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SUMMARY 
 
Raman spectroscopy is a molecular vibrational spectroscopic technique that is capable of 

optically probing the biomolecular changes associated with disease transformation. To 

effectively translate molecular differences captured in Raman spectra between different 

tissue types into clinically valuable diagnostic information for clinicians, chemometrics 

would need to be deployed for developing effective diagnostic algorithms for Raman 

spectroscopic diagnosis of precancer and cancers. However, most of the chemometrices 

(principal component analysis (PCA)) applied for Raman tissue diagnosis cannot 

adequately provide the physical meanings of component spectra for tissue classification 

This dissertation presents the investigation on the diagnostic utility of near infrared (NIR) 

Raman spectroscopy with recursive partitioning techniques such as classification and 

regression trees (CART), and random forests to construct clinically interpretable 

diagnostic algorithm for tissue Raman classification.  

 

A rapid-acquisition dispersive-type NIR Raman system was utilized for tissue Raman 

spectroscopic measurements at 785 nm laser excitation. A total of 146 tissue samples 

obtained from 70 patients who underwent endoscopy investigation or surgical operation 

were used in this study. The histopathogical examinations showed that 94 were gastric 

tissues (55 normal, 21 dysplastic, and 18 cancerous), and 50 were laryngeal tissues (20 

normal, and 30 cancerous).  
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CART was explored to be used together with NIR Raman spectroscopy for gastric cancer 

diagnosis. CART achieved a predictive sensitivity and specificity of 88.9% and 92.9%, 

respectively, for separating cancer from normal. In addition, CART also determined 

tissue Raman peaks at 875 and 1745 cm-1 to be two of the most significant features in the 

entire Raman spectral range to discriminate gastric cancer from normal tissue. This 

affirmed the utility of CART to be used for NIR Raman spectroscopy detection of cancer 

tissues. 

 

To improve diagnostic performance (e.g., stability) of CART, the random ensemble 

approach (i.e., random forests) was further utilized. Random forests yielded a diagnostic 

sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy identification, and 

also provided variables importance plot that facilitates correlation of significant Raman 

spectral features with cancer transformation. These confirmed the diagnostic potential of 

random forests with NIR Raman spectroscopy for detection of malignancy occurring in 

the internal organs (i.e., larynx).  

 

Comprehensive evaluation of the performance of the empirical approach that utilizes 

Raman peak intensity ratio, PCA-linear discriminant analysis (LDA), and random forests 

algorithm was also carried out. Raman peak intensity ratios representing biomolecular 

signals for collagen, proteins and lipids achieved diagnostic accuracy of approximately 

88% for NIR Raman spectroscopic detection of gastric dysplasia from the normal gastric 

tissues. Further investigation on the use of PCA-LDA achieved obtained a diagnostic 

accuracy of 93%, while random forests achieved diagnostic accuracy of 90% for gastric 
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dysplasia detection. Receiver operating characteristics (ROC) curves further confirmed 

that PCA-LDA and random forests techniques have comparable overall diagnostic 

accuracy rate which are more superior compared to the empirical approach.  

 

Overall, this dissertation demonstrates that NIR Raman spectroscopy in conjunction with 

powerful chemometric techniques such as random forests have the potential to generate 

interpretable clinical Raman information, and to yield high diagnostic accuracy 

classification results for the rapid diagnosis and detection of precancer and cancer tissues.  
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intensity ratio algorithm , PCA-LDA-based, and random forests-based diagnostic 

algorithm and intensity ratio algorithm, respectively, demonstrating the efficacy of PCA-

LDA algorithms for tissue classification. 113 
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CHAPTER 1  

INTRODUCTION 

1.1 INTRODUCTION AND MOTIVATION 

As the majority of cancers (~90%) are epithelial in origin, early detection and localization 

with immediate removal (e.g., surgery) of malignant tumors is critical towards decreasing 

the mortality rate of the patients [1]. However, early identification of cancer lesions in the 

lining of the internal organs such as stomach and larynx can be very challenging through 

conventional diagnostic method such as the white-light endoscope which heavily relies 

on the visual examination of gross morphological changes of tissue, leading to a poor 

diagnostic accuracy [1]. Endoscopic biopsy currently remains the standard approach for 

most cancer diagnosis, but is invasive and impractical for screening high-risk patients 

who may have multiple suspicious lesions [2]. Hence, it is highly desirable to develop 

noninvasive optical diagnostic techniques for direct assessments of biochemical 

information of suspicious lesion sites during clinical examinations. 

 

Optical spectroscopic methods such as light scattering spectroscopy, fluorescence 

spectroscopy, and Raman spectroscopy have been comprehensively investigated for 

cancer and precancer diagnosis and evaluation [1-24]. Raman spectroscopy is a 

vibrational spectroscopic technique that is capable of probing specific biochemical 

fingerprints of biological tissues based on inelastic light scattering processes [5]. This 

technique has shown great promise for detecting molecular alterations associated with 
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diseased transformation [5-12]. With the use of near-infrared (NIR) lasers as excitation 

light sources, NIR Raman spectroscopy holds significant advantages in that water 

exhibits very low absorption at the working wavelength range, and tissues exhibit far less 

autofluorescence than with visible light excitation [12]. Less water absorption makes it 

easy to detect other tissue components and results in deeper light penetration into the 

tissue [12]. As a result, NIR Raman spectroscopy has been widely studied for early 

detection of pre-malignancy and malignancy in a number of organ sites [1, 5, 6, 15], 

including the stomach [14, 25-28] and larynx [10, 21, 24].  

 

In order to convert molecular differences subtly reflected in Raman spectra between 

different tissues types into valuable diagnostic information for clinicians, different 

statistical techniques have been explored  in developing effective diagnostic algorithms 

for Raman spectroscopic of precancer and cancer diagnosis [5, 6, 20, 29, 30]. Due to the 

complexities of the biological tissues, multivariate statistical techniques (e.g., principal 

component  analysis (PCA)), which are able to take into account of the whole range of 

Raman spectral features of the tissue, have often been applied to construct high 

diagnostic accuracy algorithms for different tissue type classification [7-9, 11-13]. 

However, most of these multivariate statistical techniques (e.g., PCA) could not 

adequately furnish the clinicians with physical meanings of diagnostic features derived 

for tissue characterization [29]; thereby, the development of robust algorithms, which not 

only produce a high predicted diagnostic accuracy, but also provide useful biomolecular 
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diagnostic information from the high dimensional Raman spectral datasets, is highly 

desirable. 

1.2 SPECIFIC AIMS OF THE DISSERTATION 

The primary aim of this dissertation was to evaluate the clinical potential of NIR Raman 

spectroscopy combined with different chemometric algorithms, especially the recursive 

partitioning techniques for detection of precancer and cancer tissues. Hence, the 

following specific aims were developed: 

 

1. Assessment on the feasibility of using a rapid fiber-optic NIR Raman spectroscopy 

system for clinical evaluation of human tissues, and to characterize the Raman properties 

of internal organ tissues (i.e., gastric and laryngeal tissue).  

 

2. Exploration on the potential of classification and regression trees techniques (CART) 

for use with NIR Raman spectroscopy in stomach cancer diagnosis.   

 

3. Investigation on the ensemble technique for recursive partitioning algorithms (i.e., 

random forests) in identification of laryngeal carcinoma from normal laryngeal tissues 

with the use of NIR Raman spectroscopy.  

 

4. Study of empirical method for gastric precancer detection with NIR Raman 

spectroscopy.  
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5. Comprehensive comparison of the potential of empirical method (i.e., intensity ratio) 

with the multivariate statistical techniques (i.e., PCA and linear discriminant analysis 

(LDA)) to be used together with NIR Raman spectroscopy for discrimination of gastric 

dysplasia from normal.  

 

6. Evaluation of random forests technique together with empirical method (i.e., intensity 

ratio) and the multivariate statistical techniques (i.e., PCA-LDA) for NIR Raman 

spectroscopic detection of gastric dysplasia.  

 

1.3 ORGANIZATION OF THE DISSERTATION 

The study is structured into three main parts. This dissertation begins with providing a 

detailed background on the Raman instrumentations, the preprocessing method and the 

types of human tissues samples which have been employed throughout the entire study. 

The second part of this study is focused on the development of recursive partitioning 

algorithms from the construction of a single classification tree (i.e., CART), to an 

ensemble of approximately 1000 classification trees (i.e., random forests) for cancer 

tissue diagnosis using NIR Raman spectroscopy. The third part is to assess the 

performance of random forests with respect to two commonly utilized diagnostic 

algorithms (i.e., intensity ratio and PCA-LDA) for NIR Raman spectroscopy tissue 

diagnosis. A thorough evaluation of the three different diagnostic algorithms was 

conducted through the use of precancer tissues to also affirm the diagnostic utility of 

random forests with NIR Raman spectroscopy for precancer diagnosis.  
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Specifically, Chapter 2 provides the overview of Raman technique and its development 

for precancer and cancer diagnosis, extensive review on the application of Raman 

technology for pre-malignancy and malignancy detection in different organ sites, and the 

summary of the various diagnostic algorithms which have been utilized to understand and 

translate Raman molecular signals into clinically useful information. Chapter 3 illustrates 

the hardware instrumentation, data preprocessing techniques and the type of tissues that 

have been utilized in this dissertation. Chapter 4 gives the introduction of recursive 

partitioning technique (i.e., CART) for NIR Raman spectroscopy diagnosis of cancer 

tissue. In chapter 5, application of the ensemble recursive partitioning algorithms (i.e., 

random forests) for NIR Raman spectroscopic diagnosis of cancer tissue will be shown. 

Chapter 6 describes the empirical approach (i.e., intensity ratio) which has been 

commonly utilized to construct a simple, yet useful diagnostic algorithm for detection of 

precancer tissues using Raman spectroscopy. Chapter 7 further demonstrates the 

diagnostic utility of multivariate statistical techniques (i.e., PCA-LDA) in conjunction 

with Raman spectroscopy for diagnosing precancer tissue. Chapter 8 verifies the 

diagnostic performance of random forests for precancer tissue in comparison with the 

empirical and multivariate statistical techniques. The final chapter concludes the work in 

the dissertation and proposes possible work in the future.     
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CHAPTER 2  

OVERVIEW ON RAMAN SPECTROSCOPY FOR PRECANCER AND 

CANCER DIAGNOSIS 

The discoverer of the Raman effect was Chandrasekhara Venkata Raman who published 

in Nature entitled ‘The color of the sea’, in which he showed that the color of the ocean is 

due to scattering of light [22]. He continued his investigation on scattering of light and 

eventually discovered the Raman effect in 1928 [31]. The Raman effect is an inelastic 

light scattering process whereby a very small proportion of incident photons are scattered 

(~1 in 108) with a corresponding change in frequency. The difference between the 

incident and scattered frequencies corresponds to the vibrational modes of molecules 

participating in the interaction. These Raman scattered light can be collected by a 

spectrometer and displayed as a ‘spectrum’, in which its intensity is displayed as a 

function of its frequency change.  

 

As most biomolecules are Raman-active scatterers, each with its own spectral fingerprint, 

and Raman spectra usually exhibit sharp spectral features that are characteristic for 

specific molecular structures and conformations of tissue, it can provide more specific 

molecular information about a given tissue or disease state [5].  Therefore, in the past 

decade, Raman spectroscopy has been comprehensively investigated for precancer and 

cancer diagnosis and evaluation in humans including in the bladder, brain, breast, cervix, 

gastrointestinal tract, head and neck, lung, oral, skin, and prostate. Many of these studies 
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have shown that specific spectral features of Raman spectra could be used to correlate 

with the molecular and structural changes of tissue associated with neoplastic 

transformation [1, 5-21, 32-34]. In combination with multivariate statistical analysis such 

as PCA and LDA, NIR Raman spectroscopy has demonstrated promising diagnostic 

accuracy (~90%) for Raman detection of precancer and cancer tissues in different organ 

sites (i.e., stomach) [1,2,6-9,12,13,15,16, 21,24].  

 

The present chapter presents an overview on the development of Raman technology for 

cancer tissue diagnosis, and a review on the different analytical algorithms commonly 

applied for tissue Raman diagnosis so as to provide comprehensive background 

knowledge on this project work.  

2.1 TECHNOLOGICAL ADVANCEMENT FOR CLINICAL RAMAN SPECTROSCOPY 

SYSTEM 

As Raman scattering (inelastic scattering) is inherently very weak, typically 10-9 to 10-6 

of the intensity of the Rayleigh background (elastic scattering), intense monochromatic 

excitation and a sensitive detector are critical towards obtaining observable Raman 

signals [22]. Hence, advancement of Raman spectroscopy for biomedical application only 

began with the development of lasers and sensitive detector in 1960s [22, 35, 36].  

 

The first laser-based Raman spectroscopy system for biological application arises from 

the use of visible (VIS) excitation with a photomultiplier or multi-channel optical 

detector used to detect scattered photons in the frequency range of interest [37]. 
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However, as the techniques for biological application progressed and due to technological 

advancement, NIR laser excitation gradually became the frequent choice for Raman 

spectroscopic investigation on biological tissues [22]. This section shall cover the 

development of NIR Raman technology for biological tissue diagnosis.  

2.1.1 EXCITATION WAVELENGTH STRATEGIES FOR BIOMEDICAL RAMAN 

SPECTROSCOPY 

The use of different excitation lights such as ultraviolet (UV), VIS and NIR light for 

Raman spectroscopic studies [22] will generate different light scattering, absorption and 

emission phenomenon in biological and biomedical systems. In this sub-section, a 

summary on the investigation of the different laser wavelength for Raman spectroscopy 

to be used in biomedical application will be presented. 

2.1.1.1 VISIBLE (VIS) AND NEAR ULTRA-VIOLET (UV) EXCITATION 

Most biological tissues exhibit significant autofluorescence signals which will severely 

interfere with weak Raman signals with the use of VIS or near-UV excited Raman 

spectroscopy. Hence, in order to reduce background autofluorescence signals emitted 

from biological tissues, the samples had to be photobleached (pre-irradiated) before 

recording reliable Raman signals [38]. To date, only corneal collagen and lens proteins 

have been found to produce very little or no autofluorescence signal with VIS excited 

Raman spectroscopy [22]. As a result, to avoid photobleaching biological tissues which 

would change the tissue biomolecular conformation and structures, and circumvent the 

strong autofluorescence signals with the use of VIS or near-UV excited Raman 
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spectroscopy, deep UV (>300nm) and NIR excited Raman spectroscopy, instead, could 

be utilized for biological application [38, 39].  

2.1.1.2 DEEP UV RESONANCE RAMAN SPECTROSCOPY 

The resonance Raman effect occurs when the excitation laser wavelength is in close 

proximity with an electronic transition (i.e., absorption band) of the analyte. Thus, by 

selecting the appropriate excitation wavelength, Raman bands of molecules can be 

selectively greatly enhanced in the midst of a myriad of overlapping vibrations from 

various tissue components [22]. On top of the resonance enhancement effect, the 

scattering cross-section is also increased. These combined effects lead to tremendous 

increase in Raman intensity, which allow detection of biomolecules in very low 

concentration. As the penetration of UV light on biological tissue is shallow (<50 μm), it 

can also effectively target biomolecules on the superficial tissue surface layer, such as the 

epithelial tissue where most cancerous lesions often originate from. However, there is a 

potential problem associated with the photomutagenicity on the use of UV light on 

biological tissues [22].  

2.1.1.3 NEAR-INFRARED (NIR) EXCITATION RAMAN SPECTROSCOPY 

The autofluorescence signal decreases very rapidly at longer excitation wavelengths, and 

most biological tissues exhibit little or no autofluorescence signals when excited in the 

NIR spectral range [38]. In addition, NIR light has a relatively small extinction 

coefficient (absorption coefficient) in biological tissues, and so facilitating a deeper light 

penetration, in the order of millimeters, which can probe larger tissue volume information 

[40]. The small absorption coefficient will also not result in photo-degradation of the 
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interrogated biological samples [22]. Furthermore, water is a relatively weak absorber in 

the NIR. Thus, even though biological cells are usually composed of about 70-95% of 

water by weight, water will not significantly interfere with NIR Raman spectroscopy for 

biological application [40]. On top of this, the use of NIR excitation light is compatible to 

be used with fiber-optic technology, which makes NIR excitation Raman spectroscopy 

technique highly possible to directly collect remote in situ tissue signals from all parts of 

human body [23]. As a result, in comparison with UV and VIS excitation Raman 

spectroscopy, NIR excited Raman spectroscopy provides the most benefits for biological 

application. Therefore, most of the Raman spectroscopic studies on biomedical 

application are centered on the use of NIR light.  

 

The earliest form of NIR Raman spectroscopy system (i.e., Fourier-Transform (FT) 

Raman) primarily uses 1064 nm from a neodymium-doped yttrium aluminium garnet 

(Nd:YAG) laser as the excitation source, a cooled indium gallium arsenide (InGaAs) 

detector, and a Michelson interferometer system [41-44]. By working with 1064 nm in 

the NIR, background autofluorescence is almost entirely eliminated [22]. However, the 

signal-to-noise ratio (S/N) produced from the NIR FT Raman spectrosocpy is limited by 

both reduced scattering  cross-section at the 1064 nm excitation wavelength, and the 

intrinsic noise associated with the InGaAs detectors in the spectral range of 1100 – 1350 

nm (~Raman shift of 300-200 cm-1) [22]. Hence, long integration time of about 30-60 

mins for acquiring high-quality Raman signal from biological tissue is often required for 

the use of NIR FT Raman 41-43]. Long acquisition time for collection of reliable Raman 

signal is the main drawback for NIR FT Raman to be employed for biomedical 
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application. On top of this, the throughout advantage of interferometer-based FT Raman 

spectroscopy is lost due to the incompatibility of the numerical aperture (NA) of the 

system with the optical fibers which can be used for clinical application [22]. This greatly 

hinders the development of NIR FT Raman system for remote spectroscopic clinical 

application.   

 

With technological advancement, a more efficient NIR Raman system, which can provide 

a high S/N, could be achieved, and so greatly shortened the integration time needed to 

record a reliable Raman signal. The following subsections (Section 2.1.2 – 2.1.5) will 

elaborate more in details on the different essential Raman components which are critical 

towards the development of NIR Raman spectroscopy for biomedical diagnosis.  

2.1.2 CHARGED-COUPLED DEVICE (CCD) 

As the noise level of a CCD-based NIR Raman system is signal shot noise limited, while 

the noise level of an InGaAs-based NIR Raman system is limited by detector noise (e.g. 

dark current and read-out noise) which is several orders of magnitude larger than the 

CCD-based NIR Raman system, the CCD-based NIR Raman system could result in a 

higher S/N [22]. Hence, in order to achieve a better performance, most NIR Raman 

works progressively focused on the CCD-based NIR Raman system.  

 

There are a variety of different types of CCD such as front illuminated, thinned back-

illuminated and front- or back-illuminated deep depletion CCD which are used for 

different applications [22]. For Raman study, as the Raman signal is very weak, a highly 
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sensitive CCD which can obtain the highest possible photon detection efficiency is the 

most important criteria. Thus, a thinned back-illuminated CCD detector is often the 

choice to be used for Raman system as it has higher quantum efficiencies than a front-

illuminated CCD. However, in the NIR spectral region, thinned back-illuminated CCD 

detectors introduce the etalon effect [22]. The newer deep-depletion back-illuminated 

CCD is specially fabricated and optimized for the NIR light to minimize this elatoning 

effect. As a result, most current Raman clinical systems employ the use of the deep-

depletion back-illuminated CCD detector to maximize quantum efficiency and minimize 

etalon artifacts. 

 

One important factor to note is that most CCD detectors are only efficient to about 1100 

nm wavelength as quantum efficiency drops considerably due to silicon absorption [6]. 

