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SUMMARY 

 

Beta-propeller proteins exhibit diverse functions in catalysis, protein-protein 

interaction, cell-cycle regulation, and immunity. Tectonins, a sub-class of β-propeller 

family, have been implicated in bacterial binding. Our prediction revealed that the 

galactose-binding protein (GBP) in the horseshoe crab, Carcinoscorpius 

rotundicauda, is an all-beta sheet protein consisting of Tectonin domains. Studies 

have shown that upon binding to Gram-negative bacterial lipopolysaccharide (LPS), 

GBP interacts with C-reactive protein (CRP) and carcinolectin (CL5) to form a 

pathogen recognition complex. However, the molecular basis of interactions between 

GBP and LPS and how it interplays with CRP remains largely unknown. Here, we 

sought to unravel the mechanisms of interaction by examining the structure-function 

relationship, with a view to understanding the pathophysiological implications of the 

Tectonin domain-containing proteins and the possible conservation of this concept in 

the mammalian system. Through homology modeling, GBP was revealed to be a 6 β-

propeller toroidal structure. Interestingly, the seemingly repetitive and identical 

domains were able to simultaneously bind LPS and CRP via separate domains, 

suggesting that the Tectonin domains can differentiate self/non-self, which is crucial 

to frontline defense against infection. Infection condition, which was mimicked by 

Ca2+ chelation, increased the GBP-CRP affinity by 1000-fold. Re-supplementing the 

system with physiological levels of Ca2+ did not reverse the protein-protein affinity to 

basal state, suggesting that the infection-induced complex had undergone irreversible 

conformational changes. GBP was also able to increase the endotoxicity of LPS, 

prompting suggestions that it probably disrupts LPS micelles and exposes the 

endotoxic potential of LPS.  In vivo, this may translate into the ability of GBP to bind 
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LPS and perturb the Gram-negative bacterial outer membrane while serving to prime 

the immune system for stronger downstream immune response. Phylogenetic analysis 

revealed strong evolutionary conservation of the Tectonin homologues from the 

plasmodium to human. We identified the hTectonin, a then hypothetical protein in the 

human genome database, as a potential distant homolog of GBP. hTectonin, like GBP, 

formed β-propellers with multiple Tectonin domains. It is present in the human 

leukocyte and interacts with M-ficolin, a known human complement protein whose 

ancient homolog, CL-5, is the functional protein partner of GBP. Furthermore, the 

affinity of hTectonin-derived LPS-binding peptides is comparable to that of the GBP-

derived peptides. By virtue of a recent finding of another Tectonin protein called the 

leukolectin in the human leukocyte we propose that the Tectonin proteins could play 

an important role in innate immune defense and that this function has been conserved 

over several hundred million years, from invertebrates to vertebrates. 
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CHAPTER 1 

GENERAL INTRODUCTION AND OVERVIEW  

 

1.1 Overview of the innate immune system 

The innate immune system serves to protect the host from microbial infection and is 

thought to be the dominant host defense system in many organisms (Litman et al. 

2005). The innate response is usually triggered when microbes are identified by 

pattern recognition receptors (PRRs) present in the host (Figure 1.1), which recognize 

components that are conserved among broad groups of microorganisms (Medzhitov 

2007). These microbe-specific molecules that are recognized by a given PRR are 

called pathogen-associated molecular patterns (PAMPs) and include bacterial 

carbohydrates (e.g. lipopolysaccharide (LPS)), nucleic acids (e.g. bacterial or viral 

DNA or RNA), bacterial peptides (flagellin), peptidoglycans and lipotechoic acids 

(from Gram-positive bacteria), N-formylmethionine, lipoproteins and fungal glucans. 

PRRs also recognize damaged, injured or stressed cells that send out alarm signals, 

many of which are recognized by the same receptors as those that recognize 

pathogens (Matzinger 2002).  

 

Although it does not give long-lasting protection to the host, the innate immune 

system is crucial in providing immediate defense against infection (Janeway and 

Medzhitov 2002) in all classes of plant and animal life, and is the only form of 

immune defense in the invertebrates. The invertebrate innate immune system employs 

several mechanisms to recognize and eliminate pathogens: (i) prophenoloxidase 

pathway to oxidatively kill invading microorganisms, (ii) complement-mediated 

antimicrobial action, (iii) blood coagulation to immobilize the invading microbes, (iv) 
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lectin-induced complement pathway to lyse and opsonize the pathogen, and (v) 

prompt synthesis of potent effectors, such as antimicrobial peptides (Ding et al. 2004).  

 

Figure 1.1: Innate immunity. PRRs of the innate immune system recognizes pathogens and 
activate downstream innate defense modules like coagulation pathway, complement pathway 
and also induce further action by the adaptive immune system. Figure adapted from 
Medzhitov (2007). 
 

Inflammation is one of the first responses of the innate immune system to infection or 

tissue injury. Inflammation is stimulated by chemical factors (Sturtinova 1995) 

released by the affected cells and serves to establish a physical barrier against the 

spread of infection, and to promote healing of any damaged tissue following the 

clearance of pathogens. Another branch of innate immune response is through the 

complement pathway. It is a biochemical cascade of the immune system that helps, or 

“complements”, the ability of antibodies to clear pathogens or mark them for 

destruction by other cells (Janeway 2005). The complement cascade is made up of the 

classical, alternate and lectin-mediated pathways that are composed of many small 
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plasma proteins. Complement components can be found in many species 

evolutionarily older than mammals including plants, birds, fish and some species of 

invertebrates for example the horseshoe crab, which is dubbed the “living fossil”, with 

evolutionary history of several hundred million years (Zhu et al. 2005).  The 

conservation of the complement system from the horseshoe crab to humans reflects 

the significance of the innate immune armament to curb pathogen invasion. 

 

The delayed response of the adaptive immune system requires that the innate immune 

system continues to serve as the frontline defense system even for vertebrates. 

Research has shown that the adaptive immune system is not independent of the innate 

immune system (Medzhitov and Janeway 1997; Katsikis et al. 2007). Rather, it is 

influenced by recognition signals from the innate immune system as an input to help 

shape its development and utilizes the effector apparatus of the innate immune system 

as part of its ammunition towards invaders (Figure 1.2).  Downstream consequences 

of the immune response include the recruitment of complement components of the 

innate immune system by antibodies – phagocytic macrophages and dendritic cells 

"present" antigens to T-cells to initiate both cell-mediated and antibody-mediated 

adaptive immune responses. The interaction of PAMPs and Toll-like receptors 

(TLRs) on dendritic cells causes them to secrete cytokines, including interleukin 6 

(IL-6), which interfere with the ability of regulatory T-cells to suppress the responses 

of effector T-cells to the antigen (Kimball 1994).  
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Figure 1.2: The innate immune system plays a critical role in adaptive immunity. 
Components of the innate immune system (e.g. the TLRs) recognize PAMPs; they process 
and prepare the pathogen to be presented to the T-cells of the adaptive immune system. Figure 
adapted from http://research4.dfci.harvard.edu/innate/innate.html. 
 

1.1.1 The prophenoloxidase pathway 

The prophenoloxidase (PPO) pathway (Figure 1.3) is a major defense pathway in the 

invertebrates (Cerenius and Soderhall 2004). The activation of PPO to phenoloxidase 

(PO) results in the production of the highly reactive cytotoxic quinine which produces 

reactive oxygen species (ROS) to kill the microbial intruder effectively. As the 

toxicity of ROS poses a dilemma to the host’s own survival, its production must be 

tightly controlled. When activated, the phenoloxidase oxygenates monophenols to o-

diphenols and further to o-quinones, which are intermediate products for melanin 

formation. Melanin, serves as a shield to prevent the spread of the microbial intruder, 

while the highly reactive intermediate products (quinines) are antimicrobial and 

cytotoxic. Work in our lab also recent showed that the PPO activity of horseshoe crab 

hemocyanin (HMC), initially triggered by microbial proteases, can be further 

enhanced by PAMPs (Jiang et al. 2007). This demonstrates a direct antimicrobial 
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strategy by which the host opportunistically exploits the invading microbe’s virulence 

factors to convert its respiratory proteins into potent ROS producers to effectively kill 

the intruder. 

 

 
Figure 1.3 The phenoloxidase pathway in invertebrates. β-1,3-glucan, lipopolysacharide 
and peptidoglycan are bound by pattern-recognition receptors (PRRs) which then trigger a 
serine protease cascade leading to the activation of the prophenoloxidase-activating enzyme 
(ppA) from its pro-form. The activated ppA which is also a serine protease then cleaves the 
prophenoloxidase into phenoloxidase. The phenoloxidase enzyme then converts monophenols 
into quinones via oxygenation. Quinones are the intermediate compounds for melanin 
formation and are highly reactive and toxic to cells. Adapted and modified from Cerenius and 
Soderhall (2004). 
 

1.1.2 The complement system 

One major pathway in innate immunity that can be activated by PRRs is the 

complement system. Even though it belongs to the innate immune system, it can be 

recruited and brought into action by the adaptive immune system. Thus, it also acts as 

an initiator of events to trigger downstream action related to the adaptive immune 

system.  

 

LPS / (1-3) β-D-glucan / 

Serine protease cascade 

pro-ppA ppA 

prophenoloxidase phenoloxidase 

quinones melanin 

phenols O2 
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Three biochemical pathways activate the complement cascade: the classical 

complement pathway, the alternative complement pathway, and the mannose-binding 

lectin pathway (Janeway 2005) (Figure 1.4). Major examples of PRRs capable of 

activating the complement system include C-reactive protein (CRP, classical 

complement pathway) and the ficolins (lectin pathway). The complement system 

consists of a number of small proteins found in the blood, normally circulating as 

inactive zymogens (enzyme precursors). When stimulated by one of several triggers, 

proteases in the system specifically cleave the proteins to release cytokines and 

initiate an amplifying cascade of further cleavages. The end-result of this activation 

cascade is massive amplification of the response and activation of the cell-killing 

membrane attack complex (MAC). Over 20 proteins and protein fragments make up 

the complement system, including serum proteins, serosal proteins, serine proteases 

and cell membrane receptors. 

 

 
 

Figure 1.4: The complement cascade. Major PRRs like CRP and ficolin and proteinases like 
mannan-binding lectin-associated serine proteinase (MASP) can trigger the complement 
cascade via the classical, lectin and alternative pathways. Once activated, a series of reactions 
takes place which ultimately leads to downstream effector actions resulting in inflammation, 
opsonisation of pathogens or lysis of cells via the MAC. Figure adapted with modifications 
from DeFranco et. al. (2008). 
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1.1.3 Serine proteases as activators and enhancers of immune response 

The serine proteases seem to be a recurrent member in many of the immune related 

pathways, as can be seen in the description of the prophenoloxidase and complement 

pathways above. Besides the prophenoloxidase and complement pathways, serine 

proteases are also involved in the clotting pathway of vertebrates  and the coagulation 

pathway of the horseshoe crabs (Figure 1.5) (Ding and Ho 2001). In the horseshoe 

crab, when Gram-negative bacteria invade the hemolymph, hemocytes detect LPS 

molecules on their surfaces (Ariki et al. 2004). The hemocytes then release granular 

components including two serine protease zymogens, named Factors C and G, which 

are autocatalytically activated by LPS or (1→3)-β-D-glucan, which are major 

components of the cell walls of Gram-negative bacteria and fungi, respectively. 

Factor B zymogen is then activated by Factor C to its active form (Factor B’), which 

activates proclotting enzyme to clotting enzyme. Clotting enzyme then converts 

coagulogen to an insoluble coagulin gel (Kawasaki et al. 2000). 

 

Figure 1.5: The coagulation cascade in the horseshoe crab. The coagulation pathway in the 
horseshoe crab can be triggered by LPS which autocatalyses the Factor C zymogen into an 
active serine protease, Factor C’. Factor C’ then cleaves and activates another serine protease, 
Factor B, which in turn activates the proclotting enzyme. An insoluble clot forms when the 
clotting enzyme activates coagulogen into coagulin. Clotting can also be triggered by (1-3) β-
D-glucan which acts via another serine protease zymogen Factor G. Activated Factor G then 
taps into the coagulation pathway via cleavage of proclotting enzyme. Adapted from Ding and 
Ho (2001). 

LPS 

Factor C 

Factor B’ 

Factor C’ 

Factor B 

Clotting enzyme Proclotting

Coagulin gel clot Coagulogen 

Factor G Factor G’ 
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Our recent work on the horseshoe crab revealed that 2 serine proteases, FC and C2/Bf 

found in the complement system, once activated, can influence and increase levels of 

recruitment of two PRRs - carcinolectin-5 (CL-5) and the galactose-binding protein 

(GBP) - to the bacterial surface (Le Saux et al. 2008). In turn, this phenomena mostly 

likely serves to enhance the complement pathway activity which involves another key 

PRR, CRP (Figure 1.6). Overall, GBP seems to be the key anchor in many reactions: 

(1) binding to bacterial LPS, (2) bridging of a vast network of PRRs, and (3) 

influential in the recruitment and binding to complement proteins which leads to key 

downstream interactions like the release of chemokines and cytokines. 

 
Figure 1.6: Serine proteases regulate the assembly of PRRs to prompt the innate 
immune response. Serine proteases are known for activating components of the complement 
and coagulation cascade. Le Saux et. al. (2008) showed that positive feedback of FC and 
C2/Bf in regulating the upstream pathogen-recognition assembly conceivably strengthens the 
immune response. 
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1.2  Recognition of pathogens and activation of the innate immune  

system 

1.2.1 Pathogen recognition receptors - CRP and GBP as key innate immune  

  molecules 

In Section 1.1, we observed that CRP, and especially GBP are the main players in the 

innate immune response of the horseshoe crab. CRP is an acute phase plasma protein. 

The human CRP (hCRP) was first discovered by Tillett and Francis in 1930 as a 

substance in the serum of patients with acute inflammation that reacted with the C 

polysaccharide of pneumococcus (Thompson et al. 1999). The level of hCRP rises 

dramatically during acute inflammatory processes that occur in the body in reaction to 

the pnemococcus infection. It is thought to assist in complement binding to foreign 

and damaged cells and affect the humoral response to diseases. In the clinical setting, 

hCRP is used mainly as a marker of inflammation. Thus, measuring and charting 

hCRP levels can prove useful in determining the progress of the disease or indicate 

the effectiveness of treatment regimes. In the horseshoe crab, CRP is also believed to 

play an important role in innate immunity, as an early defense PRR against infections, 

making it a key pathogen recognition receptor (Ng et al. 2004; Ng et al. 2007). 

 

Structurally, hCRP is a 206 amino acid polypeptide which assembles into a radially 

symmetrical pentamer, characteristic of pentraxin family members (Thompson et al. 

1999) (Figure 1.7A). Interestingly, the horseshoe crab CRP of the Tachypleus 

tridentatus species (TtCRP) was revealed to be hexagonal ring-like structure instead. 

A side-on orientation of TtCRP showed a dimeric rectangular structure. Although 

hexameric by structural homology, TtCRP is a member of the pentraxin superfamily 

as well (Iwaki et al. 1999) (Figure 1.52B). The Limulus horseshoe crab CRP (LpCRP) 
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has also been modeled as a hexameric structure on the basis of the hCRP, TtCRP and 

the human serum amyloid protein (hSAP), all of which belong to the pentrain family 

of proteins (Srinivasan et al. 1994) (Figure 1.5C). 

    
                          A                               B                                          C 
 
Figure 1.7: Structures of hCRP, TtCRP and LpCRP.  (A) hCRP is a 206 amino acid 
polypeptide with a jelly-roll structure which assembles into a radially symmetric pentamer. 
(B) TtCRP was identified via electron microscopy to have a doubly-stacked, hexagonal ring-
like structure. (C) The hexameric model of LpCRP based on hCRP, hSAP and TtCRP.  
Structures were adapted from Thompson (1999), Iwaki (1999) and Srinivasan (1994). 
 

The Carcinoscorpius rotundicauda horseshoe crab CRP (hereby referred to as CRP) 

studied in our lab shares 27% homology to hCRP and 91% homology to the TtCRP. 

Despite not having a high homology to the mammalian protein, sequence analysis 

showed that the pentraxin region crucial for protein structure, C1q complement-

binding sites and the calcium binding sites are conserved (Shrive et al. 1999). CRP 

was identified to be the predominant LPS-binding protein in the crab hemolymph (Ng 

et al. 2004). Its transcript level is up-regulated during infection although its protein 

levels were stably maintained, suggesting that it is one of the proteins involved in 

immune response against infection. 

 

Unlike CRP which is well studied in the mammalian system, studies on GBP and 

closely homologous proteins have been limited to the invertebrates. GBP was first 

discovered in the Japanese horseshoe crab Tachypleus tridentatus and was so named 
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because it was found to bind to Sepharose which is a matrix rich in D-galactose and 

3,6-anhydro-L-galactose (Chiou et al. 2000; Chen et al. 2001). Subsequently, it has 

been referred to as Tachypleus Plasma Lectin-1 (TPL-1). The extracellular TPL-1 

shows a high homology (65%) to another intracellular protein, Tachylectin-1 (TL-1) 

(Saito et al. 1995), in the same organism. TL-1 harbours a six β-propeller structure  

(Figure 1.8) (Iwanaga and Lee 2005). The Carcinoscorpius rotundicauda horseshoe 

crab GBP (hereby referred to as GBP) shows 66% and 96% sequence homology to 

TL-1 and TPL-1 respectively. We predict that the GBP shares similar structure and 

properties to TL-1 and TPL-1 due to the high homology shown between their amino 

acid sequences. 

 

Figure 1.8: Graphical representation of the TL-1 structure. TL-1 
is made up of 6 β-propellers (labeled I-VI). Each propeller is made 
up of 4 β-sheets. Figure adapted from Iwanaga and Lee (2005). 
 

 

 

TPL-1 also shows some hints of possible oligomerization, approximately in 

monomeric and dimeric forms (Figure 1.9A). This could be related to their propensity 

to form clusters of interlocking molecules, which was suggested to immobilize and 

entrap the invading microorganisms (Chen et al. 2001). Similarly, our earlier studies 

have shown clues of this occurrence with GBP when monomers and dimers of GBP 

were observed in the horseshoe crab hemolymph (Figure 1.9B) (Ng et al. 2007).  

 
Figure 1.9: Oligomers of TPL-1 and GBP. (A) 
Purified TPL-1 shows existence in oligomeric 
form prompting suggestions that it could form 
clusters to immobilize and entrap bacteria. Figure 
adapted from Chen et. al. (2001) (B) GBP from 
the horseshoe crab hemolymph seems to indicate 
2 major molecular weights. Figure adapted from 
Ng et. al. (2007) with modifications. 
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1.2.2 The beta-propeller structure in proteins 

Beta propellers form one of the 6 major protein structural repeat families besides the 

β-trefoils, armadillo/HEAT, TPR-like, leucine-rich and ankyrin repeats (Andrade et 

al. 2001). Amongst the all-β folds, the group of β-propeller folds is especially 

interesting; these structures are modular in nature, have extreme diversity in sequence 

and function, and are found in organisms with very different phylogenetic origins. 

The modular nature of this fold is based on a simple building block: a four-stranded 

anti-parallel β-sheet (Figure 1.10). Because of the twist in the strands of the β-sheet, 

this modular unit resembles the blade of a propeller, which is the reason for the name 

given to the fold (Paoli 2001). 

 
Figure 1.10: An example of a beta-propeller fold formed by 4 anti-parallel β-strands.  

Adapted from Paoli (2001). 
 

The β-propeller architecture is generally observed in multi-domain proteins (Pons et 

al. 2003). It has been proposed that the β-propeller fold proteins serve as mediators of 

protein-protein interactions because many of these proteins have been observed to 

bind other molecules to carry out various functions (Table 1.1). Mutagenesis studies 

have also revealed that certain amino acids are vital for structural stability while 

others are involved with its functionality (Jawad and Paoli 2002). This therefore 

makes β-propellers a good candidate for drug design and protein engineering. Indeed, 

the separation of regions for function and structure makes it a very flexible protein for 

ease of manipulation (Pons et al. 2003). The β-propeller domain seems to be flexible 
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enough for acquiring a different number of blades to insert full domains into 

circularly arranged β-sheets, as well as to reduce or increase the number of strands 

into β-sheets (Paoli 2001; Jawad and Paoli 2002). 

 

Table 1.1: The various functions of β-propeller proteins. List of representative 
solved protein structures with beta-propeller domains together with their function, 
origin and PDB ID. Adapted from Fulop and Jones(1999). 

 
 

A propeller structure can be formed from 4 to 8 highly symmetrical individual 

propellers (Figure 1.11). The propellers form not a cylindrical but rather a cone-like 

structure, due to how the position of the β-sheets are splayed out.  The cavity formed 

by one end of the cone is mainly observed to be involved in catalysis (Paoli 2001), 

while the central tunnel is solvent accessible, usually filled with water molecules. 

Interaction with ligands or other proteins usually takes places between the propeller 

folds (Figure 1.12). 
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Figure 1.11: Examples of β-propeller proteins with different number of folds. A β-
propeller protein can be formed with 4 to 8 propeller domains – Tachylectin-2 (5), lipoprotein 
receptor (6), nitrous oxide reductase (7) and methanol dehydrogenase (8). The individual 
domain sequences can be highly homologous or may contain important conserved residues in 
several key sequence locations. Some proteins, like the nitrous oxide reductase, also contain 
alpha-helices on top of its basic 7-propeller fold structure. Adapted from Jawad and Paoli 
(2002). 
 

 

 
Figure 1.12: Features of the β-propeller structure. Simplistic conceptual diagram 
summarizing the various properties and features of members of the propeller fold. A six-
bladed array is shown as a representative of the β-propeller scaffold. Adapted from Jawad and 
Paoli (2002) with modifications. 
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1.2.3 The interactome hypothesis  
 
Our studies have shown that CRP interacts with GBP (Ng et al. 2007). Interestingly, 

they only interact when the host is infected (Figure 1.13). This suggests that infection 

primes GBP to bind to CRP or vice versa, and it is postulated that both these proteins 

form a core of PRR complex to recruit other plasma PRRs to form a "PRR-

interactome" to result in an enhanced host response against the invading pathogen.  

 

Figure 1.13: CRP interacts with GBP upon 
host infection. SDS–PAGE analysis show that 
CRP and CL-5 co-purified with GBP from 
hemolymph. Western blot using anti-CRP 
antibody showed that co-purification of CRP 
and GBP occurred only with 6 hours post 
infection (hpi) hemolymph. Figure adapted 
from Ng et. al. (2007) with modifications. 
 

 

This concept of interactome formation proves to be a recurrent theme, having also 

been observed in studies involving another horseshoe crab pentraxin, CrOctin (Figure 

1.14) (Li et al. 2007). In yeast 2-hybrid interaction studies (Figure 1.15), Le Saux et. 

al. (2008) also provided strong evidence to suggest that (1) the PRRs act in concert to 

sense, bind and help eliminate the bacteria and (2) GBP and CRP are recurrent key 

interactors in the PRR complex formation against pathogen invasion. 
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Figure 1.14: A model for pathogen recognition assembly via interaction between 
CrOctin and other PRRs in the horseshoe crab. Infection triggers CrOctin to anchor on the 
phosphoethanolamine (PE) groups on the inner core and lipid A (LA) of LPS (bacterial 
surface in green). Various combinations of PRR interactomes may bind to the invading 
bacteria via CrOctin's contact with the bacterial PE moieties. Figure adapted from Li et. al. 
(2007). 
 

 
 

Figure 1.15: Protein interaction network of GBP and CRP. Yeast 2-hybrid analyses 
showed that GBP and CRP are major interacting proteins in the horseshoe crab hemolymph. 
Based on this and findings that both GBP and CRP are capable of binding bacteria, it was 
postulated that both these proteins form a core of PRR complex to recruit other hemolymph 
PRRs to form a "PRR-interactome" to result in an enhanced host response against the 
invading pathogen. Figure adapted from Le Saux et. al. (2008). 
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1.2.4 Pathogen-associated molecular patterns 

Earlier in Section 1.1, we defined that the innate immune system detects pathogens 

via recognition of molecules termed PAMPs that are conserved over a broad range of 

microbes, and which are not found in the host. The chemical structures of PAMPs are 

conserved within a particular group of microbes, and the detection of PAMPs can thus 

indicate the type of microbe to which the immune system activates its most 

appropriate response. PAMPs of the Gram-positive bacteria include the peptidoglycan 

and lipoteichoic acid (LTA). LPS from the Gram-negative bacteria is considered to be 

the prototypical PAMP. PAMPs found in the fungi include carbohydrates such as 

zymosan, mannan and β-glucan (Roeder et al. 2004). Other molecules that have been 

reported as PAMPs include the flagellin protein, double-stranded RNA and CpG 

DNA (Figure 1.16).  

 
Figure 1.16 : Bacterial PAMPs and their recognition by various PRRs. Bacterial DNA, 
mycobacteria, Gram-positive and –negative bacteria and yeast are some examples of 
pathogens whose surfaces display PAMPs that will be detected by host PRRs. 
 

The selective activation of various TLRs by different PAMPs (Roeder et al. 2004; 

Takeda and Akira 2005) is a good indication that the innate immune is capable of 

differentiating groups of microbes. One important consideration is that while PAMPs 

are supposed to be “conserved” across pathogens of one class, PAMPs such are LTA 

and LPS are not exactly conserved in their complete chemical formula. Rather, they 
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share a common architecture upon which chemical variations are commonly seen. 

Such a characteristic may bear important implications for PRRs which target very 

specific motifs of PAMPs rather than the entire architecture or scaffold of the 

molecule. This then explains the ability of the invertebrate immune system to use 

combinations of PRRs like lectin isoforms to recognize and differentiate specific 

patterns formed by moieties of PAMPs displayed on the surface of different species of 

pathogens (Beutler 2003; Zhu et al. 2006). In the following section, the LPS and LA 

will be discussed in greater detail to illustrate the conserved and variable nature of 

PAMPs. 

 

1.2.4.1 Lipopolysaccharide (LPS) 

LPS is a major component of the outer membrane of Gram-negative bacteria (Figure 

1.17) such as Escherichia, Salmonella, and Pseudomonas. It is important to the 

structural integrity of the bacteria and contributes to their ability to cause disease 

(Tzeng et al. 2002). Deprivation of LPS will cause its death, especially in E. coli, due 

to lowered stability and increased permealizability to host factors (Raetz 1990; Onishi 

et al. 1996). However, there has been preliminary evidence in Neisseria meningitidis 

where mutants lacking LPS appear to be still viable (van der Ley and Steeghs 2003). 

The mechanism and reason for their viability is still unknown. 

 

LPS is also known as endotoxin and induces a strong response from normal animal 

immune systems (Hinshaw 1984; Rietschel 1984). Unlike exotoxin, it is not secreted 

in a soluble form by live bacteria, but it is a structural component in the outer 

membrane of the Gram-negative bacteria (Figure 1.17) and it is released when 

bacteria are lysed.  
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LPS acts as the prototypical endotoxin because it binds the CD14/TLR4/MD2 

receptor complex which is present in several immune system cells, including 

macrophages and dendritic cells (Aderem and Ulevitch 2000; Medzhitov and Janeway 

2000). The binding of LPS to the complex triggers the signaling cascade for 

macrophage/endothelial cells to secrete pro-inflammatory cytokines like tumor 

necrosis factor (TNF) (Dinarello 1986; Beutler and Cerami 1988; Kiener et al. 1988; 

Old 1988; Loppnow et al. 1989) and interleukin-1 (IL-1) that could lead to what is 

called an "endotoxic shock" (Tracey et al. 1986; Morrison and Ryan 1987; Natanson 

et al. 1989) when there is an exaggerated, systemic response to infection in immune-

compromised individuals. 

 
Figure 1.17: Schematic diagram of the cell wall of Gram-negative bacteria. Hexagons in 
pink and purple depict the O- and core polysaccharide respectively. Green hexagons represent 
KDO. Yellow squares indicate LA. Figure adapted from Brock Biology of Microorganisms 
(2006). 
 

LPS is generally constituted by the lipid A moiety (LA) and sugar repeats (the 

polysaccharide chain) (Nikaido and Vaara 1987) (Figure 1.18).  The polysaccharide 

chain is further divided into the core antigen (R polysaccharide) and the O antigen (O-

polysaccharide). Toxicity is associated with the LA and immunogenicity is associated 

with the polysaccharide chain.  



 

20 
 

 
Figure 1.18: Structural organization of LPSs in the Enterobacteriaceae. LPS is usually 
divided into (1) the highly conserved LA (2) slightly variable core oligosaccharide chain and 
(3) the highly variable O-antigen saccharide repeat units.  

 

The O-polysaccharide chain is highly variable amongst different bacteria. Among 

enterobacteriaceae, the LA is virtually constant. With minor variations, the core 

polysaccharide is common to all members of a bacterial genus (e.g. Salmonella), but it 

is structurally distinct in other Gram-negative bacteria (Reeves and Wang 2002; Patil 

and Sonti 2004). Salmonella and Escherichia however, have been shown to have 

similar cores (Kato et al. 1990).  

 

LPS is widely considered to be the principal component responsible for the induction 

of septic shock that often accompanies severe infection with gram‐negative bacteria. 

In pharmaceutical production, it is necessary to remove all traces of endotoxin from 

drugs and drug containers as even small amounts, 0.1 EU/ml of endotoxin, will cause 

septic shock in humans (Danner et al. 1991; Opal 1995). Components of invading 

microbes can induce the host to initiate a cascade of events that, if unchecked, can 

lead to irreversible tissue damage and death (Horn et al. 2000). On the other hand, 

with the LPS being of crucial importance to the survival of Gram negative bacterial 

cells, it is therefore a prime target for the design of antimicrobial substances and 

therapeutic strategies.  
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1.2.4.2 Lipid A 

Lipid A is the lipid component of LPS. It contains the hydrophobic, membrane-

anchoring region of the LPS molecule. LA consists of a phosphorylated N-

acetylglucosamine (GlcNAc) dimer with 6 or 7 fatty acid chains attached (Figure 

1.19). Usually 6 fatty acids chains are found. All the fatty acids in LA are saturated. 

Some are attached directly to the GlcNAc dimer and others are esterified to the 3-

hydroxy fatty acids that are characteristically present. LA of E. coli and Salmonella is 

a β,1-5 linked disaccharide of glucosamine, acylated with R-3-hydroxymyristate at 

positions 2,3,2’ and 3’, and phosphorylated at positions 1 and 4’. The envelop of a 

single E. coli cell contains ~2x106 LA residues (Raetz 1986). 

 
Figure 1.19: Detailed chemical structure of the Salmonella minnesota LA. Figure adapted 
from Tanamoto and Azumi (2000). 
 

