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Summary

The objective of this thesis is to set-up a 3D mirror world where the objects

and the events that are happening in the real physical world can be visualized. The

focus and the scope of this thesis is to visualize the tracking in the mirror world

for the equivalent objects and people in the real world.

This thesis can be divided into two parts. The first part deals in creating a

platform for the visualization of a real world environment, i.e. Communications

Lab in NUS Campus. Sun Microsystem Project Wonderland(WL), an open source

toolkit, is used as a basic 3D building environment. A centralized web-server is set

up such that the mirror world can be accessed using a web browser. A virtual 3D

model of the Communications Lab in the Department of Electrical and Computer

Engineering is successfully created and imported into the WL. The WL source code

(WL is open source) is modified to create a communication channel between the

imported mirror world and the real-world applications. The channel is also used to

exchange location information between the real world and the virtual world. The

real world location information is obtained from a Wi-fi based indoor localization

system, Ekahau. A new interface is developed in Java which integrates the Ekahau

localization system with the WL.

The second part of the thesis deals in proposing a new approach for the place-
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SUMMARY

ment of access points for Wi-fi based Fingerprinting localization such as Ekahau.

The main idea behind the AP placement algorithm is to minimize the total number

of similar fingerprints over the entire array of receiver locations, by varying the ac-

cess points’ location. To solve the optimization problem, a heuristic optimization

algorithm Simulated Annealing has been implemented as simple brute force search

method would be highly computationally expensive and inefficient. Numerical re-

sults are obtained for both the brute force search and the Simulated Annealing

optimization approach. The proposed algorithm’s output, i.e. the access points’

location has been applied to a k Nearest Neighbor based localization system and

location error has been analyzed.

iii



Contents

Acknowledgements i

Nomenclature ii

Summary ii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 WL Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Virtual World Architecture in WL . . . . . . . . . . . . . . . 7

2.1.2 Communication Infrastructure in WL . . . . . . . . . . . . . 9

2.1.3 Hardware Specification for WL Implementation . . . . . . . 10

iv



CONTENTS

2.1.4 WL and Other Virtual World Toolkits . . . . . . . . . . . . 11

2.2 Fingerprinting Localization and Ekahau . . . . . . . . . . . . . . . . 12

2.2.1 Localization Algorithm . . . . . . . . . . . . . . . . . . . . . 12

2.2.1.1 Calibration (Off-line)Phase . . . . . . . . . . . . . 12

2.2.1.2 On-line Phase . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Ekahau RTLS . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2.1 Ekahau Site Survey . . . . . . . . . . . . . . . . . . 14

2.2.2.2 Ekahau Positioning Engine . . . . . . . . . . . . . 15

2.2.2.3 Ekahau Tags . . . . . . . . . . . . . . . . . . . . . 16

3 3D Visualization using WL 17

3.1 WL Centralized Server Setup . . . . . . . . . . . . . . . . . . . . . 18

3.2 Importing 3D Models into WL . . . . . . . . . . . . . . . . . . . . . 20

3.3 Real Time Location Update . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 WL and RTLS Interface . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Changes at WL Server . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 Changes at WL Client . . . . . . . . . . . . . . . . . . . . . 26

4 Review of Access Point Placement Techniques 29

4.1 AP Placement - Communication Systems . . . . . . . . . . . . . . . 29

4.2 AP Placement - Localization Systems . . . . . . . . . . . . . . . . . 30

4.2.1 Euclidean Distance Maximization . . . . . . . . . . . . . . . 31

4.2.2 Direct Location Error Minimization Techniques . . . . . . . 32

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Access Point Placement Algorithm 35

v



CONTENTS

5.1 Indoor Radio Propagation Model . . . . . . . . . . . . . . . . . . . 35

5.2 APP - Optimization Model . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Simulated Annealing Optimization . . . . . . . . . . . . . . . . . . 39

5.3.1 SA Implementation for APP Problem . . . . . . . . . . . . . 41

6 Simulation Results 44

6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Simulation Setup - Brute Force Search . . . . . . . . . . . . 47

6.1.2 Simulation Setup - Simulated Annealing Optimization . . . 47

6.2 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Brute Force Search Approach . . . . . . . . . . . . . . . . . 50

6.2.2 Simulated Annealing Optimization . . . . . . . . . . . . . . 58

7 Conclusion and Future Directions 64

7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography 69

vi



List of Figures

2.1 Cell Structure at WL . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Communication Protocols at WL . . . . . . . . . . . . . . . . . . . 10

2.3 Ekahau RTLS Architecture . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 ESS Visualization I . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 ESS Visualization II . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 WL Centralized Server set-up . . . . . . . . . . . . . . . . . . . . . 19

3.2 Art Import Process at WL . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Real and Virtual Communication Lab . . . . . . . . . . . . . . . . . 21

3.4 Framework for WL and Ekahau Interface . . . . . . . . . . . . . . . 23

3.5 Pseudo code : WL-Ekahau Interface . . . . . . . . . . . . . . . . . . 25

3.6 Pseudo code : Changes at WL server . . . . . . . . . . . . . . . . . 27

3.7 Pseudo code : Changes at WL client . . . . . . . . . . . . . . . . . 28

5.1 Effect of AP Placement . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Cooling Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Simulation Workflow: Brute Force Search . . . . . . . . . . . . . . 48

vii



LIST OF FIGURES

6.2 Simulation Workflow: SA Optimization . . . . . . . . . . . . . . . 49

6.3 Placement for 1 AP . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.4 Placement for 2 AP . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.5 Placement for 3 AP . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Placement for 4 AP . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.7 Placement for 5 AP . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.8 Location estimate error using 1 AP . . . . . . . . . . . . . . . . . . 54

6.9 Location estimate error using 2 APs . . . . . . . . . . . . . . . . . 54

6.10 Location estimate error using 3 APs . . . . . . . . . . . . . . . . . 55

6.11 Location estimate error using 4 APs . . . . . . . . . . . . . . . . . . 55

6.12 Location estimate error using 5 APs . . . . . . . . . . . . . . . . . . 56

6.13 90th percentile of error . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.14 Error precision within 3 meters for varying number of access points 58

6.15 Comparison of CPU time required for ED and SF methods . . . . . 59

6.16 Minimum achieved using SA . . . . . . . . . . . . . . . . . . . . . . 61

6.17 Convergence to Global Minima with 2 AP . . . . . . . . . . . . . . 62

6.18 Convergence to Global Minima with 3 AP . . . . . . . . . . . . . . 62

6.19 Convergence to Global Minima with 4 AP . . . . . . . . . . . . . . 62

6.20 Convergence to Global Minima with 5 AP . . . . . . . . . . . . . . 63

viii



List of Tables

6.1 Simulation Parameters for Access Points . . . . . . . . . . . . . . . 46

6.2 Simulation Parameters for Receiver . . . . . . . . . . . . . . . . . . 46

6.3 Simulation Parameters for Propagation Model . . . . . . . . . . . . 46

6.4 Total possible configurations for AP, given L = 18 . . . . . . . . . . 50

6.5 Average Localization Error . . . . . . . . . . . . . . . . . . . . . . . 53

6.6 Parameters for Simulated Annealing . . . . . . . . . . . . . . . . . . 59

6.7 Comparison between Brute Force Search and SA algorithm . . . . . 61

ix



Chapter 1

Introduction

Imagine a scenario where you are at home, sick with fever but you need and

want to attend an important meeting at your office. You are prescribed complete

bed-rest by the doctor but missing the meeting means big loss to the company

and also to your next promotion. Is it possible for you not to move from your

bed and still attend the meeting, interact with the speaker and other audiences at

the seminar room? Consider another scenario where, you want to play tennis with

your friend at your favorite university playground while both of you are at different

places. Is it possible for both of you to still play a realistic game without actually

being at the same place (A realistic game implies that it is driven by gestures

rather than a keyboard or a mouse). Looks like the scenes from Hollywood Sci-

Fi blockbusters? Not really, this is the future of Internet aka ‘3D Internet’ and

this project is a stepping stone towards it. This project creates an ‘Interactive

Mirror World’ which offers endless possibilities for communication and information

transfer from the real world to a mirror world and vice versa.
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CHAPTER 1. Introduction

To realize the scenarios mentioned above, the first and the foremost require-

ment is the existence of a Mirror world, i.e. a virtual world which is a close replica

of the real world. However, no 3D virtual world, as close to real as possible, can

be called a mirror world until it is constantly updated with the real world events.

This requires a communication channel for the seamless exchange of information

between the two worlds. There are many existing 3D virtual worlds like, Sec-

ondLife(SL) [1] , HabboHotel(HH) [2] where people can chat, meet and even create

their own virtual surroundings but they are more like a fantasized world.

To set-up a visualization platform, which not only creates 3D contents effi-

ciently but also supports a communication channel for seamless exchange of infor-

mation between the real world and the mirror world is one of the main objectives

of this thesis. Sun Microsystem’s ‘Project Wonderland’ (WL) [3] , an open source

toolkit for building 3D worlds, has been used as the visualization platform for this

project. Though SL is a much more advanced platform for creating virtual worlds

but since it is not open source, modifying it according to our specific requirements

is difficult.