Furthermore, the high quantum efficiency (QE) of CCD detector, especially at the VIS-

excitation range, though enable weak Raman emissions to be detected, it also collect 

strong fluorescence signals arising from biological tissues which could be beyond the 

dynamic range of the CCD [22]. This fluorescence signal will also produce shot noise 

which may interfere with extraction of Raman information. Therefore, due to the 

limitation of current CCD detector technology, for biological tissue application, the 

optimal NIR excitation wavelength range is generally between 750 to 850 nm for 

collection of high quality Raman emission signals within a few seconds [6,22], with most 

Raman work centered on the use of either 785 [5,6, 9]or 830 nm [30,32].  
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2.1.3 SPECTROGRAPH 

A spectrograph is an important instrument that can separate an incoming light into 

different frequency on the CCD detector in real-time. For clinical application through 

using optical fiber and low-power laser excitation to collect incoming tissue scattered 

light into the spectrograph for CCD collection of spectral data with high spectral 

resolution of about 8-10 cm-1, careful selection of spectrograph would be necessary [22]. 

The employment of volume-phase transmissive dispersive grating spectrograph which 

has its f-number matched with the optical fiber could provide both the high throughout 

and flat image field at the detector plane required for sensitivity at low laser fluence and 

spectral resolution at the range of interest [22].  

 

In addition, an important factor which determines the sensitivity of a Raman spectrometer 

is the usable detection area (i.e., usable slit width x height) [45]. For the majority of 

Raman application, the larger the sampling area, the most scattered Raman signals can be 

gathered, which will increase the sensitivity of the Raman system [45]. On a multi-

channel detector dispersive-based spectrometer, a given spectral resolution often limits 

the slit width [45]. Extending the slit height using a straight slit usually causes the image 

to be curved on the detector due to optical effects [45]. If the optical effects are not 

corrected, the curved slit image will degrade the peak shape and spectral resolution. 45, 

46] One of the ways to correct this image distortion (i.e., aberration) effect is to use a 

curved entrance slit, opposite to the image curve distortion effect, so that a straight slit 
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image can be achieved [46]. Most details will be provided in Chapter 3 on the corrected 

image aberration Raman spectroscopy system been utilized in this study.  

2.1.4 FIBER-OPTIC PROBE 

Medical applications usually require remote sampling use of optical fibers in which the 

sizes of the Raman probe and the fiber bundle are strictly limited by anatomic 

considerations [35]. For instance, in order to endoscopically evaluate stomach mucosa for 

gastric cancer with Raman spectroscopy, the size of the probe must be small enough (~2 

mm in diameter) and long enough (several meters) to be inserted into a narrow-diameter 

channel [35, 47]. Moreover, the design and material of the Raman probe must be able to 

undergo regular hospital instrument sterilization procedures [22].  

 

In addition to the physical demands which the Raman probe needs to face, there are also 

optical characteristic requirements which the Raman probe must possess in order to be 

clinically applied. For example, as the Raman probe can only probe a small tissue area of 

interest, it would require the guidance of different wide-field imaging modalities to the 

suspicious tissue area for evaluation [48]. Hence, the design of the fiber-optic Raman 

probe must be able to collect high S/N Raman signal in approximately 1s with safe levels 

of laser exposure for accurate clinical application of the spectral model used for analysis, 

while also minimizing the light interference from the use of the different wide-field 

imaging modalities [48]. On top of the external interference, the optical fiber also 

generated significant intrinsic spectral interference which must be greatly reduced [47]. 

Fiber fluorescence and absorption interference can be minimized through the use of high-
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purity low-hydroxyl fibers, and Raman interference from the optical fibers can be 

removed through installing appropriate high performance filters at the distal tip of the 

probe [47]. However, the production of such Raman probe which demands high 

performance criteria, and yet requiring the size of the probe to be small (~2 mm) is of 

great technical challenge; hence, to date, only a few Raman endoscopic probe have been 

successfully developed [39, 45, 49, 50]. Note that one particular group has explored an 

alternative approach for designing the Raman probe such that the fabrication of such 

Raman probe is very much simpler. They have introduced the exploration of so-called 

“high-wavenumber” spectral range for tissue Raman diagnosis as this spectral range has 

minimal interference from the probe, thereby requiring less optical components in the 

design [51]. Hence, the use of “high-wavenumber” enable the use of a single, unfiltered 

optical fiber for guiding laser light to the sample and for collecting the back-scattered 

light to the spectrometer [51].This alternative approach is still an on-going area of 

research [51, 52] to unravel the potential which the “high-wavenumber” Raman 

spectroscopy could bring about for tissue diagnosis using Raman spectroscopy.  

2.2 AUTOFLUORESCENCE ELIMINATION APPROACHES TO ACHIEVE 

BACKGROUND-FREE RAMAN SPECTRUM 

Biological tissues under NIR excitation wavelength range of between 750 to 850 nm will 

not only collect weak Raman signals, but will also pick up intrinsic tissue 

autofluorescence emissions; thereby posing a significance challenge in recovering 

background-free Raman signals [47]. Through examining the dissimilarity in the inherent 

optical property of fluorescence and Raman emissions, various techniques have been 
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attempted to recover Raman signals free from its concomitant autofluorescence 

background signal.  

2.2.1 TIME-GATING TECHNIQUES 

For instance, the lifetimes of fluorescence and Raman emissions are distinctly different: a 

fluorescence lifetime is roughly in the order of 10-9 to 10-7 second, while Raman 

scattering events are normally around 10-11 to 10-13s [53]. Hence, time-gating techniques 

such as Kerr-gating have been investigated as one of the potential method to separate 

Raman and fluorescence signals [6, 53]. As this technique aims to reject the fluorescence 

before it is detected, it can uniquely remove photon shot noise associated tissue 

autofluorescence signals. However, due to the need to use high excitation fluence pulsed 

lasers, on top of the high cost and complicated system design required, this technique is 

unsuitable for clinical application [54].  

2.2.2 SHIFTED EXCITATION RAMAN DIFFERENCE SPECTROSCOPY 

In addition, the shift response of the fluorescence and Raman effect to small excitation 

wavelength shifts allows another mechanism for removing the fluorescence background 

[55]: by Kasha’s rule which stated that majority of fluorescence is emitted from 

vibrationally relaxed states, small changes in excitation wavelength will have a minimal 

effect on the fluorescence emission; while, Raman emission will shift in energy by the 

amount of excitation shift [55]. Therefore, with two slightly different excitation 

wavelength (~5-10 cm-1) the fluorescence spectral profile would be invariant, while the 

entire Raman spectra will be shifted by the corresponding changes in excitation 

wavelength (~5-10 cm-1). The difference of the two emission spectral profile would 
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eliminate the fluorescence background signal, leaving the difference Raman spectral. 

This difference Raman spectral is approximately the first derivatives of the original 

Raman spectrum, and hence reconstruction techniques such as integration or 

deconvolution would be able to retrieve the Raman spectrum without its concomitant 

autofluorescence background [6, 55]. This technique, commonly named “shifted 

excitation Raman difference spectroscopy” [6, 55, 56], is particularly attractive as it 

could enable the removal of large fluorescence background as well as other sources of 

random or systemic noise generated by, for example, the detector where the different 

sensitivity of individual pixels of the detector can produce systemic effects; thereby 

permitting sensitivity to true photon shot levels [57]. Hence, it has led to a new 

development of other modified technique such as the so-called “subtracted-shifted Raman 

spectroscopy”, which offers a more simplistic instrumental design by shifting the 

spectrometer grating (i.e., wavelength) instead of necessitating a tunable laser [57]. 

However, regardless of shifted excitation Raman difference spectroscopy or subtracted-

shifted Raman spectroscopy, this type of technique would be required to, at least, double 

the integration time in order to obtain the required spectra; which may not be clinically 

feasible if long integration time is required [54].  

2.2.3 FREQUENCY/WAVELENGTH-MODULATED  

  17

Since by Kasha’s rule which stated that fluorescence emission is independent of slight 

change in excitation wavelength, while Raman scattering frequency will change 

according to the amount of change in excitation wavelength, illumination of samples with 

frequency-modulated excitation light can also be used to remove fluorescence signal 

from Raman signal. This is done through modulating the excitation light at low 

 



 

frequencies which will achieve time-invariant fluorescence signal [6, 54], and also yield 

Raman scattering frequencies which will shift with the modulated excitation light. Even 

though this technique is also an effective way to separate fluorescence and Raman 

signals, it requires the use of specialized instrumentation for modulation [54].  

2.2.4 DIGITAL POST PROCESSING 
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Most Raman signals appear as spike-like features residing on top of a broad band NIR 

autofluorescence background. Hence, mathematical post-processing techniques can be 

employed to separate the Raman and fluorescence signals [58]. By linearly transform the 

original data into another feature space such as carrying out Fourier-transformation on the 

NIR raw data, before introducing different filtering algorithms, can be applied for 

separation of the NIR Raman and background autofluorescence signal; however, this 

often lead to artifacts and distortions of the Raman spectrum, especially during a noisy 

situation [56]. One of the most efficient, easiest and accurate way to subtract the 

fluorescence signal with minimal distortion to the Raman signal is to fit the spectrum 

containing both Raman and fluorescence signals to a polynomial of a high enough order 

to describe the fluorescence line shape but not the higher frequency Raman line shape 

[6]. However, a single polynomial fitting for fluorescence background removal may not 

be sufficient to retain Raman signal with minimal fluorescence background interference 

[59]. Hence, improvement of the polynomial fitting algorithms has been investigated. For 

instance, an improved algorithm is such that all data points in the polynomial curve have 

an intensity value higher than the input spectrum (comprising of Raman and background 

autofluorescence signal) are automatically reassigned to the original intensity. This 

process will then re-run repeatedly until there is convergence in the number of data points 

 



 

affected by each iteration, as determined by root test for convergence. The processed 

base-line spectrum is then subtracted from the original spectrum to achieve Raman signal 

with minimal autofluorescence background interference [59]. This algorithm works 

reasonable well but still suffers from a few weaknesses such as unable to take into 

account of noise interference, and divergence of the polynomial-fitting occurring at the 

endpoint of the selected spectral region of the tissue. Hence, new improved algorithms 

have been investigated to address these weaknesses for a more robust and unbiased 

removal of the tissue intrinsic autofluorescence background to achieve reliable Raman 

signals from biological tissue [60, 61]. Note that this is still an on-going active area of 

research [62, 63]. Overall, polynomial fitting provides the simplest (involves the simplest 

hardware configuration, and the simplest computational complexity among other 

methods) but relatively accurate method to extract Raman emissions with minimal 

autofluorescence background signal from biological tissues.  

Table 2.1 presents the Raman peak features which have been commonly found in the 

literature for biomedical studies, together with corresponding tentative biochemical 

assignments after removal of autofluorescence background with polynomial fitting. These 

multiple Raman biochemical features give rise to a “fingerprint spectrum” which can be 

very specific for tissue diagnosis, especially for precancer and cancer diagnosis [5]. The 

next section will provide a comprehensive literature review on Raman technique 

application for cancer and precancer diagnosis.  
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Table 2.1 Raman peak features commonly found in the literature for biomedical studies 
with tentative biochemical assignments [1, 2, 5, 6, 7, 10, 15, 21, 29, 65] 

Peak position 
(cm )-1 Protein assignments Lipid assignments Others 

1745w  ν(C=O)  

1655vs ν(C=O) amide I (α-helix 
conformation, collagen)

  

1620w   ν (C=C) porphyrin

1585vw ν(C=C) olefinic   

    

1558vw ν(CN) and δ(NH) amide II  ν (C=C) porphyrin

1514   ν (C=C) carotenoid

1445vs δ(CH ), δ(CH ) 2 3 δ(CH ) scissoring2  

1379vw  δ(CH ) symmetric3  

1336mw (sh) δ (CH ), δ (CH ), twisting,
collagen

2 3    

1302vs δ(CH ) twisting, wagging, 
collagen

2 δ(CH ) twisting, wagging2  

1265s ν(CN) and δ(NH) amide 
III (α-helix conformation, 
collagen)

  

1208vw ν(C-C H ) phenylalanine6 5   

1168vw  ν(C=C), δ(COH) ν (C-C), carotenoid 

1122mw (sh)  νs(CC) skeletal  

1078ms  ν(CC) skeletal ν(CC),ν (PO ) 
nucleic acids

s 2
-

1030mw (sh) ν(CC) skeletal, keratin   
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1004mw ν(CC) phenylalanine ring   

973mw (sh) ρ(CH ), δ(CCH) olefinic3   

935mw ρ(CH ) terminal, proline, 
valine; ν(CC) α-helix 
keratin

3   

883mw ρ(CH )2   

855mw δ(CCH) phenylalanine, 
olefinic

 polysaccharide

ν, stretching mode; νs, symmetric stretch; νas, asymmetric stretch; δ, bending mode; ρ, 
rocking mode; v, very; s, strong; m, medium; w, weak; sh, shoulder 

 

2.3 REVIEW ON CANCER BIOLOGY 

Cancers mainly arise in epithelial tissue (~85%), which are the cells lining the surface of 

organs. Due to the constant exposure to carcinogens, they are likely to trigger a cascade 

of carcinogenesis events [65]. Most of these changes begin with early biochemical 

alterations, and a fraction of these diseased tissues will eventually progress to become 

malignant tumors [66]. At the cancerous stage, obvious morphological and tissue 

architecture changes can often be noticed and detected by the clinicians. However, the 

early lesions (e.g., early cancer and precancer), which can predispose to become invasive 

neoplasia, are often associated with subtle signs of tissue transformation that are difficult 

to identify by the clinicians [65]. Nevertheless, these precancerous and early cancer 

lesions involve molecular transformation which could be advantageously utilized for 

tissue diagnosis. 
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It is important to recognize the various patho-histological features of neoplastic tissues 

which are generally distinct from normal tissues. For instance, malignant tumors are 

microscopically distinguished from the normal by cellular crowding and disorganization 

[6], nuclear content, nuclear-to-cytoplasmic ratio, mitotic activity, chromatin distribution, 

changes in the angiogenesis process and differentiation rate [60]. More specific well-

know characteristics of cancerous cells involve the production of a higher quantity of 

lactate acid for cancerous cells relative to the normal cells, changes in nuclear proteins 

that regulate cell division and DNA replications, activation of regulatory 

oncoproteins/oncogenes that results in repeated duplication and amplification of DNA 

sequences, and increase secretion of proteolytic enzymes such as serine, cysteine, and 

metalloproteinases [67]. One notes that the morphologic and biochemical changes that 

accompany neoplasia transformation are many and, most often depend on the specific 

type and location of the cancer [67]. For instance, alpha fetoprotein level is typically very 

low for adult human being. However, alpha fetoprotein has been found to increase 

significantly with the development of liver cancer, but not for other types of cancer such 

as carcinoma arising in the colon, lung, and pancreas [67]. In another instance, high 

molecular weight keratin, which is a unique feature of mature epithelium in the cervix, 

will be replaced by low molecular weight keratin during malignancy transformation; 

however, cancerous transformation involving all other keratinized tissues (e.g., buccal 

mucosa cancer) do not share this similar molecular alteration [6]. These confounding 

factors present a significant challenge for clinicians to detect different type of cancers at 

different organ sites. Nonetheless, cancerous transformation of tissue at different organ 

sites will result in changes in nucleic acid, protein, lipid, and carbohydrate 
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conformational structures and compositions. Technology which can tap upon these 

biomolecular changes would be useful diagnostic tools for early detection of cancers.  

2.4 REVIEW ON RAMAN TECHNIQUE FOR PRECANCER AND CANCER DIAGNOSIS 

IN DIFFERENT ORGAN SITES 

This section will briefly provide an up-dated overview of the application of NIR Raman 

spectroscopic technique in precancer and cancer diagnosis for different organ parts.  

2.4.1 BLADDER CANCER 
Several studies have demonstrated the potential of Raman spectroscopy for bladder caner 

diagnosis [1, 33, 68, 69, 70]. For instance, Crow et al. demonstrated the feasibility of 

differentiation between benign (normal and inflammatory) and malignant tissues with a 

sensitivity and specificity of 90-95% and 95-98%, respectively [68]. They have also 

shown that NIR Raman spectroscopy could be used to stage bladder cancer into 

noninvasive and invasive malignant bladder tissues (i.e., transitional cell carcinoma) with 

an accuracy of 96% [68]. However, these proof-of-concept studies have been carried out 

with a free-space Raman system (i.e., Raman microscopy) testing on ex vivo bladder 

tissue samples. Hence, Crow et al. further verified that ex vivo bladder tumor can be 

discriminated from the ex vivo nontumor tissues with a NIR Raman spectroscopic system 

equipped with a fiber-optic probe which is compatible with the working channel of a 

flexible cystoscope [69]; thereby, suggesting the potential of NIR Raman spectroscopy 

which could be compatible with a conventional cystoscope for bladder cancer tissue 

diagnosis. Their group further utilized NIR Raman spectroscopy to determine the 

biochemical basis for different bladder pathologies which include high, moderate and low 
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grades transitional cell carcinoma, carcinoma in situ (CIS), cystitis, and normal 

urothelium tissues [70]. These Raman studies provided an insightful understanding of the 

molecular changes in associated with bladder cancer, and also demonstrated the 

diagnostic utility of NIR Raman spectroscopy for detection of diseases occurring within 

the bladder.  

2.4.2 BRAIN CANCER 
Complete removal of malignant tissue, while preserving healthy tissue is a common aim 

of most oncosurgical procedures, particularly for brain surgery as imprecise targeting of 

brain tumors may increase the risk of damaging vital brain areas that may result in 

functional impairment (e.g. speech, movement and etc) [23]. On top of this, tissue 

samples obtained by stereotactic surgery are relatively small, sampling errors may easily 

occur which may miss crucial features essential for determining the follow-up procedures 

of brain cancer such as glioma, which is the most common type of brain cancer [23]. 

Hence, most of the Raman research in brain cancer area [52, 71, 72] has been aimed at 

the development of an in vivo Raman technique to assist stereotactic surgery for real-time 

intraoperative optical biopsy guidance, which to date, has not been realized. Recent ex 

vivo Raman works have also demonstrated the potential to detect and grade gliomas [71], 

and the feasibility of differentiation among glioma, meningioma and normal brain tissues 

[52]. These ex vivo results preliminary concluded that Raman spectra contain tissue 

molecular information which can be potentially employed for brain cancer detection.  

2.4.3 BREAST CANCER 
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Breast cancer is the most common cancer, and also the leading cause of cancer death in 

women worldwide [30]. This fatal disease has been extensively studied by many groups 

 



 

to explore the feasibility of Raman spectroscopy to diagnose breast cancer [1, 30, 32, 34, 

41, 73, 74, 75]. For instance, Feld et al. have shown the potential of Raman spectroscopy 

for ex vivo tissue identification of infiltrating carcinoma, fibroadenoma, fibrocystic 

change, and normal breast tissue [32]. With the constructed diagnostic algorithm derived 

from their ex vivo tissue samples, they have also demonstrated the possibility of in vivo 

Raman spectroscopic cancer tissue identification during partial mastectomy breast 

surgery [30]. Recently, Stone et al. has also explored the potential of noninvasive Raman 

technology such as “spatially-offset Raman spectroscopy” and “transmissive Raman 

spectroscopy” techniques for noninvasive optical differentiation of different types of 

microcalcifications occurred during breast cancer [74, 75]. The detection of the different 

calcifications associated with breast cancer is important as it can be related to the 

metastasis state of breast cancer; however, to date, no reliable mean for assessing the type 

of microcalcification has been established [74, 75]. It is expected that Raman technology 

could also eventually provide a noninvasive diagnostic mean of assessing the tumor stage 

of malignant breast tissue.  

2.4.4 CERVICAL CANCER 
A decade of relentless effort by Mahadevan-Jansen et al. to pursue early detection of 

cervical cancer has passed [6, 17, 20, 65, 66, 76]. Their group has demonstrated their 

cervical precancers can be distinguished from benign tissue in vitro [17], as well as 

showing the possibility of Raman in vivo detection of cervical precancers [20] following 

their successful development of a fiber-optic probe for in vivo Raman measurements [77]. 

