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Summary

Summary

Nowadays nearly all the control algorithms are implemented digitally and consequently

discrete-time systems have been receiving ever increasing attention. However, for the devel-

opment of nonlinear adaptive control and neural network (NN) control, which are generally

regarded as smart ways to deal with system uncertainties, most researches are conducted

in continuous-time, such that many well developed methods are not directly applied in

discrete-time, due to fundament difference between differential and difference equations

for modeling continuous-time and discrete-time systems, respectively. Therefore, nonlinear

adaptive control and neural network control of discrete-time systems need to be further

investigated.

In the first part of the thesis, a framework of future states prediction based adaptive con-

trol is developed to avoid possible noncausal problems in high order systems control design.

Based on the framework, a novel adaptive compensation approach for nonparametric model

uncertainties in both matched and unmatched condition is constructed such that asymp-

totic tracking performance can be achieved. By proper incorporating discrete Nussbaum

gain, the adaptive control becomes insensitive to system control directions and the bounds

of control gain become not necessary for control design. The adaptive control is also stud-

ied with incorporation of discrete-time Prandtl-Ishlinskii (PI) model to deal with hysteresis

type input constraint. Furthermore, adaptive control is designed for block-triangular non-

linear multi-input-multi-output (MIMO) systems with strict-feedback subsystems coupled

together. By exploiting block triangular structure properties and construction of uncertain-

ties compensations, the design difficulties caused by the couplings among various inputs

and states, as well as the uncertainties in the couplings are solved.

In the second part of the thesis, it is established that for single-input-single-output

(SISO) case, under certain conditions both pure-feedback systems and nonlinear autoregressive-

moving-average-with-exogenous-inputs (NARMAX) systems are transformable into a suit-

able input-output form and adaptive NN control design for both systems can be carried
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Summary

out in a unified approach without noncausal problem. To overcome the difficulty associated

with nonaffine appearance of control variables, implicit function theorem is exploited to

assert the existence of a desired implicit control. In the control design, discrete Nussbaum

gain is further extended to deal with time varying control gains. The adaptive NN control

constructed for nonaffine SISO systems is also extended to nonaffine MIMO systems in

block triangular form and NARMAX form.

The research work conducted in this thesis is meant to push the boundary of academic

results further beyond. The systems considered in this thesis represent several general

classes of discrete-time nonlinear systems. Numerical simulations are extensively carried

out to illustrate the effectiveness of the proposed controls.
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Chapter 1

Introduction

It is well known that the control design is critical to the performance of the closed-loop

controlled system while an accurate system model is essential for a good control design.

But for modeling of practical systems, there are always inevitable uncertainties. These

modeling uncertainties may result in poor performance and may even lead to instability

of the closed-loop systems. To improve control performance, many control strategies have

been developed to consider these uncertainties in the control design stage. Adaptive control

has been developed with particular attention paid to parametric uncertainties. Over the

years of progress from linear systems to nonlinear systems, rigorous stability analysis of the

closed-loop adaptive system has been well established.

The advantage of adaptive control lies in its ability to estimate and compensate for

parametric uncertainties in a large range, but towards the increasingly complex systems

with complicated nonlinear functional uncertainties, it is necessary to develop more power-

ful control design methodologies. Therefore, neural network (NN) control along with other

intelligent controls has been introduced in the early 90’s. In NN control methodology, NN

has been extensively studied for functions approximation to compensate for the system un-

certain nonlinearities in control design. In the last two decades, NN control has been proved

to be very useful for controlling highly uncertain nonlinear systems and has demonstrated

superiority over traditional controls. Especially, the marriage of adaptive control theories

and NN techniques give birth to adaptive NN control, which guarantees stability, robust-

ness and convergence of the closed-loop NN control systems without beforehand offline NN

training.

In the past decades, many significant progresses in adaptive control and NN control

made for nonlinear continuous-time systems and there is considerable lag in the development

1



1.1 Adaptive Control of Nonlinear Systems

for nonlinear discrete-time systems. While nowadays nearly all the control algorithms are

implemented digitally such that the process data are typically available only at discrete-

time instants, and it is sometimes more convenient to model processes in discrete-time for

ease of control design. Thus, adaptive control and NN control of nonlinear discrete-time

system deserve deeply further investigation.

The remainder of this Chapter is organized as follows. In Section 1.1, brief introduction

of the development of adaptive control, especially for nonlinear discrete-time systems, is

presented. Some research problems to be studied in this thesis are highlighted, such as

robust issue and unknown control direction problem in adaptive control, which are both

theoretically challenging and practically meaningful. In Section 1.2, NN control is briefly

reviewed. Background knowledge of NN is given first, and then the recent researches on NN

control of nonaffine systems and multi-variable systems are discussed. Finally, in Section

1.3, the motivation, objectives, scope, as well as the structure of the thesis are presented.

1.1 Adaptive Control of Nonlinear Systems

Adaptive control has been developed more than half a century with intense research activi-

ties involving rigorous problem formulation, stability proof, robustness design, performance

analysis and applications [1]. Originally adaptive control was proposed for aircraft autopi-

lots to deal with parameter variations during changing flight conditions. In the 1960’s, the

advances in stability theory and the progress of control theory improved the understanding

of adaptive control and by the early 1980’s, several adaptive approaches have been proven

to provide stable operation and asymptotic tracking. The adaptive control problem since

then, was rigorously formulated and the theoretical foundations have been laid.

The early adaptive controls were mainly designed for the linear systems. The solid

theoretical foundations of general solution to the linear adaptive control problem were laid

in simultaneous publications [2–5], in which the global stability of linear adaptive systems

was analyzed. The success of adaptive control of linear systems has motivated the rapid

growing interest in nonlinear adaptive control from the end of 1980’s. In particular, adaptive

control of nonlinear systems using feedback linearization techniques has been developed

in [6–9], based on the differential geometric theory of nonlinear feedback control [10]. It is

noted in these results that global stability cannot be established without some restrictions

on the plants, such as the matching condition [7], extended matching condition [11], and

growth conditions on system nonlinearities [12]. The technique of backstepping, rooted in

the independent works of [13–15], and further developed in [16–18], heralded an important

2



1.1 Adaptive Control of Nonlinear Systems

breakthrough for adaptive control that overcame the structural and growth restrictions. The

combination of adaptive control and backstepping technique, i.e. adaptive backstepping,

yields a means of applying adaptive control to parametric-uncertain systems with non-

matching conditions [19, 20]. As a result, adaptive backstepping can be applied to a large

class of nonlinear systems in lower triangular form with parametric uncertainties.

For most nonlinear adaptive control designs, Lyapunov’s direct method has been adopted

as a primary tool for control design, stability and performance analysis. Lyapunov’s direct

method is a mathematical interpretation of the physical property that if a system’s total

energy is dissipating, then the states of the system will ultimately reach an equilibrium

point. The direct method provides a means of determining stability without the need for

explicit knowledge of system solutions. The basic idea to apply Lyapunov’s method in

control design is to design a feedback control law that renders the derivative of a specified

Lyapunov function candidate negative definite or negative semi-definite [21, 22]. The task

of selecting a Lyapunov function candidate is in general non-trivial. For ease of manipu-

lation, a significant portion of the literature on Lyapunov based control synthesis employ

quadratic Lyapunov functions, which are often sufficient to solve a large variety of control

problems. But sometimes more sophisticated forms of Lyapunov functions are needed for

certain difficult problems. To avoid controller singularity problem in feedback linearization

based adaptive control of continuous-time nonlinear systems, integral Lyapunov functions

have been developed in [23]. For stability analysis for time-delay systems, a class of spe-

cial Lyapunov functionals, Lyapunov-Krasovskii functionals, can be employed such that

when the derivative of the Lyapunov function/functional is taken, the terms containing the

delayed states can be matched and canceled [24–26].

In practice, there may be some nonsmooth, nonlinear input constraint, such as dead

zone, backlash and hysteresis, which are common in actuator and sensors such as mechanical

connections, hydraulic actuators and electric servomotors. The existence of these constraints

in control input can result in undesirable inaccuracies or oscillations, which severely limits

the closed-loop control system’s performance and can even lead to instability [27]. Therefore,

the studies of these constraints have been drawing much interest in the adaptive control

community for a long time [28–32]. To handle systems with unknown dead zones, adaptive

dead-zone inverses were proposed [28, 30]. Robust adaptive control was developed for a

class of special nonlinear systems without constructing the inverse of the dead zone [31].

Smooth inverse function of the dead zone together with backstepping has been proposed for

output feedback control design in [32]. To control systems with hysteresis input constraint,

an inverse operator was constructed to eliminate the effects of the hysteresis in [29]. In the

3
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literature, various models have been proposed to describe the hysteresis, such as Preisach

model [33], Prandtl-Ishlinskii (PI) model [34,35], and Krasnosel’skii-Pokrovskii model [36].

Many practical systems are of multi-variable characteristics, thus an ever increasing at-

tention in control community has been paid to MIMO nonlinear systems in recent years.

However, compared with myriad researches conducted for SISO nonlinear systems, adap-

tive control theory for multi-input-multi-output (MIMO) nonlinear systems has been less

investigated. It is noted that it is generally non-trivial to extend the control designs from

single-input-single-output (SISO) systems to MIMO systems, due to the interactions among

various inputs, outputs and states. Several algorithms have been proposed in the litera-

ture for solving the problem of exact decoupling for nonlinear MIMO systems [10, 37–39].

In [40], global diffeomorphism is studied for square invertible nonlinear systems such that

backstepping design can be applied. In [41], the problem of semi-global robust stabilization

was investigated for a class of MIMO uncertain nonlinear system, which cannot be trans-

formed into lower dimensional zero dynamics representation, via change of coordinates or

state feedback. All the above mentioned designs need the determination of the so-called

decoupling matrix, i.e., the system interconnections are known functions. As a matter of

fact, when there are uncertain couplings, the closed-loop stability analysis becomes much

more complex.

For nonlinear MIMO systems that are feedback linearizable, a variety of adaptive con-

trols have been proposed based on feedback linearization techniques [6, 42], in which an

invertible estimated decoupling matrix is also required during parameter adaptation such

that couplings among system inputs can be decoupled. Backstepping design has also been

investigated for adaptive control of some classes of MIMO systems that are not feedback

linearizable. In [20], adaptive backstepping control has been studied for parametric strict-

feedback MIMO nonlinear systems, in which it is assumed that no parametric uncertainties

appear in the input matrix. As an extension, robust adaptive control has been studied for

a class of MIMO nonlinear systems transformable to two semi-strict feedback forms in [43],

where the parametric uncertainty is considered in the coupling matrix, and uncertain system

interconnections are assumed to be bounded by known nonlinear functions.

1.1.1 Discrete-time adaptive control

Discrete-time systems are of ever increasing importance with the advance of computer

technology. Even at the very early stage of adaptive control development, discrete-time

systems received great attention. In fact, one foundational research work of adaptive control,
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the self tuning regulator (STR), was presented in discrete-time [44]. In the development

of linear adaptive control, many advances in discrete-time have been achieved in parallel

to those in continuous-time. Rigorous global stability of adaptive control was established

in [2, 4] for continuous-time linear systems and in [3, 5] for discrete-time linear systems.

The adaptive control design without a priori knowledge of control direction was proposed

in [45] for continuous-time linear system while the counterpart result in discrete-time was

obtained in [46]. Robust adaptive control using persistent excitation of the reference input

was proposed in [47] for continuous-time linear systems while the work for discrete-time

linear systems was made in [48]. It is worth to mention that the Key Technical Lemma

developed in [5] has been a major stability analysis tool in discrete-time adaptive control.

Though for adaptive control of linear continuous-time systems, there are lots of coun-

terpart results for linear discrete-time systems, adaptive control of nonlinear discrete-time

systems have been considerately less studied than their counterparts in discrete-time. As a

matter of fact, many techniques developed for continuous-time systems cannot be applied

in discrete-time, especially when the systems to be controlled are nonlinear. Discrete-time

systems are described by difference equations, which in great contrast to the differential

equations of continuous-time systems, involve states at different time steps. Due to the

different nature of difference equation and differential equation, even some concepts in

discrete-time have very different meaning from those in continuous-time, e.g., the “rela-

tive degrees” defined for continuous-time and discrete-time systems have totally different

physical explanations [49].

Generally, adaptive control design for nonlinear systems in discrete-time is much more

difficult than for those in continuous-time. The stability analysis techniques become much

more intractable for difference equations than those for differential equations, e.g., the lin-

earity property of the derivative of a Lyapunov function in continuous-time is not present

in the difference of a Lyapunov function in discrete-time [50]. Thus, many nice Lyapunov

adaptive control design methodologies developed in continuous-time are not applicable to

discrete-time systems. Sometimes the noncausal problem may arise when continuous-time

control design is directly applied to discrete-time counterpart systems, such that the con-

ventional backstepping design proposed in continuous-time, a crucial ingredient for the

development of adaptive control of nonlinear systems in lower triangular form, is not di-

rectly applicable to counterpart discrete-time systems [51]. To illustrate, let us consider a
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second order discrete-time systems in strict-feedback form as follows:

ξ1(k + 1) = f1(ξ1(k)) + ξ2(k)

ξ2(k + 1) = f2(ξ1(k), ξ2(k)) + u(k) (1.1)

The first state variable at the (k+1)th step, ξ1(k+1), is driven by the second state variable

at the kth step, ξ2(k), while the second state variable at the (k + 1)th step, ξ2(k + 1), is

driven by the control input at the kth step, u(k). If we treat the second state variable at

kth step, ξ2(k), as virtual control variable as in the procedure of conventional backstepping

design, the control input at the kth step, u(k), will involve first state variable at (k + 1)th

step, ξ1(k + 1), which is not available at current step, the kth step.

To extend the conventional backstepping design procedure from continuous-time to

discrete-time, a coordinate transformation for strict-feedback systems was proposed in [52]

such that adaptive control can be designed to “looks ahead” and choose the control law to

force the states to acquire their desired values. From the perspective of parameter identifica-

tion for strict feedback system, a novel parameter estimation was proposed [53], in which the

convergence of parameter estimates to the true values in finite steps is guaranteed if there is

no other nonparametric uncertainties. To robustify the discrete-time backsteping proposed

in [52], projection method has been incorporated into the parameter update law [54–56] to

deal with nonparametric model uncertainties. However, it is noted that all these methods

were developed for special strict-feedback systems with known control gains and are not

directly applicable to more general strict-feedback systems with unknown control gains. To

explain clearly, let us consider a simple plant y(k+ 1) = θy(k) + gu(k). If g is known, then

we are able to calculate the value of θy(k − 1) by θy(k − 1) = y(k)− gu(k − 1), but if g is

unknown we are not able to obtain the value of θy(k−1). In the discrete-time backstepping

in [52,54–56], the coordinate transformation involves the similar problem as in the example

above, and thus, the control gains are assumed to be simply ones in these work. When the

control gains are unknown, the discrete-time backstepping developed in [52, 54–56] will be

not directly applicable.

On the other hand side, there are no general discrete-time adaptive nonlinear controls

by now that allow the nonlinearity in systems to grow faster than linear. When the known

nonlinear functions are of growth rates larger than linear, most existing design methods

become not valid because the Key Technical Lemma [57], a main stability analysis tool in

discrete-time adaptive control, is not applicable for the unknown parameters multiplying

nonlinearities that are not sector bounded. As revealed in [58, 59], there are considerable
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limitations of feedback mechanism for discrete-time adaptive control, such that it is impos-

sible to have global stability results for noised adaptive controlled systems when the known

nonlinear system functions are of general high growth order or when the size of the uncer-

tain nonlinearity is larger than a certain number. In an early work [60] on discrete-time

adaptive systems, it is also pointed out that when there is large parameter time-variation,

it may be impossible to construct a global stable control even for a first order system.

1.1.2 Robust issue in adaptive control

The early developed adaptive controls were mainly concerning on the parametric uncer-

tainties, i.e., unknown system parameters, such that the designed controls have limited

robustness properties, where minute disturbances and the presence of nonparametric model

uncertainties can lead to poor performance and even instability of the closed-loop sys-

tems [61, 62]. Subsequently, robustness in adaptive control has been the subject of much

research attention in both continuous-time and discrete-time.

Some researches suggested that the persistently exciting reference inputs with a sufficient

degree of persistent excitation can be used to achieve robustness for system perturbed by

bounded disturbances and certain classes of unmodeled dynamics [47, 48]. To enhance the

robustness, many modification techniques were proposed in the control parameter update

law of the adaptive controlled systems, such as normalization [62,63] where a normalization

term is employed; deadzone method [61, 64] which stops the adaptation when the error

signal is smaller than a threshold; projection method [54,56,65] which projects the parameter

estimates into a limited range; σ-modification [66] which incorporate an additional term; and

e-modification [21] where the constant σ in σ-modification is replaced by the absolute value

of the output tracking error. These methods make the adaptive closed-loop system robust

in the presence of external disturbance or model uncertainties but sacrifice the tracking

performance.

In addition, sliding mode as one of the most popular robust control methods that results

in invariance properties to uncertainties [67–69], e.g., modeling uncertainty or external

disturbance, has also been incorporated into adaptive control design to offer robustness.

Extensive studies of adaptive control using sliding mode has been made in continuous-

time for the recent decades. To guarantee the smoothness of the control law, tanh(·)
function instead of the saturation function sat(·) have been employed in the adaptive control

design [70–72].

However, due to the above mentioned difficulties associated with uncertain nonlinear

7



1.1 Adaptive Control of Nonlinear Systems

discrete-time system model, there are not many researches on robust adaptive control in

discrete-time to deal with nonparametric nonlinear model uncertainties. As mentioned

above, parameter projection method has also been studied in [54–56] to guarantee bound-

edness of parameter estimates. The sliding mode method has also been incorporated into

discrete-time adaptive control [73–76]. However, in contrast to continuous-time systems

for which a sliding mode control can be constructed to eliminate the effect of the general

uncertain model nonlinearity, in discrete-time the uncertain nonlinearity is required to be

of small growth rate or globally bounded, but sliding mode control is not able to completely

compensate for the effect of nonlinear uncertainties in discrete-time. As a matter of fact,

unlike in continuous-time, it is much more difficulty in discrete-time to deal with nonlinear

uncertainties. As mentioned above, when the size of the uncertain nonlinearity is larger

than a certain level, even a simple first-order discrete-time system cannot be globally sta-

bilized [59]. Mover, in discrete-time most existing robust approaches only guarantee the

closed-loop stability in the presence of the nonparametric model uncertainties but are not

able to improve control performance by completely compensation for the effect of uncer-

tainties.

1.1.3 Unknown control direction problem in adaptive control

As observed by the early researchers that one challenge of adaptive control design lies in

the unknown signs of the control gains [45, 77], which are normally required to be known

a priori in the adaptive control literature. These signs, called control directions in [78],

represent motion directions of the system under any control. When the signs of control

gains are unknown, the adaptive control problem becomes much more difficult, since we

cannot decide the direction along which the control operates. Moveover, in discrete-time

adaptive control the control directions are usually required to avoid controller singularity

when the estimate of control gains appear in the denominator. The unknown control di-

rections problem in adaptive control had remained open till the Nussbaum gain was first

introduced in [77] for adaptive control of first order continuous-time systems. In [45], adap-

tive control of high order linear continuous-time systems with unknown control directions

has been constructed using Nussbaum gain. Thereafter, the problem of adaptive control

of systems with unknown control directions has received a great deal of attention for the

continuous-time systems [78–82]. In [80], the Nussbaum gain was adopted in the adap-

tive control of linear systems with nonlinear uncertainties to counteract the lack of a prior

knowledge of control directions. Toward high order nonlinear systems, backstepping with
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Nussbaum function was then developed for general nonlinear systems in lower triangular

structure, with constant control gains [81], and time-varying control gains [82]. Alternative

approaches to deal with the unknown control directions can also be found in the literature.

In [83], the projected parameter approach has been used for adaptive control of first-order

nonlinear systems with unknown control directions. In [78], online identification of the un-

known control directions was proposed for a class of second-order nonlinear systems. But

not as general as Nussbaum gain, the application of these methods are restricted to certain

classes of systems.

It is mentioned in Section 1.1.1 that it is generally not easy to extend successful continuous-

time control methods to discrete-time. It is also true for the control design using continuous-

time Nussbaum gain. It is pointed in [84] that simply sampling the continuous-time Nuss-

baum gain may not results in a discrete-time Nussbaum gain. To solve the unknown control

direction problem, a two-step adaptation law was proposed for a first-order discrete-time

system [85]. But this procedure is limited to first-order linear system. In order for stable

adaptive control of high order linear systems, the first Nussbaum type gain in discrete-

time was developed in [46]. The discrete Nussbaum gain is more intractable compared to

its continuous-time counterpart, and hence, the control design using discrete Nussbaum

gain for discrete-time systems is more difficult than control design using continuous-time

Nussbaum gain for continuous-time systems.

1.2 Adaptive Neural Network Control

Adaptive control design has been elegantly developed for nonlinear systems with parametric

uncertainties, but as a matter of fact, most of the nonlinear adaptive control techniques rely

on the key assumption of linear parameterization, i.e., nonlinearities of the studied plants

can be represented in the linear-in-parameters (LIPs) form in which the regression functions

are known. Though there is much effort dedicated to adaptive control of nonlinear systems in

nonlinear-in-parameters (NIPs) form [86–90], usually the form of the system models and the

nonlinear functions in the model are required to be known a priori in adaptive control design.

Thus, we call traditional adaptive control as model based adaptive control. Recognizing

the fact that model building itself might be very difficult for complex practical systems and

it is not easy to identify the general nonlinear functions in the models, many researchers

have been devoted to function approximation based control such as neural network (NN)

control [1, 91–99].

The universal approximation ability of NN makes it an effective tool in approximation
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based control of highly uncertain, nonlinear and complex systems. NN’s approximation

ability has been developed based on the Stone-Weierstrass theorem, which states that a

universal approximator can approximate, to an arbitrary degree of accuracy, any real con-

tinuous function on a compact set [100–105]. Besides the universal approximation abilities,

NN also shows its excellence in parallel distributed processing abilities, learning, adapta-

tion abilities, natural fault tolerance and feasibility for hardware implementation. These

advantages make NN particularly attractive and promising for applications to modelling

and control of nonlinear systems. NN has been successfully applied to robot manipula-

tors control [97, 98, 106–108], distillation column control [109], spark ignition engines con-

trol [110, 111], chemical processes identification [112–114], etc. In addition, sometimes NN

has also been combined with fuzzy logic for control design [108,115].

In the early stage, backpropagation (BP) algorithm [116] greatly boosted the develop-

ment of NN control [91, 92, 117, 118]. It is noted that in the early NN control results, the

control performances were demonstrated through simulation or by particular experimental

examples, and consequently there were shortage of analytical analysis. In addition, an offline

identification procedure was essential for achieving a stable NN control system. Thereafter,

the emergence of Lyapunov-based NN design makes it possible to use the available adaptive

control theories to rigorously guarantee stability, robustness and convergence of the closed-

loop NN control systems [1, 93, 94, 97–99]. We call the control design combining adaptive

control theories and NN techniques adaptive NN control, in comparison with model based

adaptive control.

1.2.1 Background of neural network

Inspired by the biological NN that consist of a number of simple processing neurons intercon-

nected to each other, McCulloch and Pitts introduced the idea to study the computational

abilities of networks composed of simple models of neurons in the 1940s [119]. Neural net-

work, like human’s brain, consists of massive simple processing units which correspond to

biological neurons. With the highly parallel structure, NN is of powerful computing ability

and learning ability to emulate various systems dynamics. It is well established that NN is

capable of universally approximating any unknown function to arbitrary precision [100–105].

In addition to system modeling and control, NN has been successfully applied in many other

fields such as learning, pattern recognition, and signal processing.

Based on the feedback link connection architecture, NN can be classified into two types,

i.e., recurrent NN (e.g., Hopfield NN, cellular NN), and non-recurrent NN or feedforward
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NN. For feedforward NN, there are generally two basic types: (i) linearly parametrized

neural network (LPNN) in which the adjustable parameters appear linearly, and (ii) mul-

tilayer neural networks (MNN) in which the adjustable parameters appear nonlinearly [1].

In this thesis, two kinds of LPNN will be studied for NN control design, i.e., High Order

Neural Network (HONN) and Radial Basis Function (RBFNN). The structure of HONN is

an expansion of the first order Hopfield [120] and Cohen-Grossberg [121] models that allow

higher-order interactions between neurons. HONN is of strong storage capacity, approxi-

mation and learning capability. It is pointed in [122] that by utilizing a priori information,

HONN is very efficient in solving problems because the order or structure of HONN can

be tailored to the order or structure of a given problem. RBFNN can be considered as a

two-layer network in which the hidden layer performs a fixed nonlinear transformation with

no adjustable parameters, i.e., the input space is mapped into a new space. The output

layer then combines the outputs in the latter space linearly. The detailed structure and

properties of HONN and RBFNN will be discussed in Section 2.2.

1.2.2 Adaptive NN control of nonaffine systems

As mentioned above, adaptive NN control design combines adaptive control theories with

NN techniques. It updates NN weight online and the stability of the closed-loop system

is well guaranteed. In both continuous-time and discrete-time, adaptive NN control has

been extensively studied for affine nonlinear systems through feedback linearization. In

continuous-time, MNN based control has been studied for nonlinear system in normal form

with functional control gain [123], in which a special switching action is designed to avoid

controller singularity problem because NN approximated control gain function appearing in

the denominator. Adaptive NN control of normal form affine nonlinear system has also been

studied in [124], where the controller singularity problem is solved by introducing control

gain function as denominator of Lyapunov function in the design stage. Using high-gain

observer, output feedback adaptive NN control has been further studied in [125] for nonlinear

system in normal form. In [126], constant time delays have been considered in states

measurement for controlling normal form nonlinear system with known constant control

gains, with employment of a modified Smith predictor and recurrent NN. For strict-feedback

systems with unknown constant control gains, adaptive NN control was designed in [127]

via backstepping design. For strict-feedback systems with functional control gains, adaptive

NN control based on backstepping has been proposed in [128], where integral Lyapunov

functions are used to overcome the controller singularity problem. In [129,130], time delayed
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states in strict-feedback systems have been considered. Adaptive NN control has been

designed with help of Lyapunov-Krasovskii functionals, and the method in [124] was used

to avoid controller singularity problem. Adaptive NN control designed via backstepping

has also been studied for general affine nonlinear systems of minimum phase and known

relative degree in [131]. In discrete-time, for high order affine nonlinear system in normal

form, adaptive NN controls using LPNN and MNN have been developed in [132,133] using

filtered tracking error. The control design has been extended in [110, 134] combining with

reinforcement learning technique to improve control performance. A critic NN has been

introduced to approximate a strategic utility function which is considered as the long-

term system performance measure. For discrete-time systems in strict-feedback form, after

system transformation, adaptive NN control via backstepping design has been developed

in [51]. In [135], adaptive NN control has been investigated for discrete-time system in

affine NARMAX form.

In the above mentioned results, the adaptive NN control designs are carried out through

either feedback linearization or backstepping. But these approaches are not applicable to

nonaffine systems, especially feedback linearization based methods, which greatly depends

the affine appearance of control variables. As a matter of fact, adaptive NN control for

nonaffine systems have been less studied in comparison with large amount of researches on

affine nonlinear systems, because the difficulty of control design caused by the nonaffine form

of control input. To overcome the difficulty, linearization based NN controls have been put

forward. In [136], the nonaffine discrete-time system has been decomposed into a linear part

and a nonlinear part, and consequently a liner adaptive controller and a nonlinear adaptive

NN controller have been designed, with a switching rule specifying when the nonlinear NN

controller should be invoked. Similarly, nonaffine systems have been linearized in [137],

where a generalized minimum variance linear controller has been designed for the linear

part. In [138], control has been designed based on the online linearization of the offline

identified NN model with restriction on the control growth. This design approach has been

further studied in [139] using internal mode control.

To control nonaffine systems with finite relative degree, some researchers have suggested

the idea that NN control can be designed based on the “inverse” of the nonlinear system.

Pseudo inverse (approximated inverse) NN control method have been developed in [140,141].

In [140], NN is used to approximate the error between pseudo inverse control signal and

the ideal inverse control signal. Similar pseudo inverse NN control has been studied in

[141], where the pseudo inverse control consists of a linear dynamic compensator and an

adaptive NN compensator. The pseudo inverse NN control has also been studied using a
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self structuring NN with online variation neurons number in [142]. The idea is to create

more neurons when the plant nonlinearity is complex such that control performance can be

guaranteed.

In [143], it is investigated to directly utilize NN as emulator of the “inverse” of the

nonlinear discrete-time systems. Furthermore, the study in [144] for discrete-time systems

paved the way for adaptive NN control using implicit function to assert the existence of an

ideal inverse control. Thereafter, the implicit function based adaptive NN control has been

widely studied in both discrete-time [145,146] and continuous-time [125,147,148]. Based on

implicit function theory, adaptive NN control using backstepping was constructed for two

special classes of nonaffine pure-feedback systems which are affine in control input [147].

But to extend the control design to more general nonaffine pure-feedback systems that

are nonaffine in all the control variables, one technical difficulty arise when NN is used to

approximate the control u in backstepping design, u and u̇ will be involved as inputs to

NN. This will lead to a circular construction of the practical control as indicated in [148], in

which the difficulty was solved by proposing a ISS-modular approach with implicit function

theory used to ensure the existence of desired virtual controls.

It is noted that in adaptive NN control design for both affine and nonaffine systems,

the control directions, which is defined as the signs of control gain functions in the affine

systems or the signs of partial derivatives over control variables in the nonaffine systems, are

normally assumed to be known. Though there are some NN control designs in continuous-

time [149,150] using Nussbaum gain to overcome unknown control directions problem, there

are little study of unknown control direction problem in discrete-time adaptive NN control

so far. One may note that in [144], the control direction is not assumed to be known. But

the stability is proved using NN weights convergence results, which cannot be guaranteed

without the persistent exciting condition.

1.2.3 Adaptive NN control of multi-variable systems

As mentioned in the beginning of Section 1.1, practically most systems are of nonlinear and

multi-variable characteristics, but the control problem of MIMO nonlinear systems is very

complicated. It it is generally non-trivial to extend the control designs of SISO systems to

MIMO systems, due to the interactions among various inputs, outputs and states. Similar

to model based adaptive control, there are fewer results on MIMO systems compared with

SISO system in adaptive NN control literature.

In continuous-time, block triangular form systems with subsystems in normal form has
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been studied in [23]. This class of systems covers a large class of plants including the

decentralized systems studied in [151, 152]. Block triangular form systems with normal

form subsystems have also been studied in [150,153] with particular attention paid to time

delayed states, deadzone input constraint and unknown control gains. More general block

triangular form systems with strict-feedback subsystems have been investigated in [154].

For general MIMO system in affine form, adaptive NN control based on linearization has

been proposed in [155].

In discrete-time, block triangular systems with normal form subsystems have been stud-

ied in [132, 133, 156]. For block triangular systems with strict-feedback subsystems, state

feedback and output feedback adaptive NN control have been developed in [157,158] by ex-

tending the systems transformation based backstepping technique proposed for SISO case

in [51]. In [155], adaptive NN control has been developed for sampled-data nonlinear MIMO

systems in general affine form based on linearization. The control scheme is an integration

of an NN approach and the variable structure method. For MIMO systems in affine NAR-

MAX form, adaptive NN control design has been performed in [159]. The existence of an

orthogonal matrix is required to construct the NN weights update law, which as indicated

in [159], is generally still an open problem when there exists unknown strong inter con-

nections between subsystems. The aforemention adaptive NN controls for MIMO systems,

especially in discrete-time, are all carried out for affine systems.

1.3 Objectives, Scope, and Structure of the Thesis

The general objectives of the thesis are to develop constructive and systematic methods

of designing adaptive controls and NN controls for discrete-time nonlinear systems with

guaranteed stability. For adaptive control, we will study SISO/MIMO systems in strict-

feedback forms. While for adaptive NN control, we will study SISO/MIMO systems in both

pure-feedback and NARMAX forms. The control design objective focuses on the output

tracking problem.

A framework of adaptive control based on predicted future states will be first established

for general strict-feedback systems. The framework provides a novel approach in nonlinear

discrete-time control and is expandable to deal with more general uncertainties. In particu-

lar, nonparametric model uncertainties are considered. The adaptive control design aims at

asymptotic tracking performance in the presence of the nonparametric model uncertainties.

A compensation scheme is devised and incorporated into the prediction law and control law,

such that the effect of the uncertainties can be eliminated ultimately by using past states
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information. Additionally, unknown control directions are accommodated in the adaptive

control design via proper introduction of discrete Nussbaum gain into the control parameter

update law.

The adaptive control with fully compensation of nonparametric model uncertainties

developed in this thesis achieves asymptotic output tracking performance for high order

nonlinear strict-feedback system. The proper incorporation of discrete Nussbaum make the

adaptive closed-loop insensitive to control directions without loss of asymptotic tracking

performance. In order to enlarge the class of systems under the designed adaptive control,

input constraint of hysteresis type will also be considered as well as systems with multi-

variable. The nonparametric model uncertainty compensation technique has been further

developed to compensate for the uncertain coupling terms among subsystems in the MIMO

systems. The adaptive control designed in this thesis provide a constructive structure of

prediction based adaptive control design approach that may also lead to more useful results

and inspire new control design approach.

On the other hand, for adaptive NN control design, the research conducted in the thesis

combines implicit function control and future state/outputs prediction together to form a

unified approach for SISO systems in both pure-feedback and NARMAX forms. It solves

the difficulty caused by the nonaffine appearance of control input and possible noncausal

problem in the control design. The study also extends the discrete Nussbaum gain and

adopts it for adaptive NN control of nonlinear systems with unknown time varying control

gains. The research in adaptive NN control simplifies the previous results using backstepping

design and provide a new design approach for adaptive NN control of high order nonlinear

systems in nonaffine form.

The adaptive NN control designed will also be extended to control nonlinear MIMO sys-

tem, both in block triangular form with nonaffine pure-feedback subsystems and in nonaffine

NARMAX form. By fully exploit the properties of block-triangular structure, the recursive

design method in [157, 158] is extended such that the interaction among each subsystems

are considered not only appear in the control range, namely in the last equation of each

subsystem, but also appear in every equation of each subsystem. The assumption of known

control direction and the assumption that each subsystems are of equal order [158] in output

feedback control design will be completely removed. By exploiting discrete Nussbaum gain

in NN weights update law, the stringent assumption on control gain matrix of NARMAX

system in [159] is relaxed.

The work presented in this thesis is problem oriented and dedicated to the fundamental

academic exploration of adaptive and NN control of discrete-time nonlinear systems. Thus,
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the focus is given to control theory development. In addition, our studies are focused on

the nonlinear systems in lower triangular and NARMAX forms, which cover large classes

of nonlinear systems in discrete-time. It would be a future research topic to extend our

control design methods to nonlinear systems in other forms.

The thesis is organized as follows. After the introduction in Chapter 1, some necessary

mathematical preliminaries and control design tools are give in Chapter 2, in which we will

also discuss some nice properties of systems in general lower triangular form and detail the

structure and properties of HONN and RBFNN to be used in this thesis.

In Chapter 3, we start with the study of adaptive control of strict-feedback systems

with nonparametric model uncertainties. In the first place, the simple case when uncertain-

ties appear in the control range (matched condition) is considered. Asymptotical tracking

performance will be obtained by compensation for the uncertain nonlinearities. Then, by

further development of future states prediction with incorporation of elimination of the effect

of unmatched uncertainties, asymptotic tracking adaptive control is designed for systems

with uncertainties outside control range (unmatched condition).

Chapter 4 studies adaptive control of strict-feedback systems with unknown control di-

rections with exploit of discrete Nussbaum gain in the nonlinear control design. Using future

states prediction developed in Chapter 3, we first study systems without nonparametric un-

certainties. After further investigation of the uncertainties compensation and property of

discrete Nussbaum gain, essential modifications are made such that marriage between dis-

crete Nussbaum gain and the nonparametric uncertainties compensation techniques is made

for systems with both unknown control directions and nonparametric model uncertainties

in matched and unmatched manner. The proposed adaptive control design guarantee the

asymptotic tracking performance when the system is in the absence of external disturbance.

Chapter 5 extends the adaptive control designed in previous two Chapters for systems

with hysteresis input constraint and systems with multi-inputs and multi-outputs. Discrete-

time Prandtl-Ishlinskii (PI) model is utilized to construct the hysteresis constraint and to

facilitate the adaptive control design. Uncertain nonlinearities compensation technique has

been explored to deal with uncertain couplings among each subsystems. The properties of

the block-triangular structure has been well exploited in order for a decoupling recursive

control design.

In Chapter 6, NN control of SISO systems in pure-feedback form has been studied. The

design difficulty associated with the nonaffine appearance of control variables have been

solved by seeking an implicit control using implicit function theorem. Using prediction

functions the system has been transformed into a compact form for states feedback design
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employing only a single NN. It greatly reduces the complexity of tedious backstepping

design [51]. The system is then further transformed into an input-output form so that

output NN control is carried out. In addition, discrete Nussbaum gain is also extended to

deal with time varying control gains in adaptive NN control design.

Chapter 7 studies NN control of nonaffine MIMO systems in block-triangular form and

NARMAX form. Using properties of block-triangular structure, output feedback NN control

has been synthesized without any assumption on subsystem orders [158]. For nonaffine

system in NARMAX form, discrete time Nussbaum gain is studied in the NN weights

update law to relax assumptions on the control gain matrix [159].

Finally, Chapter 8 concludes the contributions of the thesis and makes recommendation

on the future research works.
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Chapter 2

Preliminaries

In this Chapter, we will describe in detail the mathematical preliminaries, useful technical

lemmas, and control design tools, which will be extensively used throughout this thesis. The

properties of general lower triangular SISO nonlinear systems and block-triangular MIMO

nonlinear systems will be studied. For completeness, the structure and properties of two

kinds of LPNNs, HONN and RBFNN, will be discussed.

2.1 Useful Definitions and Lemmas

Definition 2.1. A square matrix A ∈ Rn×n is said to be

• positive definite (denoted by A > 0) if xTAx > 0, ∀x ∈ Rn, x 6= 0, or if for some

ε > 0, xTAx ≥ ε‖x‖2, ∀x;

• positive semi-definite (denoted by A ≥ 0) if xTAx ≥ 0, ∀x ∈ Rn;

• negative semi-definite if −A is positive semi-definite;

• negative definite if −A is positive definite;

• symmetric if AT = A;

• skew-symmetric if AT = −A; and

• symmetric positive definite (semi-definite) if A > 0(≥ 0) and A = AT

Definition 2.2. A function f(x1, x2, . . . , xn) : Rn → R is said to be of class Ck if all its

partial derivatives ∂kf
∂xi1 ,xi2 ...xik

exist, and are continuous, where each of i1, i2, . . . , ik is an

integer between 1 and n, for any k ∈ [1,∞).
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Lemma 2.1. [160] (Implicit Function Theorem) Consider a Cr function f : Rk+n → Rn

with f(a, b) = 0[n] and rank(Df (a, b)) = n where Df (a, b) = ∂f(x,y)
∂y |(x,y)=(a,b) ∈ Rn×n.

Then, there exists a neighborhood A of a in Rk and a unique Cr function g : A→ Rn such

that g(a) = b and f(x, g(x)) = 0[n], ∀x ∈ A.

Definition 2.3. [136] Let x1(k) and x2(k) be two discrete-time scalar or vector signals,

∀k ∈ Z+
t , for any t.

• We denote x1(k) = O[x2(k)], if there exist positive constants m1, m2 and k0 such that

‖x1(k)‖ ≤ m1 maxk′≤k ‖x2(k′)‖+m2, ∀k > k0.

• We denote x1(k) = o[x2(k)], if there exists a discrete-time function α(k) satisfying

limk→∞ α(k)→ 0 and a constant k0 such that ‖x1(k)‖ ≤ α(k) maxk′≤k ‖x2(k′)‖, ∀k >
k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) = O[x2(k)] and x2(k) = O[x1(k)].

For the convenience, in the followings we use O[1] and o[1] to denote bounded sequences

and sequences converging to zero, respectively. In addition, if sequence y(k) satisfies y(k) =

O[x(k)] or y(k) = o[x(k)], then we may directly use O[x(k)] or o[x(k)] to denote sequence

y(k) for convenience.

According to Definition 2.3, we have the following proposition.