The structure of LA is highly conserved among Gram-negative bacteria. While the 

polysaccharide is non-toxic, LA is the bioactive centre that is responsible for the 

pathophysiological activities of these bacteria which result in septic shock. The LPS 

molecule and the bioactive moiety LA, have served as useful targets to design anti-

microbial peptides. In insects, an immediate response to LPS by the innate immune 

system is the production of cationic antibacterial peptides (Lemaitre et al. 1997; 

Anderson 2000). Such peptides, which can critically detect and eliminate PAMPs, 

have been proven to be important examples for peptide design. Ideally, the ultimate 
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goal is to design flexible peptides targeting conserved regions of the PAMP molecule, 

so that they can act as antibiotics that are resistant to subtle microbial mutations and 

changes. 

 

1.2.5 Antimicrobial peptides 

Antimicrobial peptides (also called host defense peptides) are an evolutionarily 

conserved component of the innate immune response (Hancock 1999; Gura 2001) and 

are found among all classes of life. These peptides are potent, broad spectrum 

antibiotics which demonstrate potential as novel therapeutic agents. Antimicrobial 

peptides have been demonstrated to kill Gram-positive and Gram-negative bacteria, 

including strains that are resistant to conventional antibiotics. Examples are 

mycobacteria (including Mycobacterium tuberculosis), enveloped viruses, fungi and 

even transformed or cancerous cells. Unlike the majority of conventional antibiotics it 

appears as though antimicrobial peptides also have the ability to enhance immunity by 

functioning as immunomodulators. 

 

Antimicrobial peptides are generally between 12 and 50 amino acids. They are 

categorized according to their amino acid composition and structure (Yeaman and 

Yount 2003). The secondary structures of these molecules follow 4 themes, including 

i) α-helical, ii) β-stranded, iii) β-hairpin and iv) extended loop (Dhople et al. 2006).  

Many of these peptides are unstructured in free solution, and fold into their final 

configuration upon partitioning into biological membranes. Despite differences in 

structure, most of them share common features like net positive charge and 

amphiphatic character (Oren and Shai 1998; Hancock 1999) and probably a similar 

mode of action as well. 
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Antimicrobial peptides act by permeating the bacterial membrane through several 

possible mechanisms : ‘carpet-like’ (Huang 2000) , ‘barrel-stave’ or ‘toroidal-pore’ 

(Oren and Shai 1998) (Figure 1.20) mechanisms or penetration into the cell to bind 

intracellular molecules which are crucial to bacterial survival (Brogden 2005). 

 

 

Figure 1.20: The different mechanisms of action of antimicrobial peptides. Antimicrobial 
peptides (AMPs) have been proposed to disrupt the membrane bilayer during binding by 
different processes. All these models require, either explicitly or implicitly, that a threshold 
concentration in the membrane be crossed for disruption to occur. (A) Barrel stave. (B) 
Carpet-like mechanism. (C) Toroidal pore. (D) Disordered toroidal pore. Figure adapted from 
Melo et. al. (2009). 
 

The horseshoe crab is a rich source of antimicrobial peptides. Tachyplesins I and II, 

polyphemusins I and II have been found in the hemocytes of the horseshoe crab. They 

inhibited the growth of not only Gram-negative and Gram-positive bacteria but also 

fungi, such as Candida albicans M9 (Miyata et al. 1989). Another group of horseshoe 

crab-derived peptides, called the Sushi peptides, were rationally designed based on 

the core LPS-binding region of Factor C (Ding et al. 1993; Tan et al. 2000; Tan et al. 

2000). Because it occurs at the initial step of the coagulation cascade, Factor C 
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functions as a very sensitive and specific biosensor that is capable of detecting 

picogram to nanogram levels of LPS (Ho 1983). Two 34-mer Sushi peptides, S1 and 

S3, display detergent-like properties in disrupting LPS aggregates (Wang et al. 2002; 

Li et al. 2004; Li et al. 2006).  

 

Based on understanding of the amino acid sequence in the Sushi domains, and 

comparison of LPS-binding motifs of several other LBPs, Frecer et. al. used 

computer-aided molecular modeling to show that a predominance of lysine and 

arginine residues occurs in alternation with hydrophobic residues, BHB(P)HB 

(B=basic; H=hydrophobic; P=polar) (Frecer et al. 2000). Thus, two 34-amino acid 

sequences containing BHB(P)HB residues were found within the Sushi 1 and Sushi 3 

domains of Factor C. Interestingly, following such a rational approach, various 

synthetic peptides containing BHB(P)HB motifs have been further tested and showed 

LPS-binding and neutralizing capabilities similar to those of Sushi peptides 

(Pristovsek and Kidric 2004). 

 

1.3  Horseshoe crab as an ideal experimental model host for innate  

immunity study  

 
Figure 1.21: The horseshoe crab 
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Despite the absence of acquired immune systems, the arthropod hemolymph shows a 

high degree of specificity against invading pathogens (Iwanaga 2002). Four extant 

species of the horseshoe crab (Figure 1.21) inhabit the world - Limulus polyphemus 

along the east coast of North America and three species in Southeast Asia including 

the species in this study, Carcinoscorpius rotundicauda. The horseshoe crab 

possesses a large amount of blood and sizeable tissues compared to other arthropods, 

which makes it an ideal experimental model for physiological and molecular 

manipulations.   

 

One prime example of the usefulness of the horseshoe crab is the development of a 

very sensitive assay for detecting the presence of endotoxin. The Limulus Amebocyte 

Lysate (LAL) assay, utilizes blood from the horseshoe crab (Bondar et al. 1979) 

where very low levels of LPS can cause coagulation of the Limulus lysate due to a 

powerful amplification through an enzymatic cascade. Owing to its extreme 

sensitivity to endotoxin, LAL has been used widely in the detection of endotoxin in 

pharmaceuticals, surgical implants, water and food. The LAL test can detect 

femtogramme levels of endotoxin (Ho 1983). 

 

Furthermore, it is known to harbour a vast variety of plasma proteins which are 

sensitive to microbial invaders (Ng et al. 2004; Ding et al. 2005; Zhu et al. 2005; Zhu 

et al. 2006; Jiang et al. 2007; Li et al. 2007; Ng et al. 2007; Le Saux et al. 2008). 

Literature evidence supports that the horseshoe crab system also possesses anti-viral 

properties against the Influenza A virus (Murakami et al. 1991), although the active 

component was not identified.  Our lab has also recently observed potent anti-

influenza activity in the hemocytes of the horseshoe crab (unpublished data). 
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Therefore, this makes the horseshoe crab an ideal experimental model to study innate 

immunity against bacterial and viral infections.  

 

1.4 Overview of thesis 

This thesis attempts to elucidate the underlying mechanisms of action of host proteins 

in the innate immune system; to show how they sense the incoming bacteria, and 

suggest the various pathways that the PRRs might take to clear the foreign body. This 

thesis documents the study of two major pathogen recognition receptors in the 

horseshoe crab hemolymph – GBP and CRP. We characterized their protein-protein 

and protein-ligand interactions structurally and kinetically, and showed how infection 

conditions might mediate these interactions. 

 

We modeled the structure of GBP and studied it as a representative member of the 

Tectonin family of proteins. We uncovered that GBP was able to distinctly interact 

with pathogens and host proteins. Furthermore, it was interesting that GBP’s six 

seemingly iterative Tectonin domains were able to simultaneously distinguish 

self/non-self molecules. This prompted us to further study the prevalence of the 

Tectonin-domain containing proteins in the vertebrates, and especially so in the 

human. We found widespread occurrence of Tectonin domain-contaning proteins in 

the human, and amongst many other species. We identified and studied a likely 

distant GBP Tectonin homolog in the human genome, and named it the hTectonin. 

Interestingly, we found that hTectonin, in immune-related cell lines, and similar to 

GBP, might interact with proteins important in the innate immune system. These 

studies led us to conclude that the Tectonin protein family could be an important and 

integral part of the immune system which remains to be fully characterized. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1 Computational Analysis 

2.1.1 Bioinformatics analysis 

Identification of Tectonin proteins 

The Tectonin domain containing proteins were identified using domain search on the 

SMART (Simple Modular Architecture Research Tool) database. A position-specific 

iterated search using the protein sequence on PSI-Search on the Embl server was 

performed using GBP as the query sequence. Related sequences were chosen after 2 

iterations of PSI-Search. Hits were then put through the SMART prediction server to 

verify their propensity to form Tectonin domains. Multiple sequence alignment was 

carried out on the curated list of proteins using Promals3D. A phylogenetic tree was 

then constructed from sequences showing strong domain alignments using PHYLIP 

with a bootstrap value of 1000. 

 

2.1.2 Protein homology modeling  

This section of work was done in collaboration with and co-supervised by Dr. 

Vladimir Frecer during a 3 week study in the AREA Science Park, Trieste, Italy under 

the financial support of the Singapore-MIT Alliance. 

 

In the absence of suitable multiple template proteins in the Protein Data Bank (PDB), 

the 3D model for GBP was homology modeled using the crystal structure of TL-1 

(Beisel, H.G.; personal communications with Dr. Vladimir Frecer). Based on a 

threshold of >40%, the sequence identity of 66.7% between GBP and TL-1 is deemed 
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sufficient to build a reliable homology model (Petsko and Dagmar 2004).  The 

Molecular Operating Environment software (MOE, Chemical Computing Group, 

Canada) was used to build the model. The sequences of GBP and TL-1 were aligned 

using the Blosum62 substitution matrix. The stochastic model building algorithm of 

MOE uses an adapted Boltzmann-weighted randomized modeling procedure 

combined with specialized logic for the proper handling of insertions and deletions. 

The side chain data was assembled from an extensive rotamer library generated by 

systematic clustering of high-resolution PDB data. MOE created a collection of 10 

independent intermediate homology models, which contain different loop candidates 

and side chain rotamers. Loops were modeled first, in random order. For each loop, a 

contact energy function analyzes the list of candidates collected in the segment 

searching stage, taking into account all atoms already modeled. The intermediate 

models were scored by the electrostatic solvation energy scoring function, calculated 

via Generalized Born/Volume Integral (GB/VI) methodology. Using molecular 

mechanics and AMBER99 (Wang et al. 2000) forcefield with electrostatic reaction 

field correction, the best scoring model was subjected to energy minimization. The 

final model was inspected using MOE's Protein Geometry stereochemical quality 

evaluation tools to confirm that the stereochemistry of the model is reasonably 

consistent with typical values found in crystal structures. The Ramachandran plot 

generated by RAMPAGE (Lovell et al. 2003) shows that the outlier residues listed 

remain close to the boundaries of the permitted Psi-Phi values, which are indicated by 

the light blue contours (refer to Figures 3.21 & 3.28).  
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2.1.3 Construction of lipid A and saccharide structures 

Saccharides and LA molecules (Frecer et al. 2000) were constructed using the 

Biopolymer module in Insight II (Accelrys, CA). Using molecular mechanics and 

AMBER99 force field with electrostatic reaction field correction, the structures were 

subjected to energy minimization. 

 

2.1.4 Protein-protein and protein-ligand docking 

Preliminary flexible ligand and rigid receptor docking was performed using MOE Site 

Finder and Docking modules. The top 30 docking poses generated were ranked, and 

further energy refinement was performed by the Docking module of Insight II using 

the AMBER99 forcefield. Receptor residues within a 5Å radius of the docking center 

were considered as flexible in the refinement process, during which the lowest energy 

combination of side chain rotamers was determined in several iterative cycles 

followed by careful energy minimization of the resulting ligand-receptor complex. 

The ligand-receptor interaction energy Eint was computed as the sum of electrostatic 

and Van der Waals terms as defined in the AMBER99 forcefield. 

 

The HADDOCK2.0 program (Dominguez et al. 2003; de Vries et al. 2007) was used 

to generate the 3D models of GBP-CRP heterodimer. Peptide sequences from the 

HDMS analysis involved in protein dimerization which display more than 30% 

solvent accessible surface area per residue in the homology 3D models of GBP and 

CRP calculated by NACCESS (Hubbard and Thornton 1993), were defined as the 

active residues in the guided docking procedure. A total of 400 rigid body docking 

structures were generated and 40 highest scoring structures were refined by semi-

flexible simulated annealing involving active and passive residues. Passive residues 
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surround the active ones and are located in a layer defined by 3Å interatomic distance 

from the active residues. Total molecular mechanics energy of the dimer using 

forcefield formulations from CNS program (Nilges 1995; Nilges 1996), protein-

protein interaction energy and protein desolvation energy were considered as a 

weighted sum of parameters in an empirical scoring function that was used for the 

rank-ordering of the generated GBP-CRP dimers. In a reference random docking run 

all residues of GBP and CRP, which displayed >30% solvent accessible surface area, 

were considered as active residues and amino acids within 3Å inter-atomic distance 

were considered as passive residues. Generation, refinement and scoring of the GBP-

CRP heterodimer models was computed in the same way as described above. 

 

2.1.5 Identification of LPS-binding motifs 

Based on Frecer et. al. (2000) and the definition of the LPS-binding motif, an 

algorithm was written in MATLAB (MathWorksTM, Inc) to conduct large scale and 

multiple screens for these motifs in proteins. The algorithm will scan for all possible 

lengths and permutations of the standard BHB(P)HB (B-basic, H-hydrophobic, P-

polar) residue motifs. The classification of residue properties is based on those listed 

in Kyte and Doolittle (1982). 

 

2.1.6 Design and synthesis of LPS-binding peptides 

After identifying the protein sequence that contains the BHB(P)HB motif, a window 

of 20-25 residues flanking and inclusive of the LPS-motif were studied based on 

hydrophilicity and secondary structure to assess its suitability for peptide synthesis. 

Most importantly, the peptide chosen from this region must be hydrophilic for ease of 

synthesis and is also a confirmation that this peptide exists in a solvent-accessible 
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region of the protein. The final peptide sequence was sent for synthesis to Genemed 

Synthesis Inc. (California, USA), with final purity levels >90% (see Appendix A). 

 

2.2 Preparative Methods 

2.2.1 Organisms 

Horseshoe crabs, Carcinoscorpius rotundicauda, were collected from the Kranji 

estuary of Singapore. Before treatment, horseshoe crabs were washed to remove mud 

and barnacles. The animals were kept in tanks with a minimal level of 30% (v/v) sea 

water/fresh water. For experiments in which hemolymph from only one time point of 

infection (6 hpi, as studied in Ng et. al. 2007) was compared against the naïve 

hemolymph, infection was performed on male horseshoe crabs of body mass between 

80 g to 120 g so as to minimize weight and gender-bias in variations in the bacterial 

clearance. Bacteria strains used were Escherichia coli TOP10 and Salmonella 

minnesota strain R595 and Pseudomonas aeruginosa ATCC 27853. 

 

2.2.2 Biochemicals and enzymes  

LPS purified from Salmonella minnesota R595 (Re mutant) was from List Biological 

Laboratories, Inc. (Campbell, CA, USA). HiTrap H-hyroxylsucinimide-(NHS) 

activated Sepharose High Performance columns, glutathione SepharoseTM 4B, 

CNBr-activated Sepharose® 4 Fast Flow slurry, Protein-A Sepharose 4 Fast Flow 

slurry, were products of GE Healthcare (previously Amersham). Deoxynucleotide 

triphosphates (dNTPs) were from Promega. The concentration stated for dNTP refers 

to the concentration of each of the different nucleotide, deoxyadenosine triphosphate 

(dATP), deoxyguanosine triphosphate (dGTP), deoxycytosine triphosphate (dCTP) 

and deoxythymidine triphosphate (dTTP). X-α-gal was from BD Biosciences 
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Clontech. Isopropyl-1-thio-β-D-galactopyranoside (IPTG) was from Invitrogen. 

Sequencing grade-modified trypsin (Porcine) was from Promega. All restriction 

enzymes were from New England Biolabs or Fermentas. The horseradish peroxidase 

substrate ABTS (2,2'-azino-bis[3- ethylbenzthiazoline-6-sulfonic acid) was from 

Roche. Phenylmethylsufonylfluoride (PMSF), purpald (4-amino-3-hydrazino-5-

mercapto-1,2,4-triazole), bovine serum albumin fraction V were from Sigma. 

 

2.2.3 Medium and agar 

Luria Bertani (LB) broth was made with 1 % (w/v) Tryptone (Difco), 0.5 % (w/v) 

Yeast extract (Difco) and 0.5 % sodium chloride at pH 7.0. For LB agar, 1.5 % (w/v) 

agar (Difco) was added. Synthetic defined (SD) medium was made with 0.67 % (w/v) 

Yeast nitrogen base without amino acid (Difco), 2 % (w/v) glucose and appropriate 

amino acid supplements, at pH 5.8. Depending on the nutritional selection that was 

used, one of the following supplement was added to the SD medium: 0.074 % (w/v) 

Trp Drop Out (DO) supplement, 0.069 % (w/v) Leu DO supplement, 0.064 % (w/v) 

Trp/Leu DO supplement, or 0.06 % (w/v) Trp/Leu/His/Ade DO supplement. For 

medium whereby adenine was not the drop-out supplement, an additional 0.003 % 

(w/v) adenine hemisulfate was also included. SD plates contained 2 % (w/v) agar. 

YPD medium was made with 2 % (w/v) peptone, 1 % (w/v) Yeast extract, 2 % (w/v) 

glucose at pH 6.5. YPDA consist of the same nutrients as above but with 0.003 % 

(w/v) adenine hemisulfate. For YPD and YPDA plates, 2 % (w/v) agar was added. 

For use of antibiotics, ampicillin was added at 50 mg/l medium or agar, and 

kanamycin was added at 50 mg/l medium or agar, unless otherwise stated. IPTG/X-

gal selection plates contained 0.05 % (w/v) IPTG and 0.04 % (w/v) X-gal. For X-α-

gal plates, 100 μl of a 2mg/ml stock was spread per plate.  
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2.2.4 Collection of cell-free hemolymph 

The horseshoe crab hemolymph was collected by partial cardiac puncture under 

pyrogen free conditions. To prevent contamination of the hemolymph, the site of 

puncture was swabbed with 70 % ethanol. The hemolymph was clarified from 

amebocytes by centrifugation at 150 g for 15 min at 4°C.  The hemolymph was 

aliquoted, half of which was added with 1 mM PMSF. PMSF irreversibly inhibits 

serine proteases by sulfonylation of the serine residue in the active site of the 

proteases, but does not inhibit metallo-, aspartic- and most cysteine proteases with the 

exception of papain. The aliquots of hemolymph were then quick-frozen in liquid 

nitrogen and stored at -80 °C until further use. 

 

2.2.5 Depyrogenation of equipment and buffers 

Contamination by LPS was minimized by depyrogenation of all equipment that were 

used. Glasswares were baked at 200 °C for 2 h. Materials that could not be baked, 

such as tubings for chromatography were treated with 3 % hydrogen peroxide 

overnight before rinsing with  pyrogen-free water (Baxter Inc.). 

 

2.2.6 Purification of GBP from cell-free hemolymph 

The cell-free plasma was incubated overnight at 4 °C with Sepharose CL-6B (GE 

Healthcare). The columns were pre-equilibrated with initial buffer (10 mM Tris, pH 

8.8, 150 mM NaCl) and washed with at least 10 column volumes of the initial buffer 

until a steady base line of <0.01 at A280nm was consistently obtained. The column was 

then eluted with the initial buffer at pH 7.4 containing 0.4 M GlcNAc (Sigma). 

GlcNAc was removed from the eluted protein by ultrafiltration through 3 kDa 
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MWCO micropore filters (Amicon) and consequently buffer-exchanged into TBS 

pH7.4. 

 

2.3 Analytical Methods 

2.3.1 SDS-PAGE analysis 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried 

out to resolve the purified proteins according to their molecular sizes. Vertical 

minislab gel containing 12 % separating gel (12 % 29:1 Acrylamide:Bisacrylamide, 

375 mM Tris-HCl pH 8.8, 0.1 % (w/v) SDS, 0.1 % (w/v) APS, 0.08 (v/v) TEMED ) 

and 5 % stacking gel (5% (w/v) of 29:1 acrylamide :bisacrylamide mix, 125 mM Tris-

HCl pH 6.8, 0.1 % (w/v) SDS, 0.1 % (w/v) APS, 0.125 % (v/v) TEMED) were 

routinely cast using the Mini-protean II system (BioRad). Protein samples were 

reduced with SDS-PAGE sample loading buffer (50 mM Tris-HCl, pH 6.8, 2 % SDS, 

6 % glycerol, 1 % β-mercaptoethanol and 0.004% bromophenol blue) with 3 min 

boiling before loading into the gel. Electrophoresis was performed at room 

temperature in Tris-glycine buffer (25 mM Tris, pH 8.3, 250 mM glycine, and 0.1 % 

SDS) at a constant current of 25 mA per gel. After electrophoresis, the gel was fixed 

and stained in Coomassie Blue staining solution (0.25 % Coomassie Brilliant Blue R-

250, 40 % methanol, 10 % acetic acid) for 30 min. Background staining was then 

removed by rinsing the gel in destaining solution (50 % (v/v) methanol, 5 % (v/v) 

acetic acid). 

 

2.3.2 Western blot 

In western blot, the electrophoretic transfer was performed in the Mini TransBlot 

Electrophoretic Transfer Cell (Biorad). The transfer of proteins was carried out at a 
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constant voltage of 80V for 2 h at 4˚C, afterwhich the membrane was incubated for 2 

h at room temperature with 20 ml of blocking buffer containing 5% (w/v) skimmed 

milk in TBST (TBS containing 0.05 % Tween20, v/v). After the incubation, the 

membrane was rinsed 3 times in 20 ml TBST. The membrane was then incubated 

overnight at 4˚C with primary antibody at the indicated dilution in TBST containing 

2.5 % BSA. Subsequently the membrane was washed 3 times with 20ml TBST to 

remove unbound antibody. Secondary antibody in TBST with 2.5 % BSA was then 

added to the membrane and incubated at room temperature with gentle shaking. The 

membrane was washed 3 times with 20 ml TBST to remove unbound antibody. The 

antigen-antibody complex was developed by incubating the blot with Supersignal 

West Pico (Pierce) chemiluminescent substrate.  

 
2.3.3 Mass spectrometry 

 
To identify the protein of interest, the protein bands were excised from SDS-PAGE. 

Care was taken to prevent keratin contamination by wearing a face mask. The gel 

pieces were carefully rinsed with milliQ water and further cut into 2mm small to 

facilitate permeation of solutions during the in-gel digestion. Coomassie stain was 

removed from the gel pieces by a two-step process of rinsing in 50 mM ammonium 

bicarbonate/ 50 % (v/v) acetonitrile and dehydrating it with acetonitrile. The two 

cycles of “rinse and dry” treatment was repeated until the gel appears white and 

opaque. The gel was dried in a speed-vac to completely remove the acetonitrile before 

subjecting the in-gel protein to disulfide-reduction using 10 mM dithiothreitol (DTT) 

in 100 mM ammonium bicarbonate at 57 °C for 1 h followed by S-alkylation with 55 

mM iodoacetamide in 100 mM ammonium bicarbonate at room temperature for 1 h. 

The gel was rinsed three times in 100 mM ammonium bicarbonate, dehydrated with 2 

rounds of acetonitrile treatment and then re-rinsed once in 100 mM ammonium 
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bicarbonate and dehydrated again with 2 rounds of acetonitrile treatment. The gel 

pieces were centrifuged at 5,000 g for 2 min and the acetonitrile was discarded. Any 

remaining traces of acetonitrile were removed by applying-speed-vacuum, before in-

gel digestion was carried out for 12 h with 12.5 ng/ml trypsin (Promega) in 50 mM 

ammonium bicarbonate at 37 °C. After overnight in-gel digestion, the protein 

fragments were extracted from the gel with 20 mM ammonium bicarbonate, followed 

by 5 % formic acid in 50 % aqueous acetonitrile and with 100 % acetonitrile. The 

extracts were pooled and the solvent was allowed to vaporise in a speed-vacuum 

before mass spectrometric analysis. 

 

Matrix-assisted laser desorption ionization-Time of flight (MALDI-TOF) analysis 

was performed at the Protein and Proteomics Centre (Department of Biological 

Sciences) using Voyager-DE™ STR Biospectrometry™ Workstation (PerSeptive 

Biosystems) to obtain the peptide mass fingerprint. The peptide mass fingerprint used 

to search for a protein match in the database using the Mascot website: 

http://www.matrixscience.com. A match occurs if the protein has a significant number 

of peptide fragments with the same molecular weight after an in silico chemical 

modification (reduction and alkylation, in our case) and enzyme treatment (trypsin). 

The probability that a match is random or significant is determined using the 

molecular weight search score (Mowse score) (Pappin et al., 1993). 

 

2.3.4 ELISA 

Salmonella minnesota LPS, ReLPS, LA, LTA (Sigma) and GlcNAc-BSA (Dextra 

Labs, UK) were incubated overnight in binding buffer on 96-well PolysorpTM (Nunc) 

microplates. After washing off excess ligands, the unbound sites were blocked with 



 

37 
 

1% BSA and incubated at 25 ◦C for 2 h. Serially diluted GBP samples (with or 

without pre-incubation with GlcNAc) were then added to each well and incubated at 

25 ◦C for 2 h. The rabbit antiserum against GBP was added after washing each well. 

Subsequently, horseradish peroxidase-linked anti-rabbit IgG antibody was added and 

incubated for 1 h. Peroxidase enzyme activity was determined after adding ABTS 

(Amersham, GE Healthcare) as substrate and the OD405 nm was measured. 

 

2.3.5 Yeast 2-hybrid co-transformation assay 

Co-transformations of the different bait and prey plasmids into S. cerevisiae AH109 

strain were performed in accordance to standard protocols. All the fragments and full-

length CRP and GBP cDNAs (without their signal sequences) were each fused to the 

DNA-binding domain of Gal4 in the bait plasmid pGBKT7 (BD Biosciences), or to 

the activation domain of Gal4 in the prey plasmid pGADT7-Rec (BD Biosciences). 

Figure 2.1 illustrates the concept of cloning the gene of interest into a bacterial vector 

that contains the Gal4 binding domain (the bait vector) or the Gal4 activation domain 

(the prey vector). 
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Figure 2.1 : Cloning of genes into yeast 2-hybrid vectors. Fragments and full-length CRP 
and GBP cDNAs (without their signal sequences) were each fused to the DNA-binding 
domain of Gal4 in the bait plasmid pGBKT7 or to the activation domain of Gal4 in the prey 
plasmid pGADT7-Rec. Image adapted from The Science Creative Quarterly 
(http://www.scq.ubc.ca/?page_id=247). 

 

For selection, synthetic defined (SD) media lacking Leu and Trp (SD-Trp-Leu) or 

lacking Leu, Trp, His and adenine (QDO medium) were used. Transformants 

containing bait and prey plasmids were selected on SC-Trp-Leu by incubation for 3.5 

days at 30 °C. The resulting colonies were suspended in water and replated on SD-



 

39 
 

Trp-Leu and QDO agar at 30 °C for up to a maximum of 7 days. The negative control 

was co-transformed with a recombinant plasmid and an empty prey or bait plasmid. 

The positive control was co-transformed with a plasmid expressing the full-length 

Gal4 transcriptional activator together with the empty pGADT7-Rec vector. 

 

Figure 2.2 : Colony selection of succesful transformants. Only colonies that succesfully 
incorporated both bait (expressing tryptophan) and prey (hunter, expressing leucine) plasmids 
will be selected on SD-Leu-Trp media. If there is interaction, the Gal4 binding and activation 
domain will come together, and histidine and adenine will be expressed as well, leading to 
growth on QDO selection media. Image adapted from The Science Creative Quarterly 
(http://www.scq.ubc.ca/?page_id=247). 
 

2.3.6 Yeast 2-hybrid library screening 

Amplification of lecukocyte cDNA library 

Ten ul of the cDNA library was added to 52.5 ml of LB-Ampicilin and 150 ul was 

plated on each of the 50 LB-Ampiclin plate. The plates were inverted and incubated at 

37°C for 18–20 h. Approximately 5 ml of LB/glycerol was added to each plate and 

colonies were scraped into liquid. All the resuspended colonies were pooled in one 

flask and mix thoroughly. Subsequent large-scale DNA extraction was done using the 

Gigaprep® kit by Qiagen. 
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Transformation of hTectonin into AH109 yeast strain 

The full-length cDNA of hTectonin in pGBKT7 was small-scale transformed into 

AH109 yeast strain according to standard protocols. The transformants were then 

plated on SD-Trp agar plate. 

 

Transformation of cDNA library into AH109 transformed hTectonin 

One ml of SD-Trp media was inoculated and shaken at 230rpm overnight at 30°C 

with several colonies of 2–3 mm each of the yeast strain AH109 transformed with 

hTectonin. Cells were transferred to a flask containing 150ml SD-Trp and incubated 

at 30°C for 16–18 hwith shaking (250 g) to stationary phase (OD600>1.5). The 

overnight culture (enough to produce an OD600 = 0.2–0.3) was transferred into 750 

ml of SD-Trp and incubated at 30°C with shaking (230–270 g) until OD was around 

0.7. Cells were centrifuged at 1,000 x g for 5 min at room temperature and washed 

twice in water. Cells were resuspended in 8 ml of TE/LiAc. 0.3 mg of the cDNA 

library plasmid and 15 mg of herring testes carrier DNA was added to the yeast cells 

and vortexed to mix. Sixty ml of sterile PEG/LiAc solution was added to the mixture 

in a 150 ml flask and incubated at 30 °C with shaking (200 g) for 30 min. Seven ml of 

DMSO was added and mixed gently. The mixture was heat-shocked for 15 mins at 

42°C with occasional swirling. The cells were then chilled on ice for 1-2 min, 

centrifuged at 1000 g for 5 min. The supernatant was removed and the cells 

resuspended in 10 ml TE. One hundred and fifty ul of this mixture was plated on fifty 

150 mm QDO-agar plates each. Transformants were allowed to grow for 4-5 days. 
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Yeast plasmid extraction 

Colonies of co-transformed yeast were first restreaked on QDO-agar plates, and the 

colonies from these plates were inoculated into 2 ml of SD-Leu-Trp media and 

incubated at 30°C overnight with shaking (220 g). 1.5 ml of the culture was 

transferred into an Eppendorf tube and centrifuged at 10,000 g for 1 min. The 

supernatant was removed at the cells resuspended in 50 ul of TE. Fifty units of 

lyticase was added (5 units/ul) and the solution incubated at 37°C for 1 h. The 

subsequent method for DNA extraction was continued from solution S2 of the 

Axygen DNA Miniprep kit following the standard protocol. 

 

Preparation of electro-competent E. coli and the electroporation of plasmids 

Five ml of LB media was inoculated with TOP10 E.coli and shaken at 230 g 

overnight at 30°C. Two and a half ml of the overnight culture was transferred into 250 

ml of LB media and incubated at 37°C with shaking (220 g) until OD reached 0.7. 