They have also constructed an organotypic tissue culture to further their understanding on 

cervical cancer development [78]. Recently, they have also shown the potential of Raman 
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spectroscopy together with the use of sophisticated nonlinear multivariate statistical 

algorithms to detect metaplastic cervical tissues [66]. In addition, they have also further 

proved that hormonal variation will affect Raman readings and have robustly 

demonstrated that with the stratification of data by menopausal status, low grade 

dysplasia could be identified from normal with accuracy of nearly 100% [79]. In recent 

years, few other groups have also contributed to NIR Raman spectroscopic understanding 

on cervical cancer [80-82]. For instance, Jess et al. has demonstrated that Raman 

spectroscopy could be used to detect cervical cells infected with human papilloma virus 

(HPV) [80], and Vidyasagar et al. has shown that Raman spectroscopy could be used to 

predict radiotherapy response in cervix cancer [81]. Martinho et al. have also pointed out 

that the inflammatory infiltrates can affect Raman spectroscopic detection of low grade 

dysplasia [82]. The results of these various studies from different groups gradually bring 

NIR Raman spectroscopy closer to being employed for cervical precancer detection in a 

clinical setting.  

2.4.5 GASTROINTESTINAL CANCERS 
Shim et al. is the first to demonstrate that NIR Raman spectroscopy can be used to 

acquire reliable in vivo Raman signals in the entire digestive tract during clinical 

inspection [83]. To further robustly investigate the potential of Raman spectroscopy for 

detection of different gastrointestinal lesions related to cancer, various groups have 

performed laboratory-based Raman testings. For example, Kendall et al. has 

demonstrated sensitivities of 77-100%, and specificities of 92-100% for detection of 

metaplasia, dysplastic and cancerous lesions occurring in the esophagus with the use of 

Raman spectroscopy [13]. Boere et al. further verified the potential of NIR Raman 
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spectroscopy to detect dysplasia occurring in the Barrett’s esophagus by using a rat 

model [84]. Ling et al. is the first to illustrate the potential of Raman spectroscopy for 

detection of gastric cancer [25], and Teh et al. further proved the possibility of NIR 

Raman spectroscopy to discriminate gastric dysplasia from normal tissues with diagnostic 

accuracy of 90% [12]. In addition, the feasibility of NIR Raman spectroscopy to detect 

precancers and cancers in the lower digestive tract (i.e., colon) has also been verified [1, 

9]. These studies demonstrated the diagnostic utility of NIR Raman spectroscopy for 

identification of different lesions associated with gastrointestinal cancers.   

2.4.6 HEAD AND NECK CANCER 
Raman spectroscopy has been shown to possess the potential to discriminate among 

normal, dysplastic and malignant changes in the epithelial cells of the larynx with 

diagnostic sensitivities of 83%, 76%, and 92%, and diagnostic specificities of 94%, 91%, 

and 90% [24]. Discrimination among normal, papilloma, and malignant laryngeal tissues 

with specificities of 86%, 94%, and 94%, and sensitivities of 89%, 69%, and 88% using 

NIR Raman spectroscopy has also been reported [21]. Additionally, successful 

differentiation of nasopharyngeal cancer from normal tissues (i.e., accuracy of 100%) 

with the use of NIR Raman spectroscopy has also been demonstrated [85]. Note that 

these works were in vitro studies, and in vivo study has yet to be demonstrated. 

Nevertheless, these investigations have shown that Raman spectroscopy possesses the 

potential as a tool to be used for improving efficacy in the detection of lesions occurring 

in the head and neck.  
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2.4.7 LUNG CANCER 
Raman study (excitation wavelength at 647 nm) by Bakker Schut et al. investigated the 

level of carotenoids from lymphocytes of individual with and without cancer [86]. Their 

work indicated a considerable reduction of carotenoids in lung cancer patients compared 

with healthy individuals. Subsequent lung Raman investigations were carried out by both 

Yamazaki et al. [87] and Huang et al. [5] who have each reported on the feasibility of 

their in-house developed Raman spectroscopy system for ex vivo detection of lung cancer 

tissues [85]. Jess et al. further demonstrated that Raman spectroscopy could also be used 

for grading different malignant lung cells [88]. To further bring Raman technology closer 

to a clinical endoscopic application, Short et al. has successfully developed a fiber-optic 

Raman probe in vivo lung cancer detection [49]. However, they have reported 

overwhelming native autofluorescence signal from the bronchial tissues which obscured 

reliable Raman signals acquisition. Hence, they have explored the so-called “high-

wavenumber” spectral region to acquire lung tissue Raman signals and has preliminary 

demonstrated the feasibility of in vivo Raman spectroscopic lung cancer detection. 

Recently, Magee et al. has also developed a new Raman endoscopic probe and NIR 

Raman system based upon “shifted-subtracted Raman spectroscopy” to tackle the high 

autofluorescence background signals [89]. Their results indicated that their in-house 

developed Raman system based upon “shifted-subtracted Raman spectroscopy” technique 

could be effectively circumvent NIR autofluorescence background and acquire reliable 

tissue Raman data. They have also preliminary demonstrated the potential of their system 

to differentiate lung cancer from normal lung tissues. Hence, overall, regardless of “high-

wavenumber” Raman spectroscopy or “shifted-subtracted Raman spectroscopic 
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technique” used in the fingerprint spectral region, Raman spectroscopy holds great 

promises as a useful diagnostic instrument for in vivo lung cancer detection.  

2.4.8 ORAL CANCER 
With a rat model, Bakker Schut et al. demonstrated the feasibility of a fiber-optic NIR 

Raman system for in vivo detection of dysplastic tissue occurring at the palate anatomical 

site with 100% accuracy [8].  Oliveira et al. further utilized an animal (i.e., hamster) 

model to cultivate dysplastic and cancerous oral lesions which were subsequently excised 

for ex vivo tissue Raman testings [90]. Their results suggested Raman spectra of 

dysplastic and cancerous oral tissues were very similar. Nevertheless, their group 

confirmed the diagnostic potential of Raman spectroscopy for oral cancer diagnosis. On 

top of the animal model Raman works, Krishna et al. validated the diagnostic potential of 

Raman spectroscopy using human ex vivo oral tissues to differentiate different 

pathologies associated with cancer [91, 92]. Their results indicated that Raman 

spectroscopy could be used to distinguish the cancer, inflammatory and normal tissues 

with 100% accuracy; thereby, providing more evidence that NIR Raman spectroscopy 

could be utilized for disease detection in the oral cavity.  

2.4.9 SKIN CANCER 
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Skin cancers including squamous cell carcinoma, melanoma and basal cell carcinoma, are 

among the cancers with the highest incidence worldwide [23, 35, 39]. These neoplastic 

lesions are often fatal if left undetected and untreated. Excisional biopsy currently 

remains the standard approach for cancer diagnosis, but is invasive, impractical, and 

could be unacceptable for screening high-risk patients who may have suspicious lesions 

localized in cosmetically important parts of the body such as the face [39]. The concept 

 



 

of applying Raman spectroscopy for skin cancer diagnosis is particularly appealing as 

this optical spectroscopic technique is nondestructive and does not require any sample 

preparation, enabling acquisition of the spectra directly from the skin [23, 35, 39]. 

Gniadecka et al. provided the first Raman spectroscopic studies of skin cancer, in which 

they observed spectral differences between malignant and benign lesions such as the 

basal and squamous cell carcinoma vs. lentigo maligna, seborroic keratosis and nevus 

intrademalis [93]. Their group subsequently specifically demonstrated that melanoma 

could be discriminated from pigmented nevi, basal cell carcinoma, seborrheic keratoses, 

and normal skin with a sensitivity of 85% and specificity of 99% through the use of 

Raman spectroscopy in combination with artificial neural network. [94, 95] However, 

these studies were conducted through the use of FT-Raman, which could not be applied 

clinically. Nijssen et al. further demonstrated that basal cell carcinoma could be 

discriminated the perilesional skin with the use of a special fiber-optic Raman probe 

which explored the use of “high-wavenumber” Raman spectroscopy technique [96]. With 

the latest development of a portable optical fiber Raman microspectroscopy system 

which allows 40 μm measurement depth to be performed, Lieber et al. verified the 

potential of NIR Raman spectroscopy for tissue diagnosis of basal cell carcinoma and 

squamous cell carcinoma from normal and inflammatory skin tissues [97, 98]; they have 

achieved high diagnostic sensitivity of 91%, specificity of 95% for detecting the skin 

cancer lesions [97]. It should be also noted that Lieber et al. has observed that 

malignancy occurred at a deeper tissue layer (>40 μm) [97], however, Raman 

spectroscopy appeared to be able to detect malignancy-associated changes in the 

morphologically normal tissue surrounding the lesions. As a result, their group has 
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further investigated the malignancy-associated changes for skin tissues with the use of 

organotypic raft culture, and further determined the possibility of Raman spectroscopy to 

detect malignancy-associated changes in the histologically-appearing normal tissue 

surrounding the lesions [65]. These works highlighted that Raman spectroscopy 

possesses the potential to elucidate biochemical changes closely related with diseased 

transformation, and could be employed as a unique diagnostic tool for clinical inspection.  

2.4.10 PROSTATE CANCER 

The prognosis and type of therapeutic intervention for prostate cancer is primarily based 

on clinical stage, serum prostate-specific antigen, and the Gleason score of the cancer 

[99].  The Gleason score grading is based on microscopic tumor architecture and the 

extent of the most prevalence pattern. As the tumor grades are indicator of intrinsic tumor 

behavior, characterizing the molecular phenotype of grade is of potential clinical 

importance [99]. As Raman spectroscopy is capable of optically probing the biomolecular 

changes associated with diseased transformation, it could be a potential instrument for 

detection and grading of prostate cancer. To date, Crow and Stone et al. has been the only 

group who has explored the possibility of NIR Raman spectroscopy for prostate cancer 

diagnosis [1, 100]. They have demonstrated the diagnostic efficacy of Raman 

spectroscopy to detect and grade prostate cancer in vitro with an overall accuracy of 89% 

[100]. Further investigation by their group has showed the feasibility of implementing 

NIR Raman spectroscopy with a fiber-optic probe for prostate cancer diagnosis [69]. In 

addition, they have investigated the biochemical basis for the spectral differences in 

correlation with benign prostatic hyperplasia, prostatitis, and three different grades of 

malignant prostate cancer [70]. Their results confirmed the molecular information which 
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could be extracted by Raman spectroscopy for diagnosis of different prostate diseases. 

These studies provided a molecular basis towards clinical implementation of NIR Raman 

technology for possible noninvasive tissue diagnosis of prostate cancer in living patients.  

 

To summarize this chapter, the potential of NIR Raman spectroscopy for precancer and 

cancer diagnosis has been demonstrated in many different clinical fields such as the 

dermatology, gynaecology, gastrointestinal, neurology, respiratory, and urology [1,2,6-

9,12,13,15,16, 21,24, 73-100]. Even though Raman technique has progressively moved 

from in vitro tissue validation towards in vivo clinical trials due to substantial 

improvement in the hardware technology, further development of Raman equipment is 

still necessary, as the current state-of-the art instrumentation is not fully ready to be 

incorporate in the clinical practice yet [6, 15, 23, 35, 38, 39]. In addition, construction of 

a robust diagnostic algorithm which can robustly translate Raman spectral information 

into interpretable clinical information for real-time accurate tissue diagnosis still requires 

considerable development [23, 35, 39]. The following chapter will introduce on the 

different analytical techniques which could be implemented for Raman tissue diagnosis.  

2.5 ANALYTICAL TECHNIQUES FOR RAMAN CLASSIFICATION 

Raman spectroscopy can probe great wealth of biomolecular information ranging from 

nucleic acids, proteins, lipids and carbohydrates from biological tissues, and present the 

biochemical information on a Raman spectrum. However, the Raman spectrum usually 

contains many overlapping bands, and so data interpretation can not be easily made by 

simple visual inspection for subtle change in tissue pathology [22]. Hence, different 
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statistical techniques would need to be implemented in order to made use of the 

biomolecular Raman signal for tissue analysis and classification.  

 

The Raman spectrum data usually consists of the results of observations of many 

different variables (i.e., Raman shift) for different cases (i.e., normal and diseased). Each 

of these variables could be considered to represent a different dimension. Hence, given n 

variables, each of the cases may be regarded to be located in a unique position in an n-

dimensional hyperspace, which is often very difficult to visualize. Therefore, various 

statistical algorithms have been explored to reduce this massive dimensional space to an 

interpretable dimensional space [36].  

 

Very often, tissue Raman spectra can be modeled using linear analysis as Raman 

spectrum of a mixture of biochemicals is approximately a linear superposition of the 

mixture’s component spectra, and the Raman signal intensity varies with the biochemical 

component concentration [22]. Thus, most of the dimensional reduction techniques which 

have been commonly explored for tissue Raman analysis are of the linear analysis 

methods [39]. The linear dimensional reduction techniques basically comprises of two 

types: unsupervised or supervised learning algorithms [22, 39]. The unsupervised 

learning algorithms aim to find intrinsic differences and similarities among the different 

cases, and group them into clusters. Well known examples of this approach are PCA, and 

hierarchical cluster analysis (HCA) [36]. In contrast, supervised pattern recognition 
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methods utilize prior information on class memberships to construct a classifier using a 

portion of samples available (assigned as training set), and the rest will be used as test set 

to check the classifier performance. Examples of supervised techniques include LDA, 

and logistic regression (LR) [36]. In recent years, to further improve the diagnostic 

accuracies for tissue diagnosis using Raman spectroscopy, nonlinear learning algorithms 

such as support vector machines (SVM) [11], and artificial neural network (ANN) [94, 95] 

have also been explored. Below provides a short description of the different algorithms 

commonly applied for tissue diagnosis in Raman spectroscopy.  

2.5.1 PRINCIPAL COMPONENT ANALYSIS (PCA) 

Briefly, PCA decomposes the spectroscopic data matrix S into scores T and loading P, 

according to the relation,  

S  =  T. P     (2.1) 

 

With this equation, PCA transforms a number of correlated variables into a number of 

uncorrelated variables called principal components (PCs) which describe the greatest 

variance of the spectral data. It is usually employed as a method for variable or data 

reduction by retaining the first few principal components. In addition, inspecting the plots 

generated using scores provides a mean to assess the relationships between samples, 

since it helps to identify some clusters related to a certain feature and also for detecting 

potential outliers [39]. 
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2.5.2 HIERARCHICAL CLUSTER ANALYSIS (HCA) 

In general, hierarchical cluster analysis is the partitioning of a dataset into clusters so that 

the differences between the data within each cluster are minimized and the differences 

between clusters are maximized according to a specific distance measure [36]. This is 

achieved through calculating the symmetric distance matrix (size n x n) between all 

considered spectra (number n) as a measure of their pairwise similarity/dissimilarity [39]. 

The algorithm searches for the minimum distance, collects the two most 

similar/dissimilar spectra into the first cluster, and recalculates spectral distances between 

all remaining spectra and the first cluster. In the subsequent step, the algorithm performs 

a new search to cluster more objects (spectra or already formed clusters) together. This 

searching and formation of clusters algorithm will be repeated n-1 times until all spectra 

have been merged into a single cluster. The final result will be displayed in a tree-like, 

two dimensional dendrogram in which one axis refers to the reduction of clusters with 

increasing number of iterations and the other axis to the respective spectral distances.  

2.5.3 LINEAR DISCRIMINANT ANALYSIS (LDA) 

LDA seeks linear combinations of the measurement variables which separate the objects 

from different classes as much as possible [101]. Factors which determine the 

separability of classes include the distances (e.g. Euclidean distances) between groups 

and the compactness of each group. It then follows that the ratio of the between-to-within 

variability of the transformed training data vectors (i.e. spectra) should be maximized (i.e., 

Smax). 
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S max = {Variance between / Variance within)  (2.2) 

 

In other word, the aim of LDA is to find a discriminant function line that maximizes the 

variance in the data between groups and minimizes the variance between members of the 

same group [101]. Unknown object or specimen in our case can then be classified 

according to its position with respect to the discriminant function line [101].   

2.5.4 LOGISTIC REGRESSION (LR) 

The fundamental assumption of logistic regression is that the probability, pi, that the ith 

case in a set of spectral data belongs to a particular category, for instance, the data 

illustrating cancerous tissue will be described by the logistic function, which is of the 

form,  

pi = {1+ exp (α + ∑ βi xi )}-1   (2.3) 

 

with xi  the score associated with the ith basis spectrum, βi the corresponding weighting 

coefficient and α a constant offset [64]. This probability varies from zero to one with a 

sigmoid linkage function. It is small (i.e., zero) for large values of x and approaches to 

one for small values of x. The parameters β and α are often determined through maximum 

likelihood iterative technique, which aims to maximize the probabilities predicted for 

obtaining the specific calibration set [102].  

2.5.5 SUPPORT VECTOR MACHINES (SVM) 

SVM algorithm was firstly introduced by Vapnik [103]. It basically classifies two 

linearly separable set of data that belong to two different groups through the use of a 
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hyperplane [104]. Although there are infinitely many hyperplanes that separate the two 

classes, SVM classifiers find the hyperplane that maximizes the distances between the 

two groups by solving a quadratic optimization equation, the Lagrangian dual problem, as 

shown below [104]:  

min w,b,ξ = (1/2) || w ||2 + (C/2) ∑ ξ2 

yi (<w.xi>+b) ≥ 1 – ξi, i=1,…..,n.   (2.4)  

  

Note that w represents the weights, ξ corresponds to a slack variable, b signifies the bias 

term, C denotes the penalty cost, x indicates the data set with n number of variables, and 

y illustrates the binary class information from the support vectors represented by the two 

integer, {-1, 1}. SVM can be extended to nonlinear classification by implicitly 

transforming the original data in a nonlinear space using kernel functions [104].  

2.5.6 ARTIFICIAL NEURAL NETWORK (ANN) 

ANN is another type of non-linear statistical data modeling tool which can be used to 

develop a classification algorithm [94]. One of the most popular and accurate ANN 

model is the multilayer perceptions based on the backpropagation algorithm [95] for 

training neural networks, which can be modeled as,  

y = f {b + ∑wi xi}     (2.5) 

  

with xi representing the variables, wi denoting the weighting coefficient,  b corresponding 

to a constant offset, f denoting a function, and y signifying the output. Backpropagation 

ANNs are constructed with a layered structure in which each node is connected to all 
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nodes of the preceding and subsequent layer with different weights [95]. The input layer 

(variables) and the output layer (class membership) are generally connected by a single 

hidden layer. The input to each node is the linear combination of the outputs of the 

previous layer using the respective weights for the connections. Each node comprises of a 

Gaussian or sigmoid activation function. The output of the node is the result of the 

activation function for the input value, and the outputs will reveal the predicted class 

membership for the input cases [95].  

 

Overall, these different statistical algorithms have been commonly applied to construct 

diagnostic models for classification of different diseases with Raman spectroscopy. 

However, these different techniques could not sufficiently furnish the clinicians with 

physical meanings of diagnostic features derived for tissue characterization. Hence, the 

development of robust algorithms which can achieve a high predicted diagnostic 

accuracy and provide useful biomolecular diagnostic information from the high 

dimensional Raman spectral datasets will be clinically useful.  

