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Summary

Many important biological systems are known to exhibit oscillatory behavior,

with examples such as the cell cycle and circadian rhythms. Consequently, math-

ematical models are built to study system properties like stability, robustness

and stability. A review of the literature shows that parameter estimation tech-

niques are rarely employed when building most models of oscillatory systems.

Instead, model parameters are often arbitrarily chosen to yield desired quali-

tative behavior. Unfortunately, this may lead to misleading conclusions from

the analysis of the model. Therefore, the purpose of this work is to study the

problem of parameter estimation for oscillatory systems.

The output of oscillatory systems exhibits two characteristics, shape (state

trajectory) and periodicity, while typical non-oscillatory systems only possess

shape. The periodicity property also results in the unbounded increase of sensi-

tivity coefficients with time. As a result, application of traditional gradient-based

methods is not feasible.

In this work, the effect of shape and periodicity was decoupled and a suitable

objective function using maximum likelihood estimation was derived. Due to the

nature of the solution space, a stochastic global optimizer was selected as the

search algorithm. An alternate approach using maximum a posteriori estima-

tion by combining Phase Response Curve data with time series data was also

investigated. The developed methodology was tested on three circadian rhythm

models and its effectiveness was clearly shown in the results obtained.

Keywords: Parameter estimation, oscillator, identifiability analysis
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Chapter 1

Introduction

In the study of natural phenomena, mathematical models are often created for

analysis purposes to gain insights on system properties such as stability, robust-

ness and parametric sensitivity, and their predictive powers used for systems

design and to guide further experiments. The model building process for dynam-

ical systems is composed of iterative steps that include the specification of model

structure and equations, identifiability analysis, experimental design, execution

of experiments, parameter estimation, and model invalidation [1]. This thesis

concerns the parameter estimation step [2]. A top-down approach of prescribing

model parameters p is to fit the model output y to available experimental data

ŷ in a process called parameter estimation. An objective function Φ such as the

sum of errors squared is often selected to measure the goodness of fit:

Φ(p) =
N

∑

i=1

(

ŷi − yi(p)
)2

, (1.1)

and a search algorithm is used to obtain the set of parameters p̂ that minimize

the objective function Φ(p), i.e.

p̂ = arg min
p

Φ(p). (1.2)

Presently, parameter estimation theory and techniques have matured and are

regularly used in many areas of science and engineering [3, 4].

1



1. INTRODUCTION 2

In biology, model construction and parameter estimation are also commonly

employed. As in the use of models in physics and engineering, analysis of bio-

logical models enables greater understanding of cellular and organism behavior,

and more recently, the use of models to guide drug development [5,6]. The sys-

tems approach to biology, called Systems Biology [7,8], has been taken up in the

recent years to deal with the complexities inherent to biological systems, made

possible by the explosion of biological data resulting from technological advances

in the past decade and the continued growth in computing power. Instead of the

reductionist approach of viewing genes, proteins and other metabolites, these

components are now studied as an integrated system of interacting parts of a

network, in parallel to the systems approach used in engineering. Tools routinely

used in other scientific disciplines and engineering have found new applications,

sometimes appropriately modified, to study biological systems. The usage of

such analysis tools can produce non-intuitive insights that are not possible with

a simple inspection of reaction networks.

Unfortunately, the main obstacle to building models in such a quantitative

manner is the quality of data available. Experimental data from biological ex-

periments suffers a variety of problems, including significant measurement noise,

inherent stochastic nature of the process, missing or incomplete data and un-

known components, all of which complicate parameter estimation.

Within biology, a number of important systems exhibit rhythmic behavior,

including the cell cycle [9], circadian rhythms [10], glycolysis [11] and cyclic AMP

production [12]. Although mathematical models of these systems have been

constructed, parameter estimation techniques were not routinely applied. While

some kinetic parameters are available from independent or direct measurements,

the vast majority are not. Instead, the parameters are often tweaked ad-hoc

such that the model outputs match qualitative features of experimental data.

In this work, the models used in parameter estimation are drawn from the

study of circadian rhythms. The following section will introduce the biology of

circadian rhythms to serve as background information.
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1.1 Circadian Rhythms

Circadian rhythms are approximately 24 hour cycles which regulate physiology,

biochemistry and behavior of most living organisms. In humans, the rhythm is

most obvious in the sleep-wake cycle. The rhythms are controlled by a circadian

oscillator that is endogenous but also responsive to external cues such as light,

and can entrain the rhythms to the local environment.

1.1.1 Structure and Characteristics

An important milestone in the molecular biology of circadian rhythms is the

discovery of the Period gene in the fruit fly Drosophila melanogaster by Konopka

and Benzer using mutant screens, and thus establishing the role of genes in

the circadian clock [13]. Subsequent studies identified similar clock genes and

proteins (homologues) in other living organisms. Experimental evidence to date

show that circadian clocks such as those found in Drosophila, Neurospora and

mammals are based on transcriptional-translational feedback loops, involving

coupled positive and negative feedback [14,15].

The three main characteristics displayed by circadian oscillators are: an ap-

proximately 24 hour period, entrainment to the environment, and temperature

compensation [16, 17]. In particular, entrainment is of relevance to the genera-

tion of Phase Response Curve (PRC), a commonly used analysis to study the

phase behavior of circadian rhythms. Since the Free Running Period (FRP) of

the circadian clocks is not exactly 24 hours, the rhythms need to be reset daily

to maintain synchrony with the environment. Some of the known resetting cues

of circadian oscillators include light, ambient temperature, feeding and physical

activities [16]. However, circadian response to these cues is not uniform over the

cycle [16]. Depending on the timing, the cue may produce a phase advance, a

phase delay or virtually no phase shift. Plotting the resulting phase shift over

the phase of the circadian rhythm at which the cue was given produces a PRC.

Figure 1.1 shows the PRC obtained from the Drosophila in response to light

pulses. Examples of PRCs for different organisms can also be found in the PRC
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Figure 1.1: PRC obtained for the Drosophila melanogaster using 1 min light
pulses (Adapted from Hall and Rosbash [19]). A positive phase shift is phase
advance and a negative phase shift is phase delay.

Atlas compiled by Johnson [18].

1.1.2 Drosophila melanogaster

The fruit fly Drosophila melanogaster is one of the model organisms commonly

used in biological studies. Its popularity primarily stems from its small size, short

lifespan, ease in maintaining a large population, and the knowledge accumulated

from the long history of use. In 2000, sequencing of the Drosophila melanogaster

genome was completed [20].

Figure 1.2 shows a simplified Drosophila diagram of the circadian clock mech-

anism. The core of the clock consists of 2 interlocking feedback loops, the first

consisting of PER (period) and TIM (timeless) and the second composed of CLK

(clock), VRI (vrille) and PDP1 (PAR-domain protein 1) [14,21,22]. Both loops

are connected due to interaction via CLK.

In the PER-TIM loop, CLK and CYC (cycle) form a complex that activates

per and tim transcriptions. By the start of evening, both per and tim mRNA

levels reach their maximum while their protein levels only peak 4 ∼ 6 hours

later [23]. This delay is attributed to the phosphorylation-induced destabilization

of PER when bound to DBT (double-time) [24]. Stabilization of PER by binding

with TIM allows it to translocate into the nucleus, but PER and TIM have also
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Figure 1.2: Simple schematic of the Drosophila melanogaster circadian clock.

been observed to translocate separately and re-associate in the nucleus [25]. The

PER-TIM complex level builds up during the night in the nucleus. The complex

binds to CLK and inhibit transcription of per and tim [26]. Coupled with the

inhibition, PER and TIM levels are lowered by phosphorylation induced degra-

dation of PER, and degradation of TIM by CRY (cryptochrome) [27]. This CRY

dependent degradation is particularly important as it enables entrainment with

the external environment through light. DBT also binds to CLK and induces

phosphorylation for degradation. However, this does not mean that the overall

CLK protein levels cycle in phase with PER and TIM as hypophosphorylated

CLK accumulates from new synthesis or dephosphorylation. By noon the next

day, both proteins are at their lowest levels and CLK can again activate PER

and TIM transcriptions, starting the cycle anew.

In the other loop, the transcriptions of VRI and PDP1 are promoted by CLK

while PDP1 promotes the transcription of CLK. At noon, CLK induces VRI and

PDP1 transcriptions. VRI protein level increases more rapidly than PDP1 and

represses the transcription of CLK by competitively binding to PDP1 in the

evening. By night, PDP1 levels exceed VRI and reactivates clk transcription.

This leads to clk mRNA cycling in an opposite phase with the other mRNA levels

(per, tim, vrille, pdp) [28]. However, this mRNA cycling does not affect the total
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CLK protein level, though hyperphosphorylated and hypophosphorylated CLK

are known to accumulate in anti-phase with one another [29].

The function of the second (CLK) feedback loop is presently not yet well

understood. A single negative feedback loop with delay is sufficient for gener-

ating oscillations and mathematical models of the circadian clock such as the

Drosophila had been modeled with only the PER-TIM feedback loop [30–33].

The time delay may take the form of an explicit delay in the equations or a

series of intermediate species. Due to this time delay, the system repeatedly

undershoots or overshoots the steady state, thus generating oscillations. Al-

ternatively, some oscillatory models incorporate positive feedback to introduce

hysteresis into the system, preventing it from reaching a steady state. Removing

the positive feedback loop will naturally abolish the oscillations. For models

that do not rely on positive feedback to generate sustained oscillations, it was

hypothesized that the additional loop increases the system’s robustness to pa-

rameter perturbations although this was not supported by simulation studies of

models by Smolen et al. [34, 35]. More experimental evidence will be needed to

shed further light on the second feedback loop.

1.2 Thesis Aim

The purpose of this work is to investigate parameter estimation in oscillatory

systems. A methodology was developed to estimate the model parameters

from time-series oscillatory data. Although the circadian rhythm models of the

Drosophila melanogaster were used as case studies, the methodology is generic

and applicable to general oscillatory systems. The confidence intervals of the

parameter estimates were subsequently computed using the Fisher Information

Matrix (FIM) to determine practical identifiability of the parameters.

The effect of noise and sampling time on parametric identifiability was also

studied. This is useful in guiding lab experiments on the decision of noise reduc-

tion with repeated samplings or reducing sampling time with more samples.

Finally, the possibility of using Phase Response Curve (PRC) of circadian
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rhythms for parameter estimation was investigated. This was motivated by the

abundance of PRC data from numerous circadian rhythm studies over the years

and greater accessibility than time series mRNA and protein data.

1.3 Thesis Organization

The thesis is organized as follows: Chapter 2 explains the basic concepts behind

parameter estimation and briefly surveys the current parameter search methods

available. Chapter 3 discusses sensitivity analysis of oscillatory systems. The

problem formulation and development of the parameter estimation methodology

are explained in Chapter 4. Chapter 5 presents the results from the case studies.

The work is then concluded in Chapter 6.



Chapter 2

Parameter Estimation

This chapter gives a short introduction to parameter estimation, reviews search

algorithms available, and summarizes past works on parameter estimation of

circadian systems. The problem statement is restated and relevant concepts of

parameter estimation are first discussed in Section 2.1. A brief survey on the

popular parameter search methods available is covered in Section 2.2. In Section

2.3, recent works on parameter estimation of oscillatory systems are reviewed.

2.1 Problem statement

In parameter estimation, problem formulation requires selection of a suitable

objective function as a measure of the goodness of fit. The ordinary least squares

estimator is commonly employed, as well as other approaches such as maximum

likelihood and Bayesian maximum a posteriori [3]. The objective function for

ordinary least squares is

Φ(p) =
N

∑

i=1

(

ŷi − yi(p)
)2

(2.1)

where p is the vector of model parameters, ŷ are the measurements, and y(p)

is the model output. There are alternatives such as an observer-based ap-

proach [36], or the Belief Propagation [37] method that produces probability

distributions for the parameters as opposed to point estimates.

8
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Nonlinear parameter estimation problems can be considered a subset of gen-

eral Non-Linear Programming (NLP) problems and may be stated in the follow-

ing manner:

p̂ = arg min
p

Φ(p) (2.2)

subject to

hi(p) < 0 i = 1, ..., nh (2.3)

cj(p) = 0 j = 1, ..., nc (2.4)

lk ≤ p ≤ uk k = 1, ..., np. (2.5)

Here, p̂ is the vector of np parameter estimates that minimize the objective

function Φ(p) subject to nh inequality and nc equality constraint functions.

The variables lk and uk are lower and upper bounds specified on the parameter

estimates, respectively. The space defined by the constraints and bounds is

called the feasible region. Simple parameter estimation problems often have

no constraints, but bounds on the parameter estimates are often applied to

ensure that realistic estimates are obtained. This is particularly true for kinetic

parameters of irreversible (bio)chemical reaction which cannot be negative by

definition.

2.1.1 Convexity and Multiple Optima

Convexity is an important concept in optimization and is useful in understanding

local and global optima. The presence of multiple local optima in the feasible

region has an impact on the choice of optimization algorithms used.

Convex Set and Function

A convex set is defined as a set of points in n-dimensional space where all pairs

of points can be joined by a straight line that is also entirely within the set.

The concept is illustrated in Figure 2.1 for two dimensions. Similarly, Figure
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(a) Convex set. (b) Convex set. (c) Nonconvex set. Note: not
all of the line segment joining
the two points is within the
set

Figure 2.1: 2D convex and nonconvex sets. Adapted from Edgar et al. [38].

2.2 illustrates the concept of convexity for a single variable function. A function

f(x) defined on a convex set is said to be a convex function if the following holds:

f [γx1 + (1 − γ)x2] ≤ γf(x1) + (1 − γ)f(x2) (2.6)

for any two points x1 and x2, and γ is a scalar in the range 0 ≤ γ ≤ 1 [38]. The

function is strictly convex only if the strict inequality holds [38].

If the objective function is convex within the convex feasible region, the re-

sulting problem is a convex programming problem where only a single optimum

exists. This optimal point for the entire feasible region is called the global op-

timum. In contrast, for a nonconvex optimization, a point can be the optimum

only for a neighborhood around the point and is referred to as a local optimum.

For many problems, the feasible region is non-convex and contains multiple local

optima. Within this set of local optima, the member with the smallest function

score is the global optimum for the entire feasible region. Figure 2.3 shows a

single variable function with three local optima (A, B, C) of which B is the global

optimum.

2.2 Optimization Methods

For general nonlinear parameter estimation problems, closed form solutions do

not exist and optimization algorithms are needed to solve for the parameter es-
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Figure 2.2: A convex single variable
function

Figure 2.3: Multiple optima in a single
variable function

timates. A variety of optimization methods are available to compute the best

parameter estimates and the choice of the most appropriate algorithm is depen-

dent on the nature of the problem.

All optimization algorithms start with an initial starting guess (e.g. deriva-

tive based methods) or multiple guesses (e.g. stochastic search methods), and

iteratively improve the solution(s) until a termination criterion is satisfied. To

improve a solution, local search methods utilize only local information from its

neighborhood (e.g. gradient for derivative-based methods) to search for a better

solution. On the other hand, global methods utilize information from the entire

solution space to improve current solution(s). Within local and global classes,

the methods can be further subdivided.

2.2.1 Local Search

Derivative-based methods are extremely popular in solving NLP problems due

to their computation efficiency and mathematical proofs of convergence. These

methods rely on the first order derivative (gradient) or even second order deriva-

tive (Hessian) information to determine the direction taken for the search step.