The transformants were centrifuged at 4000 g for 10 min at 4°C. The supernatant was 

removed and the cells washed twice in ice-cold distilled water with 10 % glycerol 

(v/v). The transformants were resuspended in 1 ml distilled water with 10 % glycerol 

and frozen at -80 °C till use. Two ul of plasmid DNA was mixed with 50 ul of TOP10 

electro-competent cells into chilled 2 mm Gene Pulser cuvettes. The transformants 

were electroporated using Biorad GenePulser Xcell™ at 2.5 kV, 25 µF, 200 Ω. The 

cells were then mixed with 1 ml of LB and shaken at 37 °C for 1 h before plating on 

LB-Ampicilin plates. 
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2.3.7 Dynamic Light Scattering analysis 

The particle size of GBP was measured using the principle of dynamic light scattering 

theory where the shift in light frequency is related to the size of the particles causing 

the shift (Chu 1991). A 10 µM solution of GBP in TBS was used for measurement 

with Protein Solutions™ DynaPro™ (Wyatt Technologies Corp.) and the reading was 

obtained using the DYNAMICS® data collection and analysis software (Wyatt 

Technologies Corp.). 

 

2.3.8 Protein crystallization 

The GBP and CRP solutions were screened for crystallizability with standard kits 

from Hampton Research and CrystalGen. Specific kit solutions that produced 

promising crystals were then further modified according to their individual 

components in the final solution in the grid-like manner to optimize crystallization 

conditions. 

 

2.3.9 Amide hydrogen exchange mass spectrometry (HDMS) and data analysis 

This section of work was done in collaboration with Dr. Ganesh S. Anand, with the 

help and support from the Protein and Proteomics Centre (PPC) at the National 

University of Singapore.  

 

HDMS (Sinz 2003; Tsutsui and Wintrode 2007) measures the exchange of amide 

hydrogens with deuterium when proteins are allowed to exchange with deuterated 

solvent. Mass spectrometry directly measures increases in mass resulting from the 

deuterium exchange thereby providing a probe for solvent accessibility. A decrease of 

mass from the control experiment indicates that a particular site is no longer solvent 
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accessible. The use of pepsin proteolysis subsequent to the exchange reaction further 

allows localization of the exchange onto proteolytic fragments of the protein of 

interest and this provides a powerful tool for mapping protein-protein or protein-

ligand interactions. 

 

 

Figure 2.3: Hydrogen exchange mass spectrometry. The concept and experimental 
procedure of hydrogen-deuterium exchange mass spectrometry. Image adapted from 
http://www.exsar.com/Technology/Science.aspx. 
 

Mixtures containing GBP+GlcNAc, GBP+LA, GBP+CRP, GBP+CRP+LA, and GBP 

alone as control, were deuterated by diluting 2 μl of protein solution (10 mg/ml, 0.4 

mM) in TBS containing 10 mM Tris, 150 mM sodium chloride, pH 7.4 to 18 μl D2O 

(Sigma). Solutions were then quenched after timed intervals of 30 s, 1, 2, 5 and 10 

min with 180 μl 0.1% triflouroacetic acid pH 2.5 (TFA, Sigma). Quenched reactions 

were digested for 5 min with immobilized pepsin (Thermo Scientific). Solutions were 

spun down for 2 min at 8000 g and 20 μl aliquots of digested solutions were flash-

frozen in liquid nitrogen and kept at -80 oC until MALDI TOF MS analysis. 

Undeuterated samples were included as a negative control. The undeuterated sample 

was also used to sequence all the pepsin digested fragments by MS/MS sequencing on 
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the MALDI TOF TOF 4800 instrument (ABI Biosystems). One sample was allowed 

to exchange with deuterated buffer for 24 h to allow for complete deuteration of 

solvent exposed regions of the protein. This was used to calculate back exchange 

under our experimental conditions. 

 

For MALDI TOF MS analysis, the frozen aliquots were thawed and 0.5 μl was mixed 

with 0.5 μl of matrix (15 mg/ml α-cyano-4-hydroxycinnamic acid in 1:1:1 ethanol: 

acetonitrile: 0.1% TFA, pH 2.5). An aliquot of 0.5 μl was spotted on the MALDI plate 

and quickly dried under vacuum and analyzed on a MALDI-TOF mass spectrometer. 

Spectra were calibrated using Data Explorer (Applied Biosystems) with internal 

peptide masses 974.51 and 1492.72 and the centroid of the peptide envelopes were 

measured using Decapp Mass Spec Isotope Analyzer (UCSD, Jeffrey G. Mandell and 

Elizabeth A. Komives) (Mandell et al. 1998). Back exchange was found to be ~63%, 

so all centroid values were multiplied by a back exchange factor of 2.67 to calculate 

the experimental deuterium exchange levels.  

 

A total of 59 pepsin-digested peptide fragments for GBP were generated. These were 

sequenced by MS/MS sequencing and were found to encompass 92% of the GBP 

amino acid sequence. Out of these peptides, 20 covering 73% with good signal-to-

noise ratio under HDMS experimental conditions were chosen for further analysis, 

and the extent of deuterium exchange was plotted versus exchange time for GBP, 

GBP+GlcNAc, GBP+LA, GBP+CRP and GBP+CRP+LA. A total of 70 pepsin-

digested peptide fragments for CRP were generated. These were sequenced by 

MS/MS sequencing and were found to encompass 98% of the CRP amino acid 

sequence. Out of these peptides, 19 covering 89% with good signal-to-noise ratio 
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under HDMS experimental conditions were chosen for further analysis, and the extent 

of deuterium exchange was plotted versus exchange time for CRP, GBP+CRP and 

GBP+CRP+LA. 

 

2.3.10 Surface plasmon resonance analysis 

Real-time biointeraction analyses were performed using a Biacore 2000 instrument 

(Biacore AB). For GBP-GlcNAc interaction, GlcNAc-BSA (Dextra Labs, UK) was 

diluted to 10 µg/ml with 10 mM sodium acetate, pH 4.0, and immobilized on the 

surface of a CM5 sensor chip (Biacore AB) using amine-coupling chemistry 

according to the manufacturer’s specifications. Binding of GBP to immobilized 

GlcNAc-BSA was measured at a flow rate of 20 µl/min in 10 mM Tris, 150 mM 

NaCl, pH 7.4. Regeneration of the surfaces was achieved by injecting 20 µl of the 

running buffer containing 300 mM GlcNAc. For GBP-LPS interaction, LPS, ReLPS 

and LA from Salmonella minnesota (List Biologicals, UK) were diluted to 0.25 

mg/ml in 20 mM sodium phosphate, 150 mM NaCl, pH 7.4 and immobilized on the 

surface of an HPA sensor chip (Biacore AB) according to the manufacturer’s 

specifications. Binding of GBP to the immobilized ligands was measured at a flow 

rate of 20 µl/min in 10 mM Tris, 150 mM NaCl, pH 7.4. Regeneration of the chip 

surface was achieved by injection of 20 µl 0.1 M NaOH. 

 

2.3.11 Pyrogene assay for LPS endotoxicity 

To test the potential anti-LPS effects of GBP and CRP, the endotoxicity of LPS with 

and without these proteins were measured using the PyroGene kit (Lonza Inc.). This 

kit measures the endotoxicity of LPS by using a recombinant Factor C (rFC), which, 

upon encountering LPS, is activated and hydrolyses a substrate to produce a 
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fluorescent product, thereby reporting on the endotoxin activity from as low as 0.05 

EU/ml. A total volume of 100 μl, constituted by 50 μl of LPS at different EU 

(endotoxin units), 25 μl of GBP/CRP ranging from 0.01 to 10μM and sterile water 

were added into fluorescence microplate wells (Nunc). The reactions were pre-

incubated at 37°C for 10 min. The working reagent was prepared by mixing 

recombinant Factor C (rFC) enzyme solution, the assay buffer and fluorogenic 

substrate at a ratio of 1:4:5, respectively.  Then, 100 μl of the working solution was 

added to the test mixture just before the fluorescence measurement. The reaction was 

further incubated for 1 h and the fluorescence was measured again. The EU of the test 

mixture was compared against a standard curve of 0.01-10 EU of LPS. 
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CHAPTER 3 

CHARACTERIZATION OF GBP – A REPRESENTATIVE 

TECTONIN PROTEIN IN INNATE IMMUNE DEFENSE 

 

In this chapter, GBP is characterized as a representative Tectonin domain-containing 

protein. GBP has been shown to act as a frontline defense molecule in the Singapore 

horseshoe crab, Carcinoscorpius rotundicauda (Ng et al. 2007; Le Saux et al. 2008). 

It is able to bind to bacteria and interact with various immune-related proteins. Here, 

we show how the GBP structure model helped to uncover and explain its significance 

in forming multiple protein-ligand and protein-protein interactions. We will also show 

how infection conditions can modify these interactions, and isolate residues and 

surface contact regions in GBP’s host-pathogen recognition. Overall, these structural 

and kinetic insights help us define the molecular mechanism of action of GBP with 

other host proteins and with the pathogen. This forms the basis of understanding host-

pathogen recognition in Tectonin domain containing proteins. 

 

3.1 Introduction 

3.1.1 Tectonin domains in beta-propeller repeats 

Despite large variations in their protein sequence, proteins are still able to form the β-

propeller fold. Generally, the detection and screening of β-propeller candidates 

involves a combination of methods : repeat detection, secondary structure prediction 

and fold recognition (Pons et al. 2003). Therefore, it has been speculated that new 

propellers can never be recognized from sequence alone, but there are numerous 

examples that there are certain characteristic sequence repeats that do fold into β-
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propellers, for example, the YWTD (Springer 1998), WD40 (Neer et al. 1994) and 

Kelch domains (Ju et al. 2000) (Figure 3.1).  

 

The YWTD repeats contain the conserved Tyr-Trp-Thr-Asp motif, discovered in over 

60 types of extracellular domains with diverse functions. On the basis of theoretical 

arguments, sequence and secondary structure analysis, threading methods, and 

experimental data, these repeats were predicted to assume a compact modular 

structure with a β-propeller fold built by four sheets. Remarkably, the recent structure 

determination of the low-density lipoprotein receptor, a YWTD protein, indeed 

showed a six bladed propeller fold (Jeon et al. 2001). A similar argument has been 

applied to the Kelch motif, identified in several proteins, such as galactose oxidase 

(Bork and Doolittle 1994). As the sequence repeats match the modular 7-sheet 

structure of the galactose oxidase propeller, Bork and Doolittle (1994) proposed that 

Kelch-like proteins have a propeller fold. The WD repeat domain is the most common 

repeat detected among known human proteins. It contains approximately 40 amino 

acids and includes well-conserved Trp (W) and Asp (D) amino acids.  

 

More recently, the Tectonin domain was included into this group of β-propeller 

repeats, where the Tectonin domain seems to be a slight variation of the WD repeats. 

It also has several characteristic conserved residues inferred from the protein 

sequences of mainly the slime mold proteins Tectonin I and Tectonin II (Huh et al. 

1998) and also from a horseshoe crab protein, TL-1 (Kawabata and Tsuda 2002). 
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Figure 3.1: Identified conserved sequence motifs in known β-propeller repeats such as 
the WD-repeat, Kelch, YWTD and others. All are made up of 4 anti-parallel β-strands but 
have variable amount of conserved residues that defines the particular beta-propeller sequence 
motif. A single sequence motif repeat can either consist of 4 strands that form a single 
propeller fold, or 3 strands contributing to a propeller and 1 strand forming the previous 
propeller fold (velcro strap). For example, the WD repeat has 5 signature conserved residues 
in its 2nd to 4th beta-strand. The 1st beta strand in its sequence repeat is involved in the 
formation of the adjoining beta-propeller fold. Adapted from Fulop and Jones (1999). 
 

Examples of β-propeller proteins are the heterotrimeric G-protein complex (Figure 

3.2) (Pebay-Peyroula et al. 1997) and the influenza viral protein neuraminidase 

(Bossart-Whitaker et al. 1993) (Figure 3.3). The G-protein has receptor proteins that 

act like molecular levers, a trio of 'switch domains' that can adopt 'open' or 'closed' 

conformations, and a β-subunit that resembles a propeller, these proteins may be 

thought of as molecular 'nanomachines'. The β-propellers in G-proteins are made up 

of the WD40 repeats, and one hypothesis suggests that this design provides up to 

seven different faces on the protein to interact with target ligands while the alpha and 

gamma subunits of the G-protein complex function as anchors. They also act as 

"molecular switches," alternating between an inactive and active state, ultimately 

going on to regulate downstream cell processes (Lodish et al. 1999).  
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Figure 3.2: The 3D structure of the heterotrimeric G-protein complex. Regions in yellow, 
blue and red act as different molecular switches. Adapted from Protein Structure and 
Function, New Science Press Ltd (2009). 
 

The neuraminidase influenza was the first protein structure to reveal a β-propeller 

fold, with 6-fold pseudosymmetry (Varghese et al. 1983) whose active form is a 

tetramer. Eukaryotic, bacterial and viral neuraminidases share highly conserved 

regions of β-sheet motifs. The 3D structure of the β-propeller domain, most used for 

drug design, is the influenza virus neuraminidase. Using available X-ray crystal 

structures of sialic acid analogs (Moscona 2005) bound to the active site of the 

influenza virus neuraminidase has led to the discovery of a series of potent 

carbocyclic influenza neuraminidase inhibitors like zanamivir and oseltamivir 

phosphate (Figure 3.4) (Gong et al. 2009; Moscona 2009; Rungrotmongkol et al. 

2009). They have emerged as promising antivirals for the treatment and prophylaxis 

of human influenza infection. 
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Figure 3.3: The 3D structure of neuraminidase. Neuraminidase here is bound with an 
inhibitor, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA), a sialic acid analogue, 
bound to the central cavity of the β-propeller structure. Adapted from Protein Structure and 
Function, New Science Press Ltd (2009). 
 

 
Figure 3.4: Sialic acid structural analogues and their mechanism of action. Structures of 
oseltamivir and zanamivir, two drugs developed as influenza vaccines. Both are designed as 
sialic acid analogues, to bind neuraminidase’s sialic acid receptors and thus preventing the 
viral neuraminidase from attaching to host cells which display sialic acid. Figure adapted 
from Moscona (2009). 
 

3.1.2 Lectins 

Lectins are proteins that bind carbohydrates with considerable specificity. They are 

found in a variety of organisms and are involved in numerous cellular processes, such 

as host pathogen interactions, targeting of proteins within cells and cell-cell 
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interactions (Sharon 1993). There are two major groups of lectins – group I, typified 

by the periplasmic binding proteins and some enzymes have buried ligand binding 

sites and engulf the ligand upon binding. In contrast, proteins in group II have shallow 

surface binding sites for their ligands, mostly in the form of a minor depression on the 

surface of the protein. This group is more versatile than the group I, and is where we 

find the classical lectin families – legume lectins, C-type lectins and galectins, besides 

toxins and pentraxins (Figure 3.5) 

 

Figure 3.5: Schematic examples of major types of animal lectins, based on protein 
structure. The emphasis is on the extracellular domain structure and topology. The following 
are the defined carbohydrate-recognition domains (CRDs) shown: (CL) C-type lectin; (GL) S-
type lectin; (MP) P-type lectin; (IL) I-type lectin. Image adapted from Essentials of 
Glycobiology (2009). 
 

Carbohydrates interact with lectins through hydrogen bonds, metal coordination, van 

der Waals forces and hydrophobic interactions. Despite the overall hydrophilic 

characteristic of carbohydrates, hydrophobic interactions play a major role in their 

recognition by lectins. Although, lectins are often multidomain proteins, their sugar-

binding activity can usually be ascribed to a single protein module within the lectin 
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polypeptide designated as a carbohydrate-recognition domain (CRD) (Boraston et al. 

2004; Hashimoto 2006).  

 

Analysis of the structural origins of the primary specificity, based on high-resolution 

structures of protein-carbohydrate complexes representing various families and folds, 

suggests that although the key interactions responsible for carbohydrate recognition 

are common, each family has evolved a unique stereochemistry at the principal 

combining site in order to discriminate between ligands (Rini 1995; Weis and 

Drickamer 1996). For example, there are many symmetrical β-propeller proteins and 

lectins that have been shown to bind multiple saccharides, for each of its β-propeller 

fold (Figure 3.6). This is perhaps attributed to its structural symmetry. 

 

 
Figure 3.6: Mechanism of specific saccharide binding observed in symmetrical β-
propeller fold structures. (A) Tachylectin-2 (TL-2), an immune lectin from Tachypleus 
tridentatus, binds N-acetyl-glucosamine symmetrically on all five of its β-propellers. Figure 
adapted from Beisel et. al. (1999). (B) Psathyrella velutina lectin, an integrin-like fungal 
protein, a 7 bladed β-propeller protein interacts with GlcNac in a similarly symmetrical 
fashion as TL-2. Figure adapted from Cioci et.al. (2006). (C) The 6 propeller Aleuria aurantia 
lectin (AAL) binds fucose within the propeller interface. Figure adapted from Wimmerova et. 
al. (2003). 
 

It has been noted that the lectin affinity toward monossacharides is low, in the 0.1 to 

1.0 mM range (Elgavish and Shaanan 1997). However, lectins often show binding-site 

dissociation constants in the micro molar range for larger, more complex 

oligosaccharides. In these cases, the oligosaccharide interacts with secondary sites on 
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the lectin surface as well as with the primary binding site. Interactions of this type can 

lead to dissociation constants in the nanomolar range for the appropriate multivalent 

ligand (Rini 1995; Weis and Drickamer 1996). This is perhaps why we observed that 

there are many lectins involved in host-pathogen interaction. For example, the outer 

core of the LPS of Gram-negative bacteria consists of a long chain of sugar molecules 

which present themselves as multiple targets for the host proteins. 

 

Lectins PRRs – for example, the C-type lectins (CTL) and the TLRs - enable the host 

to recognize PAMPs, which are mainly via glycolipid structures. C-type lectins 

contain various CRDs and represent a very heterogeneous group with members such 

as the macrophage mannose receptor (MMR) and langerin. The MMR is the best-

characterized PRR to date (Wileman et al. 1986). Initially identified in macrophages, 

it is involved in phagocytosis and endocytosis and can recognize mannose, fucose, 

glucose and N-acetylglucosamine by means of a series of carbohydrate domains. It is 

able to recognize a wide range of bacteria, fungi and parasites through glycolipid 

PAMPs. It plays an important role in host defence against fungal pathogens and is 

involved in glycoprotein clearance.  

 

In addition to CTLs, TLRs do not seem to mediate the uptake of PAMPs but rather 

stimulate an intracellular signalling cascade. TLRs are expressed on the surfaces of a 

variety of cells, including epithelial cells, dendritic cells, monocytes and 

macrophages. They play a major role in innate immunity to microbial pathogens and 

are the subject of intensive study. Interaction of TLRs with their corresponding 

PAMPs initiates a rapid cascade of events leading to production of reactive oxygen 

intermediates, cytokines and chemokines, and promotes the inflammatory response. 
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3.1.3 The Tectonin domain 

The Tectonin domains were first found in the Tectonins I and II proteins of the slime 

mold, Physarum polycephalum (Huh et al. 1998) (Figure 3.7). The Physarum 

Tectonins I and II are expressed on the cell surface of the plasmodium and are 

involved in the formation of a signaling complex during phagocytosis. The term 

Tectonin may have come from the oceans’ Tectonic plates as the slime mold employs 

a sliding motion to move on surfaces, similar to the Tectonic plate movement under 

the sea. 

 

Figure 3.7: Plasmodium stage of Physarum polycephalum. During their non-reproductive 
stages the plasmodial slime molds are thin streaming masses of protoplasm that creep along in 
an amoeboid fashion sensing food sources, including bacteria.  They resemble a moving mass 
of slime. Figure adapted from http://www.southernbiological.com/. 
 

The definition of the Tectonin domain is based on a combination of conserved 

residues from Tectonin I (25 kDa) and Tectonin II (39 kDa) and further refined using 

the sequence of TL-1 which is 33% similar to both of the Tectonins (Huh et al. 1998). 

The deduced amino acid sequences for the Tectonins show that Tectonin I and the C-

terminal two-thirds of Tectonin II are 73% identical and are comprised of six similar 

repeats that vary from 33 to 37 residues in length (Figure 3.8). The Tectonins appear 

to have diverged from each other after the set of six repeats was established because 

the sequences are more conserved between corresponding repeats of the two 
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Tectonins than between repeats within the individual proteins. There have been 

reports of several other Tectonin-like proteins in the horseshoe crab TL-1 (Kawabata 

and Tsuda 2002), sponge lectin (Schroder et al. 2003), carp egg glycoprotein 

(Galliano et al. 2003), and a putative protein in the Drosophila (Ponting et al. 2001). 

 
Figure 3.8: Consensus sequence for the definition of a Tectonin domain. Polar residues 
are represented by p and nonpolar by n; Q represents positively charged residues. The repeats 
are joined by linkers of 4–7 amino acids. Figure adapted from Huh et. al. (1998). 
 

Because the Physarum feeds on bacteria, it has been suggested that the Tectonin 

domains recognize PAMPs like LPS. A survey on other Tectonin and β-propeller 

proteins in invertebrates showed that they share certain common features (Schroder et 

al. 2003). They seem to possess antimicrobial properties demonstrated by the ability 

to neutralize the LPS of Gram-negative bacteria. However, whether the Tectonin 

domains can directly bind to PAMPs such as LPS has not been demonstrated 

experimentally. This opens a wide range of avenues for experimentation: how do the 

Tectonins detect the pathogen? Do they collaborate with other host proteins for 

action? Ultimately, do they exist and are conserved in the higher species? We attempt 

to uncover the potential function of the Tectonins by using GBP as our representative 

Tectonin protein. 

 

3.2  Results and Discussion 

3.2.1 Biochemical properties of GBP 

3.2.1.1 Purified GBP shows polymeric forms 

The galactose-binding protein was named as such due to its ability to bind Sepharose, 

which is made up of repeating galactose units. However, it does not only bind 
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galactose, but is known to bind to several other similar saccharides as well (Chiou et 

al. 2000; Chen et al. 2001), for example, glucose and GlcNAc. Therefore, GBP is 

likely to detect structurally similar sugars and associate with them in a similar 

mechanism.  

 

GBP was isolated by first running the crude hemolymph of the horseshoe crab 

through a column of Sepharose beads. At the physiological pH of 7.4, with a buffer of 

10 mM Tris and 150 mM NaCl, GBP was co-purified with several other key PRRs 

like HMC and CL-5 (Figure 3.9) which were not particularly known to bind 

Sepharose. Thus we envisage that at physiological pH, GBP is associated with CL-5 

(Zhu et al. 2006; Ng et al. 2007)  and HMC (Jiang et al. 2007; Le Saux et al. 2008), 

and perhaps this is the same phenomenon that exists in the circulating hemolymph in 

vivo. Indeed, there has been evidence via yeast 2-hybrid studies that CL-5 and HMC 

do interact with GBP (Le Saux et al. 2008).  

 

However,  studies have shown that hemocyanin of the Limulus polyphemus is able to 

dissociate into its subunits at pH 8.8 or above (Brenowitz et al. 1983).  We speculated 

that this dissociation into subunits could affect its binding to GBP or the Sepharose 

beads, and perhaps CL-5 also acts likewise, resulting in a pure elution of GBP after 

prior removal of the other proteins. This was indeed the case – purified GBP could be 

obtained with an elution step using GlcNAc at 0.4M in was used to elute GBP from 

Sepharose at pH7.4, after an initial washing step with 10 mM Tris and 150 mM NaCl 

at pH8.8 (Figure 3.10). Overall, approximately 8 mg of GBP protein can be purified 

from 40 ml of cell-free hemolymph (Table 3.1). 
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Figure 3.9: GBP is co-purified with partners at pH 7.4. At pH 7.4, GBP was isolated from 
the horseshoe crab hemolymph as part of a complex together with HMC and CL-5. 

 

 

Figure 3.10: GBP is purified at pH 8.8. (A) Horseshoe crab plasma was applied to an 
affinity column using Sepharose CL-6B as a matrix. The column was equilibrated with 10 
mM Tris.Cl pH 8.8, 150 mM NaCl and extensively washed with the same buffer until the 
washes show no trace of remnant proteins. GBP was eluted with the same buffer containing 
0.4 M GlcNAc at pH 7.4. Fractions 112-120 were pooled for ultrafiltration-dialysis to remove 
GlcNAc and used for further studies. (B) Proteins in the crude extract, flowthrough (FT), 
washes and representative eluted fractions were resolved by 12% SDS-PAGE and stained 
with Coomassie Brilliant Blue, and immunoblotted (IB) with GBP antibody. 
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     Table 3.1: Purification of GBP 
 

Step Volume 
(ml) 

Protein conc. 
(mg/ml) 

Total protein  
(mg) 

Yield  
(%) 

Crude plasma 40.0 48.9 1954.5 100.00 
Flowthrough 39.0 45.4 1770.3 - 
Sepharose CL-6B 4.20 2.0 8.3 0.4 
Microcon (MWCO 3kDa) 0.2 33.0 7.9 0.4 

 

On SDS-PAGE under non-reducing conditions, the purified GBP exists in large 

molecular sizes in polymeric form (Figure3.14A, B; lane ‘NR’). The higher molecular 

weight bands are similar to those observed in TPL-1 (Chen et al. 2001). Under 

reducing conditions, Western blot showed two strong bands and one faint band 

(Figure 3.11A, B; lane ‘R’) at 52kDa, 26kDa and 18kDa. These bands were 

confirmed by mass spectrometry to be the non-reducible dimer, monomer and N-

terminal domain of GBP respectively (Figure 3.12). Even though the sequence of 

GBP has 9 cysteines residues (6 disulphide-linked and 3 free), the 52-kDa GBP dimer 

was not reducible with ß-mercaptoethanol. Neither was it susceptible to boiling. We 

suggest that a gene encoding for the GBP dimer probably exist in the horseshoe crab. 

 
 

Figure 3.11: Electrophoretic analyses of GBP. Crude plasma and purified GBP were 
separated by SDS-PAGE with or without reducing agent.  The proteins in the gel were either 
stained with (A) Commassie Blue or (B) transferred to a membrane, immunoblotted (IB) and 
detected with anti-GBP antibody. R, reducing condition. NR, non-reducing condition. 
Molecular weight (MW) markers and different sizes of GBP are shown in kDa. 
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Figure 3.12: Mass spectrometry analysis of purified GBP bands. Matrix-assisted laser 
desorption ionization-Time of Flight (MALDI-TOF) spectra identified the purified 52 kDa, 
26 kDa and 18 kDa protein bands as the dimer, monomer and N-terminal fragment of GBP. 
 

3.2.1.2 GBP is a multimeric complex in solution 

In the previous section, we showed that under non-reducing condition, GBP existed 

predominantly in larger polymeric forms (Figure 3.12, lane ‘NR’). We utilized 

dynamic light scattering (DLS) analysis to characterize GBP in solution, and revealed 

that purified GBP in solution exhibited radii of up to 6 nm, corresponding to an 

average molecular mass of up to 377 kDa, which is equivalent to approximately 14 to 

15 GBP monomers (Figure 3.13). This is consistent with observations of β-propeller 

domains demonstrated to self-assemble (Yadid and Tawfik 2007) indicating their 
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propensity to polymerize. These results suggest that GBP tends to polymerize or 

potentially associate with other proteins, forming larger complexes in the hemolymph. 

 
Figure 3.13: GBP exists in polymeric form. DLS analysis of purified GBP indicates 
prevalence of GBP polymers in solution. The polymers exhibit radii of up to 6 nm, 
corresponding to an average molecular mass of up to 377 kDa, equivalent to approximately 
14 to 15 GBP monomers. 
 
 
Table 3.2 DLS measurements for GBP of molecular radius, diffusion coefficient 
and molecular weight in solution over time 
 

Time 
(s) 

Diffusion coefficient
(10-9cm2/s) 

Radius 
(nm) 

Molecular weight 
(kDa) 

10 243.1 5.91 361.5 
20 242.6 5.92 363.5 
30 240.6 5.97 372.7 
40 243.6 5.90 359.1 
50 243.5 5.90 359.8 
60 242.6 5.93 363.9 
70 238.4 6.03 383.1 
80 237.9 6.04 385.8 
90 238.1 6.04 384.7 
100 241.8 5.94 367.4 
110 243.9 5.89 357.8 
120 238.4 6.03 383.3 
130 238.8 6.02 381.2 
140 239.8 5.99 376.7 
150 239.8 5.99 376.5 
160 236.6 6.07 391.9 
170 240.6 5.97 372.9 
180 237.5 6.05 387.6 
190 239.7 6.00 377.3 
200 235.5 6.10 397.5 
210 237.2 6.06 389.2 
220 236.1 6.09 394.6 
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3.2.1.3 Purified GBP retains saccharide-binding function 

Since GBP was eluted with GlcNAc from the Sepharose column, we next determined 

whether the subsequent removal of GlcNAc from the protein, in order to carry out 

more functional studies, would retain the protein function. By column centrifugation 

dialysis with a molecular weight cut-off (MWCO) of 3 kDa, the GlcNAc 

(approximately 0.2 kDa) containing elution buffer was gradually replaced with the 

base buffer of 10mM Tris, 150mM NaCl at pH 7.4. The optical density (OD225) 

readings indicating presence of GlcNAc in the column filtrate was monitored until it 

gave a consistent OD of < 0.01 (Figure 3.14). Once the dialysis was completed, a 

sample amount of GBP was tested if it could re-bind the Sepharose column. Indeed, 

the purified and dialysed GBP was able to rebind the Sepharose column (Figure 3.15) 

hence indicating that the ligands from purification have been removed from GBP and 

the protein is competent for further structure-function analysis. The ability of GlcNAc 

to be removed from GBP also shows that GlcNAc associates with GBP not by 

covalent bonding but more likely through electrostatic interactions. 

 

 
Figure 3.14: OD measurements during GBP purification. (Left panel) GlcNAc in the 
column centrifugation dialysis filtrate shows an initial profile peak at 225nm which gradually 
reduces when the buffer is continuously dialysed until baseline GlcNAc OD reading below 
0.01 is achieved. This is used as an indicator that GlcNAc has been thoroughly removed from 
the elution product. (Right panel) GBP is then recovered from the retentate of the dialysis 
column. The GlcNAc peaks from the removal process are overlayed on the graph for 
comparison. 
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Figure 3.15: GlcNAc-removed GBP is able to re-bind Sepharose. GlcNac in the GBP 
elution was removed through dialysis. Majority of the protein could be recovered after the 
dialysis procedure. A small sample of the dialysed protein was flowed through the Sepharose 
beads again. The GBP was retained on the Sepharose beads (evidence of the ability to bind 
Sepharose), and was obtained when beads were boiled. 
 