Though the communication channel must be able to communicate any type

of information both ways but the scope of this thesis is limited to the transfer of

location information. Ekahau [4], a Wi-fi based Fingerprinting localization system,

has been deployed and integrated with the WL to obtain the real world location

information for users and devices. Since the Ekahau system is based on Wi-fi sig-

nal strength, its accuracy depends upon the deployment of APs. After extensive

literature search, it has been observed that the placement of APs such that the

location estimation error can be minimized is not a very well studied problem,

though the problem has been studied widely from a communication point of view.

2



CHAPTER 1. Introduction

Many heuristic and intuitive methods suggest some guidelines to place APs for

fingerprinting based localization but a scientific approach to the problem is re-

quired. Hence we proposed a novel optimization algorithm for placing the APs for

fingerprinting type of localization.

The next section gives an overview of the thesis contributions, followed by an

outline of this thesis.

1.1 Thesis Contributions

This thesis can be divided into two parts and the main contributions of this

thesis are as follows:

• A visualization platform has been set up to mirror a laboratory in NUS cam-

pus using WL. A method has been proposed and implemented to create a

communication channel through which location information can be trans-

ferred from the real world to the mirror world. Ekahau location sensing

system has been deployed to receive the real world location information and

then integrated with the WL to transfer the real world location to the mirror

world using the communication channel.

• A novel optimization model has been proposed for the placement of APs

for Wi-Fi based Fingerprinting type of localization. This model takes the

floor map of the building and the total number of APs as input and suggests

locations for the placement of APs such that the location estimate error

can be minimized. This model is independent of the implementation of the

underlying localization system, however, the localization system should be

based upon a fingerprinting approach.

3



CHAPTER 1. Introduction

1.2 Thesis Outline

This thesis is divided into two parts. The first part deals with the set up of a

visualization platform and spans from chapter 2 to chapter 3. Chapter 2 provides

the background information of WL which includes a brief overview followed by the

description of the underlying technologies upon which WL is built. It also provides

the information regarding virtual world software architecture and communication

infrastructure in the WL. In addition, this chapter also describes fingerprinting

based localization and the Ekahau system. Chapter 3 presents the implementation

details for WL centralized server set-up, it also describes the process and the lim-

itations of creating and importing the new content, i.e. own virtual world in the

WL. The methodology to integrate the Ekahau system with WL is also presented

in detail in this chapter. The changes required in the WL software architecture for

creating a communication channel and transferring location information provided

by the Ekahau system is presented in this chapter along with the pseudo-codes.

The second part of the thesis focuses upon the placement algorithm for APs

from a fingerprinting localization point of view and spans from chapter 4 to chapter

6. Chapter 4 presents the current state-of-the-art methods for the placement of

APs. Though a generic approach is adopted to present the previous work done,

the emphasis is given to the work which has been done from the view point of

location dependent services. Chapter 5 presents the new algorithm for the place-

ment of APs. It starts with a brief overview of the indoor propagation model

used for this algorithm and later presents and develops the optimization model.

The last section of this chapter presents an overview of the Simulated Anneal-

ing(SA) Optimization Algorithm along with its implementation details in context

4



CHAPTER 1. Introduction

of APs placement. Chapter 6 presents the simulation platform and the results for

the method proposed. It also presents the performance analysis of the proposed

method against the manual heuristic approach and an existing scientific approach.

The proposed algorithm has also been applied to a k Nearest Neighbor(kNN) based

indoor localization method and location error performance has been analyzed.

Finally chapter 7 concludes the thesis and presents the scope for future work

and directions.

5



Chapter 2

Background

This chapter provides the background on WL, an open source toolkit to create

3D virtual worlds, used to build the visualization platform for a laboratory in NUS

campus. Ekahau has been used as the location sensing system and since it is a

Wi-Fi based fingerprinting localization system, a brief introduction is provided for

the fingerprinting localization method followed by the Ekahau system overview.

2.1 WL Overview

WL is a Java based, open source toolkit for creating collaborative 3D virtual

worlds. WL allows creation and import of customized 3D contents, i.e. the vir-

tual worlds. Within these virtual worlds, users can communicate with high-fidelity,

immersive audio and can share live applications such as web browsers, OpenOf-

fice documents and games. Project Darkstar, Java 3D and jVoiceBridge are the

foundation technologies, upon which WL is built.

6



CHAPTER 2. Background

Project Darkstar [5] is a Java based server software infrastructure which pro-

vides event-driven programming model features and easy-to-use services for manag-

ing communications, tasks and data access. These services shield the complexities

of multi-threaded and distributed systems programming. It also provides APIs for

task scheduling, threading, distribution, contention management, load balancing

and transaction management. All of the coarse grained behaviour of the com-

munication between a client and the server can also be handled easily using the

API.

Java3D [6] is a low level 3D scene-graph based graphics programming API for

the Java language. It provides routines for creation of 3D geometries in a scene-

graph structure that is independent of the underlying hardware implementation

for realtime programming. The API provides scenegraph compilation and other

optimization techniques.

jVoiceBridge [7] is a software audio mixer written in the Java Programming

Language. It handles Voice over IP (VoIP) audio communication and mixing for

the tasks such as conference calls, voice chat, speech detection, and audio for 3D

virtual environments. It provides real time immersive stereo audio with distance

attenuation in WL.

Subsequent sections will provide the details regarding virtual world architec-

ture and communication infrastructure in WL.

2.1.1 Virtual World Architecture in WL

In WL, the virtual world has its own coordinate system. From a viewer’s

perspective, +X axis is towards the right, +Y axis is gravitationally up and +Z

axis is towards the user. The entire virtual world is a collection of different ‘cells’

7



CHAPTER 2. Background

with each cell representing a 3D volume in the virtual world and has position and

bounds in the virtual world. Bounds represent the physical extent of the cell.

Cell Coordinate System In the virtual world coordinate system, a cell’s origin

is marked with respect to its center, however, a cell also has its local coordinate

system where the center of the cell is at (0,0,0). The cell structure is hierarchical

and a cell may contain zero or more child cells within itself.

Cell Architecture There are two types of cells: Stationary and Moveable, which

is defined at the time of cell’s creation. For example, Avatar is defined as a moveable

cell and the virtual world contents like buildings, furnitures etc. are defined as

stationary cells. If an object is defined as a stationary cell, it cannot be moved

from one location to another at later stages. Each cell has a unique ID and a

unique name; the cell name is formed as “CELL ” plus cell ID. A communication

channel is also attached with each cell which is used to send and receive messages

to/from the cell. Figure 2.1 (courtesy: WL Official Website) provides sample cell

structures in WL.

Fig. 2.1: Cell Structure at WL

8



CHAPTER 2. Background

Cell Representation at WL Cells are defined as XML files in the WL File

System (WFS). Each XML file contains information about cell type, i.e. stationary

or moveable, cell coordinates with respect to the virtual world, cell bounds and the

disk location where actual 3D geometry for the cell is stored. Whenever a new 3D

content is created or imported into WL, a new XML file is written into WFS along

with the creation of 3D geometry.

2.1.2 Communication Infrastructure in WL

WL is built upon the Darkstar server framework, hence it primarily provides

a ‘Client-Server’ mode of communication. But to avoid overloading the server for

minor client level changes, it also provides a direct ‘Peer to Peer communication’

between the clients. For example, when a client first connects to the server, the

client-server communication mode is used and if two clients want to share some

application or chat with each other, the direct communication mode is used. The

direct ‘Peer to Peer’ mode of communication is also called ‘Channel Communica-

tion’. WL mainly uses three different communication mechanisms and protocols.

Figure 2.2 (courtesy: WL Official Website) presents the different communication

protocols used by WL.

1. Darkstar communication is the most frequently used communication mode.

Updates such as login event for the client, positioning the avatar, sending

and receiving updates to/from clients, logging off event, etc. all use Darkstar

communication

2. Standard Session Initiation Protocol(SIP) and Real-Time Transport Proto-

col(RTP) are used by the jVoiceBridge module of WL for sending the voice

9
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data from the server to the client

3. Peer-to-peer protocol(PPP) is used by WL for application sharing among the

clients. Applications such as Firefox web-browser, terminal, chat messages,

etc. are shared using PPP.

Fig. 2.2: Communication Protocols at WL

2.1.3 Hardware Specification for WL Implementation

WL does not require specific hardware; minimum specifications required to

implement a WL baseline system are as follows:

• PC (1.5Ghz+, 1GB RAM) with hardware-accelerated OpenGL drivers in-

stalled. For Solaris and Linux, nVidia cards/drivers are recommended

10
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• Accelerated Graphics card with 128MB is the minimum requirement, how-

ever a graphic card with 256MB video memory is recommended for the best

performance.

• Java SE 6 (JDK 6)

• WL supports Linux, Windows, Solaris and MAC operating systems but appli-

cation sharing is supported only for X11 applications and hence available on

Linux and Solaris platforms only. Shared X11 applications must be launched

from a Linux or Solaris client but can be viewed and controlled from any

other client (including Windows and Mac OS)

2.1.4 WL and Other Virtual World Toolkits

The objective of this project is to build a mirror world, and unlike most of the

virtual worlds, one of the main requirements is the real time information transfer

to and from mirror world to the physical world. Unlike SL, WL is open source

and hence infinitely flexible to any changes within the system design constraints.

