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SUMMARY 

The pressures of an escalating population growth and industrial advancement have led to 

the addition of a large variety of different xenobiotic compounds into the environment. 

Public concern about the possible hazardous effects of these chemicals on humans and the 

environment has focused largely on a few classes of compounds. Of these compounds, 

chlorophenols are one of the most publicized. Chlorophenols are recognized to be 

carcinogenic to rats, potentially carcinogenic to humans and are especially resistant to 

degradation due to the stability induced by their chlorine substituents. However, anaerobic 

microorganisms can sequentially remove these chlorine constituents from these 

compounds through the process of reductive dehalogenation, which renders them more 

amenable to subsequent aerobic degradation and ultimate mineralization. These 

microorganisms are able to utilize halogenated compounds for energy synthesis by 

coupling reductive dehalogenation to energy metabolism.  

In this research, 20 samples from both natural (i.e. soils and sediments) and engineered 

(i.e. sludge from treatment plants) systems were collected from various locations in 

Singapore, China, Malaysia and Indonesia and were used as inocula for studies on their 

capability to dechlorinate pentachlorophenol (PCP) and 2,4,6-trichlorophenol (2,4,6-

TCP). Of the 20 samples, only a bacterial consortium, D12, grown in defined medium and 

pyruvate as the carbon source exhibited the capability of dechlorinating PCP to 4-

chlorophenol (4-CP). PCP was completely meta-dechlorinated to 2,4,6-TCP which was 

then further dechlorinated to (2,4-dichlorophenol) 2,4-DCP and finally 4-CP as the final 

dechlorination product. On the other hand, under similar conditions, all of the samples 

demonstrated the ability to dechlorinate 2,4,6-TCP. However, the extent which 2,4,6-TCP 
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was dechlorinated varied - with some being able to completely dechlorinate 2,4,6-TCP 

while others could not. The rates with which 2,4,6-TCP were converted also differed from 

one microcosm to another. Nevertheless, the dechlorination pathways for all 20 

microcosms were observed to be identical. Only the ortho chlorine atoms from 2,4,6-TCP 

were removed to generate 4-CP as the end product via 2,4-DCP.  

3 of the 2,4,6-TCP dechlorinating cultures, designated LWN, RIV and SC, were selected 

for further studies due to their capabilities to completely and rapidly dechlorinate 2,4,6-

TCP. Both cultures LWN and RIV completely dechlorinated 2,4,6-TCP to 4-CP in 5 days 

while culture SC took 12 days. Cultures LWN, RIV and SC were then tested for the 

presence of possible dehalogenators within the 3 bacterial consortia. A common 

chlorophenol-dechlorinating bacterium from the genus Desulfitobacterium was discovered 

in culture RIV while culture SC contained Dehalococcoides-like bacteria, which was 

never reported to have been able to completely dechlorinate 2,4,6-TCP. DNA sequencing 

results showed an even more interesting finding with the predominance of 

Sedimentibacter-like bacteria in culture LWN since Sedimentibacter have never been 

previously shown to dehalogenate any form of halogenated compounds. 

Halogenated compounds other than chlorophenols were also subjected to reductive 

dechlorination by cultures LWN, RIV and SC.  Extensive debromination of 

polybrominated diphenyl ethers (PBDE) was shown to be possible by culture RIV. 

Meanwhile, culture SC has also shown a broad range of dehalogenating potential as it 

successfully dechlorinated trichloroethene (TCE) to cis and trans-dichloroethene (DCE).  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

1.1.1 Halogenated Organic Compounds  

The ever increasing pressures of an escalating population growth and industrial 

development have led to the addition of an array of manmade chemicals into the 

environment. Halogenated organic compounds constitute one of the largest groups of 

environmental chemicals and are made up of the following 2 classes:  

i. Aliphatic (e.g. chlorinated ethenes)  

ii. Aromatic (e.g. chlorinated phenols, polybrominated diphenyl ethers, chlorinated 

biphenyls). 

 Their use and misuse in the industry and agriculture represent a large entry of these 

chemicals into the environment, resulting in widespread dissemination and oftentimes 

detrimental conditions especially to the environment. The ability of halogenated organic 

compounds, to impart toxicity, bioconcentrate and persist and subsequently, their 

ubiquitous distribution into the biosphere has caused a major concern over their potential 

effects on the quality of life.  
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1.1.2 Chemistry of Halogenated Organic Compounds 

In many respect, the chemistry of halogenated organic compounds is due to the unique 

physiochemical properties of their halogen substituent (F, Cl, Br, or I) (Haggblom and 

Bossert, 2003). At the start of the series, the carbon-fluorine bond is very strong with high 

polarity. With increasing molecular weight of the halogen, carbon-halogen bond energies 

decrease markedly, i.e. F > Cl > Br > I. Other characteristics, such as the electron-

withdrawing effect on the halogen substituent impact chemical reactivity of the molecule 

and its heat transfer and dielectric properties. The physical size and shape of the halogen 

substituent may also affect reactivity, due to steric constraints and may also hinder uptake 

into cells and enzymatic attack during biodegradation. In addition, the halogen moiety of 

an organic compound generally reduces its water solubility and conversely increases lipid 

solubility. The biological consequence of increased lipophilicity may be reduced 

biodegradation due to decreased bioavailability, and/or biomagnifications in the food 

chain as the non-degraded haloorganic compounds sequester in the fatty tissues of higher 

animals.  

In halogenated aromatic compounds, biodegradability of depends on the number and 

position of substituents on the aromatic ring. As example, chlorophenols are found to be 

less readily biodegradable than phenol and their rate of biodegradation decreases with 

increasing numbers of chlorine substituents on the aromatic ring. In terms of the position 

of the chlorine (halogen), it has also been proposed that the relative order of 

biodegradability for chlorophenols was found to be ortho > meta > para in aquifer 

sediments and in digested but in the order of ortho > para > meta in anoxic natural marine 

sediments and in soil (Annachhatre and Gheewala, 1996).    
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Finally, the halogen substituent and its potential organohalide metabolites may alter, 

oftentimes increasing, the inherent toxicity of the molecule (Haggblom and Bossert, 

2003). Although microorganisms can adapt to remove many toxic substances when these 

compounds are fed into similar and relevant pathways that are already present for the 

biodegradation of natural compounds, the great variety of halogenated organic compounds 

used today may disrupt the balance of the ecosystem. Microorganisms are challenged to 

develop new pathways by altering their own preexisting genetic information as a result of 

either mutation(s) in single structural and/or regulatory genes or perhaps recruitment of 

single silent genes when the encounter these compounds. One should recognize that it 

may take microorganisms a long time to acquire the ability to degrade all the new 

synthetic chemicals introduced into the environment by modern technology. In future, it 

will be necessary to develop microbial systems that can speed the evolution of 

degradation traits since the naturally existing microbial systems cannot cope with the high 

and rapid influx of the numerous and new kinds of anthropogenic halogenated organic 

compounds (Chaudry and Chapalamadugu, 1991).  

Resistance to both chemical and biological degradation is one of the qualities that has 

made many organohalides useful in industrial applications (see section 1.1.3 for more 

information) but it is also the reason for many of the environmental problems related to 

the use of these compounds. The persistence of organohalides in the environment varies 

from days to several decades, depending on the chemical structure and the prevailing 

environmental conditions and can play a major role in their overall global impact. 

     



4 
 

1.1.3 Uses of Halogenated Organic Compounds 

The discovery of chlorine and other halogens and the elucidation of their unique 

chemistry were followed by their synthesis and large-scale industrial production and 

application. The scale of production (past and present) of these organohalides has had 

direct implications for their occurrence and fate in the global environment. Organohalides 

are integral to a variety of applications, including use as solvents, degreasing agents, 

biocides, pharmaceuticals, plasticizers, hydraulic and hear transfer fluids, intermediates 

for chemical synthesis and numerous other industrial functions. Other halogenated 

compounds are produced as by-products during combustion, chlorine bleaching of pulp or 

disinfection of water and wastewater. As a result, many halogenated organic compounds, 

including aliphatic, aromatic and heterocyclic derivatives have been produced and used in 

the vast quantities over the last 50 to 80 years. The majority of these compounds are 

chlorinated, but brominated, fluorinated and iodinated compounds also have industrial 

applications (Stringer and Johnston, 2001). 

 

1.1.4 Fates of Halogenated Organic Compounds in the Environment 

Introduction of industrial halogenated compounds into the environment occurs through 

terrestrial, aquatic and atmospheric discharges. Therefore, their impact is on all major 

environmental compartments, i.e. soils sediments, water and air. Depending on their 

ultimate fate, organohalides may be degraded to harmless byproducts or they may exert 

harmful effects through toxicity, biomagnification and/or persistence in the environment. 

Their harmful impact on the biota may be direct, i.e. toxicity, or indirect, such as by 
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destruction of the protective ozone layer in the stratosphere by atmospheric halocarbons. 

Owing in part to their often xenobiotic origin and persistent character, many industrial 

organohalides are resistant to biodegradation, and therefore accumulate and exert their 

harmful effects in the environment (Haggblom and Bossert, 2003).  

 

1.1.5 Strategies for the Treatment of Halogenated Organic Pollutants 

The biological treatment of halogenated organic pollutants is possibly the most 

economical and efficient treatment technology available for use by environmental 

engineers. The biological treatment can be either aerobic or anaerobic or combination 

thereof. These processes have effectively demonstrated their capability in the treatment 

and removal of halogenated organic compounds (Chaudhry and Chapalamadugu, 1991).  

The aerobic process is more effective in degrading halogenated organics with a low 

degree of chlorination (i.e. 3 or less halogen substituent) as these halogenated organics are 

more reduced in their oxidation state (Figure 1.1). It has been reported aerobic 

degradation of the lower order halogenated compounds is mainly due to co-metabolic 

reaction in which the halogenated compounds were fortuitously dechlorinated during 

metabolism of the primary organics (Haggblom and Bossert, 2003). The oxygenase 

enzyme systems in the aerobic system were often responsible for these fortuitous 

degradation (Haggblom and Bossert, 2003). However, these enzymes were only induced 

by the primary organics and the halogenated compounds had to often compete with the 

former, leading to a reduction in the degradation of the halogenated compounds. 
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Today, anaerobic biotreatment is one of the most widely used biological processes 

especially for the treatment of industrial wastewaters containing both primary and highly 

halogenated organics (Speece, 1996). The preference for anaerobic biotreatment is 

because the process can be very cost competitive in terms of its lower sludge handling and 

lower energy requirements compared to the aerobic process. An end-product of the 

anaerobic process, CH4 can also be used as fuel for the generation of electricity and hence 

supplementing the energy needs of the treatment plant.  

In addition to that, for halogenated compounds with 3 or more halo-functional groups, 

anaerobic treatment is preferred since highly halogenated compounds such as 2,4,6-

trichlorophenol and pentachlorophenol are more reactive in a reductive environment. Due 

to the oxidized nature of highly halogenated organic compounds, these compounds are 

more susceptible to dehalogenation in the anaerobic environment (Figure 1.1) (Armenante 

et al., 1999). And as such, applying strategies involving a highly energy intensive 

oxidative process (i.e. aerobic) to treat such compounds is perhaps not the best measure.  

Reductive dehalogenation, the essential and predominant process in the anaerobic 

transformation of halogenated compounds, is briefly introduced in the following section. 
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Figure 1.1: Relative trends of oxidative and reductive dechlorination as a function of 

dehalogenation. 

 

1.1.6 Reductive Dehalogenation by Anaerobic Bacteria 

Degradation of halogenated compounds under anoxic conditions was first studied in the 

1950s and the 1960s when the fate of halogenated pesticides in agricultural soils was 

investigated (Allan, 1955; Guenzi and Beard, 1967). Only 15 or 20 years later, the 

anaerobic degradation of halogenated compounds has become a matter of special concern 

due to the almost ubiquitous presence of chlorinated compounds that resist aerobic 

degradation, such as tetrachloroethene and polychlorinated biphenyls, are transformed 

under anoxic conditions be reductive reactions (Parsons et al., 1984; Quensen et al., 

1988).  

Reductive dehalogenation reactions have a large potential for application in treatment 

processes for materials contaminated with halogenated compounds such as industrial 

wastes, soils, sediments and groundwater. Aerobically persistent polyhalogenated 
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compounds can be transformed by anaerobic mechanisms into harmless compounds that 

are further degradable by aerobic microorganisms (Holliger and Schraa, 1994). 

Reductive dehalogenation under anoxic conditions has been reported for many different 

compounds such as chlorobenzoates, chlorophenols, chlorobenzenes, chloromethanes, 

chloroethanes and chloroethenes. Although abiotic processes might be involved in some 

of the reductive transformations observed in environmental samples, recent evidence has 

been presented to show that the majority of these reactions are biologically catalyzed. 

Several reviews are available that summarize the knowledge of reductive dehalogenations 

catalyzed by mixed and pure cultures (Mohn and Tiedje, 1992; El Fantroussi et al., 1998; 

Holliger et al., 1999). Long acclimation periods, substrate specificity, high dehalogenation 

rates and the possibility to enrich for the dehalogenation activity by sub-cultivation in 

media containing a selective organic or inorganic electron donor indicate that many of the 

reductive dehalogenation activities in the environment are catalyzed by specific bacteria 

(Holliger and Schumacher, 1994). Despite the strong evidence for the involvement of 

biological processes in reductive dehalogenation processes, a biological activity can be 

unambiguously assigned only to a few of the reductive dehalogenation reactions observed 

in environmental samples. The availability of pure cultures catalyzing reductive 

dehalogenations allows for more detailed investigations on the metabolic function of these 

types of reactions.   

 

1.2 Problem Statement 

From the previous sections, it is clear that the anaerobic reductive dehalogenation is the 

preferred treatment method for halogenated organic pollutants.  However, studies of 



9 
 

reductive dehalogenation of this particular compound have been limited. Most of these 

studies have used mixed cultures and not many stable enrichments or pure cultures of 

dehalogenating anaerobes are known to exist. Only a few microbes capable of reductive 

dehalogenation have been documented and isolated as pure cultures. Even so, most 

isolates as well as enriched mixed cultures have shown only partial or incomplete 

dehalogenation of these compounds. Some of these pure cultures isolated require a co-

metabolic process in order for reductive dehalogenation to take place. Furthermore, many 

of these cultures were grown in undefined medium (i.e. require yeast extract for growth).   

The severity of the problems halogenated organic compounds can potentially pose to the 

environment coupled with the lack of knowledge pertaining to the biotreatment of these 

compounds, it is therefore crucial that more studies on reductive dehalogenation are 

carried out in an attempt to give both engineers and scientists alike a better and more 

profound understanding in this area. 

 

1.3 Objectives 

Using chlorophenols as the representative of halogenated organic compounds, the overall 

goal of this study is to cultivate and characterize novel anaerobic chlorophenol- 

dechlorinating cultures in order to develop an advanced understanding of the reductive 

dehalogenation process and the microbes involved as well as their correlation with each 

other.  
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Specific objectives of this study are: 

i. To optimize analytical methods as well as to increase detection and measurement 

sensitivity of chlorophenols and the potential degradation products.   

ii. To cultivate bacterial consortia responsible for the degradation of chlorophenol; 

iii. To identify the microbes responsible for chlorophenol dechlorination by 

employing molecular biological techniques; 

iii. To investigate the feasibility of the application of the chlorophenol dechlorinating 

cultures on the reductive dehalogenation capability on other halogenated organic 

compounds. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Chlorinated Organic Compounds and Chlorophenols 

Chlorinated organic compounds constitute one of the largest group of halogenated 

compounds and are among the most toxic and hazardous compounds found in the 

environment. As a result to their widespread use, they are extraneously added in large 

quantities and have been found to persist in the lakes, rivers, groundwater systems, 

sediments and soils due to their inherent resistant to both chemical and biological 

degradation (Stringer and Johnston, 2001). 

