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Summary

Stock indexes, unlike stocks, options, cannot be trader directly, so futures based

on stock indexes are primary way of trading stock indexes. There are three type of

investors in various financial markets, namely, speculator, hedger and arbitrager.

In this thesis, we are interested in the arbitrage profit in stock index futures. This

thesis mainly focus on on pricing options whose payoff is based on simple arbitrage

profit in stock index futures and plotting their early exercise boundaries. We con-

sider both one dimensional and two dimensional problems, for each we sub-divide

as ‘no position limits’ case and ‘with position limits’ case.

In one dimensional problem, we use Brownian Bridge process to model simple arbi-

trage profit. A one dimensional PDE for the options is derived. In two dimensional

problem, we add one mean-reverting stochastic differential equation to model order

imbalance. A two dimensional PDE for the options is derived. We also take into

account of transaction costs and position limits and form complete models.

For numerical experiement, we use fully implicit and Crank-Nicolson scheme to

solve the variational inequality numerically. To handle American option type, we

adopt projected SOR method. Numerical Results of the early exercise boundaries

and option values are given and analyzed. These early exercise boundaries give

1



Summary 2

us the optimal arbitrage strategy. We discuss various parameter effects on option

values and early exercise boundary, for one dimensional problem, while we also

examine the order imbalance impacts on early exercise boundary, for two dimen-

sional problem. We also compare the numerical results between the ‘no position

limits’ and ‘with position limits’ models, and find the optimal trading strategy is

exactly the same for both cases.

Keywords: stock index futures, simple arbitrage profit, order imbalance, op-

timal trading strategy.
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Chapter 1
Introduction

1.1 Background

1.1.1 Arbitrage in Stock Index Futures

The textbook definition of arbitrage suggests that it is a straightforward matter

of taking offsetting positions in different securities and realizing the riskless profit.

It can be achieved by either taking advantage of price discrepancies of the same

product in different financial market, or by deriving more complicated strategies

to earn the arbitrage profit - such as in the stock index futures case.

Index futures are futures markets where the underlying commodity is a stock index,

such as the DJIA, S&P, or the FTSE1001. Stock indexes cannot be traded directly,

so futures based upon stock indexes are primary way of trading stock indexes.

Index futures are essentially the same as all other futures markets, like currency

and commodity futures markets, and are traded in exactly the same way.

A stock index futures is a forward contract to obtain a stock index on the settlement

date of the contract. To derive a general theoretical arbitrage relation between spot

1DJIA: Dow Jones Industrial Average. S&P: Standard and Poor. FSTE: Financial Times

Stock Exchange
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1.1 Background 6

and futures prices, consider a futures contract of maturity T . Let Ft(T ) be the

futures price at maturity date, Pt(T ) be the price of a T − t period unit discount

bond, and St be the current spot price of the underlying portfolio. Define

Gt := Ft(T ) · Pt(T ) + PV(div)

where PV(div) is the present value of the dividends payable on the underlying

portfolio up to the maturity of the contract. Denote ǫ as the arbitrage profit in

the absence of transaction costs to be obtained by taking a long position in the

underlying portfolio, hedging it with a short position in the futures contract, and

holding the position until maturity of the futures contract: we shall refer to this as

a simple long arbitrage position; it is simple because it is to be held until maturity.

Then

ǫ = Gt − St

The strategy is to borrow an amount of Gt and to buy one unit of the underlying

portfolio at cost St. By constructing Gt in this pattern, this strategy yields an

immediate cash inflow of ǫ and no further net cash flows. To confirm this point,

let us check what will happen at maturity date. We need pay off the loan that we

have borrowed at initial time. The amount we need to pay is

GT =
Gt

Pt(T )
=

Ft(T ) · Pt(T ) + PV(div)

Pt(T )
= Ft(T ) + FV(div)

However, at maturity date, we exercise the futures contract to sell the underlying

portfolio at future price Ft(T ) which will pay off part of the loan, the balance

FV(div) being paid is received for holding the underlying portfolio. Essentially,

there is no cash flow involved after initial time. Therefore, ǫ is the value of the

arbitrage profit to be reaped from this simple long arbitrage position.

Note that, if ǫ is negative, we can reverse the above strategy to obtain an arbitrage

profit of −ǫ. The strategy is to deposit an amount of Gt and to short one unit of
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the underlying portfolio as cost St. Similarly, we will gain some amount of money

at maturity date,

GT =
Gt

Pt(T )
=

Ft(T ) · Pt(T ) + PV(div)

Pt(T )
= Ft(T ) + FV(div)

However, we use part of the gain, FV(div), to pay for shorting the underlying

portfolio, and we need to exercise the futures contract, buying back the underlying

portfolio at future price Ft(T ) to close the short position. Therefore, −ǫ is the

value of the arbitrage profit to be reaped from this simple short arbitrage position.

1.1.2 Transaction Costs

Since stock index arbitrage involves transactions in both the stock and futures

markets, account must be taken of commissions and bid-ask spreads in the two

markets. To open an arbitrage position involves a future commission, a stock com-

mission, and the market impact associated with the stock transaction, due to the

bid-ask spread. If the arbitrage position is held to expiration, the only additional

cost is the commission to close out the futures position and the stock commis-

sion associated with the reversal of the stock position. No market-impact costs

are incurred since the stock can be sold at the market closing price, which is the

same as the terminal futures price. However, if the arbitrage position is closed out

early, there is an additional cost consisting of the market-impact cost on the stock

position.

Therefore, we use C1 and C2 to denote the costs associated with the simple arbi-

trage and the incremental costs associated with early close out, namely







C1 = two futures commissions + two stock commissions + one market-impact cost

C2 = one market-impact cost
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1.2 Historical Work And Author’s Contribution

Numerous famous academicians and practitioners have done extensive research on

stock index futures. We present the major historical works in a chronological order.

In [1], Bradford Cornell and Kenneth R.French suggest the discrepancy between

the actual and predicted stock index futures prices is caused by taxes. The fact

that capital gains and losses are not taxed until they are realized gives stockholders

a valuable timing option. Since this option is not available to stock index futures

traders, the futures prices will be lower than standard no-tax models predict.

In [2], Figlewski finds that the standard deviation of daily returns on portfolio re-

garding to NYSE2 Index, hedged by a short position in the nearest NYSE futures

contract, was 19.72% during January 1981 to March 1982. The corresponding fig-

ure for S&P 500 portfolio for the same period was 16.46%. These numbers show

these contracts do not always trade at the prices predicted by a simple arbitrage

relation with the spot price.

In [3], Michael J. Brennan and Eduardo S. Schwartz uses a continuous-time Brown-

ian Bridge to model the stochastic process of simple arbitrage profit, and proposes

a PDE approach for pricing the options whose underlying is the simple arbitrage

profit.

In [4], Joseph K.W. Fung introduces order imbalance as measure of both the direc-

tion and the extent of market liquidity. The study covers the period of the Asian

financial crisis and includes wide variations in order imbalance and the index fu-

tures basis. The results indicate that the arbitrage spread is positively related to

the aggregate order imbalance in the underlying index stocks, and negative order

imbalance has stronger impact than positive order imbalance.

In [5], Joseph K.W. Fung and Philip L.H Yu uses transaction records of index fu-

tures and index stocks, with bid/ask price quotes, to examine the impact of stock

2NYSE: New York Stock Exchange
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market order imbalance on the dynamic behavior of index futures and cash index

prices. Their findings indicate that a stock market microstructure that allows a

quick resolution of order imbalance promotes dynamic arbitrage efficiency between

futures and underlying stocks.

In [6], Chen Huan uses explicit method to price one dimensional options and draw

their respective early exercise boundaries. Convergence of the model is also ana-

lyzed. In [7], Dai Kwok and Zhong use one mean-reverting stochastic differential

equation to model order imbalance and give me the motivation to price options by

a two dimensional PDE.

The main contributions of this thesis are

• We carry out a two dimensional PDE approach to solve the option values

numerically. We adopt a fully implicit and Crank Nicolson scheme, where

central differencing is used as much as possible. Upwinding scheme is also

used to ensure the row diagonal dominance of M-matrix. We handle the

American option type with projected SOR method.

• We discuss various parameter effects on option values and early exercise

boundary, for one dimensional problem, while we also examine the order

imbalance impacts on early exercise boundary, for two dimensional problem.

• We compare the numerical results between the ‘no position limits’ and ‘with

position limits’ models, and find the optimal trading strategy is exactly the

same for both cases.

1.3 Outline

The thesis is mainly motivated by the paper [3] and [4]. In [3], a PDE approach

is adopted to price the options whose underlying is simple arbitrage profit. It is a
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one dimensional problem. In [4], the concept of order imbalance, which clearly has

an impact on the options price, is introduced. In this thesis, beyond the historical

works, we are going to build the option model on simple arbitrage profit and order

imbalance3, derive its govern PDE, evaluate the option price and plot the early

exercise regions or boundaries by numerical methods.

Chapter 1 gives you some fundamental understanding on the arbitrage in stock in-

dex futures market. The remainder of this thesis is organized as follows. In chapter

2, we derive the PDE for option on one simple arbitrage profit, use project SOR

with fully implicit and Crank-Nicolson method to evaluate option prices numeri-

cally, and also present the plot of early exercise regions and boundaries. Addition-

ally, we discuss the parameter effects on options price and early exercise boundaries.

