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Summary 
 
 

Among the methods which require meshing, the standard FEM or the compatible 

displacement FEM derived from the minimum potential energy principle is considered to 

be the most important.  

Compared to other numerical methods, the FEM has three following main advantages:  

(1) The FEM can handle relatively easily the problems with different continuums of 

matter, complicated geometry, general boundary condition, multi-material domains or 

nonlinear material properties.  

(2) The FEM has a clear structure and versatility which make it easy to comprehend 

and feasible to construct general purpose software packages for applications.  

(3) The FEM has a solid theoretical foundation which gives high reliability and in 

many cases makes it possible to mathematically analyze and estimate the error of the 

approximate finite element solution.   

However, using the lower-order elements, the FEM has also three following major 

shortcomings associated with a fully-compatible model: 

(1) Overly-stiffness and inaccuracy in stress solutions of triangular and tetrahedral 

elements. 

(2) Existence of constraint conditions on constructing the shape functions of 

approximation functions and on the shape of elements used. 

(3) Difficulty of finding an FEM model which produces an upper bound of the exact 

solution to facilitate the procedure of evaluating the quality of numerical solutions (the 

global error, bounds of solutions, convergence rates, etc).   
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To overcome these three shortcomings of FEM, this thesis focuses on formulating and 

developing five new FEM models, including four smoothed FEM (S-FEM) models and 

one alpha-FEM model by combining the existing standard FEM and the strain smoothing 

technique used in Meshfree methods. The results of the research showed following four 

crucial contributions:  

First, four S-FEM models and the FEM, are promising to provide more feasible 

options for numerical methods in terms of high accuracy, low computational cost, easy 

implementation, versatility and general applicability (especially for the methods using 

triangular and tetrahedral elements). Four S-FEM models and the FEM can be applied 

for both compressible and nearly incompressible materials.   

Second, the S-FEM models give more the freedom and convenience in the 

construction of shape functions. The S-FEM models, which permits to use the severe 

distorted or n-sided polygonal elements (CS-FEM, NS-FEM and ES-FEM), remove the 

constrained conditions on the shape of elements of the standard FEM.   

Third, the NS-FEM which possesses interesting properties of an equilibrium FEM 

model is promising to provide a much simpler tool to estimate the quality of the solution 

(the global error, bounds of solutions, convergence rates, etc) by combining itself with the 

standard compatible FEM.  

Fourth, the FEM, which provides the nearly exact solution in the strain energy by 

only using the coarse meshes of 3-node triangular and 4-node tetrahedral elements, has a 

very meaningful contribution in providing more the reference benchmark solutions with 

high accuracy to verify the accuracy, reliability and efficiency of numerical methods, 

especially in 3D problems or 2D problems with complicated geometry domains, or in 

many fields without having the analytical solutions such as fluid mechanics, solid 

mechanics, heat mechanics, etc.   
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 ,a u v    bilinear form 

s
k

s
kA d



    area of smoothing domain s
k  

T

x yb b   b   vector of external body forces 

( )IB x    compatible strain gradient matrix 

 IB x    smoothed gradient strain matrix  

c     damping parameter 

C    damping matrix 

d     vector of nodal displacements using the standard FEM 

D     symmetric positive definite (SPD) matrix of material constants 

h e u u   difference between the exact solution and FEM solution 

de    displacement error norm used for n-sided polygonal elements 

ee    energy error norm used for n-sided polygonal elements 

E   Young modulus  

 E ε    exact strain energy 

 hE ε    strain energy obtained by the standard FEM 

 Ê     strain energy obtained by the FEM 

 E ε    smoothed strain energy obtained by the S-FEM models 

E   Green-Lagrange strain tensor 



Nomenclature 

xi 

 f v     linear functional 

F   formation gradient tensor 

( )m    Hilbert space on   

1( )    Sobolev space on   

1
0 ( )   subspace of  1   with vanishing values on u  

I    unit matrix 

J    Jacobi matrix of standard FEM 

 2     space of square integrable functions on   

M    mass matrix 

n    unit outward normal matrix 

( )s
kn x     outward normal vector matrix on the boundary s

k  

sn    number of triangular smoothing domains in polygonal element 

fn     node being fixed 

tn     unconstrained nodes 

eN     total number of elements  

nN    total number of nodes 

egN     total number of edges  

fN     total number of faces 

uN    un-prescribed nodal unknowns 

sN    total number of smoothing domains 

min
sN    minimum number of smoothing domains 

( )IN x    nodal basis shape function 

FEMK K    stiffness matrix of the FEM 
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K     smoothed stiffness matrix of the S-FEM models 

K̂    stiffness matrix of the alpha-FEM models 

S     2nd Piola-Kirchhoff stress tensor 

T

x yt t   t   prescribed traction vector in the x-axis and y-axis 

 Tu vu    exact displacement vector in the x-axis and y-axis 

0 0 0

T

x yw w   w  prescribed displacement vector the x-axis and y-axis 

hu    approximation solution obtained by the FEM 

u    approximation solution obtained by the S-FEM models 

û    approximation solution obtained by the alpha-FEM models 

v   Poisson’s ratio 

h    discrete finite-dimensional subspace of the space  

h    discrete finite-dimensional subspace of the space   

s
k

s
kV d



    volume of the smoothing domain 

[ ]T
i i ix yx   coordinates of the field nodes associated with the element 

ir     prescribed irregularity factor 

 / 2 1E      shearing modulus  

2
1 2






  Lame’s parameter 

     mass density 

ε     exact strain vector 

hε    compatible strain obtained by the FEM 

ε    smoothing strain obtained by the S-FEM models  

ε̂    smoothing strain obtained by the alpha-FEM models  
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σ     exact stress  

    Kronecker delta function 

    problem domain 

e
i    element domain 

s
k    smoothing domain 

    problem boundary 

u     (Dirichlet) essential boundary  

t     (Neumann) natural boundary  

s
k     boundary of the smoothing domain s

k  

S     symmetric differential operator matrix 

v     gradient of v 

 2 L
v   norm in  2   space 

 1 
v    norm in 1( )  space 

 1 
v     seminorm in 1( )  space 

   1,


v w    scalar product in 1( )  space 

h u    suitable interpolant of u  

 k x    smoothing function  
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Chapter 1  

 

Introduction 

In reality, it is impossible to solve analytically the partial differential equations (PDEs) 

which govern almost all physical phenomena in nature such as solid and structure 

mechanics, fluid mechanics, heat conduction, seepage flow, electric and magnetic fields, 

and wave propagation, etc. The reason is that these phenomena depend on the input data 

of systems, such as physical geometry, material properties, boundary conditions and 

loading conditions, which are usually very complicated. As a result, many numerical 

methods for finding suitable approximate solutions of PDEs have been proposed and 

developed. In particular, with the powerful development of the digital computer, many 

complicated and sophisticated computations using numerical methods now can be 

performed fast and accurately impressively. The basic idea in almost numerical methods 

is to discretize given continuous problem domain with infinite unknowns to obtain 

discrete problem domain or a system of equations with only finite unknowns that will be 

solved using a digital computer. Using numerical methods associated with computer-

aided design (CAD) tools, one can model, simulate and analyze many complicated 

problems. This alleviates the need for expensive and time-consuming experimental testing 

and makes it possible to determine the optimization among many optional designs. 

Therefore, developing indispensable numerical methods in terms of high accuracy, low 
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computational cost, easy implementation, versatility and general applicability is the key 

issue in the numerical simulation.  

Up to now, the most popular numerical methods can be listed as finite element 

methods (FEM), finite difference methods (FDM), finite volume methods (FVM), 

boundary element methods (BEM) and meshfree methods. Basically, these numerical 

methods can be divided into two main groups. The first group includes methods which 

require meshing such as the FEM, FDM, FVM, and BEM and the second group includes 

methods which do not require meshing such as meshfree methods. Among the methods 

which require meshing, the FEM is considered to be the most important, indispensable 

technique and one of the greatest inventions in 20th century. The method is now widely 

used in all branches of engineering and science such as mechanics, mathematics, physics, 

chemistry, biology, etc and in many famous computational and design software packages 

such as COMSOL, ANSYS, ABAQUS, SAMCEP, NASTRAN, SAP, and so on. The next 

Section, therefore, will review the FEM in more detail. The background including 

principles, early contributions, key points in the development process, the general 

procedure and some main features of FEM including advantages and shortcomings will 

be briefly presented. In particular, the shortcomings will help us to define some existing 

problems of FEM and main research directions performed in the thesis.   

 

1.1 Background 

The FEM has a long history of development and hence has various advanced versions. 

The FEM introduced in this thesis is the standard version that is displacement-based and 

fully compatible. It is derived from the minimum potential energy principle which is the 

most popular and widely used. The method is based on parametric displacement fields 

ensuring compatibility of deformations both internal to elements and across boundary. 
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Once the displacement field is properly assumed, the strain field is already available using 

simply the strain-displacement relation, known as the compatible strain field. Under these 

conditions, whole displacement field of connected structure is continuous and piecewise 

differentiable. In this thesis, we focus only on lower-order elements in two-dimensional 

(2D) (3-node triangular, 4-node quadrilateral elements) and three-dimensional (3D) (4-

node tetrahedral, 8-node hexahedral elements) because these elements are the bases for 

the development of new finite elements in this thesis, and also they are most widely used 

in solving practical engineering problems.  

 

1.1.1 Background of the Finite Element Method (FEM) 

The FEM was introduced by three independent research groups: Courant [33], Synge 

[146] and, Argyris and Kelsey [6, 8] from the fields of applied mathematics, physics and 

engineering respectively. The early contributions were presented by Argyris and Kelsey 

[6, 8] and Turner et al. [150]. These papers presented the application of simple finite 

elements (pin-jointed bar and triangular plate with in-plane loads) for the analysis of 

aircraft structure and were considered as one of the key contributions in the development 

of the FEM. The name “Finite Element” was coined in the paper by Clough [29]. The 

important early contributions and broad interpretation in the theoretical foundation, 

numerical implementation and its applicability to the general field problems were 

presented by Argyris [7] and Zienkiewicz and Cheung [159]. With this broad 

interpretation of FEM, it had been found that the finite element equations can also be 

derived by using a weighted residual method such as Galerkin method or the least squares 

approach. This led to a widespread interest among applied mathematicians in applying the 

FEM for the solution of linear and non-linear differential equations. More details for 

milestones of FEM history can be found by Felippa [44, 45].  
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Since the early 1960s, a large number of researches have been devoted to the FEM and 

a large number of publications on the FEM are available. Some key approaches in the 

development process of the FEM can be listed as follows:  

(1) Reduced-integration techniques and stabilization: Mauder et al. [94], Belytschko 

and Tsay [17], Belytschko and Ong [16], Belytschko and Bachrach [15], Hughes et al. 

[53, 56, 58];  

(2) Removal of the volumetric locking in the problems using the nearly incompressible 

material: Hermann [52], Hughes [53, 54]; Treat of the shear locking in the plate and shell 

problems: Hughes et al. [56, 58], Zienkiewicz et al. [161], Bathe and Dvorkin [13], Lyly 

et al. [92];  

(3) Hybrid or mixed variational principles for stresses and displacements: Veubeke 

[151], Pian et al. [120, 121, 122], Arnold [9], Brezzi and Fortin [22], Simo and Hughes 

[137], Atluri [10]; Assumed or enhanced strain formulation based on Hu-Washizu 

principle: Simo et al. [138, 139, 140].  

(4) Mixed variational principles for rotational fields: Hughes and Brezzi [55], Atluri 

and Cazzani [11], Ibrahimgegovic et al. [59], Iura and Atluri [60], Gruttmann et al. [51].  

(5) Development of the extended finite element methods (XFEM) for modeling cracks, 

holes and inclusions (Melenk and Babuska [95], Moes et al. [97], Dolbow et al. [41], 

Sukumar et al. [143]) and so on. Development of the NURBS-Enhanced finite element 

Method (NSFEM): Hughes et al. [57], Sevilla et al. [134, 135]. 

 

1.1.2 General procedure of the FEM 

In the FEM, the actual continuum or body of matter like solid, liquid or gas is 

represented as an assemblage of subdivisions called finite elements. These elements are 

considered to be interconnected at specified joints which are called nodes. The nodes 
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usually lie on the element boundaries where adjacent elements are considered to be 

connected. Since the actual variation of the field variable (like displacement, temperature, 

pressure, etc) inside the continuum is not known, we assume that the variation of the field 

variable inside a finite element can be approximated by a simple function. These 

approximating functions are defined in terms of the values of the field variables at the 

nodes. When the approximating functions are replaced into the field equations (like 

equilibrium equations and boundary conditions) for the whole continuum in the 

weakform, we obtain a discretized system of equations, in which the unknowns will be 

the nodal values of the field variable. By solving the discretized system of equations, 

which are generally in the form of the matrix equations, the nodal values of the field 

variable will be known. Then the approximation of the field variable for the whole 

problem domain is finally determined.  

The solution of a general continuum problem by the FEM always follows an orderly 

step-by-step process. With reference to static solid mechanics problems, the step-by-step 

procedure in the FEM can be presented as follows.    

Step (1): Establishment of the weak form  

The governing partial differential equations (PDEs) for solid mechanics problems are 

called the strong form which requires strong continuity on the field variables 

(displacements). When solving such PDEs directly, trial functions of the field variables 

have to be differentiable up to the highest order of the PDEs. Generally, it is impossible to 

find the exact analytical solution that satisfies these strong form PDEs precisely, except 

for a few simple cases. Therefore, numerical methods are often used as practical means 

for approximated solutions. The FEM uses a variational formulation leading to a weak 

form which reduces the order of differentiation on the trial functions. In mechanics, such 

a weak form is equivalent to the well-known principle of minimum potential energy.   
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Step (2): Discretization of the problem domain 

Once the weak form is established, the problem domain is divided into a set of non-

overlapping and non-gap sub-domains called elements. These elements are inter-

connected at the nodes located on the element vertices (and boundaries for higher order 

elements). The elements properly connected by these nodes constitute a mesh, and the 

domain discretization is often called meshing. The number, type, size and the 

arrangement of the elements have to be decided properly by the analyst. The elements 

should be small enough to capture the local variation of the displacements and hence to 

produce results of acceptable accuracy, but not too small for limited computational 

resources. For efficiency reasons, small elements are used where the results (such as 

displacement gradient) change rapidly, whereas larger elements can be used where the 

displacement gradient is relatively smooth.  

Step (3): Shape function creation 

Based on the elements, shape functions for constructing the displacement field using 

nodal displacements is now created using polynomial basis functions (monomials). The 

shape function defines the “shape” of the variation of the displacements, so that the 

variation displacement within the element can be determined, when the nodal 

displacements are given. Therefore, the nodal values of displacements become the 

unknowns in the discretized system of equations, and are known as nodal degrees of 

freedom (DOF). Hence, it is often more convenient in the formulation to express these 

shape functions based on nodes, and they are called nodal shape functions. The nodal 

shape functions satisfy the following requirements.  

i) Local support: The nodal shape function for a node has influence only on the 

vicinity nodes that are the nodes of the elements connected to the node. This property 

is ensured naturally in the FEM, because it is created based on elements. This local 
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support property of shape functions ensures the sparse stiffness and mass matrices 

for an FEM model.  

ii) Linear independence: all the nodal shape functions must be linearly independent.  

This is also naturally achieved by the non-overlapping and non-gap division of 

elements, and the element-based shape function construction. 

iii) Compatibility requirement: the approximated displacements should be 

differentiable at least up to the rth order inside the elements, and up to the (r-1)th 

order on the interfaces of the elements, where r is the order of the highest derivative 

appearing in the weakform.   

iv) Partitions of unity: sum of all the nodal shape functions at any point in the problem 

domain must be the unity. This is needed to ensure the proper representation of 

constant field or rigid motion of the solid, which is essential to any numerical model.   

v) Linear reproducibility: The constant term and linear terms are used in the 

formulation of shape functions. This is a sufficient condition for the shape functions 

to be used to formulate a convergent FEM model. 

vi) Completeness requirement: reproducibility of polynomials up to rth order. This 

can be viewed as a general expression of condition (iv) and (v).   

Step (4): Evaluation of the strain field 

Using the constructed displacement field, the strain field can be evaluated via 

differentiation using simply the compatible strain-displacement relation.  

Step (5): Formation of the element stiffness matrices and vectors 

The stiffness matrix and the load vector of an element can now be computed using the 

weak form established in step (1), the displacement functions assumed using the shape 

functions created in step (3), and the strain field obtained in step (4). The integration of 
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the weak form can be performed effectively using the numerical integration techniques, 

such as the Gauss quadrature with a sufficient number of Gauss points.   

Step (6): Assembly of the global matrices/vectors 

Since the whole problem domain is composed of finite elements, the individual 

elemental stiffness matrices and vectors computed in step (5) can now be added together 

by superposition based on nodes (called the direct assembly) to obtain the global 

equilibrium system of equations. Such a direct assembly is possible because of the 

continuity or compatibility of the displacement field is ensured and no gaps occurring 

anywhere in the domain.   

Step (7): Solution for the unknown nodal displacements 

The global stiffness matrix obtained from step (6) is symmetric but usually singular 

because the possible rigid body movements. To remove the singularity, we must impose 

proper boundary conditions to constraint the rigid body movements, which leads to a 

modification to the stiffness matrix and the load vector. The modified stiffness matrix 

becomes symmetric positive definite (SPD), as long as the original problem is well-posed, 

and therefore the nodal displacements can be solved with ease using standard routines of 

linear algebraic equation systems. Once the solution of the displacements at nodes is 

computed, the function of the displacement field for the whole problem domain can 

finally be determined.  

Step (8): Retrieval of element strains and stresses 

From the computed nodal displacements, the element strains can be computed using 

the strain-displacement relation, and then the stresses using the constitutive relation. 

Some post-processing technique or recovery procedures can also be performed at this step 

to improve the accuracy of the strain and stress fields.   
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1.1.3 Some main features of the FEM 

Compared to other numerical methods, the FEM has three following main advantages:  

(1) The FEM can handle relatively easily the problems with different continuums of 

matter (gas, fluid, solid, electric, wave, magnet, etc), complicated geometry, general 

boundary condition, multi-material domains or nonlinear material properties.  

(2) The FEM has a clear structure and versatility which make it easy to comprehend 

and feasible to construct general purpose software packages for applications.  

(3) The FEM has a solid theoretical foundation which gives high reliability and in 

many cases makes it possible to mathematically analyze and estimate the error of the 

approximate finite element solution.   

However, using the lower-order elements, the FEM has also three following major 

shortcomings associated with the fully-compatible formulation: 

(1) Overly-stiffness and inaccuracy in stress solutions of linear elements 

Because the standard FEM is based on the fully-compatible formulation which is 

stiffer than the real model, the numerical results obtained are under-estimated compared 

to the exact results. In particular, the numerical results in displacement and stress 

solutions are mostly unsatisfied for linear triangular or tetrahedral elements because these 

elements are too stiff. This is a big shortcoming of the FEM, because these elements are 

favored by all researchers. The reason is that these elements can be easily formulated and 

implemented very effectively in the finite element programs using piecewise linear 

approximation. Furthermore, most FEM codes for adaptive analyses are based on 

triangular and tetrahedral elements, due to the simple fact that triangular and tetrahedral 

meshes can be automatically generated. Although many researchers such as Allman [1, 

2], Bergan and Felippa [19], Cook [31], Piltner and Taylor [123], Dohrmann et al. [39, 

40] have concentrated on improving the performance of these elements, the practical 
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applications of these elements are still limited due to the usage of more degrees of 

freedom at the nodes or expensive computation. 

(2) Meshing issue  

Because the FEM is meshing based technology, it leads to constrained conditions on 

the shape of elements, especially for quadrilateral and hexahedral isoparametric elements. 

The shape of these elements needs to satisfy the certain requirement of the inner angles. 

In other words, the positivity of Jacobian determinant of mapping process should be 

ensured in numerical implementation. This requirement will limit the applications of such 

elements in computing the problems such as large deformation, crack, destruction, etc. It 

is because the shape of these elements can not become extremely distorted during the 

deformed process. In addition, the n-sided polygonal elements in applications of finite 

deformation or structured materials cannot be used in the standard FEM, due to the lack 

of feasible shape functions. Therefore, more research needs to be done to remove the 

constraint conditions on the shape of elements in the FEM which should lead to the 

effective usage of two following elements 

i. The extremely distorted elements   

ii. The n-sided polygonal elements.  

However, the development of the extremely distorted elements has not received much 

attention among researchers. Instead, the researchers have concentrated on formulating 

and developing the meshfree methods using only nodes [67], without using the meshes or 

elements. In the second direction of research, although some authors such as Ghosh and 

Mallett [49], Sukumar et al. [142, 144, 145], Natarajan et al. [100] have proposed some n-

sided polygonal elements in the FEM settings, the practical applications of these elements 

are still limited due to the expensive computation or the difficulties of constructing the 

shape functions.  
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(3) Solution certificate  

The solution from a numerical method such as the FEM contains modeling and 

computational errors. Finding an approximate solution using the above-mentioned FEM 

procedure is important but not sufficient for advanced applications, and it becomes more 

and more important to obtain information about the quality of the solution (the global 

error, bounds of solutions, convergence rates, etc). This not only make the numerical 

result more applicable to practical engineering problems with certain confidence, but also 

guide us on how to further improve the solutions.  

In reality, however, it is very difficult to estimate the quality of solution of 

complicated problems without knowing the exact solution. So far, many researchers focus 

on the so-called dual analyses in the FEM [4, 38, 151] by combing the mentioned 

compatible FEM model which produces a lower bound of the real solution with an 

equilibrium FEM model which produces an upper bound. Many new modified FEM 

models which produce an upper bound have been proposed such as the equilibrium FEM 

model based on complementary energy principle by Veubeke [151], the recovered 

equilibrium FEM model based on the recovery of a statically admissible stress field from 

the displacement FEM model by Ladeveze et al. [65, 66] and the hybrid equilibrium FEM 

model by Almeida et al. [3] and Pereira et al. [118]. However, mathematically 

complexity, difficult implementation and expensive computation have limited these 

models in the practical application.  

 

1.1.4 Motivation of the thesis 

In order to overcome three above-mentioned major shortcomings of the FEM, it is 

crucial to research new FEM models which can  
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(1) Reduce significantly the over-stiffness of elements to obtain more accurate 

solutions, especially for linear triangular and tetrahedral elements.  

(2) Obtain the upper bound of the exact solution in certain quantities to be able to 

easily evaluate the quality of the solution (the global error, bounds of solutions, 

convergence rates, etc).  

(3) Be simple to implement, easy to comprehend and applicable for various kinds of 

elements, especially for triangular, tetrahedral, extremely distorted and n-sided polygonal 

elements.  

In this thesis, to formulate such new FEM models, we combine the standard FEM 

with a strain smoothing technique. The next section, therefore, will present generally the 

strain smoothing technique.  

 

1.2 Strain smoothing technique 

The strain smoothing technique was proposed by Chen et al. [24] to stabilize the 

solutions in the context of the meshfree method and then applied in the natural element 

method using n-sided polygonal natural elements by Yoo et al. [156]. Using the strain 

smoothing technique in numerical methods, the compatible strains are replaced by 

smoothing strains by multiplying the compatible strains with a smoothing function which 

normally is a constant function. As a result, the numerical integration on the domain can 

be transferred to the line integration on the boundary of the domain by using the 

Divergence’s theorem, and the constrained conditions on the shape of integrated domain 

can be removed. Liu et al. [83, 86] have applied this technique for the meshfree methods 

to formulate the linear conforming point interpolation method (LC-PIM) using PIM shape 

functions. In the integration of the weak form of LC-PIM, triangular and tetrahedral 

elements have been used. In particular, Liu et al. [83] have provided an intuitive 
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explanation and showed numerically that when a reasonably fine mesh is used, the LC-

PIM has an upper-bound property in the strain energy.  

Due to the complex field approximation in the meshfree methods which increase the 

computational cost, the following question is naturally arisen:  

Can we apply the strain smoothing technique in the standard FEM model which has 

low computational cost?  

If this can be done, we expect that the advantages of the strain smoothing technique 

relating to the upper bound [83], triangular, tetrahedral [83, 86] and n-sided polygonal 

elements [156] mentioned above can help to formulate the new FEM models which meet 

the requirements presented in Section 1.1.4.  

 

1.3 Objective of the thesis 

Based on the background of the FEM and the strain smoothing technique mentioned 

above, the objective of the thesis is to formulate and develop five new FEM models, 

including four smoothed FEM (S-FEM) models and one alpha-FEM model, in which four 

S-FEM models can  

 Provide more accurate solutions compared to those of the standard FEM 

(especially for triangular and tetrahedral elements) in term of displacement, strain 

energy, and stress solutions for both compressible and nearly incompressible 

materials; 

 Possess interesting properties of an equilibrium FEM model such as: (i) the upper 

bound property of the strain energy for force driven problems; (ii) natural 

immunization from the volumetric locking; (iii) ultra-accuracy and super-

convergence of stress solutions;   
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 Use directly only shape functions themselves and no derivative of shape functions 

to calculate the stiffness matrix, and use more flexible domain discretizations such 

as extremely distorted elements and n-sided polygonal elements.  

and the alpha-FEM model can 

 Provide the nearly exact solution in the strain energy even with coarse meshes by 

using triangular and tetrahedral elements; 

The formulation of four new S-FEM models is performed by combining the existing 

standard FEM and the strain smoothing technique. Based on four different smoothed 

entities such as cells (elements), nodes, edges and faces, four different smoothed finite 

element method (S-FEM) models such as cell-based S-FEM (CS-FEM), node-based S-

FEM (NS-FEM), edge-based S-FEM (ES-FEM) and face-based S-FEM (FS-FEM) will be 

formulated, respectively. Each of four new S-FEM models will have different characters 

and advantages.  

The formulation of the alpha-FEM is performed by a rational combination of the NS-

FEM and existing standard FEM models with an alpha scaled variable to give a so-called 

alpha-FEM for triangular and tetrahedral elements (FEM-T3, FEM-T4) which gives 

nearly exact solution in strain energy for practical problems. .   

Four proposed S-FEM models and the FEM should provide more new FEM elements 

which are accurate, flexible, effective and simple. The S-FEM model which possesses 

interesting properties of an equilibrium FEM model should also provide a much simpler 

tool to estimate the quality of the solution (the global error, bounds of solutions, 

convergence rates, etc) by combining itself with the standard compatible FEM. This 

should have considerable impact on developing new quasi-equilibrium FEM elements and 

error estimation theories in the FEM. In addition, the FEM should provide more the 

reference solutions with high accuracy of new benchmark problems used to verify the 
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accuracy, reliability and efficiency of numerical methods, especially in 3D problems or 

2D problems with complicated geometry domains.   

Due to the limit of the length of the thesis, we only present mainly the crucial 

properties for new methods. More applications and developments of the new methods, 

such as in the plates, visco-elastoplasticity, piezo-electric material, adaptive analyses, 

crack, etc, can be referred in the papers arising from the thesis.  

The numerical examples illustrated in the thesis are mainly for solid mechanics. The 

main reason for choosing the solid mechanics is its simple theoretical foundation which 

helps us comprehend the new numerical methods faster and easier. In addition, the solid 

mechanics also possesses many analytical and numerical solutions of different problems 

which make it easy to verify the accuracy, reliability and efficiency of the new FEM 

methods. 

 

1.4 Organization of the thesis 

The thesis consists of nine Chapters and is organized as follows:  

In Chapter 1, background of FEM and strain smoothing technique are briefly 

presented. The motivation and the objective of the thesis are clearly described.  

In Chapter 2, some of the essential mathematical and numerical aspects of the standard 

finite element method (FEM) are briefly presented including the governing equations (or 

strong form), weak formulation, domain discretization, formulation of linear system of 

equations. Theoretical issues on solution existence, uniqueness, error, convergence rate 

and major properties of the FEM are also presented in a concise form, without details on 

proofs 

In Chapter 3, the fundamental theories to construct the S-FEM models are presented in 

detail including the general formulation, construction of the shape functions, minimum 
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number of the smoothing domains, numerical procedure and general properties of the S-

FEM models. 

In Chapter 4, the cell-based S-FEM (CS-FEM) model is presented. The method is first 

based on 4-node quadrilateral elements, and then extended to n-sided polygonal elements 

(nCS-FEM). Evaluation of shape functions is described in detail. Some properties of CS-

FEM solution and domain discretization with polygonal elements are presented. The 

stability analysis of CS-FEM and nCS-FEM is conducted and a selective scheme for 

nearly incompressible material is proposed. Last, numerical examples will illustrate the 

properties of CS-FEM and nCS-FEM.  

In Chapter 5, we present a node-based S-FEM (NS-FEM) model for upper bound 

solutions to solid mechanics problems. The formulation of NS-FEM is first presented 

generally, and then specifically for the triangular and tetrahedral elements. Evaluation of 

shape functions is described in detail and some properties of NS-FEM solution are 

presented. Last, numerical examples will illustrate the properties of NS-FEM. 

In Chapter 6, we present an edge-based S-FEM (ES-FEM) model, which is both 

spatially and temporally stable and more accurate compared with many existing FEM 

models. The formulation of ES-FEM is presented and evaluation of shape functions is 

described in detail. Next a smoothing-domain-based selective scheme for nearly 

incompressible material is proposed. Both spatial and temporal stabilities of ES-FEM are 

analyzed. Last, numerical examples will illustrate the excellent properties of ES-FEM 

In Chapter 7, we present a face-based S-FEM (FS-FEM) model which is extended 

from the idea of ES-FEM. The formulations of both linear and nonlinear analyses of large 

deformation are presented. A smoothing-domain-based selective scheme for nearly 

incompressible material is proposed. The stability analysis of FS-FEM is also discussed. 

Last, numerical examples will illustrate the properties of FS-FEM.  
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In Chapter 8, we present a novel alpha FEM using 3-node triangular (FEM-T3) 

elements for 2D problems and 4-node tetrahedral elements (FEM-T4) for 3D problems. 

The essential idea of the method is to introduce a scale factor  0,1   to establish a 

continuous function of strain energy that contains contributions from both the standard 

FEM and NS-FEM. This novel combined formulation of FEM and NS-FEM makes the 

best use of the upper bound property of NS-FEM and the lower bound property of the 

standard FEM. Using meshes with the same aspect ratio, a unified approach has been 

proposed to obtain the nearly exact solution in strain energy for a given linear problem. 

Last, numerical examples will illustrate the interesting properties of FEM.  

Last, Chapter 9 presents the conclusive remarks including original contributions, some 

insight comments, crucial contributions, and some recommendations for the future works.  
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Chapter 2  

 

Brief on the Finite Element Method (FEM) 
 

In this chapter, some of the essential mathematical and numerical aspects of the 

standard finite element method (FEM) are briefly presented, because they are frequently 

used in this thesis and are the base to formulate the S-FEM models. The mathematics 

language is used and kept as simple as possible with the necessary terminologies, 

mathematics tools and numerical treatments used in the FEM. The governing equations 

(or strong form), weak formulation, domain discretization, formulation of linear system of 

equations are briefly presented. Theoretical issues on solution existence, uniqueness, 

error, convergence rate and major properties of the FEM are also presented in a concise 

form, without details on proofs.  

The formulation given in this chapter is generally applicable to linear solid mechanics 

problems of multi-dimensions. For the sake of convenience and simplicity in discussion, 

we choose two-dimensional (2D) problems as a default. When we need to extend the 

formulation for three-dimensional (3D) problems, it will be stated. 
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2.1 Brief on governing equations for elastic solid mechanics problems 

Consider a 2D elastic solid mechanics problem in a physical domain of 2  

bounded by a Lipschitz-continuous boundary   with tu  ,  tu , 

equilibrium equations are governed by  

T
S  σ b 0    in    (2.1)

where  0 0
T0  is a null vector; 

T

xx yy xy     σ  is the stress vector; 

T

x yb b   b  is the vector of external body forces in the x-axis and y-axis, respectively, 

and S  is a symmetric differential operator matrix given by 

0

0S

x

y

y x

 
 
 
 

    
  
   

    (2.2)

The essential boundary or Dirichlet condition is given as follows. 

0u w       on u  (2.3)

where u  is the displacement vector of the form  

u

v

 
  
 

u        (2.4)

where u, v are the displacement components in the x-axis and y-axis, respectively; 

0 0 0

T

x yw w   w  is the prescribed displacement vector on the essential boundary u . In 

this thesis, for simplicity in discussion, we only consider the force-driving problems with 

the homogeneous essential boundary condition which means that  

u 0    on   u  (2.5)

The natural boundary or Newman condition is given as follows 

T n σ t     on t    (2.6)
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where 
T

x yt t   t  is the prescribed traction vector on the natural boundary t  and n  is 

the unit outward normal matrix given by 

0

0
x

y

y x

n

n

n n

 
   
  

n      (2.7)

in which xn  and yn  are the unit outward normal components in x-axis and y-axis, 

respectively. 

The strain-displacement relation or the compatibility equation is given by  

S ε u  (2.8)

where ε  is the strain vector of the form  

T

xx yy xy     ε  (2.9)

The stress-strain relation or the Hooke’s law is  

σ Dε  (2.10)

where D  is a matrix of material constants. Note that in this thesis, we just consider solids 

or structure made of materials that are physically stable: meaning that any amount of 

strains will result in stresses and hence some positive strain energy. Matrix D  is hence a 

symmetric positive definite (SPD) matrix.   

 

2.2 Hilbert spaces  

Finding an approximate solution using the FEM procedure is important but not 

sufficient for advanced applications, and it is more and more important to obtain 

information about the quality of the approximation. This not only makes the FEM result 

more applicable to practical engineering problems with certain confidence, but also 

guides us on how to further improve the solutions. The knowledge of functional analysis 

is therefore necessary to achieve this goal.   
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For general problems, we are not able to obtain the quantitative information about the 

error between the exact and approximate solutions, since the exact solution is unknown. 

Instead, we can satisfy with an estimate of such error with not only about the amount of 

the error but also the rate of convergence of a family of approximate solutions that 

converge to the exact solution. To perform such a convergence analysis in the FEM, 

spaces of functions to which the solution belongs have to be defined precisely. The spaces 

of functions used in the FEM are generally normed spaces equipped with inner product 

induced norms to measure the “magnitude” of the functions or the derivatives of the 

functions in a certain manner. With the aid of such norms, the procedure of obtaining an 

error estimate and the rate of convergence can be presented in precise forms.  

The Hilbert spaces and inequalities are essential for the variational formulation of the 

second-order elastic solid mechanics problems (2.1). Let   be a bounded domain in 2 , 

and define the space  2 1;   of scalar functions 1v  on   as  

 2 1 1 2; |  is defined on  and v v v d


 
       

 
    (2.11)

which shows that any function 1v  in  2 1;   are square integrable (in meaning of 

Lebesgue integration [127]) over Such a function can be continuous or discontinuous, 

but it has to be bounded in the integral sense defined in Eq. (2.11). In other words, the 

function is at least piecewise continuous over the problem domainThe space 

 2 1;   is associated with the scalar inner product    2 1;
,


     

   2 1;
,v w v wd




    (2.12)

and equipped with the corresponding norm  2 1;
   : 

   2 1

1
2

12 2
;

,v v d v v




 
   
 
   (2.13)



Chapter 2 Brief on the Finite Element Method (FEM) 

  22
   

Next we define the notation of general differentiations  

1 2

v
D v

x y




 



 

 (2.14)

where here  1 2,    is a nonnegative integer and 1 2    . For example, for a 

problem with a partial derivative of order 2, D v  is one among three differentiations with 

 2,0   or  1,1   or  0,2   with 2  .  

We now define the Hilbert spaces 1( ; )m   , where m is a non-negative integer, as 

  1 2 1( ; ) ; ,m v D v m           (2.15)

which includes all functions whose derivatives up to mth order are all square integrable. 

The spaces 1( ; )m    is associated with the inner product   1( ; )
, m 
     

  1( ; )
, ( )( )dm

m

v w D v D w 




 

     (2.16)

and equipped with the induced (full) norm 

1

1 2
2

( ; )
dm

m

v D v




 

 
   
 
   (2.17)

as well as the semi-norm 1( ; )m 
   (that includes only the mth derivative):  

1

1 2
2

( ; )
dmv D v




 
  
 

   (2.18)

Note that  0 1 2 1( ; ) ;       [127]. The 1 1( ; )   is the most relevant to the 2D 

elastic solid mechanics problem governed by Eq. (2.1)   

    1 1 2 1 2 1( ; ) | ; , ; , ,i iv v v x x x y               (2.19)

with the scalar product    1 1;
,


     

     1 1;
,v w v w v w d




      (2.20)

where v  is the gradient of v defined by 
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T
v v

v
x y

  
     

 (2.21)

and the corresponding norm  1 1;
    

   1 1

1
2

22

;
v v v d




 
    
 
   (2.22)

and the seminorm  1 1;
    

 1 1

1
2

2

;
v v d




 
   
 
   (2.23)

We further define the space  1 1 1 1
0 ( ; ) ( ; ) 0  on  uv v          to be the subset 

of  1 1;   with vanishing values on u , and 1 1
0 ( ; )   is equipped with the same 

scalar product and norms as  1 1;  .  

 

Note that the functional analysis has some following important results:  

Lemma 2.1: Cauchy-Schwarz inequality 

If  u and v are members of an inner product space with inner product  ,  , then we have 

the following Cauchy-Schwarz inequality [127]: 

     
1 1

2 2, , ,u v u u v v  

or  

       2 1 2 1 2 1; ; ;
,v w u v

  
       (2.24)

which gives a relationship between the inner product  ,   and norm  .   

 

Lemma 2.2: Poincare-Friedrichs in 1 1
0 ( ; )   

When the domain   is bounded, there exists a constant C  such that  
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 1 1
0 ;v    ,     2 1 1 1; ;

v C v
 

     (2.25)

which is known as Poincare-Friedrichs inequality [127]. This inequality is one of the most 

important inequality to ensure the stability of the weakform.  

 

Lemma 2.3: Equivalency between semi-norm and norm in 1 1
0 ( ; )   

Using Poincare-Friedrichs inequality in Lemma 2.2, and the definition of semi-norm 

(2.23) and norm (2.22), we are easy to obtain the following results   

     1 1 1 1 1 11 2; ; ;
C v v C v

  
        (2.26)

where 1C  and 2C  are positive real numbers. Equation (2.26) implies that the semi-norm 

 1 1;
    in the space 1 1

0 ( ; )   is equivalent to the norm  1 1;
   . This will permit us 

to use flexibly between the semi-norm  1 1;
    and norm  1 1;

    in the following 

proofs later. 

 

As the field variables v  of 2D solid mechanics problems are in the vector form, 

 1 2
T v vv , the space  2   need to be defined generally for this case as follows  

      2 2 2 1; , ; ; ; ,x y iv v v i x y     v     (2.27)

which is equipped with the corresponding norm 

2 2 2 1

1
2 2

2

( ; ) ( ; )
1

i
i

v
 



 
  
 
v     � (2.28)

Similarly, the space 1 2( ; )   for this case is defined as,  

  1 2 1 1( ; ) , ; ( ; ), ,x y iv v v i x y     v     (2.29)

which is equipped with the corresponding norm 

1 2 1 1

1
2 2

2

( ; ) ( ; )
1

i
i

v
 



 
  
 
v � �    � (2.30)

and seminorm 
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1 2 1 1

1
2 2

2

( ; ) ( ; )
1

i
i

v
 



 
  
 
v � �    � (2.31)

Also, the space  1 2 1 2
0 ( ; ) ( ; )   on  u     v v 0     to be the subset of 

1 2( ; )   with vanishing values on u , and 1 2
0 ( ; )   is equipped with the same scalar 

product and norms as 1 2( ; )  . The definitions of the space 1 2( ; )   by (2.29) and 

norms by (2.30) and (2.31) are quite straightforward to extend for 1 3( ; )   for the field 

variables of 3D solid mechanics problems. 

 

2.3 Brief on the variational formulation and weak form 

We now ready to derive the weak form. By multiplying Eq. (2.1) with a test function 

1 2
0 ( ; ) v    and performing integration over the entire problem domain  , we have 

0T T T
S d d

 

    v σ v b ,  1 2
0 ( ; )  v    (2.32)

Applying Green’s divergence theorem [127], and using the boundary conditions (2.5) 

and (2.6), we obtain  

   

   ,

t

T T T
S S

a f

d d d
  

       
u v v

v D u v b v t
 

,  1 2
0 ( ; )  v    

(2.33)

The 2D solid mechanics problem governed by Eq. (2.1) and boundary conditions (2.5) 

and (2.6) can be stated in the following well-known weak statement: 

Find 1 2
0 ( ; ) u    such that    ,a fu v v   1 2

0 ( ; )  v    (2.34)

where  ,a u v  is the bilinear form 

     ,
T

S Sa d


   u v u D v    (2.35)

and  f v  is the linear functional 

 
t

T Tf d d
 

   v v b v t    (2.36)
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The above weak formulation transforms the equilibrium system of equations (2.1) and 

boundary conditions (2.5) and (2.6) into a single equation (2.34), in which all of the 

features of solution are presented. In Eq. (2.34), we need only to perform the first 

derivatives for trial function u. This is because the part of the 2nd order derivatives on the 

trial function u has been “transferred” to the test function v. As a result, the continuity 

requirement on function u is one order weakened compared with the requirement of 2nd 

order differentiable in the strong formulation in Eq. (2.1). Therefore, the formulation 

(2.34) is a weak form of the classical original strong form with equilibrium equations 

(2.1) and boundary conditions (2.5) and (2.6). Both functions u and v now can belong to 

the space 1 2
0 ( ; )  , and hence it is a Galerkin weak form. We know that it is generally 

difficult to prove the existence of a solution of the strong form. However, using the weak 

form it is easy to prove the existence of a solution to Eq. (2.34).  

Clearly, the bi-linear form, Eq. (2.35), is a symmetric bilinear form on 1 2
0 ( ; )   and 

 f v  is a continuous linear form under the following hypothesis  2 2; b    and 

 2 2;t t   . For stable materials, using the Cauchy-Schwarz inequality in Lemma 2.1, 

and the equivalence of the full and semi norms of functions in 1 2
0 ( ; )  by Lemma 2.3, 

it is easy to prove that 

     1 2 1 21 ; ;
,a C

 
u v u v       (2.37)

where 1C  is a constant independent of 1 2
0, ( ; ) v u   . The forgoing equation implies 

that  ,a u v  is continuous.  

In addition, letting u v , and using Poincare-Friedrichs inequality in Lemma 2.2, we 

have the following inequality  

  1 2

2

( ; )
,a 


v v v        (2.38)
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where   is a constant independent of 1 2
0 ( ; ) v   , implying that   ,a v v  is  -

elliptic [61, 127].  

Based on the Lax-Milgram theorem [127] and the symmetric bilinear, continuous and 

 -elliptic properties of the bilinear form  ,a u v  and the continuous linear functional 

 f v  assumed above, there exists a unique function 1 2
0 ( ; ) u    such that Eq. (2.34) 

holds and the following basic stability inequality is satisfied 

1 2 1 2( ; ) ( ; )

1
f

  
u          (2.39)

where  

 
1 2

1 2
1 20

( ; )
( ; ) ( ; )

,
sup

f
f  

  


v
v 0

v

v     

     (2.40)

Inequality (2.39) assures that a small change in the linear functional  f v  leads to a 

correspondingly small change in the solution 1 2
0 ( ; ) u   . In other words, the solution 

1 2
0 ( ; ) u    depends continuously on the data  f v .  

 

2.4 Domain discretization: creation of finite-dimensional space 

Since this section backward, to simplify the symbols of finite-dimensional space, we 

let  1 2
0 0 ( ; )    .  

In the variational problem stated in Eq. (2.34), 0  is an infinite-dimensional space. It 

is generally impossible to solve the governing equations either in strong form (2.1) or 

weak form (2.34) in analytical means for the exact solution. Fortunately, the weak 

formulation (2.34) can be naturally used to obtain approximate solutions. In the FEM 

formulation, this is conveniently done by creating a discrete solutions space of finite-

dimensional that is a subspace of the infinite-dimensional space: 0 0
h   , and an 
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approximated solution 0
h hu   is sought using variational form (2.34). Here h stands for 

finite dimension. At the limit of 0h  , we expect 0 0
h   , and h u u . We can also 

find indication on how fast hu  approaches to u.  

Note that in the analysis process, we assume that there is no “geometric” error caused 

by the domain discretization, so that we can focus only on the error of the approximation 

of variational form (2.34) induced by the use of the finite-dimensional space 0
h  that 

deviates from 0 . We assume that the domain   in 2  is polygonal. That is, boundary 

  of   is made up of straight segments. Under these assumptions, it is easy to see that 

the whole domain can be covered exactly by polygonal elements, and it is now discretized 

into eN  of non-overlapping and non-gap elements and nN  nodes, such that 
1

eN
e
i

i

    

and e e
i j   . i j . We require that in the element mesh, there is no duplicated and 

hanging nodes.   

We need now to create functions in 0
h  for the assumption of displacement fields. 

Because the nodal shape functions are linearly independent, it is qualified as basis to form 

a space for an FEM model. An assumed displacement function for each displacement 

component can be expressed as a linear combination of the nodal shape functions with the 

nodal displacements as the coefficients. The finite element space 0
h  can be spanned by 

the nN  independent nodal basis shape functions 1N , 2N , …, 
nNN :  

 0 1
span nNh

I I 
 N    (2.41)
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where 
( ) 0

( )
0 ( )

I
I

I

N

N

 
  
 

x
N x

x
 is the matrix of shape functions, each for one 

displacement component. For node I, the nodal shape function ( )IN x  satisfies the 

following conditions: 

(i) 1 1( ) ( ; )IN  x     (Bounded and continuous in  ) 

(ii) ( )IN x  is nonzero only within the elements that are connected to 

node I. (compact support) 

(iii) ( )I J IJN x   (Delta function property) 

(iv)  
1

1
e
nn

I
I

N


 x  (partition of unity) 

(v)  
1

e
nn

I I
I

N


 x x x  (linear compatibility) 

(2.42)

where IJ  is the Kronecker delta; e
nn  is the number of the nodes of the element that hosts 

x, and Ix  is the coordinate of Ith node of the element hosting x.  