3.2.2 The GBP structure 

Since GBP was observed to interact with CRP under infection conditions (with LPS) 

(Figure 1.8) (Ng et al. 2007), it was imperative to characterize the structural basis of 

the interactome formation. There are two possible ways to achieve this: (a) by X-ray 

crystallographic studies, and (b) through in silico predictions coupled with other 

biophysical methods. Both methods were utilised in our studies, as described in the 

following sections.  

 

3.2.2.1 Crystallization of GBP and CRP for structure determination 

Attempts were made at crystallizing GBP and CRP. The GBP and CRP proteins used 

were purified from the hemolymph of the horseshoe crab. Kits from Hampton 

Research and Crystalgen® providing various combinations of crystallization buffer 

solutions were used (Table 3.3). Both GBP and CRP produced crystals (Figure 3.16) 

but only those from CRP were viable for X-ray diffraction studies. The CRP crystal 
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was obtained from buffer #17 (0.2 M Lithium sulfate monohydrate, 0.1 M Tris HCl 

pH 8.5, 15% w/v PEG 4K) of the Crystal Screen Lite kit. The buffer condition was 

subsequently optimized to 0.3M LiSO4, 0.1M, Tris-HCl pH 8.8, 12% PEG 8K to 

obtain larger crystals. The crystals were then collected and sent for diffraction at the 

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New 

York. Diffraction data was collected at 3.4A (Table 3.4, Figure 3.17). However, the 

data was not sufficient for good structure resolution and further optimization of 

crytalization conditions are required, for example, to (a) grow larger crystals (b) 

obtain crystals from a different space group by growth under alternate buffer 

compositions. 

 
Table 3.3 List of crystallization kits used in attempts to crystallize GBP and 

CRP 
 
Hampton Research Crystalgen® 
Crystal Screen 1 NaMax 
Crystal Screen 2 MPDMax 
Crystal Screen Lite MemMax 
Crystal Screen Cryo PhosMax 
Index Screen AsMax 
Natrix Screen CryoMax 
Quik Screen  
PEG/Ion Screen 
Grid Screen MPD 
Grid Screen Na Malonate 
Grid Screen NaCl 
Grid Screen PEG 
Grid Screen Ammonium Sulfate 
Lithium Sulfate Screen 1 
Lithium Sulfate Screen 2 
HEPES Screen 1 
HEPES Screen 2 
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Figure 3.16: Crystals of GBP and CRP. (A) Crystals with needle-like structure were 
obtained with 5mg/ml GBP using buffer from Crystalgen Phosmax #52 composed of 0.1M 
Na phosphate pH 7.0, 2M 1,6 hexanediol. Buffer was subsequently optimized to for final 
crystals. (B) Rectangular cubiod crystals were obtained with 10mg/ml CRP using buffer from 
Hampton Research Crystal Screen Lite #17 composed of 0.2 M Lithium sulfate monohydrate, 
0.1 M Tris HCl pH 8.5, 15% w/v PEG 4K. Buffer was subsequently optimized to 0.3M 
LiSO4, 0.1M, Tris-HCl pH 8.8, 12% PEG 8K. Crystals were grown using hanging-drop 
method with 1:1 ratio of protein solution to crystallization solution. 
 

 
 

Figure 3.17: X-ray diffraction pattern of CRP crystal. A total of 30 crystals were tested for 
diffraction. One native data set and two Multiwavelength Anomalous Dispersion (MAD) data 
sets were collected on the X29 beamline around the Platinum absorption edge at 3.4A. 
Diffraction was carried out at the National Synchrotron Light Source (NSLS), Brookhaven 
National Laboratory, Upton, New York. 
 

Table 3.4 Data obtained from CRP crystal diffraction. 
 
Data collection  
Cell dimensions Space group P1 
a,b,c (Å) 85.145, 121.440,189.838 
α,β,γ (˚) 89.311, 81.470, 85.145 
Wavelength (Å) 1.1 
Resolution (Å) 50~3.5 (3.66~3.5) 
Rsym (%) 11.1 (46.0) 
I/σ (I) 11.2 (2.3) 
Completeness (%) 97.3 (93.7) 
Redundancy 3.7 
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3.2.2.2 Computational modeling of GBP and CRP structure 

Parallel to crystallization attempts, computational modeling of the GBP and CRP 

protein structures were carried out. The three dimensional models serve as a basis for 

further exploring molecular interactions between GBP and CRP, and with their 

interacting partners or corresponding ligands. 

 

The PSIPRED secondary structure prediction described GBP as a protein made up of 

β-sheets, in a configuration similar to those observed in both TPL-1 and TL-1 (Figure 

3.18). GBP has six tandem repeats (Figure 3.19) and these repetitive sequences are 

reminiscent of the WD repeats of the β-subunit of G-proteins, suggesting that they 

fold into a six β-propeller-like structure as well. Therefore, from this information 

garnered from the amino acid sequence, we can conclude that GBP is likely to form a 

6 β-propeller structure. 

 

 
Figure 3.18: Secondary structure prediction of GBP. GBP is predicted via PSIPRED to be 
of β-strand only conformation. 
 

 
Figure 3.19: The 6 internal tandem repeats in the sequence of GBP. The tandem repeats 
are similar to those observed in TL-1 (Kawabata and Iwanaga 1999) with several conserved 
residues at specific locations (in bold). 
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Homology modeling was employed to obtain the GBP model structure. TL-1, which 

shares 66.7% sequence homology to GBP (Figure 3.20) was taken as the template 

structure to model GBP (Beisel H-G; personal communications with Dr. Vladimir 

Frecer, collaborator)).  The final model was inspected using stereo-chemical quality 

evaluation tools (AMBER, RAMPAGE) (Wang et al. 2000; Lovell et al. 2003; Case 

et al. 2005) to confirm that the model's stereochemistry is reasonably consistent with 

typical values found in crystal structures. The following Ramachandran plot (Figure 

3.21) shows that the outlier residues (red squares) listed in the Table 3.5 remain close 

to the boundaries of the permitted Psi-Phi values, which are indicated by the lighter 

contours. 

 

 

Figure 3.20: Sequence alignment of GBP to TL-1. TL-1 was the protein used as the 
template for the homology model of GBP. They share 66.7% amino acid sequence similarity. 
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Figure 3.21: The Ramachandran plot of the GBP homology-modeled structure shows 
that the outlier residues listed (Table 3.5) remain close to the boundaries of the permitted Psi-
Phi values, which are highlighted by the light blue contours, indicating that the structure has 
been reliably modeled. Black, orange and red boxes represent residues in favoured, allowed 
and outlier regions respectively (refer to Table 3.5 for details). 
 

Table 3.5 List of Phi-Psi outliers in the GBP model. 
 

No. Residue Psi Phi Score 
1 GLU45 84.6 20.2 0 
2 ASP65 -17.3 54.9 0.0003 
3 TRP78 80.4 -56.8 0.0001 
4 SER101 -4.4 -47.9 0.0003 
5 ASP103 -13.2 58.8 0.0003 
6 ASP131 -34.5 -161.1 0.0005 
7 CYS187 128.5 69.3 0.0003 

 
Number of residues in favoured region (~98.0% expected)  : 190 (86.8%) 
Number of residues in allowed region (~2.0% expected)  : 23 (10.5%) 
Number of residues in outlier region        : 6 (2.7%) 
 



 

69 
 

We confirmed that GBP is a 6-bladed β-propeller protein, consisting of 6 Tectonin 

domains (Figure 3.22).  Each of the Tectonin domains is made up of 4 β-sheets, which 

is in agreement with the secondary structure prediction (Figure 3.23, see also Figure 

3.18). 

 
Figure 3.22: Homology model of GBP structure. GBP was predicted to be a 6-bladed β-
propeller protein. Numbers in circles represent the 6 Tectonin domains of GBP. Yellow stick 
structures represent the cysteine residues. The GBP structure contains a “tail” portion, which 
does not form part of the main β-propeller structure. N=N-terminal, C=C-terminal.  
 
 

 
 
Figure 3.23: The protein sequence of GBP showing 6 Tectonin domain repeats. The 
modeled β-sheets are displayed to show their positions in the sequence. The coloured arrows 
correspond to the respective β-strands in the structure shown in Figure 3.22. Underlines 
amino acids are PSIPRED β-sheet predictions from secondary sequence analysis. Cysteines 
forming disulphide bonds are highlighted in yellow. The ‘tail’ region that does not make up 
the main 6 propeller structure is boxed in red. 
 

Analyzing the structural properties of the protein, we observed that out of the 9 

cysteine residues in the amino acid sequence of GBP, 6 are likely to be involved in 

intra-molecular disulphide bridge formation (Figure 3.24) due to their proximity in the 
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structural space. The other 3 free cysteine residues may be involved in dimerization 

and formation of higher order homo-oligomers, as observed in Section 3.2.1.2 and 

Figure 3.13.  

 

Figure 3.24: Cysteine residues of GBP. GBP contains 9 cysteine residues, of which 6 
(orange) are predicted to be involved in intra-molecular disulphide bridge formation and 3 
(green) free cysteine residues that may be involved in dimerization and the formation of 
higher order homo-oligomers. 

 

We observed that the surface of GBP is predominantly hydrophilic (blue, Figure 

3.25), with several scattered hydrophobic (red) patches, indicating potential protein-

protein or protein-ligand interaction sites. The 6 β-propeller folds of GBP form a 

hexagonal toroidal-like structure where one end of the central recess is wider and 

deeper than the other (Figure 3.25A, C). We thus refer to the larger one as a “cavity” 

the shallower one as a “cavity” (Oubrie et al. 1999; Hata et al. 2008). We also define 

the cavity end of the tunnel as the top of the molecule and the crevice end as the 

bottom of the molecule (Figure 3.25B). Predictions by PROFbval (Schlessinger and 

Rost 2005; Schlessinger et al. 2006) indicate that the flexible regions of GBP occur at 

the loops between each propeller blade (Figure 3.26). This is consistent with 

observations from solved β-propeller structures (Fulop and Jones 1999; Paoli 2001). 
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Figure 3.25 : Surface properties of GBP. (A) GBP is predominantly hydrophilic (blue) with 
scattered hydrophobic patches (red) of possible contact for interaction sites. (B,C) The 
molecule folds to form a toroidal-like structure with a 6-fold symmetry around the central 
funnel-shaped molecule displaying a larger “cavity” on the top of the molecule and a smaller 
“crevice” at the bottom. 

 
Figure 3.26: Prediction of flexible residues on GBP. The regions in blue indicate flexible 
residues by PROFbval (Schlessinger et al. 2006). They tend to occur on the loops connecting 
adjacent β-propellers, similar to those observed in literature (Weis and Drickamer 1996; Paoli 
2001; Schlessinger and Rost 2005). Such flexible sites usually indicate ligand binding sites. 
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In the interest of studying the interaction of GBP with its key interaction partner CRP, 

the structure of CRP was also modeled (Figure 3.27), through an analogous procedure 

to GBP as outlined earlier in this section. CRP was homology modeled based on 

templates from hCRP (PDB:1B09) and human serum amyloid protein (hSAP) 

(PDB:1SAC), which displays 31% and 30% sequence identity to CRP respectively. 

The Ramachandran plot (Figure 3.28, Table 3.6) indicates that 94% of the residues are 

within the allowable range of Phi-Psi values. 

 
Figure 3.27: The structure of the homology modeled CRP. 
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Figure 3.28 : Ramachandran plot for the structure of CRP. The outlier residues listed 
(Table 3.6) remain close to the boundaries of the permitted Psi-Phi values, which are 
highlighted by the light blue contours, indicating that the structure has been reliably modeled. 
Black, orange and red boxes represent residues in favoured, allowed and outlier regions 
respectively (refer to Table 3.6 for details). 
 

 
Table 3.6 List of Phi-Psi outliers in the CRP model. 

 
No. Residue Psi Phi 
1 GLU2 23.15 66.54 
2 SER17 165.11 -65.70 
3 PRO30 -81.62 -52.70 
4 ILE52 -161.37 -52.69 
5 GLN71 95.88 -43.76 
6 ASP73 -166.48 -88.13 
7 GLY80 54.70 -94.82 
8 HIS99 -25.38 144.72 
9 CYS120 -89.81 -123.81 
10 GLN135 28.58 -56.72 
11 GLY150 -143.76 -66.09 
12 GLU188 -78.50 -106.83 
13 HIS190 -20.21 101.65 

 
Number of residues in favoured region  (~98.0% expected) :  148 ( 68.5%) 
Number of residues in allowed region    ( ~2.0% expected)   :   55 ( 25.5%) 
Number of residues in outlier region                           :   13 (  6.0%) 
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3.2.2.3 Saccharides and LA dock to similar sites in GBP  

To define the domains or motifs of GBP that interact with LPS and saccharides, we 

utilized the computationally-modeled GBP structure for docking studies. Proteins 

containing β-propeller repeats such as Tachylectin-2 (TL-2) are known to undergo 

protein-sugar interactions via the backbone atoms of the conserved binding site 

residues, which are flanked by adjacent β-sheet blades of the β-propeller domains 

(Beisel et al. 1999; Wimmerova et al. 2003; Cioci et al. 2006). Because GBP has high 

binding affinity for GlcNAc and possibly for other sugar moieties of the LPS, it is 

reasonable to expect that the sugar binding sites are also localized between the 

adjacent β-sheet blades. 

 

Using computational methods to dock various saccharides found on LPS (Figure 

3.29A) onto the model of GBP, galactose (Gal) was predicted to bind GBP with the 

highest affinity amongst a set of monosaccharides and monosacharide N-acetylamines 

(Gal; GalNAc; glucosamine, Gln; GlcNAc, KDO, and heptose, Hep) (Table 3.7). 

Among the several potential binding sites for GlcNAc on the GBP surface, the site 

with the highest affinity was located between the Tectonin domains 1 and 6 (Figure 

3.29B). Additional binding sites were also found in between the other adjacent 

propellers resembling those in TL-2 (Beisel et al. 1999) (see Figure 3.6A), as well as 

in the central cavity (Figure 3.29B) similar to the predicted KDO-binding site in TL-1 

(Kawabata and Tsuda 2002).   
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A 

 

B  

 
Figure 3.29: Saccharides dock to the hydrophobic clefts and to the central cavity of 
GBP. (A) The different sugar structures that are found on the polysaccharide chain of LPS 
were constructed and their binding to GBP was tested via molecular docking. The energy 
scores are listed in Table 3.7.(B) GlcNAc (orange), the cognate ligand of GBP, was found to 
dock to either the central cavity or the hydrophobic clefts (inset, red surface) within the 
individual propellers, similar to that observed in TL-2 (see Figure 3.6A). Numbers 1 to 6 in 
circles correspond to the 6 Tectonin domains of GBP. 
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Subsequently, we extended our docking calculations to LA, the core endotoxic region 

of LPS (Figure 3.30A). 2-N-acetyl-3-O-acetyl-β-D-glucosamine (GlcNAcOAc), the 

principal component of the disaccharide headgroup of LA, displayed an enhanced 

affinity towards GBP (Eint = -66.1 kcal•mol-1), higher than Gal, the native ligand for 

GBP (Table 3.7). Phosphate groups at positions 1- or 4- of the GlcNAcOAc did not 

significantly affect the binding affinity with GBP. The polar disaccharide headgroup 

of the LA (1,4’-bisphospho-β-(1,6)-2,2’-N-acetyl-3,3’-O-acetyl-D-glucosamine 

disaccharide) showed significant affinity towards GBP, higher than the sum of the Eint 

of its components (GlcNAcOAc-1-Phos, GlcNAcOAc-4-Phos). The core LA 

(headgroup together with its fatty acid chains) exhibited similar binding affinity as the 

headgroup itself. Therefore, we predict that GBP recognizes and preferentially binds 

the glucosamine disaccharide headgroup of the LA over the non-polar fatty acid 

chains, consistent with the observation that LA and GlcNAc share similar binding 

sites in GBP (Figure 3.30B). 

 

Table 3.7: Computed binding energies for top scoring saccharides and LA poses  
docked to GBP.  

 
Ligand Eint (kcal·mol-1) a 
Galactose (Gal) -58.8 
Glucose (Glu) -51.3 
Glucosamine (Gln) -45.2 
N-acetyl-glucosamine (GlcNAc) -35.0 
3-deoxy-α-D-manno-octulosonic acid (KDO) -52.5 
2-N-acetyl-3-O-acetyl glucosamine (GlcNAcOAc) -66.1 
GlcNAcOAc-1-Phosphate -65.7 
GlcNAcOAc-4-Phosphate -63.3 
1,4’-bisPhos-GlcNAcOAc-1,6-disaccharide -140.0 
Core LA -126.0 

a  Eint is the sum of electrostatic and Van der Waals ligand-receptor binding energy  
contributions as defined in the AMBER99 forcefield 
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A 

 
B 

 
Figure 3.30: LA docks to the hydrophobic cleft of GBP.  (A) The different component 
structures that are found on LA were constructed and their binding to GBP was tested via 
docking. The energy scores are listed in Table 3.7. (B) The core LA (fatty acid chains – green, 
phosphate groups – red, glucosamine – blue) was docked to GBP. The highest affinity pose of 
the core LA to GBP is between the GBP β-propeller Tectonin domains 1 and 6. Numbers 1 to 
6 in circles correspond to the 6 Tectonin domains of GBP. 
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3.2.3 Molecular mechanism of GBP:LPS interaction 

After modeling the structures of GBP and CRP, we were prompted to experimentally 

elucidate the interactions of GBP with LPS and CRP. Previously, our lab showed that 

infection and LPS challenge triggered serine proteases which affected the level of 

GBP binding to the pathogen (Le Saux et al. 2008). Furthermore, the binding of GBP 

to CRP is triggered and the amount of GBP molecules binding to CRP is enhanced 

upon infection (Ng et al. 2007). Thus, it was imperative to study the molecular 

mechanisms underlying the interactions, and how they work in concert to form the 

pathogen recognition interactome. Does GBP first sense the pathogen before being 

triggered to bind CRP? Or can the Tectonin protein simultaneously interact with both 

CRP and the pathogen, possibly enhancing the interaction strength through co-

operative binding? The following section will attempt to answer these questions. 

 

3.2.3.1 GBP interacts with LPS via sugar groups 

Since GBP binds to the galactose residues of Sepharose, and is eluted by GlcNAc, we 

hypothesized that GBP binds to GlcNAc which is present on the outer core of LPS 

(Figure 3.31A). Using ELISA with GlcNAc immobilized on the surface showed that 

purified GBP bound to GlcNAc specifically and dose-dependently (Figure 3.31B). 

Additionally, the recruitment of GBP to immobilized full length LPS was inhibited by 

GlcNAc (Figure 3.31C).  GBP also showed specific interactions to the truncated 

fragments of LPS : ReLPS and LA (Figure 3.31D,E). Likewise, GBP is able to bind 

Gram-positive bacterial LTA (Figure 3.31A), and this binding too was abrogated by 

the addition of GlcNAc (Figure 3.31F). These results indicate that the GlcNAc moiety 

is a strong ligand of GBP, and a target molecule for GBP when binding LPS or LTA. 
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Figure 3.31: The sugar moieties of LPS and LTA bind to GBP. (A) Chemical structures of 
LPS and LTA. The LPS, ReLPS and LA display different extent of sugar moieties. GlcNAc is 
located on the outer core of LPS and LTA. (B-F) BSA, GlcNAc-BSA, LPS, ReLPS or LA 
were first immobilized on ELISA PolysorpTM plates. GBP with or without prior incubation 
with GlcNAc was then added to the wells containing immobilized ligands. Anti-GBP 
antibody was used to detect GBP bound on the surface of the ligands. Fluorescence at 405nm 
was measured to determine the GBP-ligand binding ability. The addition of GlcNAc 
abrogated the binding of GBP to (B) GlcNAc itself (C) LPS, (D) ReLPS, (E) LA and (F) 
LTA. 
 

3.2.3.2 The different lengths of LPS bind strongly to GBP 

Since GBP interacts specifically with LPS, we examined the binding kinetics of GBP 

with different regions of LPS. We utilized real-time biointeraction assay by surface 

plasmon resonance (SPR) to measure the binding affinities. GBP:GlcNAc, GBP:LA 

and GBP:LPS all displayed similar binding affinities, with KD values of 1.52 x 10-7 M 

to 2.52 x 10-7 M (Figure 3.32A-C, Table 3.8). This corroborates our interpretation that 

GBP binds LPS via its GlcNAc moiety which is commonly present amongst LPS and 

LA, and thus producing similar levels of binding strength. However, the GBP:LPS 
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interaction exhibited a slower kon/koff rate compared to GBP:GlcNAc, suggesting that 

GBP interacts with multiple sugar moieties in the full-length LPS.  Interestingly, GBP 

binds ReLPS with a 10-fold greater affinity (KD of 2.78 x 10-8 M) (Figure 3.32D) 

compared to the full length LPS. We suggest that besides having glucose residues 

(similar to GlcNAc), the ReLPS has several exposed KDO moieties, which may also 

be available for GBP binding, contributing to the higher overall affinity. Together, 

these results show that GBP binds the sugar moieties of LPS. 

 
Figure 3.32: GBP binds LPS with high affinity. Surface plasmon resonance analysis of 
real-time binding of GBP to LPS, LPS-truncates and GlcNAc. GlcNAc or LA or LPS or 
ReLPS was immobilized on Biacore CM5/HPA chips. GBP at different concentrations was 
injected over these ligand-bound surfaces and the GBP binding affinity was quantified from 
the response unit (RU). GBP purified from naïve plasma (GBPn) binds: (A) GlcNAc with a 
KD of 2.52 x 10-7 M, (B) LA at KD 1.52 x 10-7 M, (C) LPS at KD 2.46 x 10-7 M, (D) ReLPS 
at KD 2.78 x 10-8 M. The data were analyzed by BIAevaluation Version 3.2. (E) Glutathione 
Sepharose (GST) protein was used as a non LPS-binding control in this experiment. 
 
 
Table 3.8: Rate constants and equilibrium dissociation constants of binding  

kinetics of ligands to GBP. 
 
Ligand ka (mol·s-1) a kd (s-1) b KD (mol-1) c 
GlcNAc 3.68 ± 0.13 x 102 9.28 ± 0.73 x 10-5 2.52 x 10-7 
LA 4.98 ± 0.08 x 103 7.58 ± 0.51 x 10-4 1.52 x 10-7 
LPS 5.45 ± 0.10 x 103 1.34 ± 0.06 x 10-3 2.46 x 10-7 
ReLPS 3.43 ± 0.71 x 104 9.53 ± 0.41 x 10-4 2.78 x 10-8 
a rate constant of ligand-GBP association.  
b rate constant of ligand-GBP dissociation. 
c  equilibrium dissociation constant of ligand-GBP dissociation: KD = kd/ka. 



 

81 
 

3.2.3.3 The interaction between GBP and LPS is independent of Ca2+ 

Infection is usually accompanied by local acidosis and hypocalcaemia (Holland et al. 

2002; O'Croinin et al. 2008). As a central plasma protein PRR, CRP is known to form 

a pathogen recognition complex in a calcium dependent manner (Ng et al. 2004; Ng et 

al. 2007). However, the exact function or effect of the cation-binding on GBP (or the 

Tectonin lectins) is unknown. Therefore, here, we tested if GBP’s binding to LPS 

could be affected by Ca2+ binding. We ran surface plasmon resonance with GBP in 3 

conditions: buffer alone, no free calcium in the system; buffer with EGTA, to chelate 

calcium ions from the system; and buffer supplemented with the physiological 

calcium concentration of 2.5mM.  We find that all three conditions gave a similar 

binding affinity of 10-7M (Figure 3.33). We thus conclude that calcium binding does 

not play a role in the GBP-LPS interaction. 

 

Figure 3.33: The interaction between GBP and LPS is independent of Ca2+. SPR showed 
that GBP’s binding affinity to LPS did not change in (A, B) the presence or (C) absence of 
Ca2+. 
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3.2.3.4 GBP interacts with LPS via distinct interaction surfaces 

At this juncture, we set out to experimentally map the interaction sites of GBP with 

LPS, and test the validity of the computationally predicted LPS-binding sites on GBP. 

We also aimed to localize the Tectonin domains within GBP which confer preferential 

and distinctive binding to CRP. To achieve this, we used amide hydrogen-deuterium 

exchange coupled with mass spectrometry (HDMS). The identification of exposed or 

hidden sites is represented by mass spectrometry-identified peptide sequences. A 

mass shift resulting in a lower mass value is an indication of specific peptide sequence 

contained in an interaction surface, and thus is involved in an interaction (Figure 

3.34).  

 

 

Figure 3.34 : Example of HDMS mass shift in the GBP sample. An example of a mass 
spectometry output showing the shift of the mass peaks to the left in a specific peptide 
sequence of GBP, comparing the state with or without the ligand (GlcNAc). Here, we can see 
that there is a left-shift of the GBP+GlcNAc peaks (in black), indicating that this particular 
peptide has a site blocked from deuteration – an indication of the peptide involved in the 
binding or interaction site of GlcNAc with GBP. 
 

Comparing the extent of deuterium exchange of GBP alone and GBP incubated with 

GlcNAc showed nine peptides with significant differences in deuterium exchange. 

Peptides spanning GBP residues 14-24 (TVTPRFVWGVN), 43-55 

(KVEGSSLKQIDADD) and 48-61 (LKQIDADDHEVWGV) (Figure 3.35A, blue 

surfaces) showed decreased deuterium exchange in the presence of GlcNAc (Figure 

3.35B, right column; Table 3.9), suggesting these regions in GBP bind GlcNAc. 

These results are consistent with the in silico docking predictions (Figure 3.35A, 

Mass peak 
shift to the left 

GBP 

GBP + GlcNAc
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GlcNAc molecules in orange, see also Figure 3.25) because the regions coincide with 

the interface between the β-propeller folds and also the central cavity and crevice 

which exhibit one of the highest binding affinities for GlcNAc docking. Therefore, 

these regions of GBP likely contain the GlcNAc recognition site. Peptide 205-222 

(GDSLMGVNSNDDIFESVP) (Figure 3.35A, yellow surface), corresponding to the 

Tectonin domains 6-to-1, showed a decreased deuterium uptake in the presence of LA 

(Figure 3.35B, left column; Table 3.9) , suggesting a possible LA binding site within 

the region which is proximal to the predicted LA-binding site.  

 

Interestingly, when GBP purified from infected HSC hemolymph was used for the 

experiment, an additional peptide 2-13 (EWTHINGKLSHL) (Figure 3.35A, purple 

surface), with decreased deuterium uptake (Figure 3.35B, left column; Table 3.9), 

corresponding to an interaction site was found. The peptide sequence happens to 

contain the motif “HINGK”, which follows a known LPS-binding pattern of 

BHB(P)HB (B=basic, H=hydrophobic, P=polar amino acid residues), previously 

reported by Frecer et. al. (2000). They showed the propensity of these motifs in beta 

structures to recognize and bind the LA moiety of LPS with high affinity. The 

findings in these HDMS experiments correlated well with previous motif prediction 

studies by Frecer et. al. and also our work done in computational molecular docking 

(see Section 3.2.2.3). 
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Figure 3.35: HDMS analysis - surface interaction of GBP with either GlcNAc or LA. (A) 
Peptides showing decreased deuterium uptake in GBP when in interaction with either GlcNAc 
or lipid A were mapped onto the surface of the structure (GlcNAc, blue surface; LA, yellow 
& purple surfaces). The top poses from the docking results (GlcNAc, orange; LA, green-blue-
red) are included for comparisons with HDMS observations. Numbers represent the 
corresponding Tectonin domains on GBP. (B) Graphs showing the change in deuterium 
uptake in the respective peptides. Downward arrows indicate the reduction of deuterium 
uptake. The colour of the arrows correspond to the surface colours in (A). 
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3.2.4 Mechanism of action of GBP: CRP interaction 

3.2.4.1 HDMS reveals that GBP interacts with CRP through a non-symmetrical  

protein-protein contact 

Using the same HDMS principle of determining the contact interfaces, we found that 

in the presence of CRP, the GBP peptides 113-122 (NGEWELVDGS) and 117-131 

(ELVDGSLKQVDGGRD) (Figure 3.36, red surface), corresponding to the outermost 

β-strand of the 4th Tectonin domain, showed a decreased deuterium exchange (Figure 

3.36B, right column; Table 3.9) suggesting that it contains the GBP-CRP interaction 

site. Correspondingly, the adjacent peptides spanning residues 79-94 

(TQIKGGLKHVSASGYG) and 143-153 (YRRPVDGSGVW) (Figure 3.36, green 

surfaces) showed an increased deuterium exchange (Figure 3.36B, left column; Table 

3.9), indicating greater solvent accessibility, possibly due to induced conformational 

changes which tallies with the possibility that the red surface is participating in an 

interaction, hence a slight change in conformation at its neighbouring surfaces. 

 

Conversely, we found that three peptide regions in the CRP molecule - 1-12 

(KVKFPPSSSPSF), 8-19 (SSPSFPRLVMVG) and 121-150 

(MGVTFRQGGLVVLGQDQDSVGGGFDAKQSL) - showed a decreased deuterium 

exchange, indicating interactions with GBP (Figure 3.37, Table 3.10). Although these 

regions are far apart in the primary sequence, when mapped to the homology-modeled 

CRP structure, they are juxtaposed in their tertiary structure, as expected if they 

interacted with GBP. Peptide 121-150 includes residues known to be crucial for 

calcium binding (D136, Q137, D138, Q148), which provides an explanation for the 

observation that CRP binds GBP only when the Ca2+ level is low (Ng et al. 2007). 

Taken together, these results show that GBP has distinct binding sites for LPS and 
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CRP; the binding sites for LA and GlcNAc are localized to the hydrophobic clefts 

interfacing propeller folds, whereas the binding sites for CRP are contained within the 

4th Tectonin domain. Therefore, despite the apparent structural symmetry of the 6 

Tectonin domains of GBP, it is able to differentiate between 2 different structures – 

LPS from the pathogen with its Tectonin domain 6-to-1 and CRP, its partner protein 

in the host system with its Tectonin domain. This unique property of the Tectonin 

domains makes it a very important bridge in host-pathogen interactions. 

 

 

 
Figure 3.36: HDMS analysis – surface interaction of GBP with CRP.  (A) Peptides 
showing change in deuterium uptake in GBP when in interaction with CRP were mapped onto 
the surface of the structure (red – decreased deuterium uptake; green – increased deuterium 
uptake). Numbers represent the corresponding Tectonin domains on GBP. (B) Graphs 
showing the change in deuterium incorporation in the respective peptides. Downward arrows 
indicate the reduction of deuterium uptake, and upward arrows indicated increase in 
deuterium uptake. The colour of the arrows correspond to the surface colours in (A). 
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Figure 3.37: HDMS analysis – surface interaction of CRP with GBP.  (A) Peptides 
showing decrease in deuterium uptake in CRP when in interaction with GBP were mapped 
onto the surface of the structure (blue and red surfaces). The known calcium binding site of 
CRP based on the important residues for Ca2+ binding is labeled in yellow. (B) Graphs 
showing the change in deuterium incorporation in the respective peptides. Downward arrows 
indicate the reduction of deuterium uptake. The colour of the arrows correspond to the surface 
colours in (A). 
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Table 3.9: Summary of H/2H exchange data for GBP. 