In chapter 3, we introduce order imbalance in the stock futures market, and extend

to two dimensional case, namely, the value of option depending on simple arbitrage

profit and order imbalance. The numerical algorithms are provided and the plot of

option values and early exercise boundary are presented. In chapter 4, we design

options on two simple arbitrage profit with various payoff types. Finally, conclud-

ing remarks and possible future research direction are drawn in chapter 5. The

Matlab source code is not given in Appendix due to the large size, and is packaged

as an external file.

3It is a two dimensional problem



Chapter 2
One Dimensional Problem

2.1 Theoretical Model

In this section we focus on one dimensional problem and derive the partial dif-

ferential equation for the options to close out or initiate a stock index arbitrage

position, and construct the complete model for ‘no position limits’ case and ‘with

position limits’ case.

2.1.1 Underlying Asset and Options

A simple long arbitrage position as defined involves a long position in the under-

lying portfolio and a short position in the futures contract, held to maturity. ǫ is

the riskless profit obtained by establishing such a position. Similarly, we define a

simple short arbitrage position as a short position in the underlying portfolio and

a long position in the futures contract, held to maturity. −ǫ is the riskless profit

from establishing such a position.

Technically speaking, a long (short) arbitrage position can be closed-out prior to

maturity by taking an offsetting short (long) arbitrage position. Without regard-

ing to transaction costs, this immediately yields an additional arbitrage profit of

11
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−ǫ(ǫ).

Let V (ǫ, t)(U(ǫ, t)) be the value of the right to close a long (short) arbitrage posi-

tion prior to maturity when the simple arbitrage profit before transaction costs is

ǫ and the time to maturity of the futures contract is T − t. Similarly, let W (ǫ, t)

be the value of the right to initiate an arbitrage position.

In order to value the arbitrage and early close-out options and determine the op-

timal strategies for exercising them, it is necessary to make some assumptions

about the stochastic differential equation (SDE) of ǫ. We assume that the simple

arbitrage profit follows a continuous-time Brownian Bridge process.

dǫ = −
µǫ

T − t
dt+ γdW (2.1)

Some explanations on these parameters

T − t is the time to maturity of the futures contract

µ is the speed of mean reversion

γ is the instantaneous standard deviation of the process

dW is the increment to a Gauss-Wiener process

The Brownian Bridge process has the property that the arbitrage profit tends to

be zero and is zero at maturity almost surely. It makes economical sense because

when close to maturity, the mean-reverting parameter µ

T−t
is quite large, ǫ will

act so quickly as to bring the variable back to its mean level, namely zero, as

arbitragers will always take existing arbitrage opportunities to drive the profit to

zero1.

By risk neutral valuation, the values of the options (V (ǫ, t), U(ǫ, t), W (ǫ, t)) are

determined by discounting their expected payoffs at the risk-free interest rate. By

the merit of Feyman-Kac formula, for t < T , we can deduce the partial differential

1The greater the mean-reverting parameter value, µ
T−t

, the greater is the pull back to the

equilibrium level



2.1 Theoretical Model 13

equations (PDE) form of all three options.

∂H

∂t
+

1

2
γ2∂

2H

∂ǫ2
−

µǫ

T − t

∂H

∂ǫ
− rH = 0 (2.2)

where H(ǫ, t) = V (ǫ, t), U(ǫ, t),W (ǫ, t), and r is the riskless interest rate which is

assumed to be constant.

2.1.2 No Position Limits

Without taking consideration of position limits, close out a long position prior

to maturity means take a simple short arbitrage position. This will yield a net

benefit −ǫ, however, simultaneously it costs us C2 for early closing out of arbitrage

position. Therefore, the value of V (ǫ, t) should have a lower bound of −ǫ − C2,

mathematically speaking,

V (ǫ, t) ≥ max(−ǫ− C2, 0) (2.3)

Similarly, close out a short position early is equivalent to take a simple long ar-

bitrage position. This will give an profit of ǫ, however, at the same time, we will

incur a cost of C2. Therefore, the value of U(ǫ, t) should have a lower bound of

ǫ− C2, mathematically speaking,

U(ǫ, t) ≥ max(ǫ− C2, 0) (2.4)

Things become a little bit different to initiate a simple long or short arbitrage

position. Initiating a simple long arbitrage position will yield an profit of ǫ but

incur a cost of C1. Alternatively, initiating a simple short arbitrage position will

yield an profit of −ǫ but incur a cost of C1. Sum it up, the value of W (ǫ, t) should

have a lower bound of the larger value between ǫ+V (ǫ, t)−C1 and −ǫ+U(ǫ, t)−C1,

mathematically speaking,

W (ǫ, t) ≥ max(ǫ+ V (ǫ, t)− C1,−ǫ+ U(ǫ, t)− C1, 0) (2.5)
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At maturity date, namely t = T , the simple arbitrage profit ǫ becomes zeros and

so does these options whose underlying asset is the simple arbitrage profit. Hence

V (0, T ) = U(0, T ) = W (0, T ) = 0 (2.6)

Up till now we have derived that V , U and W follow the PDE (2.2). They are

subjected to the lower bound conditions (2.3), (2.4) and (2.5). The terminal con-

dition is (2.6).

To summarize, we solve the following problem on (ǫ, t) ∈ {(−∞,∞)× [0, T )}

min

{

−
∂H

∂t
−

1

2
γ2∂

2H

∂ǫ2
+

µǫ

T − t

∂H

∂ǫ
+ rH,H −G

}

= 0 (2.7)

where G is the lower bound function

G =



















−ǫ− C2 if H = V

ǫ− C2 if H = U

max (ǫ+ V,−ǫ+ U)− C1 if H = W

with the terminal condition,

H(ǫ = 0, t = T ) = 0

This variational inequality form of all three options is similar to the model of

American put option PA on (S, t) ∈ {(0,∞)× [0, T )}.

min

{

−
∂PA

∂t
−

1

2
S2σ2∂

2PA

∂S2
− rS

∂PA

∂S
+ rPA, PA − (X − S)

}

= 0

with the terminal condition,

PA(S, T ) = max(X − S, 0)

In next subsection, we can use the same technique, projected SOR method, for

implementing American put option, to implement the model (2.7) numerically.
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2.1.3 With Position Limits

Next, without loss of generality, let us assume that the arbitrageur is restricted

to a single net long or short arbitrage position at any moment in time. It is a

reasonable assumption because of capital requirements or self-imposed exposure

limits. It makes more realistic case but also adds complexity into the model.

With a position limit, closing an arbitrage position not only yields an profit but

also gives the right to initiate a new arbitrage position in the future. Therefore,

compared to no position limits case, the only difference in lower bound is an addi-

tional term W (ǫ, t). Hence we have

V (ǫ, t) ≥ max(W (ǫ, t)− ǫ− C2, 0) (2.8)

U(ǫ, t) ≥ max(W (ǫ, t) + ǫ− C2, 0) (2.9)

The value of the arbitrage option will still satisfy

W (ǫ, t) ≥ max(ǫ+ V (ǫ, t)− C1,−ǫ+ U(ǫ, t)− C1, 0) (2.10)

Of course, at maturity, ǫ = 0, and all three options have no value, so that

V (0, T ) = U(0, T ) = W (0, T ) = 0 (2.11)

At this stage we have derived that V , U and W follow the PDE (2.2). They

are subjected to the lower bound conditions (2.8), (2.9) and (2.10). The terminal

condition is (2.11).

To summarize, we solve the following problem on (ǫ, t) ∈ {(−∞,∞)× [0, T )}

min

{

−
∂H

∂t
−

1

2
γ2∂

2H

∂ǫ2
+

µǫ

T − t

∂H

∂ǫ
+ rH,H −G

}

= 0 (2.12)

where G is the lower bound function

G =



















W − ǫ− C2 if H = V

W + ǫ− C2 if H = U

max (ǫ+ V,−ǫ+ U)− C1 if H = W
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with the terminal condition,

H(ǫ = 0, t = T ) = 0

2.2 Numerical Scheme

In this section, we use fully implicit scheme and Crank-Nicolson scheme to dis-

cretize the models of the options. We take a transformation to make PDE look

simpler and add some boundary conditions

2.2.1 Transformation

Let us recall the PDE (2.2),

∂H

∂t
+

1

2
γ2∂

2H

∂ǫ2
−

µǫ

T − t

∂H

∂ǫ
− rH = 0

We take the transformation

x = (T − t)−µǫ, Q(x, t) = H(ǫ, t)

since
∂H
∂ǫ

= ∂Q

∂x
∂x
∂ǫ

= (T − t)−µ ∂Q

∂x

∂2H
∂ǫ2

= (T − t)−µ ∂2Q

∂x2
∂x
∂ǫ

= (T − t)−2µ ∂2Q

∂x2

∂H
∂t

= ∂Q

∂x
∂x
∂t

+ ∂Q

∂t
= µ(T − t)−µ−1ǫ∂Q

∂x
+ ∂Q

∂t

substitute all terms into (2.2) and simplify, we get

∂Q

∂t
+

1

2
γ2(T − t)−2µ∂

2Q

∂x2
− rQ = 0 (2.13)

After the transformation, we use v(x, t) = V (ǫ, t), u(x, t) = U(ǫ, t) and w(x, t) =

W (ǫ, t). The new models are presented as follows.

