphic sites observed which were scattered in the whole 

gene fragment, showing high level of synonymous sequence variations and most of the 

nucleotide substitutions (57.99%) were at the third codon position. The (G+C)% content 

of all hsp20 sequences analyzed ranged from 41.25% to 44.57% with an average of 

43.12%. The percentage of the differences between pairs of strains at synonymous 

nucleotide positions (Ks) was 15.9% and 1.25% at the non-synonymous positions (Ka). 
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The ratio of Ks/Ka was 12.65 that is lower than that of some housekeeping genes (e.g., 

atpD: 82.5; scoB: 37.7; glnA: 22 and recA: 20.3) as reported by Maggi et al. (2001). 

 

      4.10.2   Phylogenetic analysis 

      The dendrogram as shown in Figure 4.10 was generated based on the analyses of 

nucleic acid sequences of hsp20 from 225 tested strains and the 2 established strains 

(26695 & J99) which genomic DNAs have been sequenced (Tomb et al., 1997; Alm et 

al., 1999). Using PHYLIP and ML algorithms, the inferred taxonomic distance between 

different H. pylori strains was arrived as illustrated in Figure 4.28. Two major clusters (A 

& B) were observed: a larger group A and a smaller group B. The isolates in group A 

shows high similarity in its DNA sequences and further bifurcates into two subgroups, 

namely A1 and A2. Interestingly, subgroup A1 and group B were mainly from Asian and 

non-Asian origins, respectively. However, subgroup A2 comprises a mix of H. pylori 

isolates of Asian and non-Asian origins. In group A1 (n=119), all the isolates except for 

CR10498 (Costa Rica), SJM1 and SJM14 (Peruvian) and Cau1026 (an isolate from an 

European visitor in Singapore) are entirely from Asian countries. There were 34 Asian 

strains and 36 non-Asian strains that made up subgroup A2 (n=70). The remainder (n=35) 

including four Singapore strains (Sin1059, 541, 1134 & 1024, all were isolates from 

Malay ethnic origin) constituted group B. There were 3 strains (J1186, HK77 and 

SJM19) which were not aligned to any of the groups. The percentage of distribution 

shows that Asian isolates are present in 96.64% (group A1; 115/119), 48.57% (group A2; 

34/70) and 11.43% (group B; 4/35) while non-Asian isolates are present in 3.36% (group 

A1), 51.43% (group A2) and 88.57% (group B). 
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Figure 4.28 The phylogenetic analysis of the 227 H. pylori isolates based on hsp20 

DNA sequences 

Isolates from A: Lithuania; Aus: Australia; B: Span; Cau: other Singapore isolates; CR: Costa Rica; HK: Hong Kong; 

I: India; J: Japan; Sin: Singapore; SJM: Peru; Swe: Sweden. The groups are indicated as A (Asian) & B (non-Asian). 

The bootstrap replicates are shown at the nodes, the scale bar represents the substitution rate per site. PHYLIP (version 

3.6) and ML algorithm were used to conduct the analysis. 

 

      The observation was further confirmed by the estimated DNA divergence as shown in 

Table 4.5. The nucleotide divergence (D) within group A1 (2.43%), A2 (3.38%) or group 

B (3.69 %) was relatively lower than the D value between groups. The divergence 

between group A1 and B (6.03 %) was the highest followed by A2 and B (5.29 %) or A1 

and A2 (4.34%). The value of estimated Ks between different groups (Table 4.5) from 

high to low was in the order of A1 vs. B (0.212); A2 vs. B (0.190) and A1 vs. A2 (0.185).  

Furthermore, it is noted that the divergence differences between different hsp20 gene 

groupings were significantly lower when compared with the divergence between vacA 

alleles m1 and m2 (24.9%) or the Ks between m1 and m2 (0.46) as reported by Atherton 

et al. (1999). 
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Table 4.5 Comparison of DNA polymorphism between geographical groups 

Comparisons D (%) Ks Ka Ratio of Ks/Ka Reference 

A1 vs. A1 2.43 ± 0.06 0.094 0.006 15.6 This study 

A2 vs. A2 3.38 ± 0.09 0.148 0.005 29.6 This study 

B vs. B 3.69 ± 0.19 0.152 0.009 16.9 This study 

A1 vs. A2 4.34 ± 0.11 0.185 0.009 20.5 This study 

A1 vs. B 6.03 ± 0.17 0.212 0.024 8.3 This study 

A2 vs. B 5.29 ± 0.17 0.190 0.019 10 This study 

vacA m1 vs. m2 24.9% 0.46 0.246 1.9 Atherton et al. 1999 

atpD  - - - 82.5 Maggi et al. 2001 

scoB - - - 37.7 Maggi et al. 2001 

glnA - - - 22 Maggi et al. 2001 

recA - - - 20.3 Maggi et al. 2001 

D: percentage of the average number of nucleotide substitutions per site; Ks: the mean differences between 

pairs of strains at synonymous nucleotide position; Ka: the mean differences between pairs of strains at 

non-synonymous nucleotide position. 

 

4.10.3   Amino acid sequences analyses 

      The corresponding amino acid sequences of HSP20 from 227 H. pylori isolates were 

deduced from DNA sequences showed a total number of 51 substitutions. Of these, 79% 

of the amino acid substitutions belong to the same polarity group, e.g. from polar to polar 

or from hydrophobic to hydrophobic. The remaining 21% were substituted between 

different groups, e.g. switching between polar and hydrophobic.  

       There are seven types of substitutions observed at 14th - 16th amino acid residues. 

These sequences were based on H. pylori J99 which substitutions is F-D-N at 14th –16th 

amino acids, H. pylori 26695 for L-N-H, Singapore RH54 for M-G-G, Swedish 58 for M-

E-G, Japanese GS11 for I-G-G, Swedish 24 for M-R-G and Swedish 88 for F-N-H. The 
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substitutions corresponding to positions 14th – 15th – 16th were: M-G-G (~76%), M-E-G 

(~4%), M-R-G (~0.4%), I-G-G (~3%) constituting the M-G-G cluster while the F-D-N 

cluster comprises F-D-N (~13.6%), L-N-H (~2.2%) and F-N-H (~0.8%). The substitution 

linkages were more diverse among the non-Asian group (M-G-G, F-D-N, L-N-H, M-E-

G, F-N-H & M-R-G) than the Asian group (M-G-G, I-G-G, M-E-G & F-D-N). 

Interestingly, substitution linkage (M-G-G) predominates among the Asian group (91%, 

143/158) while the F-D-N substitution linkage is found more frequently in H. pylori 

isolates obtained from non-Asian countries (37.5%, 27/69) (Tables 4.6). Among the 

seven observed substitution linkages, M-G-G is the most prevalent type among all the 

isolates tested (76%, 172/227).   

 

Table 4.6 Summary of substitutions at 14th –16th amino acids sequences of HSP20 

Origins Substitutions 
 M-G-G M-E-G I-G-G M-R-G F-D-N L-N-H F-N-H

Total 
No 

Singapore (103)         
Chinese 66 1 3      
Malay 8    4    
Indian 18        

Others* 2     1   
Hong Kong (6) 6        

Japan (43) 37 2 4      
India (6) 6        

 
Asian 

Countries 
 
 
 
 
 Sub-total No 143 3 7  4 1  158 

         
Peru (12) 5    6 1   

Costa Rica (9) 3    5 1   
Sweden (16) 7 4  1 2  2  
Spain (14) 6    7 1   

Lithuania (12) 7 1   4    
Australia (4) 1 1   2    
US (26695)      1   

British (J99)     1    

non-Asian 
Countries 

 
 
 
 
 
 Sub-total No 29 6  1 27 4 2 69 
 Total No 172 9 7 1 31 5 2 227 

The number of strains obtained from each country is indicated in parenthesis. * These 3 Caucasians are visitors from 
Western countries living in Singapore (labeled as Cau393, Cau526 and Cau1026). 
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      Interestingly, substitutions at 14th – 16th amino acid residues (Table 4.7) show that 

significantly more patients with PUD (peptic ulcer disease) harbored H. pylori isolates 

with M-G-G substitution cluster (M-G-G, M-E-G, M-R-G and I-G-G) while those 

patients with NUD (non-ulcer dyspepsia) possessed H. pylori strains with F-D-N 

substitution cluster (F-D-N, L-N-H and F-N-H). Based on the disease outcome of 195 H. 

pylori strains in this study, the odds ratio (OR) of M-G-G cluster for PUD was calculated. 

It was shown that M-G-G has an OR of 4.27 in its association with PUD as compare to F-

D-N that is positively associated with NUD (Table 4.7). 

 

Table 4.7 Summary of substitutions and the disease status of H. pylori isolates 

Diseases status Odds Ratio  Type of 

substitutions  PUD NUD (OR) 

M-G-G 103 (66%) 53 (34%)  

M-G-G cluster 112 (65%) 60 (35%) For PUD: 4.27 

F-D-N 6 (33%) 12 (67%)  

 

Number of 

isolate & 

(Percentage)  
F-D-N cluster 7 (30%) 16 (70%)  

PUD: gastric ulcer & duodenal ulcer; NUD: gastritis & non-ulcer dyspepsia. 
M-G-G cluster (M-G-G, M-E-G, M-R-G & I-G-G) is positively associated with PUD.  

F-D-N cluster (F-D-N, L-N-H & F-N-H) is positively associated with NUD. 
 

      Similarly, interesting findings were observed in regards to the substitutions at 14th – 

16th amino acid residues and geographical groupings. The predominant substitution is M-

G-G that comprises 172/227 isolates (Table 4.6). Of these, 109 and 61 isolates with M-G-

G substitution are located in group A1 and A2, respectively (Table 4.8). It shows that 

group A1 is predominately the M-G-G substitution with Asian origin while group A2 
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comprises a mix of M-G-G substitution of Asian and non-Asian origins. The other 

substitutions, I-G-G (n= 7) is only found in Asian isolates and strictly distributed in group 

A1; M-E-G (n=9) substitution are distributed in both group A1 and A2 while the 

substitution M-R-G with only a single strain of Swe24 is located in group A2. In contrast, 

F-D-N substitution was found in 31/227 isolates (Table 4.6). F-D-N is the prevalent 

substitution type in group B (28/35) (Table 4.8). It is notable that except two F-D-N 

substitution (Aus3 and NCTC11637) clustered in group A2, the rest of F-D-N substitution 

cluster (F-D-N, L-N-H and F-N-H) are located in the group B including four Singapore 

isolates (Sin1059, 541, 1134 & 1024, all were isolates of Malay ethnic origin). 

       

Table 4.8 The distribution of various substitutions in geographical groupings 

A1 (n=119) A2 (n=70) B (n=35)  

Asian (115) 

Non-Asian (4) 

Asian (34) 

Non-Asian (36) 

Asian (4) 

Non-Asian (31) 

M-G-G 

Cluster 

(n=187) 

M-G-G: 109 

M-E-G: 3 

I-G-G: 7 

M-G-G: 61 

M-E-G: 6 

M-R-G: 1 

 

- 

F-D-N 

Cluster 

(n=37) 

 

- 

F-D-N: 2 F-D-N: 28 

L-N-H: 5 

F-N-H: 2 

A1: cluster of Asian origin; A2: cluster of Asian and non-Asian origins; B: cluster of non-Asian origin.   
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4.11   Protein structure prediction of HSP20 

4.11.1   HSP20 protein structure prediction 

       The predicted HSP20 protein structure shows four α helixes, ten β sheets and 14 

turns (Figures 4.29). The four α helixes, two at each side, flank the central core of ten β 

sheets that are concentrated in the middle. All the α helixes and β sheets are evenly 

distributed on both sides forming a symmetrical structure. The secondary structure 

elements were compared with two homologues as shown in Table 4.9.  

 

  
 
Figure 4.29 The 3-D structure of HSP20 (HP0515) protein predicted by homology modeling  

A, The predicted 3-D structure of HSP20 shows four α helixes (yellow), ten β sheets (green) and 14 turns (gray).  

The starting point of β sheets is highlighted in blue; the 14th to 16th amino acid residues is highlighted in red.  

 B, The position of 14th –16th amino acid residues are highlighted in color: 14th (red), 15th (yellow) and 16th 

(green). SWISS-MODEL server (http://www.expasy.org/swissmod/) was used for the homology modeling.   
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Table 4.9 Comparison of the Secondary Structure of HSP20 related protein species 

 
 Secondary structure 

Protein species α Helices β Sheets Turns / coils 

HslV (H. influenzae) 4 (10-14 AA) 10 (3-12 AA) 12 (2-10 AA) 

HslV (E. coli) 5 (3-17 AA) 10 (3-13 AA) 14 (1-7 AA) 

HSP20 (H. pylori) 4 (10-14 AA) 10 (3-12 AA) 14 (2-10 AA) 

 

 

      4.11.2   Structure comparison of substitutions at 14th – 16th amino acid residues 

      The amino acids of 14th – 16th are located at the end of the first β sheet that displays 

on the surface of predicted HSP20 protein structures (Figures 4.29 & 4.30). Interestingly, 

based on the obtained 3-D structure, the seven different substitution linkages (M-G-G, I-

G-G, M-E-G, M-R-G, F-D-N, L-N-H and F-N-H) do not affect the protein conformation 

in the 3-D model predicted (Figure 4.31).  

      The 3 amino acids variations of 14th – 16th is unique in H. pylori HSP20 species and 

is absent in both HslV of E. coli and H. influenzae as shown in the alignment of three 

homologues in Figure 4.32.  
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Figure 4.30 The predicted secondary structure of HSP20 (HP0515) protein 
The position of 3-amino-acid substitution linkages (14th – 16th amino acids) is framed in the box. 
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Figure 4.31 The predicted 3-D structure of HSP20 with different substitutions at 

14th – 16th amino acid residues  
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Figure 4.32 The alignment of amino acid sequences of HSP20 and homologues from 

other bacterial species 
The 3-amino-acid substitution linkage (14th – 16th amino acids) is framed in the box. The identical amino acids are 

highlighted in shadow.    
 

 



 
 
 
 
 
 

 
5. DISCUSSION 



Discussion  

5.1   Similarity between HSP20 and its homologue – HslV  

      The amino acid sequence of HSP20 of H. pylori 11637 shows 96% and 97% identity 

to HslV of H. pylori strains 26695 (Tomb et al., 1997) and J99 (Alm et al., 1999), 

respectively. It also shows 49% identity with HslV of E. coli (Sousa et al., 2002). Its 

homologue, HslV was determined as a peptidase that is a component of ATP-dependent 

protease (HslUV) in E. coli (Yoo et al., 1996). Based on the annotation of open reading 

frame by Tomb et al. (1997), HslU of H. pylori shows 98% identify to its homologue of 

E. coli (Tomb et al., 1997) whereas HslV of H. pylori merely shows 49% identify to its 

homologue. The lower percentage of similarity between HslV (HSP20) of H. pylori and 

its homologue as compared with that of HslU implies that HslV (HSP20) of H. pylori 

may be functionally different from its homologues in other bacteria (e.g. E. coli).    

 

5.2   Localization of HSP20 in H. pylori  

      5.2.1   Using Western blotting and immuno-gold TEM 

Using Western blotting and the antibody against rHSP20 on different H. pylori sub-

cellular fractions (Figure 4.6), a specific and intensive protein band of ~18 kDa showed 

up clearly in the membrane and membrane associated protein fraction. These findings 

indicate that HSP20 is mainly distributed on the cell surface fraction of H. pylori.  

The surface localization of HSP20 in H. pylori was further confirmed by the immuno-

gold labeled TEM where both 10 nm and 20 nm of ProteinA-gold particles were shown 

mainly attached to the cell membrane or the remnants of cell membrane of H. pylori 

(Figure 4.9A & B). These findings strengthen the results obtained from Western blotting 

analyses verifying that HSP20 is mainly localized on the cell surface of H. pylori.  
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It was noted that HSP20 when expressed as a His-tag fused recombinant protein in E. 

coli, the additional 27 amino acids upstream HSP20 sequences added another about 3 

kDa resulted in a recombinant HSP20 (rHSP20) with molecular weight (MW) of about 

23 kDa. However, the observed MW of native HSP20 was about18 kDa (Figure 4.6A & 

4.7), according to the amino acids sequences, the predicted MW of HSP20 is 20 kDa 

(Tomb et al., 1997). The major differences on MW variation of HSP20 between predicted 

and the actual observation of about 2 kDa is likely due to the preparation of protein 

extract or unknown factors in SDS-PAGE.  

  

5.2.2   Surface localization of HSP20 in H. pylori 

The surface localization of HSP20 in H. pylori identified in this study is different 

from the prediction based on the sequence similarity recommended in SWISS-PROT 

(available at http://www.isb-sib.ch), where the sub-cellular localization of HslV (HSP20) 

of H. pylori was cytoplasmic. The differences in protein localization between H. pylori 

and other bacteria are also observed in a number of protein species e.g., HSP60, HSPA, 

urease, catalase, superoxide dismutase (SOD) that are found exclusively within 

cytoplasm in other bacteria but identified as surface associated in H. pylori (Hawtin et al., 

1990; Phadnis et al., 1996; Mori et al., 1997; Vanet & Labigne, 1998).  

Although HSP20 of H. pylori is a homologue of HslV of E. coli, the similarity 

between them is relatively lower than that between the homologues of HslU or other heat 

shock proteins e.g., HSP60 or HSP70 in which the identities are as higher than as 60% or 

above (Tomb et al., 1997). The low percentage of similarity between HSP20 and HslV of 

E. coli and the surface localization of HSP20 may imply the different role of HSP20 in H. 
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pylori and further implies the presence of different function between HSP20 from HslV 

of E. coli.  

 

5.2.3   Possible mechanism for surface localization of HSP20 in H. pylori  

      In the past two decades, studies have shown that some cytoplasmic proteins are 

surface associated in H. pylori e.g., urease, HSPA, HSP60, catalase, SOD (Hawtin et al., 

1990; Phadnis et al., 1996; Mori et al., 1997; Vanet & Labigne, 1998). HSP20 is one of 

such proteins that has been identified in this study. As a surface associated cytoplasmic 

protein in H. pylori, it may indicate its functional importance for the bacterial pathogen 

against hostile gastric environment in host.  

      The mechanism responsible for the surface association of cytoplasmic proteins in H. 

pylori were explored. There are two possible ways to account for the release of 

cytoplasmic proteins: through either the way of bacterial autolysis or a specific secretion 

system. Both hypotheses are controversial among researchers. Under bacterial autolysis, 

it is claimed that many bacterial proteins appear in the supernatant of H. pylori broth 

culture and these proteins could attach onto the bacterial cell surface (Phadnis et al., 1996; 

Dunn et al., 1997). However, other researchers believed that some cytoplasmic proteins 

could be released into the extracellular space via specific or selective secretion system 

(Vanet & Labigne, 1998).  The existence of both mechanisms in H. pylori is widely 

accepted in the studies of different proteins (Cao et al., 1998; Schraw et al., 1999).  

      Based on the results obtained from this study, the surface localized HSP20 could be 

released through a specific secretion system in H. pylori. It is because the extracellular 

attached proteins through bacterial autolysis would be removed from the cell surface of H. 
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pylori with the treatment of Triton X-100 before the step of immuno-labeling. However, 

HSP20 was still found on the cell surface or the remnants of cell surface after the 

treatment of Triton X-100 (Figure 4.9A & B). Hence, it implies that HSP20 is really 

associated with bacterial cell surface and this surface association is specific and tight. It is 

unlikely to be “sticking” onto the cell surface of H. pylori. Through specific secretion 

pathway, surface associated HSP20 could execute functions extracellularlly in H. pylori. 