The finite solution hu  should come from space 0
h , and hence should have the form 

 
1

nN
h

I I
I 

 u N x d      (2.43)

where  Tx yx  and  h
I Id u x  which is the nodal displacement vector at node I of 

the FEM solution.   

 

2.5 Formulation of discretized linear system of equations 

Using Eq. (2.34), the FEM weak statement becomes 

Find 0
h hu   such that    ,h h ha fu v v   0

h h v   (2.44)

Substituting Eq. (2.43) as the trial function and set ( )IN x , 1, , nI N  , as the test 

function hv  into Eq. (2.44), we have the following system of  Nn equations.   
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   
1

,
nN

J I J I
J

a f


 N N d N , 1, , nI N   (2.45)

which can be written as the standard matrix form of discretized algebraic equations: 

Kd f  (2.46)

where d  is the vector of nodal displacements for all the nodes in the entire problem 

domain, and K  is the stiffness matrix of the FEM model with entries of  

,

1

e

e
i

e
IJ i

N
T T

IJ I J I J
i

d d
 

    
K

K B DB B DB


 

(2.47)

with the strain-displacement matrix defined as 

( )
0

( )
( ) ( ) 0

( ) ( )

I

I
I S I

I I

N

x
N

y

N N

y x

 
 

 
 

     
  
   

x

x
B x N x

x x

 (2.48)

Vector f  is the external force vector acting at all the nodes in the entire problem 

domain, with entries of 

,
1 1

( ) ( )

( ) ( )

t

e e

e e
i t i

T T
I I I

N N
T T
I I

i i

d d

d d

 

  

  

  

 

  

f N x b N x t

N x b N x t
 (2.49)

From Eqs. (2.47) and (2.49), it is seen that the actual evaluation of matrices IJK  and 

If  reduces to the evaluation of matrices for each element, and then to take the summation 

of these contributions from all elements. The condition (ii) in Eq. (2.42) leads to , 0e
IJ i K  

for node I and J that do not belong to the same e
i , which means that the stiffness matrix 

will be sparse. Generally, the evaluation of Eqs. (2.47) and (2.49) can be performed 

effectively using the Gauss integration technique [80].  

Once Eq. (2.46) is obtained, we need to impose the boundary condition (2.5) to 

constraint the rigid body movements, which leads to a modification to the stiffness matrix 
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K  and the load vector f , then the vector of nodal displacements d  can be solved easily, 

as long as the original problem is well-posed. The strains and stresses in each element can 

be retrieved. Recovery procedures can also be performed to improve the accuracy of the 

strain and stress fields.   

We shall now address the following questions:  

 Can the FEM procedure ensure the existence and uniqueness of the solution ( K is 

indeed not singular)?  

 How is the solution depending on the input data?   

 How to estimate of the error in the FEM solution?  

 What is the rate of convergence of the FEM solutions, when mesh is refined?  

The following Section will hence provide answers for all these questions.  

 

2.6 FEM solution: existence, uniqueness, error and convergence  

The theory of the functional analysis [61, 127] proved the following important 

theorems: 

 

Theorem 2.1 (existence and uniqueness): Let 0
h  be a finite-dimensional subspace of 

the Hilbert space 0 , 0 0: h ha      a continuous,  -elliptic bilinear form, and 

0: hf    a bounded linear functional. Then there exists a unique function 0
h hu   that 

satisfies the discrete variational form (2.44). Furthermore, if  hf u  is of the form  

     
t

T Th h hf d d
 

   u u b u t    (2.50)

with  2 2; b    and  2 2;t t   , then 

    2 2 2 21 2 3 ; ;( ; ) t

h C
 

 u b t   
   (2.51)

where 3C  is a constant. � 
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Theorem 2.1 provides the answer to the question of existence and uniqueness of the 

FEM solution. In addition, the stability estimate (2.51) for the finite element solution, 

which is similar to the stability estimate (2.39) for the continuous problems, reflects a 

very important property of the FEM. It assures us that a small change in the linear 

functional  hf u  results correspondingly in only a “small” change in the solution 

0
h hu  . In other words, the solution 0

h hu   depends continuously on the data  hf u . 

This implies that our numerical problem is well-posed, under the conditions for both the 

model creation and the inputs (external forces) specified in Theorem 2.1.   

Note that the continuity of the bilinear form a requires the original problem being well-

posed physically: for solid mechanics problems the material must be stable. The  -

ellipticity of the bilinear form a requires also a stable material [67] and sufficient essential 

boundary condition to constrain all the rigid movements.   

We next proceed to examine the error h e u u , which is the difference between the 

exact solution and FEM solution. We state the following theorem.   

 

Theorem 2.2 (“best” approximation): Let 0u   is the exact solution of the original 

problem governed by equilibrium equations (2.1) and boundary conditions (2.5) and (2.6), 

and 0
h hu   is the finite element solution of the variational formulation (2.34), where 

0 0
h   . Then 

1 2 1 24( ; ) ( ; )

h hC
 

  u u u v
  

,   0
h h v   (2.52)

where 4C  is a constant independent of 0
h hv  . �     

 Theorem 2.2 implies that the approximation 0
h hu   is the best possible 

approximation of the exact solution among all functions 0
h hv  , in the sense that   
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1 2( ; )

h


u v


, 0

h h v   is always larger than or equal to 
1 2( ; )

h


u u


. In addition, 

the optimal feature of the FEM solution, allow us to find a quantitative estimate of the 

bound of the solutions error, by choosing a suitable function 0
h hv   and estimating 

1 2( ; )

h


u v


. Usually, one chooses h

hv u  where 0
h

h u   is a suitable interpolant 

of 0u  . This will further lead to the following Theorem 2.3. 

  

Theorem 2.3 (h-dependence): If   is a convex polygonal domain and 0
h hu  , with 

piecewise linear functions, is the finite element solution of the classical original problem 

governed by equilibrium equations (2.1) and boundary conditions (2.5) and (2.6), then 

there are constants 5C , 6C  independent of u  and h such that 

   2 22 2

2
5 ;;

h C h


 u u u   
 (2.53)

and 

   2 21 2 6 ;;

h C h


 u u u   
 (2.54)

where semi-norm  2 2;
u    is written explicitly from Eq. (2.18) as 

 2 2

1
22 22 2

2 2;
d

x x y y


          
       


u u u u
u           (2.55)

� 

By Theorem 2.3, we have the qualitative information that  2 2;

h


u u

 
 and 

 1 2;

h


u u

 
  approaches zero when the size of element h approaches zero if the second 

order derivative of the exact solution u  is bounded on the domain  . In addition, the 

power of h in Eqs. (2.53) and (2.54) also show the theoretical convergence rate of the 

finite element solutions in the corresponding norms. For problems of second-order PDE 

as shown in Eq. (2.1) with boundary conditions (2.5) and (2.6), the theoretical 
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convergence rate of itself hu  is 2 in norm  2 2;
   , and the theoretical convergence rate 

of  the first derivative of hu  is 1 in norm  1 2;
   . In practice, these convergence rates 

also depend on the regularity of the exact solution u  as shown in right hand side parts of 

Eqs. (2.53) and (2.54). For example, for problems with singularities (at reentrant and 

crack tips), the practical convergence rates may become smaller than the theoretical 

convergence rates [61, 127].  

In practical computation of solid mechanics, the norm  1 2;

h


u u

 
 is usually 

replaced by the seminorm  1 2;

h


u u

 
 which represents the total error between 

approximate energy and exact energy over the whole domain. Whereas the norm 

 2 2;

h


u u

 
 represents the total error between the approximated and exact solutions in 

displacement. Generalization of the above theory of the FEM for the interpolation with 

polynomials of higher order can be found in refs [61, 127].  

 

2.7 Some other properties of the FEM solution  

Property 2.1: Fully compatible property. 

An FEM model created following strictly the weak statement Eq. (2.44) is said fully 

compatible. Essentially a fully compatible FEM model is established using: (1) 

compatibility displacements: the approximated displacements should be continuous on the 

element interfaces and differentiable inside the elements; (2) compatible strain fields that 

obtained using the strain-displacement relation; (3) essential boundary conditions are 

satisfied.     

Property 2.2: Lower bound property. 

The strain energy of a force-driven fully compatible FEM model is a lower bound of 

the exact strain energy 
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       1 1
,  ,  

2 2
h h hE a a E  ε u u u u ε  (2.56)

where h h
S ε u  is the strains obtained using the FEM displacements 0 0

h h u   , 

S ε u  is the exact strain obtained using the exact displacements 0u  , and  E ε  is 

the exact strain energy of the system defined as 

  1

2
TE d



 ε ε Dε  (2.57)

For the FEM model, the strain energy can be evaluated using any of the following 

expressions   

     1 1 1
,

2 2 2

Th h h h h TE d a


   ε ε Dε u u d Kd  (2.58)

and for the exact model we should have 

   1 1
,

2 2
TE d a



  ε ε Dε u u  (2.59)

The proof of the lower bound property can be found in [54, 151] in variational 

formulation. The lower bound property implies the well-known fact that the FEM solution 

underestimates the strain energy. This property of FEM provides a good global measure 

of the lower bound of the FEM solution with respect to the exact solution.   

Property 2.3: Monotonic convergence property. 

For a given sequence of mn  nested element meshes 1,M 2, ,
mnM M , such that the 

corresponding solution spaces satisfies 1 2
0 0 0 0

nm
MM M      , then the following 

inequalities stand 

       1 2 nm
MM ME E E E   ε ε ε ε  (2.60)

where 1Mε  is the FEM compatible solution of strains obtained using mesh iM . This 

property can be shown easily using the arguments given by Oliveira [116].  

Property 2.4:  Reproducibility of the exact solution of the FEM.  

If the exact solution 0 0
h u�   , then the FEM will reproduce the exact solution u. 

This property can be easily proven [80, 116]. 
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Chapter 3  

 

Fundamental theories of smoothed finite element 

methods (S-FEM)  
 

In a standard FEM model, we use directly the compatible strain field to evaluate the 

energy potential functional. In an S-FEM model, however, we will modify compatible 

strain field. The modified strain field is then used to evaluate the strain energy potential 

functional, and a proper energy weak form is used to construct the discretized model. 

Such a strain modification must be done in a proper way to ensure stability, convergence 

and to obtain special property for the S-FEM models constructed. In this thesis, we will 

use the strain smoothing technique [25].  

     This chapter presents the fundamental theories to construct the S-FEM models. The 

following discussions and formulations are mainly performed for problems in two-

dimensional domains (2D). The extension to three-dimensional (3D) domains can be 

more complicated in implementation, but it should be trivial technically.  

3.1 General formulation of the S-FEM models 

3.1.1 Strain smoothing technique 

The strain smoothing technique is the most frequently used technique to modify the 

compatible strain field. As in the FEM presented in Chapter 2, we first assume a 
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displacement field ( )hu x  in a space 0 0
h    using shape functions in the form of Eq. 

(2.41). The compatible strain field  hε x  is obtained using the strain-displacement 

relation   ( )h h
S ε x u x . Such a compatible strain field is then used to construct the S-

FEM models.   

In the S-FEM models, the compatible strains  hε x  in each smoothing domain s
k   

now are replaced by smoothing strains kε  by multiplying the compatible strains with a 

smoothing function  k x  as follows: 

   
s
k

h
k k d



  ε ε x x  (3.1)

where s
k  is a smoothing domain and  k x  is a smoothing function that satisfies at 

least unity property 

  1
s
k

k d


   x  (3.2)

In this thesis, we use the following Heaviside-type constant step smoothing function: 

  1/

0

s s
k k

k s
k

A 
  



x
x

x
 (3.3)

where d
s
k

s
kA



   is the area of smoothing domain s
k .  In this case we have 

     1 1
d d

s s
k k

h h
k Ss s

k kA A
 

     ε x ε x u x  (3.4)

Recall that various smoothing techniques have been used for different purposes, 

including in the nonlocal continuum mechanics [43] to introduce the size effects, and in 

the smoothed particle hydrodynamics [91, 72] to approximate field functions. The strain 

smoothing technique was used to resolve the material instabilities [24] and the spatial 

instability in the nodal integrated meshfree methods [152, 25]. It is also used to 
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approximate the derivative in the strong form models of solids [87], compressible fluids 

[81, 82], and incompressible fluids [155].  

In this thesis, the strain smoothing operation defined in Eq. (3.4) will be applied to 

create modified strain field in finite element settings. To develop the S-FEM models of 

different properties, four different smoothing domains created based on elements (cells), 

nodes, edges and faces will be used. Then, four respectively different S-FEM models: 

cell-based S-FEM (CS-FEM) [70, 73, 77], node-based S-FEM (NS-FEM) [78], edge-

based S-FEM (ES-FEM) [76] and face-based S-FEM (FS-FEM) [103] will be formulated. 

Each of four S-FEM models will have different properties, advantages and disadvantages. 

In addition, by a rational combination of the NS-FEM and the standard FEM models with 

a scaling factor alpha, a new numerical method, named alpha-FEM that uses triangular 

and tetrahedral elements (FEM-T3, FEM-T4) [74], is formulated. The alpha-FEM can 

give nearly exact solutions in strain energy. 

The general formulation for the S-FEM models will be presented in this section. Each 

of the S-FEM models will be presented in detail in following chapters. 

 

3.1.2 Smoothing domain creation  

In the S-FEM models, a mesh of elements is required, and it can be created exactly in 

the same manner as in the standard FEM. Upon the element mesh, the problem domain 

  can then be divided into a set of sN  “non-overlap” and “no-gap” smoothing domains 

such that 
1

sN
s
k

k

    and s s
i j   , i j . In theory, such a division can be arbitrary 

when continuous shape functions are used. In practice, however, it is usually performed 

based on the element’s entities, such as elements (cells), or nodes, or edges, or faces. To 
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ensure the stability of the S-FEM models, the number of the smoothing domain created 

has to satisfy certain conditions, as will be discussed in detail in Section 3.3.   

Table 3.1 lists a number of types of smoothing domains of the S-FEM models. In the 

CS-FEM, for example, the number of the smoothing domains sN  can be the same as the 

element number eN , meaning one element is used as one smoothing domain. For stability 

reasons, it is often to subdivide each element e
i  into [1, )s

in    smoothing domains as 

shown in Figure 3.1. For the NS-FEM using n-sided polygonal elements, the smoothing 

domain s
k  associated with the node k is created by connecting sequentially the mid-

edge-point to the central points of the surrounding n-sided polygonal elements of the node 

k as shown in Figure 3.2. For the ES-FEM using triangular elements, the smoothing 

domain s
k  associated with the edge k is created by connecting two endpoints of the edge 

to central points of adjacent elements as shown in Figure 3.3. For the FS-FEM using 

tetrahedral elements, the smoothing domain s
k  associated with the face k is created by 

connecting three field nodes of the face to the centers of the adjacent elements as shown 

in Figure 3.4. More details of the discretization of the domain   into sN  smoothing 

domains s
k  for different S-FEM models will be presented in the following chapters.  

 

3.1.3 Smoothed strain field  

In an S-FEM model, the assumed displacement field is always continuous over the 

problem domain, and the integration of the weak form is based on sN  smoothed domains 

created by one of the ways described in Section 3.1.2. Each of the sN  smoothing domains 

s
k  can, in general, be viewed consisting of 1sn   sub-smoothing cells ,

s
k p  such that the 

compatible strain field   ( )h h
S ε x u x  is continuous inside each of the sub-smoothing 
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cells ,
s
k p  but can be discontinuous on the common inner boundaries of domains ,

s
k p . 

For example, for an ES-FEM model using 3-node triangular elements of linear shape 

functions, as shown in Figure 3.5, a smoothing domain s
k  associated with the inner edge 

k will include 2sn   triangular sub-smoothing cells ,1
s
k  and ,2

s
k  on both sides of the 

edge. The compatible strain field  hε x  is piecewise constants and discontinuous along 

the edge k (or called the common inner boundary ,1-2(inner)
s
k  of  ,1

s
k  and ,2

s
k ).  

By using the piece-wise constant smoothing function in Eq. (3.3), and applying the 

Divergence theorem on each sub-smoothing cell ,
s
k p , the smoothed strain  kε x  of the 

smoothing domain s
k  in Eq. (3.4) can be evaluated as follows.  

, ,

,
1 1

1 1 1
( ) ( ) ( ) ( )

s s

s s s
k k p k p

n n
h h s h

k S S k ps s s
p pk k k

d d d
A A A   

          ε u x u x n x u x  (3.5)

where ,
s
k p  is the boundary of the smoothing cell ,

s
k p , and , ( )s

k pn x  is the matrix of the 

components of the outward normal vector on the boundary ,
s
k p  and has the form similar 

to Eq. (2.7).  

The smoothing cell boundary segments ,
s
k p  are now categorized into two types: the 

inner boundaries , (inner)
s
k p  which locates inside the smoothing domain s

k , and the outer 

boundaries , (outer)
s
k p  which is on the boundary of the smoothing domain s

k  as shown in 

Figure 3.5. Because (again) the displacement field is continuous, we has the following 

results for two adjacent smoothing cells ,1
s
k  and ,2

s
k  that have the common inner 

boundary ,1-2(inner)
s
k  as shown in Figure 3.5: 

       ,1 ,2
s h s h
k k n x u x n x u x 0   on  ,1-2(inner)

s
k  (3.6)
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where  ,1
s
kn x  is the matrix of the components of the outward normal vector on the 

boundary ,1-2(inner)
s
k  of the smoothing cell ,1

s
k , and ,2 ( )s

kn x  is that on the boundary 

,1-2(inner)
s
k  of the smoothing cell ,2

s
k  as shown in Figure 3.5.  

Eq. (3.6) implies that when a continuous displacement field is used, the summation of 

two integrations 
,1-2(inner)

2

,
1

( ) ( )
s
k

s h
k p

p

d
 

  n x u x  of two adjacent smoothing cells ,1
s
k  and ,2

s
k  

on the inner boundaries ,1-2(inner)
s
k  will vanish, due to the opposite sign of ,1( )s

kn x  and 

,2 ( )s
kn x . Hence, the summation in Eq. (3.5) for all inner boundaries , (inner)

s
k p  will vanish 

and Eq. (3.5) is reduced into a much simpler form that keeps the summation over only 

outer boundaries, as follows 

, (outer)

,
1

1 1
( ) ( ) ( ) ( )

s

s s
k p k

n
s h s h

k k p ks s
pk k

d d
A A  

     ε n x u x n x u x  (3.7)

where , (outer)
1

sn
s s
k k p

p

    which is the boundary of the smoothing domain s
k , and ( )s

kn x  

is the matrix of the components of the outward normal vector on the boundary s
k  and 

also has the form            

0

( ) 0

s
kx

s s
k ky

s s
ky kx

n

n

n n

 
   
  

n x      (3.8)

in which s
kxn  and s

kyn  are the unit outward normal components in x-axis and y-axis, 

respectively. 

 

3.1.4 Smoothed strain-displacement matrix 

Now, substituting Eq. (2.43) as the trial function ( )h h u   into Eq. (3.5), one 

obtains the smoothed strain as 
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s
k

k I I
I S

 ε B d  (3.9)

where Id  is the nodal displacement vector at node I of the S-FEM solution; s
kS  is the set 

of the “supporting” nodes for the smoothing domain s
k , which consists all the nodes of 

the elements associated with the smoothing domain s
k . For example, for the ES-FEM 

using 3-node triangular elements as shown in Figure 3.3, s
kS  is the set of nodes  , ,A B C  

for the boundary edge m, and  , , ,D E F G  for the inner edge k. The “smoothed” strain-

displacement matrix IB  is evaluated using 

0
1

( ) ( ) 0
s
k

Ix
s

I k I Iys
k

Iy Ix

b

d b
A

b b

 
     
  

B n x N x      (3.10)

with  

   1

s
k

s
Ih kh Is

k

b n N d
A



  x x ,      ,h x y      (3.11)

When a linearly compatible displacement field along the boundary s
k  is used, one 

Gaussian point is sufficient for the line-integration along each segment ,
s
k p  of boundary 

s
k , Eq. (3.11) can be further simplified to a summation form 

 , ,
1

1
sn

s GP s
Ih kh p I p k ps

pk

b n N l
A





  x ,      ,h x y      (3.12)

where sn  is the total number of the boundary segments ,
s s
k p k   . For example, in the 

ES-FEM using 3-node triangular elements as shown in Figure 3.3, 3sn   for the 

boundary edge m, which is the total number of three boundary segments (AB, BI, IA), and 

4sn   for the inner edge k, which is the total number of four boundary segments (DH, 

HF, FO, OD); GP
px  is the midpoint (Gaussian point) of the boundary segments ,

s
k p , 

whose length and outward unit normal are denoted as ,
s
k pl  and ,

s
kh pn , respectively.  
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When the assumed displacement field is continuous, from the definition of the 

smoothed strain field kε  in Eq. (3.1) and Eqs. (3.5) and (3.7), it is easy to reveal the 

relation between the smoothed strain-displacement matrix IB  with the standard 

compatible strain-displacement matrix ( )IB x  of the FEM:  

   1 1
( ) ( ) ( )

s s
k k

s
I k I S Is s

k k

d d
A A

 

     B n x N x N x
1

( )
s
k

Is
k

d
A



  B x  (3.13)

which means that the smoothed strain-displacement matrix IB  is the average of the 

standard compatible strain-displacement matrix ( )IB x  over the smoothing domain s
k .  

Note that as recommended by Yoo et al. [156], higher-order gradients can be readily 

obtained by recursive application of Eq. (3.5), as long as lower-order gradients can be 

interpolated from nodal values. For example, the second order of the displacement 

gradients  2 ( )D u x  can be obtained from the first order of the displacement gradients 

 1 ( )D u x  in the same way  

     2 1 11 1
( ) ( ) ( ) ( )

s s
k k

s
S ks s

k k

D D d D d
A A

 

     u x u x n x u x  (3.14)

where ( )u x  is the displacement solution of an S-FEM model.  

 

3.1.5 Smoothed stiffness matrix 

Following the formulation procedure similar to the standard FEM, with substitutions of 

the compatible strain hε  by the smoothing strain ε , the element domain e
i  by the 

smoothing domain s
k , the total number of elements eN  by the total number of 

smoothing domains sN , and the compatible strain-displacement matrix B  by the 

smoothed strain-displacement matrix B , the final discretized algebraic system of 

equations of the S-FEM models has the form of  
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Kd f  (3.15)

where K  is the smoothed stiffness matrix whose entries are calculated by  

1 1

s s

s
k

N N
T T T s

IJ I J I J I J k
k k

d d A
  

      K B DB B DB B DB  (3.16)

Note that in Eq. (3.15), the load vector f  is without bar-hat, because no smoothing 

function is applied to the linear functional in the S-FEM models. The load vector is 

therefore computed exactly in the same way as that in the FEM. Further more in Eq. 

(3.16), K is symmetric positive definite (SPD) and IJK  needs to be computed only when 

nodes I and J share a same smoothing domain. Otherwise, it is zero. Hence, K will be 

also sparse for the S-FEM models. Hence, Eq. (3.15) can be solved by using standard 

routines with ease because K  is SPD and sparse.  

Also note that K  will be banded if the nodes are properly numbered, as that in the 

FEM. For the S-FEM models, the bandwidth of K  will be determined by the largest 

difference of node numbers of the nodes of the elements contributing to the smoothing 

domains. Specifically, when the smoothing domains are located inside the elements such 

as in the CS-FEM, the bandwidth of K  will be same as that of K  in the FEM. It is 

because the number of nodes related to the smoothing domains is identical to that related 

to the elements. However, when the smoothing domains cover parts of adjacent elements 

such as in the NS-FEM, ES-FEM or FS-FEM, the bandwidth of K  will be larger than 

that of K  in the FEM. It is because the number of nodes supporting the smoothing 

domains is larger than that of the elements.  

From Eqs. (3.7), (3.10) and (3.12), it is seen that the numerical integration on the 

domain s
k  now can be transferred to the integration on the boundary of the smoothing 

domain s
k . Further more, no derivative of shape functions is involved in computing the 

field gradients and only shape function values at some Gauss points along boundaries of 
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smoothing domains are needed. This makes the computing procedure of the stiffness 

matrix in the S-FEM models easier than that in the FEM. We now can use directly the 

shape functions, not the derivative of shape functions, to calculate the stiffness matrix on 

the basis of boundaries of physical smoothing domains. No mapping is needed. 

 

3.2 Construction of shape functions for the S-FEM models 

In general, the S-FEM models work well for general n-sided polygonal elements. This 

is because the smoothed strain field can be computed using Eq. (3.7), where only the 

assumed displacement values are needed at location on the smoothing domain boundaries. 

No derivatives of the assumed displacement field are required. Making use of this 

important feature, Dai et al. [37] devised a simple but important scheme to compute the 

shape function values for general n-sided polygonal elements. Here we present this 

scheme in a great detail.  

Consider an n-sided convex polygonal element e
i . We first divide the element into n 

non-overlapping and non-gap triangular sub-domains ,
e
i p  ( 1,2,...,p n ) by simply 

connecting n field nodes with the central point O of the polygon, as shown in Figure 3.6. 

The coordinates of the central point O are calculated by  

1 1

1 1
,

n n

O p O p
p p

x x y y
n n 

        (3.17)

where [ ]T
p p px yx  ( 1, 2,...,p n ) are coordinates of n field nodes, respectively. 

We then assume that the displacement vector Od  at the central point O is the simple 

average of n displacement vectors pd  ( 1, 2,...,p n ) of n field nodes as follows  

1

1 n

O p
pn 

 d d      (3.18)
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On the first triangular sub-domain ,1
e
i  (triangle 1-2-O), we now construct a linear 

displacement field using 

,1 1 1 2 2 3
e
i O  u N d N d N d     on ,1

e
i  (3.19)

where jN  ( 1, 2,3j  ) are the linear shape functions of the standard FEM created by three 

points:1-2-O [80]. Substituting Eq. (3.18) into Eq. (3.19), one obtains 

,1 1 3 1 2 3 2 3 3 3 1 3

1 1 1 1 1
...e

i n nn n n n n
             
   

u N N d N N d N d N d N d     (3.20)

which implies that the shape function vector ,1
e
iN  for the triangular sub-domain ,1

e e
i i    

has the form 

,1 1 3 2 3 3 3 3
1

1 1 1 1 1
...e

i
nn n n n n 

     
N N N N N N N N    (3.21)

Next, a linear displacement field on the second triangular sub-domain ,2
e
i  (triangle 2-

3-O) is constructed as 

,2 1 2 2 3 3
e
i O  u N d N d N d     on ,2

e
i  (3.22)

or 

,2 3 1 1 3 2 2 3 3 3 4 3

1 1 1 1 1
...e

i nn n n n n
             
   

u N d N N d N N d N d N d      (3.23)

which implies that the shape function vector ,2
e
iN  for the triangular sub-domain ,2

e e
i i    

has the form 

,2 3 1 3 2 3 3 3
1

1 1 1 1 1e
i

nn n n n n 

     
N N N N N N N N    (3.24)

Following the similar procedure, we can construct linear displacement fields on all 

remaining triangular sub-domains from ,3
e
iN  to ,

e
i nN . Due to the linear compatible 

property of the displacement fields ,
e
i pu  ( 1, 2,...,p n ) along the boundary segments of 

the triangular sub-domains, it is easy to verify that the union of n linear displacement 

fields ,
e
i pu  ( 1,2,...,p n ) creates a displacement field e

iu  which is continuous on the 
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whole n-sided polygonal element and linear compatible along the boundary segments of 

the triangular sub-domains   

     , , ,
1

,
n

e e e e
i i p i m i m

p

  u x u x u x x      (3.25)

Extending this approximation to the whole problem domain, the global displacement 

field created from the union of elemental displacement fields (3.25) is continuous and 

linear compatible along the boundary segments of the triangular sub-domains of elements.  

The union of shape function vectors ,
e
i pN  ( 1, 2,...,p n ) also creates a shape function 

vector e
iN  (on the n-sided polygonal element e

i ) which is continuous and linear 

compatible along boundary segments of the triangular sub-domains of element 

     , , ,
1

,
n

e e e e
i i p i m i m

p

  N x N x N x x      (3.26)

Remark 3.1 Properties of the shape functions for n-sided polygonal elements 

It is easy to verify the following properties of the shape function vector 

, , 1 , 2 , ,

1

e e e e e
i p i p i p i pj i pn

n

   N N N N N 


 for any discrete point ,
e e
i p i x , 

( 1, 2,...,p n ): (i) Kronecker delta at nodes px  and 1px ; (ii) partition of unity: 

 ,
1

1
n

e
i pj

j

N x ; (iii) linear consistency:  ,
1

n
e

ji pj
j

N x x x ; (iv) linear compatibility: linear 

shape functions on triangular sub-domain ,
e e
i p i    and ; and (v)   , 0e

i pj N x . 

Remark 3.2 Implicit shape function for n-sided polygonal element  

Note that the displacement field constructed using Eq. (3.25) is implicit for n-sided 

polygonal elements: we cannot, in general, write out the exact forms of the displacement 

field explicitly. However, this is perfectly fine for the S-FEM models, because we do not 

need to compute the derivatives of the displacement field and hence no explicit form is 
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required. All we need in an S-FEM model is to evaluate the shape function values on the 

boundaries of the smoothing domains to compute the smoothed strain field. This 

evaluation is performed very easily by using the simple point linear interpolation and/or 

averaging in a proper manner from the available values of shape functions of field nodes. 

The detail evaluation of shape functions for S-FEM models will be presented in the 

following chapters. 

Remark 3.3 Shape function for 3-node triangular element  

Note that for the 3-node triangular elements, above approach of creating shape 

functions will give exactly the linear shape function used in triangular elements of the 

standard FEM.  

Remark 3.4 Shape function for 4-node tetrahedral element in 3D problems 

For the 4-node tetrahedral elements, the S-FEM models use the linear shape functions 

used in tetrahedral elements of the standard FEM.  

 

3.3 Minimum number of smoothing domains 

For an S-FEM model, the key to ensure the stability is the use of sufficient number of 

smoothing domains that are linearly independent. The independence of smoothing domain 

is measured by the linearly independence of the columns of the global smoothed stiffness 

matrix [68]. When the smoothing domains are created associated with the element mesh 

entities (elements/cells, nodes, edges or faces), they do not overlap and do not have any 

gap, these smoothing domains are hence linearly independent. To ensure the stability and 

hence the full rank of the (global) smoothed stiffness matrix, a minimum number of 

linearly independent smoothing domains sN  must be used. Based on the study in [68], 

such a minimum number of smoothing domains should relate properly to the number of 
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the un-prescribed nodal unknowns uN , depending on the type of physical problems. The 

key consideration is to ensure the independent energy equations sampled by all these 

smoothing domains at least equal to the total number of the un-prescribed nodal 

unknowns uN .   

For 1D solid mechanics problem models with fn  node fixed, we have immediately 

min
s u n fN N N n   . This is because one node carries only one unknown (displacement 

component in the x direction); and one energy equation can be sampled from one 

(independent) smoothing domain. 

For 2D solid mechanics problem models with tn  (unconstrained) nodes used for 

displacement field construction, the total number of unknowns in the model should be 

2u tN n , because one node carries two unknowns (displacement components in x and y 

directions). On the other hand, the total number of energy equations that can be sampled 

from all the smoothing domains should be 3 sN , because one smoothing domain gives 

three independent equations to measure the strain energy norm (each of three strain 

components produces strain energy independently). Therefore, we must have 

min 2 / 3s tN n .  

Exactly the same analysis can be done for 3D solid mechanics problem models. We 

now summarize the discussions to Table 3.2.  

In general, it is found that among the four element mesh entities: elements, nodes, 

edges (for 2D problems) or faces (for 3D problems), the number of element is usually 

least followed by nodes. The number of edges and faces is always larger than that of 

nodes for any discretization. Therefore, the S-FEM models using smoothing domains 

associated with edges (ES-FEM) or faces (FS-FEM) are always stable (spatially and 

temporally) because the number of smoothing domains sN  is always much larger than the 
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minimum number of smoothing domains min
sN . For the S-FEM model using smoothing 

domains associated with nodes (NS-FEM), it satisfies exactly the minimum number of 

smoothing domains min
sN . The NS-FEM is only spatially stable but temporally instable. It 

hence works well only for static problems, but does not work well for dynamics problems 

without stabilization. For the S-FEM model using smoothing domains associated with 

elements (cells) (CS-FEM), the stability of the method is not ensured when the whole 

element is used as one smoothing domain because the minimum number of smoothing 

domains min
sN  may or may not be satisfied, depends on the problem and discretization. 

The element stiffness matrix hence can contain spurious zeros energy modes, and the 

global stiffness matrix after imposing essential boundary conditions can be singular. 

Therefore, the stability of CS-FEM will only be ensured when more than one smoothing 

domain is used for each element. The details of the stability analyses of the methods will 

be presented in the following chapters. 

 

3.4 Numerical procedure for the S-FEM models 

The numerical procedure for the S-FEM models is outlined as follows. 

(1) Divide the problem domain into a set of elements and obtain information on node 

coordinates and element connectivity; 

(2) Create the smoothing domains by determining the area/volume of the smoothing 

domains s
k  and the information of the nodes of the elements contributing to the 

smoothing domains; 

(3) Loop over smoothing domains s
k  

a. Determine the outward unit normal of each boundary segment/area for the 

smoothing domain; 
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b. Compute the smoothed strain-displacement matrix IB ; 

c. Evaluate the smoothed stiffness matrix IJK  and load vector of the current 

smoothing domain; 

d. Assemble the contribution of the current smoothing domain to form element 

matrices and vectors. 

(4) Implement essential boundary conditions; 

(5) Solve the linear system of equations to obtain the nodal displacements; 

(6) Evaluate strains and stresses at locations of interest. 

 

3.5 General properties of the S-FEM models 

Remark 3.5 Stress equilibrium state within smoothing domains 

The assumed smoothing strains defined in Eq. (3.7) ensure a stress equilibrium state 

within the smoothing domain where there is not the body force. 

Based on the assumption made in Eq. (3.4), the assumed smoothing strains become 

constants at any point in the smoothing domain. Therefore, the stresses obtained will also 

be constant in a smoothing domain. These constant stresses satisfy the equilibrium Eq. 

(2.1) when the external body load vector b 0 .  

Remark 3.5 is a simple but a quite powerful statement: applying the strain smoothing 

technique to a smoothing domain in the problem domain results in a stress equilibrium 

status in the smoothing domain. We, therefore, call the smoothing operation a local stress 

equilibrator. The S-FEM models will not satisfy the equilibrium equation for every point 

in the problem domain, but will in all the smoothed domains.   
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Remark 3.6 Compatibility of smoothed strain field 

(i) When the smoothing domain is located within the element such as in the CS-FEM, 

the smoothed strains defined in Eq. (3.7), will not be compatible, unless the assumed 

displacement field is linear. 

(ii) When the smoothing domain covers parts of adjacent elements such as in the NS-

FEM, ES-FEM or FS-FEM, the assumed smoothed strains defined in Eq. (3.7), will not 

be compatible for any assumed continuous displacement field.  

 We first examine item (i). When the smoothing domain locates within the element 

such as in the CS-FEM, if the order of the assumed displacement field is higher than first 

order, the compatible strain   ( )h h
S ε x u x  will not be constant. The assumed 

smoothing strains defined in Eq. (3.7) are however constants. Hence the compatibility 

condition is violated.    

We then examine item (ii). When the smoothing domain covers parts of adjacent 

elements such as in the NS-FEM, ES-FEM or FS-FEM, the smoothed strain given in Eq. 

(3.7) is the area-weighted average of the compatible strains over the portions of the 

elements forming the smoothing domain. Because the strains in these elements will be in 

general different, the average strain will be different from these element strains for any 

assumed continuous displacement field. Hence the compatibility condition is violated.  

Remark 3.6 (i) implies that the stress equilibrator in the CS-FEM will destroy the 

compatibility in the smoothing domains with assumed displacement fields of bilinear or 

higher order. It also implies that when the linear displacement field is used (3-node 

triangular element), the CS-FEM will be identical to the standard FEM, because the stress 

equilibrator is useless to a constant stress field derived from the linear displacement field. 

The CS-FEM can therefore only be applied with significance to elements of higher order.   
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Remark 3.6 (ii) implies that the stress equilibrator in the NS-FEM, ES-FEM and FS-

FEM will destroy the compatibility in the smoothing domains for any assumed 

continuous displacement field. The NS-FEM, ES-FEM and FS-FEM therefore can be 

applied with significance for any elements.   

Remark 3.7 The S-FEM models are energy consistent [73], when linear compatible 

shape functions along the boundaries of smoothing domains are used, and there is not the 

body force in smoothing domains. 

Proof 

In general, we observe a unique “complementary” situation for the S-FEM models: the 

equilibrium is ensured in each smoothing domain without having the body force, as 

shown in Remark 3.5, but the compatibility is destroyed within the smoothing domain, as 

shown in Remark 3.6 . On the boundaries of the smoothing domains, however, the 

equilibrium (stress continuity) is not guaranteed, but the displacement continuity is 

ensured due to the use of the same linear compatible shape functions on the common 

boundaries of the smoothing domains. It is this unique complementary satisfaction of 

equilibrium or compatibility conditions within the smoothing domains and on the 

boundaries of the smoothing domains that ensures no energy loss in any of the violation 

of equilibrium or compatibility conditions. We therefore state that the S-FEM models are 

energy consistent [73] when the linear compatible shape functions along the boundaries 

of smoothing domains are used, and there is not the body force in smoothing domains.  � 

Remark 3.8: The S-FEM models are stable, if at least the minimum number of 

independent smoothed domains defined in Table 3.2 is used in creating the model.   

Consequently, all the columns of the smoothed strain matrix will be linearly 

independent [69], and the stiffness matrix created will be SPD. The solution of such an S-
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FEM model is hence stable and converges to the exact solution of a physically well-posed 

linear elasticity problem with stable material.   

 

Theorem 3.1 The S-FEM models are variationally consistent 

Proof 

In the S-FEM models, the smoothed strain ε  is used to replace the compatible strain 

h h
S ε u , the variational consistency thus needs to be examined. To this end, we start 

with the modified Hellinger-Reissner variational principle with the smoothed strain ε  and 

compatible displacements hu  as independent field variables [122]: 

       1
,

2
t

T TTh T h h h
SU d d d d

   

         u ε ε Dε Dε u u b u t  (3.27)

Performing the variation using the chain rule, one obtains 

       

   

,

0
t

Th T h T h
S S

T Th h

U d d d

d d

   

 

  

 

      

   

  

 

u ε ε Dε ε D u ε D u

u b u t
 (3.28)

Substituting the approximations (2.43) for hu  and (3.9) for ε  into Eq. (3.28) and using 

the arbitrary property of variation, we obtain 

Kd f  (3.29)

where f is the system load vector similar to that of the FEM with entries given by Eq. 

(2.49) and K  is the smoothed stiffness matrix whose entries are given by  

1 1

2 ( )

2 ( )
s s

s s
k k

T T
IJ I J I J

N N
T T
I J I J

k k

d d

d d

 

  

   

   

 

  

K B DB B DB x

B DB B DB x
 (3.30)

Using smoothed strain-displacement matrices IB  in Eq. (3.10), the following 

orthogonal condition [137] is satisfied for the integration (3.30) on each of smoothing 

domains s
k   as follows 
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( )
( ) ( )

s s s
k k k

T T T s T sJ
I J I J I k I J ks

k

d d A d A
A

  

       
B x

B DB x B D B x B D B DB  

s
k

T
I J d



  B DB  (3.31)

By combining the orthogonal condition (3.31) and Eq. (3.30), one has 

1

s

s
k

N
T T

IJ I J I J
k

d d
 

    K B DB B DB  (3.32)

The S-FEM models use directly Eq. (3.32) (or Eq. (3.16)) to calculate the stiffness 

matrix, therefore, the S-FEM models are “variationally consistent”. �  

Note that although the two-field Hellinger-Reissner principle is used, the S-FEM 

models have only the displacements as unknowns. Therefore, it is very much different 

from the so-called mixed FEM formulation, where stresses (or strains) are usually also 

unknowns. 

The orthogonal condition (3.31) can be expressed in the similar form for any  

compatible strain h h
S ε u  and the smoothed strain ε  by Eq. (3.7) as  

s s
k k

T h Td d
 

   ε Dε ε Dε  (3.33)

 

Theorem 3.2  Softening effect [83]  

For any given admissible displacement field h h v   , the strain energy  hE v  

for an S-FEM model obtained from the smoothed strains is no larger than the strain 

energy  hE v  for a FEM model obtained from the compatible strains: 

   h hE Ev v  (3.34)

in which  

     
1 1

1 1 1

2 2 2

s s

s
k

N N
h T h h T T s

k k k k k
k k

E d d A
  

     v ε v Dε v ε Dε ε Dε  (3.35)
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        
1

1 1

2 2

s

s
k

NT Th h h h h h h

k

E d d
 

   v ε v Dε v ε Dε  (3.36)

where  hε ε v  by Eq. (3.7) is the smoothed strain in an S-FEM model and h h
S ε v  

is the compatible strains obtained in the FEM.   

Proof 

Examine the following equation on the smoothing domain s
k , 

     2
s s s s
k k k k

T Th h T T h h h
k k k k kd d d d

   

        ε ε D ε ε ε Dε ε Dε ε Dε  (3.37)

Using the orthogonal condition (3.33) and D  which is SPD, we have 

      
0

0
s s s
k k k

T Th h h h T
k k k kd d d

  



        ε ε D ε ε ε Dε ε Dε


 

(3.38)

which combines with Eqs. (3.35) and (3.36) to give Eq. (3.34). � 

Eq. (3.34) can be expressed in discrete form of arbitrary (but admissible) nodal 

displacement hv  as  

 
 

 
 

1 1

2 2
h h

T Th h h h

E E



v v

v Kv v Kv
 

 
(3.39)

 

Theorem 3.3 Upper bound to FEM solution in the strain energy [83]  

For an elastic solid mechanics problem, when the same mesh is used, the strain energy 

obtained from the solution u  of the S-FEM models is no less than that from the solution 

hu  of the FEM: 

   hE Eu u  (3.40)

where  

  1

2
TE u u Ku  (3.41)
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   1

2

Th h hE u u Ku  (3.42)

Proof 

From the Theorem 3.2 (or Eq. (3.39)), we obtain for any admissible hv : 

       
0

1 1 1
0

2 2 2

T T Th h h h h h



   v Kv v Kv v K K v


 
(3.43)

Eq. (3.43) implies that matrix  K K  is SPD. In mechanics, it implies that K  is 

“stiffer” than K . In addition, the solution of the FEM can be expressed as  

1h u K f  (3.44)

and the solution of the S-FEM models can be expressed as 

1u K f  (3.45)

The difference between the strain energy of the FEM and that of the S-FEM models 

hence becomes 

           

 

1 1 1 1

1 1

1 1

SPD

1 1

2 2
1 1

2 2
1

0
2

T Th

T T

T

E E    

 

 

  

 

  

u u K f K K f K f K K f

f K f f K f

f K K f


 (3.46)

which gives Eq. (3.40). � 

Note that, in the working of Eq. (3.46), we used the fact that  1 1 K K  is SPD. This 

can be proven based on the facts that K , K , and  K K  are all SPD (see Eq. (3.43)).  

Theorem 3.3 shows one very important property of the S-FEM models. In mechanics, 

this means that the S-FEM models are “softer” than the FEM model. In other words, the 

common effect of the strain smoothing technique is the reduction of the over-stiffness of 

the standard compatible FEM model. This effect is called “softening effect” which 

contrasts with “stiffening effect” caused by the assumed displacement field using the 
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FEM shape functions in a conforming/fully-compatible model. Due to the softening 

effect, the strain energy of the S-FEM models becomes larger than that of the FEM.  

Now, the following question is naturally arisen: How can we adjust the softening effect 

in the S-FEM models to ensure that the obtained solution gives an upper bound in the 

strain energy compared with the exact strain energy or gives a close-to-exact solution? All 

these questions will be addressed in the following chapters.   

 

Theorem 3.4  Monotonic convergence property [68] 

Upon a division of domain Ω into a set of 1D
sN  smoothing domains 

1

1

D
sN

s
k

k

   , if a 

new division 2D
sN  is created by sub-dividing the kth smoothing domain into sn  sub-

smoothing-domains such that ,
1

sn
s s
k k p

p

   , , ,
s s
k m k n   , m n , then the following 

inequality stands  

   1 2D DE Eu u  (3.47)

where  DE u  is the strain energy solution obtained from a S-FEM model using D
sN  

smoothing domains.   

This implies that the “softening” effect provided by the smoothing operation will be 

monotonically reduced with the increase of the number of smoothing domains constructed 

in a nested manner. A simple proof can be given using the triangle inequality of norms: 

sum of energy norm of functions is no-less than the norm of the summed functions [68]. 

In addition, a specific proof for CS-FEM will be conducted in Chapter 4: Remark 4.5.  

 

Theorem 3.5  Convergence property  

When sN  , the solution u  of the S-FEM models will approach the solution 

h h u    of the standard compatible FEM model.  
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Proof 

Assume that the problem has the solution h h u    of the standard compatible 

displacement FEM model. Now we consider finding the solution u  of the S-FEM models 

for the same problem. In a given division sN  of domain Ω into a set of smoothing 

domains such that 
1

sN
s
k

k

   , when sN   and each smoothing domain s
k  

approaches zero, the smoothing function  k x  in Eq. (3.3) approaches to the Delta 

function. At such a limit hε ε , B B , K K  and the solution u  of the S-FEM 

models hence will approach the solution hu  of the standard compatible FEM model.  � 

Theorem 3.5 also implies that in the case the smoothing domain s
k  is associated with 

the number of nodes nN  (NS-FEM), or edges egN  (ES-FEM) or faces fN  (FS-FEM) of 

the FEM, the solution u  of the S-FEM models will approach to the exact solution, 

because the solution hu  of the standard compatible FEM model also approaches the exact 

solution when nN , egN  or fN  approaches infinity.  

Property 3.1 In the S-FEM models, the unknowns of only the displacement are as same 

as in the standard FEM.  

Property 3.2 By constructing linear compatible shape functions based on physical 

coordinates, complicated elements such as n-sided convex polygonal elements can be 

used in the S-FEM models.  

Property 3.3 In the S-FEM models, the domain discretization is more flexible than that in 

the standard FEM when n-sided convex polygonal elements can be used. 
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Table 3.1.  Typical types of smoothing domains. 