For ‘no position limits’ case, on the solution domain (x, t) ∈ {[xmin, xmax]× [0, T )}

min

{

−
∂Q

∂t
−

1

2
γ2(T − t)−2µ∂

2Q

∂x2
+ rQ,Q− gNP

}

= 0 (2.14)
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where gNP is the transformed lower bound function for ‘no position limits’ case,

gNP =



















−(T − t)µx− C2 if Q = v

(T − t)µx− C2 if Q = u

max ((T − t)µx+ v,−(T − t)µx+ u)− C1 if Q = w

with transformed terminal condition,

Q(x = 0, t = T ) = 0

and with transformed boundary conditions,

Q(xmin, t) =



















−(T − t)µxmin − C2 if Q = v

0 if Q = u

−(T − t)µxmin − C1 if Q = w

and

Q(xmax, t) =



















0 if Q = v

(T − t)µxmax − C2 if Q = u

(T − t)µxmax − C1 if Q = w

For ‘with position limits’ case, on the solution domain (x, t) ∈ {[xmin, xmax]× [0, T )}

min

{

−
∂Q

∂t
−

1

2
γ2(T − t)−2µ∂

2Q

∂x2
+ rQ,Q− gWP

}

= 0 (2.15)

where gWP is the transformed lower bound function for ‘with position limits’ case,

gWP =



















w − (T − t)µx− C2 if Q = v

w + (T − t)µx− C2 if Q = u

max ((T − t)µx+ v,−(T − t)µx+ u)− C1 if Q = w

with transformed terminal condition,

Q(x = 0, t = T ) = 0
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and with transformed boundary conditions,

Q(xmin, t) =



















−2(T − t)µxmin − C1 − C2 if Q = v

0 if Q = u

−(T − t)µxmin − C1 if Q = w

and

Q(xmax, t) =



















0 if Q = v

2(T − t)µxmax − C1 − C2 if Q = u

(T − t)µxmax − C1 if Q = w

For ‘no position limits ’ case, the system of PDEs (2.14) is easy to solve because

they are not really ‘coupled’. We can solve the first two variational equations on

their own, just similar to deal with the American options, then using the results

solved by first two variational equations to solve the third variational equation.

The three options values do not need to be solved simultaneously.

For ‘with position limits ’ case, the system of PDEs (2.15) is nested, the variational

inequality of each option involves the value of at least one other options. We need

to solve these options simultaneously at each time step. We adopt an iterative

method, and stop the iteration when the value of each option changes is within a

preset tolerance in two consecutive iterations.

2.2.2 Numerical Discretization

The solution region is confined as

Ω = {(x, t) |xmin ≤ x ≤ xmax, 0 ≤ t ≤ T } (2.16)

The grid for the finite difference scheme is defined as followed:

xi = xmin + i · δx, i = 0, 1, · · · ,m, x0 = xmin, xm = xmax

tj = j · δt, j = 0, 1, · · · , n, t0 = 0, tn = T



2.2 Numerical Scheme 19

where

δx =
xmax − xmin

m
, δt =

T

n

Define the grid function

Q = {Qi,j |0 ≤ i ≤ m, 0 ≤ j ≤ n} (2.17)

where

Qi,j := Q(xi, tj) for 0 ≤ i ≤ m, 0 ≤ j ≤ n

Equation (2.13) can be discretized by a standard one factor finite difference method

with variable timeweighting to give

Qi,j+1 −Qi,j = (1− θ) [−αj+1Qi+1,j+1 − βj+1Qi,j+1 − αj+1Qi−1,j+1] (2.18)

+θ [−αjQi+1,j − βjQi,j − αjQi−1,j ]

θ = 1 for fully implicit scheme, and θ = 0.5 for Crank-Nicolson scheme.

For notational convenience, it helps to rewrite the above discrete equations in

matrix form. Let

Qj+1 = [Q1,j+1, Q2,j+1, · · · , Qm−1,j+1]
T

Qj = [Q1,j , Q2,j , · · · , Qm−1,j ]
T

and we obtain a compact matrix form

(I+ θM)Qj = (I− (1− θ)M)Qj+1 + b (2.19)

where matrix I is an identical matrix, vector b handles the boundary conditions,

and tri-diagonal matrix M is

M = −























β1 α1

α2 β2 α2

. . . . . . . . .

αm−2 βm−2 αm−2

αm−1 βm−1























b =























θα1Q0,j + (1− θ)α1Q0,j+1

0
...

0

θαm−1Qm,j + (1− θ)αm−1Qm,j+1






















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where αi =
δt

2δx2γ
2(T − tj)

−2µ and βi = −2αi − rδt.

The matrix I+θM is a row diagonally dominant matrix, hence the projected SOR

ensures the convergence of the numerical solutions. The overrelaxtion method

should take into account the tri-diagonal nature of the matrix I + θM, and it

should also be adjusted for early exercise. Let gi,j, i = 1, 2, · · · ,m − 1, be the

intrinsic value when x = xi. Therefore,

gi,j =



















max {−xi(T − tj)
µ − C2, 0} if Q = v

max {xi(T − tj)
µ − C2, 0} if Q = u

max {max(xi(T − tj)
µ + vi,j,−xi(T − tj)

µ + ui,j)− C1, 0} if Q = w

and we denote the right hand of equation (2.19),

zj+1 = (I− (1− θ)M)Qj+1 + b

For each time layer j, letQk
j be the kth estimate forQj, the projected SOR method

for ‘no position limits ’ case can then be written as in Algorithm 1.

Algorithm 1 Pseudo Code of Projected SOR Method for No Position Limits, One

Dimensional Problem. Determining Option Values Qi,j for Interior Node (xi, tj)

Let Q0
j = Qj+1

for k = 0, 1, 2 · · · until convergence do

if i = 1

Qk+1
i,j = max

{

gi,j , Q
k
i,j +

ω
1−θβi

[

zi,j+1 − (1− θβi)Q
k
i,j + θαiQ

k
i+1,j

]

}

elseif i = 2 : m− 2

Qk+1
i,j = max

{

gi,j , Q
k
i,j +

ω
1−θβi

[

zi,j+1 + θαiQ
k+1
i−1,j − (1− θβi)Q

k
i,j + θαiQ

k
i+1,j

]

}

elseif i = m− 1

Qk+1
i,j = max

{

gi,j , Q
k
i,j +

ω
1−θβi

[

zi,j+1 + θαiQ
k+1
i−1,j − (1− θβi)Q

k
i,j

]

}

end if

if

∥

∥

∥
Qk+1

j −Qk
j

∥

∥

∥
< tolerance then

Quit the iterations

end if

end for
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In Algorithm 1, we solve v and u independently, and use the results to solve w

finally. It is not a very difficult task, however, for ‘with position limits ’ case, we

need to solve v, u and w at the same time. The intrinsic values for them are2


















gvi,j = max {wi,j − xi(T − tj)
µ − C2, 0}

gui,j = max {wi,j + xi(T − tj)
µ − C2, 0}

gwi,j = max {max(xi(T − tj)
µ + vi,j,−xi(T − tj)

µ + ui,j)− C1, 0}

For each time layer j, let vk
j , u

k
j and wk

j be the kth estimate for vj, uj and wj. We

present the projected SOR method for with position limits case which can then be

written as in Algorithm 2.

Algorithm 2 Pseudo Code of Projected SOR Method for With Position Limits, One

Dimensional Problem. Determining Option Values Qi,j for Interior Node (xi, tj)

Let v0
j = vj+1, u

0
j = uj+1 and w0

j = wj+1

for i = 1 : m− 1

gvi,j = max {wi,j+1 − xi(T − tj)
µ − C2, 0}

gui,j = max {wi,j+1 + xi(T − tj)
µ − C2, 0}

end for

for k = 0, 1, 2 · · · until convergence do

By Algorithm 1: Calculate vk+1
i,j and uk+1

i,j

for i = 1 : m− 1

gwi,j = max
{

max(xi(T − tj)
µ + vk+1

i,j ,−xi(T − tj)
µ + uk+1

i,j )− C1, 0
}

end for

By Algorithm 1: Calculate wk+1
i,j

for i = 1 : m− 1

gvi,j = max
{

wk+1
i,j − xi(T − tj)

µ − C2, 0
}

gui,j = max
{

wk+1
i,j + xi(T − tj)

µ − C2, 0
}

end for

if
∥

∥

(

vk+1
j − vk

j

)

+
(

uk+1
j − uk

j

)

+
(

wk+1
j −wk

j

)
∥

∥ < tolerance then

Quit the iterations

end if

end for

2We use the superscript to denote the corresponding intrinsic value
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2.3 Experimental Results

In this section, we take some data inputs, calculate the options price and draw

their respective exercise regions and exercise boundaries.

2.3.1 Data Inputs

The value of the simple arbitrage opportunity is defined by

ǫt = Ft(T )e
−r(T−t) + PVt(div)− St (2.20)

where Ft(T ) is the futures price at time t for a contract maturing at time T , r is

the riskless interest rate, PVt(div) is the present value of the daily dividends on

the S&P 500 index portfolio up to the maturity of the contract, and St is the value

of the index at time t. We partition Nx = 400 and Nt = 400 in state and time

Input Parameter

Rate of Mean Reversion µ 0.03

Standard Deviation γ 0.6

Riskless Interest Rate r 0.07

Time to Maturity T 1

Type One Cost C1 1.2

Type Two Cost C2 0.5

Table 2.1: Model Parameters for Stylized One Dimensional Problem

variables, and we choose Crank-Nicolson scheme for numerical experiment.