  Deuteration (5 min) 

Fragment 
of GBP (m/z) 

No. of 
amides 

GBP GBP with 
GlcNAc 

GBP  
with 
LA 

GBP with 
CRP 

GBP with 
LA & 
CRP 
 

2-13 (1434.74) 11 4.13±0.44 4.40±0.52 4.25±0.21 4.58±0.17 4.60±0.15 

14-24 (1275.68) 9 6.04±0.44 2.58±0.02 5.80±0.21 5.15±0.02 5.37±0.31 

17-24 (974.51) 6 2.08±0.08 2.21±0.10 2.19±0.03 2.22±ND 2.19±0.01 

36-47 (1337.61) 11 4.73±0.16 4.92±0.19 4.74±ND 5.76±0.15 5.46±0.28 

43-55 (1417.71) 12 1.57±0.11 1.11±0.39 1.53±0.01 2.01±0.10 4.95±0.24 

48-61 (1624.79) 13 4.99±0.01 4.74±0.77 5.01±0.13 5.34±0.04 5.23±0.04 

56-67 (1383.62) 11 4.10±0.24 4.34±0.08 4.23±0.18 4.49±0.25 4.45±0.03 

66-78 (1492.75) 11 4.12±0.19 4.46±0.28 4.26±ND 4.53±0.01 4.58±0.01 

68-78 (1265.62) 9 3.37±0.42 3.38±0.21 3.35±0.03 3.49±0.12 3.48±0.07 

79-94 (1602.85) 15 4.09±0.21 4.28±0.16 4.17±0.03 4.20±0.50 4.59±ND 

107-121 (1788.8) 12 4.96±0.28 5.21±0.22 5.07±0.01 5.37±0.10 5.22±0.08 

113-122 (1105.57) 9 3.21±0.18 3.34±0.18 3.29±0.08 2.74±ND 2.66±0.05 

117-131 (1587.79) 14 3.99±0.11 3.33±0.17 4.01±0.02 3.51±0.10 4.11±0.01 

127-143 (1926.88) 16 4.37±0.34 4.52±0.19 4.38±0.06 4.61±0.07 4.51±0.04 

142-153 (1404.73) 10 4.11±0.27 4.18±0.23 4.50±0.21 3.93±0.42 3.95±0.36 

143-153 (1291.65) 9 3.98±0.26 4.71±0.26 4.64±0.10 4.91±ND 4.84±0.03 

154-169 (1709.89) 14 4.23±0.32 4.61±0.37 4.32±0.05 4.51±0.11 4.54±0.01 

161-177 (1877.85) 16 5.72±0.32 5.78±0.24 5.82±0.05 6.14±0.07 6.14±0.04 

198-214 (1795.79) 16 4.16±0.20 4.35±0.08 4.23±ND 4.23±0.01 4.27±0.04 

205-222 (1895.83) 16 7.87±0.59 7.26±0.34 6.63±0.12 6.65±0.09 6.61±0.07 

 

ND denotes no significant difference in standard error of mean. 

In accordance with similar studies in (Brudler et al. 2006; Hamuro et al. 2006; Horn et 
al. 2006) changes in deuterium incorporation of more than ±10% were considered to 
be significant. 
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Table 3.10: Summary of H/2H exchange data for CRP. 

  Deuteration (5 mins) 

Fragment 
of CRP (m/z) 

No. of 
amides 

CRP CRP with 
LA 

CRP with 
GBP 

CRP with 
GBP & 
LA 

1-12 (1307.69) 8 3.87±0.10 4.94±0.14 3.23±0.38 3.58±0.25 

8-19 (1292.66) 9 4.52±0.35 4.74±0.61 3.30±0.04 2.96±0.19 

15-32 (2167.07) 16 5.75±0.19 6.59±ND 5.90±0.03 6.17±0.17 

32-46 (1867.04) 14 6.47±0.23 7.59±0.07 7.02±0.10 6.98±0.06 

34-46 (1533.89) 12 2.98±0.04 4.55±0.13 2.99±0.14 3.05±0.05 

48-58 (1206.54) 10 4.24±0.11 4.71±0.23 4.77±0.06 4.84±0.02 

68-79 (1398.74) 11 4.40±0.09 5.66±0.28 4.83±0.07 4.97±0.04 

84-116 (3820.73) 32 11.58±0.06 13.50±0.09 12.48±0.20 12.84±0.18 

90-115 (3029.31) 25 8.69±0.23 10.32±0.06 9.58±0.26 9.65±0.16 

104-130 (2816.39) 26 8.31±0.54 9.26±0.21 8.26±0.49 8.40±0.47 

121-150 (3082.52) 29 8.41±0.32 10.62±0.19 7.55±0.06 7.58±0.11 

122-137 (1673.89) 15 4.55±0.11 5.36±0.32 5.01±0.45 5.44±0.05 

127-138 (1228.61) 11 2.68±0.22 2.84±0.34 2.81±0.10 2.90±0.21 

144-153 (1093.55) 9 3.54±0.32 4.06±0.09 3.65±0.17 3.58±0.30 

157-180 (2928.41) 22 9.09±0.24 9.05±0.03 8.56±0.17 8.46±0.46 

161-169 (1114.57) 8 5.18±0.03 5.86±0.36 5.13±0.09 5.14±0.09 

181-195 (1913.97) 14 5.33±0.20 6.05±0.07 9.09±0.02 9.44±0.40 

192-200 (1057.49) 8 3.65±0.08 4.17±0.14 4.97±0.07 4.87±0.06 

194-204 (1198.57) 10 3.70±0.37 4.49±0.06 3.97±0.53 4.33±0.11 

 

ND denotes no significant difference in standard error of mean. 

In accordance with similar studies in (Brudler et al. 2006; Hamuro et al. 2006; Horn et 
al. 2006) changes in deuterium incorporation of more than ±10% were considered to 
be significant. 



 

90 
 

3.2.4.2 Yeast 2-hybrid interaction analyses show interaction domains consistent  

with HDMS observations 

Following the HDMS results, we used yeast 2-hybrid co-transformation of GBP with 

CRP to validate the earlier findings. Guided by the homology-modeled GBP structure, 

we sub-cloned the 6 Tectonin domains of GBP individually; in duos (domains 1+2, 

2+3, 3+4, 4+5, 5+6); and in trios (domains 1+2+3, 4+5+6).  Each of these GBP sub-

clones was tested for their interactions with the full-length GBP (for 

homodimerisation) as well as with CRP (heterodimerisation).   

 

We find that each Tectonin domain exhibits different ability to interact with GBP or 

CRP from the differing strength of the yeast growth with the different constructs 

(Figure 3.38).  We observed that clones with three contiguous Tectonin domains 

consistently gave strong growth equivalent to those of full-length transformations, 

implying that 3 Tectonin domains are sufficient to interact as strongly as the full-

length GBP with itself and with CRP. Clones consisting of 2 domains in general show 

stronger growth compared to the single domain clones. We therefore postulated that 

two or more consecutive Tectonin domains are needed for consistent strong 

interactions between GBP and CRP. From the interaction yeast growth observations, 

we summarize that constructs of Tectonin domains 3+4 and 4+5, are likely to be 

strongly involved in GBP-CRP interaction. While domain 4 (as identified by HDMS, 

see Figure 3.36A, red surface) individually shows a lower level of interaction, when 

coupled with its neighbouring Tectonin domains of either domain 3 or 5, strong 

interactions were achieved. We believe that neighboring domains are important for 

proper propeller folding to facilitate protein-protein interactions. We surmise that the 
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Tecotnin domain 4 of GBP is the key interaction domain with CRP based on the 

observations of interaction of domains 3+4 and 4+5. 

 

 
Figure 3.38: Yeast 2-hybrid analysis shows specific Tectonin domains of GBP interact 
with CRP. Single, double and triple Tectonin domain-constructs were subcloned and tested 
for their interaction with CRP and with full-length GBP. Tectonin constructs were cloned into 
pGBKT7 vector and CRP/full-length GBP were cloned into pGADT7 vector. The 2 
constructs were co-transformed and spotted on SD-Leu-Trp plates (double-dropout media, as 
control) and SD-His-Ade-Leu-Trp (quadruple-dropout media, QDO). The strength of 
interaction is reflected by the intensity of yeast growth. 
 

3.2.4.3 Protein-protein docking reaffirms the feasibility of GBP:CRP binding  

region 

After having identified interaction surfaces by HDMS together with yeast 2-hybrid 

co-transformation, showing that the Tectonin domain 4 of GBP is vital in the 
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interaction with CRP, we aimed to model a structural representation and test the 

feasibility of the resulting complex formation using protein-protein docking. The 

interacting peptide sequences determined earlier using HDMS (see Figure 3.36 and 

3.37) were used to define the active residues in order to generate restraints to drive the 

protein docking process using the HADDOCK docking application (Dominguez et al. 

2003; de Vries et al. 2007). A guided docking run (van Dijk et al. 2005) using data 

gleaned from the HDMS experiments (see Figures 3.36 and 3.37) was carried out by 

defining the GBP sequence 113-131 and CRP sequences 1-19 and 121-150, more 

precisely the solvent accessible GBP residues 113-122 and 130-132 and CRP residues 

1-10, 16-19, 119-128 and 138-148 as active residues. A blind docking (Hetenyi and 

van der Spoel 2002; Hetenyi and van der Spoel 2006) algorithm run which considered 

all solvent accessible residues of both monomers as potential protein-protein 

interaction sites was also carried out in comparison to the guided docking run.  

 

We observed that the non-symmetric GBP-CRP heterodimer model obtained by 

guided docking displayed a higher score, reflecting higher stability, than the 

symmetric structure generated by blind docking that involves the contact interfaces of 

all the Tectonin domains of GBP to CRP. This once again indicates the preference of 

specific Tectonin domains taking part in the GBP-CRP interaction. Figure 3.39 

illustrates the highest scoring refined structure of the GBP-CRP model complex out of 

a pool of 400 generated dimers together with the corresponding energies and scores. 

 

Taken together, these results show that GBP has distinct binding sites for LPS and 

CRP; the binding sites for LA and GlcNAc moieties of LPS are localized to the 

hydrophobic clefts interfacing propeller folds, specifically through GBP Tectonin 
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domains 6-1, whereas the binding sites for CRP are contained within the 4th Tectonin 

domain of GBP. 

 
Figure 3.39: Guided docking of the GBP-CRP interaction. The GBP-CRP (blue and red 
respectively) interaction using HADDOCK was done with HDMS information to define active 
residues involved. Blind/random docking utilizing all solvent-accessible residues as active 
residues in the interaction was used for comparison. The accompanying table lists scores obtained 
for the best models from the guided and blind runs. 

 

3.2.5  Effects of infection condition on the GBP, CRP and LPS interactions 

3.2.5.1  Infection enhances interaction between GBP and CRP to LPS 

GBP had been shown to interact with CRP only during infection (Ng et al. 2007), 

suggesting that certain infection conditions prime these molecules for interaction. We 

first tested if infection in vivo alters the affinity of GBP for LPS. Thus, GBP was 

isolated from animals that were either infected (GBPi) with P. aeruginosa, or not 

infected (GBPn), and used for binding with ReLPS and LA. Compared to GBPn from 

naïve animals, the GBPi showed increased affinity to ReLPS (KD of 8.60 x 10-9 M) 

and to LA (5.11 x 10-8 M) (Figure 3.40). Besides having a higher binding affinity in 

the state of infection, the infection binding curves also exhibits a slower release rate 

(kd rate) of LPS from GBPi. This means that after binding to LPS, the GBPi releases 
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LPS more slowly. These findings suggest that after initial recognition and binding to 

the sugar moieties, the adjacent chemical groups on the LPS molecule strengthens and 

enhances the anchorage of GBP onto the bacterium, leading to a slower rate of release 

from the protein.  

 
 

Figure 3.40: Binding affinity of infected GBP. Purified GBP isolated from infected animals 
were injected over surfaces immobilized with either ReLPS or LA and their binding affinity 
was quantified. Compared to GBP from naïve plasma (GBPn; see Figure 3.32), GBP from the 
infected plasma (GBPi) show increases in affinity for both the ReLPS (KD 8.6x10-9M) and LA 
(KD 5.11 x 10-8 M). 
 

Next, we determined if infection enhances interaction between GBP and CRP. To 

quantify the affinities between GBPn:CRPn and GBPi:CRPi, the purified proteins, 

CRPn or CRPi, were injected separately over HPA chips which have been previously 

immobilized with GBPn or GBPi bound to LA surfaces. As shown, the KD between 

GBPn and CRPn was 2.10 x 10-7 M (Figure 3.41A) whereas the KD between GBPi and 

CRPi was 1.66 x 10-10 M, indicating that infection has enhanced the GBP-CRP affinity 

by 1000-fold (Figure 3.41B).  
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In the acute phase of infection, the invading microbes could usurp Ca2+, causing a 

Ca2+-depleted condition (Aslam et al. 2008). Therefore it was of interest to investigate 

whether cation depletion in general plays any role in the interaction between GBP and 

CRP. We measured the KD between GBPn and CRPn in the presence of EDTA which 

depletes divalent cations from the solution. The KD was 1.05 x 10-10 M, similar to that 

between GBPi and CRPi (Figure 3.41C).  Next, we substituted EDTA for EGTA (a 

calcium chelator), and obtained similar affinity values (3.10 x 10-10 M) (Figure 

3.41D). These results suggest that the depletion of Ca2+ ions may be a key factor in 

representing the state of infection, this condition enhances the GBP:CRP interaction, 

probably by excluding Ca2+ from binding to the same site in CRP that also interacts 

with GBP. 

 

Figure 3.41: Effect of infection upon GBP-CRP interaction with LA. GBP was first bound 
to the surface immobilized with LA followed by injection of CRP.  
(A) GBP and CRP purified from naïve plasma (GBPn, CRPn) show a basal level of interaction 
(KD of 2.1 x 10-7 M). (B) When proteins purified from infected plasma (GBPi, CRPi) were 
injected over the same LA-immobilised surface, the interaction affinity increased 1000-fold 
(KD of 1.66 x 10-10 M). (C) When EDTA was added to deplete cations and simulate an 
infection condition between the two naïve proteins, it also produced a 1000-fold increase in 
affinity (KD of 1.05 x 10-10 M) similar to the use of proteins from infected plasma. (D) Using 
EGTA as a more specific calcium chelator, we observed a similar degree of binding affinity 
as (C), with a KD of 3.10 x 10-10 M. 
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3.2.5.2 Infection causes irreversible conformational change to GBP and CRP 

To observe if the subsequent in vitro repletion of calcium is able to return the proteins 

to a naive state, we supplemented the infected proteins with a physiological level of 

2.5 mM Ca2+. There was no reduction in binding affinity, with the KD remaining at 

4.95x10-10 M (Figure 3.42) (condition without Ca2+ displayed KD of 1.66x10-10M). 

When the Ca2+ level was raised further to 10 mM, the KD still remained at 2.58x10-

10M. Therefore, the replenishment of calcium does not alter the 1000-fold increased 

binding affinity between the two proteins. It is conceivable that infection has triggered 

an irreversible and dramatic conformational change in the proteins, positively 

inducing their interaction towards the formation of a pathogen-recognition 

interactome. 

 
Figure 3.42: Effect of calcium on infected proteins binding to LA. GBP was first bound to 
the surface immobilized with LA followed by injection of CRP. GBP and CRP purified from 
infected plasma (GBPi, CRPi) show an interaction affinity of 4.95x10-10 M when the running 
buffer conditions was supplemented with the physiological level of Ca2+, producing a similar 
affinity to that when Ca2+ was not supplemented. Increasing the Ca2+ concentration to 10mM 
did not alter the binding affinity significantly. 
 

In earlier studies with other species, fluctuations in cation levels observed during 

infection were reported (Blackwell et al. 2000; Maguire 2006; Ong et al. 2006; Papp-

Wallace and Maguire 2006) to affect protein-protein interactions and consequently, 

regulate the immune response. However, the work of Ng et al. (Ng et al. 2007) on the 

horseshoe crab suggested that plasma factors other than Ca2+ ions may enhance the 

interaction of GBP and CRP. We showed that the re-introduction of Ca2+ did not 
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return the binding affinity between GBPi and CRPi to the basal level of 10-7 M. This 

led us to postulate that while calcium depletion seems to represent the state of 

infection in the invertebrates or mammalian systems, the conformational changes in 

these plasma PRR proteins could be irreversible and that the resulting protein that has 

been structurally altered by binding to PAMPs (in this case the bacterial LPS) would 

likely recruit other PRRs (Le Saux et al. 2008) in the formation of the pathogen-

recognition interactome, and trigger other downstream effectors for opsonisation by 

macrophages.  

 

3.2.5.3 GBP and CRP binds and disrupts LPS micelles and exposes its  

endotoxicity 

Since GBP and CRP have been shown to bind LPS with high avidity, it was of 

interest to understand how they affect the endotoxicity of LPS. We utilized the 

PyroGene test kit (Lonza Inc.) to measure the endotoxicity of LPS.  This kit uses 

recombinant Factor C (rFC), which is activated upon encountering LPS and 

hydrolyses a substrate to produce a fluorescent product, thereby reporting on as low as 

0.01 EU/ml of LPS. Here, we firstly showed that individually, the purified GBP and 

CRP proteins were pyrogen-free (Figure 3.43).  But when reacted with increasing 

doses of LPS (0.5-2.0 EU), we showed that the GBP and CRP bind LPS to 

progressively increase the endotoxicity of LPS (Figure 3.43D). This could be due to 

the disruption of the potential micellar form of LPS in solution (Aurell and Wistrom 

1998; Li et al. 2004; Yu et al. 2006), exposing the endotoxic potency of the LPS 

and thus yielding a higher endotoxic activity. This phenomenon of increased 

endotoxicity has been observed before (Berger et al. 1991; Kaca and Roth 1995; 

Howe et al. 2008), where the binding of immune-related proteins to bacterial 
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structures was an initiating step to recruit other plasma factors or to trigger immune 

pathways such as the complement cascade and cytokines which eventually leads to 

the neutralization and elimination of the LPS. Increasing the protein concentration 

within the same EU produced only a small increase in the endotoxicity. We suspect 

that the amount of protein added initially was already sufficient in dispersing the LPS 

and the further addition of protein will not further increase endotoxicity. 

 
Figure 3.43: GBP and CRP exposes LPS endotoxicity. GBP cooperates with CRP with 
concentrations of LPS from (A) 0.5EU (B) 1EU (C) 2EU. (D) The unmasking effect becomes 
increasingly significant at higher concentrations of LPS due to the higher probability of 
micelle formation. 
 

Furthermore, DLS experiments showed that upon the addition of LPS, GBP 

aggregates to form even larger molecular size structures. Correspondingly, its 

diffusion coefficient reduced, indicating that the rate of movement of the aggregates 
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has reduced (Figure 3.44). This phenomenon could represent an example of the 

aggregation of proteins to form a pathogen recognition complex upon bacterial 

detection in the host. We therefore suggest that in vivo GBP, together with CRP, are 

able to bind to the surface of the invading bacteria and disrupt the LPS layer on the 

outer membrane of the invading Gram-negative bacterium (Figure 3.45). This would 

lead to the exposure of the endotoxic effects of LPS to other immune factors in the 

host to stimulate downstream effectors for pathogen clearance. 

 
Figure 3.44: Molecular size of GBP polymers increase with addition of LPS. DLS showed 
that upon the addition of LPS, the molecular size in solution of GBP increases, as its diffusion 
coefficient decreases – an indication that a larger molecular size structure is formed and the 
rate of movement of this larger complex has reduced. 
 
 

 
Figure 3.45: Model of micelle disruption to increase LPS endotoxicity.  
(A) Lipid A (LPS) tends to aggregate to form micelles in solution and could lower the levels 
of endotoxicity detection. (B) The introduction of GBP and CRP could disrupt the micellar 
structure. (C) The disruption of micelles exposes more individual LPS molecules which 
increases endotoxicity levels. 
 

3.3 Summary 

In summary, in view of the presence of binding sites for saccharide components of 

LPS located between the Tectonin domains and the preferential interaction of GBP 
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Tectonin domain 4 for CRP, it is conceivable that GBP plays a dual role in 

protein:PAMP (GBP:LPS) and protein:protein (GBP:CRP) interactions during 

infection. Even though the GBP molecule appears to be constituted by six iterative 

and apparently similar β-propeller Tectonin domains, these β-propellers are able to 

distinguish cognate PRRs and bacterial LPS. Together with our findings that GBP is 

also capable of disrupting LPS micelles and the increasing endotoxicity of LPS (most 

likely by micelle disruption) it is evident that Tectonin proteins like GBP, in 

collaboration with other PRRs, have (1) a part to play in pathogen (LPS) detection 

and (2) takes part in initiating the innate immune defense mechanism. Figure 3.46 

summarizes the key findings of this chapter. 

 

Figure 3.46: Proposed mechanism of GBP interactions and formation of the pathogen 
recognition complex for innate immune response. The GBP Tectonin domains 6-to-1 
(green circles) bind the LA displayed on the Gram-negative bacterium, resulting in the 
disruption of the LPS micelles, increasing the endotoxicity of LPS, triggers other immune 
factors to neutralize and eliminate the bacteria. Tectonin domain 4 (blue circle) interacts with 
CRP, as determined by SPR, yeast 2-hybrid and HDMS experiments. The ensemble recruits 
other PRRs like carcinolectins (see Li et al, 2007; Ng et al, 2007) to further stabilize and form 
the antimicrobial complex to drive downstream effectors and complement activation 
pathways. The removal of Ca2+, possibly from CRP, greatly enhanced the GBP-CRP 
interaction affinity, positively inducing their interaction towards the formation of a pathogen 
recognition complex. 
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CHAPTER 4 

hTECTONIN – DISCOVERY OF A NOVEL TECTONIN 

PROTEIN IN THE HUMAN 

 

After characterizing and showing that the GBP Tectonin is an important member of 

the pathogen recognition interactome in the lower species, the next logical step was to 

examine if such Tectonins are structurally and functionally conserved in the 

mammalian species, in particular the human. Since the important partners of GBP, 

CRP and CL5, have homologous proteins in the human system, it is also likely that a 

homologous Tectonin protein exists. 

 

4.1 Introduction 

4.1.1  Are the Tectonin proteins evolutionary conserved? Do PRR:PRR  

interactomes exist in the human system? 

Advances in sequence genomics have resulted in the accumulation of a large number 

of protein sequences derived from genome sequences. Although the human genome 

database has been completed a decade ago, about 50% of the human proteome still 

remain hypothetical as their functions are unknown. The elucidation of the functions 

of these hypothetical proteins can lead to additional protein pathways and revelation 

of new cascades completing our fragmentary knowledge on the proteome complex. 

Information on the network of protein–protein interactions will increase 

logarithmically. New hypothetical proteins may serve as disease markers and 

pharmacological targets.  
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The prime targets for the discovery of functional proteins are those which show 

relationship to lower species by way of sequence similarities, domain conservation or 

other inferences. Another approach is to look at lower species with no discovered 

homologs in the mammalian system. One example is this group of Tectonin domain-

containing proteins. Tectonin domain-containing proteins, which belong to a subclass 

of proteins of the larger β-propeller family, have only thus far been studied in the 

invertebrates, namely the horseshoe crab, the slime mold and the sponge.  

 

An exhaustive search in the databases for vertebrate proteins revealed no amino acid 

sequence homologs of Tectonin domain-containing proteins, prompting us to 

postulate that perhaps these Tectonin domain-containing proteins (henceforth referred 

to as Tectonin proteins) have evolved through the species. There are many examples 

of other family of proteins in meiosis-related proteins, kinetochores, cell gap contacts 

and nuclear pore complexes which show no homology at amino acid sequence level. 

However, they are hinted at conservation of the domain architecture organization and 

three-dimensional structure of functionally important domains in proteins in the 

budding yeast, nematode, Drosophila, Arabidopsis, and human. Several databases like 

SCOP, CATH, SMART, which also employ domain and secondary structure 

classification for structure sorting and function prediction were used to search for β-

propeller structures and possibly distance relationships by domain conservation. This 

is especially useful when searching for related proteins with low sequence homology 

or when sequences have adapted through evolution from the invertebrates to the 

mammals. We thus sought to identify Tectonins in the vertebrates and examine their 

potential functional conservation in host-pathogen interactions. 
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In this chapter, we present evidence for the identification and characterization of a 

novel human Tectonin-domain containing protein which we named the hTectonin. We 

discovered that although no Tectonin proteins showing close sequence homology 

were identified in the vertebrates, they are distantly related phylogenetically through 

their Tectonin domain architecture. hTectonin was found to be expressed in immune-

related cell lines. By screening a human leukocyte library for hTectonin interaction 

partners, we found some interesting proteins which function in immunity. We also 

showed that the hTectonin retained features shown in its invertebrate counterparts by 

having LPS-binding motifs of similar pattern. We then compared peptides derived 

from hTectonin and GBP and showed that indeed, the Tectonin domains within the 

protein harbouring the LPS-binding sequence motifs are able to bind LPS with 

similarly high affinity, suggesting a conserved function and potential role for 

Tectonins in innate immunity. 
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4.2 Results and Discussion 

4.2.1 hTectonin – a distantly related homolog of the invertebrate Tectonins 
 
4.2.1.1  hTectonin is widely present across the various species 

In mammals, the identity and role of proteins with Tectonin domains are unknown. 

Those identified or studied in the invertebrates exhibit immune defense properties.  

Here, we sought to examine whether the Tectonin domains are structurally and 

functionally conserved in the mammals. A position-iterated search using known 

Tectonin proteins in the invertebrates revealed a group of vertebrate Tectonin proteins 

to be distantly related (Figure 4.1A). Interestingly, all the hits that were considered 

related came from the same family of proteins, coding for an unknown protein named 

KIAA1358. A further check using SMART domain analysis revealed that the human 

protein in this family, assigned Q7Z6L1, is one of only 3 human proteins (Q7Z6L1, 

Q15040 and O95714) that contains the Tectonin domain architecture  (Figure 4.1B). 

Q7Z6L1 codes for a predominantly Tectonin domain-containing protein, suggesting 

that the domains probably form a significant part of the molecular structure and play 

an essential role in these proteins.  

 

A more in-depth search using Q7Z6L1 as the query sequence resulted in the discovery 

that it exists in numerous other species with significantly high homology (Figure 4.2). 

This high homology of Q7Z6L1, from the worm to the human, prompted us to suggest 

its evolutionary conservation and functional significance. Large scale mRNA study on 

cancer tissues have also shown that the Q7Z6L1 gene (DKFZp434B0335) is up-

regulated in prostate cancer (Bull et al. 2001), and is downregulated when the cancer 

growth is suppressed by antigen inhibitors (Nickols and Dervan 2007). These data led 

us to suggest that Q7Z6L1 might have an immuno-regulatory function. 
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Figure 4.1: hTectonin is distantly related to the invertebrate Tectonins. (A) The 
phylogenetic tree constructed after a PSI-Search query using the invertebrate Tectonins 
revealed K1358 family of proteins as closely related Tectonin domain containing proteins in 
the mammals and also in lower species like the frog. The numbers at the nodes are an 
indication of the level of confidence for the branches as determined by bootstrap analysis 
(1000 bootstrap replicates). (B) Bioinformatics domain analysis utilizing SMART (Schultz et 
al. 1998; Letunic et al. 2009) shows existence of Tectonin domain-containing proteins both in 
invertebrates and vertebrates from the horseshoe crab lectins, worm, up to humans. Of interest 
in this study is the protein hTectonin (red asterisk) which appear to have homologues in other 
species as well, for example in P. troglodytes (chimpanzee), P. pygmaeus (orangutan), M. 
musculus (mouse), G. gallus (chicken), C. elegans (worm) and D. melanogaster (fruitfly).  
 

Furthermore, Miftari and Walther (2009) recently discovered a Tectonin domain-

containing protein similar to the ones studied in the vertebrates in the human 

leukocyte which they have named the leukolectin. All these findings imply that 

Tectonin domain-containing proteins play key roles in immunity. We thus dubbed 
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Q7Z6L1 as ‘hTectonin’ and we selected this protein for further structural and 

functional analyses.  

 

Figure 4.2: hTectonin gene is widespread across many species. The phylogenetic tree of 
hTectonin homologues constructed by primary sequence similarity shows its prevalence and 
conservation among a vast number of different species, right down to the worm, C. elegans. 
The human hTectonin protein was used as a query sequence in BLAST. Top hits were then 
compiled and multiple sequence alignment based on a guide tree was done using 
CLUSTALW (Thompson et al. 2002) and the alignment was edited with Jalview (Waterhouse 
et al. 2009). The tree was constructed using the neighbour joining algorithm of the PHYLIP 
package (Retief 2000). The numbers at the nodes are an indication of the level of confidence 
for the branches as determined by bootstrap analysis (1000 bootstrap replicates). 
 
 

4.2.1.2 hTectonin β-sheets are highly conserved 

From the multiple sequence alignment of the Tectonin domains, we confirmed a 

pattern of sequence repeats of about 40 to 50 residues each, which is a unique 

characteristic of β-propellers (see Figure 3.19). In addition, secondary structure 

prediction of hTectonin by PSIPRED predicted these conserved repeats to form the β-

strands of a β-sheet topology, consistent with β-propeller architecture (Figure 4.3). 

This further supports that the hTectonin is highly likely to be a bona fide Tectonin 

domain protein. 
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Figure 4.3: hTectonin forms β-sheets in its Tectonin repeats. CLUSTALW alignment of 
all the individual Tectonin domains in hTectonin and PSIPRED secondary structure 
prediction indicates that the 11 Tectonin domains of hTectonin contain 4 highly conserved 
repeats that form β-strands (highlighted in green), a motif that is characteristic of the β-
propeller fold. E, β-sheet; C, Coil; H, Helix.  

 

4.2.2  In search for interaction partners of hTectonin 

4.2.2.1 hTectonin gene is expressed in immune cell lines 

Since there are some evidence suggesting an immune role for hTectonin or its 

homologues, coupled with the discovery of leukolectin in the human leukocyte 

(Miftari and Walther 2009), we sought to screen immune cell lines and the human 
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leukocyte cDNA library to search for hTectonin gene expression. Firstly, we checked 

and confirmed that the hTectonin gene is indeed expressed in the A549 (lung 

epithelial cells), U937 (monocytes) cell lines and the human leukocytes. Figure 4.4 

shows the expression competency of hTectonin thus corroborating its immune 

relevance.  