For nonlinear parameter estimation problems, derivative-based methods such

as Gauss-Newton and Levenberg-Marquardt [4] for least squares problems are
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usually very efficient in terms of number of iterative steps. The Gauss-Newton

method approximates the Hessian matrix used in the Newton method with JTJ

where J is the Jacobian of the model. The Levenberg-Marquardt method further

modifies the Hessian matrix approximation with an additional λI term, where

λ is a non-negative damping factor and I is the identity matrix. The damping

factor may be modified during each iteration to adjust the speed of convergence.

Since the parameter estimation problem also falls into the general class of

NLP problems in optimization, various NLP algorithms can be used as well.

NLP algorithms are divided into derivative-based and direct search methods.

For derivative-based methods, gradient descent, Newton’s method and Quasi-

Newton methods fall into this category. The first utilizes gradient information

while the second incorporates the Hessian matrix as well. Due to the difficulty

of computing the Hessian, Quasi-Newton methods use various techniques to

approximate the Hessian matrix. When there are constraints to be satisfied,

methods available include Successive Linear Programming (SLP), Successive

Quadratic Programming (SQP) and Generalized Reduced Gradient (GRG) [38].

While these derivative-based methods are usually efficient in the number of it-

erations, the overall speed is dependent on the computation cost of accurate

gradient values.

The most popular direct search method is the classic Nelder-Mead simplex

method [39]. The basic Nelder-Mead algorithm searches for the optimum by

first creating a simplex of n + 1 vertices in the n-dimensional solution space and

replacing the worst vertex with a better point reflected through the centroid

of the other n vertices. More sophisticated enhancements allow the simplex to

adaptively expand or shrink during the search. Implementations of the algo-

rithm can be found in a large number of software platforms and libraries such

as MATLAB [40], Mathematica [41], COPASI (successor to Gepasi) [42] and

Systems Biology Workbench [43].

Another well known direct search method is the Hooke and Jeeves pattern

search [44]. With an initial starting solution or base solution, an exploratory
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search is executed by perturbing the base solution along search directions that

span the solution space. The base solution is replaced if a superior solution is

found and a subsequent pattern move is made in the direction of the earlier

successful exploratory search. If the exploratory search fails, the magnitude of

the search perturbations is reduced and another exploratory search is executed.

The algorithm is implemented in software packages such as LANCELOT [45]

and COPASI [42].

As mentioned earlier, local search methods rely only on information from the

neighborhood of the current solution. Using gradient information, derivative-

based methods will search “downhill” for a minimum solution. If successful

convergence is achieved, the converged solution is the optimum of the subregion

containing the initial guess. For nonconvex problems, depending on the initial

guess, the final solution is not guaranteed to be the global optimum. In general,

local direct search methods are “greedy” by making locally optimal choices and

thus suffer from the same drawback as derivative-based methods. However,

direct search methods may be modified to have the ability to escape from local

optima and this gives them the ability to better explore the solution space.

Nevertheless, there is still no guarantee that the global optimum will be found.

2.2.2 Global Search

Though many challenges remain, research in the field of global optimization has

seen much progress in the recent decades, with many examples of successful

applications [46–48]. This is coupled with advances in computing power that

allow the methods developed to be applied to practical problems of realistic size.

The main advantage of global methods is their ability to handle nonconvex

problems better than local methods. As mentioned earlier, global methods use

information from the entire solution space to improve on current solution(s), and

thus search the entire solution space more effectively. However, the ability to

effectively search for the global optimum necessitates a much heavier computa-

tional load. Most stochastic methods employ a population of solutions to explore
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the entire solution space, while deterministic methods divide the solution space

into subregions for investigation. In contrast, local methods only explore a single

convex region in a “downhill” manner for the local optimum. Within a convex

region, local methods are far more efficient than global stochastic methods in

reaching the optimum.

Another drawback of global methods is the difficulty in implementation as

compared to local methods. While a number of stochastic methods such as the

Evolutionary Algorithms [48] (see below) are often touted as easy to apply [49],

much effort can be expended in “tuning” the algorithm for a particular problem

in order to obtain satisfactory results. For deterministic methods, specification

of convex envelopes has a huge impact on the chosen algorithm’s performance

(this is further discussed below).

The global optimization methods currently in use can be divided into deter-

ministic and stochastic methods. Deterministic methods are more rigorous and

convergence proofs exist for certain problem classes, while this is not the case

for stochastic methods. However, stochastic methods are comparatively easier

to implement and remain popular.

Deterministic Methods

A number of deterministic methods are available [50], but the most efficient

ones are based on spatial branch and bound (BB) methods. The BB method

was originally developed by Land and Doig in 1960 [51] for Linear Programming

but it can also be applied to nonconvex Nonlinear Programming (NLP) through

a reformulation of the problem. For NLP problems, convex envelopes or underes-

timators are first used to approximate the solution space, thus creating a convex

Mixed Integer Nonlinear Programming (MINLP) problem. This is then solved

using derivative-based NLP methods for the subproblems and BB methods for

the global Mixed Integer problem. While convergence proofs of BB methods for

certain problem classes exist, the search tree is not guaranteed to be finite. If

the underestimating functions are not suitable, the search will become an ex-
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haustive enumeration of the solution space and the resulting computation cost is

prohibitive. In the past two decades, software packages offering implementations

of BB method, such as BARON [52] and αBB [53], have been developed and the

number of successful applications is growing [54].

Stochastic Methods

In the earlier discussion of local search methods, it was noted that derivative-

based methods are computationally efficient for convex problems. One straight-

forward method to avoid local optima is to employ multiple starting points with

local NLP solvers [38]. However, using naive and randomly chosen starting

points tend to result in multiple convergence to identical local optima and con-

sequently result in an inefficient search. To improve efficiency, the Multilevel

Single Linkage method was proposed by Rinnooy Kan and Timmer [55]. The

algorithm iteratively generates randomly sampled points and selects a fraction

of these points based on objective function score and proximity to one another,

as well as previous solutions for improvement with local NLP algorithms.

Metaheuristic methods belong to a popular class of stochastic methods used

for optimization. These methods are stochastic in nature, incorporating proba-

bilistic elements in the generation of new solutions. Interestingly, many of these

algorithms are based on various real-life phenomena (evolution, physical phe-

nomena, behavior of organisms, etc.) or a combination of heuristic rules for geo-

metric exploration of the solution space and are designed to avoid local optima.

The objective function is usually treated as a black-box function, thus allowing

the methods to be applied to different problem classes with minimal modifica-

tions. Combining such flexibility with relatively simpler implementation effort

compared to deterministic methods, metaheuristics are often a practical choice.

With the ability to avoid local optima, they usually produce better solutions

compared to local methods which are reliant on a good initial guess for suc-

cess [56]. Metaheuristics can also obtain the global optimum, although there is

no guarantee. In some applications, a time consuming search for the global op-
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timum solution is not necessary but good, suboptimal solutions obtained within

a much shorter time frame are preferred.

Metaheuristic search methods include the well-known Genetic Algorithm

(GA) [57] and Evolutionary Strategy (ES) [58], both classified under Evolution-

ary Algorithms (EA) [48]. These algorithms can be characterized as population

based stochastic optimizers that rely on evolutionary-inspired processes such

as crossover and mutation to generate fresh solutions during each iteration to

update the current population.

Another class of metaheuristics is the Swarm Intelligence class of algorithms

with examples like Particle Swarm [59] and Ant Colony [60]. These algorithms

are based on the collective behavior of a large group of individual organisms (or

agents in Artificial Intelligence research). The movement of individuals across the

solution space during the search is guided by individual records of good solutions

encountered previously and group knowledge that is facilitated by communica-

tions between individuals.

Outside of these two major classes of algorithms, there are other popula-

tion based stochastic optimizers such as Differential Evolution [47] and Scatter

Search [61]. Differential Evolution (DE) is a population based stochastic op-

timizer that bears many similarities to other EA algorithms such as GA and

ES, although it is not always classified as an EA. The algorithm was originally

developed by Price and Storn in 1995 [62] to solve the Chebyshev polynomial

fitting problem but has since evolved into its current form of a versatile and

popular optimization algorithm [47]. Unlike Genetic Algorithm which operates

on bit strings, DE operates on real numbers, making it particularly suited for

nonlinear optimization.

The defining characteristic of DE is its unique method of generating new

solution vectors by perturbing each existing solution with a scaled difference of

two other randomly selected solutions. Another differing characteristic is the

application of selection pressure. EAs usually place selection pressure by only

selecting superior parents to generate new solutions while in DE, the generation
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of new solutions is unbiased and the selection pressure is instead applied through

the replacement of current solutions only with new solutions that are superior.

Scatter Search (SS) uses a much smaller population size and relies on struc-

tured combinations of existing solutions to produce new solutions and (option-

ally) improve them with other (local) methods. Although one implementation of

SS [61] used the Nelder-Mead simplex algorithm to improve promising solutions

(intensification phase), other local NLP solvers can also be applied [63]. By strict

definition, the original Scatter Search is a hybrid method. However, the algo-

rithm can be used without the local search, thus making it pure metaheuristic

method.

Other metaheuristics also include the popular Simulated Annealing (SA)

[64,65] and related methods like Stochastic tunneling [66] and Tabu Search [67],

which only maintain a single solution during the search iterations. The list of

metaheuristics methods discussed above is not meant to be exhaustive. The

research activity in the field does not show any sign of slowing down as new

algorithms and modifications of existing methods have been proposed within

the past decade and more can be expected within the foreseeable future.

Due to the problem formulation and solution screening method (Section 4.2),

the solution space contains discontinuities between oscillating and non-oscillating

solutions, and multiple local optima may exist. These preclude the use of local

methods, especially derivative-based methods. The flexibility and ease of imple-

mentation makes metaheuristic methods very attractive for application to the

present parameter estimation problem.

2.2.3 Hybrids

Although stochastic global search methods have no guarantees for locating the

global optima, they are generally good at avoiding local optima in which local

search methods tend to get trapped. Unfortunately, stochastic search methods

are computationally expensive. Even when the search has located the convex

region of an optimum, convergence to the optimum is far slower than a derivative-



2. PARAMETER ESTIMATION 18

based search method. Thus, it had been suggested to combine the strengths of

both classes in a synergistic way, i.e. using the stochastic search to avoid poor

local optima and the rapid convergence of local search methods when a good

optimum region is found.

In one hybrid structure, the global method is used sequentially with the local

method. The first global step (e.g. GA) searches the solution space to avoid poor

local optima and then the search switches to a local method (e.g. LM) for rapid

convergence with the best known solution as the starting point. Alternatively,

the local search can be integrated into the global search. This usually entails

the use of local search to improve interim solutions obtained within the global

search. An example is the Scatter Search algorithm discussed previously.

2.3 Parameter Estimation of Oscillatory Systems: Cir-

cadian Rhythms

As discussed in Chapter 1, parameter estimation methodology is not routinely

employed by modelers of biological oscillators. In the review of literature, a small

number of recent works were found to apply parameter estimation techniques to

build models of circadian rhythms.

Forger and Peskin [68] performed parameter estimation of their 74 states,

36 parameters mammalian circadian rhythm model with experimentally mea-

sured protein and mRNA levels under entrained conditions. The data available

is sparse, containing only 3 mRNA time profiles each with 6 measurements and

4 protein time profiles each with 13 measurements. The model was fitted to the

data over a single oscillation with a simple coordinate search algorithm which

cycles over each parameter to modify and compute the resulting objective func-

tion score. An initial guess with a suitable period was obtained by trial and

error and then used in the parameter search. The objective function does not

include error in the free running period, though the best solution obtained shows

a physiologically acceptable free running period.
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In the modeling of the Arabidopsis circadian oscillator, Locke et al. [69] used

an alternate approach to construct an objective function that scores based on

qualitative features of the model output. These features include free running

period, phase difference, strength of oscillations and entrainment ability. The

model used in this work is composed of 6 states with 23 parameters, which

is relatively small compared to the other works discussed in this section. The

search procedure consists of an initial phase that enumerates a large number (1

million) of quasi-random points in the parameter space and selecting the best 50

for optimization with SA. This methodology was again used in the construction

of an extended model in a subsequent work [70].

In another modeling effort of the Arabidopsis circadian oscillator, Zeilinger et

al. [71] constructed an objective function with terms that measure the phase re-

lationships between identified genes to the light-dark cycles, free running period

under constant light and dark conditions, as well as the period of one mutant

type. This last term (period of mutant type) is particularly interesting as it

is not used in the other parameter estimation efforts. The model used in this

study consists of 19 states and 87 parameters, which is also the largest number

of parameters estimated among the works discussed in this section. The search

algorithm used is ES with the initial population composed of oscillating solutions

obtained from a random search of 10,000 solutions. The final solution obtained

is further refined using a local hill climbing optimizer.

A recent work by Bagheri et al. [72] on the Drosophila circadian rhythms

shares some similarity to Locke et al. and Zeilinger et al. in the spirit behind

the objective function constructed. The model is composed of 29 states and 84

parameters but the problem size was reduced to 36 parameters by using assump-

tions of similar reaction rate constants for different species to lump parameters

together. The parameter space was further reduced by discretization. By using

relative sensitivity distributions obtained from studies of similar models, groups

of parameters, in the descending order of sensitivities, were allowed accuracy to

the hundredths, the tens and the ones. The parameter estimation is composed
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of 3 successive stages solved using GA. Successful solutions from each stage are

fed into the next as the initial population. In the first stage, parameter sets are

screened for autonomous oscillations and the objective function measures how

close the free running period is to the circadian 24 hours. For the second stage,

an objective function is constructed to measure qualitative characteristics of the

system such as phase relationships and amplitude of certain proteins. The ob-

jective function for the second stage is further modified with additional terms

that measure entrainment characteristics, creating the objective function for the

final stage.

With exception to Forger and Peskin, the works discussed above use objective

functions that measure the match in features such as phase relationships as

opposed to matching time based profiles of mRNA and proteins. In this work,

the case studies used follow Forger and Peskin in using time series data of mRNA

and proteins. However, the approach taken in problem formulation and the

resulting objective function is different, as well as the use of a global search

algorithm. Further, the methodology also considers the confidence intervals of

the parameter estimates for use in identifiability analysis.



Chapter 3

Sensitivity Analysis of

Oscillatory Systems

In the parameter estimation of dynamical systems, the search modifies param-

eter values to find the trajectory for the best fit. Sensitivity analysis described

in Section 3.2 enables the understanding of system behavior with respect to

parametric perturbations and is also useful in computing the Fisher Information

Matrix (FIM) to estimate the variance of parameter estimates (Section 4.6).

However, sensitivity analysis of oscillatory systems requires a different approach

due to their periodic nature and the properties of interest (period and phase)

are not addressed by conventional analysis. The appropriate sensitivity mea-

sures and associated computation methods for oscillatory systems are reviewed

in Section 3.3. Instead of infinitesimal perturbations used in sensitivity analy-

sis, finite perturbations can be utilized as well. In Section 3.4, a commonly used

tool in the study of circadian rhythms, the Phase Response Curve, is introduced.

Through sensitivity analysis, problems encountered in parameter estimation of

oscillatory systems can be better understood, namely due to the property of

periodicity which is absent in typical non-oscillatory systems.