Name Method for creation 

(number of smoothing domains) 

S-FEM 

Models  

Problem 

domain  

Cell-based 

smoothing domain  

(CSD) 

Based on element ( s eN N ) or cells created 

by dividing further the elements (
1

eN
s

s i
i

N n


 ) 

CS-FEM  

(SFEM) 

[70, 73, 

77] 

1D, 2D, 3D 

Node-based 

smoothing domain 

(NSD) 

Based on each of the nodes of the mesh by 

connecting portions of the surrounding elements 

sharing the node ( s nN N ) 

NS-FEM 

[78] 

1D, 2D, 3D 

Edge-based 

smoothing domain 

(ESD) 

Based on each edges of the mesh by connecting 

portions of the surrounding elements sharing the 

edge ( s egN N ) 

ES-FEM 

[76] 

2D, 3D 

Face-based 

smoothing domain 

(FSD) 

Based on each face of the element mesh by 

connecting portions of the surrounding elements 

sharing the face ( s fN N ) 

FS-FEM 

[103] 

3D 

 

Table 3.2. Minimum number of smoothing domains min
sN  for problems with tn  

(unconstrained) total nodal unknowns. 

Dimension of the problem Minimum number of smoothing domains 

1D min
sN  =nt 

2D min
sN  =2nt /3 

3D min
sN =3nt /6=nt /2 

 



Chapter 3 Fundamental theories of the S-FEM models 

61 

1 5

8

(d)

9

4
7

2

3

6

1 5

(b) 4
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(e) 4
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y

x

3
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(f) 4

: added nodes to form the smoothing cells 

3

: field nodes

x

y

1 2

(a) 4

Figure 3.1. Division of quadrilateral element into the smoothing domains (SDs) in the CS-

FEM by connecting the mid-segment-points of opposite segments of smoothing domains. 

(a) 1 SD; (b) 2 SDs; (c) 3 SDs; (d) 4 SDs; (e) 8 SDs; (f) 16 SDs.   

 

k

k

: mid-edge point : central point of n-sided polygonal elements : field node

s

node 



s
k

 

Figure 3.2. n-sided polygonal elements and the smoothing domain (shaded area) 

associated with node k in the NS-FEM.  
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: centroid of triangles (I , O, H ): field node

boundary 
edge m (AB)

inner edge k (DF)

s
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 s
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O

I

(lines: DH , HF , FO, OD)

(4-node domain DHFO)

(lines: AB, BI , IA)

(triangle ABI )

C E

G

m

s
m

k

k
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Figure 3.3. Triangular elements and the smoothing domains (shaded areas) associated 

with edges in the ES-FEM. 

 

element 2 (BCDE)

: central point of elements (H, I)

smoothed domain         

associated with interface kinterface k (BCD)

element 1 (ABCD)

: field node

A

H

B

D

C

I

(BCDIH)

E


s
k

 

Figure 3.4. Two adjacent tetrahedral elements and the smoothing domain s
k   

(shaded domain) formed based on their interface k in the FS-FEM. 
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Figure 3.5. Division of the smoothing domain s
k  associated with the edge k into two 

adjacent smoothing cells ,1
s
k  and ,2

s
k  that have the common inner boundary ,1-2(inner)

s
k . 

 

5

: field nodes : added node to form the smoothing domains 

6
1

O

=6nSD

2

4 3

 

Figure 3.6. Division of a 6-sided convex polygonal element into six triangular sub-

domains by connecting n field nodes with the central point O. 
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Chapter 4  

 

Cell-based Smoothed FEM (CS-FEM)  
 

This chapter introduces the cell-based S-FEM (CS-FEM) using the strain smoothing 

technique [24] for finite element settings. In the CS-FEM, the strain in an element is 

modified by smoothing the compatible strains over the smoothing domains created by 

subdividing the quadrilateral elements. The CS-FEM can improve the accuracy and 

convergence rate of the existing standard 4-node quadrilateral elements used in the FEM. 

In addition, the method works well for general n-sided polygonal elements (nCS-FEM). 

In theory, the n-sided polygonal elements can be concave [37]. In practice, however, we 

usually use convex polygonal elements, and hence our discussion in this chapter will 

assume the elements to be convex. Some properties of the CS-FEM will be presented and 

proved theoretically, and the stability analysis of CS-FEM and nCS-FEM is also 

conducted. Moreover, a selective CS-FEM is also formulated to overcome the volume-

locking problems using nearly incompressible materials. Numerical examples will be 

presented to confirm the properties of the CS-FEM.  

4.1 Creation of the cell-based smoothing domains  

In the CS-FEM, the domain   is discretized into eN  quadrilateral elements as in the 

standard FEM, such that 
1

eN
e
i

i

    and e e
i j   , i j . Each element e

i  will be 
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further subdivided into [1, )sn    quadrilateral smoothing domains ,
e
i m in a non-

overlapping and no gap manner such that ,

1

sn
e e
i i m

m

   , as shown in Figure 4.1. 

Therefore, the entire problem domain  is divided into a total of s e sN N n   smoothing 

domains s
k  such that 

1

sN
s
k

k

   . Note that the subdivision of each big smoothing 

domain into smaller smoothing domains is performed by connecting the mid-segment-

points of opposite segments as shown in Figure 4.1. The strain smoothing operation (3.4) 

is performed over the quadrilateral smoothing domains.  

4.2 Formulation of the CS-FEM for quadrilateral elements 

Using the general formulation of the S-FEM models presented in Chapter 3 (Section 

3.1), the discretized linear system of equations for the CS-FEM has the form of  

CS-FEM K d f  (4.1)

where CS-FEMK  is the global smoothed stiffness matrix whose entries are given by  

,

CS-FEM
,

1 1 1 1 1

e s e s s

e
i m

N n N n N
T T e T s

IJ I J I J i m I J k
i m i m k

d A A
    

     K B DB B DB B DB  (4.2)

where 
,

,
e
i m

e
i mA d



   is the area of quadrilateral smoothing domain ,
e
i m , and the 

smoothed strain-displacement matrix IB , which is constant, is computed  using Eq. 

(3.10). All we need now is the assumed displacement function values on the boundaries 

of these smoothing domains, which can be evaluated using shape functions created for the 

CS-FEM element using procedures given in Section 4.4.   

4.3 Formulation of the CS-FEM for n-sided polygonal elements 

The CS-FEM can be further extended to a more general case, using n-sided polygonal 

elements (nCS-FEM). The domain discretization   is based on eN  polygonal elements 
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with an arbitrary number of sides, such that 
1

eN
e
i

i

    and e e
i j   , i j . Each 

e
in -side polygonal element e

i  will be further subdivided into e
s in n  triangular 

smoothing domains in a non-overlapping and no gap manner such that ,

1

e
in

e e
i i m

m

   . This 

subdivision is performed by connecting e
in  field nodes to the central point of the 

polygonal element as shown in Figure 3.6. Therefore, the entire problem domain  is 

consequently divided into 
1

eN
e

s i
i

N n


  smoothing domains s
k  such that 

1

sN
s
k

k

   . The 

strain smoothing operation (3.4) is performed over the triangular smoothing domains 

within each polygonal element.   

Using the general formulation of the S-FEM models presented in Chapter 3 (Section 

3.1), the linear system of equations of the nCS-FEM has the form of  

CS-FEMn K d f  (4.3)

where CS-FEMnK  is the global smoothed stiffness matrix whose entries are given by  

,

CS-FEM
,

1 1 1 1 1

e e
e i e i s

e
i m

N n N n N
n T T e T s
IJ I J I J i m I J k

i m i m k

d A A
    

     K B DB B DB B DB  (4.4)

where 
,

,
e
i m

s
i mA d



   is the area of triangular smoothing domain ,
e
i m , and the smoothed 

strain-displacement matrix IB  is computed  by Eq. (3.10). Note again that the smoothed 

strain is constant within the smoothing domain. In evaluating IB , we need to use the 

shape function created for the n-sided polygonal element in Chapter 3 (Section 3.2).  

4.4 Evaluation of shape functions in the CS-FEM and nCS-FEM 

As presented in Chapter 3, when a linear compatible displacement field along the 

boundary of the smoothing domains is used, the smoothed strain-displacement matrix IB  
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can be computed  using only the shape function values at mid-segment-points (Gauss 

points) on each of the segments ,
s s
k p k   of the smoothing domain s

k . No derivatives of 

the shape functions are needed. Therefore, the most essential issue is to ensure the 

compatibility of the shape functions on all the interfaces of these smoothing domains. In 

our past practice, the shape function values at each Gauss point are evaluated by simple 

linear point interpolation (or averaging) using two endpoints of the segment containing 

the Gauss point. For example, for the quadrilateral element subdivided into four 

quadrilateral smoothing domains as shown in Figure 4.2a, the shape function values at 

Gauss point g1 are evaluated by averaging those of nodes #1 and #5, and those at Gauss 

point g2 is the average of those of points #5 and #9.  For the 6-sided polygonal element 

subdivided into six triangular smoothing domains as shown in Figure 4.2b, the shape 

function values at Gauss point g1’ are the average of those of nodes #1’ and O, and that at 

Gauss point g2’ is the average of those of points #1’ and #2’. Therefore, in order to 

facilitate the evaluation of shape function values at Gauss points on the smoothing 

domain boundaries in the CS-FEM and nCS-FEM, we need first to evaluate the shape 

function values at the endpoints of segments such as points #1, #2, …, #9 in Figure 4.2a 

and points #1’, #2’, …, #6’ and point O in Figure 4.2b.  

For the quadrilateral elements, the subdivision of a big smoothing domain into smaller 

smoothing domains is performed by connecting the mid-segment-points of opposite 

segments as shown in Figure 4.1. Such a subdivision will ensure shape function values on 

the boundaries of physical smoothing domains to be linearly compatible on all the 

segments of the smoothing domains, which is essential to CS-FEM models. Note that in 

the standard FEM using quadrilateral elements, the compatibility on the element 

boundary is achieved by “mapping”, and the so-called isoparametric elements are the 

most popular. In the CS-FEM, this compatibility is achieved in much simpler manner: 
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linear interpolation or averaging, and no mapping is needed. The relation of the locations 

for the CS-FEM and the bi-linear isoparametric elements is illustrated in Figure 4.3. 

Shape function values on the lines 5-7, 6-8, 10-12 and 11-13 of smoothing domains of a 

CS-FEM element are identically linear corresponding to the mapped segments 5’-7’, 6’-

8’, 10’-12’ and 11’-13’ on the isoparametric FEM elements.   

In the CS-FEM, a four-node quadrilateral element can be, in theory, subdivided into 

some quadrilateral smoothing domains as shown in Figure 4.1. However, the numerical 

examples given in Section 4.10 will show that such a further division is often unnecessary 

and not preferable. A simple division of the element into four smoothing domains as 

shown in Figure 4.1d is one of the best choices for solid mechanics problems. Therefore, 

unless stated otherwise, the division of the element into four smoothing domains will be 

used mainly in this section for convenience of discussion. Figure 4.2a and Table 4.1 

presents explicitly the shape function values at different points of a quadrilateral element 

divided into four quadrilateral smoothing domains. The number of support field nodes for 

the quadrilateral element is 4 (from #1 to #4). For the whole quadrilateral element, we 

have 12 line-segments (1-5, 5-2, 2-6, 6-3, 3-7, 7-4, 4-8, 8-1, 5-9, 6-9, 7-9, 8-9). Each line-

segment needs only one Gauss point (due to linear interpolation), and therefore, there are 

a total of 12 Gauss points (from g1, to g12) used for all these smoothing domains in e
i , 

and the shape function values at all these 12 Gauss points are tabulated in Table 4.1 by 

simple inspection.    

For the nCS-FEM using n-sided polygonal elements, the shape function constructed in 

Chapter 3 (Section 3.2) is obviously linear compatible along the boundaries of the 

triangular smoothing domains. Hence, the evaluation of the shape function values at field 

nodes and the central points such as points #1’, #2’, …, #6’ and point O in Figure 4.2b is 

very straightforward. Figure 4.2b and Table 4.2 presents explicitly the shape function 
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values at different points of a 6-sided polygonal element divided into six triangular 

smoothing domains. The number of support field nodes for this 6-sided element is 6 (from 

#1’ to #6’). We have a total of 12 segments (1’-2’, 2’-3’, 3’-4’, 4’-5’, 5’-6’, 6’-1’, 1’-O, 

2’-O, 3’-O, 4’-O, 5’-O, 6’-O). Each segment needs only one Gauss point (due again to the 

linear interpolation). Therefore, there are a total of 12 Gauss points (from g1, to g12) to 

be used for all the smoothing domains, and the shape function values at all these 12 Gauss 

points can be tabulated in Table 4.2 by, again, simple inspection. 

It should be mentioned that the purpose of introducing of interior points such as point 

#9 in Figure 4.2a or point O in Figure 4.2b and points on the edges such as #5, #6, #7, #8 

in Figure 4.2a is to facilitate the evaluation of the values of shape functions at some 

discrete points inside and on the segments of the interested element. There is no extra 

degrees of freedom are associated with these added points. In other words, these points 

carry no additional independent field variable. Therefore, the total degrees of freedom 

(DOFs) of a CS-FEM model will be exactly the same as the standard FEM using the same 

set of nodes.    

We note now the following remark.   

Remark 4.1 On shape of CS-FEM elements 

It may be noted that the CS-FEM can have general n-sided polygonal elements easily. 

This is because the S-FEM models do not use the derivatives of the shape functions. The 

standard FEM, however, can only have T3 and Q4 elements. Any generalization to other 

type of FEM elements has to be very careful to ensure (1) compatibility and (2) 

attainability of the derivatives of the shape functions, which can be quite difficult, when 

the shape of the elements become too complicated. Even when we use Q4 elements, we 

have to resort to a sophisticated “mapping” procedure. 
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4.5 Some properties of the CS-FEM 

Remark 4.2 Single smoothing domain vs. single Gauss point 

If only one single smoothing domain ( 1sn  ) is used individually for each element in 

the problem domain, the solution of the CS-FEM has the similar properties with that of 

the standard FEM using reduced integration (using one Gauss point), when the same 

mesh are used. 

Remark 4.2 can be examined as follows. As shown in Eq. (3.13), the smoothed strain-

displacement matrix IB  of the CS-FEM is the average of the standard strain-

displacement matrix ( )IB x  over the smoothing domain e
i , the physical element domain. 

While for FEM using reduced integration, ( )IB x  is computed at the center of the 

isoparametric element, at 0   . We thus have ( 0, 0)I   B  in the FEM is also 

considered to be the average of  ( )IB x  over the isoparametric element. Therefore, it is 

clear that 
e
i

T
I J d



 B DB  in the CS-FEM is equivalent to
1 1

1 1

T
I J d d 

 
  B DB J  in the FEM 

using reduced integration. The only difference is that ( 0, 0)I   B  in the FEM is the 

average of ( )IB x  over the isoparametric element and IB  in the CS-FEM is the average of 

( )IB x  over the element in the physical coordinates. In the case the elements are 

parallelograms, the results of the CS-FEM and FEM will be identical.   

Therefore, the solution of the CS-FEM has the similar properties with that of the FEM 

using the reduced integration. The element stiffness matrix can contain spurious zeros 

energy modes (known as hourglass modes) and thus may not be spatially stable. This is 

because the global stiffness matrix, even after imposing essential boundary conditions to 
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remove the rigid body motion, may still be singular depending on the setting of the 

problem [62].   � 

Remark 4.3 Convergence to the compatible FEM model 

If each quadrilateral element is subdivided sequentially into sn  quadrilateral 

smoothing domains ,
e
i m , and when sn   and the smoothing domain , 0e

i m   for all 

the elements in the problem domain, the stiffness matrix CS-FEM
IJK  in Eq. (4.2) will 

approach the stiffness matrix FEM ( ) ( )T
IJ I J d



 K B x DB x  of the standard FEM using the 

isoparametric elements with “full” ( 2 2 ) Gauss integration. At such a limit, the solution 

of the CS-FEM will approach the solution of the standard compatible displacement FEM 

model.  

The Remark 4.3 is derived from Theorem 3.5. 

Remark 4.4 Monotonic property 

Consider a CS-FEM element e
i  that is divided sequentially into 1sn   smoothing 

domains. Let the strain energy of an element with sn p  smoothing domains be  

,

CS-FEM
, , , , ,

1 1
s

e
i m

p p
eT T

i m i m i m i m i mn p
m m

E d A
 

    ε Dε ε Dε  (4.5)

We then have the following monotonic inequality 

CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM FEM
1 2 1 1s s s s s sn n n p n p n p nE E E E E E E                 (4.6)

Proof 

Suppose that the domain e
i  of the quadrilateral element has already been divided into 

1sn p    smoothing domains ,
e
i m  such that ,

1

p
e e
i i m

m

   . Let CS-FEM
sn pE   be the strain 

                                                 
 The division of 1sn p   is performed by dividing any of the domains in the previous division of sn p  
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energy of the element when sn p . We now further divide the jth smoothing domain ,
e
i j  

into two smoothing domains , 1
e
i j  and , 2

e
i j  such that , , 1 , 2

e e e
i j i j i j    and 

, 1 , 2
e e
i j i j   , which results in a total of 1sn p   smoothing domains. Then, the 

strain energy of the element becomes CS-FEM
1sn pE   . Let hε  be the compatible strain of the 

corresponding FEM element. We have the following relationship for smoothed strains: 

 
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, 1 , 2

1 2e e
i j i j

   ε ε  (4.7)

where 
,

e
i jε  is the smoothed strain of domain ,

e
i j  corresponding to sn p ; 

, 1
e
i jε  and 

, 2
e
i jε  are the smoothed strains of domains , 1

e
i j  and , 2

e
i j  corresponding to 1sn p  ; 

,
e
i jA  is the area of domain ,

e
i j  corresponding to sn p , , 1

e
i jA  and , 2

e
i jA  are the areas of 

domains , 1
e
i j  and , 2

e
i j  corresponding to 1sn p  ; 1 ,, 1 / 0e e

i ji jA A    and 

2 ,, 2 / 0e e
i ji jA A   . Note that, we have the relationship  

1 2 1    (4.8)

Considering the difference between CS-FEM
1sn pE    and CS-FEM

sn pE  , and using Eqs. (4.7) and 

(4.8), we obtain 
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(4.9)
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where we used the SPD property of D  matrix (assuming stable material).   

By combining Eq. (4.9) with Remark 4.3, we obtain inequality (4.6). � 

The monotonic inequality (4.6) is a powerful and useful statement resulted from the 

application of smoothing operations to functions in a positive definite quadratic 

functional. Inequality (4.6) also shows that with the same displacement hu , the strain 

energy of the element with 1sn p   domains is larger than that of the element with 

sn p  domains. In other words, the stiffness matrix of the element with 1sn p   

smoothing domains is stiffer than that of the element with sn p  smoothing domains 

which leads to the following remark.  

Remark 4.5 Softening effects 

Let CS-FEM
sn pK  be the stiffness matrix of the element with sn p  smoothing domains, we 

then have 

CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM CS-FEM FEM
1 2 1 1s s s s s sn n n p n p n p n        K K K K K K K          (4.10)
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where symbol “ ” stands for an engineering term of  softer.  This implies that use of 

larger smoothing domains provides more softening effects: the CS-FEM model is always 

softer than the FEM counterpart.   

Remark 4.5 can be explained intuitionally as follows, when the number of sn  in each 

element increases, the stiffness matrix CS-FEM
IJK  in Eq. (4.2) will become stiffer. The 

solution obtained will change monotonously from the solution of the CS-FEM ( 1sn  ) to 

that of the compatible displacement FEM model ( sn  ).   

 

4.6 Domain discretization with polygonal elements 

In this thesis, the n-sided polygonal elements will be used in the CS-FEM, NS-FEM 

and ES-FEM. Hence, one technique to discretize a problem domain into n-sided convex 

polygonal elements should be briefly described. This technique can be performed using 

the well-known Voronoi diagram, and the procedure can be described as follows [117].  

The problem domain and its boundaries are first discretized by a set of properly 

scattered points  1 2: , ,..., np p pP . Based on the given points, the domain is further 

decomposed into the same number of Voronoi cells  1 2: , ,..., nC C CC  according to the 

nearest-neighbor rule defined by 

    2 : , , , ,i i jC d d j i i     x x x x x  (4.11)

In the numerical implementation, as illustrated in Figure 4.4a, the generated Voronoi 

diagram has not cell vertices along the boundaries, and hence additional nodes along the 

boundary outside the domain need to be added to enclose the cells on the boundaries. 

With this, the boundary cells are then bounded, but these additional nodes of these cells 

do not fall within the problem domain as shown in Figure 4.4b. Next, these nodes are 

‘shifted’ inwards onto the boundaries as shown in Figure 4.4c. The final shape of these 
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Voronoi cells is generally irregular but they are all convex polygons. The initial point ip  

is regarded as the representative point of the ith element. Once we get the information of 

these Voronoi diagrams, a set of polygonal elements is then formed for the numerical 

analysis.  

The following points need to be noted: (i) The original discrete points P only serve as 

numerical devices for domain discretization and are not used in following numerical 

analysis; (ii) If we prefer more regular elements, such as rectangular elements, hexagon 

elements, we need to arrange a special point pattern P before the generation of Voronoi 

diagrams; (iii) For demonstration purpose, we arrange the initial points in an arbitrary 

form in the following numerical examples without concerning the computational cost. As 

a result, the number of element sides is generally changing from element to element, 

which is perfectly acceptable to the nCS-FEM method.   

 

4.7 Standard patch test 

The patch tests for CS-FEM are first conducted in great detail using as much as five 

patches as shown in Figure 4.5 [77]. In these tests, a total of 25 test cases are created by 

rotating each of these five patches with = 0, / 6 , / 4 , / 3  and / 2 . Each four-

node quadrilateral element is subdivided into smoothing domains in the fashion described 

in Section 4.1. In this particular case, we use 1,2,3,4,8sn   and 16 quadrilateral 

smoothing domains as shown in Figure 4.1.  

The CS-FEM is used to solve the patch test problem for numerical solutions of 

displacements. To evaluate the error in the solutions in a quantitative manner, the 

following error norm in displacement defined as follows. 
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where nN  is the total number of nodes of the problem domain; iu  is the exact 

displacement and iu  is the numerical displacement for a CS-FEM model. The 

dimensionless parameters*  are taken as 100E  , 0.3   and the linear displacement 

field is specified on the boundary of the patches using 

u x   ;   v y    (4.13)

It is found that the CS-FEM can pass all these standard patch tests within the machine 

precision for all above patch cases. Table 4.3 shows the results for the case of 4sn  .   

The patch test for the nCS-FEM is conducted for a square patch using 36 n-sided 

polygonal elements as shown in Figure 4.6. It is found again that the nCS-FEM can pass 

the standard patch test within machine precision with the displacement error of 

1.83 13de e   (%). 

 

4.8 Stability of the CS-FEM and nCS-FEM 

As analyzed in Chapter 3, for any smoothed model, the stability of the model should 

be checked carefully, and in theory we know that the minimum number of smoothing 

domains has to be used to ensure the stability. In this section, an intensive eigenvalue 

analysis using quadrilateral elements is conducted to investigate numerically the stability 

properties of the CS-FEM and nCS-FEM. The results of the CS-FEM and nCS-FEM are 

compared with the standard FEM using the four-node isoparametric elements. Line 

integration is used for the CS-FEM and nCS-FEM, while domain (element) integration 

                                                 
* In this thesis, we often choose to use non-dimensional parameters because the purpose of the examples is 
just to examine our numerical results, and no much physical implications. Any set of physical units is 
applicable to our results, as long as these units are consistent for all the inputs and outputs. 
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using Gauss quadrature (1 GP and 2 2 GPs) is used for the FEM. First, a free vibration 

analysis using the singular value decomposition technique of a single free quadrilateral 

element is conducted. In the CS-FEM, we divide each element into 1,2,4,8sn   and 16 

quadrilateral smoothing domains (SDs) in the way shown in Figure 4.1. In the nCS-FEM, 

we divide each quadrilateral element into 4sn   triangular SDs.  

The results for the eigenvalue analysis are listed in Table 4.4. It is shown that three 

first non-zero eigenvalues are similar for all cases. For the CS-FEM using 1sn  , we 

found five zero eigenvalues which is similar in the FEM using only one Gauss point 

(GP=1). These zero eigenvalues represent five spurious zero-energy eigenmodes which 

do not carry proper deformation information. These results verify Remark 4.2 that the 

solution of CS-FEM (or nCS-FEM) using 1sn   for elements has the similar properties 

with that of FEM using reduced integration. The element stiffness matrix will contain 

spurious zeros energy modes, and the global stiffness matrix after imposing essential 

boundary conditions to remove the rigid motion can still be singular depending on the 

setting of the problem. The solution can therefore be unstable. When comparing the 

results of CS-FEM using 1sn   four-node SDs and nCS-FEM using 4sn   triangular 

SDs with that of FEM using full Gauss integration ( 2 2 GPs), it is seen that, except three 

zero-energy rigid-body-movement modes, all the other modes are non zero-energy 

modes, and hence there are no spurious modes, and the models are all spatially stable. We 

can now conclude that the solutions of the CS-FEM using of 1sn   quadrilateral SDs and 

of the nCS-FEM using 4sn   triangular SDs will be stable at least for static problems.  

Table 4.4 also shows that when sn  increases from 2 to 16, two zero-energy 

eigenvalues 4th and 5th of the CS-FEM will increase monotonously and approach to those 

of FEM using 2 2 GPs. These results are consistent with Remark 4.3 and Remark 4.4 



Chapter 4  Cell-based Smoothed FEM (CS-FEM) 

  78 

which show that when sn  approaches monotonously to infinity, the CS-FEM solution will 

approach monotonously to the solution of the standard displacement compatible FEM 

model. In addition, from the nonzero eigenvalues of Table 4.4, it is seen that the CS-FEM 

is softer than (fully) compatible FEM model which is consistent with Remark 4.5.  

Further comparison studies are conducted using a single element with three degrees-of-

freedom (DOFs) fixed and a free solid with 4 4  elements, and results are listed in Table 

4.5 and Table 4.6. It is seen that the same findings mentioned above can be observed.  

 

4.9 Selective CS-FEM: volumetric locking free [102] 

Volumetric locking appears when the Poisson’s ratio of the material approaches to 0.5. 

The application of selective formulations in the standard FEM [54] has been found 

effectively to overcome such a locking and hence the similar idea is employed in this 

chapter to formulate a CS-FEM that is free from volumetric locking. In the FEM, 

different quadrature orders are used for different material parts [54], while in the CS-FEM 

we can simply vary the number of smoothing domains for these two different material 

“parts” ( -part and  -part). As presented in Remark 4.2, the solution of CS-FEM using 

only one smoothing domain ( 1sn  ) for each element has the same properties with that of 

FEM using reduced integration (one Gauss point). We also know that the  -part is the 

culprit of the volumetric locking. Therefore, in the CS-FEM, we use 1sn   for each 

element for the  -part and sn n  (number of sides of the elements) for the  -part. The 

details are given below. 

The material property matrix D  for isotropic materials is first decomposed into 

1 2 D D D    (4.14)
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where 1D  relates to the shearing modulus  / 2 1E      and hence is termed as  -

part of D , and 2D  relates to the Lame’s parameter 
2

1 2







 and hence is termed as  -

part of D . For plane strain cases, we have  

1 2

2 0 2 0 0 1 1 0

2 0 0 2 0 1 1 0

0 0 0 0 1 0 0 0

  
    



     
               
          

D D D    (4.15)

and for axis-symmetric problems: 

1 2

2 0 0 0 1 1 0 1

0 2 0 0 1 1 0 1

0 0 1 0 0 0 0 0

0 0 0 2 1 1 0 1

 

   
   
      
   
   
   

D D D    (4.16)

In the CS-FEM and nCS-FEM, we use 1sn   to calculate the stiffness matrix related 

to -part and sn n  (number of sides of the elements) to calculate the one related to the 

 -part. The stiffness matrix of element e
i  of the selective scheme becomes two parts:  

   
1

2
1

, 1 , , 2
1

s

ns
n ns

n n
T Te e e e e e e

i i m i m i m i i i
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


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K B D B B D B


   
(4.17)

where e
iB  and e

iA  are the smoothed strain-displacement matrix and area of the whole 

element e
i , respectively; ,

e
i mB  and ,

e
i mA  are the smoothed strain-displacement matrix and 

area of the smoothing domain ,
e
i m , respectively.  

 It is clear that the selective CS-FEM is a little more expensive, but it is volumetric 

locking free and hence it is very useful for solids with Poisson’s rate close to 0.5. Note 

also that the selective nCS-FEM can be implemented exactly in the same manner.   

 

4.10 Numerical examples 

To examine the accuracy and efficiency, the results of the CS-FEM methods will be 

compared with those of the standard FEM using quadrilateral elements (FEM-Q4) as well 
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as the analytical solution. For quantitative study of the error and convergence rate of these 

methods, two error norms are used here, i.e., displacement norm and energy norm. The 

displacement norm is defined as  

         2

11 22
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e

e
i

N
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d
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e d d
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The energy norm is defined by 
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 (4.19)

where u  and ε  are the exact or analytical solution for the displacement and strain, 

respectively; u


 and ε


 are the numerical solution for the displacement and strain, 

respectively, obtained using any numerical model.   

For the CS-FEM, the strain obtained in an element is in general not constant due to the 

use of smoothing domains in the elements. It is only constant in each smoothing domain.  

Therefore, when computing the strains (or stresses) for an element, some treatments are 

required. One simple way is to average those strains of smoothing domains of the 

element, and the averaged strains are regarded as the strains of the element. Such an 

averaged strain can also be weighted using the respective area of the smoothing domains. 

Similarly, to calculate numerical strain (or stress) at a node, we can also simply average 

the strains of smoothing domains associated with the node. In addition, using the 

numerical strain  jε x  at the node jx , we can further construct a “recovery” bilinear 

strain field Rε  for each element in the CS-FEM using the following approximation  

    
4

1

R
j j

j

 ε N x ε x  (4.20)
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where  jN x  are the bilinear shape functions of FEM-Q4, and  jε x  are strain values at 

4 nodes of the element. The recovery strain field Rε  will be used as the final numerical 

results of strain field of CS-FEM models in evaluating the error using Eq. (4.19).  

In order to evaluate the integrals in Eqs. (4.18) and (4.19) for quadrilateral elements, 

the mapping procedure using Gauss integration is performed on each element with a 

summation on all elements. In each element, a proper number of Gauss points depending 

on the order of the integrand will be used. For example, if the order of analytical strain ε  

in Eq. (4.19) is 2 which leads to a 4th order integrand in Eq. (4.19), then 3 3  Gauss 

points are used for each quadrilateral element. This is to ensure there is no addition error 

introduced in the error assessment procedure.   

Note that the convergence rates of the displacement and energy norms are computed 

based on a characteristic length h of the elements in the mesh. In study here, the average 

length of sides of elements is used as h. For the quadrilateral elements, the average length 

of sides of elements is computed using 

e

S
h

N
  (4.21)

where S is the area of the whole problem domain, and eN  is the total number of 

elements in the problem domain. 

 

4.10.1 A rectangular cantilever loaded at the end 

A rectangular cantilever with a length L and height D is studied as a benchmark 

problem here. The cantilever is subjected to a parabolic traction at the free end as shown 

in Figure 4.7. The beam is assumed to have a unit thickness so that plane stress condition 

is valid. The analytical solution is available and can be found in a textbook by 

Timoshenko and Goodier [148]. 
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where the moment of inertia I  for a beam with rectangular cross section and unit 

thickness is given by 3 12I D .  

The stresses corresponding to the displacements Eq. (4.22) are 

I
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The related parameters are taken as 7 23.0 10 N/mE   , 3.0 , 12mD  , 48mL   

and 1000 NP  . The domain discretizations for two different elements: 4-node 

quadrilateral and n-sided polygonal elements are shown in Figure 4.8. In order to consider 

the direction from which the numerical displacements converge to the exact solution. The 

following definition is also used   

 
2

sign
1

nN

i i
i

e sign u u




 
  

 
 

 (4.24)

where  iu


 is the displacement at nodes of any numerical models. 

If sign 1e  , the displacement of the numerical solutions will converge to exact solution 

from above, and on the other hand, if 1signe  indicates a convergence to exact solution 

from below. 

In the computation, the nodes on the left boundary are constrained using the exact 

displacements obtained from analytical Eq. (4.22) and the loading on the right boundary 

uses a parabolic distributed shear stress given in Eq. (4.23). This is to remove the 

modeling error for the boundary conditions. The cantilever is analyzed using different 

number of elements and smoothing domains, 1,2,3,4,8sn   and 16, as shown in Figure 

4.1. The exact strain energy of the problem is known as 4.4746 Nm. 
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Table 4.7 show tip deflections of the cantilever beam obtained using different regular 

elements. Figure 4.9 shows the relative error in the displacement components v of the CS-

FEM solution with respect to the analytical solution at 0y  , where a regular mesh of 

32 8  is used. Figure 4.10 shows the convergence of the strain energy solution when the 

degrees of freedom are increased in a set of CS-FEM models. It is seen that the results of 

CS-FEM ( 1sn  ) and FEM using reduced integration are identical. This is because the 

elements used are (regular) rectangles. Both Figure 4.9 and Figure 4.10 show clearly the 

monotonic behavior of CS-FEM solution in displacement and strain energy, as predicted 

in inequality (4.6). The solutions change monotonously from the overestimated to the 

underestimated ones with the increase of sn , and then approach the result of FEM using 

full integration (4 Gauss points). It is observed that an optimal value 4sn   gives the best 

results as compared to the analytical ones for this problem.   

Figure 4.11 shows that both stresses computed at the center of the elements and at the 

node by the CS-FEM agree very well with the analytical solutions. Figure 4.12 illustrates 

the second-order displacement gradients of CS-FEM obtained by Eq. (3.14). It is seen 

again that the CS-FEM results agree well with the analytical solutions. The gradients near 

the boundaries are generally less accurate when compared with the internal region 

because of the asymmetric smoothing domains used on the boundaries. This phenomenon 

has the same root as those observed in the smoothed particle hydrodynamics (SPH) when 

a biased smoothing domain is used on the domain boundary [72]. This phenomenon is 

also reported in nodal-natural element method by Yoo et al. [156]. 

Figure 4.13 shows the relative error in displacement v between the nCS-FEM and 

analytical solutions along 6y  . It is seen that the computed displacement using the nCS-

FEM is underestimated and approaches the exact solution with the increase of elements. 

This behavior is quite similar to the standard FEM results. Figure 4.14 shows the contour 
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of the distribution of the relative error in displacement v between nCS-FEM and 

analytical solution. It is observed that the nCS-FEM solution is accurate. Figure 4.15 and 

Figure 4.16 plot the contours of stress distribution obtained using the nCS-FEM compared 

with the analytical one. Very good agreement has been observed.   

The displacement and energy norms of the CS-FEM are compared with those of FEM-

Q4 in Table 4.8 and Table 4.9. The convergence rates are also plotted in Figure 4.17 and 

Figure 4.18. It is seen again that both error and convergence rate in displacement and 

energy norms of CS-FEM will approach those of FEM-Q4 when sn  increases. In 

addition, convergence rates in displacement norm of both methods are roughly the same 

and approximately 2.  Although not very significant, the convergence rate of the CS-FEM 

solution is larger than that of FEM in terms of displacements. In terms of the error in 

energy norm, the CS-FEM solution error is much smaller than that of FEM-Q4, as shown 

in Figure 4.18. The convergence rate in energy norm of FEM-Q4 is approximate 1, while 

those of the CS-FEM are from 1.35 to 1.55, much higher than that of FEM-Q4. In 

particular, it is observed that the errors in both displacement and energy norms of CS-

FEM at 4sn   are the best as compared with the analytical ones.  

We note that this numerical example confirms the bound properties of the CS-FEM.   

 

4.10.2 Infinite plate with a circular hole 

Figure 4.19 represents a plate with a central circular hole of radius 1ma  , subjected 

to a unidirectional tensile load of 1.0 N/m at infinity in the x-direction. Due to its 

symmetry, only the upper right quadrant of the plate is modeled. Figure 4.20 gives the 

discretization of the domain using quadrilateral and n-sided polygonal elements, 

respectively. Plane strain condition is considered and 3 21.0 10 N/mE   , 0.3  . 
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Symmetric conditions are imposed on the left and bottom edges, and the inner boundary 

of the hole is traction free. The exact solution for the stress is [148] 

2 4

11 2 4

3 3
1 cos 2 cos 4 cos 4

2 2

a a

r r
         

 

2 4

22 2 4

1 3
cos 2 cos 4 cos 4

2 2

a a

r r
         

 

2 4

12 2 4

1 3
sin 2 sin 4 sin 4

2 2

a a

r r
         

   

(4.25)

where  ,r   are the polar coordinates and   is measured counterclockwise from the 

positive x-axis. Traction boundary conditions are imposed on the right ( 5x  ) and top 

( 5y  ) edges based on the exact solution Eq. (4.25). The displacement components 

corresponding to the stresses are 

     
3

1 3
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      
 

   

(4.26)

where   / 2 1E   ,   is defined in terms of Poisson’s ratio by 3 4    for plane 

strain cases. The exact strain energy of the problem is known as 1.1817 210  Nm. 

 Using the CS-FEM, the domain is discretized using quadrilateral elements divided 

into different smoothing domains, 1,2,3,4,8sn   and 16, as shown in Figure 4.1. From 

the Figure 4.21 and Figure 4.22, it is observed that all the computed displacements and 

stresses using the CS-FEM ( 4sn  ) are in a good agreement with the analytical solutions.  

Figure 4.23 shows the strain energy results of CS-FEM versus degrees of freedom used 

in the model, and Figure 4.24 plots the convergence of error in displacement norm when 

mesh is refined. It is shown clearly that the results of CS-FEM change monotonously 

from 1sn   to 16sn   and approach the result of FEM using full integration (4 Gauss 
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points). Note that for this problem, the error in displacement norm of CS-FEM is smallest 

at 1sn  , and all the computed strain energies are underestimated compared to the 

analytical solution. The bound property of the CS-FEM solution is again observed from 

this example.  

Figure 4.25 shows the convergence of error in energy norm of solutions obtained using 

the CS-FEM for the infinite plate with a hole, together with those using the FEM with the 

same meshes. The results again show that the errors in energy norm of CS-FEM solution 

are much smaller than that of FEM-Q4. Convergence rate in energy norm of FEM-Q4 is 

about 1.1, while those of CS-FEM are from 1.79 to 1.81 which are much higher than that 

of FEM-Q4. Also note that the error in energy norm of CS-FEM solution obtained using  

4sn   is the best.  

Using the nCS-FEM, it is observed that all the computed displacements and stresses 

are in a very good agreement with the analytical solutions as shown in Figure 4.26 and 

Figure 4.27. With the refinement of the mesh, the accuracy is getting better and 

approaches the exact solution. The contour plots of the error in displacement and stresses 

are shown in Figure 4.28. Very accurate results are obtained.  

Figure 4.29 plots the displacement norm versus Poisson’s ratio changing from 0.4 to 

0.4999999 for n-sided polygonal elements (451 nodes) and for 4-node quadrilateral 

elements (289 nodes). For the 4-node quadrilateral elements, we use Eq. (4.18) to 

calculate the error in the displacement norm, and for n-sided polygonal elements, we use 

the following relative error  
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The results show that the selective scheme presented in Section 4.9 is effective in 

overcoming the volumetric locking problems using nearly incompressible materials, 

while the CS-FEM ( 4sn  ) and nCS-FEM are subjected to the volumetric locking. We 

have also observed that the locking starts as early as Poisson’s ratio at 0.4.  

 

4.11 Concluding remarks 

In this work, we presented the cell-based S-FEM models including the CS-FEM using 

the quadrilateral elements and the nCS-FEM for general n-sided polygonal elements. 

Through the theoretical study, formulations and numerical examples, some remarks for 

the CS-FEM and nCS-FEM can be made as follows:  

Remark 4.6 Shape function values 

For the CS-FEM and nCS-FEM, the evaluation of the shape function values at points 

on the smoothing domain boundaries can be done with ease, using the simple point 

interpolation and/or averaging in a proper manner. The compatibility of the displacement 

field on the smoothing domain boundaries can always be ensured using such a point 

interpolation method, as long as the interpolation is based on the points on the smoothing 

domain boundaries.  

Remark 4.7 Spatial stability of CS-FEM models 

For the CS-FEM using quadrilateral elements, when the number of smoothing domains 

1sn  , the solution of CS-FEM has the similar properties with those of FEM using 

reduced integration. The element stiffness matrix may contain spurious zeros energy 

modes, and the global stiffness matrix after imposing sufficient essential boundary 

conditions can still be singular depending on the setting of the problem. When sn  

approaches infinity, the solution of CS-FEM will approach to the solution of standard 
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compatible FEM model. When sn  is a finite number larger than 1, the solutions of CS-

FEM in both displacement and strain energy will change monotonously from the solution 

of CS-FEM ( 1sn  ) to that of FEM using full integration.  

Remark 4.8  CS-FEM with 4sn  : an always stable model 

In practical computation, using 4sn   smoothing domains for each quadrilateral 

element in the CS-FEM is advised for all problems. The numerical solution of CS-FEM 

( 4sn  ) is always stable, accurate, much better than FEM-Q4, and often very close to the 

exact solutions.  

Remark 4.9 CS-FEM vs. FEM 

The errors in energy norm of CS-FEM are much smaller than that of FEM-Q4. The 

convergence rates in energy norm of CS-FEM are much higher than that of FEM-Q4. The 

errors and convergence rates in displacement norm of CS-FEM will approach those of 

FEM when the number of smoothing domains sn  increases.  

Remark 4.10 On the nCS-FEM: an always stable and efficient model 

In the nCS-FEM, n-sided polygonal elements using sn n  triangular smoothing 

domains are always stable and give good accuracy in computations.  

Remark 4.11  Selective CS-FEM: Volumetric locking free 

The selective scheme used in the CS-FEM is simple and very effective in overcoming 

the volumetric locking problems using nearly incompressible materials. 

The CS-FEM has been studied further in theory [110] and extended for dynamic 

analyses [36], incompressible materials using selective integration [111], plate and shell 

analyses [114, 35, 101, 108, 115]. It is also extended for the extended finite element 

method (XFEM) to solve fracture mechanics problems in 2D continuum and plates [20]. 
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Table 4.1. Values of shape functions at different points within  

a quadrilateral element (Figure 4.2a). 

Point Node  1 Node  2 Node 3 Node 4 Descpription 
1 1.0 0 0 0 Field node 
2 0 1.0 0 0 Field node 
3 0 0 1.0 0 Field node 

4 0 0 0 1.0 Field node 
5 1/2 1/2 0 0 Side midpoint 
6 0 1/2 1/2 0 Side midpoint 

7 0 0 1/2 1/2 Side midpoint 
8 1/2 0 0 1/2 Side midpoint 
9 1/4 1/4 1/4 1/4 Intersection of two bimedians  
g1 3/4 1/4 0 0 Gauss point (Mid-segment of ,

s
k p ) 

g2 3/8 3/8 1/8 1/8 Gauss point (Mid-segment of ,
s
k p ) 

g3 3/8 1/8 1/8 3/8 Gauss point (Mid-segment of ,
s
k p ) 

g4 3/4 0 0 1/4 Gauss point (Mid-segment of ,
s
k p ) 

g5 1/4 3/4 0 0 Gauss point (Mid-segment of ,
s
k p ) 

g6 0 3/4 1/4 0 Gauss point (Mid-segment of ,
s
k p ) 

g7 1/8 3/8 3/8 1/8 Gauss point (Mid-segment of ,
s
k p ) 

g8 0 1/4 3/4 0 Gauss point (Mid-segment of ,
s
k p ) 

g9 0 0 3/4 1/4 Gauss point (Mid-segment of ,
s
k p ) 

g10 1/8 1/8 3/8 3/8 Gauss point (Mid-segment of ,
s
k p ) 

g11 0 0 1/4 3/4 Gauss point (Mid-segment of ,
s
k p ) 

g12 1/4 0 0 3/4 Gauss point (Mid-segment of ,
s
k p ) 
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Table 4.2. Values of shape functions at different points within  

an n-sided convex polygonal element (Figure 4.2b). 

Point Node  
1’ 

Node  
2’ 

Node 
3’ 

Node 
4’ 

Node 
5’ 

Node 
6’ 

Descpription 

1’ 1.0 0 0 0 0 0 Field node 
2’ 0 1.0 0 0 0 0 Field node 
3’ 0 0 1.0 0 0 0 Field node 

4’ 0 0 0 1.0 0 0 Field node 
5’ 0 0 0 0 1.0 0 Field node 
6’ 0 0 0 0 0 1.0 Field node 

O 1/6 1/6 1/6 1/6 1/6 1/6 Centroid point  
g1’ 7/12 1/12 1/12 1/12 1/12 1/12 Gauss point (Mid-segment of ,

s
k p ) 

g2’ 1/2 1/2 0 0 0 0 Gauss point (Mid-segment of ,
s
k p ) 

g3’ 1/12 7/12 1/12 1/12 1/12 1/12 Gauss point (Mid-segment of ,
s
k p ) 

g4’ 0 1/2 1/2 0 0 0 Gauss point (Mid-segment of ,
s
k p ) 

g5’ 1/12 1/12 7/12 1/12 1/12 1/12 Gauss point (Mid-segment of ,
s
k p ) 

g6’ 0 0 1/2 1/2 0 0 Gauss point (Mid-segment of ,
s
k p ) 

g7’ 1/12 1/12 1/12 7/12 1/12 1/12 Gauss point (Mid-segment of ,
s
k p ) 

g8’ 0 0 0 1/2 1/2 0 Gauss point (Mid-segment of ,
s
k p ) 

g9’ 1/12 1/12 1/12 1/12 7/12 1/12 Gauss point (Mid-segment of ,
s
k p ) 

g10’ 0 0 0 0 1/2 1/2 Gauss point (Mid-segment of ,
s
k p ) 

g11’ 1/12 1/12 1/12 1/12 1/12 7/12 Gauss point (Mid-segment of ,
s
k p ) 

g12’ 1/2 0 0 0 0 1/2 Gauss point (Mid-segment of ,
s
k p ) 

 

Table 4.3. Displacement norm of the standard patch test de (%) for the case of 4sn  . 