Chlorophenols are a group of toxic, colorless, weakly acidic organic aromatic compounds 

in which one or more of the hydrogen atoms attached to the benzene ring of phenol have 

been replaced by chlorine atoms.  They constitute a series of 19 toxic compounds 

consisting of monochlorophenols, dichlorophenols, trichlorophenols, tetrachlorophenols, 

and pentachlorophenol. Chlorophenols are produced by the direct chlorination of phenols 

using a variety of catalysts and reaction conditions and are extensively used as biocides 

because of their broad spectrum of anti-microbial properties.    

The physical and chemical information of some important chlorophenols in this 

manuscript, namely 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and 

pentachlorophenol are shown in Table 2.1. 
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Table 2.1: The physical and chemical information of 4-CP, 2,4-DCP, 2,4,6-TCP and PCP. 

Characteristics 4-Chlorophenol 2,4-Dichlorophenol 2,4,6-Trichlorophenol Pentachlorophenol 

Abbreviation 4-CP 2,4-DCP 2,4,6-TCP PCP 

Chemical formula C6H5ClO C6H4Cl2O C6H3Cl3O C6HCl5O 

Molecular weight 128.56 163.00 197.45 266.35 

Melting point 43.2 – 43.7 ºC 45 ºC 69 ºC 190 ºC 

Boiling point 220 ºC 210 ºC 246 ºC 309 – 310 ºC 

Density 1.306 g/cm
3
 1.38 g/cm

3
 1.49 g/cm

3
 1.987 g/cm

3
 

Solubility: 

 Water at 25ºC 

 Organic solvent 

 

27,000 ppm 

Alcohol, glycerol, ether, 

chloroform, fixed and 

volatile oils, benzene 

 

4,500 ppm 

Ethyl alcohol, carbon 

tetrachloride, ethyl ether, 

benzene, chloroform 

 

434 ppm 

Acetone, benzene, 

carbon tetrachloride, 

diacetone alcohol, 

methanol, Stoddard 

solvent, touene, 

turpentine, ether 

 

14 ppm (at 20 ºC) 

Alcohol, ether, benzene, 

slightly soluble in cold 

petroleum ether 

pKa 8.85 7.68 7.42 4.7 

Partition coefficient 

 Log KOW 

 Log KOC 

 

2.4 

1.2 – 2.7 

 

3.2 

2.42 – 3.98 

 

3.69 

1.94 – 3.34 

 

5.01 

4.5 
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2.1.1 Usages of Chlorophenols 

All the chlorophenols have been used as biocides. The monochlorophenols have been 

used as antiseptics (ASTDR, 1999), although in this role they have largely been replaced 

by other chemicals (WHO, 1989). Specifically, 4-CP has been used as a disinfectant for 

home, hospital, and farm uses (WHO, 1989) and as an antiseptic in root canal treatment 

(Gurney and Lantenschlager 1982). 2,4-DCP has been used for mothproofing and as a 

miticide (WHO, 1989), while the higher chlorophenols have been used as germicides, 

algicides, and fungicides. 

The principal use of the monochlorophenols has been as intermediates for the production 

of higher chlorinated phenols (WHO, 1989). The largest uses for 2,4-DCP and 2,4,5-TCP 

have also been used as an intermediate, especially in the production of the herbicides 2,4-

dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) 

(WHO, 1989). In the United States, 2,4-D is still in use, while 2,4,5-T was taken off the 

market in 1985. 2,4,6-TCP has been used as an intermediate in the production of higher 

chlorinated phenols especially 2,3,4,6-TeCP and pentachlorophenol (WHO, 1989). 

2,4,6-TCP and the tetrachlorophenols have also been used directly as wood preservatives 

(ASTDR, 1999). In this role, the tetrachlorophenols are generally used as a mixture and 

are applied to lumber in an aqueous solution (WHO, 1989). Commercial 

pentachlorophenol, which is more frequently used as a wood preservative, also contains 

about 4% tetrachlorophenols and 0.1% trichlorophenols (Vainio et al., 1990). North 

America and Scandinavia are the main regions of the world where chlorophenols have 

been used as wood preservatives. The use of these compounds has been banned in 

Sweden since 1978, and production was banned in Finland in 1984 (Vainio et al., 1990). 
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Pentachlorophenol was one of the most widely used biocides in the United States. It was 

registered for use by EPA as an insecticide (termiticide), fungicide, herbicide, 

molluscicide, algicide, disinfectant, and as an ingredient in antifouling paint (Rao, 1978), 

but it has been a restricted-use pesticide since July 1984 (ASTDR, 2001). The principal 

use of pentachlorophenol is as a wood preservative (registered by EPA for power-line 

poles, cross arms, fence posts, and the like). The treatment of wood for utility poles 

represents 80% of the U.S. consumption of pentachlorophenol (ASTDR, 2001). However, 

pentachlorophenol is no longer contained in wood preserving solutions or insecticides and 

herbicides available for home and garden use since it is a restricted-use pesticide. 

Pentachlorophenol is used for the formulation of fungicidal and insecticidal solutions and 

for incorporation into other manufactured pesticide products. These non-wood uses 

account for no more than 2% of U.S. pentachlorophenol consumption (ASTDR, 2001). 

This wide spectrum of uses was partially attributed to the solubilities of the non-polar 

pentachlorophenol in organic solvents, and the sodium salt in water. 

 

2.1.2 Environmental Fates of Chlorophenols 

The majority of known environmental releases of chlorophenols were to surface water. 

The principal point source of water pollution by chlorophenols is industrial waste 

discharge; another point discharge is the leaching of chlorophenols from landfills. 

Chlorophenols enter the atmosphere through volatilization, with mono- and 

dichlorophenols being the most volatile. The primary nonpoint source pollution of 

chlorophenols comes from the application of pesticides that are made from chlorophenols 

and the chlorination of waste water containing phenol (ASTDR, 1999). 
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Once released to the environment, chlorophenols are subject to a series of physical, 

chemical, and biological transformations. Sorption, volatilization, degradation, and 

leaching are the primary processes governing their fate and transport. The pH in water 

and in soil and sediment is a major factor affecting the fate and transport of chlorophenols 

in these media, since the degree to which the compounds ionize increases with increasing 

pH. In addition, physiochemical properties of chlorophenols such as water solubility, 

Henry‟s law constant, organic carbon sorption coefficient, volatilization rate, and 

photolysis rate determine transport processes. Important environmental parameters 

influencing these processes include organic matter content and clay content in soil, 

sediment, and water, as chlorophenols are in general preferentially adsorbed to these soil 

constituents. In general, as the number of chlorine molecules increase, there is a reduction 

in vapor pressure, an increase in boiling point, and a reduction in water solubility of the 

chlorophenols. Therefore, increasing chlorination increases the tendency of these 

compounds to partition into sediments and lipids and to bioconcentrate. Chlorophenols 

are subject to abiotic and biotic degradation and transformations. However, compounds 

containing chlorine in the meta positions show greater resistance to microbial attack 

(ASTDR, 1999).  

The general population may be exposed to chlorophenols through ingestion of chlorinated 

drinking water and food contaminated with the compounds and inhalation of 

contaminated air. Exposure to 4-CP could also occur through its use as a root canal 

packing. Populations with potentially unusually high exposure to chlorophenols generally 

include employees of facilities that manufacture or use chlorophenols and their 
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derivatives and those who live in the vicinity of chlorophenol-containing waste disposal 

sites and waste incinerators (ASTDR, 1999). 

 

2.2 Utilization of Chlorinated Compounds by Microorganisms 

The biological destruction of toxic and hazardous chemicals is also based on the 

principles that support all ecosystems. These principles involve the circulation, 

transformation, assimilation of energy and matter (Cookson, 2005). Microorganisms 

convert complex organic compounds, via their central metabolic routes, to CO2 or other 

simple organic compounds. The oxidation yields energy and reducing equivalents that are 

used for conversion of a part of the intermediates to cell mass (assimilation), enabling 

growth of the organisms that carry out the degradation process (Bhatt et al., 2007). 

Degradation of compounds of natural origin is usually easy to achieve, and organisms that 

bring about their degradation can be easily isolated from their natural environments. 

However, in general, compounds having a structure that is different from naturally 

occurring compounds (xenobiotics, most of which are toxic and hazardous) are more 

difficult to degrade (Leisinger et al., 1981). Nevertheless, in the recent past, an array of 

microorganisms has been identified that use xenobiotics such as chlorinated alkanes, 

chlorinated halohydrins, polychlorinated biphenyls, and chlorobenzenes for their survival. 

 

2.2.1 Biodegradation of Chlorinated Compounds 

Biodegradation of chlorinated compounds follows two pathways namely “aerobic 

degradation” or “anaerobic degradation.” However, irrespective of the pathway followed, 
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the extent of degradation depends on the structure of the compound, the number of 

chlorine substituents, and the position of chlorine in the molecules. Depending on the 

structure, chlorinated compounds can be either oxidized or reduced. Reduction is possible 

because of their electronegative character, which makes them highly electron deficient 

(Bhatt et al. 2007). 

Aerobic Biodegradation - During aerobic degradation of chlorinated compounds by 

microorganisms, molecular oxygen serves as the electron acceptor. 

Anaerobic Biodegradation - In the anaerobic mode of degradation the electron acceptor is 

a molecule other than O
2
. This could be NO3

−
, SO4

2−
, Fe

3+
, H

+
, S, fumarate, 

trimethylamine oxide, an organic compound, or CO2 (Cookson, 1995). The term 

“dehalorespiration” has been coined for anaerobic bacteria that couple the reductive 

dehalogenation of chlorinated aliphatic and aromatic compounds to ATP synthesis via an 

electron transport chain (Wohlfarth and Diekert, 1997). Reductive dechlorination or 

reductive dehydrogenolysis is a common biotransformation pathway for chloroaliphatics 

containing one or two carbon atoms, under methanogenic conditions (Semprini, 1997). 

Sequential Degradation - Although degradation of chlorinated aliphatic and aromatic 

compounds has been reported both under aerobic and anaerobic conditions, sequential use 

of these processes always has an advantage over using them individually for complete 

mineralization of heavily chlorinated compounds. It is generally implied that aerobic 

microbes often fail to metabolize heavily chlorinated compounds. Therefore, it has been 

suggested that detoxification and complete mineralization of chlorinated wastes can be 

easily achieved by using a sequential treatment process, that is, anaerobic followed by 
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aerobic treatment. A sequential treatment step will ensure total mineralization of these 

chlorinated toxic compounds. 

 

2.2.2 Biodegradation of Chlorophenols 

Chlorinated phenols may be removed from a water body via various processes, namely, 

volatilization, photodegradation, adsorption onto suspended or bottom sediments and 

microbial degradation.  In microbial degradation of chlorophenols, certain microbial 

communities showed chlorophenols degrading capability under limited anaerobic 

conditions; degradation is usually initiated by microbial reductive dehalogenation 

followed by ring cleavage (Annachhatre and Gheewala, 1996).  Chlorophenols, like many 

chlorinated aromatic compounds, are amenable to reductive dehalogenation and are 

biotransformed in anaerobic soils, sediments and sewage sludge.  As mentioned, 

anaerobic bacteria initiate degradation of chlorophenols by reductively removing chlorine 

from the aromatic ring.  In this transformation, chlorine atoms are replaced with hydrogen 

atoms. 

While abiotic and biotic natural attenuation processes may reduce the threats associated 

with these contaminants, the efficiency of these processes varies greatly and depends on 

the properties of these compounds as well as on environmental conditions.  Halogenated 

compounds, many of which are very toxic and carcinogenic, are especially resistant to 

degradation due to the stability induced by their halogen (e.g. chlorine, bromine) 

substituents. However, anaerobic microorganisms can sequentially remove halogenic 

constituents from these compounds through the process of reductive dehalogenation, 
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which renders them more amenable to subsequent aerobic degradation and ultimate 

mineralization (Pavlostathis, 2002). 

Thus, identification and application of novel microbes for biodegradation of these 

chemicals and the optimization of the process have become an essential area of research 

today.  

 

 2.3 Microbial Reductive Dehalogenation 

Reductive dehalogenation involves the removal of a halogen substituent from a molecule 

with concurrent addition of a electrons to the molecule. Essentially, two processes have 

been identified. The first process, hydrogenolysis, is the replacement of a halogen 

substituent of a molecule with a hydrogen atom (Figs. 2.1A and 2.1B). The second 

process, vicinal reduction or dihaloelimination, is the removal of two halogen substituents 

from adjacent carbon atoms with the formation of an additional bond between the carbon 

atoms (Fig. 2.1C). Hydrogenolysis can transform alkyl or aryl halides, whereas vicinal 

reduction can transform only akyl halides. Both processes require an electron donor 

(reductant). In all reported examples of biologically catalyzed reductive dehalogenation, 

the halogen atoms are released as halide anions (Mohn and Tiedje, 1992).  
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Figure 2.1: Examples of dehalogenation: (A) Aryl hydrogenolysis of 30chlorobenzoate to 

benzoate; (B) alkyl hydrogenolysis of 1,2-dichloroethane to chloroethane; (C) vicinal 

reduction of 1,2-dichloroethane to ethene.  

 

2.3.1 Oxidative vs. Reductive Transformation 

Anthropogenic compounds can be degraded in the environment as part of the natural 

biogeochemical processes. Many of these natural attenuation processes are microbially 

mediated and occur when organic compounds are oxidized for energy and growth, using 

oxygen as the terminal electron acceptor in coupled redox reactions. Polyhalogenated 

organic compounds, however, tend to be resistant to biodegradation in aerobic 

environments. These compounds are more oxidized than their non-halogenated 
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counterparts due to the presence of the highly electronegative halogen substituents, which 

provide stability to the molecule. As a result, reduction of these compounds is more likely 

to occur than oxidation as the degree of halogenation increases. However, 

polyhalogenated compounds can be used as electron acceptors in thermodynamically 

favorable reactions. The microbial reductive dechlorination of a large number of 

polychlorinated compounds (e.g., polychlorinated biphenyls (PCBs), halogenated alkanes, 

alkenes, phenols, benzenes, benzoates, etc.) has been well documented (Dolfing and 

Beurskens, 1995; El Fantroussi et al., 1998; Fetzner and Lingens, 1994; Fetzner, 1998; 

Middeldorp et al., 1999). 

 

2.3.2 Mechanisms and Reactions in Microbial Reductive Dehalogenation 

There are two basic mechanisms by which reductive dehalogenation can occur: 

hydrogenolysis (i.e., displacement of a halogen substituent with hydrogen) and 

dihaloelimination (i.e., replacement of two halogen-carbon bonds with a carbon-carbon 

bond). Both types of reactions require the transfer of electrons from an external donor and 

produce protons (acid). Due to the predominance of hydrogenolysis in environmental 

systems, the term reductive dehalogenation has been used synonymously with the term 

hydrogenolysis. Dehalogenation reactions form organic products which tend to be less 

hydrophobic, more volatile, and more soluble than the parent compounds by many orders 

of magnitude. Thus, dehalogenation leads to increased contaminant mobility. As halogens 

are sequentially removed, however, dehalogenation reactions tend to slow considerably 

once compounds are transformed to a di- or monohalogenated state (Pavlostathis, 2002).  



22 
 

2.3.3 Role of Electron Donors in Microbial Reductive Dehalogenation 

Reductive dehalogenation reaction, whether catalyzed by a transition metal, bacterial 

cofactors, or an enzyme, requires two electrons. Therefore, a source of electrons must be 

available for the reaction to take place. (Bhatt et al., 2007) The source of electrons (or 

electron donor) for a dechlorination reaction is usually a reduced substrate provided for 

microbial growth.  