Therefore, it can be modified and utilized to cater to our project specific needs.

SL is more advanced to WL in terms of visual experience and content creation

whereas the main focus in WL is on various infrastructure demands like applica-

tion sharing, integrating with authentication services using LDAP protocol, voice

communication and telephony integration. WL is written in Java and hence has

potential to run on hand held devices without much code change, unlike SL.

11



CHAPTER 2. Background

2.2 Fingerprinting Localization and Ekahau

2.2.1 Localization Algorithm

Fingerprinting is a Wi-Fi based localization technique [8] for indoor local-

ization, which utilizes the relationship between a particular location and its corre-

sponding received signal strength (RSS) value. This type of location sensing system

does not require any dedicated hardware other than a network system with existing

wireless interfaces. Hence it is much easier to install compared to the other sys-

tems. The algorithm can be classified as a pattern-matching algorithm and works

in the following two phases:

2.2.1.1 Calibration (Off-line)Phase

This phase is equivalent to the training phase in a pattern-matching algorithm.

During this phase, a database of RSS patterns, which is called a radiomap, is

created. The radiomap consists several location - RSS vector pairs and every RSS

vector is called a fingerprint or radio-signature for the corresponding location. The

RSS vector, i.e. the fingerprint depends on the number of APs heard at a particular

location. If n APs can be heard at the ith location, the radio map database entry

at the ith row can be presented as

(xi, yi, zi; RSS1 RSS2 ... RSSn) (2.1)

where (xi, yi, zi) represents the ith location and RSSk represents the RSS value

received from the kth AP. Location fingerprints are collected by measuring the RSS

value from multiple APs at predefined locations using a mobile unit. The process

12
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of collecting RSS values at certain known locations is also called Site-Survey.

2.2.1.2 On-line Phase

During the online phase, a RSS vector is measured at the test location, i.e. the

location which needs to be estimated. The measured RSS vector is then compared

with all the fingerprints collected during the calibration phase, using an appropriate

matching algorithm, to estimate the location. The matching algorithm calculates

the Euclidean Distance between the measured RSS vector and all the fingerprints

and then returns the corresponding location for the one which is at the minimum

distance from the measured RSS vector. kNN method is generally used as a match-

ing algorithm in which k best matches for the measured RSS vector are identified

and then their corresponding locations are averaged out to obtain the test location

estimate.

The next section will provide a system overview of the Ekahau Real Time

Location Tracking System (RTLS) which is used as the location sensing system for

this visualization project.

2.2.2 Ekahau RTLS

The Ekahau RTLS is a fingerprinting based, Wi-Fi location tracking solution

that can operate over 802.11 a/b/g/n generations of a Wi-Fi network. It officially

claims to achieve an accuracy of 1 to 3 m, with a site survey and calibration

process that requires up to 1 h/1200 m area. The Ekahau RTLS architecture is

shown in Figure 2.3 (courtesy: Ekahau Official Website). The main components of

the Ekahau RTLS are as follows:

13
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Fig. 2.3: Ekahau RTLS Architecture

2.2.2.1 Ekahau Site Survey

The Ekahau Site Survey(ESS) is a calibration tool which is used to create a

radio map for the first phase of fingerprinting localization. The ESS software takes

the floor map or map image as input to create the positioning model. Map scale is

required to be set to the appropriate value when the map is imported for the first

time. Then the user can draw rails on the map which are the possible travel paths

between rooms, corridors, floors, and other locations. Once the rails are drawn, the

user has to move along with the laptop and an Ekahau compatible Wi-Fi adapter

or Ekahau tag, along the rails, to record the RSS samples in the entire area. RSS

samples are collected by stopping at every 2-3 meters (recommended) and clicking

on the map at the corresponding location. The ESS also provides visualizations in

form of the heatmaps for calibration quality, network health, number of APs heard

at every location, signal to noise ratio, etc. Figures 2.4 and 2.5 provides some

snapshots of the ESS visualizations. Once the entire area has been calibrated, the

14
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Fig. 2.4: ESS Visualization I

Fig. 2.5: ESS Visualization II

positioning model is uploaded to the Ekahau Positioning Engine database.

2.2.2.2 Ekahau Positioning Engine

The Ekahau Positioning Engine(EPE) is the software implementation of the

localization algorithm which runs on a dedicated Windows Server platform. The

EPE receives the RSS values reported by the tags and compares the measurements

with an existing reference data, i.e. the radio map created and uploaded by the

ESS during the calibration phase. The EPE then, calculates the location estimates
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for the tags. The EPE polls the tags periodically (configurable period) to receive

the respective RSS values. Alternatively, tags can also update the RSS values at

the EPE without being polled and this is done by triggering an event, i.e. by

pressing the buttons provided on them. The EPE also provides APIs along with a

Java based Software Development Kit (SDK) to integrate the Ekahau system with

other applications.

2.2.2.3 Ekahau Tags

The Ekahau tags are small battery-operated devices that are attached to the

objects or carried by the people required to be tracked. Tags measure signal

strengths from APs and transmit the measurements through an 802.11 network

to the Ekahau Engine in real-time. They provide two-way communication and can

be used during the calibration phase to record the fingerprints along with the ESS

software. It is recommended to use similar tags for both the calibration and the

tracking process as it improves the overall accuracy of the location estimates.
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3D Visualization using WL

The objective of this project is to set up a 3D visualization platform for a lab-

oratory in NUS campus such that real time information can be transferred into a

mirror world and vice versa, seamlessly. As the first step, a fully functional central-

ized server for WL has been set up on a Ubutu platform. A virtual ‘Communication

Lab’, which is a mirror of physical ‘Communication Lab’ located in the Department

of Electrical and Computer Engineering, has been created and imported into WL.

This virtual Communication Lab was created with the help of colleagues from the

Department of Architecture. Finally WL has been integrated with a location sens-

ing system Ekahau to transfer the real time location information into WL. We now

have the virtual 3D platform in which a user’s avatar operates from the real-time

location inputs obtained from the location sensing system instead of keyboard or

mouse inputs. The above steps are described in detail in the subsequent sections.
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3.1 WL Centralized Server Setup

WL is both binary (pre-compiled version) and source code distributed. Since

the source code requires modifications; it (source code) is checked out from the

CVS versioning system and built into Netbeans 6.0. Both the Server IP address

and the WL File System location are changed for this build. To set up a web server

for the WL, a web application archive file (war) needs to be built. The process of

building the war file involves two steps 1.) creating a keystore file and 2.) running

the command

ant -Dwonderland.useLocalArt=true pkg-war-combined

from a Ubuntu Terminal. Once the war file is built successfully, it is deployed into

a web container so that users can access the web server through a web browser.

Here ’Glassfish Application Server’ is used as a web container to deploy the war

file. The entire process is explained in a flowchart in Figure 3.1.

Users launch the WL based mirror world from the web browser. The Dark-

star module prompts the user for login information and on successful login, Java

webstart downloads and caches the ‘3D mirror world’ at the user’s local machine

according to his/her visual range. Caching of the ‘3D mirror world’ at a local

machine decreases response time for any future logins. However, the cache can be

cleared at user’s discretion.

This server supports additional features like voice over IP calls, text chat,

application sharing such as Firefox browser and terminal in the mirror world.
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Check Out WL Source Code from CVS

Configure build.xml file for 
ÿ Server IP address

ÿ Port numbers

ÿ WFS root location

ÿ Virtual world geometry location

Modify Source Code (if required) and build 

using Net beans

Create Wonderland. war file

Deploy .war file into ‘Glassfish’ Web 

Container

Start WL server and Voice Bridge 

Fig. 3.1: WL Centralized Server set-up
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3.2 Importing 3D Models into WL

As a unitary step towards creating a mirror NUS campus, we start with cre-

ating a mirror Communication lab. WL supports creation of 3D models using an

inbuilt tool called ‘World Builder’ but this tool is very primitive. It supports very

limited geometry and textures and hence not suitable for creating high end, sophis-

ticated 3D contents. Another method to create the mirror world within WL is to

import the 3D models created by another 3D modeling tools, e.g. 3ds max, Maya,

Blender, etc. But the import process also has limitations on the input format of

the 3D model; only 3D models in .x3d format can be imported. We have created

3D models for the Communication Lab using 3ds max and converted it to .x3d

format using an another independent converter.

Whenever a new model is imported into WL, a new cell is created at the WL

server for the same. WL accepts .x3d model as input file and generates an XML

and a 3d geometry file(.j3s format) as the output at the server. The XML file

defines the cell type, location coordinates and bounds information for the new 3D

model. Bounds define the physical extent of 3D model depending upon the size

of the model. The XML file also contains a pointer to the disk location where

the actual 3D geometry, .j3s file, is stored. The files describing various Textures

are copied manually at the WL server. Figure 3.2 summarizes the model-import

process at WL. Figure 3.3 presents a snapshot of virtual Communication Lab in

WL along with the real Lab.