21
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3.1 Oscillatory Systems

In the modeling of dynamical physical and biological systems, coupled ordinary

differential equations (ODE) are commonly used. In vector notation, the system

can be written as:

dx

dt
= f(x(t),p) (3.1)

with initial conditions

x(0) = x0 (3.2)

where x ∈ R
n denotes the states, p ∈ R

m the parameters, f the vector of

nonlinear equations and t is time. Such a system can be used to model an

oscillator with stable, attractive limit cycle behavior. A limit cycle is defined as

an enclosed periodic orbit in phase space. Biological oscillators are commonly

modeled to exhibit such behavior, since the oscillations are maintained while

being subjected to external perturbations, as well as the inherent stochastic

nature of biological processes (as opposed to orbits) [31, 73–75]. In this work,

such models of biological oscillators are considered.

3.2 Sensitivity Analysis

Sensitivity analysis is the study of system output changes due to the perturba-

tions in parameters and initial conditions. Sensitivity analysis is widely appli-

cable, including chemical systems [76]. In this work, local sensitivities are used

in the computation of FIM from which the variance of parameter estimates can

be bounded (Section 4.6).

The first order local sensitivity coefficient is defined as:

si,j =
∂yi

∂pj
(3.3)
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where si,j is the sensitivity coefficient of dependent variable yi with respect to

parameter pj . Higher order sensitivity coefficients are available but only first

order sensitivities are considered here. Generally, output sensitivity coefficients

can be computed from the state sensitivities since the outputs are functions of

the system states by:

y = g(x) (3.4)

where g is the output function and x are system states. For an ODE system

(Equation 3.1), there are 3 methods of computing the state sensitivities: direct,

finite-difference and Green’s function [76].

Direct Method

The direct method is the conceptually most straightforward method of comput-

ing the state sensitivities by solving, together with the original ODE system

(Equation 3.1):

d

dt

∂x

∂p
(t) =

dS

dt
(p,x, t) = J(x, t)

∂x

∂p
(t) +

∂f

∂p
(x, t) = J(x, t)S(t) +

∂f

∂p
(x, t)

(3.5)

where J is the Jacobian matrix of f with respect to x. The initial conditions are

given by:

si,j

∣

∣

t=0
=











0, pj 6= xi

1, pj = xi.
(3.6)

Finite Difference Method

Finite difference avoids the necessity of solving the model and sensitivity differ-

ential equations, and approximates the local sensitivity coefficients by:

si,j =
∂xi

∂pj
≈ ∆xi

∆pj
=

xi(t, pj + ∆pj) − xi(t, pj)

∆pj
(3.7)



3. SENSITIVITY ANALYSIS OF OSCILLATORY SYSTEMS 24

using a finite perturbation ∆pj . To determine the state sensitivities with respect

to a parameter pj , the model equations are solved twice for pj and pj + ∆pj .

When using finite difference, there are two sources of error, simulation error

and truncation error. Simulation error is due to the use of numerical integration

methods and truncation error is caused by the omission of higher order terms

in the approximation (Equation 3.7). The simulation error is present in other

methods (direct method and Green’s function method); it cannot be completely

eliminated and can only be controlled by the choice of integration step size. The

second error type, truncation error, can be adjusted by reducing ∆pj , but the

error magnitude cannot be reduced beyond the magnitude of error due to nu-

merical integration. To determine a suitable ∆pj at each time step, multiple

function evaluations may be computed and this translates to considerable com-

putation cost as one has to solve the model equations more than twice to obtain

sufficiently accurate sensitivity of one state with respect to one parameter.

The finite difference method can be useful if only a single local sensitivity

value at one time point is needed, or if the model is given in a complex functional

or non-mathematical form that does not allow derivation of the Jacobian (i.e.

black box model).

Green’s function method

The Green’s function method solves for the sensitivities from the equation sys-

tem (3.5) in a different manner. The homogenous part is solved first and the

particular solution for each parameter is solved next. The homogenous part of

the sensitivity equation system corresponding to the Green’s function Γ(t, t′)

problem is:

d

dt
Γ(t, t′) = J(t)Γ(t, t′), t ≥ t′; Γ(t′, t′) = I. (3.8)

The parametric sensitivities can be computed with:

∂x

∂pj
(t) = Γ(t, 0)

∂x

∂pj
(0) +

∫ t

0

Γ(t, t′)
∂f

pj
(t′)dt′. (3.9)



3. SENSITIVITY ANALYSIS OF OSCILLATORY SYSTEMS 25

In the computation of sensitivities over 0 ≤ t ≤ tend, Γ(t, t′) value for 0 ≤ t

are required for each time interval. A more efficient method is to compute the

adjoint Green’s function Γ†(t′, t) using

d

dt
Γ†(t′, t) = −Γ†(t′, t)J(t), 0 ≤ t′ ≤ t; Γ(t′, t′) = I (3.10)

which is integrated backwards. Since Γ(t, t′) = Γ†(t′, t), the adjoint can be used

in Equation 3.9 instead.

In the direct method, (m+1)×n differential equations are solved while n×n

differential equations and n integrals are solved in Green’s function method.

In the case of m ≫ n, the Green’s function method is more computationally

efficient.

3.3 Sensitivity Analysis of Oscillatory Systems

Parametric state sensitivity computed for oscillatory systems show a divergence

as time increases towards infinity, as illustrated in Figure 3.1. Sensitivity anal-

ysis of the properties of interest for oscillatory systems, amplitude, period and

phase, cannot be directly obtained using the methods described in Section 3.2.

Instead, a different treatment is required [77]. This section will focus on sen-

sitivity analysis of phase and period due to their importance to the problem

formulation.

Before proceeding further, phase needs to be defined first. Here, phase (φ) in

an oscillation is the relative position on the limit cycle with respect to a reference

point. It is measured by the time difference between the point and the reference

modulo the period. When comparing two oscillation trajectories from the same

limit cycle, the phase difference is the difference in time (modulo period) for

both trajectories to attain the same phase on the limit cycle.

An important concept used in the analysis of oscillator limit cycle is isochrons

(η). Isochrons are defined as the set of initial conditions that give oscillations

with the same phase as t → ∞. Figure 3.2 shows hypothetical isochrons of a
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Figure 3.1: Sensitivity of state M to parameter vm in the Tyson et al. model

2-state limit cycle. When comparing a perturbed limit cycle to the nominal, the

phase difference can be measured with respect to the isochrons of the nominal

limit cycle. Use of the isochron concept with sensitivity analysis of oscillatory

behavior was explored by Gunawan and Doyle [78].

3.3.1 Sensitivity of Phase to Initial Condition

It is assumed here that the system exhibits stable limit cycle behavior and that

the perturbed initial conditions lie within the basin of attraction of the limit

cycle. Perturbations in the initial conditions do not alter the steady state oscil-

lations but only the phase after the initial transient effects (See Figure 3.3). To

compute the phase sensitivity to initial conditions, the Green’s function matrix

may be used:

Qj(t = 0) =
∂φ

∂xj(0)
= −

(

∂xi(t
′)

∂xj(0)

)/(

dxi(t
′)

dt

)

(3.11)

= − lim
t′→∞

Γ(t′, 0)

/(

dxi(t
′)

dt

)

where only a single row of the adjoint Green’s function matrix is needed. The

trajectory is required to reach the limit cycle, but given that it approaches the

limit cycle asymptotically, this only occurs at t′ = ∞. For practical applications

however, sufficient accuracy can usually be obtained after a small number of

cycles, though the exact number for a given accuracy varies for different systems.
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Figure 3.2: Isochrons of a 2-state limit cycle.

Figure 3.3: Evolution of trajectory from different initial conditions and resulting
phase difference. Adapted from Gunawan and Doyle (2006).
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The choice of state xi is immaterial as long as the trajectory belongs to the

limit cycle since phase is a system property rather than a property of individual

states. The above computation can also be used to compute phase sensitivities

with respect to perturbations of the states at any time t.

3.3.2 Parametric Phase Sensitivity

Perturbations to the parameters not only alter the phase of the system, but also

the limit cycle itself and consequently the isochrons. Thus, this requires the

comparison of phase between two different limit cycles. To resolve this, phase is

compared using the isochrons of the nominal limit cycle as shown in the earlier

section. Parametric phase sensitivity can be then defined as [77]:

(

∂φ(t)

∂pj

)

η

=
n

∑

i=1

Qi(t)
∂xi(t)

∂pj
(3.12)

where η denotes the phase difference measured with respect to a given isochron

η(t). The phase sensitivity computed is the sum total of the phase shifts due

to state changes caused by parametric perturbations. Figure 3.4 illustrates the

phase difference between the perturbed and nominal trajectories measured using

isochrons of the nominal cycle.

3.3.3 Period Sensitivity

When the period τ changes due to parameter perturbations, the phase difference

accumulates with every cycle. The accumulated phase difference over a single

cycle is in fact equal to the period change, and the period sensitivity can be

computed from the phase sensitivity according to:

∂τ

∂pj
=

(

∂φ(t + τ)

∂pj

)

η

−
(

∂φ(t)

∂pj

)

η

(3.13)
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Figure 3.4: Phase difference measured with the isochrons (η(t)) of the nominal
cycle. The isochrons are in illustrated with dash-dot lines. The dotted lines
denote trajectory with nominal parameters. Adapted from Gunawan and Doyle
(2006).

3.3.4 Parametric Sensitivity

At the beginning of Section 3.3, the parametric sensitivities of oscillatory systems

was shown to diverge as time increases towards infinity. The parametric state

sensitivities can be decomposed in the following manner [79]:

∂xi

∂pj
=

(

∂xi

∂pj

)

τ

− t

τ

∂τ

∂pj

dxi

dt
(3.14)

to give the respective shape and period contributions. On the right hand side, the

first term contains the parametric state sensitivity with respect to same period

and is periodic. The second term depends linearly on t as well as the period

sensitivity. If the period sensitivity is not zero (i.e. the system period is affected

by the parametric perturbation), then the second term and consequently the

state sensitivity grows unbounded as t → ∞. Figure 3.5 shows the divergence in

two oscillatory behaviors with different periods.
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Figure 3.5: Comparing two oscillating signals with different periods.

3.4 Phase Response Curve

In circadian oscillators, an important property is the ability to entrain to the

environmental cues. Depending on the time at which it is administered, these en-

trainment cues induce different magnitudes of phase shift in the oscillator. When

plotting the phase shifts or phase response over one period, a Phase Response

Curve (PRC) is obtained. The period is normalized to 24 hr in this work.

The entrainment cues, usually light, are typically modeled as a finite para-

metric perturbation to the system. To compute the phase response, the param-

eters affected by light are perturbed by ∆p for a time period of θ. The system

is then allowed to return to the limit cycle. The phase shift is measured by

taking the difference between points of the same phase from the perturbed and

unperturbed system. Figure 3.6 illustrates the phase response of the system.

PRCs can be classified in two ways. The first divides PRCs into type 1

and type 0 by winding number [80]. Type 1 PRCs show small phase shifts

and are continuous over the entire cycle. Type 0 PRCs show large shifts with

a discontinuity between phase delay and phase advance shifts (12 hr delay =

12 hr advance). An example of each type is given in Figure 3.8. The second

classification divides PRCs into type I and type II by bifurcation structure [81].

Type I PRCs only exhibit advance phase shifts while type II can exhibit both

advance and delay phase shifts. Figure 3.7 illustrates the two types.
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Figure 3.6: Phase response to perturbation.

(a) Type 1 PRC (b) Type 0 PRC

Figure 3.7: PRCs classified by winding number

(a) Type I PRC (b) Type II PRC

Figure 3.8: PRCs classified by bifurcation structure



Chapter 4

Methodology

The parameter estimation problem of oscillatory systems is first formulated in

Section 4.1, based on the analysis in the previous chapter. Next, the presentation

of the parameter estimation methodology is divided into two parts: the objective

function formulation and the optimization algorithm. The objective function

computation is further broken down into three consecutive steps, each described

in Sections 4.2, 4.3 and 4.4. Thereafter, Section 4.5 discusses the optimization

algorithm selected and modifications made for application to the problem at

hand. With the estimated parameters, covariance matrix of the parameters can

be estimated using the Fisher Information Matrix to determine the parameter

identifiability, which is described in Section 4.6.

4.1 Problem Formulation

Oscillatory systems possess two key characteristics of periodicity and shape,

where shape describes the state trajectory over one cycle. In contrast, non-

oscillatory systems only possess the shape characteristic and have infinite period.

The periodicity characteristic prevents the direct application of standard param-

eter estimation methods (sum of errors squared) to oscillatory systems, since

parametric sensitivities and consequently the gradient of the objective function

grows unbounded over time from the accumulation of phase differences due to

periodicity mismatch. In Section 3.3.4, the corresponding unbounded increase in

32
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Figure 4.1: Comparing two oscillating
signals at different phases

Figure 4.2: Comparing two oscillating
signals with different shapes

parametric sensitivity was discussed. Again we turn to Figure 3.5 in the previous

chapter with two oscillations with different periodicity compared on time basis.

Due to the period mismatch, an error will be computed between the two trajec-

tories. However, if we scale time with period, both trajectories are identical in

shape and thus no shape error. In other words, the only difference between the

two oscillations is the period mismatch.

Another distinguishing characteristic between two oscillations is the phase.

Due to noise, the initial phase of the data cannot be determined accurately and

results in a phase difference between the data and model simulation. This is

illustrated in Figure 4.1, where two oscillations with different starting phases

are compared. Both oscillations are identical in shape and period but due to

the difference in phase, an incorrect shape error is computed. To resolve this,

the initial conditions are cast as parameters to be estimated with the system

parameters. Figure 4.2 shows two oscillations compared at the same starting

phase and on phase basis, thus clearly illustrating the shape error. In this way,

shape error and period error are decoupled and ensured that a correct shape

error is computed.

Based on the formulation above, the computation strategy for the objective

function is divided into the following three steps. In the first step, the feasible

oscillatory solutions are screened out. In the second step, period of the feasible

solutions are estimated. Finally, the error between phase series data and the

model is computed using the objective function in the third step. These steps
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Figure 4.3: Parameter screening and scoring in the objective function.

are summarized in Figure 4.3.

4.2 Feasible Oscillatory Behavior

In the parameter estimation problem of oscillatory systems, the parameter space

contains parameter vectors that produce model dynamics of different natures.

Among the numerically stable solutions, the following types of dynamics are

possible:

1. Sustained oscillations

2. Damped oscillations

3. Non-oscillating

4. Chaotic oscillations

Figure 4.4 illustrates the dynamic behaviors listed above. Since solutions ex-

hibiting sustained oscillations (i.e. constant period and constant amplitude) are

desired, parameter sets that produce Type 1 solutions need to be screened out.

To accomplish this, two screening processes are carried out. The first employs

a Discrete Fourier Transform (DFT) of the model output to detect oscillations

with a constant period and the second checks for variations in crest heights.
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(d) Chaotic oscillations

Figure 4.4: Solutions types.