 Patch (a) Patch (b) Patch (c) Patch (d) Patch (e) 

0   1.11 e-13 7.78 e-14 5.69 e-14 2.58 e-13 9.51 e-13 

6   7.22 e-14 1.38 e-13 9.48 e-14 3.05 e-13 4.26 e-13 

4   5.78 e-14 1.11 e-13 1.85 e-13 3.80 e-13 7.72 e-13 

3   1.16 e-13 8.28 e-14 9.43 e-14 2.09 e-13 4.82 e-13 

2   1.31 e-13 7.82 e-14 1.03 e-13 2.05 e-13 6.93 e-13 
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Table 4.4. Eigenvalues of a free square solid meshed using one element 

( 3.0,100.3 7  vE ). 

 FEM CS-FEM nCS-
FEM 

Eigen-
values 

1×1 GP 2×2 GPs 1sn   

 

2sn   

 

4sn    8sn    16sn    4sn    

8 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7 4.286e+7 
7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 
6 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 2.308e+7 
5 0 1.484e+7 0 0.824e+7 1.528e+7 1.319e+7 1.391e+7 2.225e+7 
4 0 1.484e+7 0 0.288e+7 0.925e+7 1.185e+7 1.391e+7 2.225e+7 
3 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 

 
 
Table 4.5. Eigenvalues of a square solid meshed with one element with fixed with 3 DOFs  

( 3.0,100.3 7  vE ). 

 FEM CS-FEM nCS-
FEM 

Eigen-
values 

1×1 GP 2×2 
GPs 

1sn   

 

2sn   

 

4sn   8sn    16sn    4sn    

8 2.935e+7 3.039e+7 2.935e+7 2.977e+7 2.997e+7 3.021e+7 3.029e+7 3.140e+7 
7 1.474e+7 1.905e+7 1.474e+7 1.543e+7 1.925e+7 1.799e+7 1.863e+7 2.266e+7 
6 1.154e+7 1.402e+7 1.154e+7 1.308e+7 1.378e+7 1.384e+7 1.392e+7 1.517e+7 
5 1 0.843e+7 1 0.431e+7 0.568e+7 0.741e+7 0.798e+7 1.132e+7 
4 1 0.229e+7 1 0.065e+7 0.220e+7 0.220e+7 0.220e+7 0.289e+7 
3 1 1 1 1 1 1 1 1 
2 0 1 0 1 1 1 1 1 
1 0 1 0 1 1 1 1 1 

 
 
Table 4.6. Eigenvalues of a free solid meshed with 4 4  elements ( 3.0,100.3 7  vE ). 

 FEM CS-FEM nCS-

FEM 

Eigen-
values 

1×1 GP 2×2 
GPs 

1sn   

 

2sn   

 

4sn   8sn    16sn    4sn    

8 2.770e+6 8.439e+6 2.770e+6 6.220e+6 8.303e+6 8.343e+6 8.400e+6 8.823e+6 
7 2.770e+6 6.182e+6 2.770e+6 5.748e+6 6.159e+6 6.163e+6 6.175e+6 6.226e+6 
6 0 4.408e+6 0 3.576e+6 4.136e+6 4.177e+6 4.317e+6 5.053e+6 
5 0 4.160e+6 0 3.508e+6 4.112e+6 4.063e+6 4.115e+6 4.478e+6 
4 0 4.160e+6 0 3.320e+6 3.936e+6 4.024e+6 4.115e+6 4.478e+6 
3 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
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Table 4.7. Tip displacements ( 310  m) of the cantilever beam obtained using different 

regular elements (Analytical solution = 8.900 310  m). 

sn  Mesh 16 4  Mesh 24 6  Mesh 32 8  Mesh 40 10  Mesh 48 12  

FEM (GP = 1) 9.4542 9.1471 9.0319 8.9874 8.9581 
1  9.4542 9.1471 9.0319 8.9874 8.9581 
2 9.2915 9.0699 8.9948 8.9604 8.9419 
3 9.0574 8.9693 8.9389 8.9249 8.9172 
4 8.8355 8.8711 8.8837 8.8896 8.8927 
8 8.7978 8.8542 8.8741 8.8834 8.8885 
16 8.6920 8.8061 8.8469 8.8659 8.8763 

FEM (GP = 4) 8.6453 8.7847 8.8347 8.8581 8.8708 
 

Table 4.8. Displacement norm of the cantilever beam obtained using different element 

sizes ( 310 ). 

Mesh h  CS-FEM 

1sn   

CS-FEM 

2sn   

CS-FEM 

3sn   

CS-FEM 

4sn   

CS-FEM 

8sn   

CS-FEM 

16sn   

FEM 

(GP=4) 

16 4  3.0 6.72 4.66 1.90 (-) 0.74  (-) 1.18  (-) 2.42  (-) 2.97  

24 6  2 2.88 2.02 0.84 (-) 0.33  (-) 5.29  (-) 1.09   (-) 1.35  

32 8  1.5 1.60 1.13 0.47 (-) 0.19   (-) 0.30   (-) 0.62  (-) 0.76  

40 10  1.2 1.02 0.72 0.30 (-) 0.12  (-) 0.19 (-) 0.40 (-) 0.49  

48 12  1 0.70 0.50 0.21 (-) 0.083 (-) 0.13 (-) 0.28 (-) 0.34 

Note: sign (-) shows that the solution is smaller than the exact solution; 4GP   for FEM 

quadrilateral element is the minimum number for full integration.  

 

Table 4.9. Strain energy for the cantilever beam obtained using different element sizes 

( 110  Nm). 

Mesh h  CS-FEM 

1sn   

CS-FEM 

2sn   

CS-FEM 

3sn   

CS-FEM 

4sn   

CS-FEM 

8sn   

CS-FEM 

16sn   

FEM 

(GP=4) 

16 4  3.0 2.96 3.29 2.84 2.38 2.45 2.63 3.71 

24 6  2 1.75 1.88 1.59 1.30 1.33 1.41 2.49 

32 8  1.5 1.19 1.26 1.04 0.85 0.86 0.90 1.88 

40 10  1.2 0.87 0.92 0.75 0.60 0.61 0.64 1.50 

48 12  1 0.68 0.71 0.58 0.46 0.47 0.48 1.25 
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Figure 4.1. Division of a quadrilateral element into smoothing domains (SDs) in the CS-

FEM by connecting the mid-segment-points of opposite segments of smoothing domains. 

(a) 1 SD; (b) 2 SDs; (c) 3 SDs; (d) 4 SDs; (e) 8 SDs; (f) 16 SDs.   
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Figure 4.2. Position of Gauss points at mid-segment-points on segments of smoothing 

domains; (a) Four quadrilateral smoothing domains in a quadrilateral element; (b) Six 

triangular smoothing domains in a 6-sided convex polygonal element.  
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Figure 4.3.  Division of an isoparametric elements into quadrilateral smoothing domains.  

The lower-left quadrant is further divided into 4 smoothing domains by connecting the 

mid-segment-points of opposite segments. (a) Quadrilateral smoothing domains of a CS-

FEM element (no mapping is needed); (b) element in the natural coordinate for the 

isoparametric FEM element (mapping is needed). 

 

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

boundary of domain

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

boundary of domain

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

boundary of domain

(a) (b) (c) 

Figure 4.4.  (a) Voronoi diagram without adding the nodes along the boundary outside the 

domain; (b) Voronoi diagram with the nodes added along the boundary outside the 

domain; (c) Final Voronoi diagram. 
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Figure 4.5. Meshes used for the patch test. (a) a mesh with a concave quadrilateral 

element; (b) a mesh with a quadrilateral element using three collinear points; (c) a mesh 

with general convex quadrilateral elements; (d) a mesh with rectangular elements; (e) a 

mesh with parallelogram elements. 
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Figure 4.6. Domain discretization of a square patch  

using 36 n-sided polygonal elements. 
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Figure 4.7. Cantilever loaded at the end. 
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Figure 4.8. Domain discretization of the cantilever; (a) using 4-node elements; (b) using 

n-sided polygonal elements. 
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Figure 4.9. Comparison of the relative error in displacement v between CS-FEM and 

analytical solution for the cantilever loaded at the end. The monotonic behavior of CS-

FEM solution in displacement is clearly shown.  

 

 

Figure 4.10. Convergence of strain energy solutions of CS-FEM and FEM for the 

cantilever loaded at the end. The monotonic behavior of CS-FEM solution in strain 

energy is clearly shown.  
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Figure 4.11. Comparison of the numerical results of CS-FEM and analytical solutions for 

the cantilever loaded at the end. (a) Shear stress xy ; (b) Normal stress xx . 
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Figure 4.12. Second order displacement gradients using the CS-FEM  

for the cantilever loaded at the end. 

 

 
Figure 4.13. Relative error in displacement v along 0y   between the nCS-FEM and 

analytical solution for the cantilever loaded at the end.  
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Figure 4.14. Contour of relative deflection errors (m) of the cantilever using nCS-FEM. 

 

 

Figure 4.15. Contour of the analytical and computed shear stress xy  ( 2N/m ) 

of the cantilever using the nCS-FEM. 
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Figure 4.16. Contour of the analytical and computed normal stress xx  ( 2N/m ) 

of the cantilever using the nCS-FEM. 
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Figure 4.17. Error in displacement norm of CS-FEM and FEM for the cantilever 

loaded at the end using the same meshes. 

 

 



Chapter 4  Cell-based Smoothed FEM (CS-FEM) 

  102 

0 0.1 0.2 0.3 0.4
−2

−1.5

−1

−0.5

log
10

h

 lo
g 10

 E
ne

rg
y 

no
rm

 

 

CS−FEM−1SD (r=1.35)
CS−FEM−2SD (r=1.40)
CS−FEM−4SD (r=1.50)
CS−FEM−8SD (r=1.51)
CS−FEM−16SD (r=1.55)
FEM−Q4 (r=0.99)

CS−FEM−4SD

FEM−Q4 (4GP)

 

Figure 4.18. Error in energy norm of CS-FEM and FEM for the cantilever loaded at 

the end using the same meshes.  

 

Figure 4.19. Infinite plate with a circular hole subjected to unidirectional tension and its 

quarter model with symmetric conditions imposed on the left and bottom edges. 
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(a) (b) 

Figure 4.20. Domain discretization of the infinite plate with a circular hole (a) using 4-
node elements; (b) using n-sided polygonal elements. 
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Figure 4.21. Numerical and exact displacements of the infinite plate with a hole  

using the CS-FEM ( 4sn  ). (a) Displacement u; (b) Displacement v. 
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Figure 4.22. Numerical and exact stresses of the infinite plate with a hole  

using CS-FEM ( 4sn  ). (a) xx ; (b) yy . 

 

 

Figure 4.23. Convergence of strain energy solutions of CS-FEM and FEM for the infinite 

plate with a hole. The monotonic behavior of CS-FEM solution in strain energy is clearly 

shown.  
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Figure 4.24. Convergence of error in displacement norm of CS-FEM and FEM in the 

infinite plate with a hole using the same meshes.  
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Figure 4.25. Convergence of error in energy norm of solutions obtained using the CS-

FEM and FEM in the infinite plate with a hole using the same meshes.  

 



Chapter 4  Cell-based Smoothed FEM (CS-FEM) 

  106 

(a) 

1 1.5 2 2.5 3 3.5 4 4.5 5
2.5

3

3.5

4

4.5

5

5.5
x 10

−3

x(y=0) (m)

D
is

pl
ac

em
en

t u
 (

m
)

Analytical solution
nCS−FEM

(mesh 1 − 163 nodes)

nCS−FEM
(mesh 2 − 579 nodes)

(b) 

1 1.5 2 2.5 3 3.5 4 4.5 5
−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8
x 10

−3

y(x=0) (m)

D
is

pl
ac

em
en

t v
 (

m
)

Analytical solution

nCS−FEM
(mesh 1 − 163 nodes)

nCS−FEM
(mesh 2 − 579 nodes)

Figure 4.26. The exact displacement solution and the numerical solution computed using 

nCS-FEM for the infinite plate with a hole; (a) Displacement u; (b) Displacement v. 
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Figure 4.27. The exact solution of stresses and the numerical obtained using nCS-FEM 
for the infinite plate with a hole; (a) xx ; (b) yy . 
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Figure 4.28. Contour plots of solutions for the infinite plate with a hole using nCS-FEM. 
(a) the error in displacement u; (b) the normal stress errors xx  and yy  ( 2N/m ). 
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Figure 4.29. Error in displacement norm versus different Poisson’s ratios  

of the infinite plate with a hole. (a) n-sided polygonal elements (451 nodes);  

(b) 4-node quadrilateral elements (289 nodes) 
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Chapter 5  
 

 
Node-based Smoothed FEM (NS-FEM) 

 

5.1 Introduction  

In order to determine the error in numerical solutions of complicated problems without 

knowing the exact solution or to analyze the so-called duality in the FEM [4, 38, 151], it 

is practical to use two numerical models: one gives a lower bound and the other gives an 

upper bound of the unknown exact solution. This chapter discusses an S-FEM model that 

can be used for such a purpose. For the convenience in discussion, we focus on the so-

called “force-driven” solid mechanics problems: boundary value problems with 

homogeneous Dirichlet (or essential) boundary conditions. For all the other types of 

problems, we will discuss in the conclusion section, after all these matters are settled.   

For the above-mentioned force-driven problems, the most popular models giving a 

lower bound in term of strain energy are the compatible displacement FEM models which 

are widely used in solving complicated engineering problems. Obtaining an upper bound 

solution is, on the other hand, usually much more difficult, and many efforts have been 

made so far to overcome the difficulty. Currently, the model that can give an upper bound 

can be one of the following four models:  

(1) Model-1: the stress equilibrium FEM model [151];  

(2) Model-2: the recovery model using a statically admissible stress field from 

displacement FEM solution [32, 65, 66];  
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(3) Model-3: some hybrid equilibrium FEM models [3, 118];  

(4) Model-4: Node-based S-FEM models [78, 83, 86].  

Three first models, however, are known to have some major disadvantages. For 

Model-1, there are three main drawbacks: (1) the equilibrium approach is mathematically 

much more complicated and hence difficult to implement and more expensive 

computationally; (2) spurious modes often occur because tractions cannot be equilibrated 

by the approximated stress field; (3) it is complicated in solving an integral equation to 

obtain the displacement field from the stress solutions. For Model-2, there are two main 

drawbacks: (1) the procedure is complicated and expensive computationally; (2) it is 

difficult to obtain the desirable global errors due to the instability of the recovery upper 

bound solutions. For Model-3, there are three main drawbacks: (1) procedure is 

complicated and expensive computationally; (2) additional degrees of freedom are often 

requires due to using both approximated displacement and stress variables; (3) there exist 

spurious modes in the hybrid models. Due to such drawbacks, three first models are not 

widely used in practical applications. It is still confined in the area of academic research.   

Model-4 is considered the most simple, robust and practical techniques for obtain 

upper bounds for problems of all dimensions and of arbitrary complexity as long as 

triangular/tetrahedral types of mesh can be created. The development in this new direction 

originated from the recently discovery of the LC-PIM [83, 86] can produce upper bound 

solutions in strain energy for force-driven problems. The similar properties were later also 

found in the node-based S-FEM (NS-FEM) model using different types of elements [78]. 

This chapter is therefore devoted to the NS-FEM that is initially proposed in [78].   

Apart from the important upper bound property in strain energy, the NS-FEM 

possesses also many other interesting properties that are similar to an equilibrium model 

such as the natural immunization from the volumetric locking, the ultra-accuracy and 
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super-convergence of stress solution. In addition, the NS-FEM works well with triangular 

and tetrahedral types of elements that can be generated automatically for 2D and 3D 

complicated geometries.  

The formulation of the NS-FEM given in this chapter is first performed for 2D 

problems using in general arbitrary n-sided polygonal elements, and then in particular the 

triangular elements for 2D problems, and the tetrahedral elements for 3D problems. 

Finally, numerical examples will be presented to confirm the theory and to demonstrate 

the properties of the NS-FEM.   

 

5.2 Creation of the node-based smoothing domains 

In the NS-FEM, the domain is discretized using elements, as in the FEM, but the 

elements can be general polygons with arbitrary number of sides. On top of the element 

mesh, a set of non-overlap no-gap smoothing domains are then created associated with 

nodes, such that 
1

nN
s
k

k

    and s s
i j   , i j , in which Nn is the total number of 

nodes in the element mesh. In this case, the number of smoothing domains are the same 

as the number of nodes: s nN N , which satisfies the requirement of minimum number of 

smoothing domains given in Table 3.2. The strain smoothing technique [24] is used to 

generate a modified strain field using the node-based smoothing domains and the 

assumed displacement field constructed using the element mesh. For n-sided polygonal 

elements, the smoothing domain s
k  associated with the node k is created by connecting 

sequentially the mid-edge-point to the central points of the surrounding n-sided polygonal 

elements of the node k, as shown in Figure 5.1. As a result, each n-sided polygonal 

element will be divided into n quadrilateral sub-domains and each sub-domain is attached 
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to the nearest field node. The domain s
k  associated with the node k can also be viewed 

as the combination of the sub-domains of all the elements surrounding node k. 

 
5.3 Formulation of the NS-FEM  

5.3.1 General formulation 

Using the general formulation of the S-FEM models presented in Chapter 3, Section 

3.1, the linear system of equations of the NS-FEM has the form of  

NS-FEM K d f  (5.1)

where NS-FEMK  is the smoothed stiffness matrix whose entries are given by  


NS-FEM

1 1
constant in 

n n

s sk k

N N
T T T s

IJ I J I J I J k
k k

d d A
   

      K B DB B D B B DB  (5.2)

where 
s
k

s
kA d



   is the area of node-based smoothing domain s
k , and the smoothed 

strain-displacement matrix IB  is computed using Eq. (3.10). Now we need only the shape 

function values to obtain the smoothed strain-displacement matrix IB . For general n-

sided polygonal elements, shape functions values are obtained following the procedure 

given in Section 5.4.   

5.3.2 NS-FEM-T3 for 2D problems 

In particular, when linear triangular elements (T3) are used for 2D problems, the 

smoothed strain matrix IB  can be assembled by another simply way using [78] 

 
1

1 1

3

e
kn

e e
I k j js

jk

A
A 

 B x B     (5.3)

where e
kn  is the number of elements around node k; e

jA  is the area of the jth triangular 

element around node k; s
kA  is the area of the kth smoothing domain and computed using 
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1

1

3

e
k

s
k

n
s e
k j

j

A d A


            (5.4)

In Eq. (5.3), matrix 
e
j

e
j I

I S

 B B  is the compatible strain-displacement matrix for the jth 

triangular element around the node k. It is assembled from the compatible strain-

displacement matrices ( )IB x  of nodes in the set e
jS   which contains three nodes of the jth 

triangular element. Matrix ( )IB x  for the node I in triangular elements has the form of Eq. 

(2.48).   

With this formulation, only the area and the usual compatible strain-displacement 

matrices e
jB  of triangular elements are needed to calculate the system stiffness matrix for 

the NS-FEM-T3. The formulation is simple, but works only for triangular types of 

elements that use linear interpolation. For other NS-FEM models, the smoothed strain-

displacement matrix IB  has to be computed using the original Eq. (3.10), and the shape 

functions have to be evaluated in the way given in Section 5.4. 

5.3.3 NS-FEM-T4 for 3D problems 

The above formulation is quite straightforward to extend for 3D problems using 4-

node tetrahedral elements (T4). The smoothed strain-displacement matrix  I kB x for the 

NS-FEM-T4 is assembled using 

 
1

1 1

4

e
kn

e e
I k j js

jk

V
V 

 B x B     (5.5)

where e
jV  is the volume of the jth tetrahedral element around the node k; s

kV  is the volume 

of the kth smoothing domain associated with node k, and is computed using 

1

1

4

e
k

s
k

n
s e

k j
j

V d V


            (5.6)



Chapter 5  Node-based Smoothed FEM (NS-FEM) 

  115
   

In Eq. (5.5), matrix 
e
j

e
j I

I S

 B B  is the compatible strain-displacement matrix for the jth 

tetrahedral element around the node k. It is assembled from the compatible strain-

displacement matrices ( )IB x  of nodes in the set e
jS   which contains four nodes of the jth 

tetrahedral element. Matrix ( )IB x  for the node I in tetrahedral elements has the form of     

( )
0 0

( )
0 0

( )
0 0

( ) ( )
( ) ( )

0

( ) ( )
0

( ) ( )
0

I

I

I

I S I
I I

I I

I I

N

x
N

y

N

z
N N

y x

N N

z y

N N

z x

 
  

 
 
 

 
 

      
  
   
  
   
   

x

x

x

B x N x
x x

x x

x x

 (5.7)

in which shape function 

( ) 0 0

( ) 0 ( ) 0

0 0 ( )

I

I I

I

N

N

N

 
   
  

x

N x x

x

 satisfies the conditions (2.42). 

With such a formulation, all we need is the volume and the usual compatible strain-

displacement matrices e
jB  of tetrahedral elements to compute the system stiffness matrix 

for the NS-FEM-T4. The formulation is simple, but works only for tetrahedral types of 

elements that use linear interpolation. For other NS-FEM models, the smoothed strain-

displacement matrix IB  has to be computed using the original Eq. (3.10), and the shape 

functions have to be evaluated in the way given in the next section.   

 

5.4 Evaluation of the shape function values in the NS-FEM 

For the NS-FEM using n-sided polygonal elements, the shape functions constructed in 

Chapter 3 (Section 3.2) can be used. When a linear compatible displacement field along 
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the boundary of the smoothing domains is used, the smoothed strain-displacement matrix 

IB  can be computed using the shape function values at mid-segment-points (Gauss 

points) along segments ,
s s
k p k   of the smoothing domains. The shape function values at 

each Gauss point are evaluated by averaging those of two related endpoints of the 

segment containing the Gauss point. For example, the values of the shape functions at 

point #a on the segment A-B shown in Figure 5.2, are evaluated as an average of those at 

two endpoints of the segment: points #A and #B. Therefore, in order to facilitate the 

evaluation of shape function values at Gauss points in the NS-FEM, we need first to 

evaluate the shape function values at the endpoints of segments such as mid-edge-points 

(#A, #C, #E, #G) and central points (#B, #D, #F, #H), as shown in Figure 5.2. 

Figure 5.2 and Table 5.1 gives explicitly the shape function values at different points 

of the smoothing domain associated with node k. The number of support nodes for the 

smoothing domain is 11 including node k, and we have a total of 8 segments ,
s
k p  on s

k  

(AB, BC, CD, DE, EF, FG, GH, HA). Each segment needs only one Gauss point (due to 

linear interpolation), and therefore, there are a total of 8 Gauss points (a, b, c, d, e, f, g, h) 

used for the entire smoothing domain s
k , and the shape function values at these 8 Gauss 

points are tabulated in Table 5.1 by simple inspection.  

It should be reminded that the purpose of introducing the central points and mid-edge-

points is to facilitate the evaluation of the shape function values at these Gauss points. No 

extra degrees of freedom (DOFs) are associated with these points. In other words, these 

points carry no additional independent field variable. Therefore, the total DOFs of the 

NS-FEM will be exactly the same as those of the FEM using the same set of nodes.  

It is easy to see that the bilinear and linear shape functions for 4-node quadrilateral and 

triangular elements of the standard FEM satisfy naturally the linear compatible property 

along the boundary of the smoothing domains. Hence, the NS-FEM can be applied easily 
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to the traditional 4-node quadrilateral or triangular elements. For the case of tetrahedral 

elements, the detailed formulation is given in Section 5.3.  

 

5.5 Properties of the NS-FEM  

The NS-FEM possesses some of the interesting properties of an equilibrium FEM 

model established based on the minimum complimentary energy principle [47].  

Property 5.1: Upper bound property of the NS-FEM with respect to the exact solution  

The numerical results have demonstrated that when a reasonably fine mesh is used to 

ensure sufficient smoothing effects to the model, the strain energy of numerical solution 

 NS-FEME d  obtained from the NS-FEM solution has the following relationship with the 

total strain energy of exact solution exactE .  

   NS-FEM exactE Ed u  (5.8)

where d  is the vector of the nodal displacements computed using an NS-FEM model; u is 

the displacement of the exact solution of the same problem. The strain energy of the NS-

FEM solution can be evaluated using 

  NS-FEM
NS-FEM

1

2
TE d d K d  (5.9)

where NS-FEMK  is the system stiffness matrix of the NS-FEM. The strain energy of the 

exact solution can be computed using  

   
e

exact
1

1
( ) ( )d d

2 e
i

N
T Te e

i i
i

E
 

    ε u Dε u ε Dε  (5.10)

where ( )ε u  is the exact strain field obtained using the exact displacement field u, and e
iε  

is the exact strain solution of the ith element.  

A detailed discussion on the upper bound property, Eq. (5.8), for the general LC-PIM 

model can be found in Ref [83].  
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Property 5.2: The NS-FEM is naturally immune from the volumetric locking, and no 

special treatments are needed for solids of nearly incompressible materials. 

Property 5.3: The recovery stress field constructed using the stresses at nodes are ultra-

accurate and super-convergent. This continuous recovery stress field can be used as a 

representation of exact stress field in the adaptive analysis [105].  

Property 5.4: The accuracy of displacement solutions in the NS-FEM is not particularity 

high.  It is at the same level as that of the standard FEM using the same mesh.   

 

5.6 Numerical implementation  

5.6.1 Rank test for the stiffness matrix: stability analysis 

Property 5.5: The NS-FEM possesses only “legal” zero energy modes that represents the 

rigid motions, and there exists no spurious zero-energy mode. This means that the NS-

FEM is spatially stable.   

This is ensured by the following key reasons:  

i) The NS-FEM satisfies the minimum number of smoothing domains min
sN  for any 

problems presented in Section 3.3. This can be easily confirmed, because s nN N .  

ii) Even at the individual element level, the numerical integration used to evaluate Eq. 

(5.2) in the possible NS-FEM models satisfies the necessary condition to ensure the 

method to be stable as given in Table 5.2. 

iii)  The shape functions used in the NS-FEM are of partitions of unity, ensuring a 

proper representation of rigid movements.  

iv) Because each of the smoothing domains are created for different node, they are 

linearly independent, which ensures linearly independent columns in the smoothed 
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strain matrix, and hence in the smoothed stiffness matrix. Hence the stiffness matrix 

in a NS-FEM model is SPD for stable materials, after the rigid motion is fixed.   

Therefore, the NS-FEM will have proper number of zero eigenmodes representing the 

rigid body movements, and will not have any spurious zero-energy modes. In other 

words, any deformation (except the rigid motions) will result in strain energy in an NS-

FEM model, implying that it will be stable.   

      Note that although the NS-FEM is spatially stable, this does not guarantee the 

temporal stability. In fact it can have nonzero-energy spurious modes, and can be 

temporally unstable, which will be discussed in more detail in Chapter 6.   

 

5.6.2 Standard 2D patch tests 

In this standard 2D patch test, we use a square patch. The patch is first discretized by 

using 36 n-sided polygonal elements is shown in Figure 4.6. We then create a set of 

smoothing domains following the procedure described in Section 5.2. The linear 

displacement field is then specified on all the boundaries of the patch using Eq. (4.13). 

The NS-FEM is used to solve this patch test problem for numerical solutions. The error 

norm in displacements (4.12) is used to examine the computed results. The material 

parameters are taken as 100E  , 0.3  . It is found that the NS-FEM can pass the 

standard patch test within machine precision with the error norm in displacements of ed = 

5.22 e-13 (%).   

 

5.6.3 Standard 3D patch tests and a mesh sensitivity analysis 

This 3D standard patch test is known also as the Irons first-order patch test. We 

perform this test using a cubic patch, and it is conducted together with a mesh sensitivity 

analysis. The patch is first discretized with a number of tetrahedral elements with Nn 
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nodes, in the same way as in the FEM. Linear displacements are imposed along all the 

exterior boundaries of the cubic patch with at least one interior node. Same as the 2D 

patch test, satisfaction of the patch test requires that the displacements of all the interior 

nodes follow “exactly” (to machine precision) the same linear function of the imposed 

displacements, and the constant strain/stress status in the 3D patch are reproduced. 

The material parameters used in this patch test are 66.895 10E kPa  , 0.25  , and  

the linear displacement field is specified by 

 0.001 2 / 2u x y z     

 0.001 2 / 2v x y z     

 0.001 2 / 2w x y z     

(5.11)

The error norm in displacement (4.12) can be used to examine the computed results. 

For this 3D patch test, we use the energy error measure defined by 

NS-FEM exactee E E   (5.12)

where the total strain energy of the exact solution exactE  is evaluated using 

exact cubic
1

2
TE V ε Dε  (5.13)

in which the constant exact strains ε  are used, and cubicV  is the volume of the cubic patch.  

The total strain energy of the numerical solution NS-FEME  can be evaluated using 

 
1

1

2

nN
T s

k k k
k

E V


  ε Dε  (5.14)

where kε  is the strain for the kth node obtained using an NS-FEM model, and s
kV  is the 

volume of the kth smoothing domain used in the patch.  

Figure 5.3 shows the cubic patch with dimension of 10 by 10 by 10. The patch is 

discretized using 29 four-node tetrahedral elements and 15 nodes (including 8 nodes at 

the corners, 6 nodes at the center of 6 patch surfaces and 1 interior node), as shown in 
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Figure 5.3. In order to analyze the sensitivity of the results to mesh distortion, the interior 

node is moved randomly inside the cubic from the center point in the following fashion 

' x irx x x r       

' y iry y y r       

' z irz z z r       

(5.15)

where x , y and z are the coordinates at the center point of the cubic patch; x , y  and 

z  are length of the cubic patch in x-, y- and z- directions, respectively; xr , yr  and zr  are 

the computer-generated random numbers between -1.0 and 1.0 and ir  is a prescribed 

irregularity factor chosen between 0.0 and 0.49. When 0.0ir  , the interior node locates 

at the center point of the cubic patch, and when 0.0ir  , the interior node moves 

randomly inside the cubic patch. The bigger the value of ir  is, the more irregular the 

shape of elements is generated. At 0.49ir   the interior node is almost touching the 

surface.    

It is found that the NS-FEM-T4 using tetrahedral elements can pass the Irons first-

order patch test within machine precision regardless of the value ir  used, as shown in 

Table 5.3. There is no accuracy loss due to the different choices of ir  values: these 

errors are all within the machine precision. This shows that the NS-FEM-T4 can work 

well with severely distorted meshes.  

 

5.7 Numerical examples 

In this section, some example problems will be analyzed to demonstrate numerically 

the properties of the NS-FEM. For 2D problems, three kinds of elements are used: n-sided 

polygonal, 4-node quadrilateral and triangular elements. For 3D problems, only 

tetrahedral elements are used. In the discussions, the results of the NS-FEM using n-sided 
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polygonal elements (nNS-FEM) will be compared with those of the cell-based smoothed 

FEM using n-sided polygonal elements (nCS-FEM) that detailed in Chapter 4. The results 

of the NS-FEM using 4-node quadrilateral elements (NS-FEM-Q4) and triangular 

elements (NS-FEM-T3) will be compared with those of the standard FEM using 

quadrilateral elements (FEM-Q4), triangular elements (FEM-T3) and the CS-FEM using 

4 smoothing domains for each element (CS-FEM-Q4). The results of the NS-FEM using 

tetrahedral elements (NS-FEM-T4) will be compared with those of the standard 

displacement FEM using 4-node tetrahedral elements (FEM-T4) and 8-node hexahedral 

elements (FEM-H8). 

The error measure for the displacement and energy norms defined in Eqs. (4.18) and 

(4.19) will be used in the quantitative examination of the performance of these methods. 

In the calculation of Eq. (4.19) for the NS-FEM-Q4, NS-FEM-T3 and NS-FEM-T4, a 

computable recovery strain field Rε  will be used in place of the general numerical strain 

field ε


. For the NS-FEM-Q4, the recovery strain field Rε  is defined in Eq. (4.20). For the 

NS-FEM-T3, Rε  is defined by 

   
3

1

R
j j

j

ε N x ε x  (5.16)

where  jN x  are the same linear shape functions of triangular elements in the standard 

FEM, and  jε x  is the smoothed strains at three nodes jx  of the triangular element. For 

the NS-FEM-T4, Rε  is defined by 

   
4

1

R
j j

j

ε N x ε x  (5.17)

where  jN x  are the linear shape functions of tetrahedral elements in the standard FEM, 

and  jε x  is the smoothed strains at four nodes jx  of the tetrahedral element.  

Note that the convergence rates of the displacement and energy norms evaluated with 

respect to the “averaged” length of sides of elements. For the quadrilateral elements, the 
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average length of sides of elements is evaluated by Eq. (4.21). For the triangular 

elements, h is evaluated by 

2

e

A
h

N
  (5.18)

For the tetrahedral elements, h is evaluated by 

3
6

e

V
h

N
  (5.19)

and for the hexahedral elements, h is evaluated by 

3

e

V
h

N
  (5.20)

where V is the volume of the whole problem domain.  

Note that the averaged lengths of sides of elements h by Eq. (4.21), (5.18), (5.19), 

(5.20) for the corresponding elements will also be used for all following chapters in this 

thesis as well. 

5.7.1 A rectangular cantilever loaded at the end  

The rectangular cantilever loaded at the end described in Example 4.10.1 is used again 

in this examination. The geometry and boundary conditions of the cantilever are plotted 

in Figure 4.7. The problem domain discretizations with n-sided polygonal, quadrilateral 

and triangular elements are shown in Figure 4.8 and Figure 5.4, respectively. The exact 

strain energy of the problem is known as 4.4746 Nm. 

Figure 5.5 shows that the stresses computed using the NS-FEM-T3 and NS-FEM-Q4 

agree well with the analytical solutions. Figure 5.6 shows the overall comparison of the 

stress distribution obtained using the nNS-FEM and the exact formulae. A very good 

agreement has been observed. The numerical results of strain energy are presented in 

Table 5.4, Table 5.5 and plotted in Figure 5.7 against the degrees of freedom, revealing 

the convergence of the solution of all models used. It can be found that the nNS-FEM, 

NS-FEM-Q4 and NS-FEM-T3 give upper bound solutions in the strain energy, i.e., the 
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strain energies of the nNS-FEM, NS-FEM-Q4 and NS-FEM-T3 are always bigger than 

the exact one and converge to it with the increase of degrees of freedom. In contrast, the 

nCS-FEM, FEM-Q4 and FEM-T3 produce the lower bound solutions in the strain energy. 

These results imply that we now have a very simple procedure to determine upper and 

lower bounds in strain energy of the exact solution, by using the NS-FEM together the 

CS-FEM or FEM using the same meshes.   

Table 5.6 and Figure 5.8 compare the solution error in displacement norm obtained 

using the NS-FEM-T3 and NS-FEM-Q4, together with those of the FEM and CS-FEM-

Q4. It is seen that the CS-FEM-Q4 stands out clearly. When the finest mesh (h = 1) is 

used, the error of the CS-FEM-Q4 is about 1/28 of the FEM-T3 and 1/4 of the FEM-Q4. 

The error of the NS-FEM-T3 is about 3/5 of the FEM-T3. The error of the NS-FEM-Q4 is 

about 2 times of the FEM-Q4, but only 1/2 of the NS-FEM-T3. In terms of convergence 

rate, all the models have a numerical rate slightly below the theoretical value of 2.0. All 

the S-FEM models performed generally only slightly better than the FEM counterparts.   

Table 5.7 and Figure 5.9 compare the results of energy norm of the NS-FEM-T3 and 

NS-FEM-Q4, together with those of the FEM and CS-FEM-Q4. It is seen that the NS-

FEM-T3 and NS-FEM-Q4 stand out clearly. When the finest mesh (h = 1) is used, the 

error of the NS-FEM-T3 solution is about 1/8 of the FEM-T3 and even 1/3 of the FEM-

Q4. The NS-FEM-Q4 performed better than the NS-FEM-T3, but only by a small margin. 

In terms of convergence rate, all the S-FEM models performed much better than the FEM 

models, and all significantly above 1.0 that is the theoretical value of the weak 

formulation. This shows that the S-FEM models are super-convergent. The CS-FEM-Q4 

stands out clearly with a rate of 1.5: a very strong super-convergence.   

In overall, the CS-FEM-Q4 performed best for this problem. However, considering the 

mesh generation issues and accuracy in stress (measured by energy norm), the NS-FEM-
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T3 is preferred, because it performed among the bests, but uses only triangular mesh. In 

addition, the NS-FEM-T3 delivers an upper bound solution.  

From this example we also note that the NS-FEM-T3 and NS-FEM-Q4 possess three 

interesting properties similar to those of an equilibrium FEM model: (1) the strain energy 

is an upper bound of the exact solution; (2) the stress solutions are ultra-accurate and 

super-convergent; (3) the displacement solutions are not so significantly more accurate 

but are still better than that of FEM-T3.   

 
5.7.2 Infinite plate with a circular hole  

The infinite plate with a circular hole described in Example 4.10.2 is used again to 

examine the NS-FEM models. The geometry and boundary conditions of the problem is 

plotted in Figure 4.19. Figure 4.20 and Figure 5.10 give, respectively, the discretization of 

the domain using 4-node quadrilateral, n-sided polygonal and triangular elements. The 

exact strain energy of the problem is known as 1.1817 210  Nm. 

The numerical results of strain energy have been presented in Table 5.8, Table 5.9 and 

plotted in Figure 5.11 against the degrees of freedom, revealing the convergence of the 

solution of all models used. It again shows the upper bound property in the strain energy 

of the nNS-FEM, NS-FEM-Q4 and NS-FEM-T3, together with the lower bound property 

of the nCS-FEM, FEM-Q4 and FEM-T3. From Figure 5.12 and Figure 5.13, it is observed 

that all the computed displacements and stresses of the nNS-FEM using n-sided 

polygonal elements are all in a very good agreement with the analytical solutions. With 

the refinement of the mesh, the accuracy is getting higher and higher.  

Table 5.10 and Figure 5.14 compare the results of displacement norm of the NS-FEM-

T3 and NS-FEM-Q4 with those of the FEM and CS-FEM-Q4. It is again seen that the CS-

FEM-Q4 stands out clearly. When the finest mesh ( 0.1969h  ) is used, the error of the 

CS-FEM-Q4 is about 1/5 of the FEM-T3 and 4/5 of the FEM-Q4. The NS-FEM-T3 
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performed better than the FEM-T3, but only by a small margin. The error of the NS-

FEM-Q4 is about 3 times of the FEM-Q4, but only 4/5 of the NS-FEM-T3. In terms of 

convergence rate, except the FEM-T3, other models have a numerical rate slightly larger 

than the theoretical value of 2.0.   

Table 5.11 and Figure 5.15 compare the results of energy norm of the NS-FEM-T3 and 

NS-FEM-Q4 with those of the FEM and CS-FEM-Q4. It is again seen that the NS-FEM-

T3 and NS-FEM-Q4 stand out clearly. When the finest mesh ( 0.1969h  ) is used, the 

error of the NS-FEM-T3 is about 1/9 of the FEM-T3 and even 1/5 of the FEM-Q4. The 

NS-FEM-Q4 performed better than the NS-FEM-T3, but only by a small margin. In terms 

of convergence rate, all the S-FEM models performed much better than the FEM models, 

and all close to 2.0 and significantly above 1.0 that is the theoretical value of the weak 

formulation. This again shows that the S-FEM models are super-convergent. The NS-

FEM-Q4 stands out clearly with a rate of 2.12: a very strong super-convergence.   

Figure 5.16 plots the error in solution in displacement norm against Poisson’s ratio 

changing from 0.4 to 0.4999999 obtained using FEM and NS-FEM models. Two types of 

element meshes are used in this study: n-sided polygonal elements (579 nodes) and for 4-

node quadrilateral elements (mesh 16 16 ). In computing the displacement norm, we use 

Eq. (4.18) for the 4-node quadrilateral elements, and Eq. (4.27) for n-sided polygonal 

elements. The results show that the nNS-FEM and NS-FEM-Q4 is naturally immune from 

the volumetric locking: the error does not increase with the Poisson’s ratio approaches to 

0.5. The nCS-FEM and FEM-Q4 are subjected to volumetric locking resulting in a drastic 

accuracy lose in the numerical solutions, when the Poisson’s ratio approaches 0.5.   

In overall, it is again seen that NS-FEM models possess four interesting properties of 

an equilibrium FEM model: (1) the strain energy is an upper bound of the exact solution; 

(2) it is immune naturally from the volumetric locking; (3) the stress solutions are ultra-
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accurate and super-convergent; (4) the displacement solutions are at the same level as that 

of FEM-T3 using the same distribution of nodes. 

 

5.7.3 3-D Lame problem (hollow sphere problem) 

The 3-D Lame problem consist of a hollow sphere with inner radius a=1m, outer 

radius b=2m and subjected to internal pressure P=100N/m2, as shown in Figure 5.17. The 

analytical solution of the benchmark problem is available in polar coordinate system 

[148]  

     
3 3

3 3 3
1 2 1
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        

 (5.21)

 
 
3 3 3

3 3 3
r

Pa b r

r a b






     ;     

 
 

3 3 3

3 3 3

2

2

Pa b r

r b a






 (5.22)

where r is the radial distance from the centroid to the point of interest of the sphere. 

As the problem is spherically symmetrical, only one-eighth of the sphere shown in 

Figure 5.17 is modeled, and the symmetry conditions are imposed on the three cutting 

symmetric planes. The material parameters of the problem are 3 210 N/mE   and  v=0.3. 

From Figure 5.18, it is observed that all the computed displacements and stresses of 

the NS-FEM-T4 agree well with the analytical solutions. Table 5.12 and Figure 5.19 

show the upper bound property in the strain energy of the NS-FEM-T4, while the FEM-

T4 and FEM-H8 give the lower bounds.  

Table 5.13 and Figure 5.20 compare the solution error in displacement norm obtained 

using the NS-FEM-T4, together with those of the FEM-T4 and FEM-H8. It is seen that 

the FEM-H8 stands out clearly. When the 3rd fine mesh for both T4 and H8 ( 0.156h  ) is 

used, the error of the FEM-H8 is about 1/3 of the NS-FEM-T4. The NS-FEM-T4 

performed better than the FEM-T4, but only by a small margin. In terms of convergence 

rate, all the models have a numerical rate of around the theoretical value of 2.0.   
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Table 5.14 and Figure 5.21 compare the results of energy norm of the NS-FEM-T4, 

together with those of the FEM-T4 and FEM-H8. It is again seen that the NS-FEM-T4 

stand out clearly. When the 3rd fine mesh for both T4 and H8 ( 0.156h  ) is used, the 

error of the NS-FEM-T4 is about 2/7 of the FEM-T4 and 2/5 of the FEM-H8. In terms of 

convergence rate, the NS-FEM-T4 stands out clearly with a rate of 1.34, while the rates of 

both FEM-T4 and FEM-H8 are slightly below the theoretical value of 1.0. 

Figure 5.22 plots the error in displacement norm against Poisson’s ratio changing from 

0.4 to 0.4999999 by using tetrahedral elements (507 nodes). The results show that the NS-

FEM-T4 is naturally immune from the volumetric locking, while the FEM-T4 is subjected 

to the volumetric locking resulting in a drastic accuracy lose in the numerical solutions.   

In overall, it is again seen that the NS-FEM-T4 model also possesses four interesting 

properties that are similar to an equilibrium FEM model: (1) the strain energy is an upper 

bound of the exact solution; (2) it is immune naturally from the volumetric locking; (3) 

the stress solutions are ultra-accurate and super-convergent; (4) the displacement 

solutions are at the same level as that of FEM-T4 using the same mesh. 

 

5.7.4 3D cubic cantilever: an analysis about the upper bound property 

Consider a 3D cantilever of cubic shape, subjected to a uniform pressure on its upper 

face as shown in Figure 5.23. The exact solution of the problem is unknown. By 

incorporating the solutions of hexahedral super-element elements and the procedure of 

Richardson’s extrapolation, Almeida Pereira [5] gave an approximation of the exact strain 

energy to be 0.950930. In addition, using standard FEM and a very fine mesh with 30,204 

nodes and 20,675 ten-node tetrahedron elements, another reference solution of the strain 

energy is 0.9486. From this reference, the deflection at point A (1.0,1.0,-0.5) is 3.3912. 
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Table 5.15 and Figure 5.24 confirm the upper bound property on the strain energy of 

the NS-FEM-T4 and the lower bound property of the FEM-T4 and FEM-H8 for this 3D 

problem. Table 5.16 and Figure 5.25 show the convergence of deflection at point A 

(1.0,1.0,-0.5). The results also show the upper bound property for the displacement 

solution of the NS-FEM-T4 and the lower bound property of the FEM-T4 and FEM-H8. 

 

5.7.5 A 3D L-shaped block: an analysis about the upper bound property  

Consider the 3D square block with a cubic hole subjected to the surface traction q as 

shown in Figure 5.26. Due to the double symmetry of the problem, only a quarter of the 

domain is modeled, which becomes a 3D L-shaped block. The analysis is performed 

using input data: q = 1, a = 1, E = 1,  = 0.3. For this problem, the strain energy of 

6.1999 given by Cugnon [34] is considered as the reference solution. In addition, using 

standard FEM and a very fine mesh with 33,641 nodes and 22,862 ten-node tetrahedron 

elements, another reference solution of the strain energy has been found to be 6.1916. 

Again, Table 5.17 and Figure 5.27 confirm the upper bound property on the strain 

energy of the NS-FEM-T4 and the lower bound property of the FEM-T4 for 3D problems. 

 

5.8 Remarks  

In this chapter, a node-based S-FEM (NS-FEM) for upper bound solutions to solid 

mechanics problems is presented. Through the formulation, theoretical discussions, and 

numerical results, some conclusions can be drawn as follows: 

 The NS-FEM allows the use of general polygonal elements with an arbitrary number 

of sides. The method can be applied easily to traditional 4-node quadrilateral or 

triangular elements. It works well with triangular elements for 2D problems, and with 

tetrahedral elements for 3D problems. 
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 In the NS-FEM, smoothed strain field are computed directly using only the shape 

functions at Gauss points along segments of boundary of the smoothing domains. The 

evaluation of shape function values for the discrete points can be performed in a 

simple manner for all types of meshes. The numerical implementation of the NS-FEM 

is straightforward and much simpler than that of equilibrium FEM models.  