 

2.3.4 Role of Electron Acceptors in Microbial Reductive Dehalogenation 

All energy-yielding reactions are oxidation–reduction reactions. The reduction reaction, 

that is, the reaction involving the electron acceptor, establishes the metabolism mode 

(McCarty, 1987). Microbes preferentially utilize electron acceptors that provide the 

maximum free energy during respiration (Stumm and Morgan, 1981). Among the 

common electron acceptors used by microorganisms, O2 typically provides the maximum 

free energy during electron transfer, followed by nitrate, Mn(IV), Fe(III), SO4
2−

 , and CO2 

(Cobb and Bouwer, 1991). 

Chlorinated compounds are stronger oxidants than nitrate (Vogel et al., 1987). On the 

basis of such thermodynamic considerations, chlorinated hydrocarbons have been shown 

to act as terminal electron acceptors in a respiratory process (Dolfing and Gibbs, 1992). 
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2.3.5 Reductive Dehalogenation in the Energy Metabolism of Anaerobic Bacteria  

Several anaerobic bacteria have been isolated which are able to dechlorinate chlorinated 

aliphatic and aromatic compounds at catabolic rates. For some of these bacteria, it has 

been shown that the reductive dechlorination is coupled to energy conservation, a process 

designated as „dehalorespiation’ (Holliger et al., 1999). In other reports, the terms 

`halorespiration' or `chlororespiration', which suggest that a halogen serves as terminal 

electron acceptor (in analogy to e.g. fumarate or nitrate respiration), have been used. 

Since this is not the case, the term `dehalorespiration' is preferable, as it indicates that the 

dehalogenation process is coupled to ATP synthesis via a chemiosmotic mechanism.  

Principally microorganisms couple only those half-reactions that yield the maximum free 

energy for the synthesis of ATP. The energy released from the reaction is comparable to 

that of nitrate reduction and much higher than either methanogenesis or sulfate reduction 

under identical physiological conditions (Bhatt et al., 2007).   

During energy metabolism, energy available from all reductive dechlorination reactions is 

of a similar order of magnitude, irrespective of the parent compound and the number or 

position of chlorines, since most of the energy becomes available due to the change in the 

oxidation state of chlorine (Cl
+
 or Cl

−
). Thus, free energy from each chlorine atom 

removed for a host of chlorinated organics has been calculated to vary between −130 and 

−171 kJ per chlorine atom removed (Dolfing and Harrison, 1992). 

A prerequisite for the coupling of energy conservation to reductive dechlorination is that 

the following reaction is thermodynamically favorable: 

R-Cl + 2[H]  R-H + H
+
 + Cl

-
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It has been demonstrated that this reaction is usually exergonic, as shown for 

tetrachloroethene or 3-chlorobenzoate in Fig. 2.22. For most halogenated compounds, the 

standard redox potential for the couplet R-Cl/R-H lies between approximately +250 and 

+600 mV (Vogel et al., 1987; Dolfing and Harrison, 1992). Therefore, these compounds 

are thermodynamically favorable as electron acceptors under anaerobic conditions. This is 

also true of monohalogenated compounds, some of which, for example, vinyl chloride 

and monochlorobenzene, are often dechlorinated slowly, if at all.  

Anaerobes capable of growth on a defined medium with the chlorinated substrate as the 

electron acceptor and an electron donor like H2 or formate, the oxidation of which cannot 

be coupled to the synthesis of ATP (Fig. 2.2), have to gain their energy from 

dehalorespiration. For those organisms which require an electron donor yielding ATP via 

substrate level phosphorylation during oxidation, dehalorespiration is difficult to prove 

unambiguously, even if the organism depends on the presence of the chlorinated 

compound as an electron acceptor. It is feasible that the organohalogen merely serves as a 

favorable and/or necessary electron sink for reducing equivalents generated upon 

oxidation of the electron donor (Holliger et al., 1999). 
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Figure 2.2: Scheme of dehalorespiration with H2 as electron donor and tetrachloroethene 

or 3-chlorobenzoate as electron acceptor  (Holliger et al., 1999). 

 

2.4 Pure Isolates Capable of the Reductive Dehalogenation of Chlorophenols 

To date, only a few anaerobic bacteria that can reductively dechlorinate chlorophenols 

have been isolated. These dechlorinators generally belong to the genus, 

Desulfitobacterium. The mainly use highly chlorinated chlorophenols as their electron 

donors for growth and normally thrive under neutral pH conditions. The following section 

describes all known pure isolates that are capable of dechlorinating chlorophenols with 3 

or more chlorine substituents. 
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 2.4.1 Desulfomonile tiedjei DCB-1 

The Desulfomonile tiedjei DCB-1 is the earliest and best described dechlorinating culture 

to date  (Mohn and Kennedy, 1992). This dechlorinating bacterium is a gram-negative, 

obligate anaerobe with a unique „collar‟ surrounding the cell and was enriched and 

isolated from a stable methanogenic consortium from sewage sludge. 3-Chlorobenzoate is 

required for the dechlorination of chlorophenols and serves as an inducer. Neither PCP 

nor 3-CP could induce dehalogenation.  Strain DCB-1 dechlorinates pentachlorophenol 

and other chlorophenols only at the meta position (e.g. parent compound PCP to 2,4,6-

TCP as the end product). This bacterium however could not dechlorinate 3-CP. The 

maximum rate of PCP dechlorination observed was 54 µmol of Cl
-
 h

-
 g of protein

-1
. PCP 

concentration of greater than 10 µM (approximately 1.7 mmol g of protein
-1

 inhibits the 

growth of strain DCB-1. 

 

2.4.2 Desulfitobacterium frappieri PCP-1 

Desulfitobacterium frappieri PCP-1 was isolated from a methanogenic consortium which 

originated from a mixture of anaerobic sewage sludge and soil samples that had been 

contaminated with PCP (Bouchard et al., 1996). Anaerobic bacterium strain PCP-1 is the 

only known pure isolate capable of dechlorinating pentachlorophenol to 

monochlorophenol. This organism is a spore-forming, rod-shaped bacterium that is non-

motile, assacharolytic and Gram stain negative but Gram type positive as determined by 

electron microscope observation. In organic electron acceptors such as sulfite, thiosulfate 

and nitrate (but not sulfate) stimulate growth in the presence of pyruvate and yeast 



27 
 

extract. The dechlorination pathway for strain PCP-1 is PCP  2,3,4,5-TeCP  3,4,5-

TCP  3,5-DCP  3-CP. This bacterium dechlorinates several different chlorophenols at 

ortho, meta and para positions with the exceptions of 2,3-DCP, 2,5-DCP, 3,4-DCP and 

the monochlorophenols. The time course of PCP dechlorination suggests that two enzyme 

systems are involved in dehalogenation in strain PCP-1. One system is inducible for ortho 

dechlorination and the second system is inducible for meta and para dechlorinations. 

 

2.4.3 Desulfitobacterium dehalogenans JW/IU-DC1 

Strain JW/IU-DC1 was isolated from a methanogenic lake sediment (Utkin et al., 1994; 

Utkin et al., 1995) . This organism, an anaerobic, motile, Gram-type-positive, rod-shaped 

bacterium requires the presence of yeast for growth. This strain of dehalorespiring 

bacterium dechlorinates a broad range of chlorophenols (PCP, TeCP, 2,3,4-TCP, 2,3,6-

TCP, 2,4,6-TCP, 2,3-DCP, 2,4-DCP and 2,6-DCP) but only at the ortho position (Refer to 

Figure 2.3). 3-chloro-4-hydroxyphenylacetate (3-Cl-4-OHPA) is required to act as the 

inducer for the reductive dehalogenation of chlorophenols. Pyruvate, lactate, formate, or 

hydrogen can serve as the electron donor for strain JW/IU-DC1.  
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Figure 2.3: General scheme of reductive ortho dehalogenation with D. dehalogenans 

JW/IU-DC1 cultures grown in 0.1% yeast extract medium containing 20 mM pyruvate 

and 10 mM 3-Cl-4-OHPA as the inducer. 

 

2.4.4 Desulfitobacterium hafniense DCB-2 

Strain DCB-2 is an obligately anaerobic, spore-forming bacterium that is capable of 

reductive dechlorination of chlorophenols (Madsen and Licht, 1992; Christiansen and 

Ahring, 1996). The strain is a curved, rod-shaped organism whose cells occur singly, in 

pairs and in small chains. Strain DCB-2 is motile and normally has one terminal flagellum 

although, occasionally, two flagella can be observed too. The strain was grown in 

pyruvate and required yeast extract for growth. DCB-2 exhibited only ortho-

dechlorination in chlorophenols while meta-dechlorination is observed only when 3,5-

DCP was used as the electron acceptor. Slow and incomplete dechlorination was observed 

when PCP was used as the electron acceptor.   
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2.4.5 Desulfitobacterium chlororespirans Co23 

Strain Co23 is an obligately anaerobic, spore-forming microorganism enriched and 

isolated from a compost soil that is capable of reductively dechlorinates chlorophenols 

(Sanford et al., 1996). The cells are slightly curved, motile rods and stain Gram negative 

but phylogenetically, this organism is within the Gram-positive Desulfotomaculum group. 

Terminally located spores appear in late growth. This strain is capable of ortho 

dechlorinating the following range of chlorophenols with their respective dechlorination 

products given in parentheses: 2,3-DCP (3-CP), 2.6-DCP (2-CP) and 2,4,6-TCP (4-CP). 

Pyruvate, lactate, butyrate and H2 are used as electron donors. 

 

2.4.6 Desulfitobacterium dehalogenans PCE1 

A strictly anaerobic bacterium, strain PCE1, was isolated from a tetrachloroethene-

dechlorinating enrichment culture (Gerritse et al., 1996). Cells of the bacterium were 

motile curved rods with approximately four lateral flagella and possess Gram-positive 

type cell walls. Yeast extract is required to support growth. With lactate or pyruvate as 

electron donors, several ortho-chlorinated phenolic compounds were utilized as electron 

acceptor and dechlorinated by strain PCE1. 2,4,6-TCP was reductively dechlorinated via 

2,4-DCP to 4-CP and 2-CP to phenol. Dechlorination of PCP was not observed. 
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2.4.7 Desulfitobacterium frappieri TCP-A 

Desulfitobacterium frappieri TCP-A is an anaerobic, chlorophenol dehalogenating 

microorganism enriched and isolated from the river sediments in Germany (Breitenstein 

et al., 2001). Strain TCP-A are slightly curved, rod-shaped rods that exhibits high motility 

and stained weakly Gram-positive. This strain can dechlorinate chlorophenols at chlorine 

substituents at both ortho positions and one chlorine substituent at the meta position. No 

dechlorination of chlorophenols at the para position was observed. PCP and 2,3,4,5-TeCP 

were only partially dechlorinated. 2,4,6-TCP is required to induce dechlorination for 

several chlorophenols. Table 2.2 describes the case. No dechlorination was recorded when 

yeast extract was used.  

  

2.4.8 Dehalococcoides strains CBDB1 and 195 

Strains CBDB1 and 195 were the first two strains of microbes from the genus 

Dehalococcoides described to dechlorinate chlorophenols (Adrian et al., 2007). Strain 

CBDB1 showed dechlorination capability with a wide range of chlorophenols. This strain 

can dechlorinate PCP, all 3 isomers of TeCP, all 6 isomers of TCP and 2,3-DCP. Figure 

2.4 describes in detail. Chlorophenols were found to be preferentially dechlorinated at the 

ortho position. 

Dehalococcoides strain 195 dechlorinated a smaller spectrum of chlorophenols, all in the 

ortho position and only if a chlorine substituent was present in the flanking meta position. 

Dechlorination was detected with 2,3-DCP, 2,3,4-TCP and 2,3,6-TCP but not with other 
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di- and trichlorophenols or pentachlorophenol. Like strain CBDB1, strain 195 could not 

dechlorinate monochlorophenols. 
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Table 2.2: Transformation of chlorophenols by strain TCP-A. 

Substrate 2,4,6-TCP as inducer Dechlorination Products 

PCP + 

- 

2,3,4,5-TeCP
a,b 

2,3,4,5-TeCP
a,b

 

2,3,4,5-TeCP + 

- 

3,4,5-TCP
a,b 

No dechlorination
b
 

2,3,5,6-TeCP + 

- 

3-CP  phenol
c
 

3,5-CP  3-CP  phenol
c
 

2,3,5-TCP + 

- 

3,5-CP  3-CP 

3,5-CP  3-CP; 2,5-DCP 

2,4,6-TCP + 

- 

2,4-DCP  4-CP 

2,4-DCP  4-CP 

3,5-DCP + 

- 

3-CP 

3-CP 

2,3-DCP + 

- 

3-CP 

No dechlorination 

2,4-DCP + 

- 

4-CP 

4-CP 

2-CP + 

- 

Phenol
a
 

Phenol
a
 

3-CP + 

- 

No dechlorination 

No dechlorination 

4-CP + 

- 

No dechlorination 

No dechlorination 

Note: 
a
 The conversion of the parent compound was not complete; 

b
 Growth was strongly 

inhibited in the presence of PCP, 2,3,4,5-TeCP or respective dechlorination products; 
c
 By 

the end of study period, the molar ratio of phenol and 3-CP was 1:3 and 1:6 for induced 

and non-induced cells respectively. 
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Note: Bold compounds: compounds that are completely converted if added as a sole 

electron acceptor; bold arrows: main pathway; thin arrows: side pathway; dashed arrows: 

slow and incomplete reactions; dotted arrows: reactions that occurred only if the 

respective dichlorophenol was formed from a higher chlorinated phenol in the same 

culture. The asterisks mark reaction where the pathways could not be distinguished. 

Figure 2.4: Summary of chlorophenol dechlorination reactions catalyzed by 

Dehalococcoides strain CBDB1. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Cultures’ Origins and Descriptions 

A summary of the origins and the sources‟ description of the cultures used in this study 

are tabulated below. 

 

Table 3.1: Information summary of the cultures used in this study. 

Name Origin Description of Source 

D1 Hubei, China Contaminated soil collected at drainage discharge 

D2 Hubei, China River sediments  

D3 Hubei, China River sediments  

D4 Hubei, China River sediments 

D5 Hubei, China Soil from old industrial zone 

D6 Hubei, China Sludge from wasterwater treatment plant 

D7 Hubei, China Sludge from wasterwater treatment plant 

D8 Hubei, China Soil in the vicinity of wastewater treatment plant 

D9 Hubei, China Soil in the vicinity of wastewater treatment plant 

D10 Hubei, China Soil in the vicinity of wastewater treatment plant 

D11 Hubei, China Soil in the vicinity of wastewater treatment plant 

D12 Paya Lebar, Singapore Sludge from wasterwater treatment plant 

PA Penang, Malaysia Motor oil contaminated soil from car workshop 

ORC Penang, Malaysia Soil from orchard 

PY West Java, Indonesia Soil from paddy field 
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Name Origin Description of Source 

RIV West Java, Indonesia River sediments 

LWN West Java, Indonesia Soil from field   

BNN West Java, Indonesia Soil banana plantation 

TEA West Java, Indonesia Soil from tea plantation 

SC Jurong Island, Singapore Sludge from wasterwater treatment plant 

 

The selection of the cultures here were to represent a wide range of significantly different 

origins in terms of the degree of contamination (or non-contamination) from different 

locations. For example, culture LWN (collected from a field) and RIV (collected from the 

bed of a river) represent samples collected from sources whereby there are no (or 

extremely low) levels of anthropogenic contamination. Meanwhile, cultures ORC, BNN 

and TEA which have been collected from orchards and plantations represent samples 

collected from sites which were exposed to mild to medium levels of contamination due 

to higher levels exposure to human activities and from applications of pesticides on 

sampling site. Samples such SC, D6, D7 and D12 that have been collected from 

wastewater treatment plants represent cultures sampled from locations with very high 

levels of contamination from industrial and domestic waste.  