4.2.1 Discrete Fourier Transform

To screen for oscillating solutions with a constant period, a DFT [82] of model

output is used. Figure 4.5 shows the power spectrum of the solution types

discussed above. For presentation clarity, the power at 0 Hz is removed, since

it is much larger in magnitude than the power at all other frequencies, and

represents the power at steady state which is irrelevant to the analysis. An

oscillating solution produces a prominent peak in the power spectrum at the

oscillating frequency. On the other hand, a non-oscillating dynamic response

produces only a single peak at 0 Hz (not shown). In this manner, non-oscillating

solutions can be screened out.

4.2.2 Peak Comparison

From the model output, the crest heights of the oscillation cycles are recorded.

If the comparison of heights shows minimal deviation (e.g. < 2%) between each

consecutive crest, the solution is assumed to exhibit sustained oscillations.
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(a) Power spectrum of sustained oscillations
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(b) Power spectrum of damped oscillations
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(c) Power spectrum of non-oscillating solu-
tion
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(d) Power spectrum of chaotic oscillations

Figure 4.5: Power spectrum of solutions types.

After classifying each solution (and its associated parameter vector) accordingly,

the period of Type 1 solutions are estimated (See Section 4.3 below). The remain-

ing solutions either have infinite period (non-oscillating and damped oscillations)

or multiple frequency components (chaotic oscillations). For these solutions, a

large finite value is assigned as the period, i.e. the time of the final reading in the

dataset (which is also the maximum period possible for the dataset). This places

a large selection pressure in the search method against these solutions. Unfortu-

nately, it also introduces discontinuities between oscillating and non-oscillating

regions in the solution space, but derivative-free optimization algorithms can

handle such discontinuities.

The method described above for screening out stable limit cycle solutions

relies on properties of their state trajectories. The advantage of this approach is

its applicability to nonlinear systems in general and ease of use. The drawback

is its lack of rigor and possible incorrect classification of solutions due to the

criteria used (e.g. oscillations damped at less than 1% per cycle), though such



4. METHODOLOGY 37

a problem did not arise in the case studies used.

There are a number of analytical methods that can be used to determine

the existence (or non-existence) and stability of periodic orbits (limit cycles

inclusive) [83]. Unfortunately, these methods are difficult to apply to general

nonlinear systems. These methods instead may be useful in analysis of the model

prior to parameter estimation, where the results can help determine suitable

parameter bounds for parameter estimation.

4.3 Period Estimation

Although the DFT of the model output can be used to estimate the system

period, the period estimates obtained were found to be inaccurate, thus requiring

an alternative technique to produce better period estimates.

One method to estimate the period is to find the time differential between

two points of the same phase on adjacent cycles of an output yi. These two points

are marked with crosses in Figure 4.6. The best period estimate is obtained by

using two points at the phase with the largest gradient (dy/dt) as this gives

the smallest error ∆yi for a given sampling time ∆ti. To obtain the time of

the chosen points, linear interpolation is used. A cubic interpolating spline can

be used to produce more accurate estimates but the gain in accuracy is minor

considering the choice of points (with the largest gradient) and the additional

computational effort of generating a spline at every objective function evaluation.

Alternatively, a simpler method is to use mean-crossings for period estima-

tion. In Figure 4.6, the mean value is indicated by the horizontal line and the

two circular markings are the zero-crossings used. The use of zero-crossings elim-

inates the need to search for the point with the highest gradient but with small

sacrifices in accuracy for most cases. Figure 4.7 illustrates a possible case in

which the zero-crossing method produces poor accuracy in the period estimated.

Such cases are however rare and do not appear the case studies used in this work.

For the period estimation of experimental data, the data is first treated using

a moving average filter to reduce the measurement noise. The presence of noise
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Figure 4.6: Period estimation Figure 4.7: Poor period estimation.

also means that gradient estimation is difficult and thus the period is estimated

by the simpler method of mean-crossings. It is important that an accurate period

estimate is used to scale time, since an inaccurate period used will naturally lead

to the comparison of data points at the wrong phase and incorrect shape errors

computed.

For a given set of noisy experimental data, multiple period estimates can be

obtained (one per oscillation cycle, per state). The population variance of N

period estimates τ can be estimated by:

σ2
τ =

1

N − 1

N
∑

i=1

(τi − τ̄)2, (4.1)

since it is difficult to compute the period variance using the variance of data

points.

4.4 Error Computation

A number of objective functions are viable for the parameter estimation problem.

These include [3]:

• Ordinary Least Squares (OLS)

• Maximum Likelihood Estimation (MLE)

• Maximum A Posteriori (MAP)

From the three methods listed, MAP estimation requires the most amount of

information: the a priori distribution of the parameters and the measurement
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data. MLE requires only an assumed distribution of the measurement noise

while OLS requires only the data.

Ordinary Least Squares is the simplest method in common use. The OLS ob-

jective is commonly modified with the use of weights as Weighted Least Squares

(WLS). For example, in the case where multiple states are measured, the state

measurements may be weighted by the peak value of the state. When mea-

surement error variance are used as the weights, the WLS is identical to the

MLE with the assumption of independent and identically distributed (iid), and

Gaussian distribution of errors.

In MLE and MAP, a statistical approach is taken. The measurements are

considered as samples of random variables. These random variables have a joint

probability density function (PDF) and the estimator in MLE maximizes the like-

lihood of observing the dataset. The derivation with the assumption of Gaussian

distribution is given in Section 4.4.1. For MAP estimation, the parameters are

also considered as random variables with a prior distribution. Using the prior

distribution and the Bayes’ rule, the MAP estimator is derived in Section 4.4.2.

4.4.1 Maximum Likelihood Estimation

A likelihood function is defined as the joint probability function of the data

sample, reflecting the likelihood of the parameters producing a given dataset.

The likelihood L(p; ŷ) of obtaining a vector of parameters p given the dataset

ŷ of N observations is:

L(p; ŷ) = fy(ŷ;p) (4.2)

where fy is the probability density function (PDF) of ŷ given p. For MLE under

Gaussian assumption, p can be estimated by maximizing the log of the likelihood

function:

p̂ = arg max
p

{

logL(p; ŷ)
}

= arg max
p

{

log fy(ŷ;p)
}

(4.3)
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where p̂ is the Maximum Likelihood Estimator of p. The logarithm of a function

is a monotone transformation and thus does not alter the maxima. The logarithm

operation is used to convert multiplication terms to addition terms, which are

easier to manipulate.

In the absence of additional information, the assumption of Gaussian distri-

bution for fy is commonly made:

fy(ŷ; p) =

(

1

(2π)N/2|V|1/2

)

exp

(

− 1

2
(ŷ − y)TV−1(ŷ − y)

)

(4.4)

where y is the output of model f and V is the covariance matrix of the observa-

tions. Substituting back into Equation 4.3 gives:

p̂ = arg max
p

{

log

(

1

(2π)N/2|V|1/2

)

−
(1

2
(ŷ − y)TV−1(ŷ − y)

)

}

. (4.5)

Removing the first constant term and converting the maximization of a negative

function to the minimization of a positive function yields

p̂ = arg min
p

{

(ŷ − y)TV−1
y (ŷ − y)

}

. (4.6)

If the measurements are independent, then the covariance matrix V is diag-

onal and the parameter estimation problem then reduces to:

p̂ = arg min
p

{ N
∑

i=1

(ŷi − yi)
2

σ2
i

}

(4.7)

for N data points and σi is the i-th diagonal element of V. This is identical to

weighted least squares using measurement variance as the weights.

4.4.2 Maximum a Posteriori

In the Bayesian approach of MAP estimation, the parameters are treated as ran-

dom variables. These parameters, having a prior distribution f(p), are correlated

with the measurements ŷ in the dataset. With these, we seek the maximum of

the posterior joint probability distribution function of p and ŷ. Using Bayes’
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rule, the conditional probability distribution function for p is given by [3]:

f(p|ŷ) =
fy(ŷ|p) · f(p)

f(ŷ)
. (4.8)

The MAP estimate can then stated as:

p̂ = arg max
p

{

fy(ŷ|p) · f(p)

f(ŷ)

}

(4.9)

where the denominator is not dependent on p and the numerator is then used to

derive the objective function. As in the case for MLE, maximizing the logarithm

of a function is the same as maximizing the function itself:

p̂ = arg max
p

{

log
[

fy(ŷ|p) · f(p)
]

}

(4.10)

= arg max
p

{

log
[

fy(ŷ|p)
]

+ log
[

f(p)
]

}

.

With the assumption of Gaussian distribution for both the measurements as well

as the prior distribution of parameters p̃, manipulation of the above equations

gives

p̂ = arg min
p

{

(ŷ − y)TV−1
y (ŷ − y) + (p̃ − p)TV−1

p (p̃ − p)

}

(4.11)

and

p̂ = arg min
p

{ Ny
∑

i=1

(ŷi − yi)
2

σ2
y,i

+

Np
∑

i=1

(p̃i − pi)
2

σ2
p,i

}

(4.12)

for diagonal covariance matrices Vy and Vp.

4.4.3 Objective Function for Oscillatory Systems

As described in Section 4.1, the time series data are converted into phase (φ)

series data by scaling time with the period. By comparing data points at the

same phase, the shape error is computed, while the period error is accounted

for in an additional term. Assuming no knowledge of a prior distribution for
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parameters p, for a system with Ny states, the objective function Φ(p) to be

minimized can be constructed using MLE as follows:

Φ(p) =

( Ny
∑

j=1

N
∑

i=1

1

σ2
j,i

(

ŷj(φi) − yj(φi)
)2

)

+

( Nτ
∑

i=1

1

σ2
τ

(τ̂i − τ)2
)

(4.13)

where Nτ is the number of period estimates obtained from the data. The period

variance σ2
τ uses the estimated population variance from Equation 4.1.

However, the variation in period estimates from the experimental data used

is due to the additive measurement noise in the time series data as opposed to a

stochastic system with varying period. One can consider each period estimates

as a different reading of the same data point (period), and since the simulated

model has only one period estimate, a simplified formulation using the mean

period τ̂ave is:

Φ(p) =

( Ny
∑

j=1

N
∑

i=1

1

σ2
j,i

(

ŷj(φi) − yj(φi)
)2

)

+

(

1

σ2
τ,ave

(τ̂ave − τ)2
)

(4.14)

with σ2
τ, ave being the estimated variance of the period mean, i.e. σ2

τ, ave can be

obtained by dividing σ2
τ with Nτ .

4.4.4 Stochasticity in Gene Expression

Due to low copy numbers within cells, many cellular processes, such as gene

expression, are affected by stochastic noise. With development of the Green

Fluorescence Protein (GFP) and derivatives, intracellular noise can be directly

studied [84, 85]. Through wet-lab experiments and simulations, it was shown

that proteins at low copy numbers exhibited a long-tailed distribution that was

fitted to a log-normal distribution [86,87]. As the amount of protein increased, a

crossover to the Gaussian distribution was observed. This crossover was modeled

by the following exponential function:

p(N) =

(

N + N0√
2πNN0

)

exp

[

−
(

ln
(

N
N0

)

+ N
N0

− µ
)2

2σ2

]

(4.15)
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where N is the number of proteins copies, N0 is an independent scaling param-

eter, µ is the distribution mean, and σ is standard deviation (Supporting Text

of [87]).

For simplicity, only the Gaussian distribution of noise is considered in this

work. However, the objective function developed in the earlier section can eas-

ily be modified for the case of log-normal distribution or the distribution for

lognormal-to-Gaussian crossover in Equation 4.15.

4.5 Differential Evolution

Due to the problem formulation in the previous section, the solution space con-

tains discontinuities and multiple local optima may exist. These exclude the use

of local methods, especially derivative-based methods. On the other hand, most

metaheuristic methods such as Differential Evolution (DE) do not require gra-

dient information and are much better at handling multiple optima. Combined

with flexibility and ease of implementation, the DE algorithm is an attractive

choice.

DE utilizes two vector populations each containing Np D-dimensional vectors.

For the parameter estimation problem at hand, each vector contains the model

parameters to be optimized. The current population Px contains vectors xi,g

that are either initial solution points or selected surviving solutions from the last

iterate:

Px,g = {xi,g}, i = 0, 1, ..., Np − 1, g = 0, 1, ..., gmax, (4.16)

xi,g = {xj,i,g}, j = 0, 1, ..., D − 1.

The subscript index g (0 to gmax) indicates the generation, i indicates population

index (0 to Np − 1) and finally j (0 to D) indicates parameter index.

During each iteration, randomly chosen vectors from Px,g are first mutated
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to produce the mutant population Pv,g that consists of Np mutant vectors vi,g:

Pv,g = {vi,g}, i = 0, 1, ..., Np − 1, g = 0, 1, ..., gmax, (4.17)

vi,g = {vj,i,g}, j = 0, 1, ..., D − 1.

Each mutation is next recombined with a randomly chosen target vector from

the current population to produce the trial population Pu of Np trial vectors

ui,g:

Pu,g = {ui,g}, i = 0, 1, ..., Np − 1, g = 0, 1, ..., gmax, (4.18)

ui,g = {xj,i,g}, j = 0, 1, ..., D − 1.

Since the mutant vectors are overwritten by trials vectors, only a single array

is needed to hold both Pv,g and Pu,g populations and thus only two arrays are

necessary for storage in the program.

4.5.1 Initialization

In most standard implementations of DE, the population is initialized in an

uniform random manner. Using the upper (bU) and lower (bL) bounds for each

parameter:

xj,i,0 = bj,L + randj(0, 1) · (bj,u − bj,L) (4.19)

where randj(0,1) is a random number generator that returns uniformly dis-

tributed random numbers within the range [0, 1). Alternative initialization meth-

ods are possible [47] or the parameter space may be initialized with a logarithmic

distribution for parameters with bounds spanning multiple orders of magnitude,

a scheme applied to another metaheuristic optimizer [63].
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Figure 4.8: Vector differences and resulting difference vector distribution.
Adapted from Price et al. (2005).

4.5.2 Differential Mutation

The main mechanism of producing new solutions is differential mutation, where

a scaled, randomly sampled vector difference is added to a third vector. Here, a

mutant vector vi,g is generated using three randomly selected vectors from the

current population Px,g:

vi,g = xr0,g + F · (xr1,g − xr2,g). (4.20)

Index r0 denotes the base vector while r1 and r2 denote the difference vectors.

Index i specifies the target vector which the resulting mutant undergoes recom-

bination and competes against during selection. The scaling factor F , a positive

real number, is the primary tuning variable used to control the evolution rate of

the population. Typically, F falls between 0.0 and 1.0, although it may assume

values > 1.0.

Figure 4.8 shows how a population of six solution vectors on the left can gen-

erate a set of unscaled vector differences on the right. Note that the distribution

is symmetric about zero because each pair of vectors gives two vector differences

of the same magnitude but opposite direction.

The three indices (r0, r1, r2) can be selected in a few ways. The most
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Figure 4.9: Stochastic universal sampling and roulette wheel selection. Adapted
from Price et al. (2005).

straightforward is a random picking of all three indices but this may lead to some

vectors being chosen repeatedly while others are omitted completely. If indices

(r0, r1, r2) are not mutually exclusive, this can result in degenerate vector

combinations. The differential mutation operation can thus be reduced into

simple arithmetic recombination (r1 = r0 or r2 = r0), no mutation (r1 = r2)

or even base vector duplication if no crossover occurs in the following step. In

addition, degenerate combinations can also appear due to the choice of trial

vector index i. If i = r0, the crossover step becomes mutation only. These

degenerate combinations discussed are of first-order; higher order degenerate

combinations are possible, but with much lower probability. An in-depth analysis

of various degenerate vector combinations can be found in Price et al. [47].