This would further support the existence of specific secretion system in H. pylori for 

protein releasing specifically and selectively.   

     Surface localization of HSP20 may further address its unique function in H. pylori that 

is different from HslV of other bacteria. The observation of surface localized HSP20 like 

many other proteins (HSP60, urease, catalase, SOD) in H. pylori further highlights that 

cytoplasmic proteins becoming surface associated is a specific bacterial behavior which 

could be functionally important for H. pylori to combat against the hostile gastric 

environment (acidic & oxidative) in host.  

 

5.3   Antibody against HSP20 in patients with gastroduodenal diseases         

      As a surface localized protein of H. pylori, the antibody against HSP20 in gastric 

patients’ serum was analyzed using ELISA. However, the level of antibody against 

HSP20 in patients with various gastroduodenal diseases is comparable to that of the 

control subjects (Table 4.1). More importantly, the OD readings clustered within a very 

close range (0.21 ± 0.02). Among the same disease group, the antibody against HSP20 

was not affected by the status of H. pylori infection (positive or negative). There are three 

possible reasons for this finding. Firstly, the similar level of antibody against HSP20 
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detected in the control subjects as that in the diseases group could be due to the cross 

reaction to its homologue (HslV) from other bacteria such as E. coli that is also present in 

gastrointestinal track. Secondly, low level of antibody against HSP20 detected could be 

due to an earlier exposure to H. pylori by both control subjects and patients alike, at a 

younger age. Since the association of H. pylori to humans was reported to have begun at 

an early age of 10 (Malaty et al., 2002) while the tested subjects in this study were all 

aged above 20, it might have resulted in a low but constant IgG level of HSP20. Finally, 

HSP20 may not be one of H. pylori major antigens inducing strong immune response 

during bacterial infection; thus there is no significant difference between patients and 

normal subject in the antibody level against HSP20.  

      It is noticeable that the ELISA readings ranged closely (0.21 ± 0.02) for all subjects 

detected. This is unlike the wide OD range between patients with gastro-duodenal 

diseases and control subjects when other antigens were used, such as CagA or VacA 

(Perez-Perez et al., 1999; Nomura et al., 2002). It implies that HSP20 might not be a 

suitable serological marker in detecting H. pylori infection. This may also indicate that 

HSP20 does not play a vital role in the initiation and induction of host immune response 

during H. pylori infection. This is unlike HSP60 that has been reported to be involved in 

chronic gastric inflammation following H. pylori infection in man (Yamaguchi et al., 

2000).  

      However, as a surface localized protein, its role in adhesion similar to HSP60 cannot 

be overlooked. Like many other surface proteins of H. pylori playing important role in 

pathogenesis through adhesion, HSP20 may be involved in assisting colonization of the 

microorganism on the host. The importance of HSP20 in adhesion cannot be undermined, 
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as adhesion followed by colonization is a fundamental process in the course of H. pylori 

infection. Therefore, further study was carried out on surface localized HSP20 and its 

relation with the adhesion and colonization of H. pylori. 

 

5.4   The role of HSP20 in Helicobacter pylori 

      The successful construction of hsp20-iosgenic H. pylori SS1 mutant has provided an 

opportunity to explore the potential role of HSP20 on the adhesion and colonization of H. 

pylori in vitro and in vivo.  

 

      5.4.1   HSP20 and adhesion of H. pylori 

      As a surface localized protein, the role of HSP20 in H. pylori adhesion was first 

examined under the in vitro conditions. In the in vitro adhesion analysis, insignificant 

difference was found in the adherence of hsp20-isogenic H. pylori as compared to that of 

the wild type, even though there was a reduction (8% - 26%) in the adhesion capability of 

the isogenic mutant. It indicates that hsp20-isogenic H. pylori retains almost similar 

adherence capability as that of the wild type. The slight decrease in adhesion capability of 

hsp20-isogenic H. pylori to AGS and Kato III cells under in vitro conditions implies that 

HSP20 is but one of the factors involved in the adhesion of H. pylori or that it may 

participate indirectly in the process of bacterial adherence. It therefore suggests and 

supports the role of various adhesins [e.g. BabA, OipA, HopZ, SabA and Le (X)] in H. 

pylori as reported by various studies on adhesion of H. pylori (Huesca et al., 1996; 

Yamaoka et al., 2000; Mahdavi et al., 2002; Odenbreit et al., 2002; Rad et al., 2002; 

Yamaoka et al., 2002). These multiple species of adhesins might function at different 
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stages of bacterial infection or cooperate in tandem. This is an area that needs further 

investigation. 

 

      5.4.2   HSP20 and colonization of H. pylori  

      The role of HSP20 in H. pylori colonization was further studied under in vivo 

conditions. Both wild type and hsp20-isogenic H. pylori were separately introduced into 

Balb/c mice by oral challenge to facilitate the study of HSP20 and bacterial colonization 

in vivo. The successful colonization of wild type H. pylori in mice stomachs was detected 

from 2 weeks of post-inoculation and persisted up to 8 weeks while there was no 

colonization detected in the mice inoculated with hsp20-isogenic H. pylori throughout the 

course of the 8-week study. The failure of hsp20-isogenic H. pylori to colonize in mice 

indicates that HSP20 protein may be essential for bacterial colonization.  

      Although there was no significant difference between wild type and hsp20-isogenic H. 

pylori on the adherence ability to gastric cell lines in vitro, hsp20-isogenic H. pylori lost 

the ability to colonize in vivo as compared to the wild type. This may indicate that the 

isogenic H. pylori could adhere to gastric mucus probably through the presence of 

multiple adhesins [e.g. OipA, HopZ, SabA and Le (X)] causing “transient colonization” 

for a short period of time but then loses its ability to colonize on the gastric epithelium of 

the animals (Dorrell et al., 1999). This result was also found in studying using other H. 

pylori mutants, e.g., the study of flaA mutant H. pylori in the gnotobiotic piglet model 

(Danon & Eaton, 1998), where aflagellated H. pylori mutant showed the similar 

adherence capability as that of the wild type in vitro but failed to colonize in the stomach 

of gnotobiotic piglet in vivo. Similar findings were also observed in the study of mutants 
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like ureB H. pylori mutant in gnotobiotic piglet model (Eaton & Krakowka, 1994) and 

pldA H. pylori mutant in mice model (Dorrell et al., 1999).  

      As proposed by researchers (Testerman et al., 2001), there are essentially two steps in 

the establishment of H. pylori in host: the initial adhesion followed by bacterial 

colonization. In the initial stage, many adhesins mediate the ligand-receptor interactions 

between bacteria and mucus layer of host to facilitate the “loose” attachment of H. pylori 

(Testerman et al., 2001). In the following stage, the bacteria begins to invade and 

colonize. In the process of colonization, bacterial pathogen may further damage the 

epithelium of host e.g., disruption of tight junction proteins (Amieva et al., 2003), 

induction of actin polymerization and cytoskeleton rearrangements of epithelial cells by 

means of releasing pathogenic factors (such as CagA) to assist further invasion 

(Testerman et al., 2001). Hence, that adhesion follows by colonization can be considered 

as two discrete but continuous processes, both of which are fundamental for 

commencement of bacterial infection. Therefore, compared with the adherence property, 

the role of HSP20 in bacterial colonization is more crucial since the impact of disrupted 

HSP20 is fatal in colonization of H. pylori in mice but not in bacterial adherence in vitro. 

It is therefore appropriate to imply that HSP20 is mainly responsible in assisting in the 

colonization of bacteria in vivo, apart from playing a minor role in adhesion. 

 

      5.4.3   Antibody response against H. pylori in mice model 

      As one of the major events occurred during the colonization of bacteria, total 

antibody response against the bacterial antigens, HSP20, was monitored using ELISA in 

both H. pylori infected animals. The importance of HSP20 in H. pylori colonization was 
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further highlighted by the presence of significantly lower antibody level against H. pylori 

in hsp20-isogenic mutant infected mice as compared with the mice infected with wild 

type bacteria. The low level of antibody response induced in hsp20-isogenic H. pylori 

infected mice (Figure 4.19A) can be related to the unsuccessful establishment of the 

bacterial pathogen on gastric epithelium of animals. This is probably because 

colonization is the prerequisite for the pathogenesis of H. pylori. Hence, this result further 

confirms the failure of hsp20-isogenic H. pylori in bacterial colonization. 

       

      5.4.4   Antibody against HSP20 in H. pylori infected mice  

      To examine the immunogenecity of surface localized HSP20 protein during H. pylori 

infection, specific antibody against HSP20 in the sera of H. pylori infected mice was 

examined using ELISA. The results showed that there is no significant difference in the 

antibody against HSP20 in both wild type and hsp20-isogenic H. pylori infected mice 

(Figure 4.19D). Furthermore, the level of antibody against HSP20 in H. pylori infected 

mice was within the same range as that of the negative controls. This may indicate that 

the absence of HSP20 in the isogenic H. pylori is not directly correlated with the low 

antibody production in the mutant infected mice. It could further attest that HSP20 is not 

a major antigen inducing strong and constant immune response during H. pylori infection. 

This implication agrees with the previous finding obtained in the detection of antibody 

against HSP20 in gastroduodenal diseases patients (Table 4.1). Hence, this also implies 

that antibody production in H. pylori infected mice would be related to the other bacterial 

surface antigens but not HSP20.  
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5.5   Protein profiles of wild type and hsp20-isogenic H. pylori  

      With the development of proteomic technologies, the proteome, a functional part of 

the genetic information provides new perspectives to reveal the association of protein 

product with the pathogenesis of H. pylori (e.g. to identify new virulent or pathogenic 

factors) (McAtee et al., 1998). Comparative proteome analysis of H. pylori showed that 

the bacterial proteome varied from strains to strains (Jungblut et al., 2000) and this might 

be related to the virulence of the stains.  It is therefore useful to examine whether the 

proteome of hsp20-isogenic H. pylori is different from the wild type or whether HSP20 

could affect the expression of proteins related to the bacterial colonization. This could 

help us to understand the reason why hsp20-isogenic H. pylori failed to colonize in mice.  

      The protein profiles of both wild type and hsp20-isogenic H. pylori were analyzed 

using SDS-PAGE and two-dimensional gel electrophoresis (2-DE). The comparison of 

protein profiles showed that no observable difference was found between the wild type 

and the isogenic H. pylori (Figure 4.20). This may indicate that the disrupted HSP20 

would not influence the expression of major proteins in H. pylori although there is 

limitation in resolving the entire protein expression profiles.  

 

5.6   Gene status of Helicobacter pylori adhesins 

       A number of adhesins in H. pylori have been revealed in recent years such as BabA 

(Boren et al., 1993; Ilver et al., 1998), OipA (Yamaoka et al., 2000), HopZ (Peck et al., 

1999) and SabA (Mahdavi et al., 2002). It has been found that under in vitro or in vivo (in 

mice) passages, the status of the adhesin genes in H. pylori could be switched from “on”  
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(in-frame) to “off” (out-of-frame) that would affect the adhesion and colonization of H. 

pylori in mice (Yamaoka et al., 2000).       

      Based on the DNA sequence analysis of CT repeats in the signal sequence of adhesin 

genes, it was found that oipA, hopZ and sabA genes were switched “on” in both wild type 

and hsp20-isogenic H. pylori (Table 4.4).  However, the other adhesin gene, babA2 was 

shown to be absent in H. pylori SS1 strain. The “on” status of the three major adhesins 

was further confirmed by RT-PCR analysis where the adhesin genes were transcribed in 

both wild type and hsp20-isogenic H. pylori. This finding suggests that the failure of 

hsp20-isogenic H. pylori colonizing in mice is not related to the switching status of the 

various adhesin genes of H. pylori studied. It is also suggested that HSP20 might not 

directly interact with these molecules. Furthermore, it may imply that the effect of HSP20 

on the colonization of H. pylori is independent of the major adhesins studied. 

 

5.7   Protein interaction between HSP20 and CagA in Helicobacter pylori 

      In an attempt to study the interaction between HSP20 and other proteins in H. pylori, 

co-immunoprecipitation (CO-IP) using antibody against rHSP20 showed that a single 

protein CagA was pulled down from the protein extract of the wild type but not the 

isogenic H. pylori (Figure 4.22 & 4.24). This indicates that HSP20 would potentially 

interact with CagA in H. pylori. The absence of this interaction in hsp20-isogenic H. 

pylori and other bacteria (E. coli and CagA-negative H. pylori) serving as the negative 

controls confirms that the interaction between HSP20 and CagA is novel and unique. 

      Although cag PAI was reported not to be functional in H. pylori SS1 with lack of 

ORF 7 (cag+ORF7-) (Salama et al., 2000), the recent mutagenesis study by Fischer et al., 
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(2001) showed that ORF 7 (HP0521) has no effect on either the translocation of CagA 

from H. pylori to gastric cells or the ability of cag PAI to induce IL-8 production of host 

during H. pylori infection. In addition, there was no other component from cag PAI 

precipitated down together with CagA protein by using antibody against rHSP20. Thus, it 

is appropriate to believe that HSP20 only interacts with CagA protein but no other 

component of cag PAI. Thus, these findings indicate that the interaction between HSP20 

and CagA is independent of cag PAI but relies on the functional CagA protein alone.  

      However, how HSP20 collaborates with CagA is yet to be determined. Since the 

interaction between HSP20 and CagA was absent in the hsp20-isogenic H. pylori, 

whether HSP20 affects the expression of CagA and further related to the presence of 

CagA in different sub-cellular fractions were analyzed using RT-PCR and Western 

blotting.   

      

      5.7.1   RT-PCR analysis of cagA transcription  

      Based on the RT-PCR analysis of cagA in both H. pylori strains, it was found that the 

transcription level of cagA in the isogenic H. pylori is similar as that of the wild type 

regardless of different ages of H. pylori culture examined (Figure 4.25). This indicates 

that the transcription of cagA gene remains normal and would not be affected by the 

disrupted HSP20 in the isogenic mutant. It may further imply that the influence of HSP20 

on CagA in H. pylori is not at genetic level but at protein level.  
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      5.7.2   Analysis of CagA protein partition in H. pylori 

      As a major virulence factor of H. pylori (McGee & Mobley, 1999), CagA was firstly 

identified as a surface antigen of H. pylori that is associated with the cytotoxin 

production (Tummuru et al., 1993). The surface exposed CagA in H. pylori is not only 

related to the induction of antibody in host but also linked with duodenal diseases 

(Covacci et al., 1993; Crabtree & Lindley, 1994). Hence, the presence of CagA on the 

cell surface of H. pylori is very important for bacterial virulence. Although CagA has 

been found to be translocated from bacterial cytoplasm into the host epithelial cells 

through type IV secretion system during H. pylori infection (Segal et al., 1999; Stein et 

al., 2000; Backert et al., 2000), the process of CagA becoming surface exposed as an 

antigen has not been studied. Therefore, the relevance of HSP20 to the presence of CagA 

protein in different H. pylori sub-cellular fractions was investigated.  

      With the help of WB, it was shown that the presence of CagA in different sub-cellular 

fractions was slightly different between the wild type and hsp20-isogenic H. pylori.  The 

absence of CagA in AGE fraction (acid glycine extract comprising membrane and 

membrane associated proteins) and a comparatively lower abundance of CagA protein in 

OMP fraction (outer membrane proteins) of the isogenic H. pylori (Figure 4.26A) could 

be correlated to the disruption of HSP20. Interestingly, with the addition of rHSP20 into 

the isogenic H. pylori culture, CagA emerged in all these 3 fractions [total proteins (TP), 

AGE & OMP] of the isogenic mutant with similar intensity as that of the wild type. 

(Figure 4.26B). This further strengthens the relationship between HSP20 and the 

presence of CagA in H. pylori.  
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      Since OMP and AGE fractions which comprises membrane and membrane associated 

proteins represent the surface part of H. pylori (Goodwin et al., 1987) and the necessity 

of surface presentation of CagA to bacterial pathogenensis (Covacci et al., 1993), the 

close relationship between HSP20 and the presence of CagA in the surface fractions 

(AGE and OMP) highlights that HSP20 is important in collaborating with the 

presentation of CagA in H. pylori. It is postulated that the disrupted HSP20 in the 

isogenic H. pylori had resulted in the decreased amount of CagA in OMP fraction but 

was compensated by the addition of rHSP20 during culturing. Hence, it would further 

support that HSP20 is relevant to the presence of CagA protein in different H. pylori sub-

cellular fractions especially OMP and AGE fractions. Furthermore, the absence of CagA 

in the AGE fraction of the isogenic mutant while its restoration with the addition of 

rHSP20 may imply that HSP20 could be required for the stabilization of CagA under low 

pH conditions, similar to the acidic environment in the stomach of the host (as AGE was 

prepared at pH 2.2).  

 

      5.7.3   Antibody against CagA in H. pylori infected mice 

      As a major antigen in H. pylori, CagA could induce high antibody titer in humans and 

the infected animals during bacterial infection (Wirth et al., 1998; Loffeld et al., 2000; 

Dzierzanowska-Fangrat et al., 2003). Hence, the potential collaboration between HSP20 

and the presentation of CagA on H. pylori was further tested using antibody against 

CagA in H. pylori infected mice. The antibody level against CagA in hsp20-isogenic H. 

pylori infected mice was found to be significantly lower (p<0.05) than that of the wild 

type (Figure 4.27). This may explain the good correlation between low abundance of 
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CagA detected in the surface protein fraction of the isogenic H. pylori and the low 

antibody response against CagA in the isogenic mutant infected mice.  It is possible that 

the disrupted HSP20 in the isogenic mutant could have led to the ineffective presentation 

of CagA or partial CagA as antigen on the cell surface of H. pylori resulting in the 

reduction of antibody induced during H. pylori infection. This may further support the 

probable involvement of HSP20 in the presentation and stabilization of CagA on the cell 

surface of H. pylori.  

      Based on the findings obtained from the relation between HSP20 and CagA in H. 

pylori, it is clear that disrupted HSP20 does not affect the transcription of cagA in H. 

pylori but influence the presence of CagA protein in different bacterial sub-cellular 

fractions. The correlation of HSP20 with the presentation of CagA on the cell surface of 

H. pylori may imply that HSP20 could be involved in such process of CagA presentation. 

As a heat shock protein, HSP20 could probably function as an assisting factor in 

“delivering” and/or “presenting” CagA onto the cell surface of H. pylori. It is therefore 

proposed that HSP20 may serve as a “chaperon” for the virulence factor, CagA in H. 

pylori. 

      On the other hand, owing to the significant contribution of CagA to the pathogenecity 

of H. pylori infection, the indirect association of HSP20 with the bacterial pathogenesis 

through CagA is further highlighted. From the identification of interaction between 

HSP20 and CagA to the possible chaperonic role of HSP20 for surface presentation of 

CagA, it further addresses the importance of heat shock protein in bacterial infection and 

the unique function of HSP20 in H. pylori which differs from that of the HslV in E. coli.     
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5.8   The application of HSP20 as an epidemiological and gastroduodenal disease 

        differentiating marker 

      As a surface localized protein, HSP20 has shown strong association with bacterial 

colonization and indirect relationship to the pathogenesis of H. pylori. It plays a 

cooperative role in the initial stage of H. pylori infection implying its importance in the 

bacteria-host interactions. Due to the significant contribution of HSP20 in the process of 

H. pylori infection, it is therefore interesting to understand the genetic structure of HSP20 

in H. pylori population. The relevance of hsp20 gene to differentiate various H. pylori 

infections and for use as a marker for epidemiology of H. pylori was explored.  