On top of that, some of the selections of culture origins were based on previous studies 

indicating possible existence of dechlorinators within certain sites. This will help to 

increase the chances of discovering dehalogenation activities from the cultures selected. 

For instance, culture PY which has been collected from the soils of rice fields was 

selected as researchers in Japan have reported on numerous occasions that chlorophenols 

can be biodegraded in the flooded soils of paddy fields (Kim et al, 2004; Yoshida et al., 
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2007). Cultures D6, D7, D12 and SC (all collected from sludge of treatment plants) on the 

other hand, have been selected because several pure isolates of chlorophenol 

dehalogenating bacteria have been have been reported to originate from municipal sludge 

from treatment plants (Madsen and Licht, 1992; Mohn and Kennedy, 1992). As another 

example, cultures D2, D3, D4 and RIV which have been collected from river sediments 

were chosen following reports of the discoveries of anaerobic bacteria isolated from rivers 

and freshwater ponds (Utkin et al., 1994; Breitenstein et al., 2001).   

 

3.2 Preparation of Sterile Vials 

All vials for experiment purposes were sterilized before use. The new vials were rinsed with 

Milli-Q ultra water several times. The openings of the washed vials were wrapped with 

aluminium foil. Vials were autoclaved in autoclave machine for 20 mins, at 121 C, 210 

kPa. The sterile empty vials were left to dry in oven after the autoclaving process. 

  

3.3 Preparation of Anaerobic Media 

1 L of trace element solution, Se/W solution and salt solution were prepared as per Tables 

3.2, 3.3 and 3.4 respectively. 1 L of the medium solution was prepared accordingly as per 

Table 3.5. Under the continuous flushing of N2 (minimum flow rate), medium solutions 

were brought to boil. Upon boiling, the process was allowed to continue for another 20 

minutes. The medium solutions were cooled to room temperature under higher flow rate 

of N2. The reductants and buffering agents in Table 3.6 were added to the medium 

solutions quickly so as to prevent the introduction of O2 into the medium. Medium 
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solutions were stirred to fully dissolve chemicals using a magnetic stirrer. The media 

should turn colorless indicating no O2 contamination. pH of media was allowed to 

stabilize in the range of 7.2 – 7.3. Medium solutions were dispensed into vials/serum 

bottles (continuously flushed with N2/CO2 in the ratio of 9:1) with a syringe. The vials 

were crimp sealed with black rubber stopper with aluminium caps to ensure no leakages 

and autoclaved. The medium solutions should be clear after autoclave. Media that have 

turned pink after autoclave were discarded. 

 

Table 3.2: Trace element solution. 

Reagents  

Amount (1 L) 

ml g 

HCl (25% solution, w/w) 10 - 

FeCl2·4H2O - 1.5 

CoCl2·6H2O - 0.19 

MnCl2·4H2O - 0.1 

ZnCl2 - 0.07 

H3BO3 - 0.006 

Na2MoO4·2H2O - 0.036 

NiCl2·6H2O - 0.024 

CuCl2·2H2O - 0.002 

 



38 
 

Table 3.3: Se/W solution. 

Reagents 

Amount (1 L) 

ml g 

Na2SeO3·5H2O - 0.006 

Na2WO4·2H2O - 0.008 

NaOH - 0.5 

 

 

Table 3.4: Salt solution. 

Reagents 
Amount 

(1 x g/L) 

Amount 

(100 x g/L) 

Amount 

(g/100 mL) 

NaCl 1.0 100.0 10.0 

MgCl2·6H2O 0.5 50.0 5.0 

KH2PO4 0.2 20.0 2.0 

NH4Cl 0.3 30.0 3.0 

KCl 0.3 30.0 3.0 

CaCl2·2H2O 0.015 1.5 0.15 
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Table 3.5: Medium Solution. 

Reagents 

Amount (1 L) 

ml g 

100 x salt solutions 10 - 

Trace element 1 - 

Se/W Solution 1 - 

TES (10mM) - 2.292 

Resazurin (0.1% solution) 0.25 - 

Sodium pyruvate (5mM) - 0.6804 

Milli-Q ultra pure water 987.75 - 

 

 

Table 3.6: Reductants and buffering agents. 

Reagents 

Amount (1 L) 

ml g 

0.2mM L-cysteine - 0.0242 

0.2mM Na2S·9H2O - 0.048 

0.5mM DL-dithiothreitol (DTT) - 0.0771 

30mM NaHCO3 - 2.52 
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3.4 Preparation of Vitamins 

The final concentrations of vitamins added to the medium solution are given in Table 3.7. 

 

Table 3.7: Final concentration of vitamins added. 

Vitamins Final Concentration (mg/L) 

Biotin 0.02 

Folic acid 0.02 

Pyridoxine hydrochloride 0.10 

Riboflavin 0.05 

Thiamine 0.05 

Nicotinic acid 0.05 

Pantothenic acid 0.05 

p-aminobenzoic acid 0.05 

Thioctic acid 0.05 

Vitamin B12 0.001 

 

3.5 Substrate Chemicals 

All substrate chemicals used – pentachlorophenol, 2,4,6-trichlorophenol, trichloroethene, 

commercial pentabromodiphenyl ether mixture and 2,2‟,4,4‟,6,6‟-hexachlorobiphenyl 

were purchased from Sigma Aldrich (U.S.A) and were of analytical grade with purity of ≥ 

98%. The chlorophenols were dissolved in hexane, the commercial pentabromodiphenyl 

ether mixture in ethyl acetate and 2,2‟,4,4‟,6,6‟-hexachlorobiphenyl in isooctane as stock 

solutions. The chemicals were crimp sealed with black rubber stopper with aluminium 

caps in serum bottles and wrapped in aluminium foil. All stock solutions were stored in 

the refrigerator at 4 ºC. 
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3.6 Detection of Halogenated Compounds 

Chlorophenols in the aqueous phase were subjected to a simultaneous derivatization and 

liquid-liquid extraction procedure. 1 mL of the liquid samples were mixed with 5 mL of 

potassium carbonate solution (5% w/v), acetylated with 200 µL acetic anhydride and 

extracted with 1 mL of hexane. Samples were then vortexed and shaken for 2 hours prior 

to analysis. Chlorophenols were analyzed using a gas chromatograph/mass spectrometer 

(GC-MS) model QP2010 (Shimadzu Corporation, Japan) equipped with a HP 5 capillary 

(J&W Scientific, U.S.A.) column (Length: 30 m; i.d.: 0.32 mm; 0.25 μm). 

Chlorinated ethenes were measured with a gas chromatograph (GC-6890, Agilent 

Technologies, U.S.A.) equipped with a flame ionizing detector (GC-FID) and a GS-

GasPro (J&W Scientific, U.S.A.) capillary column (Length: 30 m; i.d.: 0.32 mm). 100 μL 

of gas from the headspace of sample bottles were drawn and injected into the GC-FID for 

analysis. 

PBDEs and PCBs were subjected to liquid-liquid extraction before analysis. 1 mL of 

liquid samples were removed and added with an equal volume of isooctane. Samples were 

mixed thoroughly by vortexing the mixture and shaken for 2 hours prior to analysis. 

PBDEs were analyzed using a gas chromatograph/mass spectrometer (GC-MS) model GC 

6890/MSD 5975 (Agilent Technologies, U.S.A.), which was installed with a Restek Rxi-

5ms (Restek Corporation, U.S.A.) column (Length: 15 m; i.d.: 0.25 mm; film thickness: 

0.25 μm). 
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PCBs were measured with a gas chromatograph (GC-6890, Agilent Technologies, 

U.S.A.) equipped with a electron capture detector (GC-ECD) and a HP 5 capillary (J&W 

Scientific, U.S.A.) column (Length: 30 m; i.d.: 0.32 mm; 0.25 μm). 

Gas chromatography settings for the detection of the halogenated compounds are 

summarized in Tables 3.8, 3.9, 3.10 and 3.11. 

 

Table 3.8: GC-MS settings for the detection of chlorophenols. 

Parameter Operation Settings 

Injection Mode Splitless 

Injection Port Temperature 250 °C 

Carrier gas Helium 

Column Flow Rate 1.92 mL min
-1 

Oven Program: 

Initial Temperature 

Rate 

Final Temperature 

 

40 °C 

15 °C min
-1

 

200 °C  (hold 3 minutes) 
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Table 3.9: GC-FID settings for the detection of chlorinated ethenes. 

Parameter Operation Settings 

Injection Mode Split (Ratio 2:1) 

Injection Port Temperature 220 ºC 

Carrier gas Helium 

Column Flow Rate 3 mL min
-1

 

Oven Program: 

Initial Temperature 

Rate 

Final Temperature 

 

50 ºC (hold 2 minutes) 

30 ºC min
-1

 

220 ºC (hold 1 minute) 

 

 

Table 3.10: GC-MS settings for the detection of PBDEs. 

Parameter Operation Settings 

Injection Mode Splitless 

Injection Port Temperature 300 ºC 

Carrier gas Helium 

Column Flow Rate 1.2 mL min
-1 

Oven Program: 

Initial Temperature 

Rate 

Final Temperature 

 

110 ºC 

15 ºC min
-1

 

310 ºC (hold 5 minutes) 
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Table 3.11: GC-ECD settings for the detection of PCBs. 

Parameter Operation Settings 

Injection Mode Splitless 

Injection Port Temperature 250 ºC 

Carrier gas Helium 

Column Flow Rate 1.2 mL min
-1

 

Oven Program: 

Initial Temperature 

Rate 

Temperature 

 

170 ºC 

5 ºC min
-1 

260 ºC (hold 5 minutes) 

 

3.7 Extraction of Bacterial Genomic DNA 

Cells (1 mL) used for DNA extraction were withdrawn from cultures and then centrifuged 

immediately at 31,500 g for 15 minutes at 4°C. After removing the supernatant, the cell 

pellets were stored at -20 ºC until further processing.  

Genomic DNA was extracted from frozen cell pellets by using the DNeasy Tissue Kit 

(QIAGEN GmbH, Germany). The instruction manual was followed closely with minor 

modifications.  

 

3.8 Polymerase Chain Reaction (PCR)  

The list of reagents used and their respective final concentrations for each PCR reaction 

are listed in Table 3.8. The details of the genus specific primer pairs used are given in 

Table 3.9. Polymerase chain reactions (PCR) were carried out in an Eppendorf Master Cycler ep 
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gradient S thermocycler (Eppendorf AG, Hamburg, Germany). PCR conditions are 

summarized in Table 3.10.  

 

Table 3.12: The list of reagents used and their respective final concentrations for PCR. 

Reagents Final Concentration 

Sterile PCR water na  

10x PCR buffer 1x  

MgCl2 (25 mM) 2.5 mM 

BSA (10 mg/ml) 0.13 mg/ml 

dNTP mix (1:1:1:1, 10mM)  0.25 mM ea 

Forward Primer (5 µM)
a,b

 0.1 µM 

Reverse Primer (5µM)
a
 0.1 µM 

Taq DNA polymerase  na  

Template (250 ng/100 µl reaction) 25 ng/µl 

Note: a: Refer to primer details in Table 3.9. b: 8F-Cy5 primers were used instead of 8F 

primers for TRFLP analysis 
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Table 3.13: The details of the genus specific primer pairs used in study. 

Specificity 
Primer 

Name 
Primer Sequence (5’ – 3’) 

Annealing 

Temperature (°C) 

Amplicon  

Length (bp) 

Universal bacteria primer 
8F 

1392R 

AGA GTT TGA TCC TGG CTC AG 

ACG GGC GGT GTG T 
55 1384 

Anaeromyxobacter sp. 
60F 

461R 

CGA GAA AGC CCG CAA GGG 

ATT CGT CCC TCG CGA CAG T 
56.5 401 

Desulfomonile sp. 
85F 

1419R 

CGG GGT RTG GAG TAA AGT GG 

CGA CTT CTG GTG CAG TCA RC 
62 1369 

Desulfitobacterium sp. 
406F 

619R 

GTA CGA CGA AGG CCT TCG GGT 

CCC AGG GTT GAG CCC TAG GT 
60 225 

Dehalococcoides sp. 
730F 

1350R 

GCG GTT TTC TAG GTT GTC 

CAC CTT GCT GAT ATG CGG 
58 620 

Dehalobacter sp. 
179F 

1007R 

TGT ATT GTC CGA GAG GCA 

ACT CCC ATA TCT CTA CGG 
53 828 

Desulfovibrio sp. 
691F 

826R 

CCG TAG ATA TCT GGA GGA ACA TCA G 

ACA TCT AGC ATC CAT CGT TTA CAG C 
63 135 

Desulforomonas sp. 
205F 

1020R 

AAC CTT CGG GTC CTA CTG TC 

GCC GAA CTG ACC CCT ATG TT 
58 815 

Acetobacterium sp. 
572F 

784R 

GGC TCA ACC GGT GAC ATG CA 

ACT GAG TCT CCC CAA CAC CT 
59 212 
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Table 3.14: PCR conditions. 

Process Temperature (ºC) Duration 

Initial Denaturation 94 2'10" 

Denaturation 94 30'' 

Annealing Refer Table 3.9 45” 

Extension 72 2'10" 

Final Extension 72 6' 

 

3.9 Agarose Gel Electrophoresis 

TAE buffer was prepared by mixing 40 mL of TAE solution in 1960 mL of Milli-Q ultra 

pure water. 1 gram of Agarose powder (SeaKem® LE Agarose, BioWhittaker Molecular 

Applications, USA) was mixed with 100 mL of 1xTAE mixture in a conical flask. The 

Agarose powder was thoroughly dissolved by heating up in microwave for about 60 

seconds to 80 seconds. Dissolved Agarose was poured into a casting tray to allow 

solidification. The gel casting tray was first leveled using a bubble level and its well comb 

placed securely before the gel was poured in and allowed to harden. Trapped air bubbles 

in the hardening gel were removed using a pipette tip so that they would not affect DNA 

migration during electrophoresis. Comb was removed once gel is hardened. Gel was then 

transferred, together with the tray, into the electrophoresis unit. 1xTAE buffer was poured 

into the tray to cover the gel completely. Thawed extracted DNA samples were vortexed 

and centrifuge in micro-centrifuge tubes. 5 μL of 100 bp or 1-kb DNA ladder (Promega, 

Madison, US) was then loaded into the first well. 1 μL of 6xblue/green loading dye 

(Promega, USA) was mixed with 5 μL of a DNA sample and then loaded into a well. 

Electrophoresis (Bio-Rad, U.S) was done at 90V for 90 minutes when all DNA samples 

30 cycles 
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had been loaded. Gels were removed from tray and proceed for 1 hour of staining process 

in 5% ethidium bromide (30 µL of ethidium bromide in 600 mL of 1xTAE buffer). Another 

hour of destaining process was allowed to be carried out in another holding well filled 

with water. The bands in gel were visualised by UV excitation and pictures were taken 

with a digital camera (Gel Doc, Bio-Rad, USA). 

 

3.10 TRFLP Analysis 

Prior to TRFLP analysis, DNA (PCR products) were subjected to restriction enzyme 

digestion. The preparation of a 20 μL sample for restriction enzyme digestion is 

summarized in Table 3.11. The products were then incubated in a water bath at 35 ° for 3 

hours. The enzymes were then deactivated by incubation at 65 °C for 10 minutes.  