 The NS-FEM is a displacement model, using only displacements as unknowns. It, 

however, possesses interesting properties that are quite similar to those of an 

equilibrium FEM model such as: (1) the upper bound property of the strain energy, 

when a reasonably fine mesh is used for force driven problems; (2) natural 

immunization from the volumetric locking; (3) ultra-accuracy and super-convergence 

of stress solutions; (4) similar accuracy of displacement solutions compared to the 

standard FEM model. In fact, at any point in all these smoothing domains, the 

equilibrium equations are satisfied in an NS-FEM model. It is however not an 

equilibrium model because the stresses right on these interfaces of the smoothing 

domains are not in equilibrium. Therefore, it is said a quasi-equilibrium model. For 

displacement driven problems (zero external forces but nonzero prescribed 

displacement on the essential boundary), we expect the FEM and NS-FEM to swap 

their roles: the NS-FEM gives the lower bound and the FEM gives the upper bound. 

For general problems with mixed force and displacement boundary conditions, we can 

still expect these two models bound the exact solution from both sides, although 

which model is on which side will be problem dependent. 

 From the upper bound property of the strain energy of the NS-FEM, a simple and 

practical procedure is proposed to determine both upper and lower bounds in the 

strain energy, by combining the NS-FEM with the FEM (for triangular, quadrilateral, 

or tetrahedral elements) or with the nCS-FEM (for n-sided polygonal elements). 
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Table 5.1. Shape function values at different sites  

on the smoothing domain boundary for node k (cf. Figure 5.2) 

Site Node 
k 

Node 
1 

Node 
2  

Node 
 3 

Node
 4 

Node
 5 

Node
6 

Node
 7 

Node
 8 

Node
9 

Node 
10 

Description 

k 1.0 0 0 0 0 0 0 0 0 0 0 Field node 
1 0 1.0 0 0 0 0 0 0 0 0 0 Field node 
2 0 0 1.0 0 0 0 0 0 0 0 0 Field node 

3 0 0 0 1.0 0 0 0 0 0 0 0 Field node 
4 0 0 0 0 1.0 0 0 0 0 0 0 Field node 
5 0 0 0 0 0 1.0 0 0 0 0 0 Field node 
6 0 0 0 0 0 0 1.0 0 0 0 0 Field node 
7 0 0 0 0 0 0 0 1.0 0 0 0 Field node 
8 0 0 0 0 0 0 0 0 1.0 0 0 Field node 
9 0 0 0 0 0 0 0 0 0 1.0 0 Field node 

10 0 0 0 0 0 0 0 0 0 0 1.0 Field node 
A 1/2 1/2 0 0 0 0 0 0 0 0 0 Mid-edge 
B 1/3 1/3 1/3 0 0 0 0 0 0 0 0 Centroid of element 
C 1/2 0 1/2 0 0 0 0 0 0 0 0 Mid-edge 
D 1/4 0 1/4 1/4 1/4 0 0 0 0 0 0 Centroid of element 
E 1/2 0 0 0 1/2 0 0 0 0 0 0 Mid-edge 
F 1/6 0 0 0 1/6 1/6 1/6 1/6 1/6 0 0 Centroid of element 
G 1/2 0 0 0 0 0 0 0 1/2 0 0 Mid-edge 
H 1/5 1/5 0 0 0 0 0 0 1/5 1/5 1/5 Centroid of element 
a 5/12 5/12 1/6 0 0 0 0 0 0 0 0 Mid-segment of ,

s
k p

b 5/12 1/6 5/12 0 0 0 0 0 0 0 0 Mid-segment of ,
s
k p

c 3/8 0 3/8 1/8 1/8 0 0 0 0 0 0 Mid-segment of ,
s
k p

d 3/8 0 1/8 1/8 3/8 0 0 0 0 0 0 Mid-segment of ,
s
k p

e 1/3 0 0 0 1/3 1/12 1/12 1/12 1/12 0 0 Mid-segment of ,
s
k p

f 1/3 0 0 0 1/12 1/12 1/12 1/12 1/3 0 0 Mid-segment of ,
s
k p

g 7/20 1/10 0 0 0 0 0 0 7/20 1/10 1/10 Mid-segment of ,
s
k p

h 7/10 7/10 0 0 0 0 0 0 1/10 1/10 1/10 Mid-segment of ,
s
k p
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Table 5.2. Existence of spurious zero-energy modes in an individual element. 

Type of element NS-FEM FEM with reduced 
integration 

 
Triangle 

3RN   

 
3Qn  , 3 9Q QN n    

3tn  , 2 6u tN n    

Q u RN N N   

=> spurious zero energy modes not 
possible 

 
1Qn  , 3 3Q QN n    

3tn  , 2 6u tN n    

Q u RN N N   

=> spurious zero energy 
modes not possible 

 
Quadrilateral 

3RN   

 
4Qn  , 3 12Q QN n    

4tn  , 2 8u tN n    

Q u RN N N   

=> spurious zero energy modes not 
possible 

 
1Qn  , 3 3Q QN n    

4tn  , 2 8u tN n    

Q u RN N N   

=> spurious zero energy 
modes possible 

 

n-sided polygonal 

 4n   

3RN   

 

Qn n , 3 3Q QN n n    

tn n , 2 2u tN n n    

Q u RN N N    

=> spurious zero energy modes not 
possible 

 

 

Not applicable 

 

Note: RN : number of DOFs of rigid motion 
          Qn : number of quadrature points/cells 

          QN : number of independent equations 

tn : number of nodes 

uN : number of total DOFs 
 

 
Table 5.3.  Error in displacement norm and energy for the patch test. 

 0.0ir  0.1ir  0.2ir  0.3ir   0.4ir   0.49ir 

Disp. norm de  (%) 2.25e-16 1.64e-15 3.42e-16 3.45e-15 1.34e-15 4.79e-15 

Energy error ee  0.0 4.56e-12 3.27e-11 4.25e-11 3.93e-12 1.56e-11 
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Table 5.4. Strain energy (Nm) obtained using different methods (*) the cantilever problem 

using the same distribution of nodes. 

Mesh 16 4  24 6  32 8  40 10  48 12  Analytical sol. 

DOFs 170 350 694 902 1274  

FEM-T3 3.7134 4.0973 4.2533 4.3301 4.3731 4.4747 

FEM-Q4 4.3362 4.4118 4.4390 4.4518 4.4587 4.4747 

CS-FEM-Q4 4.4310 4.4550 4.4635 4.4675 4.4697 4.4747 

NS-FEM-T3 4.9785 4.7031 4.6051 4.5591 4.5338 4.4747 

NS-FEM-Q4 4.7176 4.5898 4.5415 4.5183 4.5053 4.4747 

ES-FEM-T3 [76] 4.4097 4.4539 4.4654 4.4697 4.4717 4.4747 

 FEM-T3 [74] 
( 0.6exact  ) 

4.4071 4.4566 4.4681 4.4719 4.4734 4.4747 

(*): The numerical solutions of the methods, the ES-FEM-T3 [76] and the  FEM-T3 [74], 
presented in the following chapters, are also presented in this table for the easy reference.  
 

Table 5.5. Strain energy (Nm) obtained using different methods (*) for the cantilever 
problem using the same polygonal meshes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Analytical sol. 

DOFs 344        704 1192 1808 2552  

nCS-FEM 4.1879 4.3347 4.3928 4.4218 4.4369 4.4747 

nNS-FEM 4.6017 4.5397 4.5149 4.4999 4.4922 4.4747 

nES-FEM [104] 4.3800 4.4388 4.4532 4.4616 4.4657 4.4747 
(*): The numerical solutions of the method nES-FEM [104] presented in Chapter 6, are also 
presented in this table for the easy reference.  

 

Table 5.6. Error in displacement norm obtained using different methods (*) for the 
cantilever problem using the same distribution of nodes. 

Mesh  16 4  24 6  32 8  40 10  48 12  

h (m) 4.0 2.0  1.5 1.2 1.0 

FEM-T3 1.78 e-02 8.80 e-03 5.16 e-03 3.36 e-03 2.36 e-03 

FEM-Q4 2.97 e-03 1.35 e-03 7.63 e-04 4.90 e-04 3.41 e-04 

CS-FEM-Q4 7.40 e-04 3.31 e-04 1.87 e-04 1.20 e-04 8.31 e-05 

NS-FEM-T3 1.23 e-02 5.60 e-03 3.20 e-03 2.07 e-03 1.45 e-03 

NS-FEM-Q4 6.15 e-03 2.91 e-03 1.68 e-03 1.10 e-03 7.71 e-04 

ES-FEM-T3 [76] 1.32 e-03  3.74 e-04  1.47 e-04 6.94 e-05 3.68 e-05 

 FEM-T3 [74] 
( 0.6exact  ) 

1.26 e-03 2.65 e-04 6.86 e-05 2.69 e-05 2.48 e-05 

(*): The numerical solutions of the methods, the ES-FEM-T3 [76] and the  FEM-T3 [74], 
presented in the following Chapters, are also presented in this table for the easy reference.  
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Table 5.7. Error in energy norm obtained using different methods (*) for the cantilever 
problem using the same distribution of nodes. 

Mesh 16 4  24 6  32 8  40 10  48 12  

h (m) 4.0 2.0  1.5 1.2 1.0 

FEM-T3 8.77 e-01 6.16 e-01 4.71 e-01 3.80 e-01    3.18 e-01  

FEM-Q4 3.71 e-01 2.49 e-01   1.88 e-01   1.50 e-01   1.25 e-01   

CS-FEM-Q4 2.38 e-01 1.30 e-01  8.46 e-02 6.05 e-02   4.60 e-02  

NS-FEM-T3 1.44 e-01 9.45 e-02  6.71 e-02   5.06 e-02   3.99 e-02   

NS-FEM-Q4 1.16 e-01 7.28 e-02 5.10 e-02 3.83 e-02 3.00 e-02 

ES-FEM-T3 [76] 2.96 e-01 1.58 e-01 1.02 e-01 7.28 e-02 5.53 e-02 

 FEM-T3 [74] 
( 0.6exact  ) 

2.93 e-01 1.54 e-01 9.86 e-02 7.00 e-02 5.31 e-02 

(*): The numerical solutions of the methods, the ES-FEM-T3 [76] and the  FEM-T3 [74], 
presented in the following Chapters, are also presented in this table for the easy reference. 

 
Table 5.8. Strain energy ( 210 Nm) using different methods (*) for the infinite plate with 

a circular hole using the same distribution of nodes.  

Mesh 12 12  16 16  20 20  24 24  Analytical sol. 

DOFs 338 578 882 1250  

FEM-T3 1.1762 1.1786 1.1797 1.1803 1.1817 

FEM-Q4 1.1794 1.1805 1.1810 1.1812 1.1817 

CS-FEM-Q4 1.1798 1.1807 1.1811 1.1813 1.1817 

NS-FEM-T3 1.1848 1.1834 1.1827 1.1824 1.1817 

NS-FEM-Q4 1.1850 1.1835 1.1827 1.1823 1.1817 

ES-FEM-T3 [76] 1.1804 1.1811 1.1814 1.1815 1.1817 

(*): The numerical solutions of the ES-FEM-T3 [76] presented in Chapter 6, are also presented 
in this table for the easy reference.  
 

Table 5.9. Strain energy ( 210 Nm) using different methods (*) for the infinite plate with 

a circular hole using the same polygonal meshes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Analytical sol. 

DOFs 326 678 1158 1770  

nCS-FEM 1.1759 1.1791 1.1803 1.1808 1.1817 

nNS-FEM 1.1820 1.1820 1.1820 1.1819 1.1817 

nES-FEM [104] 1.1785 1.1805 1.1812 1.1814 1.1817 

(*): The numerical solutions of the method nES-FEM [104] presented in Chapter 6, are also 
presented in this table for the easy reference.  
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Table 5.10. Error in displacement norm obtained using different methods (*) for the infinite 
plate with a circular hole using the same distribution of nodes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969 

FEM-T3 2.80 e-04   1.42 e-04   8.45 e-05   5.61 e-05   4.01 e-05   

FEM-Q4 1.08 e-04   4.46 e-05   2.40 e-05   1.50 e-05   1.03 e-05    

CS-FEM-Q4 8.46 e-05   3.48 e-05   1.88 e-05   1.19 e-05   8.19 e-06   

NS-FEM-T3 3.87 e-04   1.69 e-04   8.95 e-05   5.49 e-05   3.70 e-05    

NS-FEM-Q4 2.73 e-04 1.29 e-04 7.04 e-05 4.35 e-05 2.94 e-05 

ES-FEM-T3 [76] 8.03 e-05 2.95 e-05 1.63 e-05 1.06 e-05 7.46 e-06 

(*): The numerical solutions of the ES-FEM-T3 [76] presented in Chapter 6, are also presented 
in this table for the easy reference.  
 

Table 5.11. Error in energy norm obtained using different methods (*) for the infinite plate 
with a circular hole using the same distribution of nodes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969 

FEM-T3 9.95 e-03 6.89 e-03 5.20 e-03 4.17 e-03 3.48 e-03 

FEM-Q4 6.09 e-03 3.86 e-03 2.79 e-03 2.18 e-03 1.79 e-03 

CS-FEM-Q4 5.12 e-03 2.70 e-03 1.61 e-03 1.06 e-03 7.41 e-04 

NS-FEM-T3 3.08 e-03 1.50 e-03 8.52 e-04 5.39 e-04 3.68 e-04 

NS-FEM-Q4 2.33 e-03 1.06 e-03 5.77 e-04 3.53 e-04 2.35 e-04 

ES-FEM-T3 [76] 5.27 e-03 2.69 e-03 1.59 e-03 1.04 e-03 7.29 e-04 

(*): The numerical solutions of the ES-FEM-T3 [76] presented in Chapter 6, are also presented 
in this table for the easy reference.  

 

Table 5.12. Strain energy ( 210 Nm) obtained using different methods (*) for the hollow 
sphere subjected to inner pressure. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4  Analytical sol. 

DOFs (T4) 1521 2337 3825 5814  

DOFs (H8) 1092 2535 3906 6951  

FEM-T4 5.9131 5.9986 6.0929 6.1387 6.3060 

NSFEM-T4 6.6227 5.5380 6.4580 6.4219 6.3060 

FEM-H8 5.9827 6.1063 6.1668 6.2023 6.3060 

FS-FEM-T4 [103] 6.0343 6.0955 6.1607 6.1906 6.3060 

 FEM-T4 [74] 
( 0.7exact  ) 

6.3081 6.3058 6.3059 6.3060 6.3060 

(*): The numerical solutions of the methods, the FS-FEM-T4 [103] and the  FEM-T4 [74], 
presented in the following Chapters, are also presented in this table for the easy reference.  
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Table 5.13. Error in displacement norm obtained using different methods (*) for the hollow 
sphere subjected to inner pressure. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4  

h  (T4) 0.2193     0.1878    0.1565     0.1342 

h  (H8) 0.2535     0.1840     0.1563     0.1267 

FEM-T4 4.06 e-03   3.12 e-03 2.07 e-03    1.58 e-03   

NSFEM-T4 3.68 e-03    2.76 e-03   1.88 e-03   1.48 e-03   

FEM-H8 2.26 e-03 1.35 e-03 7.92 e-04 5.44 e-04 

FS-FEM-T4 [103] 3.03 e-03   2.30 e-03   1.50 e-03   1.14 e-03   

 FEM-T4 [74] ( 0.7exact  ) 1.40 e-03 1.02 e-03 6.67 e-04 4.71 e-04 
(*): The numerical solutions of the methods, the FS-FEM-T4 [103] and the  FEM-T4 [74], 
presented in the following Chapters, are also presented in this table for the easy reference.  
 

Table 5.14. Error in energy norm obtained using different methods (*) for the hollow 
sphere subjected to inner pressure. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4  

h  (T4) 0.2193     0.1878     0.1565     0.1342 

h  (H8) 0.2535     0.1840     0.1563     0.1267 

FEM-T4 5.89 e-01   5.13 e-01   4.19 e-01   3.63 e-01  

NSFEM-T4 2.09 e-01   1.73 e-01   1.26 e-01   1.08 e-01    

FEM-H8 5.51 e-01   4.22 e-01   3.42 e-01    2.85 e-01    

FS-FEM-T4 [103] 3.75 e-01   3.03 e-01   2.24 e-01    1.86 e-01   

 FEM-T4 [74] ( 0.7exact  ) 2.83 e-01 2.30 e-01 1.71 e-01 1.44 e-01 
(*): The numerical solutions of the methods, the FS-FEM-T4 [103] and the  FEM-T4 [74],  

presented in the following Chapters, are also presented in this table for the easy reference.  
 

Table 5.15. Strain energy obtained using different methods (*) for the 3D cubic 
cantilever problem subjected to a uniform pressure. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Reference sol. [5] 

DOFs (T4) 714 1221 2073 2856 4782  

DOFs (H8) 648 1029 1536 2187 3993  

FEM-T4 0.8572 0.8818 0.8978 0.9088 0.9190 0.9509 

NSFEM-T4 1.0059 0.9882 0.9808 0.9791 0.9704 0.9509 

FEM-H8 0.8999 0.9116 0.9195 0.9251 0.9323 0.9509 

FS-FEM-T4 [103] 0.8801 0.8989 0.9111 0.9206 0.9274 0.9509 

 FEM-T4 [74] 
( 0.62exact  ) 

0.9478 0.9478 0.9488 0.9518 0.9514 0.9509 

(*): The numerical solutions of the methods, the FS-FEM-T4 [103] and the  FEM-T4 [74], 
presented in the following Chapters, are also presented in this table for the easy reference.  
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Table 5.16. Deflection at point A (1.0,1.0,-0.5) obtained using different methods (*) for the 

3D cubic cantilever problem subjected to a uniform pressure. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Reference sol. 

DOFs (T4) 714 1221 2073 2856 4782  

DOFs (H8) 648 1029 1536 2187 3993  

FEM-T4 3.0780 3.1752 3.2341 3.2732 3.3050 3.3912 

NS-FEM-T4 3.5912 3.5418 3.4943 3.4818 3.4577 3.3912 

FEM-H8 3.2523 3.2875 3.3107 3.3269 3.3474 3.3912 

FS-FEM-T4 [103] 3.1669 3.2390 3.2800 3.3128 3.3324 3.3912 

 FEM-T4 [74] 
( 0.62exact  ) 

3.4064 3.4087 3.4031 3.4091 3.4053 3.3912 

(*): The numerical solutions of the methods, the FS-FEM-T4 [103] and the  FEM-T4 [74], 

presented in the following Chapters, are also presented in this table for the easy reference.  

 
 

Table 5.17. Strain energy obtained using different methods (*) for the 3D L-shaped block 

problem. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Reference sol. 

DOFs  806 1284 2556 3834 4826  

FEM-T4 5.7164 5.8189 5.9524 6.0028 6.0305 6.1999 

NSFEM-T4 6.6787 6.5454 6.4227 6.3897 6.3658 6.1999 

FS-FEM-T4 [103] 5.8728 5.9532 6.0358 6.0731 6.0927 6.1999 

 FEM-T4 [74] 
( 0.7exact  ) 

6.1861 6.1824 6.1828 6.1808 6.1960 6.1999 

(*): The numerical solutions of the methods, the FS-FEM-T4 [103] and the  FEM-T4 [74], 

presented in the following Chapters, are also presented in this table for the easy reference.  
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Figure 5.1. n-sided polygonal elements and the smoothing domains associated with nodes. 
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Figure 5.2. Position of Gauss points at mid-segment-points on the segments of smoothing 

domains associated with node k in a mesh of n-sided polygonal elements. 
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Figure 5.3. Domain discretization of a cubic patch with 4-node tetrahedral elements. 

 

 

Figure 5.4. Domain discretization of the cantilever using triangular elements. 
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Figure 5.5. Comparison of the numerical results of NS-FEM models and analytical 

solutions for the cantilever loaded at the end. (a) Normal stress xx ; (b) Shear stress xy . 
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Figure 5.6. Contour of the analytical and the numerical normal stress xx  ( 2N/m ) 

for the cantilever obtained using the nNS-FEM. 
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Figure 5.7. Convergence of the strain energy solution for the cantilever problem.  

(a) n-sided polygonal elements; (b) triangular and 4-node elements. 
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Figure 5.8. Error in displacement norm for the NS-FEM solution in comparison with 

that of other methods for the cantilever problem using the same distribution of nodes. 
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Figure 5.9. Error in energy norm for the NS-FEM solution in comparison with those 

of other methods for the cantilever problem using the same distribution of nodes.  
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Figure 5.10. Domain discretization of the infinite plate with a circular hole using 

triangular elements. 
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Figure 5.11. Convergence of the strain energy solution for the infinite plate with a 

circular hole. (a) n-sided polygonal elements; (b) triangular and quadrilateral elements. 
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Figure 5.12. Computed and exact displacements of the nNS-FEM for the infinite plate 

with a circular hole. (a) displacement u(m) of nodes along bottom side; (b) displacement 

v(m) of nodes along left side. 
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Figure 5.13. Exact and the numerical stresses using the nNS-FEM for the infinite plate 

with a circular hole. (a) stress yy  of nodes along bottom side; (b) stress xx  of nodes 

along left side. 
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Figure 5.14. Error in displacement norm for NS-FEM in comparison with those of 

other methods for the infinite plate with a circular hole using the same distribution of 

nodes. 
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Figure 5.15. Error in energy norm for NS-FEM in comparison with those of other 

methods for the infinite plate with a circular hole using the same distribution of nodes. 
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Figure 5.16.  Error in displacement norm versus Poisson’s ratios close to 0.5 for the 

infinite plate with a circular hole. (a) n-sided polygonal elements (579 nodes); (b) 4-node 

quadrilateral elements (289 nodes). 
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Figure 5.17. Hollow sphere problem setting and its one-eighth model discretized using 4-

node tetrahedral elements. 
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Figure 5.18. (a) Radial displacement v (m); (b) Radial and tangential stresses ( 2N/m ) 

for the hollow sphere subjected to inner pressure. 
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Figure 5.19. Convergence of the strain energy solution of the NS-FEM-T4 in comparison 

with other methods for the hollow sphere subjected to inner pressure. 
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Figure 5.20. Error in displacement norm for the NS-FEM-T4 solution in comparison with 

those of other methods for the hollow sphere subjected to inner pressure. 
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Figure 5.21. Error in energy norm for the NS-FEM-T4 solution in comparison with those 

of other methods for the hollow sphere subjected to inner pressure. 
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Figure 5.22. Displacement norm versus different Poisson’s ratios for the hollow sphere 

subjected to inner pressure (507 nodes). 
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Figure 5.23. A 3D cubic cantilever subjected to a uniform pressure on the top surface, and 

a mesh with 4-node tetrahedral elements. 
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Figure 5.24. Convergence of the strain energy solution of the NS-FEM-T4 in comparison 

with other methods of the 3D cubic cantilever problem subjected to a uniform pressure. 
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Figure 5.25. Convergence of the deflection solution at point A(1.0,1.0,-0.5) of the NS-

FEM-T4 in comparison with other methods of the cubic cantilever subjected to a uniform 

pressure. 

 

Figure 5.26. 3D block and an L-shaped quarter model. 
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Figure 5.27. Convergence of the strain energy solution of the 3D L-shaped block problem.
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Chapter 6  
 

 
Edge-based Smoothed FEM (ES-FEM) 

 

6.1 Introduction 

Chapter 5 has presented the node-based S-FEM or NS-FEM [78], and it has proven via 

theoretical analysis and numerical examples that the NS-FEM is always spatially stable. 

In addition, the NS-FEM possesses interesting properties that are similar to those of an 

equilibrium FEM model such as: (1) the upper bound property of the strain energy for 

force-driven problems when a reasonably fine mesh is used; (2) natural immunization 

from the volumetric locking; (3) ultra-accuracy and super-convergence of stress solutions; 

and (4) same level of accuracy in displacement solutions as the FEM. It is, however, 

found that the NS-FEM behaves “overly-soft” resulted from the over-correction to the 

“overly-stiff” behavior of the compatible FEM [78]. Such an overly-soft behavior leads to 

“temporal” instability similar to those found in the equilibrium FEM models and in the 

nodal integration methods [99, 124, 125]. The temporal instability can be clearly observed 

when the NS-FEM is used for solving dynamic problems: (1) as spurious non-zero energy 

modes in free vibration analyses; and (2) numerical instability in the time marching in 

forced vibration analyses. 

In this chapter, we therefore present a very outstanding S-FEM model: the edge-based 

S-FEM (ES-FEM) that is both spatially and temporally stable, and much more accurate 
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compared with many existing FEM models. The ES-FEM was originated in [76] to create 

models with close-to-exact stiffness, so that it can produce ultra-accurate results for 

solving static problems, and stable and accurate results for dynamic problems. In the ES-

FEM, the strain smoothing domains are associated with edges of the element mesh, and 

hence the integration of the weak form becomes a simple summation over these edge-

based smoothing domains. The ES-FEM works well, in general for a mesh of arbitrarily 

n-sided polygonal elements [104], and in particular for linear triangular elements [76]. In 

addition, a smoothing-domain-based selective ES/NS-FEM model has also been proposed 

that is immune from the volumetric locking, and works very well for solids of nearly 

incompressible materials [76, 104].  

For the important mesh generation reasons, this chapter concentrates on the ES-FEM 

using linear triangular elements (ES-FEM-T3). In this case, the ES-FEM-T3 has been 

often found possessing the following excellent properties: (1) the results of the ES-FEM-

T3 are often much more accurate than those of the FEM-T3 and often even more accurate 

than those of the FEM-Q4 with the same distribution of nodes. These results have been 

observed in static linear elastic problems; (2) No spurious non-zeros energy modes were 

found and hence the method is both spatially and temporally stable and hence works well 

for dynamic problems; (3) the implementation of the ES-FEM is straightforward: no 

penalty parameters or additional degrees of freedom are used; (4) The ES-FEM can easily 

be extended to 3D problems using tetrahedral elements [103]; and (5) the computational 

efficiency of the ES-FEM-T3 is the most superior among others compared numerical 

methods using the same distribution of nodes.  

 

6.2 Creation of edge-based smoothing domains 

In the ES-FEM, the domain discretization is still based on general polygonal elements 

with arbitrary number of sides, as in the NS-FEM. The element mesh will have a total 
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of egN  edges located in the entire problem domain. On top of the element mesh, the 

problem domain  is divided into s egN N  non-overlap no-gap smoothing domains 

associated with the edges, such that 
1

egN

s
k

k

    and s s
i j   , i j . For a mesh of n-

sided polygonal elements, the smoothing domain s
k  associated with the edge k is created 

by connecting two endpoints of the edge to central points of adjacent elements as shown 

in Figure 6.1. For a mesh of triangular elements, an ES-FEM-T3 setting is shown in 

Figure 6.2. The strain smoothing technique [24] is used to create a smoothed strain field 

that is constant in each of the smoothing domains. The integration required in the weak 

form thus becomes a summation over all these edge-based smoothing domains.  

 

6.3 Formulation of the ES-FEM 

6.3.1 Static analyses 

Using the general formulation for the static analysis of the S-FEM models presented in 

Chapter 3, Section 3.1, the linear system of equations of the ES-FEM has the form of  

ES-FEM K d f  (6.1)

where ES-FEMK  is the smoothed stiffness matrix whose entries are given by  

ES-FEM

1 1

eg eg

s
k

N N
T T s

IJ I J I J k
k k

d A
 

   K B DB B DB  (6.2)

where 
s
k

s
kA d



   is the area of the edge-based smoothing domain s
k , and the smoothed 

strain-displacement matrix IB  is computed by Eq. (3.10) using only shape function 

values on the boundaries of the smoothing domains.   

In particular, when a mesh of linear triangular elements (ES-FEM-T3) are used, the 

smoothed strain-displacement matrix IB  can be assembled by following simple equation 
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 
1

1 1

3

e
kn

e e
I k j js

jk

A
A 

 B x B     (6.3)

where e
kn  is the number of elements attached to the edge k ( 1e

kn   for the boundary edges 

and 2e
kn   for inner edges as shown in Figure 6.2); e

jA  is the area of the jth element 

attached to the edge k; and s
kA  is the area of the smoothing domain computed using 

1

1

3

e
k

s
k

n
s e
k j

j

A d A


            (6.4)

In Eq. (6.3), matrix 
e
j

e
j I

I S

 B B  is the compatible strain-displacement matrix for the jth 

triangular element attached to the edge k. It is assembled by the compatible strain-

displacement matrices ( )IB x  of nodes in the set e
jS   which contains three nodes of the jth 

triangular element. Matrix ( )IB x  for the node I in triangular elements has the form of Eq. 

(2.48). 

Note that with this formulation, only the area and the compatible strain-displacement 

matrices e
jB  of triangular elements are needed to calculate the system stiffness matrix for 

the ES-FEM-T3. The formulation is simple, but works only for triangular types of 

elements that uses linear interpolation. For other ES-FEM models, the smoothed strain-

displacement matrix IB  has to be computed using the original Eq. (3.10), and the shape 

functions have to be evaluated in the way given in Section 6.4. 

The above simple formulation is quite straightforward and can be easily extended for 

the 3D problems using tetrahedral elements [103], which will be presented in Chapter 7.  

6.3.2 Dynamic analyses 

Because the ES-FEM is both spatially and temporally stable [76], it suits well for 

dynamic problems, such as free and forced vibrations analyses. If the inertial and 
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damping forces are also considered in the dynamic equilibrium equations, the discretized 

system of equations in the ES-FEM can be expressed as a set of differential equations 

with respect to time:  

ES-FEM  Md Cd K d f   (6.5)

where M  is the mass matrix and is computed using 

T d


 M N N  (6.6)

in which   is the mass density. The damping matrix C  is computed using  

T c d


 C N N  (6.7)

where c  is the damping coefficient.  

For simplicity, the Rayleigh damping is used in this chapter, and the damping matrix 

C  is assumed to be a linear combination of M  and ES-FEMK ,  

ES-FEM  C M K  (6.8)

where   and   are the Rayleigh damping coefficients.  

Many existing standard schemes can be used to solve the second-order time 

dependent problems, such as the Newmark method, Crank-Nicholson method, etc. [141]. 

In this chapter, the Newmark method is used. When the current state at 0tt  is known as 

( 0 0 0, ,d d d  ), we aim to find a new state ( 1 1 1, ,d d d  )  at 1 0t t t    where 0.5 1  , using 

the following formulations: 

   

 

ES-FEM
1 1 0

ES-FEM
0 0 0

1
1

1 1
1

t t t
t

t
t

    


  
 

              
             

M K d f f

Md Md K d
 (6.9)

 1 1 0 0
1 1

t


 


  


d d d d   (6.10)

 1 1 0 0
1 1

t


 


  


d d d d     (6.11)
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Without the damping and forcing terms, Eq. (6.5) is reduced to a homogenous 

differential equation:  

ES-FEM Md K d 0  (6.12)

A general solution of such a homogenous equation can be written as  

 exp i td d  (6.13)

where t  indicates time, d  is the amplitude of the sinusoidal displacements and   is the 

natural frequency. On its substitution into Eq. (6.12), the natural frequency   can be 

found by solving the following eigenvalue equation.   

 2 ES-FEM  M K d 0  (6.14)

Finally, we note that the trial function used in an ES-FEM model is the same as that in 

the standard FEM. Therefore the force vector f , mass matrix M  and damping matrix C  

in the ES-FEM are also computed in exactly the same way as in the FEM. In other words, 

the ES-FEM changes only the stiffness matrix.  

 

6.4 Evaluation of the shape function values in the ES-FEM  

As presented generally in Chapter 3, when a linear compatible displacement field 

along the boundary of the smoothing domains is used, the smoothed strain-displacement 

matrix IB  can be computed using Eq. (3.10) with only shape function values at mid-

segment-points (Gauss points) along segments ,
s s
k p k   of smoothing domains. The 

shape function value at each Gauss point is evaluated by a simple average using those of 

the two related endpoints that bound the segment containing that Gauss point. For 

example, the values of the shape functions at point #g1 on the segment 1-A shown in 

Figure 6.3 are evaluated by averaging the values of shape functions of two related nodes 

on the segment: points #1 and #A. Therefore, in order to facilitate the evaluation of shape 

function values at Gauss points in the ES-FEM, we first need to evaluate the shape 
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function values at the endpoints of segments such as field nodes (#1, #6, etc) and central 

points (#A, #B, etc) shown in Figure 6.3. 

For an ES-FEM model using n-sided polygonal elements, the shape function 

constructed in Section 3.2 is used. These shape functions are obviously linear compatible 

along the boundary of smoothing domains associated with edges. The evaluation of the 

shape function values at the endpoints of segments shown in Figure 6.3 is quite 

straightforward. 

Figure 6.3 and Table 6.1 give explicitly the shape function values at different points of 

the smoothing domain associated with the edge 1-6. The number of support nodes for the 

smoothing domain is 9 (from #1 to #9). We have 4 segments ,
s
k p  on s

k  (1A, A6, 6B, 

B1). Each segment needs only one Gauss point, and therefore, there are a total of 4 Gauss 

points (g1, g2, g3, g4) used for the entire smoothing domain s
k  associated with edge k, 

and the shape function values at these 4 Gauss points can be tabulated in Table 6.1 by 

simple inspection. 

 It may be again mentioned that no extra degrees of freedom are associated with these 

points. In other words, these points carry no additional field variables. For the linear 

triangular elements, the smoothed strain-displacement matrix IB  can be computed by one 

of two ways: Eq. (3.10) or Eq. (6.3).   

 

6.5 A smoothing-domain-based selective ES/NS-FEM 

The ES-FEM models formulated above is subjected to the volumetric locking. 

Therefore, it can not be used directly to solve problems with nearly incompressible 

materials with the Poisson’s ratio close to 0.5. On the other hand, we know that the NS-

FEM formulated in Chapter 5 is naturally immune from the volume locking [78]. It is 

therefore making a good sense to combine the NS- and ES-FEM formulations to construct 
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a smoothing-domain-based selective ES/NS-FEM that can overcome the volumetric 

locking problem and yet with good performance.   

In this section, such a smoothing-domain-based selective scheme will be used in the 

combined formulation of ES/NS-FEM. We apply two different types of smoothing 

domains selectively for the two different material “parts” ( -part and  -part). Since the 

node-based smoothing domains used in the NS-FEM were found effectively in 

overcoming volumetric locking, and the  -part is known as the culprit of the volumetric 

locking, we simply use the node-based domains for the  -part. Because the volumetric 

locking has nothing to do with the  -part, we use the edge-based domains (ES-FEM) for 

the  -part. Such a procedure is simple and easy to implement, and the stiffness matrix of 

the smoothing-domain-based selective ES/NS-FEM model can be simply written as 

   
ES-FEM NS-FEM
1 2

1, 1 1, 1, 2, 2 2, 2,
1 1

eg n
N N

T Ts s
i i i j j j

i j

A A
 

  
K K

K B D B B D B
 

   
(6.15)

where 1,iB  and 1,
s
iA  are the smoothed strain-displacement matrix and area of the 

smoothing domain 1,
s

i  associated with edge i; 2, jB  and 2,
s

jA  are the smoothed strain-

displacement matrix and area of the smoothing domain 2,
s

j  associated with node j; 1D  

and 2D  are the component material matrices decomposed from the material matrix D  as 

presented by Eqs. (4.15) and (4.16); and nN  is the total number of nodes of the whole 

problem domain. The formulation of ES-FEM
1K  follows simply Eq. (6.2), and that of 

NS-FEM
2K  following Eq. (5.2).   
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6.6 Numerical implementation 

In the numerical implementation of the ES-FEM, the value of strains (or stresses) at 

the node i will be the averaged value of strains (or stresses) of the smoothing domains s
k  

associated with edges k around node i, and are computed numerically by  

1

1
i
egn

s
i k ki

keg

A
A 

 ε ε  (6.16)

where i
egn  is the total number of edges connecting directly to node i; 

1

i
egn

i s
eg k

k

A A


   is the 

total area of all smoothing domains s
k  associated with edge k around the node i; and 

kε and s
kA  are, respectively, the smoothing strain and the area of the smoothing domain 

s
k  associated with edge k around node i.  

Note that because linear elements are used, the strains in the elements are constants, 

we can use the same methods for the evaluation of the strains (or stresses) at nodes by the 

FEM, which give the identical results as those of Eq. (6.16) by the ES-FEM. 

 

6.6.1 Rank analysis for the ES-FEM stiffness matrix  

Property 6.1 (Spatial stability): the ES-FEM with n-sided polygonal elements possesses 

only “legal” zero energy modes that represent the rigid motions, and there exists no 

spurious zero-energy mode. Therefore, it is spatially stable. 

The spatial stability of the ES-FEM is ensured by the following key reasons:  

i) The total number of edges is always bigger than that of nodes for any discretization. 

Therefore the number of smoothing domains sN  is always much larger than the 

minimum number of smoothing domains min
sN  presented in Section 3.3.  
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ii) The numerical integration used to evaluate Eq. (6.2) in the ES-FEM satisfies the 

necessary condition given in Section 6.1.3 in Ref [67]. This is true for all possible 

ES-FEM models, as detailed in Table 6.2. 

iii) The edge-based smoothing domains are independent with each other, and hence the 

strain smoothing operation ensures linearly independent columns (or rows) in the 

stiffness matrix [69]. 

iv) The shape functions used in the ES-FEM are of partition of unity, which ensures a 

proper representation of the rigid motions. 

Due to the above-mentioned reasons, no deformed zero-energy mode will exist in an 

ES-FEM. In other words, any deformation (except the rigid motions) will result in strain 

energy in an ES-FEM model (we assume, as always, the material is stable).   

Note also that for any type of element mesh, the number of edges are always larger or 

equal the number of nodes. Therefore, the ES-FEM model is always “stiffer” than the NS-

FEM for the same element mesh, which explains partially why the ES-FEM is temporally 

stable (more discussion later) and the NS-FEM is not.   

 

6.6.2 Temporal stability of the ES-FEM-T3 

Property 6.2 (Temporal stability): There exists no spurious non-zero energy modes in 

an ES-FEM-T3 model, and thus it is temporally stable. 

In the standard FEM-T3, the shape functions are linear and hence the compatible strain 

field in an element is constant. Therefore, only one Gauss point is needed to perform the 

domain integration for the weak form for each element. This implies that the number of 

Gauss points used in the entire problem domain equals to the number of elements. Such 

an FEM-T3 model is known temporally stable in dynamic analysis and has no spurious 

non-zero energy modes.    
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In the ES-FEM using triangular meshes (ES-FEM-T3), the smoothing domains used 

are associated with edges of the elements and the strain (or stress) is constant over each 

smoothing domain. Hence, for stability considerations, each smoothing domain can be 

viewed equivalent to one Gauss point in terms of sampling the integrand in the weak 

form. Because the number of edges is always larger than the number of elements in any 

ES-FEM models, the number of samplings in an ES-FEM-T3 is always larger than that in 

the standard FEM-T3. Therefore, the ES-FEM-T3 must be stable temporally and should 

have no spurious non-zero energy modes, and is well suited for the dynamic analyses.  

Note that, in the NS-FEM, smoothing domains associated with the node is employed to 

calculate the stiffness matrix. This works well for static problems. However, for vibration 

analysis, the NS-FEM is unstable because of the presence of spurious non-zero energy 

modes [78]. This is because the number of nodes is usually much smaller than the number 

of elements, and hence there is a chance for spurious modes to appear at a higher-energy 

level. This phenomena is quite similar to the under-integration of the weak form inherent 

in the nodal integration approach of meshfree methods. The temporal instability, 

therefore, has been one of the main concerns of NS-FEM and nodal integrated meshfree 

methods [99, 124, 125]. The simplest solution is to use the edge-based smoothing 

domains.   

6.6.3 Standard patch test 

Standard patch tests conducted in the NS-FEM, Section 5.6.2, are now performed for 

n-sided polygonal and triangular elements as shown in Figure 6.4. The numerical results 

show that the ES-FEM models pass the standard patch test within machine precision. 
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6.6.4 Mass matrix for dynamic analysis 

In dynamic analysis using the ES-FEM-T3, we can use the usual consistent mass 

matrix defined in Eq. (6.6). For computational efficiency purposes, the well-known 

lumped mass matrix for the linear triangular elements e
i  can also be used.  

   
3

e
e i

i

tA
M I  (6.17)

where  I  is the identity matrix of size 6 by 6, e
iA  is the area of the element,   and t are 

the mass density and the thickness of the element, respectively. The diagonal form of 

lumped mass matrix gives the superiority in terms of efficiency in computation over the 

consistent mass matrix in solving transient dynamics problems.  

 

6.7 Numerical examples 

In this section, some examples will be presented to demonstrate the properties of the 

ES-FEM models. For triangular elements, the ES-FEM-T3 results will be compared with 

those of the NS-FEM-T3, FEM-T3, FEM-Q4, CS-FEM-Q4 ( 4sn  ) and FEM using 8-

node quadratic elements (FEM-Q8). For the n-sided polygonal elements, the standard 

FEM model is not applicable, and hence the nES-FEM results will be compared with 

those of nCS-FEM and nNS-FEM, using the same meshes.    

For the triangular and 4-node quadrilateral elements, the displacement and energy 

norms are given by Eqs. (4.18) and (4.19), respectively. In the calculation of Eq. (4.19) 

for the ES-FEM-T3, recovery strain fields Rε  defined in Eq. (5.16) is used as the final 

numerical strain field. For the n-sided polygonal elements, the displacement norm is 

given by Eq. (4.27), and the energy norm is given simply by  

   
1

2

1

1

2

sN
T s

e k k k
k

e A


 
   
 
 ε ε D ε ε  (6.18)
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where kε  and s
kA  are the smoothing strain and the area of the smoothing domain s

k , 

respectively; ε  is the analytical strain computed at the nodes (for comparison with the 

nNS-FEM), or at edge-mid-points (for comparison with the nES-FEM), or at the central 

points of smoothing domains s
k  (for comparison with the nCS-FEM); sN  is the total 

number of the smoothing domains.  

6.7.1 A rectangular cantilever loaded at the end: a static analysis 

The benchmarking problem of a rectangular cantilever loaded at the end described in 

Example 4.10.1 is again used to examining the ES-FEM models. The geometry and 

boundary conditions of the cantilever is plotted in Figure 4.7. The domain discretization 

with n-sided polygonal, quadrilateral and triangular elements are shown in Figure 4.8 and 

Figure 5.4, respectively. The exact strain energy of the problem is known as 4.4746 Nm. 

Figure 6.5 and Figure 6.6 compare the results of displacements and relative errors of 

the ES-FEM-T3 with the FEM-T3, NS-FEM-T3 and FEM-Q4. It is shown that the FEM-

T3 is very stiff, and the NS-FEM-T3 is very soft compared to the exact solution. The ES-

FEM-T3 is stiffer than the NS-FEM-T3 and softer than the FEM-T3, and the ES-FEM-T3 

solution is very close to the exact solution. Compared with all methods, the ES-FEM-T3 

performs the best and even better than the FEM-Q4. Figure 6.7 shows that all the 

computed stresses using the ES-FEM-T3 agree excellently with the analytical solutions.  

The convergence of the strain energy is shown in Table 5.4 and plotted in Figure 6.8. It 

is seen that the FEM models behave overly-stiff and hence give lower bounds, and the 

NS-FEM-T3 behaves overly-soft and gives an upper bound. The solution of CS-FEM-Q4 

is the most accurate. Although triangular elements are used, the ES-FEM-T3 result is as 

good as that of the CS-FEM-Q4.  

The convergence of error in displacement norm is presented in Table 5.6 and plotted in 

Figure 6.9. It is seen that the ES-FEM-T3 stands out clearly. The error of displacement 
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norm of the ES-FEM-T3 is the smallest among all the compared models when the fine 

meshes are used. When the finest mesh (h = 1) is used, the error of the ES-FEM-T3 is 

about 1/64 of the FEM-T3, 1/9 of the FEM-Q4 and even 2/5 of the CS-FEM-Q4. In terms 

of convergence rate, super-convergence is observed for the ES-FEM-T3 with a rate of 3.3 

that is even much larger than the theoretical value of 2.0 for linear displacement models 

based on weak formulation. It is important to note that the super-convergence here is in 

terms of the displacement norm, which is very difficult to obtain for the compatible FEM 

models.   

The convergence of the error in energy norm is presented in Table 5.7 and plotted in 

Figure 6.10. It is seen again that the S-FEM models stand out clearly. When the finest 

mesh (h = 1) is used, the solution accuracy of the ES-FEM-T3 is not as good as those of 

CS-FEM-Q4 and NS-FEM-T3, but it is still much better than that of the FEM-T3 and 

FEM-Q4. The solution error of the ES-FEM-T3 is about 1/6 of the FEM-T3 and 2/5 of the 

FEM-Q4. In terms of the convergence rate, super-convergence is observed for the ES-

FEM-T3 with a rate of 1.52 that is much larger than the theoretical value of 1.0 for linear 

displacement models.  

Figure 6.11 compares the computation time of different methods using the same direct 

full-matrix solver. It is found that with the same distribution of nodes, the computation 

time of the ES-FEM-T3 is only shorter than that of the NS-FEM-T3. However, when the 

efficiency of computation (computation time for the same accuracy) in terms of both 

displacement and energy norms is considered as shown in Figure 6.12 and Figure 6.13, 

the ES-FEM-T3 model stands out clearly as a winner. Even though the ES-FEM-T3 uses 

triangular elements, it still wins by its super-convergence, as shown in Figure 6.12. One 

can therefore expect that when finer mesh is used, the performance of ES-FEM-T3 will be 

even better. Because the ES-FEM-T3 works well with the triangular elements which are 
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very preferred in automated mesh generation, it has a clear advantage over the FEM-Q4 

and CS-FEM-Q4 models in the development of adaptive and automatic solution tools.   

For the n-sided polygonal elements, Figure 6.14 shows that all the computed stresses 

using the nES-FEM agree well with the analytical solutions. The convergence of the 

strain energy is shown in Table 5.5 and plotted in Figure 6.15. It is seen that the nES-

FEM is the most accurate, while the nCS-FEM model behaves overly-stiff and hence 

gives a lower bound, and nNS-FEM behaves overly-soft and gives an upper bound.  