 

      5.8.1   Conservation and polymorphism of hsp20 DNA sequence  

      The DNA sequences of 227 H. pylori strains collected from different parts of the 

world showed that hsp20 (HP0515) gene is highly conserved. It showed consistent and 

stable open reading frame (ORF) of 540 bp in all H. pylori isolates studied. This is 

different from cagA, vacA and outer membrane protein (HP0638) gene sequences where 

gene polymorphism has led to insertion or deletion of gene fragments among different H. 

pylori strains. For instance, vacA has at least two variable regions: s region (s1a, s1b, s1c 

& s2) and m region (m1 & m2) (van Doorn et al., 1999); similarly, HP0638 shows two 

dichotomies that is strongly correlated with cagA and vacA status (Ando et al., 2002) 

while cagA gene is only present in 60% - 70% of H. pylori strains (Mobley, 1997) among 

the Western population but was found in 80% - 90% of H. pylori isolates in Asian 

population (Zheng et al., 2000). The conservation of hsp20 gene in all H. pylori strains 
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indicates that intact gene structure of heat shock proteins is essential for implementation 

of protein functions.  

      Among the 227 DNA sequences of hsp20 gene studied, high level of polymorphism 

at 219 polymorphic sites scattered in the whole gene fragment. The occurrence of 

polymorphism within the same gene fragment in different organisms or strains would 

take place spontaneously during the evolution and extensively observed in nature. The 

presence of high polymorphism in hsp20 gene signifies that identical DNA sequences 

will be rare among H. pylori strains. This lends support to the existence of high level of 

genetic diversity among H. pylori isolates. This finding agrees with several previous 

reports in which the studies were based on the analyses of other gene fragments of H. 

pylori (Ito et al., 1996; Salaun et al., 1998; Janssen et al., 2001). 

 

      5.8.2   Geographical groupings of H. pylori phylogeny based on hsp20 DNA  

                  sequences  

      Based on the phylogenetic analysis of hsp20 DNA sequences, two major clusters (A 

& B) were shown: a larger group A and a smaller group B (Figure 4.28). The isolates in 

group A further bifurcates into two subgroups, namely A1 and A2.  Subgroup A1 and 

group B were mainly from Asian and non-Asian origins, respectively. However, 

subgroup A2 comprises a mix of H. pylori isolates of Asian and non-Asian origins. From 

the geographical character and the percentage of geographical distribution of H. pylori 

isolates in these two groupings (A & B), it shows that there is a pattern of transitional 

clustering from predominate Asian (group A1) to a mixture of Asian & non-Asian origins 

(group A2) followed by a majority of H. pylori isolates of non-Asian origin (group B). 
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This pattern points out the possible long-term influence of worldwide population 

migration and human activities on the infection and/or transmission of H. pylori. It also 

implies that the evolution of Asian and non-Asian H. pylori strains was not totally 

independent from geographical separations. For example, four Singapore isolates of 

Malay ethnic origins were clustered within group B and a number of non-Asian isolates 

were clustered with group A. This could be due to the closeness of geographical regions 

e.g., Australia is close to South-east Asia; or the similar host response to the pathogen e.g. 

Malay and European as reported by (Goh, 1997). The similarity between Malay and 

European could be either in the genetic susceptibility or in the immune response to H. 

pylori infection. The results on the geographical groupings agree with a number of 

previous studies in which the analyses were based on the sequence analyses of house-

keeping genes e.g. recA, atpD, glnA, scoB or genotyping of virulence genes cagA, vacA 

and transposable elements IS605 and IS608 (Salaun et al., 1998; Maggi et al., 2001; Ji et 

al., 2002; Kersulyte et al., 2002).  

      According to the inferred taxonomic distance calculated, it implies that group B (non-

Asian origin) would have diverged from group A (predominately Asian origin, as shown 

in Figure 4.28). This is depicted by the clusters in the phylogram and the estimated 

nucleotide divergence (D) between different groups. Since there is no evidence that 

synonymous codon usage is constrained in H. pylori, Ks should roughly reflect the 

divergence time between sequences (Atherton et al., 1999). Based on the order of 

estimated value of Ks between groups (Table 4.5) and as shown in the phylogram (Figure 

4.28), it indicates that the division of A1/B was the earliest followed by the divisions of 

A2/B and A1/A2. Furthermore, the significant lower divergence differences between 
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hsp20 gene groups (Table 4.5) than that of the vacA alleles imply that the clusters based 

on hsp20 gene are only modestly subdivided geographically as are the housekeeping 

genes claimed by Achtman et al. (1999). 

      Compared with other genes of H. pylori, the percentage of divergence (D, Ks) and the 

ratio of Ks/Ka between different hsp20 gene groupings were significantly lower than that 

of vacA alleles m1 & m2 (Atherton et al., 1999) or house-keeping genes (atpD, scoB, 

glnA and recA) (Maggi et al., 2001) as reported. This may indicate that different genes of 

H. pylori are under the control of different selection pressures against amino acid 

replacement (Hurst, 2002). The divergence ((D, Ks, Ka) and the ratio of Ks/Ka values 

(Table 4.5) in the 3 different genetic groupings show that hsp20 sequences are stable and 

effective in discriminatively distinguishing H. pylori strains from different geographical 

origins. The evolutionary variations of H. pylori based on the findings of hsp20 

phylogeny are comparable with that of housekeeping genes and surface proteins 

(HP0638). As the proteins of initiating interaction between bacteria and host cells, 

surface proteins would be responsible for various responses to the extracellular 

environments and may be involved in the bacterial-host interactions during the process of 

H. pylori infection. 

 

      5.8.3   Substitutions at 14th – 16th amino acid residues of HSP20 

      There were seven types of substitutions observed at the 14th –16th amino acid residues. 

Interestingly, the switching of substituted amino acids were within the same polarity 

group e.g. from hydrophobic to hydrophobic (e.g., 14th: M, I, L & F) or from polar to 

polar (e.g., 15th:  G, R, E, N & D; 16th:  G, N & H) resulting in no modification in protein 
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conformation as supported by the predicted secondary and 3-D structure. Thus, the amino 

acid substitutions in HSP20 have no impact on the protein structure (Figure 4.30 & 4.31), 

indicating that HSP20 protein structure is not random but well conserved. The 

conservation of HSP20 protein structure is in accordance with its gene structure, which 

further strengthens it as one of the constitutively expressed proteins in microorganisms. 

Furthermore, like other heat shock proteins, maintaining the stability and consistency is 

essential for normal function of most known heat shock proteins (Ang et al., 1991; 

Jaattela & Wissing, 1992).  

      Although HSP20 (HP0515) is a homologue of HslV in Haemophilus influenzae 

(Sousa et al., 2002) and E. coli (Song et al., 2000), the 3-amino-acid substitutions at 14th 

–16th is unique in HSP20 as it is not present in the homologues of these two bacterial 

species (Figure 4.32), implying that these 3-amino-acid residues could have acquired 

during the evolutionary process of H. pylori and may represent the adaptation of bacteria 

to different environments or reflect the random genetic drift without effects on phenotype. 

Hence, it further indicates the distinctiveness of hsp20 and the 3-amino-acid substitutions. 

      It is interesting to note that the unique 3-amino-acid substitutions of all HSP20 amino 

acid sequences exhibited similar geographical affiliation as the hsp20 DNA sequences. In 

the former, these two clusters can be divided into two broad groups: M-G-G and F-D-N 

clusters. The change of substitutions occurs with the transition of one or more nucleotide, 

e.g. in the case of M-G-G and I-G-G, the substitution from methionine (M) to isoleucine 

(I) would have resulted from the nucleotide transition of ATG [methionine (M)] to ATA 

or ATT [isoleucine (I)]; similarly, the other substitutions M-G-G to M-E-G and M-R-G 

occurred with a transition of one nucleotide for the middle glycine G, (GGG) to 
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glutamate E, (GAG) or arginine R, (AGG) (Figure 5.1). This is considered as M-G-G 

substitution cluster.  The other substitution cluster comprises F-D-N, F-N-H & L-N-H 

that is termed as F-D-N cluster. Unlike the M-G-G cluster which nucleotide substitution 

occurs in one single step, the F-D-N linkage cluster needed more than single “mutation” 

from the original to L-N-H & F-N-H (Figure 5.1). It is apparent that the M-G-G 

substitution cluster in group A and F-D-N substitution cluster in group B are completely 

separated from each other, which are strongly associated with H. pylori isolates of Asian 

and non-Asian origins respectively.  

      Based on the process of nucleotide substitutions as illustrated in Figure 5.1 and the 

contribution of Asian M-G-G linkage type (82%, 143/172) in all isolates studied, it is 

postulated that H. pylori with M-G-G linkage has its origin in Asia. The origin of M-G-G 

from Asian is explicit in its prevalence and the simple process of nucleotide substitutions. 

Among the observed substitution linkages, M-G-G forms a big base in both Asian 

(143/158, 90%) and non-Asian groups (29/69, 43%); however, the majority of M-G-G 

were from Asia. Both Asian and non-Asian originated M-G-G types were evidently 

similar to each other especially in group A2. In the proposed process of nucleotide 

transitions in all substitution linkages, it is likely that the transition could occur from M-

G-G to the other types since the chemical structure of G and M are the simplest and most 

stable among all substituted amino acids observed (Branden & Tooze, 1998). It may also 

imply that there could be 2 precursors (M-G-G and F-D-N linkages) that have come from 

one single universal ancestor. However, this does not exclude the postulation that H. 

pylori begins in Asia with M-G-G linkage. It is not only because that M is the most stable 

residue among the all substituted amino acids; but also H. pylori infection is more 
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prevalent in Asia and the most problematic cases of gastroduodenal disease (e.g. gastric 

cancer) are in Asia. Hence, it further supports the speculation that M-G-G originated 

from Asian.  

      Besides the affiliation of the two major substitution clusters in their discriminatory 

capability based on geographical origins (with prevalence of M-G-G cluster in Asian and 

F-D-N cluster in non-Asian areas), these two substitution clusters also showed significant 

association with clinical outcome which is supported by the calculated odds ratio (OR = 

4.27) (Table 4.7). Of these, M-G-G cluster is shown to be associated with PUD as 

compared to the association of F-D-N cluster to NUD. The link of M-G-G among Asians 

with PUD and F-D-N in non-Asians with NUD may further highlight that H. pylori 

together with environmental factors are collaboratively contributing to the 

gastroduodenal disease outcome. The results thus show the association of M-G-G cluster 

in the Asian group where the PUD is more prevalent (Kang et al., 1997; Lam, 2000). 

However, the results do not exclude the presence of PUD outside this geographical region 

as there is the existence of other collaborative factors that can contribute to the 

pathogenesis of H. pylori and severity of gastroduodenal diseases. Rather, this study 

emphasizes the usefulness of the substitution clusters (14th – 16th) of HSP20 as an 

indicator to evaluate the risk of developing certain gastroduodenal diseases (PUD or 

NUD). 

     The conserved hsp20 DNA sequences in all H. pylori strains studied have presented a 

foundation for its use as epidemiological marker. With these DNA sequences, two 

phylogenetic groups based on Asian and non-Asian origins were effectively differentiated. 

This differentiating capability is also displayed by the unique 3-amino-acid substitutions 
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at 14th – 16th residues of HSP20. Furthermore, the 3-amino-acid substitutions clusters (M-

G-G and F-D-N clusters) show significant discriminating efficiency between PUD and 

NUD. We therefore propose hsp20 and the novel insertion of 3-amino-acid substitution 

clusters as a potential epidemiological and gastroduodenal disease differentiating marker 

of H. pylori infection.  

 

 
 

Figure 5.1 The probable process of nucleotide substitution sequence in 14th – 16th 

amino acid residues 
Letters in parentheses denote amino acids. Substituted nucleotides are bolded and underlined. Arrows indicate probable 

process of nucleotide substitutions.  

The probable substitutions are based on the sequences generated in this study, e.g. at 15th amino acid, for glycine (G), 

only GGG/GGC were recorded while for 16th amino acid, all three DNA substitutions GGT, GGC and GGG were 

observed.  

The figure is merely a proposed process of probable nucleotide substitution. 
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5.9   Conclusion 

      From the identification of surface localization of HSP20, the low titer antibody 

against HSP20 detected in patients’ sera to the involvement in the bacterial colonization 

and the interaction with virulence factor CagA, HSP20 manifests its importance and 

uniqueness in H. pylori. As a human gastric pathogen, the chaperonic function of HSP20 

in H. pylori is primarily rendered by its unique surface localization, which is different 

from the cytoplasmic located HslV of E. coli. Since its unique location on H. pylori cell 

surface, the role of HSP20 and host immune response in H. pylori infection was studied. 

With the presence of low antibody level against HSP20 as detected in various 

gastroduodenal patients, it implies that HSP20 might not be one of the major antigens 

provoking strong immune response of host during H. pylori infection. However, as a 

surface localized protein, its role in assisting the colonization of H. pylori is highlighted. 

      In light of its potential in bacterial colonization, comparison studies between wild 

type and hsp20-isogenic H. pylori demonstrated that HSP20 would be involved in the 

colonization of H. pylori, which is an essential step for the establishment of bacterial 

pathogen and the development of pathogenesis during infection. HSP20 is indispensable 

for bacterial colonization but not necessary in the adhesion of H. pylori. Low-level 

antibody against H. pylori total antigens in the mice infected with hsp20-isogenic H. 

pylori further verifies the cooperative role of HSP20 in bacterial colonization. Moreover, 

the role of HSP20 on the bacterial colonization is independent of the major adhesins in H. 

pylori. The findings observed in this study lend support to the fact that the sequential 

events occurred during H. pylori infection start from adhesion to colonization and 

eventually to inducing the immune responses of the host. It is noted that these events 
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occur progressively coherent to each other. Disabling any one of the components could 

result in disastrous consequences in the pathogenic process of H. pylori. This correlation 

have been extensively observed in the study of other different surface protein molecules 

e.g., adhesins (Boren et al., 1993; Ilver et al., 1998), urease (Tsuda et al., 1994; Karita et 

al., 1995), GGT (Chevalier et al., 1999; McGovern et al., 2001) or phospholipase 

(Dorrell et al., 1999) and outer membrane proteins (Yamaoka et al., 2002), which have 

been experimentally shown to be correlated with the adhesion and colonization of H. 

pylori. It also addresses the significance and importance of bacteria-host interplay during 

the infection.  

      The elucidation of interaction between HSP20 and CagA further reveals a possible 

link between HSP20 and the pathogenesis of H. pylori through CagA. In the analysis of 

relationship between HSP20 and CagA, the cooperative role of HSP20 acting like a  

“chaperon” in assisting the “presentation” of CagA on the cell surface of H. pylori was 

noted. As a heat shock protein, HSP20 may also be required for the stabilization of CagA 

in H. pylori. Such uniqueness signifies that the effective CagA protein of H. pylori 

requires the aid of other assisting factors such as heat shock protein to serve as chaperon 

so as to fulfill its function during bacterial infection. As demonstrated by many other 

researchers (Crabtree, 1996; Yamaoka et al., 1996; Eck et al., 1997; Graham & Yamaoka, 

1998), CagA is an important virulence factor directly related to the pathogenesis of H. 

pylori. Thus, the chaperonic role of HSP20 in the pathogenesis of H. pylori is further 

highlighted indirectly through its link with CagA. On the other hand, the chaperonic role 

of HSP20 in H. pylori may further imply that the acquired novel function of heat shock 

proteins (e.g., HSP20) is evolutionarily adapted to the virulence of bacterial pathogen, 
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which differs from HslV (the homologue of HSP20) of other bacteria, thereby indicating 

the sophistication and uniqueness of H. pylori.  

      As a surface localized protein and significant contribution to the pathogenesis of H. 

pylori, use of HSP20 in the epidemiological study of H. pylori was explored. Based on 

the analysis of nucleotide sequences of hsp20 from 227 different H. pylori strains, it 

indicates that hsp20 is dependent from other genes (cagA, vacA, transposable elements, 

some housekeeping genes) in the delineation of H. pylori isolates worldwide. The 

geographic grouping of hsp20 also exhibits the affiliation with the distinctive 3-amino-

acid substituions at 14th – 16th. The bifurcating of M-G-G type and F-D-N type are not 

only coupled with Asian and non-Asian groupings and also strongly associated with PUD 

and NUD, respectively. That may provide a simple but effective approach for researchers 

to locate the possible source or route of H. pylori infection and differentiate its associated 

gastroduodenal diseases (PUD & NUD).  

      With the identification of HSP20 being essential for H. pylori colonization and 

interaction with CagA, it opens a new insight to elucidate bacterial-host interaction in the 

progress of H. pylori infection. Animal model of hsp20-isogenic H. pylori provides an 

unprecedented negative control system for bacterial infection to facilitate other studies of 

H. pylori in vivo.  

 

5.10  Future work  

      Recent study by Amieva et al. (2003) had shown that CagA could disrupt the tight 

junction protein complex of host cells at the site of the bacterial attachment during H. 

pylori infection. Disruption of the tight junction protein complex can be considered as an 
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early event occurred in the colonization of H. pylori. Hence, studying the protein-protein 

interaction between HSP20 and CagA could provide useful information in understanding 

the indirect relationship between HSP20 and tight junction proteins (eg ZO-1, occludin). 

The investigation on HSP20-CagA-tight junction complex/proteins may shed light into 

the intimate links between protein structure and their function(s) in the host-pathogen 

relationship and lend an insight into the mechanism of pathogenesis of H. pylori infection.   
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7. APPENDIX 



Appendix 

 

1. 6X Agarose gel loading buffer  

    Bromophenol blue (0.25%) 0.25 g 

    Xylene cyanol (0.25%) 0.25 g 

    EDTA (50 mM)  18.76 g 

    Glycerol (30%) [v/v] 30 ml 

    Distilled water  100 ml qsp 

 

2. Brain-heart Infusion broth (BHI)   

    Brain-heart infusion medium  3.8 g  

    Yeast extract (0.4%) 0.4 g  

    Distilled water  90 ml qsp 

Autoclave at 121 ºC for 15 minutes. Add 10 ml (10%) horse serum before use. 

 

3. Buffers for affinity chromatography 

    Binding buffer   

    5 mM imidazole  0.034 g 

    0.5 M NaCl 2.92 g 

    1 M Tris-Cl (pH 7.9) 2 ml 

    Distilled water  100 ml qsp 

    Adjust pH to 7.9 

    Charge buffer   

    50 mM NiSO4 0.78 g 

    Distilled water  100 ml qsp 

    Elution buffer   

    1 M imidazole  6.8 g 

    0.5 M NaCl 2.9 g 

    1 M Tris-Cl (pH 7.9) 2 ml 

    Distilled water  100 ml qsp 

    Adjust pH to 7.9 
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    Stripping buffer   

    0.5 M EDTA  (pH 8.0) 20 ml 

    0.5 M NaCl 2.92 g 

    1 M Tris-Cl (pH 7.9) 2 ml 

    Distilled water  100 ml qsp 

   Wash buffer   

    60 mM imidazole  0.41 g 

    0.5 M NaCl 2.92 g 

    1 M Tris-Cl (pH 7.9) 2 ml 

    Distilled water  100 ml qsp 

    Adjust pH to 7.9 

 
4. Buffers for plasmid extraction  

    Solution I (for plasmid extraction)  

    50 mM glucose  0.9 g 

    1 M Tris–Cl (pH 8.0) 2.5 ml 

    0.5 M EDTA (pH 8.0) 2 ml 

    Distilled water  100 ml qsp 

    Autoclave at 115 ºC for 15 minutes and store at 4 ºC until use. 