 
Figure 4.4: hTectonin cDNA is found in the human T-cells (A549), monocytes (U937) 
and leukocytes. For A549 and U937 cells, RNA was extracted using TRIzol reagent followed 
by RT-PCR using hTectonin-specific primers. For the human leukocyte cDNA library, PCR 
on the library cDNA using hTectonin-specific primers was done. 
 

4.2.2.2 hTectonin interacts with immune-related molecules in the leukocyte  

library 

Earlier, we have shown that the hTectonin gene is expressed in the leukocyte cDNA 

library. Since Miftari and Walther (2009) discovered the leukolectin, we sought to 

screen the leukocyte library to search for potential partners of hTectonin. By yeast 2-

hybrid library screening, we searched for other proteins in the leukocyte cDNA 

library that interacted with hTectonin. A total of 32 independent clones were isolated 

and sequenced (Table 4.1).   

 

Several clones with potentially interesting functions related to the immune system - 

neutrophil cytosol factor 1 (NCF1), Src-like adaptor 2 (SLAP-2), Ubiquitin-specific-

processing protease CYLD and the EDAR (Ectodysplasin A receptor)-associated 
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death domain protein (EDAR-ADD) - were selected and their interactions confirmed 

(Figure 4.5). NCF1 is involved in superoxide release and cellular defense response 

(Volpp et al. 1989). Defects in NCF1 are often characterized by the inability of 

neutrophils and phagocytes to kill microbes they have ingested (Casimir et al. 1991; 

Noack et al. 2001). SLAP-2 is expressed in immune-related tissues and is involved in 

B-cell mediated immunity, T-cell activation and intracellular receptor mediated 

signaling pathway (Holland et al. 2001). CYLD is a negative regulator of TRAF-2 

and NF-kappa-B signaling pathway, and interacts with NEMO, TRAF-2 and TRIP 

(Brummelkamp et al. 2003; Kovalenko et al. 2003; Regamey et al. 2003; Trompouki 

et al. 2003). EDAR-ADD, through its interaction with EDAR, acts as an adaptor, and 

links the receptor to downstream signaling pathways (Kumar et al. 2001).   

 

Together with literature findings, these evidence point to the probable function of 

hTectonin as an immune-related protein. Moreover with leukolectin being found 

expressed in the blood (human leukocyte), it is not hard to postulate that Tectonin 

proteins in general are immuno-regulatory proteins. 
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Table 4.1 Putative interaction partners of hTectonin identified via yeast  
2-hybrid screening of the human leukocyte cDNA library  
(continued on next page). 
 

Accession Name Function Tissue 
P04899 Guanine 

nucleotide-binding 
protein G(i), alpha-
2 subunit 

Guanine nucleotide-binding proteins (G 
proteins) are involved as modulators or 
transducers in various transmembrane signaling 
systems. The G(i) proteins are involved in 
hormonal regulation of adenylate cyclase: they 
inhibit the cyclase in response to beta-
adrenergic stimuli. 
 

Kidney, and 
mammary 
gland 

Q7Z419 p53-inducible 
RING finger 
protein; E3 
ubiquitin-protein 
ligase RNF144B 

E3 ubiquitin-protein ligase which accepts 
ubiquitin from E2 ubiquitin-conjugating 
enzymes UBE2L3 and UBE2L6 in the form of a 
thioester and then directly transfers the ubiquitin 
to targeted substrates such as LCMT2, thereby 
promoting their degradation. Induces apoptosis 
via a TP53/p53-dependent but caspase-
independent mechanism. 

Skeletal 
muscle, 
placenta 

NP_060554 Hook-related 
protein 

Bind to microtubules and organelles through 
their N- and C-terminal domains, respectively. 
The encoded protein localizes to discrete 
punctuate subcellular structures, and interacts 
with several members of the Rab GTPase family 
involved in endocytosis. It is thought to link 
endocytic membrane trafficking to the 
microtubule cytoskeleton. 
 

Brain 

Q15560 Transcription 
elongation factor A 
protein 2 

Necessary for efficient RNA polymerase II 
transcription elongation past template-encoded 
arresting sites. The arresting sites in DNA have 
the property of trapping a certain fraction of 
elongating RNA polymerases that pass through, 
resulting in locked ternary complexes. Cleavage 
of the nascent transcript by S-II allows the 
resumption of elongation from the new 3'-
terminus. 
 

Testis, ovary 

NP_054883 FXYD domain-
containing ion 
transport regulator 
5 

Uncharacterized. Mouse FXYD5 termed RIC 
(related to ion channel). FXYD1 
(phospholemman), FXYD2 (gamma), FXYD3 
(MAT-8), FXYD4 (CHIF), and FXYD5 (RIC) 
have been shown to induce channel activity in 
experimental expression systems. 
 

  

P21912 Succinate 
dehydrogenase 
[ubiquinone] iron-
sulfur subunit, 
mitochondrial 

Iron-sulfur protein (IP) subunit of succinate 
dehydrogenase (SDH) that is involved in 
complex II of the mitochondrial electron 
transport chain and is responsible for 
transferring electrons from succinate to 
ubiquinone (coenzyme Q). 

Brain, liver 
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P19634 Sodium/hydrogen 
exchanger 1 

Involved in pH regulation to eliminate acids 
generated by active metabolism or to counter 
adverse environmental conditions. Major proton 
extruding system driven by the inward sodium 
ion chemical gradient. Plays an important role 
in signal transduction. 
 

Kidney and 
intestine. 

Q9H6Q3 Src-like-adaptor 2 
isoform a 

Adapter protein, which negatively regulates T-
cell receptor (TCR) signaling. Inhibits T-cell 
antigen-receptor induced activation of nuclear 
factor of activated T-cells. May act by linking 
signaling proteins such as ZAP70 with CBL, 
leading to a CBL dependent degradation of 
signaling proteins. 
 

Thymus, 
Hapatoma, 
Prostate 

P10253 Lysosomal alpha-
glucosidase 

Essential for the degradation of glygogen to 
glucose in lysosomes. 

Placenta, 
Testis, 
Platelet 

P05771 Protein kinase C beta This is a calcium-activated, phospholipid-
dependent, serine- and threonine-specific 
enzyme. PKC is activated by diacylglycerol 
which in turn phosphorylates a range of cellular 
proteins. PKC also serves as the receptor for 
phorbol esters, a class of tumor promoters. May 
be considered as a novel component of the NF-
kappa-B signaling axis responsible for the 
survival and activation of B-cells after BCR 
cross-linking. 
 

Hippocampu
s, Platelet, 
Fetal brain 

Q9NTJ4 Alpha-mannosidase 
2C1 

Hydrolysis of terminal, non-reducing alpha-D-
mannose residues in alpha-D-mannosides. 

Testis, 
uterus, 
tonsils, 
epithelium 
 

P43490 Nicotinamide 
phosphoribosyltransfer
ase (Pre-B-cell 
colony-enhancing 
factor 1) 

Catalyzes the condensation of nicotinamide with 
5-phosphoribosyl-1-pyrophosphate to yield 
nicotinamide mononucleotide, an intermediate 
in the biosynthesis of NAD. It is the rate 
limiting component in the mammalian NAD 
biosynthesis pathway 

Expressed in 
large 
amounts in 
bone 
marrow, 
liver tissue, 
and muscle. 
Also present 
in heart, 
placenta, 
lung, and 
kidney 
tissues. 
 

Q9BSJ2  Gamma-tubulin 
complex component 2 

Gamma-tubulin complex is necessary for 
microtubule nucleation at the centrosome. 

Ubiquitously 
expressed 
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Q92982 Ninjurin-1; Nerve 
injury-induced protein 
1 

Homophilic cell adhesion molecule that 
promotes axonal growth. May play a role in 
nerve regeneration and in the formation and 
function of other tissues. Cell adhesion requires 
divalent cations. 

Widely 
expressed in 
both adult 
and 
embryonic 
tissues, 
primarily 
those of 
epithelial 
origin. 
 

P54762 Ephrin type-B 
receptor 1 

Receptor for members of the ephrin-B family. 
Binds to ephrin-B1, -B2 and -B3. May be 
involved in cell-cell interactions in the nervous 
system. 
 

Brain 

P14598 Neutrophil cytosol 
factor 1 

NCF2, NCF1, and a membrane bound 
cytochrome b558 are required for activation of 
the latent NADPH oxidase (necessary for 
superoxide production). Defects in NCF1 are 
the cause of chronic granulomatous disease 
autosomal recessive cytochrome-b-positive type 
1 (CGD1) [MIM:233700]. Chronic 
granulomatous disease is a genetically 
heterogeneous disorder characterized by the 
inability of neutrophils and phagocytes to kill 
microbes that they have ingested. Patients suffer 
from life-threatening bacterial/fungal infections. 

Widely 
expressed. 

P47914 60S ribosomal protein 
L29 

Cell surface heparin-binding protein HIP Brain 

P51511 Matrix 
metalloproteinase-15 

Endopeptidase that degrades various 
components of the extracellular matrix. May 
activate progelatinase A. 
 

Placenta 

O95793 Double-stranded 
RNA-binding protein 
Staufen homolog 1 

Binds double-stranded RNA (regardless of the 
sequence) and tubulin. May play a role in 
specific positioning of mRNAs at given sites in 
the cell by cross-linking cytoskeletal and RNA 
components, and in stimulating their translation 
at the site. Binds tubulin. Binds with low 
affinity single-stranded RNA or DNA 
homopolymers. Interacts with CASC3 in an 
RNA-dependent manner. Interacts with the 
influenza virus nonstructural protein NS1. 
 

Widely 
expressed. 
Brain and 
placenta 
included. 

P49023 Paxillin Cytoskeletal protein involved in actin-
membrane attachment at sites of cell adhesion to 
the extracellular matrix (focal adhesion). Binds 
in vitro to vinculin as well as to the SH3 domain 
of c-SRC and, when tyrosine phosphorylated, to 
the SH2 domain of V-CRK. 
 

Placenta,Epi
thelium, T-
cell 
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Q16236 Nuclear factor 
erythroid 2-related 
factor 2 (NFE2) 

Transcription activator that binds to 
antioxidant response (ARE) elements in the 
promoter regions of target genes. Important for 
the coordinated up-regulation of genes in 
response to oxidative stress. Heterodimer. May 
bind DNA with an unknown protein. Interacts 
with KEAP1. Interacts via its leucine-zipper 
domain with the coiled-coil domain of PMF1. 
 

Widely 
expressed. 

Q9NQC7 Ubiquitin-specific-
processing protease 
CYLD 

Negative regulator of TRAF2 and NF-kappa-B 
signaling pathway. Has deubiquitinating 
activity that is directed towards non-'Lys-48'-
linked polyubiquitin chains. The inhibition of 
NF-kappa-B activation is mediated at least in 
part, by the deubiquitination and inactivation 
of TRAF2 and, to a lesser extent, TRAF6. 
Interacts with NEMO, TRAF2 and TRIP. 
 

  

Q15269 Periodic tryptophan 
protein 2 homolog 
(PWP2) 

Unknown function, contains 14 WD propeller 
repeats 

Muscle 

NP_542776 EDAR-associated 
death domain 

Interacts with EDAR, a death domain receptor 
known to be required for the development of 
hair, teeth and other ectodermal derivatives. 
Through its interaction with EDAR, this 
protein acts as an adaptor, and links the 
receptor to downstream signaling pathways. 
Two alternatively spliced transcript variants of 
this gene encoding distinct isoforms have been 
reported. 
 

  

P62328 Thymosin beta-4 
(THYB4) 

Binds to and sequesters actin monomers (G 
actin) and therefore inhibits actin 
polymerization. Expressed in several 
hemopoietic cell lines and lymphoid malignant 
cells. Decreased levels in myeloma cells. 
Decreased levels in THP-1 cells after 
treatment with recombinant interferon-lambda. 
 

Expressed in 
several 
hemopoietic 
cell lines and 
lymphoid 
malignant 
cells. 

O75348 V-type proton ATPase 
subunit G 1 (ATP6G) 

Catalytic subunit of the peripheral V1 complex 
of vacuolar ATPase (V-ATPase). V-ATPase is 
responsible for acidifying a variety of 
intracellular compartments in eukaryotic cells. 
 

Ubiquitous. 

P61916 Niemann-Pick disease 
type C2 (NPC2) 

Defects in NPC2 are the cause of Niemann-
Pick disease type C2 (NPC2). NPC2 is a fatal 
autosomal recessive hereditary disease 
characterized by the accumulation of low-
density lipoprotein-derived cholesterol in 
lysosomes. 
 

Epididymis 
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Figure 4.5: Selected hTectonin partners for interaction confirmation.  Several immune-
related partners of hTectonin were selected and their interaction confirmed using yeast 2-
hybrid co-transformation. 
 

4.2.2.3 hTectonin interacts with ficolin 

Based on the rationale that (i) hTectonin is an architectural homolog of GBP and (ii) 

GBP interacts with CL5 which is a homolog of the human ficolin, we had expected 

that the initial library screen would have picked up ficolin as an interaction partner. 

However, we did not manage to do so. This could be attributed to the incompleteness 

of a library screen where statistically, any one pool of interactions might not contain 

all interaction partners. Nevertheless, based on the homologs in the horseshoe crab, 

we decided to perform yeast 2-hybrid analysis using full-length hTectonin and its 

subclones as the bait and M-ficolin, which is also found in the monocytes, as the prey. 

Results showed that indeed, the hTectonin interacts specifically with M-ficolin 

(Figure 4.6). M-ficolin has in turn been shown to interact with CRP.  Since both CRP 

and M-ficolin are key proteins of the complement classical and lectin pathways, 

respectively, this is the first evidence for the potential function of a human Tectonin 

domain-containing protein in frontline immune defense.  
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Figure 4.6: hTectonin interacts with ficolin. Yeast 2-hybrid shows that hTectonin interacts 
(i) with itself, suggesting the possibility of oligomerization, as observed in other beta-
propeller proteins; and (ii) with ficolin, a human complement protein. Furthermore, 
interaction with ficolin specifically occurs through the Tectonin domains of the hTectonins. 
This demonstrates a possible functional conservation of Tectonin domains since the tectonin 
domains of GBP was shown to interact with CL-5, a homolog of ficolin. 
 

Further delineation of hTectonin to isolate its functional domains showed that only the 

sub-clones expressing the predicted Tectonin domains interacted with M-ficolin. 

Furthermore, only the fibrinogen-like (FBG) domain of M-ficolin was shown to 

interact with the hTectonin, concurring with recent findings that the FBG domain is 

responsible for ligand-binding. These results suggest that the protein-protein 

interaction between the hypothetical hTectonin and M-ficolin is not random, but 

structurally and positionally specific, and that the hTectonin is potentially involved in 

immune regulation, acting through its Tectonin domains. 

 

4.2.2.4 hTectonin protein expression increases in response to LPS stimulation 

In order to if hTectonin had any immune response activity, we test both its mRNA 

and protein expression under LPS stimulation. Two immunoregulatory cell lines – 
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Jurkat (T lymphocytes) and U937 (monocytes) were used in this study, and cells were 

stimulated with S. minnesota LPS. mRNA and protein profiles were observed at 6 hpi. 

We noticed that the mRNA expression of hTectonin did not change post infection 

(Figure 4.7). However, the hTectonin protein expression increased post-infection. 

This increase takes place not in Jurkat cells but in U937 cells which contains TLR4, a 

known LPS receptor. This lead us to predict that hTectonin might possibly be 

responding to LPS signals through a TLR4 signalling mechanism. Also, NCF-1, a 

potential interaction partner of hTectonin discovered via yeast 2-hybrid screening 

showed expression in U937 cells only under infection condition. This again shows 

immune-responsive behavior of these proteins. 

 
Figure 4.7 : hTectonin responds to LPS stimulation. (Left) mRNA profile of hTectonin 
remained constant even under infection in both Jurkat and U937 cells. NCF-1, expressed only 
in U937, showed a slight increase in mRNA expression 6hpi. GADPH is used as a control. 
(Right) hTectonin protein expression increased 6hpi in U937 cells, which display the TLR4 
receptor. NCF-1 was observed to be expressed only when infected. 
 
 

4.2.3 LPS-binding peptides in Tectonins 

Apart from being able to interact with host immune proteins, we were also interested 

to know if hTectonin, like GBP, is able to bind PAMPs. This rationale stems from our 

earlier HDMS experiments (Section 3.2.2) where we identified the regions of GBP 

which interacted with LA. We also observed in GBP that the particular group of 

residues forming the surface has the LPS-binding pattern of BHB(P)HB,  which was 

earlier defined and studied by Frecer et. al. 2000, as the minimal motif for LPS-

binding. Since GBP and hTectonin share similar Tectonin domains, we postulate that 
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hTectonin might also have such motif in its protein sequence that can confer LPS-

binding property. 

 
4.2.3.1 An algorithm was developed for large-scale screening of LPS-binding  

motifs in proteins 

Because hTectonin is 1165 residues long, it would be more efficient to design an 

algorithm to screen sequences instead of manually searching the protein sequence for 

the LPS-binding motif. Furthermore, it will be able to do large-scale screen of 

multiple protein sequences simultaneously.  

The program LPSMotif (Figure 4.8) was designed to accept a FASTA formatted 

file with a list of protein sequences from the user, and checks if it contains the LPS-

binding motifs of BHBHB, BHPHB, or the extended BHBHBHB. The protein 

sequence is read, and each residue converted into its property group (either B=basic, 

H=hydrophobic, P=polar or X=all other groupings). Once the sequence has been 

converted into a string of B, H, P and Xs, the entire sequence is scanned to search for 

the defined pattern. The algorithm also included an option for user-defined patterns if 

slight deviations in motifs were required. If a motif was found, the corresponding 

amino acid sequence will be displayed output together with the residue position in 

protein sequence and average hydrophobicity value (Figure 4.9). 
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Figure 4.8: Algorithm workflow of the LPSMotif search application. The program works 
by first checking if the file is empty. The the input file is empty, the program will terminate. If 
not, it will read the next available sequence and starts converting the protein sequence 
according to its property (either B=basic, H=hydrophobic, P=polar, or X=for others). Next, it 
will scan along this converted sequence for the desired LPS motif. If there are no such motifs 
in the sequence, the program will go to the next protein sequence available. If the motif is 
present, it will be displayed on the program screen along with the information on the detected 
motif. 
 

 

 
Figure 4.9: The LPSMotif program. A representative screen from LPSmotif shows the 
input and output options of the program and their general usage description. 
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4.2.3.2 hTectonin contains LPS-binding motifs 

Proteins harboring LPS-binding motifs, with alternating basic-hydrophobic/polar 

residues, have been shown to bind LPS via the LA moiety, which is the most 

conserved bioactive pathophysiological centre of the LPS molecule.  

 

Earlier, we have shown that GBP, our model Tectonin protein, is able to specifically 

bind LPS via sugar moieties and that HDMS results revealed that the site of LA 

interaction containing the LPS-binding motif of BHPHB corresponding to the amino 

acid sequence of HINGK (Figure 3.35A). This prompted us to hypothesize that 

hTectonin might harbor this motif as well. Using the LPSMotif application, we have 

managed to identify two such motifs in the 6th and 11th Tectonin domains of the 

hTectonin, namely “KVQGR” and “HISVR” (Figure 4.10). LPSMotif also reconfirmed 

the detection of the motif in GBP, “HINGK”, as discovered experimentally in Chapter 

2. Moreover, such patterns are also found in the hTectonin homologs in other species 

(Figure 4.11, boxed), which is another clue that such LPS-binding motifs might 

consistently exist in Tectonin proteins. 

 

 

Figure 4.10: LPS-binding motifs in Tectonin proteins. GBP and hTectonin harbor the 
BHB(P)HB pattern. GBP contains the “HINGK” sequence of amino acids in its 1st Tectonin 
domain whereas hTectonin contains the “KVQGR” and “HISVR” sequence of amino acids in 
its 6th and 11th (hTectonin) Tectonin domains respectively. 
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Figure 4.11:  hTectonin LPS-binding motifs conserved in other species. The LPS-binding 
motif of the pattern BHB(P)HB (asterisk, boxed) in (A) hTectonin6 and (B) hTectonin11 - is 
well conserved in other species. 
 

4.2.3.3 Designed predicted LPS-binding peptides are hydrophilic, synthetically  

feasible and suitable for binding analysis 

In order to validate the computationally predicted LPS-binding motifs in the 

hTectonin domains, we synthesized representative Tectonin peptides derived from 

domains 6 and 11 of hTectonin (named hTect6 & hTect11), and the efficacy of 

binding of LA was compared with peptides derived from the GBP Tectonin domains 

6 & 1 (named GBP6-1), with which the LPS-binding sequences peptides were 

previously identified via HDMS.  

 

For GBP, an additional peptide was designed - named GBP6-1(tail) – that included 

the C-terminal “tail” region which does not form the major 6 Tectonin β-propeller 

structure of GBP (see Figure 3.22). This peptide was included to test if the LPS-

binding function can be purely conferred to the Tectonin domain regions. 
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The peptides were designed to be approximately 20-25 residues in length, while 

retaining the LPS-binding motif within the sequence and minimizing the hydrophobic 

content. Peptides from the Tectonin domains of GBP and hTectonin that did not 

contain the LPS-binding motif were also designed to serve as controls (named GBP3, 

hTect1, hTect8; after the domains they were derived from). Based on the 

hydrophobicity plots (Figure 4.12), the final peptides designed were hydrophilic in 

nature, making them suitable for synthesis, purification and analysis. 

 

 
 
Figure 4.12: Hydrophobicity plots analysis of GBP and hTectonin peptides. The designed 
Tectonin peptides from GBP and hTectonin together with the respective control peptides 
show that they are similarly hydrophilic (area below red dashed line) in nature and suitable 
for synthesis and study. The LPS-binding motifs of BHPHB are bold and underlined.  
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4.2.3.4 hTectonin- and GBP-derived Tectonin peptides bind LPS with high  

affinity 

The designed peptides were then tested for LPS binding via surface plasmon 

resonance analysis. The hTectonin peptides were flown over LA immobilized on the 

Biacore HPA chip and showed that indeed they bind to LA at affinities of KD 10-7 to -8 

M, which are similar to the affinities showed by the GBP peptides (Figure 4.13, Table 

4.2).   

 

GBP6-1(tail) and GBP6-1 bound LA with similar affinity (Figure 4.12C,D), 

indicating that the C-terminal ‘tail’ portion of GBP is not necessary for binding and 

neither does it adversely affect the LPS-binding motif. Therefore we can ascribe the 

LPS-binding to purely the Tectonin segments of the protein, consistent with our 

postulate that the Tectonin domain is important for pathogen interaction.  

 

The hTectonin and the GBP peptides also exhibited similar level of binding affinity to 

ReLPS and LPS (Figure 4.14, Table 4.2). This corroborates our hypothesis and 

demonstrates the pathogen binding ability of Tectonin domains and its functional 

conservation across species, from the horseshoe crab GBP to the human hTectonin. 

This shows that hTectonin and GBP are potentially homologous proteins based on the 

shared Tectonin domain motif and they have a shared function in pathogen binding. 
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Figure 4.13: Peptides derived from the Tectonin domains of GBP and hTectonin bind 
LA with high afiinity. (A-B) hTectonin peptides, namely hTectonin6 and hTectonin11 
containing the predicted LPS-binding motif are able to bind the bacterial structure. (C-D) In 
GBP, the exclusion of an C-terminal ‘tail’ loop which is not part of the beta-propeller 
Tectonin structure - GBP6-1– gives similar binding affinity with the peptide designed to 
include this tail region, showing that it does not play an important role in the binding to LA, 
and that the function comes from within the Tectonin domains. (E-F) Several peptides from 
hTectonin and GBP that did not contain the LPS-binding motif were also derived as controls 
to measure the specificity of the peptides that were shown to bind to LA. hTect1 and 
hTectonin8 (derived from Tectonin domains 1 & 8 of hTectonin respectively) and GBP3 
(derived from GBP Tectonin domain 3) did not produce significant binding to the LA surface. 
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Figure 4.14: Peptides derived from the Tectonin domains of GBP and hTectonin also 
bind LPS and ReLPS with high afiinity. Similar to lipid A, the peptides derived from 
hTectonin – namely (A) hTectonin6, (B) hTectonin11 – and peptides derived from GBP – (C) 
GBP6-1 and (D) GBP6-1(tail) also bound tightly to LPS and ReLPS. 
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Table 4.2: Dissociation constants of Tectonin peptides when bound to LPS,  
ReLPS, LA 

 
Bacterial 
ligand 

Peptide Sequence* KD (mol-1) 

LPS GBP6-1(tail) KSCWLNPFLAEWTHINGKLSH 2.55x10-7 
 GBP6-1 FESVPASKAEWTHINGKLSH 3.56x10-7 
 hTectonin6 LSLSCCESRKVQGRPSPQAI 2.03x10-7 
 hTectonin 11 IGGGWDHISVRANATRAPRS 9.27x10-7 
ReLPS GBP6-1(tail)  2.04x10-7 
 GBP6-1  2.26x10-7 
 hTectonin 6  3.79x10-8 
 hTectonin 11  2.24x10-6 
LA GBP6-1(tail)  9.83x10-8 
 GBP6-1  5.63x10-7 
 hTectonin 6  4.17x10-8 
  hTectonin 11   1.42x10-6 

* LPS-binding motifs are underlined 

 

4.3 Summary 

In this chapter, we report our discovery of hTectonin, a human protein hitherto 

classified as being hypothetical, and by structure-function analyses, we inferred its 

function as an immune-related protein. We show that it retains its function by virtue 

of possessing Tectonin domains, similar to its invertebrate counterparts. We show that 

hTectonin contains multiple homologs widespread in the vertebrate kingdom, 

implying that it is not a one-off protein in the human, but rather an important one 

conserved throughout many species. We also discovered that the hTectonin gene is 

expressed in human leukocytes. This is interesting, as a recent addition to the human 

database of proteins showed another human leukocyte Tectonin protein called the 

leukolectin. This further indicated that hTectonin may be immune-related. Like its 

limulus counterpart GBP, which interacts with an important complement initiator 

CRP, we find that hTectonin also interacts with a cognate complement lectin, Ficolin, 

which is a homolog of CL-5. This interaction is specific, involving only the Tectonin 
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domains within the hTectonin protein. We also identified LPS-binding motifs within 

the hTectonin protein sequence which are also conserved in the thus discovered 

potential mammalian homologs of hTectonin and are located in highly conserved 

regions of the sequence, implying that these residues may play a functional role in 

lipid binding and form part of a highly conserved β-propeller fold. The affinity of 

these motifs in hTectonin for bacterial LPS and the truncated active forms of the 

endotoxin molecule (ReLPS and lipid A) was verified experimentally. We propose 

that hTectonin is a novel human protein that forms a beta-propeller structure which is 

involved in protein-protein interaction with immune related protein(s), and it 

simultaneously detects and binds pathogens. Thus, the hTectonin plays a vital role in 

immune defense, which is conserved over a vast number of organisms. 

 

4.4 Common features of GBP and hTectonin 

When the Tectonin proteins were first identified in the slime mold and the horseshoe 

crabs, they were found to have immune-like potential by being able to bind bacteria. 

Work in the lab and this thesis has further proven it is indeed an immune protein – by 

demonstrating that GBP is able to form vast PRR networks, binding bacteria and host 

proteins simultaneously with high affinity and specificity, and is able to affect 

endotoxic activity in LPS. 

 

The two PRRs interacting with GBP have homologs in the human system, and thus it 

was highly possible that there exists a human Tectonin protein. This was indeed the 

case as we found the hTectonin, which also had homologs in several other 

mammalian species, proving that it is an important protein in the vertebrates as well. 
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Further tests revealed similarities between GBP and hTectonin –  

1) PRR interaction – hTectonin was able to interact with ficolin, which parallels 

the interaction of GBP with CL5 (the ficolin homolog) in the horseshoe crab. 

hTectonin also interacted with proteins in the human leukocyte found via yeast 2-

hybrid library screening. 

2) Bacteria binding with high affinity - both GBP and hTectonin displayed the 

BHB(P)HB LPS-binding motif, and via surface plasmon resonance, was able to 

bind LPS, ReLPS and lipid A with high affinity and specificity. 

 

This shows that hTectonin could likely be the human Tectonin homolog of GBP that 

was yet to be uncovered until the work in this thesis. Much of the work in the human 

system has been focused on the adaptive immune system, and here we have shown 

that innate immunity is also vital and has much potential to be further explored. This 

thesis has shown that the Tectonin proteins can function as immune proteins and are 

most likely immune proteins. However, we are just beginning to uncover the potential 

of the Tectonin proteins. Its conservation from the mold, horseshoe crab right up to 

the humans shows its vital place in the immune system, and is something that should 

not be ignored in our studies and interpretation of how our immune system reacts in 

overcoming pathogen invasion. 
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CHAPTER 5 

CONCLUSION 

 

The innate immune system has been described as the first line of defense of the host 

in response to pathogen invasion. Also, it is the only protection available to the 

invertebrates. Although the vertebrates possess the additional protection conferred by 

the adaptive immune system, innate immunity still proves to be important, especially 

during the first minutes to hours, and days of an infection.  

 

The innate immune system is endowed with a large repertoire of plasma proteins 

collectively known as PRRs, and many of them are lectins. However, this particular 

group of lectin PRRs – the Tectonins - which finds its origin in the slime mold - has 

hitherto only been studied amongst the invertebrates: the horseshoe crab, the 

mushroom and the mold.  

 

Having examined and identitifed that the Tectonin domains are responsible for the 

recognition and binding of bacterial ligands (LPS), we then sought to find mammalian 

counterparts of the lectin, particularly in the human. While the Tectonins have been 

characterized in the invertebrates, only minimal information was available – amino 

acid sequences that form β-propeller repeats, formation of a β-propeller structure and 

the ability to bind the bacterial LPS. Until recently, studies in our lab showed that 

GBP, the horseshoe crab Tectonin lectin from this family interacts with innate 

immune proteins in the host (Ng et al. 2007). This is the first instance where the 

Tectonin protein has been shown to be involved in protein-protein interaction (see 

Figure 1.13), and specifically, interaction amongst PRRs in the immune system (see 
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Figures 1.14-1.15). GBP was shown to be an infection-induced interaction partner of 

CRP, a key protein in the complement pathway. However, the mechanism of action of 

these interactions, and their conditions remained uncharacterized until the work done 

in this thesis. 

 

In this research, by using both computational and experimental approaches, we 

identified the regions of GBP, CRP and LPS that mediate their interactions, and 

showed that infection conditions enhanced GBP:LPS interaction 10-fold and 

GBP:CRP interaction 1000-fold, which was likely brought on by the depletion of 

Ca2+. The infection condition was proven irreversible since subsequent manipulations 

of Ca2+ levels were unable to return the binding affinities of these proteins back to 

basal (pre-infection) level.  