Proposition 2.1. According to the definition on signal orders in Definition 2.3, we have

following properties:

(i) O[x1(k + τ)] +O[x1(k)] ∼ O[x1(k + τ)], ∀τ ≥ 0.

(ii) x1(k + τ) + o[x1(k)] ∼ x1(k + τ), ∀τ ≥ 0.

(iii) o[x1(k + τ)] + o[x1(k)] ∼ o[x1(k + τ)], ∀τ ≥ 0.

(iv) o[x1(k)] + o[x2(k)] ∼ o[|x1(k)|+ |x2(k)|].

(v) o[O[x1(k)]] ∼ o[x1(k)] +O[1].

(vi) if x1(k) ∼ x2(k) and limk→∞ ‖x2(k)‖ = 0, then limk→∞ ‖x1(k)‖ = 0.

(vii) If x1(k) = o[x1(k)] + o[1], then limk→∞ ‖x1(k)‖ = 0.

(viii) Let x2(k) = x1(k) + o[x1(k)]. If x2(k) = o[1], then limk→∞ ‖x1(k)‖ = 0.
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Proof. See Appendix 2.1.

Lemma 2.2. Given a bounded sequence X(k) ∈ Rm. Define

lk = arg min
l≤k−n

‖X(k)−X(l)‖ (2.1)

Then, we have

lim
k→∞

‖X(k)−X(lk)‖ = 0

Proof. See Appendix 2.2.

Lemma 2.3. [5] (Key Technical Lemma) For some given real scalar sequences s(k), b1(k),

b2(k) and vector sequence σ(k), if the following conditions hold:

(i) limk→∞
s2(k)

b1(k)+b2(k)σT (k)σ(k)
= 0,

(ii) b1(k) = O[1] and b2(k) = O[1],

(iii) σ(k) = O[s(k)].

Then, we have

a) limk→∞ s(k) = 0, and b) σ(k) is bounded.

Definition 2.4. Let U be an open subset of Ri+1. A mapping f(ω) : U → R is said to be

Lipschitz on U , if there exists a positive constant L such that

|f(ωa)− f(ωb)| ≤ L‖ωa − ωb‖

for all (ωa, ωb) ∈ U .

Lemma 2.4. If functions f1(·), f2(·), . . . , fn(·) are Lipschitz functions with Lipschitz coef-

ficient L1, L2, . . ., Ln, respectively. Then their composite function f1 ◦ f2 ◦ . . . fn(·) is still

a Lipschitz function with Lipschitz coefficient L = L1L2 . . .  Ln.

Proof. By the definition of Lipschitz function,

|f1 ◦ f2 ◦ . . . fn(ωa)− f1 ◦ f2 ◦ . . . fn(ωb)| ≤ L1‖f2 ◦ . . . fn(ωa)− f2 ◦ . . . fn(ωb)‖

≤ . . . ≤ L1L2 . . . Ln‖ωa − ωb‖ (2.2)

where ωa and ωb are arguments of fn(·) and L1, L2, . . . , Ln are some constants. Let L =

L1L2 . . .  Ln and it completes the proof.
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Definition 2.5. [161] The future state variables of a discrete-time system is said to be

semi-determined future states (SDFS) at time instant k, if it can be determined based on

the available system information up to time instant k, and controls up to time instant k− 1

under the assumption that the dynamics of the plant and the disturbance are known.

Definition 2.6. [135] The future output of a discrete-time control system is said semi-

determined future output (SDFO) at time instant k, if it can be predicted based on the

available system information up to time instant k and controls up to time instant k − 1

without considering the unknown uncertainties.

Let us consider a class of general lower-triangular nonlinear systems described as
ξi(k + 1) = fi(ξ̄i(k), ξi+1(k)), i = 1, 2, . . . , n− 1

ξn(k + 1) = fn(ξ̄n(k), u(k), d(k)) +O[ξ̄n(k)]

y(k) = ξ1(k)

(2.3)

with Lipschitz functions fi(·) differentiable with respect to the second argument and bounded

external disturbance d(k) ∈ R.

Definition 2.7. The partial derivatives g1,i(·) = ∂fi(ξ̄i(k),ξi+1(k))
∂ξi+1(k) , i = 1, 2, . . . , n − 1, and

g1,n(·) = ∂fn(ξ̄n(k),u(k),d(k))
∂u(k) are defined as control gain functions of system (2.3).

Assuming that there exist constants ḡj > g
j
> 0 such that the control gain functions

satisfy g
j
≤ |g1,j(·)| ≤ ḡj , j = 1, 2, . . . , n. Then, we have the following lemmas:

Lemma 2.5. In system (2.3), the future states ξ̄i(k+j), i = 1, 2, . . . , n−1, j = 1, 2, . . . , n−i,
are SDFSs, and there exist prediction functions Pj,i(·) such that

ξ̄i(k + j) = Pj,i(ξ̄i+j(k))

In addition, the prediction functions Pj,i(·) are also Lipschitz functions.

Proof. See Appendix 2.3.

Lemma 2.6. In system (2.3), the states and input of the system satisfy

ξ̄i(k) ∼ y(k + i− 1), i = 1, 2, . . . , n, u(k) = O[y(k + n)]

In particular, we have

ξ̄n(k) ∼ y(k + n− 1) ∼ e(k + n− 1), u(k) = O[y(k + n)] = O[e(k + n)] (2.4)

where e(k) = y(k) − yd(k) and yd(k) is bounded reference signal such that y(k) ∼ e(k).

Proof. See Appendix 2.4.
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Let us consider a class of general block-triangular MIMO nonlinear systems with pure-

feedback subsystems described as

Σ :



Σ1


ξ1,i1(k + 1) = f1,i1(ξ̄1,i1−m11(k), ξ̄2,i1−m12(k), . . . , ξ̄n,i1−m1n(k),

ξ1,i1+1(k)), i1 = 1, 2, . . . , n1 − 1

ξ1,n1(k + 1) = f1,n1(Ξ(k), u1(k), d1(k)) +O[Ξ(k)]

y1(k) = ξ1,1(k)
...

Σj


ξj,ij (k + 1) = fj,ij (ξ̄1,ij−mj1(k), ξ̄2,ij−mj2(k), . . . , ξ̄n,ij−mjn(k),

ξj,ij+1(k)), ij = 1, 2, . . . , nj − 1

ξj,nj (k + 1) = fj,nj (Ξ(k), ūj(k), dj(k)) +O[Ξ(k)]

yj(k) = ξj,1(k)
...

Σn


ξn,in(k + 1) = fn,in(ξ̄1,in−mn1(k), ξ̄2,in−mn2(k), . . . , ξ̄n,in−mnn(k),

ξn,in+1(k)), in = 1, 2, . . . , nn − 1

ξn,nn(k + 1) = fn,nn(Ξ(k), ūn(k), dn(k)) +O[Ξ(k)]

yn(k) = ξn,1(k)

(2.5)

where fj,ij (·) are Lipschitz functions and

ξ̄j,ij (k) = [ξj,1(k), ξj,2(k), . . . , ξj,ij (k)]T (2.6)

is a vector of the first to the ijth state variables of subsystem Σj , ij = 1, 2, . . . , nj , and

Ξ(k) = [ξ̄1,n1(k), ξ̄2,n2(k), . . . , ξ̄n,nn(k)]T (2.7)

is a vector of all the states in the whole system, which is assumed to be measurable.

Definition 2.8. [154] The notation mjl = nj−nl used in (2.5) represents the order differ-

ence between the jth and the lth subsystem. When ij −mjl ≤ 0, states vectors ξ̄j,ij−mjl(k)

do not exist and are thus not included in the ijth equation of subsystem Σj in (5.18). It

is noted that when l = j, we have mjl = 0 and ξ̄j,ij−mjl(k) = ξ̄j,ij (k), and when ij = nj,

j = 1, 2, . . . , n, we have [ξ̄1,nj−mj1(k), ξ̄2,nj−mj2(k), . . . , ξ̄n,nj−mjn(k)] = Ξ(k). This is the

reason we use notation Ξ(k) in the last equations of every subsystem Σj (2.5).

Remark 2.1. For a given subsystem Σj, the njth equation includes state vectors ξ̄nl(k) of

all the subsystems Σl, l = 1, 2, . . . , n. The (nj−1)th equation includes state vectors ξ̄nl−1(k)

(because nj−1−mjl = nl−1) of all the subsystems Σl that are of order nl > 1; the (nj−2)th
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equation includes state vectors ξ̄nl−2(k) (because nj−2−mjl = nl−2) of all the subsystems

Σl that are of order nl > 2; and so on and so forth. Besides, in the last equation of the

dynamics of subsystem Σj, inputs from the first subsystem to the jth subsystem, ūj(k), are

included.

Definition 2.9. Denote n̄ =
n

max
j=1
{nj} and define a set si = {j|nj = n̄+1−i}, i = 1, 2, . . . , n̄,

such that all the subsystems can be divided into n̄ groups, with each group defined by a set

Si = {Σi|i ∈ si}, i = 1, 2, . . . , n̄. The set Si may be an empty set if there is no subsystem of

order (n̄+ 1− i). Furthermore, we assume that the number of the elements in Si is mi.

Definition 2.10. Define gj,ij (·) =
∂fj,ij (·,·)
∂ξj,ij+1(k) , and gj,nj (·) =

∂fj,nj (·,·,·)
∂uj(k) as control gain func-

tions of system (2.5).

Assume that there exist constants ḡj,ij > g
j,ij

> 0 such that 0 ≤ g
j,ij
≤ |gj,ij (·)| ≤ ḡj,ij ,

j = 1, 2, . . . , n, ij = 1, 2, . . . , nj . Then, we have the following lemma:

Lemma 2.7. Let ξ̄l,ij−mjl(k) = 0 and yl(k + ij −mjl − 1) = 0, if ij −mjl ≤ 0. The states

and inputs of system (5.18) satisfy

n∑
l=1

O[ξ̄l,ij−mjl(k)] ∼
n∑
l=1

O[yl(k + ij −mjl − 1)], uj(k) = O[Ξ(k + 1)]

for j = 1, 2, . . . , n and ij = 1, 2, . . . , nj. In particular, when ij = nj we have
n∑
j=1

O[ξ̄j,nj (k)] ∼
n∑
j=1

O[yj(k + nj − 1)].

Proof. See Appendix 2.5.

Remark 2.2. Lemma 2.7 for MIMO systems can be regarded as a counterpart of Lemma

2.6 for SISO systems.

Lemma 2.8. Consider sequences xj(k), j = 1, 2, . . . , n, satisfy

xj(k) =
n∑
i=1

o[xi(k −mji)] + o[1]

Then, we have lim
k→∞

xj(k) = 0, j = 1, 2, . . . , n.

Proof. For a given l, l = 1, 2, . . . , n from xj(k) =
n∑
i=1

o[xi(k −mji)] + o[1], we have

xj(k + nj − nl) =
n∑
i=1

o[xi(k + ni − nl)] + o[1] ∼ o[
n∑
i=1

|xi(k + ni − nl)|] + o[1]
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which further leads to
n∑
j=1

|xj(k + nj − nl)|+ o[n] ∼ o[
n∑
i=1

|xi(k + ni − nl)|] + o[1]

from which we can obtain
∑n

j=1 |xj(k + nj − nl)| ∼ o[1]→ 0 which completes the proof.

2.2 Preliminaries for NN Control

In this thesis, the following two kinds of LPNNs are used for approximation of general

nonlinear functions to facilitate adaptive NN control design.

High Order Neural Networks: [1] The structure of HONN is expressed as followings:

φ(W, z) = W TS(z) W, S(z) ∈ Rl

S(z) = [s1(z), s2(z), . . . , sl(z)]T , (2.8)

si(z) =
∏
j∈Ii

[s(zj)]dj(i), i = 1, 2, ..., l (2.9)

where z ∈ Ωz ⊂ Rm is the input to HONN, l the NN nodes number, {I1, I2,...,Il} a collection

of l not-ordered subsets of {1, 2, ...,m}, e.g., I1 = {1, 3, m}, I2 = {2, 4, m}, dj(i)’s
nonnegative integers, W an adjustable synaptic weight vector, and s(zj) a monotonically

increasing and differentiable sigmoidal function. In this thesis, it is chosen as a hyperbolic

tangent function, i.e., s(zj) = ezj−e−zj
ezj+e−zj

.

For a smooth function ϕ(z) over a compact set Ωz ⊂ Rm, given a small constant real

number µ∗ > 0, if l is sufficiently large, there exist a set of ideal bounded weights vector

W ∗ such that

max |ϕ(z)− φ(W ∗, z)| < µ(z), |µ(z)| < µ∗ (2.10)

From the universal approximation results for neural networks [162], it is known that the

constant µ∗ can be made arbitrarily small by increasing the NN nodes number l.

Lemma 2.9. [1] Consider the basis functions of HONN (2.8) with z being the input vector.

The following properties of HONN will be used in the proof of closed-loop system stability.

λmax[S(z)ST (z)] < 1, ST (z)S(z) < l (2.11)

where λmax(M) denotes the max eigenvalue of M .
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Radial Basis Function Neural Networks: [98] Considering the following RBF NN used

to approximate a function h(z) : Rm → R,

φ(W, z) = W TS(z) (2.12)

where the input vector z ∈ Ωz ⊂ Rm is of NN input dimension m. Weight vector W =

[w1, w2, · · · , wl]T ∈ Rl, the NN node number l > 1, and S(z) = [s1(z), · · · , sl(z)]T , with

si(z) chosen as Gaussian functions as follows:

si(z) = exp
[
−(z − µi)T (z − µi)

η2
i

]
, i = 1, 2, ..., l (2.13)

where µi = [µi1, µi2, · · · , µiq]T is the center of the receptive field and ηi is the width of the

Gaussian function.

It has been proven that the RBFNN (2.12) can approximate any continuous function

over a compact set Ωz ⊂ Rq to arbitrary accuracy as

φ(z) = W ∗TS(z) + εz, ∀z ∈ Ωz (2.14)

where W ∗ is ideal constant weights, and εz is the approximation error.

Lemma 2.10. [1] For the Gaussin RBFNN, if ẑ = z − εψ̄ where ψ̄ is a bounded vector

and constant ε > 0, then

S(ẑ) = S(z) + εSt (2.15)

where St is a bounded function vector.

Definition 2.11. [157] A trajectory x(k) of the closed-loop system is said to be semi-

globally-uniformly-ultimately-bounded (SGUUB), if for any a priori given compact set, there

exists a feedback control, a bound µ ≥ 0, and a number N(µ, x0), such that the trajectory of

the closed-loop system starting from the compact satisfy ‖x(k)‖ ≤ µ for all k ≥ k0 +N .

Remark 2.3. The concept of SGUUB can be illustrated by three compact sets, namely, the

initial compact set Ω0, the bounding compact set Ω, and the steady state compact set Ωs

within Ω. If given any initial condition Ω0, there is a corresponding control law valid on the

bounding compact set Ω such that the states in the closed-loop system will never go beyond

the bounding compact set Ω and will eventually be bounded in the steady state compact set

Ωs, then the closed-loop system is of SGUUB stability. Normally, the size of Ω0 only affects

the bounding compact set Ω but not affects the steady state compact set Ωs.
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Adaptive Control Design
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Chapter 3

Systems with Nonparametric

Model Uncertainties

3.1 Introduction

As introduced in Section 1.1.1, adaptive backstepping in discrete-time was developed in [52]

for strict-feedback system with unit control gains. The design approach has been further

robustified to deal with nonparametric model uncertainties in [54–56], where projection

operation was utilized in the control parameter update law to guarantee the boundedness

of parameter estimates. The control design approach in these existing work depend on the

knowledge of control gains and are not directly applicable to more general strict-feedback

systems with unknown control gains. In this thesis, we will study adaptive control design

for strict-feedback nonlinear systems with unknown control gains. In this Chapter, we start

from the case that the control gains are partially unknown, i.e., the absolute values of

the gains are unknown while the signs of the control gains are known. In the consequent

Chapter 4, we will further remove the assumption on control directions.

The robust technique using projection operation in [54–56] guarantee the global stability

of the adaptive closed-loop system in the presence of nonparametric model uncertainties.

But this robustification method together with most other existing methods in discrete-time

(refer to Section 1.1.2) is not able to achieve asymptotical tracking performance. However,

it is interesting and challenging in discrete-time adaptive control to fully compensate for

the effect of nonparametric nonlinear model uncertainties for exact tracking performance.

There are some recent successful attempts to completely eliminate a class of nonparametric

nonlinear uncertainty made in [163,164], but the designs greatly rely on the system structure
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of first order and only scalar unknown parameter. In this Chapter we carry forward the

study on full compensation of the effect of nonparametric nonlinear model uncertainties in

discrete-time adaptive control of strict-feedback systems.

In Section 3.2, we start from compensation of matched nonparametric uncertainty. First,

an auxiliary output which includes future states as well as both parametric and nonparamet-

ric uncertainties is introduced. Then, the prediction of the auxiliary output is constructed

using the predicted states and estimated parameters, and is used to facilitate adaptive con-

trol design. In Section 3.3, we consider more complicated case of unmatched uncertainties.

Auxiliary states including both parametric and nonparametric uncertainties are introduced

to facilitate unmatched uncertainties compensation at the future states prediction stage.

Auxiliary output is also introduced at the control stage for compensation of the uncer-

tainty in the control range. For system with both matched and unmatched uncertainties,

the adaptive control designed guarantee not only closed-loop stability but also asymptotic

output tracking performance.

The uncertainty compensation technique requires the the nonlinearity satisfying Lip-

schitz condition, which is a common assumption for nonlinearity in the control commu-

nity [163, 165–167]. Another requirement is the small Lipschitz coefficient of the uncertain

nonlinearity, which is also usual in discrete-time control [56,75,137,168]. When the Lipschitz

coefficient is large, discrete-time uncertain systems are not stabilizable as indicated in [59].

Actually, if the discrete-time models are derived from continuous-time models, the growth

rate of nonlinear uncertainty can always be made sufficient small by choosing sufficient

small sampling time. For example, let us consider a discrete-time system model derived

from continuous-time model ẋ = fc(x) + νc(x) with unknown function νc(·) satisfying Lip-

schitz condition. Then the discrete-time model would be x(k + 1) = fd(x(k)) + νd(x(k))

where fd(x(k)) =
∫ (k+1)T
kT fc(x)dx + x(k) and νd(x(k)) =

∫ (k+1)T
kT νc(x)dx, where T is the

sampling time. Then, it is always possible to make the Lipschitz coefficient of νd(x(k))

arbitrarily small by choosing sufficiently small sampling time T .

The contributions in this Chapter lies in

(i) A systematic adaptive control design framework based on the predicted future states

is developed for nonlinear discrete-time systems in strict-feedback form.

(ii) A novel deadzone with threshold converging to zero is proposed in the estimated

parameter update law to handle the effect of uncertain nonlinearities.

(iii) A novel uncertain nonlinearities compensation technique is devised to eliminate the
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effects of both matched and unmatched nonparametric uncertainties such that asymp-

totical tracking performance is obtained.

3.2 Systems with Matched Uncertainties

In this Section, we consider the simple case that the nonparametric model uncertainties

only appear in the control range, i.e., matched condition. In discrete-time, sliding mode

has been well studied to deal with matched uncertainty and offer robustness [69,75,76], but

unlike in continuous-time, sliding mode in discrete-time is not able to eliminate the effect

of uncertain nonlinearities in the output tracking performance. In this Section, adaptive

control is constructed for strict-feedback systems using predicted future states on the base

of the transformed systems, and a novel uncertain nonlinearity compensation mechanism is

embedded into the control. There are parameter estimates update laws for both predictor

and controller. The update laws for predictor are driven by the prediction errors of one

step ahead predicted states, while the update law for controller is driven by an augmented

error that combines both prediction errors and output tracking error.

In this Section, we will also consider time delayed states in the uncertain nonlinearity.

Time-delay is an active topic of research because it is frequently encountered in engineering

systems to be controlled [169]. Of great concern is the effect of time delay on stability and

asymptotic performance. In continuous-time, some of the useful tools in robust stability

analysis for time delays systems are based on the Lyapunov’s second method, the Lyapunov-

Krasovskii theorem and the Lyapunov-Razumikhin theorem. Following its success in sta-

bility analysis, the utility of Lyapunov-Krasovskii functionals were subsequently explored

in adaptive control designs for continuous-time time delayed systems [149, 153, 170–172].

However, in the discrete-time there is not a counterpart of Lyapunov-Krasovskii functional.

To solve the difficulties associated with delayed states in the nonparametric nonlinear un-

certainties, an augmented states vector is introduced such that the effect of time delays can

be canceled at the same time when the effect of nonlinear uncertainties are compensated.
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3.2 Systems with Matched Uncertainties

3.2.1 Problem formulation

Let us consider strict-feedback nonlinear systems with both parametric uncertainties and

matched nonparametric uncertainties as follows:
ξi(k + 1) = ΘT

i Φi(ξ̄i(k)) + giξi+1(k),

i = 1, 2, . . . , n− 1

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + ν(ξ̄n(k − τ))

y(k) = ξ1(k)

(3.1)

where state vectors ξ̄j(k), control input u(k) and system output y(k) are are measurable,

Θj ∈ Rpj , gj ∈ R, j = 1, 2, . . . , n, are unknown parameters (pj ’s are positive integers),

Φj(ξ̄j(k)) : Rj → Rpj are known vector-valued functions, and ν(ξ̄n(k − τ)) is unknown

nonlinear function which is regarded as nonparametric nonlinear model uncertainties. The

unknown time delay τ satisfies 0 ≤ τmin ≤ τ ≤ τmax with known τmin and τmax. The control

objective is to make output exactly track a given bounded reference trajectory y∗(k) and

to guarantee the boundedness of all the closed-loop signals.

Assumption 3.1. The functional uncertainty ν(·), satisfies Lipschitz condition, i.e., ‖ν(ε1)−
ν(ε2)‖ ≤ Lν‖ε1 − ε2‖, ∀ε1, ε2 ∈ Rn, where Lν < λ∗ with λ∗ is a small number defined in

(3.52). The system functions Φj(·), j = 1, 2, . . . , n, are also Lipschitz functions with Lips-

chitz coefficients Lj.

Remark 3.1. Any continuously derivable function is Lipschitz on a compact set [173] and

any function with bounded derivative is global Lipschitz. As our objective is to achieve global

asymptotical stability, it is not stringent to assume that the nonlinearity is global Lipschitz.

Remark 3.2. As pointed in [59], it is impossible to obtain global stability results for discrete-

time controlled system when the nonlinear uncertainties are of large growth rates. Thus,

it is usual to assume that the nonparametric nonlinear uncertainties are of small growth

rates [54, 56, 75, 76, 168] or even globally bounded [62, 136] and their growth rates can be

guaranteed to be smaller than a specified constant. In the case that the discrete-time model

is derived from a continuous-time model, the growth rates of the nonlinear uncertainties can

be made small enough by choosing sufficient small sampling time T .

Assumption 3.2. The control directions, signs of control gains gj, (j = 1, 2, . . . , n) are

known. Without loss of generality, it is assumed that gj are positive constants with known

lower bounds g
j
> 0, i.e., gj ≥ gj > 0.

In Chapter 4, the assumption of knowledge of control directions and lower bounds will

be removed for adaptive control design.
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3.2 Systems with Matched Uncertainties

3.2.2 Future states prediction

As mentioned , the discrete-time backstepping in [52,54–56] involves coordinate transforma-

tion than relies on know gains. In this Chapter and next Chapter, we develop an alternative

control design approach without any knowledge of control gains. The key component in

the control design is future states prediction and it will be constructed in this Section. Ac-

cording to the structure of system (3.1), the future states ξ̄i(k + n− i), i = 1, 2, . . . , n− 1,

are deterministic at the kth step because they are not dependent of control input, in other

words, the systems in (3.1) are of relative degree n.

Let us consider predicting these future states at the kth step despite the presence of the

unknown parameters. Denote Θ̂i(k) and ĝi(k) as the estimates of Θi and gi at the kth step,

respectively, and further let us denote

¯̂Θi(k) = [Θ̂T
i (k), ĝi(k)]T ∈ Rpi+1, ¯̃Θi(k) = [Θ̃T

i (k), g̃i(k)]T (3.2)

where Θ̃i(k) = Θ̂i(k)−Θi and g̃i(k) = ĝi(k)− gi are parameter estimates errors.

Using the estimated parameters, we define one-step ahead predictions ξ̂i(k + 1|k), as

prediction of one-step future states ξi(k + 1) as follows:

ξ̂i(k + 1|k) = ¯̂ΘT
i (k − n+ 2)Ψi(k), i = 1, 2, . . . , n− 1 (3.3)

where

Ψi(k) = [ΦT
i (ξ̄i(k)), ξi+1(k)]T ∈ Rpi+1 (3.4)

It is noted that the prediction is only proceeded for the first (n− 1) states because the nth

state ξn(k + 1|k) involves control input and thus is not predictable at the kth step.

Moving one step ahead in the equations of system (3.1), we see that the two-step ahead

predictions can be constructed by substituting the one-step future states with one-step

predicted states. But because there is no prediction for ξ̄n(k + 1|k), the two-step ahead

prediction can only be proceeded up to the (n−2)th state, i.e., ξ̄i(k+ 2), i = 1, 2, . . . , n−2.

Let us defined two-step ahead predictions ξ̂i(k+2|k), as prediction of two-step future states

ξi(k + 2) as follows:

ξ̂i(k + 2|k) = ¯̂ΘT
i (k − n+ 3)Ψ̂i(k + 1|k), i = 1, 2, . . . , n− 2 (3.5)

where

Ψ̂i(k + 1|k) = [ΦT
i ( ¯̂
ξi(k + 1|k)), ξ̂i+1(k + 1|k)]T ∈ Rpi+1

¯̂
ξi(k + 1|k) = [ξ̂1(k + 1|k), ξ̂2(k + 1|k), . . . , ξ̂i(k + 1|k)]T (3.6)
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3.2 Systems with Matched Uncertainties

In the same manner, with parameter estimates and predicted future states at previous

steps, we define the j-step (j = 3, 4, . . . , n−1) prediction, ξ̂i(k+ j|k), as predict of ξi(k+ j)

as follows:

ξ̂i(k + j|k) = ¯̂ΘT
i (k − n+ j + 1)Ψ̂i(k + j − 1|k), i = 1, 2, . . . , n− j (3.7)

where

Ψ̂i(k + j) = [ΦT
i ( ¯̂
ξi(k + j − 1|k)), ξ̂i+1(k + j − 1|k)]T

¯̂
ξi(k + j − 1|k) = [ξ̂1(k + j − 1|k), ξ̂2(k + j − 1|k), . . . , ξ̂i(k + j − 1|k)]T (3.8)

Remark 3.3. It is noted in (3.3), (3.5) and (3.7) that estimated parameters at previous

steps rather than at the kth step are used in the predictions. The estimated parameters at

which step are to be utilized depend on how many steps ahead the predictions are carried

out. The advantage of arranging estimated parameters in this way in the predictions can be

seen in the proof of Lemma 3.2.

The parameter estimates used above are calculated from the following update law:

¯̂Θi(k + 1) = ¯̂Θi(k − n+ 2)− ξ̃i(k + 1|k)Ψi(k)
Di(k)

ξ̃i(k + 1|k) = ξ̂i(k + 1|k)− ξi(k + 1), i = 1, 2, . . . , n− 1

Di(k) = 1 + ΨT
i (k)Ψi(k) (3.9)

Lemma 3.1. The parameter estimates ¯̂Θi(k), i = 1, 2, . . . , n− 1, in (3.9) are bounded and

the prediction errors satisfy

¯̃
ξi(k + n− i|k) = o[O[y(k + n− 1)]]

where

¯̃
ξi(k + n− i|k) = ¯̂

ξi(k + n− i|k)− ξ̄i(k + n− i)
¯̂
ξi(k + n− i|k) = [ξ̂1(k + n− 1|k), ξ̂2(k + n− 2|k), . . . , ξ̂i(k + n− i|k)]T (3.10)

Proof. In the beginning, let us start to analyze the one-step prediction error,

ξ̃i(k + 1|k) = ξ̂i(k + 1|k)− ξi(k + 1), i = 1, 2, . . . , n− 1

Note that

ξ̃i(k + 1|k) = ¯̃ΘT
i (k − n+ 2)Ψi(k)

32



3.2 Systems with Matched Uncertainties

and consider a Lyapunov function

Vi(k) =
k∑

j=k−n+2

‖ ¯̃Θi(j)‖2

It is easy for us to follow the analysis of projection algorithm in [57] and conclude from

(3.9) that ¯̂Θi(k) is bounded and

ξ̃i(k + 1|k)

D
1
2
i (k)

:= α(k) ∈ L2[0,∞) (3.11)

According the definition of Di(k) in (3.9), Lemma 2.6 and the Lipschitz condition of Ψi(·),
we have

D
1
2
i (k) = O[y(k + i)] (3.12)

Then, from (3.11) and Proposition 2.1, we can see

ξ̃i(k + 1|k) = o[O[y(k + i)]], i = 1, 2, . . . , n− 1
¯̃
ξi(k + 1|k) = [ξ̃1(k + 1|k), ξ̃2(k + 1|k), . . . , ξ̃i(k + 1|k)] = o[O[y(k + i)]] (3.13)

Next, let us analyze the prediction errors of two-step ahead predictions:

ξ̃i(k + 2|k) = ξ̂i(k + 2|k)− ξi(k + 2), i = 1, 2, . . . , n− 2

which can be written as

ξ̃i(k + 2|k) = ξ̃i(k + 2|k + 1) + ξ̌i(k + 2|k)

where

ξ̃i(k + 2|k + 1)
def
= ξ̂i(k + 2|k + 1)− ξi(k + 2) = o[O[y(k + i+ 1)]] (3.14)

ξ̌i(k + 2|k)
def
= ξ̂i(k + 2|k)− ξ̂i(k + 2|k + 1)

= ¯̂ΘT
i (k − n+ 3)[Ψ̂i(k + 1|k)−Ψi(k + 1)] (3.15)

Remark 3.4. In (3.15), it can be seen that if there is not a common factor ¯̂ΘT
i (k− n+ 3)

in the expressions of ξ̂i(k+2|k) and ξ̂i(k+2|k+1), the expression of ξ̌i(k+2|k) will involve

the difference of estimated parameters at different steps and will become very complicated.

This demonstrate the advantage of using estimated parameters at different steps stated in

Remark 3.3
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3.2 Systems with Matched Uncertainties

From the Lipschitz condition of Ψi(·) and (3.13), we have

‖Ψ̂i(k + 1|k)−Ψi(k + 1)‖ ≤ Li‖ ¯̃
ξi+1(k + 1|k)‖ = o[O[y(k + i+ 1)]]

Consider the boundedness of ¯̂ΘT
i (k − n+ 3), from (3.15) we have

ξ̌i(k + 2|k) = o[O(y(k + i+ 1))]

Consequently, we have

ξ̃i(k + 2|k) = o[O[y(k + i+ 1)] i = 1, 2, . . . , n− 2 (3.16)
¯̃
ξi(k + 2|k) = [ξ̃1(k + 2|k), ξ̃2(k + 2|k), . . . , ξ̃i(k + 2|k)]

= o[O[y(k + i+ 1)] (3.17)

Let us analyze the prediction errors of the j step ahead predictions:

ξ̃i(k + j|k) = ξ̂i(k + j|k)− ξi(k + j), i = 1, 2, . . . , n− j, j = 3, 4, . . . , n− 1

In the similar way, it can be written as

ξ̃i(k + j|k) = ξ̃i(k + j|k + 1) + ξ̌i(k + j|k)

where

ξ̃i(k + j|k + 1) = ξ̂i(k + j|k + 1)− ξi(k + j) = o[O(y(k + i+ j − 1))] (3.18)

ξ̌i(k + j|k) = ξ̂i(k + j|k)− ξ̂i(k + j|k + 1) (3.19)

= ¯̂ΘT
i (k − n+ j + 1)[Ψ̂i(k + j − 1|k)−Ψi(k + j − 1|k + 1)]

Consider the Lipschitz condition of Ψi(·), we have

‖Ψ̂i(k + j − 1|k)−Ψi(k + j − 1|k + 1)‖ ≤ Li‖ ¯̌ξi+1(k + j − 1|k)‖ = o[O[y(k + i+ j − 1)]]

where
¯̌ξi+1(k + j|k) = [ξ̌1(k + j|k), ξ̌2(k + j|k), . . . , ξ̌i+1(k + j|k)]

It together with the boundedness of ¯̂ΘT
i (k − n+ j − 1) leads to

ξ̃i(k + j|k) = o[O[y(k + i+ j − 1)}]c ˜̄ξi(k + j|k) = o[O[y(k + i+ j − 1)}] (3.20)

Let j = n− i, we have the following result

¯̃
ξi(k + n− i|k) = o[O[y(k + n− 1)] i = 1, 2, . . . , n− 1

This completes the proof.
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3.2 Systems with Matched Uncertainties

3.2.3 Adaptive control design

Using the predicted future states in Section 3.2.2, adaptive control is synthesized in this

Section. To begin with, let us rewrite 3.1 as follows:
ξi(k + n− i+ 1) = ΘT

i Φi(ξ̄i(k + n− i)) + giξi+1(k + n− i)
i = 1, 2, . . . , n− 1

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + ν(ξ̄n(k − τ))

y(k) = ξ1(k)

(3.21)

Then, combining the n equations in (3.21) together by iterative substitutions, we have

y(k + n) = ΘT
f Φ(k + n− 1) + gu(k) + ν(ξ̄n(k − τ)) (3.22)

where

Θf = [ΘT
f1, . . . ,Θ

T
fn]T ∈ Rp, g =

n∏
j=1

gj

Θf1 = Θ1, Θfi = Θi

i−1∏
j=1

gj , i = 2, 3, . . . , n (3.23)

Φ(k + n− 1) = [ΦT
1 (ξ1(k + n− 1)),ΦT

2 (ξ̄2(k + n− 2)), . . . ,ΦT
n (ξ̄n(k))]T ∈ Rp

with p =
∑n

j=1 pj . It is easy to check that g ≥
∏n
j=1 gj := g.

It is noted that in (3.22) and (3.23)that function Φ(k + n− 1) involves states at future

steps such that the noncausal problem will occur if adaptive control is directly designed

based (4.7). To solve the noncausal problem, the predicted future states in Section 3.2.2

can be used to construct a prediction of Φ(k + n− 1) in the following manner:

Φ̂(k + n− 1|k) = [ΦT
1 (ξ̂1(k + n− 1|k)),ΦT

2 ( ¯̂
ξ2(k + n− 2|k)), . . . ,ΦT

n (ξ̄n(k))]T (3.24)

with predicted future state vectors

¯̂
ξi(k + n− i|k) = [ξ̂1(k + n− i|k), ξ̂2(k + n− i|k), . . . , ξ̂i(k + n− i|k)]T , i = 1, 2, . . . , n− 1

obtained from Section 3.2.2.

Lemma 3.2. : Denote Φ̃(k+n−1|k) = Φ̂(k+n−1|k)−Φ(k+n−1), where Φ̂(k+n−1|k)

and Φ(k + n− 1) are defined in (3.24) and (3.23). Then, we have

Φ̃(k + n− 1|k) = o[O[y(k + n− 1)]]
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Proof. Noting the Lipschitz condition of Φi(·), i = 1, 2, . . . , n, one can easily derive it from

the result that ¯̃
ξi(k + n− 1|k) = o[O[y(k + n− 1)]] in Lemma 3.2.

In order for compensation for the effect of time delays in the uncertain term ν(ξ̄n(k−τ)),

we introduce a vector of delayed states as follows

X(k) = [ξ̄Tn (k − τmin), . . . , ξ̄Tn (k − τ), . . . , ξ̄Tn (k − τmax)] (3.25)

According to Lemma 2.2, we define

lk = arg min
l≤k−n

‖X(k)−X(l)‖ (3.26)

From Lemma 2.2, one sees that if X(k) is bounded, then ‖X(k)−X(lk)‖ → 0, where

X(lk) = [ξ̄Tn (lk − τmin), . . . , ξ̄Tn (lk − τ), . . . , ξ̄Tn (lk − τmax)] (3.27)

Next, let us define an auxiliary output ya(k + n− 1) as

ya(k + n− 1) = ΘT
f Φ(k + n− 1) + ν(ξ̄n(k − τ)) (3.28)

which includes both unknown parameter vector Θf and nonparametric uncertainty ν(·).
Then, system (3.22) can be rewritten as

y(k + n) = ya(k + n− 1) + gu(k) (3.29)

From (3.28) and (3.29), it is easy to derive that

ya(k + n− 1) = ya(k + n− 1)− ya(lk + n− 1) + ya(lk + n− 1)

= ΘT
f [Φ(k + n− 1)− Φ(lk + n− 1)] + ν(ξ̄n(k − τ))− ν(ξ̄n(lk − τ))

+y(lk + n)− gu(lk) (3.30)

According to Assumption 3.1, if

‖ξ̄n(k − τ)− ξ̄n(lk − τ)‖ → 0

then

‖ν(ξ̄n(k − τ))− ν(ξ̄n(lk − τ))‖ → 0

so that the effect of the uncertain function νj(·) will be eliminated in (3.30). Thus, we

predict ŷaj (k+nj−1|k) based on (3.30) in a straightforward manner by ignoring the nonlinear

uncertainty terms of νj(·) and only dealing with the parametric uncertainty.
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3.2 Systems with Matched Uncertainties

Define Θ̂f (k) and ĝ(k) as the estimates of unknown parameters Θf and g and they will

be calculated from (3.37). Then, let us define the following prediction of ya(k + n− 1)

ŷa(k + n− 1|k) = Θ̂T
f (k)[Φ̂(k + n− 1|k)− Φ(lk + n− 1)] + y(lk + n)− ĝ(k)u(lk) (3.31)

where lk is defined in (3.26), satisfying lk ≤ k − n, and Φ̂(k + n− 1|k)

Define parameter estimate errors Θ̃f (k) = Θ̂f (k) − Θf and g̃(k) = ĝ(k) − g, and then

from (3.30) and (3.31), we have the prediction error of auxiliary output as

ỹa(k + n− 1|k) = ŷa(k + n− 1|k)− ya(k + n− 1)

= Θ̃T
f (k)[Φ(k + n− 1)− Φ(lk + n− 1)] + β(k + n− 1)− g̃(k)u(lk)

−[ν(ξ̄n(k − τ))− ν(ξ̄n(lk − τ))] (3.32)

where

β(k + n− 1) = Θ̂T
f (k)[Φ̂(k + n− 1|k)− Φ(k + n− 1)] (3.33)

can be regarded as a measure of future states prediction error.

Using the estimated auxiliary output, the adaptive control law is designed as

u(k) = − 1
ĝ(k)

(ŷa(k + n− 1|k)− y∗(k + n)) (3.34)

Remark 3.5. It will be shown later in Lemma 3.3 that ĝ(k) obtained from (3.37) is guar-

anteed to be bounded away from zero such that the adaptive control defined in (3.34) is well

defined without singularity problem.

Combining equations (3.29), (3.32) and (3.34) together, we obtain the error dynamics

as

e(k + n) = ya(k + n− 1) + ĝ(k)u(k)− g̃(k)u(k)− y∗(k + n)

= −ỹa(k + n− 1|k)− g̃(k)u(k)

= −Θ̃T
f (k)[Φ(k + n− 1)− Φ(lk + n− 1)]− g̃(k)[u(k)− u(lk)]

−β(k + n− 1) + ν(ξ̄n(k − τ))− ν(ξ̄n(lk − τ)) (3.35)

According to Lipschitz condition of ν(·) in Assumption 3.1 and the definition of X(k) in

(3.25), we have

|ν(ξ̄n(k − τ))− ν(ξ̄n(lk − τ))| ≤ Lν‖ξ̄n(k − τ)− ξ̄n(lk − τ)‖

≤ λ‖X(k)−X(lk)‖ (3.36)
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where λ can be any constant satisfying Lν ≤ λ < λ∗, with λ∗ defined later in (3.52).