We have observed the following limitations and issues for artwork import at

WL:

• WL only accepts .x3d models.
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3ds max 

Model

WL

X3D Converter
X3D Loader at 

WL

Create 3D 

geometry in 

.j3s format

Create XML 

file (cell) at 

WFS

Fig. 3.2: Art Import Process at WL

Real Communication Lab with a user 
carrying Ekahau Tag Mirror Communication Lab in WL

Fig. 3.3: Real and Virtual Communication Lab
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• WL does not accept the 3D models with built-in texture files. For example, if

a 3D model is created such that the texture is directly applied on the model

in the form of a colour, the model cannot be imported into WL. This is a

severe limitation since having separate texture files increase the 3D model

size by manyfold which in turn degrades the performance of WL

• While importing 3D models, only virtual world location can be specified. One

cannot scale the model on the fly, this is required many times as the units

used by the modeling software and the WL virtual world are different.

• WL throws exceptions if 3D geometry file is very complex or texture file is

too big

• WL does not support real time rendering for shading effects, hence the 3D

model appears as a flat 2D picture in WL. The only workaround to this

limitation is to paste the shading effects as the textures on the 3D models.

3.3 Real Time Location Update

With the exception of audio communication, keyboard and mouse inputs, WL

does not support any real time data input from any sensor or device. A user’s

avatar movement is controlled by keyboard and mouse and location change event

is initiated from a client machine. Once the avatar moves to a new location, the

client sends an update to the server which in turn updates all other avatars, which

are in the visual range of the moved avatar, about this event. The requirement

of this project is to transfer the real time location information of the user to the

virtual world and make the avatar move accordingly - hence requires integration of
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a location sensing system with WL. The WL architecture also needs to be modified

such that a location change event can be initiated from the server instead of a client.

Fig. 3.4: Framework for WL and Ekahau Interface

3.3.1 WL and RTLS Interface

We have used the Ekahau real time location sensing (RTLS) system to track the

users in the real world. The WL and RTLS servers run on two different machines

and have to be integrated together via a new interface. Let’s call it WL-RTLS

interface. A user, assigned with a unique User ID (UID), carries an Ekahau tag

having a unique tag ID (TID) in the real world so that it can be tracked by the

RTLS server. This creates a unique UID-TID one-to-one mapping shared by both

the WL and the Ekahau servers. Figure 3.4 describes the framework for WL and

RTLS integration. The WL-RTLS interface, which binds WL and RTLS together,
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performs the following tasks:

• Location coordinates provided by the Ekahau system are in terms of pixels;

the WL-RTLS interface converts these pixel values to real world (x, y) co-

ordinate values. Mapping from the pixel values to the actual coordinates is

done beforehand and remains the same thereafter.

• When the WL server starts for the first time, the WL-RTLS interface sends a

streaming connection request to the Ekahau RTLS server. If the connection

request is successful, a session is created and remains open until the WL

server is up and running.

• The WL-RTLS interface also initiates a session of Ekahau Location Lis-

tener(ELL) which listens to the location-change events. The location-change

event can be triggered by pressing a button on an Ekahau tag. Alternatively,

the RTLS server also polls every tag once every 10 seconds which is consid-

ered as a periodic location-change event. The ELL always remains updated

with the most recent position for all the users.

The pseudo-code is presented in Figure 3.5.

3.3.2 Changes at WL Server

The foundation of the WL server is Darkstar, hence the Darkstar infrastructure

has been utilized to incorporate real time transfer of location data. A periodic task

is initiated by the ‘TaskManager’ at the start of the WL server which runs at a

predefined ‘Update Interval’. The ‘Update Interval’ is a variable, currently set to

1 second. This task retrieves the list of users, currently logged in the mirror world
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---------------------- At WonderlandBoot Class ------------------
void startEkahau ()

{
SEND Connection Request to Positioning Engine
IF 'Connection Accepted ' THEN

ADD Location Listener
IF 'Success' THEN

SEND command to start tracking
ELSE

PRINT Error Message

ENDIF
ELSE

PRINT Error Message
ENDIF

}

-------------------------------------------------------------------------------

---------------------------- At Location Listener -----------------------

WHILE Connection is OPEN

IF 'new event occurs '
CONVERT the event description to string

EXTRACT tagid and respective location
TRANSLATE pixel values to <x, y> cord
UPDATE corresponding User 's location

ENDIF
END WHILE

-------------------------------------------------------------------------------

Fig. 3.5: Pseudo code : WL-Ekahau Interface
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from the ‘UserManager’ and reads the location for every user from the ELL. If this

task notices any change in the user’s location, it communicates it to the respective

user.

To communicate the location change information from the server to the client,

Darkstar’s ‘Channel Mechanism’ is utilized. In WL, every object including an

Avatar is a ‘cell’ and every cell has a unique channel associated with it for commu-

nication purposes. But, the information transferred over this channel is in the form

of a message. Hence for every ‘location information transfer’, a new message type

‘LOC-CHANGE’ is created and transferred over the ‘AvatarP2PChannel’ channel.

The pseudo-code is presented in Figure 3.6.

3.3.3 Changes at WL Client

The client-code is also modified so that a client can understand the ‘LOC-

CHANGE’ message and its avatar can move to the new location according to the

information contained in the message. To recognize the LOC-CHANGE message,

‘AvatarP2PChannelListener’ is modified so that it can receive and decode the loca-

tion ‘LOC-CHANGE’ message. A new ‘stimulus’ is added in the class responsible

for the Avatar movement and animation to make it move to the new location.

Once the listener receives a new ‘LOC-CHANGE’ message, it decodes it and then

triggers the stimulus which in turn makes the Avatar walk to the new location.

The pseudo-code is presented in Figure 3.7.
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------------------------------------------------- At WonderlandBoot Class ----------------------------------------

public void initialize ()

{
GET DarkStar 's TaskManager Reference

CREATE new Task using Darkstar 's TaskManager 
SCHEDULE the task to run at specified interval

}

-----------------------------------------------------------------------------------------------------------------------------

------------------------------------------------------------ At New Task ---------------------------------------------

public void run ()

{
GET DarkStar 's UserManager Reference

FOR each logged in user obtained from UserManager Reference
GET unique User ID
READ the location for this User ID from LocationListener

IF location for this user ID has been changed
CALL sendLocationChange (userName, newLocation ) method

ENDIF
END LOOP

}

void sendLocChangedMessage (String userName , Point3f newLocation )

{
IF user if still logged in

GET DarkStar 's ChannelManager Reference

GET User's Avatar's 'AvatarP2PChannel ' using ChannelManager Reference
CREATE a new location change message

CONVERT the message to raw bytes
SEND the message using 'AvatarP2PChannel '

ENDIF

}

-----------------------------------------------------------------------------------------------------------------------------

Fig. 3.6: Pseudo code : Changes at WL server
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------------------------- At AvatarP2PChannelListener Class ---------------------------

public void receivedMessage (ClientChannel clientChannel , SessionId sessionId , 
byte[] b)

{
ADD new case to receive LOC _CHANGE message
GET an instance of WalkBehavior class

CALL locationChangedEvent (location) method using WalkBehavior instance
} 

------------------------------------------------------------------------------------------------------
--------------------------------- At WalkBehavior class -------------------------------------

ADD a new flag 'new message '

public void locationChangedEvent (location)
{

SET 'new message ' TRUE
UPDATE newLocation for the user

}

public void updatedata ()

{
IF 'new message ' is TRUE

SET locDifference = newLocation - currentLocation
CALCULATE number of steps avatar needs to walk

END IF

WHILE number of steps is not zero
CALL updateState () method which makes avatar walk

END WHILe
}

----------------------------------------------------------------------------------------------------

Fig. 3.7: Pseudo code : Changes at WL client
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Review of Access Point Placement

Techniques

This chapter presents the current state-of-the-art in placing the APs. Our

focus is to emphasize the work done from the location dependent services point of

view and more specifically, for Fingerprinting based localization.

4.1 AP Placement - Communication Systems

The problem of placing APs has been studied widely by researchers and many

solutions have been presented. But the problem has been analyzed from a commu-

nication point of view, i.e. the placement problem has been formulated such that

it maximizes the signal coverage, data rate and SNR, and minimizes the bit error

rate. In [9], a grid-based approximation algorithm has been proposed to place

the APs in a manner which minimizes the number of APs required while ensuring
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that along with the coverage, the received SNR at each location is sufficient to

meet the offered load at that location. [10], [11] have also proposed algorithms for

AP placement by maximizing the coverage at all receiver locations. In [12], a

cost function for AP placement has been formulated such that it minimizes the Bit

Error rate (BER) for a WLAN scenario. A non-linear optimization method ‘Simu-

lated Annealing’ has been applied to solve the optimization problem. A variation

of Nelder-Mead simplex method has been applied in [13], which implements a pat-

tern search algorithm for minimization of the cost function, i.e. the ratio of covered

points in a mesh. This algorithm also focusses upon coverage maximization.

4.2 AP Placement - Localization Systems

To optimize the location of APs for location dependent services, such that the

location estimate error can be minimized, is still a very challenging and difficult

problem. Wi-Fi based localization methods depend upon the RSS value received

from multiple APs and hence, intuitively, the number and placement of APs should

be an important factor in designing Wi-fi based localization algorithms. There are

several papers in the literature which studies and analyzes the above intuition

experimentally. In [14], the authors have developed an analysis framework and

suggested to deploy at least four APs for fingerprinting based localization. In [15], a

testbed has been developed for indoor localization using the Ekahau Fingerprinting

system and the experimental results have been presented which shows that for

the same number of APs, their placement can affect the location estimation error

significantly. Their analysis even shows that the best placement strategy for APs

from the coverage point of view does not yield good location accuracy and hence
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not suitable for the localization systems. [16] also presents experimental results

suggesting that increasing the number of APs decreases the location estimation

error.