2.3.2 Option Values

We present the option values of V ,U and W , without and with position limits.
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ǫ −1.5 −1 −0.5 0 0.5 1 1.5

V 1.0000 0.5299 0.2113 0.0576 0.0099 0.0010 0.0001

U 0.0001 0.0010 0.0099 0.0576 0.2113 0.5299 1.0000

W 0.3685 0.1208 0.0258 0.0065 0.0258 0.1208 0.3685

Table 2.2: Values of Early Close-Out and Open Options, No Position Limits

ǫ −1.5 −1 −0.5 0 0.5 1 1.5

V 1.3685 0.6506 0.2369 0.0609 0.0100 0.0010 0.0001

U 0.0001 0.0010 0.0101 0.0609 0.2369 0.6506 1.3685

W 0.3685 0.1208 0.0258 0.0065 0.0258 0.1208 0.3685

Table 2.3: Values of Early Close-Out and Open Options, With Position Limits
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Figure 2.1: The Value of Three Options, Without and With Position Limits

1. Value of V and U are larger for ‘with position limits’ case

List out the variational equations for both cases.

For ‘no position limits ’ case

min
{

−∂V
∂t

− 1
2
γ2 ∂2V

∂ǫ2
+ µǫ

T−t
∂V
∂ǫ

+ rV, V − (−ǫ− C2)
}

= 0

min
{

−∂U
∂t

− 1
2
γ2 ∂2U

∂ǫ2
+ µǫ

T−t
∂U
∂ǫ

+ rU, U − (ǫ− C2)
}

= 0
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For ‘with position limits ’ case

min
{

−∂V
∂t

− 1
2
γ2 ∂2V

∂ǫ2
+ µǫ

T−t
∂V
∂ǫ

+ rV, V − (W − ǫ− C2)
}

= 0

min
{

−∂U
∂t

− 1
2
γ2 ∂2U

∂ǫ2
+ µǫ

T−t
∂U
∂ǫ

+ rU, U − (W + ǫ− C2)
}

= 0

Clearly, the options of V and U for ‘with position limits’ case have an addi-

tional non-negative value in the lower bound.

2. Value of W is exactly the same for both cases

In both cases we have

min

{

−
∂W

∂t
−

1

2
γ2∂

2W

∂ǫ2
+

µǫ

T − t

∂W

∂ǫ
+ rW,W −max (ǫ+ V − C1,−ǫ+ U − C1)

}

= 0

When early exercise happens forW , W can either takes the value of ǫ+V −C1

or −ǫ+U−C1. When W takes ǫ+V −C1, which means ǫ is positive in large,

hence V goes to zero. In another hand, when W takes −ǫ + U − C1, which

means ǫ is negative in large, hence U approaches to zero. So effectively, the

variational inequality of W reduced to

min

{

−
∂W

∂t
−

1

2
γ2∂

2W

∂ǫ2
+

µǫ

T − t

∂W

∂ǫ
+ rW,W −max (ǫ− C1,−ǫ− C1)

}

= 0

The variational equation above indicates that W is independent of values of

V and U . Therefore, for both models, W are identical although V and U

have different values. Economically speaking, it means the value of the option

for investor to initiate an arbitrage position is not affected by existence of

position limits.

2.3.3 Exercise Region and Boundary

For ‘no position limits ’ case: According to the original variational inequality for V

min

{

−
∂V

∂t
−

1

2
γ2∂

2V

∂ǫ2
+

µǫ

T − t

∂V

∂ǫ
+ rV, V − (−ǫ− C2)

}

= 0



2.3 Experimental Results 25

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exercise Holding

Simple Arbitrage Profit ε

T
im

e 
t

No Position Limit:The Early Exercise Region for Option V

Figure 2.2: For No Position Limits Case: The Early Exercise Region of Option V

We would expect early exercise to occur only when −ǫ − C2 ≥ 0, namely, when ǫ

is negative and |ǫ| is large. From Figure 2.2, we can see that the exercise region

is below ǫ = −C2, which agrees with our expectation. Furthermore, a closer look

shows us that the exercise boundary is monotonically increasing, which shows that

the closer to maturity we are, the smaller |ǫ| value is required for early exercise to

occur. According to the original variational inequality for U

min

{

−
∂U

∂t
−

1

2
γ2∂

2U

∂ǫ2
+

µǫ

T − t

∂U

∂ǫ
+ rU, U − (ǫ− C2)

}

= 0

We would expect early exercise to occur only when ǫ− C2 ≥ 0, namely, when ǫ is

positive and large. From Figure 2.3, we can see that the exercise region is above

ǫ = C2, which agrees with our expectation. Furthermore, a closer look shows

us that the exercise boundary is monotonically decreasing, which shows that the

closer to maturity we are, the smaller ǫ value is required for early exercise to occur.
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Figure 2.3: For No Position Limits Case: The Early Exercise Region of Option U

According to the original variational inequality for W

min

{

−
∂W

∂t
−

1

2
γ2∂

2W

∂ǫ2
+

µǫ

T − t

∂W

∂ǫ
+ rW,W −max (ǫ+ V − C1,−ǫ+ U − C1)

}

= 0

We would expect early exercise to occur only when max (ǫ+ V − C1,−ǫ+ U − C1) ≥

0. So we would expect early exercise to occur when ǫ is eith positive or negative

in large. From Figure 2.4, we can see that the exercise region is above ǫ = C1 or

below ǫ = −C1, which agrees with our expectation. Furthermore, a closer look

shows us that the exercise boundary is monotonically approaching ǫ = C1 for the

upper early exercise region, and monotonically approaching ǫ = −C1 for the lower

early exercise region. This shows that the closer to maturity we are, the smaller

|ǫ| is required for early exercise to occur. Figure 2.5 summarizes the early exercise

boundaries for all three options. By our model, the options should be exercised,

namely, the arbitrage positions should be closed out or initiated once ǫ reaches the
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Figure 2.4: For No Position Limits Case: The Early Exercise Region of Option W

boundaries at a certain time t.

Interestingly, for ‘with position limits ’ case, the exercise regions and boundaries for

exactly the same with the ‘no position limits ’ case. This implies that whether an

investor is subjected to position limits or not, she should adopt the same optimal

arbitrage strategy.

2.3.4 Effects of changing input values

Varying the input parameters of the program will produce different pattern of early

exercise region and option values. We have six input parameters, namely rate of

mean reversion µ, standard deviation γ, riskless interest rate r, time to maturity

T , type one cost C1 and type two cost C2. We are particularly interested in µ, γ

and T . When we vary one single input parameter to simulate the exercise region
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Figure 2.5: For No Position Limits Case: The Early Exercise Boundary of Three Op-

tions
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Figure 2.6: For Both Cases: The Early Exercise Boundaries of Three Options

and option values, we hold other parameters unchanged. In this section, we first

use Monte Carlo simulation to generate the path of ǫ given different values of µ, γ

and T , in the purpose of observing the effects on the realization of simple arbitrage

profit. Then, we display the plots of option values and early exercise boundaries,
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and compare the plots for different values of µ, γ and T . Because the early exercise

boundaries are exactly the same under two cases, we only show the plot under ‘no

position limits’ case for illustration.

Change rate of mean reversion µ

Figure 2.7 report the path of simple arbitrage profit with step size 500 and 20.

The first plot is extremely messy and difficult to see the pattern, and we use the

second one for illustration purposes. In Figure 2.7, the path drawn in solid line

(cyan) is always above path drawn in dashdot line (black) and dash line (red).

Therefore we conjecture that ǫ approaches to its mean level 0 faster with a higher

value of µ. It makes perfect sense cause µ measure the speed to its mean level.

For all three options, namely, option to close a long (short) arbitrage position
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Figure 2.7: The Path of Simple Arbitrage Profit ǫ with Different µ, N = 500, 20

and option to initiate arbitrage position, their values are negatively related to µ.

The reason is higher µ brings ǫ to zero more quickly, which decreases the value of

three options V , U and W . Figure 2.8 displays the relationship between option

values and mean reversion µ. The solid line (cyan), dashdot line (black) and dash

line (red) correspond the case when µ = 0.5, 1.5, 2.5 respectively. In the plot of

early exercise boundaries, Figure 2.9, the option V , U and W are labeled. For

these three options’ exercise boundaries, when µ is decreasing, thse boundaries
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Figure 2.8: The Option Values with Different Mean Reversion µ

are spreading out (far away from ǫ = 0). We take the option V (solid line) for

illustration. At initial time, a largest negative value of ǫ is required for early

exercise for a smallest µ, because of the lowest possibility of dragging ǫ to zero

which makes option worthless. As a result, we can actually hold the option V until

the ǫ become quite negative large. (This is attractive for exercising option V ).