0.5 μL of samples were mixed with 40 μL of Sample Loading Solution (SLS) and 0.2 μL 

of DNA size standard (600 bp) and loaded onto a 96- well plate and overlaid with 1 drop 

of mineral oil before analysis. TRFLP analyses were carried out with a Beckman CEQ 

8000 DNA analysis system.   
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Table 3.15: Reagents for restriction enzyme digestion. 

Reagents Volume (μL) 

DNA free water 7.3 

Enzyme Buffer 4 2 

BSA (10 mg/ml) 0.2 

Enzyme (HhaI or MspI or RsaI) 0.5 

DNA (PCR product) 10 
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CHAPTER 4 

RESULTS 

 

4.1 Derivatization and Extraction of Samples for Analytical Determination 

Following the run of standards in the GC-MS, the quality of the chromatograms for both 

the derivatized and non-derivatized forms of chlorinated phenols (4-chlorophenol; 2,4-

dichlorophenol; 2,4,6-trichlorophenol and PCP) were studied and compared. The 

preparation of standards, derivatization-extraction procedure and the GC-MS operating 

conditions used are as described previously in Section 3.5. 

Apart from the obvious variation in the order of appearance and retention time of 

samples, the quality of the peaks from the chromatogram differed significantly as well.  

For the underivatized samples, the peak of 2,4-DCP appeared first following injection 

after 5.826 minutes. This is then followed by 4-CP after 6.097 minutes and finally 2,4,6-

TCP after 7.605 minutes. Meanwhile, the derivatization of the chlorinated phenols causes 

the change of retention time in the following order – 4-CP (6.461 minutes), then 2,4-DCP 

(7.552 minutes) and finally 2,4,6-TCP at (8.414 minutes). PCP elutes last amongst the 

congeners tested for both the underivatized and derivatized cases at 10.96 and 11.44 

minutes, respectively.  

In general, the derivatization of chlorophenols yielded much higher and sharper peaks 

with higher areas under the peaks. The non-derivatized chlorophenol standards, on the 
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other hand, gave broad and tailed peaks which is not favorable for detection and 

quantification of samples. While underivatized forms of 2,4,6-TCP, 2,4-DCP and 4-CP 

normally resulted in acceptable response from the chromatography analyses in higher 

concentrations, however, at concentrations of lower than that of 20 µM, the peaks from 

the chromatograms were very poor and were barely readable or distinguishable from the 

detector noise. Chromatography analyses of underivatized forms of PCP were generally 

very poor even with concentrations as high as 50 µM. Figures 4.1, 4.2 and 4.3 illustrate 

the cases as discussed above in greater detail. 

 

 

Figure 4.1: Chromatogram showing low peak of underivatized 4-CP sample. 
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Figure 4.2: Chromatogram showing tailing effect on the peak of an underivatized 4-CP 

sample. 

 

 

 

Figure 4.3: Chromatogram showing the significantly higher and sharper peak of a 

derivatized 4-CP sample. 

 

 

Peak of derivatized 4-CP sample 

Tailing effect 
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4.2 Microcosm Studies: Dechlorination of Chlorophenols 

Samples collected from the 20 sites were used as inocula for microcosm studies on their 

capability to dechlorinate 2,4,6-TCP and PCP (Table 3.1). The microcosms established 

were amended with 30 mL bicarbonate buffered defined mineral salts medium and 10 

mM of pyruvate. The medium were reduced by L-cysteine (0.2 mM), Na2S.9H2O (0.2 

mM) and DL-dithiothreitol (0.5mM). Wolin solution and vitamin B12 (25 mg/L) were also 

added to all samples. 2,4,6-TCP and PCP were spiked into the microcosms with the final 

concentration of 50 µM and 25 µM respectively.  

 

4.2.1 Dechlorination of 2,4,6-Trichlorophenol 

For microcosms spiked with 2,4,6-TCP, all samples demonstrated the ability for 

dechlorination. The samples were tested on a weekly basis for 8 weeks to detect for 

possible dechlorination products as an indication of dehalogenating activities within the 

microcosms. Degradation products such as 2,4-dichlorophenol and 4-chlorophenol were 

generated following dechlorination. The dechlorination pathways for all 20 microcosms 

were similar. 2,4,6-TCP were degraded to 4-CP as the end product via 2,4-DCP. 

Degradation of 4-CP to phenol did not take place throughout the duration of the study. 

Figure 4.4 illustrates the degradation pathway of 2,4,6-TCP to 4-CP. The rates of 

dechlorination of 2,4,6-TCP for the 20 samples, however, differed greatly with some 

being able to degrade the spiked substrates to the end product, 4-CP, significantly faster 

than others. Figures 4.5a to 4.5t are examples of GC-MS chromatograms showing the 

dechlorination products of 2,4,6-TCP by each of the 20 cultures tested after 33 ± 3 days to 
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show the varying dechlorination rates of each samples as well as their similar 

dechlorination pathways. In particular, cultures LWN and RIV demanded greater 

attention as they displayed excellent capabilities to dechlorinate 2,4,6-TCP. Cultures 

LWN and RIV were found to be able to dechlorinate 2,4,6-TCP to 4-CP in less than 7 

days. Culture SC stands out too among the microcosm tested as it was able to completely 

dechlorinate 2,4,6-TCP and its intermediate product, 2-4-DCP, to its end product 4-CP in 

a relatively quick fashion (about 14 days).   

Microcosms containing promising cultures that were able to achieve effective and rapid 

dechlorination of 2,4,6-TCP to 4-CP, i.e. complete degradation of 2,4,6-TCP to its end 

product within 14 days, were singled out and sequentially transferred for further 

enrichment and studies. A total number of 3 cultures were identified and these cultures 

are, in no particular order, LWN, RIV and SC.  

With each transfer, the concentration of 2,4,6-TCP was gradually increased and its 

inhibition of growth was observed. No dechlorination products were observed when 

culture SC was spiked with 2,4,6-TCP of a final concentration of 150 µM  while culture 

RIV seemed to be prohibited by 250 µM of the substrate. Culture LWN exhibited high 

tolerance to 2,4,6-TCP dechlorination. At 1,000 µM, reductive dechlorination activities 

were still detected and dechlorination products like 2,4-DCP and 4-CP were detected.     

 

Figure 4.4: Degradation pathway of 2,4,6-TCP to 4-CP via 2,4-DCP. 
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Figure 4.5a: Chromatogram showing degradation product(s) of D1 after 33 ± 3 days  

 

 

Figure 4.5b: Chromatogram showing degradation product(s) of D2 after 33 ± 3 days 

 

 

Figure 4.5c: Chromatogram showing degradation product(s) of D3 after 33 ± 3 days 
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Figure 4.5d: Chromatogram showing degradation product(s) of D4 after 33 ± 3 days 

 

 

Figure 4.5e: Chromatogram showing degradation product(s) of D5 after 33 ± 3 days 

 

 

Figure 4.5f: Chromatogram showing degradation product(s) of D6 after 33 ± 3 days 
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Figure 4.5g: Chromatogram showing degradation product(s) of D7 after 33 ± 3 days 

 

 

Figure 4.5h: Chromatogram showing degradation product(s) of D8 after 33 ± 3 days 

 

 

Figure 4.5i: Chromatogram showing degradation product(s) of D9 after 33 ± 3 days 
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Figure 4.5j: Chromatogram showing degradation product(s) of D10 after 33 ± 3 days 

 

 

Figure 4.5k: Chromatogram showing degradation product(s) of D11 after 33 ± 3 days 

 

 

Figure 4.5l: Chromatogram showing degradation product(s) of D12 after 33 ± 3 days 
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Figure 4.5m: Chromatogram showing degradation product(s) of PA after 33 ± 3 days 

 

 

Figure 4.5n: Chromatogram showing degradation product(s) of PY after 33 ± 3 days 

 

 

Figure 4.5o: Chromatogram showing degradation product(s) of SC after 33 ± 3 days 
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Figure 4.5p: Chromatogram showing degradation product(s) of BNN after 33 ± 3 days 

 

 

Figure 4.5q: Chromatogram showing degradation product(s) of LWN after 33 ± 3 days 

 

 

Figure 4.5r: Chromatogram showing degradation product(s) of ORC after 33 ± 3 days 
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Figure 4.5s: Chromatogram showing degradation product(s) of RIV after 33 ± 3 days 

 

 

Figure 4.5t: Chromatogram showing degradation product(s) of TEA after 33 ± 3 days 

 

4.2.2 Dechlorination of Pentachlorophenol 

Microcosms containing PCP were tested for dechlorination activities on a bi-weekly basis 

for the first 4 weeks and randomly but less frequently (e.g. once every 4 or 6 weeks) for a 

period of 20 weeks. Once dechlorination products were detected, tests were conducted 

more frequently (i.e. once a week). None of the cultures in the microcosms mentioned 

above showed any hint of PCP dechlorinating capability except for culture D12.  

Degradation products of PCP were first detected on the 120
th
 day and this indicates the 

occurrences of dechlorination activities. By then, PCP were found to have been 

MCP 
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completely dechlorinated and dechlorination products, 2,4,6-TCP and 2,4-DCP were 

detected. Dechlorination continued and both 2,4,6-TCP and 2,4-DCP were then 

completely dechlorinated to 4-CP within the next 30 days. However, dechlorination could 

not proceed beyond 4-CP after 20 weeks of incubation and thus, making 4-CP the 

dechlorination end product of culture D12 when fed with PCP.  

Culture D12 is capable of the dechlorination of PCP and its intermediates, 2,4-6,TCP and 

2,4-DCP to its end product, 4-CP. Figures 4.6A and 4.6B describe the time course study 

of PCP dechlorination and the dechlorination pathway by culture D12 respectively.     
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Figure 4.6: (A) Time course study of PCP dechlorination by culture D12. (B) Degradation 

pathway of PCP to 4-CP by culture D12. 

 

(A) 

(B) 
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4.3 Kinetics of Dehalogenation of Chlorophenols  

Three of the cultures showing most effective and fastest dechlorination rate, LWN, RIV 

and SC as well as 3 other selected cultures, PY, D3 and D12, were subjected to an 

advanced study on their dechlorination capabilities. These cultures were sequentially 

transferred and enriched until sediment-free cultures were obtained before proceeding 

with the kinetic studies of chlorophenol dechlorination. For this purpose, 2 mL of the 

active cultures (cultures in exponential or stationary phase) were inoculated into 98 mL of 

liquid medium in 160 mL sterile bottles. For all the 6 cultures studied, pyruvate (10 mM) 

was added as the electron donor while 2,4,6-TCP (ca. 50 - 60 mM) was used as the 

electron acceptor.  

The dechlorination kinetics of 2,4,6-TCP of sediment-free cultures, LWN, RIV, SC, PY, 

D3 and D12, after 6 sequential transfers are represented in the graphs below.  
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Figure 4.7: 2,4,6-TCP dechlorination kinetics of culture LWN.  

 

 

Figure 4.8: 2,4,6-TCP dechlorination kinetics of culture RIV.  
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Figure 4.9: 2,4,6-TCP dechlorination kinetics of culture SC.  

 

 

Figure 4.10: 2,4,6-TCP dechlorination kinetics of culture PY.  
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Figure 4.11: 2,4,6-TCP dechlorination kinetics of culture D3. 

 

 

Figure 4.12: 2,4,6-TCP dechlorination kinetics of culture D12. 
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4.4 Effects of Different Electron Donors on Reductive Dehalogenation 

The effects of electron donors on the fate of 2,4,6-TCP following reductive 

dehalogenation were studied for cultures LWN, RIV and SC and were compared to the 

previous studies when pyruvate was used as the electron donor. The types of electron 

donors used for this purpose were:  

i. lactate (10 mM) 

ii. acetate (10 mM) 

iii. acetate (10 mM) + hydrogen (6 mL - added using a sterilized disposable 

plastic syringe at partial pressure of  3.4 x 10
4
 Pa) 

The study showed similar outcomes to the results of the earlier studies when pyruvate was 

used as the electron donor for all cultures. 2,4,6-TCP was dechlorinated via 2,4-DCP 

producing 4-CP as the end product. The rate of which 2,4,6-TCP was dechlorinated did 

not differ much either.  

Cultures LWN, RIV and SC can utilize the type of electron donors as listed above for the 

dechlorination of 2,4,6-TCP and will not affect their effectiveness and degradation rate.      

 

4.5 Reductive Dehalogenation with Different Electron Acceptors 

Cultures LWN, RIV and SC were tested on their abilities to degrade other halogenated 

organic compounds as electron acceptors. Using 10 mM of pyruvate as the sole electron 

donor, halogenated compounds like chlorinated ethenes, polybrominated diphenyl ethers 
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(PBDE) and polychlorinated biphenyls (PCB) were used in place of chlorophenols and 

tested for dehalogenation activities. The types of electron acceptors used here were: 

i. Trichloroethene (TCE) 

ii. Commercial Pentabromodiphenyl Ether mixture (Penta-BDE)  

iii. 2,2‟,4,4‟,6,6‟-Hexachlorobiphenyl (PCB 155) 

The cultures were incubated for a period of 9 weeks and tested for dehalogenation 

activities.  

 

4.5.1 Dechlorination of Chlorinated Ethenes 

Trichloroethene (TCE), a suspected human carcinogen, commonly used as solvent for a 

variety of organic materials was used as substrate for dechlorination by cultures LWN, 

RIV and SC. 

Over the course of 9 weeks, cultures LWN and RIV were unable to reductively 

dehalogenate TCE. Culture SC however was successful in dechlorinating ~20 µmoles of 

TCE to trans- and cis-dichloroethene (DCE) as the final products. TCE were completely 

dechlorinated to trans- and cis-DCE in a ratio of 3:1. Figure 4.13 shows the 

dechlorination pathway of TCE to trans- and cis-DCE by culture SC.   

Culture SC was then sequentially transferred for further studies and investigation on its 

chloroethene dechlorinating ability. 
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Figure 4.13: Dechlorination pathway of TCE to trans- and cis-DCE in a ratio of 3:1 by 

culture SC. 

 

4.5.2 Debromination of Polybrominated Diphenyl Ethers 

The commercial mixture of Penta-BDE dissolved in ethyl acetate (consisting of Tetra-, 

Penta and Hexa-BDE), a known endocrine disruptor which is commonly used as additives 

for flame retardants, was used as substrate and checked for debromination activities by 

cultures LWN, RIV and SC.  

Of the 3 cultures used during the entire period of study, only culture RIV was able to 

show signs debromination. Chromatogram from GC-MS analysis (see Figure 4.14) 

revealed a significant decrease in the peaks of the parent compounds, Hexa- and Penta-

BDE, with a corresponding increase in Tetra-BDE peaks as the degradation products after 

63 days. 

Culture RIV was then sequentially transferred for further studies on its PBDE 

debrominating capabilities.  
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Figure 4.14: Chromatogram showing degradation of parent compound (Day 0) to 

debromination product (Day 63).  

 

4.5.3 Dechlorination of Polychlorinated Biphenyls 

2,2‟,4,4‟,6,6‟-Hexachlorobiphenyl or simply PCB 155, classified as a persistent organic 

pollutant and also another recognized carcinogen found in commercial mixtures of PCB 

was tested to determine if it can be dechlorinated by cultures LWN, RIV and SC. 

Unfortunately, during the study period of 9 weeks, no traces of dechlorination products 
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were found. Cultures LWN, RIV and SC are incapable of dechlorinating PCB 155 for the 

duration of the study.   

 

4.6 Presence of Possible Chlorophenol Dechlorinating Microbes in Cultures 

DNA extracted from cells of cultures showing positive response to chlorophenol 

degradation were collected and amplified using the polymerase chain reaction technique. 

The cultures selected here were LWN, RIV, SC and PY for their rapid dechlorinating 

capability as well as their ability to completely dechlorinate 2,4,6-TCP.  