However, there are very few papers which actually proposes the AP placement

algorithms for location dependent services. The following are a few approaches

taken by the researchers in this area:

4.2.1 Euclidean Distance Maximization

In [17], the authors have proposed a method for AP location optimization

in which the Euclidean distance (ED) of the received signal array among all the

sampling points (receiver locations) has been maximized in order to increase the

diversity of the RSS array. By increasing the diversity among RSS samples at

all the receiver locations, the location estimation accuracy should also improve as

higher diversity will in turn increase the chances of having unique ’fingerprints’ at

all the receiver locations. However, if we examine this method in detail for different

scenarios, there seems to be a fallacy in this method.

Consider a simple scenario: Let R1, R2 and R3 be three location fingerprints

at three sampling points. In the first case, assume R1 >> R2 and R3 ; R2 and

R3 are very similar. In the second case, assume R1, R2 and R3 are moderately

different from each other. Using the ED Maximization method, chances of selecting

the former case as the optimum output are much higher than that of the latter.

However, the latter case seems to provide higher number of unique fingerprints.

This argument can be very well supported by the following numeric example:

Case I:

R1 = −60dbm,R2 = −20dbm,R3 = −15dbm (4.1)
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Euclidean Distance among three sampling points = 90 (4.2)

Case II:

R1 = −20dbm,R2 = −30dbm,R3 = −40dbm (4.3)

Euclidean Distance among three sampling points = 40 (4.4)

The Euclidean distance is much higher in case I than case II and hence this method

will select case I as the optimal output. However, the localization algorithm will

not be able to distinguish between receiver locations 2 and 3 in case I since both

RSS vectors are more or less the same while in case II, all three receiver locations

will be distinguished easily.

Though the first case seems to be unlikely for an empty room or outdoor

scenarios but in real world indoor scenario, there are high chances of obtaining

abruptly varying RSS patterns caused by various obstructions, furnitures, walls,

doors, etc. The authors have not considered the effects of walls, doors and other

obstructions in their propagation model.

4.2.2 Direct Location Error Minimization Techniques

In [18], the authors have proposed a method to place the APs optimally by

directly minimizing the localization error. For this method, an estimation error

model has been formulated first for the fingerprinting type of localization. This

error model is based upon the likelihood of estimating the user’s position as x̂, given

the user’s actual position as x. Hence to make use of this error model, one needs to

know the likelihood function for the underlying localization algorithm. Though the

authors have assumed the likelihood function as a Guassian function and applied

32



CHAPTER 4. Review of Access Point Placement Techniques

it generally for all the localization algorithms, but this is a big assumption and

not always true for the realistic scenarios. Hence to use this method accurately, an

accurate specific likelihood function is required which may not be obtained easily

for every localization algorithm.

[19] proposes linear and multiple regression methods to model the signal

strength in indoor environments and then analyzes the relation between the re-

ceived signal strength detection error and the localization error. It further suggests

that the number of APs and their placement can effect the localization error sig-

nificantly. The authors have also established a relationship between the standard

deviation of predicted signal strength and the location estimation error and some

experimental results have also been presented for a few AP combinations. How-

ever, the analysis assumes that the underlying localization system is triangulation

or least square estimation based and hence it will not be valid for fingerprinting

localization

A greedy AP placement method is proposed in [20] for a triangulation based

localization algorithm where APs are placed such that, at every receiver location,

the total number of APs heard is above a certain threshold degree. Here the

underlying assumption is that in indoor environments, due to several obstacles,

all APs may not be heard at every receiver location. However, this assumption

is only valid if the APs are not placed at sufficient height. If they are deployed

at ceiling heights, then this assumption can be overcome easily for most of the

receiver locations. This method also requires the threshold degree to be determined

experimentally beforehand which can be a tedious task.
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4.3 Conclusion

A lot of research is undergoing in the area of various probabilistic and deter-

ministic pattern matching algorithms in order to increase the accuracy of finger-

printing localization method but the AP placement problem is still in its infancy.

To the best of our knowledge, only [17] provides a solution for placing APs opti-

mally for fingerprinting localization. Hence, a new algorithm for the problem has

been presented in the next chapter.
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Access Point Placement

Algorithm

This chapter describes the new AP placement(APP) algorithm in detail. It

starts with an overview of the Indoor Radio Propagation model that is used for

simulating the environment, followed by the detailed description of optimization

model for the APP problem. The last section provides the overview and implemen-

tation details of an optimization algorithm Simulated Annealing which has been

used to solve the APP problem.

5.1 Indoor Radio Propagation Model

In an indoor environment, the RSS value strongly depends upon the layout of

the building, since in addition to the free space loss, electromagnetic waves are also

scattered at obstacles, attenuated by penetrated walls or windows and diffracted

35



CHAPTER 5. Access Point Placement Algorithm

at edges, making the indoor propagation channel a multipath channel. Therefore,

a site-specific RPS’s ‘Ray Tracing’ propagation model is used which incorporates

the characteristics of an indoor environment. In this method, a finite number of

rays are launched from a transmitter position. At obstacles, these rays are divided

in a reflected and possibly a penetrating part. Each ray is traced, until a given

maximum of the pathloss is exceeded. Since a ‘Ray Tracing’ propagation model

takes into account the actual nature of indoor environment, propagation results

are reasonably accurate.

5.2 APP - Optimization Model

Fingerprinting localization is a pattern matching algorithm which can be di-

vided into two phases: Calibration(Off-line) and On-line. During the calibration

phase location fingerprints, i.e. RSS vectors, are collected at pre-defined locations.

During the on-line phase, a measured RSS vector is compared with all the fin-

gerprints to find the closest match. A detailed description for the fingerprinting

localization is mentioned in Chapter 2.

The methodology used by fingerprinting localization suggests that it will per-

form well when all the fingerprints are unique. If more than one location have

same fingerprint, then the localization algorithm will not be able to distinguish

among those locations. Hence a suitable methodology is desired to maximize the

total number of unique fingerprints so that maximum location accuracy can be

achieved. However, RSS vector or fingerprint depends on both the number and the

placement of APs. The RSS vector length increases with the increase in number of

APs which in turn increases the probability of obtaining unique fingerprints. But
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if more and more APs are deployed without considering their placement, it may

not help in increasing accuracy since APs may provide symmetrical RSS values

and make fingerprints ambiguous for more one than locations. Figure 5.1 presents

two scenarios, using two APs. In the first scenario, both the APs are placed such

that the RSS values obtained at two different locations L1 and L2 are the same,

and since both locations have same fingerprints, the localization algorithm cannot

decide between L1 and L2. In the second scenario, APs are placed asymmetrically

and hence provide unique fingerprints at locations L1 and L2.
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Fig. 5.1: Effect of AP Placement

Therefore, for a given number of APs, the placement should be such that the

total number of unique RSS vectors, i.e. ‘Location Fingerprints’ are maximum. In

other words, we need to minimize the total similar fingerprints over the entire RSS

array. Let us define the term Similar Fingerprint (SF) formally, as follows.

Let Ri = [ri1 ri2 .... riN ] denote a RSS vector for the ith receiver location
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in a 2-Dimensional space, N is the number of total APs deployed, rik is the RSS

value obtained at the ith receiver location from the kth AP and Tr is the number of

total number of receivers or sampling points. Any two ‘RSS vectors’ or ‘fingerprints’

are said to be similar if

Ri − Rj < Tth (5.1)

where

Tth = threshold value; i ∈ 1, 2, ...Tr; j ∈ 1, 2, ...Tr; i 6= j (5.2)

The above inequality is equivalent to

∧N
k=1 (rik − rjk) < Tth (5.3)

where k denotes the kth AP. It implies that iff all the corresponding components

of two RSS vectors are within a certain threshold distance, Tth, with each other,

then this pair of RSS vectors is called Similar Fingerprints. As discussed earlier,

the localization algorithm will not be able to distinguish between the two receiver

locations successfully if their corresponding fingerprints are not unique. Hence, we

define our optimization model such that it minimizes the total number of Similar

Fingerprints. The objective function for the optimization problem will be the total

number of SFs that need to be minimized over the entire array of RSS vectors by

varying the AP location. If there are L possible locations where the APs can be

placed, then the total number of combinations possible for APs placement is

Ct =

(

L

N

)

(5.4)
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where N is the number of APs given.