Moreover, the three exercise boundaries converge to one point at maturity while

the option value is zero regardless of the value of µ.
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Figure 2.9: The Early Exercise Boundaries with Different Mean Reversion µ



2.3 Experimental Results 31

Change standard deviation γ

In Figure 2.10, the path drawn in dash line (red) fluctuates in a larger amplitude

than the path drawn in dashdot line (black) and in solid line (cyan) do, hence, sim-

ple arbitrage profit ǫ, analogous as stock S in standard option, has a higher chance

to reach larger and smaller values, which increases the option values. Volatility γ

for this type option plays the similar role of volatility σ for standard option. The

option price is monotonously increasing with respect to volatility γ. Figure 2.11

shows the relationship between option values and volatility γ. The solid line (cyan),

dashdot line (black) and dash line (red) correspond the case when γ = 0.3, 0.6, 0.9

respectively. In these three subplots, the dash (red) line (option value curve with

largest γ) is clearly above the dashdot (black) and solid (cyan) line (option value

curve with smaller γ). This observation meets our expectation. In the plot of
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Figure 2.10: The Path of Simple Arbitrage Profit ǫ with Different γ, N = 500, 20

early exercise boundaries, Figure 2.12, the option V , U and W are labeled. For

these three options’ exercise boundaries, when γ is increasing, thse boundaries are

spreading out (far away from ǫ = 0). We take the option V (solid line) for illus-

tration. At initial time, a smallest negative value of ǫ is required for early exercise

because investors bet ǫ will be more likely go far away from zero with largest value

of γ. It is interesting to find that the boundaries are further away from the line

ǫ = 0 when γ increases. It means that with larger γ value, larger absolute value of ǫ
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is required for early exercise of the options to occur. The reason is higher volatility

of ǫ makes investor more confident to wait until large absolute value of ǫ to realize

before taking any actions. While time approaches maturity, investor’s confidence

about volatile ǫ is dampened. Therefore, the early exercise boundaries converge

ultimately. When time approaches to maturity, large volatility is not alluring for

investors to keep option unexercised, hoping for big movement in arbitrage profit,

because of insufficient time left for them to make decision.
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Figure 2.11: The Option Values with Different Volatility γ

Change time to maturity T

Intuitively speaking, option has more values with longer maturity because the

option holders have more freedom to exercise it early. Figure 2.14 reports how

option values are related to maturity T . The solid line (cyan), dashdot line (black)

and dash line (red) correspond the case when T = 1, 2, 3 respectively. The dash line

(red), represented by the largest option value, lies topmost. Figure 2.15 displays

the early exercise boundaries with different maturity T . The option V , U and W

are labeled. For these three options’ exercise boundaries, when T is increasing,

thse boundaries are spreading out (far away from ǫ = 0). At initial time, a largest

absolute value of ǫ is required for early exercise for a longest T , since investor have

more confidence on those options with longer maturity.
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Chapter 3
Two Dimensional Problem

3.1 Theoretical Model

In this section we focus on two dimensional problem and derive the partial dif-

ferential equation for the options to close out or initiate a stock index arbitrage

position, and construct the complete model for ‘no position limits’ case and ‘with

position limits’ case.

3.1.1 Order Imbalance

In principle, the value of these options V (·), U(·) and W (·), may depend on addi-

tional state variables. Recall the SDE of underlying asset ǫ

dǫ = −
µǫ

T − t
dt+ γdW

In one dimensional problem, we treat µ as constant. From financial point of view,

µ is the rate of mean reversion which measures the speed that ǫ approaches its

mean-reversion level 0. In [3], Brennan and Schartz suggested that in particular

for days that are far away from maturity, the critical ǫ values are sensitive to the

parameter estimates and mentioned that we could reject the constancy of the mean

35
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reversion parameter across contracts. To test the robustness of an economic model,

we want to verify whether a model can capture the main economic phenomena even

when some stochastic model parameters are held deterministic. In this section, we

modify the mean reversion coefficient µ to make it stochastic and examine the

impact on the critical ǫ values.

Hence, we introduce a new state variable, named order imbalance and denoted by I.

Order imbalance has also been found to have a significant impact on stock returns.

It is defined as the difference between the dollar volume crossed at ask prices and

that crossed at bid prices. Trades executed at ask prices represent buyer-initiated

trades and those executed at bid prices represent seller-initiated trades. A posi-

tive order imbalance indicates that buying is more active than selling, whereas a

negative order imbalance indicates that selling is more active than buying. The

variable I = 0, indicating a balance in actual order book in stock index futures

market, means there is no simple arbitrage profit existing in the market. Mathe-

matically, ǫ is dragged to its mean level 0 very quickly, indicated by a large value

of µ. Fung (2007) pointed out in [4] that on average, positive order imbalance is

associated with positive arbitrage basis and negative order imbalance is associated

with negative arbitrage basis. Therefore, we model the mean reversion coefficient

µ as follows.

µ = c+ d · sgn(ǫ) · I (3.1)

where c is assumed to be constant and d is a positive constant to make µ positive.

The mathematical modeling for µ is intuitively correct.

• When positive I increases, there are more long positions than short positions

on futures, which would decrease the value of ǫ. So, µ should be an increasing

function of I when ǫ is positive, and a decreasing function of I when ǫ is
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negative.

µ =







c+ dI when ǫ > 0 increasing w.r.t I

c− dI when ǫ < 0 decreasing w.r.t I

• When negative I decreases, there are more short positions than long positions

on futures, which would increase the value of ǫ. So, µ should be a decreasing

function of I when ǫ is positive, and an increasing function of I when ǫ is

negative.

µ =







c− d(−I) when ǫ > 0 decreasing w.r.t − I

c+ d(−I) when ǫ < 0 increasing w.r.t − I

Now we have two SDEs for state variables






dǫ = − µǫ

T−t
dt+ γdW1

dI = −aIdt+ bdW2

(3.2)

where a and b are constants and W1 and W2 are correlated with correlation coef-

ficient ρ. For the second SDE, we add mean reverting to model stochastic process

of I.

Let V (ǫ, I, t)(U(ǫ, I, t)) be the value of the right to close a long (short) arbitrage

position prior to maturity when the simple arbitrage profit before transaction costs

is ǫ and the time to maturity of the futures contract is T−t. Similarly, letW (ǫ, I, t)

be the value of the right to initiate an arbitrage position.

By risk neutral valuation, the values of the options (V (ǫ, I, t), U(ǫ, I, t), W (ǫ, I, t))

are determined by discounting their expected payoffs at the risk-free interest rate.

By the merit of Feyman-Kac formula, for t < T , we can deduce the partial differ-

ential equations (PDE) form of all three options.

∂H

∂t
+

1

2
γ2∂

2H

∂ǫ2
+ ργb

∂2H

∂ǫ∂I
+

1

2
b2
∂2H

∂I2
−

(c+ d · sgn(ǫ)I)ǫ

(T − t)

∂H

∂ǫ
− aI

∂H

∂I
− rH = 0

(3.3)
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where H(ǫ, I, t) = V (ǫ, I, t), U(ǫ, I, t),W (ǫ, I, t), and r is the riskless interest rate

which is assumed to be constant.

Denote L as linear operator

L =
∂

∂t
+

1

2
γ2 ∂

2

∂ǫ2
+ ργb

∂2

∂ǫ∂I
+

1

2
b2

∂2

∂I2
−

(c+ d · sgn(ǫ)I)ǫ

(T − t)

∂

∂ǫ
− aI

∂

∂I
− r

We will use this to simplify the lengthy operator in the next sections.

3.1.2 No Position Limits

Under ‘no position limits’ assumption, closing out a long (short) position prior to

maturity means take a simple short (long) arbitrage position. Therefore, we can

identify the lower bounds for three options.


















V (ǫ, I, t) ≥ max {−ǫ− C2, 0}

U(ǫ, I, t) ≥ max {ǫ− C2, 0}

W (ǫ, I, t) ≥ max {ǫ+ V (ǫ, I, t)− C1,−ǫ+ U(ǫ, I, t)− C1, 0}

For two dimensional problem, the difficult part is to identify its boundary condition.

Take V (ǫ, I, t), the option to close a long arbitrage position, as example, the profit

yielded by taking a short arbitrage position is −ǫ.

The terminal condition is

V (ǫ, I, T ) = V (0, I, T ) = 0

When ǫ = ǫmin and ǫ = ǫmax (ǫmax > C2), the boundary conditions are

V (ǫmin, I, t) = −ǫmin − C2

V (ǫmax, I, t) = 0

When I = Imin and I = Imax, the boundary conditions are 1

V (ǫ, Imin, 0) = V (ǫ, Imax, 0) = max {−ǫ− C2, 0}

1it is not trivial to give the Dirichlet-type conditions at first. We assume that a small change

of I doesn’t change the option value V much, hence the Neuman-type boundary conditions are
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Incorporating with the other two options, we present the complete model in the

following succinct form on (ǫ, I, t) ∈ {[ǫmin, ǫmax]× [Imin, Imax]× [0, T )}

min {−LH,H −GNP} = 0 (3.4)

where GNP is the lower bound function for ‘no position limits’ case.