    Solution II   

    0.2 M NaOH 20 ml 

    1% SDS  10 ml  

    Distilled water  100 ml qsp 

    Prepare before use. 

    Solution III (plasmid extraction)  

    5 M potassium acetate  60 ml 

    Glacial acetic acid  11.5 ml 

    Distilled water  28.5 ml 
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5. Chocolate blood agar   

    Blood agar base  20 g 

    Distilled water  475 ml qsp 

    Autoclave at 121 ºC for 15 minutes. Cool medium to 50 ºC and add 25 ml (5%) horse    

    blood. Heat medium at 80 ºC for 10 minutes to lyse blood before pouring. 

 

6. Coating buffer (for ELISA) – [0.1 M Carbonate buffer]  

    NaHCO3 8.4 g 

    Na2CO3 3.56 g 

    Distilled water  1000 ml qsp 

    Adjust pH to 9.5  

 

7. 0.5 M EDTA pH 8.0  

    EDTA 146.1 g 

    Distilled water  1000 ml qsp 

    Adjust pH to 8.0 

 

8. Luria Broth (LB) medium   

    NaCl  10 g 

    Yeast extract  5 g 

    Tryptone  10 g 

    Distilled water  1000 ml qsp 

    Adjust pH to 7.2 to 7.4. Autoclaved at 121 ºC for 15 minutes.   

 

9. LB agar   

    NaCl  10 g 

    Yeast extract  5 g 

    Tryptone  10 g 

    Agar  20 g 

    Distilled water  1000 ml qsp 

    Adjust pH to 7.2 - 7.4. Autoclave at 121 ºC for 15 minutes.  
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10. 1 M NaOH  

      NaOH   

      Distilled water  1000 ml 

 

 

11. Phosphat buffer saline (PBS) pH 7.4  

      NaCl 8.0 g 

      Na2HPO4 2.9 g  

      KCl 0.2 g 

      KH2PO4 0.2 g 

      Distilled water  1000 ml qsp 

      Adjust pH to 7.4. 

 

12. PBS-T buffer (pH 7.4)  

      NaCl 8.0 g 

      Na2HPO4 2.9 g  

      KCl 0.2 g 

      KH2PO4 0.2 g 

      Tween 20 (0.5%) 0.5 ml 

      Distilled water  1000 ml qsp 

 

 

13. 10% SDS (W/V)  

      SDS powder 10 g  

      Distilled water  100 ml qsp 

 

 

14. Substrate buffer (for ELISA)  

      Citric acid      2.5527 g 

      Na2HPO4      4.5746 g 

      Distilled water  500 ml qsp 
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15. SDS-PAGE gel preparation 

 10% 12% 15% 5% 

*30% acrylamide 1.7 ml  2 ml 2.5 ml 0.83 ml 

1.5 M Tris-HCl 

(pH 8.8) 

1.3 ml 1.3 ml 1.3ml 0.63 ml (1 M 

Tris-HCl pH6.8) 

10% APS 50 µl 50 µl 50 µl 50 µl 

10% SDS 50 µl 50 µl 50 µl 50 µl 

TEMED 2 µl 2 µl 2 µl 5 µl 

DD H2O 1.9 ml 1.6 ml  1.1 ml 3.4 ml 

Total volume 5 ml 5 ml 5 ml 5 ml 

• acrylamide stock solution was purchased from Bio-rad. (adapted from (Bollag et al., 1996) 

 

 

16. TE buffer (pH 8.0)  

      1 M Tris-Cl (pH 8.0) 10 ml 

      0.5 M EDTA (pH 8.0) 2 ml 

      Distilled water  1000 ml qsp 

 

 

17. 5 X Tris-acetate EDTA (TAE) buffer  

      Tris base (40 mM) 24.2 g 

      Glacial acetic acid  5.71 ml 

      EDTA (2 mM) 3.72 g 

      Distilled water  1000 ml qsp 

 

 

18. 1 M Tris-Cl pH 7.9  

      Tris base  121 g 

      Distilled water  1000 ml qsp 

      Adjust pH to 7.9 
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19. 1 M Tris-Cl pH 8.0  

      Tris base  121 g 

      Distilled water  1000 ml qsp 

     Adjust pH to 8.0 
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A B S T R A C T

Background. Heat Shock Protein (HSP) has been
regarded as a pathogenic factor in Helicobacter pylori
infection. Heat Shock Protein 20 (HSP20) of H. pylori
is identified as Hs1V based on open reading frame pre-
dication of genome sequences. It is a homologue of HslV
of E. coli, a peptidase involved in protein degradation.
Methods. The HSP20 gene was cloned and inserted
into pET16b fused with His-tag. Recombinant HSP20
protein (rHSP20) was expressed and purified by nickel
column. Rabbit anti-rHSP20 was purified by Protein
A affinity chromatography and used as a probe to localize
HSP20 in H. pylori by immuno-gold labeling and Western
blotting. rHSP20 was also used as antigen to test for
antibody against HSP20 in patients with H. pylori
infection by enzyme-linked immunosorbant assay.

Results. Immuno-gold labeled transmission electron
microscopy shows that HSP20 is located on the
cell surface of H. pylori. Western blotting of 2-D gel
shows that HSP20 has a pI of ∼5.5 and a molecular
weight of ∼18 kDa. The ELISA result shows that there
is no significant difference in antibody titre against
rHSP20 in all sera tested.
Conclusion. The presence of IgG to rHSP20 may
imply an earlier exposure of the patients and normal
subjects to H. pylori. However, the mechanism has
not been established. HSP20 has been shown to
localize on the surface of H. pylori. Surface localiza-
tion of H. pylori HSP20 may provide the path to a
better understanding of the role and function of
HSP20 in bacteria–host interaction.

Helicobacter pylori is a gram negative, spiral-
shaped bacterium that colonizes human

gastric stomach. It is associated with different
gastro-duodenal diseases ranging from gastritis
to gastric carcinoma [1]. However, the mecha-
nisms of H. pylori infection, transmission and
associated diseases have not been established [2].
Heat Shock Protein (HSP) has been considered
as a virulence factor of bacteria that helps in
stabilizing proteins and bacterial survival under
stress [2]. Among the many HSPs identified
in H. pylori, HSP60 homologue shares ∼50%
similarity with human HSP60 [3]. It plays an
important role in stimulating adhesion, triggering
autoimmune response, and inducing cytokine
production in H. pylori infections [4,5].

HSPs are a group of highly conserved proteins
widely expressed in prokaryotes and eukaryotes.
Under normal conditions, expression of HSP is

maintained at basal level serving as a molecular
chaperon in protein folding and degradation. A
variety of factors could induce the heat shock
response and regulation of HSP expression, such
as analogues of amino acid, growth factors, virus
infection and stress [6].

Recently reported HslVU is a small HSP
expressed in E. coli under the hslVU operon,
which is involved in protein degradation [7].
It is widely believed that HslVU is an ATP-
dependent protease including a 19KDa HslV
and a 50KDa HslU [8]. HslV harbours the
peptidase activity while HslU itself provides an
essential ATPase activity; together they function
as a two-component protease to degrade SulA,
a cell division inhibitor in E. coli [7]. It has also
been shown that the proteolytic activity of HslV
can be dramatically increased by the presence
of HslU [9]. The primary structure of HslV is
similar to that of human β-type subunits of 20S
proteosomes [9]. A series of HslV homologues
has been reported in different bacteria such as
Bacillus subtilis [8], Leptospira borgpetersenii
[10] and Lactobacillus leichmannii [11].

Reprint requests to: B. Ho, Department of Microbiology,
National University of Singapore, 5 Science Drive 2,
Singapore 117597.
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Homologues to HslV and HslU were predicted
in the genomic sequence of H. pylroi strain
26695 [12]. In this study, an HslV homologue in
H. pylori, referred to as HSP20, shares ∼57%
identity with E. coli HslV. In addition, hsp20
gene was cloned from H. pylori strain NCTC
11637, expressed, and characterized.

Materials and Methods

Strains and Plasmid

Helicobacter pylori NCTC11637 was used in
this study. E. coli Top10 and BL-21(DE3) pLysS
were needed for amplification of plasmid DNA
and recombinant protein expression, respectively.
H. pylori was cultured in brain heart infusion
(BHI, Oxoid, Basingstoke, Hampshire, UK) broth
supplemented with 0.4% yeast extract and 10%
horse serum (Gibco, Madison, WI) and incubated
at 37°C in an atmosphere of 5% CO2 in a humid-
ified CO2 incubator (Forma Scientific, Marietta,
OH). Plasmid transformed E. coli was grown in
LB medium supplemented with 50 µg/ml ampi-
cillin at 37°C. The expression vector used was
pET16b (Novagen, Madison, WI).

DNA Isolation, Amplification, and Sequencing

Genomic DNA of H. pylori was isolated
according to the method described by Hua
et al. [13]. Primers were designed according to
HslV of H. pylori genomic sequence [12]. The
forward primer used was 5′-AAAGGATC-
CGTTTGAAGCGACGACG-3′ while the
reverse primer used was 5′-AAAGGATCCT-
TAAAGCTCCAAAATTTTAATATT-3′. Two
BamHI restriction sites were introduced in
both 5′ and 3′ for insertion into the pET16b
expression vector. The amplification conditions
were set for denaturation at 94°C for 5 minutes
followed by 30 cycles of 94°C for 30 seconds,
55°C for 30 seconds, 72°C for 30 seconds and
with additional extension at 72°C for 10 minutes.
The PCR amplified gene fragment of 543 bp
was inserted into expression vector pET16b at
BamHI restriction site. XhoI and SspI restric-
tion enzyme digestion [14] provided information
on gene orientation in the recombinant plasmid.
The correct recombinant pET-hsp20 was sequenced
using BigDyeTM Terminator Cycle Sequencing
Ready Reaction Kit (Perkin Elmer, Wellesley,
MA) in ABI 100 model 377 DNA sequencer
(Perkin Elmer).

Recombinant Protein Expression and Purification

The recombinant pET-hsp20 was transformed
into BL-21 (DE3) pLysS and induced with IPTG
(0.4 mg/ml) at each time interval. The expressed
recombinant HSP20 protein (rHSP20) was found
to exist as an inclusion body in host cells.
Upon achieving the maximum expression, cells
were harvested at 5000 × g for 5 minutes at 4°C
and re-suspended in 20 mM phosphate saline
buffer (PBS) and sonicated for 10 × 15 seconds at
5 MHz amplitude in a Soniprep 150 sonicator
(Sanyo, Watford, UK). The inclusion body was
collected by centrifugation at 10,000 × g for
10 minutes at 4°C, washed twice with PBS buffer
and dissolved in 6 M Urea PBS. Purification of
the inclusion body was carried out using affinity
chromatography through a Nickel chelating
column under denatured conditions. Recom-
binant protein was refolded through dialysis with
20 mM PBS. Protein concentration and purity
were evaluated by Bio-rad Protein Assay. The
purified protein band on SDS-PAGE was excised
and analyzed by ESI Nanospray Ionization
tandem MS on Micromass Q-TOF-2™ (Milford,
MA).

Antibody Preparation

An antibody against rHSP20 was raised as
described by Coligan et al. [15]. The study has
been approved by the Animal Experimental Ethic
Committee, National University of Singapore.
Purified recombinant HSP20 protein was in-
jected into New Zealand white rabbits with two
different dosages, 120 µg and 150 µg. A rabbit
injected with PBS buffer alone served as the
control. Serum was separated from whole blood
and antibody titer was assayed by indirect ELISA
[16] method using 0.5 µg purified rHSP20 as
antigen.

Antibody Purification and Characterization

Protein A sepharose CL-4B (Pharmacia, Uppsala,
Sweden) affinity column was used to purify IgG
from antiserum [15]. The serum was diluted with
50 mM Tris-Cl buffer (pH 7.0) and loaded into
the column. The specific IgG was eluted with
0.1 M glycine-Cl buffer pH 3.0 and neutralized
with 1 M Tris-Cl pH 9.0 (50–100 µl/ml fraction)
right after elution. The specificity of antibody
was verified using Western blotting on different
protein extracts of H. pylori [16].
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H. pylori NCTC11637 Total Protein Extraction

The following methods were used for the
extraction of various protein fractions.
1 Modified acid-glycine extraction [17] In brief,

3-day-old-culture grown in BHI broth sup-
plemented with 0.4% yeast extract and 10%
horse serum was harvested and lysed using
0.2 M acid glycine (pH 2.2). Supernatant
collected was dialysed against PBS at 4°C
overnight. The acid-glycine extraction (AGE)
comprises mainly cell membrane and membrane
associated proteins. The protein concentration
of the dialysate was measured by Bio-rad Protein
Assay. Aliquots of 5 µg and 15 µg total proteins
ran on SDS-PAGE were used for silver stain-
ing and Western blotting analyses. The linear
pH 5–8 IEF strips (Bio-rad) were chosen based
on the ProtParam tool, which shows HSP20
was a preponderance for pI ∼6. All the 2D gel
processing steps were carried out according to
the manufacturer’s instructions [18].

2 Lysis method The H. pylori cells were lysed
according to the method described by
Berkelman and Stenstedt [18]. The 3-day-old
cultures were washed three times with ice-cold
PBS and resuspended in lysis buffer contain-
ing 9 M Urea, 4% CHAPS, 40 mM Tris-Cl
pH 8.8, protease inhibitor cocktail (Roche,
Basel, Switzerland), and freshly prepared
50 mM DTT for 109 cells in each volume of
300 µl–400 µl. The cell suspension was left on
ice for 1 hour and was vortexed occasionally.
DNase (20 U) and RNase (20 U) were added
into the cell suspension and left on ice for 10
more minutes before centrifuging at 10,000 × g
for 10 minutes at 4°C. The resultant supernatant
was transferred into a new eppendorf tube and
stored at −80°C until use. The lysed fraction
consists primarily of total protein of H. pylori.
The protein concentration and the amount
of protein for running SDS-PAGE were the
same as for AGE protein.

3 Outer membrane protein (OMP) extraction
OMP was isolated according to the method
described by Ascencio et al. [19]. In brief,
harvested 3-day-old cells were broken by
sonication (30 seconds × 3). Unbroken cells
were removed by centrifugation at 5000 × g
for 30 minutes at 4°C. The supernatant was
further centrifuged at 20,000 × g for 90 minutes
at 4°C and the pellet was suspended in 150 µl
of distilled water. Samples were treated with
eight volumes of 2% sodium N-lauroylsarcosine

for 1 hour at room temperature. The insoluble
OMP was pelleted twice by centrifugation at
20,000 × g for 60 minutes at 4°C and washed
twice with 2 ml deionized water to remove the
excess detergent. Finally, the pellet was resus-
pended in 50 µl of distilled water, and subjected
to SDS-PAGE and Western blotting analysis [14].

4 Cytoplasmic protein (CP) extraction A cyto-
plasmic fraction of H. pylori cells was extracted
according to Chmiela et al. [20]. Briefly, the 3-
day-old H. pylori culture was harvested and the
cell pellet was resuspended in an appropriate
volume of PBS buffer (∼109cells/ml), followed
by sonication (30 seconds × 3). The cell suspension
was centrifuged at 20,000 × g for 90 minutes at
4°C. The resultant supernatant was collected
and sterilized by filtration through a 0.2 µm
filter (Sartorius, Goettingen, Germany). The
protein concentration was measured by Bio-rad
protein assay. 15 µg protein was subjected to
SDS-PAGE and Western blotting using the
rHSP20 antibody as a probe [14]. HSP60
antiserum (kindly provided by Lund Univer-
sity, Sweden) was used as an internal control.

Immuno-Gold labeled Transmission Electron 
Microscopy (TEM)

Pre-embedding labeling was employed for
immuno-gold labeled TEM as described by
Polak et al. [21]. The purified polyclonal rabbit
IgG against rHSP20 (25 µg/ml) was used as the
primary antibody, while the second antibody
used was 10 nm or 20 nm gold-Protein A (1 : 20
dilution). H. pylori NCTC 11637 3-day-old cul-
tures were used. The harvested cells were washed
with PBS and fixed with 4% paraformaldehyde,
0.1% glutaraldehyde, with or without Triton
X-100 (0.5%). Neutralization was done by incu-
bating in 0.05 M glycine-PBS for 15 minutes and
washing with PBS. The fixed cells were blocked
with 0.5% BSA-PBS buffer and then conjugated
with the primary antibody at 37°C for 2 hours.
They were then reacted with the secondary
antibody at 37°C for an additional 2 hours. The
Immuno-gold labeled cells were further fixed in
2% glutaraldehyde at room temperature for 2
hours. The fixed immuno-gold labeled cells were
processed through dehydration, infiltration and
embedding in Low Viscosity Epoxy Resin (LVER)
(Agar Scientific, Stansted, UK). Ultra-thin sections
were viewed under the Philips 208S electronic micro-
scope (Einhovery, Netherlands). Triton X-100
(0.5%) [22] was used to partially solubilize the cell
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membrane for 10 or 20 minutes during the fixation
step before applying 5 nm and 10 nm gold-Protein
A as the secondary antibody. The preimmune serum
and secondary antibody addition alone were used
as negative controls. In testing the effectiveness
of solubilization of the cell membrane using
Triton X-100 treatment, E. coli cells labeled with
anti-rHSP20 (25 µg/ml) were used as the negative
control, while anti-HSP60 antiserum (1 : 20)
labeled H. pylori was used as the internal control.

Antibody Against rHSP20

rHSP20 was used as an antigen to detect, by
indirect ELISA, the presence of antibody against
HSP20 in sera obtained from patients with
different gastroduodenal diseases [23]. Briefly,
0.5 µg of rHSP20 was coated onto the 96-well
ELISA plate and incubated at 4°C overnight.
Aliquots of 100 µl of 1 : 50 diluted sera in PBST
were added per well in triplicate for each serum
sample. Horseradish peroxidase (HRP)-conjugated
mouse antihuman IgG (DAKO, Glostrup,
Denmark) was added as the secondary antibody.
Substrate (0.4% O-phenylenediamine dihydro-
chloride) was used and the enzymatic reaction
was stopped by the addition of 2 M H2SO4. The
result was read at OD492 in a Labsystems Multi-
skan Ascent microtitre plate reader (Vantaa,
Finland). In this study, the disease status of the
patients was confirmed earlier by histology and
serology. A total of 25 and 32 sera samples from
patients with peptic ulcer and nonulcer dyspepsia,
respectively, were examined. Sera from 32 normal
subjects without any gastroduodenal complaint
served as the negative control. All samples were
randomly selected for this study. Data obtained
were analyzed by statistical t-test.

Results

Construction of Recombinant Expression Vector

The PCR amplified target 543 bp  (Figs 1A and 2A)
was fused with 10 Histidine-tag in expression
vector pET16b at BamHI site giving a total
length of 6255 bp (Fig. 1B). The clone with the
correct orientation was shown to have a 533-bp
fragment (Fig. 2B).

Recombinant Protein Expression and Purification

The estimated molecular weight of expressed
protein is ∼23kDa (Fig. 3). The maximum

expression level was achieved at 3 hours upon
induction with 0.4 mM IPTG (Fig. 3). There
was no significant difference shown with
0.2 mM IPTG induction (data not shown). The
expressed protein existed as an inclusion body

Figure 1 (A) The DNA and amino acid sequence of
Helicobacter pylori NCTC11637 HSP20. The full length of hsp20
is 543 bp and 181 amino acids. (B) Construction of the
recombinant expression vector.
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(Fig. 4). The recombinant protein rHSP20 was
eluted from His-tag affinity chromatography
column with gradient imidazole at the concen-
tration range of 0.3–1 M (Fig. 4). The percentage
of expressed protein in total cell extracts ranged
from 15%– 20%, and recovery efficiency of

inclusion body is about 20%. Through Q-TOF
analysis, the amino acid sequence of recom-
binant rHSP20 was identified as heat shock
protein HslV (HP0515) [12].