The estimated parameters in the auxiliary output estimation (3.31) and adaptive con-

troller (3.34) are calculated by the following update law

ε(k) = e(k) + β(k − 1)

Θ̂f (k) = Θ̂f (k − n) + γ
a(k)ε(k)[Φ(k − 1)− Φ(lk−n + n− 1)]

D(k − n)

ĝ(k) =

{
ĝ′(k) if ĝ′(k) > g

g otherwise
(3.37)

ĝ′(k) = ĝ(k − n) +
γa(k)ε(k)
D(k − n)

[u(k − n)− u(lk−n)]

D(k − n) = 1 + ‖Φ(k − 1)− Φ(lk−n + n− 1)‖2 + [u(k − n)− u(lk−n)]2

where 0 < γ < 2, ε(k) is introduced as an augmented tracking error and the deadzone a(k)

is defined as

a(k) =

{
1− λ‖X(k−n)−X(lk−n)‖

|ε(k)| if |ε(k)| > λ‖X(k − n)−X(lk−n)‖
0 otherwise

(3.38)

Remark 3.6. It should be noted that β(k − 1) and Φ(k − 1) used in the update law are

available at the kth step because they involve no future states, such that there is no noncausal

problem in the control parameter update law defined in (3.37).

From definition of a(k) in (3.38), we have the following equality and inequality

a2(k)ε2(k) = a(k)ε2(k)− a(k)λ|ε(k)|‖X(k − n)−X(lk−n)‖ (3.39)

0 ≤ |ε(k)| ≤ a(k)|ε(k)|+ λ‖X(k − n)−X(lk−n)‖ (3.40)

which will be used for stability analysis later.

Remark 3.7. It will be shown later that the threshold of the deadzone converges to zero

because ‖X(k − n)−X(lk−n)‖ will be made to vanish ultimately. At the same time, it will

be shown that the augmented tracking error will also converge to zero.

Lemma 3.3. Consider the parameter estimates ĝ(k) and ĝ′(k) defined in (3.37), we have

g̃′2(k) ≥ g̃2(k), where g̃′(k) = ĝ′(k)− g and g̃(k) = ĝ(k)− g.

Proof. According to (3.37), we see that g̃′(k) = g̃(k) when ĝ′(k) > g. Now, consider when

ĝ′(k) ≤ g, we have g̃(k) = g − g, so that

g̃′2(k) = [(ĝ′(k)− g) + (g − g)]2 ≥ (g − g)2 = g̃2(k)

where g ≤ g is used. This completes the proof of g̃′2(k) ≥ g̃2(k).

The main result of the control performance is summarized in the following theorem.
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Theorem 3.1. Consider the adaptive closed-loop system consisting of system (3.1), control

law (3.34) and parameter adaptation law (3.37). All the signals in the closed-loop system

are bounded and furthermore, the tracking error e(k) converges to zero eventually.

Proof. Substituting the error dynamics (3.35) into the augmented error ε(k) defined in

(3.37), we have

ε(k) = −Θ̃T
f (k − n)[Φ(k − 1)− Φ(lk−n + n− 1)]− g̃(k − n)[u(k − n)− u(lk−n)]

+ν(ξ̄n(k − n− τ))− ν(ξ̄n(lk−n − τ)) (3.41)

Choose a Lyapunov candidate as

V (k) =
n∑
j=1

‖Θ̃f (k − n+ j)‖2 +
n∑
j=1

g̃2(k − n+ j) (3.42)

From (3.37), it is easy to derive that the difference of V (k) is

∆V (k) = V (k)− V (k − 1)

≤ Θ̃T
f (k)Θ̃f (k)− Θ̃T

f (k − n)Θ̃f (k − n) + g̃′2(k)− g̃2(k − n)

=
a2(k)γ2ε2(k){‖Φ(k − 1)− Φ(lk−n + n− 1)‖2 + [u(k − n)− u(lk−n)]2}

D2(k − n)

+Θ̃T
f (k − n)[Φ(k − 1)− Φ(lk−n + n− 1)]ε(k)

2a(k)γ
D(k − n)

+g̃(k − n)[u(k − n)− u(lk−n)]ε(k)
2a(k)γ
D(k − n)

(3.43)

where inequality g̃2(k) ≤ g̃′2(k) in Lemma 3.3 is used.

From inequality (3.36) and the augmented error equation (3.41), it is easy to obtain

a(k){Θ̃T
f (k − n)[Φ(k − 1)− Φ(lk−n + n− 1)] + g̃(k − n)[u(k − n)− u(lk−n)]}ε(k)

= a(k)ε(k)[ν(ξ̄n(k − n− τ))− ν(ξ̄n(lk−n − τ))]− a(k)ε2(k)

≤ a(k)[λ|ε(k)|‖X(k − n)−X(lk−n)‖ − ε2(k)] = −a2(k)ε2(k) (3.44)

where the last equality is established in (3.39). According to inequality (3.44), and the

definition of D(k − n) in (3.37), the difference of V (k) in (3.43) can be written as

∆V (k) ≤ a2(k)γ2ε2(k)
D(k − n)

− 2a2(k)γε2(k)
D(k − n)

= −γ(2− γ)a2(k)ε2(k)
D(k − n)

(3.45)

Noting that 0 < γ < 2 and ∆V (k) is nonpositive, the boundedness of V (k) and thus the

boundedness of Θ̂f (k) and ĝ(k) are guaranteed. Taking summation on both hand sides of

the equation above, we obtain
∑∞

k=0 γ(2− γ)a
2(k)ε2(k)
D(k−n) ≤ V (0)− V (∞) which implies

lim
k→∞

a2(k)ε2(k)
D(k − n)

= 0 (3.46)
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Now, consider the definitions of β(k) in (3.33), Φ(k + n− 1) in (3.23), and Φ̂(k + n− 1|k)

in (3.24). Following Lemma 3.2 and Lipschitz condition of Φ(·) in Assumption 3.1, we have

β(k + n− 1) = o[O[y(k + n− 1)]]. Due to y(k) ∼ e(k), we have

β(k − 1) = o[O[e(k)]] (3.47)

Thus, the augmented error ε(k) in (3.37) can be written as

ε(k) = e(k) + o[O[e(k)]] (3.48)

According to Proposition 2.1, we have ε(k) ∼ e(k) ∼ y(k). Furthermore, from Lemma 2.6,

we have ξ̄n(k − n+ 1) = O[y(k)], which yields

‖ξ̄n(k − n+ 1)‖ ≤ C1 max
k′≤k
{|ε(k′)|}+ C2 (3.49)

where C1 and C2 are some constants. From the definition of deadzone in (3.38), when

|ε(k)| > λ‖X(k − n)−X(lk−n)‖

we have

a(k)|ε(k)| = |ε(k)| − λ‖X(k − n)−X(lk−n)‖ > 0

while when

|ε(k)| ≤ λ‖X(k − n)−X(lk−n)‖

we have

a(k)|ε(k)| = 0 ≥ |ε(k)| − λ‖X(k − n)−X(lk−n)‖

Therefore, we have

|ε(k)| − λ‖X(k − n)−X(lk−n)‖ ≤ a(k)|ε(k)|

Thus, inequality (3.49) becomes

‖ξ̄n(k − n+ 1)‖ ≤ C1 max
k′≤k
{|ε(k′)| − λ‖X(k′ − n)−X(lk′−n)‖

+λ‖X(k′ − n)−X(lk′−n)‖}+ C2

≤ C1 max
k′≤k
{a(k′)|ε(k′)|}+ λC1 max

k′≤k−n
{‖X(k′)−X(lk′)‖}+ C2 (3.50)

Considering X(k) and X(lk) defined in (3.25) and (3.27), it is clear that

max
k′≤k−n

‖X(k′)−X(lk′)‖ ≤ 2(τmax − τmin + 1) max
k′≤k−n

‖ξ̄n(k′)‖
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Together with inequality (3.50), we have

max
k′≤k−n+1

{‖ξ̄n(k′)‖} ≤ C1 max
k′≤k
{a(k′)|ε(k′)|}+ 2λC1(τmax − τmin + 1)

× max
k′≤k−n+1

{‖ξ̄n(k′)‖}+ C2 (3.51)

Then, we see that there exists a small positive constant

λ∗ =
1

2C1(τmax − τmin + 1)
(3.52)

such that

max
k′≤k−n+1

{‖ξ̄n(k′)‖} ≤ C1

1− 2λC1(τmax − τmin + 1)
max
k′≤k
{a(k′)|ε(k′)|}

+
C3

1− 2λC1(τmax − τmin + 1)
, ∀λ < λ∗ (3.53)

Note that inequality (3.53) implies

ξ̄n(k − n+ 1) = O[a(k)ε(k)]

From definition of Φ(k + n− 1) in (3.23), Lemma 2.6, and Assumption 3.1, it can be seen

that

Φ(k − 1) = O[ξ̄n(k − n)], u(k − n) = O[y(k)] = O[ξ̄n(k − n+ 1)]

Then, according to the definition of D(k − n) in (3.37), we have

D
1
2 (k − n) ≤ 1 + ‖Φ(k − 1)− Φ(lk−n + n− 1)‖+ |u(k − n)− u(lk−n)|

= O[ξ̄n(k − n+ 1)] = O[a(k)ε(k)]

Applying the Lemma 2.3 to (3.46), we have

lim
k→∞

a(k)ε(k) = 0 (3.54)

According to (3.53), it is easy to see that the boundedness of ξ̄n(k) is guaranteed. It

follows that the output y(k) and the tracking error e(k) are bounded, as well as the control

input u(k), according to Lemma 2.6. The boundedness of ξ̄n(k) immidiately leads to the

boundedness of X(k) defined in (3.25). Therefore, using Lemma 2.2, we have

lim
k→∞

‖X(k)−X(lk)‖ = 0 (3.55)

Combining equations (3.55), (3.54) and inequality (3.40) resulted from the deadzone,

we conclude that limk→∞ ε(k) = 0. Therefore, we have limk→∞ e(k) = 0 according to

Proposition 2.1 and equation (3.48). This completes the proof.
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Remark 3.8. The underlying reason that the asymptotic tracking performance is achieved

can be seen in (3.35), in which it is clear that under the proposed adaptive control, the effect

of the uncertain function ν(·) will ultimately vanish due to |ν(ξ̄n(k−τ))−ν(ξ̄n(lk−τ))| → 0,

which is guaranteed by ‖X(k)−X(lk)‖ → 0.

Remark 3.9. The control law in (3.34) requires the computation of lk in (3.26) and the

computation may cost infinite memory as time increase. In practice, however, finite memory

control can be obtained by computing lk not from range [0, k−n] but from [k−M−n, k−n],

where M > 0 can be chosen as a large integer. In this case, the stability will not be affected

and the magnitude of ultimate tracking error can be made sufficiently small by increasing

M .

3.3 Systems with Unmatched Uncertainties

In Section 3.2, we have studied adaptive control with compensation of nonparametric un-

certainty that appear in the last equation of system, i.e., in the control range (matching

condition). In this Section, we study more complicated case that the uncertainties appear

out of control range, i.e., in unmatched manner. Unmatched uncertainties have been studied

in continuous-time for linear systems [174] using sliding mode control, and have also been

studied for nonlinear strict-feedback systems using nonlinear damping method which can

be regarded as a modified sliding mode [70,71,175]. But like high gain control, this method

is not applicable to discrete-time systems, even for the matched uncertainties. In discrete-

time, there are only a few researches on adaptive control for systems with unmatched

uncertainties [54–56], but there is no consideration of compensation of the uncertainties.

In this Section, we will consider extending the design approach in Section 3.3 to deal

with uncertainties in unmatched manner. Like the auxiliary output introduced in Section

3.2.3, we will introduce auxiliary states in Section 3.3.2 and utilize these auxiliary states

to compensate for unmatched nonparametric uncertainties in the future states prediction

stage. The structure of this Section is similar to Section 3.2, but the techniques involved

are much more complicated. Future state prediction is carried out first in Section 3.3.2,

and then system transformation and control design is presented in 3.3.3.
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3.3.1 System presentation

The strict-feedback systems with both matched and unmatched uncertainties to be studied

are described as follows:
ξi(k + 1) = ΘT

i Φi(ξ̄i(k)) + giξi+1(k) + υi(ξ̄i(k))

i = 1, 2, . . . , n− 1

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + υn(ξ̄n(k))

y(k) = ξ1(k)

(3.56)

where as same as notations in system (3.1), ξ̄j(k) are measurable system state vectors,

Θj ∈ Rpj , gj ∈ R, j = 1, 2, . . . , n, are unknown parameters (pj ’s are positive integers),

Φj(ξ̄j(k)) : Rj → Rpj are known vector-valued functions.

Remark 3.10. It should be highlighted that the compensation technique for time delays

in the uncertain nonlinearities developed in Section 3.2 can be easily implemented in this

Section, thus, for conciseness, time delays in the uncertainties will not be considered in this

Section.

The control objective is to make the output y(k) exactly track a bounded reference

trajectory y∗(k) and to guarantee the boundedness of all the closed-loop signals. It is noted

that the uncertain nonlinearities υi(ξ̄j(k)) appear in every equation of system (3.56) (out

of control range) such that it is not easy to compensate for their effects and accomplish

asymptotic tracking performance.

Assumption 3.3. The nonparametric uncertain functions υi(·), are Lipschitz functions

with Lipschitz coefficients Lυi satisfying max1≤i≤n Lυi < λ∗ and λ∗ is a small number

defined in (3.110). The system functions, Φi(·), i = 1, 2, . . . , n, are also Lipschitz functions

with Lipschitz coefficients Li.

Assumption 3.4. The signs of control gains gj, (j = 1, 2, . . . , n) are known. Without

loss of generality, it is assumed that gj are positive with known lower bounds g
j
> 0, i.e.,

gj ≥ gj > 0.

3.3.2 Future states prediction

According to Lemma 2.5, there exist prediction functions Pn−i,i(·) for system (3.56) with

Lipschitz coefficients Lpi such that ξ̄i(k) = Pn−i,i(ξ̄n(k−n+ i)). Then, system (3.1) can be
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rewritten as follows:
ξi(k + 1) = ΘT

i Φi(ξ̄i(k)) + giξi+1(k) + νi(ξ̄n(k − n+ i))

i = 1, 2, . . . , n− 1

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + νn(ξ̄n(k))

y(k) = ξ1(k)

(3.57)

where

νi(ξ̄n(k − n+ i)) = υi(Pn−i,i(ξ̄n(k − n+ i))) = υi(ξ̄i(k)) (3.58)

are unknown composite functions satisfying Lipschitz condition.

According to Lemma 2.2, we define

lk = arg min
l≤k−n

‖ξ̄n(k)− ξ̄n(l)‖ (3.59)

from which, it is obvious that lk ≤ k − n. Further, let us define

∆ξ̄n(k) = ξ̄n(k)− ξ̄n(lk). (3.60)

Remark 3.11. If there is time delayed states in the nonparametric uncertainties νi(·), then

similar to equations (3.25) and (3.26), we can introduce augmented states vector and define

index lk accordingly and then utilize them to compensate the effect of time delayed states in

the uncertainties.

Similar to Section 3.2.2, in the next step we consider predicting future states ξi(k + j),

i = 1, 2, . . . , n− 1, j = 1, 2, . . . , n − i, to facilitate the adaptive control design. But due to

the existence of the unmatched uncertainties, we consider incorporating the compensation

technique into the prediction method developed in Section 3.2.2 such that the effect of the

unmatched uncertainties will be eliminated for the predicted future states.

First, let us define auxiliary states ξai (k) as follows:

ξai (k) = ΘT
i Φi(ξ̄i(k)) + νi(ξ̄n(k − n+ i)), i = 1, 2, . . . , n− 1 (3.61)

which include both uncertain parameters Θi and uncertain nonlinearities νi(·). From (3.57)

and (3.61), we have

ξi(k + 1) = ξai (k) + giξi+1(k), i = 1, 2, . . . , n− 1 (3.62)

and it is easy to derive that

ξai (k) = ξai (k) + ξai (lk−n+i + n− i)− ξai (lk−n+i + n− i)

= ΘT
i [Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))]

+ξi(lk−n+i + n− i+ 1)− giξi+1(lk−n+i + n− i)

+νi(ξ̄n(k − n+ i))− νi(ξ̄n(lk−n+i)) (3.63)
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where lk−n+i is defined in (3.59) and it satisfies lk−n+i + n− i+ 1 ≤ k − n+ 1.

Let Θ̂i(k) and ĝi(k) be the estimates of Θi and gi at the kth step, respectively. Then,

let us define

ξ̂ai (k) = Θ̂T
i (k − n+ 2)[Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))]

+ξi(lk−n+i + n− i+ 1)

−ĝi(k − n+ 2)ξi+1(lk−n+i + n− i) (3.64)

as the estimate of the auxiliary state ξai (k) defined in (3.61).

According to (3.62), we define one-step ahead prediction ξ̂i(k+ 1|k), i = 1, 2, . . . , n− 1,

as the prediction of the one-step future states ξi(k + 1) as follows:

ξ̂i(k + 1|k) = ξ̂ai (k) + ĝi(k − n+ 2)ξi+1(k) (3.65)

From (3.63), we see that one-step future auxiliary state ξai (k + 1), i = 1, 2, . . . , n − 2,

can be expressed as

ξai (k + 1) = ΘT
i [Φi(ξ̄i(k + 1))− Φi(ξ̄i(lk−n+i+1 + n− i))]

+ξi(lk−n+i+1 + n− i+ 1)− giξi+1(lk−n+i+1 + n− i)

+νi(ξ̄n(k − n+ i+ 1))− νi(ξ̄n(lk−n+i+1)) (3.66)

and then we take

ξ̂ai (k + 1|k) = Θ̂T
i (k − n+ 3)[Φi(

¯̂
ξi(k + 1|k))− Φi(ξ̄i(lk−n+i+1 + n− i))]

+ξi(lk−n+i+1 + n− i+ 1)− ĝi(k − n+ 3)ξi+1(lk−n+i+1 + n− i)

(3.67)

as the prediction of the one step future auxiliary states ξai (k + 1), where

¯̂
ξi(k + 1|k) = [ξ̂1(k + 1|k), ξ̂2(k + 1|k), . . . , ξ̂i(k + 1|k)]T

is a vector of one-step ahead future states predictions defined in (3.65) and lk−n+i+1 + n−
i+ 1 ≤ k − n+ 2 according to (3.59).

Define two-step ahead prediction ξ̂i(k + 2|k), i = 1, 2, . . . , n − 2, as the prediction of

two-step ahead future states ξi(k + 2)

ξ̂i(k + 2|k) = ξ̂ai (k + 1|k) + ĝi(k − n+ 3)ξ̂i+1(k + 1|k) (3.68)
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Similarly to (3.64), the (j − 1)-step future auxiliary state ξai (k + j), i = 1, 2, . . . , n − 1,

j = 2, 3, . . . , n− i, can be predicted as

ξ̂ai (k + j − 1|k)

= Θ̂T
i (k − n+ j + 1)[Φi(

¯̂
ξi(k + j − 1|k))− Φi(ξ̄i(lk−n+i+j−1 + n− i))]

+ξi(lk−n+i+j−1 + n− i+ 1)− ĝi(k − n+ j + 1)ξi+1(lk−n+i+j−1 + n− i)

(3.69)

where lk−n+i+j−1 + n− i+ 1 ≤ k − n+ j holds according to (3.59) and

¯̂
ξi(k + j − 1|k) = [ξ̂1(k + j − 1|k), ξ̂2(k + j − 1|k), . . . , ξ̂i(k + j − 1|k)]T

are vectors of predicted states at previous steps.

Then, let us define j-step ahead prediction ξ̂i(k+j|k), i = 1, 2, . . . , n−1, j = 2, 3, . . . , n−
j, as the estimate of j-step ahead future states ξi(k + j)

ξ̂i(k + j|k) = ξ̂ai (k + j − 1|k) + ĝi(k − n+ j + 1)ξ̂i+1(k + j − 1|k) (3.70)

Remark 3.12. Compared with the future states prediction in the absence of nonparametric

uncertainties developed in Section 3.2.2, we have introduced additional auxiliary states and

their predictions, in which the states information at previous steps has been utilized to

compensate for the effect of nonparametric uncertainties at current step, as shown in (3.63)

and (3.64).

According to the definition of νi(ξ̄n(k − n + i)) in (3.58), Assumption 3.3, Lemma 2.5

and definition of ∆ξ̄n(k) in (3.60), we have

‖νi(ξ̄n(k − n+ i))− νi(ξ̄n(lk−n+i))‖ ≤ LpiLυi‖∆ξ̄n(k − n+ i)‖ (3.71)

where Lpi and Lυi are Lipschitz coefficients of prediction functions Pi(·) and nonparametric

uncertainty functions υi(·), respectively.

Let us denote ĉi(k) as the estimate of Lpi. The update laws for Θ̂i(k), ĝi(k), ĉi(k),

i = 1, 2, . . . , n− 1, are given as follows:

Θ̂i(k + 1) = Θ̂i(k − n+ 2)− ai(k)γ[Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))]ξ̃i(k + 1|k)
Di(k)

ĝi(k + 1) = ĝi(k − n+ 2)− ai(k)γ[ξi+1(k)− ξi+1(lk−n+i + n− i)]ξ̃i(k + 1|k)
Di(k)

ĉi(k + 1) = ĉi(k − n+ 2) +
ai(k)γλ|ξ̃i(k + 1|k)|‖∆ξ̄n(k − n+ i)‖

Di(k)
(3.72)
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with

ξ̃i(k + 1|k) = ξ̂i(k + 1|k)− ξi(k + 1|k)

Di(k) = 1 + ‖Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))‖2

+ |ξi+1(k)− ξi+1(lk−n+i + n− i)|2 + λ2‖∆ξ̄n(k − n+ i)‖2 (3.73)

ai(k) =


1− λĉi(k−n+2)‖∆ξ̄n(k−n+i)‖

|ξ̃i(k+1|k)|

if |ξ̃i(k + 1|k)| > λĉi(k − n+ 2)‖∆ξ̄n(k − n+ i)‖
0, otherwise

(3.74)

Θ̂i(0) = 0[n], ĝi(0) = 0, ĉi(0) = 0

where 0 < γ < 2 and λ can be chosen as any constant satisfying max1≤i≤n Lυi ≤ λ < λ∗,

with λ∗ defined later in (3.110).

According to the deadzone defined in (3.74), we have

−a2
i (k)ξ̃2

i (k + 1|k) = −ai(k)ξ̃2
i (k + 1|k) + λai(k)

×ĉi(k − n+ 2)|ξ̃i(k + 1|k)|‖∆ξ̄n(k − n+ i)‖ (3.75)

Lemma 3.4. Consider the future states prediction laws defined in (3.65), (3.68) and (3.70),

in which the estimated parameters are calculated from update law (3.72). The estimated

parameters Θ̂i(k), ĝi(k) and ĉi(k), i = 1, 2, . . . , n− 1, are bounded and there exist constants

c̄n−i such that the future prediction errors satisfy

‖ ¯̃
ξi(k + n− i|k)‖ ≤ o[O[y(k + n− 1)]] + λc̄n−i∆s(k, n− 1) (3.76)

where

¯̃
ξi(k + n− i) = [ξ̃1(k + n− i), . . . , ξ̃i(k + n− i)]T (3.77)

∆s(k,m) = max
1≤j≤m

{‖∆ξ̄n(k − n+ j)‖} (3.78)

with

ξ̃i(k + n− i) = ξ̂i(k + n− i)− ξi(k + n− i)

and ∆ξ̄n(k) defined in (3.60).

Proof. See Appendix 3.1.

3.3.3 System transformation and adaptive control design

In the similar manner as system transformation conducted in Section 3.2.3, let us rewrite

system (3.57) into a compact form as follows by iterative substitution:

y(k + n) = ΘT
f Φ(k + n− 1) + gu(k) + ΘT

g ν̄(k) (3.79)
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where Θf , g and Φ(k + n− 1) are defined in the same way as in (3.23), and

gf1 = 1, gfi =
i−1∏
j=1

gj , i = 2, . . . , n

Θg = [gf1, . . . , gfn]T ∈ Rp

ν̄(k) = [ν1(ξ̄n(k)), . . . , νn(ξ̄n(k))]T ∈ Rn (3.80)

Let us introduce an auxiliary output ya(k) as

ya(k + n− 1) = ΘT
f Φ(k + n− 1) + ΘT

g ν̄(k). (3.81)

Then, equation (3.79) can be rewritten as

y(k + n) = ya(k + n− 1) + gu(k) (3.82)

From (3.81) and (3.82), it is easy to derive that

ya(k + n− 1) = ya(k + n− 1)− ya(lk + n− 1) + ya(lk + n− 1)

= ΘT
f [Φ(k + n− 1)− Φ(lk + n− 1)]

+ΘT
g [ν̄(k)− ν̄(lk)] + y(lk + n)− gu(lk) (3.83)

Denote Θ̂f (k) and ĝ(k) as the estimates of unknown parameters Θf and g defined in (3.80).

The parameter estimates will be calculated from (3.92). Define the estimate of ya(k+n−1)

as follows:

ŷa(k + n− 1|k) = Θ̂T
f (k)[Φ̂(k + n− 1|k)− Φ(lk + n− 1)]

+y(lk + n)− ĝ(k)u(lk) (3.84)

where lk is defined in (3.59) satisfying lk + n ≤ k, and

Φ̂(k + n− 1|k) = [ΦT
1 (ξ̂1(k + n− 1|k)), . . . ,ΦT

n (ξ̄n(k))]T (3.85)

with
¯̂
ξi(k + n− i|k) = [ξ̂1(k + n− i), . . . , ξ̂i(k + n− i)]T , i = 1, 2, . . . , n− 1

which is defined in Section 3.3.2.

Define parameter estimate errors

Θ̃f (k) = Θ̂f (k)−Θf , g̃(k) = ĝ(k)− g
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3.3 Systems with Unmatched Uncertainties

Then from (3.83) and (3.84), we have the estimate error of auxiliary output as

ỹa(k + n− 1|k) = ŷa(k + n− 1|k)− ya(k + n− 1)

= Θ̃T
f (k)[Φ(k + n− 1)− Φ(lk + n− 1)] + β(k + n− 1)− g̃(k)u(lk)

−ΘT
g [ν̄(k)− ν̄(lk)] (3.86)

where

β(k + n− 1) = Θ̂T
f (k)[Φ̂(k + n− 1|k)− Φ(k + n− 1)] (3.87)

Using the estimated auxiliary output, the adaptive control law is constructed as

u(k) = − 1
ĝ(k)

(ŷa(k + n− 1|k)− y∗(k + n)) (3.88)

where the parameter estimate ĝ(k) will be guaranteed to be bounded away from zero such

that above control law (3.88) is well defined.

Considering adaptive control law in (3.88), the estimation error of auxiliary output in

(3.86), and system described in (3.82), we obtain the closed-loop error dynamics as follows:

e(k) = ya(k − 1) + ĝ(k − n)u(k − n)− g̃(k − n)u(k − n)− y∗(k)

= −ỹa(k − 1|k − n)− g̃(k − n)u(k − n)

= −Θ̃T
f (k − n)[Φ(k − 1)− Φ(lk−n + n− 1)]

−g̃(k − n)[u(k − n)− u(lk−n)]

−β(k − 1) + ΘT
g [ν̄(k − n)− ν̄(lk−n)] (3.89)

According to the definition of ν̄(k) in (3.80) and equation (3.71), we have

‖ΘT
g [ν̄(k − n)− ν̄(lk−n)]‖ ≤ λθg‖∆ξ̄n(k − n)‖ (3.90)

where

θg =
n∑
i=1

gfiLpi (3.91)

is an unknown constant and λ can be any constant satisfying max1≤i≤n Lυi ≤ λ < λ∗, with

λ∗ defined later in (3.110).

Denote θ̂g(k) as the estimate of θg and define the estimate error as

θ̃g(k) = θ̂g(k)− θg
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3.3 Systems with Unmatched Uncertainties

The parameter estimates used in control law (3.88) are calculated by the following update

law

Θ̂f (k) = Θ̂f (k − n) + γ
a(k)e(k)[Φ(k − 1)− Φ(lk−n + n− 1)]

D(k − n)

ĝ(k) =

{
ĝ′(k), if ĝ′(k) > g

g, otherwise
(3.92)

ĝ′(k) = ĝ(k − n) +
γa(k)e(k)
D(k − n)

[u(k − n)− u(lk−n)]

θ̂g(k) = θ̂g(k − n) +
a(k)γλ|e(k)|‖∆ξ̄n(k − n)‖

D(k − n)
D(k − n) = 1 + ‖Φ(k − 1)− Φ(lk−n + n− 1)‖2

+[u(k − n)− u(lk−n)]2 + λ2‖∆ξ̄n(k − n)‖2

where 0 < γ < 2 and max1≤i≤n Lυi ≤ λ < λ∗ with λ∗ defined in (3.110) can be chosen as

the same value as used in (3.72)-(3.74), and the deadzone indicator a(k) is defined as

a(k) =


1− λθ̂g(k−n)‖∆ξ̄n(k−n)‖+|β(k−1)|

|e(k)| , if |e(k)| >
λθ̂g(k − n)‖∆ξ̄n(k − n)‖+ |β(k − 1)|

0, otherwise

(3.93)

and from the definition of a(k) above, it is guaranteed that

a(k)|e(k)| ≥ |e(k)| − λθ̂g(k − n)‖∆ξ̄n(k − n)‖ − |β(k − 1)| (3.94)

Remark 3.13. In comparison with control parameter update law (3.37), it is noted that

in (3.92) that the update law is directly driven by tracking error e(k) instead of augmented

tracking error ε(k), while the the effect of β(k) caused by prediction error is handled by the

deadzone.

3.3.4 Stability analysis and asymptotic tracking performance

The main result of the control performance is presented in the following theorem.

Theorem 3.2. Consider the adaptive closed-loop system consisting of system (3.1), future

states prediction laws defined in (3.65) and (3.70) using parameter update law (3.72), control

law (3.88) using parameter update law (3.92). All the signals in the closed-loop system are

bounded and furthermore, the tracking error e(k) converges to zero.

Proof. Choose a Lyapunov candidate function as follows:

V (k) =
n∑
j=1

‖Θ̃T
f (k − n+ j)‖2 +

n∑
j=1

g̃2(k − n+ j) +
n∑
j=1

θ̃2
g(k − n+ j) (3.95)
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3.3 Systems with Unmatched Uncertainties

It follows that the difference of V (k) is

∆V (k) = V (k)− V (k − 1)

≤ Θ̃T
f (k)Θ̃f (k)− Θ̃T

f (k − n)Θ̃f (k − n) + g̃′2(k)− g̃2(k − n) + θ̃2
g(k)− θ̃2

g(k − n)

= {‖Φ(k − 1)− Φ(lk−n + n− 1)‖2 + [u(k − n)− u(lk−n)]2 + λ2‖∆ξ̄n(k − n)‖2}

×a
2(k)γ2e2(k)
D2(k − n)

+{Θ̃T
f (k − n)[Φ(k − 1)− Φ(lk−n + n− 1)] + g̃(k − n)[u(k − n)− u(lk−n)]}

×e(k)
2a(k)γ
D(k − n)

+ λθ̃g(k − n)‖∆ξ̄n(k − n)‖|e(k)| 2a(k)γ
D(k − n)

(3.96)

where the inequality g̃2(k) ≤ g̃′2(k) established in Lemma 3.3 is used.

From inequality (3.90) and the error equation (3.89), it is easy to obtain that

{Θ̃T
f (k − n)[Φ(k − 1)− Φ(lk−n + n− 1)]

+g̃(k − n)[u(k − n)− u(lk−n)]}e(k)

= −e2(k)− β(k − 1)e(k) + ΘT
g [ν̄(k − n)− ν̄(lk−n)]e(k)

≤ −e2(k) + λθg|e(k)|‖∆ξ̄n(k − n)‖+ |e(k)||β(k − 1)| (3.97)

From deadzone a(k) defined in (3.93), it follows that

a(k)[−e2(k) + λθ̂g(k − n)|e(k)|‖∆ξ̄n(k − n)‖+ |e(k)||β(k − 1)|] = −a2(k)e2(k) (3.98)

According to inequality (A.26), equality (3.98), and the definition of D(k−n) in (3.92),

the difference of V (k) in (3.96) can be written as

∆V (k) ≤ a2(k)γ2e2(k)
D(k − n)

− 2a2(k)γe2(k)
D(k − n)

= −γ(2− γ)a2(k)e2(k)
D(k − n)

(3.99)

where θg + θ̃g(k − n) = θ̂g(k − n) is used.

Noting that 0 < γ < 2 and ∆V (k) is nonpositive, the boundedness of V (k) and thus

the boundedness of Θ̂f (k), ĝ(k), and θ̂g(k) are guaranteed. Furthermore, we have

lim
k→∞

a2(k)e2(k)
D(k − n)

= 0 (3.100)

|e(k)| − λθ̄g‖∆ξ̄n(k − n)‖ − |β(k − 1)| ≤ a(k)|e(k)| (3.101)

where (3.101) is obtained from (3.94) with a constant θ̄g satisfying θ̂g(k) ≤ θ̄g.
Further, according to the definition of β(k+n−1) in (3.87), Lemma 3.4 and Assumption

3.3, there exits a constant cβ such that

|β(k + n− 1)| ≤ o[O[y(k + n− 1)]] + λcβ∆s(k, n− 1) (3.102)
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3.3 Systems with Unmatched Uncertainties

Considering ∆s(k, n− 1) defined in (3.78) and ∆ξ̄n(k) defined in (3.60) and noting the fact

that lk ≤ k − n, it follows

∆s(k, n− 1) = max
1≤j≤n−1

{‖ξ̄n(k − n+ j)− ξ̄n(lk − n+ j)‖}

≤ 2 max
k′≤k
{‖ξ̄n(k′)‖} (3.103)

∆ξ̄n(k) ≤ 2 max
k′≤k
{‖ξ̄n(k′)‖} (3.104)

From Lemma 2.6, definition of o[·] in Definition 2.3, and inequality (3.103), it is clear that

|β(k + n− 1)| ≤ o[O[ξ̄n(k)]] + λcβ∆s(k, n− 1)

≤ (α(k) + λ)cβ,1 max
k′≤k
{‖ξ̄n(k′)‖}+ α(k)cβ,2 (3.105)

where α(k) is a sequence that converges to zero, and cβ,1 and cβ,2 are finite constants. Since

limk→∞ α(k)→ 0, for any given arbitrary small positive constant ε1, there exists a k1 such

that α(k) ≤ ε1, ∀k > k1. Thus, it is clear that

|β(k + n− 1)| ≤ (ε1 + λ)cβ,1 max
k′≤k
{‖ξ̄n(k′)‖}+ ε1cβ,2, ∀k > k1 (3.106)

From Lemma 2.6, we have ξ̄n(k − n+ 1) = O[y(k)], which yields

‖ξ̄n(k − n+ 1)‖ ≤ C1 max
k′≤k
{|e(k′)|}+ C2 (3.107)

where y(k) ∼ e(k) is used and C1 and C2 are finite constants. Hence, inequality (3.107) can

be expressed as

‖ξ̄n(k − n+ 1)‖ ≤ C1 max
k′≤k
{|e(k′)| − λθ̄g‖∆ξ̄n(k′ − n)‖ − |β(k′ − 1)|

+λθ̄g‖∆ξ̄n(k′ − n)‖+ |β(k′ − 1)|}+ C2

≤ C1 max
k′≤k
{a(k′)|e(k′)|}+ λθ̄gC1 max

k′≤k−n
{‖∆ξ̄n(k′)‖}

+C1 max
k′≤k−n

{|β(k′ + n− 1)|}+ C2 (3.108)

From inequalities (3.104), (3.106), and (3.108), we have C3 = (2θ̄g + cβ,1)C1, ε2 = cβ,1ε1C1

and C4 = C2 + ε1cβ,2C1 such that

max
k′≤k−n+1

{‖ξ̄n(k′)‖} ≤ C1 max
k′≤k
{a(k′)|e(k′)|}

+(λC3 + ε2) max
k′≤k−n+1

{‖ξ̄n(k′)‖}+ C4, k > k1 (3.109)

which implies the existence of a small positive constant

λ∗ =
1− ε2
C3

(3.110)
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3.3 Systems with Unmatched Uncertainties

where ε2 can be arbitrarily small. It further implies that ∀k > k1, λ < λ∗

max
k′≤k−n+1

{‖ξ̄n(k′)‖} ≤ C1

1− λC3 − ε2
max
k′≤k
{a(k′)|e(k′)|}+

C4

1− λC3 − ε2
(3.111)

Note that inequality (3.111) implies

ξ̄n(k − n+ 1) = O[a(k)e(k)]

From Φ(k + n− 1) in defined (3.80), Lemma 2.6, and Assumption 3.3, it can be seen that

Φ(k − 1) = O[ξ̄n(k − n)], u(k − n) = O[y(k)] = O[ξ̄n(k − n+ 1)]

According to the definition of D(k − n) in (3.92) and inequality (3.104), we have

D
1
2 (k − n) ≤ 1 + ‖Φ(k − 1)− Φ(lk−n + n− 1)‖

+|u(k − n)− u(lk−n)|+ λ‖∆ξ̄n(k − n)‖

= O[ξ̄n(k − n+ 1)] = O[a(k)e(k)] (3.112)

Then, applying the Lemma 2.3 to equation (3.100) yields

lim
k→∞

a(k)e(k) = 0. (3.113)

From inequality (3.111), we see that the boundedness of ξ̄n(k) is guaranteed. It follows that

the output y(k) and tracking error e(k) are bounded, as well as the the control input u(k),

according to Lemma 2.6. Next, from Lemma 2.2, we have

lim
k→∞

‖∆ξ̄n(k)‖ = 0 (3.114)

which further leads to

lim
k→∞

‖∆s(k, n− 1)‖ = 0 (3.115)

Additionally, considering (3.102) and noting that y(k) ∼ e(k), it follows

|β(k − 1)| ≤ o[O[e(k)]] + λcβ∆s(k − n, n− 1) (3.116)

which yields

|e(k)| − |β(k − 1)|+ λcβ∆s(k − n, n− 1)

≥ |e(k)| − o[O[e(k)]] ≥ (1− α(k)m1)|e(k)| − α(k)m2 (3.117)
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according to Definition 2.3, where m1 and m2 are positive constants, and

lim
k→∞

α(k)→ 0

such that there exists constant k3 such that α(k) ≤ 1/m1, ∀k > k3. Therefore, it can be

seen from (3.117) that

|e(k)| − |β(k − 1)|+ λcβ∆s(k − n, n− 1) + α(k)m2 ≥ (1− α(k)m1)|e(k)| ≥ 0 (3.118)

On the other hand, note that (3.101) implies

|e(k)| − |β(k − 1)|+ λcβ∆s(k − n, n− 1) + α(k)m2

≤ a(k)|e(k)|+ λcβ∆s(k − n, n− 1) + λθ̄g‖∆ξ̄n(k − n)‖+ α(k)m2 (3.119)

From (3.118) and (3.119), we have ∀k > k3

0 ≤ (1− α(k)m1)|e(k)|

≤ a(k)|e(k)|+ λcβ∆s(k − n, n− 1) + λθ̄g‖∆ξ̄n(k − n)‖+ α(k)m2 (3.120)

which implies that limk→∞ e(k) = 0 according to (3.113), (3.114), (3.115), and limk→∞ α(k)→
0. This completes the proof.

Remark 3.14. From (3.90) and (3.116), it can be seen that the last two terms in (3.89),

β(k) caused by prediction error and ν̄(k) caused by nonlinear model uncertainties will ul-

timately vanish due to ‖∆ξ̄n(k − n)‖ → 0. This illustrates the underlying mechanism of

our control design: to use states information at previous steps to compensate for the un-

certainties at current step. It is in great contrast to the continuous-time counterpart results

presented in [70, 175], where nonlinear damping is used to compensate for the effect of

nonlinear uncertainties.

3.4 Simulation Studies

In this Section, simulation studies are carried out to verify the developed adaptive con-

troller. Consider that control design in Section 3.2 can be regarded as a special case of

the control design in Section 3.3. In this Section, we only study controller developed in

Section 3.3 for system with both matched and unmatched nonparametric nonlinear model

uncertainties. To show the effectiveness of the proposed adaptive control, we compare it

with the adaptive control designed without compensation, i.e., adaptive control designed

without consideration of nonparametric uncertainties (it can be easily designed following
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the procedure in Section 3.2 but ignoring nonparametric uncertainties in the control design

stage). The nonparametric uncertainties are proper chosen such that for adaptive control

without compensation, the closed-loop system is still stable. Then, performance comparison

can be focused on tracking performance.