2.5.7 RECURSIVE PARTITIONING TECHNIQUES 

Classification and Regression Tree (CART) is a form of recursive partitioning statistical 

technique that can selectively employ variables which are of utmost importance from a 

large number of input variables in databases for binary discrimination [105]. It is 

implemented by growing a tree structure with a root node containing all the objects, 

which are then further divided into nodes by recursive binary splitting. The theory of this 

technique has been robustly established by Leo Breiman et al. in 1984, and was originally 
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meant to be utilized in mass spectroscopy analysis [105]. Following the next two decades, 

this algorithm has generated great attention in the scientific and clinical field due to the 

successful applications in numerous applications [106-110]. To further enhance the 

performance of CART, different variation of recursive partitioning techniques [111, 112] 

such as the random forests [113] have been successfully developed. Despite the 

usefulness of recursive partitioning algorithms in many different fields, including in the 

mass spectroscopy application, these algorithms have yet been reported in detail for 

Raman spectroscopic biomedical application in the literature.   

 

The following two chapters will present in details on the novel application of CART and 

random forests for Raman spectroscopic study on cancer diagnosis. The last three 

chapters will illustrate the commonly utilized analytic algorithms (i.e., empirical method 

(i.e., intensity ratio) and multivariate statistical techniques (i.e., PCA-LDA)) used for 

NIR Raman spectroscopy studies on different tissue/cell types for precancer diagnosis, 

and will also compare the diagnostic efficacy of these conventional Raman analytical 

algorithms with random forests.  
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 CHAPTER 3  

ASSESSMENT ON THE FEASIBILITY FOR USING A RAPID FIBER-

OPTIC NIR RAMAN SPECTROSCOPY SYSTEM TO CHARACTERIZE 

RAMAN PROPERTIES OF HUMAN TISSUE 
Despite the great advantages that NIR Raman spectroscopy could offer, there are 

technical challenges to overcome. For instance, achieving a high signal-to-noise (S/N) 

ratio while avoiding interference from silica Raman signals in a rapid manner can be 

difficult for in vivo tissue Raman measurements [12]. This is because tissue Raman 

scattering is inherently very weak, and the fiber-optic probes used to collect in vivo 

signals exhibit strong silica Raman scattering in the fingerprint region. Also, the 

integration times and irradiance powers for in vivo Raman measurements must be limited 

for practical and safety reasons [12, 47]. Therefore, the primary aim of this chapter was to 

investigate the use of a rapid in-house developed fiber-optic NIR Raman spectroscopy for 

characterization Raman properties of human mucosa tissues.  
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3.1 RAMAN INSTRUMENTATION 

 

Laser 

Probe 

Spectrometer CCD 
Camera PC (a) 

 

(b) 

Figure 3.1 (a) Photograph of the in-house developed Raman system used to acquire 
tissue Raman measurements.  (b) Schematic of Raman spectroscopy system used for 
Raman collection. CCD: charge-coupled device; PC: personal computer.  
 

Figure 1(a) shows the instrument used for tissue Raman spectroscopic studies [12, 46]. 

Briefly, this system consists of a 785 nm diode laser, a transmissive imaging 
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spectrograph with a Kaiser holographic grating, an NIR-optimized back-illuminated, 

deep-depletion CCD detector (Princeton Instruments, Trenton, NJ), and an unique fiber-

optic Raman probe. The 785 nm laser is coupled to a 200 μm core diameter fiber 

(NA=0.22) and the fiber is connected to the Raman probe via a subminiature version A 

(SMA) connector. The Raman probe was designed to maximize the collection of tissue 

Raman signals while reducing the interference of Rayleigh scattered light, fiber 

fluorescence and silica Raman signals (Figure 1(b)). One optical arm of the probe 

consists of a collimating lens, a bandpass filter (785 ± 2.5 nm, Chroma Technology 

Corp., VT) and a focusing lens to deliver the laser light onto the tissue. The other arm of 

the probe equipped with collimating and refocusing lenses and a holographic notch plus 

filter (optical density >6.0 at 785 nm; Kaiser) is used for collecting tissue Raman signals. 

The holographic notch filer was placed between the two lenses to block the Rayleigh 

scattered excitation laser light while passing the frequency-shifted tissue Raman signal. 

The refocusing lens then focused the filtered beam onto the circular end of the fiber 

bundle (58 x 100 μm core diameter fibers, NA = 0.22). Tissue Raman photons collected 

by the fiber bundle in the Raman probe are fed into the entrance of the transmissive 

spectrograph along a parabolic curve, and the holographic grating disperses the incoming 

light onto the liquid nitrogen-cooled CCD array detector controlled by a personal 

computer (PC) . The tissue Raman spectra associated with autofluorescence background 

are displayed on the computer screen in real time and can be saved for further analysis. 

The system acquired Raman spectra over the wavenumber range of 800-1800 cm-1, and 

each spectrum was acquired within 5 seconds with light irradiance of 1.56 W/cm2. The 

spectral resolution of the system is 4 cm-1.  
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3.1.1 UNIQUE FEATURE OF THE IN-HOUSE DEVELOPED RAMAN SYSTEM 

All straight slit usually causes the image to be curved on the detector due to the 

diffraction effect: To understand this, consider the diffraction equation [45]: 

  mλ = d (sin α + sin β)      (3.1) 

where m is the diffraction order, λ is the wavelength, d is the groove spacing, and α  and 

β are the incident and diffraction angles respectively. This equation can only be applied 

to the light rays originating from a single point, which is the slit centre. After collimation 

of light before interacting with the grating groove, the light rays are perpendicular to the 

grating grooves, and are also parallel to the dispersion plane. Hence, the light rays 

originating from above or below the slit centre (i.e., a single point) will form a vertical 

out-of-plan off axis angle δ with the dispersion plane. The grating mimics a mirror with 

respect to the vertical angle δ and reflects light rays with the same vertical angle. As a 

result, the dispersion in the diffraction plane would be altered and will be represented by 

the below modified equation [45]:  

  mλ = d cos δ (sin α + sin β)     (3.2) 

As can be observed, it is the factor cos δ causes the curvature in the image plan. Briefly, 

the shape of the slit image is computed to be in the form of a parabolic curve  

  x’ = c’ y’2      (3.3) 

where  x’ and y’ are the distances in the x and y axis formed by the curved slit image in 

the image plan, and  c’ is a constant for a certain wavelength and is determined by the 

following [45]:   

c’ =  (mλ) / (2df2  cos β)  

    =  (sin α + sin β) / (2f2  cos β)   (3.4) 

  43

 



 

where f2 is the focal distance from the focusing lens to the image plan. Note that the 

diffraction angle β’s dependence on δ is removed in equation (3.4) to illustrate the on-

axis condition where δ = 0. As a result, from the equation, it is obvious that the image on 

a straight slit in the shape of a parabolic curve. Four observations can be derived from 

this equation [45]. 

 

1. The curvature becomes more prominent as the diffraction angle increase. 

2. When m = 0, and β = - α, which will represent specular reflection, the curvature 

disappears. 

3. For opposite diffractions orders, their shapes are symmetric around the zeroth-

order reflection. 

4. The curvature becomes more prominent as the focal length f2 decreases. Hence, 

for compact spectrometers which usually utilize short focal distance lenses, the 

curvature is very much obvious. However, short lenses are necessary because of 

the high numerical aperture it provides (or low f/number). 

 

Therefore, in order to obtain a straight slit image, a curve entrance opposite to the curved 

slit image can be employed. Using symmetry, the shape of the entrance slit is also a 

parabolic curve and is described by [45]:  

x = cy2       (3.5) 

c    =  (sin α + sin β) / (2f1  cos β)   (3.6) 

where  x and y are the distances in the x and y axis in the entrance slit, and where f1 is the 

focal distance from the entrance slit to the collimating lens. Note that the shape of the 
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parabolic curve at the entrance slit needs to be accounted for the magnification lens used 

in the spectrometer. 

 

For ease of manufacturing, an arc to approximate the parabolic curve can be carried out. 

Hence, solving the below equation will yield the radius of the arc (R) [45, 46].  

R    =  1/2c      (3.7) 

Since the ideal radius of the arc is dependent on wavelength, only one wavelength can be 

fully corrected, and residual curvature will exist for all other wavelengths. For the Raman 

system employed in this dissertation, spectrograph image aberration was corrected by a 

parabolic-line fiber array, permitting complete CCD vertical binning, thereby yielding a 

3.3-16 fold improvement in S/N ratio for the use of 785 nm excitation rays [12, 46]. To 

date, this is the unique design to correct for image aberration effect for Raman 

spectroscopic study in the literature. The greatly enhanced S/N ratio allows rapid 

acquisition of weak Raman signals from biological tissues within 1 sec [46].  

3.2 DATA PREPROCESSING 

Due to the gradual change in quantum efficiency of the CCD detector across the NIR 

spectral range which affects the instrument sensitivity with increasing wavelength, 

etaloning in the CCD, and variation in the individual CCD pixel sensitivity, this can 

result in a rapid oscillation in the sensitivity of a Raman instrument with changing 

wavelength [1]. Hence, in order to extract reliable data independent of these inherent 

effects from the Raman system, all wavelength-calibrated spectra were corrected for the 

wavelength-dependence (system response) of the system using a standard lamp (RS-10, 
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EG&G Gamma Scientific, San Diego, CA). Figure 3 shows an example of a tissue raw 

spectrum before and after correcting for the system response.  
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Figure 3.2 Example of a tissue raw spectrum (a) before and (b) after correcting for the 
system response. 
 

The raw spectra acquired from gastric tissue in the 800-1800 cm-1 range represented a 

combination of prominent tissue autofluorescence, weak tissue Raman scattering signals, 

and noise [12]. Thus, the raw spectra were preprocessed by a first-order Savitsky-Golay 

filter (window width of 3 pixels, which corresponded to the system spectral resolution) to 

reduce noise (Figure 3(a)) [114]. A fifth-order polynomial was found to be optimal for 

fitting the broad autofluorescence background in the noise-smoothed spectrum (Figure 

3(b)), and this polynomial was then subtracted from the raw spectrum to yield the tissue 

Raman spectrum alone (Figure 3(c)) [12]. 
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Figure 3.3 Example of a tissue raw spectrum (a) after noise removal via Savitsky-Golay 
filter, (b) followed by fitting the autofluorescence background with a 5th order 
polynomial, and (c) this polynomial was then subtracted from the raw spectrum to yield 
the tissue Raman spectrum alone. Note: tissue raw spectrum and tissue Raman spectrum, 
black; 5th order polynomial autofluorescence background, red.  
 

In order to achieve tissue Raman data independent of Raman spectroscopic measurement 

conditions such as excitation/detection geometries, excitation light power fluctuations, 

probe-tissue positioning variations, different tissue sample size, and etc, each of 

background-subtracted Raman spectra was also normalized to the integrated area under 

the curve from 800-1800 cm-1 to enable a better comparison of the spectral shapes and 

relative peak intensities among the different tissue samples [5, 16].  
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3.3 EX VIVO TISSUE SAMPLES  

In this study, a total of 146 gastric tissue samples were collected from 70 patients who 

underwent resection or endoscopic biopsies with clinically suspicious lesions. All 

patients preoperatively signed an informed consent permitting the investigative use of the 

tissues, and this study was approved by the Ethics Committee of the National Healthcare 

Group (NHG) of Singapore. After biopsies or surgical resections, tissue samples were 

immediately sent to the laboratory for Raman measurements. After spectral 

measurements, the tissue samples were fixed in 10% formalin solution and then 

submitted back to the hospital for histopathologic examination. The tissue specimens 

comprised five histological groups: normal gastric tissue, dysplastic gastric tissue, 

cancerous gastric tissue, normal laryngeal tissue, and cancerous laryngeal tissue. Table 

3.1 lists the number of samples associated with each of the histological type of gastric 

and laryngeal tissues. Note that the tissue samples were typically approximately 3 ×  3 ×2 

mm in size, and the incident laser light with a beam size of 1 mm was focused on the 

tissue mucosal surface to mimic the in vivo clinical measurements.  

Table 3.1 Type and number of human tissues collected.  

Type of tissue Histology type Number of samples 

Gastric Normal 55 

 Dysplasia 21 

 Cancer 18 

Laryngeal Normal 20 

 Cancer 30 
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3.4 RAMAN MEASUREMENTS  

To assess intra-sample variability, multiple Raman measurements (n=5) on each of the 

tissue were made at different locations of the same samples. Figure 3.4 shows an example 

of the mean normalized Raman spectrum ± 1 standard deviation (SD) measured from a 

normal gastric tissue, illustrating spectral intensities variation of 30% about the mean for 

normal tissue. Overall, the relative Raman peak heights, shapes and positions showed 

little intra-sample variability for all gastric and laryngeal tissues, indicating the relative 

homogeneity of tissue samples used in this study [12].  
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Figure 3.4 Mean normalized gastric Raman spectra (solid line) ± 1 standard deviation 
(SD) (gray area) obtained from a normal by multiple measurements (n=5) at various 
locations for each sample. Each spectrum was normalized to the integrated area under the 
curve to correct for variations in absolute spectral intensity. All spectra were acquired in 
5 seconds with 785 nm excitation and corrected for spectral response of the system. 

 

Figure. 3.5 shows the mean normalized Raman spectra ± 1 SD of the different types of 

gastric and laryngeal tissue. Table 3.2 further lists the tentative biochemical assignments 

for the 8 major Raman vibrational bands consistently observed in all different tissue types 

[10, 12]. As can be observed in Figure 3.5, the Raman spectral pattern between the 

different tissue types (i.e. normal gastric, dysplasia gastric, cancerous gastric, normal 
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laryngeal, cancerous laryngeal) could be very similar, and there are significant inter-

sample variability which may obscure the inter-pathology variability. Hence, it is highly 

desirable to develop robust diagnostic approaches to extract all possible diagnostic 

information contained in tissue Raman spectra for well correlation with the different 

tissue types.  
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Figure 3.5 Mean Raman spectra ± 1 SD of normal gastric tissues (n=55), dysplastic 
gastric tissues (n=21), cancerous gastric tissues (n=18), normal laryngeal tissues (n=20), 
and cancerous laryngeal gastric tissues. 
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Table 3.2 Tentative assignments of the major Raman peaks identified in gastric and 
laryngeal tissues [10, 12].  

Raman wavenumber (cm-1) Tentative biochemical assignment 

875 ν (C-C) of hydroxyproline 

1004 ν s(C-C) ring breathing of phenylalanine 

1100 ν (C-C) of phospholipids 

1208 ν (C-C6H5) of tryptophan and phenylalanine 

1335 CH3CH2 wagging mode of nucleic acids 

1450 δ (CH2) of proteins 

1655 ν (C=O) of amide I, α-helix of proteins 

1745 ν (C=O) of phospholipids 

Note: ν, stretching mode; δ, bending mode 

In conclusion, an in-house developed NIR Raman system (Section 3.1) coupled with 

effective pre-processing techniques (Section 3.2) could be efficiency used to acquire 

reliable tissue Raman spectrum in the stomach and larynx.  
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CHAPTER 4  

NOVEL DIAGNOSTIC ALGORITHM FOR RAMAN TISSUE 

CLASSIFICATION:  RECURSIVE PARTITIONING TECHNIQUE – 

CLASSIFICATION AND REGRESSION TREES (CART) FOR GASTRIC 

CANCER DIAGNOSIS 
Despite a falling incidence rate of gastric cancer, it is still the fourth most common 

malignancy and also the second leading cause of cancer deaths in humans, accounting for 

600 000 deaths worldwide [115, 116]. If the tumor is detected early and treated before it 

has invaded the gastric wall, the survival rate of the patient will increase tremendously 

[116]. However, early identification and demarcation of such lesions in the stomach can 

be very difficult to detect by the conventional diagnostic method-white-light endoscope 

which heavily relies on the visual observation of gross morphological changes of tissue, 

leading to a poor diagnostic accuracy. Excisional biopsy currently remains the standard 

approach for cancer diagnosis, but is invasive and impractical for screening high-risk 

patients who may have multiple suspicious lesions. 

 

Raman spectroscopy which makes use of inelastic light scattering process to capture 

“fingerprints” of specific molecular structures and conformations of a given tissue or 

disease state, has shown to be a promising optical diagnostic technique for identifying 

malignant tissues in various organ [5, 13-15, 25-28]. In order to convert molecular 

differences subtly reflected in Raman spectra between different tissues types into 
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valuable diagnostic information for clinicians, multivariate statistical techniques have 

been successfully deployed in developing effective diagnostic algorithms for Raman 

spectroscopic diagnosis of cancers [1,2,6-9]. Due to the complexities of the biological 

tissues, PCA, which is able to take into account of the whole range of Raman spectral 

features of the tissue, has often been applied to simplify the computational complexities 

for the development of effective classifier algorithms (e.g., LDA, LR) without 

compromising diagnostic accuracy [1, 7, 13, 30, 34]. However, PCA does not necessary 

provide the physical meanings of component spectra for tissue classification [29]. Very 

recently, the classification and regression tree (CART) technique, which bases on the 

recursive partitioning for generating discriminatory algorithms and possesses potential to 

uncover interactions among prognostic factors in complex dataset, has received extensive 

attention in biomedical fields, such as proteomics, genomics and mass spectroscopy [105-

110]. For instance, John et al. applied both neural network and CART on liver cancer 

proteomes and found that both algorithms produced equally good predictive ability [106]. 

Garzotto et al. employed CART to identify prostate cancer from normal tissue with the 

sensitivity of 96.6% [107]. Zhang et al. also made use of CART on mass spectral urine 

profiles to achieve the sensitivity of 93.3% and specificity of 87.0% for separating 

transitional cell carcinoma of from normal bladder tissue [108]. Despite these successful 

applications, to date, CART technique has yet been applied to Raman spectroscopy for 

elucidation of Raman spectra in tissue diagnosis. In this chapter, we explore the 

feasibility of applying the CART technique to develop effective diagnostic algorithms for 

differentiation of near-infrared (NIR) Raman spectra between normal and cancer tissue, 
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and to further understanding of molecular changes reflected in Raman spectra of tissue 

associated with the onset of malignancy in the stomach [14].  

4.1 THEORY OF CLASSIFICATION AND REGRESSION TREES  

Classification and Regression Tree (CART) is a statistical technique that can selectively 

employ variables which are of utmost importance from a large number of input variables 

in databases for binary discrimination [105]. It is implemented by growing a tree 

structure with a root node containing all the objects, which are then further divided into 

nodes by recursive binary splitting. The split which gives the best reduction in impurity 

between the mother group (tp) and the daughter groups (tl and tr) at different nodes of the 

tree is sequentially selected in the construction of CART tree. The maximization of 

change of impurity function20, ∆ i(t), at each node, is defined as: 
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R represents the best splitting value of xj; i(tp), i(tl) and i(tr) are the impurity functions 

belonging to the parent node tp, left child node tl, and right child node tr of the parent 

node, respectively. Pl and Pr are the probabilities of achieving left and right nodes, 

respectively. CART will search through all possible values of variables for the best 

splitter at the maximal ∆ i(t) (xj < xj
R). In this study, Gini index is used to determine the 
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where c is the number of different classes, n is the total number of objects and nj is the 

number of objects from class j present in the node. Generally, a tree is firstly grown to its 

maximal size until the terminal nodes are sufficiently small. However, the maximum size 

tree that is usually overfitted with noise could not generalize well for future dataset. 

Henceforth, the tree is usually gradually shrunk by pruning away terminal nodes that lead 

to the smallest decrease in accuracy [67]. For each subtree Т, a complexity-

misclassification cost function, Rα(Т), is generated: 

Rα(Т) = R(Т) + α |Т|,      (4.3) 

where R(Т) is the resubstitution misclassification error of T; |Т| and α represent the 

number of terminal nodes and the cost of complexity per terminal node, respectively. 

During each successive pruning process which resulted in a smaller subtree (the subtree 

T’ ≤ T that minimizes Rα(T’)) with a smaller number of terminal nodes, α will gradually 

increase. As a result, searching for an optimal tree size (defined with respect to expected 

performance on the cross-validated dataset) is equivalent to finding the correct α so that 

the information in the learning dataset is best fit rather than overfit or underfit [105].  