Antibody Preparation and Characterization

The antibody titre raised in rabbits against
rHSP20 was over 1 : 12,800 regardless of the
dosages used (120 µg and 150 µg). However, it was
shown that immunizing with 120 µg produced
higher antibody titre (data not shown). Western
blotting shows an intense protein band of
∼18 kDa in AGE preparation compared with
proteins extracted by lysis buffer. The outer
membrane protein fraction loaded was below
the measurable level using Biorad protein assay,
however, a specific band of similar molecular
weight was observable in WB (Figure 5A,B).
Similarly, in the WB of cytoplasmic fraction, a
dim band of ∼18 kDa showed up (Figure 6). In
contrast, when HSP60 antiserum was used as the
internal control probe, a band of slightly > 50 kDa
was detected in both AGE and cytoplasmic frac-
tions (Figure 6). Interestingly, two-dimensional
gel electrophoresis (2D) also showed up a specific
protein spot at pH of ∼5.5 with a molecular
weight of ∼18 kDa (Figure 7).

Immuno-Gold Labeled TEM

Immuno-gold particles of 10 nm and 20 nm were
seen to localize on the cell surface of H. pylori
(Figure 8C,D). With Triton X-100 treatment,
the cell membrane was partially broken; hence
the gold particles were also observed on the
remnants of cell membrane (Figure 9). In contrast,
no gold particles were observed on the two
negative controls of preimmune serum incubation
and gold-Protein A (Figure 8A,B). Similarly, in

Figure 2 (A) PCR amplified hsp20 gene fragment. M, λ
HindIII DNA marker; lane 1, target gene fragment (543 bp).
(B) Recombinant pET16b-hsp20 plasmid. Lane 1, recombinant
plasmid (pET16b + hsp20, 6255 bp); lane 2, recombinant
plasmid digested with BamHI, a digested fragment of 543 bp;
lane 3, recombinant plasmid digested with XhoI + SspI giving a
fragment of 533 bp; M, λ HindIII DNA marker.

Figure 3 Expression rHSP20 in E. coli BL-21. Lanes 1 & 2,
proteins of un-induced cells; lanes 3 & 4, IPTG induction for
3 hours; lanes 5 & 6, IPTG induction for 4 hours; M, Prestained
Precision Protein Standards (Biorad, Hercules, CA).

Figure 4 SDS-PAGE (15%) of purified
rHSP20. Lane 1, supernatant of
sonicated cells; lane 2, inclusion body
solubilized by 6 M Urea; lanes 3–9,
fractions eluted from His-tag column in
ascending gradient with concentration
of imidazole range from 0.3 to 1 M
(inclusion body solubilized by 6 M
Urea); M, Prestained Precision Protein
Standards.
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Triton X-100 treated E. coli cells, there was no
gold particle observed (Figure 10A). However,
when Triton X-100 treated H. pylori cells were
labeled with HSP60 antiserum, gold particles
were observed mainly in the cytoplasmic regions
with some on the surface (Figure 10B).

Figure 5 (A) Western Blotting of different cell fractions of Helicobacter pylori. Lanes 1 & 2, purified rHSP20 protein (used as
positive control); lane 3, H. pylori outer membrane protein fraction; lanes 4 & 5, H. pylori acid glycine extract; M, Kaleidoscope
Polypeptide Standards (Biorad). (B) Western Blotting of H. pylori total cell proteins extracted by lysis buffer. Lanes 1 & 2, H. pylori
cells total proteins extracts; lanes 3 & 4, purified rHSP20 protein (positive control); M, Prestained Precision Protein Standards
(Biorad).

Figure 6 Western Blotting of different subcellular fractions
of Helicobacter pylori using different probes. Lanes 1 & 3, acid
glycine extract (AGE) of H. pylori; lanes 2 & 4, cytoplasmic
fraction (CF) of H. pylori; M 1, Kaleidoscope Polypeptide
Standards; M 2, Prestained Precision Protein Standards. Lanes
1 & 2 were probed with rHSP20 antibody; lanes 3 & 4 were
probed with H. pylori – HSP60 antiserum.

Figure 7 Two-dimensional gel electrophoresis and Western
blotting of acid glycine extract of Helicobacter pylori. (A) 2-D gel
of AGE silver staining; (B) Western blot of 2-D gel of AGE; M,
unstained Precision Protein Standards.
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Antibody titre against HSP20

It is interesting to note that there was no signific-
ant difference ( p > 0.3) between the antibody
level against rHSP20 in the control subjects and
patients with gastroduodenal diseases. In the
disease group, the antibody level against rHSP20

was in the same titre for all patients as well as the
normal subjects tested (Table 1).

Discussion

The amino acid sequence of HSP20 of H. pylori
11637 shows 96% and 97% identity to HslV of

Figure 8 Transmission Electron Microscopy of Helicobacter pylori NCTC 11637 cells labeled with different primary antibodies
and different size of immuno-gold particles. (A) negative control – with immuno-gold only; (B) negative control – with preimmune rabbit
IgG; (C) antirHSP20 IgG + 10 nm immuno-gold; (D) anti-rHSP20 IgG + 20 nm immuno-gold; Arrows show sites of localization of
HSP20.
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H. pylori strains 26695 [12] and J99 [24], respec-
tively. It also shows 48–49% identity with HslV
of E. coli and Bacillus subtilis. Its homologue,
HslV of E. coli was determined to be a component
of ATP-dependent protease serving as a peptidase
[25]. Based on the protein sequence analysis and
peptidase activity (data not shown), it is probable

that H. pylori HSP20 has a function of peptidase
activity similar to that of HslV of E. coli [7].

In this study, where rHSP20 antibody was
used as a probe in Western blotting of various
fractions of H. pylori, a specific and intensive
band of ∼18KDa was lighted up in acid glycine
extract that comprises mainly membrane and
membrane-associated proteins, as well as in the
outer membrane fraction (Figure 5A,B). How-
ever, one dim band of ∼18 kDa was detected
in the cytoplasmic fraction. This implies that
HSP20 is mainly localized on the cell surface of
H. pylori. The surface localization was further
confirmed by immuno-gold labeled TEM, where
both 10 nm and 20 nm gold particles were found
to locate mainly on the bacterial cell surface
(Figure 8C,D). Furthermore, it was shown
that after Triton X-100 treatment, where cell
membrane was partially solubilized, the gold
particles were shown to attach mainly to the
cell membrane or remnants of the cell mem-
brane of H. pylori (Figure 9). However, in Triton
X-100 treated E. coli cells no gold particle was
observed, which indicates that the rHSP20 anti-
body is more specific to H. pylori. The results of
the internal control, where Triton X-100 treated
H. pylori labeled with HSP60 antiserum, show
that gold particles were mainly localized in the
cytoplasmic regions and agree with a previous study
[26]. Both controls demonstrate that Triton
X-100 treatment is effective in membrane solu-
bilization for assisting in the penetration of
antibody during the immunolabeling. The results
support the surface localization of HSP20 in
H. pylori.

It is highly significant that only a single protein
spot of ∼18 kDa at pH ∼5.5 was detected on the
WB of 2-D gel of acid glycine extract when
rHSP20 antibody was used as a probe. It further
supports 2-D gel electrophoresis being an efficient
method for analysis of complex protein mixtures
extracted from cells [18].

The antibody level to HSP20 in patients with
gastric diseases and the control subject was
found to cluster within a close range (0.21 ± 0.02).
This could possibly be due to a cross-reaction
resulting from earlier exposure to H. pylori by
both control subjects and younger patients. This
might have resulted in a low but constant IgG
level of HSP20. This is possible as the association
of H. pylori with humans was reported to
have begun at the early age of 10 [26], while the
tested subjects in this study were all aged above
20.

Figure 9 Transmission Electron Microscopy of Helicobacter
pylori NCTC 11637 cells labeled with anti-rHP20 IgG and 10 nm
Immuno-Gold after Triton X-100 treatment. (A) anti-rHSP20
IgG + 10 nm immuno-gold + 10 min Triton X-100 treatment;
(B) anti-rHSP20 IgG + 10 nm immuno-gold + 20 min Triton X-
100 treatment; Arrows show site of localization of HSP20.
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It is interesting that the ELISA readings cluster
within a low range of 0.21 ± 0.02. This is unlike
the wide OD range between patients with gastro-
duodenal diseases and control subjects when
other antigens were used [28]. This may indicate
that HSP20 does not play the vital role in the
pathogenesis of H. pylori infection, unlike HSP60,
which has been reported by Yamaguchi et al.
to be involved in chronic gastric inflammation
following H. pylori infection in man [3].

It is common for bacteria pathogens to colonize
prior to pathogenesis [29]. As HSP20 is localized
on the cell surface of H. pylori, it may be
involved in assisting colonization of the organism
on the host. Following colonization, other bac-
terial proteins like CagA and VacA may function
as pathogenic factors leading to H. pylori infections

[30,31]. Hence, the low antibody titer to HSP20
was shown in both control subject and patients.
Many surface proteins of bacteria play an impor-
tant role in pathogenesis through adhesion followed
by bacterial colonization leading to initiation of
immune response [2]. As HSP20 is expressed on
the cell surface of H. pylori and the low antibody
titer detected in human hosts, its role in adhesion
similar to HSP60 cannot be excluded. The im-
portance of HSP20 cannot be undermined as
adhesion is an important process in the course
of pathogenesis. The homology of the primary
structure of HSP20 and human β-type subunits
of 20S proteosome (a cytoplasmic protein) is 34%.
Preliminary study using the method described
by Seong et al. [7] showed that HSP20 has weak
peptidase activity (unpublished data). Further

Figure 10 Two controls of immunolabeled Transmission Electron Microscopy. Cells treated with Triton X-100 for 20 minutes and
5 nm immuno-gold. (A) E. coli cells labeled with rHSP20 antibody; (B) Helicobacter pylori labeled with H. pylori – HSP60 antiserum
(big arrow showing the surface localization, small arrow showing the cytoplasmic localization).

Table 1 Sero-prevalence of patients with different gastro-duodenal diseases with or without Helicobacter pylori infection*

Gastro-duodenal diseases

NormalPUD NUD

H. pylori histology1 Positive Negative Positive Negative ND
OD492 & (CI)2 0.211 

(0.191–0.232)
0.216 
(0.202–0.230)

0.220 
(0.190–0.249)

0.231 
(0.228–0.233)

0.234 
(0.195–0.259)

No. of cases 17 8 17 15 32
p for trend3 0.661 0.661 0.324 0.324 0.574

*Purified rHSP20 was used as antigen for detection by ELISA.
PUD, duodenal ulcer and gastric ulcer, NUD, gastritis and nun-ulcer dyspepsia; ND, not done.
1Positive or negative status for histology. 2Optical density at 492 nm and 95% confidence interval of OD value. 3All p values are from two sided tests.
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study on this surface protein may help to elucidate
the importance of surface proteins like HSP20 in
bacterial–host interaction.

We are grateful to J.L. Ding for helpful discussion and
J. Howe for EM support. Sera for the study were
kindly provided by National University Hospital,
Singapore. The H. pylori HSP60 antiserum was
kindly provided by Lund University, Sweden. This
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a research scholar of National University of Singa-
pore, Singapore.
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Abstract 

Background & Aims: Surface molecules of H. pylori are crucial for the adhesion of the 

organism on the host gastric epithelial cells. The potential relevance of a newly identified 

surface localized heat shock protein 20 (HSP20) to colonization and the pathogenesis of 

H. pylori infection was explored.    

Methods: From a mouse adapted strain H. pylori SS1, a hsp20-isogenic mutant was 

constructed using homologous recombination. The adhesion and colonization ability of 

the isogenic mutant was analyzed by in vitro and in vivo studies. Using reverse-

transcriptase polymerase chain reaction (RT-PCR) and co-immunoprecipitation, the 

relationship between HSP20 and the pathogenesis of H. pylori infection was postulated.  

Results: In vitro adhesion assay showed that there was no significant difference between 

the adherence ability of wild type and hsp20-isogenic mutant onto the two gastric cell 

lines (Kato III and AGS). However, unlike the wild type H. pylori SS1, the isogenic 

mutant lost its ability to colonize the stomachs of BALB/c mice. RT-PCR analysis 

revealed that HSP20 functioned independently from the major adhesins like OipA, HopZ 

and SabA. Interestingly, co-immunoprecipitation test demonstrated a novel and unique 

interaction between HSP20 & CagA. Further analyses uncovered a strong association 

between HSP20 and the surface presentation of CagA in H. pylori. 

Conclusions: The inability of hsp20-isogenic H. pylori to colonize in the mice suggests 

the potential involvement of HSP20 in colonization. In addition, the surface presentation 

of CagA resulting from the unique interaction between HSP20 and CagA highlights the 

novel chaperonic role of HSP20 for CagA in H. pylori infection.   
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Introduction 

H. pylori infection has been found to be strongly associated with various gastroduodenal 

diseases that affects half of the world population (1). Many virulence factors (e.g. CagA, 

VacA) have been identified in the past two decade (2), however, the exact pathogenesis 

of H. pylori has not been well established. As an extracellular pathogen, the interaction 

between H. pylori and host plays an important role in H. pylori infection.  

In H. pylori infection, bacterial adhesion and colonization on gastric epithelial cells will 

be the prerequisite in successful establishment of the bacteria on mucus layer of the host 

(3). Many surface molecules of H. pylori have been reported to be involved in this 

process. Among which, urease was reported to be able to decompose urea into ammonia 

to buffer the acidic pH in the stomach (4); flagella could efficiently propel the bacteria 

through viscous mucus layer (5) and different adhesins (e.g., BabA, OipA, HopZ and 

SabA) could bind to the specific receptors on the epithelial cells (6; 7). In addition, 

cytoplasmic proteins (e.g., HSP60, SOD) were specifically translocated onto the bacterial 

surface to combat against the hostile conditions in host (8; 9). Although these different 

molecules may function discretely, they are integrated and dependent on or cooperate 

with each other in the pathogenic process of H. pylori infection. Thus, many recent 

studies have focused and addressed on the relationship between bacterial surface proteins 

and pathogenesis of H. pylori infection (10; 11).    

To date, numerous isogenic H. pylori mutants constructed have shown the inability to 

colonize in the stomachs of animals, suggesting the correlation of these protein molecules 

to the colonization of H. pylori. These proteins included urease (12; 13), γ-glutamyl 

transpeptidase (GGT) (14; 15) and flagella (16; 17). However, controversial results have 
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been reported from different research groups in regards to the colonization of H. pylori in 

vivo. This may indicate that the process of H. pylori adhesion and colonization is not 

merely the outcome of a single molecule but the consequence of interactions of multiple 

factors. Thus, studying on individual gene may help to resolve the different function of 

each gene and the understanding on the cooperate interactions between genes in the 

initial process of H. pylori infection.      

As a new member of heat shock protein family, heat shock protein 20 (HSP20) has been 

identified to be located on the cell surface of H. pylori (18). However, antibody against 

HSP20 in the sera of patients was low and insignificant as compared to that of the normal 

subjects (18). These findings highlight that HSP20 might not be involved in the induction 

of host immune responses during H. pylori infection but could assist in the adhesion and 

most probably in the colonization of the organism on the host gastric epithelial cells. 

Hence, in order to investigate the relevance of HSP20 to bacterial adhesion or 

colonization, the study proposes a collaborative role of HSP20 in the pathogenesis of H. 

pylori infection following adhesion/colonization.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 5, Du & Ho 

Materials and Methods  

Bacterial strains and cell lines  

Helicobacter pylori SS1 (mouse adapted strain) was used in this study. H. pylori cells 

were grown either on chocolate blood agar plate (CBA) supplemented with antibiotics 

(19) or in the brain heart infusion (BHI) broth (Oxiod, Hampshire, UK) supplemented 

with 0.4% yeast extract (Oxiod, Hampshire, UK) and 10% horse serum (Gibco, Calsbad, 

CA, USA). LB broth and agar plate with or without supplementation of 50 µg/ml 

Ampicilin (Sigma, St. Louis, MO, USA) and/or 25 µg/ml Kanamycin (Sigma, St. Louis, 

MO, USA) was used for the growth of E. coli Top10. Gastric carcinoma cell lines: Kato 

III and AGS (ATCC, Manassas, VA, USA) were grown in RPMI medium (Sigma, St. 

Louis, MO, USA) supplemented with 10% fatal bovine serum (Gibco, Calsbad, CA, 

USA).  

Construction of hsp20::aphA gene-targeting vector  

Plasmid pBluescript II SK (+) and the kanamycin resistant gene (aphA) from plasmid 

pILL600 (kindly provided by A. Labigne Pasteur Institute, Paris, France) were chosen for 

the construction of hsp20::aphA gene-targeting vector. Four primers (KO1, 2, 3 & 4, 

Table 1) were designed according to the known H. pylori 26695 DNA sequences (20) for 

the amplification of two flanking DNA sequences (5’ & 3’) of hsp20. Genomic DNA of 

H. pylori SS1 was used as the template for the amplification. The schematic construction 

of targeting vector is as shown in Fig 1. PCR amplification was performed by an initial 

denaturation at 94°C for 5 minutes followed by 94°C, 30 seconds; 50°C, 1 minute; 72°C, 

1 minute 30 seconds for 30 cycles with additional extension at 72°C for 10 minutes. The 

5’ flanking fragment (2700 bp) was inserted at BamHI & PstI sites while 3’ fragment 
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(2549 bp) was ligated at SalI & ApaI sites of the vector. The 1340 bp long aphA gene 

fragment was inserted at EcoRI site to disrupt hsp20 gene in the vector. The positive 

recombinant plasmid (pBS-5’-aphA-3’) was screened using the corresponding restriction 

enzyme digestion and confirmed by DNA sequencing.   

Homologous recombination of hsp20::aphA in H. pylori   

Natural transformation was used for the homologous recombination between 

hsp20::aphA gene-targeting vector and H. pylori genome. The protocol for natural 

transformation of H. pylori with plasmid DNA (pBS-5’-aphA-3’) was carried out as 

described by Heuermann and Hass (21). The colonies grown on the kanamycin 

containing CBA plate were selected and sub-cultured for a few rounds to purify 

hsp20::aphA transformed H. pylori mutants. The purified hsp20-isogenic H. pylori 

mutant was preserved in BHI broth medium supplemented with 10% horse serum and 

20% glycerol and stored at - 80°C for further analysis.  

Identification of hsp20-isogenic H. pylori mutant  

The identification of hsp20-isogenic H. pylori was performed as described by Goodwin et 

al. (22). The genomic DNA of hsp20-isogenic H. pylori was used for the analysis. PCR 

amplification using different primers (HSP20-F & R; Km-F & R; HSP20-F & Km-R; 

KO3 & T7, Table 1) and Southern blotting using different probes (aphA gene fragment & 

pBluscript plasmid DNA) were used to identify the insertion of aphA gene in the genome 

of the isogenic mutant. The standard protocols for Southern hybridization were followed 

as described in ECL Direct™ Nucleic Acid Labelling and Detection System by 

manufacturer (Amersham Biosciences, Uppsala, Sweden). The protein expression of 

HSP20 in the isogenic H. pylori mutant was further detected by Western blotting using 
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antibody against rHSP20 (0.5 µg/ml) (18) and goat anti-rabbit IgG HRP conjugate 

(1:2000 diluted) (DAKO, Glostrup, Denmark). Rabbit antiserum against H. pylori HSP60 

(1:500 diluted) (18) was used as the internal control.  