 

The availability of the modeled structure enabled us to visualize experimental data – 

revealing distinct surfaces of interaction between protein-pathogen and protein-

protein. Also, through empiricial means such as binding kinetics studies, we found 

that the conformational changes on GBP upon infection are irreversible, suggesting 

that the proteins should become processed after fulfilling their duties as pathogen 

sensors, for example, the complement pathway, where proteins are commonly 

uptaken by macrophages. These findings help to reveal the structural and functional 

basis of GBP and the Tectonin domain-containing proteins involved in defense 

against microbial infections.  

 

In search for a human counterpart of the horseshoe crab GBP, the second part of this 

thesis documents our discovery of a human protein, the hTectonin, previously 
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classified in the human genome as being hypothetical. By structure-function analyses, 

we inferred the function of hTectonin as immune-related. We showed that this protein 

retained its function by virtue of possessing Tectonin domains, similar to its 

invertebrate counterparts. Sequence matching indicated that the hTectonin is a protein 

with low homology but phylogenetically related by domain architecture to known 

proteins with Tectonin domains, functioning as immune proteins. We show through 

SMART domain comparison that hTectonin contains multiple homologs widespread 

in the vertebrate kingdom, implying that it is not a one-off protein in the human, but 

rather an important one conserved throughout many species.  

 

We also discovered that the hTectonin gene is expressed in the human leukocytes, and 

it interacts with immune-regulatory proteins in the leukocyte. This is interesting, as a 

recent addition to the human database of proteins showed another human leukocyte 

Tectonin protein called the leukolectin which further implicates hTectonin to be 

immune-related.  We also identified LPS-binding motifs within the hTectonin protein 

sequence and validated their capacity for binding bacterial LPS and the truncated 

active forms of the endotoxin molecule (ReLPS and LA). We propose that hTectonin 

is a novel human protein that forms a β-propeller structure which is involved in 

protein-protein interactions with immune related protein(s), and it simultaneously 

detects and binds pathogens. Thus, the hTectonin plays a vital role in immune 

defense, which is conserved over a vast number of organisms.  

 

Such a conservation of the Tectonin domains in protein-protein partnerships suggests 

that hTectonin and GBP share homologies in their secondary structure and function. 

In evolution, the horseshoe crab and the human are separated by ~500 million years, 
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yet the remarkable conservation in domain-architecture and potential function suggest 

a critical role of GBP and the Tectonin-domain-containing proteins in general, in the 

frontline defense against microbial infection.  
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CHAPTER 6 

FUTURE PERSPECTIVES 

 

The findings in this thesis have opened new directions of further interest. The 

following questions can be addressed and experiments can be designed for future 

studies:- 

 

(1) What are the physiological and pathophysiological significance of the 

Tectonin proteins? 

We have observed that the invertebrate Tectonin GBP is able to interact with CRP, a 

key protein in the complement cascade. Based on results that suggest the eventual 

turnover of these proteins, how do they mediate downstream action? Is hTectonin 

involved in immune regulation of bacterial, viral and cancerous non-self proteins? In 

vitro and in vivo studies (as hTectonin possesses a homolog in mice) in immune-

related cell lines and real-time tracking of the interactions using immunostaining or 

FRET-analysis can help us visualize the events. Expression studies might help us 

understand the regulatory effects of the Tectonins upon pathogenic infections.  

 

Our yeast 2-hybrid screening of hTectonin partner proteins also indicated that 

hTectonin interacts with immune-related proteins. If they are indeed important 

molecules involved in immune-related activities in the human leukocytes, these would 

even further prove the importance of hTectonin in the mammalian (in particular, 

human) immune system. 
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The SLA-2 and NCF-1 interaction partners are particularly interesting. SLA2 is 

similar to the Src family of tyrosine kinases. This molecule lacks a catalytic tyrosine 

kinase domain and is related to a previously identified protein, Src-like adapter 

protein (SLA), and is therefore designated SLA-2. Jurkat T-cells express SLA-2 

protein and overexpression of SLA-2 in these cells negatively regulates T cell 

receptor signaling by IL-2 (Pandey et al. 2002). Defects in NCF1 have been suggested 

to lead to the inability of neutrophils and phagocytes to kill microbes, and patients 

suffer from life-threatening bacterial/fungal infections (Noack et al. 2001). This points 

to a possible role of NCF-1 in bacteria detection and elimination. Together with these 

newly elucidated potential interaction partners, and since Tectonin proteins have been 

shown to be bacteria-binding, it would be interesting to elucidate: (1) The effects of 

LPS stimulation on hTectonin, as a representative Tectonin protein in the human – by 

examining protein expression levels in appropriate immune cell lines and (2) The 

relationship of hTectonin to SLA-2 and NCF-1, in terms of protein expression, 

location and function of hTectonin in signaling pathways.  

 

(2)  Are the Tectonin peptides suitable for development as potential antimicrobial  

drugs? 

The Tectonin peptides derived from both the GBP and hTectonin bind LPS with high 

affinity – the elucidation of their structure-activity relationships would enable a more 

detailed analysis of their mechanism of action and guide computational drug design 

and modifications, leading to its potential use as LPS-binding and LPS-neutralizing 

drugs. Site-directed mutagenesis studies could also be carried out on the regions 

where the LPS-binding motif appear on the proteins (and peptides) to determine, 

without question, that the LPS-binding ability comes from such motifs in Tectonins. 
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Also, in light of the revelation in Chapter 2 where GBP and the Tectonin-derived 

peptides were able to increase the endotoxic potential of LPS, these peptides could be 

used as triggers or enhancers of immune responsive action. 

 

(3) Crystallographic structure analysis of GBP with CRP and LPS 

In this thesis, we had attempted to crystallize GBP and CRP individually, to study the 

structural basis of their immune response action. However, since they work in concert 

and bind LPS strongly, perhaps co-crystallizaton of the high affinity complex should 

be considered as well. The X-ray crystallographic determination of this pathogen 

recognition complex will also serve to further validate interaction data from HDMS 

and yeast 2-hybrid results. NMR and molecular dynamics simulations of the 

interaction, together with isothermal titration calorimetry (ITC) with enthalphy and 

entrophy measurements will help in the characterization and strengthening of the 

affinity data of the interactions between GBP, CRP and LPS. 
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Abstract

Background: Although the human genome database has been completed a decade ago, ,50% of the proteome remains
hypothetical as their functions are unknown. The elucidation of the functions of these hypothetical proteins can lead to
additional protein pathways and revelation of new cascades. However, many of these inferences are limited to proteins with
substantial sequence similarity. Of particular interest here is the Tectonin domain-containing family of proteins.

Methodology/Principal Findings: We have identified hTectonin, a hypothetical protein in the human genome database, as
a distant ortholog of the limulus galactose binding protein (GBP). Phylogenetic analysis revealed strong evolutionary
conservation of hTectonin homologues from parasite to human. By computational analysis, we showed that both the
hTectonin and GBP form b-propeller structures with multiple Tectonin domains, each containing b-sheets of 4 strands per b-
sheet. hTectonin is present in the human leukocyte cDNA library and immune-related cell lines. It interacts with M-ficolin, a
known human complement protein whose ancient homolog, carcinolectin (CL5), is the functional protein partner of GBP
during infection. Yeast 2-hybrid assay showed that only the Tectonin domains of hTectonin recognize the fibrinogen-like
domain of the M-ficolin. Surface plasmon resonance analysis showed real-time interaction between the Tectonin domains 6
& 11 and bacterial LPS, indicating that despite forming 2 b-propellers with its different Tectonin domains, the hTectonin
molecule could precisely employ domains 6 & 11 to recognise bacteria.

Conclusions/Significance: By virtue of a recent finding of another Tectonin protein, leukolectin, in the human leukocyte,
and our structure-function analysis of the hypothetical hTectonin, we propose that Tectonin domains of proteins could play
a vital role in innate immune defense, and that this function has been conserved over several hundred million years, from
invertebrates to vertebrates. Furthermore, the approach we have used could be employed in unraveling the characteristics
and functions of other hypothetical proteins in the human proteome.
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Introduction

Advances in sequence genomics have resulted in an accumulation

of a large number of protein sequences derived from genome

sequences. Although the human genome database has been

completed a decade ago, about 50% of the human proteome still

remains hypothetical as their functions are unknown [1]. The

elucidation of the functions of these hypothetical proteins can lead

to additional protein pathways and revelation of new cascades, thus

completing our fragmentary knowledge on the proteome complex.

Furthermore, information on the network of protein–protein

interactions will increase logarithmically. New hypothetical proteins

may serve as disease markers and pharmacological targets.

The prime targets for the discovery of functional proteins are

those which show homology to counterparts in lower species by

way of sequence similarities and domain conservation. An

alternate approach is to examine the proteins of invertebrates

that do not have homologs in the vertebrate system. One example

of such a group of proteins is the Tectonin domain-containing

proteins in humans. Tectonin domain containing proteins, which

belong to a subclass of proteins of the larger b-propeller family,

have thus far only been studied in the fish, horseshoe crab, slime

mold and sponge [2–5]. Tectonin domains were first reported in

the Tectonins I and II proteins of the slime mold, Physarum

polycephalum. The Tectonins I and II were characterized to have

repeats of Tectonin domains [2]. Because the proteins are located
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at the surface of this organism, where they were postulated to

scavenge food including bacteria, the Tectonin proteins have been

speculated to function as bacterial sensors. Tachylectin-1 in the

horseshoe crab, Tachypleus tridentatus, also has Tectonin domain

classification [4,6], and was shown to be able to bind bacterial

lipopolysaccharide (LPS). Study on the Tectonin protein, LEC_-

SUBDO, of the sponge, Suberites domuncula, also revealed a possible

LPS-binding function [3]. A recent investigation on the galactose-

binding protein (GBP) in the horsehoe crab (Carcinoscorpius

rotundicauda), a protein consisting of only 6 Tectonin domains

revealed that the Tectonin domains function to differentiate host

from pathogen and simultaneously bridge a host-pathogen

interactome (Low et al., unpublished).

An exhaustive search in the databases for vertebrate proteins

failed to reveal any potential homologs with significant sequence

similarity, indicating that perhaps these Tectonin domain-

containing proteins (henceforth referred to as Tectonin proteins)

have evolved through the species, although more recently, other

proteins with Tectonin domains are being uncovered, for example,

the human leukolectin (GenBank Accession No. ACM77812).

There are many examples of other families of meiosis-related

proteins, kinetochores, cell gap contacts and nuclear pore

complexes which show no homology at the primary amino-acid

sequence level. However, they hint at the conservation of their

domain architecture organization. Furthermore, the three-dimen-

sional structure of functionally important domains in proteins in

the budding yeast, nematode, Drosophila, Arabidopsis, and

human have been conserved [7–11]. Here, we have used several

databases like SCOP, CATH, SMART, which also employ

domain and secondary structure classification for structure sorting

and function prediction, to search for b-propeller structures and

possibly distance relationships by domain conservation. This is

Figure 1. hTectonin is distantly related to the invertebrate Tectonins. (A) The phylogenetic tree constructed after a PSI-Search query using
the invertebrate Tectonins revealed K1358 family of proteins as closely related Tectonin domain containing proteins in the mammals and also in
lower species like the frog. The numbers at the nodes are an indication of the level of confidence for the branches as determined by bootstrap
analysis (1000 bootstrap replicates). (B) Bioinformatics domain analysis utilizing SMART [22,23] shows existence of Tectonin domain-containing
proteins both in invertebrates and vertebrates from the horseshoe crab lectins, worm, up to humans. Of interest in this study is the protein hTectonin
(red asterisk) which appear to have homologues in other species as well, for example in P. troglodytes (chimpanzee), P. pygmaeus (orangutan), M.
musculus (mouse), G. gallus (chicken), C. elegans (worm) and D. melanogaster (fruitfly).
doi:10.1371/journal.pone.0006260.g001
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especially useful when searching for related proteins with low

sequence homology or when sequences have diversified through

evolution from the invertebrates to the mammals. We thus seek to

identify Tectonins in the vertebrates, and compare their domain

architecture and function with ancient homologs from the

invertebrates in order to gain insights into their functional

conservation in the vertebrates, particularly in view of host-

pathogen interactions.

By using known invertebrate Tectonin proteins, we performed

domain- and conserved position-specific iterated sequence

searches, and identified a potential human homolog, which we

dubbed the hTectonin. We also discovered that the domain

architecture of hTectonin is well conserved throughout the

different species, suggesting that it is an important functional

protein. Sequence motif analysis, and prediction of the

secondary and tertiary structures suggests that hTectonin is a

b-propeller protein, in accordance to the definition of the

Tectonin domain. Specifically, only the Tectonin domains of

hTectonin were found to interact with the fibrinogen-like

domain of M-ficolin, an important complement initiator [12].

In addition, the hTectonin domains 6 and 11 also exhibited LPS-

binding properties. The specificity of recognition of LPS by

certain Tectonin domains is consistent with the invertebrate

Tectonins such as the limulus GBP. We suggest that hTectonin

forms a b-propeller structure involved in protein-protein

interaction amongst host proteins and also in pathogen-

detection, thus playing a vital role in bridging the host immune

defense proteins to the invading pathogen, and this phenomenon

is probably conserved over a vast number of organisms.

Results

hTectonin identified from the human genome database
– a hypothetical protein?

In mammals, the identity and role of proteins with Tectonin

domains are unknown. Those identified or studied in the

invertebrates [2–4,6,13–21] as well as the first vertebrate, fish,

exhibit immune defense properties. Here, we sought to examine

whether the Tectonin domains are structurally and functionally

conserved in the mammals. A position-iterated search using known

Tectonin domain-containing proteins in the invertebrates revealed

a family of vertebrate Tectonin proteins to be distantly related

(Figure 1A). This includes the human protein, Q7Z6L1, which is

one of 3 human hypothetical proteins (GenBank Accession

No.s: Q7Z6L1, Q15040 and O95714) that contain the Tectonin

domain architecture [22,23], when a domain architectural search

was done on Tectonin domain-containing proteins. Q7Z6L1 codes

for a predominantly Tectonin domain-containing protein

(Figure 1B), suggesting that the domains probably form an essential

part of the molecular structure and play a vital role. Furthermore,

the high architectural homology of Q7Z6L1, from the slime mold to

the human, suggests its evolutionary conservation and functional

significance (Figure 2). We thus selected Q7Z6L1 which codes for

‘hTectonin’ for molecular expression, and further structural and

functional analyses.

hTectonin consists of b-propeller secondary structure
From the multiple sequence alignment (MSA) of the Tectonin

domains, we confirmed a pattern of sequence repeats of 40 to 50

Figure 2. hTectonin gene is widespread across many species. The phylogenetic tree of hTectonin homologues constructed by primary
sequence similarity shows its prevalence and conservation among a vast number of different species, right down to the worm, C. elegans. The human
hTectonin protein was used as a query sequence in BLAST. Top hits were then compiled and multiple sequence alignment based on a guide tree was
done using CLUSTALW [32] and the alignment was edited with Jalview [33]. The tree was constructed using the neighbour joining algorithm of the
PHYLIP package. The numbers at the nodes are an indication of the level of confidence for the branches as determined by bootstrap analysis (1000
bootstrap replicates).
doi:10.1371/journal.pone.0006260.g002
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residues in length, which is a unique characteristic of b-propellers

[9,10]. In addition, secondary structure prediction of hTectonin by

PSIPRED [24,25] predicted these conserved repeats to form the

b-strands of a b-sheet topology, consistent with b-propeller

architecture (Figure 3).

hTectonin interacts with ficolin through its Tectonin
domains

Based on our observations that a Tectonin protein, GBP

(GenBank Accession No. AAV65031.1), interacts with two

complement proteins, C-reactive protein (CRP) and carcinolec-

Figure 3. hTectonin forms b-sheets in its Tectonin repeats. CLUSTALW alignment of the individual Tectonin domains and PSIPRED secondary
structure prediction indicates that the 11 Tectonin domains of hTectonin contain 4 highly conserved repeats that form b-strands (highlighted in
green), a motif that is characteristic of the b-propeller fold. The LPS-binding motifs are in red font. E, b-sheet; C, Coil; H, Helix.
doi:10.1371/journal.pone.0006260.g003
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tin (CL5), and is therefore immune-related, we reasoned that the

hTectonin might play a similar role in immune defense. We

tested and showed that the hTectonin gene is expressed in the

human T cell line (A549), monocytes (U937) and the human

leukocytes (Figure 4A), corroborating its immune relevance.

Based on the rationale that (i) hTectonin is an architectural

homolog of GBP and (ii) as a pathogen pattern-recognition

receptor, GBP interacts with CL5 [26], which is a homolog of

the human ficolin, we performed yeast 2-hybrid analysis using

hTectonin as bait and the three isoforms of ficolins (L-, H- and

M-ficolin) as prey. Results showed that the hTectonin (clone

QZ7L1) interacts specifically with M-ficolin (GenBank Accession

No. O00602) (Figure 4B). M-ficolin has in turn been shown to

interact with the CRP [26]. Since both the CRP and M-ficolin

are key proteins of the complement classical and lectin pathways,

respectively, this is the first evidence for the potential function of

a human Tectonin domain-containing protein in frontline

immune defense. Further delineation of hTectonin to isolate its

functional domains showed that only the sub-clones expressing

the predicted Tectonin domains interacted with M-ficolin.

Furthermore, only the fibrinogen-like (FBG) domain of M-ficolin

was shown to interact with the hTectonin, concurring with

recent findings that the FBG domain is responsible for ligand-

binding [12]. These results suggest that the protein-protein

interaction between the hypothetical hTectonin and M-ficolin is

not random, but structurally and positionally specific, and that

the hTectonin is potentially involved in immune regulation,

acting through its Tectonin domains.

Figure 4. hTectonin exists and interacts with immune-related genes. (A) hTectonin cDNA is found in the human T cells (A549), monocytes
(U937) and leukocytes. (B) hTectonin interacts with ficolin. Yeast 2-hybrid shows that hTectonin interacts (i) with itself, suggesting the possibility of
oligomerization, as observed in other beta-propeller proteins; and (ii) with ficolin, a human complement protein. Furthermore, interaction with ficolin
specifically occurs through the Tectonin domains of the hTectonins. This demonstrates a possible functional conservation of Tectonin domains since
the Tectonin domains of GBP (horseshoe crab Tectonin lectin) was shown to interact with carcinolectin-5, a homologue of ficolin [26].
doi:10.1371/journal.pone.0006260.g004
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Tectonin domains harbor high avidity LPS-binding motifs
Gram negative bacterial endotoxin or lipopolysaccharide (LPS)

is a prominent and well-studied representative pathogen-associat-

ed molecular pattern. Proteins harboring LPS-binding motifs, with

alternating basic-hydrophobic/polar residues (BHB(P)HB), have

been shown to bind LPS via the lipid A moiety [27,28], which is the

most conserved bioactive pathophysiological centre of the LPS

molecule (Supporting Figure S1A). Based on the BHB(P)HB

pattern, we identified two such motifs in the 6th and 11th Tectonin

domains of the hTectonin and found that these motifs were well-

conserved among the mammalian homologs of hTectonin in

addition to being in a region of high sequence conservation

(Figure 5). Representative Tectonin peptides were synthesized

around the BHB(P)HB motifs in Tectonin domains 6 & 11, and

their efficacy of binding of lipid A was compared with peptides

derived from the GBP Tectonin domains 1 & 6 (Supporting Figure

S1B), where similar BHB(P)HB motifs exist. Real-time biointerac-

tion of these Tectonin peptides to lipid A immobilized on biacore

HPA chip showed that indeed the hTectonin peptides bound the

lipid A at affinities of KD 1027 to 28 M, which are similar to the GBP

peptides (Figure 6 and Table 1). We also showed that both the

hTectonin and the GBP peptides exhibited similar level of binding

affinity to ReLPS and LPS (Figure 6 and Supporting Figure S1

A,C). Table 1 summarises and compares the binding affinities of

various peptides derived from the hTectonin and GBP. This

corroborates our hypothesis and demonstrates the pathogen-

binding ability of Tectonin domains and its functional conservation

across species, from horseshoe crab GBP to human hTectonin.

Discussion

In order to classify and complete the functional characterization

of the human proteome, many of the unknown proteins are usually

inferred from their counterparts in other species. This seems to be

an easy option if the proteins share high sequence similarity, as

they can be matched to each other by performing a simple

sequence matching. However, the task is more complicated if the

proteins do not show homology in their primary sequences.

Nevertheless, many related proteins show conserved functionality

more in terms of domain and structural conservation.

In this paper, we report our discovery of a human Tectonin

protein, hitherto classified as being hypothetical. By structure-

function analyses, we inferred its function as an immune-related

protein. We showed that similar to its invertebrate counterparts,

the hTectonin protein functions via its Tectonin domains.

Furthermore, a distance PSI-BLAST sequence matching indicates

that although the hTectonin shows low sequence homology, it is

phylogenetically related to known proteins with Tectonin

domains, functioning as immune proteins. By SMART domain

comparison, we show that hTectonin contains multiple homologs

widespread in the vertebrate kingdom, implying that it is not a

one-off protein in the human proteome, but rather, an important

one conserved throughout many species. We also discovered that

the hTectonin gene is expressed in the human leukocytes. This is

interesting, as a recent addition to the human database of proteins

showed another human leukocyte Tectonin protein called the

leukolectin (GenBank Accession No. ACM77812.1) [29], which

also exhibits five Tectonin domain repeats (Figure 1B). This

further implicates hTectonin to be immune-related. Like its

limulus counterpart, GBP, which interacts with an important

complement initiator (CRP), we find that the hTectonin also

interacts with a cognate complement lectin, Ficolin. Furthermore,

this interaction is specific, involving only the Tectonin domains

within the hTectonin protein. We also identified LPS-binding

motifs within two of the Tectonin domains which are located in

the highly conserved sequence of the b-propeller fold. The affinity

Figure 5. The LPS-binding motifs of hTectonin are conserved in other species. The LPS-binding motif of the pattern BHB(P)HB (blue box) in
- (A) hTect6 and (B) hTect11 - are well-conserved in other species.
doi:10.1371/journal.pone.0006260.g005
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of these motifs for bacterial LPS and the truncated active forms of

the endotoxin molecule (ReLPS and lipid A) was verified

experimentally. Thus, we propose that hTectonin is a novel

human protein that forms a b-propeller structure which is involved

in protein-protein interaction with immune-related proteins such

as ficolin, and it simultaneously interacts with pathogens via

PAMPs like LPS. Thus, the hTectonin plays a vital role in immune

defense, which is conserved over a vast number of organisms.

Materials and Methods

Identification of Tectonin proteins
Tectonin domain containing proteins were identified using

domain search on the SMART database [22,23]. A position-

specific iterated search using the primary sequence on PSI-Search

on the EMBL server was performed using GBP as the query

sequence. Related sequences were chosen after 2 iterations of PSI-

Search. Hits were put through the SMART prediction server to

confirm their propensity to form Tectonin domains. Multiple

sequence alignment was carried out on the curated list of proteins

using Promals3D [30]. A phylogenetic tree was then constructed

from sequences showing strong domain alignments using PHYLIP

[31] with a bootstrap value of 1000.

Human hTectonin cDNA clones
The hTectonin (Q7Z6L1) cDNA was obtained from iDNA Open-

Biosystems (MHS1010-9205594). The cDNA was subcloned into

pGBKT7 and pGADT7 vectors for the yeast 2-hybrid experiments.

Figure 6. hTectonin peptides and GBP peptides bind LPS, ReLPS and lipid A with high afiinity. hTectonin peptides, namely hTec6 and
hTec11, containing the predicted LPS-binding motif [27,28] are able to bind the bacterial endotoxin. In GBP, the exclusion of the C-terminal tail loop
which is not part of the b-propeller Tectonin structure (Supporting Figure S1B) - GBP6-1– gives similar binding affinity with the peptide designed to
include this tail region, showing that it does not play an important role in the binding to lipid A, and that the function comes from within the
Tectonin domains. Control peptides derived from non-Tectonin regions showed no binding to LPS (see Supporting Figure S1C), thus confirming the
specificity of interaction with LPS via the Tectonin domains.
doi:10.1371/journal.pone.0006260.g006
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Yeast-2-hybrid assay for protein-protein interaction
Co-transformations of the different bait and prey plasmids into

S. cerevisiae AH109 strain were performed in accordance to [16].

The full-length and subclones of hTectonin and the ficolin

cDNAs (without their signal sequences) were each fused to the

DNA-binding domain of Gal4 in the bait plasmid pGBKT7 (BD

Biosciences), or to the activation domain of Gal4 in the prey

plasmid pGADT7-Rec (BD Biosciences). For selection, synthetic

complete (SC) media lacking Leu and Trp (SC-Trp-Leu) or

lacking Leu, Trp, His and adenine (quadruple dropout, QDO

medium) were used. Transformants containing bait and prey

plasmids were selected on SC-Trp-Leu by incubation for 3.5

days at 30uC. Resulting colonies were suspended in water and

replated on SC-Trp-Leu and QDO agar at 30uC. The negative

control was co-transformed with a recombinant plasmid and an

empty prey or bait plasmid. The positive control was co-

transformed with a plasmid expressing the full-length Gal4

transcriptional activator together with the empty pGADT7-Rec

vector. Positive transformants were selected in SC media lacking

Trp. hTectonin plasmid in pGBKT7 was then transformed into

the library-positive yeast. DNA from resulting colonies from the

co-transformation on QDO agar were extracted and identified

through sequencing.

Peptide design and synthesis
The hTectonin protein sequence was scanned for LPS-binding

motif. Two potential sites with the BHPHB pattern were found in

hTectonin domains 6 (KVQGR) and 11 (HISVR). Henceforth,

these peptides are referred to as hTec peptides (hTec6 and hTec11).

The hTec peptide length and region surrounding the LPS-binding

motif was chosen and optimized based on hydrophilicity and

solubility values. The h-Tec6 was: LSLSCCESRKVQGRPSPQAI

and hTec11 was IGGGWDHISVRANATRAPRS. For compari-

son, one BHPHB site was found in the limulus GBP, Tectonin

domain 1 (HINGK). The GBP peptides are: GBP6-1(tail)

KSCWLNPFLAEWTHINGKLSH and GBP6-1(no tail) FES-

VPASKAEWTHINGKLSH, which are annotated based on the

amino acid residues which encompass the domains 6-to-1. Peptides

were also designed from the combination of GBP Tectonin domains

1 and 6. The peptides were synthesized by Genemed Synthesis, Inc.,

USA, and purified to .95% under pyrogen-free conditions.

Surface plasmon resonance analysis of the peptides
Surface plasmon resonance analysis for real-time biointeraction

between the Tectonin peptides and bacterial LPS was performed

using a Biacore 2000 instrument (Biacore AB). LPS, ReLPS and

lipid A from Salmonella minnesota (List Biologicals, UK) were diluted

to 0.25 mg/ml in 20 mM sodium phosphate, 150 mM NaCl,

pH 7.4 and immobilized on the surface of an HPA sensor chip

(Biacore AB) according to the manufacturer’s specifications.

Binding of the Tectonin peptides to the immobilized ligands was

measured at a flow rate of 20 ml/min in 10 mM Tris, 150 mM

NaCl, pH 7.4. Regeneration of the chip surface was achieved by

injection of 20 ml 0.1 M NaOH until steady baseline was achieved.

The dissociation constant, KD was calculated using BiaEvaluation

software, version 3.2.

Supporting Information

Figure S1 (A) Structure of the bacterial LPS. LPS structure and

the truncated forms, ReLPS and lipid A. (B) The structure of GBP,

with the tail (circled) at the C-terminal end, which does not form

the b-propeller structure of GBP. (C) Control Tectonin peptides

which do not harbor the LPS-binding motif of BHPHB do not

bind lipid A.