The system used for simulation is given below:
ξ1(k + 1) = a1ξ1(k) cos(ξ1(k)) + a2ξ1(k) sin(ξ1(k)) + g1ξ2(k) + υ1(ξ1(k))

ξ2(k + 1) = b1ξ2(k) ξ1(k)
1+ξ2

1(k)
+ b2

ξ3
2(k)

2+ξ2
2(k)

+ g2u(k) + υ2(ξ̄2(k))

y(k) = ξ1(k)

(3.121)

where a1 = 0.2, a2 = 0.3, g1 = 0.4, b1 = 0.5, b2 = 0.5, g2 = 0.8, and

υ1(ξ1(k)) = 0.04(sin(0.05k))ξ1(k), υ2(ξ̄2(k)) = 0.04(cos(0.05k))(ξ1(k) + ξ2(k))

The desired reference trajectory is chosen as y∗(k) = 1.5 sin(π5kT )+1.5 cos( π10kT ), T = 0.1.

For both adaptive controls with and without compensation, the parameters are chosen

exactly same. The control parameters are chosen as g = 0.32, γ = 0.08, and and λ = 0.05.

The initial system states are also chosen same as ξ̄2(0) = [0.1, 0.1]T . The advantage of

the adaptive control developed in this Chapter is clearly demonstrated in the comparisons

plotted in Figures 3.1(a), 3.2(a),3.3(a), and 3.4(a) (with compensation) and Figures 3.1(b),

3.2(b),3.3(b), and 3.4(b) (without compensation). It can be seen from Figures 3.1(a) and

3.1(b) that with compensation the output tracking performance is much improved compared

with that without compensation and the tracking error nearly goes to zero within the

simulation steps. From Figures 3.3(a), 3.4(a), 3.4(b) and 3.4(b), it is seen with compensation

the parameter estimates are much smoother than those without compensation.

3.5 Summary

In this Chapter, adaptive control with complete compensation of the effect of nonparametric

model uncertainties in output tracking performance has been studied for nonlinear discrete-

time systems in strict-feedback form. Matched nonparametric uncertainties are studied

in Section 3.2, by constructing compensation in controller design stage, while unmatched

nonparametric uncertainties are studied in 3.3 by constructing compensation in both future

states prediction stage and control design stage. It has been rigorously established that

besides the boundedness of all the closed-loop signals, the developed the adaptive control

guarantees that the effect of the nonparametric uncertainties is eventually eliminated such

that the tracking error converges to zero ultimately.
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Figure 3.1: Reference signal and system output
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Figure 3.2: Control input and signal β(k)
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Figure 3.3: Norms of estimated parameters in prediction law
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Figure 3.4: Norms of estimated parameters in control law
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Chapter 4

Systems with Unknown Control

Directions

4.1 Introduction

In Chapter 3, adaptive control with complete compensation of nonparametric uncertainties

has been successfully developed for strict-feedback systems with nonparametric uncertain-

ties. It is noted in the adaptive control design, the control directions (the signs of control

gains gi) are assumed to be known as well as lower bounds of control gains. But these a

priori information may not be obtained easily and it is worth to study adaptive control

design without these a priori information. As mentioned in Section 1.1.3, unknown control

directions problem is a research topic that has received much attention in adaptive control

community for decades. As the control directions represent motion directions of the system

under any control, the adaptive control problem becomes much more difficult when the

signs of control gains are unknown because we cannot decide the direction along which the

control operates. The breakthrough for unknown control directions problem was made in

continuous-time [77] by introducing a powerful tool of so called Nussbaum gain, which has

been thereafter extensively studied in continuous-time adaptive control [78–82,149].

Counterpart of the Nussbaum gain in discrete-time, namely the discrete Nussbaum

gain, has been first proposed in [46], in which a digital algorithm has been developed to

construct a discrete Nussbaum gain and consequently, a general framework for adaptive

control of high order linear discrete-time systems with unknown control directions has been

established. But due to the nature of the discrete Nussbaum gain, which is quite different

from its continuous-time counterpart, e.g., there is no restriction of the growth rate of
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the argument x of the Nussbaum gain N(x) in continuous-time but in discrete-time the

argument is required to grow with bounded increments, it is generally intractable to design

control using discrete Nussbaum gain.

In this Chapter, we will explore discrete Nussbaum gain to design adaptive control for

the strict-feedback nonlinear systems without assumption on control gains as in Chapter

3. The definition and properties of the discrete Nussbaum gain is discussed in Section

4.2. In order to better illustrate the control design procedure and keep focused on the

unknown control directions problem, in Section 4.3 we start from design for systems without

nonparametric uncertainties. After a clearly demonstration of the control design approach

in the ideal case with only parametric uncertainties in Section 4.4.2 where asymptotical

tracking performance is obtained, we will show in Section 4.4.3 that by slight modification

of the control parameter update law, the developed adaptive control is robust to external

disturbance in the control range. Simulation studies are provided to show the efficiency of

the proposed adaptive control in Sections 4.5. In Section 4.6, we study combination of the

control approaches developed in this Chapter and in Chapter 3, in order to design adaptive

control for strict-feedback systems with both nonparametric uncertainties and unknown

control directions.

The contributions in this Chapter lies in

(i) Discrete Nussbaum gain has been successfully incorporated into the adaptive control

of high order nonlinear discrete-time systems, such that control directions and bounds

of control gains are not required to be known in the adaptive control design.

(ii) By exploiting the properties of discrete Nussbaum gain, which not only adapts its

sign but also change its amplitude, a novel deadzone has been developed to deal with

external disturbance without knowledge on the disturbance amplitude.

(iii) The nonparametric uncertainties compensation technique has been well combined with

discrete Nussbaum gain technique such that adaptive control for systems with both

nonparametric uncertainties and unknown control gains has been developed.

4.2 The Discrete Nussbaum Gain

Definition 4.1. Consider a discrete nonlinear function N(x(k)) defined on a sequence x(k)

with xs(k) = supk′≤k{x(k′)}. N(x(k)) is a discrete Nussbaum gain if and only if it satisfies

the following two properties:
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(i) If xs(k) increases without bound, then

sup
xs(k)≥δ0

1
xs(k)

SN (x(k)) = +∞, inf
xs(k)≥δ0

1
xs(k)

SN (x(k)) = −∞

(ii) If xs(k) ≤ δ1, then |SN (x(k))| ≤ δ2 with some positive constants δ0, δ1 and δ2.

where SN (x(k)) is defined as

SN (x(k)) =
k′=k∑
k′=0

N(x(k′))∆x(k′) (4.1)

with ∆x(k) = x(k + 1)− x(k).

In Definition 4.1, we see that similar to Nussbaum gain in continuous-time, for a discrete

Nussbaum gain, if xs(k) is unbounded then SN (x(k)) oscillates between positive infinity and

negative infinity, but if xs(k) is bounded, then SN (x(k)) is bounded as well.

The first algorithm to build a discrete Nussbaum gain was proposed in [46], in which it

is pointed that it is essential for the discrete sequence x(k) to satisfy

x(0) = 0, x(k) > 0, |∆x(k)| ≤ δ0 (4.2)

Then, the discrete Nussbaum gain proposed in [46] is defined on the sequence x(k) as

N(x(k)) = xs(k)sN (x(k)) (4.3)

where sN (x(k)) is the sign function of the discrete Nussbaum gain, i.e., sN (x(k)) = ±1.

The initial value is set as sN (x(0)) = +1. Thereafter, the sign function sN (x(k)) will be

chosen by comparing the summation SN (x(k)) with a pair of switching curves defined by

f(xs) = ±x
3
2
s (k). The detail follows:

Step (a): At k = k1, measure the output y(k1) and compute ∆x(k1) and x(k1 + 1) =

x(k1) + ∆x(k1) and SN (x(k1)) = SN (x(k1 − 1)) +N(x(k1))∆x(k1).

Case (sN (x(k1)) = +1):

 If SN (x(k1)) ≤ x
3
2
s (k1), then go to Step (b)

If SN (x(k1)) > x
3
2
s (k1), then go to Step (c)

Case (sN (x(k1)) = −1):

 If SN (x(k1)) < −x
3
2
s (k1), then go to Step (b)

If SN (x(k1)) ≥ −x
3
2
s (k1), then go to Step (c)

Step (b): Set sN (x(k1 + 1)) = 1, go to step (d).

Step (c): Set sN (x(k1 + 1)) = −1, go to step (d).

Step (d): Return to Step (a) and wait for the measurement of output.
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Remark 4.1. It should be emphasized here that in contrast to continuous-time Nusbaum

gain, there is a strong restriction on the argument of the discrete Nussbuam gain, x(k),

i.e., (i) it is a non-negative sequence, and (ii) the magnitude of the increment, |∆x(k)|,
is bounded by some constant. These constraints make the design based on the discrete

Nussbaum gain more challenging than the continuous-time case.

Lemma 4.1. : Let V (k) be a positive definite function, ∀k, N(x(k)) be the discrete Nuss-

baum gain defined in Definition 4.1, and g be a nonzero constant. If the following inequality

holds:

V (k) ≤
k∑

k′=k1

(c1 + gN(x(k′)))∆x(k′) + c2x(k) + c3, ∀k (4.4)

where c1, c2 and c3 are some constants, k1 is a positive integer, then V (k), x(k) and N(x(k))

must be bounded, ∀k.

Proof. Suppose that x(k) is unbounded, then, because x(k) ≥ 0, ∀k, xs(k) must increase

without upper bound. Therefore, there must exist a k0 such that xs(k) ≥ δ0 ≥ |∆x(k)|,
∀k ≥ k0.

Noting that x(k+ 1) ≤ xs(k) + δ0, we have the following inequality from (4.4), ∀k ≥ k0.

0 ≤ V (k)
xs(k)

≤ g

xs(k)

k∑
k′=0

N(x(k′))∆x(k′) + c1
x(k + 1)
xs(k)

+ c2
x(k)
xs(k)

+
c3

xs(k)

− 1
xs(k)

k1−1∑
k′=0

(c1 + θN(x(k′)))∆x(k′)

≤ g

xs(k)
SN (x(k)) + 2c1 + c2 +

c3

δ0
+ c4 (4.5)

where c4 = 1
δ0
|
∑k1−1

k′=0 (c1 +θN(x(k′)))∆x(k′)| is some finite constant. According to property

(i) in Definition 4.1, it yields a contradiction if x(k) is unbounded, no matter θ > 0 or θ < 0.

Therefore, x(k) is bounded, as well as xs(k), ∀k. According to Property (ii) in Definition

4.1,
∑k

k′=0(c1 + θN(x(k′)))∆x(k′) + c2x(k) + c3 and V (k) are also bounded.

4.3 System Presentation

For clearly demonstration of the key techniques involved in the nonlinear adaptive control

design using discrete Nussbaum gain, let us first focus only on the unknown control di-

rections problem without consideration of nonparametric uncertainties. The system to be
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4.4 Adaptive Control Design

controlled is described as follows:

ξ1(k + 1) = ΘT
1 Φ1(ξ̄1(k)) + g1ξ2(k)

ξ2(k + 1) = ΘT
2 Φ2(ξ̄2(k)) + g2ξ3(k)

...

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + d(k)

y(k) = ξ1(k)

(4.6)

where d(k) is external disturbance and other notations are as same as those in Chapter 3. In

the following parts, for better illustration, we first do not consider the disturbance d(k) and

focus on the design with discrete Nussbaum gain in Section 4.4.2. Later in Section 4.4.3,

we consider to deal with the effect of disturbance in the control design by modification of

control parameter update law.

Similarly as in Chapter 3, we assume Lipschitz condition of the nonlinear regression

functions, but for the control gains, we only assume they are not naughts.

Assumption 4.1. The system functions Φi(ξ̄i(k)) are Lipschitz functions with Lipschitz

coefficient Li. The control gains gi 6= 0, i = 1, 2, . . . , n. In addition, the external disturbance

is bounded by an unknown constant d̄, i.e., |d(k)| ≤ d̄.

4.4 Adaptive Control Design

4.4.1 Singularity problem

Following the transformation from (3.21) to (3.22), all the equations in (4.6) can be com-

bined together by iterative substitution such that we have the following:

y(k + n) = ΘT
f Φ(k + n− 1) + gu(k) + do(k) (4.7)

where ΘT
f and Φ(k + n− 1) are defined in (3.23) and

do(k) =
g

gn
d(k) (4.8)

Similar as control design in Chapter 3, the control can be designed by certainty equiva-

lence principal as follows:

u(k) =
1

ĝ(k)
(−Θ̂T

f (k)Φ̂(k + n− 1|k) + y∗(k + n)) (4.9)

where Φ̂(k+n−1|k) is the prediction of Φ(k+n−1) defined in (3.24). But as there is no a

priori information of the sign of g and the lower bound of g, we cannot devise a projection as
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4.4 Adaptive Control Design

in (3.37) and (3.92) to guarantee that the estimate of g be bounded away from zero. Then

the controller (4.9) runs risk of singularity, i.e., ĝ(k) may fall into a small neighborhood of

zero. As indicated in [123], this problem is far more from trivial because in order to avoid

singularity, the existing solutions to the control problem are usually given locally or assume

a priori knowledge of the system, i.e., the sign and upper bound of the control gain g.

We will seek an alternative approach to avoid singularity problem. Consider estimating

Θfg = g−1Θf and g−1 instead of Θf and g and thus, we have the resultant control well

defined as follows:

u(k) = −Θ̂T
fg(k)Φ̂(k + n− 1|k) + ĝI(k)y∗(k + n) (4.10)

where Θ̂T
fg(k) and ĝI(k) are the estimates of Θfg = g−1Θf and g−1.

4.4.2 Update law without disturbance

In this section, we consider the adaptive control in the disturbance free case, i.e., do(k) = 0.

Substituting the adaptive control (4.10) into (4.7) and subtracting y∗(k + n) on both hand

sides, we obtain the following error dynamics when do(k) = 0

e(k + n) = y(k + n)− y∗(k + n)

= ΘT
f Φ(k + n− 1)− gΘ̂T

fg(k)Φ̂(k + n− 1|k) + gĝI(k)y∗(k + n)− y∗(k + n)

= −gΘ̃T
fg(k)Φ(k + n− 1) + gg̃I(k)y∗(k + n)− gβg(k + n− 1) (4.11)

where

Θ̃fg(k) = Θ̂fg(k)−Θfg, g̃I(k) = ĝI(k)− g−1 (4.12)

and βg(k + n− 1) is defined as

βg(k + n− 1) = Θ̂T
fg(k)Φ̃(k + n− 1|k) (4.13)

It should be mentioned that βg(k) defined above is slightly different from β(k) defined

previously in (3.33).

We see from (4.11) that unknown control gain g appear in the expression of tracking

error e(k), such that the sign of control gain g, the control direction, will be required to

determine to which direction the estimation proceed. To overcome the difficulty caused by
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4.4 Adaptive Control Design

unknown control direction, the discrete Nussbaum gain is used in the update law as follows:

ε(k) =
γe(k) +N(x(k))ψ(k)βg(k − 1)

G(k)

Θ̂fg(k) = Θ̂fg(k − n) + γ
N(x(k))
D(k)

Φ(k − 1)ε(k), Θ̂fg(j) = 0[pj ]

ĝI(k) = ĝI(k − n)− γN(x(k))
D(k)

y∗(k)ε(k)

ĝI(j) = 0, j = 0,−1, . . . ,−n+ 1 (4.14)

with

∆ψ(k) = ψ(k + 1)− ψ(k) =
−N(x(k))βg(k − 1)ε(k)

D(k)

∆z(k) = z(k + 1)− z(k) =
G(k)ε2(k)
D(k)

, z(0) = ψ(0) = 0

βg(k − 1) = Θ̂T
fg(k − n)Φ̃(k − 1|k − n)

x(k) = z(k) +
ψ2(k)

2
G(k) = 1 + |N(x(k))| (4.15)

D(k) = (1 + |ψ(k)|)(1 + |N3(x(k))|)

×(1 + ‖Φ(k − 1)‖2 + y2
d(k) + β2

g (k − 1) + ε2(k))

where ε(k) is introduced as an augmented error and the tuning parameter γ > 0 can be

arbitrary constant specified by the designer. It should be mentioned that the requirement

on sequence x(k) in (4.2) is satisfied.

Theorem 4.1. Consider the adaptive closed-loop system consisting of system (4.6) under

Assumption 4.1, adaptive control (4.10) with parameters update law (4.14), predicted future

states defined in Section 3.2.2. All the signals in the closed-loop system are guaranteed to be

bounded and the tracking error e(k) will converge to zero, if there is no external disturbance.

Proof. Substituting the error dynamics (4.11) into the augmented error ε(k), one obtains

γΘ̃T
fg(k − n)Φ(k − 1)− γg̃I(k − n)y∗(k)

= −1
g
G(k)ε(k)− γβg(k − 1) +

1
g
N(x(k))ψ(k)βg(k − 1) (4.16)

Consider a positive definite function V (k) as

V (k) =
n∑
j=1

‖Θ̃fg(k − n+ j)‖2 +
n∑
j=1

g̃I
2(k − n+ j) (4.17)
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The difference equation of V (k) is given as

∆V (k) = V (k)− V (k − 1)

= Θ̃T
fg(k)Θ̃fg(k)− Θ̃T

fg(k − n)Θ̃fg(k − n) + g̃I
2(k)− g̃I2(k − n)

= (Θ̃fg(k)− Θ̃fg(k − n))T (Θ̃fg(k)− Θ̃fg(k − n))

+2Θ̃T
fg(k − n)(Θ̃fg(k)− Θ̃fg(k − n))

+(g̃I(k)− g̃I(k − n))2 + 2g̃I(k − n)(g̃I(k)− g̃I(k − n))

= γ2N
2(x(k))(ΦT (k − 1)Φ(k − 1) + y2

d(k))
D2(k)

ε2(k)

+ 2N(x(k))
γΘ̃T

fg(k − n)Φ(k − 1)
D(k)

ε(k)− 2N(x(k))
γg̃I(k − n)y∗(k)

D(k)
ε(k)

and note that

∆x(k) = ∆z(k) + ψ(k)∆ψ(k) +
[∆ψ(k)]2

2
0 ≤ ∆z(k) ≤ 1, 0 ≤ |∆ψ(k)| ≤ 1

|N(x(k))|[∆ψ(k)]2 ≤ ∆z(k)

we have

∆V (k) ≤ γ2G(k)ε2(k)
D(k)

− 2γ
N(x(k))βg(k − 1)ε(k)

D(k)
− 2
g
N(x(k))

G(k)ε2(k)
D(k)

+
2
g
N(x(k))

N(x(k))ψ(k)βg(k − 1)ε(k)
D(k)

≤ γ2∆z(k) + 2γ∆ψ(k)− 2
g
N(x(k))(∆z(k) + ψ(k)∆ψ(k) +

[∆ψ(k)]2

2
)

+
1
|g|
|N(x(k))|[∆ψ(k)]2

≤ c1∆z(k) + 2γ∆ψ(k)− 2
g
N(x(k))∆x(k) (4.18)

where c1 = γ2 + 1
|g| . Taking summation of the above equation results

V (k) ≤ −2
g

k′=k∑
σ=0

N(x(k′))∆x(k′) + c1z(k) + c1 + 2γψ(k) + 2γ

≤ −2
g

k′=k∑
σ=0

N(x(k′))∆x(k′) + c1(z(k) +
ψ2(k)

2
) + c1 +

2γ2

c1
+ 2γ

≤ −2
g

k′=k∑
k′=0

N(x(k′))∆x(k′) + c1x(k) + c2 (4.19)
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where c2 = c1 + 2γ2

c1
+ 2. Applying Lemma 4.1 to (4.46) results the boundedness of V (k)

and x(k). Considering that z(k) is an nondecreasing sequence satisfying 0 ≤ z(k) ≤ x(k),

thus the boundedness of x(k) means that z(k) and ψ(k) are bounded. Further, this result

implies the following conclusions:

(a) Θ̂fg(k), ĝI(k), G(k), and N(x(k)) are bounded, and

(b)
√

∆z(k) ∈ L2[0,∞).

According to Lemma 2.6, one can easily obtain Φ(k − 1) = O[e(k − 1)] from the Lipschitz

condition of system functions Φi(·), i = 1, 2, . . . , n.

Similar to (3.47), it is easy to establish that

βg(k − 1) = o[O[e(k − 1)]]

Then, from the boundedness of N(x(k)), ψ(k), and G(k), one sees that ε(k) ∼ e(k). Fur-

thermore, from the definition of D(k) in (4.14), we have D(k) = O[ε2(k)]. The conclusion

(b) implies that

∆z(k) =
G(k)ε2(k)
D(k)

→ 0

Applying Lemma 2.3 and noting the boundedness of G(k), we conclude that ε(k) → 0

and thus e(k) → 0 and then the boundedness of states ξ̄n(k) and control input is obvious

according to Lemma 2.6. According to Lemma 3.2, we have the boundedness of the future

states prediction and parameters estimates used in the prediction law. This complete the

proof of the ultimately boundedness of all the closed-loop signals.

4.4.3 Update law with disturbance

In this section, we consider to deal with the effect of the external disturbance d(k) by adding

a dead zone in the control parameter update law, while the control law still assume the form

in (4.10).

The control parameter update law with a deadzone is described as follows:

ε(k) =
γe(k) +N(x(k))ψ(k)βg(k − 1)

G(k)

Θ̂fg(k) = Θ̂fg(k − n) + γ
a(k)N(x(k))

D(k)
Φ(k − 1)ε(k), Θ̂fg(j) = 0[pj ]

ĝI(k) = ĝI(k − n)− γ a(k)N(x(k))
D(k)

y∗(k)ε(k), ĝI(j) = 0, j = 0,−1, . . . ,−n+ 1

∆ψ(k) = ψ(k + 1)− ψ(k) =
−a(k)N(x(k))βg(k − 1)ε(k)

D(k)
(4.20)
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with

∆z(k) = z(k + 1)− z(k) =
a(k)G(k)ε2(k)

D(k)
, z(0) = ψ(0) = 0

βg(k − 1) = Θ̂T
fg(k − n)Φ̃(k − 1|k − n)

x(k) = z(k) +
ψ2(k)

2
G(k) = 1 + |N(x(k))|

D(k) = (1 + |ψ(k)|)(1 + |N(x(k))|3)×

(1 + ‖Φ(k − 1)‖2 + y2
d(k) + β2

g (k − 1) + ε2(k))

a(k) =

{
1 if |ε(k)| > χ

0 others
(4.21)

where the tuning factor γ > 0 and threshold value χ > 0 can be arbitrary positive constants

specified by the designer. In addition, it is obvious that requirement on sequence x(k) in

(4.2) is still satisfied.

Remark 4.2. It should be mentioned that the proposed deadzone method does not require

a priori knowledge of the upper bound of the disturbance, which is necessary in building the

adaptive laws with dead-zones traditionally. The reason lies in the use of the discrete Nuss-

baum gain, which by itself will oscillate between infinity and minus infinity if the augmented

tracking error becomes unbounded. Because the discrete Nussbaum gain not only adapt its

sign but also change its amplitude according to the tracking error, we do not need to known

the bounds of the control gains in the update law. In addition, as long as the amplitude of

the tracking error is of some value larger than zero, the discrete Nussbaum gain is able to

adapt to overcome the effect of the external disturbance in the closed-loop system.

Theorem 4.2. Consider the adaptive closed-loop system consisting of system (4.6), control

(4.10) with parameters update law (4.20), predicted future state defined in Section 3.2.2.

Under Assumption 4.1, all the signals in the closed-loop system are bounded and G(k) =

1+ |N(x(k))| will converge to a constant. Denote C = limk→∞G(k), then the tracking error

satisfy limk→∞ sup |e(k)| < Cχ
γ , where γ and χ are the tuning factor and the threshold value

specified by the designer.

Proof. Substituting the error dynamics (4.11) into the augmented error ε(k) and considering

do(k) 6= 0, one obtains

γΘ̃T
fg(k − n)Φ(k − 1)− γg̃I(k − n)y∗(k)

= −1
g
G(k)ε(k)− γβg(k − 1) +

1
g
γdo(k − n) +

1
g
N(x(k))ψ(k)βg(k − 1) (4.22)
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Consider the positive definite function V (k) same as in Section 4.4.2

V (k) =
n∑
j=1

‖Θ̃fg(k − n+ j)‖2 +
n∑
j=1

g̃I
2(k − n+ j) (4.23)

According to the definition of a(k) in (4.20), we have

2
g
a(k)N(x(k))do(k − n)ε(k) ≤ a(k)| 2d̄

gnχ
||N(x(k))|ε2(k) (4.24)

which serves as a key inequality in the consequent stability analysis. Now, following the

similar techniques in Section 4.4.2, we have the difference equation of V (k) as followings:

∆V (k) = V (k)− V (k − 1)

=
γ2a2(k)N2(x(k))(ΦT (k − 1)Φ(k − 1) + y2

d(k))
D2(k)

G(k)ε2(k)

+2N(x(k))
a(k)γΘ̃T

fg(k − n)Φ(k − 1)
D(k)

ε(k)− 2N(x(k))
a(k)γg̃I(k − n)y∗(k)

D(k)
ε(k)

≤ γ2a(k)G(k)ε2(k)
D(k)

+ | 2d̄
gnχ
|a(k)|N(x(k))|ε2(k)

D(k)
− 2γ

a(k)N(x(k))βg(k − 1)ε(k)
D(k)

−2
g
N(x(k))

a(k)G(k)ε2(k)
D(k)

+
2
g
N(x(k))

a(k)N(x(k))ψ(k)βg(k − 1)ε(k)
D(k)

(4.25)

Note that

a(k)|N(x(k))|ε2(k)
D(k)

≤ ∆z(k), |N(x(k))|[∆ψ(k)]2 ≤ ∆z(k)

Then, we have

∆V (k) ≤ (γ2 + | 2d̄
gnχ
|)∆z(k) + 2γ∆ψ(k) +

1
|g|
|N(x(k))|[∆ψ(k)]2

−2
g
N(x(k))(∆z(k) + ψ(k)∆ψ(k) +

[∆ψ(k)]2

2
) (4.26)

which leads to

V (k) ≤ −2
g

k′=k∑
k′=0

N(x(k′))∆x(k′) + c3x(k) + c4 (4.27)

where c3 and c4 are some finite constants.

Then, using the same analysis as in Section 4.4.2, we conclude the boundedness of

Θ̂fg(k), ĝI(k), G(k), N(x(k)) and ψ(k). In addition, we have ∆z(k) → 0. Let us define

a time interval as Za=1 = {k|a(k) = 1} and suppose that Za=1 is an infinite set. Then,

applying Lemma 2.3 we have

lim
k→∞,k∈Z1

ε(k) = lim
k→∞,k∈Za=1

a(k)ε(k) = 0
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which conflicts with a(k) = 1, k ∈ Za=1, because |ε(k)| ≥ χ when a(k) = 1. Therefore,

Za=1 must be a finite set and then, we have

lim
k→∞

a(k) = 0, lim
k→∞

sup |ε(k)| ≤ χ

and there must be a constant such that

lim
k→∞

G(k) = C

Noting that βg(k − 1) = o[O[e(k − 1)]] → 0, we derive from the definition of ε(k) in (4.20)

that

lim
k→∞

sup |ε(k)| = lim
k→∞

sup{|γe(k) +N(x(k))ψ(k)βg(k − 1)
G(k)

|}

= lim
k→∞

sup{|γe(k)
G(k)

|} ≤ χ

which implies

lim
k→∞

sup |e(k)| ≤ lim
k→∞

G(k)χ
γ

=
Cχ

γ
(4.28)

Then, following the same procedure as in the previous section, the boundedness of other

closed-loop signals can be concluded. This complete the proof of the boundedness of all the

closed-loop signals.

4.5 Simulation Studies

The following second order nonlinear plant is used for simulation.
ξ1(k + 1) = a1ξ1(k) cos(ξ1(k)) + a2ξ1(k) sin(ξ1(k)) + g1ξ2(k)

ξ2(k + 1) = b1ξ2(k) ξ1(k)
1+ξ2

1(k)
+ b2

ξ3
2(k)

2+ξ2
2(k)

+ g2u(k) + d(k)

y(k) = ξ1(k)

(4.29)

where d(k) = 0.2 cos(0.05k) cos(y(k)) and system parameters are a1 = 0.2, a2 = 0.1, g1 = 3,

b1 = 0.3, b2 = −0.6, and g2 = ±0.2. The control objective is to make the output y(k) track

a desired reference trajectory

y∗(k) = 1.5 sin(
π

5
kT ) + 1.5 cos(

π

10
kT ), T = 0.05

The initial system states are ξ̄2(j) = [1, 1]T , j = −1, 0. The tuning rate and the threshold

value are chosen as γ = 6 and χ = 0.1.
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4.6 System with Nonparametric Uncertainties

The simulation is carried out for twice for comparison and in both simulations, the

control law, the prediction law and all the parameters except g2 are of same values. For the

first time, the control gain g2 is chosen to be negative while in the second time the control

gain g2 is chosen to be positive.

The results are presented in Figures 4.1, 4.2, 4.3 and 4.4. Figure 4.1 shows the output

y(k) and reference trajectory y∗(k). We see that when g2 is negative, though initially the

tracking performance is not good (the output goes to a reverse direction), but after the

discrete Nussbaum gain N(x(k)) turns to negative (see Figure 4.4), the tracking becomes

better and better. Figure 4.2 illustrates the boundedness of the control input u(k), the

estimated parameters ĝI(k) and ‖Θ̂fg(k)‖ used in the control law. Figure 4.3 shows the

signal βg(k) caused by prediction error and ¯̂Θ1(k) used in the the prediction. Figure 4.4

shows the discrete sequence x(k), ψ(k) and discrete Nussbaum gain N(x(k)). The discrete

Nussbaum gain N(x(k)) adapts by searching alternately in the two directions such that it

can been see that it turns from positive to negative in Figure 4.4(a).

In summary, the adaptive NN control with discrete Nussbaum gain adapts by searching

alternately in the two directions. The adaptive NN control will be able to reverse its

direction of adaptation if initially the adaptation is in the wrong direction. However, we also

noted that while the boundeness of all the signals in the adaptive system was maintained,

during those intervals when the adaptation is in the wrong direction, the bounds may be

very large. This appears to be a limitation of the proposed control. Actually, when the

control direction is unknown, no matter what approach is used, if the adaptive NN control

is initialized to start in the bad regime where it adapts in the wrong direction, it must

at least remain in that regime until the errors become correspondingly large. Only then

can the adaptive NN control determine that the direction of adaptation is wrong so that it

reverse its direction of adaptation.

4.6 System with Nonparametric Uncertainties

In this section, we design control for systems with nonparametric uncertainties in addition

to unknown control directions. Now let us consider system (3.56) studied in Section 3.3 with

completely unknown control gains gi, i = 1, 2, . . . , n, i.e., with Assumption 3.4 removed.
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4.6.1 Adaptive control design

Following the similar steps in Section 3.3, we transform the system into a compact form as

in (3.79):

y(k + n) = ΘT
f Φ(k + n− 1) + gu(k) + ΘT

g ν̄(k)

Instead of (3.81), we introduce the following auxiliary output

yag(k + n− 1) = ΘT
fgΦ(k + n− 1) + ΘT

gI ν̄(k) (4.30)

where same as in Section 4.4.2, Θfg = g−1Θf and ΘgI = g−1Θg. Then, system (3.79) can

be rewritten as

y(k + n) = g[yag(k + n− 1) + u(k)] (4.31)

From (4.30) and (4.31), it is easy to derive

yag(k + n− 1) = yag(k + n− 1)− yag(lk + n− 1) + yag(lk + n− 1)

= ΘT
fg[Φ(k + n− 1)− Φ(lk + n− 1)] + g−1y(lk + n)− u(lk)

+ΘT
gI [ν̄(k)− ν̄(lk)] (4.32)

Let us introduce the following prediction of yag(k + n− 1):

ŷag(k + n− 1|k) = Θ̂T
fg(k)[Φ(ŷ(k + n− 1))− Φ(y(lk + n− 1))]

+ĝI(k)y(lk + n)− u(lk) (4.33)

where Θ̂fg(k) and ĝI(k) are the estimates of Θfg and g−1, and Φ(lk + n− 1), y(lk + n) are

available at the kth step since lk + n ≤ k according to (3.59).

From (4.32) and (4.33), we have

ỹag(k + n− 1|k) = ŷag(k + n− 1|k)− yag(k + n− 1|k)

= Θ̃T
fg(k)[Φ(k + n− 1)− Φ(y(lk + n− 1)] + βg(k + n− 1) + g̃I(k)y(lk + n)

−ΘT
gI [ν̄(k)− ν̄(lk)] (4.34)

where Θ̃fg(k), g̃I(k) are defined in (4.12) and βg(k + n − 1) defined in (4.13). Using the

above estimated auxiliary output ŷag(k + n− 1|k), the adaptive control law is constructed

as

u(k) = −ŷag(k + n− 1|k) + ĝI(k)y∗(k + n) (4.35)
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Considering system (4.31), adaptive control law in (4.35), and the estimation error of

auxiliary output in (4.34), we obtain the error dynamics as

e(k + n) = gyag(k + n− 1)− gŷag(k + n− 1|k) + gĝI(k)y∗(k + n)− y∗(k + n)

= −gỹag(k + n− 1|k) + gg̃I(k)y∗(k + n)

= −gΘ̃T
fg(k)[Φ(y(k + n− 1))− Φ(y(lk + n− 1))]− gβg(k + n− 1)

−gg̃I(k)y(lk + n) + gg̃I(k)y∗(k + n) + gΘT
gI [ν̄(k)− ν̄(lk)] (4.36)

which leads to

e(k) = −gΘ̃T
fg(k − n)[Φ(y(k − 1))− Φ(y(lk−n + n− 1))]

+gg̃I(k − n)[y∗(k)− y(lk−n + n)]− gβg(k − 1)

+gΘT
gI [ν̄(k − n)− ν̄(lk−n] (4.37)

Similar to (3.90), it is easy to establish the following inequality

‖ΘT
gI [ν̄(k − n)− ν̄(lk−n)]‖ ≤ λθgI‖∆ξ̄n(k − n)‖ (4.38)

where θgI = g−1θg with θg defined in (3.91) and λ is a parameter chosen to satisfy

max1≤i≤n Lυi ≤ λ ≤ λ∗ and the existence of a parameter λ∗ will be established in a similar

was as in Section 3.3.4 (Refer to λ∗ defined in (3.110)).

In the following, let us denote θ̂g(k) as the estimate of the unknown parameter θg. Then,

the parameter estimates in control law (4.35) are calculated by the following update law:

e′(k) = γ
e(k)
G(k)

Θ̂fg(k) = Θ̂fg(k − n)− γag(k)N(x(k))[Φ(y(k − 1))− Φ(y(lk−n + n− 1))]
D(k − n)

e′(k)

ĝI(k) = ĝI(k − n) +
γag(k)N(x(k))[y(lk−n + n)− y∗(k)]

D(k − n)
e′(k) (4.39)

θ̂gI(k) = θ̂gI(k) +
γλag(k)|N(x(k))|‖∆ξ̄n(k − n)‖

D(k − n)
|e′(k)|
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with

G(k) = 1 + |N(x(k))|

D(k − n) = (1 +N2(x(k))){1 + ‖Φ(y(k − 1))− Φ(y(lk−n + n− 1))‖2

+[y(lk−n + n)− y∗(k)]2 + λ2‖∆ξ̄n(k − n)‖2 + e′
2(k)}

∆x(k) = x(k + 1)− x(k) =
ag(k)G(k)e′2(k)

D(k)

ag(k) =


1− λĉ(k−n)‖∆ξ̄n(k−n)‖+|βg(k−1)|

|e′(k)|

if |e′(k)| > λθ̂gI(k)‖∆ξ̄n(k − n)‖+ |βg(k − 1)|
0 otherwise

(4.40)

Θ̂fg(0) = 0[n], ĝI(0) = 0, ĉc(0) = 0

where N(x(k)) is the discrete Nussbaum gain defined in Definition 4.1, and γ > 0 is the

tuning rate to be specified by the designer.

Remark 4.3. It should be mentioned that the sequence x(k) defined above in (4.40) is

different from that defined in (4.15) or (4.21), but the requirement on sequence x(k) in

(4.2) is also well satisfied.

4.6.2 Stability analysis

Let us state the main result of this Section in the following theorem.

Theorem 4.3. Consider the adaptive closed-loop system consisting of system (3.56) without

Assumption 3.2, predicted states in Section 3.3.2, control law (4.35) and parameter update

law (4.39). All the signals in the closed-loop system are bounded and furthermore, the

tracking error e(k) converges to zero.

Proof. Substituting the error dynamics (4.37) into the augmented error e′(k) in (4.39) gives

e′(k)G(k) = −γgΘ̃T
fg(k − n)[Φ(y(k − 1))− Φ(y(lk−n + n− 1))]− γgβg(k − 1)

−γgg̃I(k − n)[y(lk−n + n)− y∗(k)] + γgΘT
gI [ν̄(k − n)− ν̄(lk−n)] (4.41)

which together with (4.38) yields

γN(x(k))e′(k){Θ̃T
fg(k − n)[Φ(k − 1)− Φ(lk−n + n− 1)]

+g̃I(k − n)[y(lk−n + n)− y∗(k)]}

= {−1
g
G(k)e′(k)− γβg(k − 1) + γΘT

gI [ν̄(k − n)− ν̄(lk−n)]}e′(k)N(x(k))

≤ −1
g
N(x(k))G(k)e′2(k) + γθg|N(x(k))||e′(k)|‖∆ξ̄n(k − n)‖ (4.42)

75



4.6 System with Nonparametric Uncertainties

Choose the Lyapunov candidate function as

V (k) =
n∑
j=1

‖Θ̃fg(k − n+ j)‖2 +
n∑
j=1

g̃2
I (k − n+ j) +

n∑
j=1

θ̃2
gI(k − n+ j) (4.43)

From (4.39) and (4.42), it is easy to derive that the difference of V (k) is

∆V (k) = V (k)− V (k − 1)

≤ ‖Θ̃fg(k)‖2 − ‖Θ̃fg(k − n)‖2 + g̃2
I (k)− g̃2

I (k − n) + θ̃2
gI(k)− θ̃2

gI(k − n)

= {‖Φ(y(k − 1))− Φ(y(lk−n + n− 1))‖2 + [y(lk−n + n)− y∗(k)]2

+λ2‖∆ξ̄n(k − n)‖2} ×
a2
g(k)γ2e′2(k)N2(x(k))

D2(k − n)

+{Θ̃T
fg(k − n)[Φ(y(k − 1))− Φ(y(lk−n + n− 1))] + g̃I(k − n)

×[y(lk−n + n)− y∗(k)]}e′(k)
2ag(k)γN(x(k))

D(k − n)

+λθ̃gI(k − n)‖∆ξ̄n(k − n)‖|e′(k)|2ag(k)γ|N(x(k))|
D(k − n)

which together with update law (4.39) leads to

∆V (k) ≤ γ2a
2
c(k)G(k)e′2(k)
D(k − n)

− 2ag(k)N(x(k))G(k)e′2(k)
gD(k − n)

−2γag(k)N(x(k))e′(k)βg(k − 1)
D(k − n)

+
2λγag(k)|N(x(k))||e′(k)|θ̂gI(k)‖∆ξ̄n(k − n)‖

D(k − n)

≤ γ2a
2
c(k)G(k)e′2(k)
D(k − n)

− 2ag(k)N(x(k))G(k)e′2(k)
gD(k − n)

+
2γag(k)|N(x(k))||e′(k)|(|βg(k − 1)|+ θ̂gI(k)λ‖∆ξ̄n(k − n)‖)

D(k − n)

≤ γ2ag(k)G(k)e′2(k)
D(k − n)

− 2ag(k)N(x(k))G(k)e′2(k)
gD(k − n)

+
2γag(k)|N(x(k))|e′2(k)

D(k − n)
(4.44)

where the definition of deadzone ag(k) in (4.40) and inequality a2
g(k) ≤ ag(k) were used in

the last inequality. According to ∆x(k) = x(k + 1) − x(k) = ag(k)G(k)e′2(k)
D(k) in (4.40) and
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G(k) = 1 + |N(x(k))|, we can rewrite inequality (4.44) as

∆V (k) ≤ γ2ag(k)G(k)e′2(k)
D(k)

− 2ag(k)N(x(k))
G(k)e′2(k)
gD(k)

+ 2ag(k)
γG(k)e′2(k)
|g|D(k)

≤ γ2∆x(k)− 2
N(x(k))∆x(k)

g
+ 2

γ

|g|
∆x(k)

= c1∆x(k)− c2N(x(k))∆x(k) (4.45)

where c1 = γ2 +2 γ
|g| and c2 = 2

g 6= 0. Taking summation on both hand sides of (4.45) results

in

V (k) ≤ −c2

k∑
k′=0

N(x(k′))∆x(k′) + c1x(k) + V (−1). (4.46)

Applying the same techniques in Section 4.4.2, we can prove the boundedness of V (k),

N(x(k)), x(k), θ̂fg(k), ĝI(k) and G(k) as well as

lim
k→∞

∆x(k) = lim
k→∞

ag(k)G(k)e′2(k)
D(k)

= 0 (4.47)

Using a2
g(k) ≤ ag(k) and G(k) = 1 + |N(x(k))| ≥ 1, we have

ag(k)G(k)e′2(k)
D(k)

≥
a2
g(k)G(k)e′2(k)

D(k)
≥
a2
g(k)e′2(k)
D(k)

≥ 0

which together with (4.47) yields

lim
k→∞

a2
g(k)e′2(k)
D(k)

= 0 (4.48)

From the definition of deadzone ag(k) in (4.40), when |e′(k)| > λθ̂gI(k)‖∆ξ̄n(k − n)‖+

|βg(k − 1)|, we have

ag(k)|e′(k)| = |e′(k)| − λĉ(k − n)‖∆ξ̄n(k − n)‖ − |βg(k − 1)| > 0

and when |e′(k)| ≤ λĉ(k − n)‖∆ξ̄n(k − n)‖+ |βg(k − 1)|, we have

ag(k)|e′(k)| = 0 ≥ |e′(k)| − λĉ(k − n)‖∆ξ̄n(k − n)‖ − |βg(k − 1)|

Noting that θ̂gI(k) is bounded and set θ̂gI(k) ≤ c̄c, ∀k ∈ Z+
−n we have

|e′(k)| − λc̄c‖∆ξ̄n(k − n)‖ − |βg(k − 1)| ≤ ag(k)|e′(k)| (4.49)

Refer to Section 3.3.4, we see that equations (4.48) and (4.49) correspond to equations

(3.100) and (3.101), then applying the same techniques following equations (3.100) and

(3.101) in Section 3.3.4 we can complete the proof.
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4.7 Summary

In this Chapter, we have exploited discrete Nussbaum gain to counter the lack of knowledge

of control directions for adaptive control design of nonlinear discrete-time systems. The

class of systems with only external disturbance but not nonparametric uncertainties has

been studied first. Under the framework of future states prediction based adaptive control

design, we have successfully incorporated discrete Nussbaum into the control parameter

update law such that the adaptive control is insensitive to the control directions. In the

adaptive control structure, the reciprocal of the control gain instead of control gain is used

such that controller singularity problem is avoided. Thereafter, adaptive control designed is

extended to systems with both unknown control directions and nonparametric uncertainties

are studied by constructing a more complicated control parameter update law. All the

signals in the closed-loop system are guaranteed bounded and the output tracking error is

made to be zero ultimately in the absence of external disturbance. The efficiency of the

designed adaptive control are demonstrated in the simulation studies.
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Figure 4.1: Output and reference
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Chapter 5

Systems with Hysteresis

Constraint and Multi-variable

5.1 Introduction

In the foregoing Chapters, we have developed a framework of adaptive control based on

predicted future states for SISO discrete-time systems in strict-feedback form. Under the

proposed framework, we have studied nonparametric model uncertainties compensation

and have exploited discrete Nussbaum gain to deal with the lack of knowledge of control

directions. In Chapters 3 and 4, we assumed that the control input directly enter into the

system and the system is SISO. In this Chapter, we extend the adaptive control developed

in last two Chapters by further investigating systems with hysteresis input constraint and

systems with multi-variable in block triangular structure.