To identify and acquire information of possible dehalogenating microbes present in the 

cultures, genus specific primer pairs were used to target the 16S rRNA gene of genomic 

DNA extracted from the 4 culture samples as given above. The primer pairs used were 

that of those belonging to the genera of Dehalococcoides (DHC), Desulfitobacterium 

(DST), Anaeromyxobacter (AMB), Desulfovibrio (DSV), Desulforomonas (DSF), 

Desulfomonile (DSM), Acetobacterium (ACE) and Dehalobacter (DEB). These were 

selected based on previous reports of microorganisms belonging to the aforementioned 

with abilities to dechlorinate chlorophenols such as DHC, DST, AMB and DSV as well as 

those capable of degrading other halogenated compounds (e.g. PBDE, PCB, PCE etc.) 

such as DSF, DSM, ACE and DEB. The products of the cultures‟ DNA targeted with the 

genus specific primer pairs were stained and subjected to gel electrophoresis. 

Subsequently, the bands on the gel were viewed. Figures 4.15 and 4.16 show the results 

of the work carried out.    



73 
 

When the genomic DNA of culture RIV were targeted with Desulfitobacterium primers, 

clear bands with high intensity were observed on the gel showing presence of amplicons 

with the size of 225 base pairs (Figure 4.15, Lane 18). No other amplicons from the other 

genera tested were observed.  

Meanwhile, amplicons from the genera Dehalococcoides and Desulfovibrio were detected 

in culture SC. The band indicating the presence of the amplicons belonging to the genus, 

Dehalococcoides was found to be very bright and clear (Figure 4.15, Lane 10). On the 

other hand, the amplicon band from the Desulfovibrio genus paled in comparison and was 

found to be significantly lower in terms of the intensity of the band‟s brightness (Figure 

4.16, Lane 18). Amplicons for the other 6 genera were not detected. 

Attempts to target extracted DNA from cultures PY and LWN with the 8 genus specific 

primers known for their dehalogenating abilities yielded negative results with no bands of 

amplicons detected in the gel following electrophoresis.      
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Figure 4.15: Gel electrophoresis results for cultures‟ DNA targeted with genus specific 

primers (DEB, DHC, DSF and DST) using the direct PCR approach. 
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Figure 4.16: Gel electrophoresis results for cultures‟ DNA targeted with genus specific 

primers (ACE, AMB, DSM and DSV) using the direct PCR approach. 

 

The nested PCR approach was then carried out and the 16S rRNA gene of genomic DNA 

extracted from the same cultures, LWN, RIV, SC and PY, were again targeted with 

similar genus specific primers used in the direct PCR approach discussed above.  

Similar to that from the direct PCR approach, amplicons from the genus 

Desulfitobacterium was detected for culture RIV while amplicon bands from the genera 

Dehalococcoides and Desulfovibrio were again detected for culture SC. This time around 

however, amplicon bands from the genera Dehalococcoides and Desulfitobacterium were 

detected for culture PY. In addition to that, amplicons belonging to the genera 

Acetobacterium and Desulfovibrio were found in all 4 cultures tested. These amplicons, 

however, were present in bands with weak intensity in terms of their brightness as 
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compared to the others. Figures 4.17 and 4.18 describe the result of the study while  

Tables 4.1 and 4.2 summarize both sets of experiments using direct and nested PCR 

approach respectively.    

 

 

Figure 4.17: Gel electrophoresis results for cultures‟ DNA targeted with genus specific 

primers (DHC, DSF, DSM, DST, ACE and AMB) using the nested PCR approach. 
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Figure 4.18: Gel electrophoresis results for cultures‟ DNA targeted with genus specific 

primers (DEB and DSV) using the nested PCR approach. 

 

Table 4.1: Summary of results for the detection of microorganisms from specific genera 

using the direct PCR approach.   

Culture 
Genus 

DHC DSF DSM DST ACE AMB DEB DSV 

LWN × × × × × × × × 

RIV × × × √ × × × × 

PY × × × × × × × × 

SC √ × × × × × × √ 

Note: „√‟ denotes presence of amplicon band of corresponding genus type; „×‟ denotes 

absence of amplicon band of corresponding genus type.  
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Table 4.2: Summary of results for the detection of microorganisms from specific genera 

using the nested PCR approach.   

Culture 
Genus 

DHC DSF DSM DST ACE AMB DEB DSV 

LWN × × × × √ × × √ 

RIV × × × √ √ × × √ 

PY √ × × √ √ × × √ 

SC √ × × × √ × × √ 

Note: „√‟ denotes presence of amplicon band of corresponding genus type; „×‟ denotes 

absence of amplicon band of corresponding genus type.  

 

4.7 Microbial Community Shift in Culture LWN 

TRFLP was used to the change of the microbial community composition culture LWN. 50 

mM of 2,4,6-TCP was used for the earlier and more mixed generations and the 

concentration was gradually increased with each sequential transfer for enrichment. 3 

active cultures were compared here – 1 sample, LWN3, from generation 3 spiked with 50 

µM of 2,4,6-TCP and 2 samples, LWN9-500 and LWN9-1000, from generation 9 spiked 

with 500 µM and 1000 µM of 2,4,6-TCP respectively. Restriction enzymes, HhaI, MspI 

and RsaI, were used for the TRFLP analysis.    

The fluorescently labeled terminal restriction fragments (TRF) from the digests revealed 

significant changes in community composition following enrichment of culture LWN 

from generation 3 to generation 9 as well as the increase of 2,4,6-TCP concentration for 

reductive dehalogenation from 50 µM to 1000 µM. The electrophenograms of the study 

are given below. The horizontal axis shows the length of the terminal restriction 
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fragments in nucleotide bases and the vertical axis shows the relative level of 

fluorescence intensity. 

TRFLP revealed significant differences in the communities between the 3
rd

 and the 9
th

 

generation of culture LWN for all the restriction enzymes used. The shifts in the 

community composition can be observed by the loss of many TRFs and a corresponding 

increase of others. Take cultures LWN3 and LWN9-1000 digested with MspI restriction 

enzyme as examples (Figures 4.20A and 4.20C). Community profile shows the 

disappearance in the area of TRFs from 184 to 220 nucleotides while most of the TRFs in 

the area between 471 and 636 nucleotides have completely disappeared leaving only a 

few low and insignificant peaks. Most notably, dominant TRFs at 96 and 97 nucleotides 

for LWN3 have disappeared completely. On the other hand, a significant increase of 

TRFs at 162 nucleotides can be observed with its dye signal rising from 4,200 to 56,000.  

An increase in the concentration of substrate (2,4,6-TCP) also resulted in the change of 

the microbial composition of culture LWN. Take Figures 4.20B and 4.20C as examples. 

Both are the 9
th

 generation of culture LWN with 500 µM of 2,4,6-TCP spiked into the 

former and 1,000 µM of 2,4,6-TCP in the latter. Community profile shows either the 

complete disappearance or significant decrease for all except for the TRF in the area of 

162 nucleotides whereby its dye signal‟s intensity increased from 17,500 to 56,000. 

Dominant peaks corresponding to the terminal fragment size of digested PCR products 

from culture LWN9-1000 (i.e. the most enriched culture) were compared to that of known 

dechlorinators and no match was found. This could suggest the possibility of a new strain 

of TCP dechlorinating microbe. 
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Figure 4.19: (A) Electrophenogram of culture LWN3 using the HhaI restriction enzyme. 

(B) Electrophenogram of culture LWN9-500 using the HhaI restriction enzyme. (C) 

Electrophenogram of culture LWN9-1000 using the HhaI restriction enzyme. 
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Figure 4.20: (A) Electrophenogram of culture LWN3 using the MspI restriction enzyme. 

(B) Electrophenogram of culture LWN9-500 using the MspI restriction enzyme. (C) 

Electrophenogram of culture LWN9-1000 using the MspI restriction enzyme. 

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

1 0 0 0 0

1 1 0 0 0

1 2 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0

D
y

e
 

S
i

g
n

a
l

S i z e  ( n t )

96.97

97.98
162.69

184.31

188.82

208.54

209.28

220.45

471.94

522.71

524.57

529.29

534.92

581.39

636.36

0

2 5 0 0

5 0 0 0

7 5 0 0

1 0 0 0 0

1 2 5 0 0

1 5 0 0 0

1 7 5 0 0

2 0 0 0 0

2 2 5 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0

D
y

e
 

S
i

g
n

a
l

S i z e  ( n t )

96.93

144.64

162.49

184.15

520.40

523.01

524.68

528.72

535.42

637.37

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 5 5 0 6 0 0 6 5 0 7 0 0

D
y

e
 

S
i

g
n

a
l

S i z e  ( n t )

162.25

183.97
494.20 528.49

535.00

A 

B 

C 



82 
 

 

 

 

Figure 4.21: (A) Electrophenogram of culture LWN3 using the RsaI restriction enzyme. 

(B) Electrophenogram of culture LWN9-500 using the RsaI restriction enzyme. (C) 

Electrophenogram of culture LWN9-1000 using the RsaI restriction enzyme. 
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4.8 Identifying the Possible Dechlorinator in Culture LWN 

The analyses following TRFLP on culture LWN as described in the previous section have 

given us an understanding of the changes and the profile of the microbial community 

composition with each transfer and with the increase of chlorophenol concentration. From 

the electrophenogram for culture LWN9-1000 digested with the MspI enzyme (Figure 

4.20C), it is evident that there is a dominant strain of bacterium which is present within 

the culture that responds positively with the enrichment process and also with the increase 

of the concentration of chlorophenol.   

The DNA of culture LWN9-1000 is then harvested again; amplified via PCR and digested 

with enzyme MspI. The products were then subjected to gel electrophoresis and the 

amplicon band corresponding to 162 base pairs was excised from the gel. The DNA 

products were purified and sequenced using the 8F primer. The sequencing result is 

shown in Figure 4.22. 

 

 

Figure 4.22: Partial DNA sequencing results of culture LWN  

 

A BLAST-N (Basic Local Alignment Search Tool – Nucleotide) analysis from the NCBI 

(National Center for Biotechnology Information) database revealed that the bacterial 

strain corresponding to the 162 base pairs from the TRFLP analysis for the DNA products 
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of culture LWN digested with the MspI enzyme showed 98% homology with the 16S 

rRNA of several other microbes. Table 4.3 summarizes a list of these microorganisms 

which show some possible affiliation with reductive dehalogenation of halogenated 

products. 

 

Table 4.3: List of microorganisms with strong affiliation to culture LWN. 

Accession No. Description Max. Ident. 

AM933661.1 Sedimentibacter sp. enrichment culture clone MB2_218 

partial 16S rRNA gene 

98% 

AF349757.2 Uncultured bacterium TCE41 16S ribosomal RNA gene, 

partial sequence 

98% 

AY766466.1 Sedimentibacter sp. C7 16S ribosomal RNA gene, partial 

sequence 

98% 

AY673993.1 Sedimentibacter sp. B4 16S ribosomal RNA gene, partial 

sequence 

98% 

NR_025498.1 Sedimentibacter saalensis strain ZF2 16S ribosomal RNA, 

partial sequence 

98% 
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CHAPTER 5 

DISCUSSION 

 

5.1 The Importance of Derivatization Prior to Gas Chromatographic Analysis 

Due to adsorption problems and high polarity (especially with the lower congeners), 

chlorinated phenols tend to give broader and tailed peaks in chromatography, with the 

effects increase as the column ages (Mussman et al., 1994). This will, in turn, affect the 

quality of the chromatographic peaks and subsequently, influence the reliability of the 

results from the chromatographic analysis. While the extraction of chlorophenols from the 

aqueous phase can be achieved as either their native species (to some extent) or as less 

polar derivatives (Ramil Criado et al., 2004), the latter is preferred in this study since this 

is the critical step in analytical determination and also because chlorophenols need to be 

measured and quantified at low concentrations (e.g. μg/L).  

One way of circumventing these shortcomings is to derivatize chlorinated phenols to less 

polar compounds to obtain more favorable chromatographic peaks (Ballesteros et al., 

1990). Derivatization, or in this case, acetylation of chlorophenols with acetic anhydride, 

is one of the procedures widely employed to convert chlorophenols into less polar 

compounds which ultimately causes an increase in the extraction efficiency (Fattahi et al., 

2007). The derivatization leads to sharper peaks and therefore to better separation and 

higher sensitivity. 
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Derivatization of chlorophenols prior to extraction is essential for yielding good and 

reliable results for the purpose of detection and quantification. As such, derivatization of 

all congeners of chlorophenols was carried out in subsequent experiments in this study.     

 

5.2 Reductive Dehalogenation of Chlorophenols 

A total of 20 microcosms made up of sediments, soils and various forms of slurry from 

distinctly different sources were set up to test for their ability to dechlorinate 2,4,6-TCP 

and PCP. These were collected from both engineered (e.g. wastewater treatment plants) as 

well as polluted and non-polluted natural systems (e.g. rivers, orchards etc.) from 

locations with different climatic conditions, topographic and geographical settings from 

the South East Asian region like Singapore, Malaysia and Indonesia as well as those 

collected from China. Cultures were grown in serum bottles in a selective fashion by 

paying careful attention to nutrient and incubation requirements for the desired 

microorganisms and counter-selective for the undesired organisms.  

 

5.2.1 Reductive Dechlorination of 2,4,6-TCP 

Under strict anaerobic conditions, using a specific medium and a set of incubation 

conditions as described in earlier sections, the reductive dehalogenation of 2,4,6-TCP can 

be achieved fairly easily. This is clearly the case as the microbes from all the microcosms 

established were able to show signs of dechlorination as the initial concentration of 2,4,6-

TCP was shown to decrease during the period of study with the emergence of 
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dechlorination products with the likes of 2,4-DCP and 4-CP as confirmed following 

chromatography analysis.  

Several notable dissimilarities can be spotted here when describing the reductive 

dehalogenation process by the different dehalogenation microbes from the microcosms 

established.  

The cultures displayed varying periods of lag phase when compared to one another with 

some showing only a brief period of lag phase while others required longer lag phases. 

Culture LWN and RIV, for instances, required only a 1-day and 2-day lag phase 

respectively before dechlorination commences. Cultures SC, D3 and D12 have a 5-day 

lag phase while culture PY needed about 10 days before any signs of dechlorination can 

be observed. 

Differences other than the period of lag phase between cultures were also apparent here.  

The ability (or inability) of these cultures to completely dechlorinate 2,4,6-TCP and its 

intermediates was also observed. The rate at which 2,4,6-TCP was dechlorinated also 

differed greatly. Cultures LWN, RIV, SC and PY exhibited the ability to completely 

dechlorinate 50 µM of 2,4,6-TCP and its degradation product, 2,4-DCP, to 4-CP 

completely. This was achieved in less than 5 days for both cultures LWN and RIV while 

culture SC required 10 to achieve this purpose. Some cultures, as examples, cultures PY 

and D12, were not as effective. Culture PY needed 36 days to completely dechlorinate 50 

µM of 2,4,6-TCP and 2,4-DCP to 4-CP. While 2,4,6-TCP was completely dechlorinated 

to 2,4-DCP in 12 days, the dechlorination of 2,4-DCP to 4-CP was found to at a very low 

rate and was still on-going on day 40 as 2,4-DCP was still found to be in great abundance. 
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Some cultures like D3, on the other hand, were unable to completely dechlorinate 50 µM 

of 2,4,6-TCP even after 40 days.       

For cultures which demonstrated complete dechlorination of 2,4,6-TCP, the 

dechlorination pathway and end product were found to be similar. Reductive 

dehalogenation proceeds via an intermediate (2,4-DCP) with 4-CP as the final 

degradation product.  The results of the 2,4,6-TCP dechlorination study suggest that, for 

all the cultures tested, 2,4-DCP produced from 2,4,6-TCP was by the reductive 

dechlorination of the ortho-chlorine and subsequently ortho-dechlorinated 2,4-DCP to 4-

CP. The fact that 4-CP was not dechlorinated further to phenol suggested that 

dechlorination of the chlorine substituent at the para position was not possible.  