The convergence of displacement norm is presented in Table 6.3 and plotted in Figure 

6.16. It is seen that the nES-FEM stands out clearly. The error of displacement norm of 

the nES-FEM is the smallest among all the three models. When the finest mesh (h = 1) is 

used, the error of the nES-FEM is about 1/4 of the nCS-FEM and 1/2 of the nNS-FEM. In 

terms of convergence rate, the nCS-FEM ( 1.85r  ) and nNS-FEM ( 1.71r  ) have a 

numerical rate smaller than the theoretical value of 2.0, while the rate of the nES-FEM  is 

2.16r  , larger than the theoretical value.  

The convergence of the error in energy norm is presented in Table 6.4 and plotted in 

Figure 6.17. Again, it is seen that the nES-FEM stands out clearly. The error of energy 

norm of the nES-FEM is the smallest among three models. When the finest mesh (h = 1) 

is used, the error of the nES-FEM is about 2/5 of the nCS-FEM and 3/4 of the nNS-FEM. 

In terms of convergence rate, the nCS-FEM ( 0.93r  ) and nNS-FEM ( 0.94r  ) have a 

numerical rate smaller than the theoretical value of 1.0, while the rate of the nES-FEM is 

larger with 1.01r  . 

 

6.7.2 Infinite plate with a circular hole: a static analysis 

The infinite plate with a circular hole described in Example 4.10.2 is used here to 

examine the ES-FEM models. The geometry and boundary conditions of the problem is 
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plotted in Figure 4.19. Figure 4.24 and Figure 5.10 give the discretization of the domain 

using 4-node quadrilateral, n-sided polygonal and triangular elements, respectively. The 

exact strain energy of the problem is known as 1.1817 210  Nm. 

Figure 6.18 and Figure 6.19 show the comparison of displacements of the ES-FEM-T3 

with the FEM-T3, NS-FEM-T3 and FEM-Q4. It is again seen that the FEM-T3 model is 

very stiff while the NS-FEM-T3 model is very soft compared to the exact model. The 

results of the ES-FEM-T3 are best and even better than those of the FEM-Q4. From 

Figure 6.20, it is observed that all the computed stresses using the ES-FEM-T3 agree well 

with the analytical solutions.  

The convergence of the strain energy is shown in Table 5.8 and plotted in Figure 6.21. 

It is seen that the FEM models give lower bounds, the NS-FEM-T3 gives an upper bound, 

and the ES-FEM-T3 is the most accurate and even better than the CS-FEM-Q4.  

The convergence of the error in displacement norm is shown in Table 5.10 and plotted 

in Figure 6.22. It is again seen that the ES-FEM-T3 stands out clearly. The error of 

displacement norm of the ES-FEM-T3 is the smallest among all the compared models. 

When the finest mesh ( 0.1969h  ) is used, the error of the ES-FEM-T3 is about 1/5 of 

the FEM-T3, 3/4 of the FEM-Q4 and even a little smaller than that of the CS-FEM-Q4. In 

terms of convergence rate, the rates of all methods, except the FEM-T3, are slightly larger 

than the theoretical value of 2.0. 

The convergence of the error in energy norm is shown in Table 5.11 and plotted in 

Figure 6.23. It is seen that the S-FEM models stand out clearly. When the finest mesh 

( 0.1969h  ) is used, the error of the ES-FEM-T3 is only worse than that of the NS-FEM-

T3. This error is almost equal that of the CS-FEM-Q4, and is much better than that of the 

FEM-T3 and FEM-Q4. It is about 1/5 of the FEM-T3 and 2/5 of the FEM-Q4. In terms of 

convergence rate, the super-convergence is again observed for the ES-FEM-T3 with a rate 
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of 1.83 that is quite close to the optimal rate of 2.0 for equilibrium model, and much 

larger than the theoretical value of 1.0.  

Figure 6.24 and Figure 6.25 plot the results obtained using n-sided polygonal elements.  

It is observed that all the computed displacements and stresses agree well with the 

analytical solutions. The convergence of the strain energy is shown in Table 5.9 and 

plotted in Figure 6.26. Again the nES-FEM is found most accurate, while the nCS-FEM 

model gives a lower bound and nNS-FEM gives an upper bound.  

The error in displacement norm is shown in Table 6.5 and plotted in Figure 6.27. In 

term of accuracy, it is seen that the nES-FEM stands out clearly. The error of 

displacement norm of the nES-FEM is the smallest among three models. When the finest 

mesh ( 0.1969h  ) is used, the error of the nES-FEM is about 1/8 of the nNS-FEM and 

1/2 of the nCS-FEM. In terms of convergence rate, the nES-FEM ( 1.69r  ) is less than 

that of the nCS-FEM ( 2.04r  ) but still larger than that of the nNS-FEM ( 1.32r  ).  

The convergence of the error in energy norm is presented in Table 6.6 are plotted in 

Figure 6.28. Again, it is seen that the nES-FEM stands out clearly. The error of energy 

norm of the nES-FEM is the smallest among three models. When the finest mesh 

( 0.1969h  ) is used, the error of the nES-FEM is about 1/4 of the nCS-FEM and 1/3 of 

the nNS-FEM. In terms of convergence rate, the super-convergence is again observed for 

the nES-FEM with a rate of 1.98 that is almost the optimal rate of 2.0 for equilibrium 

model, and twice of the theoretical value of 1.0 for linear displacement models based on 

weak formulations.  

Figure 6.29 shows the displacement norm against Poisson’s ratio changing from 0.4 to 

0.4999999. The results show that the smoothing-domain-based selective nES/NS-FEM 

and ES-/NS-FEM-T3 models detailed in Section 6.5 can overcome the volumetric locking 

for nearly incompressible materials. Although the nNS-FEM and NS-FEM-T3 models are 
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also immune for the volumetric locking, the smoothing-domain-based selective nES/NS-

FEM and ES-/NS-FEM-T3 models give better results than those of the nNS-FEM and 

NS-FEM-T3, due to the contribution from the nES-FEM and ES-FEM-T3 formulations.   

     Compared to the results given in Figure 5.16, it is observed that the ES-FEM model 

locks at the Poisson’s ratio of 0.49, while the FEM model locks at the Poisson’s ratio of 

0.40. This shows that the smoothing operation used in the ES-FEM helps to reduce quite 

significantly the volumetric locking. To avoid the volumetric locking entirely, the 

selective ES/NS-FEM models should be used.   

 

6.7.3 A cylindrical pipe subjected to an inner pressure: a static analysis 

Figure 6.30 shows a thick cylindrical pipe, with internal radius a = 0.1m, external 

radius b = 0.2m, subjected to an internal pressure 2600kN/mp  . Because of the axis-

symmetry, we model only one quarter of cylinder shown in Figure 6.30. Figure 6.31 and 

Figure 6.32 give, respectively, the discretization of the domain using 4-node quadrilateral, 

3-node triangular and n-sided polygonal elements. Plane strain condition is considered 

with Young's modulus 221000 kN/mE  , Poisson's ratio 0.3  . Symmetric conditions 

are imposed on the left and bottom edges, and outer boundary is set traction free. The 

exact solution for the stress components is [148] 

 
2 2

2 2 2
1r

a p b
r

b a r
      

     ;      
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a p b
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b a r
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while the exact solution of radial and tangential displacements are given by 
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E b a r




       
     ;     0u   (6.20)

where  ,r   are the polar coordinates and   is measured counter-clockwise from the 

positive x-axis.  
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From Figure 6.33 and Figure 6.34, it is observed that all the computed displacements 

and stresses using the ES-FEM-T3 agree very well with the analytical solutions. Table 6.7 

and Figure 6.35 show the convergence of strain energy of ES-FEM-T3 in comparison 

with different methods. It is again seen that the FEM models give lower bounds, the NS-

FEM-T3 gives an upper bound, and the ES-FEM-T3 is the most accurate and even better 

than the CS-FEM-Q4.   

The convergence of the error in displacement norm is shown in Table 6.8 and plotted 

in Figure 6.36. When the finest mesh ( 0.009h  ) is used, the error of displacement norm 

of the ES-FEM-T3 is only worse than that of the CS-FEM-Q4. This error is much better 

than that of the FEM-T3 and even better than that of the FEM-Q4. It is about 1/6 of the 

FEM-T3 and 4/5 of the FEM-Q4. In term of the convergence rate, the super-convergence 

is again observed for the ES-FEM-T3 with a rate of 2.36 that is larger than the theoretical 

value of 2.0. This rate is also the highest rate among the compared methods. 

The convergence of the error in energy norm is shown in Table 6.9 are plotted in 

Figure 6.37. It is seen that the S-FEM models stand out clearly. When the finest mesh 

( 0.009h  ) is used, the error of the ES-FEM-T3 is only worse than that of the NS-FEM-

T3. This error is almost equal that of the CS-FEM-Q4, and is much better than that of the 

FEM-T3 and FEM-Q4. It is about 3/10 of the FEM-T3 and 1/2 of the FEM-Q4. In terms 

of convergence rate, the super-convergence is again observed for the ES-FEM-T3 with a 

rate of 1.42 that is much larger than the theoretical value of 1.0.    

Figure 6.38 plot the results obtained using n-sided polygonal elements. It is observed 

that all the computed displacements and stresses agree well with the analytical solutions. 

The convergence of the strain energy is shown in Table 6.10 and Figure 6.39. Again the 

nES-FEM is found most accurate, while the nCS-FEM model gives a lower bound and 

nNS-FEM gives an upper bound.  
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The error in displacement norm is shown in Table 6.11 and plotted in Figure 6.40. In 

term of accuracy, it is seen that the nES-FEM stands out clearly. The error of 

displacement norm of the nES-FEM is the smallest among three models. When the finest 

mesh ( 0.0074h  ) is used, the error of the nES-FEM is about 1/6 of the nNS-FEM and 

2/5 of the nCS-FEM. In terms of convergence rate, the super-convergence is observed for 

the nES-FEM with a rate of 2.63 that is much larger than the theoretical value of 2.0. This 

rate is also much larger than those of the nCS-FEM ( 1.84r  ) and nNS-FEM ( 1.89r  ). 

The convergence of the error in energy norm is presented in Table 6.12 and plotted in 

Figure 6.41. Again, it is seen that the nES-FEM stands out clearly. The error of energy 

norm of the nES-FEM is the smallest among three models. When the finest mesh 

( 0.0074h  ) is used, the error of the nES-FEM is about 1/2 of those of the nCS-FEM and 

the nNS-FEM. In terms of convergence rate, the weak super-convergence is observed for 

the nES-FEM with a rate of 1.15. This rate is also much larger than those of the nCS-

FEM ( 0.95r  ) and the nNS-FEM ( 0.99r  ).  

Figure 6.42 shows the displacement norm against Poisson’s ratio changing from 0.4 to 

0.4999999. The results again show that the smoothing-domain-based selective nES/NS-

FEM and ES-/NS-FEM-T3 models in Section 6.5 can overcome the volumetric locking 

for nearly incompressible materials. Although the nNS-FEM and NS-FEM-T3 models are 

also immune for the volumetric locking, the smoothing-domain-based selective nES/NS-

FEM and ES-/NS-FEM-T3 models give better results than those of the nNS-FEM and 

NS-FEM-T3, due to the contribution from the nES-FEM and ES-FEM-T3 formulations.  

  

6.7.4 Free vibration analysis of a shear wall 

In this example, a shear wall with four square openings (see Figure 6.43) is analyzed, 

which has been solved using the BEM by Brebbia et al. [21]. The bottom edge of the wall 
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is fully clamped. Plane stress case is considered with E = 10,000,  = 0.2, t = 1.0 and 

1.0  *. Two types of meshes of triangular and quadrilateral elements are used as shown 

in Figure 6.44. Numerical results using the FEM-Q8 with 6104 nodes and 1922 elements 

for the same problem are computed and used as reference solutions, in place of the 

unavailable exact solutions.   

Table 6.13 lists the first 12 natural frequencies, and the first 12 modes using the NS-

FEM-T3 and ES-FEM-T3 are plotted in Figure 6.45 and Figure 6.46. It is observed that 

(1) the ES-FEM-T3 does not have any spurious non-zero energy modes and all modes are 

physical; (2) the NS-FEM-T3 produces non-physical spurious modes at high energy level; 

(3) the natural frequencies obtained using the ES-FEM-T3 is much larger than those of 

the FEM-T3 that is known overly-stiff; (4) the ES-FEM-T3 results are the closest to the 

reference solution, and they converge faster even than the FEM-Q4 with the same 

distribution of nodes used. This example confirms that the ES-FEM-T3 model possesses a 

very close-to-exact stiffness. 

 

6.7.5 Free vibration analysis of a connecting rod 

A free vibration analysis of a connecting rod shown in Figure 6.47 is performed. The 

plane stress problem is considered with material parameters of 9 210 10 N/mE   ,  = 0.3, 

37.8 10    kg/m3. The nodes on the left inner circumference are fixed in two directions. 

Two types of meshes of triangular and quadrilateral elements are used, as shown in Figure 

6.48. Numerical results using the FEM-Q4 and FEM-Q8 for the same problem are 

computed and used as reference solutions for comparison purposes. 

The results are listed in Table 6.14. It is observed that the ES-FEM-T3 gives the 

                                                 
* In this thesis, we often choose to use non-dimensional parameters because the purpose of the examples is 
just to examine our numerical results, and no much physical implications. Any set of physical units is 
applicable to the results, as long as these units are consistent for all the inputs and outputs. 
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comparable results as those of the FEM-Q4 using more nodes than the ES-FEM-T3. 

Again, Figure 6.49 and Figure 6.50 show that the ES-FEM-T3 does not have any spurious 

non-zero energy modes, while the NS-FEM-T3 has. This example re-confirms the fact 

that the ES-FEM-T3 model is temporally stable, has a very close-to-exact stiffness, and is 

expected to perform well in transient vibration analysis.   

 

6.7.6 Transient vibration analysis of a cantilever beam 

A benchmark problem of a cantilever beam is investigated using the ES-FEM-T3 

model with the Newmark method for time stepping. The beam is subjected to a tip 

harmonic loading ttf fcos)(   in y-direction. Plane strain problem is considered with 

non-dimensional parameters as L=4.0, H=1.0, t=1.0, E=1.0, v=0.3,  =1.0,  =0.005, 

 =0.272, f =0.05, 0.5  . The domain of the beam is represented with 10 4  

elements. Three FEM models of FEM-T3, FEM-Q4 and FEM-Q8 are also used in the 

analysis for comparison purposes. The time step for time integration is set at t =1.57. 

From the dynamic responses in Figure 6.51, it is seen that the amplitude of the ES-FEM-

T3 is closer to that of the FEM-Q8 as compared to the FEM-Q4. This shows that the ES-

FEM-T3 using triangular elements can be applied to transient vibration analysis to deliver 

results of excellent accuracy. This is partially due to the fact that the ES-FEM-T3 model 

has very close-to-exact stiffness, which we have observed in all these free vibration 

analyses examples.   

 

6.7.7 Transient vibration analysis of a spherical shell 

As shown in Figure 6.52, a spherical shell is studied that subjected to a concentrated 

time-dependent loading at its apex. Due to the symmetry, only half of the spherical shell 

is modeled, as shown in Figure 6.53. Two types of meshes of triangular and quadrilateral 
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elements are created for the half model. For the model of triangular elements, we 

deliberately made it asymmetric. Non-dimensional numerical parameters are used:  

R =12, t=0.1, 9.10 , 0.5  , E=1.0, v=0.3, and  =1.0.  

The time-dependence of the loading is first specified in the harmonic form 

of ttf fcos)(   and its dynamic responses are plotted in Figure 6.54 for the case of 

0.05f   and time step t =5. No damping effect is included in this case. Again, it is 

seen that the amplitude of the ES-FEM-T3 is much more accurate than that of the FEM-

T3 model and comparable to that of the FEM-Q4 model with the same set of nodes. 

Next, a Heaviside step load 1)( tf  is added at apex since t=0. Without damping, it is 

seen from Figure 6.55 that the deflection at apex approaches in a oscillatory fashion a 

constant value with the increase in time. With an inclusion of damping ( =0.005, 

 =0.272), the response is damped out with time as expected.    

 

6.8 Remarks 

In this chapter, an edge-based S-FEM (ES-FEM) model is presented for stable and 

accurate solutions to static and dynamic problems of 2D solids. Through the theoretical 

analyses, formulation and numerical examples, some conclusions can be drawn as 

follows: 

(a) The ES-FEM can use general n-sided polygonal elements including triangular 

elements, and is spatially stable. The extension of the method for 3D problems using 

tetrahedral elements is also straightforward, and will be done in the next chapter.   

(b) In the ES-FEM using n-sided polygonal elements, field gradients are computed 

directly using only shape functions themselves at some particular points along 

segments of boundary of the smoothing domains. The values of shape functions for 
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the discrete points of an n-sided polygonal element are defined in a simple linear 

interpolation and averaging manner. 

(c) The ES-FEM-T3 using triangular elements is stable and accurate without using any 

parameter for stabilization. The formulation is straightforward and the implementation 

is as easy as the FEM, without the increase of degrees of freedom. The ES-FEM-T3 

often shows super-convergence behavior with ultra-accurate results: the numerical 

results of the ES-FEM-T3 using triangular elements are found even more accurate in 

both displacement and energy norms than the FEM using quadrilateral elements with 

the same distribution of nodes.  

(d) With the same distribution of nodes and the same direct solver, the computation time 

of the ES-FEM-T3 is longer than that of the FEM-Q4. However, when the 

computational efficiency (computation time for the same accuracy) and convergence 

rates in both displacement and energy norms are considered, the ES-FEM-T3 is the 

most superior. 

(e) Because the rates of convergence of the solution of the ES-FEM models are higher 

than the FEM counterparts, the computational efficiency of the ES-FEM becomes 

more significant when the mesh is refined.   

(f) A smoothing-domain-based selective ES/NS-FEM is effective in overcoming the 

volumetric locking for problems of nearly incompressible materials.  

(g) For the free vibration analysis, the ES-FEM-T3 using triangular elements gives the 

more accurate results and higher convergence rate than the FEM-Q4. No spurious 

non-zero energy modes were found in vibration analysis and hence the ES-FEM-T3 is 

found stable temporally for all these examples studied.   
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(h) For the forced vibration analysis, vibration period obtained using the ES-FEM-T3 

using triangular elements is more accurate compared to the FEM-Q4, and the 

vibration amplitude is closer to that of the higher-order FEM-Q8.  

(i) For n-sided polygonal elements, results of the nES-FEM found agree well with exact 

solutions and often much better than those of others existing methods.  

The ES-FEM has been developed for 2D piezoelectric [112], 2D visco-elastoplastic 

[106], plate [113] adaptive [26], and primal-dual shakedown analyses [149]. More general 

models based on meshfree settings, such as the ES-PIM can be found in [84].   
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Table 6.1. Shape function values at different sites on the smoothing domain boundary 

associated with the edge 1-6 in Figure 6.3. 

Site Node  
1 

Node  
2  

Node 
 3 

Node
 4 

Node
 5 

Node 
6 

Node
 7 

Node
 8 

Node 
9 

Description 

1 1.0 0 0 0 0 0 0 0 0 Field node 
2 0 1.0 0 0 0 0 0 0 0 Field node 

3 0 0 1.0 0 0 0 0 0 0 Field node 
4 0 0 0 1.0 0 0 0 0 0 Field node 
5 0 0 0 0 1.0 0 0 0 0 Field node 
6 0 0 0 0 0 1.0 0 0 0 Field node 
7 0 0 0 0 0 0 1.0 0 0 Field node 
8 0 0 0 0 0 0 0 1.0 0 Field node 
9 0 0 0 0 0 0 0 0 1.0 Field node 
A 1/6 1/6 1/6 1/6 1/6 1/6 0 0 0 Centroid of element 
B 1/5 0 0 0 0 1/5 1/5 1/5 1/5 Centroid of element 
g1 7/12 1/12 1/12 1/12 1/12 1/12 0 0 0 Mid-segment of ,

s
k p  

g2 1/12 1/12 1/12 1/12 1/12 7/12 0 0 0 Mid-segment of ,
s
k p  

g3 1/10 0 0 0 0 6/10 1/10 1/10 1/10 Mid-segment of ,
s
k p  

g4 6/10 0 0 0 0 1/10 1/10 1/10 1/10 Mid-segment of ,
s
k p  
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Table 6.2. Existence of spurious zero energy modes in an element. 

Type of element ES-FEM FEM with reduced 
integration 

 
Triangle 

3RN   

 
3Qn  , 3 9Q QN n    

3tn  , 2 6u tN n    

Q u RN N N   

=> spurious zero energy modes not 
possible 

 
1Qn  , 3 3Q QN n    

3tn  , 2 6u tN n    

Q u RN N N   

=> spurious zero energy 
modes not possible 

 
Quadrilateral 

3RN   

 
4Qn  , 3 12Q QN n    

4tn  , 2 8u tN n    

Q u RN N N   

=> spurious zero energy modes not 
possible 

 
1Qn  , 3 3Q QN n    

4tn  , 2 8u tN n    

Q u RN N N   

=> spurious zero energy 
modes possible 

 

n-sided polygonal 

 4n   

3RN   

 

Qn n , 3 3Q QN n n    

tn n , 2 2u tN n n    

Q u RN N N    

=> spurious zero energy modes not 

possible 

 

 

Not applicable 

 

Note: RN : number of DOFs of rigid motion 

          Qn : number of quadrature points/cells 

          QN : number of independent equations 

tn : number of nodes 

uN : number of total DOFs 
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Table 6.3. Error in displacement norm (%) for solutions obtained using different 
methods for the cantilever problem using the same polygonal meshes. 

Mesh 16 4  24 6  32 8  40 10  48 12  

h (m) 4.0 2.0  1.5 1.2 1.0 

nCS-FEM 6.21 3.01 1.76 1.13 0.81 

nNS-FEM 3.06 1.55 0.98 0.60 0.44 

nES-FEM 2.10 0.77 0.46 0.27 0.19 

 

Table 6.4. Error in energy norm for solutions obtained using different methods for the 
cantilever problem using the same polygonal meshes. 

Mesh 16 4  24 6  32 8  40 10  48 12  

h (m) 4.0 2.0  1.5 1.2 1.0 

nCS-FEM 0.4718 0.3326 0.2532 0.2025 0.1721 

nNS-FEM 0.2588 0.1738  0.1296 0.1001 0.0897 

nES-FEM 0.1956 0.1413 0.1065 0.0782 0.0666 

 
Table 6.5. Error in displacement norm (%) in solutions obtained using different methods 

for the infinite plate with a hole using the same polygonal meshes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969 

nCS-FEM 1.2895 0.6299 0.3638 0.2335 0.1628 

nNS-FEM 2.2983 1.3538 0.9439 0.7201 0.5840 

nES-FEM 0.5015 0.2494 0.1537 0.1039 0.0744 

 

Table 6.6. Error in energy norm ( 310 ) in solutions obtained using different methods for 

the infinite plate with a hole using the same polygonal meshes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.5468 0.3786 0.2895 0.2343 0.1969 

nCS-FEM 5.0119 3.4427 2.5880 2.0613 1.7091 

nNS-FEM 4.5090 2.9545 2.1723 1.7047 1.3964 

nES-FEM 3.2525 1.6328 0.9604 0.6242 0.4368 
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Table 6.7. Strain energy (KNm) obtained using different methods for the cylindrical pipe 
subjected to an inner pressure using the same distribution of nodes. 

Mesh 6 12  8 16  10 20  12 24  Analytical sol. 

DOFs 182   306    462 650  

FEM-T3 0.2531   0.2546   0.2554  0.2558 0.2567 

FEM-Q4 0.2560 0.2563   0.2564   0.2565 0.2567 

CS-FEM-Q4 0.2563 0.2565 0.2566 0.2566 0.2567 

NS-FEM-T3 0.2623 0.2599  0.2588  0.2582 0.2567 

ES-FEM-T3  0.2570 0.2569 0.2569 0.2568 0.2567 

 

Table 6.8. Error in displacement norm obtained using different methods for the 
cylindrical pipe subjected to an inner pressure using the same distribution of nodes. 

Mesh  4 8  6 12  8 16  10 20  12 24  

h (m) 0.0271     0.0181     0.0136     0.0109   0.0090 

FEM-T3 2.11 e-05   9.82 e-06   5.61 e-06   3.61 e-06   2.52 e-06   

FEM-Q4 4.14 e-06 1.88 e-06   1.07 e-06   6.84 e-07   4.76 e-07   

CS-FEM-Q4 2.79 e-06 1.27 e-06 7.17 e-07 4.60 e-07 3.20 e-07 

NS-FEM-T3 2.39 e-05 1.11 e-05   6.39 e-06   4.13 e-06    2.89 e-06   

ES-FEM-T3 5.28 e-06   1.88 e-06    9.60 e-07   5.84 e-07   3.94 e-07   

                 

Table 6.9. Error in energy norm obtained using different methods for the cylindrical pipe 
subjected to an inner pressure using the same distribution of nodes. 

Mesh  4 8  6 12  8 16  10 20  12 24  

h  (m) 0.0271     0.0181     0.0136     0.0109   0.0090 

FEM-T3 9.62 e-02  6.57 e-02   4.98 e-02   4.00 e-02   3.35 e-02   

FEM-Q4 5.77 e-02   3.87 e-02   2.91 e-02   2.33 e-02    1.94 e-02   

CS-FEM-Q4 4.54 e-02 2.58 e-02 1.72 e-02 1.25 e-02 0.96 e-02 

NS-FEM-T3 2.76 e-02  1.58 e-02    1.06 e-02   0.77 e-02   0.60 e-02   

ES-FEM-T3 4.49 e-02  2.54 e-02   1.69 e-02   1.22 e-02   0.94 e-02   

 
Table 6.10. Strain energy (KNm) using different methods for the thick cylindrical pipe 

using the same polygonal meshes. 
 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Analytical solution

DOFs 368 616 928 1304 1744  

nCS-FEM 0.2559      0.2562 0.2563 0.2564 0.2565 0.2567 

nNS-FEM 0.2592      0.2582 0.2577 0.2574 0.2572 0.2567 

nES-FEM 0.2572      0.2570 0.2569 0.2568 0.2568 0.2567 
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Table 6.11. Error in displacement norm (%) in solutions obtained using different methods 
for the thick cylindrical pipe using the same polygonal meshes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.0161 0.0124 0.0101 0.0085 0.0074 

nCS-FEM 0.3200 0.2154     0.1480       0.1061     0.0758     

nNS-FEM 0.9070    0.5362 0.3631 0.2469 0.2063 

nES-FEM 0.2481 0.1127 0.0627 0.0409 0.0318 

 

Table 6.12. Error in energy norm in solutions obtained using different methods for the 
thick cylindrical pipe using the same polygonal meshes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.0161 0.0124 0.0101 0.0085 0.0074 

nCS-FEM 0.0293      0.0240      0.0198    0.0167     0.0140   

nNS-FEM 0.0281 0.0210 0.0183 0.0144 0.0130 

nES-FEM 0.0165 0.0122 0.0094 0.0081 0.0067 

 
Table 6.13. First 12 natural frequencies (rad/s) of a shear wall. 

Model NS-FEM-
T3  

 

ES-FEM-
T3  

 

FEM-T3 

 

 

FEM-
Q4  

 

Reference 

(FEM-Q8) 

 (6104 nodes 

1922 elements) 

Reference 

(Brebbia 
et al. 
[21]) 

 
Nodes: 559 

Elements: 476 
4-node elements 
or  
952 triangles 

 

1.827   
6.511 
7.515 

10.183 
13.733 

14.709 (*)  
17.032 

17.104 (*) 
18.360 

18.890 (*) 
19.450 (*) 
19.538 (*) 

2.050 
7.038 
7.620 

11.743 
15.143 
18.214 
19.714 
21.994 
22.778 
23.349 
25.052 
25.837 

2.144   
7.319   
7.651  

12.554  
15.943 
18.763  
20.382 
22.676 
23.640  
24.126  
25.534  
26.845 

2.073 
7.096 
7.625 

11.938 
15.341 
18.345 
19.876 
22.210 
23.001 
23.552 
25.175 
26.071 

2.011 
6.952 
7.600 

11.471 
14.972 
18.066 
19.581 
21.872 
22.636 
23.293 
25.018 
25.877 

2.079 
7.181 
7.644 

11.833 
15.947 
18.644 
20.268 
22.765 

 
Nodes: 2072 

Elements: 1904 
4-node elements 
or  
3808 triangles 

 
 
 

1.935 
6.776 
7.566 

10.895 
14.468 

15.324 (*) 
17.553 

17.834 (*) 
19.152 

20.511 (*) 
21.027 (*) 
21.303 (*) 

2.022 
6.976 
7.606 

11.551 
15.019 
18.108 
19.619 
21.908 
22.681 
23.308 
25.030 
25.875 

2.063 
7.087 
7.620 

11.880 
15.322 
18.317 
19.862 
22.197 
23.000 
23.569 
25.206 
26.216 

2.032 
6.999 
7.609 

11.625 
15.092 
18.158  
19.677  
21.987  
22.759 
23.380  
25.073 
25.956 

2.011 
6.952 
7.600 

11.471 
14.972 
18.066 
19.581 
21.872 
22.636 
23.293 
25.018 
25.877 

2.079 
7.181 
7.644 

11.833 
15.947 
18.644 
20.268 
22.765 

(*) spurious non-zero energy modes 
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Table 6.14. First 12 natural frequencies (Hz) of a Connecting bar. 

Model NS-FEM-

T3  

 

ES-FEM-

T3  

 

FEM-T3 

 

Reference 

(FEM-Q4) 

(537 nodes 

429 eles) 

Reference 

(FEM-Q4) 

(1455 nodes 

1256 eles) 

Reference 

(FEM-Q8) 

 (10002 nodes 

3125 eles) 

 
Nodes: 373 

Elements: 574 
triangles 

 
 
 

4.94 
20.81 
48.39 
48.49 
84.93 
97.68 

114.03   
123.32 (*)  
143.64 (*) 
144.66 (*) 
151.43 

161.95 (*) 

5.14 
22.06 
49.38 
52.04 
92.72 

109.59 
132.68 
158.24 
158.95 
201.38 
204.84 
209.28 

5.32 
22.94 
49.70 
54.06 
96.86 

114.31 
142.45 
163.97 
169.28 
204.58 
210.12 
210.74 

5.14 
22.05 
49.30 
52.23        
93.61        

108.59       
134.64       
159.45       
160.59       
203.52       
208.68       
209.02   

 5.12 
21.84 
49.12 
51.40 
91.79 

106.15 
130.14 
156.14 
157.70 
200.06 
204.41 
204.99 

 
Nodes: 1321 

Elements: 
2296 triangles 

 
 

5.05 
21.49 
48.88 
50.40 
89.61 

92.65 (*) 
103.44 
125.65 

151.62 (*) 
152.01 (*) 
155.54  

188.59 (*) 

5.12 
21.88 
49.17 
51.52 
91.93 

106.85 
130.55 
156.35 
157.85 
200.90 
204.26 
206.53 

5.21 
22.27 
49.35 
52.49 
93.84 

109.28 
134.58 
159.74 
159.97 
203.35 
207.50 
209.18 

 5.12 
21.91 
49.21 
51.66 
92.39 

107.51 
131.48 
157.51 
158.69 
201.69 
206.04 
209.92 

5.12 
21.84 
49.12 
51.40 
91.79 

106.15 
130.14 
156.14 
157.70 
200.06 
204.41 
204.99 

(*) spurious non-zero energy modes 
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Figure 6.1. ES-FEM settings: domain discretization into arbitrary n-sided polygonal 

elements, and the smoothing domains created based on the edges of these elements. 
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Figure 6.2. ES-FEM-T3 settings: triangular elements (solid lines) and the edge-based 

smoothing domains (shaded areas). 
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Figure 6.3. Gauss points of the smoothing domains associated with edges for n-sided 

polygonal elements in the ES-FEM. 
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Figure 6.4. Mesh discretization using triangular elements for standard patch test. 
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Figure 6.5. Distribution of displacement v along the horizontal middle axis of the 

cantilever subjected to a parabolic traction at the free end. The ES-FEM-T3 performs 

much better than FEM-T3 and even better than the FEM-Q4. 
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Figure 6.6. Relative error in displacement v along horizontal middle axis of the cantilever 

subjected to a parabolic traction at the free end. The ES-FEM-T3 solution is very close to 

the exact one.  
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Figure 6.7. Normal stress xx  and shear stress xy  along the section of / 2x L  using the 

ES-FEM-T3 of the cantilever subjected to a parabolic traction at the free end.  
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Figure 6.8. Convergence of the strain energy solution obtained using the ES-FEM-T3 in 

comparison with other methods for the cantilever subjected to a parabolic traction at the 

free end using the same distribution of nodes.  
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Figure 6.9. Error in displacement norm obtained using the ES-FEM-T3 in comparison 

with other methods for the cantilever subjected to a parabolic traction at the free end 

using the same distribution of nodes.   

 

0 0.1 0.2 0.3 0.4

−1.5

−1

−0.5

0 

log
10

h

lo
g 10

 E
ne

rg
y 

no
rm

 

 

FEM−T3 (r=0.93)
FEM−Q4 (r=0.99)
CS−FEM−Q4 (r=1.49)
NS−FEM−T3 (r=1.20)
ES−FEM−T3 (r=1.52)

ES−FEM−T3

FEM−T3

FEM−Q4

NS−FEM−T3

CS−FEM−Q4

 

Figure 6.10. Error in energy norm obtained using the ES-FEM-T3 in comparison with 

other methods for the cantilever subjected to a parabolic traction at the free end using the 

same distribution of nodes.  
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Figure 6.11. Comparison of the computation time of different methods for solving the 

cantilever subjected to a parabolic traction at the free end.  For the same distribution of 

nodes, the FEM-T3 is the fastest to deliver the results. 
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Figure 6.12. Comparison of the efficiency (computation time for the solutions of same 

accuracy measured in displacement norm) for solving the cantilever subjected to a 

parabolic traction at the free end. The ES-FEM-T3 stands out clearly as a winner, even 

though it uses triangular elements. It wins by its superiority in convergence rate.   
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Figure 6.13. Comparison of the efficiency of computation time in terms of energy norm 

of the cantilever subjected to a parabolic traction at the free end.  The CS-FEM-Q4 

performed best, followed by the ES-FEM-T3 that uses triangular elements. 
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Figure 6.14. Normal stress xx  and shear stress xy  along the section of 0x   using nES-

FEM of the cantilever subjected to a parabolic traction at the free end.  
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Figure 6.15. Convergence of the strain energy solution of nES-FEM using n-sided 

polygonal elements in comparison with other methods for the cantilever subjected to a 

parabolic traction at the free end using the same meshes. 
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Figure 6.16. Error in displacement norm of nES-FEM-T3 using n-sided polygonal 

elements in comparison with other methods for the cantilever subjected to a parabolic 

traction at the free end using the same meshes. 
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Figure 6.17. Error in energy norm of nES-FEM-T3 using n-sided polygonal elements in 

comparison with other methods for the cantilever subjected to a parabolic traction at the 

free end using the same meshes. 
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Figure 6.18. Distribution of displacement u along the bottom boundary of the infinite 

plate with a hole subjected to unidirectional tension.  
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Figure 6.19. Distribution of displacement v along the left boundary of the infinite plate 

with a hole subjected to unidirectional tension.  

 

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

y(x=0) (m)

St
re

ss
 σ

xx
 (

N
/m

2 )

 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

x(y=0) (m)

St
re

ss
 σ

yy
 (

N
/m

2 )

 

 

ES−FEM−T3
Analytical solution

ES−FEM−T3
Analytical solution

 

Figure 6.20. Stress xx  along the left boundary ( 0x  ) and stress yy  along the bottom 

boundary ( 0y  ) using the ES-FEM-T3 for the infinite plate with a hole subjected to 

unidirectional tension. 
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Figure 6.21. Convergence of the strain energy solution of ES-FEM-T3 in comparison 

with other methods for the infinite plate with a hole subjected to unidirectional tension 

using the same distribution of nodes. 
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Figure 6.22. Error in displacement norm of the ES-FEM-T3 solution in comparison with 

other methods for the infinite plate with a hole subjected to unidirectional tension using 

the same distribution of nodes. 
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Figure 6.23. Error in energy norm of the ES-FEM-T3 solution in comparison with other 

methods for the infinite plate with a hole subjected to unidirectional tension using the 

same distribution of nodes. 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
2

3

4

5

6
x 10

−3

x(y=0) (m)

D
is

pl
ac

em
en

t u
 (

m
)

 

 

1 1.5 2 2.5 3 3.5 4 4.5 5
−2.5

−2

−1.5

−1

−0.5
x 10

−3

y(x=0) (m)

D
is

pl
ac

em
en

t v
 (

m
)

 

 
nES−FEM
Analytical solution

nES−FEM
Analytical solution

 

Figure 6.24. Displacement u along the bottom boundary and displacement v along the left 

boundary using nES-FEM of the infinite plate with a hole subjected to unidirectional 

tension.  
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Figure 6.25. Stress xx  along the left boundary ( 0x  ) and stress yy  along the bottom 

boundary ( 0y  ) using nES-FEM of the infinite plate with a hole subjected to 

unidirectional tension. 

 

200 400 600 800 1000 1200 1400 1600 1800
0.01175

0.01176

0.01177

0.01178

0.01179

0.01180

0.01181

0.01182

0.01183

Degrees of freedom

S
tr

ai
n 

en
er

gy

 

 

nCS−FEM 
nNS−FEM
nES−FEM 
Analytical solution

 

Figure 6.26. Convergence of the strain energy solution of nES-FEM using n-sided 

polygonal elements in comparison with other methods for the infinite plate with a hole 

subjected to unidirectional tension using the same meshes. 
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Figure 6.27. Error in displacement norm of nES-FEM-T3 using n-sided polygonal 

elements in comparison with other methods for the infinite plate with a hole subjected to 

unidirectional tension using the same meshes. 
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Figure 6.28. Error in energy norm of nES-FEM-T3 using n-sided polygonal elements in 

comparison with other methods for the infinite plate with a hole subjected to 

unidirectional tension using the same meshes. 
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Figure 6.29. Displacement norm with different Poisson’s ratios.  

(a) n-sided polygonal elements (579 nodes); (b) triangular elements (289 nodes). 

 

 

Figure 6.30. A thick cylindrical pipe subjected to an inner pressure and its quarter model. 
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Figure 6.31. Discretization of the domain of the thick cylindrical pipe subjected to an 

inner pressure; (a) 4-node quadrilateral elements; (b) 3-node triangular elements. 
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Figure 6.32. Discretization of the domain using n-sided polygonal elements of the thick 

cylindrical pipe subjected to an inner pressure. 
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Figure 6.33. Distribution of the radial displacement of the cylindrical pipe subjected to an 

inner pressure using the ES-FEM-T3. 
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Figure 6.34. Distribution of the radial and tangential stresses of the cylindrical pipe 

subjected to an inner pressure using the ES-FEM-T3. 

 
 

0 100 200 300 400 500 600 700

0.25

0.255

0.26

0.265

0.27

Degrees of freedom

S
tr

ai
n 

en
er

gy
 (

K
N

m
)

FEM−T3
FEM−Q4
CS−FEM−Q4
NS−FEM−T3
ES−FEM−T3
Analytical solution

ES−FEM−T3

 

Figure 6.35. Convergence of strain energy of ES-FEM-T3 in comparison with other 

methods for the cylindrical pipe subjected to an inner pressure using the same distribution 

of nodes.   
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Figure 6.36. Error in displacement norm of ES-FEM-T3 in comparison with other 

methods for the cylindrical pipe subjected to an inner pressure using the same distribution 

of nodes. 
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Figure 6.37. Error in energy norm of ES-FEM-T3 in comparison with other methods for 

the cylindrical pipe subjected to an inner pressure using the same distribution of nodes. 

 



Chapter 6  Edge-based Smoothed FEM (ES-FEM) 

  200 

0.1 0.12 0.14 0.16 0.18 0.2
3

3.5

4

4.5

5

5.5
x 10

−3

Radius r(m)

R
ad

ia
l d

is
pl

ac
em

en
t (

m
)

nES−FEM
Analytical solution

0.1 0.12 0.14 0.16 0.18 0.2
−600

−400

−200

0

Radius (m)

R
ad

ia
l s

tr
es

s 
 σ

r (
K

N
/m

2 )

0.1 0.12 0.14 0.16 0.18 0.2
200

400

600

800

1000

Radius (m)

T
an

ge
nt

ia
l s

tr
es

s 
 σ

θ (
K

N
/m

2 )

nES−FEM
Analytical solution

nES−FEM
Analytical solution

a) b) 

Figure 6.38. Computed and exact results of nodes along the radius of the thick 

cylindrical pipe subjected to an inner pressure using the nES-FEM; (a) radial 

displacement ur ; (b) radial stress r  and tangential stress  . 
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Figure 6.39.  Convergence of the strain energy solution of nES-FEM in comparison with 

other methods for the thick cylindrical pipe subjected to an inner pressure. 
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Figure 6.40.  Error in displacement norm of nES-FEM in comparison with other methods 

for the thick cylindrical pipe subjected to an inner pressure. 
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Figure 6.41.  Error in energy norm of nES-FEM in comparison with other methods for the 

thick cylindrical pipe subjected to an inner pressure. 
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Figure 6.42. Displacement norm with different Poisson’s ratios the thick cylindrical pipe 

subjected to an inner pressure; (a) n-sided polygonal elements (464 nodes); (b) triangular 

elements (91 nodes). 
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Figure 6.43. A shear wall with four square openings. 
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(a) Triangular mesh
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Figure 6.44. Domain discretization using triangular and 4-node quadrilateral elements  

of the shear wall with four openings.  
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Figure 6.45. 1st to 6th modes of the shear wall by the NS-FEM-T3 and ES-FEM-T3. 
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(a) NS-FEM-T3 (b) ES-FEM-T3 

Figure 6.46. 7th to 12th modes of the shear wall by the NS-FEM-T3 and ES-FEM-T3. 
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Figure 6.47. Geometric model, loading and boundary conditions of an automobile 

connecting bar. 
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Figure 6.48. Domain discretization using triangular and 4-node quadrilateral elements  

of the automobile connecting bar.  
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(a) NS-FEM-T3 (b) ES-FEM-T3 

Figure 6.49. 1st to 6th modes of the connecting bar by NS-FEM-T3 and ES-FEM-T3. 
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(a) NS-FEM-T3 (b) ES-FEM-T3 

Figure 6.50. 7th to 12th modes of the connecting bar by NS-FEM-T3 and ES-FEM-T3. 
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Figure 6.51. Transient responses for the cantilever beam subjected to a harmonic loading. 
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Figure 6.52. A spherical shell subjected to a concentrated loading at its apex. 
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Figure 6.53. Domain discretization of half of the spherical shell using triangular and 4-

node quadrilateral elements. 
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Figure 6.54. Transient responses for the spherical shell subjected to a harmonic loading.  
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Figure 6.55. Transient responses obtained using the ES-FEM-T3 for the spherical shell 

subjected to a Heaviside step loading.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 7  Face-based Smoothed FEM (FS-FEM) 

  212 

 

 

Chapter 7  
 
 
 

Face-based Smoothed FEM (FS-FEM) 
 

 

7.1 Introduction 

The four-node tetrahedral element (T4) is often used to introduce the procedure of the 

finite element method (FEM-T4) for three dimensional (3D) problems, because of its 

simplicity in formulation: piecewise linear approximation of displacement field and 

constant strain field. Further more, most FEM codes use tetrahedral elements for adaptive 

analyses of 3D problems, due to the simple fact that tetrahedral meshes can be 

automatically generated and refined, even for complicated domains. The FEM-T4 is 

clearly superior at least for two counts: simplicity and adaptively.   

However, the FEM-T4 also possesses crucial shortcomings for problems of solid 

mechanics. Three such shortcomings are the well-known overly-stiff behavior, poor stress 

solution, and volumetric locking in the nearly incompressible cases. In order to overcome 

these disadvantages, some new finite elements were proposed. Dohrmann et al. [40] 

presented a weighted least-squares approach in which a linear displacement field is fit to 

an element’s nodal displacements. The method is claimed to be computationally efficient 

and avoids the volumetric locking problems. However more nodes are required on the 

element boundary to obtain a least square fitted linear displacement field. Dohrmann et al. 

[39] also proposed a nodal integration FEM in which each element is associated with a 
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single node and the linear interpolation functions of the original mesh are used. The 

method avoids the volumetric locking and performs better comparing to the FEM-T4 in 

term of stress solution for static problems. The nodal integration FEM can be viewed as a 

special linear case of the NS-FEM presented in Chapter 5, and the LC-PIM [86, 157] 

formulated using the generalized gradient smoothing technique [68] and the point 

interpolation shape functions [67]. However, for dynamic problems, these types of node-

based smoothed methods are known “overly soft” and unstable temporally due to the 

presence of spurious modes at higher energy levels. Therefore, a stabilization scheme 

such as the one proposed by Puso and Solberg [125] is required for dynamic problems.  

In this chapter, in order to overcome the above-mentioned disadvantages of the FEM-

T4 and the NS-FEM-T4 presented in Chapter 5, we extend the idea of the ES-FEM-T3 for 

3D problems. Instead of using the edge-based smoothing domains in 2D problems, we 

will now use the face-based smoothing domains for smoothed strain field construction. It 

is therefore termed as the face-based smoothed finite element method (FS-FEM) using T4 

elements. In the FS-FEM-T4, the system stiffness matrix is computed using strains 

smoothed strains, and hence the FS-FEM-T4 model is found softer than that of the FEM-

T4 using the same mesh. Some numerical results will be presented to demonstrate the 

efficiency and properties of the FS-FEM-T4 for both linear and geometrically nonlinear 

3D problems. It will be shown that the implementation of the FS-FEM-T4 is 

straightforward and no penalty parameter or additional degrees of freedom is used, and 

the results are much better than those of the FEM-T4.  

In addition, a smoothing-domain-based selective FS/NS-FEM-T4 is also formulated 

using combined face-based and node-based smoothing domains. The selective FS/NS-

FEM-T4 is immune from volumetric locking for problems using nearly incompressible 

materials, due to the volumetric locking-free property inherited from the NS-FEM.   