In Section 5.2, we study adaptive control of strict-feedback systems with unknown con-

trol directions, which is proceeded by hysteresis type input constraint. As mentioned in

Section 1.1, there may be nonlinear input constraints caused by characteristics of actuator

and sensors. In recent years, some research effort has been made to exploit Prandtl-Ishlinskii

(PI) model in adaptive control of linear systems with hysteresis input constraint [176], in

which the control directions are assumed to be known. One recent attempt to control

nonlinear system with unknown control directions using PI model has been made in in

continuous-time [177]. However, as mentioned in Section 1.1, due to the inherent difficul-

ties in discrete-time models many controls designed for continuous-time systems are not

applicable for discrete-time systems, and in most cases, adaptive control design for discrete-

time systems is much more difficult.
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In Section 5.3, we study adaptive control of block-triangular MIMO nonlinear discrete-

time systems, which is composed of a number of strict-feedback subsystems coupled with

each others. It is well known that many practical systems are multi-variable systems. But

the control problems for MIMO systems are very difficult and are very different from those

for SISO systems. Adaptive control design of MIMO nonlinear systems becomes extremely

difficult when there are nonlinear uncertain couplings. The MIMO systems to be studied are

of interconnections in every equation of each subsystem rather than only in the last equation

of each subsystem as in [157]. Since the state variables of one subsystem are embedded into

system functions of another subsystem in an unmatched manner, and even in functional

uncertain nonlinearities, we need to establish the relation among various states, inputs and

outputs before hand. Later, using the established relation among system states, inputs

and outputs, we are able to sort the growth rate of various closed-loop signals, then the

closed-loop stability can be proved with resort to Lyapunov approach.

Similar to Section 3.2, delayed states in the uncertain couplings in the last equations of

each subsystem are considered in the MIMO nonlinear systems to be studied. For a class

of uncertain MIMO nonlinear systems in block-triangular forms with unknown time delays,

adaptive NN control design based on Lyapunov-Krasovskii functional has been proposed

in [172]. However, there is not a counterpart of Lyapunov-Krasovskii functional in discrete-

time. The technique developed in Section 3.2 will be further exploited in this Chapter to

deal with time delayed states in the uncertain coupling terms. By using Lyapunov method

and ordering signals growth rate, it is rigourously proved that all the signals in the whole

closed-loop systems are globally bounded and the output tracking errors asymptotically

converge to zeros.

The contributions in this Chapter lies in

(i) To tackle the difficulty caused by hysteresis input constraint, discrete-time Prandtl-

Ishlinskii (PI) model is exploited in the adaptive control design.

(ii) Future states predictions for each subsystem of the block triangular MIMO systems

have be developed and the growth rate of the prediction errors has been established.

(iii) With exploration of the properties of block-triangular structure of the MIMO system,

adaptive control has been developed to decouple the interactions of states and inputs

among all the subsystems.
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5.2 Systems Proceeded by Hysteresis Input

In this Section, PI model is used to describe the hysteresis. Based on the future states pre-

diction method developed in Section 3.2.2, the adaptive control is designed with employment

of the discrete Nussbaum gain.

5.2.1 Problem formulation

Consider strict-feedback nonlinear discrete-time systems with hysteresis input constraint

described as follows:

ξi(k + 1) = ΘT
1 Φi(ξ̄i(k)) + giξi+1(k)

i = 1, 2, . . . , n− 1

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + d(k)

u(k) = H[v](k)

y(k) = ξ1(k)

(5.1)

in which hysteresis is denoted by the operator u(k) = H[v](k), where v(k) is the input

and u(k) is the output of the hysteresis and the input to the systems. Other notations

and control objective are same in those in Section 4.3 and the system is also subject to

Assumption 4.1 in Section 4.3. The hysteresis operator is represented by discrete-time PI

model as follows [176]:

u(k) =
∫ ∞

0
p(r)Er[v](k)dr (5.2)

where

Er(k) = er[v(k)− v(ki) + Er[v](ki)], er(v) = min(r,max(−r, v)) (5.3)

with Er(0) = er(v(0)− u(−1)) and p(r) is an unknown density function satisfying p(r) ≥ 0

with
∫∞

0 rp(r)dr < ∞, and Er(·) is called as stop operator. When the value r is large

enough, the density function p(r) will vanishes, i.e., there exists a constant R̄ such that

p(r) = 0, ∀r > R̄, and thus the integral
∫∞

0 p(r)Er[v](k)dr is replaced by
∫ R̄

0 p(r)Er[v](k)dr

in the sequel.

Figure 5.1 illustrates the input (v) and output (u) relationship of the PI model in (5.2).

The density function used is p(r) = e−0.07(r−1)2
with R̄ = 10. The input is chosen as

v(k) = 12.0 sin(0.0524k)/(1 + 0.0175k) with k = 1, 2, . . . , 360.
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Figure 5.1: Hysteresis curve give by the PI model

5.2.2 Adaptive control design

Let us perform similar techniques that transforming (3.1) into (3.22) in Section 3.2.3 to sys-

tem (5.1) such that the equations in (5.1) can be combined together by iterative substitution

as follows:

y(k + n) = ΘT
f Φ(k + n− 1) + g

∫ R̄

0
p(r)Er[v](k)dr + do(k) (5.4)

where Θf , g, Φ(k + n− 1) are defined in (3.23) and do(k) is defined in (4.8)

Similarly as in Section 4.4.2, let us denote Θ̂fg(k) and ĝI(k) as the estimates of g−1Θf

and g−1, respectively. Using the predicted function Φ̂(k + n− 1|k) defined in (3.24), let us

define

u′(k) = −Θ̂T
fg(k)Φ̂(k + n− 1|k) + ĝI(k)yd(k + n) (5.5)

Let [υmin, υmax] be the practical input range to the hysteresis operator, which is a

strict subset of [−R̄, R̄], and the saturation output of
∫ R̄

0 p̂(r, k)Er[v∗](k)dr be û′sat(k), in

which these notations are borrowed from [176] and v∗(k) is derived following the techniques

in [176]. If u′(k) < −û′sat(k), then v∗(k) = υmin; if u′(k) > û′sat(k), then v∗(k) = υmax;

otherwise, following the algorithm proposed in Section C of [176], a v∗(k) can be obtained

such that

µ(k) =
∫ R̄0

p̂(r, k)Er[v∗](k)dr − u′(k), |µ(k)| ≤ µ̄ (5.6)
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5.2 Systems Proceeded by Hysteresis Input

where µ̄ is an assigned admissible error, p̂(r, k) is the estimate of p(r) defined later in (5.11)

and it is guaranteed to be nonnegative.

The adaptive control input is chosen as

v(k) = v∗(k) (5.7)

Substituting the adaptive control (5.7) into (5.4), we have

e(k + n) = y(k + n)− yd(k + n)

= −gΘ̃T
fg(k)Φ(k + n− 1) + gg̃I(k)yd(k + n)

−g
∫ R̄

0
p̃(r, k)Er[v∗](k)dr − gβg(k + n− 1) + gµ(k) + d0(k) (5.8)

where Θ̃fg(k) is defined in (4.12), βg(k) is defined in (4.13), and p̃(r, k) and µ(k) are defined

as

p̃(r, k) = p̂(r, k)− p(r)nb (5.9)

µ(k) =
∫ R̄

0
p̂(r, k)Er[v∗](k)dr − u′(k) (5.10)

The parameters estimates in the control law are updated by the following adaptation law

ε(k) =
γe(k) +N(x(k))ψ(k)βg(k − 1)

G(k)

Θ̂fg(k) = Θ̂fg(k − n) + γ
a(k)N(x(k))

D(k)
Φ(k − 1)ε(k)

ĝI(k) = ĝI(k − n)− γ a(k)N(x(k))
D(k)

yd(k)ε(k)

p̂′(r, k) = p̂(r, k − n) + γ
a(k)N(x(k))

D(k)
Er[v∗](k − n)ε(k)

p̂(r, k) = |p̂′(r, k)| (5.11)

where

G(k) = 1 + |N(x(k))|

D(k) = (1 + |ψ(k)|)(1 + |N(x(k))|3)(1 + ‖Φ(k − 1)‖2 + y2
d(k) + β2

g (k − 1)

+ε2(k) +
∫ R̄

0
E2
r [v∗](k − n)dr)

a(k) =

{
1 if |ε(k)| > χ

0 others
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5.2 Systems Proceeded by Hysteresis Input

where the tuning rate γ > 0 and threshold χ > 0 can be any positive numbers specified by

the designer. N(x(k)) is a discrete Nussbaum gain defined in Definition 4.1 with

∆ψ(k) = ψ(k + 1)− ψ(k) =
−a(k)N(x(k))βg(k − 1)ε(k)

D(k)

∆z(k) = z(k + 1)− z(k) =
a(k)G(k)ε2(k)

D(k)
, z(0) = ψ(0) = 0

x(k) = z(k) +
ψ2(k)

2
(5.12)

Remark 5.1. It can be shown later that the estimate p̂(r, k) is guaranteed to be nonnegative

such that the algorithm solving for v∗(k) from (5.6) developed in [176] can be applied.

Lemma 5.1. Consider the parameters p̂(r, k) and p̂′(r, k) in (5.11), we have∫ R̄

0
p̃′2(r, k)dr ≥

∫ R̄

0
p̃2(r, k)dr

where

p̃′(r, k) = p̂′(r, k)− p(r), p̃(r, k) = p̂(r, k)− p(r)

Proof. According to (5.11), we can see that |p̃′(r, k)| = |p̃(r, k)| when p̂′(r, k) ≥ 0. Now,

considering the case that p̂′(k) < 0 and noting that p(r) > 0 defined in (5.2), thus we have

|p̃(r, k)| = | − p̂′(r, k)− p(k)| ≤ −p̂′(r, k) + p(r) = |p̃′(r, k)|

In summary, we always have |p̃′(r, k)| ≥ |p̃(r, k)|, which implies
∫ R̄

0 p̃′2(r, k)dr ≥
∫ R̄

0 p̃2(r, k)dr.

This completes the proof.

5.2.3 Stability analysis

Theorem 5.1. Consider the adaptive closed-loop system consisting of system 5.1 under

Assumption 4.1. If there exists an integer k1 > 0 such that |u′(k)| ≤ û′sat(k), ∀k > k1,

then all the signals in the closed-loop system are bounded and G(k) = 1 + |N(x(k))|
will converge to a constant. Denote C = limk→∞G(k), then the tracking error satisfies

limk→∞ sup |e(k)| < Cχ
γ , where γ and χ are the tuning factor and the threshold value speci-

fied by the designer.
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5.2 Systems Proceeded by Hysteresis Input

Proof. In the proof, we assume that |u′(k)| ≤ û′sat(k) [176]. Substituting the error dynamics

(5.8) into the augmented error ε(k), it can be obtained that

γΘ̃T
fg(k − n)Φ(k − 1)− γg̃I(k − n)yd(k) + γ

∫ R̄

0
p̃(r, k − n)Er[v∗](k − n)dr

= −1
g
G(k)ε(k)− γβg(k − 1) + γµ(k − n)

+γ
1
g
d0(k − n) +

1
g
N(x(k))ψ(k)βg(k − 1) (5.13)

Denote db = 1
χ( d̄
|gn| + µ̄) and then, from the update law (5.11), we have

a(k)N(x(k))(µ(k − n) +
1
g
do(k − n))ε(k) ≤ a(k)db|N(x(k))|ε2(k) (5.14)

Choose a positive definite function V (k) as

V (k) =
n∑
j=1

‖Θ̃fg(k − n+ j)‖2 +
n∑
j=1

g̃2
I (k − n+ j)

+
n∑
j=1

∫ R̄

0
p̃2(r, k − n+ j)dr (5.15)

Then, together with (5.11) the difference equation of V (k) is written as:

∆V (k) = V (k)− V (k − 1)

= (Θ̃fg(k)− Θ̃fg(k − n))T (Θ̃fg(k)− Θ̃fg(k − n))

+2Θ̃T
fg(k − n)(Θ̃fg(k)− Θ̃fg(k − n))

+(g̃I(k)− g̃I(k − n))2 + 2g̃I(k − n)(g̃I(k)− g̃I(k − n))

+
∫ R̄

0
(p̃′(r, k)− p̃(r, k − n))2dr + 2

∫ R̄

0
p̃(r, k − n)(p̃′(r, k)− p̃(r, k − n))dr

= γ2a2(k)
N2(x(k))ε2(k)

D2(k)
(‖Φ(k − 1)‖2 + y2

d(k) +
∫ R̄

0
E2
r [v∗](k − n)dr)

+2γa(k)N(x(k))
Θ̃T
fg(k − n)Φ(k − 1)

D(k)
ε(k)− 2γa(k)N(x(k))

g̃I(k − n)yd(k)
D(k)

ε(k)

+2γa(k)N(x(k))

∫ R̄
0 p̃(r, k − n)Er[v∗](k − n)dr

D(k)
ε(k)

Considering Lemma 5.1, equality (5.13), inequality (5.14) and referring the derivation in
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5.2 Systems Proceeded by Hysteresis Input

Section 4.4.2, we can obtain:

∆V (k) ≤ γ2a(k)G(k)ε2(k)
D(k)

+ 2γ
a(k)db|N(x(k))|ε2(k)

D(k)

−2
g
a(k)N(x(k))

G(k)ε2(k)
D(k)

− 2γ
a(k)N(x(k))βg(k − 1)ε(k)

D(k)

+
2
g
a(k)N(x(k))

N(x(k))ψ(k)βg(k − 1)ε(k)
D(k)

≤ (γ2 + 2γdb)∆z(k) + 2γ∆ψ(k)− 2
g
N(x(k))(∆z(k) + ψ(k)∆ψ(k)

+
[∆ψ(k)]2

2
) +

1
|g|
|N(x(k))|[∆ψ(k)]2

≤ c1∆z(k) + 2γ∆ψ(k)− 2
g
N(x(k))∆x(k) (5.16)

where c1 = γ2 +2γdb. Noting that x(k) = z(k)+ ψ2(k)
2 and taking summation on both hand

sides of (5.16) results in

V (k) ≤ −2
g

k∑
k′=0

N(x(k′))∆x(k′) + c1z(k) + 2γψ(k) + c2

≤ −2
g

k∑
k′=0

N(x(k′))∆x(k′) + c1x(k) + c3 (5.17)

where c2 = V (−1) and c3 = c2 + 2γ2

c1
are some finite constants. Then, performing the similar

analysis as in Section 4.4.2, we have the boundedness of x(k), N(x(k)), G(k), Θ̂fg(k), ĝI(k),∫ R̄
0 p̂(r, k)dr, p̂(r, k) and limk→∞ sup{|e(k)|} ≤ Cχ

γ . This implies the boundedness of y(k).

From Lemma 2.6, it is clear that the boundedness of control input u(k) and states ξ̄n(k) is

guaranteed. This completes the proof.

5.2.4 Simulation studies

The following second order nonlinear plant is used for simulation.
ξ1(k + 1) = a1ξ1(k) cos(ξ1(k)) + a2ξ1(k) sin(ξ1(k)) + g1ξ2(k)

ξ2(k + 1) = b1ξ2(k) ξ1(k)
1+ξ2

1(k)
+ b2

ξ3
2(k)

2+ξ2
2(k)

+ g2u(k) + d(k)

y(k) = ξ1(k)

u(k) =
∫ R̄

0 p(r)Er[v](k)dr

where disturbance d(k) = 0.2 cos(0.05k cos(y(k)), system parameters are chosen as a1 =

0.1, a2 = 0.1, g1 = 2, b1 = 0.3, b2 = −0.4, g2 = −0.1, reference trajectory yd(k) =

90



5.3 Block-triangular MIMO Systems

1.5 sin(π/5kT ) + 1.5 cos(π/10kT ), with T = 0.2. The initial condition is ξ̄2(0) = [1, 1]T .

The tuning rate γ = 4 and the threshold value χ = 0.1. The density function is selected as

p(r) = e−0.07(r−1)2
with R̄ = 10. The simulation results are showed in Figures 5.2, 5.3 and

5.4. Figure 5.2 depicts the output y(k) and the reference signal yd(k). Figure 5.3 illustrates

the boundedness of the control input u(k), the estimated parameters ĝI(k), Θ̂fg(k), and

p̂(r, k). Figure 5.4 demonstrates the discrete Nussbaum gain N(x(k)) and the sequences

x(k) and βg(k). As control gain g2 is chosen to be negative, we see in Figure 5.4 that the

discrete Nussbaum gain turn to be negative.

5.3 Block-triangular MIMO Systems

In this Section, adaptive control is investigated for block-triangular MIMO nonlinear sys-

tems with uncertain couplings of delayed states among subsystems. Future states prediction

for SISO system developed in Section 3.2.2 is extended to each subsystems. Nonparametric

uncertainties compensation technique in Chapter 3 has also been extended in Section 5.3.3

to compensate for the effect of the uncertain nonlinear couplings.

5.3.1 Problem formulation

Consider a MIMO system with each subsystem Σj , j = 1, 2, . . . , n, in strict-feedback form

and interacting with each other in the follow mannter:

Σ :



Σ1


ξ1,i1(k + 1) = ΘT

1,i1
Φ1,i1(ξ̄1,i1−m11(k), ξ̄2,i1−m12(k), . . . , ξ̄n,i1−m1n(k))

+g1,i1ξ1,i1+1(k), i1 = 1, 2, . . . , n1 − 1

ξ1,n1(k + 1) = ΘT
1,n1

Φ1,n1(Ξ(k)) + g1,n1u1(k) + ν1(Ξτ1(k))

y1(k) = ξ1,1(k)
...

Σj


ξj,ij (k + 1) = ΘT

j,ij
Φj,ij (ξ̄1,ij−mj1(k), ξ̄2,ij−mj2(k), . . . , ξ̄n,ij−mjn(k))

+gj,ijξj,ij+1(k), ij = 1, 2, . . . , nj − 1

ξj,nj (k + 1) = ΘT
j,nj

Φj,nj (Ξ(k), ūj−1(k)) + gj,njuj(k) + νj(Ξτj (k))

yj(k) = ξj,1(k)
...

Σn


ξn,in(k + 1) = ΘT

n,in
Φn,in(ξ̄1,in−mn1(k), ξ̄2,in−mn2(k), . . . , ξ̄n,in−mnn(k))

+gn,inξn,in+1(k), in = 1, 2, . . . , nn − 1

ξn,nn(k + 1) = ΘT
n,nnΦn,nn(Ξ(k), ūn−1(k)) + gn,nnun(k) + νn(Ξτn(k))

yn(k) = ξn,1(k)

(5.18)
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where ξj,ij (k) and Ξ(k) are defined in Section 2.1 and the delayed state vectors Ξτj (k), are

defined as

Ξτj (k) = [ξ̄1,n1(k − τj,1), ξ̄2,n2(k − τj,2), . . . , ξ̄n,nn(k − τj,n)]T , j = 1, 2, . . . , n (5.19)

where the unknown delays τj,l satisfy τmin ≤ τj,l ≤ τmax, l = 1, 2, . . . , n.

Similar to previous Chapters, the system functions Φj,ij (·), j = 1, 2, . . . , n, are known,

but system parameters ΘT
j,ij
∈ Rpj,ij and gj,ij ∈ R are unknown as well as the uncertain

coupling terms νj(Ξτj (k)). The notation uj(k) and yj(k) represent input and output of sub-

system Σj , j = 1, 2, . . . , n. The control objective is also to drive the outputs, yj(k), to follow

given desired reference trajectories y∗j (k), respectively, and guarantee the boundedness of

all the closed-loop signals.

We make the following assumptions that are similar to previous Chapters.

Assumption 5.1. The uncertain nonlinear coupling terms νj(·), are Lipschitz functions

with Lipschitz coefficient Lνj satisfy Lνj < λ∗, where λ∗ is defined later in (5.62). The

system functions, Φj,ij (·), 1 ≤ j ≤ n, 1 ≤ ij ≤ nj, are also Lipschitz functions with

Lipschitz coefficients Lj,ij .

Assumption 5.2. The signs of control gains gj,ij , (1 ≤ j ≤ n) are known and satisfy

|gj,ij | ≥ gj,ij > 0. Without loss of generality, it is assumed that gj,ij are positive.

Remark 5.2. The discrete Nussbaum gain techniques developed in Chapter 4 can be eas-

ily extended in this Section to deal with the unknown control directions problem. But for

conciseness and focus on the control design of multi-variable systems, control directions are

assumed to be known in this Section. Later, in Chapter 7 we will consider unknown control

directions in more general block-triangular MIMO systems.

5.3.2 Future states prediction

By utilizing the block-triangular structure property of system (5.18), future states up to

(k+nj−1) step ahead for subsystem Σj are to be predicted at the kth step. To proceed, let

us denote the estimates of Θj,ij and gj,ij at the kth step as Θ̂j,ij (k) and ĝj,ij (k), respectively,

and

Θ̃j,ij (k) = Θ̂j,ij (k)−Θj,ij , g̃j,ij (k) = ĝj,ij (k)− gj,ij (5.20)
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as estimate errors. For convenience, the following notations will be used in the later discus-

sion.

¯̂Θj,ij (k) = [Θ̂T
j,ij (k), ĝj,ij (k)]T ∈ Rpj,ij+1 (5.21)

¯̃Θj,ij (k) = [Θ̃T
j,ij (k), g̃j,ij (k)]T ∈ Rpj,ij+1 (5.22)

Based on the states prediction for SISO system in Section 3.2.2, we propose the following

states prediction for MIMO system (5.18) as follows.

By using the estimates of unknown system parameters, the one-step ahead future states

of subsystem Σj can be straightforwardly predicted in the following manner:

ξ̂j,ij (k + 1|k) = ¯̂ΘT
j,ij (k − nj + 2)Ψj,ij (k), ij = 1, 2, . . . , nj − 1, j = 1, 2, . . . , n

Ψj,ij (k) = [ΦT
j,ij (ξ̄1,ij−mj1(k), . . . , ξ̄j,ij (k), . . . , ξ̄n,ij−mjn(k)), ξj,ij+1(k)]T (5.23)

Similar to Section 3.2.2, the l-step ahead states prediction, ξj,ij (k+ l|k), l = 2, 3, . . . , nj−1,

can be constructed in the following manner.

ξ̂j,ij (k + l|k) = ¯̂ΘT
j,ij (k − nj + l + 1)Ψ̂j,ij (k + l − 1|k)

Ψ̂j,ij (k + l − 1|k) = [ΦT
j,ij (

¯̂
ξ1,ij−mj1(k + l − 1|k)), . . . , ¯̂

ξj,ij (k + l − 1|k)), . . . ,
¯̂
ξn,ij−mjn(k + l − 1|k)), ξ̂j,ij+1(k + l − 1|k)]T (5.24)

¯̂
ξj,ij (k + l − 1|k) = [ξ̂j,1(k + l − 1|k), ξ̂j,2(k + l − 1|k), . . . , ξ̂j,ij (k + l − 1|k)]T

ij = 1, 2, . . . , nj − l (5.25)

Remark 5.3. Unlike the prediction of SISO system developed in Section 3.2.2, for MIMO

systems, the prediction of future states of subsystem Σj involves the predicted future states

of other systems. For one-step ahead predicted state vectors of subsystem Σj, ξ̄j,ij (k+ 1|k),

ij = 1, 2, . . . , nj − 1, they involve state vectors of subsystem Σl, ξ̄l,ij−mjl(k), l = 1, 2, . . . , n,

and ξj,ij+1(k), which are available at kth step. For two-step ahead predicted state vectors
¯̂
ξj,ij (k + 2|k), ij = 1, 2, . . . , nj − 2, they involve one-step ahead predicted state vectors of

subsystem Σl,
¯̂
ξl,ij−mjl(k+ 1|k), l = 1, 2, . . . , n and ξ̂j,ij+1(k+ 1|k), which are also available

at kth step because ij−mjl ≤ nl−2 and ij +1 ≤ nj−1 and for each subsystem the one-step

prediction is proceeded up to the (nl − 1)th state. Continuing the analysis, we see that the

prediction method developed above is well defined without any noncausal problem.
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The parameter estimates are obtained by the following update law:

¯̂Θj,ij (k + 1) = ¯̂Θj,ij (k − nj + 2)−
ξ̃j,ij (k + 1|k)Ψj,ij (k)

Dj,ij (k)

Dj,ij (k) = 1 + ΨT
j,ij (k)Ψj,ij (k)

ξ̃j,ij (k + 1|k) = ξ̂j,ij (k + 1|k)− ξj,ij (k + 1)

j = 1, 2, . . . , n, ij = 1, 2, . . . , nj − 1 (5.26)

Lemma 5.2. The parameter estimates ¯̂Θj,ij (k), j = 1, 2, . . . , n, ij = 1, 2, . . . , nj − 1, in

(5.26) are bounded and the prediction errors satisfy

¯̃
ξj,ij (k + nj − ij |k) =

n∑
l=1

o[O[yl(k + nj −mjl − 1)]] (5.27)

with

¯̃
ξj,ij (k + nj − ij |k) = ¯̂

ξj,ij (k + nj − ij |k)− ξ̄j,ij (k + nj − ij) (5.28)
¯̂
ξj,ij (k + nj − ij |k) = [ξ̂j,1(k + nj − 1|k), ξ̂j,2(k + nj − 2|k), . . . , ξ̂j,ij (k + nj − ij |k)]T

Proof. See Appendix 5.1.

5.3.3 Adaptive control design

First, let us perform the similar technique in Section 3.2.3 and transform each subsystem

Σj into a compact form. For the first subsystem, we have

y1(k + n1) = ΘT
1 Φ1(k + n1 − 1) + ΘgT

1,n1
Φ1,n1(Ξ(k)) + ν1(Ξτ1(k)) + g1u1(k) (5.29)

Similarly, for subsystems Σj , j = 2, 3, . . . , n, we have

yj(k + nj) = ΘT
j Φj(k + nj − 1) + ΘgT

j,nj
Φj,nj (Ξ(k), ūj−1(k))

+νj(Ξτj (k)) + gjuj(k) (5.30)

where for all the subsystems Σj , j = 1, 2, . . . , n, we have

Φj(k + nj − 1) = [ΦT
j,1(k + nj − 1),ΦT

j,2(k + nj − 2), . . . ,ΦT
j,nj−1(k)]T (5.31)

where ΦT
j,ij

(k+ nj − ij), ij = 1, 2, . . . , nj − 1, is the abbreviation of ΦT
j,ij

(ξ̄1,ij−mj1(k+ nj −
ij), . . . , ξ̄nj ,ij−mjn(k + nj − ij)) and

Θj = [ΘgT
j,1 ,Θ

gT
j,2 , . . . ,Θ

gT
j,nj−1], Θg

j,ij
= (

ij−1∏
l=1

gj,l)Θj,ij ∈ R
pj,ij , gj =

nj∏
ij=1

gj,ij ≥ gj (5.32)
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In the following, we extend the nonparametric uncertainties compensation technique in

Chapter 3 to compensate the effect of νj(·) including states with unknown time delays. To

start with, let us introduce the following notations.

Similar to the definition of X(k) in 3.25, we introduce an augmented state vector as

follows:

Ξ̄(k) = [ΞT (k − τmin), . . . ,ΞT (k − τj), . . . ,ΞT (k − τmax)]T (5.33)

which includes ΞT (k − τj) as a subvector, for any j satisfying 1 ≤ j ≤ nj . But it is noted

Ξ̄(k) is independent of subindex j.

According to Lemma 2.2, we define

lk = arg min
l≤k− max

1≤j≤n
{nj}
‖Ξ̄(k)− Ξ̄(l)‖ (5.34)

such that lk + nj ≤ k and

Ξ̄(lk) = [ΞT (lk − τmin), . . . ,ΞT (lk − τj), . . . ,ΞT (lk − τmax)]T (5.35)

In the following part, we use notation Φ1,n1(Ξ(k), ū0(k)) to denote Φ1,n1(Ξ(k)) for conve-

nience without any confusion. Let us introduce an auxiliary output yaj (k) for each subsystem

Σj , j = 1, 2, . . . , n, defined as follows:

yaj (k + nj − 1) = ΘT
j Φj(k + nj − 1) + ΘgT

j,nj
Φj,nj (Ξ(k), ūj−1(k)) + νj(Ξτj (k)) (5.36)

such that (5.30) can be rewritten as

yj(k + nj) = yaj (k + nj − 1) + gjuj(k) (5.37)

From (5.36) and (5.37), the following equality can be obtained

yaj (k + nj − 1) = yaj (k + nj − 1)− yaj (lk + nj − 1) + yaj (lk + nj − 1)

= ΘT
j [Φj(k + nj − 1)− Φj(lk + nj − 1)]

+ΘgT
j,nj

[Φj,nj (Ξ(k), ūj−1(k))− Φj,nj (Ξ(lk), ūj−1(lk))]

+yj(lk + nj)− gjuj(lk) + νj(Ξτj (k))− νj(Ξτj (lk)) (5.38)

Denote Θ̂j(k), Θ̂g
j,nj

(k) and ĝj(k) as the estimates of unknown parameter Θj , Θg
j,nj

and

gj , respectively. Then, let us predict yaj (k + nj − 1) as follows:

ŷaj (k + nj − 1|k) = Θ̂T
j (k)[Φ̂j(k + nj − 1|k)− Φj(lk + nj − 1)]

+Θ̂gT
j,nj

(k)[Φj,nj (Ξ(k), ūj−1(k))− Φj,nj (Ξ(lk), ūj−1(lk))]

+yj(lk + nj)− ĝj(k)uj(lk)
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where lk ≤ k − nj is defined in (5.34) and Φ̂j(k + nj − 1|k) is defined as

Φ̂j(k + nj − 1|k) = [Φ̂T
j,1(k + nj − 1|k), Φ̂T

j,2(k + nj − 2|k), . . . , Φ̂T
j,nj−1(k + 1|k)]T (5.39)

with

Φ̂j,ij (k + nj − ij |k) = Φj,ij (
¯̂
ξ1,ij−mj1(k + nj − ij |k), . . . , ¯̂

ξnj ,ij−mjn(k + nj − ij |k))

for ij = 1, 2, . . . , nj − 1 and the predicted future states are obtained from Section 5.3.2.

Based on equation (5.37), the adaptive control is designed using certainty equivalence

principal as follows:

uj(k) = − 1
ĝj(k)

(ŷaj (k + nj − 1|k)− y∗j (k + nj)) (5.40)

where ĝj(k) is the estimate of gj at the kth step defined later in (5.47) and will be guaranteed

to be bounded away from naughty such that control law (5.40) is well defined.

Next, the task is to design a proper parameter estimate law for the adaptive control.

Let us consider the following augmented tracking error

εj(k) = ej(k) + βj(k − 1) (5.41)

where output tracking error ej(k) is defined as ej(k) = yj(k)−y∗j (k) and βj(k) is defined as

βj(k) = Θ̂T
j (k − nj + 1)[Φ̂j(k|k − nj + 1)− Φj(k)] (5.42)

According to Assumption 5.1 and the definition of Ξ̄(k) in (5.33), we have

|νj(Ξτj (k))− νj(Ξτj (lk))| ≤ λj‖Ξτj (k)− Ξτj (lk)‖ ≤ λj‖Ξ̄(k)− Ξ̄(lk)‖ (5.43)

where λj can be any constant satisfying Lνj ≤ λj < λ∗, with λ∗ defined later in (5.62).

To tackle the effect of nonlinear uncertainties νj(·) in parameter estimation, we use the

following deadzone defined as

aj(k) =

 1−
λj‖Ξ̄(k−nj)−Ξ̄(lk−nj )‖

|εj(k)| , if |εj(k)| > λj‖Ξ̄(k − nj)− Ξ̄(lk−nj )‖
0, otherwise

(5.44)

For convenience, let us define an auxiliary tracking error as

εaj (k) = aj(k)εj(k) (5.45)

According to the definition in (5.44), it is easy to obtain the following inequality

|εj(k)| ≤ |εaj (k)|+ λj‖Ξ̄(k − nj)− Ξ̄(lk−nj )‖ (5.46)
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The estimated parameters in the auxiliary output estimate (5.39) are obtained from the

following update law, j = 1, 2, . . . , n

Θ̂j(k) = Θ̂j(k − nj) + γj
εaj (k)[Φj(k − 1)− Φj(lk−nj + nj − 1)]

Dj(k − nj)

Θ̂g
j,nj

(k) = Θ̂g
j,nj

(k − nj) + γj
εaj (k)[Φj,nj (k − nj)− Φj,nj (lk−nj )]

Dj(k − nj)

ĝj(k) =

 ĝ′j(k), if ĝ′j(k) > g
j

g
j
, otherwise

(5.47)

ĝ′j(k) = ĝj(k − nj) +
γjε

a
j (k)

Dj(k − nj)
[uj(k − nj)− uj(lk−nj )]

Dj(k − nj) = 1 + ‖Φj(k − 1)− Φj(lk−nj + nj − 1)‖2 + ‖Ξ̄(k − nj)− Ξ̄(lk−nj )‖
2

+‖Φj,nj (k − nj)− Φj,nj (lk−nj )‖
2 + [uj(k − nj)− uj(lk−nj )]

2

where Φj,nj (k) is used to denote Φj,nj (Ξ(k), ūj(k)) and 0 < γj < 2.

5.3.4 Control performance analysis

The main result in this Section is summarized in the following theorem.