 

Although only one variable would be selected as the best splitter at any node in a CART 

tree, there would always be a second best variable which may perform nearly as good as 

the best splitter. These second best variable(s) could be masked by the best splitter(s) and 

would not appear in the final CART tree. As such, to avoid masking the importance of 

any variables used in CART, the relative importance of each input variable is assessed 
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based on its importance over all possible nodes and splits by “variable ranking method” 

[67]. Using the variable ranking method, the importance of a variable Xm is defined as: 

M (Xm) = ),~( tsI m
Tt
∑
∈

Δ ,        (4.4) 

with IΔ ),~( tsm = max , which equals the maximal decrease in node impurity 

for the division of a parent node t into daughter nodes C

1CIΔ ),( tsm

1 and C2 guided by a surrogate 

split ms~ . A surrogate split is defined by a surrogate variable. This variable is the second 

best variable, following the selected variable and giving the second best reduction in 

impurity of the mother group into the daughter groups. This maximal decrease in node 

impurity is summed for all the nodes of the optimal subtree, T, to obtain the importance 

of a variable. 

 

In this study, a 10-fold cross-validation was chosen to select the optimal tree size [14]. 

The learning dataset is randomly divided into 10 subsets. One of the subsets is used as 

independent testing dataset, while the other 9 subsets are combined and used as training 

dataset. The tree growing and pruning procedure is repeated 10 times, each time with a 

different subset as testing dataset. For each tree size, the resubstitution and cross-

validation error are calculated, averaged over all subsets. The misclassification cost 

obtained for each subtrees on the cross-validation subset is matched with the subtrees of 

the complete model learning dataset using the α values. The optimal sized tree is 

proposed to be the tree within one standard error (SE) of the complexity-misclassification 

rate for the tree with the minimum complexity-misclassification rate [105]. 
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4.2 DEVELOPMENT OF CART DIAGNOSTIC ALGORITHM FOR RAMAN GASTRIC 

CANCER DETECTION  

4.2.1 TISSUE RAMAN DATASET  

Figure 4.1 shows the mean Raman spectra of normal (n=115) and cancer (n=61) gastric 

tissue in the model learning dataset. 9 prominent Raman peaks were observed in both 

normal and cancer tissue at the following locations with its respective tentative 

biochemical bond assignment: ~875 cm-1, C-C stretching modes of proteins; ~1004 cm-1, 

C-C6H5 symmetric ring breathing of phenylalanine; ~1100 cm-1, C-C stretching of 

phospholipids; ~1230 cm-1, C-N stretching and N-H bending modes of amide III of 

proteins; ~1265 cm-1, C-N stretching and N-H bending modes of amide III of proteins; 

~1335 cm-1, CH3CH2 twisting of proteins and nucleic acids; ~1450 cm-1, CH2 bending of 

proteins and lipids; ~1655 cm-1, C=O stretching of amide I of proteins; ~1745 cm-1, C=O 

stretching of phospholipids [14]. The gastric cancer tissues showed higher intensities at 

1265, 1450, and 1655 cm-1, while lower at 875, 1004, 1100 and 1745 cm-1, compared to 

normal tissues. Besides the intensity differences, there are also significant differences in 

Raman spectral shapes between normal and cancer tissues, which includes broadening of 

Raman bandwidths at around 1450 and 1655 cm-1, and red shifting of Raman peak at 

1655 cm-1 for gastric cancer tissues, confirming the potential role of Raman spectroscopy 

for gastric cancer diagnosis. 
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Figure 4.1 Mean Raman spectra of gastric tissues from (a) normal (n=115) and (b) 
cancer (n=61) in learning Raman dataset. 

 

Table 4.1 lists the mean and SD values of 7 prominent Raman peaks that are 

diagnostically significant (unpaired two-sided Student’s t-test, p <0.05) for tissue 

classification, demonstrating significant overlappings of intensities between gastric 

normal and cancer tissue. Using each of these individual Raman intensities for diagnosis, 

the overall sensitivity and specificity varied by 60% – 82% and 60% – 75%, respectively. 

To further improve tissue classification, CART was subsequently employed to correlate 

all the diagnostically significant Raman peak intensities with tissue pathologies. 
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Table 4.1 Statistical characteristics of diagnostically significant Raman peaks (unpaired 
two-sided Student’s t-test, p<0.05; 80% of total Raman dataset). 

Raman peak 
(cm-1)  

Normal 
(mean±SD) 

Cancer 
(mean±SD) 

Sensitivity 
(%) 

Specificity 
(%) 

P-value 

875 0.011 (0.002) 0.009 (0.003) 70.5 (43/61) 74.8 (86/115) 0.0000011 

1004 0.011 (0.002) 0.010 (0.002) 62.3 (38/61) 66.1 (76/115) 0.0075823 

1100 0.011 (0.002) 0.008 (0.002) 68.9 (42/61) 73.9 (85/115) 0.0000184 

  1265* 0.003 (0.002) 0.005 (0.002) 65.6 (40/61) 65.2 (75/115) 0.0000002 

  1450* 0.011 (0.003) 0.013 (0.003) 82.0 (50/61) 60.0 (69/115) 0.0000016 

  1655* 0.007 (0.002) 0.008 (0.002) 70.5 (43/61) 61.7 (71/115) 0.0000019 

1745 0.005 (0.003) 0.004 (0.003) 60.7 (37/61) 61.7 (71/115) 0.0000061 

Note:  

SD: standard deviation 

The symbol * denotes a particular Raman peak intensity with cancer tissue being higher 
than normal tissue 

 

4.2.2 CART APPLICATION TO THE TISSUE RAMAN DATASET 

Figure 4.2 (a, b) shows the relationship of complexity with respect to the 

misclassification cost and the number of terminal nodes for both cross-validated and 

resubstitution error after 10-fold cross-validation of the model learning dataset. The 

misclassification cost for the resubstitution error increases monotonically as the 

complexity increases with a corresponding decrease in terminal nodes. On the other hand, 

the misclassification cost for the cross-validated error increases at a slower rate compared 

  59

 



 

to the resubstitution error. A local minimum misclassification cost of 0.1875 is found at 

complexity of 0.00568 for the cross-validated error. Consequently, the optimal sized tree, 

defined according to the cross-validated dataset, was chosen to be at complexity of 

0.00852 with 13 terminal nodes that is within one SE of the complexity-misclassification 

cost of the local minimum complexity-misclassification cost.  

 

Figure 4.2 Dependence of complexity,α, on (a) misclassification cost nodes for cross-
validated error after 10-fold cross-validation, and resubstitution error, and on (b) number 
of terminal nodes for resubstitution error of the CART model learning dataset. The 
optimal sized tree was chosen to be at complexity of 0.00852 with 13 terminal nodes 
within one SE of the complexity-misclassification cost of the local minimum complexity-
misclassification cost. 
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Figure 4.3 displays the CART analysis procedure in a classification model based on the 

model learning dataset (80% of total dataset). With the CART model, 6 diagnostically 

significant Raman peaks at 875, 1100, 1265, 1450, 1655, and 1745 cm-1 are inter-linked 

differently to build the following 13 subgroups (designated as either normal or cancer in 

the terminal subgroups): normal - Group 1, Group 3, Group 6, Group 7, Group 9, Group 

11, Group 13; cancer - Group 2, Group 4, Group 5, Group 8, Group 10, Group 12. All 

these 6 significant Raman peak intensities are combined differently to build the 7 normal 

and 6 cancer subgroups for best tissue classification.  

 

Figure 4.3 The optimal classification tree generated by CART method after 10-fold 
cross-validation of the model learning dataset by utilizing 6 significant Raman peaks 
(875, 1100, 1265, 1450, 1655, and 1745 cm-1). The binary classification tree composed of 
12 classifiers and 13 terminal subgroups. The decision making process involves the 
evaluation of if-then rules of each node from top to bottom, which eventually reaches a 
terminal node with designated class outcome, i.e., normal (N) or cancer (C). 
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Table 4.2 tabulates the variable ranking of the Raman peaks and the total number of 

appearing times of different intensity features to generate the CART-based diagnostic 

model (Fig. 4.3). According to the variable ranking method, the most and least important 

Raman peaks are found to be located at 875 and 1004 cm-1, respectively. By assessing the 

final CART-based diagnostic model, the Raman peaks which appeared the most and least 

number of times are located at 1745 and 1004 cm-1, respectively. For Raman peaks 

located at 1655, 1265, 1100 and 1450 cm-1, in the order of descending variable rankings, 

appeared 2, 2, 1 and 2 times, respectively, in the final CART model. As a result, Raman 

peaks at 875, 1100, 1265, 1450, 1655, and 1745 cm-1 are found to be most constructive 

towards building the final CART-based diagnostic model, with Raman peaks at 875 and 

1745 cm-1 as the most important variables for tissue classification.  
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Table 4.2 The variable rankings of all the input Raman peak intensity features (n=7) 
computed by the CART algorithm, with the corresponding total number of times of the 
respective feature appearing in the final CART-based diagnostic model. 

Raman peak 
(cm-1) 

Number of times appearing in the final 
CART model 

# Variable Ranking 
(Importance) 

875 2 1 

1004 0 7 

1100 1 5 

1265 2 4 

1450 2 6 

1655 2 3 

1745 3 2 

Note:  

The symbol # denotes a particular Raman peak intensity with variable rankings (1 as the 
most importance and ranking 7 as the least importance). 

 

4.2.3 EVALUATION OF THE CART ALGORITHM WITH PROSPECTIVE STUDY 

To evaluate the performance of the CART-based diagnostic algorithms for predicting the 

prospective cases (generalization), a randomly selected validation dataset (20% of total 

dataset) was used in which 6 important Raman peaks (875, 1100, 1265, 1450, 1655, and 

1745 cm-1) were utilized as an input in the final CART-based diagnostic model. Table 4.3 

summarizes the classification results of the 2 pathologic groups (normal vs. cancer) for 

both the model learning dataset (after 10-fold cross-validation) (80% of total dataset), and 
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the validation dataset (20% of total dataset). The sensitivity of 90.2% and specificity of 

95.7% can be obtained for the model learning dataset, while a predictive sensitivity and 

specificity of 88.9% and 92.9% can be achieved for the independent validation dataset. 

The results show that CART-based diagnostic algorithms that utilize the most 

diagnostically important peaks of Raman spectra are powerful and robust for accurately 

predicting the tissue types in the prospective new cases. 

Table 4.3 Classification results of Raman prediction of the 2 pathological groups with the 
model learning dataset (80% of total dataset) using the 10-fold cross-validation method, 
and the validation dataset (20% of total dataset) using a CART-based diagnostic 
algorithm. 

Raman prediction 
Pathology and Classification 

Normal Cancer 

Total 

Learning model Normal 110 5 115 

Cancer 6 55 61 

Sensitivity (%) 90.2 
(after 10-fold 

cross validation) 

Specificity (%) 95.7 
 

 

Testing model Normal 26 2 28 

Cancer 2 16 18 

Sensitivity (%) 88.9  

Specificity (%) 92.9 
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Applying CART technique for classification of tissue Raman spectra, the high predictive 

diagnostic sensitivity and specificity can be achieved for the independent validation 

dataset (Table 4.3). Further model validation analysis via 5-fold cross validation reveals 

that the cross validated result is almost similar to the independent validation dataset 

classification results and the PCA-LDA approach (PCA-LDA is slightly higher compared 

to CART) (data not shown) [105]. These further reinforced that the CART-based 

diagnostic algorithms generated are robust and powerful for tissue diagnosis and 

characterization by Raman spectroscopy. Besides the ability for tissue classification, 

CART diagnostic model could also provide a novel way for better understanding of the 

relationship between the disease-related biochemical changes of Raman spectra and 

tissue pathologies. We use the CART technique to evaluate how different Raman 

molecular information are correlated with tissue types by analyzing how the different 

Raman peaks are inter-linked to optimally form different subgroups for tissue 

classification. For instance, in Figure 4.3, it is found that Group 5 (cancer subgroup) has 

the highest probability of incidence, followed by Group 3 which is a normal subgroup for 

both the model learning and validation datasets. In Group 5, CART indicates that cancer 

gastric tissues are associated with a relative increase in Raman peak intensities at 1655 

and 1745 cm-1, while a decrease at 875 and 1450 cm-1. These results are in fact in 

agreement with the reports on the decrease of Raman intensity ratio at 1655 cm-1 to 1455 

cm-1 associated with malignancies in the cervix and lung [5, 20]. CART also notes that 

the Raman peaks at 875 and 1745 cm-1 representing collagen and phospholipids, 

respectively, appear to be significantly correlated with the Raman peaks at 1450 and 1655 

cm-1 for identifying the cancer subgroup (Group 5). Conversely, the Raman peaks at 875, 

  65

 



 

1655 and 1745 cm-1 utilized to construct cancer subgroup (Group 5) could be employed 

for identifying the normal subgroup (Group 3). CART also indicates that compared to 

cancer tissue, normal gastric tissues tend to be related with high collagen contents 

(Raman peak at 875 cm-1) in extracellular matrix, high lipid contents (Raman peak at 

1745 cm-1) present in both extracellular matrix and cytoplasm, and a lower histones 

content (Raman peak at 1655 cm-1) in the nucleus. Further investigation on other 

subgroups shows that heterogeneous molecular changes may occur in tissue, enabling 

cancer subgroups to be distinguished from normal. For example, the collagen content 

typically decreases with malignancy, but there are quite a number of other cancer 

subgroups (Group 2, Group 8 and Group 10) to be associated with increase in collagen 

content. These subgroups are accompanied by either less phospholipids or higher histones 

content which could enable them to be distinguished from normal tissue. The above 

CART-Raman analysis results indicate that most biochemical/biomolecular information 

from tissue and cells are essential for tissue discrimination, and the CART-based 

diagnostic model is able to partition different subgroups based on different compositions 

of Raman molecular information for separating gastric cancer from normal. Therefore, 

the CART-Raman algorithm may provide new insights into the biochemical/biomolecular 

changes associated with malignant transformation [12]. 

 

In summary, the CART technique was first introduced and implemented to develop 

effective diagnostic algorithms for classification of Raman spectra between normal and 

cancer gastric tissues. This work shows that NIR Raman spectroscopy in combination 

with powerful CART algorithms has potential to provide an effective and accurate 
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diagnostic means for cancer diagnosis in the gastric. Further studies to investigate the use 

of a more powerful diagnostic algorithm which is primarily based on the recursive 

partitioning technique has also been carried out and will be elaborated more in details in 

the next chapter. 
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CHAPTER 5  

IMPROVED RECURSIVE PARTITIONING TECHNIQUE FOR RAMAN 

TISSUE DIAGNOSIS: AN ENSEMBLE APPROACH – RANDOM 

FORESTS FOR IDENTIFICATION OF LARYNGEAL MALIGNANCY 
Laryngeal squamous cell carcinoma is one of the most common malignancies in the head 

and neck and also the sixth most common malignancies worldwide [117, 118]. In 

Southeast Asia, the rates of incidence and mortality due to laryngeal cancer are notably 

higher than many parts of the world [119]. Early identification and accurate demarcation 

of such malignant lesions coupled with effective therapy (particularly for partial 

laryngectomy, transoral excision, photodynamic therapy and radiotherapy) are crucial to 

improving the survival rates of the patients [118, 120]. However, identification of early 

malignancy in the larynx can be very challenging even for the very experienced 

otolaryngologists with the aid of conventional diagnostic techniques such as white-light 

endoscope (e.g. microlaryngoscopy, transnasal esophagoscopy); since the white-light 

endoscopy heavily relies on the visual observation of gross morphological changes of 

pathologic tissues, leading to a poor diagnostic accuracy. This limitation poses a great 

challenge in an ear-nose-throat (ENT) clinic and, therefore, there is of significant clinical 

values for the development of new endoscopic diagnostic techniques to complement 

white-light endoscopy for improving diagnostic performance of malignancy detection in 

the head and neck. 
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In the past decade, optical spectroscopic methods, such as light scattering spectroscopy, 

fluorescence spectroscopy, and Raman spectroscopy, have been comprehensively 

investigated for cancer and precancer diagnosis and evaluation [1-10, 21, 24]. Particularly, 

NIR Raman spectroscopy has received great interest for optical diagnosis of malignant 

tissues in various organs [1, 5, 7], including the larynx [10, 21, 24]. In order to convert 

molecular differences subtly reflected in Raman spectra between different tissues types 

into valuable diagnostic information for clinicians, different algorithms ranging from 

empirical approaches (e.g. intensity ratio algorithms) to sophisticated multivariate 

statistical techniques (e.g. PCA, LDA, SVM, CART, PCA-ANN) have been actively 

explored for classification of Raman spectra for precancer and cancer diagnosis [1, 11, 14, 

15, 62]. For instance, Lau et al. employed a fiber-optic rapid NIR Raman spectroscopy 

together with PCA-LDA techniques to identify laryngeal papillomatosis and squamous 

cell carcinoma with accuracies of 91 and 87%, respectively [21]. 

 

In recent years, the ensemble-based statistical techniques [121], such as random forests 

algorithm [113] have gained increased attention due to their capability of effectively 

combining multiple classifiers for data classification in biomedical areas [122-129]. For 

example, Jiang et al. introduced random forests to distinguish real microRNA precursors 

from pseudo ones with a sensitivity of 98.2% and specificity of 95.1% [122]. Wu et al. 

demonstrated that random forests algorithm could yield the highest diagnostic accuracy 

among other diagnostic algorithms such as LDA, quadratic discriminant analysis (QDA), 

k-nearest neighbor classifier, bagging and boosting classification trees and SVM, for 
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discriminating ovarian cancer from normal serum samples using mass spectroscopy [123]. 

Despite of these successful investigations, the utility of ensemble-based algorithms on 

Raman spectroscopy for biomedical diagnosis has yet been reported in the literature. In 

this chapter, we extend our previous study on the use of CART for Raman tissue 

diagnosis, to further explore the feasibility of developing effective diagnostic algorithms 

based on an ensemble of classification trees-random forests technique for differentiation 

of NIR Raman spectra between normal and cancer tissue in the larynx [10]. 

5.1 RANDOM FORESTS THEORY 

Figure 5.1 illustrates the procedure for generating the random forests algorithm for 

classification of tissue Raman spectra. The random forests is fundamentally an ensemble 

of unpruned classification trees [113, 125]. Different trees are grown via different 

bootstrap sampling of the original dataset. In each of these growing trees, the random 

forests algorithm selects a fixed-size random subset of all variables to search for the best 

split, defined by the Gini Criterion, at every node encountered. The final diagnostic 

random forests is then constructed by combining multiple classification trees through the 

use of majority voting technique [113]. 
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Figure 5.1 Illustration of procedures for generating the random forests algorithm for 
tissue classification. 
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Since random forest employed bootstrap sampling, performance of this ensemble 

classifier could be assessed with the prediction error for the objects left out in the 

bootstrap procedures. This is also known as the out-of-bag estimation (internal cross-

validation) [113]. Specifically, after each process of growing a maximal tree with a 

particular bootstrap dataset, the remaining data which were not used in the tree 

construction would constitute the “out-of-bag” dataset and be used to assess the 

respective tree prediction performance. The final predicted class of the data is calculated 

by majority vote of all the “out-of-bag” predictions on the dataset. Hence, the estimate of 

the error rate (ER) for the random forests classification algorithm is computed:  

                           ER≈ ER out-of-bag = N-1 ))((
1

ii
bagofout

N

i
YXYI ≠−−

=
∑                                (5.1) 

where N is the size of forest (i.e., number of trees). represents the 

misclassification indicator function of the ensemble prediction in which Y 

))(( ii
bagofout YXYI ≠−−

out-of-bag is 

based on each training dataset and Xi is on the respective out-of-bag dataset Yi. Besides 

the determination of data classification (either true positive or true negative), the voting 

outcome can also generate probability of the identification being true positive (cancer) or 

true negative (normal) for each data [124]. 