To prevent repeated selections for base vectors, stochastic universal sampling

can be used [88]. The Np vectors are chosen in a single trial with the same

probability for all vectors. This is contrasted by the commonly used roulette

wheel selection where Np single selection trials are executed [88]. Figure 4.9

contrasts the two methods.

There are two methods that adhere to stochastic universal sampling: per-

mutation selection and random offset. In permutation sampling, base vector of

indices consecutively drawn from an array of randomly permuted number se-

quence are paired with the sequentially numbered target vectors. For random
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Figure 4.10: Pairing base vectors to target vectors. Adapted from Price et al.

(2005).

offset, the base vector index is computed as the sum, modulo Np, of the target

index and a randomly generated offset. Figure 4.10 illustrates both selection

techniques.

To prevent degenerate vector combinations between indices, a combination

of permutation and random offset selection can be used. When pairing base

vector indices to the target vectors, a single array of permuted numbers is first

generated for r0. The r1 indices array can next be generated by adding a small

random offset (< Np/2) to the r1 indices array, modulo Np. Likewise, the r2

indices array can be generated from r1’s array in a similar fashion. This ensures

that no degenerate vector combinations appear.

4.5.3 Crossover

Crossover is an operator that is complementary to differential mutation in gen-

erating new solutions. In the basic algorithm, uniform (or binary) crossover of

one target vector and a mutant vector is performed:

uj,i,g =











vj,i,g if
(

randj(0,1) ≤ Cr or j = jrand

)

xj,i,g otherwise.
(4.21)
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The proportion of trial parameters taken from the mutant vector is controlled

by the control variable Cr. This user defined value is kept between 0 and 1.

For each j-th parameter, a uniform random number is generated and com-

pared to the crossover probability Cr. If the random value is less than or equal

to Cr, the mutant parameter vj,i,g is passed on to trial vector ui,j , else the target

parameter xj,i,g passed on instead. To prevent producing a trial vector ui,g that

is identical to a target vector xi,g, a mutant parameter of a randomly chosen

index jrand is automatically assigned to the trial parameter.

The rule-of-thumb for the initial settings of DE are 10 ·D as the population size

Np, 0.8 for F and 0.9 for Cr [89]. Prior experiences of the DE community [47]

showed that settings for most successful solutions fall within the range of [0.5,1].

In the selection of vectors for the new generation, each trial vector ui,g is

paired with its corresponding target vector xi,g and a simple comparison of

objective function scores (Φ) is made. If the trial vector is as good or better, it

replaces the target vector:

xi,g+1 =











ui,g if Φ(ui,g) ≤ Φ(xi,g)

xi,g otherwise.
(4.22)

Age does not play a role in selection here and the best-so-far solution is always

retained regardless of age (i.e. elitist).

The algorithm iterates over mutation, crossover and selection until the ter-

mination condition is satisfied. Like EAs, a variety of termination conditions are

possible, such as maximum allowed CPU time, maximum number of generations,

the best objective function score dropping below an acceptable limit, or popu-

lation statistics [47,48]. Figure 4.11 is a flowchart that illustrates the algorithm

during each iteration. The flowchart however does not explicitly indicate that

r0, r1, r2 and i are distinct.
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Figure 4.11: Flow chart of DE’s generate-and-test loop. Adapted from Price et

al. (2005).
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4.5.4 Variants

There exist many variants of DE, two of which are discussed further below [47].

The basic DE algorithm is referred to as DE/rand/1/bin in shorthand. The first

term after “DE” indicates the choice of base vector in the mutation step, while

the next term “1” denotes how many vector differences added to the base vector.

The last term refers to the crossover method, which in this case is binomial (bin).

DE/best/1/bin is a variant of DE where the base vector in differential muta-

tion is replaced by the best vector currently known. This DE variant is tailored

for small populations and trades reliability for fast convergence. Jitter is com-

monly used in this variant to improve the algorithm’s reliability by adding small

random perturbations to F for every parameter.

In DE/target-to-best/1/bin, each base vector lies on the line between the

target vector and the best vector. The position of the base vector on the line is

controlled by λ, another control variable that can be manipulated separately or

set to match F . The modified differential mutation operator can be written as:

vi,g = xi,g + λ(xbest,g − xi,g) + F (xr1,g − xr2,g). (4.23)

A minor variant uses the /rand-to-best/ option, where the target vector xi,g in

Equation 4.23 is randomly selected instead (i.e. xj,g is used and i 6= j ).

4.5.5 Application to Parameter Estimation

In the parameter estimation of oscillatory systems, the solution space poses prob-

lems to the type of search method that can be used. As described in Section

4.2, the solution space contains dynamics of different natures, of which only the

limit cycle is desired. Using the formulation in the earlier sections, the solution

space becomes discontinuous between oscillating and non-oscillating solutions

(See Section 4.2.2). Hence, the use of DE is appropriate since it does not require

gradient information in the search. Depending on the definition of paramet-

ric bounds, the solution space may be dominated by non-oscillatory solutions.
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Using naive uniform seeding, a small fraction of the initial solution population

containing oscillatory solutions will drastically slow down the convergence speed

of the search, if not prevent convergence. There are three possible methods to

improve the initial population. The first is to randomly generate solutions con-

tinuously and draw out oscillating solutions until a quota is met. The initial

population is then formed using these oscillating solutions and the remaining

filled by randomly generated solutions. The second method is to generate an

initial population which contains at least one oscillating solution (if more than

one, the best in terms of period or score) that serves as the center and gen-

erating new solutions that lie on the line between the remaining solutions and

the center. The solutions are successively drawn towards the center until the

quota of oscillating solutions in the population is met. The third is adapted

from Evolutionary Strategy [58], where a single oscillating solution is mutated

with a normally distributed random variable to produce the initial population.

4.5.6 Alternative Search Algorithms

Two other search methods, Evolutionary Strategy [58] and Scatter Search [90]

were also tested for our parameter estimation. Unfortunately, both methods

have drawbacks that rendered them inefficient in solving the parameter esti-

mation problem. For Evolutionary Strategy, the main problem is the choice of

step size. The geometry and size of the oscillating region is generally unknown

and thus it is difficult to tune the optimizer to suit the problem. For Scat-

ter Search, the algorithm utilizes a small primary population of “elite” vectors

and is heavily reliant on random reseeding of the parameter space in generat-

ing diversity. If only oscillating solutions are admitted into the elite population

vector, excessive computational effort is required if the proportion of oscillat-

ing solutions in the parameter space is relatively small. On the other hand, if

non-oscillating solutions are admitted, the discontinuity between oscillating and

non-oscillating solutions will prevent the leveraging of local search methods to

improve non-oscillating solutions. This defeats Scatter Search’s main advantage
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of integrating of local search methods into the global search.

It should be stressed here that the parameter estimation problem is not

restricted to any particular search algorithm. Three global search algorithms

were investigated and Differential Evolution was found to be the most efficient.

As surveyed in Chapter 2, a variety of methods exist and it is possible that a

number of them may also be suitable. However, the purpose of this work is not

to evaluate efficiency of optimization algorithms in solving the current class of

problems but to show that the effectiveness of the developed framework (i.e.

objective function).

4.6 Confidence Intervals and Identifiability

After the best parameter estimates are obtained, we can evaluate the lower

bounds on the confidence intervals of these estimates using the Fisher Informa-

tion Matrix (FIM) and determine the practical identifiability of the parameters.

The definition of the FIM given by:

FIM = E

{

[ ∂

∂p
log f(ŷ|p)

][ ∂

∂p
log f(ŷ|p)

]T
}

. (4.24)

Under Gaussian assumption, the FIM is computed by:

FIM =
N

∑

i=1

ST(ti)V
−1(ti)S(ti) (4.25)

where S is the n×m sensitivity matrix of y with respect to p and V is the mea-

surement covariance matrix. The derivation of the formula is given in Appendix

A. In this work, the objective function depends on period and shape. Thus, the

FIM is constructed as follows:

FIM = sT
τ v−1

τ sτ +
N

∑

i=1

ST
c (θi)V

−1(θi)Sc(θi) (4.26)

where Sc is the parametric sensitivity matrix with respect to constant period

in Equation 3.14, sτ is the period sensitivity vector and vτ is the variance of
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the period average. In this work, it is assumed that the measurements are

independent and identically distributed (iid), and thus V is diagonal.

By the Cramèr-Rao Inequality [3]:

Vp ≥ FIM−1 (4.27)

gives the lower bound of the parameter covariance matrix Vp as the inverse of

the FIM. Using the diagonal elements of Vp, the 95% confidence intervals can be

constructed as [p0 − 1.96σp, p0 + 1.96σp], where p0 are the parameter estimates

and σp are the estimated standard deviations from the FIM.

Practically identifiable parameters are often defined as not to encompass

zero within their confidence intervals [91]. If the parametric confidence intervals

encompass zero, this implies that we are unable to determine with 95% confidence

that the parameters are non-zero. Thus we consider these parameters to be

practically unidentifiable. For p0 to be considered practically identifiable, the

following equation should hold:

σ

p0
<

1

1.96
(4.28)

where σ/p0 is also known as the Coefficient of Variation (CV). For a parameter

to be practically identifiable at a 95% confidence interval, the CV needs to be

less than 51%. For the ease of analysis, we use 50%.

4.7 Violation of Assumptions

In the use of MLE in this work, a number of assumptions were made. We now

state them as follows:

1. Additive errors

2. Zero mean errors

3. Uncorrelated errors

4. Errors have a normal distribution with known statistical parameters.
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Clearly, violation of these assumptions will have a deleterious effect on the pa-

rameter estimates and associated confidence intervals. For example, if the errors

do not possess a zero mean, the resulting parameter estimates will be biased.

A common violation of assumption is the presence of correlated errors. This

can be detected by analyzing the residuals with a lag plot where a random scatter

shot pattern indicates an absence of correlation in the errors. If correlation is

detected, the error covariance matrix equation is no longer diagonal and Equation

4.6 should be used instead. In the case of errors that are autocorrelated, one

approach is assume a model for the autocorrelated errors.

Although the MLE was derived above for the normal distribution, it can

also be derived for other error distributions(this also applies to MAP). This

is illustrated in [4] for the family of exponential distributions including Poisson.

However, the situation may arise where the error distribution is unknown. Using

knowledge of the system under study, an error distribution may be guessed but

caution must be applied as the estimates obtained are likely to be biased and

the confidence intervals computed are no longer accurate.



Chapter 5

Parameter Estimation

In this chapter, the parameter estimation methodology was applied to three

circadian rhythm models. For each model, an in-silico dataset of 200 hourly

samples corrupted with Gaussian noise of 10% standard deviation was gener-

ated. Parameters were then fitted to this dataset and identifiability analysis was

performed on the estimates obtained by computing the parameter variance us-

ing the FIM. Since the datasets are generated in-silico using known parameters

and without plant-model mismatch, accuracy of the estimates could be checked,

particularly for the identifiable parameters. The purpose of this approach is to

judge efficacy of the methodology developed in recovering model parameters.

To study the effects of noise and sampling time on the identifiability of pa-

rameters, datasets with different noise levels (5%−25%) and sampling times

(0.25 hr−2 hr) were generated. Parameters were re-estimated for the respective

datasets and the corresponding variance computed. By observing the parameter

variance changes, the effects of reducing sampling time and noise reduction on

parameter identifiability were compared.

For the parameter estimation, the Differential Evolution algorithm was im-

plemented in C language [47] with the initial population seeding modified as

described in Section 4.5.5. The DE/rand-to-best/1/bin variant was used and

the additional control variable λ was manipulated separately. Parameter bounds

used for the initial population seeding were enforced during the subsequent search

55



5. PARAMETER ESTIMATION 56

due to the large number of numerically unstable solutions generated if the bounds

were removed. Although these solutions were naturally discounted due to their

large objective function scores, the effectiveness of the search algorithm was

severely affected.

The CVODE solver package [92] was used to numerically solve the model

ODEs and the FFTW3 library [93] was used for DFT computation. Further,

the Intel® MPI (Message Passing Interface) library was used to enable parallel

computation. All parameter estimation computations were performed on an

Intel Dual Core 1.6GHz computational cluster with 112 compute nodes. For the

estimation of parameter variance based on the FIM, MATLAB® [94] was used

as the computation platform and the ode15s solver was used to solve the relevant

ODE systems.

5.1 2-state Tyson Model

In the first and simplest example, a two state, nine parameter Drosophila cir-

cadian model by Tyson et al. [32] was used. The present model was simplified

from a larger model of six differential equations with the mechanism illustrated

in Figure 5.1. To reduce the 6 state model, PER and TIM were lumped into a

single specie as experimental data showed similar time profiles for both proteins.

The model was further reduced by assuming that dimerization reactions are fast

enough for the monomer and dimer concentrations to be at equilibrium. The

final model comprises of two differential equations and one algebraic expression

given by:

dM

dt
=

2

1 + (Pt(1 − q)/2Pcrit)2
− kmM (5.1)

dPt

dt
= vpM − kp1Ptq + kp2Pt

Jp + Pt

− kp3Pt

with

q =
2

1 +
√

1 + 8KeqPt
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Figure 5.1: Molecular mechanism of the circadian clock, adapted from Tyson et
al. (1999).

where M and Pt represents the per mRNA and PER protein concentrations

respectively.

5.1.1 Parameter Estimation

As explained in Section 4.1, the initial conditions (or concentrations) were in-

cluded in the parameter search and therefore the number of search variables

totaled to 11. The nine kinetic parameters were constrained to 0.1 to 10 times

of their true values and ±2σ for both initial concentrations. The DE strategy

used was DE/rand-to-best/1/bin with the following settings: F = 0.8, λ = 0.8,

Cr = 0.9 and a population size of 100.

Figure 5.2 compares the simulation using best fit parameter estimates with

in-silico data, showing a good agreement. The best fit parameter estimates are

listed in Table 5.1 with the corresponding true values, as well as the percent

deviations and Coefficient of Variations (CV). The CVs were computed based

on the FIM discussed in Section 4.6. Among the nine parameters, six are within

10% of their true values while the remaining (kp1, kp2, Keq) show deviations
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Figure 5.2: Comparison of best fit simulation with data (10% noise, 200 samples)
for the 2-state Tyson model.

Parameters True Estimates % Deviation Std. Dev. % CV

vm 1 0.99766 0.23449 0.02393 2.39810

km 0.1 0.10224 2.23587 0.00171 1.66785

vp 0.5 0.48697 2.60533 0.00966 1.98346

kp1 10 7.87814 21.21864 3.37335 42.81916

kp2 0.03 0.01820 39.31867 0.04880 268.05608

kp3 0.1 0.10156 1.56184 0.01204 11.85233

Keq 200 137.89132 31.05434 107.51092 77.96787

Pcrit 0.1 0.09742 2.57611 0.00646 6.63155

Jp 0.05 0.04557 8.86806 0.00782 17.17000

M 1.86056 1.81217 2.60050 0.02758 1.52200

Pt 2.60609 2.64742 1.58564 0.13786 5.20748

Table 5.1: Best fit parameter estimates of the 2-state Tyson model.

up to 40% (highlighted in bold). kp1, kp2 are the Vmax constants for monomer

and dimer phosphorylation respectively, and Keq is the equilibrium constant for

dimerization. These three parameters also have large CVs and two of them (kp2,

Keq) are practically unidentifiable based on the 95% confidence interval, that is

the CVs are greater than 50%. The results match the analysis of the model which

found that the oscillation period was approximately 24 hr and was insensitive to

Keq or kp1 when Keq > 100 [32].