Theorem 5.2. Consider the whole closed-loop adaptive system that combines all the n

coupled closed-loop subsystems, with each closed-loop subsystem consisting of subsystem Σj

described in (5.18), adaptive control input (5.40), and parameter update law (5.47). All the

signals in the whole closed-loop adaptive system are bounded. Furthermore, the output of

each subsystem Σj asymptotically tracks the desired reference trajectory y∗j (k), j = 1, 2, . . . , n

Proof. In the following, we use Φj,nj (k) to denote Φj,nj (Ξ(k), ūj(k)) for convenience. By

comparing (5.38) and (5.39), the prediction error of the auxiliary output yaj (k+nj − 1) can

be written as

ỹaj (k + nj − 1|k) = ŷaj (k + nj − 1|k)− yaj (k + nj − 1)

= Θ̃T
j (k)[Φj(k + nj − 1)− Φj(lk + nj − 1)] + Θ̃gT

j,nj
(k)[Φj,nj (k)− Φj,nj (lk)]

−[νj(Ξτj (k))− νj(Ξτj (lk))] + βj(k + nj − 1)− g̃j(k)uj(lk) (5.48)

where Θ̃j(k) = Θ̂j(k)−Θj , Θ̃g
j,nj

(k) = Θ̂g
j,nj

(k)−Θg
j,nj

(k), g̃j(k) = ĝj(k)− gj .
Now, by combining (5.37), (5.40) and (5.48), the output tracking error can be written

97



5.3 Block-triangular MIMO Systems

as

ej(k + nj) = yaj (k + nj − 1) + ĝj(k)u(k)− g̃j(k)uj(k)− y∗j (k + nj)

= −ỹaj (k + n− 1|k)− g̃j(k)uj(k)

= −Θ̃T
j (k)[Φj(k + nj − 1)− Φj(lk + nj − 1)]− Θ̃gT

j,nj
(k)[Φj,nj (k)− Φj,nj (lk)]

−g̃j(k)[uj(k)− uj(lk)]− βj(k + nj − 1) + νj(Ξτj (k))− νj(Ξτj (lk)) (5.49)

which according to (5.41) immediately leads to

εj(k) = −Θ̃T
j (k − nj)[Φj(k − 1)− Φj(lk−nj + nj − 1)] (5.50)

−Θ̃T
j,nj (k − nj)[Φj,nj (k − nj)− Φj,nj (lk−nj )]

−g̃j(k − nj)[uj(k − nj)− uj(lk−nj )] + νj(Ξτj (k − nj))− νj(Ξτj (lk−nj ))

Then, we consider a Lyapunov function candidate

Vj(k) =
nj∑
l=1

‖Θ̃j(k − nj + l)‖2 +
nj∑
l=1

‖Θ̃j,nj (k − nj + l)‖2

+
nj∑
l=1

g̃2
j (k − nj + l) (5.51)

Since g̃
′2
j (k) ≥ g̃2

j (k) is guaranteed according to (5.47), we see that

∆Vj(k) = Vj(k)− Vj(k − 1)

= ‖Θ̃j(k)‖2 − ‖Θ̃j(k − nj)‖2 + ‖Θ̃j,nj (k)‖2 − ‖Θ̃j,nj (k − nj)‖2 + g̃′2j (k)− g̃2
j (k − nj)

which together with (5.43), (5.44) and (5.50) leads to the difference of Lyapunov function

Vj(k) as follows:

∆Vj(k) = Vj(k)− Vj(k − 1)

= {‖Φj(k − 1)− Φj(lk−nj + nj − 1)‖2 + [uj(k − nj)− uj(lk−nj )]
2

+‖Φj,nj (k − nj)− Φj,nj (lk−nj )‖
2}

γ2
j ε
a2
j (k)

D2
j (k − nj)

+Θ̃T
j (k − nj)[Φj(k − 1)− Φj(lk−nj + nj − 1)]

2εaj (k)γj
Dj(k − nj)

+g̃j(k − nj)[uj(k − nj)− uj(lk−nj )]
2εaj (k)γj
Dj(k − nj)

+Θ̃T
j,nj [Φj,nj (k − nj)− Φj,nj (lk−nj )]

≤
γ2
j ε
a2
j (k)

Dj(k − nj)
−

2γjεa2
j (k)

Dj(k − nj)
= −

γj(2− γj)εa2
j (k)

Dj(k − nj)
(5.52)
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Noting that 0 < γj < 2 in (5.47), we can conclude from (5.52) that ∆Vj(k) is non-positive,

such that the boundedness of Vj(k) is obvious, and immediately the boundedness of Θ̂j(k),

Θ̂g
j,nj

(k) and ĝj(k) is guaranteed. Furthermore, we can derive from (5.52) that

lim
k→∞

εa2
j (k)

Dj(k − nj)
= 0, or εaj (k) = o[D

1
2
j (k − nj)] (5.53)

Let us order the growth rates of signals with respect to each other in the adaptive

closed-loop systems. First, consider βj(k) defined in (5.42). Due to the boundedness of

Θ̂j(k) proved above, there exists a constant Cβj such that

|βj(k + nj − 1)| ≤ Cβj‖Φ̂j(k + nj − 1|k)− Φj(k + nj − 1)‖

=
n∑
l=1

o[O[yl(k + nj −mjl − 1)]] (5.54)

where Lemma 5.2 and Assumption 5.1 are used to establish the equality. Considering

yj(k) ∼ ej(k) because y∗j (k) is bounded, we are ready to show that

βj(k + nj − 1) =
n∑
l=1

o[O[el(k + nj −mjl − 1)]] (5.55)

which together with the definition of augmented error in (5.41) implies

|ej(k + nj − 1)| ∼ |εj(k + nj − 1)|+
n∑
l=1

o[O[el(k + nl − 2)]] (5.56)

Taking summation on both hand sides of (5.56) and using Proposition 2.1, we have

n∑
j=1

|ej(k + nj − 1)| ∼
n∑
j=1

|εj(k + nj − 1)| (5.57)

From Lemma 2.7, it is easy to derive

n∑
j=1

O[ξ̄j,nj (k)] ∼
n∑
j=1

O[yj(k + nj − 1)] ∼
n∑
l=1

O[ξ̄l,ij−mjl(k + nj − ij)] (5.58)

which together with (5.57), yj(k) ∼ ej(k) and Proposition 2.1 leads to

max
k′≤k
‖Ξ(k′)‖ ≤

n∑
j=1

max
k′≤k
‖ξ̄j,nj (k′)‖ =

n∑
j=1

O[ej(k + nj − 1)]

=
n∑
j=1

O[εj(k + nj − 1)] (5.59)
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Then, we have

max
k′≤k
‖Ξ̄(k′)‖ ≤

τmax∑
τ=τmin

max
k′≤k
‖Ξ(k′ − τ)‖ =

n∑
j=1

O[εj(k + nj − 1)] (5.60)

which asserts the existence of constants Cj,1 and Cj,2 such that

max
k′≤k
‖Ξ̄(k′)‖ ≤

n∑
j=1

{Cj,1 max
k′≤k+nj−1

{|εj(k′)|}+ Cj,2}

≤
n∑
j=1

Cj,1 max
k′≤k+nj−1

|εaj (k′)|+
n∑
j=1

Cj,1λj max
k′≤k−1

‖Ξ̄(k′)− Ξ̄(lk′)‖+
n∑
j=1

Cj,2 (5.61)

where the last inequality is established in (5.46). It together with

max
k′≤k−1

‖Ξ̄(k′)− Ξ̄(lk′)‖ ≤ 2 max
k′≤k
‖Ξ̄(k′)‖

implies that there exists a constant

λ∗ = 1/
n∑
j=1

(2Cj,1) (5.62)

such that ∀λj < λ∗, j = 1, 2, . . . , n, we have

max
k′≤k
‖Ξ̄(k′)‖ ≤

n∑
j=1

Cj,1∑n
j=1(2Cj,1)

max
k′≤k+nj−1

εaj (k
′) +

n∑
j=1

Cj,2

1−
n∑
j=1

λjCj,1

which leads to

Ξ(k − nl + 1) = O[Ξ̄(k − nl + 1)] =
n∑
j=1

O[εaj (k + nj − nl)] (5.63)

From definition of Φj(k + nj − 1) in (5.31), we derive the following equation according

to Lemma 2.7, equation (5.58) and Lipschitz condition of Φj(·)

Φj(k + nj − 1) =
n∑
j=1

O[ξ̄j,nj (k)] = O[Ξ(k)] = O[Ξ̄(k)] (5.64)

From Lemma 2.7 we also have uj(k − nj) = O[Ξ(k − nj + 1)]. According to the definition

of Dj(k − nj) in (5.47), we have

D
1
2
j (k − nj) ≤ 1 + ‖Φj(k − 1)− Φj(lk−nj + nj − 1)‖+ ‖Ξ̄(k − nj)− Ξ̄(lk−nj )‖

+Lj,nj‖Ξ(k)− Ξ(lk)‖+ Lj,nj‖ūj−1(k)− ūj−1(lk)‖+ |uj(k − nj)− uj(lk−nj )|

= O[Ξ̄(k − nj)] +O[Ξ̄(k − nj + 1)] ∼ O[Ξ̄(k − nj + 1)] (5.65)
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From (5.53), (5.63) and (5.65), we have the following equalities,

εaj (k) = o[O[Ξ(k − nj + 1)]] =
n∑
l=1

o[εaj (k −mjl)] + o[1] (5.66)

Applying Lemma 2.8 to equation (5.57), we have lim
k→∞

εaj (k) = 0, which combined with

(5.63) implies the boundedness of states vectors, Ξ(k) and Ξ̄(k). Using Lemma 2.2, we have

lim
k→∞

‖Ξ̄(k)− Ξ̄(lk)‖ = 0, then we obtain lim
k→∞

εj(k) = 0 from (5.46). It together with (5.57)

leads to lim
k→∞

ej(k) = 0. Then, the boundedness of outputs yj(k) is established. According

to Lemma 2.7, the boundedness of inputs uj(k) of all the subsystems are guaranteed. This

completes the proof.

5.3.5 Simulation studies

The following MIMO nonlinear system with three subsystems is used for simulation.

Σ :



Σ1



ξ1,1(k + 1) = ΘT
1,1Φ1,1(ξ1,1(k)) + 0.2ξ1,2(k)

ξ1,2(k + 1) = ΘT
1,2Φ1,2(ξ̄1,2(k), ξ2,1(k)) + 0.8ξ1,3(k)

ξ1,3(k + 1) = ΘT
1,3Φ1,3(ξ̄1,3(k), ξ̄2,2(k), ξ3,1(k))

+u1(k) + ν1(Ξτ1(k))

y1(k) = ξ1,1(k)

Σ2


ξ2,1(k + 1) = ΘT

2,1Φ2,1(ξ̄1,2(k), ξ2,1(k)) + 0.3ξ2,2(k)

ξ2,2(k + 1) = ΘT
2,2Φ2,2(ξ̄1,3(k), ξ̄2,2(k), ξ3,1(k), u1(k))

+1.2u2(k) + ν2(Ξτ2(k))

y2(k) = ξ2,1(k)

Σ3


ξ3,1(k + 1) = ΘT

3,1Φ3,1(ξ̄1,3(k), ξ̄2,2(k), ξ3,1(k), u1(k), u2(k))

+u3(k) + ν3(Ξτ3(k))

y3(k) = ξ3,1(k)

(5.67)

in which we see that in each equation of each subsystem there are states from the other sub-

system and there are uncertain coupling terms in the last equations. The system parameters

are

Θ1,1 = 0.2,ΘT
1,2 = [0, 0.3],ΘT

1,3 = [0.5, 0.4],

ΘT
2,1 = [0, 0.01],ΘT

2,2 = [0.05, 0.1], ,ΘT
3,1 = 0.1,
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and the system functions are

ΦT
1,1(ξ1,1(k)) = ξ1,1(k) cos(ξ1,1(k)), ΦT

1,2(ξ̄1,2(k), ξ2,1(k)) = [0,
1

1 + ξ2
1,2(k)

]

ΦT
1,3(ξ̄1,3(k), ξ̄2,2(k), ξ3,1(k)) = [

ξ1,1(k)ξ1,2(k)
1 + ξ2

1,1(k) + ξ2
1,3(k)

,
ξ2,2(k)

2 + ξ2
2,1(k)

]

ΦT
2,1(ξ̄1,2(k), ξ2,1(k)) = [0, ξ1,2(k) sin(ξ2,1(k))]

ΦT
2,2(ξ̄1,3(k), ξ̄2,2(k), ξ3,1(k), u1(k)) = [

u1(k)ξ2,2(k)
1 + ξ2

2,1(k) + ξ2
2,1(k)

(1 + e−ξ
2
1,1(k)), sin(ξ1,3(k))ξ3,1(k)]

ΦT
3,1(ξ̄1,3(k), ξ̄2,2(k), ξ3,1(k), u1(k), u2(k)) =

sin(u2(k))ξ3,1(k)
1 + ξ2

1,2(k)

and uncertain terms are

ν1(Ξτ1(k)) = 0.01 cos(ξ1,1(k − 2))ξ1,3(k − 2) + 0.03ξ2,1(k − 1) log(1 + ξ2
3,1(k − 1)),

ν2(Ξτ2(k)) = 0.3(ξ1,1(k − 1) + ξ1,2(k − 1)) + 0.1 cos(ξ2,1(k − 2)ξ2,2(k − 2)),

ν3(Ξτ3(k)) = 0.01 cos(ξ2,1(k − 1))ξ2,2(k − 2)

The reference trajectories are y∗1(k) = 2.5 sin(π2kT ) + 1.5 cos(π4kT ), y∗2(k) = 2.5 cos(π2kT ) +

1.5 sin(π4kT ), and y∗3(k) = 1.5 cos(π2kT ) + 2.5 sin(π4kT ), where T = 0.02. The initial system

states are Ξ(0) = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1]T . The control parameters are chosen as g
1

=

0.16, g
2

= 0.15, g
3

= 0.1, γ1 = 0.2, γ2 = 0.03, γ3 = 0.05, and λ1 = 0.001, λ2 = 0.001, λ3 =

0.001.

The simulation results are presented in Figures 5.5, 5.6, 5.7 and 5.8. The tracking

performances are shown in Figure 5.5. The boundedness of estimated parameters in control

and prediction is shown in Figures 5.6 and 5.7, respectively. The boundedness of control

signals and signals β1(k) and β2(k) caused by prediction errors are presented in Figure 5.8.

5.4 Summary

In this Chapter, we have studied to extend the adaptive control designed in Chapters 3 and 4

to more general classes of systems. In Section 5.2, we have extended the control designed in

Section 4.4 to systems with input constraint by using PI model to represent the hysteresis.

In Section 5.3, we have extended the control designed in Section 3.2 to MIMO system

with uncertain couplings among each subsystems. By utilizing the structure properties of

the MIMO systems, the effect of interactions among subsystems has been decoupled, and

by uncertain couplings compensation, the designed adaptive control achieves asymptotic

tracking performance.
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Figure 5.2: Reference signal and system output
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Figure 5.3: Control signal and estimated parameters, r = 1 for p̂(r, t)
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Figure 5.4: Nussbaum gain N(x(k)) and its argument x(k) and βg(k)
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Figure 5.5: System outputs and reference trajectories
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Figure 5.6: Estimated parameters in control
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Chapter 6

SISO Nonaffine systems

6.1 Introduction

As mentioned in Section 1.2.2, most of the existing adaptive NN control in discrete-time

are focused on affine systems. In this Chapter, we will study adaptive NN control of two

classes of nonlinear discrete-time systems in nonaffine form: (1) nonlinear pure-feedback

systems, and (2) NARMAX systems, to further develop implicit adaptive NN control in

discrete-time [144, 146]. The pure-feedback systems to be studied assumes in the general

form of lower triangular structure, such that it covers the nonlinear strict-feedback systems

in LIPs form studied in Part I of the thesis. The NARMAX model also comprises a general

nonlinear discrete-time model structure [178] , and it has received much attention in the

literature of discrete-time control.

In this Chapter, implicit function theorem is exploited to assert the existence of a

desired control input such that the difficulty of the nonaffine appearance of the control

input can be solved. The high-order-neural-network (HONN) is employed to approximate

the unknown desired control. The control directions for nonaffine systems are defined as the

partial derivatives of the nonlinear system functions over the control variables. It should be

mentioned that control directions play same important role in adaptive NN control design

as in model based adaptive control design. When the control directions are unknown, the

design becomes much more intractable. In this Chapter, we extend the technique of discrete

Nussbaum gain to deal with unknown control directions problem in adaptive NN control

design. It may be noted that for adaptive NN control in [144], the control direction was not

assumed to be known, but the stability result was proved using NN weights convergence

results, which cannot be guaranteed without persistent exciting condition.
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The contributions in this Chapter lies in

(i) Implicit function theory has been exploited to solve the difficulty of nonaffine appear-

ance of control input in NN control design of nonlinear systems.

(ii) Discrete Nussbaum gain technique developed in Chapter 4 has been extended to fa-

cilitate NN control design of nonlinear systems with time varying control gains of

unknown signs.

(iii) By states and outputs prediction, a unified output feedback adaptive NN control

scheme has been constructed for controlling SISO systems in both pure-feedback and

NARMAX form.

6.2 Problem Formulation and Preliminaries

Similar to Part I, the control objective in Part II is to synthesize a control input u(k) for the

systems to be controlled such that that all signals in the closed-loop systems are bounded

and the output y(k) tracks a bounded reference trajectory yd(k).

6.2.1 Pure-feedback systems

Consider the following SISO discrete-time systems in pure-feedback form
ξi(k + 1) = fi(ξ̄i(k), ξi+1(k))

i = 1, 2, . . . , n− 1

ξn(k + 1) = fn(ξ̄n(k), u(k), d(k))

y(k) = ξ1(k)

(6.1)

where fi(·, ·) and fn(·, ·, ·) are unknown nonlinear functions and d(k) denotes the external

disturbance, which is bounded by an unknown constant d̄ so that |d(k)| ≤ d̄. Similar to

Part I, ξ̄j(k), j = 1, 2, . . . , n, are system states, and u(k) and y(k) are system input and

output, respectively.

Assumption 6.1. System functions fi(·, ·) and fn(·, ·, 0) in (6.1) are continuous with re-

spect to all the arguments and continuously differentiable with respect to the second argu-

ment.

Assumption 6.2. There exist constants ḡi > g
i
> 0 such that 0 < g

i
≤ |g1,i(·)| ≤ ḡi,

i = 1, 2, . . . , n, where the control gain functions g1,i(·) are defined in Definition 2.7.

109



6.2 Problem Formulation and Preliminaries

For convenience, let us introduce the notations g′ = Πn
i=1gi and ḡ′ = Πn

i=1ḡi. It should

be noted that the constants ḡ′ and g′ are only used for analysis and are not required to be

known in the control design.

Assumption 6.3. The system functions fi(·, 0) and fn(·, 0, ·) are Lipschitz functions.

6.2.2 NARMAX systems

Consider the following SISO discrete-time systems in NARMAX form

y(k + τ) = f(y(k + τ − 1), · · · , y(k + τ − n), u(k), · · · , u(k −m+ 1), d(k)) (6.2)

where τ ≥ 1, m ≥ 1, f(·) : Rn+m+1 → R is an unknown nonlinear function, and similarly,

d(k) denotes the external disturbance, which is bounded by an unknown constant d̄, i.e.

|d(k)| ≤ d̄.

Assumption 6.4. The system function f(·) : Rm+n+1 → R in (6.2) is continuous with

respect to all the arguments and continuously differentiable with respect to u(k).

Assumption 6.5. There exist constants ḡ > g > 0 such that 0 < g ≤ |g(·)| ≤ ḡ, where

control gain g(·) = ∂f(·)
∂u(k) .

Assumption 6.6. System (6.2) is inverse stable, i.e., system (6.2) is bounded-output-

bounded-input (BOBI). In addition, the function f(y(k + τ − 1), y(k + τ − 2), y(k + τ −
n),0[m], d(k)) is a Lipschitz function.

Remark 6.1. Without loss of generality, we shall assume that ḡ′ = ḡ and g′ = g in the

following parts.

Remark 6.2. Assumptions 6.2 and 6.5 imply that the control directions are unknown, i.e.,

the control gains can be either positive or negative. But in Sections 6.3 and 6.4, the control

directions are first assumed known such that we focus on the key techniques in adaptive NN

control design. While Section 6.6 is dedicated to the design in the presence of unknown

control directions.

6.2.3 Preliminaries

In this Section, first some useful lemmas for stability analysis and control design are intro-

duced and then, the generalization of discrete Nussbaum gain is made to cope with time

varying control gains.
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Lemma 6.1. Let V (k) =
∑m

i=1 Vi(k), where Vi(k) ≥ 0, i = 1, 2, . . . ,m. If the following

inequality holds

V (k + 1) ≤
m∑
i=1

ci(k)Vi(k) + b(k) (6.3)

where |ci(k)| ≤ c̄ < 1, and |b(k)| ≤ b̄.
Then, we have

V (k) ≤ V (0) +
b̄

1− c̄

lim
k→∞

sup{V (k)} ≤ b̄

1− c̄
(6.4)

Proof. See Appendix 6.1

Corollary 6.1. Let V (k) =
∑m

i=1 Vi(k), where Vi(k) ≥ 0. If the following inequality holds

V (k + 1) ≤
m∑
i=1

ci(k1)Vi(k1) + b(k1)

k1 = k − n+ 1, k ≥ n− 1, n ≥ 1

where |ci(k)| ≤ c̄ < 1, and |b(k)| ≤ b̄.
Then, we have

V (k) ≤ V̄ (0) +
b̄

1− c̄
, k ≥ n− 1

lim
k→∞

sup{V (k)} ≤ b̄

1− c̄
(6.5)

where V̄ (0) = max−n≤j≤−1{V (j)}.
Proof. See Appendix 6.2.

Lemma 6.2. Define a positive definite function V (k) = V1(k)+V2(k), with V1(k) and V2(k)

are given by

V1 = aee
2(k)

V2 = aW W̃
T (k)W̃ (k)

where e(k) = y(k)− yd(k), yd(k) ∈ Ωyd, is output tracking error, W ∗ ∈ Rl and Ŵ (k) ∈ Rl

are ideal NN weights vector and its estimate, W̃ (k) = Ŵ (k)−W ∗ is the estimate error, ae
and aW are some positive constants. If the following inequality holds

V (k + 1) ≤ c1(k)V1(k1) + c2(k)V2(k1) + b(k)

k1 = k − n+ 1, k ≥ n− 1 (6.6)
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6.2 Problem Formulation and Preliminaries

where |ci(k)| < c̄ < 1, i = 1, 2, and |b(k)| < b̄. Then, given any initial compact set defined

by

Ω0 = Ωξ0 × ΩŴ0

= {ξ̄n(0) | ‖ξ̄n(0)‖ ≤ C1Ce0 + C1 max{|yd(i)|}+ C2}

×{Ŵ (i) | ‖Ŵ (i)‖ ≤ ‖W ∗‖+ CW̃0}

i = 0, 1, . . . , n− 1

where C1 and C2 are finite coefficients, Ce0 and CW̃0 are defined as

Ce0 = max
0≤i≤n−1

{|e(i)|}, CW̃0 = max
0≤i≤n−1

{‖W̃ (i)‖} (6.7)

Then, it can be concluded that

(i) The states ξ̄n(k) and the NN weights vector Ŵ (k) remain in the compact set defined

by

Ω = Ωξ × ΩŴ

= {ξ̄n(k) | ‖ξ̄n(k)‖ ≤ C1 sup
yd(k)∈Ωyd

{|yd(k)|}+ C1cemax + C2}

×{Ŵ (k) | ‖Ŵ (k)‖ ≤ ‖W ∗‖+ cW̃ max}

(ii) The states ξ̄n(k) and the NN weights vector Ŵ (k) will eventually converge to the

compact set defined by

Ωs = Ωξs × ΩŴs

= {ξ̄n(k) | ‖ξ̄n(k)‖ ≤ C1 sup
yd(k)∈Ωyd

{|yd(k)|}+ C1ces + C2}

×{Ŵ (k) | ‖Ŵ (k)‖ ≤ ‖W ∗‖+ cW̃s}

where constants

cemax =

√
1
ae

(C0 +
b̄

1− c̄
)

cW̃ max =

√
1
aW

(C0 +
b̄

1− c̄
) (6.8)

ces =

√
b̄

ae(1− c̄)

cW̃s =

√
b̄

aW (1− c̄)
C0 = aeC

2
e0 + aWC

2
W̃0

(6.9)
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6.3 State Feedback NN Control

Proof. See Appendix 6.3

Lemma 6.3. Consider the algorithm to construct a discrete Nussbaum gain N(x(k)) de-

tailed in Section 4.2.

(i) Given an arbitrary bounded function g(k) : R → R, and g1 ≤ |g(k)| ≤ g2, where g1

and g2 are unknown positive constants, then N ′(x(k)) = g(k)N(x(k)) is also a discrete

Nussbaum gain if ∆x(k) ≥ 0.

(ii) Given an arbitrary function −ε0 ≤ C(k) ≤ ε0, then N ′(x(k)) = N(x(k)) + C(k) is

still a discrete Nussbaum gain if ∆x(k) ≥ 0.

Proof. See Appendix 6.4.

Remark 6.3. Compared with discrete Nussbaum gain N(x(k)) in Section 4.2, the discrete

Nussbaum gain N ′(x(k)) obtained from Lemma 6.3 has more restriction, ∆x(k) ≥ 0.

6.3 State Feedback NN Control

In this section, let us design adaptive NN control with state feedback for the pure-feedback

system (6.1), for which in this Section we assume the control directions are known.

6.3.1 Pure-feedback system transformation

From Lemma 2.5 we know that the future states ξ̄i(k + n − i), i = 1, 2, . . . , n − 1, are

SDFS and can be predicted by the prediction functions Pn−i,i(ξ̄n(k)), which are functions

of current states.

Substituting the prediction functions in Lemma 2.5 into system (6.1), we obtain

ξ1(k + n) = φ1,1(Pn−1,1(ξ̄n(k)), ξ2(k + n− 1))

ξ2(k + n− 1) = φ1,2(Pn−2,2(ξ̄n(k)), ξ3(k + n− 2))
...

ξn(k + 1) = φ1,n(ξ̄n(k), u(k), d(k))

y(k + n) = ξ1(k + n)

(6.10)

where φ1,n(ξ̄n(k), u(k), d(k)) is defined in the following for consistency:

φ1,n(ξ̄n(k), u(k), d(k)) = fn(ξ̄n(k), u(k), d(k)) (6.11)
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Remark 6.4. As same as in control design in Part I, we consider transform system (6.10)

into a compact form by combining the n equations in (6.10) together. It will be noted that by

using the prediction functions in the transformation, the system can be transformed into an

n-step ahead predictor form such that the n-step ahead output can be predicted by the current

states. In this way, the consequent control design avoid the complicated backstepping [51]

and only a single NN is employed to generate a control input.

Replacing ξ2(k + n − 1) in the first equation of (6.10) with the right hand side of the

second equation yields

ξ1(k + n) = φ1,1(Pn−1,1(ξ̄n(k)), φ1,2(Pn−2,2(ξ̄n(k)), ξ3(k + n− 2)))

Continuing to iteratively replace ξj(k+n− j+1) in the above equation with the right hand

side of the jth equation in (6.10), j = 3, 4, . . . , n− 1, until u(k) appears at the last step,

we obtain

y(k + n) = ξ1(k + n) = φ(ξ̄n(k), u(k), d(k)) (6.12)

where

φ(ξ̄n(k), u(k), d(k))

= φ1,1(Pn−1,1(ξ̄n(k)), φ1,2(Pn−2,2(ξ̄n(k)), φ1,3(. . . , φ1,n(ξ̄n(k), u(k), d(k)) . . .)))(6.13)

Now the original pure-feedback system (6.1) is transformed into an n-step ahead predictor

(6.12).

6.3.2 Adapgtive NN control design

The n-step ahead predictor function (6.12) can be written as

y(k + n) = φ(ξ̄n(k), u(k), d(k)) = φs(ξ̄n(k), u(k)) + ds(k) (6.14)

where

φs(ξ̄n(k), u(k)) = φ(ξ̄n(k), u(k), 0)

ds(k) = φ(ξ̄n(k), u(k), d(k))− φ(ξ̄n(k), u(k), 0)

According to Assumption 6.3, there exists a finite constant Ld such that

|ds(k)| ≤ Ld|d(k)| ≤ Ldd̄ := d̄s (6.15)
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For φs(ξ̄n(k), u(k)), from (A.3) and (6.10), it is easy to show that

0 < g <
∂φs(ξ̄n(k), u(k))

∂u(k)
= g1,1(·)g1,2(·) . . . g1,n(·) := gs(·) < ḡ (6.16)

Denote e(k) = y(k)− yd(k) and then, we have

e(k + n) = φs(ξ̄n(k), u(k))− yd(k + n) + ds(k) (6.17)

From (6.16), it is clear that

∂φs(ξ̄n(k), u(k))− yd(k + n)
∂u(k)

= gs(·) > 0

According to Lemma 2.1, there exists a continuous ideal control input u∗s(z(k)) such that

φs(ξ̄n(k), u∗s(z(k)))− yd(k + n) = 0

z(k) = [ξ̄Tn (k), yd(k + n)]T ∈ Ωz ∈ Rn+1 (6.18)

Substituting this ideal control u∗s(z(k)) into (6.17) results in e(k + n) = ds(k). This means

that the ideal control u∗s(z(k)) is an n-step deadbeat control because after n steps, we have

y(k + n) = yd(k + n), if ds(k) = 0. It is known that ds(k) is bounded, then y(k) must be

bounded. According to Lemma 2.6, the ideal control input u∗s(z(k)) is bounded.

From Section 2.2, there exists a HONN with an ideal weight vector W ∗s ∈ Rls such that

u∗s(z(k)) can be approximated in the following manner:

u∗nn(z(k)) = W ∗Ts S(z(k)), S(z(k)) ∈ Rls

u∗s(z(k)) = u∗nn(z(k)) + µ(z(k)), ∀z(k) ∈ Ωz (6.19)

where Ωz = Ωξ×Ωyd and µ(z(k)) is the NN function approximation error that can be made

arbitrary small by increasing NN nodes number ls.

Consider the following control with an adaptive HONN to approximate u∗s(z(k)):

u(k) =
ηs(k)
ḡ

e(k) + ûs(z(k)) (6.20)

ûs(z(k)) = Ŵ T
s (k)S(z(k))

where |ηs(k)| ≤ η̄s < 1 is a scaling factor, Ŵs(k) is the estimate of ideal NN weight W ∗s and

it is updated by the adaptation law

Ŵs(k + 1) = Ŵs(k1)− γsS(z(k1))e(k + 1)− σsŴs(k1)

k1 = k − n+ 1 (6.21)

where 0 < σs < 1 and γs > 0 are NN tuning parameters to be chosen.
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6.3 State Feedback NN Control

Theorem 6.1. The closed-loop adaptive system consisting of the plant (6.1), the adaptive

NN control (6.20) and the NN adaptation law (6.21) achieves SGUUB stability, provided

that Assumptions 6.1, 6.2 and 6.3 hold, and the design parameters 0 < σs < 1, 0 < η̄s < 1

and γs are suitably chosen such that

2γsḡls + η̄sḡ + η̄s < 1 (6.22)

Furthermore, the tracking error and the NN weight estimation error are ultimately bounded

as

lim
k→∞

sup{|e(k)|2 +
ḡ

γs
‖W̃s(k)‖2} ≤ b̄

1− c̄

where

b̄ =
ḡ

η̄s
µ∗2s + 2

ḡ

γs
σs‖W ∗s ‖2

c̄ = max{η̄s, (1− 2σs)}

µ∗s = µ∗ +
d̄s
g

(6.23)

and µ∗ is the NN approximation error bound defined in (2.10).

Proof. Adding and subtracting φs(ξ̄n(k), u∗s(k)) on the right hand side of (6.17) leads to

e(k + n) = φs(ξ̄n(k), u(k))− φs(ξ̄n(k), u∗s(z(k))) + ds(k)

= gs(ξ̄n(k), uc(k))(u(k)− u∗s(z(k))) + ds(k) (6.24)

where uc(k) ∈ [min{u∗s(z(k)), u(k)},max{u∗s(z(k)), u(k)}] and the last equality is obtained

by using Mean Value Theorem. For convenience, denote

gs(k) = gs(ξ̄n(k), uc(k))

S(k) = S(z(k))

Combining (6.19), (6.20), and (6.24) yields

e(k + 1) = ηs(k)
gs(k1)
ḡ

e(k1) + gs(k1)W̃s(k1)S(k1)

−gs(k1)µ(z(k1)) + ds(k1) (6.25)

where W̃s(k) = Ŵs(k)−W ∗s is the NN weight estimation error.

First, let us assume that the NN is constructed to cover a large enough compact set Ω

such that the NN approximation ability is never violated and equation (6.25) always holds.
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6.3 State Feedback NN Control

While later we will show that it is indeed the case, if we initially construct the NN with

approximation range covering a prescribed compact set, and the so-called circular argument

does not apply here in this very proof.

Consider a positive definite function V (k) as

V (k) = V1(k) + V2(k)

V1(k) = e2(k)

V2(k) =
ḡ

γs
W̃ T
s (k)W̃s(k) (6.26)

It can be derived from (6.21) that

W̃s(k + 1) = W̃s(k1)− γsS(k1)e(k + 1)− σsŴs(k1) (6.27)

From (6.25), it can be shown that

W̃ T (k1)S(k1)e(k + 1) =
e2(k + 1)
gs(k1)

− ηs(k)
ḡ

e(k1)e(k + 1) + e(k + 1)µs(k1)

where

µs(k1) = µ(z(k1))− ds(k1)
gs(k1)

(6.28)

Noting the following facts

0 < gs(k1) < ḡ

ST (k)S(k) ≤ ls

|µs(k1)| ≤ µ∗s
2W̃s(k1)Ŵs(k1) = W̃ T

s (k1)W̃s(k1) + ‖Ŵs(k1)‖2 − ‖W ∗s ‖2

2σsŴs(k1)S(k1)e(k + 1) ≤ γslse2(k + 1) +
σ2
s

γs
‖Ŵs(k1)‖2

−2e(k + 1)µs(k1) ≤ η̄se2(k + 1) +
µ2
s(k1)
η̄s

2ηs(k)e(k1)e(k + 1) ≤ η̄se2(k1) + η̄se
2(k + 1)
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6.3 State Feedback NN Control

we have the following inequality from (6.27),

V2(k + 1) =
ḡ

γs
W̃ T
s (k + 1)W̃s(k + 1)

=
ḡ

γs
[W̃ T

s (k1)W̃s(k1) + γ2
sS

T (k1)S(k1)e2(k + 1)

+σ2
s‖Ŵs(k1)‖2 − 2γsW̃ T

s (k1)S(k1)e(k + 1)− 2σsW̃ T
s (k1)Ŵs(k1)

+2γsσsŴ T
s (k1)S(k1)e(k + 1)]

≤ ḡ

γs
W̃ T
s (k1)W̃s(k1) + γslsḡe

2(k + 1) +
ḡ

γs
σ2
s‖Ŵs(k1)‖2 − 2

ḡ

gs(k1)
e2(k + 1)

−2ηs(k)e(k1)e(k + 1)− 2ḡµs(k1)e(k + 1)

−2
ḡ

γs
σs(W̃ T

s (k1)W̃s(k1) + ‖Ŵs(k1)‖2 − ‖W ∗s ‖2)

+2ḡσsŴ T
s (k1)S(k1)e(k + 1)

≤ ḡ

γs
(1− 2σs)W̃ T

s (k1)W̃s(k1) + η̄se
2(k1) +

ḡ

η̄s
µ∗2s + 2

ḡ

γs
σs‖W ∗s ‖2

+(2γsḡls + η̄sḡ + η̄s − 2)e2(k + 1)− 2
ḡ

γs
σs(1− σs)‖Ŵs(k1)‖2 (6.29)

Further, combining V2(k + 1) with

V1(k + 1) = e2(k + 1) (6.30)

yields

V (k + 1) = V1(k + 1) + V2(k + 1)

≤ ḡ

γs
(1− 2σs)W̃ T

s (k1)W̃s(k1) + η̄se
2(k1) +

ḡ

η̄s
µ∗2s + 2

ḡ

γs
σs‖W ∗s ‖2

+(2γsḡls + η̄sḡ + η̄s − 1)e2(k + 1)

= η̄sV1(k1) + (1− 2σs)V2(k1) + b̄+ (2γsḡls + η̄sḡ + η̄s − 1)e2(k + 1) (6.31)

where

b̄ =
ḡ

η̄s
µ∗2s + 2

ḡ

γs
σs‖W ∗s ‖2 (6.32)

If the parameters are chosen such that the following inequality holds

2γsḡls + η̄sḡ + η̄s < 1

then equation (6.31) becomes

V (k + 1) ≤ η̄sV1(k1) + (1− 2σs)V2(k1) + b̄ (6.33)
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Let ae = 1, aW = ḡ
γs

, c̄ = max{η̄s, (1 − 2σs)}. Noting that 0 < η̄s < 1, 0 < σs < 1 and

applying Lemma 6.2, we obtain the bounds on states and NN weights vector. According to

Lemma 2.6, the control input is also bounded.

Now we show the validness of NN approximation indeed holds given any initial con-

dition Ω0, if the NN used in (6.20) is pre-designed with approximation range covering a

specified compact set. From Remark 6.5, we see that given any initial condition, Ω0, be-

cause the bounding compact set Ω = Ωξ × ΩŴ is determined, if NN is constructed such

that its approximation range covers the determinant compact set Ωz = Ωξ ×Ωyd, then NN

approximation ability always holds. It implies that given any initial condition Ω0, with

employment of an NN whose approximation range is over the corresponding Ωz, the NN

control (6.20) guarantees the boundedness of closed-loop signals. According to Definition

2.11, the closed-loop signals are SGUUB.

In addition, according to Corollary 6.1, it can be seen that the tracking error and the

NN weight estimation error are ultimately bounded as

lim
k→∞

sup{|e(k)|2 +
ḡ

γs
‖W̃s(k)‖2} = lim

k→∞
supV (k) ≤ b̄

1− c̄
where b̄ and c̄ are defined in Theorem 6.1. This completes the proof.

In the theoretical analysis of stability above, we can see that the larger the Ω0 is, the

larger the Ω is. As the actual size of initial condition, Ω0, may not be specified in advance,

the NN should be chosen to cover a compact set of sufficiently large size such that Ω is

within NN approximation range.

6.4 Output Feedback NN Control

In this Section, we design adaptive NN control with output feedback for both pure-feedback

system (6.1) and NARMAX system (6.2) in a unified approach. In this Section, we still

assume that the control directions are known.

6.4.1 From pure-feedback form to NARMAX form

First, it will be shown that system (6.1) under Assumptions 6.1, 6.2 and 6.3 is transformable

to system (6.2) under Assumptions 6.4, 6.5 and 6.6. For convenience, we define

y(k) = [y(k), y(k − 1), . . . , y(k − n+ 1)]T (6.34)

Let us rewrite the first equation of (6.1) as

ξ1(k + 1)− f1(ξ1(k), ξ2(k)) = 0
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According to Assumption 6.2, the derivative of the left hand side of the above equation

over ξ2(k) is not zero, thus, according to Lemma 2.1, there exists an implicit function p′2(·)
asserted by Lemma 2.1 such that ξ2(k) can be seen as a function of ξ1(k + 1) and ξ1(k) as

follows

ξ2(k) = p′2(ξ1(k + 1), ξ1(k)) := p2(y(k + 1), y(k)) (6.35)

In the same manner, from the second equation of (6.1), we see that there exists an implicit

function p′3(·) of ξ2(k + 1), ξ2(k) and ξ1(k) such that ξ3(k) can be expressed as

ξ3(k) = p′3(ξ2(k + 1), ξ2(k), ξ1(k))

= p′3(p2(y1(k + 2), y(k + 1)), p2(y(k + 1), y(k)), y(k))

:= p3(y(k + 2), y(k + 1), y(k)) (6.36)

Continuing the same procedure, we can see that ξi(k), i = 2, 3, · · · , n, can be expressed as

ξi(k) = p′i(ξi−1(k + 1), ξi−1(k), ξi−2(k), · · · , ξ1(k))

= p′i(pi−1(y(k + i− 1), · · · , y(k + 1)), pi−1(y(k + i− 2), · · · , y(k)),

pi−2(y(k + i− 3), · · · , y(k)), · · · , y(k))

:= pi(y(k + i− 1), y(k + i− 2), · · · , y(k)) (6.37)

where p′i(·) is the implicit function asserted by Lemma 2.1 and pi(·), i = 2, 3, . . . , n, are

defined recursively. Then, it is easy to derive a vector function only dependent on outputs

to express ξ̄i(k) as follows

Pi(y(k + i− 1), y(k + i− 2), · · · , y(k))

def
=


y(k)

p2(y(k + 1), y(k))
...

pi(y(k + i− 1), y(k + i− 2), · · · , y(k))


which leads to

ξ̄i(k) = Pi(y(k + i− 1), y(k + i− 2), · · · , y(k))

i = 1, 2, . . . , n (6.38)
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Now, let us rewrite the equations in system (6.1) as follows:

ξ1(k + n) = f1(ξ̄1(k + n− 1), ξ2(k + n− 1))

ξ2(k + n− 1) = f2(ξ̄2(k + n− 2), ξ3(k + n− 2))
...

ξn−1(k + 2) = fn−1(ξ̄n−1(k + 1), ξn(k + 1))

ξn(k + 1) = fn(ξ̄n(k), u(k), d(k))

y(k) = ξ1(k)

(6.39)

Combining with ξ̄i(k + n− i) = Pi(y(k + n− 1)) derived from (6.38), we obtain

ξi(k + n+ 1− i) = fi(Pi(y(k + n− 1), ξi+1(k + n− i))

i = 1, 2, . . . , n− 1

ξn(k + 1) = fn(Pn(y(k + n− 1), u(k), d(k))

Then, let us substitute the (i+ 1)-th equation into the i-th equation, i = 1, 2, . . . , n− 1, so

that we can obtain equation (7.17).

y(k + n) = f1(y(k + n− 1), f2(P2(y(k + n− 1)), ξ3(k + n− 2)))

= f1(y(k + n− 1), f2(P2(y(k + n− 1)), f3(P3(y(k + n− 1)), ξ4(k + n− 3))))

= f1(y(k + n− 1), f2(P2(y(k + n− 1)), f3(P3(y(k + n− 1)),

. . . , fn−1(Pn−1(y(k + n− 1)), fn(Pn(y(k + n− 1)), u(k), d(k))) . . .)))