To date, only several strains of microorganisms have been isolated as pure cultures which 

are capable dechlorinating 2,4,6-TCP – all of which belong to the genus, 

Desulfitobacterium (Madsen and Licht, 1992; Utkin et al., 1994; Gerritse et al., 1996; 

Bouchard et al., 1996; Sanford et al., 1996; Breitenstein et al., 2001). Coincidentally, 

these known isolates share the similar dechlorination pathway as discovered here i.e. 

ortho-dechlorination of 2,4,6-TCP to 4-CP via 2,4-DCP. However, unlike this study 

where a defined was medium used, yeast extract was always present for growth of the 

aforementioned isolates and the growth in the absence of this additive at the expense of 

reductive dechlorination has never been established. 

In addition to the pure Desulfitobacterium strains named above, several other microbes 

from other genera have been isolated and these too, have shown a preference in ortho-

dechlorination of chlorinated phenol. These strains however showed a lower degree of 
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dechlorination capability as compared to those from the ones from the Desulfitobacterium 

genus as well as the cultures grown in this study. Desulfovibrio dechloroacetivorans SF3 

ortho-dechlorinates only 2-CP and 2,6-DCP to phenol. Dechlorination of 2,4,6-TCP was 

not shown possible (Sun et al., 2000). Pure isolates from the Dehalococcoides genus have 

shown similar capacity. Strain CBDB1 dechlorinates 2,4,6-TCP to 2,4-DCP. Further 

ortho-dechlorination of 2,4-DCP to 4-CP was slow and incomplete. Dehalococcoides 

strain 195 dechlorinates phenols only in the ortho position and only if a chlorine 

substituent is present in the flanking meta position. 2,3-DCP was converted to 3-CP, 

2,3,4-TCP to 3,4-DCP and 2,3,6-TCP to an equimolar mixture of 2,5-DCP and 2-CP. 

Dechlorination of 2,4,6-TCP was not possible (Adrian et al., 2007).           

 

5.2.2 Reductive Dechlorination of PCP 

The reductive dechlorinate of PCP was found to be relatively more difficult as compared 

to the dechlorination of 2,4,6-TCP using the same cultures. Throughout the entire 

duration of the study, only culture D12 was found to be capable of dechlorinating PCP. 

Inhibition of bacterial activities by PCP is commonly observed (Guthrie et al., 1984; 

Ruckdeschel et al., 1987). Krumme and Boyd (1988) studied the degradation of 

chlorophenols in anaerobic upflow bioreactors and found that there was minimal or no 

biodegradation of PCP.They argued that the lack of dechlorinating activities in the 

bioreactors may have been due to the highly toxic nature of PCP. This may have been the 

case as observed in this study and we can attribute the non-dechlorinating activity by the 

cultures tested here as the result of the substrate‟s toxicity level.  
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In culture D12, PCP and its intermediates were completely dechlorinated to the end 

product, 4-CP. The limiting step in the PCP dechlorination was the transformation of 4-

CP to phenol. The intermediates detected in the reductive dechlorination of PCP by D12 

were 2,4,6-TCP and 2,4-DCP. 2,3,4,6-TeCP, however, was not detected. This could 

possibly suggest that the dechlorination of PCP began by the simultaneous removal of 

both meta positioned chlorines to 2,4,6-TCP. This is then followed by the ortho-

dechlorination of 2,4,6-TCP to form 2,4-DCP. Another ortho-dechlorination takes place 

afterwards to remove to ortho-chlorine from 2,4-DCP to its end product, 4-CP. Similar to 

that of 2,4,6-TCP dechlorination, the removal of chlorine at the para position was not 

possible throughout the experiment. The dechlorination pathway by the microbial 

consortium in culture D12 shows indicated the preferable dechlorination in the meta-

position (possibly simultaneously) which is then followed the sequential dechlorination of 

both ortho-position chlorines. 

An extended lag phase has been monitored here before the dechlorination took place. This 

is especially common when it comes to higher chlorinated compounds such as PCP 

(Palekar et al., 2003). During this phase, the inoculum cells are adapting themselves to 

active growth in the new environment and may be extended if grown previously in very 

different environment (pH, temperature, nutrients etc.). Once the cells have adapted 

themselves to the new environment, they will enter the exponential phase and this is 

occurs with the corresponding decrease of PCP concentration levels as observed here. 

Another possibility that may have caused the extended lag phase of the microbial 

community can be ascribed to the cells‟ lack of exposure or acclimatization period to 

chlorophenols. Culture D12 has been obtained from a domestic waste water plant where 
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there was no history of chlorophenol contamination. In his work, Bryant et al. (1991) 

investigated the dechlorination of PCP in anaerobic sediments that contained non-adapted 

and chlorophenol adapted microbial communities. Chlorophenol adapted sediment 

cultures were found to dechlorinate PCP without an initial lag phase while microbial 

communities that were not previously exposed to chlorophenols either did not 

dechlorinate PCP or did so after an extended lag phase.              

Juteau et al. (1995) have cultivated an anaerobic consortium that is capable of PCP 

dechlorination in bioreactors. The degree of dechlorination was similar to that of culture 

D12 which is the dechlorination of pentachlorophenol to monochlorophenol. The 

dechlorination pathway however, was clearly different. The analysis of chlorophenol 

intermediates found in the effluent of the reactor suggested that main PCP reductive 

dechlorination pathway used by this consortium was successively by para, ortho, ortho 

and finally meta dechlorination.  The main dechlorination pathway of PCP exhibited can 

be summarized as: PCP  2,3,5,6-TeCP  2,3,5-TCP  3,5-DCP  3-CP.  

The PCP dechorinating microbial consortium obtained from the mixture of sewage sludge 

and soil samples from the study by Juteau et al. was subsequently enriched and this 

ultimately resulted in the isolation of a pure strain of PCP dechlorinating bacterium, 

Desulfitobacterium frappieri PCP-1 (Bouchard et al., 1996). This spore forming, rod 

shaped bacterium grows only on pyruvate and requires yeast extract to enable the 

reductive dechlorination of PCP. While the end product of strain PCP-1 remained 3-CP, 

the pathway of PCP dechlorination is neither same as that discovered by Juteau et al. nor 

similar to that as shown in this study by culture D12. The kinetics of dechlorination of 

PCP by strain PCP-1 revealed that the ortho-position chlorines from PCP was rapidly 
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dechlorinated to 3,4,5-TCP and that there was a 36-hour lag period before this compound 

was para-dechlorinated to 3,5-DCP which will be subsequently be meta-dechlorinated to 

3-CP. From this result, Bouchard et al. explained that there may be two different enzyme 

systems involved in PCP dechlorination in strain PCP-1. The first dechlorinates PCP 

rapidly and dechlorinates 2,3,4,5-TeCP only at the ortho position to generate 3,4,5-TCP 

while the second system dechlorinates 3,4,5-TCP at the para and meta positions to 

generate 3-CP.  

A search in the literatures revealed that 4 other pure isolates have been found be able to 

dechlorinate PCP. With the exception of Dehalococcoides sp. strain CBDB1, all the other 

cultures, however, are only capable of dechlorinating pentachlorophenol to generate 

various congeners of trichlorophenol as the end product. With Dehalococcoides sp. strain 

CBDB1, PCP dechlorination resulted in the production of a mixture of 3,5-DCP, 3,4-

DCP, 2,4-DCP, 3-CP and 4-CP, indicating that several dechlorination pathways were 

catalyzed (Adrian et al. 2007). Both Desulfitobacterium hafniense DCB2 (Madsen and 

Licht, 1992) and Desulfitobacterium dehalogenans JW/IU-DC1 (Utkin et al., 1994) 

ortho-dechlorinated PCP to generate 3,4,5-TCP as the end product.  Desulfomonile tiedjei 

DCB-1, probably one of the earliest discovered dechlorinating anaerobic bacterium, meta-

dechlorinates PCP to 2,4,6-TCP as its end product via its intermediate, 2,3,4,6-TeCP. 3-

Chlorobenzoate is required to serve as an inducer for PCP dehalogenation for strain DCB-

1 (Mohn and Kennedy, 1992).  
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5.3 Cultures RIV, LWN, SC and their Dehalogenation Capabilities 

5.3.1 An Evaluation of Culture RIV and its Dehalogenation Capabilities  

Culture RIV, enriched from fresh water sediment of a river in West Java, Indonesia, was 

found to be able to completely dechlorinate 2,4,6-TCP to 4-CP using a defined medium 

with pyruvate as its sole electron donor for reductive dehalogenation. Removal of the 

ortho-chlorine substituents from the phenol ring of 2,4,6-TCP begins after a 1-day lag 

phase period to form its end product. No 2,4-DCP, a possible intermediate, was detected 

during the course of the experiment. This could suggest that both ortho-chlorines are 

removed simultaneously during the reductive dehalogenation process of culture RIV. The 

dechlorination of 2,4,6-TCP was efficient and rapid as about 60 µM of the parent 

compound was found to be completely depleted after 5 days of incubation. 

Using genus specific primer pairs belonging to 8 genera of microorganisms known for 

their chlorophenol and halogenated compound dehalogenating capabilities, the 16S rRNA 

gene of the genomic DNA extracted from culture DNA was targeted to confirm the 

presence of possible dehalogenators from the genera as mentioned. Only microbes 

belonging to the genus, Desulfitobacterium, were found to be present in culture RIV 

following the direct PCR approach (see section 4.6). This finding is not surprising since 

most of the chlorophenol dechlorinating pure strains isolated belong to this genus group 

(Madsen and Licht, 1992; Utkin et al., 1994; Gerritse et al, 1996; Sanford et al, 1996; 

Bouchard et al, 1996; Breitenstein et al., 2001). 

Other than the capability to dechlorinate chlorophenols, enrichment culture RIV which 

contains microbes from the Desulfitobacterium genus group was found to be able to 



94 
 

debrominate polybrominated diphenyl ethers. A commercial mixture of Penta-BDE 

consisting of Tetra-, Penta- and Hexa-BDE congeners were found to be debrominated 

after 9 weeks of incubation. Concentrations Hexa- and Penta-BDE were found to be 

significantly decreased and this resulted in the formation of debromination products, 

Tetra-BDE. The debromination pathway will not be discussed here due to the complexity 

of the numerous starting substrates present in the parent compound and the diversity of 

the products formed which causes difficulty in delineating the specific PBDE 

debromination pathways. Assuming the desulfitobacteria from culture RIV are 

responsible for the dechlorination of 2,4,6-TCP as described above, it is safe to postulate 

that these microbes may likely be involved in the debromination of PBDE here as well. 

This was supported with a study by Robrock et al. (2008) on the debromination of PBDE 

of several pure isolates belonging to the Desulfitobacterium genus. It was found that all 3 

strains (all of which can extensively dechlorinate chlorophenols), namely 

Desulfitobacterium hafniense (formerly frappieri) PCP-1, Desulfitobacterium 

chlororespirans Co23 and Desulfitobacterium dehalogenans JW/IU-DC1, produced a 

variety of debromination congeners when exposed to octa-BDE mixture. Robrock et al. 

went on to explain that it is possible that the reductive dehalogenases responsible for 

chlorophenol degradation are involved in debromination because experiments with the 

representative Desulfitobacterium strain in which chlorophenol were not added as 

electron acceptor generated no detectable PBDE debromination activity. There results 

suggest that either the debrominating enzymes were not induced by the PBDEs alone or 

that the PBDE transformation by these isolates is co-metabolic, requiring concomitant 

presence of energy-generating electron acceptors.  
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Desulfitobacterium spp. are strictly anaerobic bacteria that were first isolated from 

environments contaminated by halogenated organic compounds. They are very versatile 

microorganisms that can use a wide variety of electrons including both man-made and 

naturally occurring halogenated organic compounds. Most of the Desulfitobacterium 

strains can dehalogenate halogenated compounds by mechanisms of reductive 

dehalogenation, although the substrate spectrum of halogenated organic compounds 

varies substantially from one strain to another, even with strains belonging to the same 

species (Villemur et al., 2006). 

Because of their versatility, desulfitobacteria can be excellent candidates for the 

development of anaerobic bioremediation processes.  

 

5.3.2 An Evaluation of Culture LWN and its Dehalogenation Capabilities 

Through the process of reductive dehalogenation, culture LWN transforms 2,4,6-TCP to 

4-CP as the end product. Culture LWN shared several similarities with culture RIV in 

terms of its dechlorination abilities. Dechlorination proceeds after a 2-day lag phase and 

dechlorination occurred only at the ortho position. Even though 2,4-DCP (the 

intermediate) was detected, it was quickly found to be quickly depleted and transformed 

into 4-CP. Removal of 2,4,6-TCP and its intermediate was quick with 60 µM of the 

parent substrate being dechlorinated completely in 5 days. Culture LWN demonstrated 

high tolerance level even to the toxic nature of 2,4,6-TCP and was able to resume 

dechlorination activities of the substrate even at 1,000 µM.  
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Interestingly, no microbes from the genus Desulfitobacterium was detected in culture 

LWN since in the past, only pure isolates (with the exception of Dehalococcoides strain 

CBDB1 and 195) from this genus have been able to perform reductive dehalogenation of 

chlorophenols with higher numbers of chlorine substituents (e.g. trichlorophenol, 

tetrachlorophenol and pentachlorophenol). Dehalococcoides strain CBDB1 have shown a 

wide spectrum of chlorophenol dechlorinating ability but was unable to dechlorinate 

2,4,6-TCP beyond 2,4-DCP. Dechlorination of 2,4-DCP to 4-CP was reported to be very 

slow and incomplete (Adrian et al. 2007). Dehalococcoides strain 195 dechlorinates only 

in the ortho position and only if a chlorine substituent was present in the flanking meta 

position. Dechlorination was only detected with 2,3-DCP, 2,3,4-TCP and 2,3,6-TCP and 

not with 2,4,6-TCP and PCP (Adrian et al. 2007). Attempts to detect the presence of 

Dehalococcoides in culture LWN also yielded negative results. Other known 

chlorophenol dechlorinating bacteria like Anaeromyxobater (Sanford et al., 2002) was not 

found in the culture LWN either. Microbes from the genus Desulfovibrio were detected 

but was found to be in insignificant levels. Furthermore, to our knowledge, only one 

isolate form the Desulfovibrio genus have been found to possess the ability to 

dechlorinate chlorophenol and this strain can only utilize 2-6-DCP and 2-CP for 

dehalorespiration (Sun et al., 2000). 

An interesting finding here is the detection of a microorganism which showed 98% 

similarity with a host of bacteria from the genus, Sedimentibacter following a partial 16S 

rRNA sequence analysis. This microorganism is found to be dominant in the highly 

enriched culture LWN. The dominance of culture LWN was shown to increase as the 

culture becomes more enriched with each transfer and was found to be positively 
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correlated with the concentration of 2,4,6-TCP. This could suggest that this strain of 

bacteria may actually be responsible for the reductive dehalogenation works in culture 

LWN. This point becomes even more convincing since microorganisms from other 

known 2,4,6-TCP dechlorinating genera, Desultiftobacterium and Dehalococcoides, were 

not present in the culture.  