Hence the optimization problem can be formulated as follows:

Minimize :

f =
Tr

∑

i=1

Tr
∑

j=(i+1)

numSimilarFP (5.5)

where numSimilarFP = Total number of Similar Fingerprints

Subject to:

i ∈ {1, 2, ...Tr}; j ∈ {2, 3...Tr}; i 6= j (5.6)

Above optimization problem is a highly computationally expensive Combina-

torial Problem and we have used ray tracing indoor propagation model, which itself

is very computationally expensive; this makes the problem even worse. The solu-

tion time grows exponentially if we increase the number of APs N and/or the total

number of places L where APs can be placed. Simple Brute Force Search approach

requires a very large solution time, rendering the solution practically impossible,

hence, we considered a heuristic optimization algorithm Simulated Annealing(SA)

to solve it. SA is chosen over a Gradient Search method as the former avoids be-

ing stuck in a local minima unlike the latter. The next section describes the SA

algorithm in detail along with its application to the APP problem.

5.3 Simulated Annealing Optimization

SA [21] is a heuristic optimization technique that mirrors the annealing pro-

cess in metallurgy mathematically. During the metallurgical annealing process, a

substance is first heated till its melting point and then cooled down slowly in a con-
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trolled manner until it solidifies again. The heating process allows the substance’s

atoms to move from their initial position, which may be at a local minimum energy

state, and to wander randomly. Controlled cooling thereafter allows the substance

to solidify into the optimum state of minimum energy.

By analogy with the physical process, the SA algorithm starts with an initial

state of high temperature; every state having an associated cost, i.e. the value

of objective function. From this starting point, random changes are made in the

system parameters which provide a new state. These random moves are allowed

over a certain region which depends on the current temperature and shrinks as the

temperature decreases. The acceptance of this new state depends on the current

temperature and the difference of cost values of the new state and the current state.

If the new state cost is less than the current state cost, i.e the difference of the costs

is negative, then the new move is always accepted and is called a downhill move.

But if the new cost is higher than the current cost and the difference is positive,

then the new state is accepted with a probability

Pa = min[1, exp(−k∆C/T )] (5.7)

where ∆C = (newCost − currentCost), k is a constant whose value depends on

the standard deviation of ∆C and T is the temperature. This acceptance criteria

is called the Metropolis Algorithm and the move is called an uphill move.

The temperature decreases gradually as the process progresses until it reaches

to zero or a pre-defined threshold value. (5.7) implies that the probability of

accepting an uphill move is directly dependent on the ‘temperature’ and inversely

dependent on the ‘cost value difference’. Consequently, at high temperature, the
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algorithm may wander wildly and accept the uphill moves even when the cost value

difference is high but as the temperature decreases, uphill moves are accepted only if

the cost value difference is low. Hence, SA avoids being stuck into a local minima

because of these occasional uphill moves. Since the probability of accepting an

uphill move is higher at high temperature, SA jumps out of local minima easily at

initial states.

5.3.1 SA Implementation for APP Problem

To implement SA for any problem, the following parameters need to be defined:

• Objective function which needs to be minimized

• Initial Temperature for the process

• Cooling schedule to lower the temperature as process progresses

• Equilibrium condition at every temperature level

• Stopping criteria

The objective function for an APP problem is the number of ‘Similar Finger-

prints’ that needs to be minimized. We define the system state as ‘APs location’,

and the temperature as ‘Grid Size or Area’ in which the random moves are allowed.

At the start of the algorithm, APs are allowed to move randomly in a large area

which decreases as the algorithm progresses. The cooling schedule is shown in

Figure 5.2. Five temperature levels [T0 T1 T2 T3 T4] are defined which corre-

sponds to five different radii. Temperature T0 is the highest and T4 is the lowest.

Since a rectangular grid is used, temperature levels correspond to the varying num-
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ber of neighbours. As shown in Figure 5.2, there are 24, 20, 12, 8 and 4 possible

neighbours for an AP for temperature T0, T1, T2, T3 and T4 respectively.

A fixed equilibrium criteria is used which implies that at every temperature

level, a fixed number of iterations are allowed. The optimization algorithm stops

when the total number of fixed iterations are completed at the lowest temperature.

The exact values of these parameters will be provided in Chapter 6. A complete

flowchart for SA optimization for the APP problem is shown in Figure 5.3.

T4

T3

T2

T1

T0

Access Point
Highest 

Temperature
T0 T4

5 concentric circles represent 5 different areas where the random moves 

are allowed for 5 different temperatures

Fig. 5.2: Cooling Schedule
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Chapter 6

Simulation Results

This chapter describes the simulation platform and the tools that have been

used to quantify the performance of the proposed algorithm for AP placement. The

first section of the chapter focuses on the simulation platform and the methodology

that has been used, while in the second section, simulation results are presented

in detail. Finally APs are placed as per the output of the proposed algorithm

and error performance of a kNN [22] based indoor localization method is analyzed.

To compare the performance of the proposed algorithm, we have also placed APs

using 1.) Manual heuristic placement and 2.) Euclidean distance maximization

algorithm and measured the error performance in each case for the same localization

algorithm.

6.1 Simulation Setup

Simulation experiments have been conducted for the Communications Lab at

NUS campus and the proposed algorithm has been tested using the following two
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approaches:

• Brute force search approach, where all the combinations of APs have been

tested to find the one which provides the minimum cost function, i.e. the one

having minimum number of Similar Fingerprints.

• Using Simulated Annealing optimization which requires less computation

time but does not guarantee to provide the optimal solution.

The following three tools are used to set up the simulation platform:

1. The Actix’s RadioWave Propagation Simulator (RPS) [23] has been used for

the simulation of a Ray tracing propagation model. The RPS takes a floor

map as input; a 3D model for a building can be created using the integrated

‘Environment Editor’. A 3D building can also be created without a floormap

but it is recommended to use a map for accurate measurements and ease of

drawing. Once the 3D environment is ready, simulation parameters can be

set for the transmitter, receiver and propagation model. This tool provides

the output, i.e Channel Impulse Response in both textual and visual form.

2. MATLAB scripting is used to analyze the simulation results. The proposed

algorithm is implemented in the MATLAB to find the AP combination which

provides the minimum number of Similar Fingerprints.

3. A free scripting language tool ‘AutoIt’ [24] has been used to automate the

entire process. AutoIt has a BASIC like structure and can imitate mouse and

keyboard actions for a Windows Desktop environment.

The area of the Communications Lab is 195 m2 which is partitioned in a grid of

3 m x 3.5 m for placing the APs(transmitters), hence, there are total of 18 possible
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locations where an AP can be placed. For the receiver, the grid size is maintained

at 0.5 m x 0.5 m. A comprehensive list for the simulation parameters is provided

in Tables 6.1, 6.2 and 6.3. The simulation parameters are kept the same for both

the brute force search and the simulated annealing optimization approaches. All

the experiments are conducted on a Windows Vista machine with 2.0 GHz, Intel

Centrino Processor with 2GB RAM.

Table 6.1: Simulation Parameters for Access Points

Parameter Value

Transmit Power 20 dbm
Carrier Frequency 2.4 GHz
Antenna Type Isotropic
Antenna Height 1.5 m
Transmitter Grid Size 3m x 3.5m
Total Possible Locations for AP(L) 18

Table 6.2: Simulation Parameters for Receiver

Parameter Value

Antenna Type Isotropic
Receiver Grid Size 0.5m x 0.5m
Total No of Receivers 770

Table 6.3: Simulation Parameters for Propagation Model

Propagation Phenomena Limit on No of rays

No of Reflections Unlimited
No of Penetrations Unlimited
No of Diffractions Unlimited
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The subsequent sections will provide the simulation workflow for the two ap-

proaches.

6.1.1 Simulation Setup - Brute Force Search

A general overview of the simulation platform using the brute force approach

is presented in Figure 6.1. For this approach, the MATLAB scripting module runs

independently of AutoIT. The AutoIT script performs the following tasks:

Step 1: Launch the RPS application and open the 3D building model

Step 2: Set the AP location with the RPS tool using Transmitter Settings dialogue

box

Step 3: Run the simulation and wait until it finishes

Step 4: Save the ‘Received Power’ file on local disk for the current locations of APs

Step 5: Repeat from step 2 until all the combinations of AP locations have been

tested

Once the simulation process is finished and all the result files are saved on

a local disk, the MATLAB script is used to analyze the simulation results. The

proposed algorithm is run to find the combination of AP locations which provides

the minimum number of Similar Fingerprints.

6.1.2 Simulation Setup - Simulated Annealing Optimiza-

tion

A general overview of the simulation platform for SA Optimization approach is

presented in Figure 6.2. For SA optimization, the cost function(number of Similar
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Fig. 6.1: Simulation Workflow: Brute Force Search

Fingerprints) needs to be calculated at every iteration, i.e for every combination of

AP locations. After obtaining the cost function value, the procedure is repeated

with a new set of AP locations. Hence it is required to integrate the MATLAB

module along with the RPS using an AutoIT script. Here the AutoIT script per-

forms the following tasks:

Step 1: Launch the RPS application and open the 3D building model

Step 2: Set the initial AP locations with the RPS tool using Transmitter Settings

dialogue box

Step 3: Run the simulation and wait until it finishes

Step 4: Save the ‘Received Power’ file on local disk for the current locations of APs

48



CHAPTER 6. Simulation Results

Step 5: Run the MATLAB script to calculate the number of Similar Fingerprints for

the above file

Step 6: Get the next set of AP locations from the SA algorithm module; go to Step

2 if stopping criteria for the SA algorithm has not been met, else terminate

the program

AutoIT 

Script

YES

NO

Launch RPS 

&                                    

open 3D model for AMI 

Lab

Run2.5D Ray Tracing 

Simulation

Set New Location for Access 
Points as per SA algorithm

Save Output in Text File

Has 

Stopping  Criteria 

met 

?