:= f(y(k + n− 1), u(k), d(k)) (6.40)

Using the chain rule of derivative, we will have

∂ψ2,1(·)
∂ξ3(k + n− 2)

= g1,1(·)g1,2(·) := g2,1(·) (6.41)

Continuing to iteratively replace ξj(k + n − j + 1) in the above equations with the right

hand side of the jth equation in (6.39), j = 3, 4, . . . , n− 1, we have

ξ1(k + n) = ψj−1,1(ξ̄1(k + n− 1), ξ̄2(k + n− 2), · · · , ξ̄j−1(k + n− j),

fj(ξ̄j(k + n− j), ξj+1(k + n− j)))

:= ψj,1(ξ̄1(k + n− 1), ξ̄2(k + n− 2), · · · , ξ̄j(k + n− j), ξj+1(k + n− j))

(6.42)

where ψj,1(·), j = 3, 4, . . . , n− 1, are defined recursively. Similarly, we have

∂ψj,1(·)
∂ξj+1(k + n− j)

= gj−1,1(·)g1,j(·) := gj,1(·) (6.43)
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where gj,1(·), j = 3, 4, . . . , n − 1, are also defined recursively. Continuing the substitution

until control u(k) appears on the right hand side of equation (6.42), we have

y(k + n) = ψn−1,1(ξ̄1(k + n− 1), ξ̄2(k + n− 2),

· · · , ξ̄n−1(k + 1), fn(ξ̄n(k), u(k), d(k)))

:= ψn,1(ξ̄1(k + n− 1), ξ̄2(k + n− 2), · · · , ξ̄n(k), u(k), d(k)) (6.44)

In the same manner, we have

∂ψn,1(·)
∂u(k)

= gn−1,1(·)g1,n(·) := gn,1(·) (6.45)

From the definition of vector functions Pi(·) in (6.38), equation (6.44) can be further written

as

y(k + n) = ψn,1(P1(y(k + n− 1)), P2(y(k + n− 1),

y(k + n− 2)), · · · , Pn−1(y(k + n− 1),

· · · , y(k + 1)), Pn(y(k + n− 1), · · · , y(k)), u(k), d(k))

:= f(y(k + n− 1), y(k + n− 2), · · · , y(k), u(k), d(k)) (6.46)

Accordingly, we have

∂f(·)
∂u(k)

= gn,1(·) = Πn
i=1g1,i(·) := go(·), g ≤ |g(·)| ≤ ḡ (6.47)

It is easy to check that

∂f(·)
∂u(k)

= Πn
i=1g1,i(·) := g(·), g′ ≤ |g(·)| ≤ ḡ′ (6.48)

According to Assumption 6.1, it is easy to show that the system function f(·) in (6.46) is

continuous with respect to all the arguments and continuously differentiable with respect

to u(k).

Remark 6.5. Assume that the output y(k) is bounded, then according to (6.46), u(k) must

also be bounded because g ≤ |g(·)| ≤ ḡ. According to Lemma 2.6, the output boundedness

guarantees the states boundedness for system (6.1). Then, it is easy to check that after trans-

formation from original system (6.1) under Assumptions 6.1, 6.2 and 6.3, the transformed

system (6.46) satisfies Assumptions 6.4, 6.5 and 6.6.

At this stage, the pure-feedback system (6.1) is transformed to the NARMAX system

(6.2) with τ = n and m = 1, and the control objective for both systems (6.1) and (6.2)

becomes unified.
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6.4.2 NARMAX systems transformation

The difficulty in controlling system (6.2) lies in the existence of future outputs y(k+1), . . . ,

y(k + τ − 1), which are not available at the current step. However, by carefully examining

equation (6.2), it can be seen that control input u(k) only affects future output y(k + τ)

and those beyond, which means that the future outputs, y(k + 1), . . . , y(k + τ − 1), are

independent of u(k). When the external disturbance d(k) is ignored, the future outputs on

the right hand side of equation (6.2) can be predicted at the current step.

Hence, let us consider applying output prediction approach in [135]. For convenience,

we define

y(k) = [y(k), y(k − 1), . . . , y(k − n+ 1)]T (6.49)

u(k) = [u(k), . . . , u(k − n+ 2)]T (6.50)

Moving back (τ − 1) steps in equation (6.2), we obtain

y(k + 1) = f(y(k), · · · , y(k − n+ 1), u(k − τ + 1),

· · · , u(k −m− τ + 2), d(k − τ + 1))

:= F1(y(k), u(k − τ + 1), · · · , u(k −m− τ + 2), d(k − τ + 1)) (6.51)

It implies that the output y(k + 1) is a SDFO according to Definition 2.6. Assuming that

τ ≥ 2, by moving a step forward we obtain the following equation from (6.51)

y(k + 2) = F1(y(k + 1), u(k − τ + 2), · · · , u(k −m− τ + 3), d(k − τ + 2))

(6.52)

Substituting (6.51) into (6.53), we see that there exists a function F2(·) such that

y(k + 2) = F2(y(k), u(k − τ + 2), · · · , u(k −m− τ + 2), d(k − τ + 2), d(k − τ + 1))

(6.53)

which implies that y(k + 2) is also a SDFO. Continuing the substituting recursively, it is

easy to show y(k + j), j = 1, 2, . . . , τ − 1, are all SDFOs, such that at the (τ − 1)th step,

we see that y(k + τ − 1) is a function of y(k), u(k − 1) and d(k − 1),· · · , d(k − n + 1) as

expressed below:

y(k + n− 1) = Fτ−1(y(k), u(k − 1), d(k − 1), · · · , d(k − n+ 1)) (6.54)
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Moving one step ahead in equation (6.54), we see that there must exist a function Fτ (·)
such that

y(k + τ) = Fτ (z(k), u(k), d(k)) (6.55)

where

z(k) = [yT (k), uT (k − 1)]T (6.56)

d(k) = [d(k), d(k − 1), . . . , d(k − τ + 1)]T (6.57)

if τ + m > 2 and if τ + m = 2, z(k) = y(k). It can be easily shown that function Fτ (·)
is continuous and continuously differentiable with respect to u(k) according to Assumption

6.4. Rewrite system (6.55) as

y(k + τ) = φo(z(k), u(k)) + do(k) (6.58)

where

φo(z(k), u(k)) = Fτ (z(k), u(k),0[τ ])

do(k) = Fτ (z(k), u(k), d(k))− Fτ (z(k), u(k),0[τ ]) (6.59)

Note that Fτ (·) is obtained by iteratively substitution of system function f(·) which satisfies

Lipschitz condition in Assumption 6.6. According to Assumption 6.3, there exist a constant

Lm such that

|do(k)| = |Fn(z(k), u(k), d(k))− Fn(z(k), u(k),0[n])|

≤ Lm|d(k)|+ Lm|d(k − 1)|+ . . .+ Lm|d(k − n+ 1)|

≤ nLmd̄ := d̄o (6.60)

6.4.3 Adaptive NN control design

The dynamics of the tracking error e(k) = y(k)− yd(k) is given by

e(k + n) = φo(z(k), u(k))− yd(k + n) + do(k) (6.61)

It is trivial to show that

∂(φo(z(k), u(k))− yd(k + n))
∂u(k)

> 0
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Therefore, there exists an ideal control input u∗o(z̄(k)) satisfying that

φo(z(k), u∗o(z̄(k)))− yd(k + n) = 0 (6.62)

z̄(k) = [zT (k), yd(k + n)]T ∈ Ωz̄ ⊂ R2n (6.63)

where Ωz̄ is a compact set corresponding to Ωξ and Ωyd. Using the ideal control u∗o(z̄(k)),

we will have e(k) = 0 after n steps if do(k) = 0. It implies that the ideal control u∗o(z̄(k)) is

an n-step deadbeat control. According to Lemma 2.6, the ideal control u∗o(z̄(k)) is bounded.

As mentioned in Section 2.2, there exist an ideal NN weights vector W ∗o ∈ Rlo , such

that u∗o(z̄(k)) can be approximated by HONN as follows

u∗nn(z̄(k)) = W ∗To S(z̄(k)), S(z̄(k)) ∈ Rlo

u∗o(z̄(k)) = u∗nn(z̄(k)) + µ(z̄(k)), ∀z̄ ∈ Ωz̄ (6.64)

where µ(z̄(k)) is the NN approximation error.

Remark 6.6. Since system (6.58) is transformed from the original system (6.2), Assump-

tion 6.6 still holds for (6.58). Considering that we input u∗o(z̄(k)) to system (6.58), then

the output y(k) catches up yd(k) in τ steps. This implies the boundedness of output y(k)

because the reference signal yd(k) is bounded. Then, from the BOBI property in Assumption

6.6, the boundedness of u∗o(z̄(k)) is guaranteed.

Consider using a online adaptive HONN as to approximate u∗o(z̄(k)). Then, the output

feedback adaptive NN control is given as

u(k) =
ηo(k)
ḡ

e(k) + ûo(k) (6.65)

ûo(k) = Ŵo(k)S(z̄(k))

where |ηo(k)| ≤ η̄o < 1 is a scaling parameter to be specified and the NN weights vector is

updated by the following adaptation law

Ŵo(k + 1) = Ŵo(k1)− γoS(z̄(k1))e(k + 1)− σoŴo(k1)

k1 = k − n+ 1 (6.66)

where 0 < σo < 1 and γo > 0 are NN tuning parameters to be chosen.

Theorem 6.2. Consider the adaptive closed-loop system consisting of the system (6.1),

adaptive NN control (6.65) and NN adaptation law (6.66). Under Assumptions 6.1, 6.2

and 6.3, and with design parameters 0 < σo < 1, 0 < η̄o < 1 and γo satisfying

2γoḡlo + ηoḡ + η̄o < 1 (6.67)
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all the closed-loop signals are SGUUB and the tracking error and NN weight estimation

error will eventually be bounded as

lim
k→∞

sup{|e(k)|2 +
ḡ

γo
‖W̃o(k)‖2} ≤ b̄

1− c̄

where

b̄ =
ḡ

ηo
µ∗2o + 2

ḡ

γo
σo‖W ∗o ‖2

c̄ = max{η̄o, (1− 2σo)}

µ∗o = µ∗ +
d̄o
g

(6.68)

and µ∗ is the NN approximation error bound defined in (2.10).

Proof. It is similar to the proof of Theorem 6.1 and is thus omitted.

6.5 Simulation Studies I

For conciseness, simulation studies for state feedback and output feedback adaptive NN con-

trol are only carried out for systems in pure-feedback form, while for systems in NARMAX

form simulation studied will be conducted in Section 6.7. To demonstrate the effectiveness

of the proposed NN control, the following continuous stirred tank reactor (CSTR) system

in [179] is used for simulation.
ẋ1 = −x1 +Da(1− x1)e

x2
1+

x2
γ

ẋ2 = −x2 +BDa(1− x1)e
x2

1+
x2
γ − β(x2 − u) + d

y = x1

(6.69)

where x1 is the concentration and x2 is the temperature, B = 21.5, γ = 28.5, Da = 0.036,

and β = 25.2 are scalar parameters [179], and d = cos(t) cos(ξ1) is unmeasured disturbance.

It is noted that in system (6.69), the state variable x2 appear in nonaffine appearance.

The control objective is to make the output y track a smooth reference signal yd, which is

generated by passing a discontinuous set-point step signal r with amplitude 0.4 ± 0.2 into

the following linear model:

yd(s)
r(s)

=
ω2
n

s2 + 2ζnωns+ ω2
n

(6.70)

where the natural frequency ωn = 5.0 and the damping ration ζn = 1.0.
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Denoting ξ1 = x1 and ξ2 = x2 and by using first order Taylor expansion, the CSTR

system (6.69) can be approximated by a discrete-time model as
ξ1(k + 1) = f1(ξ1(k), ξ2(k))

ξ2(k + 1) = f2(ξ1(k), ξ2(k), u(k)) + d(k)

y(k) = ξ1(k)

(6.71)

where

f1(·) = ξ1(k) + [−ξ1(k) +Da(1− ξ1(k))e
ξ2(k)

1+
ξ2(k)
γ ]T

f2(·) = ξ2(k) + [−ξ2(k) +BDa(1− ξ1(k))e
ξ2(k)

1+
ξ2(k)
γ − β(ξ2(k)− u(k))]T

with sampling period T = 0.05 and d(k) = 0.05 cos(0.05k) cos(ξ1(k)).

For system (6.71), it is obvious that Assumption 6.1 holds. Assumptions 6.2 and 6.3 are

not strictly satisfied, but it is seen in the simulation results that practically the proposed

controls still work well. Consider an operation range 0.02 < ξ1(k) < 0.8 and 0 < ξ2(k) < 5.

It is easy to check that 0.18 < g1,1(·) < 0.13 and g2,1(·) = 1.26 and the partial directives
∂f1

∂ξ1
, ∂f2

∂ξ1
and ∂f2

∂ξ2
are upper bounded in the operation range. In this operation range, we

have ḡ = 0.17 such that g1,1g2,1 < ḡ.

It should be noted that the discretized model (6.71) is only used for analysis. The

simulation is carried out on original system (6.69).

State feedback control

The NN employed in the controller is constructed according to equations (2.8) and (2.9)

with ls = 18 NN nodes. The parameters in the control law are chosen as γs = 0.1, σs = 0.01

and η̄s = 0.04 according to the criteria (6.22). The gain ηs(k) is simply chosen as a constant

ηs(k) = η̄s.

In the simulation, the initial states are ξ̄2(0) = [0.1, 0.1]T , and for the initial weights

vector Ŵs(j) ∈ Rls , j = −1, 0, each element is selected as a standard uniform distributed

random number divided by 10. The results are presented in Figures 6.1(a) and 6.2(a).

Figure 6.1(a) shows the output y(k) and the reference signal yd(k). Figure 6.2(a) illustrates

the boundedness of the control input u(k) and the norm of NN weights. It can be seen that

all the signals are bounded in the operation range.

Output feedback control

The NN is constructed according to equations (2.8) and (2.9) with ls = 30 NN nodes.

The initial system states are ξ̄2(0) = [0.1, 0.1]T . The initial NN weights vector Ŵo(j),

j = −1, 0, is chosen in the same manner as that for state feedback control design. The
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design parameters are chosen as η̄o = 0.04, γo = 0.07 and σo = 0.01, which satisfy the

criterion in (6.67) The simulation results are presented in Figures 6.1(b), and 6.2(b). Figure

6.1(b) shows the output y(k) and the reference signal yd(k). Figure 6.2(b) illustrates the

boundedness of the control input u(k) and the norm of NN weight ‖Ŵo(k)‖.
NN learning performance

Let us define the following mean square error (MSE) as a measurement of NN learning

performance

es(k) =
1
k

k∑
k′=1

[φs(ξ̄n(k′), ûs(z(k′)))− yd(k′ + n)]2

eo(k) =
1
k

k∑
k′=1

[φo(z(k′), ûo(z̄(k′)))− yd(k′ + n)]2 (6.72)

According to (6.18) and (6.62), the smaller the NN approximation error ûs(k)− u∗s(k) and

ûo(k)−u∗o(k) are, the smaller es(k) and eo(k) are. If ûs(k)−u∗s(k) = 0 and ûo(k)−u∗o(k) = 0,

we have es(k) = 0 and eo(k) = 0.

The values of φs(·) and φo(·) are not available from the real plant but they can be

obtained in the simulation. The mean square errors of state feedback and output feedback

NN learning are demonstrated in Figure 6.3(a) and 6.3(b). It is noted that the NN learning

performance is satisfactory, i.e., the defined mean square errors es(k) and eo(k) are made

to be bounded around zero.

It is obvious that all the signals in the closed-loop system are bounded in the operation

range as seen from the simulation results above. From Figure 6.1, we see that the transient

tracking performance is not very good. However, as the simulation time increases, the

output tracking becomes much better. This is because the initial NN weights vector is set

randomly and after a period of online learning, the NN is able to well approximate the

unknown function.

Comparison with PID control To demonstrate the superiority over PID control, we

compare the proposed output feedback NN control (6.65) with a standard PID control. In

the simulation, the system initial condition is set to be ξ̄2(0) = [0.1, 0.1]T and the PID

control is given in discretized manner as

u(k) = u(k − 1) +Kp[e(k)− e(k − 1)]

+Kie(k) +Kd[e(k)− 2e(k − 1) + e(k − 2)]

where the parameters KP = 4, KI = −0.2 and KD = 1 were found by trial and error to

minimize the sum of squared output tracking errors.
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The proposed output feedback adaptive NN control is further compared with the linear

error observer based NN inverse control constructed in [141], which is a continuous-time

design for nonaffine system. The system initial condition is also set to be ξ̄2(0) = [0.1, 0.1]T .

The dynamic compensator parameters used in the control are set to be Ac = −0.86, Bc =

−1.4, Cc = 0.1 and Dc = −0.75. HONN with 45 neurons is used with the same initial

condition as that for our proposed output feedback control. The design parameters are

γW = 35, Q2 = I, λW = 0.01, λΦ = 0.01 and γΦ = 0.001. The poles of the observer have

been set to be five times faster than those of the closed-loop error system [141].

The comparison results are shown in Figure 6.4, where it is very clear that the two NN

based controls perform much better than the PID control with respect to either tracking

error or control effort, though NN based controls response not as quick as PID control in

the initial steps. This is because the two NN controls are based on online NN learning.

From the tracking performance of the two NN based controls in Figure 6.4(a), it is seen

that the inverse NN control has an obvious steady state error while the steady state error

for our proposed output-feedback adaptive NN control is very small.

6.6 Unknown Control Direction Case

In this Section, we assume that the control directions of systems in (6.1) and (6.2) are

unknown. We will carry out adaptive NN control based on the transformed systems (6.58)

in Section 6.4.2. Consider that the signs of control gains are unknown, from the derivation

of Fτ (·) we see that

∂φo(z(k), u(k))
∂u(k)

=
∂Fτ (·)
∂u(k)

=
∂f(·)
∂u(k)

= g(·) 6= 0

The dynamics of the tracking error e(k) = y(k)− yd(k) is given by

e(k + τ) = φo(z(k), u(k))− yd(k + n) + do(k) (6.73)

It is easy to show that
∂(φo(z(k), u(k))− yd(k + n))

∂u(k)
6= 0

Then, similar as in Section 6.4.2, Lemma 2.1 asserts the existence of an ideal control input

u∗(z̄(k)) such that

φo(z(k), u∗(z̄(k)))− yd(k + n) = 0

z̄(k) = [zT (k), yd(k + n)]T (6.74)
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In addition, there exists an ideal constant weights vector W ∗ ∈ Rl, such that

u∗nn(z̄(k)) = W ∗TS(z̄(k)), S(z̄(k)) ∈ Rl

u∗(z̄(k)) = u∗nn(z̄(k)) + µ(z̄(k)), ∀z̄ ∈ Ωz̄ (6.75)

where µ(z̄(k)) is the NN approximation error and Ωz̄ is a sufficient large compact set.

Using HONN as an approximator of u∗(z̄(k)) and then, the output feedback adaptive

NN control is given as

u(k) = Ŵ T (k)S(z̄(k)) (6.76)

Remark 6.7. For ease of technical derivation for incorporation of discrete Nussbaum gain,

the scaling tracking error term is not considered in the NN control (6.76). It will be noted

later that the deadzone method instead of σ-modification will be used in the NN weights

update law to dead with NN approximation error and external disturbance.

Adding and subtracting φo(z̄(k), u∗(z̄(k))) on the right hand side of (6.73) leads to

e(k + τ) = φo(z(k), u(k))− φo(z(k), u∗(z̄(k))) + do(k)

= g(z(k), uc(k))(u(k)− u∗(z̄(k))) + do(k) (6.77)

where

g(z(k), uc(k)) =
∂φo(z(k), uc(k))

∂uc(k)

with uc(k) ∈ [min{u∗(z̄(k)), u(k)},max{u∗(z̄(k)), u(k)}] according to the mean value theo-

rem. For convenience, let us introduce the following notations:

g(k) = g(z(k), uc(k)), S(k) = S(z̄(k)), µ(k) = µ(z̄(k)) (6.78)

and it is obvious that g ≤ g(k) ≤ ḡ. Substituting (6.75) into (6.77) and noting that

W̃ (k) = Ŵ (k)−W ∗, we obtain

e(k + τ) = g(k)W̃ T (k)S(k) + d∗(k) (6.79)

where

d∗(k) = −g(k)µ(k) + do(k)

and it is trivial to show that |d∗(k)| ≤ ḡµ∗ + d̄0 := d∗0.
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Consider the following adaptation law for the NN weights:

e′(k) = γ
e(k)
G(k)

Ŵ (k) = Ŵ (k − τ)− γN(x(k))S(k − τ)
a(k)e′(k)
D(k)

∆x(k) = x(k + 1)− x(k) =
a(k)G(k)e′2(k)(k)

D(k)
, x(0) = 0

G(k) = 1 + |N(x(k))|

D(k) = 1 + ‖S(k − τ)‖2 + |N(x(k))|+ e′
2(k)

a(k) =

{
1 if |e′(k)| > χ

0 others

Ŵ (j) = 0[l], j = −τ + 1, . . . , 0 (6.80)

where N(x(k)) is the discrete Nussbaum gain defined in Section 4.2, the tuning rate γ > 0

and deadzeon threshold χ > 0 can be an arbitrary positive constants to be specified by

the designer. It should be mentioned that the requirement on the sequence x(k) in (4.2) is

satisfied and furthermore, ∆x(k) ≥ 0.

Theorem 6.3. Consider the adaptive closed-loop system consisting of system (6.1) under

Assumptions 6.1, 6.2 and 6.3 or system (6.2) under Assumptions 6.4, 6.5 and 6.6, NN con-

trol (6.76) with NN weights adaptation law (6.80). All the signals in the closed-loop system

are SGUUB and the discrete Nussbaum gain N(x(k)) will converge to a constant ultimately.

Denote C = limk→∞G(k), then the tracking error satisfies limk→∞ sup{|e(k)|} < Cχ
γ , where

the tuning rate γ > 0 and the threshold value χ > 0 can be arbitrary constants to be specified

by the designer.

Proof. Similar to the proof of Theorem 6.1, the proof is carried out in two parts. First,

we assume that inputs u(k) and outputs y(k) are within the NN approximation range Ωz̄

while later we will show that if initially the NN approximation range covers this set then

the inputs and outputs are guaranteed to be within Ωz̄ without a priori assumption in the

first step. From (6.79), we have

γW̃ T (k − τ)S(k − τ) =
1

g(k − τ)
G(k)e′(k)− 1

g(k − τ)
γd∗(k − τ) (6.81)

Choose a positive definite function V (k) as

V (k) =
τ∑
j=1

W̃ T (k − τ + j)W̃ (k − τ + j) (6.82)
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and note that

2a(k)
g(k − τ)

N(x(k))d∗(k − τ)e′(k) ≤ a(k)|2d
∗
0

gχ
|G(k)e′2(k) (6.83)

and a2(k) = a(k). Using (6.81), the first difference equation of V (k) can be written as

∆V (k) = V (k)− V (k − 1)

= W̃ T (k)W̃ (k)− W̃ T (k − τ)W̃ (k − τ)

= (W̃ (k)− W̃ (k − τ))T (W̃ (k)− W̃ (k − τ)) + 2W̃ T (k − τ)(W̃ (k)− W̃ (k − τ))

=
γ2a2(k)N2(x(k))ST (k − τ)S(k − τ)

D2(k)
e′

2(k)

−2N(x(k))
a(k)γW̃ T (k − τ)S(k − τ)

D(k)
e′(k)

≤ γ2a(k)G(k)e′2(k)
D(k)

+ |2d
∗
0

gχ
|a(k)G(k)e′2(k)

D(k)

− 2
g(k − τ)

N(x(k))
a(k)G(k)e′2(k)

D(k)
(6.84)

Denote N ′(x(k)) = 1
g(k−τ)N(x(k)) and then, noting 1

ḡ ≤
1

g(k−τ) ≤
1
g and according to

Lemma 6.3, we can see that N ′(x(k)) is still a discrete Nussbaum gain. Taking summation

on both hand sides of (6.84) and noting 0 ≤ ∆x(k) ≤ 1, Note that

a(k)G(k)e′2(k)
D(k)

= ∆x(k)

Then, by denoting N ′(x(k)) = 1
g(k−τ)N(x(k)), we have

∆V (k) ≤ c1∆x(k)− 2N ′(x(k))∆x(k) (6.85)

where c1 = γ2 + |2d
∗
0

gχ |. The following inequality follows immediately

V (k) ≤ −2
k∑

k′=0

N ′(x(k′))∆x(k′) + c1x(k) + c1 (6.86)

Applying Lemma 4.1 to (6.86) results in the boundedness of V (k) and x(k). Noting the

definition of V (k), we obtain the boundedness of Ŵ (k) immediately. From the definition

of N(x(k)), it is seen that |N(x(k))| = |xs(k)|. Thus, the boundedness of x(k) implies

the boundedness of N(x(k)) and G(k) = 1 + |N(x(k))|. In (6.80), we see that ∆x(k) =
G(k)e′2(k)
D(k) ≥ 0 and therefore x(k) is a nondecreasing sequence. Thus, the boundedness of

x(k) results in

lim
k→∞

∆x(k) = lim
k→∞

a(k)G(k)e′2(k)
D(k)

= 0 (6.87)
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Applying the similar techniques in Section 4.4.3, we see G(k) will converge to a constant

C. Then, it can be derived from the definition of e′(k) in (6.80) that

lim
k→∞

sup{|e(k)|} ≤ Cχ

γ

Then, the boundedness of output y(k) is obvious. According to Remark 6.5, the bounded-

ness of control u(k) and states of system (6.1) is guaranteed. So far, we have proved that

given any initial condition z̄(0) ∈ Ω0, there is a corresponding bounding compact set Ωz̄ so

that z̄(k) ∈ Ωz̄, ∀k, if the NN approximation range is initialized to cover Ωz̄.

Next, let us consider that the initial condition Ω0 and control parameters to be chosen

are known at the beginning. It implies the bounding set Ωz̄ is determined. Then, if initially

the NN approximation range Ω is constructed to cover the bounding set Ωz̄, the boundedness

of all the closed-loop signals is guaranteed. According to Definition 2.11 (given any initial

condition, there is a corresponding control such that the all the closed-loop signals are

bounded), the proposed adaptive NN control achieves SGUUB stability. This completes

the proof.

6.7 Simulation Studies II

In this section, simulation is carried out with the following NARMAX system studied in [92].

y(k + 1) =
y(k)y(k − 1)[y(k) + 2.5])

1 + y2(k) + y2(k − 1)
+ gu(k − 2) + d(k) (6.88)

where the control gain is chosen to be g = ±1.25 and the disturbance is

d(k) = 0.1 cos(0.05k) cos(ξ1(k))

The reference trajectory is chosen as

yd(k) =
1
2

sin(
π

5
kT ) +

1
2

cos(
π

10
kT ), T = 0.05

The initial condition is y(−1) = y(−2) = y(0) = 0.1. The tuning rate and the threshold

value are chosen as γ = 0.9 and χ = 0.02. The simulation results for g = −1.25 are presented

in Figures 6.5, 6.6 and 6.7. Figure 6.5 shows the reference signal yd(k) and system output

y(k). Figure 6.6 illustrates the boundedness of the control input u(k) and the NN weights

vector estimate Ŵ (k). Figure 6.7 shows the discrete sequence x(k) and discrete Nussbaum

gain N(x(k)).
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When g = −1.25, we have g(·) = ∂f(·)
∂u(k) = g < 0. Therefore, it is seen in Figure 6.7 that

the Nussbaum gain changes to be negative after step 150 and remains to be so. Accordingly,

the output and the control signal go to a wrong direction at initial stage as shown in Figures

6.5 and 6.6. After the discrete Nussbaum gain turns to be negative, the output tracking

performance improves to be much better. Next, let us change g = −1.25 to g = 1.25. The

simulation results by the same control law and NN weights adaptation law are shown in

Figures 6.8, 6.9 and 6.10.

It is noted in Figure 6.10 that N(x(k)) always keeps positive while in Figure 6.7 it turns

to negative and remains so. This is because N ′(x(k)) must turn to be positive to make

∆V (k) negative.

NN learning performance

To demonstrate the NN learning performance, we define the following NN learning error

enn(k) = φo(z(k), u(z̄(k)))− yd(k + n) (6.89)

as measurement of NN learning performance. According to (6.74) and (6.75), the better the

NN approximation is (the smaller the NN approximation error u(k)−u∗(k) is), the smaller

enn(k) is. If u(k)− u∗(k) = 0, we have enn(k) = 0

The NN learning errors are demonstrated in Figure 6.11. It is noted that the NN learning

performance is satisfactory, i.e., the defined NN learning error enn(k) is ultimately bounded

in a neighborhood of zero.

6.8 Summary

In this Chapter, it has been shown that under certain conditions, nonlinear discrete-time

pure-feedback systems are transformable to a class of inverse stable NARMAX system, and

the output-feedback adaptive NN control design for both systems can be synthesized in a

unified framework. By prediction approach, the original NARMAX system is transformed

to a suitable form to avoid noncausal problem in the control design. Implicit Function

Theorem has been exploited to identify the existence of an ideal deadbeat control, while

HONN has been used to approximate the ideal control and discrete Nussbaum gain has

been further studied to handle the lack of knowledge on control gain. The resulted adaptive

NN control guarantees the SGUUB of all the closed-loop signals.
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Figure 6.1: System output and reference trajectory
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(b) Output feedback NN control

Figure 6.2: Boundedness of control signal and NN weights
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(b) Output feedback NN control

Figure 6.3: Output tracking error and MSE of NN learning
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Figure 6.4: Comparison of PID, NN Inverse and adaptive NN control
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Figure 6.5: Reference signal and system output
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Figure 6.6: Control signal and NN weights norm
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Figure 6.7: Discrete Nussbaum gain N(x(k)) and its argument x(k)

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5

2

O
ut

pu
t y

(k
) a

nd
 R

ef
er

en
ce

 s
ig

na
l y

d(k
)

Number of steps

y
d
(k)

y(k)

Figure 6.8: Reference signal and system output

140



6.8 Summary

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

1

1.5

C
on

tro
l i

np
ut

 u
(k

) a
nd

 N
or

m
 o

f N
N

 w
ei

gh
t W

(k
)

Number of steps

u(k)
norm of W(k)

Figure 6.9: Control signal and NN weights norm
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Figure 6.10: Discrete Nussbaum gain
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Chapter 7

MIMO Nonaffine systems

7.1 Introduction

In Chapter 6, implicit function theorem and discrete Nussbaum gain have been exploited to

solve the nonaffine problem and unknown control direction problem, in order to facilitate

adaptive NN control of nonlinear SISO systems in nonaffine form. In this Chapter, we are

going to further investigate adaptive NN control of MIMO nonlinear system in nonaffine

form.

A series of excellent research work has been carried out in [132, 133, 156] for block-

triangular discrete-time MIMO nonlinear systems with subsystems in normal form and of

same order. LPNN and MNN are employed for control design in [132] and [133], respectively.

Cerebellar Model Articulation NN is investigated in [156]. In [157, 158, 180], adaptive NN

control is investigated for block-triangular discrete-time MIMO systems with strict-feedback

subsystems. To deal with uncertain couplings of both states and inputs, the nice properties

of the block-triangular structure have been well exploited in the adaptive NN control design.

In [157] and [180], the backstepping adaptive NN control design developed for SISO systems

in [51] has been extended to MIMO systems using state feedback design. Furthermore,

output-feedback adaptive NN control design has been performed in [158]. But these results

are limited for affine systems. In addition, it is noted that in the output feedback design [158]

all the subsystems are required to be of same order and the couplings only appear in the

last equations of each subsystem.

On the other hand, MIMO systems in NARMAX form have also received much research

attention. Affine NARMAX systems have been studied in [159], in which it is pointed

out that it is generally very hard to construct the NN weights update law due to the
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couplings and thus an orthogonal matrix is assumed to be available for ease of construction

of the update law. Nonaffine NARMAX systems have been studied by many researchers

using linearization based method. In [138], based on the NN identified model, a novel

linearization method at each step was proposed to deal with the difficulty of nonaffine

input and the method was further used in [181] to construct an inverse NN control. But the

linearization based method requires an NN identified system model beforehand. Lyapunov

based adaptive NN control has been studied in [137] by representing the nonaffine systems

by a linear part plus a nonlinear part and using NN to design a control for compensation

of the nonlinear part.

In this Chapter, nonaffine block-triangular MIMO systems will be studied in Section 7.2.

The block-triangular MIMO systems to be studied are of interconnections in every equation

of each subsystem rather than only in the last equation of each subsystem [157, 158]. In

addition, the assumption of equal subsystem orders for output feedback design [158] is not

imposed. The block-triangular systems in this Section actually cover the systems (5.18) of

LIPs form studied in Section 5.3. Adaptive NN control of systems of similar structure in

continuous-time have been studied using state feedback in [154], where it is indicated that

the complicated interactions make it impossible to conclude the stability of the whole system

by stability analysis of individual subsystem separately. In Section 7.3, nonaffine NARMAX

MIMO systems will be studied. In Section 7.3, we design adaptive NN control using implicit

function theory and extend the work in [135, 146] by introducing discrete Nussbaum gain

into the NN weights update law to relax the stringent assumption on control gain matrix.

The contributions in this Chapter lies in

(i) By rearranging the subsystems of the block-triangular MIMO system according to

their orders in the control design, the assumption of equal orders of each subsystem

for output feedback design in [158] has been removed.

(ii) Each subsystem in the block-triangular MIMO system has been transformed into a

input-output model despite the presence of interactions among each subsystems.

(iii) The restriction on the control gain matrix of MIMO NARMAX system for NN weight

tuning assumed in [159] has been relaxed by exploring discrete Nussbaum gain in the

NN weight update law.
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7.2 Nonlinear MIMO Block-Triangular Systems

7.2.1 Problem formulation

Consider the following MIMO discrete-time system with each subsystem in the nonaffine

pure-feedback form

Σ :



Σ1


ξ1,i1(k + 1) = f1,i1(ξ̄1,i1−m11(k), ξ̄2,i1−m12(k), . . . , ξ̄n,i1−m1n(k),

ξ1,i1+1(k)), i1 = 1, 2, . . . , n1 − 1

ξ1,n1(k + 1) = f1,n1(Ξ(k), u1(k), d1(k))

y1(k) = ξ1,1(k)
...

Σj


ξj,ij (k + 1) = fj,ij (ξ̄1,ij−mj1(k), ξ̄2,ij−mj2(k), . . . , ξ̄n,ij−mjn(k),

ξj,ij+1(k)), ij = 1, 2, . . . , nj − 1

ξj,nj (k + 1) = fj,nj (Ξ(k), ūj(k), dj(k))

yj(k) = ξj,1(k)
...

Σn


ξn,in(k + 1) = fn,in(ξ̄1,in−mn1(k), ξ̄2,in−mn2(k), . . . , ξ̄n,in−mnn(k),

ξn,in+1(k)), in = 1, 2, . . . , nn − 1

ξn,nn(k + 1) = fn,nn(Ξ(k), ūn(k), dn(k))

yn(k) = ξn,1(k)

(7.1)

where the notations used are defined as same as those in Section 5.3. It is assumed that

the external disturbance dj(k) is bounded by an unknown constant d̄j , i.e. |dj(k)| ≤ d̄j .

Assumption 7.1. Functions fj,ij (·, ·) and fj,nj (·, ·, 0), j = 1, 2, . . . , n, ij = 1, 2, . . . , nj − 1,

in (7.1) are continuous with respect to all the arguments and continuously differentiable with

respect to the second argument.

It should be mentioned that systems described in (7.1) are more general than and cover

the block-triangular systems in LIPs form studied in Section 5.3. Moveover, in this Section

we assume that the control directions are unknown, i.e., the control gains gj,ij (·) defined in

Definition 2.10 are strictly either positive or negative, but their signs are unknown.

Assumption 7.2. There exist constants ḡj,ij > g
j,ij

> 0 so that 0 ≤ g
j,ij
≤ |gj,ij (·)| ≤ ḡj,ij ,

where the control gains are defined in Definition 2.10.

For the convenience, we introduce the notations g
j

=
nj∏
ij=1

g
j,ij

and ḡj =
nj∏
ij=1

ḡj,ij .

Assumption 7.3. The system functions fj,ij (·, 0) and fj,nj (·, 0, ·) are Lipschitz functions.
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7.2.2 Transformation of pure-feedback systems

To facilitate control design, in this Section we will perform system transformation and will

show that each subsystem Σj can be transformed into an input-output model similar to

that for the SISO pure-feedback system in Section 6.4. It should be mentioned that the

transformation procedure in Section 6.4 for SISO pure-feedback systems cannot be applied

straightforwardly to MIMO system as there are states interactions in every equation of each

subsystem.

Consider the definition of largest subsystem order n̄ and set si in Definition 2.9. In the

following, we perform system transformation for (7.1) in the sequence according the orders

of subsystems.

Transformation to State-Output Model

Step 1: Consider all the subsystems Σl1,t1
with l1,t1 ∈ s1. Because only states from

subsystems Σl1,t1
appear in the first equations, the first equations of Σl1,t1

can be rewritten

as

ξl1,t1 ,1(k + 1)− fl1,t1 ,1(ξl1,1,1(k), . . . , ξl1,m1 ,1
(k), ξl1,t1 ,2(k)) = 0, t1 = 1, . . . m1 (7.2)

According to Assumption 7.2, the derivative of left hand side of the above equation over

ξl1,t1 ,2(k) is not zero, so it is asserted by Lemma 2.1 that there exists an implicit function

pl1,t1 ,2(·) such that

ξl1,t1 ,2(k) = pl1,t1 ,2(ξl1,t1 ,1(k + 1), ξl1,1,1(k), . . . , ξl1,m1 ,1
(k))

= pl1,t1 ,2(yl1,t1 (k + 1), yl1,1(k), . . . , yl1,m1
(k)), t1 = 1, . . . m1 (7.3)

Step 2: Consider all the subsystems Σl1,t1
with l1,t1 ∈ s1, t1 = 1, . . . m1 and Σl2,t2

with

l2,t2 ∈ s2, t2 = 1, . . . m2.

substep 1: In the similar way as (7.3) is derived, from the second equations of subsystems

Σl1,t1
, ξl1,t1 ,3(k) can be expressed as

ξl1,t1 ,3(k) = p′l1,t1 ,3
(ξl1,t1 ,2(k + 1), ξ̄l1,1,2(k), . . . , ξ̄l1,m1 ,2

(k), ξl2,1,1(k), . . . , ξl2,m2 ,1
(k))

t1 = 1, . . . m1 (7.4)

where the existence of the implicit functions p′l1,t1 ,3(·) is asserted by Lemma 2.1. By substi-

tuting (7.3) into (7.4), we obtain a new function pl1,t1 ,3(·) such that

ξl1,t1 ,3(k) = pl1,t1 ,3(yl1,t1 (k + 2), yl1,1(k + 1), . . . , yl1,m1
(k + 1), yl1,1(k), . . . , yl1,m1

(k),

yl2,1(k), . . . , yl2,m2
(k)), t1 = 1, . . . m1 (7.5)
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substep 2: Similar to Step 1, we can rewrite the first equations of subsystems Σl2,t2
as

ξl2,t2 ,2(k) = p′l2,t2 ,2
(ξl2,t2 ,1(k + 1), ξ̄l1,1,2(k), . . . , ξ̄l1,m1 ,2

(k), ξl2,1,1(k), . . . , ξl2,m2 ,1
(k))

t2 = 1, . . . m2 (7.6)

where the existence of an implicit function p′l2,t2 ,2(·) is asserted by Lemma 2.1. We substitute

(7.3) into (7.6) and obtain a new function pl2,t2 ,2(·) such that

ξl2,t2 ,2(k) = pl2,t2 ,2(yl2,t2 (k + 1), yl1,1(k + 1), . . . , yl1,m1
(k + 1), yl1,1(k), . . . , yl1,m1

(k),

yl2,1(k), . . . , yl2,m2
(k)), t2 = 1, . . . m2 (7.7)

Step r (3 ≤ r ≤ n̄ − 1): Consider all the subsystems Σl1,t1
with l1,t1 ∈ s1, t = 1, . . . m1,

Σl2,t2
with l2,t2 ∈ s2, t = 1, . . . m2, until Σlr,tr lr,tr ∈ sr, tr = 1, . . . mr.

substep 1: From the rth equations of subsystems Σl1,t1
, ξl1,t1 ,r+1(k) can be expressed as

ξl1,t1 ,r+1(k) = p′l1,t1 ,r+1(ξl1,t1 ,r(k + 1), ξ̄l1,1,r(k), . . . , ξ̄l1,m1 ,r
(k),

. . . , ξlr,1,1(k), . . . , ξlr,mr ,1(k)), t1 = 1, . . . m1 (7.8)

where the existence of the implicit functions p′l1,t1 ,r+1(·) is asserted by Lemma 2.1. By

substituting the results in the first (r − 1) steps into (7.8), we obtain a new function

pl1,t1 ,r+1(·) such that

ξl1,t1 ,r+1(k) = pl1,t1 ,r+1(yl1,t1 (k + r), yl1,1(k + r − 1), . . . , yl1,m1
(k + r − 1), . . . ,

yl1,1(k), . . . , yl1,m1
(k), . . . , ylr,1(k), . . . , ylr,mr (k)), t1 = 1, . . . m1 (7.9)

substep q (2 ≤ q ≤ r): We rewrite the (r + 1 − q)th equations of subsystems Σlq,tq ,

tq = 1, . . . mq as

ξlq,t,r+2−q(k) = p′lq,t,r+2−q(ξlq,t,r+1−q(k + 1), ξ̄l1,1,r(k), . . . , ξ̄l1,m1 ,r
(k),

. . . , ξlr,1,1(k), . . . , ξlr,mr ,1(k)) (7.10)

where the existence of the implicit function p′lq,t,r+2−q(·) is asserted by Lemma 2.1. By

substituting the results in the first (r − 1) steps into (7.10), we obtain a new function

plq,t,r+2−q(·) such that

ξlq,tq ,r+2−q(k) = plq,tq ,r+2−q(ylq,tq (k + r − q + 1), yl1,1(k + r − 1), . . . ,

yl1,m1
(k + r − 1), . . . , yl1,1(k), . . . , yl1,m1

(k), . . . , ylr,1(k), . . . , ylr,mr (k))

tq = 1, . . . mq (7.11)
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Then, let us introduce a vector function Plq,tq ,r+2−q(·)

Plq,tq ,r+2−q(ylq,tq (k + r − q + 1), yl1,1(k + r − 1), . . . , yl1,m1
(k + r − 1), . . . ,

yl1,1(k), . . . , yl1,m1
(k), . . . , ylr,1(k), . . . , ylr,mr (k))

def
=


ylq,tq (k)

...

plq,tq ,r+2−q(ylq,tq (k + r − q + 1), yl1,1(k + r − 1), . . . , yl1,m1
(k + r − 1), . . . ,

yl1,1(k), . . . , yl1,m1
(k), . . . , ylr,1(k), . . . , ylr,mr (k))


for 1 ≤ r ≤ n̄, 1 ≤ tq ≤ mq, 1 ≤ q ≤ r, which leads to the following equation

ξ̄lq,tq ,r+2−q(k) = Plq,tq ,r+2−q(ylq,tq (k + r − q + 1), yl1,1(k + r − 1), . . . ,

yl1,m1
(k + r − 1), . . . , yl1,1(k), . . . , yl1,m1

(k), . . . , ylr,1(k), . . . , ylr,mr (k)) (7.12)

The above equations reveal the relationship between system states and outputs, which will

be used later in the next part.