The estimated parameters generally show good agreement with the true pa-

rameter values and the simulation result fits well with the data, indicating a

successful parameter search. Although the model is simple with a small num-

ber of parameters, this example demonstrates the feasibility of the proposed

methodology.
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5.1.2 Effect of Noise

To study the effect of noise, the parameter search was repeated for different

noise levels from 5% to 25% in 5% increments while the sampling time (1 hr)

and number of samples (200) were kept the same as in the initial parameter

estimation. Figure 5.3 shows how the CVs of the parameters vary with different

noise levels. As expected, decreasing noise levels lead to corresponding decreases

in CVs, though exceptions exist. If the parameter estimates obtained from one

dataset (e.g. with 10% noise) are reused to compute the CVs for all noise levels,

smooth monotonic plots for all parameters will be obtained, and this is expected

from the FIM computation in Equation 4.26. However, parameters re-estimated

for each dataset will differ due to different noise realizations. For vm and vp, the

parameter estimates for 25% noise show larger deviations compared to estimates

at lower noise levels and the effect of the deviations on the CV is larger than the

effect of higher noise level. For kp2, the parameter is practically unidentifiable

and the estimates for each noise level show large deviations from the true value

(> 100%).

5.1.3 Effect of Sampling Time

To study the effect of sampling time on parameter identifiability, sampling time

was also varied between 0.25 hr and 2 hr, while noise was fixed at 10% and the

simulation time remained at 200 hr. Figure 5.4 shows how CVs of the parameters

vary with different sampling times. As expected, decreasing sampling times also

lead to decreasing CVs.

5.1.4 Noise vs. Sampling Time

Increasing the number of measurements will generally increase the information

content of the dataset and consequently improve parametric identifiability. More

measurements can be taken at a faster rate or in more replicates. The purpose

of this comparison is to determine which of these gives a greater improvement in

terms of reducing CV. In this case, the number of readings N was quadrupled,
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Figure 5.3: % CVs for different noise levels in the 2-state Tyson model.
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Figure 5.4: % CVs for different sampling times in the 2-state Tyson model.
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Parameter Sampling Noise

vm -1.62873 -3.00346

km -1.14077 -1.95367

vp -1.35604 -1.98040

kp1 -47.02695 -61.10426

kp2 -70.94138 1.32942

kp3 -9.65761 -15.34328

Keq -87.80901 -136.37960

Pcrit -4.34053 -18.94790

Jp -11.37933 -56.06638

Table 5.2: Comparison of % CV changes due to sampling time decrease and
noise reduction in the 2-state Tyson model.

by either taking four replicates and thereby reducing noise by half (from 20% to

10%), or decreasing the sampling time from 2hr to 0.5hr. The changes in CV are

shown in Table 5.2. With the exception of kp2, a reduction in measurement noise

(i.e. more replicates) results in a greater improvement in CV (highlighted in

bold) over a decrease in the sampling time. For kp2, it counter-intuitively shows

a slight increase in CV when the percent noise was reduced. As mentioned earlier

in Section 5.1.2, the parameter is unidentifiable and exhibit large deviations

in the parametric estimates. This renders the CVs computed unreliable and

thus inappropriate for the comparison. Excluding kp2, all other parameters

unequivocally show that a noise reduction gives a larger improvement in terms

of CV. These results suggest that in wet-lab experiments, having more replicates

is better than a higher sampling rate in improving parameter identifiability for

the same increase in total readings.

5.2 5-state Goldbeter Model

In the second study, the Drosophila circadian model by Goldbeter [30] was used.

The circadian oscillations of PER is modeled with five species: per mRNA (M),

PER protein (P0), and the mono- and bi- phosphorylated forms (P1, P2), and

nuclear PER (PN ). The source of oscillations is the negative feedback of nuclear

PER suppressing the transcription of per mRNA and delay due to the phospho-

rylation of PER protein before transportation into the nucleus. This is different
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Figure 5.5: Molecular mechanism of the circadian clock, adapted from Goldbeter
(1995).

from the coupled action of positive and negative feedback, as well as the role

of phosphorylation generating the positive feedback in the previous Tyson et al.

model. In the Goldbeter model, a delay in the feedback loop favors sustained os-

cillations and also gives a phase relationship between per mRNA and total PER

protein levels that is consistent with experimental observations, in which per

mRNA level peaks about 4 hours prior to the maximum of total PER protein.

Figure 5.5 shows the regulatory network model.

The 5-state ODE model:

dM

dt
= vs

Kn
I

Kn
I + Pn

N

− vm

M

Km + M
(5.2)

dP0

dt
= ksM − V1

P0

K1 + P0

+ V2

P1

K2 + P1

dP1

dt
= V1

P0

K1 + P0

− V2

P1

K2 + P1

− V3

P1

K3 + P1

− V4

P2

K4 + P2

dP2

dt
= V3

P1

K3 + P1

− V4

P2

K4 + P2

− k1P2 + k2PN − vd

P2

Kd + P2

dPN

dt
= k1P2 − k2PN

where M is the per mRNA and the PER protein levels are represented by P with

the subscripts 0 − 2 denoting non-phosphorylated, mono-phosphorylated and

bi-phosphorylated PER respectively, and N indicating bi-phosphorylated PER

levels in the nucleus. There are 18 kinetic parameters and 5 initial concentrations
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Figure 5.6: Comparison of best fit simulation with data (10% noise, 200 samples)
for the 5-state Goldbeter model.

in this model, a total of 23 parameters to be estimated. The size of the present

problem is twice that of the previous example and thus the DE population size

was doubled to 200, while the strategy and control settings were kept the same

(DE/rand-to-best/1/bin, F = 0.8, λ = 0.8, Cr = 0.9).

5.2.1 Parameter Estimation

The true parameters used in this study were taken from Goldbeter [30] and

given in Table 5.3. Again, an hourly sampled dataset for 200 hours with 10%

Gaussian noise was generated. The parameter search space was constrained to

between 0.1 to 10 times of the true values and ±2σ for the initial concentrations.

The resulting best fit simulation is compared with the data in Figure 5.6. Table

5.3 gives the parameter estimates of the best fit simulation, as well as percent

deviations and CVs.

In summary, 16 of the 18 parameter deviate less than 20% from their true

values while the remaining two (K2 and V2) show deviations up to 50% (high-
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Parameters True Estimates % Deviation Std. Dev. % CV

vs 0.76 0.78292 3.01593 0.09480 12.10793

vm 0.65 0.69508 6.93508 0.06727 9.67859

Km 0.5 0.52143 4.28494 0.15038 28.84065

ks 0.38 0.37126 2.30029 0.00676 1.82142

vd 0.95 0.87293 8.11313 0.01793 2.05358

k1 1.9 1.90992 0.52233 0.17180 8.99521

k2 1.3 1.30667 0.51291 0.11597 8.87530

KI 1 0.99541 0.45948 0.05704 5.73062

Kd 0.2 0.17143 14.28481 0.01446 8.43180

n 4 3.84130 3.96758 0.61767 16.07971

K1 2 2.15445 7.72256 0.53161 24.67488

K2 2 2.97533 48.76670 3.41867 114.90020

K3 2 1.89402 5.29892 0.59143 31.22588

K4 2 1.81320 9.34015 1.31103 72.30470

V1 3.2 3.22470 0.77189 0.35931 11.14242

V2 1.58 2.03879 29.03728 1.62021 79.46930

V3 5 4.75132 4.97363 0.83768 17.63045

V4 2.5 2.34909 6.03628 0.97479 41.49627

M 1.61043 1.55651 3.34791 0.02708 1.73973

P0 0.59515 0.60087 0.96124 0.04156 6.91702

P1 0.33635 0.35086 4.31383 0.03344 9.53003

P2 0.22122 0.23398 5.76935 0.02311 9.87596

PN 0.34592 0.35838 3.60310 0.03122 8.71086

Table 5.3: Best fit parameter estimates of the 5-state Goldbeter model.
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lighted in bold). The standard deviations computed from the FIM show that

K2, K4 and V2 are practically unidentifiable based on the 95% confidence in-

terval (highlighted in bold), thus explaining the large deviations of K2 and V2.

These unidentifiable parameters make up three of the four Michaelis-Menten ki-

netic parameters of the backward phosphorylation reactions. The fourth (V4),

although practically identifiable, still exhibits a large CV of 41%. This implies

that the oscillations are not sensitive to these parameters.

5.2.2 Effect of Noise

To investigate the effects of noise, a study similar to the previous example was

performed. The sampling time (1 hr) and number of samples (200) were main-

tained while the noise level was varied from 5% to 25% at 5% increments. Figure

5.7 shows the CVs computed for different noise levels. Again, decreasing noise

levels lead to decreasing CVs, though with a major exception in V2. The CVs

computed for V2 show that the parameter is identifiable for all noise levels and

this in conflict with the analysis above (Section 5.2.1), where the computed CV

indicate that the parameter is unidentifiable. In the initial parameter estima-

tion, the value of 2.04 was obtained for V2 while the estimate obtained in this

section is 1.54 and closer to the true value of 1.58. This shows that identifiability

analysis for parameters can be affected by deviations in the parameter estimates.

In the estimates obtained, most parameters exhibit larger deviations for higher

noise levels. For most parameters, the effect on the trends of computed CVs is

fairly small except for V2, where an opposite trend in CV is observed between

10% and 20% noise levels.

5.2.3 Effect of Sampling Time

Figure 5.8 shows how the CV of the parameters vary with different sampling

times. Again, the noise level was fixed at 10% and the total time remained at

200 hr. As expected, decreasing sampling times lead to decreases in CV for most

parameters. However, K2 and V2 in Figure 5.8e show abnormally large values of



5. PARAMETER ESTIMATION 66

5 10 15 20 25
0

10

20

30

40

50

60

70

% noise

%
 C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

 

 

ν
s

ν
m

K
m

n

(a) vs, vm, Km

5 10 15 20 25
0

1

2

3

4

5

6

% noise

%
 C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

 

 

k
s

ν
d

(b) ks, vd

5 10 15 20 25
0

5

10

15

20

25

30

% noise

%
 C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

 

 

k
1

k
2

K
I

K
d

(c) k1, k2, KI, Kd

5 10 15 20 25
0

20

40

60

80

100

% noise

%
 C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

 

 

K
1

K
3

V
1

V
3

(d) K1, K3, V1, V3

5 10 15 20 25
0

20

40

60

80

100

120

140

% noise

%
 C

oe
ffi

ci
en

t o
f v

ar
ia

tio
n

 

 

K
2

K
4

V
2

V
4

(e) K2, K4, V2, V4

Figure 5.7: % CVs for different noise levels in the 5-state Goldbeter model.
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Figure 5.8: % CVs for different sampling times in the 5-state Goldbeter model.

CVs at the sampling time of 0.5hr and this can be attributed to the large positive

deviations in the parameter estimates (> 74%). In addition, K2 is practically

unidentifiable for all but the smallest sampling time (0.25hr). For K4 and V4,

the large increase in the CV for the smallest sampling rate (0.25hr) can also be

attributed to the positive deviations in parameter estimates, as opposed to the

negative deviations for estimates at other sampling rates.



5. PARAMETER ESTIMATION 68

5.2.4 Noise vs. Sampling Time

As in the 2-state Tyson model, changes in the CV from noise reduction (20%

to 10%) and decrease in sampling time (2 hr to 0.5 hr) are compared in Table

5.4 with the larger changes in the CV highlighted in bold. For K2 and V2, the

comparisons are ignored due to positive changes in the CV. As mentioned in

the above sections, the parameter estimates obtained show large deviations and

the effect of these deviations on the CV is larger than those of reducing noise

or sampling time. This results in unexpected positive changes for reduced noise

or sampling time. For the remaining 16 parameters, sampling time decrease

produce greater improvement for 6 parameters while the remaining 10 show

larger decreases in the CV due to noise reduction. This suggests that noise

reduction is still preferable in improving parameter identifiability.

In Figure 5.7, four parameters (Km, K2, K3 and K4) are unidentifiable at

higher noise levels (> 15%). Inspection of Table 5.4 shows that, with the excep-

tion of K2, noise reduction results in greater improvement on identifiability for

these parameters, further reinforcing the earlier suggestion on the effectiveness

of noise reduction.

The comparisons of replicate versus sampling time for the 2-state Tyson

(previous example) and 5-state Goldbeter models show that poor parameter es-

timates due to different noise realizations and parametric unidentifiability affect

the reliability of the CVs computed. An alternative approach is to employ the

Monte Carlo method to estimate parameter variance for different noise levels

and sampling times.

5.2.5 Limited Dataset

Presently, modeling efforts on biological systems are often hampered by incom-

plete datasets. Measurements are available for only certain mRNA or protein

concentrations and this poses a problem during data reconciliation with mod-

els. Here, the effect of missing measurements on certain states is investigated.

For this study, only measurements of the mRNA (M) and non-phosphorylated
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Parameter Sampling Noise

vs -8.75210 -7.60981

vm -6.47071 -1.46025

Km -19.94299 -26.16486

ks -1.27653 -1.87398

vd -1.31863 -1.96850

k1 -5.70837 -4.06932

k2 -5.60854 -3.79022

KI -4.06717 -3.04671

Kd -5.89206 -9.65584

n -11.42775 -12.65854

K1 -17.83286 -22.12054

K2 16.20834 -18.26299

K3 -22.19166 -32.93368

K4 -28.56870 -50.76704

V1 -2.57046 -0.54661

V2 40.52213 11.96134

V3 -6.70453 -14.17805

V4 -1.34974 -13.88948

Table 5.4: Comparison of % CV changes due to sampling time decrease and
noise reduction in the 5-state Goldbeter model.

PER (P0) were assumed to be available. The noise level (10%) and number of

samples (200) were unchanged. The true parameters and bounds were also kept

unchanged except for the initial concentrations of the unmeasured states, P1, P2

and PN. Since these states were not measured and thus no a priori knowledge,

they were allowed to range between 0 and 2.

Figure 5.9 shows the best fit simulation compared to the data. In the upper

panel, the simulated system fits well to the measured states. However, the lower

panel shows considerable discrepancy between the model and the unmeasured

states. This is not unexpected since these states were not measured. One in-

teresting observation is that despite the discrepancy in the magnitude of the

peaks and troughs between model simulation and data, the phase behavior is

captured by the model. Since phase is arguably the more important aspect of

circadian rhythms, the resulting fit may be considered acceptable under such

circumstances with missing data.

Table 5.5 compares the true and estimated values of the parameters. From

the percent deviations, only 5 out of 18 estimates show deviations of less than
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Figure 5.9: Comparison of best fit simulation with limited data (2 measured
states) for the 5-state Goldbeter model.