Found at: doi:10.1371/journal.pone.0006260.s001 (0.24 MB TIF)
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Although the innate immune response is triggered by the formation of a
stable assembly of pathogen-recognition receptors (PRRs) onto the patho-
gens, the driving force that enables this PRR–PRR interaction is unknown.
Here, we show that serine proteases, which are activated during infection,
participate in associating with the PRRs. Inhibition of serine proteases
gravely impairs the PRR assembly. Using yeast two-hybrid and pull-down
methods, we found that two serine proteases in the horseshoe crab
Carcinoscorpius rotundicauda are able to bind to the following three core
members of PRRs: galactose-binding protein, Carcinolectin-5 and C-reactive
protein. These two serine proteases are (1) Factor C, which activates
the coagulation pathway, and (2) C2/Bf, a protein from the complement
pathway. By systematic molecular dissection, we show that these serine
proteases interact with the core “pathogen-recognition complex” via their
complement control protein modules.
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Introduction

The innate immune system uses germline-encoded
pathogen-recognition receptors (PRRs), which are
evolutionarily conserved.1 The PRRs recognize con-
served microbial cell wall components referred to as
pathogen-associatedmolecular patterns, such as lipo-
polysaccharide (LPS) fromGram-negative bacteria.2,3
The horseshoe crab relies solely on its innate

immune system to combatmicrobial infection.4–9 We
have recently shown that the Carcinoscorpius rotun-
dicauda C-reactive protein (CRP), Carcinolectin-5
d.
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(CL5) and the galactose-binding protein (GBP)
constitute the core complex of pathogen-recognition
assembly that binds to invading pathogens.10 CRP
is a major hemolymph protein that is conserved
through evolution.11–13 CL5 is homologous to
human ficolins. GBP was isolated from the Japanese
horseshoe crab Tachypleus tridentatus as a Sepharose-
binding protein.14,15 It is associated with a trypsin-
like protease activity when chromatographed
through an LPS-Sepharose affinity column.15 How-
ever, the serine protease(s) that coeluted with GBP
remains unidentified.
In the horseshoe crab hemolymph, the two innate

immune pathways that function via serine proteases
are complement activation and blood coagulation.
C2/Bf, a functional homolog of the vertebrate
trypsin-like serine proteases (Tryp-SPs) C2 and Bf,
is involved in C3 activation in C. rotundicauda
hemolymph.7 Circulating C2/Bf zymogen could
be the serine protease associated with GBP. On
the other hand, the C. rotundicauda Factor C (FC),
a serine protease sensitive to LPS,16–24 could be
another candidate. During Gram-negative infection,
LPS activates FC, which initiates the coagulation
pathway to incapacitate the invading pathogen. FC
is expressed and mainly stored in granules within
hemocytes. It is also synthesized and secreted by the
hepatopancreas.25 This strongly suggests a circulat-
ing form of the FC zymogen, which acts as a sentinel
to rapidly respond to the LPS, to initiate the de-
granulation of hemocytes and to trigger the coa-
gulation cascade. FC is also found on the hemocyte
membrane, enhancing its exposure to the invading
pathogens.26 These observations reinforce the as-
sumption that FC plays a key role in frontline
immune response and could be the endopeptidase
associated with GBP.15 Both C2/Bf and FC are
multidomain proteins. They each comprise, among
other domains, five complement control protein
(CCP) modules, also known as short consensus re-
peats or Sushi domains, due to their secondary
folding structure27 and homology to C1r and C1s
complement factors.28

Here, we show that serine proteases previously
thought to be responsible for activating downstream
functions of immune effectors also participate in
regulating upstream pathogen recognition. In the
presence of protease inhibitors, the binding of GBP
and CL5 to Sepharose beads and to bacteria is
significantly reduced. In contrast, the pathogen-
induced recruitment of CRP to the bacterial surface
was previously shown to be unaffected by serine
proteases.10 Therefore, in view of gaining insights
into the mechanisms underlying the interactions
among these PRRs, it is pertinent to identify and
characterize the serine protease(s) involved in
driving these interactions.
Using a yeast two-hybrid approach, we observed

that the CCP repeats of the two serine proteases, FC
and C2/Bf, harbor strong interactions with GBP,
CL5-C isoform and CRP-1 isoform, but not with
CRP-2 isoform. Pull-down assays confirmed the
interactions between GBP and the two serine pro-
teases. We propose that FC and/or C2/Bf is the
serine protease associated with GBP. This associa-
tion triggers a rapid degranulation of hemocytes,
leading to blood coagulation and/or complement
activation, respectively, thence the destruction of the
pathogens. Based on a protein–protein interaction
map of different PRRs, we propose a model to ex-
plain how serine proteases drive a dynamic macro-
molecular assembly of PRRs, contributing to a fast
and efficient immune response.
Results

The profile of PRRs copurified with GBP is
altered by protease inhibitors

GBP is a galactose-recognizing lectin that binds to
Sepharose beads, a polymer made of alternating
units of galactose and 3,6-anhydrogalactose. Since
CNBr-activated Tris-reacted Sepharose beads are
reported to bind human plasma lectins such as
ficolins29,30 (CL5 homologue), we chose this resin to
isolate other hemolymph lectins together with GBP
and to test whether the inhibition of serine proteases
would affect the profile of the proteins copurified.
The bound proteins were eluted with 0.4 M N-
acetylglucosamine (GlcNAc), a ligand that dissoci-
ates GBP from the beads. The protease inhibitor
cocktail greatly reduced the binding of GBP (p26
and p52), and proteins of p35–40, to the Sepharose
beads (Fig. 1a). p26 and p52 were confirmed by
Western blot to be a GBP monomer and a GBP
dimer, respectively (Fig. 1a). Mass spectrometry
(MS) identified p35 as CL5-C (Fig. 1b). Presumably,
p40 was CL5-B.10 Another protein, p34 (Fig. 1a), was
detected by anti-Sushi-1 antibody (Fig. 1a). This
antibody is directed against the first CCP domain of
FC, a well-exposed region in the FC protein18,23 (see
Materials and Methods and Supplementary Fig. 2a)
and, therefore, may react with a proteolytic frag-
ment containing CCP from FC or other CCP-domain
proteins. The same is observed with naïve and
infected hemolymph (Fig. 1a). We also note that the
binding effect induced by protease inhibitors is
specific, as some hemolymph proteins are affected,
while others either are unaffected or, in the case of
hemocyanin (p72–75), even display enhanced bind-
ing to the Sepharose beads (Fig. 1a). Although, at
this juncture, it is unclear why the binding of
hemocyanin is improved when serine proteases are
inactivated, this observation suggests that proteases
can up-regulate or down-regulate the assembly of
PRRs to pathogens. Taken together, these results
indicate that the efficiency of recruitment of a panel
of PRRs is strongly dependent on serine proteases.

The binding of GBP, CL5 and hemocyanin to
bacteria is regulated by a serine protease

To test whether the binding of PRRs to bacteria
could also be affected by protease inhibitors as much



Fig. 1. Serine protease mediates the recruitment of GBP and CL5 to Sepharose beads. (a) GBP, CL5 and a CCP-
containing protein show enhanced interaction with CNBr-activated Tris-reacted Sepharose in the absence of protease
inhibitors. Coomassie-blue-stained SDS-PAGE of the hemolymph proteins eluted from Sepharose beads with 0.4 M
GlcNAc in the absence (−) or in the presence (+) of protease inhibitors (PMSF+Mix G). GBP (p26 and p52) is confirmed by
Western blot (lower panel). The anti-Sushi-1 antibody reacts with a p34 protein, presumably a proteolytic fragment of
either FC or C2/Bf (lower panel). A 0.2% aliquot of the naïve hemolymph was loaded in the last lane (control
hemolymph). (b) Peptide mass fingerprint of trypsin-digested proteins from the p35 shows peaks belonging to CL5-C.
The m/z values of peaks that are unidentified are in smaller font.
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as that to Sepharose beads, we incubated Pseudomo-
nas aeruginosa with either Tris-buffered saline (TBS;
100 mM Tris–Cl pH 7.4 and 150 mM NaCl) or 10%
hemolymph in TBS for 30 min with and without
phenylmethylsulfonyl fluoride (PMSF), a serine
protease inhibitor. The presence of PMSF decreased
the binding of p26, p40 and p52 to the bacteria (Fig.
2a). MS identification showed these proteins to be a
GBP monomer and a GBP dimer (p26 and p52,
respectively) and CL5-B (p40) (Supplementary Fig.
1). Scanning and integrating the intensity of the
protein bands corresponding to GBP and CL5, using
ImageJ 1.38×,31 showed that about 2.5-fold more of
these proteins are bound to bacteria when serine
proteases are active. This is observed with both the
naïve and the infected hemolymph (Fig. 2a). Con-
versely, the binding of hemocyanin to bacteria
appeared to be slightly improved when serine
proteases were inhibited. A parallel study in our
laboratory has shown that hemocyanin is suscep-
tible to proteolysis by bacterial proteases.32 Thus,
besides suppressing the serine proteases in the
host's hemolymph, PMSF could have inhibited
the P. aeruginosa proteases from proteolysing the
hemocyanin, thus allowing it to accumulate on the
bacteria.
It is possible that the binding of GBP and CL5 is

unaffected by the proteases per se and that
proteases merely aided in the elution step of the
bound proteins. To verify this possibility, the same



Fig. 2. GBP and CL5 showed enhanced interaction with bacteria in the absence of PMSF. P. aeruginosa was incubated
with TBS or 10% hemolymph in TBS for 30 min in the absence (−) or in the presence (+) of PMSF. (a) Silver-stained SDS-
PAGE gel of proteins eluted from the bacteria with 0.4 M GlcNAc. GBP and CL5 were identified by MS (Supplementary
Fig. 1). A 0.2% aliquot of the hemolymph that was used in each treatment was loaded in the last lane. In (b) and (c),
samples are treated similarly to (a), but bacteria were incubated with hemolymph for either 30 min or 18 h in the absence
(−) or in the presence (+) of PMSF, and proteins were eluted with 4M urea. This was performed to ensure a more complete
elution of the proteins bound to bacteria and to demonstrate that active proteases have an intrinsic effect on the binding of
GBP and CL5 to bacteria. SDS-PAGE gel was (b) Coomassie-blue-stained and (c) silver-stained. (d) FC circulates in the
naïve hemolymph. Different amounts of naïve and infected hemolymph have been analyzed by Western blot using anti-
Sushi-1 antibody. A full-length recombinant FC (∼130 kDa; from the PyroGene® Assay kit; Lonza, Inc.) was used as a
control.
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experimentwas repeated, but elutionwas performed
with a strong denaturant (i.e., 4 M urea) instead of
GlcNAc. Urea unfolds proteins and causes complete
elution of the hemolymph proteins bound to
bacteria. Results show that consistently more
proteins are eluted (including some bacterial pro-
teins), but most importantly, the amount of GBP
and CL5 eluted was still more prominent when
proteases were active during incubation with
bacteria (Fig. 2b and c). This demonstrates that
proteases impel the binding of GBP and CL5 to
bacteria. Scanning the Coomassie-blue-stained gel
(Fig. 2b) and integrating the band intensities
(ImageJ 1.38×31) showed that about 2.3- and 1.8-
fold more GBP and CL5, respectively, bound to
bacteria when the proteases were active, a result
close to the one observed when elution was
performed with GlcNAc. Altogether, these results
confirm our observation that GBP is associated with
a serine protease15 that upregulates the binding of
GBP and CL5 to the bacteria, while it down-
regulates the binding of hemocyanin. Nevertheless,
the identity of this serine protease remains to be
elucidated.
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The FC zymogen is present only in the naïve
hemolymph

Immunodetection using anti-Sushi-1 antibody
suggests that a CCP-domain protein, potentially
FC, could be the serine protease that copurifies with
GBP in the absence of PMSF (Fig. 1a). The multi-
domain organization of FC and its process of
activation are shown in Supplementary Fig. 2a.
The FC is located in large intracellular granules,4 as
well as on the surface of the hemocytes.26 Since
expression and secretion from the hepatopancreas
have been reported for FC,33 it is conceivable that
FC is present in the naïve hemolymph at a low
level. When we analyzed for its presence in
hemolymph, a full-length CCP-containing protein
at a size expected for FC (N100 kDa) was observed
in the naïve, but not in the infected, hemolymph
(Fig. 2d). The recombinant FC provided in the
PyroGene® Recombinant Factor C Assay kit (Lonza,
Inc.) was used as a control. This prompted us to
assume that a low level of the FC zymogen circulates
in the naïve hemolymph. Nevertheless, we cannot
fully exclude the possibilities that, (i) during
exsanguination, some hemocyte exocytosis may
have occurred to release intracellular FC to the
hemolymph, and (ii) the anti-Sushi-1 antibody may
cross-react with other CCP-containing proteins
present in the hemolymph such as C2/Bf, the other
known serine protease zymogen that also contains
CCP domains. During infection, FC is activated,
resulting in the release/loss of the N-terminal
domain containing the CCP modules (Supplemen-
tary Fig. 2a). Absence of a full-length CCP-contain-
ing protein in infected hemolymph further suggests
that what is detected in the naive hemolymph is a
zymogen that becomes undetectable in the infected
hemolymph.

FC interacts with GBP, CL5-C and CRP-1

We used the yeast two-hybrid approach to verify
whether FC interacts with GBP and CL5-C, the two
PRRs that bind better to bacteria in the absence of
protease inhibitors. We also tested for an interaction
between FC and the CRP-1 and CRP-2 isoforms.
Even though the binding of CRP to bacteria is not
directly affected by protease inhibitors, the CRP still
constitutes the core of PRRs, which forms the stable
pathogen-recognition complex.10

We first ruled out the possibility of an auto-
activation by cotransformation of the yeast with
GBP, CL5-C, CRP-1, CRP-2 or FC cloned in pGBKT7
and pGADT7-Rec (empty plasmid). Transformants
were verified for the absence of growth in a
quadruple dropout (QDO)medium (Supplementary
Data) (Fig. 3a and b). Next, we analyzed whether
the full-length FC could interact with GBP, CL5-C,
CRP-1 and CRP-2. The growth onQDOplates shows
that FC interacts with GBP, CRP-1 and CL5-C (Fig.
3b), but does not interact with the CRP-2 isoform.
The interaction between GBP and FC was further

confirmed by glutathione S-transferase (GST) pull-
down assay. The recombinant GST–GBP fusion
protein was used to pull down the FC from the
PyroGene® Assay kit (Lonza, Inc.). After pulldown
with and without protease inhibitors, we looked for
the presence of FC with the anti-Sushi-1 antibody.
Figure 3c shows that FC interacts with GST–GBP
(lanes 4 and 5), but not with GST (lanes 2 and 3).
Additionally, we show that under non-pyrogen-free
condition, LPS induced the activation of the zymo-
gen FC, resulting in a proteolytic fragment p70
(lanes 4 and 5), thus further authenticating the
presence of a functional FC. When FC was auto-
activated by LPS and proteolysed, the presence of
protease inhibitors had no effect on the FC interac-
tion with PRRs or on its control over the PRR–PRR
interaction.
To map the region of FC that interacts with the

PRRs, we subcloned various fragments of FC (Sup-
plementary Figs. 3 and 4) as fusions to Gal4 DNA-
binding domain in the pGBKT7 vector and studied
their interaction with GBP, CRP-1, CRP-2 or CL5-C
into the yeast. Supplementary Figs. 3 and 4 show
that the region encompassing the five CCP modules
(FC CCP1–CCP5) specifically and strongly interacts
with GBP, CRP-1 and CL5-C. Single CCP modules
exhibited interesting results: CCP1, which interacts
with LPS,21–23 does not interact at all with those
PRRs. CCP5, which is located proximal to the Tryp-
SP domain, strongly interacts with GBP and CL5-C,
but more weakly with CRP-1. The combination of
CCP5 and the Tryp-SP domains showed a strong
interaction with GBP and CL5-C, but a weaker in-
teraction with CRP-1 (Supplementary Figs. 3 and 4).
The first four CCP modules of FC showed either
some autoactivation or no interaction. The proline-
rich domain shows a very weak interaction with
CL5-C only, and the Tryp-SP domain weakly in-
teracts with CL5-C and GBP (Supplementary Figs. 3
and 4). At this juncture, no conclusion can be drawn
on why some regions of FC showed autoactivation
in the yeast two-hybrid assay. Nevertheless, the
CCP5 module appears to be crucial for the specific
binding to GBP and CL5-C, and, to a lesser extent, to
CRP-1. Being the last module to be released during
the process of FC activation (Supplementary Fig.
2a), it would be interesting in the future to study
the structure–function relationship of CCP5 in more
detail.

The 5xCCP from C2/Bf interacts with GBP,
CL5-C and CRP-1

Another CCP-containing serine protease, the C2/
Bf, had been previously identified in our labo-
ratory.7 C2/Bf is found in the hemolymph and is
involved in complement activation. Therefore, we
tested whether this immune-response-related CCP-
containing protease is also able to interact with
PRRs. The multidomain organization and process of
activation of C2/Bf are depicted in Supplementary
Fig. 2b. We used the yeast two-hybrid approach to
test for interaction between C2/Bf and the CL5-C,
CRP-1 and CRP-2 isoforms. The 5xCCP region of



Fig. 3. FC interacts with GBP, CRP-1 and CL5-C, but not with CRP-2. (a) Controls showing the absence of
autoactivation of the Gal4 promoter in yeast cells by the prey and bait proteins studied. Growth on SC-Leu-Trp (Trp and
Leu dropouts) agar indicates the presence of both plasmids. Growth on QDO (QDO lacking Trp, Leu, His and Ade) agar
indicates whether there is autoactivation when yeast cells are cotransformed with bait plasmids shown in the figure and
an empty prey plasmid (pGADT7-Rec). (b) Yeast two-hybrid result shows a specific interaction between FC and GBP,
CRP-1 and CL5-C, but not CRP-2. Growth on SC-Leu-Trp agar indicates the presence of both plasmids. Growth on QDO
agar indicates whether there is autoactivation when yeast cells are cotransformed with pGBKT7-FC and an empty
plasmid (pGADT7-Rec), or protein–protein interactions in the other cases. (c) GST pull-down assay confirming the
interaction between FC and GBP. The upper panel shows the SDS-PAGE (Coomassie-blue-stained) of the proteins eluted
after pulldown, and the two lower panels show Western blots using anti-Sushi-1 antibody and anti-GBP antibody,
respectively.
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C2/Bf was studied in parallel with the full-length
C2/Bf.
Results show that the 5xCCP of C2/Bf interacts

with GBP, CL5-C and CRP-1, but consistent with FC,
Fig. 4. Yeast two-hybrid method shows that C2/Bf 5xCCP
(a) The yeast cells were cotransformed, restreaked on SC-Leu-
unless otherwise mentioned. Growth on SC-Leu-Trp agar indi
indicates whether there is autoactivation when yeast cells are
plasmid (pGADT7-Rec), or protein–protein interactions in th
procedure was performed as described above. (c) GST pull-d
5xCCP (lane 2) confirms the interaction between C2/Bf 5xCC
digested proteins from the p26 shows peaks belonging to G
smaller font.
the 5xCCP also does not interact with the CRP-2
isoform (Fig. 4a). Interestingly, the full-length C2/Bf
did not interact with CL5-C, CRP-1 and CRP-2, and
only weakly with GBP after a longer incubation of
interacts with GBP, CL5-C and CRP-1, but not with CRP-2.
Trp and QDO plates, and incubated at 30 °C for 3.5 days,
cates the presence of both plasmids. Growth on QDO agar
cotransformed with pGBKT7-C2/Bf 5xCCP and an empty
e other cases. (b) C2/Bf interacts weakly with GBP. The
own assay using GST as control (lane 1) or GST–C2/Bf
P and GBP, and (d) peptide mass fingerprint of trypsin-
BP. The m/z values of peaks that are unidentified are in
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7 days instead of 3.5 days (Fig. 4b). However, we
cannot conclude whether the slow growth or lack of
growth is due to a weak interaction or a problem
linked to the lower level of C2/Bf in the nucleus
available for interaction. Nevertheless, our results
suggest that the 5xCCP of C2/Bf is specific and
sufficient to interactwith the three PRRs: GBP, CL5-C
and CRP-1.
The binding of GBP to the 5xCCP of C2/Bf was

further confirmed by GST pull-down assay. The
recombinant GST–C2/Bf 5xCCP fusion protein was
used to pull down interacting proteins from infected
horseshoe crab hemolymph (Fig. 4c). A p26 protein
associated with the fusion protein GST–C2/Bf
5xCCP, and not with the control GST, was identified
by MS to be the GBP monomer (Fig. 4d), thus
confirming the results observed by the yeast two-
hybrid method.

Further delineation of the C2/Bf domains that
interact with GBP, CL5-C and CRP-1

Different subfragments of C2/Bf were expressed
in fusion to the Gal4 DNA-binding domain in
pGBKT7. The individual CCP1 and CCP2 modules
induced autoactivation, but single CCP3, CCP4 and
CCP5 showed specific interactions with GBP, CL5-C
and CRP-1. A combination of CCP1 and CCP2
specifically interacted with GBP, CL5-C and CRP-1,
whereas a combination of CCP3 and CCP4 failed to
interact with any of these PRRs (Supplementary
Figs. 5 and 6). None of the fragments tested inter-
acted with CRP-2. Thus, the CCP domains of C2/Bf
specifically interact with the CRP-1 isoform. It is
not clear why, individually, CCP3 and CCP4 interact
with the PRRs, whereas in tandem, they fail to
interact. Conversely, CCP1 and CCP2 individually
showed unspecific responses, but in tandem, they
interacted specifically with the PRRs. Further stu-
dies are required to clarify this dichotomy and to
analyze whether the von Willebrand factor type A
and Tryp-SP domains could also interact with some
of the PRRs. Nevertheless, the single modules of
CCP3, CCP4 and CCP5 are sufficient for the in-
teraction with GBP, CL5-C and CRP-1.
In conclusion, we have consistently demonstrated

that the CCP modules in FC and C2/Bf are
necessary and sufficient for the interaction with
GBP, CRP-1 and CL5-C. The FC and C2/Bf, and
perhaps other serine proteases, are the driving
forces that regulate the molecular assembly of the
pathogen-recognition complex.
Discussion

Despite having only the innate immune system,
horseshoe crabs have thrived in a microbiologically
harsh habitat. Hemolymph PRRs are essential in the
first line of defense to bind to the invading
bacteria.10 In this article, we show that the binding
of representative PRRs, such as GBP and CL5, to
Sepharose beads, as well as to bacteria, is regulated
by serine proteases. Inhibition of serine proteases
drastically reduced the binding of these PRRs (Figs.
1a and 2a–c). Thus, in addition to their commonly
known functions in the activation of coagulation
and complement pathways, respectively, FC and
C2/Bf are also involved in regulating the binding of
frontline PRRs to the pathogen surface.
Using a yeast two-hybrid approach and confirma-

tion by pull-down methods, we showed that FC
and/or C2/Bf impels the macromolecular assembly
of PRRs on the pathogen. Firstly, FC, the initiator
protein in the coagulation cascade that responds to
Gram-negative infection, interacts with GBP, CL5
and CRP-1, but not with CRP-2 (Fig. 3b). The
interaction with GBP has been confirmed by pull-
down assay (Fig. 3c). The region encompassing the
five CCP domains of FC is clearly required for this
interaction, particularly the fifth CCP module,
which is the most critical domain that interacts
with the PRRs (Supplementary Figs. 3 and 4). Upon
infection, FC is activated and triggers a G-protein-
mediated exocytosis,26 leading to the release of more
FC, as well as the other innate immune molecules
(Fig. 5). Secondly, consistent with the FC, the 5xCCP
domain of C2/Bf, rather than the whole zymogen,
binds to GBP, CL5 and CRP-1 (Fig. 4a and b). The
interaction between the 5xCCP and GBP has also
been confirmed by pull-down assay (Fig. 4c and d).
Consistently, no interaction was found with the
CRP-2 isoform, suggesting the specificity of the
PRR–PRR collaboration. The ability of the other
domains of C2/Bf to interact with the PRRs remains
to be studied. C2/Bf is a complement protein
circulating in the hemolymph. Once activated, C2/
Bf participates in the activation of C3 to form the C3
convertase, which further activates the lectin com-
plement pathway. We postulate that, under naïve
conditions, C2/Bf may be in a conformation where
its five CCPs are not exposed and, therefore, does
not allow its binding to PRRs, since complement is
not activated. During infection, the complement
protein C3 binds to C2/Bf, which may change its
conformation and exposes its 5xCCP region, thereby
allowing its binding to the PRRs. C2/Bf can then be
activated by Factor D (identified in the granules of
horseshoe crab hemocytes34) to form the C3 con-
vertase (Fig. 5). Meanwhile, the cleaved C2/Bf
5xCCP fragment may remain bound to PRRs while
attached to the pathogen surface. Therefore, such
synchronized actions suggest that the interaction
between C2/Bf and PRRs may help stabilize the
macromolecular assembly to the pathogen. Addi-
tionally, in vivo, the presence of C3 bound to the
pathogens may be a prerequisite for the binding of
C2/Bf to the PRRs.
Taken together, we have demonstrated that the

CCP modules of FC and C2/Bf are the crucial
determinants of the interaction with three core
PRRs. The CCPs are structures known to be
important in protein–protein interactions.35,36 The
CCP modules of FC and C2/Bf share 15.5–43.6%
homology (Supplementary Fig. 7a), which may
appear rather low. CCP modules exist in a wide



Fig. 5. Serine proteases regulate the assembly of PRRs to prompt the innate immune response. The model shows that
FC and C2/Bf promote PRR assembly on pathogens. Up to now, serine proteases were known for only activating
downstream functions of immune system, triggering rapid degranulation of hemocytes to release coagulation
components and concomitantly activating both the coagulation cascade and the complement pathways to destroy the
pathogens effectively. Our study shows that positive feedback of the serine proteases in regulating the upstream
pathogen-recognition assembly conceivably strengthens the immune response.
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variety of complement and adhesion proteins, and
their structure is known to be based on a β-
sandwich arrangement: one face that is made up of
three β-strands hydrogen-bonded to form a triple-
stranded region at its center and the other face that is
formed from two separate β-strands.35,37 Most of the
CCP modules have four cysteine residues, with a
glycine and a tryptophan highly conserved in
similar positions (Supplementary Fig. 7b). The
CCP5 of FC, which strongly interacts with GBP,
CL5 and CRP-1, contains only three of the four
highly conserved cysteines. The first one is replaced
by a serine residue (Supplementary Fig. 7b). During
the process of LPS-mediated activation of the FC,
the N-terminal region is first cleaved off to result
in an intermediate FC consisting of CCP5–Tryp-SP.
Only in a second proteolysis is the CCP5 module
processed to release a fully active FC enzyme
(Supplementary Fig. 2a). Thus, it is interesting to
note that CCP5, which is still able to interact with
several PRRs, also remains as the final CCP linked
to the Tryp-SP domain during the process of FC
activation. In FC, it has been shown that CCP1 and
CCP3 bind LPS.18,21–24 Here, we observed that CCP1
does not interact with any of the PRRs studied.
Thus, although the secondary structures of the CCP
modules are expected to be very similar to one
another, their abilities to interact with PRRs might
remain very different. Thus, we propose that the
CCP modules retain a unique identity and strong
specificity towards their interacting partners. There-
fore, in vivo, a tight regulation of the serine protease
activities by protease inhibitors is envisaged. Never-
theless, further studies are needed to show how the
molecular interactions between the serine proteases
and PRRs are maintained and regulated in vivo.
In conclusion, our findings demonstrate the

importance of serine proteases at the very frontline
of the immune response, viz. the assembly of the
PRRs onto the pathogens, in addition to their known
roles in coagulation and complement activation.
This is a new role described for serine proteases. In
naïve hemolymph, serine proteases are present but
inactive. During infection, they are activated, and
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they impel the binding of PRRs to the pathogens
through their CCP modules. A stable assembly of
the PRRs incapacitates the microbial invader and
boosts the immune response by triggering the de-
granulation of hemocytes, coagulation cascade and
complement activation.
Materials and Methods

Organisms

Horseshoe crabs (C. rotundicauda) were collected from
the Kranji estuary of Singapore. The animals were handled
in accordance with national and institutional guidelines
stipulated by the National Advisory Committee for
Laboratory Animal Research, Singapore. The infection of
horseshoe crabs and the bacterial strains used in this work
are described in Supplementary Data.
The yeast strain used is Saccharomyces cerevisiae AH109

(BD BioSciences) (MATa, trp1–901, leu2–3,112, ura3–52,
his3–200, gal4Δ, gal80Δ, LYS2∷GAL1UAS-GAL1TATA-
HIS3,GAL2UAS GAL2TATA-ADE2, URA3∷MEL1UAS-
MEL1TATA-LacZ and MEL1). The yeast culture conditions
are described in Supplementary Data.

Biochemical reagents

Anti-mouse and anti-rabbit antibodies were obtained
from DAKO. Anti-goat antibody was obtained from GE
Healthcare. Anti-Sushi-1 antibody was raised in New
Zealand white rabbits against a synthetic peptide derived
from the CCP1 domain (Sushi 1) of FC. Its amino acid
sequence is GFKLKGMARISCLPNGQWSNFPPKCIRE-
CAMVSS. Anti-CRP and anti-GBP antibodies were raised
in New Zealand white rabbits. Anti-CRP antibodies were
raised against the Limulus polyphemus CRP (Sigma). This
protein shows 80% sequence homology to the C. rotundi-
cauda CRP. Specificity of the anti-CRP was confirmed by
immunoprecipitation of its target antigen from hemo-
lymph, followed by analysis of the antigen by MS. GBP
was purified from the hemolymph by using CNBr-
activated Tris-reacted Sepharose (GE Healthcare) and
eluted with 0.4 M GlcNAc. The purity of GBP obtained
by SDS-PAGE extraction was verified by MS and used to
raise anti-GBP antibodies. The protease inhibitor cocktail
Mix G was obtained from Serva. It contains 4-(2-
aminoethyl) benzenesulfonyl fluoride hydrochloride and
aprotinin from bovine-lung-targeting serine proteases, E-
64 (a cysteine protease inhibitor), leupeptin (a cysteine and
Tryp-SP inhibitor), and ethylenediaminetetraacetic acid
(which targets the metalloproteases). PMSF, which inhibits
serine proteases, was obtained from Sigma. Recombinant
FC is from the PyroGene® Recombinant Factor CAssay kit
(Lonza, Inc.). All the cDNA, plasmid constructs and
primers used for this work are described in Supplemen-
tary Data. GST pull-down assay conditions are also
described in Supplementary Data.

Effect of protease inhibitors on the binding of PRRs to
galactose

One milliliter of naïve or infected hemolymph was
directly incubated with a 75% slurry of CNBr-activated
Tris-reacted Sepharose. Briefly, CNBr-activated Sepha-
rose 4 Fast Flow (Amersham and GE Healthcare) was
Tris-reacted and blocked with ethanolamine before
overnight incubation at 4 °C (by end-over-end rotation)
with hemolymph in the presence or in the absence of
protease inhibitors (PMSF+Mix G). The beads were
washed five times with ice-cold TBS (100 mM Tris–Cl
pH 7.4 and 150 mM NaCl) before elution with 50 μl of
0.4 M GlcNAc in TBS for 2 h at room temperature.
Proteins eluted were analyzed with SDS-PAGE and
identified with MS or Western blot (see Mass Spectro-
metry and Western Blots sections in Supplementary
Data).

Effect of PMSF on the binding of PRRs to bacteria

For all treatments, bacteria were freshly grown for 2–3 h
in tryptic soy broth, at 37 °C. Bacteria were washed thrice
in saline and resuspended in a volume of TBS to yield an
OD600 of 10.0/ml. This suspension was then used as
bacterial “beads” for incubation with horseshoe crab
hemolymph. Before incubation, hemolymph was preclar-
ified by centrifugation at 10,000g for 10 min and then
diluted 10-fold in TBS in the presence or in the absence of
1 mM PMSF. A 1-ml final volume of diluted hemolymph
was incubated with the bacteria. The hemolymph proteins
bound to the bacteria were eluted with 0.4 M GlcNAc,
analyzed by SDS-PAGE and silver-stained. To ensure a
complete elution of all the hemolymph proteins bound to
bacteria and thus to demonstrate that elution of protease-
treated samples is not improved due to on-column
proteolytic digestion, we also performed the elution with
4 M urea. The proteins eluted were analyzed by SDS-
PAGE, Coomassie-blue-stained and silver-stained. The
intensity of the Coomassie-blue-stained GBP and CL5
bands was densitometrically scanned and integrated
using ImageJ 1.38×.31

Yeast transformation and yeast two-hybrid analysis

Cotransformations of the different bait and prey
plasmids into S. cerevisiae AH109 strain were performed
in accordance with standard protocols.38 All the fragments
and full-length FC, C2/Bf, CRP-1, CRP-2, GBP and CL5-C
genes (without their signal sequence) were each fused to
the DNA-binding domain of Gal4 in the bait plasmid
pGBKT7 (BD Biosciences), or to the activation domain of
Gal4 in the prey plasmid pGADT7-Rec (BD Biosciences).
For selection, synthetic complete (SC) media lacking Leu
and Trp (SC-Trp-Leu) or lacking Leu, Trp, His and adenine
(QDO medium) were used (see Supplementary Data).
Transformants containing bait and prey plasmids were
selected on SC-Trp-Leu by incubation for 3.5 days at 30 °C.
Resulting colonies were suspended in water and replated
on SC-Trp-Leu and QDO agar at 30 °C for up to a
maximum of 7 days. The proteins were tested for
autoactivation by cotransformation of their recombinant
plasmid with an empty prey or bait plasmid. The positive
control was cotransformed with a plasmid expressing the
full-length Gal4 transcriptional activator together with the
empty pGADT7-Rec vector.

Accession numbers

The GenBank accession numbers of the gene and
proteins studied in this article are as follows: GBP,
AY647278; CRP-1 isoform, AY647271; CRP-2 isoform,
AY647272; CL5-C, DQ250746; FC, S77063; C2/Bf variant
1, AY647279.
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