Chapter 7  Face-based Smoothed FEM (FS-FEM) 

  214 

7.2 Creation of the face-based smoothing domains 

In the FS-FEM-T4, the 3D problem domain is meshed into tetrahedral elements in the 

same way as in the standard FEM-T4. Since we only use T4 elements, the mesh 

generation can be done with easy for complicated geometries.  

Consider now a 3D domain  discretized with eN  tetrahedral elements, such that 

1

eN
e
i

i

    and e e
i j   , i j , in which eN  is the total number of the elements in 

the entire problem domain. The T4 element mesh shall have a total of Nf  faces. On top of 

the element mesh we now further create a set of 3D smoothing domains based on the Nf  

faces of the element mesh, such that 
1

fN
s
k

k

    and s s
i j   , i j . The smoothing 

domain s
k  associated with the face k is created by simply connecting three nodes of the 

face to the centers of the adjacent elements as shown in Figure 7.1.  

The procedure is simple, and can always be performed for a given T4 element mesh 

without any technical difficulty. Strain smoothing operations [24] are then performed 

over these smoothing domains for creating a piecewisely constant strain field that is then 

used to establish the discretized system of equations.    

 

7.3 Formulation of the FS-FEM-T4 

7.3.1 Static analysis 

Using the general formulation of the S-FEM models presented in Chapter 3, Section 

3.1, a linear system of equations of the FS-FEM-T4 for the static analysis has the form of  

FS-FEM K d f  (7.1)

where FS-FEMK  is the smoothed stiffness matrix whose entries are given by  
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FS-FEM

1 1

f f

s
k

N N
T T T s

IJ I J I J I J k
k k

d d V
  

      K B DB B DB B DB  (7.2)

where s
kV  is the volume of the face-based smoothing domain s

k  and is computed by  

1

1

4

e
k

s
k

n
s e

k j
j

V d V


            (7.3)

where e
kn  is the number of elements attached to the face k ( 1e

kn   for the boundary faces 

and 2e
kn   for inner faces) and e

jV  is the volume of the jth element attached to the face k.  

In Eq. (7.2), the smoothed strain-displacement matrix IB  on the domain s
k  is 

computed numerically simply by an local assembly process similarly as in the FEM   

1

1 1

4

e
kn

e e
I j js

jk

V
V 

 B B     (7.4)

where 
e
j

e
j I

I S

 B B  is the compatible strain-displacement matrix for the jth tetrahedral 

element attached to the face k. It is assembled from the compatible strain-displacement 

matrices ( )IB x   of nodes in the set e
jS   which contains four nodes of the jth tetrahedral 

element. Matrix ( )IB x  for the node I in tetrahedral elements has the form of Eq. (5.7). 

From Eq.(7.4), it is clear that the entries of matrix IB  are constants over each 

smoothing domain. With this formulation, only the volume and the usual compatible 

strain-displacement matrices e
jB  of the FEM-T4 elements are needed to compute the 

system stiffness matrix for the FS-FEM-T4.   

The above formulation is simple, but works only for T4 elements that uses linear 

interpolation. In theory, the FS-FEM works also for other types of elements, as long as a 

continuous displacement field on the smoothing domain surface can be created.  For these 

general FS-FEM models, the smoothed strain-displacement matrix IB  has to be 

computed using the original Eq. (3.10). 
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7.3.2 Nonlinear analysis of large deformation 

The extension of the FS-FEM-T4 to geometrically nonlinear problems of large 

deformation is straightforward, and the similar procedure used in the standard FEM can 

be adopted with minor changes. For isotropic linear elastic solids, the values of the strain 

gradient matrices and stresses at the face-based smoothing domains become the average 

values of those of the adjacent elements attached to the face. The formulation of the FS-

FEM-T4 for geometrically nonlinear problems of large deformation based on the total 

Lagrange formulation [12, 128], and the discrete system equations can be expressed by: 

 FS-FEM FS-FEM
1L NL  K K d f f     (7.5)

where the stiffness matrix for the linearized portion can be written as 

FS-FEM

1

fN
T s

L L L k
k

V


K B DB     (7.6)

in which matrix LB  is for the face-based smoothing domains, and is computed using 

,
1

1 1

4

e
kn

e e
L j L js

jk

V
V 

 B B     (7.7)

In the forgoing equation, matrix e
LB  for an element is given by 

11 1,1 21 1,1 31 1,1

12 1,2 22 1,2 13 1,2

13 1,3 23 1,3 33 1,3

11 1,2 12 1,1 21 1,2 22 1,1 31 1,2 32 1,1

12 1,3 13 1,2 22 1,3 23 1,2 32 1,3 33 1,2

11 1,3 13 1,1 21 1,3 23 1,1 31 1,3 33 1

e
L

F N F N F N

F N F N F N

F N F N F N

F N F N F N F N F N F N

F N F N F N F N F N F N

F N F N F N F N F N F N


  
  
  

B

,1

11 2,1 31 4,1

12 2,2 13 4,2

13 2,3 33 4,3

11 2,2 12 2,1 31 4,2 32 4,1

12 2,3 13 2,2 32 4,3 33 4,2

11 2,3 13 2,1 31 4,3 33 4,1

F N F N

F N F N

F N F N

F N F N F N F N

F N F N F N F N

F N F N F N F N















  
 


  








    (7.8)

in which ,
I

I j
j

N
N

X





, and IJF  are entries of the deformation gradient tensor for the 
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element eF  that is computed by 

 
11 12 13

21 22 23

31 32 33

T
Te

S

F F F

F F F

F F F

 
            

x
F d I

X
    (7.9)

where I is the third order unity matrix and S d  is the conventional compatible strain.  

The stiffness matrix for the non-linear portion in Eq. (7.5) can be written as 

FS-FEM

1

fN
T s

NL NL NL k
k

V


K B SB     (7.10)

where matrix NLB  is for the face-based smoothing domain, and is computed using 

,
1

1 1

4

e
kn

e e
NL j NL js

jk

V
V 

 B B            (7.11)

In the forgoing equation, matrix e
NLB  is for the element, and is given by 

1,1 2,1

1,2 2,2

1,3 2,3

1,1

1,2

1,3

1,1 4,1

1,2 4,2

1,3 4,3

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0

e
NL

N N

N N

N N

N

N

N

N N

N N

N N

 
 
 
 
 
 
 
 
 
 
 
 
 
 

B











        (7.12)

and matrix S  is for face-based smoothing domain, and is computed using  

1

1 1

4

e
kn

e e
j js

jk

V
V 

 S S    with  

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

11 12 13

12 22 23

13 23 33

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

e

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

S S S

 
 
 
 
 
 
 
 
 
 
 
 
 
 

S   (7.13)

in which the entries IJS  of matrix eS are derived from the 2nd Piola-Kirchhoff stress 

tensor eΨ  for the element by 



Chapter 7  Face-based Smoothed FEM (FS-FEM) 

  218 

11 11

22 22

33 33

12 12

23 23

31 31

2

2

2

e

S E

S E

S E

S E

S E

S E

   
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   

    
   
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   
      

Ψ D     (7.14)

The entries IJE  in Eq. (7.14) is derived from the entries of the Green-Lagrange strain 

tensor eE  for the element as 

  
11 12 13

21 22 23

31 32 33

1

2

Te e e

E E E

E E E

E E E

 
    
  

E F F I     (7.15)

The “additional” force term caused by the nonlinearity in Eq. (7.5) becomes 

1
1

fN
T s
L k

k

V


f B Ψ     (7.16)

where 

1,
1

1 1

4

e
kn

e e
j js

jk

V
V 

 Ψ Ψ         (7.17)

 

 

7.4 A smoothing-domain-based selective FS/NS-FEM-T4 model 

Similar to the ES/NS-FEM-T3 given in Chapter 6, Section 6.5, this section presents a 

smoothing-domain-based selective ES/NS-FEM-T4 for 3D solids of incompressible 

materials. We use two different types of smoothing domains selectively for two different 

material “parts” (  -part and  -part). This scheme comes from the realization of two 

facts: 1) the node-based smoothing domains used in the NS-FEM-T4 were found effective 

in overcoming the volumetric locking [78]; and 2) the  -part is known as the culprit of 

the volumetric locking. We therefore use the node-based smoothing domains for the  -

part and face-based smoothing domains for the  -part. The stiffness matrix of the 

smoothing-domain-based selective FS/NS-FEM-T4 model becomes 
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   
FS-FEM NS-FEM
1 2

1, 1 1, 1, 2, 2 2, 2,
1 1

f n
N N

T T

i i i j j j
i j

V V
 

  
K K

K B D B B D B
 

   
(7.18)

where 1,iB  and 1,iV  are the smoothed strain-displacement matrix and volume of the 

smoothing domain associated with face i; 2, jB  and 2, jV  are the smoothed strain-

displacement matrix and volume of the smoothing domain associated with node j; nN  is 

the total number of nodes in the entire problem domain; and matrices 1D  and 2D  are 

derived from the material constant matrix D  for 3D cases as follows  

1 2

1 2

2 0 0 0 0 0 1 1 1 0 0 0

0 2 0 0 0 0 1 1 1 0 0 0

0 0 2 0 0 0 1 1 1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

 

   
   
   
   

      
   
   
   
   

D D

D D D

 

   
(7.19)

 

7.5 Stability of the FS-FEM-T4 

Property 7.1: the FS-FEM-T4 possesses only “legal” zero energy modes that represents 

the rigid motions and hence the FS-FEM-T4 is spatially stable. There exist no spurious 

non-zero energy modes and thus the FS-FEM-T4 is also temporally stable. 

In the standard FEM-T4 using linear shape functions, the integration of the weak form 

is based on elements. For each element, only one Gauss point is needed for the exact 

evaluation of the integrals. This implies that the number of Gauss points to calculate 

equals to the number of elements used in the problem domain. Such an FEM-T4 model is 

well known stable spatially and also temporally, and hence is widely used for dynamics 

analysis and has no spurious non-zero energy modes.  

In the FS-FEM-T4, the smoothing domains used are associated with faces and the 

strain (or stress) on each domain is constant. Therefore, each smoothing domain can be 
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considered equivalent to one Gauss point sampling in evaluating the weak form. Because 

the number of faces is always larger than the number of elements in any T4 element 

meshes, the number of sampling points for the evaluation of the weak form in the FS-

FEM-T4 is always larger than that in the FEM-T4. Therefore, the FS-FEM-T4 should be 

more stable than the FEM-T4 model, has no spurious non-zero energy modes, and is well 

suited for the dynamic analysis. This property of the FS-FEM-T4 is quite similar to that 

of the ES-FEM-T3 for dynamic analyses of 2D solid mechanics problems [76].  

 

7.6 Irons first-order patch test and a mesh sensitivity analysis 

The Irons first-order patch test presented in Chapter 5, Section 5.6.3, is performed 

again for the FS-FEM-T4. The errors in displacement norm (4.12) and in energy norm 

(5.12) are used to examine quantitatively the computed results. An analysis of the 

sensitivity of the solution against highly distorted meshes is also considered.  

The results of the patch test are listed in Table 7.1 for meshes of different irregularities.  

It is found that the FS-FEM-T4 can pass the Irons first-order patch test within machine 

precision regardless of the irregularity factor ir  used. There is no accuracy loss due to 

the choice of ir  value. This shows that the FS-FEM-T4 can work well with the severely 

distorted meshes.    

 

7.7 Numerical examples 

In this section, some examples will be presented to demonstrate the properties of the 

FS-FEM-T4 model. To emphasize the advantages of the FS-FEM-T4, the results of the 

present method will be compared with those of the FEM using tetrahedral elements 

(FEM-T4), 8-node hexahedral elements (FEM-H8) and NS-FEM using tetrahedral 
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elements (NS-FEM-T4) [78]. The errors in displacement norm and energy norm defined 

in Eq. (4.18) and Eq. (4.19) are used in the analyses.   

In the calculation of Eq. (4.19) for the FS-FEM-T4, a recovery strain field Rε  defined 

in Eq.(5.17) will be used in the place of the general numerical strain field ε


. In the 

numerical implementation of the FS-FEM-T4, the value of strains (or stresses) at the node 

i will be the average value of the strains (or stresses) of the smoothing domains s
k   

around the node i, and are computed numerically using 

1

1
i
fn

s
i k ki

kf

V
V 

 ε ε  (7.20)

where i
fn  is the total number of the faces connecting directly to node i; 

1

i
fn

i s
f k

k

V V


   is the 

total volume of the smoothing domain s
k around the node i; and kε and s

kV  are, 

respectively, the smoothing strain and the volume of the smoothing domain s
k .  

Because linear elements are used, the strains in the elements are constants, we can use 

the same methods for the evaluation of the strains (or stresses) at nodes by the FEM-T4, 

which give the identical results as those of Eq. (7.20) by the FS-FEM-T4. 

 

7.7.1 3D Lame problem: a linear elasticity analysis 

The 3D Lame problem described in Example 5.7.3 is used again in the examination of 

the FS-FEM-T4. One-eighth of the sphere model is discretized as shown in Figure 5.17 

and symmetry conditions are imposed properly on these three cutting symmetric planes. 

The exact strain energy of the problem is known as 2
exact 6.306 10E   Nm. 

Figure 7.2 and Figure 7.3 plot the distribution of the displacements and stresses 

obtained using the FS-FEM-T4, together with the analytical solution. It is seen clearly 

that these results agree very well. The convergence of the strain energy solution is 
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presented in Table 5.12 and plotted in Figure 7.4. It is seen that the results of NS-FEM-T4 

is an upper bound solution, and that of FS-FEM-T4 is a lower bound solution, with 

respect to the exact solution. The results of FS-FEM-T4 are almost the same as those of 

the FEM-H8 and much more accurate than those of the FEM-T4.  

The solution error in displacement norm obtained using the FS-FEM-T4 is presented in 

Table 5.13 and plotted in Figure 7.5, together with those of other methods. It is found that 

the result of FS-FEM-T4 is less accurate than that of FEM-H8 but more accurate than 

those of NS-FEM-T4 and FEM-T4. When the 3rd fine mesh for both T4 and H8 

( 0.156h  ) is used, the error of FS-FEM-T4 is about 3/4 of FEM-T4 and NS-FEM-T4. In 

terms of convergence rate, the rate of FS-FEM-T4 ( 1.99r  ) is also larger than those of 

FEM-T4 ( 1.93r  ) and NS-FEM-T4 ( 1.85r  ).     

Table 5.14 and Figure 7.6 compared the solution error in energy norm obtained using 

the FS-FEM-T4, together with those of other methods using the same meshes. It is found 

that the results of FS-FEM-T4 is only less accurate than those of NS-FEM-T4 but more 

accurate than those of FEM-H8 and FEM-T4. When the 3rd fine mesh for both T4 and H8 

( 0.156h  ) is used, the error of FS-FEM-T4 is about 1/2 of FEM-T4 and 3/5 of FEM-H8. 

In terms of convergence rate, the FS-FEM-T4 stands out clearly with a rate of 1.43r   

which is much larger than the theoretical value of 1.0 and much higher even than those of 

the NS-FEM-T4 ( 1.34r  ) and FEM-H8 ( 0.95r  ). All the above results show that the 

FS-FEM-T4 is significantly more accurate than FEM-T4 and comparable with the FEM-

H8 for 3D linear problems. 

Figure 7.7 shows the solution error in displacement norm using the smoothing-domain-

based selective FS/NS-FEM-T4 for nearly incompressible material when Poisson’s ratio 

varies from 0.4 to 0.4999999. The results show that the smoothing-domain-based 

selective FS/NS-FEM-T4 model presented in Section 7.4 can overcome naturally the 
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volumetric locking for solids of nearly incompressible materials. This is due to the 

volumetric looking-free feature of the NS-FEM models discussed in Chapter 5. 

 

7.7.2 A 3D cubic cantilever: a linear elasticity analysis 

The 3D cantilever of cubic shape subjected to a uniform pressure on its upper face 

described in Example 5.7.4 is again studied, but using the FS-FEM-T4. The reference 

strain energy and deflection at point A (1.0,1.0,-0.5) from the solutions of the standard 

FEM using a very fine mesh with 30,204 nodes and 20,675 ten-node tetrahedron elements 

are 0.9486 and 3.3912, respectively.  

The convergence of the strain energy solution obtained using the FS-FEM-T4 is 

presented in Table 5.15 and plotted in Figure 7.8, together with other methods. The 

convergence of the deflection at point A obtained using the FS-FEM-T4 is presented in 

Table 5.16 and plotted in Figure 7.9, together with other methods. It is found that the 

results of FS-FEM-T4 are less accurate than those of FEM-H8 but much more accurate 

than those of FEM-T4 for this problem. These results again show that the FS-FEM-T4 is 

significantly more accurate than the FEM-T4 for 3D linear elasticity problems.  

 

7.7.3 A 3D cantilever beam: a geometrically nonlinear analysis 

This example examines the use of the FS-FEM-T4 for the geometrically nonlinear 

analysis of large deformation for 3D solids. A 3D cantilever beam subjected to a 

uniformly distributed load is considered. The size of the beam is (10cm x 2cm x 2cm) and 

discretized using a mesh including 1322 nodes and 5802 tetrahedral elements as shown in 

Figure 7.10. The related parameters are taken as 7 23.0 10 KN/cmE   , 3.0 .  

First, a mesh sensitivity analysis using the FS-FEM-T4 and FEM-T4 is performed in 

the similar way as in the Iron first-order patch test. To create distorted meshes, the interior 
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nodes are intentionally moved randomly inside the cantilever beam from the original 

regular positions. The moved coordinates are computed using Eq. (5.15). In addition, the 

interior nodes of boundary faces are also moved randomly inside their original faces. 

Only the nodes located on the boundary sides of the cantilever beam are kept unchanged. 

Table 7.2 shows the relation between the tip deflection versus the prescribed irregularity 

factor ir  chosen between 0.0 and 0.4, and Figure 7.11 plots a severely distorted mesh  

with 0.4ir  . The results are computed using both the FS-FEM-T4 and FEM-T4 models 

with exactly the same meshes, and listed in Table 7.2. For easy analysis we use the result 

of the tip deflection 2.5292d   obtained using the FEM-H8 with 2304 nodes as a 

reference solution. Table 7.2 shows that the FS-FEM-T4 produces more accurate and is 

less sensitive to the mesh distortion than those of FEM-T4. This finding implies that the 

FS-FEM-T4 is much more suitable than the FEM-T4 for geometrically nonlinear analysis 

of large deformation, where heavy mesh distortion are generally expected.   

The geometrically nonlinear analysis based on the total Lagrange formulation that are 

often used in the FEM-T4 is carried out using 10 increment steps (n=10) with 

24KN/cmf   in each step. Figure 7.10 displays the initial and final configurations after 

10 steps of increments of the deformation using the FS-FEM-T4. Table 7.3 and Figure 

7.12 show the relation between the tip deflection and the load steps for different methods. 

The simulation result converges very rapidly in each load increment, only less than 5 

times of iteration are needed. The results show that, the nonlinear effects make the 

cantilever beam behave stiffer compared to the linear solutions. In the geometrically 

nonlinear analysis, the results of FS-FEM-T4 are softer than those of FEM-T4 but stiffer 

than those of FEM-H8 using 1323 nodes. All these results suggest that the FS-FEM-T4 

performs more accurately than the FEM-T4 for 3D geometrically nonlinear analysis of 

large deformation. 



Chapter 7  Face-based Smoothed FEM (FS-FEM) 

  225 

 

7.7.4 An axletree base: a geometrically nonlinear analysis 

In this practical example, a geometrically nonlinear analysis of large deformation of an 

axletree base is studied using the FS-FEM-T4 method. As shown in Figure 7.13, the 

axletree base is symmetric about the y-z plane. A half model with 1342 nodes and 5124 

tetrahedral elements is then created. The axletree base is subjected to a uniformly 

distributed force f on the concave annulus in the z-direction and fixed at the locations of 

four lower cylindrical holes and on the bottom plane. The related parameters are taken as 

7 23.0 10 N/cmE   , 3.0 . The analysis based on the total Lagrange formulation is 

carried out using 10 increment steps (n=10) with 2400KN/cmf   in each step.  

Figure 7.14 displays the initial and final configurations viewed from the top of the 3D 

axletree base after 10 steps of simulation using the FS-FEM-T4. Table 7.4 and Figure 

7.15 show the relation between the tip displacement (point A) in z-direction versus the 

load steps for different methods. The simulation converges in a rapid speed in each load 

increment, less than 9 iterations are needed. It can be seen that, the nonlinear effects make 

the axletree base behave stiffer compared to the linear solutions. In this geometrically 

nonlinear analysis, the results of FS-FEM-T4 are found softer than those of FEM-T4 and 

almost similar to that of the FEM-T4 using 2520 nodes. Note that for this problem, a 

discretization using 8-node hexahedral elements is impossible due to the complicity of the 

geometry of the problem, especially at points B, C or D shown in Figure 7.13. All these 

results again show that the FS-FEM-T4 performs more accurately than the FEM-T4 in 3D 

geometrically nonlinear analysis of large deformation.  
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7.8 Remarks 

In this chapter, a face-based smoothed finite element method (FS-FEM-T4) is 

presented and applied to solve 3D solid mechanics problems. In the FS-FEM-T4, the 

system stiffness matrix is computed using the smoothed strains over the smoothing 

domains associated with the faces of the tetrahedral elements.  

Through the theoretical analyses, formulations and numerical examples, it is found that 

the FS-FEM-T4 is significantly more accurate than the FEM-T4 using tetrahedral 

elements for both linear analysis and geometrically nonlinear analysis of large 

deformation. With the FS-FEM, we can now use tetrahedral elements with ease for 

accurate solutions for problems with complicated geometry.   

In addition, a smoothing-domain-based selective FS/NS-FEM-T4 model is immune 

from volumetric locking, and hence it works well for solids of nearly incompressible 

materials. The implementation of the FS-FEM-T4 is straightforward and no additional 

degrees of freedom are used in the model.  
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Table 7.1. Solution error in displacement and energy norms for the patch test. 

 0.0ir  0.1ir  0.2ir  0.3ir   0.4ir   0.49ir 

Displacement norm 

de  (%) 

3.95e-16 1.16e-15 7.73e-16 1.00e-15 1.53e-15 2.21e-15 

Energy norm ee  0.0 7.28e-12 1.82e-11 1.09e-11 7.28e-12 2.12e-11 

 

Table 7.2. Tip deflection (cm) versus the irregularity factor ir   

for the 3D cantilever beam subjected to a uniformly distributed load.  

 0.0ir   0.1ir   0.2ir   0.3ir   0.4ir   

FS-FEM-T4 

(1322 nodes) 

2.4429 2.4373 

(0.23 %)(*) 

2.4218 

(0.86 %) 

2.3888 

(2.21 %) 

2.3418 

(4.14 %) 

FEM-T4 

(1322 nodes) 

2.3639 2.3559 

(0.34 %) 

2.3349 

(1.23 %) 

2.2933 

(2.99 %) 

2.2141 

(6.34 %) 
(*) The number in the bracket shows the relative error (%) between the numerical results at 

0ir   and that at 0.0ir  . 

 

Table 7.3. Tip deflection (cm) at the load steps  

for the 3D cantilever beam subjected to a uniformly distributed load. 

Load step FEM-T4  

(linear) 

(1322 nodes) 

FEM-T4  

(nonlinear) 

(1322 nodes) 

FEM-H8  

(nonlinear) 

(1323 nodes) 

FS-FEM-T4  

(nonlinear)  

(1322 nodes) 

n = 1 0.2364 0.2295 (3) (*) 0.2421 (3) 0.2365 (3) 

n = 2 0.4728 0.4314 (3) 0.4522 (3) 0.4430 (3) 

n = 3 0.7092 0.6119 (3) 0.6405 (3) 0.6277 (3) 

n = 4 0.9456 0.7831 (3) 0.8205 (3) 0.8038 (3) 

n = 5 1.1819 0.9511 (3) 1.0022 (4) 0.9818 (4) 

n = 6 1.4183 1.1210 (4) 1.1762 (4) 1.1516 (4) 

n = 7 1.6547 1.2847 (4) 1.3495 (4) 1.3206 (4) 

n = 8 1.8911 1.4479 (4) 1.5222 (4) 1.4891 (4) 

n = 9 2.1275 1.6104 (4) 1.6943 (4) 1.6569 (4) 

n = 10 2.3639 1.7724 (4) 1.8656 (4) 1.8242 (4) 
(*) The number in the bracket shows the number of iterations. 
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Table 7.4. Tip displacement (point A) (cm) in z-direction at load steps for the 3D axletree 

base using 4-node tetrahedral elements for the geometrically nonlinear analysis. 

Load step FEM-T4  

(linear) 

(1342 nodes) 

FEM-T4  

(nonlinear) 

(1342 nodes) 

FEM-T4  

(nonlinear) 

(2520 nodes) 

FS-FEM-T4  

(nonlinear)  

(1342 nodes) 

n = 1 0.3534 0.3104 (3) (*) 0.3260 (3) 0.3274 (3) 

n = 2 0.7068 0.5700 (4) 0.5990 (4) 0.6017 (4) 

n = 3 1.0601 0.8120 (5) 0.8538 (5) 0.8577 (5) 

n = 4 1.4135 1.0419 (5) 1.0963 (5) 1.1012 (5) 

n = 5 1.7669 1.2568 (6) 1.3210 (6) 1.3268 (6) 

n = 6 2.1203 1.4650 (6) 1.5393 (6) 1.5460 (6) 

n = 7 2.4737 1.6652 (7) 1.7360 (7) 1.7434 (7) 

n = 8 2.8271 1.8436 (7) 1.9340 (7) 1.9421 (7) 

n = 9 3.1804 2.0269 (8) 2.1074 (8) 2.1161 (8) 

n = 10 3.5338 2.1855 (8) 2.2901 (8) 2.2996 (8) 
(*) The number in the bracket shows the number of iterations. 
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Figure 7.1. Two adjacent tetrahedral elements and the smoothing domain s
k   

(shaded domain) formed based on their interface k in the FS-FEM-T4. 
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Figure 7.2. Distribution of the radial displacement in the hollow sphere subjected to an 

inner pressure using the FS-FEM-T4. 
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Figure 7.3. Distribution of the radial and tangential stresses in the hollow sphere subjected 

to an inner pressure using the FS-FEM-T4. 
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Figure 7.4. Convergence of strain energy solution of FS-FEM-T4 in comparison with 

other methods for the hollow sphere subjected to an inner pressure. 
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Figure 7.5. Error in displacement norm of FS-FEM-T4 in comparison with other methods 

for the hollow sphere subjected to an inner pressure. 
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Figure 7.6. Error in energy norm of FS-FEM-T4 in comparison with other methods for 

the hollow sphere subjected to an inner pressure. 
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Figure 7.7. Error in displacement norm versus different Poisson’s ratios of the hollow 

sphere subjected to an inner pressure. 
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Figure 7.8. Convergence of the strain energy solution of FS-FEM-T4 in comparison with 

other methods for the cubic cantilever subjected to a uniform pressure on the top surface. 
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Figure 7.9. Convergence of the deflection at point A(1.0,1.0,-0.5) of FS-FEM-T4 in 

comparison with other methods for the cubic cantilever subjected to a uniform pressure. 

 

 

Figure 7.10. Initial and final configurations of the 3D cantilever beam subjected to a 

uniformly distributed load using the FS-FEM-T4 in the geometrically nonlinear analysis. 

 



Chapter 7  Face-based Smoothed FEM (FS-FEM) 

  234 

 

Figure 7.11. Domain discretization of the 3D cantilever beam  

subjected to a uniformly distributed load using severely distorted tetrahedral elements. 
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Figure 7.12. Tip deflection (cm) versus the load step of the 3D cantilever beam subjected 

to a uniformly distributed load in the geometrically nonlinear analysis. 
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Figure 7.13. Axletree base model.  

 

 

Figure 7.14. Initial and final configurations viewed from the top  

of an 3D axletree base using 4-node tetrahedral elements  

in the geometrically nonlinear analysis.   
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Figure 7.15. Tip displacement (point A) in z-direction versus the load step of an 3D 

axletree base using 4-node tetrahedral elements in the geometrically nonlinear analysis. 
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Chapter 8  
 
 
 

Alpha FEM using triangular (FEM-T3) and 

tetrahedral elements (FEM-T4) 

 

8.1 Introduction 

Most of the existing mixed FEM models [9, 96, 131, 132] based on the mixed 

variational principles focusing mainly on the improvement of the accuracy of the solution. 

Obtaining exact solution (at least in a norm) using a numerical method is, however, an 

attractive idea in the area of computational methods. Hence, some interesting efforts have 

been made in recently in Liu’s group aiming to obtain the exact solution in a norm using 

discrete models [75, 74]. The so-called alpha finite element method using 4-node 

quadrilateral elements (FEM-Q4) has been developed for the purpose of finding a nearly 

exact solution in strain energy using coarse meshes [75]. The FEM-Q4 gives a novel 

idea that works in the framework of FEM-Q4, by simply scaling the gradient of strains 

using a factor  0, 1  . Because the change needed is minor, the coding of the FEM-

Q4 is almost exactly the same as the standard FEM-Q4. In addition, the resultant strain 

energy function for the FEM-Q4 model has a very simple polynomial form in terms of 

. Based on such a simple function of strain energy curves, a general procedure of 

FEM-Q4 has been suggested to obtain the nearly exact or best possible solution in strain 
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energy, using meshes with the same aspect ratio. An exact- approach is devised for 

overestimation problems [75], and a stab- approach for underestimation problems [75]. 

The FEM-Q4 has clearly opened a new window of opportunity to obtain numerical 

solutions that are exact at least in a norm. However, the original FEM-Q4 based on 

quadrilateral elements cannot provide exact solution to all elasticity problems. Further 

more, the use of 4-node quadrilateral elements in the FEM-Q4 requires a quadrilateral 

mesh that cannot be generated in a fully automated manner for complicated domains.  

Making use of the upper bound property of NS-FEM in Chapter 5, the lower bound 

property of the standard FEM in strain energy, and the importance idea of FEM-Q4, we 

introduce now a novel alpha finite element method using 3-node triangular (FEM-T3) 

elements for 2D problems and 4-node tetrahedral elements (FEM-T4) for 3D problems, 

which were originally presented in [74]. The essential idea of the method is to introduce a 

scale factor  0,1   to establish a continuous function of strain energy that contains 

contributions from both the standard FEM and NS-FEM. This novel combined 

formulation of FEM and NS-FEM makes the best use of the upper bound property of the 

NS-FEM and the lower bound property of the standard FEM, and equipped with a free 

parameter for turning for special properties. Using meshes with the same aspect ratio, a 

unified approach has been proposed to obtain the nearly exact solution in strain energy for 

any given linear elasticity problem. The numerical results will confirm the interesting 

properties of the present method.   

8.2 Idea of the FEM-T3 and FEM-T4 

8.2.1 FEM-T3 for 2D problems 

The FEM-T3 combines both the NS-FEM-T3 and the standard FEM-T3 by using the 

scale factor  0,1  . As presented in Chapter 5, in the NS-FEM-T3, the domain e
i  of 
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each triangular element is divided into three quadrilateral sub-domains of equal area, and 

each quadrilateral sub-domain contributes to the stiffness matrix of the node attached, as 

shown in Figure 8.1. In the FEM-T3, the domain e
i  of the triangular element is divided 

into four sub-domains with a scale factor  as shown in Figure 8.1: three quadrilateral 

sub-domains at the three corners are scaled down by (1-2) and are all having an equal 

area of 
21

3
e
iA


. The remaining Y-shaped sub-domain in the middle of the element has 

an area of 2 e
iA . The same procedure in the NS-FEM-T3 is then used to compute the 

stiffness contributions of the three quadrilateral sub-domains at the three corners, while 

the usual procedure of the FEM-T3 is used to compute the stiffness contribution for the Y-

shaped sub-domain, with the considerations of the area reductions. The entries in sub-

matrices of the system stiffness matrix αFEM-T3K̂  will be assembled from the entries of 

those of NS-FEM-T3 and FEM-T3. The detailed formulation becomes 

αFEM-T3 NS-FEM-T3 FEM
, ,

1 1

ˆ
n eN N

IJ IJ k IJ i
k i 

  K K K  (8.1)

where nN  and eN  are, respectively, the total number of nodes and elements in the entire 

problem domain and 

    
,

NS-FEM-T3
,

s
k

T

IJ k I k J k d


 



 K B x DB x  (8.2)

,

FEM 2
,

e
i

T T e
IJ i I J I J id A






  K B DB B DB  
(8.3)

in which the compatible strain-displacement matrix IB  is computed using Eq. (2.48); 

,
e
i   is the Y-shape sub-domain in the triangular element; ,

s
k   is the smoothing domain 

associated the node k and bounded by ,
s
k  , as shown in Figure 8.2. The smoothed strain-

displacement matrix  I k
B x  for ,

s
k   is computed using 
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     2
, ,

1 1,

1 1 1 1
1

3 3

e e
k kn n

e e
I k j I j j I j I ks s

j jk k

A A
A A






 

    B x B B B x  (8.4)

which implies that we can use the matrix  I kB x  defined in Eq. (5.3) for domain s
k  

instead the matrix  I k
B x  for domain ,

s
k   in the computation. Note that to obtain Eq. 

(8.4), the following relation between the area ,
s
kA   of the domain ,

s
k   and the area s

kA  

defined in Eq. (5.4) of the domain s
k  is used:   

   
,

2 2
,

1

1
1 1

3

e
k

s
k

n
s e s
k j k

j

A d A A


  


       (8.5)

where e
kn  is the number of elements around the node k; e

jA  is the area of the jth element 

around the node k.  

Using Eqs. (8.4) and (8.5), Eq. (8.2) now can be written as 

 NS-FEM-T3 2
, 1 T s

IJ k I J kA K B DB  (8.6)

which implies that we can simplify the procedure of coding program of FEM-T3 by 

using the original NS-FEM-T3. Each triangle element is divided into three quadrilaterals 

of equal area to compute the contributions to the stiffness matrix with a scaling-down of 

 21  .  

To compute Eq. (8.3), the standard FEM using triangular elements (FEM-T3) is used 

to compute the contributions to the stiffness matrix with a simple scaling-down of 2 . 

The FEM-T3 model is now equipped with a scaling factor  that acts as a “knob” 

controlling the contributions from portions of NS-FEM-T3 and FEM-T3. Since both NS-

FEM-T3 and FEM-T3 models are spatially stable and convergent, when the factor  is 

“turned” from 0 to 1, a continuous function of solution in a norm can be expected from 

the solution of NS-FEM-T3 to that of FEM-T3.  
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8.2.2 FEM-T4 for 3D problems  

The extension from the FEM-T3 to FEM-T4 is straightforward. Following the same 

idea and concept of FEM-T3 presented above, we can easily develop an FEM-T4 

model for 3D problems using tetrahedral elements. In this case, the (volumetric) domain 

e
i  of each tetrahedral element will be divided into five sub-domains using a similar 

scaling factor : four sub-domains at four corners will have an equal volume of 

 31

4
e

iV


. The remaining sub-domain in the middle of the element will have a volume 

3 e
iV . The NS-FEM-T4 is then used to compute for four corner sub-domains of equal 

volumes, while the FEM-T4 is used to compute for the remaining sub-domain in the 

middle, with a proper scaling. The system stiffness matrix αFEM-T4K̂  is computed using  

αFEM-T4 NS-FEM-T4 FEM-T4
, ,

1 1

ˆ
n eN N

IJ IJ k IJ i
k i 

  K K K  (8.7)

with the matrices NS-FEM-T4
,IJ kK  and FEM-T4

,IJ iK  computed as follows: 

 NS-FEM-T4 3
, 1 T s

IJ k I J kV K B DB  (8.8)

,

FEM-T4 3
,

e
i

T T e
IJ i I J I J id V






  K B DB B DB  
(8.9)

in which ,
e
i   is the remaining sub-domain in the middle of the T4 element; the smoothed 

strain-displacement matrix IB  is computed using Eq. (5.5), s
kV  is computed using Eq. 

(5.6) and the compatible strain-displacement matrix IB  is computed using Eq. (5.7). 

 

8.2.3 Properties of the FEM-T3 and FEM-T4 

We now discuss the properties of FEM-T3 and FEM-T4 models. We consider linear 

elasticity problems with homogeneous essential boundary conditions. We first note:  
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Property 8.1 (displacement compatibility): The assumed displacement field is compatible 

(piecewisely-linear and continuous through out the domain) in the FEM-T3 and FEM-

T4 models.   

This property can be explicitly seen from the FEM-T3 and FEM-T4 formulation 

procedure: linear interpolation for displacement is used in all the elements in the entire 

problem domain. The FEM-T3 and FEM-T4 do not change in any way the assumed 

displacement field. This property (together with the spatial stability) ensures that the 

FEM-T3 and FEM-T4 for any  0, 1   will be able to reproduce exactly the linear 

field. This will be further confirmed numerically in the patch tests given in Section 8.4. 

Property 8.2 (variational consistence): The FEM-T3 (or FEM-T4) is variationally 

consistent. 

Proof 

In the FEM-T3, the compatible strain h h
S ε u  is used for the Y-shaped sub-

domains ,
e
i   of all the Ne elements, but the smoothed strain (3.4) is used for all the Nn 

smoothing domains ,
s
k  , the variational consistency thus needs to be examined. To this 

end, we start with the modified Hellinger-Reissner variational principle [122] with the 

assumed strain vector ε  and the assumed displacements hu  as two independent field 

variables: 

       1
,

2
t

T TTh T h h h
SU d d d d

  

         u ε ε Dε Dε u u b u t  (8.10)

Note that in the Ne Y-shaped sub-domains ,
e
i  , the assumed strain is the compatible 

strain: hε ε .  Performing the variation using the chain rule, we obtain 
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 

   

,

0
t

h T T h T h
S S

T Th h

U d d d

d d

   

 

  



      

   

  

 

u ε ε Dε ε D u ε D u

u b u t
 (8.11)

Discretize now the domain   into Ne triangles e
i  with Nn smoothing cells ,

s
k   

associated with Nn nodes and Ne Y-shaped sub-domains ,
e
i   corresponding to the Ne 

elements. Substituting the approximations (2.43) for hu  and (3.9) for ε  into (8.11) and 

using the arbitrary property of variation, we obtain 

two-fieldˆ ˆ K d f  (8.12)

where two-fieldK̂  is the two-field stiffness matrix with entries of  

   

   

   
, ,

, ,

two-field

1 1

1 1

ˆ 2

2

2

n n

s s
k k

e e

e e
i i

T T

IJ I J I J

N N
T T

I J I J
k k

N N
T T

I J I J
i i

d d

d d

d d

 

 

  

  

 

  

  

   

   

  

 

  

  

K B DB B DB

B DB B DB

B DB B DB

                   
(8.13)

and f is the load vector which is computed exactly in the same way as that in the standard 

FEM. In all Ne of Y-shaped sub-domains ,
e
i   of elements, we have hε ε  and I I

 B B , 

Eq. (8.13) hence becomes 

   
, ,

,

two-field

1 1

1

ˆ 2
n n

s s
k k

e

e
i

N N
T T

IJ I J I J
k k

N
T
I J

i

d d

d

 



  

  

 

   

 

  

 

K B DB B DB

B DB

     
(8.14)

Using the smoothed matrices IB  in Eq. (5.3) for Nn smoothing cells ,
s
k  , we have  

, , ,

,
,

( )
( ) ( )

s s s
k k k

T T T s J
I J I J I k s

k

d d A d
A

  


  

      
B x

B DB x B D B x B D  

,

,
s
k

T s T
I J k I JA d






  B DB B DB  (8.15)

which means that the following orthogonal condition is satisfied [137] 
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, ,

( )
s s
k k

T T
I J I Jd d

  

   B DB x B DB  
(8.16)

Therefore, Eq. (8.14) becomes 

 
, ,

two-field

1 1

ˆ
n e

s e
k i

N N
T T

IJ I J I J
k i

d d
 

 

  

    K B DB B DB     (8.17)

Because the FEM-T3 uses directly Eq. (8.17) to compute the stiffness matrix, it is 

“variationally consistent”, meaning that the formulation of FEM-T3 follows exactly the 

modified Hellinger-Reissner variational principle. This proof is directly applicable also 

the same for the FEM-T4. �   

We note that although the two-field Hellinger-Reissner principle is used, the FEM-T3 

and FEM-T4 has only the displacements as unknowns. Therefore, it is very much 

different from the so-called mixed FEM formulation, where stresses (or strains) are 

usually also unknowns in addition to the displacement unknowns.   

Property 8.2 can be understood intuitively in a very simple argument: because both 

FEM-T4 and NS-FEM-T4 are variationally consistent, the linear (area-weighted) 

combination of them must also be variationally consistent.   

Property 8.3 (lower bound): When 1.0  , FEM-T3/FEM-T4 become the standard 

FEM. The strain energy  ˆ 1E    is an underestimation of the exact strain energy. 

Property 8.4 (upper bound property): When 0.0  , FEM-T3/FEM-T4 becomes the 

NS-FEM. The strain energy  ˆ 0E    is an overestimation of the exact strain energy for 

sufficiently fine models with sufficient smoothing effects.   

Property 8.5 (solution continuity property): When  changes from 0.0 to 1.0, the 

solutions of the FEM-T3 and FEM-T4 are continuous functions of  from the solution 

of the NS-FEM and that of the standard FEM.  
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Property 8.6 (exact solution property): The exact solution in strain energy exactly falls in 

the range of the solutions of the FEM-T3 the FEM-T4 with  0, 1  , as long as the 

corresponding NS-FEM model has sufficient smoothing effects. This means that the exact 

solution in strain energy can be obtained using the FEM-T3 and FEM-T4 with an 

 exact 0, 1  . 

This property is a natural outcome of the Property 8.3-8.5. Based on Property 8.6, one 

can now devise the following procedure to compute a nearly exact solution in strain 

energy, by finding an approximate  exact 0, 1  .   

The intensive numerical study has shown that using meshes of elements with the same 

aspect ratio, the strain energy curves  Ê   corresponding to these meshes will intersect 

approximately at a common point  exact exact, E  which gives a nearly exact strain energy 

of the problem. It is known that the solution which is the “best” in strain energy usually 

lead to a “very good” solution in displacement norm, because of the relation between the 

strain energy and displacement solution :   FEM1ˆ ˆ ˆ ˆ
2

TE   d K d .  

In the following analysis, the meshes with the same aspect ratio are defined in two 

ways: one for regular meshes and one for irregular meshes. Regular meshes are used only 

for the regular domains, and the ratio of number of elements discretized along coordinate 

directions has to be the same when the mesh is refined. For example, for the rectangular 

2D meshes, three meshes  16 4 ,  32 8  and  64 16  have the same aspect ratio of 4. 

Irregular meshes can used for any domains, the meshes with the same aspect ratio are 

obtained by dividing, in a nested manner, each element of the initial coarse mesh into 22 , 

23 , 24 , etc. equal elements for triangular elements, and into 32 , 33 , 34 , etc. equal 

elements for tetrahedral elements. Such a refinement from the initial coarse mesh to 
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obtain finer meshes with the same aspect ratio is available in many automatic programs 

creating 3-node triangular and 4-node tetrahedral elements, and hence it can be done 

without any technical difficulty. Note that, we do not require the elements in a mesh to 

have the same aspect ratio. We require only the elements in two consequent meshes to 

have the same aspect ratio. 

Property 8.7: The stiffness matrix of FEM-T3 (or FEM-T4) has the same dimension 

as the corresponding standard FEM using the same mesh. The unknowns of an FEM-T3 

(or FEM-T4) model are only the displacements, and the number of unknowns is the 

same as that of the standard FEM using the same mesh.  

Property 8.8: For the nearly incompressible materials (Poisson’s ratio   approaches to 

0.5), the volumetric locking can be avoid by using 0   or a very small 0.5    for 

the FEM-T3 (or FEM-T4) method, where  is the Poisson's ratio that is smaller but 

very close to 0.5. Note that, for this kind of problems, we have to give up on obtaining the 

“exact” solution, and only focus on solving the volumetric locking issue.   

 

From the above formulation of FEM-T3, it is clear that only the area and the usual 

compatible strain-displacement matrices IB  of triangular elements (and the factor ) are 

needed to compute the system stiffness matrix. Therefore, in the actual programming, the 

standard FEM and NS-FEM-T3 formulae are used directly to compute the entries of the 

stiffness matrices with scaling by 2  and  21  , respectively, as shown in Eqs. (8.3) 

and (8.6) for the FEM-T3. Similarly to the FEM-T4, the scaling should be 3  and 

 31  , respectively, as shown in Eqs. (8.8) and (8.9).  
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8.3 Nearly exact solution for linear elastic problems 

A numerical procedure for computing a nearly exact solution for a linear elastic 

problem using the FEM-T3 (or FEM-T4) can be summarized as follows: 

1. Discretize the domain   into two sets of coarse mesh of triangular elements (or 

tetrahedral elements for 3D problems) with the same aspect ratio.   

2. Choose one array of 0 :1  , for example  0.0 0.2 0.8 1.0
T    . 

3. Loop over two sets of mesh created in step 1. 

4. Loop over the array of 0 :1  . 

5. Loop over all the elements using the standard FEM:  

- Compute and save the strain-displacement matrix B  for the elements.  

- Evaluate the stiffness matrix and force vector for the elements. 

- Multiply the stiffness matrix of the element with 2  for triangular 

elements by Eq. (8.3) (or with 3  for tetrahedral elements by Eq. (8.9)) 

and then assemble into the global stiffness matrix.  

- Assemble force vector into the global force vector.  

6. End the loop over all the elements  

7. Loop over all the nodes using the NS-FEM: 

- Use the strain-displacement matrices B  of the element saved in step 5 to 

compute the strain-displacement matrix IB of the node by Eq. (5.3) for the 

triangular elements or by Eq. (5.5) for the tetrahedral elements.  

- Evaluate the smoothed stiffness matrix of the node by Eq. (5.2). 

- Multiply the smoothed stiffness matrix of the node with  21   for 

triangular elements by Eq. (8.6) (or  31   for tetrahedral elements by Eq. 

(8.8)) and then assemble into the global stiffness matrix.  
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8. End the loop over all the nodes  

9. Implement essential boundary conditions. 

10. Solve the system equations for the nodal displacements. 

11. Evaluate strain, stress and save the global strain energy.  

12. End the loop over the array containing 0 :1  . 

13. End the loop over two sets of coarse meshes. 

14. Interpolate the exact strain energy at exact  from two arrays containing the strain 

energies saved at step 11. 