END

Run MATLAB Script
- Read Output File

- Calculate Cost Function Value

Optimal Location
for APs

Simulation 
Parameters

Fig. 6.2: Simulation Workflow: SA Optimization

6.2 Simulation Results and Analysis

This section presents the results obtained from the three approaches : 1.)

Proposed algorithm (SF method), 2.) Manual Heuristic (MH method), and 3.)

Euclidean Distance maximization algorithm (ED method) presented in [17]. The
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Table 6.4: Total possible configurations for AP, given L = 18

No of Access Points(N) Possible Combinations(Ct)

1 18
2 153
3 816
4 3060
5 8568

MH approach tries to place the APs at the centroid of the room. When placing

more than one AP, the room is divided into sub-sections and the APs are placed

at their respective centroids.

6.2.1 Brute Force Search Approach

Numeric results are computed for sets of 1, 2, 3, 4 and 5 APs. As mentioned

earlier, for the simulations, a total of 18 possible locations are identified where the

APs can be placed; the total possible combinations in which the APs can be placed

is explained in Table 6.4. The total combinations represent the number of iterations

required to obtain the optimal AP locations. As it is evident from the table, the

number of iterations required to achieve the output increases exponentially with

the number of APs.

Figures 6.3 to 6.7 show the AP locations obtained from the three approaches.

The figure suggests that AP placement is quite unpredictable and counter-intuitive

for location dependent services.

The output, i.e. AP locations, obtained from the three approaches are ap-

plied to a kNN based indoor localization method and the average error values are

presented in Table 6.5. The curves of the cumulative distribution function of er-
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Fig. 6.3: Placement for 1 AP

Fig. 6.4: Placement for 2 AP
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Fig. 6.5: Placement for 3 AP

Fig. 6.6: Placement for 4 AP
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Fig. 6.7: Placement for 5 AP

ror are presented in Figures 6.8 to 6.12 for varying number of APs. The results

show that the MH approach, based on centroid position placement, may work well

for the communication services but it is not suitable for location dependent ser-

vices. The proposed approach, i.e. the SF method also performs better than the

ED maximization approach. The difference in the error performance for the three

approaches is quite significant if the number of APs is less than 3.

Table 6.5: Average Localization Error

No of Access Points MH method ED method SF method

1 4.46 4.08 3.57
2 3.66 2.73 2.70
3 2.48 2.30 2.18
4 2.38 2.14 1.98
5 2.24 2.37 2.00

It is also evident that increasing the number of APs does not always help
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Fig. 6.8: Location estimate error using 1 AP
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Fig. 6.9: Location estimate error using 2 APs
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Fig. 6.10: Location estimate error using 3 APs
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Fig. 6.11: Location estimate error using 4 APs

55



CHAPTER 6. Simulation Results

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Estimation Error (in meters)

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

 

 

MH method
ED method
SF method

Fig. 6.12: Location estimate error using 5 APs

to improve the accuracy if their placements are not appropriate. The SF method

provides better accuracy using 1 AP than the MH approach using 2 APs. However,

even with the appropriate placements, if the number of APs is increased beyond

a certain limit, it does not decrease the location estimate error. This fact can

be further verified from Figure 6.13 which compares the three approaches on the

basis of 90th percentile of error. The improvement in the location accuracy is very

significant when the number of APs is increased from 1 to 3. The accuracy improves

further for MH and SF based methods when a fourth AP is added, however, beyond

that it either remains same or gets worse. This is because at any receiver location,

the RSS values does not remain constant over the time, even if all the parameters

for the transmitters and the receivers remain the same. If at a particular receiver

location, the RSS vector heard during the calibration phase is significantly different

from the one heard during the online phase, then the localization algorithm will
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not be able to predict the correct location. Hence there exists a lower bound on

the performance of Wi-Fi based localization methods.

However, the performance of fingerprinting localization depends on several

other factors as well, e.g. Number of Training Points, Number of Testing Points,

Grid Spacing used to collect the training samples, Number of RSS samples collected

at each testing and training point, etc. By reducing the grid spacing and increasing

the number of testing points, the lower bound on the error performance can be

lowered further.
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Fig. 6.13: 90th percentile of error

Figure 6.14 compares the cumulative probability functions for the three ap-

proaches when location estimation error is under 3 meters. This graph also suggests

that adding more than four APs does not improve the accuracy any further.

We have also compared the computation time required to run the SF algo-

rithm and the ED maximization approach. The computation time includes only
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Fig. 6.14: Error precision within 3 meters for varying number of access points

the MATLAB analysis time, for the same number of AP combinations the RPS

simulation time will be the same. The results are shown in Figure 6.15 which shows

that if the number of APs has increased beyond 3, the ED method requires much

higher CPU time than the SF method. The computation complexity of the ED

method is higher as it requires to calculate the Euclidean distance which involves

several multiplication and squaring operations. On the contrary, the SF method

requires only a comparison and an AND operation.

6.2.2 Simulated Annealing Optimization

The SA algorithm has been applied to minimize the optimization function,

i.e. the number of Similar Fingerprints for sets of 2, 3, 4 and 5 APs. The initial

temperature is obtained for a grid size of 9.3 m which provides 24 possible AP
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Fig. 6.15: Comparison of CPU time required for ED and SF methods

locations. The cooling schedule is set as

Tk = 0.8Tk−1 (6.1)

The total temperature levels are set to five. The number of iterations allowed

at each temperature depends on the number of APs and mentioned in Table 6.6.

These values are obtained after conducting several initial experiments.

Table 6.6: Parameters for Simulated Annealing

No of AP Iterations at each Temp

2 10
3 50
4 100
5 200
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The SA algorithm also accepts a new uphill move with a probability given as

Pa = min[1, exp(−k∆C/T )] (6.2)

where ∆C = (newCost − currentCost), k is a constant whose value depends on

the standard deviation of ∆C and T is the temperature.

To estimate the value of constant k, the SA algorithm is run for 500 iterations

and the standard deviation for the cost value difference(∆C) is calculated. Based

on that, the value of k is set to 0.5.

The output value obtained from the SA algorithm depends on the initial place-

ments; hence we performed each experiment for 5 times for the same number of

APs but with different initial placements. The algorithm does not converge to the

global minima everytime, but nevertheless, the minima obtained from the SA al-

gorithm is very close to the global minima. Figure 6.16 shows the global minimum

value for various number of APs. It also displays the standard deviation for the

minimum values as error bars, obtained using the SA algorithm.

Figures 6.17 to 6.20 represent the convergence of the cost value to the global

minima for various number of APs. The figures suggests that the SA algorithm

does not get stuck in a local minima due to the occasional uphill moves. However,

the parameter k should be set very carefully; if it is too high, then the algorithm

rejects most of the uphill moves and gets stuck in a local minima and if it is too

low, it keeps on wandering randomly.

Table 6.7 compares the number of iterations required to achieve global minima

using the Brute Force search and the SA algorithm. The SA algorithm reduces the

number of iterations quite significantly and hence, this is very useful especially
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Fig. 6.16: Minimum achieved using SA

when the number of APs is high.

Table 6.7: Comparison between Brute Force Search and SA algorithm

No of APs Iterations-Brute Force Iterations-SA

2 153 50
3 816 250
4 3060 500
5 8568 1000

The above results suggest that the SA algorithm can be applied to the APP

problem successfully; the number of iterations required to achieve the global minima

reduces quite significantly without much compromise on the optimal value.
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Fig. 6.17: Convergence to Global Minima with 2 AP
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Fig. 6.18: Convergence to Global Minima with 3 AP
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Fig. 6.19: Convergence to Global Minima with 4 AP
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Chapter 7

Conclusion and Future Directions

In the first part of this thesis, a visualization platform for the Communications

Lab in NUS has been set up using the WL platform. A new interface has been

created on WL which integrates it with the Ekahau localization system such that

the real world location information is transferred into the mirror world. Avatars

are also controlled by the inputs provided by the Ekahau system.

Though WL is an open-source toolkit and hence useful for the ease of devel-

opment, but its inability to support sophisticated and high end 3D graphics is a

severe hindrance. Art import and creation process is still very primitive; WL does

not support real time rendering of shading effects. However, the new release, i.e.

WL - 0.4 supports a new input format ‘Collada’ which may improve the visual

efficiency of WL.

In the mirror world, instead of walking smoothly, avatars abruptly move from

one location to another. This is due to the limitations of the Ekahau system. The

Ekahau system may be suitable for locating static objects but it is not able to
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track pedestrian movement accurately. After conducting various experiments, we

have realized that it takes at least 5 seconds to update a new location, accurately.

The delay of 5 sec is not acceptable for pedestrian tracking as the average walking

speed of humans is around 1 m/s. Hence, even the prediction algorithm cannot

make a reasonable guess for the new location.

In the second part, a novel optimization model for the APP problem has been

developed which minimizes the total number of similar fingerprints; its accuracy

has been verified by applying its output to a kNN based localization algorithm

and the error has been analyzed. The performance of the proposed SF method has

also been compared with an existing ED approach and a manual MH approach.