 

In this study, the number of variables to be randomly selected at each node in a tree for 

classification is approximately derived from the square root of the total number of 

available variables; the optimal size of the forests (i.e., the number of trees and the 

number of bootstrap sampling) would correspond to the smallest forest size which the 

out-of-bag error estimation stabilizes at a constant value with enlargement of forest size 
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[125]. Based on the predicted probability for each data from the optimal forest size 

constructed from the training dataset, ROC curve was also generated by successively 

changing the thresholds to determine the probability of prediction being cancer or normal 

for all tissue Raman data.  

 

When a variable that substantially contributes to prediction performance is replaced with 

random noise, the performance of the prediction will be noticeably degraded [113, 125]. 

Conversely, if a variable is irrelevant to the prediction performance, replacing it with 

random noise only has trifle effect on the performance [125]. To assess the importance of 

different variables, the permutation accuracy importance measure is utilized in the 

random forest algorithm as shown in Figure 5.1. For each tree, the prediction accuracy on 

the out-of-bag dataset is first recorded. After which, the values of a specific variable is 

randomly permutated in all the trees, and the new predictions based on the same out-of-

bag dataset will also be recorded. Consequently, the permutation accuracy importance 

measure of a specific variable will be equivalent to the difference between the error rate 

for the new and original results based on the same out-of-bag dataset of a specific 

predictor variable, normalized by the standard error [113]. Henceforth, the larger the 

difference, the more important the predictor variable contributes towards the construction 

of the random forest [113, 125]. In this work, the variable importance algorithm defines a 

variable importance value of 1 belonging to the most important variable, whereas a 

variable importance of 0 belonging to the least important variable. 
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5.2 EVALUATION OF RANDOM FORESTS DIAGNOSTIC ALGORITHM FOR RAMAN 

LARYNGEAL CANCER DIAGNOSIS  

5.2.1 LARYNGEAL TISSUE RAMAN DATASET  

Figure 5.2 shows the mean normalized Raman spectra of normal (n=70) and cancer 

(squamous cell carcinoma) (n=117) laryngeal tissue. Prominent Raman peaks are 

observed in both normal and cancerous laryngeal tissue, which are located at around 875 

cm-1 (C-C stretching of hydroxyproline), 935 cm-1 (C-C stretching mode of proline and 

valine in α-helix conformation), 1004 cm-1 (C-C symmetric stretch ring breathing of 

phenylalanine), 1100 cm-1 (C-C stretching of phospholipids), 1208 cm-1 (C-C6H5 

stretching mode of tryptophan and phenylalanine), 1265 cm-1 (C-N stretching and N-H 

bending modes of amide III of proteins), 1335 cm-1, (CH3CH2 twisting of proteins and 

nucleic acids), 1450 cm-1 (CH2 bending of proteins and lipids), 1552 cm-1 (C=C 

stretching mode of tryptophan), 1582 cm-1 (C=C bending mode of phenylalanine), 1601 

cm-1 (C=C in-plane bending mode of phenylalanine), 1655 cm-1 (C=O stretching of 

amide I of proteins), and 1745 cm-1 (C=O stretching of phospholipids)6,7,9-10,13-15,34, 

respectively [10]. The intensity differences between the two tissue types are remarkable. 

For example, cancer tissue show higher intensities at 935, 1265, 1335, 1450, and 1655 

cm-1, while lower at 875, 1004, 1100, 1208, 1560, 1582, 1601 and 1745 cm-1, compared 

with normal tissues. This suggests that there is an increase or decrease in the percentage 

of a certain type of biomolecules relative to the total Raman-active constituents in cancer 

tissue. There are also obvious changes of Raman peak positions and bandwidths in the 

ranges of 1100-1190 cm-1, 1200-1500 cm-1, and 1500-1800 cm-1 which are related to the 
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C-C stretching of phospholipids, the amide III and amide I of proteins, CH3CH2 twisting 

of proteins/nucleic acids, and C=C stretching of phospholipids, respectively, for 

malignant laryngeal tissue. The differences in Raman spectra between normal and cancer 

tissue demonstrate the utility of Raman spectroscopy for laryngeal cancer diagnosis and 

detection. 
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Figure 5.2 Comparison of the mean normalized Raman spectra of normal (n=70) and 
cancer (n=117) laryngeal tissue. 

 

5.2.2 EMPLOYMENT OF RANDOM FORESTS TO THE TISSUE RAMAN DATASET  

We employ the ensemble of recursive partitioning algorithms approach (i.e., random 

forests) by incorporating the entire Raman spectra (each Raman spectrum ranging from 

800-1800 cm-1 with a set of 544 intensities) to determine the most diagnostically 
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significant Raman features for improving tissue analysis and classification. In this study, 

the number of variables tested for each split was set to 23 (√544) and the error rate of 

different forest size from 1-1500 trees was investigated. Fig. 5.3 (a) shows the 

relationship of error rate with respect to the different number of trees. The optimal forest 

size was chosen to be at 973 when the error rate stabilizes to about 0.107 after the forest 

size is more than 972 trees. To evaluate the performance of this optimal diagnostic 

algorithm, ROC curve (Fig. 5.3 (b)) is also generated by constructing different threshold 

levels from the probability associated with each data after the majority voting. The 

integration areas under the ROC curve is 0.964 for the forest size of 973 trees, proving 

the efficacy of this random forest algorithm derived for laryngeal cancer diagnosis. The 

results show that random forests-based diagnostic algorithm is robust for laryngeal cancer 

diagnosis. 

0 500 1000 1500
0.0

0.1

0.2

0.3

E
rro

r r
at

e

Number of trees

(a)

Fluctuations Stablilizes

973 trees

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

S
en

si
tiv

ity

1 − Specificity

(b)

 

Figure 5.3 (a) Different error rates belonging to different sizes of the random forests (i.e., 
different number of trees) after the voting process on all the tissue Raman spectra. Due to 
the “strong law of large number”, the error rate stabilizes to 0.107 when the forest has 
more than 972 trees, highlighting that the random forests algorithm does not overfit. Note 
that each of the individual trees is grown to the maximal size and left unpruned. (b) ROC 
curve of tissue classification belonging to the final optimal random forests tree size of 973 
with an AUC of 0.964, illustrating the diagnostic ability of Raman spectroscopy and 
random forests algorithm to identify cancer from normal laryngeal tissue. 
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Figure 5.4 shows the variables importance plot based upon the construction of 973 trees 

associated with cancer transformation. The permutation accuracy importance measure 

reveals that Raman intensities at 820, 850, 870, 938, 1004, 1085, 1104, 1123, 1172, 1208, 

1240, 1314, 1335, 1370, 1421, 1490, 1552, 1576, 1601, 1672 and 1745 cm-1 are among 

the most important variables in the laryngeal tissue Raman spectra for distinguishing 

cancer from normal (at 95% confidence interval). Table 5.1 lists the tentative biochemical 

representations assigned to the significant Raman intensities. Raman intensities at these 

Raman wavenumber positions of the original dataset were subsequently subjected to 

unpaired two-sided Student’s t-test for investigating the statistical significances (p<0.05) 

between normal and cancerous tissue [10]. Raman peak intensities at 938, 1314, 1335, 

1370, 1421, and 1672 cm-1 were significantly higher for cancerous laryngeal tissue as 

compared to normal, while Raman intensities at 820, 850, 870, 1004, 1085, 1104, 1123, 

1172, 1208, 1240, 1490, 1552, and 1745 cm-1 were significantly lower for cancerous 

laryngeal tissue. Conversely, Raman intensities at 1576 and 1601 cm-1 were found not to 

be statistically significant (p=0.19 and p=0.29) for cancer diagnosis. The results indicate 

that most prominent Raman peaks, particularly in the spectral range of 820-1745 cm-1 

representing proteins, lipids and nucleic acids are the most important variables for tissue 

grouping. Hence, random forests-based permutation accuracy importance measure 

algorithm provides a novel way to identify variables which are important towards 

creating the final diagnostic model for tissue diagnosis and characterization. 
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Figure 5.4 Variables importance plot for the Raman spectral region 800-1800 cm-1 
generated from random forests size of 973 trees which was used for discrimination of 
cancer from normal laryngeal tissue. The variable importance algorithm defines the most 
important variable as 1, whereas the least important variable as 0. Major Raman spectral 
features above the bold grey line (95% confidence interval, 13.7) are identified and listed 
in Table 5.1. 
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Table 5.1 Tentative assignments of the Raman peaks identified in laryngeal tissue (Fig. 
5.4, variables importance plot), mean intensity changes (increase +/decrease −) of cancer 
with respect to normal, and p-values of unpaired two-sided Student’s t-test on Raman 
peak intensities of normal and cancer laryngeal tissue. 

Raman wavenumber 
(cm-1) Tentative assignment Mean change 

(Cancer-Normal) p-value 

820 Out-of-plane, ring breathing of tyrosine − 3E-2 

850 δ (CCH) ring breathing mode of 
tyrosine, Polysaccharide − 3E-3 

870 ν (C-C) of hydroxyproline − 8E-5 

938 ν (C-C) in α conformation of proline 
and valine + 4E-7 

1004 ν s(C-C) symmetric ring breathing of 
phenylalanine 

− 4E-2 

1085 ν (C-N) of proteins (lipids mode to 
lesser degree) 

− 2E-4 

1104 ν (C-C) of phospholipids (in gauche 
conformation) 

− 3E-8 

1123 ν (C-N) of proteins − 9E-11 
1172 δ (C-H) of tyrosine − 1E-6 

1208 ν (C-C6H5) of tryptophan and 
phenylalanine 

− 8E-8 

1240 ν (C-N), δ (N-H) amide III, α-helix of 
proteins 

− 7E-3 

1314 CH3CH2 twisting mode of proteins + 3E-14 

1335 CH3CH2 wagging mode of proteins and 
nucleic acids (DNA-purine bases) + 6E-11 

1370 Adenine, thymine, guanine + 2E-10 

1421 
δ (CH2), δ (CH3) of proteins, δ (CH2) 

scissoring of phospholipids, 
deoxyriboses 

+ 3E-2 

1490 ν (C-N) in-plane vibration of guanine  
(Adenine to lesser degree) 

− 2E-8 

1552 ν (C=C) of tryptophan − 6E-3 
1576 δ (C=C) of phenylalanine − 6E-2 
1601 δ (C=C) (in-plane) of phenylalanine − 3E-1 

1672 
ν (C=O) of amide I in β-helix 

conformation of proteins, C=C lipid 
stretch 

+ 4E-7 

1745 ν (C=O) of phospholipids − 9E-8 
 
Note:  ν, stretching mode; ν s, symmetric stretching mode; δ, bending mode.   
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Figure 5.5 displays the probabilistic classification results based on the random forests 

technique together with the leave-one sample (i.e., all spectra associated with the 

sample)-out, cross validation method. The random forests diagnostic algorithm yields the 

diagnostic sensitivity of 88.0%, and specificity of 91.4% for separating cancer from 

normal laryngeal tissues. The results show that Raman spectroscopic technique combined 

with the random forests diagnostic algorithm is robust and powerful for cancer diagnosis. 
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Figure 5.5 Scatter plot of the generated probabilistic scores belonging to the normal and 
cancer categories using the random forests technique together with leave-one sample-out, 
cross validation method. The separate line yields a diagnostic sensitivity of 88.0% 
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(103/117) and specificity of 91.4% (64/70) for differentiation between normal and cancer 
laryngeal tissue.  
 

Raman spectroscopy holds great promise for molecular diagnosis of different tissue types 

in biomedicine [1,5, 7, 10]. To harvest the great wealth of biomolecular information of 

complex tissue contained in Raman spectra for reliable diagnostic applications, different 

multivariate statistical algorithms have been extensively investigated [1, 6, 11, 14, 15, 62]. 

In this study, we developed a robust random forests algorithm using the ensemble of 

classification trees for Raman spectroscopic diagnosis of laryngeal cancer. The result 

shows that the developed random forests algorithm based on the tissue Raman dataset 

yields a predictive diagnostic sensitivity of 88.0% (103/117), specificity of 91.4% (64/70), 

and overall accuracy of 89.3% (167/187) for laryngeal cancer detection. Since the 

original motivation for the development of random forests algorithm was to enhance the 

classification accuracy of single classification tree (i.e., CART technique), for 

comparison purposes, we also apply the CART technique combined with the leave-one 

sample-out, cross-validation method on the same tissue Raman dataset. We found that a 

predictive sensitivity of 82.9% (97/117), specificity of 81.4% (57/70) and accuracy of 

82.4% (154/187) can be obtained for using CART algorithm on laryngeal cancer 

diagnosis. Clearly, the random forests diagnostic algorithm can give a fairly higher level 

of diagnostic accuracy compared to the CART model, indicating that an ensemble-based 

algorithm is more powerful than a single classifier technique. This is probably due to the 

fact that effective ensemble-based algorithms generally possess the properties of low 

biasness, low variance, and low correlations of classifiers (diversity) for data 

classification [130, 131]. Also, the combination of unpruned trees inherently preserves 
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low biasness and variance, and the limited number of predictors generated at each node in 

a tree also ensures that correlations among the resultant classification trees are very small 

[125], leading to the improved classification performance of the ensemble-based 

technique (random forests) for cancer identification as compared to the CART algorithm. 

Furthermore, through the employment of the majority voting procedure for the ensemble 

of multiple tree classifiers, the random forests diagnostic model could also generate 

probability of acquired spectra belonging to cancer or normal group (Fig. 5.5). This 

facilitates the clinicians to effectively assess the accuracy of the predicted tissue types or 

pathologies associated with NIR Raman spectroscopy technique. On top of these, the 

random forests algorithm possesses an inherent characteristic that the error rate can 

converge to an asymptotic value due to the “strong law of large number” thereby 

enabling this diagnostic algorithm to be resistant towards overfitting for tissue 

classification (Figure 5.3(a)) [132]. These further confirm that the ensemble-based 

random forests diagnostic technique together with NIR Raman spectroscopy is robust and 

powerful for laryngeal tissue diagnosis and characterization. 

 

Currently, most of the diagnostic algorithms (e.g. PCA-LDA, SVM, logistic regression,) 

employed in Raman spectroscopy diagnosis of diseased tissue could not adequately 

furnish the clinicians with physical meanings of diagnostic features derived for tissue 

characterization [1, 6, 11, 14, 15, 62]. Hence, the development of robust algorithms 

which not only produce a high predicted diagnostic accuracy, but also provide useful 

biomolecular diagnostic information from the high dimensional Raman spectral datasets 
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is highly desirable. As the random forests algorithm provides the permutation accuracy 

importance measure [133] to uncover the disease-related biochemical changes of Raman 

spectra that can correlate with tissue pathologies, we have constructed the robust random 

forests diagnostic model for distinguishing laryngeal cancer [10]. We found that the 

ensemble-based classification trees diagnostic algorithm could be used to select 

distinctive spectral regions that are optimal for tissue differentiation. We have identified 

twenty-one significant Raman features related to particular biochemical and biomolecular 

changes (e.g. proteins, lipids, nucleic acids, and carbohydrates) that are associated with 

cancer transformation in the larynx (Fig. 5.4 and Table 5.1). For instance, the Raman 

intensity at 1672 cm-1 has been found to be one of the most important Raman features in 

the construction of random forests-based diagnostic model for discriminating malignancy 

from normal laryngeal tissue (Fig. 5). The finding is consistent with Huang et al.’s report 

on the observation of a shoulder band at 1668 cm-1 in malignant lung tissue [5]. This 

suggests that laryngeal cancerous transformation could be related with an increase in the 

relative amounts of proteins in the β-pleated sheet or random coil conformation, and 

lipids [5, 10].  In addition, the Raman intensities at 820, 850 and 1172 cm-1 that are 

presumably ascribed to tyrosine [10] are also found to be significantly lower for cancer, 

indicating the decrease of tyrosine with laryngeal malignancy. These findings are in 

agreement with Verschuur et al.’s study [134] in which the activities of protein tyrosine 

kinases were found to be lower for head and neck squamous cell carcinoma. On top of 

this, Raman intensities at 938, 1004, 1208, 1552, 1576 and 1601 cm-1 that are 

representative of different amino acids such as proline, valine, phenylalanine and 

tryptophan, and Raman intensities at 1085, 1123, 1240, 1314 cm-1 for proteins in general 
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are also found to play pivotal roles towards tissue classification. This may signify 

significant changes of different proteomic activities (e.g. enzymatic, hormones and etc) 

with malignancy which could be an indication of increase of mitotic activities in 

cancerous cells [10]. Furthermore, Raman intensity at 875 cm-1 has been found to 

decrease significantly with malignancy, signifying a reduce in the percentage of collagen 

contents relative to the total Raman-active components in the stroma layer of cancer 

tissue. This observation coincides with the report in literature that cancerous cells 

proliferate, invade into underlying layer, and express as a class of metalloproteases 

leading to a decrease in the amount of collagen level [93]. Besides, the thickening of the 

epithelium associated with cancerous progression may attenuate the excitation laser 

power and also obscure the collagen Raman emission from the deep collagen basal 

membrane, thereby resulting in an overall decrease of Raman intensity at 875 cm-1 [135]. 

We also observed that the Raman intensities at 1335, 1370, 1421, 1490 cm-1 that mainly 

represent nucleic acids are generally higher for cancer laryngeal tissue, whereas Raman 

intensities at 1104 and 1745 cm-1 for phospholipids are lower as compared to normal 

tissue. These results are in consistent with the findings of the increase of nucleic acids to 

lipids ratio in cancerous tissues in literature [10, 136]. Since the random forests has taken 

into account of the massive multiple interactions among different Raman intensities (544 

variables), the random forests algorithm is able to capture diagnostically significant 

features contained in the Raman spectra. Hence, the random forests algorithm is robust 

and powerful for distinguishing the origins of biochemical/biomolecular changes of 

Raman spectra for tissue carcinogenesis analysis.  

 

  84

 



 

To conclude for this chapter, significant differences in Raman spectra are found between 

normal and cancer tissue in this study, demonstrating the utility of Raman spectroscopy 

for laryngeal cancer detection. We have also employed the random forests technique for 

the first time to develop the random recursive partitioning ensemble algorithms to realize 

effective classification of Raman spectra between normal and cancer laryngeal tissue [10]. 
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CHAPTER 6  

EMPIRICAL STATISTICAL ANALYSIS FOR GASTRIC PRECANCER 

DIAGNOSIS 
Gastric cancer is among one of the most common malignancies worldwide and it 

continues to be one of the worst 5-year survival rate statistics among other malignancies 

[137, 138]. Increasing the survival rate of patients with gastric cancer is important and 

recent statistics have shown that if diagnosis occurs at an early stage for gastric cancer, 

the 5-year survival rate of the patient is expected to be higher than 90% [102, 103]. Hence, 

early diagnosis of gastric cancer represents the most important measure to decreasing 

disease-associated mortality [139]. Additionally, the identification of gastric precancer 

(i.e., dysplasia) would offer the best prognosis as it is essential for planning optimal 

therapy, particularly for photodynamic therapy, endoscopic submucosal dissection (ESD) 

or endoscopic mucosal resection (EMR), as compare to surgery and chemotherapy [140]. 

However, early detection of gastric dysplasia renders a great challenge to the 

endoscopists as these flat lesions are usually lack of obvious gross morphological 

changes to be visualized under conventional white-light endoscopy. 