In vitro adhesion assay of H. pylori to cell lines  

The adhesion assay of H. pylori to human gastric carcinoma cell lines, Kato III and AGS, 

was performed according to the methods as described by Yamaguchi et al. (8). Either 

wild type H. pylori or hsp20-isogenic H. pylori mutant was added at different ratios of 

bacteria to cells (bacteria : cells = 50:1, 100:1 and 200:1). The adherent bacteria were 

analyzed using ELISA or flow cytometry methods (23; 24). The primary antibody used 

for detection was rabbit anti-H. pylori IgG (1:20000 diluted) (DAKO, Glostrup, 

Denmark) and the secondary antibodies used was goat anti-rabbit IgG HRP conjugate for 

ELISA or goat anti-rabbit FITC conjugate for flow cytometry (1:500 diluted) (Sigma, St. 

Louis, MO, USA). 

Animal study of H. pylori in mice  

The animal study was approved by the Animal Experimental Ethic Committee, National 

University of Singapore and carried out according to the guidelines provided by 

Association for the Assessment and Accreditation of Laboratory Animal Care 

(AAALAC), U.S.A. Both wild type and hsp20-isogenic H. pylori SS1 strains were 

inoculated into BALB/c mice (15 – 20 g, < 4 weeks of age & single sex type). The 

inoculation procedure was performed according to the method as described by Smythies 

et al. (25). A total of 15 mice were inoculated for each H. pylori strain and 9 mice were 

fed with BHI broth alone serving as negative controls. At 2, 4 and 8 weeks after 

inoculation, mice were sacrificed, stomachs were removed and dissected longitudinally 
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into three equal parts for the detection of H. pylori by microbiological, 

immunohistochemistry and RT-PCR assays. Whole blood from the sacrificed mice was 

drawn and antibody responses to H. pylori were analyzed. 

Acid glycine extract (AGE) of H. pylori SS1 and rHSP20 were used as antigens (0.5 

µg/ml) to detect the antibody against H. pylori and the antibody against HSP20 

respectively, in mice by ELISA method. The secondary antibody used was goat anti-

mouse immunoglobulins HRP conjugate (1:2000 diluted) (DAKO, Glostrup, Denmark).  

Gene status and expression of H. pylori adhesins  

 The gene status (in-frame or out-of-frame based on the CT dinucleotide repeats in the 

signal sequence) of three major adhesins, oipA (HP0638), hopZ (HP0009), sabA 

(HP0725) in both wild type and hsp20-isogenic H. pylori were examined using PCR 

amplification followed by DNA sequencing (26; 27). The presence of babA2 gene was 

also analyzed using PCR (28).  

Total RNAs of both wild type and the isogenic H. pylori were used to detect the 

expression of adhesin genes by RT-PCR. The amplification of 16s rRNA gene fragment 

of H. pylori was used as the internal control (29). The PCR amplifications for oipA, hopZ 

and sabA gene fragments were conducted by denaturation at 94°C for 5 minutes followed 

by 94°C, 30 seconds; 50°C or 52°C, 30 seconds and 72°C, 30 seconds for 35 cycles with 

additional extension at 72°C for 5 minutes. The primers used are included in Table 1.  

Co-immunoprecipitation (CO-IP) and Western blotting 

The procedure for CO-IP was performed according to Voland et al. (30). Antibody 

against rHSP20 (1 µg) (18) and an aliquot of 50 µl Protein A sepharose slurry were added 

for each reaction. The protein pulled down was separated on SDS-PAGE. The isolated 
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protein on the gel was identified by MALDI-TOF Mass Spectrometry at the Proteins and 

Proteomics Centre, National University of Singapore, Singapore. Four independent 

experiments were carried out.  

Western blotting analysis using different antibodies was employed for further 

confirmation after CO-IP reaction. Mouse antiserum against rCagA (rCagA: his-tag fused 

CagA protein fragment corresponding 1st – 285th amino acids of H. pylori 26695, 

prepared by our lab, 1: 800 diluted) and antibody against rHSP20 (0.5 µg/ml) (18) were 

used as primary antibody respectively. CagA-negative H. pylori was served as negative 

control.     

The expression of cagA in H. pylori   

Total RNAs of H. pylori of different ages (3rd & 4th day) were used to detect the 

expression of cagA in both wild type and hsp20-isogenic mutant using RT-PCR (25). The 

transcribed DNAs were used as template for the amplification of cagA gene fragment (1st 

– 852nd, 852 bp) (20). The amplification of 16s rRNA gene fragment of H. pylori was 

used as the internal control (29). The primers used are included in Table 1.  

The presence of CagA in H. pylori different sub-cellular factions 

Different H. pylori cellular fractions (total protein, acid glycine extract and membrane 

fraction) were extracted from wild type, hsp20-isogenic mutant and CagA-negative H. 

pylori according to Du and Ho (18) before subjecting to SDS-PAGE analysis and 

Western blotting. The primary antibody used was mouse antiserum against rCagA while 

rabbit antiserum against HSP60 was used as the internal control. Similar tests were 

carried out in each of the cellular fractions obtained from the 3 different H. pylori 

cultures that were supplemented with the addition of  0.1, 0.5 or 1 µg/ml rHSP20. 
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Antibody against CagA in H. pylori inoculated mice  

Antibody against CagA in both wild type and the isogenic H. pylori infected mice was 

analyzed using ELISA. rCagA [rCagA: his-tag fused CagA protein fragment 

corresponding 1st – 285th amino acids according to H. pylori 26695 (Ng Cheryl & Ho, 

unpublished)] at 0.5 µg/well was used as antigen for detection. The antigen used for the 

detection of antibody against Le (X) and (Y) were synthetic Le (X) and (Y) (IsoSep, 

Sweden) at 0.1 µg/well which served as internal controls. The procedure for the detection 

was carried out according to the protocols as described by Zheng et al. (31).  

 

Results  

Identification of hsp20-isogenic H. pylori mutant  

Using natural transformation approach, a total of five hsp20-isogenic H. pylori SS1 

mutants were obtained by homologous recombination. The insertion of kanamycin 

resistant gene (aphA) in H. pylori genomes of the isogenic mutants was identified by 

PCR amplification and Southern blotting hybridization (data not shown). The absence of 

HSP20 protein expression in the isogenic mutant was detected using Western blotting 

(data not shown).  

In vitro adhesion assay of H. pylori to gastric cell lines  

The adhesion assay of H. pylori to Kato III and AGS cells analyzed using ELISA and 

flow cytometry showed that the adherence of hsp20-isogenic H. pylori to cells was 8 – 

25% lower than that of wild type H. pylori (Table 2). However, there is no significant 

difference (p>0.2) in the adherence between H. pylori wild type and hsp20-isogenic 

mutant to the two cell lines in vitro.  
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Animal study of H. pylori  

Analysis of mice gastric biopsy samples using microbiological, histological and RT-PCR 

showed that the wild type H. pylori started colonization in mouse stomach at 2 weeks of 

post-inoculation and persisted up to 8 weeks tested (Table 3). However, hsp20-isogenic 

H. pylori mutant was absent in stomachs of all mice tested throughout the course of 

inoculation (Table 3). The antibody against H. pylori in the wild type inoculated mice 

was significantly higher (p<0.01) than that in the isogenic mutant inoculated mice as 

shown in Fig 2A. However, there was no difference in the level of antibody against 

HSP20 in both H. pylori inoculated mice (Fig 2B).  

Gene function status of H. pylori adhesins 

 The CT repeats (6 CT repeats in oipA, 7 CT repeats in hopZ and sabA) were consistent in 

both wild type and hsp20-isogenic H. pylori for each gene (Table 4). Based on the 

deduced amino acids in this region, it showed that ORFs of these genes were in-frame 

(i.e. “on” status) in both wild type H. pylori and the isogenic mutant. There was no babA2 

gene amplified in both wild type and the mutant H. pylori. Furthermore, RT-PCR showed 

that all the three genes (oipA, hopZ and sabA) were expressed in both wild type and 

hsp20-isogenic H. pylori (Fig 3A). As the internal control, the expression of 16s rRNA 

gene was detected in both wild type and the isogenic H. pylori (Fig 3B). 

CO-IP and Western blotting 

A specific protein band with molecular weight of 100-150 kDa was pulled down by 

antibody against rHSP20 from the total protein extract of the wild type H. pylori (Fig 4A) 

but was absent in hsp20-isogenic mutant. This specific protein was identified as the 

cytotoxicity associated immunodominant antigen (120 kDa, CagA, NCBI accession No. 
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P55746) (32) of H. pylori as identified by mass spectrometry MALDI-TOF. The matched 

peptides are shown in Fig 4B. The same results for CO-IP and MALDI-TOF were 

obtained in four independent experiments.    

According to the results obtained from protein identification, Western blotting was 

carried out for CO-IP test. The protein isolated was recognized by mouse antiserum 

against rCagA (Fig 4C) as well as antibody against rHSP20 (Fig 4D).   

CagA expression and partition in H. pylori 

RT-PCR analysis showed that the gene fragment of cagA (1st – 852nd, 852 bp) was 

amplified in both wild type H. pylori and the isogenic mutant irrespective of ages of 

culture (Fig 5A) whereas the internal controls, 16s rRNA (390 bp) was detected in all H. 

pylori cultures (Fig 5B). 

In the Western blotting analysis of different H. pylori sub-cellular fractions, it was found 

that CagA protein was detected in all fractions extracted (TP, AGE & OMP) of H. pylori 

wild type while CagA was only detected in TP and OMP fractions but absent in AGE 

fraction of hsp20-isogenic H. pylori mutant (Fig 6A). It was also noted that the intensity 

of CagA protein band detected in OMP fraction of the isogenic mutant is significantly 

lower than that of the wild type when equal amount of OMP protein was loaded. 

Interestingly, with the addition of rHSP20 in H. pylori cultures, Western blot showed that 

CagA protein was detected in all fractions (TP, AGE & OMP) of both wild type and the 

isogenic mutant. In addition, the intensity of CagA protein band detected in each fraction 

was similar in both H. pylori wild type and the isogenic mutant (Fig 6B) regardless of the 

various concentration of rHSP20 added. There was no CagA detected in all these 

different fractions of CagA-negative H. pylori. As the internal control, HSP60 was shown 
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to be present in all fractions of H. pylori wild type, the isogenic mutant and CagA-

negative (Fig 6A & B). 

Antibody against CagA in H. pylori inoculated mice  

The antibody against CagA in the isogenic mutant infected mice detected was 

significantly lower (p<0.05) than that of the mice infected with wild type H. pylori (Fig 

7A). However, the antibody against Le (X) and Le (Y) were insignificant between the 

mice infected with H. pylori wild type and the isogenic mutant (Fig 7B & C).  

 

Discussion  

The successful construction of hsp20-iosgenic H. pylori mutant has provided the 

opportunity to explore the potential role of HSP20 on H. pylori adhesion and 

colonization. The in vitro adhesion assays on AGS and Kato III cells showed no 

significant difference on the adherence ability of hsp20-isogenic H. pylori as compared to 

the wild type, even though there was a reduction (8% - 26%) in the adhesion capability of 

the isogenic mutant (Table 2). It indicates that hsp20-isogenic H. pylori retains almost 

similar adherence capability as that of the wild type. The slight decrease in adhesion 

capability of hsp20-isogenic H. pylori to AGS and Kato III cells under in vitro conditions 

implies that HSP20 is but one of the factors involved in the adhesion of H. pylori or that 

it may participate indirectly in the process of bacterial adherence. It therefore suggests 

and supports the role of various adhesins [e.g. BabA, OipA, HopZ, SabA and Le (X)] in 

H. pylori as reported by various studies on adhesion of H. pylori (7; 33-35). These 

multiple species of adhesins might function at different stages of bacterial infection or 

cooperate in tandem. This is an area that needs further investigation.  
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Colonization is the prerequisite for the pathogenesis of H. pylori (3). Interestingly, 

introduction of wild type H. pylori into mice showed successful colonization of 

organisms in the stomachs within 2 weeks post-inoculation and persisted up to 8 weeks. 

However, there was no colonization detected in the mice inoculated with hsp20-isogenic 

H. pylori throughout the course of the 8-week study (Table 3). The failure of hsp20-

isogenic H. pylori to colonize in BALB/c mice indicates that HSP20 protein may be 

essential for bacterial colonization as exemplified by the significantly lower antibody 

level against H. pylori (but not against HSP20) in hsp20-isogenic mutant infected mice 

(Fig 2A). This low level of antibody against H. pylori could possibly be due to the 

unsuccessful establishment of the bacterial pathogen on gastric epithelium of the animals 

thereby further signifies the importance of HSP20 in bacterial colonization.  

In contrast to the antibody level against H. pylori, there was no significant difference 

observed in the level of antibody against HSP20 between wild type, the isogenic mutant 

infected mice and the uninfected negative controls (Fig 2B). This may indicate that 

disrupted HSP20 in the isogenic H. pylori is not directly correlated with the low antibody 

production in the mutant infected mice. It could further attest that HSP20 is unlikely to be 

a major antigen that induces strong and consistent immune response during H. pylori 

infection. This result agrees with our previous finding where the antibody against HSP20 

in patients with different gastroduodenal diseases was insignificant from that of the 

normal subjects (18). 

The inability for hsp20-isogenic mutant to colonize in mice supports the many earlier 

findings that were carried out. This can be illustrated by the study of Dorrell et al. (1999) 

(36) where pldA (phospholipase) H. pylori showed similar adherence capability as that of 
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the wild type in vitro but failed to colonize in the stomach of mice in vivo. Similar 

findings were also observed in the study of flaA H. pylori mutant (37) and ureB mutant in 

the gnotobiotic piglet model (38).  Dorrell et al. (36) proposed that the bacterial mutant 

could adhere to gastric epithelium causing “transient adhesion” for a few days but was 

unable to further evade and colonize in the stomach of animals. Like the pldA H. pylori 

mutant (36), it is believed that the hsp20-isogenic mutant have had a “transient adhesion” 

in the gastric stomach of BALB/c mice. It is also crucial to note that, using RT-PCR, the 

major adhesins (e.g. OipA, HopZ and SabA) examined in this study were all functional 

(i.e. under “ON” status) in both wild type and the isogenic mutant H. pylori. Thus, our 

findings may imply that hsp20-isogenic H. pylori could adhere to the gastric mucus 

probably through one or more of these multiple adhesins [e.g. OipA, HopZ, SabA and Le 

(X)] for a short period of time but then loses its ability to colonize on the gastric 

epithelium of the animals. In comparison with the adherence property shown in vitro, the 

role of HSP20 in bacterial colonization is more crucial in vivo. It is therefore appropriate 

to imply that HSP20 is mainly responsible in assisting in the colonization of bacteria in 

vivo, apart from playing a minor role in adhesion. 

In an attempt to study the interaction between HSP20 and other proteins in H. pylori, co-

immunoprecipitation (CO-IP) using antibody against rHSP20 showed that a single 

protein, CagA was pulled down from the protein extract of the wild type but not in the 

isogenic H. pylori (Fig 4). This highlights the potential role of HSP20 in interacting with 

CagA in H. pylori. The absence of this interaction in hsp20-isogenic mutant, CagA-

negative H. pylori and non-H. pylori (E. coli) (serving as negative controls) further 

illustrates that the interaction between HSP20 and CagA is novel and unique.  
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CagA, being a major virulence factor of H. pylori (39), its presence in H. pylori is 

important for the pathogenesis of bacterial infection (40; 41). Using RT-PCR analysis of 

cagA in both H. pylori strains (wild type and the isogenic mutant) revealed that the 

expression level of cagA in the isogenic H. pylori is similar to that of the wild type 

regardless of the ages of H. pylori cultures examined (Fig 5A). This may imply that 

HSP20 is not related to the expression of cagA gene.  

The surface presentation of CagA has been reported to be important for the pathogenesis 

of H. pylori infection (40; 41). Western blotting was used to examine the presence of 

CagA protein in collaborating with HSP20, a surface localized protein (18) in different 

sub-cellular fractions of H. pylori. The absence of CagA in AGE fraction (acid glycine 

extract comprising membrane and membrane associated proteins) and a comparatively 

lower abundance of CagA protein in OMP fraction (outer membrane proteins) of the 

isogenic H. pylori (Fig 6) could be correlated to the disruption of HSP20. Interestingly, 

with the addition of rHSP20 into the isogenic H. pylori culture, CagA emerged in all 

these 3 fractions [total proteins (TP), AGE & OMP] of the isogenic mutant with similar 

intensity as that of the wild type. This further strengthens the relationship between HSP20 

and the presence of CagA in H. pylori. The close relationship between HSP20 and the 

presence of CagA in the surface fractions (AGE and OMP) signifies that HSP20 is 

important in collaborating with the presentation of CagA in H. pylori. It is postulated that 

the disrupted HSP20 in the isogenic H. pylori had resulted in the reduction of CagA in 

OMP fraction but was compensated by the addition of rHSP20 during culturing. 

Furthermore, the absence of CagA in the AGE fraction of the isogenic mutant while its 

restoration with the addition of rHSP20 may imply that HSP20 could be required for the 
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stabilization of CagA under low pH conditions, similar to the acidic environment in the 

stomach of the host (as AGE was prepared at pH 2.2).  

As a major antigen in H. pylori, CagA could induce high antibody titer in humans and the 

infected animals during bacterial infection (42; 43). Hence, the potential collaboration 

between HSP20 and the presentation of CagA on H. pylori was further tested using 

antibody against CagA in H. pylori infected mice. The antibody level against CagA in 

hsp20-isogenic H. pylori infected mice was found to be significantly lower (p<0.05) than 

that of the wild type (Fig 7A). This may explain the good correlation between low 

abundance of CagA detected in the surface protein fraction of the isogenic H. pylori and 

the low antibody response against CagA in the isogenic mutant infected mice. It is 

possible that the disrupted HSP20 in the isogenic mutant could have led to the ineffective 

presentation of CagA or partial CagA as antigen on the cell surface of H. pylori resulting 

in the reduction of antibody induced during H. pylori infection. This may further support 

the probable involvement of HSP20 in the presentation and stabilization of CagA on the 

cell surface of H. pylori. As a heat shock protein, HSP20 could probably function as an 

assisting factor in “delivering” and/or “presenting” CagA onto the cell surface of H. 

pylori. It is therefore proposed that HSP20 may serve as a “chaperon” for the virulence 

factor, CagA in H. pylori. 

Our findings from this study suggest that HSP20 is an important factor assisting in the 

colonization of H. pylori in mice. Its role in the bacterial colonization is independent of 

the H. pylori adhesins like OipA, HopZ and SabA.  

With the significant contribution of CagA to the pathogenecity of H. pylori infection (40; 

41), the strong association between HSP20 and CagA represents an indirect but critical 
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role in the bacterial pathogenesis of H. pylori infection. This study emphasizes the 

different role of HSP20 in H. pylori as compared to that of the HslV, a component of 

ATP-dependent protease in E. coli (44). From the identification of interaction between 

HSP20 and CagA to the possible chaperonic role of HSP20 through the surface 

presentation of CagA, it further addresses the importance of HSP20 in H. pylori infection. 