GNP =



















−ǫ− C2 if H = V

ǫ− C2 if H = U

max (ǫ+ V,−ǫ+ U)− C1 if H = W

with the terminal condition,

H(ǫ = 0, I, t = T ) = 0

with the boundary conditions,

H(ǫmin, I, t) =



















−ǫmin − C2 if H = V

0 if H = U

−ǫmin − C1 if H = W

and

H(ǫmax, I, t) =



















0 if H = V

ǫmax − C2 if H = U

ǫmax − C1 if H = W

and

H(ǫ, Imin, t) =



















max {−ǫ− C2, 0} if H = V

max {ǫ− C2, 0} if H = U

max {ǫ− C1 + V,−ǫ− C1 + U, 0} if H = W

and

H(ǫ, Imax, t) = H(ǫ, Imin, t)

∂V (ǫ,Imin,0)
∂I

= ∂V (ǫ,Imax,0)
∂I

= 0. We have solved the PDE by imposing the Neuman boundary

conditions, but find the numerical values on I = Imin and I = Imax coincide the Dirichlet

boundary conditions.
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For ‘no position limits ’ case, the system of PDEs (3.4) are easy to solve because

they are not really ‘coupled’. We can solve the first two on their own, then using

the results solved by first two variational equations to solve the third variational

equation. The three options values do not need to be solved simultaneously.

3.1.3 With Position Limits

Under ‘with position limits’ assumption, closing an arbitrage position not only

yields an profit but also gives the right to initiate a new arbitrage position later

on. Therefore, we can identify the lower bounds for three options.


















V (ǫ, I, t) ≥ max {W (ǫ, I, t)− ǫ− C2, 0}

U(ǫ, I, t) ≥ max {W (ǫ, I, t) + ǫ− C2, 0}

W (ǫ, I, t) ≥ max {ǫ+ V (ǫ, I, t)− C1,−ǫ+ U(ǫ, I, t)− C1, 0}

we can present the complete model in the following succinct form on (ǫ, I, t) ∈

{[ǫmin, ǫmax]× [Imin, Imax]× [0, T )}

min {−LH,H −GWP} = 0 (3.5)

where GWP is the lower bound function for ‘with position limits’ case.

GWP =



















W − ǫ− C2 if H = V

W + ǫ− C2 if H = U

max (ǫ+ V,−ǫ+ U)− C1 if H = W

with the terminal condition,

H(ǫ = 0, I, t = T ) = 0

with the boundary conditions,

H(ǫmin, I, t) =



















−2ǫmin − C1 − C2 if H = V

0 if H = U

−ǫmin − C1 if H = W
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and

H(ǫmax, I, t) =



















0 if H = V

2ǫmax − C1 − C2 if H = U

ǫmax − C1 if H = W

and

H(ǫ, Imin, t) =



















max {−2ǫ− C1 − C2, 0} if H = V

max {2ǫ− C1 − C2, 0} if H = U

max {ǫ− C1 + V,−ǫ− C1 + U, 0} if H = W

and

H(ǫ, Imax, t) = H(ǫ, Imin, t)

For ‘with position limits ’ case, the system of PDEs (3.5) is nested, the variational

inequality of each option involves the value of at least one other options. We need

to solve these options simultaneously at each time step. We adopt an iterative

method, and stop the iteration when the value of each option changes is within a

preset tolerance in two consecutive iterations.

3.2 Numerical Scheme

The most common way to solve two dimensional parabolic PDE is Alternating

Direction Implicit (ADI) method. The advantage of the ADI method is that the

equations that have to be solved in every iteration have a simpler structure and are

thus easier to solve. The idea behind the ADI method is to split the finite difference

equations into two, one with the x-derivative taken implicitly and the next with

the y-derivative taken implicitly. It is equivalent to solve two one dimensional

PDEs, line by line. Unfortunately, ADI is not applicable here. The reason is that

we need to check early exercise, namely intrinsic value and option values, at each

time step. Therefore we have to solve the PDE layer by layer. Carefulness must

be taken when building the nine-diagonal matrix (not necessarily the M-matrix)
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and handling the boundary conditions.

The solution region is confined as

Ω = {(ǫ, I, t) |ǫmin ≤ ǫ ≤ ǫmax, Imin ≤ I ≤ Imax, 0 ≤ t ≤ T } (3.6)

The grid for the finite difference scheme is defined as followed:

ǫi = ǫmin + i · δǫ, i = 0, 1, · · · ,m, ǫ0 = ǫmin, ǫm = ǫmax

Ij = Imin + j · δI, j = 0, 1, · · · , n, I0 = Imin, In = Imax

tk = k · δt k = 0, 1, · · · , l, t0 = 0, tl = T

Define the grid function

H = {Hi,j,k |0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ l, } (3.7)

where

Hi,j,k = H(ǫi, Ij, tk) for 0 ≤ i ≤ m, 0 ≤ j ≤ n, 0 ≤ k ≤ l,

Equation (3.3) can be discretized by a standard two factor finite difference method

with variable timeweighting to give2

Hi,j,k+1 + (1− θ) [ αi,jHi+1,j+1,k+1 + ηi,jHi+1,j,k+1 − αi,jHi+1,j−1,k+1

+ κi,jHi,j+1,k+1 − βi,jHi,j,k+1 + φi,jHi,j−1,k+1

− αi,jHi−1,j+1,k+1 + ζi,jHi−1,j,k+1 + αi,jHi−1,j−1,k+1]

= Hi,j,k + θ [ − αi,jHi+1,j+1,k − ηi,jHi+1,j,k + αi,jHi+1,j−1,k

− κi,jHi,j+1,k + βi,jHi,j,k − φi,jHi,j−1,k

+ αi,jHi−1,j+1,k − ζi,jHi−1,j,k − αi,jHi−1,j−1,k]

2The first order coefficients in PDE (3.3) are − (c+d·sgn(ǫ)I)ǫ
(T−t) and aI whose signs are uncertain.

Therefore we need to consider upwinding scheme to ensure the monotonicity property.
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θ = 1 for fully implicit scheme, θ = 0.5 for Crank-Nicolson scheme.

where






























































αi,j =
1
4
ργb δt

δǫδI

βi,j = γ2 δt
δǫ2

+ b2 δt
δI2

+ rδt+
(c+d·sgn(ǫi)Ij)|ǫi|

T−t
k+1

2

δt
δǫ
+ a |Ij|

δt
δI

ηi,j =
1
2
γ2 δt

δǫ2
−

(c+d·sgn(ǫi)Ij)ǫi
T−t

k+1
2

δt
δǫ
· 1[ǫi<0]

κi,j =
1
2
b2 δt

δI2
− aIj

δt
δI

· 1[Ij<0]

ζi,j =
1
2
γ2 δt

δǫ2
+

(c+d·sgn(ǫi)Ij)ǫi
T−t

k+1
2

δt
δǫ
· 1[ǫi≥0]

φi,j =
1
2
b2 δt

δI2
+ aIj

δt
δI

· 1[Ij≥0]

For notational convenience, it helps to rewrite the above discrete equations in

matrix form. Let

Hk+1 = [H1,1,k+1, H1,2,k+1, · · · , H1,n−1,k+1, · · · , Hm−1,1,k+1, Hm−1,2,k+1, · · · , Hm−1,n−1,k+1]
T

and

Hk = [H1,1,k, H1,2,k, · · · , H1,n−1,k, · · · , Hm−1,1,k, Hm−1,2,k, · · · , Hm−1,n−1,k]
T

and we obtain a compact matrix form

(I+ θM)Hk = (I− (1− θ)M)Hk+1 +B (3.8)

where matrix I is an identical matrix, vector B handles the boundary conditions,

and nine-diagonal matrix M is

M =























M1(1) M1(2)

M2(3) M2(1) M2(2)
. . . . . . . . .

Mm−2(3) Mm−2(1) Mm−2(2)

Mm−1(3) Mm−1(1)























B =























B(1)

B(2)
...

B(m− 2)

B(m− 1)























It is important to note that M and B are block matrices. We have three type

sub-matrices and use the number in bracket to denote its type. For example M(1)
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is the type 1 matrix. Then we can decompose Mi(p) (i = 1, 2, · · · ,m − 1) and

p = 1, 2, 3

Mi(1) =























βi,1 −κi,1

−φi,2 βi,2 −κi,2

. . . . . . . . .

−φi,n−2 βi,n−2 −κi,n−2

φi,n−1 βi,n−1























Mi(2) =























−ηi,1 −αi,1

αi,2 −ηi,2 −αi,2

. . . . . . . . .

αi,n−2 −ηi,n−2 −αi,n−2

αi,n−1 −ηi,n−1























Mi(3) =























−ζi,1 αi,1

−αi,2 −ζi,2 αi,2

. . . . . . . . .

−αi,n−2 −ζi,n−2 αi,n−2

−αi,n−1 −ζi,n−1























and decompose B to

B(i) = θBk(i) + (1− θ)Bk+1(i)
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where for i = 1, 2, · · · ,m− 1 and q = k, k + 1

B
q(i) =

































































































































































































αi,1Hi−1,0,q + ζi,1Hi−1,1,q − αi,1Hi−1,2,q

αi,2Hi−1,1,q + ζi,2Hi−1,2,q − αi,2Hi−1,3,q

.

.

.

αi,n−2Hi−1,n−3,q + ζi,n−2Hi−1,n−2,q − αi,n−2Hi−1,n−1,q

αi,n−1Hi−1,n−2,q + ζi,1Hi−1,n−1,q − αi,n−1Hi−1,n,q























i = 1























0

0

.

.

.