The results have shown significant improvement over the MH approach. Though

in terms of location accuracy, the SF method has only marginal advantage over

the ED method; but it terms of computational complexity, it is much simpler than

the ED method, especially when the number of APs increases beyond 3. The SA

algorithm has been applied to narrow down the number of iterations required to

achieve the optimal output. Results have shown that the SA algorithm reduces the

number of iterations drastically. For example, for 5 APs, the SA algorithm requires

only 1000 iterations to achieve global minima while the Brute Force search requires

8568 iterations. It has been shown that the SA algorithm has the capability to come

out of a local minima easily, however, the simulation parameters need to be defined

appropriately and according to the problem at hand. There is no general rule for

defining all the parameters.

As the number of APs are increased, location accuracy should always improve

as more number of APs will provide more number of unique fingerprints. However,

it has been observed that if the number of APs is increased beyond a certain limit,
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location accuracy does not improve further. This is because at any receiver location,

the RSS values does not remain constant over the time, even if all the parameters

for transmitters and receivers remain the same. If at a particular receiver location,

the RSS vector heard during the calibration phase is significantly different from

the one heard during the online phase, then the localization algorithm will not

be able to predict the correct location. Hence there exists a lower bound on the

performance of Wi-Fi based localization methods. However, this lower bound can

be lowered further by increasing the number of training samples or by reducing the

grid spacing.

7.1 Future Directions

We have not considered the effect of furniture and human beings in the simu-

lation model of the Communications Lab, though the effect of walls, floor, ceiling

and windows have been incorporated. The RPS simulator allows to create the fur-

niture and persons in the simulation model, but the simulation for a ray-tracing

propagation model, with various obstacles placed inside the building, requires a

very long time. The simulation experiments need to be run on the machines hav-

ing very high processing power with parallel processors so that the results can be

obtained in a reasonable amount of time after incorporating the effects of furniture

and persons.

For the proposed APP algorithm, we have assumed the RSS values as constant,

i.e. the dynamic nature of the indoor environment has not been incorporated. In

real scenarios, the indoor environment changes constantly because of the moving

persons, opening or closing of doors, etc. and hence, even if the transmitters and
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the receivers parameters and their locations remain the same, RSS values keep on

changing. The fluctuations in the RSS values is also the main reason due to which

the location error does not decrease beyond the lower bound even after increasing

the number of APs. Hence, this work can be extended to include the time-varying

statistical nature of RSS values. More precisely, the distribution of RSS values over

a certain time-window can be analyzed to understand the fluctuating pattern of

RSS values.

The SA algorithm has been applied to reduce the number of iterations required

to achieve the final AP locations. However, the SA algorithm does not have memory

and it keeps on revisiting the bad states and hence, it requires large number of

iterations to find the output. To avoid this problem, another optimization technique

‘Tabu Search’ can be used which uses memory structures to avoid revisiting the

bad states by making them ‘Tabu’. However, both the SA algorithm and the Tabu

search requires the fine tuning of simulation parameters and there is no general

method available to set the search parameters. ‘Reactive Search Optimization’ can

provide a solution to this problem. It includes the parameter tuning mechanism

within the search algorithm itself; the parameters are adjusted by an automated

feedback loop that acts according to the quality of the solutions found, the past

search history and other criteria specific to the problem at hand. In future, these

optimization algorithm can be applied to the APP problem to reduce the solution

time further.

Due to the Ekahau system limitations, Avatars move abruptly from one loca-

tion to the another in the mirror world. We can devise a smoothening algorithm

considering the delay as 5 sec and accuracy as 3m for the Ekahau system. This

algorithm should predict the next location for the avatar before it is available from
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the Ekahau system and once the new location is available from the Ekahau system,

predicted value should get updated accordingly. However, since the delay is very

large for the pedestrian movement, we may need to adopt the learning approaches,

i.e. the artificial intelligence approaches for the smoothening algorithm to make it

work.

68



Bibliography

[1] SecondLife, http://secondlife.com/

[2] Habbo Hotel, http://www.habbo.co.uk/

[3] Project Wonderland, https://lg3d-wonderland.dev.java.net/

[4] Ekahau System http://www.ekahau.com/

[5] Project Darkstar, www.projectdarkstar.com/

[6] Java3D, https://java3d.dev.java.net/

[7] jVoiceBridge, https://jvoicebridge.dev.java.net/

[8] P. Bahl and V.N. Padmanabhan,“RADAR: an in-building RF-based user lo-
cation and tracking system ,”in INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 2, 2000, 775-784 vol.2.

[9] B. Rengarajan and G. de Veciana, “Optimizing wireless networks for heteroge-
neous spatial loads,” in Information Sciences and Systems, 2008. CISS 2008.
42nd Annual Conference on, 2008, 686-691.

[10] J.K.L. Wong et al., “Base station placement in indoor wireless systems using
binary integer programming,” Communications, IEE Proceedings- 153, no. 5
(2006): 771-778.

[11] Jane-Hwa Huang, Li-Chun Wang, and Chung-Ju Chang, “Deployment strate-
gies of access points for outdoor wireless local area networks,” in Vehicular
Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st, vol. 5, 2005,
2949-2953 Vol. 5.

[12] T. Jiang and G. Zhu, “Uniform design simulated annealing for optimal ac-
cess point placement of high data rate indoor wireless LAN using OFDM,” in
Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th
IEEE Proceedings on, vol. 3, 2003, 2302-2306 vol.3.

69



BIBLIOGRAPHY

[13] M.H. Wright, “Optimization methods for base station placement in wireless
applications,” in Vehicular Technology Conference, 1998. VTC 98. 48th IEEE,
vol. 1, 1998, 387-391 vol.1.

[14] K. Kaemarungsi, “Efficient design of indoor positioning systems based on loca-
tion fingerprinting,” in Wireless Networks, Communications and Mobile Com-
puting, 2005 International Conference on, vol. 1, 2005, 181-186 vol.1.

[15] M. Heidari and K. Pahlavan, “Performance evaluation of indoor geolocation
systems using PROPSim hardware and ray tracing software,” in Wireless Ad-
Hoc Networks, 2004 International Workshop on, 2004, 351-355.

[16] J. Hightower, B. Schiele, and T. Strang (Eds.): LoCA 2007, LNCS 4718, pp.
1734, 2007. Springer-Verlag Berlin Heidelberg 2007

[17] Yongxiang Zhao, Huaibei Zhou, and Meifang Li, “Indoor Access Points Lo-
cation Optimization Using Differential Evolution,” in Computer Science and
Software Engineering, 2008 International Conference on, vol. 1, 2008, 382-385.

[18] Roberto Battiti, Mauro Brunato, and Andrea Delai, “Optimal Wireless Access
Point Placement for Location-Dependent Services,” Departmental Technical
Report, January 1, 2003, http://eprints.biblio.unitn.it/archive/00000489/

[19] Yongguang Chen and H. Kobayashi, “Signal strength based indoor geoloca-
tion,” in Communications, 2002. ICC 2002. IEEE International Conference on,
vol. 1, 2002, 436-439.

[20] V.S. Rani and S.V. Raghavan, “A greedy approach to beacon placement for
localization,” in Wireless Days, 2008. WD ’08. 1st IFIP, 2008, 1-5.

[21] S. Kirkpatrick et al., “Optimization by Simulated Annealing,” SCIENCE 220
(1983): 671–680.

[22] Teemu Roos, Petri Myllymaki, Henry Tirri, Pauli Misikangas, and Juha S., “A
Probabilistic Approach to WLAN User Location Estimation,” in International
Journal of Wireless Information Networks, Vol. 9, No. 3, July 2002

[23] RadioWave Propagation Simulator, http://www.actix.com/

[24] Scripting Tool: AutoIT, http://www.autoitscript.com/

70


	Acknowledgements
	Nomenclature
	Summary
	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Contributions
	Thesis Outline

	Background
	WL Overview
	Virtual World Architecture in WL
	Communication Infrastructure in WL
	Hardware Specification for WL Implementation
	WL and Other Virtual World Toolkits

	Fingerprinting Localization and Ekahau
	Localization Algorithm
	Calibration (Off-line)Phase
	On-line Phase

	Ekahau RTLS
	Ekahau Site Survey
	Ekahau Positioning Engine
	Ekahau Tags



	3D Visualization using WL
	WL Centralized Server Setup
	Importing 3D Models into WL
	Real Time Location Update
	WL and RTLS Interface
	Changes at WL Server
	Changes at WL Client


	Review of Access Point Placement Techniques
	AP Placement - Communication Systems
	AP Placement - Localization Systems
	Euclidean Distance Maximization
	Direct Location Error Minimization Techniques

	Conclusion

	Access Point Placement Algorithm
	Indoor Radio Propagation Model
	APP - Optimization Model
	Simulated Annealing Optimization
	SA Implementation for APP Problem


	Simulation Results
	Simulation Setup
	Simulation Setup - Brute Force Search
	Simulation Setup - Simulated Annealing Optimization

	Simulation Results and Analysis
	Brute Force Search Approach
	Simulated Annealing Optimization


	Conclusion and Future Directions
	Future Directions

	Bibliography