This study on HSP20 in H. pylori opens up an insight in studying the bacterial-host 

interaction and understanding on the development of effective anti-H. pylori therapeutics 

against H. pylori infection.          
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Table 1. Primers used in this study 
 
Name of 
primer 

Gene Sequences (5’ – 3’) Length 
(bp) 

Method(s) Ref. 

KO1 HP0513 CGGGATCCATGAACGGACATTTTATCGGTT (BamHI) 

KO2 HP0515 AACTGCAGCCATTCTTTACTGAAATCCACC (PstI) 

 
2700 

 
PCR 

 
(20) 

KO3 HP0515 ACGCGTCGACCGCAAAGATAAGTATTTACGC (SalI) 

KO4 HP0517 TCCGGGCCCTCAATCCCTATTCCTTCTATGGA (ApaI) 

 
2549 

 
PCR 

 
(20) 

HSP20-
F 

HP0515 CGGGATCCATGTTTGAAGCGACGACGATTTTAGGC 

HSP20-
R 

HP0515 CGGGATCCTTAAAGCTCCAAAATTTTAATATTCGTG 

 
543 

 
PCR 

 
(20) 

Km-F aphA CGGGATCCGATAAACCCAGCGAACCATTTGAG 

Km-R aphA CGGGATCCAAGCTTTTTAGACATCTAAATCTAGGT 

 
1340 

 
PCR 

 
(45) 

T7  - GTAATACGACTCACTATAGGGC - PCR * 

16s 
rRNA-F 

16s 
rRNA 

GGAGGATGAAGGTTTTAGGATTG 

16s 
rRNA-R 

16s 
rRNA 

TCGTTTAGGGCGTGGACT 

 
390 

 
RT-PCR 

 
(29) 

oipA-FS HP0638 CAA GCG CTT AAC AGA TAG GC 

oipA-RS HP0638 AAG GCG TTT TCT GCT GAA GC 

 
- 

 
PCR & 

sequencing 

 
(27) 

hopZ-FS HP0009 GCC TGA TAT GGG TGG CAT GGG 

hopZ-
RS 

HP0009 ATT TGA TAG CCC GCG CTG AT 

 
- 

 
PCR & 

sequencing 

 
(27)

sabA-FS HP0725 TTT TTG TCA GCT ACG CGT TC 

sabA-RS HP0725  ACC GAA GTG ATA ACG GCT TG 

 
- 

 
PCR & 

sequencing 

 
(26) 

babA2-F babA2 AATCCAAAAAGGAGAAAAAGTATGAAA 

babA2-
R 

babA2 TGTTAGTGATTTCGGTGTAGGACA 

 
810 

 
PCR 

 
(28) 

oipA-F HP0638 ATGAGCTCAGCTTTGGGTATAA 

oipA-R HP0638 GCGATCAATATCGTATTCATCA 

 
457 

 
RT-PCR 

 
(20)

hopZ-F HP0009 ACTACTACTACTACTAATGACG 

hopZ-R HP0009 AATCCTTAAGGCTGCCTCTAAA 

 
611 

 
RT-PCR 

 
(20)

sabA-F HP0725 ATCCACTAATTACCCAACGCAAT 

sabA-R HP0725  GTCGTTATAGGCGGTTACGATT 

 
643 

 
RT-PCR 

 
(20)

cagA-F HP0547 GGAACGCCATATGATGACTAACGAAACCATTG 

cagA-R HP0547 CGCGGATCCTTAATCAATGTCAGCGACTCCC 

 
852 

 
RT-PCR 

 
(20)

Restriction enzyme sites are underlined. * Stratagene, CA, USA.   
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Table 2. Comparison of adherence ability of hsp20-isogenic and wild type H. pylori  

 
Adherence to  

KATO III (%) 

Adherence to  

AGS (%) 

Assays Bacteria:cell 

ratio 

Mutant / WT  Mutant /WT 

50:1 83.2 ± 1.9  88.3 ± 1.0  

100:1 86.5 ± 0.9  91.6 ± 0.8 

 

ELISA 

200:1 74.9 ± 1.1  86.3 ± 1.2 

50:1 86.7 ± 0.5 86.4 ± 0.5  

100:1 85.6 ± 0.4  83.9 ± 0.6 

 

Flow 

Cytometry 200:1 91.6 ± 0.4  88.0 ± 0.5 

 
 
 
 
 
 

Table 3. Analysis of H. pylori colonization in mice 
 

H. pylori  Assays Rate of H. pylori detected Total 

inoculated  2 weeks 4 weeks 8 weeks  

Microbiological 5/5  5/5  5/5  15/15 (100%) 

Histological 3/5 3/5 3/5 15/15 (100%) 

Wild Type 

RT-PCR 5/5  5/5  5/5  15/15 (100%) 

      

Microbiological 0/5 0/5 0/5 0/15 (0%) 

Histological 0/5 0/5 0/5 0/15 (0%) 

hsp20-isogenic  

mutant 

RT-PCR 0/5 0/5 0/5 0/15 (0%) 
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Table 4. Gene status of H. pylori adhesins  

Gene Strains Partial sequences Number 
of CT 

repeats 

Gene 
status

SS1 
(WT) 

ATGAAAAAAGCTCTCTTACTAACTCTCTCTCTCTCGTTTTGG 
 M    K      K      A    L     L     L      T    L      S    L     S     F     W 
 

6 On  
 

oipA 
(HP0638) hsp20-

isogenic 
mutant 

ATGAAAAAAGCTCTCTTACTAACTCTCTCTCTCTCGTTTTGG 
 M    K      K      A    L     L     L      T    L      S    L     S     F     W 
 

6 On  

SS1 
(WT) 

ATGAAAAAAACCCTTTTACTCTCTCTCTCTCTCGCTTCATCG 
 M     K      K      T     L     L     L     S    L     S     L     A     S      S 
 

7 On   
hopZ 

(HP0009) 
hsp20-

isogenic 
mutant 

ATGAAAAAAACCCTTTTACTCTCTCTCTCTCTCGCTTCATCG 
 M     K      K      T     L     L     L     S    L     S     L     A     S      S 
 

7 On  

SS1 
(WT) 

ATGAAAAAGACAATTCTGCTCTCTCTCTCTCTCGCTTCATCG 
 M     K     K     T      I        L     L      S     L      S     L     A     S      S 
 

7 On   

sabA 
(HP0725) hsp20-

isogenic 
mutant 

ATGAAAAAGACAATTCTGCTCTCTCTCTCTCTCGCTTCATCG 
 M     K     K     T      I        L     L      S     L      S     L     A     S      S 
 

7 On  

The CT dinucleotide repeats were highlighted underline.  
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Figure legend  

Fig 1. Schematic construction of hsp20::aphA gene-targeting vector  

A, the location of genes in genome of H. pylori 26695; four primers (KO1 – 4) were designed based on the 

known sequences; B, two flanking DNA fragments (5’ & 3’) were amplified using H. pylori SS1 genomic 

DNA as template with the respective restriction sites on their flanking ends according to multiple cloning 

sties of pBluescript SK (+); C, the insertion of the two flanking fragments (5’ & 3’) and aphA gene into 

pBluescript SK (+); the full length of targeting vector (pBS-5’-aphA-3’) is 9589bp. 

 

Fig 2. Detection of antibody in H. pylori inoculated mice 

A, total antibody against H. pylori detected in both H. pylori inoculated mice; B, antibody against HSP20 

detected in mice. WT, wild type H. pylori inoculated mice; MUTANT, hsp20-isogenic H. pylori inoculated 

mice; NEGATIVE, negative control mice fed with BHI broth alone. *The differences between wild type 

and mutated H. pylori inoculated mice were compared and statistically significant (p<=0.01).   

 

Fig 3. RT-PCR analyses of adhesin genes of H. pylori   

A, RT-PCR analysis of three adhesin genes of H. pylori; lanes 1 & 2, oipA gene fragment (457 bp); lanes 3 & 4, hopZ 

gene fragment (611 bp); lanes 5 & 6, sabA gene fragment (643 bp); lanes 1, 3 & 5, RT-PCR using wild type H. pylori 

as template; lanes 2, 4 & 6, RT-PCR using hsp20-isogenic H. pylori as template. M1, 1 kb DNA ladder; M2, 100 based 

pair DNA ladder. B, RT-PCR analysis of 16s rRNA gene fragment (390 bp); WT, RT-PCR using wild type H. pylori as 

template; Mu, RT-PCR using hsp20-isogenic H. pylori as template; M, 100 base pair DNA ladder. 

 

Fig 4. CO-IP analysis and protein identification 

A, SDS-PAGE (12%) of CO-IP with antibody against rHSP20; lane 1, CO-IP of E. coli cells with rHSP20 

Ab (negative control); lane 2, CO-IP of H. pylori SS1 cells with pre-immune rabbit serum (internal 

negative control); lane 3, CO-IP of hsp20-isogenic mutant H. pylori proteins with rHSP20 Ab; lane 4, CO-

IP of wild type H. pylori proteins with rHSP20 Ab. M, prestained Precision Protein Standards (Biorad). 

The isolated protein was indicated as arrow. B, the amino acids sequence of CagA protein identified (acc. 
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P55746 in NCBI) by MS from CO-IP; the matched peptides were in gray color and underlined; 11 out of 

34 peptides matched with 32% identity. C & D, Western blots probed with antibody against rCagA (C) and 

antibody against rHSP20 (D) after CO-IP reaction, lane 1, CO-IP of wild type H. pylori; lane 2, CO-IP of 

CagA-negative H. pylori; lane 3, CO-IP of hsp20-isogenic H. pylori mutant, M, prestained Precision 

Protein Standards (Biorad).  

 

Fig 5. cagA expression in H. pylori analyzed by RT-PCR 

A, amplification of cagA gene fragment (852 bp) in H. pylori; B, amplification of 16s rRNA gene fragment 

(390 bp). M1, 100 bp DNA ladder; M2, 1 kb DNA ladder (Biolabs). Lanes 1 & 2, amplification based on 

the 3rd and 4th day culture of wild type H. pylori; lanes 3 & 4, amplification based on the 3rd and 4th day 

culture of hsp20-isogenic H. pylori.  

 

Fig 6. Presence of CagA in different H. pylori sub-cellular fractions 

A, different H. pylori cultures grown in BHI broth; B, different H. pylori cultures grown in BHI broth 

supplemented with 0.5 µg/ml rHSP20. The amount of 10 µg protein was loaded per lane in 10% SDS-

PAGE. Lanes 1, 4 & 7, total protein (TP) extract of H. pylori; lanes 2, 5 & 8, acid glycine extract (AGE) of 

H. pylori, lanes 3, 6 & 9, outer membrane protein (OMP) extract of H. pylori. Lanes 1 –3, protein extracts 

of wild type H. pylori, lanes 4 – 6, protein extracts of CagA-negative H. pylori; lanes 7 – 9, protein extracts 

of hsp20-isogenic H. pylori mutant. M, prestained Precision Protein Standards (Biorad). The Western blot 

was carried out using antibody against rCagA or antibody against HSP60. 

 

Fig 7. Antibody against CagA and Lewis antigens in H. pylori infected mice 

A, antibody against CagA detected in H. pylori infected mice.  *The differences between wild type and 

hsp20- isogenic H. pylori inoculated mice were compared and statistically significant (p<0.05); B, antibody 

against Le (X) antigen in H. pylori infected mice; C, antibody against Le (Y) antigen in H. pylori infected 

mice. WT, wild type H. pylori inoculated mice; MUTANT, hsp20-isogenic H. pylori inoculated mice; 

NEGATIVE, negative control mice fed with BHI broth alone.  
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Fig 1. Schematic construction of hsp20::aphA gene-targeting vector 
 
 

 

 

 

Fig 2. Detection of antibody in H. pylori inoculated mice 

 

A. 
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Fig 3. RT-PCR analyses of adhesin genes of H. pylori  
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Fig 4. CO-IP analysis and protein identification 
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Fig 5. cagA expression in H. pylori analyzed by RT-PCR 
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Fig 6. Presence of CagA in different H. pylori sub-cellular fractions 
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Fig 7. Antibody against CagA and Lewis antigens in H. pylori infected mice 
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Abstract 

Background: Notwithstanding the prevalence of H. pylori infection in different regions 

of the world, no disease epidemiological marker for H. pylori infection has been 

established.  

Aims: Using a newly identified surface localized heat shock protein 20 (HSP20) that was 

shown to be involved in colonization of H. pylori, the relevance of the genetic structure 

of hsp20 (HP0515) to H. pylori infection was explored.  

Methods: hsp20 gene sequences of 225 H. pylori isolates with different gastroduodenal 

disease outcome from 10 countries and 2 standard strains (26695 and J99) were analyzed 

using phylogenetic tools. The 3-D protein structure of HSP20 was predicted based on 

molecular modeling.   

Results: hsp20 gene was found to be conserved in all H. pylori strains studied. The 

phylogram generated from hsp20 DNA sequences demonstrated two geographical 

clusters: Asian and non-Asian groupings. Interestingly, the distinctive substitutions at 

14th – 16th amino acid residues of HSP20 exhibited strong association with the two 

geographical groupings: M-G-G cluster with Asian origin while F-D-N cluster with the 

non-Asian origin. Uniquely, the M-G-G and F-D-N substitutions were also shown to be 

associated with PUD (peptic ulcer disease) and NUD (non-ulcer dyspepsia), respectively. 

Conclusion: HSP20 with unique substitutions at 14th – 16th may represent the adaptation 

of H. pylori to different environments or reflect the random genetic drift without effects 

on phenotype thereby representing it as a potential epidemiological marker. It is also 

postulated that substitutions M-G-G has its origin in Asia. More interestingly, the 3-

amino-acid substitutions have shown the capability to differentiate NUD from PUD.  
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Introduction 

      Helicobacter pylori is a microaerophilic, gram-negative spiral. This human gastric 

bacterial pathogen has been associated with gastritis, peptic ulcer and gastric cancer in 

patients across continents, races and age groups.[1] The variation of infections may be 

contributed by the high genetic diversity of bacterial genomes of H. pylori isolates[2] or a 

combination of host and pathogens.[3] With the availability of two genomic DNA 

sequences of H. pylori 26695 and J99,[4][5] the genetic diversity of bacterial genome has 

been viewed in the genome wide manner. Comparison between these two genomes shows 

that there are about 6 – 7% of the annotated genes that are strain specific but are absent 

from each other with no identifiable homologue in the databases.[4]  

      Housekeeping genes (atpA & D, efp, mutY, ppa, trpc, urel, yphC, recA, glnA, scoB), 

virulence associated genes (cagA, vacA, iceA) and transposable elements (IS605 & 

IS608) have been sequenced for use to analyze the genetic diversity between 

strains.[6][7][8] Sequencing studies showed that it was extremely rare for an orthologous 

gene from different H. pylori strains to have the same sequence.[9][10] The phylogenetic 

studies based on different genes (e.g. housekeeping genes, virulence factor genes & 

transposable elements)[6][7][8] showed the existence of recombination and geographical-

origin-based clustering (Western and Asian) among H. pylori isolates. 

      Epidemiological study has shown that H. pylori infection is more prevalent in 

developing countries, in particular East Asia.[11] Furthermore, the more severe 

gastroduodenal cases like peptic ulcer diseases and gastric cancer were observed mainly 

in Asian populations.[12][13] Besides the host genotypes and environmental factors, 

virulence of H. pylori strains determines bacterial pathogenicity that might be related to 
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the severity of gastroduodenal diseases.[3] However, no evident genetic marker has been 

established to distinguish H. pylori isolates with respect to the disease status due to H. 

pylori infection. Therefore, differentiating H. pylori isolates from Asian or Western 

countries would benefit the study of H. pylori and its relationship with clinical outcome 

in patients.  

      HSP20 is a newly identified surface localized protein in H. pylori.[14] Our recent 

study showed that HSP20 is involved in the colonization of H. pylori in mice (manuscript 

submitted). Its cooperative role in the initial stage of H. pylori infection implies its 

importance in the bacteria-host interactions. Due to the significant contribution of HSP20 

in the process of H. pylori infection, it is therefore interesting to understand the genetic 

structure of HSP20 in differentiating various H. pylori infections. Furthermore, the 

relevance of hsp20 gene for use as an epidemiological marker of H. pylori was also 

explored.  

 

Material and Methods 

H. pylori Strains  

      A total of 225 H. pylori isolates obtained from different geographical regions and 

races were included in this study (Table 1). Among these, 103 strains were isolated from 

Singapore and 122 strains were from 9 different countries. All H. pylori isolates were 

cultured on chocolates blood agar plates supplemented with antibiotics.[15] The plates 

were incubated at 37°C in an atmosphere of 5% CO2 in a humidified incubator (Forma 

Scientific, Marietta, OH, USA).   

 4



DNA isolation, amplification, and sequencing    

Genomic DNAs of H. pylori isolates were extracted according to the method as 

described by Hua et al.[16] A pair of primers corresponding to 50bp upstream and 

downstream of hsp20 (HP0515) of H. pylori 26695 genomic sequences was used.[5] The 

forward primer was: 5’> CGGAATTCAGATTGAAGTCAAGC <3’ while the reverse 

primer was: 5’> CGGGATCCTGCCCAATGATGTATT <3’. PCR amplification was 

carried out by an initial denaturation at 94°C for 5 minutes followed by 94°C, 30 

seconds; 50°C, 30 seconds; 72°C, 30 seconds for 30 cycles with additional extension at 

72°C for 5 minutes. The PCR amplified 643bp gene fragments were purified by PCR 

product purification kit (Qiagen, Hilden, Germany) and sequenced using BigDye TM 

Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer, Wellesley, MA, USA) 

in ABI 100 model 377 DNA sequencer (Perkin Elmer, Wellesley, MA, USA).  

Sequences alignment and comparison  

hsp20 gene sequences from 225 isolates and the two known genomic DNA sequences 

strains (in 26695, Genebank accession no: AE000566; in J99, Genebank accession no: 

AE001480)[4][5] were aligned and the corresponding amino acid sequences were 

deduced. Multiple alignment of sequences was conducted using ClustalX version 

1.81.[17] The GC content, polymorphic sites, percentages of the mean differences 

between pairs of strains at synonymous nucleotide positions (KS) and nonsynonymous 

nucleotide positions (KA) were calculated with DNASP version 3.5.[18]  

Phylogenetic analysis  

      PHYLIP (the PHYLogeny Inference Package) Version 3.6 was used to conduct 

phylogenetic analysis[19] based on DNA sequences of 227 strains of H. pylori. The 
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maximum likelihood (ML) algorithm was chosen and performed following the 

procedures proposed by Baxevanis et al.[20] A bootstrap analysis (100 replicates) was 

performed to evaluate the topology of the phylogenetic trees. The nucleotide divergence 

between groups was estimated by using Jukes-Cantor methods in DNASP 3.5.[18]    

Protein structure prediction  

SWISS-MODEL[21] Server available at http://www.expasy.org/swissmod/ was used 

to predict protein structure of HSP20. The amino acid sequence of HP0515 of H. pylori 

26695 was used as a query for finding homologous templates from ExPDB database. The 

two best-scored templates chosen for modeling are ATP-dependent protease HslV of 

Haemophilus influenzae showing 57% identity (PDB accession code: 1kyiL; Genebank 

accession no: U32731)[22] and HslV of Escherichia coli showing 49% identity (PDB 

accession code: 1e94A; Genebank accession no: AE000467).[23] The predicted protein 

structure was evaluated by WHATCHECK program[24] that suggested the 

stereochemistry and energetic parameters of the model was acceptable.  