Sedimentibacter have been shown to grow in cultures that contain chlorophenols 

(Breitenstein et. al, 2001; Zhang and Wiegel, 1994) as well as other chlorinated 

compounds such as β-hexachlorocyclohexane (van Doesburg et al., 2005). However, 

microbes from the Sedimentibacter genus have never been documented to be directly 

responsible for the dechlorination of chlorinated compounds. Instead, their presence has 

been reported to be a requirement in dehalogenating cultures for the growth of the 

dechlorinators and dechlorination. Van Doesburg et al. (2005) reported the metabolic 

dechlorination of β-hexachlorocyclohexane by a Dehalobacter sp. in the presence of a 

strain of bacteria from the Sedimentibacter genus. However, the role of the 

Sedimentibacter in the coculture could not be clarified. It has been hypothesized that 

Sedimentibacter stimulates the transformation of β-hexachlorocyclohexane via the 

excretion of growth factors like vitamins, amino acids and other compounds for the use of 

the Dehalobacter in reductive dehalogenation. When grown in coculture with 

Dehalobacter, only 10% of the bacteria present are Sedimentibacter. This was not the 

case in culture LWN as Sedimentibacter represent the majority of the microbial 

population within the culture. Another interesting and notable difference here is that, 

Sedimentibacter has been reported to grow only in the presence of yeast extract 
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(Breitenstein et al., 2002) but the Sedimentibacter containing culture LWN was grown 

completely in the absence of yeast extract.  

Although the facts so far have heavily linked Sedimentibacter in culture LWN to the 

dechlorination of chlorophenols, but its role cannot yet be confirmed. Whether the 

Sedimentibacter-like in culture LWN is the actual dechlorinators of chlorophenols or not, 

we can safely postulate that it plays a very important role in the reductive dehalogenation 

works of chlorophenols and further, in depth studies are required to understand its 

function. 

  

 5.3.3 An Evaluation of Culture SC and its Dehalogenation Capabilities  

A Dehalococcoides containing culture was enriched from an anaerobic sewage sludge 

obtained from a wastewater treatment plant off Jurong Island, Singapore. Culture SC, 

named after the company, SempCorp Industries, which has graciously permitted us the 

collection of sample from its wastewater treatment facility, reductively dechlorinates 

2,4,6-TCP to 4-CP via 2,4-DCP. 2,4,6-TCP was seen to gradually decrease after a lag 

phase of 5 days with a corresponding accumulation of 2,4-DCP. This is then followed by 

another ortho-dechlorination of 2,4-DCP to generate 4-CP.  

Although microbes from the genera Acetobacterium and Desulfovibrio were detected, 

they only represent the minority of the microbial population within the consortium. So 

far, no reports have shown any cases of chlorophenol degradation by the genus 

Acetobacterium and there has only been one case showing reductive dechlorination of 

chlorophenol by a pure strain from the genus Desulfovibrio (Sun et al., 2000). This strain, 
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however, can only dechlorinate 2,6-DCP and 2-CP. Chlorophenols with more chlorine 

substituents like 2,4,6-TCP and other congeners of di- and monochlorophenol inhibited 

growth.  

The presence of Dehalococcoides as the dominant species and the fact that mixed and 

pure cultures from this group have a great potential in dehalogenation of a wide spectrum 

of halogenated compounds like chlorophenols, polybrominated diphenyl ethers, 

polychlorinated biphenyl, chlorinated ethenes (Adrian et al., 2007; Robrock et al., 2008; 

Bedard et al., 2007; Bedard, 2008; Field and Sierra-Alvarez, 2007; He et al., 2003a; 

Fennell et al., 2004) give an impression that the Dehalococcoides from culture SC may be 

responsible for the dechlorination of 2,4,6-TCP. Thus far, only Adrian et al. (2007) have 

described the growth of Dehalococcoides (strains 195 and CBDB1) with chlorophenols as 

electron acceptors.  

Culture SC has shown great potential in dechlorinating chlorinated ethenes as well. 

Trichloroethene used as the sole electron acceptor was completely dechlorinated to trans- 

and cis-dichloroethene in the ratio of 3:1. For the same reasons stated above, we postulate 

that there is a high possibility of the dehalogenators to be from the Dehalococcoides 

genus as found in great abundance in culture SC. Numerous studies of degradation of 

chlorinated ethenes by Dehalococcoides, most notably strains 195, BAV1 and FL2, have 

been reported and extensively studied.  

Aside from Dehalococcoides, studies have shown that under anaerobic conditions, PCE 

or TCE can be dechlorinated by a variety of other dehalogenating microbes e.g. 

Dehalobacter, Desulfuromonas and Desulfitobacterium (Wild et al., 1996; Krumholz, 
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1997; Miller et al. 1997). However, only Dehalococcoides are known to be able to 

complete reductive dechlorination of PCE or TCE beyond DCE to vinyl chloride and 

ethene due to their possession of the functional reductive dehalogenase (RDase) genes 

such as pceA, tceA, bvcA and vcrA genes (Krajmalnik-Brown et al, 2004; Magnuson et al., 

1998; Muller et al., 2004; Smidt and de Vos 2004). Dehalococcoides species strains 

BAV1 and FL2 for examples are able to dechlorinate all DCE isomers to VC or ethene 

while strain 195 reductively dechlorinates tetrachloroethene to ethene (He et al., 2003b; 

He et al., 2005; Maymo-Gatell et al., 1997). 

 

5.4 Comparisons between Cultures LWN, RIV and SC 

Enrichments cultures LWN, RIV and SC have shown effective capabilities to reductively 

dechlorinate 2,4,6-TCP and its intermediate, 2,4-DCP, completely to 4-CP in defined 

media and with pyruvate as its carbon source. Only the ortho positioned chlorines were 

removed for all three cultures. Complete dechlorination and end product were achieved 

within ~7 days for cultures LWN and RIV whereas culture SC required ~14 days to 

completely dechlorinate 2,4,6-TCP and 2,4-DCP to 4-CP.  

An interesting observation can be observed in the nature of the formation and loss of the 

intermediate product, 2,4-DCP. Cultures LWN and RIV demonstrated a quick 

transformation of 2,4,6-TCP to 4-CP during the reductive dehalogenation process as 2,4-

DCP was not shown to be accumulated. 2,4,6-TCP was dechlorinated to 2,4-DCP which 

was then immediately used up by the dehalogenators to be transformed to 4-CP. Another 

possibility is that both ortho chlorines of 2,4,6-TCP may have been removed 
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simultaneously to form 4-CP which explains the non-accumulation of 2,4-DCP as the 

intermediate. Culture SC, on the other hand, exhibited a parallel increase of 2,4-DCP with 

the decrease 2,4,6-TCP. Upon the complete dechlorination of 2,4,6-TCP, the accumulated 

2,4-DCP was then further dechlorinated to 4-CP as the end product.  

Further studies showed that some of these cultures have the ability of dehalogenate 

halogenated compounds other than chlorophenols. While culture LWN was not able to 

dehalogenate the tested alternative halogenated compounds in this study, culture RIV and 

SC showed excellent potential in dehalogenating polybrominated diphenyl ethers and 

chloroethenes respectively. Culture RIV was found to be able to debrominate a 

commercial mixture of penta-BDE whilte culture SC effectively dechlorinated TCE 

completely to trans- and cis-DCE in a ratio of 3:1.  

The dehalogenators responsible 2,4,6-TCP dechlorination may be different in all three 

cultures as well. In culture RIV, only microbes from the genus Desulfitobacterium were 

found from the genera tested. This did not come as a surprise as the Desulfitobacterium 

bacteria were commonly known to be able to dechlorinate chlorophenols. 

Desulfitobacterium was not detected at all in culture SC and LWN. Instead, 

Dehalococcoides was found in culture SC. While it has been proven that bacteria from the 

Dehalococcoides genus are popular their dehalogenating abilities (having been able to 

dehalogenate chloroethenes, PBDE, PCB etc.), this could be, for the first time, a report 

that shows a Dehalococcoides containing culture that can completely dechlorinate 2,4,6-

TCP and 2,4-DCP to 4-CP. Meanwhile, no dehalogenators from commonly known 

dehalogenating genus were detected in culture LWN. Instead, DNA sequence results of 

the most abundant microbes in the culture revealed the presence of bacteria from the 
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genus Sedimentibacter. This could be both an equally exciting and important finding as 

there were no other reports which suggested a strain of bacteria from this genus that is 

capable of the dechlorination of chlorophenols. 
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CHAPTER 6 

CONCLUSION 

 

6.1 Major Findings 

With the reference to the problem statement and the aims set out earlier in this report, the 

objectives of this study have been met.  Listed below are the central findings of this study. 

 

6.1.1 Development of Method for Chlorophenol Detection 

A method involving the simultaneous derivatization and liquid-liquid extraction 

procedure followed by GC-MS analysis was successfully developed for the detection and 

measurement of all chlorophenol congeners. The derivatization or acetylation step plays 

an important role in ensuring sharper and „tailless‟ peaks on chromatograms due to better 

separation and higher sensitivity. 

 

6.1.2 Cultivation of Bacterial Consortia Capable of Chlorophenol Dechlorination 

A bacterial consortium designated, D12, grown in defined medium and pyruvate as the 

carbon source demonstrated the capability of dechlorinating PCP to 4-CP. PCP was 

completely meta-dechlorinated to 2,4,6-TCP which was then further dechlorinated to 2,4-

DCP and finally 4-CP as the final dechlorination product. 
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2,4,6-TCP was also observed in 3 highly enriched cultures, namely LWN, RIV and SC. 

These cultures were grown in defined media with pyruvate as the carbon source. 

Dechlorination pathways for all 3 cultures were identical i.e. 2,4,6-TCP  2,4-DCP  4-

CP.   

 

6.1.3 Identification of Possible Microbes Responsible of 2,4,6-TCP Dechlorination 

Using molecular techniques as discussed in previous sections, 2,4,6-TCP dechlorinating 

cultures LWN, RIV and SC were tested for the presence of possible dehalogenators 

within the 3 bacterial consortia. A common chlorophenol-dechlorinating bacterium from 

the genus Desulfitobacterium was found in culture RIV while culture SC comprises of 

Dehalococcoides-like bacteria, which was never reported to have been able to completely 

dechlorinate 2,4,6-TCP in the past. DNA sequencing results showed an even more 

interesting find with predominance of Sedimentibacter-like bacteria in culture LWN since 

Sedimentibacter have never been previously shown to dehalogenate any form of 

halogenated compounds. 

 

6.1.4 Dehalogenation of Halogenated Compounds Other than Chlorophenol 

Toxic halogenated compounds other than chlorophenols such as chloroethenes, 

polybrominated diphenyl ethers and polychlorinated biphenyls were used as alternative 

substrates for reductive dehalogenation by the chlorophenol-dechlorinating cultures. In 

this study, extensive debromination of PBDE was shown to be possible by culture RIV. 



105 
 

Meanwhile, culture SC has also shown a broad range of dehalogenating potential as it was 

successful in complete dechlorination of trichloroethene. All cultures were grown in 

defined media, without the aid of yeast extract for growth.     

 

6.2 Recommendations and Future Studies 

6.2.1 A Need to Screen for and Isolate Undiscovered Dehalogenators  

The diversity of reductively dechlorinating bacteria is large, almost equaling the diversity 

of chlorinated compounds synthesized. However, many new genera and species of 

dechlorinating bacteria still remain undiscovered. In addition, the beneficial, as well as 

potentially detrimental, interactions of dechlorinating populations with other microbial 

populations resulting from the presence of alternative terminal electron acceptors (e.g., 

nitrate, Fe
3+

, Mn
4+

), and the effect of such interactions on the dechlorination process need 

to be further explored.  

Studies such as this one are required to support and complement other current research 

efforts on the enrichment and isolation of organisms as well as the conditions under which 

reductive dechlorination occurs in order to improve our understanding of the reductive 

dechlorination process by microorganisms in complex natural environmental and 

engineered systems for the development of more efficient in situ bioremediation and 

waste treatment technologies and strategies. With so many uncertainties and so many 

questions left unanswered coupled with the tremendous potentials microbial reductive 

dechlorination can offer, this certainly has opened up a field that is of great interest and 

importance for fundamental as well as applied research in environmental engineering.  
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6.2.2 Narrowing the Success Gaps between Laboratories and Site Situations  

Future research should focus on both basic and applied aspects so as to be able to transfer 

the knowledge gained to the applied and „real‟ situations. Since bioremediation is an 

important tool in detoxifying and eliminating environmental contaminants, a thorough 

understanding of microbial genetics, biochemistry, and physiology is required. Attempts 

should be made to bridge the gap between accomplishments at laboratory level and 

success of the same at a field scale. Oftentimes, laboratory testing does not accurately 

predict field results for many processes. The cause for the most part is ascribed to 

disparities in physiological conditions, concentration of the target chemical, and other 

physical, chemical, and microbial aspects that were either not taken into consideration or 

show constant variation. Studies should focus on researches that are more similar to actual 

field or ground conditions. The concentration of the target chemicals used for carrying out 

biodegradation studies in the laboratory should not be hypothetical but should relate to 

contamination levels present in the environment. Additionally, treatment of hazardous 

chemicals in the environment also presents the possibility of unknown by-products of 

biodegradation entering the environment. Therefore, sound knowledge of the degradation 

products, metabolic pathway, biochemistry, and other details relating to treatability 

studies should be collected before venturing into a full-scale bioremediation process. 

Most of the research reported on degradation of chlorinated compounds is limited to flask 

experiments, and there is a need to also develop suitable bioreactor systems for treatment 

of waste containing high concentrations of chlorinated compounds emitted from 

manufacturing industries.  
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6.2.3 Discovery of Bacteria with Wider Substrate Range 

Most studies concentrate on the discoveries of bacteria with specific substrate 

dechlorination capabilities. This makes them only suitable to treat single-compound-

containing waste streams. As such, studies should be diverted to focus on the 

identification and isolation of bacteria with broader substrate spectrum dechlorination 

capabilities to make them more suitable to treat waste streams containing mixtures of 

several chlorinated compounds. 

 

6.2.4 Genetic Engineering and ‘Superbugs’ 

It is also worthwhile to pay attention to the development and the extension of the 

knowledge we currently possess in the field of genetic engineering of dechlorinating 

microbes. Most of the xenobiotic degrading microorganisms harbor plasmids which code 

for the catabolic genes. With the combination of an in depth understanding of the 

biochemistry and genetics of plasmid-borne degradation and the applications of 

recombinant DNA techniques, it is possible to characterize the appropriate genes and 

transfer them to construct improved strains with enhanced capability for degradation of 

several toxic compounds. One of the objectives of genetic engineering of toxic chemical-

degrading microorganisms is to develop the so-called "superbugs," capable of detoxifying 

or decontaminating the toxic chemicals in the natural environment. To establish the 

potential applications of the recombinant strains in the environment, the strains must be 

stable members of the indigenous microflora and the recruitment of catabolic enzymes 

and gene regulators with appropriate specificities, by means of natural gene transfer or 
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laboratory manipulation, to produce new hybrid pathways for chlorinated compounds 

must not significantly alter the host or the natural ecosystem. Although the risks of 

releasing recombinant microorganisms still remain unknown, the prospects for the 

construction of catabolic pathways to effect mineralization and detoxification of 

halogenated compounds are very encouraging.  

 

6.3 Closing Remarks 

Obviously, the most efficient means of preventing further pollution lies in restricting the 

usages of the recalcitrant chlorinated compounds and replacing them with non-recalcitrant 

alternatives. However, this cannot be implemented immediately and overnight as 

chlorinated compounds difficult and expensive to replace in agriculture and 

manufacturing industries. As such, studies of dehalorespiring microorganisms as well as 

the process of reductive dehalogenation itself on chlorinated compounds such as this one 

are vital in the controlling the generation and reducing contamination of these extremely 

toxic compounds into the environment.  

While we acknowledge and appreciate the numerous contributions and the dedicated 

works that have been carried out in this field, there is so much more that needs to be 

accomplished in this direction. 
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