 

NIR Raman spectroscopy has received much interest for optical diagnosis of diseased 

tissue in a number of organs [1-5-10], including malignant tumor in the stomach [12, 14, 

16, 25-28]. To correlate the Raman spectral changes with different pathologic conditions 

in a straight forward way, the nonparametric diagnostic algorithms based on prominent 
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tissue Raman bands intensities and/or intensity ratios have been practiced for effective 

distinction of gastric cancer from normal mucosa tissue. Diagnostic algorithms derived 

from intensity ratios is advantageous as it could provide tissue diagnosis with being 

inherently independent of Raman spectroscopic measurement conditions such as 

excitation/detection geometries, excitation light power fluctuations, probe-tissue 

positioning variations, etc [141]. With the potential of Raman intensity ratio diagnostic 

algorithms to also amplify the molecular distinction between normal and cancer tissues 

for better tissue classification, Hu et al. utilized the Raman peak intensities ratios of 

I1587/I1156 and I1156/I1660 to successfully discriminate malignant tissue from normal 

stomach tissue with a diagnostic accuracy of nearly 100% [28]. Very recently, Kawabata 

et al. reported that simply using a Raman band intensity at 1644 cm-1 for proteins of NIR 

Raman spectra could yield a diagnostic accuracy of 70% for 123 neoplastic and 128 non-

neoplastic gastric tissue samples, which was close to the diagnostic accuracy level 

produced by the multivariate statistical techniques (e.g., PCA, LDA) [27]. These work 

highlighted the high efficacy of Raman spectroscopy associated with prominent Raman 

peak intensities or intensity ratios for gastric cancer detection. In this chapter, we explore 

the potential of NIR Raman spectroscopy (at 785 nm excitation) in conjunction with 

pairwise combinations of different Raman peak intensity ratios as diagnostic algorithms 

for identifying dysplasia from normal gastric mucosa tissue [16]. 

6.1 COMPARISON OF SPECTRAL DIFFERENCES BETWEEN NORMAL AND 

DYSPLASIA GASTRIC TISSUES 

Figure 6.1(a) shows the mean normalized NIR Raman spectra of normal (n=44) and 

dysplasia (n=21) gastric tissues. A comparison of Raman spectra of dysplasia tissue with 
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respect to the normal reveals remarkable differences in spectral shapes and intensities 

(Figure 6.1(b)), with dysplasia tissue showing lower intensities at 875, 1004, 1100, 1208 

and 1745 cm-1, while being higher at 1265, 1335, 1450 and 1655 cm-1, respectively. 

There are also obvious changes of Raman peak positions and bandwidths in the spectral 

ranges of 1200-1500 cm-1, and 1600-1700 cm-1 which are related to the amide III and 

amide I of proteins, CH3CH2 twisting of proteins/nucleic acids, and CH2 bending mode of 

proteins and lipids for dysplasia. Hence, the significant differences in Raman spectra 

between normal and dysplasia tissue confirm a potential role of NIR Raman spectroscopy 

for precancer diagnosis in the stomach. 
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Figure 6.1 (a) The mean normalized NIR Raman spectra from normal (n=44) and 
dysplasia (n=21) gastric mucosa tissue samples; (b) Difference spectrum ± 1.96 SD 
calculated from the mean Raman spectra between normal and dysplasia tissue (i.e., the 
mean normalized Raman spectrum of dysplasia tissue minus the mean normalized Raman 
spectrum of normal tissue). Solid and dotted lines represent the mean spectra, and shaded 
areas indicate the variance within 95% confidence interval of the mean difference of the 
respective spectra. 
 

This result shows that there are distinctive spectral differences between dysplasia and 

normal gastric tissue [16]. For example, Raman peak intensity at 875 cm-1 
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(hydroxyproline of collagen) was found to be much reduced in dysplastic tissue. This was 

probably due to the cytoplasmic mucin depletion and the elevated concentration of 

metalloproteinase which cleaved collagen in the stroma layer in gastric dysplasia. In 

addition, the thickening of the epithelium associated with dysplastic progression may 

attenuate the excitation laser power and also obscure the collagen Raman emission from 

the deep collagen basal membrane, thereby resulting in an overall decrease of Raman 

intensity at 875 cm-1 from dysplasia tissue [16]. Raman bands for essential amino acids at 

1004 and 1208 cm-1 (phenylalanine and tryptophan) show lower percentage signals for 

dysplasia compared to the normal, indicating a decrease in the percentage of 

phenylalanine and tryptophan relative to the total Raman-active constituents in the 

dysplasia. This is consistent with Alimova et al.’s report on a decrease in the tryptophan 

phosphorescence signal associated with malignancies in breast tissues [142], and also in 

agreement with Worthington et al.’s study that established a link between essential amino 

acids deficiency (e.g., phenylalanine) and carcinogenesis [143]. Similarly, in accord with 

Huang et al. Raman studies on lung cancer diagnosis [5], Raman peaks at around 1100 

and 1745 cm-1 also show lower intensities for gastric dysplasia, indicating the decrease of 

Raman signals related to different vibrational modes from the hydrophobic chains of 

phospholipids which make up the membranes of the cell and numerous organelles inside 

the cytoplasm of the cell. On the other hand, the Raman bands at 1265 and 1655 cm-1 for 

histones (α-helical proteins surrounding the DNA) are significantly higher in dysplasia 

than normal, suggesting that hyperchromatism may take place in the nucleus with 

neoplastic transformation in the gastric [144]. Furthermore, the intensity of Raman peak 

at 1450 cm-1 (CH2 proteins/lipids) and the bandwidths of Raman peaks at 1335 cm-1 
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(CH3CH2 twisting of proteins and nucleic acids) and at 1655 cm-1 (amide I band of 

proteins) have also been found to change (e.g., intensity increase; bandwidth widening 

and peak shift, as shown in Figure 6.1) with dysplastic transformation, and these 

biomolecular changes could be related to the increase of mitotic activity occurring in the 

nucleus [145]. As a result, the distinctive differences in Raman spectra between normal 

and dysplasia gastric tissue reinforce that Raman spectroscopy can be used to reveal 

cellular and molecular changes associated with dysplastic transformation. 

6.2 RAMAN INTENSITY RATIO  

The nonparametric analysis based on intensity ratios of prominent Raman bands which 

were identified from the difference spectrum in Figure 6.1(b) is explored for tissue 

diagnosis in a straightforward way. Figure 6.2 shows box charts of the 6 significant 

Raman peak intensity ratios of I875/I1450, I1004/I1450, I1100/I1450, I1208/I1450, I1745/I1450 and 

I1208/I1655 (unpaired two-sided Student’s t-test, p <0.0001) correlated with their 

histopathologic findings. Each ratio belonging to normal tissue is significantly higher 

than that of dysplasia tissue, and the corresponding separation lines (i.e., diagnostic 

algorithms), as shown in Figure 6.2(a-f), classify dysplasia from normal with a sensitivity 

of 76.2%, 81.0%, 95.2%, 81.0%, 95.2%, and 76.2%, and a specificity of 90.9%, 90.9%, 

77.3%, 88.6%, 75.0%, and 84.1%, respectively. These results indicate that different ratios 

of Raman peak intensities give different levels of accuracy for tissue classification. 
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Figure 6.2 Box charts of the 6 significant Raman peak intensity ratios which can 
differentiate dysplasia from normal gastric mucosa tissue (unpaired Student’s t-test, 
p<0.0001): (a) I875/I1450; (b) I1004/I1450; (c) I1100/I1450; (d) I1208/I1450; (e) I1745/I1450, and (f) 
I1208/I1655. The dotted lines (I875/I1450 = 0.67; I1004/I1450 =0.77; I1100/I1450 = 0.71; I1208/I1450 = 
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0.37; I1745/I1450 = 0.26; I1208/I1655 = 0.61) as diagnostic threshold algorithms classify 
dysplasia from normal with sensitivity of 76.2% (16/21), 81.0% (17/21), 95.2% (20/21), 
81.0% (17/21), 95.2% (20/21), and 76.2% (16/21); specificity of 90.9% (40/44), 90.9% 
(40/44), 77.3% (34/44), 88.6% (39/44), 75.0% (33/44), and 84.1% (37/44), respectively.  

 

Given the potential of Raman intensity ratios approach to amplifying the molecular 

distinction between different pathological groups as well as the ability of achieving the 

biomolecular diagnosis independent of Raman measurement conditions such as excitation 

light power fluctuation or probe positioning variation [141], we have comprehensively 

investigated different prominent Raman intensity ratios as nonparametric diagnostic 

algorithms for classifying dysplasia from normal gastric tissue. As a result, 6 

diagnostically significant ratios were found to be able to enhance the molecular 

differences between normal and dysplasia tissues. For instance, the intensity ratio of 

Raman peak intensity at 875 cm-1 (hydroxyproline of collagen) to the peak at 1450 cm-1 

(CH2 mode of proteins and lipids) yielded a diagnostic sensitivity of 76.2% and 

specificity of 90.9% for separating dysplasia from normal tissue. Further investigation 

also shows that other intensity ratios such as the Raman peak intensity bands for essential 

amino acids at 1004 cm-1 and at 1208 cm-1 to the Raman peak intensity at 1450 cm-1 also 

provide good differentiation between normal and dysplasia tissue. The significant 

differences of these intensity ratios between normal and dysplasia tissue may reflect the 

relative changes in the concentration of potential biological markers ranging from cell 

surface antigens, cytoplasmic proteins and mucin, collagen in the extracellular matrix, 

enzymes, and hormones associated with dysplastic changes [16]. Hence, the Raman 

intensity ratios could be utilized for dysplasia identification in the gastric. 
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6.3 OPTIMAL RAMAN INTENSITY RATIO DIAGNOSTIC ALGORITHM  

To further improve the discriminative ability of the empirical approach but yet allowing 

interpretations of diagnostic results in a straightforward manner, we also extensively 

explored the possible pairwise combinations of different Raman intensity ratios for tissue 

diagnosis and classification (Table 6.1). Table 6.1 shows the results of predicted 

diagnostic sensitivity, specificity and accuracy using 15 pairwise combinations of the 

significant Raman peak intensity ratios for tissue classification. The combination of 

I1208/I1655 and I875/I1450 is one of the optimal diagnostic algorithms for discriminating 

dysplasia from normal gastric tissue. Figure 6.3(a) presents the scatter plot of combining 

the intensity ratios of I1208/I1655 and I875/I1450 for different pathologic types. The linear 

discrimination line (I1208/I1655 = -0.81 I875/I1450 + 1.17) generated from the logistic 

regression analysis together with the leave-one sample-out, cross-validation method gives 

a diagnostic sensitivity of 90.5% and specificity of 90.9% for separating dysplastic tissue 

from normal gastric tissues. To further evaluate the performance of this optimal 

diagnostic algorithm, receiver operating characteristic (ROC) curve (Figure 6.3(b)) is also 

produced from the scatter plot in Figures 6.3(a) at different threshold levels. The 

integration areas under the ROC curve is 0.96 for the combined Raman peak intensity 

ratios, proving the robustness of this nonparametric algorithm derived for gastric 

precancer diagnosis.  
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Table 6.1 Results of predicted sensitivity, specificity and accuracy for discrimination of 
gastric dysplasia from gastric normal tissue using the pairwise combinations of Raman 
peak intensity ratios. 

After leave-one sample-out cross validation (Predicted) 

Diagnostic Pairwise Combinations 

Sensitivity Specificity Accuracy 

I1004/1450 80.9% (17/21) 90.9% (40/44) 87.7%(57/65) 

I1100/1450 85.7% (18/21) 88.6% (39/44) 87.7%(57/65) 

I1208/1450 76.1% (16/21) 88.6% (39/44) 84.6% (55/65) 

I1745/1450 85.7% (18/21) 84.1% (37/44) 84.6% (55/65) 

I875/1450 v.s. 

*I1208/1655 90.5% (19/21) 90.9% (40/44) 90.8% (59/65) 

I1100/1450 76.1% (16/21) 90.9% (40/44) 86.2% (56/65) 

I1208/1450 76.1% (16/21) 86.4% (38/44) 83.1% (54/65) 

I1745/1450 76.1% (16/21) 86.4% (38/44) 83.1% (54/65) 

I1004/1450 v.s. 

I1208/1655 80.9% (17/21) 88.6% (39/44) 86.2% (56/65) 

I1208/1450 80.9% (17/21) 88.6% (39/44) 86.2% (56/65) 

I1745/1450 76.1% (16/21) 84.1% (37/44) 81.5% (53/65) I1100/1450 v.s. 

I1208/1655 80.9% (17/21) 90.9% (40/44) 87.7%(57/65) 

I1745/1450 76.1% (16/21) 86.4% (38/44) 83.1% (54/65) 

I1208/1450 v.s. 

I1208/1655 80.9% (17/21) 90.9% (40/44) 87.7%(57/65) 

I1745/1450 v.s. I1208/1655 76.1% (16/21) 84.1% (37/44) 81.5% (53/65) 

Note:  

The symbol * denotes the pairwise combination of Raman peak intensity ratios with the 
highest sensitivity, specificity and accuracy values (lowest estimated generalization error) 
after the leave-one sample-out, cross validation. 
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Figure 6.3 (a) Two-dimensional scatter plot showing the distribution of normal and 
dysplastic gastric mucosa tissues after combining both Raman peak intensity ratios of 
I1208/I1655 and I875/I1450 as a discriminating algorithm. A linear diagnostic decision 
algorithm (I1208/I1655 = -0.81 I875/I1450 + 1.17) yields a sensitivity of 90.5% (19/21) and a 
specificity of 90.9% (40/44) for separating dysplasia from normal tissue. (b) Receiver 
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operating characteristic (ROC) curve with an area under curve (AUC) of 0.96 illustrates 
the ability of Raman spectroscopy to identify dysplasia from normal gastric tissues. 

 

The logistic regression analysis coupled with leave-one sample-out, cross validation, as 

well as ROC analysis for unbiased evaluation on different 2-dimensional diagnostic 

models indicate that the combined intensity ratios of I1208/I1655 and I875/I1450 can serve as 

one of the most effective ratio diagnostic algorithms for dysplasia identification. Even 

though the simplistic empirical analysis here could only utilize up to four prominent 

Raman peaks each time for tissue classification, these algorithms still contained a mixture 

of different biomolecular diagnostic information ranging from the nucleus and cytoplasm 

within the cell, to the extracellular matrix outside the cell. For example, the 

nonparametric algorithm (I1208/I1655 and I875/I1450) contained the diagnostic information 

that are specifically extracted from collagen present in the extracellular matrix, essential 

amino acids and CH2 of proteins/lipids found mostly in tissues and cells, and also 

histones which are present in the nucleus [5, 6]. Hence, the Raman intensity ratios 

derived in this work could potentially be used as effective diagnostic algorithms for 

classifying dysplasia from normal gastric tissue. One notes that the intensity ratio 

analysis employs the selection of a group of diagnostic Raman intensity features directly 

derived from the tissue Raman spectra to construct the classification model for tissue 

diagnosis. Other powerful multivariate feature selection algorithms (e.g. random forests) 

that take into consideration of the interactions among different spectral features could 

also be applied to choose the best subset of Raman features for effective tissue 

classification. Alternatively, multivariate statistical techniques such as PCA-LDA, which 
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fully utilize diagnostically significant features contained in the entire Raman spectrum 

and transform them into multiple independent linear combinations of the original spectral 

features, could be used for further improving diagnostic efficacy for gastric precancer 

diagnosis and classification. Note that a detailed comparison of the PCA-LDA with the 

Raman intensity ratio algorithm will be discussed in the following chapter [12].  

 

In conclusion, this study shows that there are significant differences in Raman spectra 

between normal and dysplastic gastric tissue, demonstrating the utility of NIR Raman 

spectroscopy for differentiating dysplasia from normal tissue in the stomach. 

Furthermore, with the use of Raman intensity ratios as diagnostic algorithms, NIR Raman 

spectroscopy could be a clinically useful tool for rapid, noninvasive, in vivo diagnosis 

and detection of gastric precancer at the molecular level [16].  
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CHAPTER 7  

COMPARISON OF PERFORMANCE FOR MULTIVARIATE 

STATISTICAL ANALYSIS AND EMPIRICAL STATISTICAL ANALYSIS 

FOR GASTRIC DYSPLASIA DIAGNOSIS 
The current gold standard for clinical diagnosis of gastric dysplasia is through 

histological observation by the pathologist, on the extent of cytological and architectural 

abnormalities of the histologically prepared tissue samples [145]. These abnormalities 

involve much molecular alterations which could also be tapped upon for diagnosis, most 

importantly during routine endoscopic inspection [145]. Hence, Raman spectroscopy that 

is capable of providing rich biochemical and biomolecular information about tissue may 

be the promising diagnostic tool to be used for molecular discrimination of gastric 

dysplasia. However, as gastric dysplasia belongs to part of a widely accepted multi-step, 

continuum progression cascade from normal gastric tissue to adenocarcinoma [146], it 

implies gastric dysplasia’s vague molecular distinction that may render characterization 

and discrimination tougher for Raman spectral analysis. As shown in previous chapter 

(i.e., Figure 6.1), the Raman spectral pattern between normal and dysplastic gastric 

tissues could be very similar, it is highly desirable to develop robust diagnostic 

approaches to extract all possible diagnostic information contained in tissue Raman 

spectra for well correlation with tissue changes associated with neoplastic transformation. 

Consequently, with a larger sample size, both empirical and statistical techniques were 

examined in detail in this chapter for a more robust evaluation to attain the likelihood of 

  98

 



 

good clinical discriminators of Raman spectra for separation between normal and 

dysplastic gastric tissues [12].  

7.1 ANALYTICAL APPROACHES 

7.1.1 EMPIRICAL APPROACH: INTENSITY RATIO 

Nonparametric diagnostic algorithms based on peak intensities, spectral bandwidths, 

and/or peak ratios have been widely employed in literature to correlate the variations of 

tissue spectra with tissue pathology in a simple and straightforward fashion [5, 20]. In 

this chapter, the empirical diagnostic algorithm based on the ratio of the Raman peak 

intensity at 875 cm-1 for hydroxyproline to the peak intensity at 1450 cm-1 for CH2 

proteins/lipids was selected for tissue classification. Figure 7.1 shows an example of the 

scatter plot of the ratio of Raman intensity at 875 cm-1 to that at 1450 cm-1 grouped 

according to tissue pathologic types. The mean value (mean± SD) of this ratio for normal 

tissues (1.13 ± 0.46, n=55) is significantly different from the mean value for dysplastic 

tissues (0.52 ± 0.33, n=21) (unpaired two-sided Student’s t-test, p <0.00001). The 

decision line (I875/I1450 = 0.717) discriminates dysplasia tissue from normal gastric tissue 

with a sensitivity of 85.7% and a specificity of 80.0%.  
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Figure 7.1 Scatter plot of the intensity ratio of Raman signals at 875 cm-1 and 1450 cm-1, 
as measured for each sample and classified according to the histological results. The 
mean intensity (1.13 ± 0.46,) of normal tissue is significantly different from the mean 
value (0.52 ± 0.33) of dysplasia tissue (unpaired Student’s t-test, p<0.00001). The 
decision line (I875/I1450 = 0.717) separates dysplasia tissue from normal tissue with a 
sensitivity of 85.7% (18/21) and specificity of 80.0% (44/55).  