Structure comparison of substitutions at 14th – 16th amino acid residues  

      The amino acid sequences of hsp20 that represent seven major types of substitutions 

respectively were modeled using SWISS-MODEL Sever. These strains were H. pylori 

J99 whose substitutions is F-D-N at 14th –16th, H. pylori 26695 for L-N-H, Singapore 

isolates RH54 for M-G-G, Swedish isolates 58 for M-E-G, Japanese isolates 1107 for I-

G-G, Sweden isolates 24 for M-R-G and Swedish isolates 88 for F-N-H. Seven types of 

amino acid substitutions were examined based on its position in the 3-D structure. 
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Results 

Nucleic acid sequence analysis  

The nucleic acid sequences of hsp20 of all 227 strains showed an open reading frame 

of 540bp with no deletion and insertion. However, there were a total of 219 polymorphic 

sites scattered in the whole gene fragment, showing high level of synonymous sequence 

variations. Most of the nucleotide substitutions (57.99%) were at the third codon position. 

The (G+C)% content of all hsp20 sequences analyzed ranges from 41.25% to 44.57% 

with an average of 43.12%. The percentage of the differences between pairs of strains at 

synonymous nucleotide positions (Ks) was 15.9% and 1.25% at non-synonymous 

positions (Ka). The ratio of Ks/Ka was 12.65.  

Amino acid sequence analysis  

      The corresponding amino acid sequences deduced from nucleic acid sequences 

showed a total number of 51 substitutions. Of these, 79% of the amino acid substitutions 

belongs to the same polarity group, e.g. from polar to polar or from hydrophobic to 

hydrophobic. The remaining 21% was substituted between different groups, e.g. 

switching between polar and hydrophobic.  

There are seven types of substitutions observed at 14th – 16th amino acid residues. 

The substitutions corresponding to positions 14th-15th-16th were: M-G-G (~76%), M-E-G 

(~4%), M-R-G (~0.4%) and I-G-G (~3%) constituting the M-G-G cluster while the F-D-

N cluster comprises F-D-N (~13.6%), L-N-H (~2.2%) and F-N-H (~0.8%). The 

substitutions were more diverse among the non-Asian group (M-G-G, F-D-N, L-N-H, M-

E-G, F-N-H & M-R-G) than the Asian group (M-G-G, I-G-G, M-E-G & F-D-N). 

Interestingly, substitution M-G-G predominates among the Asian group (91%, 143/158) 
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while the F-D-N substitution is found more frequently in H. pylori isolates obtained from 

non-Asian countries (39%, 27/69) (Tables 1). Among the seven observed substitutions, 

M-G-G is the most prevalent type in all tested isolates (76%, 172/227).  

Interestingly, substitutions at 14th – 16th amino acid residues (Table 2) show that 

significantly more patients with PUD (peptic ulcer disease) harbored H. pylori isolates 

with M-G-G substitution cluster (M-G-G, M-E-G, M-R-G and I-G-G) while those 

patients with NUD (non-ulcer dyspepsia) possessed H. pylori strains with F-D-N 

substitution cluster (F-D-N, L-N-H and F-N-H). Based on the diseases outcome available 

for 195 out of 227 H. pylori trains in this study, the odds ratio (OR) of M-G-G cluster for 

PUD was calculated.[25] It was shown that M-G-G has an OR of 4.27 in its association 

with PUD as compared to F-D-N that is positively associated with NUD (Table 2).  

Phylogenetic analysis  

      The dendrogram as shown in Fig 1 was generated based on the analyses of nucleic 

acid sequences of hsp20 from 225 tested strains and the 2 strains (26695 & J99) with 

known genomic DNA sequences.[4][5] Using PHYLIP and ML algorithm, the inferred 

taxonomic distance between different H. pylori strains was arrived as illustrated in Fig 1. 

Two major clusters (A & B) were observed: a larger group A and a smaller group B. The 

isolates in group A shows high similarity in its DNA sequences and further bifurcates 

into two subgroups, namely A1 and A2. Interestingly, subgroup A1 and group B were 

mainly from Asian and non-Asian origins, respectively. However, subgroup A2 comprises 

a mix of H. pylori isolates of Asian and non-Asian origins. In group A1 (n=119), all the 

strains except for CR10498 (Costa Rica), SJM1 and SJM14 (Peruvian) and Cau1026 (an 

isolate from an European visitor in Singapore) are entirely from Asian countries. There 
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were 34 Asian strains and 36 non-Asian strains that made up group A2 (n=70). The 

remainder (n=35) including four Singapore strains (Sin1059, 541, 1134 & 1024, all were 

isolates of Malay ethnic origin) constituted group B. There were 3 strains (J1186, HK77 

and SJM19) which were not aligned to any of the groups. The percentage of distribution 

shows that Asian isolates are present in 96.64% (group A1), 48.57% (group A2) and 

11.43% (group B) while non-Asian isolates are present in 3.36% (group A1), 51.43% 

(group A2) and 88.57% (group B). 

      The observation was further confirmed by the estimated DNA divergence as shown in 

Table 3. The nucleotide divergence (D) within group A1 (2.43%), A2 (3.38%) or group B 

(3.69 %) was relatively lower than the D value between groups. The divergence between 

group A1 and B (6.03 %) was the highest followed by A2 and B (5.29 %) or A1 and A2 

(4.34%). The value of estimated Ks between different groups (Table 4) from high to low 

was in the order of A1 vs. B (0.212); A2 vs. B (0.190) and A1 vs. A2 (0.185).  

Furthermore, it is noted that the divergence differences between different hsp20 gene 

groupings were significantly lower when compared with the divergence between vacA 

alleles m1 and m2 (24.9%) or the Ks between m1 and m2 (0.46) as reported by Atherton 

et al. (1999).[26] 

Similarly, interesting findings were observed in regards to the substitutions at 14th – 

16th amino acid residues. The predominant substitution is M-G-G that comprises 172/227 

isolates (Table 1). Of these, 109 and 61 isolates with M-G-G substitution are located in 

group A1 and A2, respectively (Table 4). It shows that group A1 is predominately the M-

G-G substitution with Asian origin while group A2 comprises a mix of M-G-G 

substitution of Asian and non-Asian origins. The other substitutions, I-G-G (n= 7) is only 
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found in Asian isolates and strictly distributed in group A1; M-E-G (n=9) substitution are 

distributed in both group A1 and A2 while the substitution M-R-G with only a single 

strain of Swe24 is located in group A2. In contrast, F-D-N substitution was found in 

31/227 isolates (Table 1). F-D-N is the prevalent substitution type in group B (28/35) 

(Table 4). It is notable that except two F-D-N substitution (Aus3 and NCTC11637) 

clustered in group A2, the rest of F-D-N substitution cluster (F-D-N, L-N-H and F-N-H) 

are located in the group B including four Singapore isolates (Sin1059, 541, 1134 & 1024, 

all were isolates of Malay ethnic origin).  

Protein structure prediction  

The predicted HSP20 protein structure shows four α helixes, ten β sheets and 14 turns 

(Figs 2 & 3). The four α helixes, two at each side, flank the central core of ten β sheets 

that are concentrated in the middle. All the α helixes and β sheets are evenly distributed 

on both sides forming a symmetrical structure.  

Structure comparison of substitutions at 14th – 16th amino acid residues 

      The amino acids of 14th – 16th are located at the end of the first β sheet that display on 

the surface of predicted HSP20 protein 3-D structure (Figs 2 & 3). Interestingly, based on 

the obtained 3-D structure, the seven different substitutions (M-G-G, I-G-G, M-E-G, M-

R-G, F-D-N, L-N-H and F-N-H) do not affect the protein conformation in the 3-D model 

predicted.  

      The 3-amino-acid (14th – 16th) substitutions is unique in H. pylori HSP20 species 

which is absent in both HslV of E. coli and H. influenzae as shown in the alignment of 

three homologues in Fig 4. 
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Discussion 

      This study centers on the DNA sequence of hsp20 (HP0515).  hsp20 is conserved 

with  an open reading frame (ORF) of 540bp in all H. pylori isolates studied. This is 

different from cagA, vacA and outer membrane protein (HP0638) gene sequences where 

gene polymorphism has led to insertion or deletion of gene fragments among strains. 

Atherton et al.[28] have shown that vacA has at least two variable regions: s region (s1a, 

s1b, s1c & s2) and m region (m1, m1T & m2). Similarly, HP0638 shows two 

dichotomies that is strongly correlated with cagA and vacA status.[29] cagA gene was 

shown to be present in 60% - 70% of H. pylori strains[30] among the Western population 

but was found in 80% - 90% of H. pylori isolates in Asian population.[31] 

      Based on the nucleotide acid sequences of hsp20, the phylogram plotted demonstrated 

two major clusters of H. pylori strains (Asian & non-Asian groupings) according to the 

geographical demarcation (A & B, Fig 1). Our results on the geographical groupings 

agree with previous studies in which the analyses were based on the sequence of 

housekeeping genes e.g. recA, atpD, glnA, scoB or genotyping of virulence genes cagA, 

vacA and transposable elements IS605 and IS608.[6][7][8] [27] Compared with other 

genes of H. pylori, the percentage of divergence (D, Ks) and the ratio of Ks/Ka (Table 3) 

between the 3 different hsp20 genetic groupings (A1, A2 and B) were significantly lower 

than that of vacA alleles m1 & m2[26] or housekeeping genes (atpD, scoB, glnA and 

recA)[27] as reported. This may indicate that different genes of H. pylori are under the 

control of different selection pressures against amino acid replacement.[32] The 

divergence ((D, Ks, Ka) and the ratio of Ks/Ka (Table 3) values in the 3 different genetic 

groupings show that hsp20 sequences are stable and effective in discriminatively 
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distinguishing H. pylori strains from different geographical origins. The evolutionary 

variations of H. pylori based on the findings of hsp20 phylogeny are comparable with 

that of housekeeping genes[6][7][8] and surface proteins (HP0638).[29] 

      Although HSP20 (HP0515) is a homologue of HslV in Haemophilus influenzae[22] 

and E. coli,[23] the 3-amino-acid substitutions at 14th –16th is unique in HSP20 as it is not 

present in the homologues of the other two bacterial species (Fig 4), implying that these 

3-amino-acid residues could have acquired during the evolutionary process of H. pylori 

and may represent the adaptation of bacteria to different environments or reflect the 

random genetic drift without effects on phenotype. Hence, it further indicates the 

distinctiveness of hsp20 and the 3-amino-acid substitutions. 

      It is interesting to note that the unique 3-amino-acid substitutions of all HSP20 amino 

acid sequences exhibited similar geographical affiliation as the hsp20 DNA sequences. In 

the former, these two clusters can be divided into two broad groups: M-G-G and F-D-N 

clusters. The change of substitutions occurs with the transition of one or more nucleotide, 

e.g. in the case of M-G-G and I-G-G, the substitution from methionine (M) to isoleucine 

(I) would have resulted from the nucleotide transition of ATG [methionine (M)] to ATA 

or ATT [isoleucine (I)]; similarly, the other substitutions M-G-G to M-E-G and M-R-G 

occurred with a transition of one nucleotide for the middle glycine G, (GGG) to 

glutamate E, (GAG) or arginine R, (AGG) (Fig 5). These are considered as M-G-G 

substitution cluster. The other substitution cluster comprising of F-D-N, F-N-H & L-N-H 

is termed as F-D-N cluster. The nucleotide transition in F-D-N cluster occurs in more 

than one single “mutation” from M-G-G (Fig 5). It is apparent that the M-G-G 

substitution cluster in group A and F-D-N substitution cluster in group B are completely 
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separated from each other, which are strongly associated with H. pylori isolates of Asian 

and non-Asian origins respectively. Based on the process of nucleotide transitions as 

illustrated in Fig 5 and the contribution of Asian M-G-G substitution type (83%, 143/172) 

in all isolates studied, it is postulated that H. pylori with M-G-G substitution has its origin 

in Asia. The origin of M-G-G from Asian is explicit in its prevalence (Asian: 143/158, 

91%; non-Asian: 29/69, 41%) and the simple process of nucleotide transitions. 

Furthermore, H. pylori infection and the most problematic cases of gastroduodenal 

disease (i.e. gastric cancer) are more prevalent in Asia. Hence, it further supports the 

speculation that M-G-G could have originated from Asia.  

      Besides the affiliation of the two major substitution clusters in their discriminatory 

capability based on geographical origins (with prevalence of M-G-G cluster in Asian and 

F-D-N cluster in non-Asian areas) (Table 1 & 4), these two substitution clusters also 

showed significant association with clinical outcome which is supported by the calculated 

odds ratio (OR = 4.27) (Table 2). Of these, M-G-G cluster is shown to be associated with 

PUD as compared to the association of F-D-N cluster to NUD. The link of M-G-G among 

Asians with PUD and F-D-N in non-Asians with NUD may further highlight that H. 

pylori together with environmental factors are collaboratively contributing to the 

gastroduodenal disease outcome. The results thus show the association of M-G-G cluster 

in the Asian group where the PUD is more prevalent.[12] [33] However, this does not 

exclude PUD outside this geographical regions, rather, it emphasizes the usefulness of the 

substitution clusters (14th – 16th) of HSP20 as a useful indicator to evaluate the risk of 

developing into certain gastroduodenal diseases (PUD or NUD). 
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      The conserved hsp20 DNA sequences in all H. pylori strains studied have presented a 

foundation for its use as epidemiological marker. With these DNA sequences, two 

phylogenetic groups based on Asian and non-Asian origins were effectively 

differentiated. This differentiating capability is also displayed by the unique 3-amino-acid 

substitutions at 14th – 16th residues of HSP20. Furthermore, the 3-amino-acid substitution 

clusters (M-G-G and F-D-N clusters) show significant discriminating efficiency between 

PUD and NUD (OR = 4.27). We therefore propose hsp20 and the novel insertion of 3-

amino-acid substitution clusters as a potential epidemiological and gastroduodenal 

disease differentiating marker of H. pylori.  
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Figure legend 

Fig 1. The phylogenetic analysis of the 227 H. pylori isolates based on hsp20 (HP0515) 

DNA sequences. PHYLIP (version 3.6) and ML algorithm were used to conduct the 

analysis.  

A: Lithuanian isolates; Aus: Australian isolates; B: Spanish isolates; Cau: other 

Singapore isolates; CR: Costa Rica isolates; HK: Hong Kong isolates; I: Indian isolates; 

J: Japanese isolates; Sin: Singapore isolates; SJM: Peruvian isolates; Swe: Sweden 

isolates; the groups are indicated as A (Asian) & B (non-Asian). The bootstrap replicates 

are shown at the nodes, the scale bar represents the substitution rate per site. 

Fig 2. The 3-D structure of HSP20 (HP0515) protein predicted by homology modeling. 

The position of 14th –16th amino acids was colored red, yellow and green, respectively.  

Fig 3. The predicted secondary structure of HSP20 (HP0515) protein.  

The position of 3-amino-acid substitution linkages (14th – 16th amino acids) is framed in 

the box. 

Fig 4. The alignment of amino acid sequences of HSP20 with its homologues of other 

bacterial species. The 3-amino-acid substitution linkage (14th – 16th amino acids) is 

framed in the box.  

Fig 5. The probable process of nucleotide substitution sequence in 14th – 16th amino 

acids. 

Letters in parentheses denote amino acids. Substituted nucleotides are bolded and 

underlined. Arrows indicate probable process of nucleotide substitutions. The probable 

substitutions are based on the sequences generated in this study, e.g. at 15th amino acid, 

for glycine (G), only GGG/GGC were recorded while for 16th amino acid, all these GGT, 
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GGC and GGG were observed. The figure is merely a proposed process of probable 

nucleotide substitution.  
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Table 1. Summary of substitutions at 14th –16th amino acids residues of HSP20 

Substitutions   

Origin 

 

 M-G-G M-E-G I-G-G M-R-G F-D-N L-N-H F-N-H 

Total 

No 

Singapore* (103)         

Chinese 66 1 3      

Malay 8    4    

Indian 18        

Others** 2     1   

Hong Kong (6) 6        

Japan (43) 37 2 4      

 

 

 

Asian 

Countries 

India (6) 6        

 Sub-total No  143 3 7  4 1  158 

          

Peru (12) 5    6 1   

Costa Rica (9) 3    5 1   

Sweden (16) 7 4  1 2  2  

Spain (14) 6    7 1   

Lithuania (12) 7 1   4    

Australia (4) 1 1   2    

US (26695)      1   

British (J99)     1    

 

 

 

Non-Asian 

Countries 

Sub-total No  29 6  1 27 4 2 69 

 Total No 172 9 7 1 31 5 2 227 
* Singapore is a multiethnic nation comprising 3 main racial groups (Chinese, Malays and Indians) and a 

smaller population of Eurasians. ** These 3 Caucasians are visitors from Western countries living in 

Singapore (labeled as Cau393, Cau526 and Cau1026 as shown in phylogram, Fig 1).  
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Table 2. Summary of substitutions and the disease status of H. pylori isolates 

Diseases status Odds Ratio  Type of 

substitutions  PUD NUD (OR) 

M-G-G 103 

(66%) 

53 (34%)  

M-G-G cluster 112 

(65%) 

60 (35%) For PUD: 4.27 

F-D-N 6 (33%) 12 (67%)  

 

Number of 

isolate & 

(Percentage)  

F-D-N cluster 7 (30%) 16 (70%) For NUD: 4.27 

                The data analyzed were based on the disease outcome of 195 H. pylori isolates. 

                PUD: gastric ulcer & duodenal ulcer; NUD: gastritis & non-ulcer dyspepsia. 

                 M-G-G cluster (M-G-G, M-E-G, M-R-G & I-G-G) is positively associated with PUD.  

                 F-D-N cluster (F-D-N, L-N-H & F-N-H) is positively associated with NUD. 
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Table 3. Comparison of DNA polymorphism between geographical groups 

Comparisons D (%) Ks Ka Ratio of Ks/Ka Reference 

A1 vs. A1 2.43 ± 0.06 0.094 0.006 15.6 Current study 

A2 vs. A2 3.38 ± 0.09 0.148 0.005 29.6 Current study 

B vs. B 3.69 ± 0.19 0.152 0.009 16.9 Current study 

A1 vs. A2 4.34 ± 0.11 0.185 0.009 20.5 Current study 

A1 vs. B 6.03 ± 0.17 0.212 0.024 8.3 Current study 

A2 vs. B 5.29 ± 0.17 0.190 0.019 10 Current study 

vacA m1 vs. 

m2 

24.9% 0.46 0.246 1.9 Atherton et al. 

(26) 

atpD - - - 82.5 Maggi et al. (27) 

scoB - - - 37.7 Maggi et al. (27) 

glnA - - - 22 Maggi et al. (27) 

recA - - - 20.3 Maggi et al. (27) 

D: percentage of the average number of nucleotide substitutions per site; Ks: the mean differences between 

pairs of strains at synonymous nucleotide position; Ka: the mean differences between pairs of strains at 

non-synonymous nucleotide position. 
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Table 4. The distribution of various substitutions in geographical groupings 

A1 (n=119) A2 (n=70) B (n=35)  

Asian (115) 

Non-Asian (4)

Asian (34) 

Non-Asian (36)

Asian (4) 

Non-Asian (31) 

M-G-G 

Cluster 

(n=187) 

M-G-G: 109 

M-E-G: 3 

I-G-G: 7 

M-G-G: 61 

M-E-G: 6 

M-R-G: 1 

 

- 

F-D-N 

Cluster 

(n=37) 

 

- 

F-D-N: 2 F-D-N: 28 

L-N-H: 5 

F-N-H: 2 
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