15. Use exact  and a finer mesh with the same aspect ratio as the two coarse meshes to 

compute the final solution through steps from 5 to 11.    

As shown, obtaining exact  requires additional effort, and hence we may want to avoid.  

Based on the theory presented, we know that in any case, the accuracy (in the strain 

energy or displacement norm) of an combined model is always better than either FEM or 

NS-FEM for any  0,1  . This gives us a guarantee that we can only get a better 

solution using any  0,1  . Therefore, if we only need to improve the accuracy of 

solution, we may simply using directly an 0.45 : 0.65   in 2D problems and 

0.60 : 0.80   in 3D problems for any meshes without searching for the exact . This 

range of   is found preferable by numerical “experiments” on different linear problems 

using the αFEM-T3 and αFEM-T4. By this way, the  chosen will not be optimal and the 

solution may not be very close to the exact one, but the accuracy of the solution is often 

much better than the FEM using the same mesh. 
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8.4 Standard patch tests 

8.4.1 Standard patch test for 2D problems 

An irregular domain discretization of a square patch using three-node triangular 

elements is shown in Figure 6.4. The displacement norm (4.12) is used to examine the 

results computed. The parameters are taken as 100E  , 0.3   and the linear 

displacement field is given by (4.13).  

It is found that the FEM-T3 can pass the standard patch test within machine precision 

regardless of the value of  0,1   used as shown in Table 8.1. This example confirms 

Property 1 for 2D problems: the FEM-T3 is displacement compatible, linearly 

conforming, capable producing exactly any linear displacement field for any  0,1  , 

and hence will always converge to any exact solution that can be approximated via a 

piecewisely linear interpolation.   

 

8.4.2 Irons first-order patch test for 3D problems 

The Irons first-order patch test as presented in Chapter 5, Section 5.6.3 is gain used 

here but for testing the FEM-T4. The displacement norm (4.12) is used to quantitatively 

examine the computed results, and the energy error is defined by 

   ˆ
e exacte E E    (8.18)

where the total strain energy of FEM-T4 solution  Ê   is computed using 

                           FEM NS-FEMÊ E E                                  

                                     3 3

1 1

1 1
1

2 2

e nN N
T Th e s

i i i k k k
i k

V V 
 

   ε Dε ε Dε  

 

(8.19)
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where eN  is the total number of elements used in the problem domain, nN  is the total 

number of node of the model, h
iε  is the compatible strain of the FEM solution of the ith 

element, kε  is the smoothed strain of NS-FEM solution for the kth node.  

It is found that the FEM-T4 can pass the standard first-order patch test within 

machine precision regardless of the value of  0,1  , as shown in Table 8.2 and Table 

8.3. There is no accuracy loss due to the different choices of  values. This example 

confirms Property 1 for 3D problems. 

 

8.5 Numerical examples 

In order to study numerically the convergence rate of the present method, the 

displacement norm given by Eq. (4.18) and the energy norm given by (4.19) are used. In 

the computation of Eq. (4.19) for the FEM-T3 and FEM-T4, a recovery strain field ˆRε  

by (5.16) and (5.17), respectively, will be used in the place of the general numerical strain 

field ε


. Note that the strains at nodes  ˆ jε x  for the FEM-T3 and FEM-T4 are 

computed in the same way as those of NS-FEM-T3 and NS-FEM-T4, respectively.  

 

8.5.1 A cantilever beam under a tip load: a convergence study 

The cantilever loaded at the end described in Example 4.10.1 is tested again but using 

the FEM-T3, in comparison with a number of other methods. The geometry and 

boundary conditions of the cantilever is plotted in Figure 4.7. The mesh of quadrilateral 

and triangular elements are shown in Figure 4.8 and Figure 5.4, respectively. The exact 

strain energy of the problem is known as 4.4746 Nm.  
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Following the procedures given in Section 8.3, we found exact 0.6   at the intersection 

of two strain energy curves using two meshes with the same aspect ratio ( 32 8  and 

40 10 ), as shown in Figure 8.4.  

Table 5.6 and Figure 8.5 compare the solution error in displacement norm obtained 

using the FEM-T3 (at exact 0.6  ), together with other methods. It is seen that the 

FEM-T3 stand out clearly. When the mesh with h = 1.2 is used, the error of the FEM-

T3 is about 1/18 of the FEM-Q4 and 2/9 of the CSFEM-Q4. In terms of convergence rate, 

the rate of the FEM-T3 stands out clearly, 4.2r  , that is much larger than the 

theoretical value of 2.0.  

Table 5.7 and Figure 8.6 compare the solution error in energy norm obtained using the 

FEM-T3 (at exact 0.6  ), together with other methods. It is seen that the results of the 

FEM-T3 is slightly more accurate than those of the ES-FEM-T3. It is, however, a little 

less accurate than NS-FEM-T3 and CS-FEM-Q4. In terms of convergence rate, the rate of 

the FEM-T3 also stands out clearly, 1.56r  , that is much larger than the theoretical 

value of 1.0. 

 

8.5.2 Cook’s membrane: test for membrane elements  

The Cook’s membrane problem [30] is also a widely used benchmark problem for 

numerical methods. It is a clamped tapered panel subjected to an in-plane shearing load 

resulting in deformation dominated by a bending response, as shown in Figure 8.7. The 

material parameters used are Young’s modulus E = 1, Poisson’s ratio  = 1/3. Two 

discretizations of Cook's membrane problem using 4-node quadrilateral and 3-node 

triangular elements are also shown in Figure 8.7. The exact solution of the problem is 

unknown. Under plane stress conditions, the reference value of the vertical displacement 

at center tip section is 23.9642 [48] and the reference value of the strain energy is known 
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as 12.015 [30].  

Using the FEM-T3, and following the procedures given in Section 8.3, we found 

exact 0.5085   at the intersection of strain energy curves using meshes with the same 

aspect ratio as plotted in Figure 8.8. Table 8.4 and Figure 8.9 compares the result of the 

displacement at the tip center using the FEM-T3 with six published 4-node quadrilateral 

elements: FEM-Q4, Qm6-modified Wilson element [147], FB-one Gauss point with 

hourglass stabilization [46], QBI-Quintessential bending/incompressible element [15], 

KF-one Gauss point with hourglass control [64] and Qnew - an improved stabilization 

technique for one-point quadrature integration method [48]. It can be seen that the FEM-

T3 with exact 0.5085   outperforms clearly all these methods.    

In addition to the results shown in Figure 8.9, we make a more detailed comparison of 

FEM-T3 with other elements for coarse meshes, and the results in number are listed in 

Table 8.5. It is again found that FEM-T3 at exact = 0.5085 gives the excellent 

performance compared to all these methods compared. 

 

8.5.3 Semi-infinite plane: a convergence study 

The semi-infinite plate subjected to a uniform pressure within a finite range 

( a x a   ) shown in Figure 8.10 is studied. The plane strain condition is considered. 

The analytical stresses are given by [148] 
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 

   (8.20)

The directions of 1  and 2  are indicated in Figure 8.10. The corresponding 

displacements can be expressed as 
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   (8.21)

where H ca  is the distance from the origin to point O’, the vertical displacement is 

assumed to be zero and c is a coefficient. 

Due to the symmetry about the y-axis, the problem is modeled with a 5 5a a  square 

with 0.2ma  , 100c  and 4 21 10 N/mp   . The left and bottom sides are constrained 

using the exact displacements given by Eq. (8.21) while the right side is subjected to 

tractions computed from Eq. (8.20). Figure 8.11 gives the discretization of the domain 

using 4-node quadrilateral and triangular elements, respectively. The exact strain energy 

of the problem is known as 45.585 Nm. 

Following the procedures given in Section 8.3, we found exact 0.48   at the 

intersection of strain energy curves using meshes with the same aspect ratio as shown in 

Figure 8.12. Table 8.6 and Figure 8.13 show the convergence of strain energy of FEM-

T3 (at exact 0.48  ) in comparison with different methods. It is seen that the results of 

FEM-T3 are almost identical with the analytical solution, even with the coarse meshes. 

From Figure 8.14 and Figure 8.15, it is observed that all the computed displacements and 

stresses using FEM-T3 (at exact 0.48  ) agree well with the analytical solutions. 

Table 8.7 and Figure 8.16 compare the solution error in displacement norm obtained 

using the FEM-T3 (at exact 0.48  ), together with other methods. In terms of accuracy, 

the FEM-T3 and ES-FEM-T3 stand out clearly. When the finest mesh (h = 0.0373) is 

used, the error of the FEM-T3 is about 2/7 of the FEM-T3 and 2/3 of the FEM-Q4. In 

terms of convergence rate, the rate of the FEM-T3 is only larger than that of FEM-T3.  
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Table 8.8 and Figure 8.17 compare the solution error in energy norm obtained using 

the FEM-T3 (at exact 0.48  ), together with other methods. In terms of accuracy, the 

results of the FEM-T3 and NS-FEM-T3 stand out clearly. When the finest mesh (h = 

0.0373) is used, the error of the FEM-T3 is about 2/7 of the FEM-T3 and 1/2 of the 

FEM-Q4. In terms of convergence rate, the super-convergence is observed for the FEM-

T3 with a rate of 1.21 that is much larger than the theoretical value of 1.0. 

Next, we test the FEM-T3 for volumetric locking by varying the Poisson’s ratio from 

0.4 to 0.4999999. As presented in Property 8.8, it is recommended to use 0   or a very 

small 0.5   . Table 8.9 and Figure 8.18 show the displacement norm versus different 

Poisson’s ratios for the FEM-T3, FEM-T3 and FEM-Q4 (the mesh with 353 nodes and h 

= 0.0559 is used) . The results show that the FEM-T3 can avoid the volumetric locking, 

while the FEM-T3 and FEM-Q4 are clearly suffered from the volumetric locking. The 

results of FEM-T3 using 0.5    are a little better than those simply using  = 0, 

and hence are recommended by this paper. Note also that using 0.5    can also help 

to stabilize the solution for dynamic problems.   

 

8.5.4 3D Lame problem: a convergence study 

The 3D Lame problem described in Example 5.7.3 is used again in this examination, 

but for test FEM-T4. As the problem is spherically symmetrical, and hence only one-

eighth of the sphere model is shown in Figure 5.17 and symmetry conditions are imposed 

on the three symmetric planes. Following the procedures given in Section 8.3, we first 

compute the strain energy curves using different mesh of elements of the same aspect 

ratio, and the results are plotted in Figure 8.19. It is found that the strain energy curves 

versus  0, 1   using three meshes intersect each other at exact 0.7  . Figure 8.20 and 
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Figure 8.21 show that the distribution of the displacement and stresses using FEM-T4 

(at exact 0.7  ) agree very well with the analytical solution.  

Table 5.12 and Figure 8.22 show the convergence of strain energy of FEM-T4 (at 

exact 0.7  ) in comparison with different methods. It is again seen that the strain energies 

of FEM-T4 are almost identical with the analytical solution ( 2
exact 6.305 10E    Nm), 

even with the coarse meshes. 

Table 5.13 and Figure 8.23 compare the solution error in displacement norm obtained 

using the FEM-T4 (at exact 0.7  ), together with other methods. It is seen that the 

FEM-T4 stands out clearly. When the 3rd fine mesh for both T4 and H8 ( 0.156h  ) is 

used, the error of the FEM-T4 is about 3/10 of the FEM-T4, and even 9/10 of the FEM-

H8. In terms of convergence rate, the FEM-T4 stands out clearly with a rate of 2.22r   

which is much larger than the theoretical value of 2.0 and much higher even than the 

FEM-H8 ( 2.05r  ).   

Table 5.14 and Figure 8.24 compare the solution error in energy norm obtained using 

the FEM-T4 (at exact 0.7  ), together with those of other methods. It is found that the 

results of FEM-T4 is only less accurate than those of NS-FEM-T4 but more accurate 

than those of FEM-H8 and FEM-T4. When the 3rd fine mesh for both T4 and H8 

( 0.156h  ) is used, the error of FEM-T4 is about 2/5 of FEM-T4 and 1/2 of FEM-H8. 

In terms of convergence rate, the rate of the FEM-T4 stands out clearly, 1.38r  , that is 

much larger than the theoretical value of 1.0 and the rate of the FEM-H8 ( 0.95r  ). 

 

8.5.5 3D cubic cantilever: accuracy study 

The 3D cantilever of cubic shape subjected to a uniform pressure on its upper face 

described in Example 5.7.4 is again considered. The exact solution of the problem is 
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unknown. By incorporating the solutions of hexahedral super-element elements and the 

procedure of Richardson’s extrapolation, Almeida Pereira [5] has given an approximately 

“exact” solution in strain energy to be 0.950930. In addition, using the standard FEM and 

a very fine mesh with 30,204 nodes and 20,675 ten-node tetrahedron elements, another 

reference solution of the strain energy is found to be E = 0.9486. This fine FEM model 

gives also a reference solution of 3.3912 for the deflection at point A (1.0,1.0,-0.5).  

From Figure 8.25, it is found that the strain energy curses using three meshes with the 

same aspect ratio versus  0, 1   intersect at exact = 0.62. Table 5.15 and Figure 8.26 

show the convergence of strain energy of FEM-T4 (exact = 0.62) in comparison with 

four different methods. It is again seen that the strain energies obtained using the FEM-

T4 are very close to the reference solution ( 0.950930refE  ), even when the coarse 

meshes are used.  

Table 5.16 and Figure 8.27 show the convergence of the tip deflection at point A(1,1,-

0.5) obtained using the FEM-T4 (at exact = 0.62), together with other different methods 

for comparison. It is again seen that the deflection solutions of FEM-T4 are very close 

to the reference solution (3.3912), even using the coarse meshes.  

 

8.5.6 A 3D L-shaped block: accuracy study 

The 3D square block with a cubic hole subjected to a surface traction q described in 

Example 5.7.5 is again considered. Due to the double symmetry of the problem, only a 

quarter of the domain is modeled, which becomes a 3D L-shaped block as shown in 

Figure 5.26. The analysis is performed using dimensionless input data: q = 1, a = 1, E = 

1, and  = 0.3. For this problem, the strain energy of 6.1999 given by Cugnon [34] is 

considered as the reference solution. In addition, using standard FEM and a very fine 
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mesh with 33,641 nodes and 22,862 ten-node tetrahedron elements, another reference 

solution of the strain energy has been found to be 6.1916. 

From Figure 8.28, it is found that the strain energy curses using three meshes with the 

same aspect ratio versus  0, 1   intersect at exact = 0.7. Table 5.17 and Figure 8.29 

show the convergence of strain energy of FEM-T4 (exact = 0.7) in comparison with 

three different methods. It is again seen that the strain energies obtained using the FEM-

T4 are very close to the reference solution, even when the coarse meshes are used.  

 

8.6 Remarks 

In this chapter, an alpha FEM with a scale factor  using triangular (FEM-T3) and 

tetrahedral (FEM-T4) elements is introduced. Through the theoretical study and 

numerical examples, the following major conclusions can be drawn: 

 The FEM-T3 and FEM-T4 ensure the stability, variational consistence and the 

compatibility of the displacement field, and hence reproduce linear field exactly for 

any  0, 1  .  

 The FEM-T3 and FEM-T4 are equipped with a scaling factor  that controls the 

contributions from the NS-FEM and FEM models. When the factor  varies from 0 to 

1, a continuous solution function in the strain energy from the upper bound of the NS-

FEM model to the lower bound of the FEM can be obtained.  

 From the observed behavior of the numerical results, a unique approach has been 

proposed for the FEM-T3 and FEM-T4 to obtain the nearly exact solution in strain 

energy for linear elasticity problems. This approach uses two coarse meshes with the 

same aspect ratio to search for an approximate exact.  
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 The implementation of the FEM-T3 (or FEM-T4) in practical applications is 

relatively easy and quite similar to the standard FEM because of the following 

reasons; (1) automatic refinement from an initial coarse mesh to obtain the meshes 

with the same aspect ratio is available in many existing programs using creating 3-

node triangular and 4-node tetrahedral elements; (2) the proposed methods only use 

the straindisplacement matrices B  of the standard FEM and area (or volume) of 

elements to compute the system stiffness matrix; (3) No new numerical integration is 

performed.  

 For plane strain problems with nearly incompressible materials, we recommend the 

use of 0   or a very small 0.5    to solve the volumetric locking problem.   

 The obtained result from this study is very promising and the FEM-T3 (or FEM-

T4) can be easily incorporated into the existing commercial software packages with a 

little modification.  

 The FEM-T3 (or FEM-T4) is suitable also for adaptive analysis as it uses only 

triangular and tetrahedral elements that can be automatically generated for 

complicated domains.   

 Searching for a good approximation of exact is still an open topic. If a more efficient 

scheme can be devised, the FEM-T3 and FEM-T4 can find much wider 

applications.   
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Table 8.1. Displacement norm de (%) of standard patch test for 2D problems. 
0.0   

(NS-FEM-T3) 
0.2   0.4105  (*) 0.6038  (*) 0.8   1.0   

(FEM-T3) 

0.2757 e-12 1.6029 e-12  1.4327 e-12 2.1737 e-12 0.7946 e-12 1.6499 e-12 
(*) Arbitrarily generated number 

 

Table 8.2. Displacement norm de (%) of Irons first-order patch test for 3D problems. 

 0.0   
NS-FEM-T4  

0.2   0.4083  (*) 0.6149  (*) 0.8   1.0   
FEM-T4 

de (%) 0.08 e-12 0.23 e-12 0.82 e-12 1.46 e-12 13.06 e-12 0.06 e-12 
(*) Arbitrarily generated number 

 

Table 8.3. Strain energy error ee  of Irons first-order patch test for 3D problems. 

 0.0   
NS-FEM-T4  

0.2   0.4083  (*) 0.6149  (*) 0.8   1.0   
FEM-T4 

ee  2.55 e-11 2.55 e-11 2.55 e-11 2.55 e-11 2.55 e-11 2.55 e-11 
(*) Arbitrarily generated number 

          
 

Table 8.4. Results of tip displacement obtained of different methods for Cook’s problem. 

Mesh 4 4  8 8  16 16  32 32  

FEM-Q4 18.3086 22.0710   23.4370    23.8204 

Qm6 [147] 23.0056    23.7006   23.8923    23.9402 

FB [46] 22.0950    23.4370   23.8204    23.9163 

QBI [15] 20.4654    22.9098   23.6766    23.8923 

KF [64] 19.8903    22.6941   23.6047    23.8683 

Qnew [48] 23.0775    23.7006   23.8923    23.9402 

FEM-T3 ( exact 0.5085  ) 23.7006 24.0322 24.0053 23.9777 

Reference value 23.9642 23.9642 23.9642 23.9642 
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Table 8.5. Results of tip displacement and strain energy obtained of different methods for Cook’s 

problem. 

 Tip displacement  Strain energy 

 2 2  4 4  8 8  2 2  4 4  8 8  

AT 19.67 (27)(*) 22.41 (75) 23.45 (243) 9.84 11.22 11.75 

P-S 21.13 (18) 23.02 (50) 23.69 (162) 10.50 11.51 11.85 

CH(0 – 1) 23.01 (18) 23.48 (50) 23.81 (162) 11.47 11.75 11.91 

ECQ4/LQ6 23.05 (18) 23.48 (50) 23.81 (162) 11.48 11.75 11.91 

HMQ/HQ4 21.35 (18) 23.04 (50) 23.69 (162) 10.61 11.52 11.85 

FEMIXHB 22.81 (35) 23.52 (135) 23.92 (527) 11.27 11.79 11.97 

AGQ6-I 23.07 23.68 23.87 -- -- -- 

AGQ6-II 25.92 24.37 24.04 -- -- -- 

QACM4 20.74 22.99 23.69 -- -- -- 

QACII6 25.92 24.37 24.04 -- -- -- 

FEM-T3 

( exact 0.5085  ) 
-- 23.56 (50) 23.99 (162) -- 11.77 12.00 

Reference value 23.9642 23.9642 23.9642 12.015 12.015 12.015 
 (*): Number of degrees of freedom denoted in parenthesis 

 
 

Table 8.6. Strain energy (Nm) obtained using different methods for the semi-infinite 

plane subjected to a uniform pressure using the same distribution of nodes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Analytical solution 

DOFs 194 410 706 1082 1538  

FEM-T3 43.0502 44.3177  44.8352  45.0938  45.2411 45.5850 

FEM-Q4 44.6815    45.1768   45.3586   45.4452   45.4932 45.5850 

CS-FEM-Q4 44.8423    45.2543   45.4043 45.4753   45.5146 45.5850 

NS-FEM-T3 46.8508    46.2003   45.9577   45.8401   45.7739 45.5850 

ES-FEM-T3 45.1151    45.4122   45.5056 45.5458 45.5665 45.5850 

 FEM-T3 

( 0.48exact  ) 
45.5744    45.6290   45.6322   45.6291   45.6258 45.5850 
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Table 8.7. Error in displacement norm obtained using different methods for the semi-

infinite plane subjected to a uniform pressure using the same distribution of nodes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.1118     0.0745     0.0559     0.0447     0.0373 

FEM-T3 7.94 e-04   4.07 e-04 2.46 e-04 1.64 e-04 1.17 e-04 

FEM-Q4 3.77 e-04   1.76 e-04 1.01 e-04 6.56 e-05 4.60 e-05 

CS-FEM-Q4 3.53 e-04   1.63 e-04 9.36 e-05 6.06 e-05 4.24 e-05 

NS-FEM-T3 4.92 e-04   2.19 e-04 1.24 e-04 7.95 e-05 5.54 e-05 

ES-FEM-T3 2.84 e-04   1.25 e-04 6.95 e-05 4.40 e-05 3.03 e-05  

 FEM-T3 

( exact 0.48  ) 
2.53 e-04 1.20 e-04 7.00 e-05 4.57 e-05 3.21 e-05 

       
Table 8.8. Error in energy norm obtained using different methods for the semi-infinite 

plane subjected to a uniform pressure using the same distribution of nodes. 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

h (m) 0.1118     0.0745     0.0559     0.0447     0.0373 

FEM-T3 1.3498     0.9540   0.7372 0.6012     0.5081     

FEM-Q4 0.8772     0.5946   0.4515     0.3648     0.3066     

CS-FEM-Q4 0.6138     0.3631   0.2529    0.1924     0.1547     

NS-FEM-T3 0.4284     0.2627   0.1883     0.1466     0.1200     

ES-FEM-T3 0.5976     0.3585   0.2527     0.1941     0.1572     

 FEM-T3 

( exact 0.48  ) 
0.5052 0.3035 0.2143 0.1649 0.1338 

 

Table 8.9. Displacement norm versus different Poisson’s ratios of the semi-infinite plane 

subjected to a uniform pressure ( 410 ). 

Mesh Poisson’s ratios FEM-T3 

 = 0 

FEM-T3 

0.5    

FEM-T3 FEM-Q4 

12 12  0.4   1.24     3.34  1.12  
12 12  0.49   1.25  1.21  14.28   4.43 
12 12  0.499   1.29 1.28 33.09  19.62 
12 12  0.4999   1.30   1.29 42.44 41.86 
12 12  0.49999   1.30   1.30   45.78 54.65 
12 12  0.499999   1.30  1.30 47.18 62.10 
12 12  0.4999999   1.30 1.30  47.42 64.10 
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Figure 8.1. An FEM-T3 element: combination of the triangular elements of FEM-T3 

and NS-FEM-T3. The NS-FEM-T3 is used for three quadrilaterals sub-domain, and the 

FEM-T3 is used for the Y-shaped sub-domain in the center.  
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Figure 8.2. Smoothing domain associated with nodes for triangular elements in the 
FEM-T3. 
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Figure 8.3. Domain discretization of a cubic patch using four-node tetrahedral elements. 
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Figure 8.4. The strain energy curves of three meshes with the same aspect ratios intersect 

at exact 0.6   for the cantilever loaded at the end.  
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Figure 8.5. Error in displacement norm of  FEM-T3 ( exact 0.6  ) in comparison with 

other methods for the cantilever loaded at the end using the same distribution of nodes.  
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Figure 8.6. Error in energy norm of  FEM-T3 ( exact 0.6  ) in comparison with other 

methods for the cantilever loaded at the end using the same distribution of nodes. 
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Figure 8.7. Cook’s membrane problem and its discretizations using 4-node quadrilateral 

and 3-node triangular elements. 
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Figure 8.8. The strain energy curves of four meshes with the same aspect ratios intersect at 

exact 0.5085   for Cook’s membrane problem.  
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Figure 8.9. Convergence of tip displacement of  FEM-T3 ( exact 0.5085  ) in comparison 

with other methods for Cook’s membrane using the same distribution of nodes. 
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Figure 8.10.  Semi-infinite plane subjected to a uniform pressure. 
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Figure 8.11.  Domain discretization of the semi-infinite plane using 3-node triangular and 

4-node quadrilateral elements. 
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Figure 8.12. The strain energy curves of three meshes with the same aspect ratios 

intersect at exact 0.48   for the semi-infinite plane subjected to a uniform pressure.  
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Figure 8.13. Convergence of strain energy of FEM-T3 ( exact 0.48  ) in comparison 

with other methods for the semi-infinite plane subjected to a uniform pressure.  
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Figure 8.14. Computed and exact displacements of the semi-infinite plane subjected to a 

uniform pressure using the  FEM-T3 ( exact 0.48  ). 
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Figure 8.15. Computed and exact stresses of the semi-infinite plane subjected to a 

uniform pressure using the  FEM-T3 ( exact 0.48  ). 
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Figure 8.16. Error in displacement norm of  FEM-T3 ( exact 0.48  ) in comparison with 

other methods for the semi-infinite plane subjected to a uniform pressure using the same 

distribution of nodes.  

 

−1.4 −1.3 −1.2 −1.1 −1

−1

−0.5

0 

log
10

h

lo
g 10

 E
ne

rg
y 

no
rm

 

 

FEM−T3 (r=0.89)
FEM−Q4 (r=0.96)
CS−FEM−Q4 (r=1.25)
NS−FEM−T3 (r=1.16)
ES−FEM−T3 (r=1.22)
αFEM−T3 (r=1.21)

αFEM−T3 (α=0.48)

FEM−T3

FEM−Q4

ES−FEM−T3

NS−FEM−T3

CS−FEM−Q4

 

Figure 8.17. Error in energy norm of  FEM-T3 ( exact 0.48  ) in comparison with other 

methods for the semi-infinite plane subjected to a uniform pressure using the same 

distribution of nodes. 
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Figure 8.18. Displacement norm versus different Poisson’s ratios of the material for 

the semi-infinite plane subjected to a uniform pressure (the mesh with 353 nodes and 

0.0559h   is used) . 
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Figure 8.19. Using the strain energy curves of meshes with the same aspect ratios to find 

exact 0.7   for the hollow sphere subjected to inner pressure. 

 



Chapter 8  FEM-T3 and FEM-T4 

  271 

1 1.2 1.4 1.6 1.8 2
0.02

0.03

0.04

0.05

0.06

0.07

0.08

Radius (m)

R
ad

ia
l d

is
pl

ac
em

en
t (

m
)

 

 
α−FEM−T4 (α=0.7)
Analytical solution

 

Figure 8.20. Distribution of the radial displacement of the hollow sphere subjected to 

inner pressure using  FEM-T4 ( exact 0.7  ). 
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Figure 8.21. Distribution of the radial and tangential stresses of the hollow sphere 

subjected to inner pressure using  FEM-T4 ( exact 0.7  ). 
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Figure 8.22. Convergence of strain energy solution of  FEM-T4 ( exact 0.7  ) in 

comparison with others methods for the hollow sphere subjected to inner pressure. 
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Figure 8.23. Error in displacement norm of  FEM-T4 ( exact 0.7  ) in comparison with 

other methods for the hollow sphere subjected to inner pressure. 

 



Chapter 8  FEM-T3 and FEM-T4 

  273 

−0.9 −0.8 −0.7 −0.6
−1.2

−1

−0.8

−0.6

−0.4

−0.2

log
10

h

lo
g 10

 E
ne

rg
y 

no
rm

 

 

FEM−T4 (r=0.98)
NS−FEM−T4 (r=1.34)
FEM−H8 (r=0.95)
FS−FEM−T4 (r=1.43)
α−FEM−T4 (r=1.38)

NS−FEM−T4

αFEM−T4 (α=0.7)

FS−FEM−T4

FEM−H8
FEM−T4

 

Figure 8.24. Error in energy norm of the solution obtained using  FEM-T4 ( exact 0.7  ) 

in comparison with other methods for the hollow sphere subjected to inner. 
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Figure 8.25. The strain energy curves of three meshes with the same aspect ratios to find 

exact 0.62   for the cubic cantilever. 
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Figure 8.26. Convergence of the strain energy solutions of  FEM-T4 ( exact 0.62  ) in 

comparison with other methods for the cubic cantilever subjected to a uniform pressure 

on the top surface. 
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Figure 8.27. Convergence of the deflection at point A(1.0,1.0,-0.5) of  FEM-T4 

( exact 0.62  ) in comparison with other methods for the cubic cantilever subjected to a 

uniform pressure on the top surface. 
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Figure 8.28.  The strain energy curves of three meshes with the same aspect ratios to find 

exact 0.7   for the L-shaped 3D problem. 
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Figure 8.29. Convergence of the strain energy solutions of  FEM-T4 ( exact 0.7  ) in 

comparison with other methods for L-shaped 3D problem. 
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Chapter 9  
 

 

Conclusions and Recommendations  
 

 

9.1 Conclusions Remarks  

This thesis formulated and developed five new novel FEM models including four S-

FEM models and one FEM model scaled by an alpha variable. Chapter 3 presented the 

important foundational theories of the S-FEM models. In Chapters 4, 5, 6 and 7, based on 

four different entities including cells (elements), nodes, edges and faces, four different S-

FEM models including the cell-based S-FEM (CS-FEM), node-based S-FEM (NS-FEM), 

edge-based S-FEM (ES-FEM) and face-based S-FEM (FS-FEM) were presented in more 

detail, respectively. In Chapter 8, by a rational combination of the NS-FEM and standard 

FEM with an alpha scaled variable, an alpha-FEM for triangular elements (FEM-T3) 

and tetrahedral elements (FEM-T4) is formulated to give nearly exact solutions in the 

strain energy for solid mechanics problems. The results of the research showed that the 

five new FEM models possess different characters and advantages compared to the 

standard FEM which can be listed sequentially as follows: 
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9.1.1 Original contributions 

 (1) The general formulation of the S-FEM models shows that four models, CS-FEM, 

NS-FEM, ES-FEM and FS-FEM, are variationally consistent and have the same 

unknowns of only the displacements at field nodes as those of the standard FEM model. 

However, the S-FEM models are “softer” than the standard FEM model. The strain 

energy of the S-FEM models hence becomes larger than that of the standard FEM model. 

In addition, the “softening” effect caused by the strain smoothing technique will be 

monotonically reduced with the increase of the number of smoothing domains (SD) in a 

nested manner. It is also shown that when the total number of SD of the whole problem 

domain approaches the infinity, sN  , the solution of the S-FEM models will approach 

the solution of the standard FEM model, which also approaches the exact solution in the 

cases of NS-FEM, ES-FEM and FS-FEM.  

The spatial and temporal stabilities of the ES-FEM and FS-FEM are always ensured 

because the total number of SD for whole problem domain, sN , is always much larger 

than the minimum number of SD required, min
sN . The ES-FEM and FS-FEM hence work 

well for both static and dynamic problems. In the contrary, the NS-FEM only satisfies 

exactly the minimum number of SD required, min
sN . Therefore, the NS-FEM only works 

well for static problems. For dynamic analysis, the NS-FEM is unstable because of the 

presence of spurious non-zero energy modes. This is the same as the under-integration of 

the weak form inherent in the nodal integration approach of meshfree methods. For the 

CS-FEM, the stability of method is not ensured when the whole element is used as a SD 

for each element, because the minimum number of SD required, min
sN , may not be 

satisfied. In this case, the solution of CS-FEM has the same properties with those of FEM 

using reduced integration. The element stiffness matrix hence can contain spurious zeros 
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energy modes, and the system stiffness matrix after imposing essential boundary 

conditions can be singular depending on the setting of the problem. Therefore, the 

stability of CS-FEM is only ensured when more than one SD is used for each element.  

Field gradients of four S-FEM models are computed directly only using shape 

functions themselves on the smoothing domain boundaries and no derivative of shape 

functions is needed. For the triangular and tetrahedral elements, the S-FEM models use 

the identical linear shape functions of the standard FEM. For n-sided polygonal elements, 

the S-FEM models use the general shape function constructed in Chapter 3. From these 

shape functions, the evaluation of the shape function values at points on the smoothing 

domain boundaries can be done with ease, using the simple point interpolation and/or 

averaging in a proper manner. The compatibility of the displacement field on the 

smoothing domain boundaries can always be ensured using such a point interpolation 

method, as long as the interpolation is based on the points on the smoothing domain 

boundaries.  

Note that the shape function (or displacement field) constructed general for n-sided 

polygonal elements in Chapter 3 is implicit. We can not, in general, write out the exact 

forms of the displacement field explicitly. However, this is perfectly fine for the S-FEM 

models. Because we do not need to compute the derivatives of the displacement field and 

hence no explicit form is required. All we need in the S-FEM models is to evaluate the 

shape function values on the boundaries of the smoothing domains to compute the 

smoothed strain field. This evaluation is performed very easily from the available values 

of shape functions of field nodes. 

Unlike the conventional FEM using isoparametric elements, as no coordinate 

transformation or mapping is performed in the S-FEM models, no limitation is imposed 

on the shape of elements used, and the integration of the weak form is performed on the 
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basis of physical smoothing domains, not by mapped elements. Domain discretization in 

the S-FEM models therefore is more flexible than FEM when even severely distorted or 

n-sided polygonal elements (for the CS-FEM, NS-FEM and ES-FEM) can be used.  

In the S-FEM models using triangular, quadrilateral and tetrahedral elements, the trial 

function hu  used is the same as that in the standard FEM model. Therefore the S-FEM 

models change only the system stiffness matrix K . The other matrices, such as mass 

matrix and damping matrix, and force vector which only used the trial function hu  in 

computation, are computed in exactly the same way as in the standard FEM. In the S-

FEM models, the system stiffness matrix K  is also symmetric positive definite (SPD) 

and the stiffness matrix of each smoothing domain IJK  needs to be computed only when 

nodes I and J share a same smoothing domain. Otherwise, it is zero. Hence, matrix K  

will be also sparse for the S-FEM models and the discretized linear system of equations 

can be solved by using standard routines with ease.  

Also note that matrix K  in the S-FEM models will be banded if the nodes are properly 

numbered, as that in the FEM. The bandwidth of K  will be determined by the largest 

difference of node numbers of the nodes associated with the smoothing domains. For the 

CS-FEM using smoothing domains located inside the elements, the bandwidth of K  will 

be same as that of K  in the FEM. It is because the number of nodes related to the 

smoothing domains is identical to that related to the elements. However, when the 

smoothing domains cover parts of adjacent elements such as in the NS-FEM, ES-FEM or 

FS-FEM, the bandwidth of K  will be larger than that of K  in the FEM. It is because the 

number of nodes supporting the smoothing domains is larger than that of the elements.  

 

(2) The CS-FEM using the quadrilateral elements provided more accurate results than 

FEM-Q4 in terms of both displacement and energy error norms. In practical computation, 
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using 4sn   SD for each quadrilateral element in the CS-FEM is advised for all 

problems. The numerical solution of CS-FEM ( 4sn  ) is always stable, accurate, much 

better than FEM-Q4, and often very close to the exact solutions. For the n-sided 

polygonal elements, the nCS-FEM using SCn n  triangular smoothing cells is always 

stable and gives good accuracy in computations. A selective integration scheme was also 

proposed to solve volumetric locking problems using nearly incompressible materials for 

both the CS-FEM and nCS-FEM.   

 

(3) The NS-FEM is a displacement FEM model, using only displacements as 

unknowns. It, however, possesses interesting properties of an equilibrium FEM model 

such as: (i) the upper bound property of the strain energy, when a reasonably fine mesh is 

used for force driven problems; (ii) natural immunization from the volumetric locking; 

(iii) ultra-accuracy and super-convergence of stress solutions; (iv) similar accuracy of 

displacement solutions compared to the standard FEM model.  

The NS-FEM can be applied for triangular, quadrilateral and n-sided polygonal 

elements in 2D problems, and for 4-node tetrahedral element in 3D problems. From the 

upper bound property of the strain energy of the NS-FEM, a simple and practical 

procedure is proposed to determine both upper and lower bounds in the strain energy, by 

combining the NS-FEM with CS-FEM (for n-sided polygonal elements) or with standard 

FEM (for triangular, 4-node quadrilateral and 4-node tetrahedral elements).  

 

(4) The ES-FEM can use general n-sided polygonal elements (nES-FEM) including 

triangular elements (ES-FEM-T3). A smoothing-domain-based selective ES/NS-FEM 

which is effective in overcoming the volumetric locking problems using nearly 

incompressible materials was proposed.  
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For n-sided polygonal elements, results of the nES-FEM found agree well with exact 

solutions and often much better than those of others existing methods such as the nCS-

FEM and nNS-FEM. 

In particular for the triangular elements, the ES-FEM-T3 possesses many following 

excellent properties: (i) for the static elastic problems, the numerical results of ES-FEM-

T3 are often found super-convergence and ultra-accurate: much more accurate than the 

FEM-T3 and even more accurate than those of FEM-Q4 with the same distribution of 

nodes; (ii) the ES-FEM-T3 is both spatially and temporally stable and hence works very 

well for dynamics analyses. The numerical results showed that the ES-FEM-T3 gives the 

more accurate results and higher convergence rates than the FEM-Q4 and (iii) the 

computational efficiency of ES-FEM-T3 is even better than the FEM-Q4 using the same 

distribution of nodes in term of CPU time for the same accuracy in both energy and 

displacement error norms.  

 

(5) The FS-FEM, which is an extension of the ES-FEM, uses 4-node tetrahedral 

elements in 3D problems. The numerical results demonstrated that the FS-FEM is 

significantly more accurate than the FEM using tetrahedral elements (FEM-T4) for both 

linear analysis and geometrically nonlinear analysis of large deformation. In addition, a 

novel smoothing-domain-based selective scheme, which can overcome well the 

volumetric locking problems using nearly incompressible materials, is proposed. The 

computational efficiency of the FS-FEM was found better than that of FEM-T4 in term of 

CPU time for the same accuracy in both energy and displacement error norms.  

 

(6) The FEM using three-node triangular elements (FEM-T3) and four-node 

tetrahedral elements (FEM-T4) is applied for two-dimensional (2D) and three-
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dimensional (3D) problems, respectively. The FEM are equipped with a scaling factor  

that controls the contributions from the NS-FEM and FEM models. When the factor  

varies from 0 to 1, a continuous solution function in the strain energy from the upper 

bound of the NS-FEM model to the lower bound of the FEM can be obtained.  

From the observed behavior of the numerical results, a unique approach has been 

proposed for the FEM to obtain the nearly exact solution in strain energy for linear 

elasticity problems. This approach uses two coarse meshes with the same aspect ratio to 

search for an approximate exact. The FEM with such an exact is capable to provide a 

“nearly exact” solution in strain energy using very coarse meshes. The FEM can solve 

the volumetric locking problem with nearly incompressible materials.  

 

9.1.2 Some insight comments  

From the above results, it can be seen that the common effect of the strain smoothing 

technique is the reduction of the stiffness of the S-FEM models compared to the standard 

FEM model. This effect is called “softening effect” which contrasts with “stiffening 

effect” caused by the assumed displacement field of a compatible FEM model. Due to the 

softening effect, the strain energy of the S-FEM models becomes larger than that of FEM.  

However, if compared to the exact strain energy, the strain energy of the S-FEM 

models can be larger or smaller, and further or closer depending on the number and 

associated entities (cells (elements), nodes, edges or faces) of smoothing domains (SD). 

Specifically, SD associated with nodes in the NS-FEM is larger than SD associated with 

edges in the ES-FEM (or with faces in the FS-FEM). In addition, almost of nodes in the 

problem domain in the NS-FEM are smoothed (except nodes at corners of problem 

domain), while only interior edges in the ES-FEM (or interior faces in the FS-FEM) are 

smoothed (the smoothing of boundary edges (or faces) is unaffected). As a result, the 



Chapter 9 Conclusions and Recommendations 

283 

softening effect in the NS-FEM is much stronger than that in the ES-FEM/FS-FEM. The 

strain energy obtained by the NS-FEM is therefore not only larger but also further than 

the exact strain energy, while the strain energy obtained by the ES-FEM/FS-FEM is 

smaller than that of the NS-FEM and is much closer to the exact strain energy. The 

solution in the strain energy (or displacement) of ES-FEM/FS-FEM is therefore much 

better than that obtained by the NS-FEM. This solution of ES-FEM is even more accurate 

than the FEM-Q4 with the same distribution of nodes used.  

While it is clear to define the relative position of the strain energy obtained by the 

FEM or NS-FEM or ES-FEM/FS-FEM with the exact strain energy, it is indefinite for the 

case of the strain energy obtained by the CS-FEM. It may be larger or smaller, further or 

closer to the exact strain energy depending on the number of smoothing domains used in 

each element, Sn , and the problems solved.  

Unlike the S-FEM models which use only the fixed smoothing domains to soften the 

stiffness, the FEM even uses a continuous scale variable  to adjust the smoothing 

domain, and by using meshes with the same aspect ratio, the FEM can even find exact 

which provides the nearly exact strain energy. In particular, this nearly exact strain energy 

can be obtained even with coarse discretizations of domain.  

 

9.1.3 Crucial contributions 

The above characters and advantages of five proposed new FEM models show four 

following crucial contributions:  

First, the new FEM models, including four S-FEM models and the FEM, are 

promising to provide more feasible options for numerical methods in terms of high 

accuracy, low computational cost, easy implementation, versatility and general 

applicability. The new FEM models can be applied especially effectively for 3-node 
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triangular (NS-FEM, ES-FEM, FEM) and 4-node tetrahedral elements (NS-FEM, FS-

FEM, FEM). The new FEM models can be applied well for both compressible and 

nearly incompressible materials.  

Second, in the S-FEM models, field gradients are computed directly only using shape 

functions themselves and no derivative of shape functions is needed. This is significant in 

numerical methods because it gives more the freedom and convenience in the 

construction of shape functions. Furthermore, the S-FEM models, which can use the 

severe distorted or n-sided polygonal elements (CS-FEM, NS-FEM and ES-FEM), 

remove the constrained conditions on the shape of elements of the standard FEM. This 

removal is important because it helps to overcome the difficulties related to the distortion 

of the shape of elements in analyzing the large deformation, crack and destruction 

problems, or in modeling continuum structured material by a set of discrete material 

points.  

Third, the NS-FEM which possesses interesting properties of an equilibrium FEM 

model is promising to provide a much simpler tool to estimate the quality of the solution 

(the global error, bounds of solutions, convergence rates, etc) by combining itself with the 

standard compatible FEM. This has considerable impact on developing new quasi-

equilibrium FEM elements and error estimation theories of the FEM. These new quasi-

equilibrium FEM elements would be much simpler and more efficient than the existing 

complicated quasi-equilibrium FEM elements. At least, we now have a practical mean to 

obtain the upper and lower bounds of solutions in the strain energy without really 

worrying too much about where the exact solution is and use the approximated solution 

with confidence. In addition, how fine the mesh we should use can also be determined 

base on the gap (error) of these two bounds. As soon as the error is acceptable for our 

design purpose, we stop further refining the model. This know-where-to-stop requires 
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“certifying” the solution. It is very important because it give us confidence for the 

solution as well as preventing using unnecessarily large models in design and analysis, 

resulting in wastes of computational and manpower resources. The development of 

practical numerical methods for producing certified solutions will become more and more 

important to engineering design and analysis, and hence techniques that can provide 

upper bound solutions like the NS-FEM are very much in demand.  

Fourth, the FEM, which provides the nearly exact solution in the strain energy by 

only using the coarse meshes of 3-node triangular and 4-node tetrahedral elements, has a 

very meaningful contribution in providing more the reference solutions with high 

accuracy of new benchmark problems used to verify the accuracy, reliability and 

efficiency of numerical methods, especially in 3D problems or 2D problems with 

complicated geometry domains, or in many fields without having the analytical solutions 

such as fluid mechanics, solid mechanics, heat mechanics, etc.   

 

9.2 Recommendations for future work  

First, as one of the novel numerical methods, mathematical proofs about the characters 

and advantages of five proposed new novel numerical methods have not been explored 

comprehensively in this research. Some obtained results were mainly drawn from the 

numerical results which may restrict the general application of the methods to a certain 

degree. Further study is therefore needed to develop mathematical bases for these 

methods. This not only make five proposed new numerical methods more applicable to 

practical engineering problems with certain confidence, but also guide us on how to 

further improve the solutions. For instance, the interesting properties of an equilibrium 

FEM model in the NS-FEM and the existence of the exact
 in the FEM models by using 

meshes with the same aspect ratio needs to be proved.  
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Second, it is now clearly necessary to establish a general theoretical framework to 

unify the formulation of all these newly developed FEM models. Some work has been 

performed by Liu [68, 69] recently to establish the new functional spaces containing the 

S-FEM models and S-PIM models. However, many theoretical aspects related to these 

spaces still need to be analyzed in detail in the coming time.   

Third, it is important to further develop the analysis procedures (dual analysis, 

shakedown analysis, limit analysis, etc) to evaluate the quality of the solution (the global 

error, bounds of solutions, convergence rates, etc) or to evaluate the working limit of 

structures in the geometrical or material nonlinear problems by combining the analyses of 

both the standard compatible FEM and the NS-FEM. We also performed some research in 

this direction [149]. These are very promising research directions in the coming time. 

Fourth, it is promising to apply five proposed new numerical methods in many 

different applied fields such as solid mechanics (plate, shell), smart materials 

(piezoelectric, composite, etc), fracture problems, fluid mechanics, fluid-structure 

interaction, contact problems, computational plasticity, heat conduction, petroleum 

engineering, wave propagation, etc. We now have extended five new numerical methods 

in many different applications and computations as listed in publications arising from the 

thesis. However, there are still a lot of things needed to be done to popularize the new 

methods in the community of researchers in computational mechanics.   
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