0

0























i = 2, · · · ,m− 2























−αi,1Hi+1,0,q + ζi,1Hi+1,1,q + αi,1Hi+1,2,q

−αi,2Hi+1,1,q + ζi,2Hi+1,2,q + αi,2Hi+1,3,q

.

.

.

−αi,n−2Hi+1,n−3,q + ζi,n−2Hi+1,n−2,q + αi,n−2Hi+1,n−1,q

−αi,n−1Hi+1,n−2,q + ζi,n−1Hi+1,n−1,q + αi,n−1Hi+1,n,q























i = m− 1

The matrix I + θM is a row diagonally dominant matrix, hence the projected

SOR ensures the convergence of the numerical solutions. The overrelaxtion method

should take into account the nine-diagonal nature of the matrix I + θM, and it

should also be adjusted for early exercise. Let gi,j,k, for i = 1, 2, · · · ,m − 1 and

j = 1, 2, · · ·n− 1, be the intrinsic value when ǫ = ǫi and I = Ij. Therefore,

gi,j,k =



















max {−ǫi − C2, 0} if H = V

max {ǫi − C2, 0} if H = U

max {max(ǫi + Vi,j,k,−ǫi + Ui,j,k)− C1, 0} if H = W

and we denote the right hand of equation (3.8)

zk+1 = (I− (1− θ)M)Hk+1 +B

For each time layer k, let Hl
k be the lth estimate for Hk, the project SOR method

for ‘no position limits ’ case can then be written as in Algorithm 3.
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Algorithm 3 Pseudo Code of Projected SOR Method for No Position Limits, Two Dimensional Problem. Determining Option Values Hi,j,k for

Interior Node (ǫi, Ij , tk)

Let H0
k = Hk+1

for l = 0, 1, 2 · · · until convergence do

if i = 1

if j = 1

H
l+1
i,j,k

= max

{

gi,j,k, H
l
i,j,k + ω

1+θ(βi,j−φi,j)

[

zi,j,k+1 − (1 + θ(βi,j − φi,j))H
l
i,j,k + θκi,jH

l
i,j+1,k + θηi,jH

l
i+1,j,k + θαi,jH

l
i+1,j+1,k

]

}

elseif j = 2 : n − 2

H
l+1
i,j,k

= max







gi,j,k, H
l
i,j,k + ω

1+θβi,j

[

zi,j,k+1 − (1 + θβi,j)H
l
i,j,k + θφi,jH

l+1
i,j−1,k

−θαi,jH
l
i+1,j−1,k + θκi,jH

l
i,j+1,k + θηi,jH

l
i+1,j,k + θαi,jH

l
i+1,j+1,k

]







elseif j = n − 1

H
l+1
i,j,k

= max

{

gi,j,k, H
l
i,j,k + ω

1+θ(βi,j−κi,j)

[

zi,j,k+1 − (1 + θ(βi,j − κi,j))H
l
i,j,k + θφi,jH

l+1
i,j−1,k

− θαi,jH
l
i+1,j−1,k + θηi,jH

l
i+1,j,k

]

}

end if

elseif i = 2 : m − 2

if j = 1

H
l+1
i,j,k

= max







gi,j,k, H
l
i,j,k + ω

1+θ(βi,j−φi,j)

[

zi,j,k+1 − (1 + θ(βi,j − κi,j))H
l
i,j,k + θζi,jH

l+1
i−1,j,k

−θαi,jH
l+1
i−1,j+1,k

+ θκi,jH
l
i,j+1,k + θηi,jH

l
i+1,j,k + θαi,jH

l
i+1,j+1,k

]







elseif j = 2 : n − 2

H
l+1
i,j,k

= max







gi,j,k, H
l
i,j,k + ω

1+θβi,j

[

zi,j,k+1 − (1 + θβi,j)H
l
i,j,k + θαi,jH

l+1
i−1,j−1,k

− θαi,jH
l+1
i−1,j+1,k

+θκi,jH
l
i,j+1,k + θζi,jH

l+1
i−1,j,k

+ θφi,jH
l+1
i,j−1,k

− θαi,jH
l
i+1,j−1,k + θηi,jH

l
i+1,j,k + θαi,jH

l
i+1,j+1,k

]







elseif j = n − 1

H
l+1
i,j,k

= max







gi,j,k, H
l
i,j,k + ω

1+θ(βi,j−κi,j)

[

zi,j,k+1 − (1 + θ(βi,j − κi,j))H
l
i,j,k + θαi,jH

l+1
i−1,j−1,k

+θζi,jH
l+1
i−1,j,k

+ θφi,jH
l+1
i,j−1,k

− θαi,jH
l
i+1,j−1,k + θηi,jH

l
i+1,j,k

]







end if

elseif i = m − 1

if j = 1

H
l+1
i,j,k

= max

{

gi,j,k, H
l
i,j,k + ω

1+θ(βi,j−φi,j)

[

zi,j,k+1 − (1 + θ(βi,j − φi,j))H
l
i,j,k + θζi,jH

l+1
i−1,j,k

− θαi,jH
l+1
i−1,j+1,k

+ θκi,jH
l
i,j+1,k

]

}

elseif j = 2 : n − 2

H
l+1
i,j,k

= max







gi,j,k, H
l
i,j,k + ω

1+θβi,j

[

zi,j,k+1 − (1 + θβi,j)H
l
i,j,k + θαi,jH

l+1
i−1,j−1,k

+θζi,jH
l+1
i−1,j,k

− θαi,jH
l+1
i−1,j+1,k

+ θφi,jH
l+1
i,j−1,k

+ θκi,jH
l
i,j+1,k

]







elseif j = n − 1

H
l+1
i,j,k

= max

{

gi,j,k, H
l
i,j,k + ω

1+θ(βi,j−κi,j)

[

zi,j,k+1 − (1 + θ(βi,j − κi,j))H
l
i,j,k + θζi,jH

l+1
i−1,j,k

+ θαi,jH
l+1
i−1,j−1,k

+ θφi,jH
l+1
i,j−1,k

]

}

end if

end if

if

∥

∥

∥
H

l+1
k

− Hl
k

∥

∥

∥
< tolerance then

Quit the iterations

end if

end for

In Algorithm 3, we just replace H with V , U and W , solve V and U independently,

and use the results to solve W finally. However, for ‘with position limits ’ case, we

need solve V , U and W simultaneously. The intrinsic value for them are3



















gVi,j,k = max {Wi,j,k − ǫi − C2, 0}

gUi,j,k = max {Wi,j,k + ǫi − C2, 0}

gWi,j,k = max {max(ǫi + Vi,j,k,−ǫi + Ui,j,k)− C1, 0}

3I use the superscript to denote the corresponding intrinsic value
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For each time layer k, let Vl
k, U

l
k and Wl

k be the lth estimate for Vk, Uk and

Wk. We present the projected SOR method for ‘with position limits ’ case which

can then be written as in Algorithm 4.

Algorithm 4 Pseudo Code of Projected SOR Method for With Position Limits, Two

Dimensional Problem. Determining Option Values Hi,j,k for Interior Node (ǫi, Ij , tk)

Let V0
k = Vk+1, U

0
k = Uk+1 and W0

k = Wk+1

for i = 1 : m− 1, j = 1 : n− 1

gVi,j,k = max {Wi,j,k+1 − ǫi − C2, 0}

gUi,j,k = max {Wi,j,k+1 + ǫi − C2, 0}

end for

for l = 0, 1, 2 · · · until convergence do

By Algorithm 3: Calculate V l+1
i,j,k and U l+1

i,j,k

for i = 1 : m− 1, j = 1 : n− 1

gWi,j,k = max
{

max(ǫi + V l+1
i,j,k,−ǫi + U l+1

i,j,k)− C1, 0
}

end for

By Algorithm 3: Calculate W l+1
i,j,k

for i = 1 : m− 1, j = 1 : n− 1

gVi,j,k = max
{

W l+1
i,j,k+1 − ǫi − C2, 0

}

gUi,j,k = max
{

W l+1
i,j,k+1 + ǫi − C2, 0

}

end for

if

∥

∥

∥

(

Vl+1
k −Vl

k

)

+
(

Ul+1
k −Ul

k

)

+
(

Wl+1
k −Wl

k

)
∥

∥

∥
< tolerance then

Quit the iterations

end if

end for

3.3 Experimental Results

In this section, we calculate the options price of V (ǫ, I, t), U(ǫ, I, t) and W (ǫ, I, t)

and draw their respective early exercise boundaries.
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3.3.1 Data Inputs

All data inputs are as the same as in Table 2.1 except µ and ρ. In one dimensional

case, µ is a constant and we set µ = 0.03 for numerical experiment. However, in

two dimensional case, µ is a function of I and ǫ, precisely, µ = c + d · sgn(ǫ)I.

When |I| = 0, it reduces to one dimensional problem. Without loss of generosity,

we set c = 0.2 and d = c
Imax+δi

to make sure positivity of µ.4. We partition

Input Parameter

Standard Deviation γ 0.6

Riskless Interest Rate r 0.07

Time to Maturity T 1

Cost C1, C2 1.2, 0.5

Correlation Coefficient ρ 0

a 2δi

b 2δi

c 0.2

d c
Imax+δi

Table 3.1: Model Parameters for Stylized Two Dimensional Problem

Nǫ = NI = Nt = 50 in state and time variables, and we choose fully implicit

scheme for numerical experiment.