10%, while computation of standard deviation with the FIM shows that all 18

parameters are practically unidentifiable (highlighted in bold). Some of the esti-

mates for parameters KI, K4 and V4 hit their respective upper or lower bounds,

implying that a better fit can be found outside these bounds. For population

based search algorithms such as DE to be efficient, the global optimum should

be within the initial parameter bounds defined [47], or it may result in a fail-

ure to find the global optimum. However, no suitable bounds could be found

for these parameters as they grew unbounded towards infinity or 0 when the

bounds were removed. To obtain reasonable estimates, the bounds for these

parameters were maintained. Wider bounds can be also used but these give

negligible improvement in the objective function value and thus the fit (results

not shown).

Among the estimates of the initial concentrations, the measured states ex-

pectedly show small deviations and are thus identifiable, while the remaining

three show large deviations and are unidentifiable. Since these states are unmea-
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Parameters True Estimates % Deviation Std. Dev. % CV

vs 0.76 0.70416 7.34697 0.37529 53.29635

vm 0.65 0.60042 7.62779 0.37248 62.03733

Km 0.5 0.60069 20.13817 0.90999 151.48975

ks 0.38 0.37814 0.49021 0.32500 85.94695

vd 0.95 0.96724 1.814321 1.35379 139.96488

k1 1.9 0.58607 69.15404 25.52322 4354.9538

k2 1.3 0.60981 53.09169 1.59578 261.68575

KI 1 0.10000 90.00000 2.31706 2317.0595

Kd 0.2 0.03102 84.48976 0.72009 2321.3506

n 4 2.46687 38.32831 8.66061 351.07723

K1 2 1.56966 21.51679 2.34826 149.60269

K2 2 8.91748 345.87378 91.48826 1025.9435

K3 2 17.04129 752.06458 635.25133 727.71824

K4 2 19.99971 899.98549 1059016.4 5295158.9

V1 3.2 2.89102 9.65556 5.26519 182.12210

V2 1.58 2.42469 53.46108 20.75342 855.92225

V3 5 6.26821 25.36420 218.04875 3478.6448

V4 2.5 0.25001 89.99977 12917.435 5166855.3

M 1.61043 1.78891 11.08290 0.17367 9.70807

P0 0.59515 0.64496 8.36923 0.06384 9.89807

P1 0.33635 0.84551 151.37990 1.64446 194.49391

P2 0.22122 0.43009 94.41387 1.94377 451.94983

PN 0.34592 5.4 × 10−09 100.00000 1.28592 2.4 × 1010

Table 5.5: Best fit parameter estimates of the 5-state Goldbeter model with
incomplete measurements.

sured, the deviations and lack of identifiability for their initial concentrations can

be expected.

5.3 10-state Goldbeter Model

In the third and final example, a 10 state, 38 parameter model of Drosophila

circadian oscillations [95] was used. Both PER and TIM proteins are modeled

in the system as two coupled negative feedback loops. The mechanism that

produces oscillating protein levels is the negative feedback due to the repression

of PER and TIM mRNA transcription by the nuclear PER-TIM protein complex.

Similar to Goldbeter model in the second example, protein phosphorylation of

PER and TIM in this model serves as time delay for the feedback loops. Figure
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Figure 5.10: Molecular mechanism of the circadian clock, adapted from Gold-
beter (1998).

5.10 shows the model scheme. The system was initially modeled with symmetric

kinetic parameters for PER and TIM but alternate asymmetric parameters [96]

were chosen for this study instead.

5.3.1 Parameter Estimation

With 38 unknown parameters and 10 initial concentrations, this nonlinear pa-

rameter estimation problem was challenging. As in the previous examples, an

in-silico data set of 200 hourly samples and 10% noise was generated and used

for parameter estimation. The kinetic parameters were also constrained to 0.1

to 10 times of the true values except for kd, kdC, kdN and n. Parameters kd,

kdC, kdN are reaction constants for non-specific degradation that are included in

the model to ensure existence of steady solutions during the inhibition of other

specific degradation processes [95]. They were constrained between 0 and 10

times of their true values to allow the processes to be switched off with k = 0.

n is the Hill coefficient and was constrained between 1 and 10, and the initial

concentrations were constrained within ±2σ. The model equations are provided
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Figure 5.11: Comparison of best fit simulation with data (10% noise, 200 sam-
ples) for the 10-state Goldbeter model.

in Appendix B for brevity.

For the DE search, the strategy remained as DE/rand-to-best/1/bin and,

the settings found to solve the problem were F = 0.5, λ = 0.3 and Cr =

0.9. The recommended settings for F and λ did not work for this example and

the above settings were determined by trial and error to successfully solve the

problem. In the initial attempts to estimate the parameters, it was found that

estimates of a few parameters (K2P, K4P and K2T) hit their respective upper

bounds, implying that a better fit can be found outside these bounds. This is

similar to the situation encountered with limited measurements for the 5 state

Goldbeter model in Section 5.2.5. No suitable bounds could again be found for

these parameters as they increased unbounded towards infinity when the bounds

were removed. Thus, the bounds for these parameters were again maintained in

order to recover reasonable estimates. Wider bounds were tested, but they give

negligible improvement in the the objective function value. In the identifiable

analysis below, it was found that these parameters are not identifiable and it is
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suggested that they can be removed from future parameter estimation efforts.

The best parameter estimates and corresponding CVs are listed in Table 5.6

and 5.7. The corresponding model output is compared with the data in Figure

5.11. The fit between data and model is again excellent, even with the use of

bounds on the parameters.

Among the 16 Michaelis-Menten kinetic parameters for phosphorylation of

PER and TIM (K1P−4P, K1T−4T, V1P−4P, V1T−4T), 12 are not practically iden-

tifiable (highlighted in bold). In particular, kinetic parameters of the backward

reactions are unidentifiable and the estimates also show large deviations (> 20%)

from their true values (highlighted in bold). With respect to the forward reac-

tions, phosphorylation kinetic parameters for PER protein are also not identi-

fiable, although the estimates show less than 13% deviation. In contrast, the

forward reaction kinetic parameters of TIM protein are identifiable with cor-

respondingly low deviations. We can deduce that the system is insensitive to

the backward reaction parameters from these results and this is similar to the

second example. In addition, due to the choice of parameters for the asymmet-

ric model, the system is also not sensitive to the PER protein phosphorylation

forward reaction parameters.

The degradation parameters (kd, kdC, kdN) are unidentifiable and the param-

eter estimates also show large deviations, with the estimate for kdN approaching

0 while kdC is about 8 times its true value. As mentioned earlier, these pa-

rameters are non-specific degradation terms that are not critical for oscillatory

behavior and this helps to explain their large standard deviations.

5.3.2 Parameter Estimation with Phase Response Curve

The Phase Response Curve (PRC) is a tool regularly used to characterize cir-

cadian rhythms [19, 97, 98] since phase behavior is a very important aspect of

circadian rhythms, and PRCs are useful and easily available measures of phase

behavior. Experimental PRC measurements are easy to elicit and widely avail-

able, in contrast to protein and mRNA datasets which are lacking and are sparse
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Parameters True Estimates % Deviation Std. Dev. % CV

vsP 1.1 1.05998 3.63825 0.03758 3.54540

vsT 1.0 0.96380 3.61994 0.05177 5.37104

vmP 1.0 0.95440 4.56041 0.02870 3.00755

vmT 0.7 0.68269 2.47248 0.05018 7.34999

vdP 2.2 2.14085 2.68845 0.15183 7.09206

vdT 3.0 2.90303 3.23241 0.06579 2.26609

ksP 0.9 0.88257 1.93725 0.03359 3.80643

ksT 0.9 0.88444 0.01729 0.02548 0.02880

k1 0.8 0.80030 1.72932 0.02548 2.88037

k2 0.2 0.21032 5.16084 0.01466 6.97240

k3 1.2 1.26984 5.81955 0.06749 5.31498

k4 0.6 0.58417 2.63841 0.04767 8.15967

KmP 0.2 0.20544 2.71880 0.02944 14.32909

KmT 0.2 0.29027 45.13398 0.19963 68.77576

KIP 1.0 0.94769 5.23134 0.01883 1.98728

KIT 1.0 0.92226 7.77434 0.05063 5.49006

KdP 0.2 0.20133 0.66351 0.01652 8.20367

KdT 0.2 0.19648 1.76144 0.00892 4.53784

K1P 2.0 2.25786 12.89278 1.63931 72.60449

K2P 2.0 19.99365 899.6827 1144.6725 5725.179

K3P 2.0 2.12346 6.17317 1.26231 59.44557

K4P 2.0 19.99991 899.9952 2748.46522 13742.39

K1T 2.0 2.22182 11.09093 0.45575 20.51227

K2T 2.0 20.00000 899.9999 228.95293 1144.765

K3T 2.0 1.97684 1.157968 0.165439 8.368837

K4T 2.0 5.88634 194.3168 10.67921 181.4238

V1P 8.0 8.49962 6.245185 5.63568 66.30509

V2P 1.0 6.73086 573.0859 380.312705 5650.285

V3P 8.0 8.10973 1.37165 4.26614 52.60521

V4P 1.0 6.27738 527.7378 854.34227 13609.86

V1T 8.0 8.35513 4.43911 1.00311 12.00596

V2T 1.0 6.43818 543.8175 67.27627 1044.959

V3T 8.0 7.64987 4.37668 0.47861 6644

V4T 1.0 1.80439 80.43869 2.35390 130.4541

kd 0.01 0.00161 83.86298 0.01665 1031.896

kdC 0.01 0.09069 806.8997 0.06735 74.26728

kdN 0.01 2.8 × 10−08 99.99972 0.01380 4903365

n 4 3.84846 3.78852 0.16016 4.16155

Table 5.6: Best fit parameter estimates of the 10-state Goldbeter model.
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Parameters True Estimates % Deviation Std. Dev. % CV

MP 1.79120 1.75321 2.12081 0.04525 2.58122

P0 0.58218 0.60647 4.17288 0.05666 9.34281

P1 0.54007 0.55968 3.63112 0.05431 9.70296

P2 0.32128 0.33881 5.45373 0.03416 10.08106

MT 3.54281 3.44471 2.76905 0.05885 1.70853

T0 1.50822 1.56290 3.62520 0.13020 8.33049

T1 1.33985 1.33979 0.00442 0.12142 9.06268

T2 0.97060 0.97471 0.42296 0.09407 9.65086

C 0.30794 0.31174 1.23461 0.03152 10.11138

CN 0.66946 0.63435 5.24453 0.02962 4.66999

Table 5.7: Best fit initial concentrations estimates of the 10-state Goldbeter
model

even when available. Due to the importance of phase behavior, experimental

phase response data is also used [32,35,95] for model verification in model build-

ing. Thus, the purpose of this section is to investigate parameter estimation of

circadian oscillators with PRC data.

For this study, the 10 state circadian rhythm model was used. As described

in Chapter 1, the light induces the TIM protein degradation. The effect of light

on the system was thus modeled with an increase in vdT, the kinetic parameter

for TIM protein degradation. The PRC was generated by introducing a square

pulse variation of vdT using a multiplicative factor m into the system and then

allowing it to return to its original limit cycle over a number of oscillation cy-

cles. Figure 3.6 illustrates the computation of phase change at eight cycles after

the perturbation to eliminate transient effects. The resulting phase change was

measured by using reference points of the same phase. The oscillation peaks are

used in Figure 3.6 for illustration purposes, but for higher precision, the mean

crossing method was used (Section 4.3).

This method is straightforward although the instantaneous changes in vdT

introduce discontinuities that can pose problems to the ODE solver at low error

tolerance (< 10−6). A second disadvantage is that the method is computationally

expensive since the simulation time has to be sufficiently long for transient effects

to become negligible, and the ODE model must be solved with a perturbation
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at different timing for each data point on the PRC. Finally, the precision of each

point computed is limited by the size of the time step used during the simulation.

Realistically, the computation time required for time steps < 1.0× 10−3 are not

feasible and the mean crossing method is only able to improve precision to a

certain extent.

Due to the computation cost of each PRC, reduction of the problem size is

needed for the problem to be solved within a reasonable amount of time. The

kinetic parameters for PER and TIM were assumed to be symmetric and lumped

together to reduce the number of estimated system parameters from 38 to 23.

The multiplicative factor m was to be estimated as well, bringing the total to

24.

The symmetric system parameters from Leloup and Goldbeter [95] were used

to generate the dataset. The dataset was composed of 4 PRCs for 1, 3, 6, and 9

hour pulses, each with 12 data points and corrupted using Gaussian noise with

a variance of 0.25 hours2. The measurement noise variance was selected based

on variance estimated from the regression of Drosophila PRCs found in the PRC

atlas [18]. Dual harmonic sinusoidal regression performed on ten PRCs gave

estimated variance in the range of 0.15 to 0.35 and the mid-range value of 0.25

was selected.

As in the earlier section, the parameters were constrained between 0.1 and

10 times of their true values except for kd, kdC and kdN which were constrained

between 0 and 10 times of their true values, and n constrained between 1 and

10. An objective function (Φ) was constructed using the method of Maximum

Likelihood to measure error in the PRC (ρ) and period (τ):

Φ(p) =

( NPRC
∑

j=1

N
∑

i=1

1

σ2
j,i

(

ρ̂j(Ti) − ρj(Ti)
)2

)

+

(

1

σ2
τ,ave

(τ̂ave − τ)2
)

. (5.3)

The PRC is plotted over time Ti normalized to 24 hrs. Phase 0 of the PRC was

fixed at the peak of tim mRNA levels.

The DE strategy used was DE/rand-to-best/1/bin with F = 0.4, λ = 0.3,



5. PARAMETER ESTIMATION 78

0 6 12 18 24
−2

−1

0

1

2

P
ha

se
 s

hi
ft 

(h
r)

Initial Phase (hr)

 

 

Simulated
Noisy data

(a) 1 hour pulse

0 6 12 18 24
−6

−4

−2

0

2

4

P
ha

se
 s

hi
ft 

(h
r)

Initial Phase (hr)

 

 

Simulated

Noisy data

(b) 3 hour pulse

0 6 12 18 24
−8

−6

−4

−2

0

2

4

6

P
ha

se
 s

hi
ft 

(h
r)

Initial Phase (hr)

 

 

Simulated
Noisy data

(c) 6 hour pulse

0 6 12 18 24
−8

−6

−4

−2

0

2

4

6

P
ha

se
 s

hi
ft 

(h
r)

Initial Phase (hr)

 

 

Simulated
Noisy data

(d) 9 hour pulse

Figure 5.12: Comparison of simulated PRCs with data.

Cr = 0.9 and a population size of 200. Using the best set of estimates from

four runs, the simulated PRC is compared to the data set in Figure 5.12, show-

ing excellent agreement. However, the parameter estimates clearly show little

agreement with the true values in Table 5.8.