 

7.1.2 MULTIVARIATE ANALYSIS: PCA 
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The high dimension of Raman spectral space (each Raman spectrum ranging from 800-

1800 cm-1 with a set of 544 intensities) will result in computational complexity and 

inefficiency in optimization and implementation of the LDA algorithms. As such, PCA 

was firstly performed on tissue Raman dataset to reduce the dimension of Raman spectral 

space while retaining the most diagnostically significant information for tissue 

classification. To eliminate the influence of inter and/or intra-subject spectral variability 

 



 

on PCA, the entire spectra were standardized so that the mean of the spectra was zero and 

the standard deviation of all the spectral intensities was one. Mean centering ensures that 

the principal components (PCs) form an orthogonal basis [12]. The standardized Raman 

data sets were assembled into data matrices with wavenumber columns and individual 

case rows. Thus, PCA was performed on the standardized spectral data matrices to 

generate PCs comprising a reduced number of orthogonal variables that accounted for 

most of the total variance in original spectra. Each loading vector is related to the original 

spectrum by a variable called the PC score, which represents the weight of that particular 

component against the basis spectrum. PC scores reflect the differences between different 

classes. Unpaired Student’s t-test was used to identify the most diagnostically significant 

PCs (p<0.05) and showed that there were four PCs (PC1, PC2, PC4, and PC5) that were 

diagnostically significant (p<0.05) for discriminating dysplasia tissue from normal tissue 

[12]. Figure 7.2 displays the four significant PCs scores calculated from PCA on the 

Raman spectra. The first PC accounts for the largest variance (e.g. 42.6% of the total 

variance), whereas the successive PCs describe the spectral features that contribute 

progressively smaller variances. Some PC features (Figure 7.2 (a) – (d)), such as peaks, 

troughs, spectral shapes, are similar to those of tissue Raman spectra.  
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Figure 7.2 The first four diagnostically significant principal components (PCs) 
accounting for about 78.5% of the total variance calculated from Raman spectra (PC1 – 
42.6%, PC2 – 25.4%, PC4 – 7.9%, and PC5 – 2.6%), revealing the diagnostically 
significant spectral features for tissue classification. 
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Figure 7.3 shows the correlations between the diagnostically significant PC scores for 

normal and dysplastic gastric tissue, illustrating the utility of PC scores for classification 

of Raman spectra between different tissue types. Normal and dysplasia tissues can be 

largely clustered into two separate groups based on different combinations of significant 

PCs, and the corresponding separation lines (i.e., diagnostic algorithms) in Figure 7.3 (a-f) 

classify dysplasia from normal tissue with the sensitivity of 90.5% (19/21), 76.2% 

(16/21), 71.4% (15/21), 81.0% (17/21), 71.4% (15/21), and 71.4% (15/21); specificity of 

 



 

90.9% (50/55), 80.0% (44/55), 83.6% (46/55), 80.0% (44/55), 72.7% (40/55), and 72.7% 

(40/55), respectively. These results show that selection of different combinations of 

significant PCs will give different levels of accuracy for tissue classification.   
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Figure 7.3 Scatter plots of the diagnostically significantly PC scores for normal and 
dysplastic gastric tissue derived from Raman spectra, (a) PC1 vs. PC2; (b) PC1 vs. PC4; 
(c) PC1 vs. PC5; (d) PC2 vs. PC4; (e) PC2 vs. PC5; (f) PC4 vs. PC5. The dotted lines 
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(PC2= 1.46 PC1 + 1.34; PC4= -1.32 PC1 + 0.94; PC5= -2.16 PC1 – 0.89; PC4= 1.74 
PC2 + 0.12; PC5= 0.  84 PC2 – 0.381; PC5= -2.05 PC4 – 0.29) as diagnostic algorithms 
classify dysplasia from normal with sensitivity of 90.5% (19/21), 76.2% (16/21), 71.4% 
(15/21), 81.0% (17/21), 71.4% (15/21), and 71.4% (15/21); specificity of 90.9% (50/55), 
80.0% (44/55), 83.6% (46/55), 80.0% (44/55), 72.7% (40/55), and 72.7% (40/55), 
respectively. Circle (○): normal; Triangle (▲): dysplasia.   

 

7.1.2 MULTIVARIATE ANALYSIS: LDA 

To further improve tissue diagnosis, all the four diagnostically significant PCs were 

loaded into the LDA model for generating effective diagnostic algorithms for tissue 

classification. LDA determines the discriminant function that maximizes the variances in 

the data between groups while minimizing the variances between members of the same 

group [12]. The performance of the diagnostic algorithms rendered by the LDA models 

for correctly predicting the tissue groups (i.e., normal vs. dysplasia) was estimated in an 

unbiased manner using the leave-one sample-out, cross validation method on all model 

spectra. In this method, one sample (i.e., one spectrum) was held out from the data set 

and the entire algorithm including PCA and LDA was redeveloped using the remaining 

tissue spectra. The algorithm was then used to classify the withheld spectrum. This 

process was repeated until all withheld spectra were classified.  

 

Figure 7.4 shows the classification results based on PCA-LDA technique together with 

leave-one spectrum-out, cross-validation method. The PCA-LDA  diagnostic algorithms 

yielded the diagnostic sensitivity of 95.2% and specificity 90.9% for separating dysplasia 

from normal gastric tissues. 
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Figure 7.4 Scatter plot of the linear discriminant scores of belonging to the normal and 
dysplasia categories using the PCA-LDA technique together with leave-one spectrum-out, 
cross-validation method. The separate line yields a diagnostic sensitivity of 95.2% (20/21) 
and specificity of 90.9% (50/55) for differentiation between normal and dysplasia tissue. 
 

7.1.3 COMPARISON OF PERFORMANCE FOR DIFFERENT ANALYTIC TECHNIQUES: 

ROC 

To evaluate and compare the performance of the PCA-LDA-based diagnostic algorithms 

derived from all the significant PCs of tissue Raman dataset against the empirical 

approach-based diagnostic algorithm derived from the intensity ratio of I875/I1450, the 

ROC curves (Figure 7.5) were generated from the scatter plots in Figures 7.2 and 7.4 at 

different threshold levels, displaying the discrimination results using both diagnostic 
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algorithms. A comparative evaluation of the ROC curves indicates that PCA-LDA-based 

diagnostic algorithm gives more effective diagnostic capability for detection of gastric 

dysplasia from normal gastric tissues, as illustrated by the improvement in the diagnostic 

sensitivity and specificity. The integration areas under the ROC curves are 0.98 and 0.88 

for PCA-LDA-based diagnostic algorithms and the nonparametric intensity ratio 

algorithm, respectively. These results demonstrate that PCA-LDA-based diagnostic 

algorithms that utilized the entire spectral features of Raman spectra yield a better 

diagnostics accuracy than the empirical approach.  
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Figure 7.5 Comparison of ROC curves of discrimination results for Raman spectra 
utilizing the PCA-LDA-based spectral classification with leave-one spectrum-out, cross-
validation method and the empirical approach using Raman intensity ratio of I875/I1450. 
The integration areas under the ROC curves are 0.98 and 0.88 for PCA-LDA-based 
diagnostic algorithm and intensity ratio algorithm, respectively, demonstrating the 
efficacy of PCA-LDA algorithms for tissue classification. 
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The simplistic empirical analysis above only employs a limited number of Raman peaks 

for tissue diagnosis, most of the information contained in the Raman spectra has not been 

used for spectral analysis [12]. Since biological tissue is complex, it is likely that there 

are many biochemical species influencing diseases concurrently. Therefore, a 

multivariate statistical analysis (e.g., PCA and LDA) that utilizes the entire spectrum to 

determine the most diagnostically significant spectral features may improve the 

diagnostic efficiency of Raman technique for tissue analysis and classification. As such, 

PCA-LDA together with cross-validation technique was applied in this work to the NIR 

Raman spectra acquired for dysplasia tissue identification. The unpaired, two-sided 

Student’s t-test identified that only a few PCs (PC1, PC2, PC4 and PC5) contained the 

most diagnostically significant information (p<0.05) for tissue classification. We note 

that one of the most statistically significant PCs (e.g., PC5) only describes small amount 

(2.6%) of the total variance. This indicates that some PCs with small variances can still 

contain the useful diagnostic information for revealing molecular changes with dysplastic 

transformation. However, since the noise present in weak tissue Raman signals may 

affect the determination of significant PCs with smaller variances for tissue diagnosis, 

caution should be taken when acquiring the weak tissue Raman signals [147]. Hence, the 

rapid fiber-optic Raman system with a high signal-to-noise ratio (3.3-16 folds 

improvement) [46] was employed to obtain high quality Raman tissue spectra, and an 

appropriate data preprocessing was also introduced for further reducing the noise 

interference in PC analysis. The consistency in identifying similar significant PC scores 

from run to run during the leave-one spectrum-out, cross-validation testing suggested that 
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the diagnostic algorithms developed were robust for Raman spectral analysis in this study. 

To develop effective diagnostic algorithms for tissue classification, all the four 

diagnostically significant PCs were utilized in the LDA model. The diagnostic sensitivity 

and specificity of 95.2% and 90.9% for identifying dysplasia from normal gastric tissue 

can be achieved using the PCA-LDA model, which had almost a 10% improvement in 

diagnostic accuracy compared to the empirical method. ROC analysis (Figure 7.5) further 

confirms that PCA-LDA-based diagnostic algorithms employing the entire spectral 

features of Raman spectra are more robust and powerful in distinguishing dysplasia from 

normal tissue. 

 

In conclusion, this work proved that multivariate statistical technique provided a higher 

accuracy performance compared to the intensity ratio method for NIR Raman 

spectroscopy detection of gastric precancer [12]. Therefore, NIR Raman spectroscopy in 

conjunction with multivariate statistical technique has potential for rapid diagnosis of 

dysplasia in the stomach based on the optical evaluation of spectral features of 

biomolecules. 
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CHAPTER 8  

RANDOM FORESTS DEMONSTRATION FOR GASTRIC PRECANCER 

DETECTION 
PCA is primarily for data reduction rather than for identification of biochemical or 

biomolecular components of tissue [12]. It is usually difficult to interpret the physical 

meanings of the component spectra [12]. However, with more powerful diagnostic 

algorithms (e.g., random forests) [10], distinctive spectral regions that are optimal for 

tissue differentiation may be identified and related to particular biochemical and 

biomolecular changes (e.g., proteins, lipids, nucleic acid, carbohydrates) associated with 

neoplastic transformation. This chapter will present the investigation of the efficacy of 

random forests technique for Raman spectroscopic gastric dysplasia detection.  

8.1 RESULTS OF THE EMPLOYMENT OF RANDOM FOREST ALGORITHM FOR 

GASTRIC DYSPLASIA DETECTION 

In this study, the number of variables tested for each split was set to 23 (√544) and the 

error rate of different forest size from 1-1000 trees was investigated. Fig. 8.1 (a) 

demonstrated that the diagnostic algorithm stabilized after 284 trees were employed. 

Hence, we have selected to construct an ensemble of 285 trees to construct an optimal 

diagnostic algorithm. To illustrate the performance of this optimal diagnostic algorithm, 

ROC curve (Fig. 8.1 (b)) was generated by constructing different threshold levels from 

the probability associated with each data after the majority voting. The integration areas 

under the ROC curve is 0.950 for the forest size of 285 trees, proving the efficacy of this 
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random forest algorithm derived for gastric dysplasia cancer diagnosis. The results show 

that random forests-based diagnostic algorithm is robust for gastric dysplasia diagnosis. 
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Figure 8.1  (a) Different error rates belonging to different sizes of the random forests (i.e., 
different number of trees) after the voting process on all the tissue Raman spectra. 
Stabilization of forests occurred at 0.105 after more than 284 trees, illustrating that the 
random forests algorithm does not overfit. (b) ROC curve of tissue classification 
belonging to the final optimal random forests tree size of 1000 with an AUC of 0.950, 
illustrating the diagnostic ability of Raman spectroscopy and random forests algorithm to 
identify gastric dysplasia from normal gastric tissue. 

 

 

Figure 8.2 (a) displays the probabilistic classification results based on the random forests 

technique together with the leave-one sample (i.e., all spectra associated with the 

sample)-out, cross validation method. The random forests diagnostic algorithm yields the 

diagnostic sensitivity of 81.0%, and specificity of 92.7% for separating dysplasia from 

normal gastric tissues. In addition, Figure 8.2 (b) shows the variables importance plot 

based upon the construction of 1000 trees associated with gastric dysplasia 

transformation. The permutation accuracy importance measure notably reveals that 

Raman intensities at 875 (C-C stretching of hydroxyproline), 980 (ν (C-C) in α 

conformation of proline and valine), 1218 (C-C6H5 stretching mode of tryptophan and 
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phenylalanine), 1302 (CH3CH2 twisting mode of proteins), and 1420 cm-1 (δ (CH2), δ 

(CH3) of proteins, δ (CH2) scissoring of phospholipids, deoxyriboses) are among the most 

important variables in the gastric tissue Raman spectra for distinguishing the dysplasia 

from normal. These results show that Raman spectroscopic technique combined with the 

random forests diagnostic algorithm is robust and powerful for gastric dysplasia 

diagnosis, and could provide interpretable Raman biomolecular information for the 

constructed diagnostic algorithm. 

 

0 10 20 30 40 50

0

25

50

75

100

 Normal (n=55)
 Dysplasia (n=21)

Po
st

er
io

r p
ro

ba
bi

lit
y 

of
 b

el
on

gi
ng

 to
 g

as
tr

ic
 d

ys
pl

as
ia

Raman shift (cm-1)

(a)

 

800 1000 1200 1400 1600 1800
0.0

0.2

0.4

0.6

0.8

1.0

14201302

Va
ria

bl
e 

im
po

rt
an

ce

Raman shift (cm-1)

875

980

1218(b)

 

Figure 8.2 (a) Scatter plot of the generated probabilistic scores belonging to the normal 
and dysplasia categories using the random forests technique together with leave-one 
sample-out, cross validation method. The separate line yields a diagnostic sensitivity of 
81.0% (17/21) and specificity of 92.7% (51/55) for differentiation between normal and 
dysplastic gastric tissue. (b) Variables importance plot for the Raman spectral region 800-
1800 cm-1 generated from random forests size of 1000 trees which was used for 
discrimination of dysplasia from normal gastric tissue. The variable importance algorithm 
defines the most important variable as 1, whereas the least important variable as 0. 
Notable peaks are identified. 
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8.2 COMPARISON OF PERFORMANCE AMONG INTENSITY RATIO, PCA-LDA, 

RANDOM FORESTS ANALYTIC ALGORITHMS FOR GASTRIC PRECANCER 

DETECTION  

To further evaluate and compare the performance of the different analytical algorithms 

constructed for gastric dysplasia detection, the ROC curves (Figure 8.3) from Figures 7.5 

and 8.1 (b) were plotted together, displaying the discrimination results for the three 

different diagnostic algorithms. A comparative evaluation of the ROC curves (i.e., ROC-

AUC) indicates that the PCA-LDA-based and random forests-based diagnostic algorithm 

can significantly give a more effective diagnostic capability as compared to the intensity 

ratio method for detection of gastric dysplasia from normal gastric tissues, as shown by 

the improvement in the diagnostic sensitivity and specificity. In addition, the ROC curve 

of PCA-LDA-based and random forests-based diagnostic algorithms appeared to be very 

similar, illustrating comparable diagnostic accuracy for detection of gastric dysplasia. 

The ROC-AUC for PCA-LDA-based and random forests-based diagnostic algorithm was 

0.98 and 0.95, respectively, confirmed that the two diagnostic algorithms achieved almost 

equivalent overall diagnostic accuracy for separating gastric dysplasia from normal 

gastric tissues. This result demonstrated that random forests-based diagnostic algorithms 

that utilized the entire spectral features of Raman spectra can yield comparable 

diagnostics accuracy as compared to PCA-LDA-based analytic algorithm, and a better 

diagnostic accuracy than the empirical approach for discriminating gastric dysplasia from 

normal tissues.  
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Figure 8.3 Comparison of ROC curves of discrimination results for Raman spectra 
utilizing the Raman intensity ratio of I875/I1450, PCA-LDA and the random forests 
algorithm. The integration areas under the ROC curves are 0.88, 0.98, and 0.95 for 
intensity ratio algorithm, PCA-LDA-based, and random forests-based diagnostic 
algorithm and intensity ratio algorithm, respectively, demonstrating the efficacy of PCA-
LDA algorithms for tissue classification. 
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Intensity ratio approach can only employ a limited number of Raman peaks for tissue 

diagnosis, most of the biomolecular information contained in the Raman spectra has not 

been used for spectral analysis. Since biological tissue is complex, it is likely that there 

are many biochemical species influencing diseases concurrently [12]. Therefore, 

sophisticated chemometrics techhnique such as PCA-LDA and random forests that 

utilizes the entire spectrum to determine the most diagnostically significant spectral 

features can improve the diagnostic efficiency of Raman technique for tissue analysis and 

classification. In this study, both techniques have been demonstrated to possess 

comparable diagnostic utility for gastric precancer diagnosis. Random forests technique 

 



 

provides a unique advantage over the conventional PCA-LDA algorithm but furnishing 

distinctive spectral regions that are optimal for tissue differentiation can be identified and 

related to particular biochemical and biomolecular changes (e.g., proteins, nucleic acid, 

carbohydrates) associated with pre-neoplastic transformation. Note that only 5 prominent 

features are revealed to be of significant for precancerous lesion detection; where up to 

20 Raman features are found to be of diagnostic significant for diagnosing cancer 

(Chapter 4). The less Raman features revealed in the variable importance plot for 

precancerous lesions as compared to cancerous tissues indicated that there are less 

biomolecular changes involving the precancerous lesions as compared to the cancerous 

lesions. This is in agreement with histopathological signs of carcinogenesis 

transformation, whereby increase biomolecular activity will occur with the degree of 

neoplastic transformation [60]. Therefore, random forests could be a useful approach to 

identify the origins of biochemical/biomolecular changes of Raman spectra for tissue 

carcinogenesis analysis. This study confirmed the feasibility of NIR Raman spectroscopy 

in conjunction with random forests for providing diagnostic information necessary for 

distinguishing precancer from normal tissue.  
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CHAPTER 9  

CONCLUSION AND FUTURE RESEARCH 
In this dissertation, we have demonstrated the feasibility of using an in-house developed 

NIR Raman system for human tissue characterization [12]. In order to facilitate 

identification of the origins of biochemical/biomolecular changes of Raman spectra for 

diseased tissue analysis, as well as providing high accuracy diagnostic algorithms for 

tissue classification, we have introduced the utilization of recursive partitioning technique 

with NIR Raman spectroscopy for detection of gastric cancer from normal gastric tissues 

[14]. To enhance the performance (i.e., stability and accuracy) of recursive partitioning 

technique, ensemble technique was also successfully deployed to be used with NIR 

Raman spectroscopy for cancer diagnosis [10]. We further assessed the diagnostic 

performance of random forests in comparison with the use of simplistic empirical method 

which employs Raman peak intensity ratios and multivariate statistical techniques (i.e., 

PCA-LDA) for gastric dysplasia diagnosis [12, 16]. ROC curves confirmed that PCA-

LDA and random forests techniques have comparable overall diagnostic accuracy rate 

which are more superior compared to the empirical approach for detection of gastric 

dysplasia from normal gastric tissues. Overall, this dissertation demonstrated the potential 

of NIR Raman spectroscopy with sophisticated chemometrics algorithms, particularly the 

random forests, to construct clinically interpretable diagnostic algorithm which can also 

yield high diagnostic accuracy for rapid diagnosis of precancer and cancer tissues based 

on the optical evaluation of spectral features of biomolecules.  
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In a clinical situation, there is often a need to determine the type of tissues into more than 

two groups such as various grades of tumor [11]. However, in this dissertation, we have 

only evaluated binary classification such as precancer vs. normal and cancer vs. normal. 

Further studies to investigate the possibility of simultaneously classifying Raman tissue 

spectra into more than two classes (e.g., normal vs. dysplasia vs. cancer) with different 

diagnostic algorithms [148, 149], especially the random forests are warranted. In addition, 

this study has only assessed the potential of Raman spectroscopy for dysplasia and cancer 

diagnosis. Evaluation on the feasibility of Raman spectroscopy for detection of diseases 

accompanying the entire carcinogenesis cascade before the onset of dysplastic changes 

should also be carried out [149]. Due to the limitation of size of the Raman probe used in 

the project, this dissertation has only focused on the evaluation of ex vivo tissues samples. 

With the development of miniaturized Raman probes for the collection of tissue Raman 

signals in a few seconds via endoscope, in vivo tissue Raman evaluation of the feasibility 

for detection of different lesions associated with cancer in the gastric and larynx ought to 

be carried out [50]. It is expected that NIR Raman endoscopic spectroscopy could be a 

clinically promising tool for the rapid, noninvasive, in vivo diagnosis and detection of 

gastric and laryngeal lesions at the molecular level in clinical endoscopy. 
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