3.3.2 Options Value

In the following, Figure 3.1 displays the option values of V , U , and W at t = 0

under ‘no position limits’ case. Use plane I = a, (Imin ≤ a ≤ Imax) to cut the three

plots, we collected three types of one-dimensional data curve. Given the same

4I = 0 means there is a balance in actual order book in market, µ = c+d·sgn(ǫ)I = c+0 = 0.2
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point of order imbalance I, the cross-sectional datum of three options display a

very similar plot as one dimensional curve, shown in Figure 2.6. Firstly, if we rotate

the plot of V to 180 degree, it will look very similar to the plot of U . For option

value V , it is decreasing with respect to ǫ. Secondly, the curve of W is symmetrical

with respect to the axis ǫ = 0. The plot of option values for ‘with position limits’

Figure 3.1: Option Values for V , U , W , No Position Limits, 2D

case is displayed in Figure 3.2. It is interesting to note that the option V and

U are more valuable than their counterparts for ‘no position limits’ case, while

the option W is exactly the same under both cases. We might be fooled by the

graphs, hence we conduct a numerical test for option W . We construct a mesh

grid, by selecting the points ǫ = [−3,−2.5,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3]

and I = [−8,−5,−2, 2, 5, 8]. WNP and WWP are calculated on these 78 nodes and
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the norm is

‖WNP −WWP‖ = 9.9895× 10−7

This shows that the option W are equally valuable regardless to position limits.

Figure 3.2: Option Values for V , U , W , With Position Limits, 2D

Moreover, from theoretical point of view,

1. Value of V and U are larger for ‘with position limits’ case

List out the variational equations for both cases.

For ‘no position limits ’ case

min {−LV, V − (−ǫ− C2)} = 0

min {−LU,U − (ǫ− C2)} = 0

For ‘with position limits ’ case

min {−LV, V − (W − ǫ− C2)} = 0

min {−LU,U − (W + ǫ− C2)} = 0
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Clearly, the options of V and U for ‘with position limits’ case have an addi-

tional non-negative value in the lower bound.

2. Value of W is exactly the same for both cases

In both cases we have

min {−LW,W −max (ǫ+ V − C1,−ǫ+ U − C1)} = 0

When early exercise happens forW , W can either takes the value of ǫ+V −C1

or −ǫ+U−C1. When W takes ǫ+V −C1, which means ǫ is positive in large,

hence V goes to zero. In another hand, when W takes −ǫ + U − C1, which

means ǫ is negative in large, hence U approaches to zero. So effectively, the

variational inequality of W reduced to

min {−LW,W −max (ǫ− C1,−ǫ− C1)} = 0

The variational equation above indicates that W is independent of values of

V and U . Therefore, for both models, W are identical although V and U

have different values. Economically speaking, it means the value of the option

for investor to initiate an arbitrage position is not affected by existence of

position limits.

3.3.3 Early Exercise Boundary

We first consider ‘no position limits’ case. Figure 3.3 displays the early exercise

boundary for option V when the order imbalance changes. For option V , we will

hold it when V > −ǫ−C2 since the option value is more than the payoff obtained

when option is immediately exercised. Therefore, the left part is the exercise region

and the right part is the holding region. In this figure, we draw six early exercise

boundaries given I = −8,−5,−2, 2, 5, 8. Although the boundary is discontinuous

which might be due to a coarse discretization on ǫ − I grid, it is approaching to
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Figure 3.3: Early Exercise Boundary of Option V , for different values of I

the left when I is increasing. In another words, the exercise region become smaller

and holding region become bigger when I increases. This is intuitively correct. A

positive I means more people are buying the futures than selling the futures, which

indicates that more people want to lock in the arbitrage profit −ǫ (from buying

the futures) than ǫ (from selling the futures). Hence the option V is more valuable

for a larger I than the one for a smaller I, so the holding region should be bigger

and the exercise region should be smaller.

Figure 3.4 displays the early exercise boundary for option U when the order imbal-

ance changes. For option U , we will hold it when U > ǫ−C2 since the option value

is more than the payoff obtained when option is immediately exercised. There-

fore, the left part is the holding region and the right part is the exercise region.

In this figure, we draw six early exercise boundaries given I = −8,−5,−2, 2, 5, 8.
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Figure 3.4: Early Exercise Boundary of Option U , for different values of I

Although the boundary is discontinuous which might be due to a coarse discretiza-

tion on ǫ−I grid, it is also approaching to the left when I is increasing. In another

words, the exercise region become smaller and holding region become bigger when

I decreases. This is intuitively correct. A negative I means more people are selling

the futures than buying the futures, which indicates that more people want to

lock in the arbitrage profit ǫ (from selling the futures) than −ǫ (from buying the

futures). Hence the option U is more valuable for a smaller I than the one for a

larger I, so the holding region should be bigger and the exercise region should be

smaller.

Figure 3.5 displays the early exercise boundary for option U when the order imbal-

ance changes. For option W , we will hold it when W > max (ǫ+ V,−ǫ+ U)− C1

since the option value is more than the payoff obtained when option is immediately

exercised. Therefore, the middle part is the holding region and the left and right
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Figure 3.5: Early Exercise Boundary of Option W , for different values of I

parts are the exercise regions. In this figure, we draw six early exercise boundaries

given I = −8,−5,−2, 2, 5, 8. There are two early exercise boundaries for option

W , the left one is contributed by option V and the right one is contributed by op-

tion U . When I is increasing, both early exercise boundaries move to the left. The

reason has been explained above. Intriguingly, we find the early exercise boundary

shows a symmetrical pattern for I = ±8, I = ±5 and I = ±2. In another words,

the holding region for option W is identical for those values of I which have the

same magnitude but opposite sign. Moreover, from the plot, we conjecture that

the area of the holding region is unchanged regardless to the value of I.

Similar to the one dimensional problem, the early exercise boundaries for three

options are exactly the same, independent of position limits. The next three fig-

ures depict the identity.
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Figure 3.6: For Both Cases: The Early Exercise Boundaries of Option V
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Figure 3.7: For Both Cases: The Early Exercise Boundaries of Option U
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Figure 3.8: For Both Cases: The Early Exercise Boundaries of Option W



Chapter 4
Conclusion

In this thesis, we mainly focus on pricing options whose payoff is based on simple

arbitrage profit in stock index futures and plotting their early exercise boundaries.

We consider both one dimensional and two dimensional problems, for each we sub-

divide as ‘no position limits’ case and ‘with position limits’ case.

In one dimensional problem, we use Brownian Bridge process to model simple arbi-

trage profit. A one dimensional PDE for the options is derived. In two dimensional

problem, we add one mean-reverting stochastic differential equation to model order

imbalance. A two dimensional PDE for the options is derived. We also take into

account of transaction costs and position limits and form complete models.

We use fully implicit and Crank-Nicolson scheme to solve the variational inequality

numerically. To handle American option type, we adopt projected SOR method.

Numerical Results of the early exercise boundaries and option values are given and

analyzed. These early exercise boundaries give us the optimal arbitrage strategy.

We discuss various parameter effects on option values and early exercise boundary,

for one dimensional problem, while we also examine the order imbalance impacts

on early exercise boundary, for two dimensional problem. We also compare the nu-

merical results between the ‘no position limits’ and ‘with position limits’ models,
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and find the optimal trading strategy is exactly the same for both cases.

Two possible future works can be extended as follows.

• We can conduct an empirical study by gathering numerous financial data,

such as index futures price, dividend and order positions from Bloomberg.

• Although the early exercise boundaries are derived and analyzed numeri-

cally, we could mathematically analyze the properties of the early exercise

boundaries.
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Appendix A
Appendix

A.1 Analytical Formula of Brownian Bridge

The SDE is

dǫ = −
µǫ

T − t
dt+ γdW

which is a particular type of general linear SDE

dǫ(t) = (α(t) + β(t)ǫ(t))dt+ (γ(t) + δ(t)ǫ(t))dWt

with parameters






























α(t) = 0

β(t) = − µ

T−t

γ(t) = γ

δ(t) = 0

In [9], the analytical formula of this general linear type SDE is given

ǫ(t) = U(t)

(

ǫ(0) +

∫ t

0

α(s)− δ(s)γ(s)

U(s)
ds+

∫ t

0

γ(s)

U(s)
dWs

)

(A.1)

where

U(t) = e

∫ t
0

(

β(s)−
δ(s)2

2

)

ds+
∫ t
0 δ(s)dWs

(A.2)
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Plug the four parameters to the A.1 and A.2, we obtain that

ǫ(t) =

(

1−
t

T

)µ

ǫ(0) + γ(T − t)µ
∫ t

0

1

(T − s)µ
dWs 0 ≤ t < T (A.3)

Since the function under the Itô integral is deterministic, and for any t < T ,
∫ t

0
1

(T−s)2µ
ds < ∞ when µ 6= 0, the process

∫ t

0
1

(T−s)µ
dWs is a martingale, moreover,

it is Gaussian. Thus ǫ(t), on [0, T ) is a Gaussian process with initial value ǫ(0).

The value at T , which is ǫ(T ) = 0, is determined by continuity by showing that

limt↑T

∫ t

0
1

(T−s)µ
dWs = 0 almost surely.