With the failure to estimate parameters using PRC data, an alternative ap-

proach was considered. An in-silico dataset with 10% gaussian noise and 100

hourly samples was first generated using the model with symmetric parameters

and used for parameter estimation. The estimated parameters and standard

deviations computed from the FIM were then used as the a priori parameters

in MAP estimation (Section 4.4.2) with PRC data. The objective function used

was:

Φ(p) =

( NPRC
∑

j=1

N
∑

i=1

1

σ2
j,i

(

ρ̂j(Ti) − ρj(Ti)
)2

)

+

( Np
∑

k=1

1

σ2
k

(p̂k − pk)
2

)

. (5.4)

The new objective function is similar to the earlier objective function (Equation



5. PARAMETER ESTIMATION 79

Parameters True Estimates % Deviation

vs 1.0 1.66271 66.27105

vm 0.7 1.51875 116.96457

vd 2.0 3.69752 84.87579

ks 0.9 2.74233 204.70370

k1 0.8 0.13574 83.03217

k2 0.2 0.06620 66.90218

k3 1.2 1.86589 55.49046

k4 0.6 0.13922 76.79633

Km 0.2 0.61541 207.70439

KI 1.0 2.64700 164.69971

Kd 0.2 0.03835 80.82292

K1 2.0 1.20347 39.82635

K2 2.0 5.86582 193.29081

K3 2.0 2.19736 9.86778

K4 2.0 7.24289 262.14426

V1 8.0 18.66104 133.26303

V2 1.0 0.11284 88.71583

V3 8.0 12.21116 52.63950

V4 1.0 4.87749 387.74900

kd 0.01 0.00033 96.73671

kdC 0.01 0.09740 874.04818

kdN 0.01 0.03930 292.98825

n 4 2.79261 30.18470

m 2 1.73652 13.17423

Table 5.8: Parameter estimates with PRC data.
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Figure 5.13: Comparison of best fit simulation with data for 10-state Goldbeter
model using symmetric parameters. Parameter estimates are used as the a priori

parameters in MAP estimation.

5.3) but with the period error term removed (since the parameters were fitted to

the period in the a prior estimation) and augmented with an additional term to

measure the difference between the prior values of parameters with the estimates.

Table 5.9 shows the a priori estimates and the standard deviations computed

using the FIM method, as well as the parameters estimated by MAP. Most of

the estimates obtained a priori show excellent agreement with the true values

except for unidentifiable parameters (K2, V2, K4, V4, kd, kdC, kdN). As in Section

5.3.1, the Michaelis-Menten kinetic parameters for the backward reactions and

the non-specific protein degradation are not identifiable. Figure 5.13 also shows

good agreement the simulated system and data.

The MAP estimated parameters listed in Table 5.9 are very close to the MLE

estimates, except for practically unidentifiable parameters (highlighted in bold)

in MLE such as kdC and kdN with large CVs. This is not surprising since the

a priori parameters already show excellent agreement with the true values and

have correspondingly small standard deviations. For most parameters, there is
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MLE MAP

P.1 True Estimates % Dev.2 % CV Estimates % Dev.2

vs 1.00 0.98128 1.87230 1.82460 0.97959 2.04084

vm 0.70 0.70375 0.53591 4.13039 0.70438 0.62626

vd 2.00 2.12640 6.32002 3.29286 2.13956 6.97804

ks 0.90 0.94933 5.48115 2.42200 0.94596 5.10623

k1 0.80 0.53869 32.66347 3.67959 0.53785 32.76830

k2 0.2 0.19157 4.21341 6.94303 0.19085 4.57514

k3 1.2 1.24170 3.47520 5.17352 1.23438 2.86467

k4 0.6 0.64969 8.28092 5.82168 0.64894 8.15694

Km 0.2 0.20522 2.61051 10.49064 0.20252 1.26104

KI 1.0 0.99773 0.22662 1.30654 0.99763 0.23721

Kd 0.2 0.20197 0.98368 5.14350 0.19979 0.10467

K1 2.0 1.47839 26.08051 12.85879 1.46375 26.81226

K2 2.0 0.44724 77.63825 50.42314 0.44467 77.76666

K3 2.0 2.27532 13.76610 19.75953 2.27638 13.81889

K4 2.0 4.51212 125.6061 214.1110 3.94871 97.43533

V1 8.0 6.735104 15.811204 9.479186 6.82149 14.73136

V2 1.0 0.39803 60.19683 53.68422 0.38719 61.28139

V3 8.0 9.44418 18.05221 17.65198 9.56228 19.52848

V4 1.0 2.20848 120.8484 200.6259 2.70979 170.9789

kd 0.01 0.01190 18.97986 107.88739 0.01436 43.56158

kdC 0.01 1.3 × 10−10 99.99999 4.3 × 1010 0.00631 36.89379

kdN 0.01 9.8 × 10−11 99.99999 1.3 × 1010 5.0 × 10−4 95.03372

n 4.0 4.29796 7.44905 2.94440 4.28814 7.20360

m 2 1.93427 3.28640

1 Parameters
2 Deviation

Table 5.9: Parameter estimates using MLE and subsequent MAP.
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Figure 5.14: Comparison of data with PRCs computed with MAP estimated
parameters.

little or no improvement in the MAP estimates over the MLE estimates. The

PRCs from the MAP estimates are also compared to the data in Figure 5.14,

again showing excellent agreement.

Considering the failure of initial parameter estimation effort PRC data and

lack of improvement in parameter estimates for the MAP estimation, it implies

that the PRC dataset lacks information on the dynamics of the ODE model for

parameter estimation. Due to the high computation cost of generating phase

response measurements, size of the dataset used was kept small (48 data points)

for the problem to be solved within reasonable time. This is in contrast with

available experimental PRC datasets which are generally much larger, well in

excess of a hundred data points. Implementation of a more computationally

efficient method of PRC generation will allow the use of datasets with size com-

parable to experimental data and thus enable a more accurate assessment on

the feasibility of using PRC data in parameter estimation. However, considering

how extremely poor parameter estimates were able to produce excellent fits with
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the PRC data in the initial estimation effort, it is unlikely that a much larger

PRC dataset will produce much better estimates.

5.4 Computational Issues

This section discusses some of the computation issues related to the application

of the parameter estimation framework to the examples discussed earlier in this

chapter.

5.4.1 Convergence

In this work, the parameter estimation program was executed in batch mode on

the computational cluster and terminated when the maximum number of itera-

tions (varies with problem size) was reached. During each run, evolution of the

best objective function score was recorded and the final solution population was

saved at program termination. Convergence was then determined by inspecting

the convergence curve of the best objective function versus the iteration count.

Convergence was considered to be achieved when the objective function fell be-

low a threshold value and was improving by less than 10−5 on the average over

50 iterations. Although the optimum was not known a priori, a suitable thresh-

old value was the objective function value of the true parameters. Since the

datasets used were generated in-silico with known parameters, the true parame-

ters gave a desirable fit to the noisy data. Experience from the examples showed

that the converged solutions were 5-10% less compared to the threshold and this

justifies the selection. In practice, this threshold value may differ based on the

requirements of the user.

In the event that satisfactory convergence was not obtained, the population

could be reloaded to continue from the prior search. Since the search algorithm is

stochastic, four runs were performed on each set of data. The best solution from

all the runs were then collected and compared to ensure consistent convergence,

although this gives no guarantee that the global optimal solution is found.

Initially, the search convergence was based on observing the evolution of the
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Figure 5.15: Convergence of parameters and score compared for the 2-state
Tyson model.

best set of parameter estimates. This was motivated by the desire to obtain

accurate parameter estimates since we sought to recover the original parameters

in the parameter estimation. It was found that parameters of the best solution

continued to evolve while the objective function varied less than by 0.1%, as

illustrated in Figure 5.15 for the 2-state Tyson model. Subsequent parameter

identifiability analysis however showed that the slowest converging parameters

(kp1, kp2, Keq) tend to have the large CVs or are even unidentifiable. Thus, it

was concluded that convergence based on parameter values was not efficient.

5.4.2 Parallelization

The code for the original parameter estimation program was a serial implemen-

tation. To solve the parameter estimation problem of the two state model, a run

of 1500 iterations with a population size of 100 takes approximately 4 hours 20

minutes (260 minutes) to complete on a 2.66 Ghz Intel Core Duo PC. The time

required is acceptable but to solve the five state model, a rough estimation of



5. PARAMETER ESTIMATION 85

the time required is:

260 × 2 × 2 × 0.8 = 832 minutes or 13 hours 52 minutes. (5.5)

The first factor accounts for the doubling of population size and the second as-

sumes a doubling in the number of iterations necessary to solve the problem.

The third factor accounts for the difference in computation cost of the five state

model objective function. Contrary to the typical expectation of a higher com-

putation cost when solving a larger ODE system of equations, the computation

cost for objective function evaluation of the five state model is actually lower

compared to the two state model. The main reason is the complexity of the

ODEs in the two state model (Equation 5.1), where a total of three equations

are actually evaluated. In particular, one contains a square root function which

is computationally expensive to evaluate.

Nevertheless, the computation time of the five state model is still more than

three times that of the two state model. It is clear that the computation time re-

quired will continue to grow rapidly for any further increase in problem size such

as the ten state model. Thus a decision was made to implement a parallel ver-

sion of the parameter estimation in order to take advantage of high performance

computing.

For a population based optimizer such as DE, the workload is embarrassingly

parallel and thus parallel implementation is fairly straightforward by distributing

the objective function evaluations during each iteration among the available

processors. Using the parallel code, the parameter estimation of the two state

(1500 iterations) and five state (3000 iterations) models only requires 5 minutes

10 seconds and 21 minutes, respectively. The speedup due to parallelization is

87 times. Using Amdahl’s Law [99]

Factor of Speedup =
1

(1 − Pcode) + Pcode

NCPU

, (5.6)

where NCPU is the number of processors, Pcode is the proportion of parallelizable
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code Pcode can be computed. For a speedup factor of 87 and NCPU = 100, Pcode

was found to be 0.998. Such a large proportion of parallelized computation is

possible due to:

1. Embarrassingly parallel program structure.

2. Large computation cost of objective function evaluation compared to the

DE search algorithm and communication overhead for parallel processing

on a cluster.

3. The population size being an integer multiple of the number of processors

available since the evaluation of objective function is not split between

different processors.

In this work, the DE algorithm used generates a fixed number of trial solutions

during each iteration, enabling an easy determination of a suitable number of

processors for a given population size.



Chapter 6

Conclusions

In this work, a framework for parameter estimation of oscillatory systems was

presented. A phase dependent objective function based on MLE was developed

to capture the error in the shape and periodicity of the system states. Due to the

nonlinear and nonconvex nature of parameter space, a global stochastic search

algorithm was used.

The methodology was applied to three circadian rhythm models using in-

silico data to study its efficacy. In all three examples, model simulation with

the estimated parameters gave excellent agreement with the datasets. However,

some of the parameter estimates obtained deviate considerably (> 50%) from

their true values and these can be attributed to the parameters being insensitive

and thus not practically identifiable with the given datasets. The results obtained

nevertheless show that the methodology was effective in solving the parameter

estimation problem.

In the investigation on the effects of noise levels and sampling time on pa-

rameter identifiability in the first two examples, it was found that reducing noise

by increasing replicates is more effective than a faster sampling rate in improving

parameter identifiability. This is applicable to wet-lab experiments, where ex-

periments can be easily limited by cost and available resources. If true replicates

are possible in the experiment, they will be preferable to increasing the sampling

time.

87
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Parameter estimation with PRC data was attempted, but the results were

unsatisfactory due to the lack of information in the PRC. Another approach was

taken by using PRC data in MAP estimation to improve parameters obtained

using the developed phase dependent objective function. The MAP estimation

produced parameters very close to the initial estimates, though some parameters

show slight improvements.

6.1 Future Directions

The next step is to validate the methodology using actual experimental data.

Application of the methodology to practical modeling problems can be consid-

ered as the real test of its efficacy. However, the issue of mismatch between the

model and the physical system (or plant-model mismatch) will be relevant when

using wet-lab experimental data. Since models are not true depictions of the ac-

tual system, the models will then be evaluated based on the data fit and model

parsimony. Usually, the simplest model with the best fit is selected, though a

slightly poorer fit may be acceptable for a much simpler model.

The parameter estimation problems tackled in this work involve free running

circadian systems. A possible avenue of further work is to compare the quality

of parameter estimates from free running and entrained systems, which was used

by Forger and Peskin [68]. The effect of different entrainment zeitgeber in terms

of light to darkness ratio and circadian period on parameter identifiability can

also be studied. If variations in the zeitgeber prove to have a substantial effect

on the parameter identifiability, the use of zeitgeber in the design of experiments

can be studied. One advantage offered by using entrained systems is that period

estimation of the data is no longer necessary, thus eliminating errors resulting

from comparing data points at the incorrect phases.

Another possible line of investigation is the parameter estimation of stochas-

tic oscillatory models. Although deterministic ODEs are commonly used in

modeling and analysis of cellular processes, they are not appropriate for pro-

cesses that involve species with low copy count. Compared to ODE models,
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stochastic models in the form of Stochastic Differential Equations or Chemical

Master Equation are more accurate depictions of cellular networks. However,

solving such models require much more computation effort. Since the param-

eter estimation framework developed in this work requires an accurate period

estimation, a large number of simulations of the oscillation cycles may be re-

quired, thus compounding the computation cost. For circadian rhythm models,

an alternative is to simulate only entrained systems and consequently avoid the

necessity of period estimation.
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Appendix A

FIM derivation

The definition of the FIM is

FIM = E

{

[ ∂

∂p
log f(ŷ|p)

][ ∂

∂p
log f(ŷ|p)

]T
}

. (A.1)

Assuming a Gaussian distribution for errors in ŷ, we first define the Fisher score
vector as:

FS =
∂

∂p
log f(ŷ|p) . (A.2)

Substituting in the formula for Gaussian distribution,

FS = − ∂

∂p

[

N

2
log(2π) +

1

2
log(|V|) +

1

2
(ŷ − y)TV−1(ŷ − y)

]

(A.3)

and since the first two terms are constants, the equation reduces to:

FS = −∂yT

∂p
V−1(ŷ − y) . (A.4)

Substituting back into the FIM gives:

FIM = E

{

∂yT

∂p
V−1(ŷ − y) (ŷ − y)TV−1 ∂y

∂p

}

=
∂yT

∂p
V−1E

{

(ŷ − y)(ŷ − y)T
}

V−1 ∂y

∂p

=
∂yT

∂p
V−1VV−1 ∂y

∂p

=
∂yT

∂p
V−1 ∂y

∂p
.
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Appendix B

Model equations for 10 state

Drosophila circadian model

dMp

dt
= vsP

Kn
IP

Kn
IP + Cn

N

− vmP

Mp

Kmp + Mp

− kdMp

dP0

dt
= ksPMp − VIP

P0

K1P + P0

+ V2P

P1

K2P + P1

− kdP0

dP1

dt
= V1P

P0

K1P + P0

− V2P

P1

K2P + P1

− V3P

P1

K3P + P1

+ V4P

P2

K4P + P1

− kdP1

dP2

dt
= V3P

P1

K3P + P1

− V4P

P2

K4P + P2

− k3P2T2 + k4C − vdP

P2

KdP + P2

− kdP2

dMT

dt
= vsT

Kn
IT

Kn
IT + Cn

N

− vmT

MT

KmT + MT

− kdMT

dT0

dt
= ksTMT − VIT

T0

K1T + T0

+ V2T

T1

K2T + T1

− kdT0

dT1

dt
= V1T

T0

K1T + T0

− V2T

T1

K2T + T1

− V3T

T1

K3T + T1

+ V4T

T2

K4T + T1

− kdT1

dT2

dt
= V3T

T1

K3T + T1

− V4T

T2

K4T + T2

− k3P2T2 + k4C − vdT

T2

KdT + T2

− kdT2

dC

dt
= k3P2T2 − k4C − k1C + k2CN − kdCC

dCN

dt
= k1C − k2CN − kdNCN
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