Transformation to Input-Output Model

Let us consider rewriting the jth subsystem in system (7.1) as follows:

ξj,1(k + nj) = fj,1(ξ̄1,1−mj1(k + nj − 1), ξ̄2,1−mj2(k + nj − 1), . . . ,

ξ̄n,1−mjn(k + nj − 1), ξj,2(k + nj − 1))

ξj,2(k + nj − 1) = fj,2(ξ̄1,2−mj1(k + nj − 2), ξ̄2,2−mj2(k + nj − 2), . . . ,

ξ̄n,2−mjn(k + nj − 2), ξj,3(k + nj − 2))
...

ξj,nj−1(k + 2) = fj,nj−1(ξ̄1,nj−1−mj1(k + 1), ξ̄2,nj−1−mj2(k + 1), . . . ,

ξ̄n,nj−1−mjn(k + 1), ξj,nj (k + 1))

ξj,nj (k + 1) = fj,nj (Ξ(k), ūj(k), dj(k))

yj(k) = ξj,1(k)

(7.13)

Replacing ξj,2(k + nj − 1) in the first equation of (7.13) with the right hand side of the

second equation yields

ξj,1(k + nj) = fj,1(ξ̄1,1−mj1(k + nj − 1), ξ̄2,1−mj2(k + nj − 1), . . . ,

ξ̄n,1−mjn(k + nj − 1), fj,2(ξ̄1,2−mj1(k + nj − 2),

ξ̄2,2−mj2(k + nj − 2), ξ̄n,2−mjn(k + nj − 2), . . . ,

ξj,3(k + nj − 2))) (7.14)
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Then replacing ξj,3(k + nj − 2) in (7.14) with the right hand side of the third equation of

(7.13) yields

ξj,1(k + nj) = fj,1(ξ̄1,1−mj1(k + nj − 1), ξ̄2,1−mj2(k + nj − 1), . . . ,

ξ̄n,1−mjn(k + nj − 1), fj,2(ξ̄1,2−mj1(k + nj − 2),

ξ̄2,2−mj2(k + nj − 2), . . . , ξ̄n,2−mjn(k + nj − 2),

fj,3(ξ̄1,3−mj1(k + nj − 3), ξ̄2,3−mj2(k + nj − 3), . . . ,

ξ̄n,3−mjn(k + nj − 3), ξj,4(k + nj − 3)))) (7.15)

By continuing to replace ξj,ij (k+nj−ij+1), ij = 4, 5, . . . , nj , iteratively, we have a function

F ′j(·) such that

ξj,1(k + nj) = F ′j(ξ̄1,1−mj1(k + nj − 1), ξ̄2,1−mj2(k + nj − 1), . . . ,

ξ̄n,1−mjn(k + nj − 1), . . . , ξ̄1,nj−1−mj1(k + 1),

ξ̄2,nj−1−mj2(k + 1), . . . , ξ̄n,nj−1−mjn(k + 1),

Ξ(k), ūj(k), dj(k)) (7.16)

By subtracting (7.12) into the above equations, we obtain a function Fj(·) such that

yj(k + nj) = Fj(y1
(k + n1 − 1), . . . , y

n
(k + nn − 1), ūj(k), dj(k)) (7.17)

where

y
j
(k) = [yj(k), yj(k − 1), . . . , yj(k − nj + 1)]T . (7.18)

It is easy to check that

∂Fj(·)
∂uj(k)

=
nj∏
ij=1

gj,ij (·) := gj(·), g
j
≤ |gj(·)| ≤ ḡj (7.19)

According to Assumption 7.1, it is easy to find that the system function Fj(·) is continuous

with respect to all the arguments and continuously differentiable with respect to uj(k).

So far, each subsystem Σj has been transformed into an input-output model, as indicated

by (7.17). However, since there are future states on the right handside of (7.17), it is

necessary to further transform (7.17) in order to design an causal control input uj(k). The

future outputs prediction procedure is given in the next section.
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Future Outputs Prediction

For the convenience of further analysis, we denote

Yi(k) = [y
li,1

(k), . . . , y
li,mi

(k)]

Ui(k) = [ūli,1(k), . . . , ūli,mi (k)]

Di(k) = [dli,1(k), . . . , dli,mi (k)] (7.20)

where i = 1, 2, . . . , n̄ and mi is defined in Section 7.2.2. Then (7.17) can be rewritten as

yli,ti (k + n̄− i+ 1) = Fli,ti (Y1(k + n̄− 1), Y2(k + n̄− 2), . . . , Yn̄(k),

ūli,ti (k + n̄− i), dli,ti (k + n̄− i)) (7.21)

Step 1: Consider all the subsystems Σl1,t1
with l1,t1 ∈ s1. Moving back (n̄− 1) steps in

(7.21), we obtain

yl1,t1 (k + 1) = Fl1,t1 ,1(Y1(k), . . . , Yn̄(k − n̄+ 1), ūl1,t1 (k − n̄+ 1), dl1,t1 (k − n̄+ 1)) (7.22)

where Fl1,t1 ,1 = Fl1,t1 .

Step 2: substep 1: Consider all the subsystems Σl1,t1
with l1,t1 ∈ s1 again. Moving one

step forward in (7.22), we obtain

yl1,t1 (k + 2) = Fl1,t1 ,1(Y1(k + 1), . . . ,

Yn̄(k − n̄+ 2), ūl1,t1 (k − n̄+ 2), dl1,t1 (k − n̄+ 2)) (7.23)

In (7.23), we note that the one step future outputs Y1(k+ 1) are all from subsystems Σl1,t1

with l1,t1 ∈ s1. Substituting (7.22) into (7.23), we obtain a new function Fl1,t1 ,2 such that

yl1,t1 (k + 2) = Fl1,t1 ,2(Y1(k), Y2(k), . . . , Yn̄(k − n̄+ 2), Ul1,t1 (k − n̄+ 1),

Dl1,t1
(k − n̄+ 1), ūl1,t1 (k − n̄+ 2), dl1,t1 (k − n̄+ 2)) (7.24)

substep 2: Consider all the subsystems Σl2,t2
with l2,t2 ∈ s2. Moving back (n̄− 2) steps in

(7.21), we obtain

yl2,t2 (k + 1) = Fl2,t2 ,1(Y1(k + 1), . . . ,

Yn̄(k − n̄+ 2), ūl2,t2 (k − n̄+ 2), dl2,t2 (k − n̄+ 2)) (7.25)

where Fl2,t2 ,1 = Fl2,t2 . Similarly as in substep 1, we substitute (7.22) into (7.25) and obtain

a new function Fl2,t2 ,2 such that

yl2,t2 (k + 1) = Fl2,t2 ,2(Y1(k), Y2(k), . . . , Yn̄(k − n̄+ 2), Ul1,t1 (k − n̄+ 1),

Dl1,t1
(k − n̄+ 1), ūl2,t2 (k − n̄+ 2), dl2,t2 (k − n̄+ 2)) (7.26)
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Continuing the procedure as above iteratively, at step n̄ we obtain

yli,ti (k + nli,ti ) = Fli,ti ,nli,ti
(zli,ti (k), uli,ti (k), dli,ti (k)), i = 1, 2, . . . , n̄ (7.27)

where

zli,ti
(k) = [Y1(k), . . . , Yn̄(k), U l1(k − 1), . . . , U ln̄(k − 1), ūli,ti−1(k)]

U li,ti
(k − 1) = [Uli,ti (k − 1), . . . , Uli,ti (k − nli,ti + 1)]

dli,ti
(k) = [Dl1(k − 1), . . . , Dln̄(k − 1), dli,ti (k)]

Dli,ti
(k − 1) = [Dli,ti

(k − 1), . . . , Dli,ti
(k − nli,ti + 1)] (7.28)

Rewrite (7.27) as

yj(k + nj) = φj(zj(k), uj(k)) + d′j(k) (7.29)

where

φj(z(k), uj(k)) = Fj,nj (zj(k), ūj(k),0[nj])

d′j(k) = Fj,nj (zj(k), ūj(k), dj(k))− Fj,nj (zj(k), ūj(k),0[nj]) (7.30)

Since Fj,nj (·) is obtained by iteratively substitution of system function fj,ij (·) which satisfies

Lipschitz condition in Assumption 7.3, the function Fj,nj (·) still satisfies Lipschitz condition

by Lemma 2.4. Therefore, there exists a finite constant d̄j such that |d′j(k)| ≤ d̄j .
So far, since it has been shown that each subsystem Σj can be transformed into an

input-output model without the future states, we are ready to consider the control design

based on this model.

7.2.3 Adaptive NN control design

Let us extend the control design in Chapter 6 to the MIMO systems under study, in which

which there are states and inputs couplings.

First, we consider the tracking error ej(k) = yj(k)− yj,d(k), which is given by

ej(k + nj) = φj(zj(k), uj(k))− yj,d(k + nj) + d′j(k) (7.31)

It is easy to show that

∂(φj(·)− yj,d(k + n))
∂uj(k)

=
∂Fj(·)
∂uj(k)

= gj(·) 6= 0 (7.32)
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Therefore, according to Lemma 2.1, there exists an ideal control input u∗j (zj(k)) such that

φj(zj(k), u∗j (zj(k)))− yj,d(k + nj) = 0, zj(k) = [zj(k), yj,d(k + nj)] (7.33)

Using the ideal control u∗j (zj(k)), we have ej(k) = 0 after nj steps if d′j(k) = 0. Consider

using RBFNN to approximate the ideal control. As mentioned in Section 2.2, there exists

an ideal constant weight vector W ∗j ∈ Rlj as follows

u∗j,nn(zj(k)) = W ∗Tj Sj(zj(k)), Sj(zj(k)) ∈ Rlj

u∗j (zj(k)) = u∗j,nn(zj(k)) + µj(zj(k)), ∀zj ∈ Ωzj (7.34)

where µj(zj(k)) is the NN weight estimation error and Ωzj is a sufficiently large compact

set.

Using RBFNN as an approximator of u∗j (zj(k)), the control is given as

uj(k) = Ŵj(k)Sj(zj(k)) (7.35)

Substituting φj(zj(k), u∗j (zj(k))) into (7.31), we obtain

ej(k + nj) = φj(zj(k), uj(k))− φj(zj(k), u∗j (zj(k))) + d′j(k)

= gj(zj(k), ucj(k))(uj(k)− u∗j (zj(k))) + d′j(k) (7.36)

where

gj(zj(k), ucj(k)) =
∂φj(zj(k), ucj(k))

∂ucj(k)

with ucj(k) ∈ [min{u∗j (zj(k)), uj(k)},max{u∗j (z(k)), uj(k)}]. For the convenience, we intro-

duce the following notations

gj(k) = gj(zj(k), ucj(k)), Sj(k) = Sj(zj(k)), µj(k) = µj(zj(k)) (7.37)

Substituting (7.34) into (7.36) with W̃j(k) = Ŵj(k)−W ∗j , we obtain

ej(k + nj) = gj(k)W̃j(k)Sj(k) + d∗j (k) (7.38)

where

d∗j (k) = −gj(k)µj(k) + d′j(k) (7.39)

and it is trivial to show that

|d∗j (k)| ≤ ḡjµ∗j + d̄j := d̄∗j (7.40)
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From (7.38) we can find that the tracking error constitutes of two parts: the external

disturbance and NN approximation error. The adaptation law of NN weights is presented

as follows where a deadzone is used.

e′j(k) = γj
ej(k)
Gj(k)

Ŵj(k) = Ŵj(k − nj)− γjNj(xj(k))Sj(k − nj)
aj(k)e′j(k)
Dj(k)

∆xj(k) = xj(k + 1)− xj(k) =
aj(k)Gj(k)e′2j (k)

Dj(k)
xj(0) = 0, Gj(k) = 1 + |Nj(xj(k))|

Dj(k) = 1 + ‖Sj(k − nj)‖2|Nj(xj(k))|+ e′
2
j (k)

aj(k) =

{
1 if |e′j(k)| > χj

0 others

Ŵj(tj) = 0[nj ], tj = −nj + 1, . . . , 0 (7.41)

where Nj(xj(k)) is the discrete Nussbaum gain.

Theorem 7.1. Consider the adaptive closed-loop system consisting of system (7.1) under

Assumptions 7.1, 7.2 and 7.3, control (7.35) with NN weights adaptation law (7.41). All

the signals in the closed-loop system are SGUUB and the discrete Nussbaum gain Nj(xj(k))

will converge to a constant ultimately. Denote

Cj = lim
k→∞

Gj(k) (7.42)

then the tracking error satisfies

lim
k→∞

sup{|ej(k)|} < Cjχj
γj

(7.43)

where γj and χj are the tuning factor and the threshold value specified by the designer.

Proof. First, we assume the NN is constructed to cover a large enough compact set Ωj such

that the inputs uj(k) and outputs yj(k) are within the NN approximation range Ωj .

Substituting the error equation (7.38) into the augmented error e′j(k), we obtain

γjW̃j(k − nj)Sj(k − nj) =
1

gj(k − nj)
Gj(k)e′j(k)− 1

gj(k − nj)
γjd
∗
j (k − nj) (7.44)

Choose a positive definite function Vj(k) as

Vj(k) =
nj∑
t=1

W̃j
T

(k − nj + t)W̃j(k − nj + t) (7.45)
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Then, the difference equation of Vj(k) becomes

∆Vj(k) = Vj(k)− Vj(k − 1)

=
γ2
j a

2
j (k)N2

j (xj(k))STj (k − nj)Sj(k − nj)
D2
j (k)

e′
2
j (k)

+2Nj(xj(k))
aj(k)γjW̃j

T
(k − nj)Sj(k − nj)
Dj(k)

e′j(k)

≤ γ2
j

aj(k)Gj(k)e′2j (k)
Dj(k)

+ |
2d̄∗j
g
j
χj
|
aj(k)Gj(k)e′2j (k)

Dj(k)

− 2
gj(k − nj)

Nj(xj(k))
aj(k)Gj(k)e′2j (k)

Dj(k)
(7.46)

By denoting

N ′j(xj(k)) =
1

gj(k − nj)
Nj(xj(k)) (7.47)

we have

∆Vj(k) ≤ cj,1∆xj(k)− 2N ′j(xj(k))∆xj(k) (7.48)

where

cj,1 = γ2
j + |

2d̄∗j
g
j
χj
| (7.49)

Then we have

Vj(k) ≤ −2
k′=k∑
k′=0

N ′j(xj(k
′))∆xj(k′) + cj,1xj(k) + cj,1 (7.50)

Applying Lemma 4.1 to (7.50) we have the boundedness of Vj(k) and xj(k). Noting the

definition of Vj(k), we can conclude the boundedness of ‖Ŵj(k)‖. Since |Nj(xj(k))| =

| supk′≤k{xj(k′)}|, the boundedness of Nj(xj(k)) and Gj(k) = 1+ |Nj(xj(k))| is guaranteed.

In addition, from ∆xj(k) ≥ 0 in (7.41), we can find xj(k) is a nondecreasing sequence. Thus,

we have

lim
k→inf

∆xj(k) = lim
k→0

aj(k)Gj(k)e′2j (k)
Dj(k)

= 0 (7.51)

Applying similar techniques in Section 4.4.3, we see that there exist constants Cj such that

limk→inf Gj(k) = Cj and from the definition of e′j(k) in (7.41) that

lim
k→∞

sup{|ej(k)|} ≤ Cjχj
γj

(7.52)
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Then, the boundedness of output yj(k) is obvious and according to Lemma 2.7, the bound-

edness of states Ξ(k) and control inputs uj(k) is guaranteed.

We have proved that given any initial condition zj(0) ∈ Ω0j , there is a corresponding

bounding compact set Ωzj so that zj(k) ∈ Ωzj ,∀k, if the NN approximation range is ini-

tialized to cover Ωzj . Suppose that the initial condition Ω0j and control parameters to be

chosen are known at the beginning, then the bounding set Ωzj is determined. Then, if

initially the NN approximation range Ωj is constructed to cover the bounding set Ωzj , the

boundedness of all the closed-loop signals is guaranteed. According to Definition 2.11, the

proposed adaptive NN control achieves SGUUB stability. This completes the proof.

7.2.4 Simulation studies

In this section, the following three-input three-output nonlinear plant is used for simulation.

Σ :



Σ1



ξ1,1(k + 1) = f1,1(ξ1,1(k), ξ1,2(k))

ξ1,2(k + 1) = f1,2(ξ1,1(k), ξ1,2(k), ξ2,1(k), ξ1,3(k))

ξ1,3(k + 1) = f1,3(ξ1,1(k), ξ1,2(k), ξ1,3(k), ξ2,1(k), ξ2,2(k), ξ3,1(k),

u1(k), d1(k))

y1(k) = ξ1,1(k)

Σ2


ξ2,1(k + 1) = f2,1(ξ1,1(k), ξ1,2(k), ξ2,1(k), ξ2,2(k))

ξ2,2(k + 1) = f2,2(ξ1,1(k), ξ1,2(k), ξ1,3(k), ξ2,1(k), ξ2,2(k), ξ3,1(k),

ū2(k), d2(k))

y2(k) = ξ2,1(k)

Σ3


ξ3,1(k + 1) = f3,1(ξ1,1(k), ξ1,2(k), ξ1,3(k), ξ2,1(k), ξ2,2(k), ξ3,1(k),

ū3(k), d3(k))

y3(k) = ξ3,1(k)

(7.53)
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where system functions are

f1,1(·) =
ξ2

1,1(k)
1 + ξ2

1,1(k)
+ 0.3ξ1,2(k)

f1,2(·) =
ξ2

1,1(k)
1 + ξ2

1,2(k) + ξ2
2,1(k)

+ 0.1ξ1,3(k)

f1,3(·) =
ξ2

1,3(k)
1 + ξ2

1,2(k) + ξ2
1,3(k) + ξ2

2,1(k) + ξ2
2,2(k)

+ g1(u1(k) + 0.5 sin(u1(k))) + d1(k)

f2,1(·) =
ξ2

2,1(k)
1 + ξ2

1,2(k) + ξ2
2,1(k)

+ 0.2ξ2,2(k)

f2,2(·) =
ξ2

2,1(k)
1 + ξ2

1,1(k) + ξ2
1,2(k) + ξ2

1,3(k) + ξ2
2,1(k) + ξ2

2,2(k) + ξ2
3,1(k)

+g2(u2(k) + 0.5 sin(u1(k))) + d2(k)

f3,1(·) =
ξ2

2,1(k)
1 + ξ2

1,1(k) + ξ2
1,2(k) + ξ2

1,3(k) + ξ2
2,1(k) + ξ2

2,2(k) + ξ2
3,1(k)

+g2(u2(k) + 0.5 sin(u1(k)) cos(u2(k))) + d3(k) (7.54)

and di(k) = 0.1 cos(0.01k) cos(ξi,1(k)), i = 1, 2, 3, and g1 = 10, g2 = ±10,g3 = 10.

The desired reference trajectories are:

yd,1(k) = 0.05 + 0.25 cos(
π

4
kT ) + 0.25 sin(

π

2
kT )

yd,2(k) = 0.05 + 0.25 sin(
π

4
kT ) + 0.25 sin(

π

2
kT )

yd,3(k) = 0.05 + 0.25 sin(
π

4
kT ) + 0.25 cos(

π

2
kT ) (7.55)

with T = 0.01. The initial system states are ξ1,1(0) = 0, ξ1,2(0) = 0, ξ1,3(0) = 0, ξ2,1(0) =

0, ξ2,2(0) = 0, ξ3,1(0) = 0. Three RBFNNs are constructed with l1 = 10, l2 = 11, l3 = 12

neurons. The initial NN weight estimates Ŵ1(0), Ŵ2(0), Ŵ3(0) are chosen to be zero

vectors and S1(0), S2(0), S3(0) are chosen with each element being a random number

with amplitude less than 0.2. The tuning factors and the threshold values are chosen as

γ1 = 1, γ2 = 0.5, γ3 = 0.2 and λ1 = 0.001, λ2 = 0.001, λ3 = 0.001.

To demonstrate the designed NN control is insensitive to the control direction, the

simulation is carried out twice with both negative and positive g2. Similar to simulation

in Chapter 6, we will see that the discrete Nussbaum gain reverse its direction if initially

the NN weights adaptation is in the wrong direction. First, let us choose g1 = 10, g2 =

−10, g3 = 10, for which the simulation results are presented in Figures 7.1(a), 7.2(a) and

7.3(a). For subsystem Σ2, it can be seen that initially the output goes to an opposite

direction compared with the reference signal, and after the discrete Nussbaum gain turns to
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be negative at about the 50th step, the output tracking performance becomes to be much

better. Second, we change the value of g2 from −10 to 10 and carry out the simulation

again. With employment of the same control law and same NN weights adaptation law, the

simulation results are shown in Figures 7.1(b),7.2(b) and 7.3(b). It can be seen that the

discrete Nussbaum gains are always positive and the initial tracking performance is better

than the results in Figure 7.1(a). For both cases, we see that after the initial stage, good

tracking performance is guaranteed though there there are couplings of states and inputs

among subsystems.

Furthermore, to demonstrate the NN learning performance, we define the following NN

learning error:

ej,nn(k) = φj(zj(k), uj(k))− yj,d(k + nj) (7.56)

as the measurement of NN learning performance. According to (7.33) and (7.34), the better

the NN approximation is (the smaller the NN approximation error uj(k) − u∗j (k) is), the

smaller ej,nn(k) is. If uj(k)− u∗j (k) = 0, we have ej,nn(k) = 0. The NN learning errors are

demonstrated in Figure 7.4. It can be found that the defined NN learning error ej,nn(k) is

ultimately bounded in a neighborhood of zero.

7.3 MIMO Nonlinear NARMAX Systems

In Section 7.2, we have studied adaptive NN control of block triangular nonaffine discrete-

time MIMO systems. In this Section, we investigate general nonaffine NARMAX MIMO

systems. By assuming the inverse control gain matrix has an either positive definite or

negative definite symmetric part, the adaptive tuning of NN weights for the NARMAX

MIMO system can be simplified to as similar as that for SISO system with unknown control

direction. Based on this observation, we only restrict on the inverse control gain matrix of

the system instead of assuming the existence of an orthogonal matrix [159] for tuning.

7.3.1 Problem formulation

Consider p-input and p-output nonlinear discrete-time systems described in the NARMAX

model as follows

y(k + τ) = F (Y (k), Uk−1(k), u(k), Dk−1(k), d̄(k)) + d(k + τ − 1) (7.57)

where τ is the system delay, F (·) ∈ Rp is unknown smooth vector valued system function,

u(k) = [u1(k), · · · , up(k)]T ∈ Rp and y(k) = [y1(k), · · · , yp(k)]T ∈ Rp are the system inputs
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7.3 MIMO Nonlinear NARMAX Systems

and outputs, respectively, d(k) = [d1(k), · · · , dp(k)]T ∈ Rp denotes the external disturbance

which is bounded by an unknown constant db > 0, i.e., ‖d(k)‖ ≤ db, and the vectors Y (k),

Uk−1(k), Dk−1(k), and d̄(k) are defined as

Y (k) = [y1(k), · · · , y1(k − n1 + 1), y2(k), · · · ,
y2(k − n2 + 1), · · · , yp(k), · · · , yp(k − np + 1)]T

Uk−1(k) = [u1(k − 1), · · · , u1(k −m1), u2(k − 1), · · · ,
u2(k −m2), · · · , up(k − 1), · · · , up(k −mp)]T

Dk−1(k) = [d1(k − 1), · · · , d1(k − t1 + 1), d2(k − 1), · · · ,
d2(k − t2 + 1), · · · , dp(k − 1), · · · , dp(k − tp + 1)]T

d̄(k) = [d(k + τ − 2), · · · , d(k)]T , if τ ≥ 2

with ni denotes the length of the ith outputs, mi the length of the ith inputs, and ti the

length of the ith disturbance, i = 1, · · · , p.

Assumption 7.4. The vector valued system function F (Y (k), Uk−1(k), Dk−1(k), d̄(k)) sat-

isfies Lipschitz condition w.r.t. Dk−1(k) and d̄(k), i.e., there exists Lipschitz constants L1

and L2 such that

‖F (Y (k), Uk−1(k), u(k), Dk−1(k), d̄(k))− F (Y (k), Uk−1(k), u(k), 0, 0)‖

≤ L1‖Dk−1(k)‖+ L2‖d̄(k)‖

Assumption 7.5. The control gain matrix G(k) = ∂F (·)
∂u(k) ,∀k ≥ 0, is a full rank matrix,

and its inverse, G−1(k), has an either positive definite or negative definite symmetric part,

GIS(k) = G−1(k)+G−T (k)
2 . In addition, the eigenvalues of GIS(k) are assumed to be bounded.

Remark 7.1. It should be pointed that matrices G(k) and G−1(k) are general real matrices

and they are not required to be symmetric.

Remark 7.2. Assumption 7.5 is quite looser than Assumption 4 in [159], which requires

existence of an orthogonal matrix Q(k) multiplying G−1(k) to guarantee the eigenvalues of

the product matrix are all positive.

Assumption 7.6. System (7.57) is bounded-output-bounded-input (BOBI).
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7.3.2 Control design and stability analysis

Define error vector e(k) = y(k)− yd(k) = [e1(k), e2(k), . . . , ep(k)]T . From (7.57)) the error

dynamics is

e(k + τ) = F (Y (k), Uk−1(k), u(k), Dk−1(k), d̄(k))− yd(k + τ) + d(k + τ − 1)

= F (Y (k), Uk−1(k), u(k), 0, 0)− yd(k + τ)

+∆F (k) + d(k + τ − 1) (7.58)

where

∆F (k) = F (Y (k), Uk−1(k), u(k), Dk−1(k), d̄(k)) − F (Y (k), Uk−1(k), u(k), 0, 0)

According to the boundedness of disturbanceDk−1(k) and d̄(k), and Assumption 7.4, ∆F (k)

is also bounded. From Assumption 7.5, the control gain matrix G(k) is nonsingular, ∀k ≥ 0.

According to implicit function theorem, there exists a unique and smooth desired control

u∗(k) = αc(Y (k), Uk−1(k), yd(k + τ)) such that

F (Y (k), Uk−1(k), u∗(k), 0, 0)− yd(k + τ) = 0 (7.59)

where αc(·) is an implicit function asserted by Lemma 2.1.

Consider employing HONN in Section 2.2 to approximate the ideal u∗(k) as follows

u∗(k) = W ∗TS(z̄(k)) + µ(k) (7.60)

where z̄(k) = [Y T (k), UTk−1(k), yTd (k + τ)]T ∈ Ωz ⊂ Rq with q =
∑p

i=1(ni + mi + 1) and

µ(k) is the bounded NN approximation error vector satisfying ‖µ(k)‖ ≤ µ∗, which can be

reduced by increasing the number of NN nodes. Then the adaptive NN control u(k) is

constructed as

u(k) = Ŵ T (k)S(z̄(k)) (7.61)

where Ŵ (k) ∈ Rl×q and S(z̄(k)) ∈ Rl. The NN weight adaptation law is given as

Ŵ (k) = Ŵ (k − τ)− γN(x(k))S(z̄(k − τ))a(k)eT (k)/D(k)

∆x(k) = a(k)γeT (k)e(k)/D(k), x(0) = 0

D(k) = (1 + |N(x(k))|2)(1 + ‖S(z̄(k − τ))‖2 + ‖e(k)‖2) (7.62)

a(k) =

{
1, if ‖e(k)‖/(1 + |N(x(k))|) > χ

0, otherwise
(7.63)

where γ > 0 and χ > 0 can be arbitrary positive constants, and N(·) is discrete Nussbaum

gain defined in Section 4.2.
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Remark 7.3. Like in Section 6.6, deadzone (7.63) is introduced in the NN weight adapta-

tion law (7.62) to deal with external disturbance and NN approximation error.

Theorem 7.2. Consider the closed-loop system consisting of system (7.57), adaptive NN

control (7.61), and NN weights adaptation law (7.62)-(7.63). All signals in the closed-

loop system are SGUUB, the discrete Nussbaum gain N(x(k)) will converge to a constant

ultimately, and the tracking error satisfies limk→∞ ‖e(k)‖ < Cχ, with C = limk→∞(1 +

|N(x(k))|).
Proof. The proof is proceeded in two parts: Firstly, we assume inputs and outputs are

within Ωz such that NN approximation holds; Secondly, given any initial condition, we

show that there exists a determined compact set such that if initially the NN approximation

range covers this set then the inputs and outputs are guaranteed to be within Ωz without

priori assumption in the first step.

Using mean value theorem, (7.58) can be written as

e(k + τ) = F (Y (k), Uk−1(k), u∗(k), 0, 0)− yd(k + τ)

+∆F (k) +Gξ(k)[u(k)− u∗(k)] + d(k + τ − 1) (7.64)

where Gξ(k) = ∂F (·)
∂u(k)

∣∣∣
uξ(k)

and uξ(k) is a point of line L(u(k), u∗(k)) = {ξ | ξ = θu(k) + (1−

θ)u∗(k), 0 ≤ θ ≤ 1}. Considering (7.59)-(7.61) and (7.64), we obtain

e(k + τ) = Gξ(k)[W̃ T (k)S(z̄(k))− µ(k)] + ∆F (k) + d(k + τ − 1) (7.65)

where W̃ (k) = Ŵ (k)−W ∗ is the NN weights estimation error.

According to Assumption 7.5, there exist two positive constants ḡ and g such that

gI ≤ 1
2

(G−1
ξ (k) +G−Tξ (k)) ≤ ḡI, or − ḡI ≤ 1

2
(G−1

ξ (k) +G−Tξ (k)) ≤ −gI (7.66)

where I is the identity matrix. It implies there exists a sequence g(k) satisfying g ≤ |g(k)| ≤
ḡ such that

eT (k)G−1
ξ (k − τ)e(k) = eT (k)

G−1
ξ (k − τ) +G−Tξ (k − τ)

2
e(k) = g(k)eT (k)e(k) (7.67)

From (7.65), we have

W̃ T (k − τ)S(z̄(k − τ)) = G−1
ξ (k − τ)e(k) + d∗(k − 1) (7.68)

where

d∗(k − 1) = −G−1
ξ (k − τ)[∆F (k − τ) + d(k − 1)] + µ(k) (7.69)
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According to the boundedness of d(k), ∆F (k− τ) and µ(k), and Assumption 7.5, d∗(k− 1)

is bounded, i.e., ‖d∗(k − 1)‖ ≤ d∗b , where d∗b an unknown constant.

Choose a positive definite Lyapunov function as follows:

V (k) =
τ∑
j=1

tr{W̃ T (k − τ + j)W̃ (k − τ + j)} (7.70)

Considering (7.68) and (7.67), we have

tr{2a(k)γN(x(k))
W̃ T (k − τ)S(z̄(k − τ))eT (k)

D(k)
}

= 2a(k)γN(x(k))
[
g(k)

eT (k)e(k)
D(k)

+
eT (k)d∗(k − 1)

D(k)

]
(7.71)

Then, the difference of V (k) along (7.68) is

∆V (k) = V (k)− V (k − 1)

= tr{W̃ T (k)W̃ (k)− W̃ T (k − τ)W̃ (k − τ)}

= tr{[W̃ (k)− W̃ (k − τ)]T [W̃ (k)− W̃ (k − τ)] + 2W̃ T (k − τ)[W̃ (k)− W̃ (k − τ)]}

which together with NN weights update law (7.62) leads to

∆V (k) = a(k)γ2N2(x(k))
ST (z̄(k − τ))S(z̄(k − τ))eT (k)e(k)

D2(k)

−tr{2a(k)γN(x(k))
W̃ T (k − τ)S(z̄(k − τ))eT (k)

D(k)
}

= a(k)γ2N2(x(k))
ST (z̄(k − τ))S(z̄(k − τ))eT (k)e(k)

D2(k)

−2γa(k)
[
g(k)N(x(k))

eT (k)e(k)
D(k)

+
N(x(k))eT (k)d∗(k − 1)

D(k)

]
(7.72)

From (7.63), we know a(k)‖d∗(k − 1)‖ ≤ a(k) ‖e(k)‖
(1+|N(x(k))|)χd

∗
b , which implies that

|a(k)N(x(k))eT (k)d∗(k − 1)| ≤ a(k)
d∗b
χ
eT (k)e(k) (7.73)

Considering N2(x(k))ST (z̄(k − τ))S(z̄(k − τ)) ≤ D(k) and noting (7.73), we have

∆V (k) ≤ c1
a(k)γeT (k)e(k)

D(k)
− 2g(k)N(x(k))

γa(k)eT (k)e(k)
D(k)

with c1 = γ + 2d∗b/χ. Considering ∆x(k) defined in (7.62), we obtain

∆V (k) ≤ c1∆x(k)− 2g(k)N(x(k))∆x(k) (7.74)
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Performing similar techniques used in Section 6.6 (proof of Theorem 7.2) and according to

Lemma 4.1, we conclude the boundedness x(k) and V (k) and furthermore the boundedness

of ‖Ŵ (k)‖ and |N(x(k))|. In addition, we have

lim
k→∞

sup{ ‖e(k)‖
1 + |N(x(k))|

} ≤ χ (7.75)

If we denote C = limk→∞(1 + |N(x(k))|), the tracking error e(k) satisfies limk→∞ ‖e(k)‖ <
Cχ. Then, the boundedness of outputs y(k) is obvious. The boundedness of u(k) is obtained

from Assumption 7.6.

For discrete-time system, the boundedness of y(k) and u(k) implies there is a largest

bounding set depending on initial condition such that it includes y(k) and u(k). If initially

the NN approximate range Ωz is constructed to cover this set, then NN approximation will

always hold, such that a priori assumption the NN approximation range is large enough

can be replaced by that NN approximation range covers a specified set depending on initial

condition. According to the definition of SGUUB (given any initial condition, there is a

corresponding control that can guarantee the closed-loop stability), the proof is completed.

7.4 Summary

In this Chapter, the control designs in Chapter 6 has been extended to nonaffine MIMO

system in block-triangular form and NARMAX form. In the output feedback control design

for block triangular systems, the assumption of equal subsystem orders [158] has been

removed and the coupling terms are assumed in every equation of each subsystem rather

than only in the last equation [157, 158]. For MIMO systems in NARAMX form, we have

relaxed the assumption on the control gain matrix [159] by incorporate discrete Nussbaum

gain into the control design. SGUUB stability is achieved for the closed-loop adaptive NN

controlled systems.
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Figure 7.1: System output and reference trajectory
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Chapter 8

Conclusions and Future Work

8.1 Conclusion

Part I of the thesis has been dedicated to model based adaptive control of SISO/MIMO

strict-feedback nonlinear systems in LIPs form. Part II of the thesis has been dedicated to

adaptive NN control of SISO/MIMO systems with general unknown nonlinearities in pure-

feedback and NARMAX forms. In this Chapter, the results of the research work conducted

in this thesis are summarized and the contributions made are reviewed. Suggestions for

future work are also presented.

In Chapter 3, a framework of adaptive control design using predicted future states

has been developed for nonlinear LIPs systems in strict-feedback form. Then, the study

focused on how to completely compensate for the effect of nonparametric uncertainties in

adaptive control design such that asymptotical tracking performance can be achieved. First,

we studied the matched nonparametric uncertainties which appear in the control range.

An auxiliary output including both parametric and nonparametric uncertainties as well as

predicted future states has been defined. Then, its estimate has been constructed by using

states information in previous steps such that the effect of the nonparametric uncertainties

can be ultimately canceled. Next, compensation technique for unmatched nonparametric

uncertainties out of control range has been studied in the future states prediction stage

by introducing auxiliary states and their estimates in the future states prediction stage.

Deadzone technique has been used in the parameter estimates update laws to make them

robust to uncertain nonlinearities and the threshold of the deadzone is made to converge to

zero. The synthesized adaptive control guarantees the boundedness of all the closed-loop

signals. As the estimates of the auxiliary output and auxiliary states go to their true values
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ultimately, asymptotical output tracking is achieved.

In Chapter 4, we have studied how to remove the a priori assumption on the knowledge

of the control directions, namely, the signs of the control gains, in adaptive control design

for strict-feedback systems. By incorporating discrete Nussbaum gain, the adaptive control

become insensitive to the control directions. In addition, a priori requirement on the lower

and upper bounds of the control gains has also been removed. First, the ideal case when the

systems only subject to parametric uncertainties has been studied. It has been rigourously

proved that the proposed control guarantees the boundedness of all the closed-loop signals

and the output tracking error converge to zero. Next, to make the closed-loop system ro-

bust in the presence of external disturbance in the control range, deadzone technique has

been used in the control parameter update law such that the boundedness of all the the

closed-loop signals still hold and the output tracking error is bounded in a neighborhood of

zero. There is no requirement of the amplitude of the external disturbance for construction

of the deadzone. At last, adaptive control design for strict-feedback systems with both un-

known control directions and nonparametric uncertainties has been studied. The developed

adaptive control is able to completely compensate for the nonparametric uncertainty while

at same time to deal with unknown control directions.

In Chapter 5, we have extended adaptive control designs developed in Chapters 3 and

4 to more general systems with input constraint and multivariable. In the first part, we

have studied systems with both unknown control directions and hysteresis type input con-

straint. Discrete-time Prandtl-Ishlinskii (PI) model is used to describe the hysteresis. By

combining discrete Nussbaum gain and PI model, adaptive control has been developed to

achieve closed-loop global stability and to make output tracking error within a neighbor-

hood around zero ultimately. In the second part, adaptive control has been investigated

for block-triangular MIMO nonlinear systems with uncertain couplings of delayed states

among subsystems in strict-feedback form. Future states prediction for each subsystem is

carried out to facilitate adaptive control design and auxiliary outputs are introduced for

compensation of the uncertain nonlinear couplings. By using Lyapunov method and or-

dering signals growth rate, it is rigourously established that all the signals in the whole

closed-loop systems are bounded and the output tracking errors asymptotically converge to

zeros.

In Chapters 6, adaptive NN control has been studied for SISO nonaffine systems in

both pure-feedback and NARMAX forms. To solve the difficulty of nonaffine appearance

of control input, implicit function theory has been utilized to assert the existence of an

ideal control. Discrete Nussbaum gain has been further extended to deal with the time
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varying unknown control gains. Based on the future states prediction functions established

in Lemma 2.5, state feedback NN control has been designed for pure-feedback systems which

is transformed into a state-output form such that only a single NN is required for the control

design. Thereafter, it is established that the pure-feedback system is transformable to a

class of NARMAX system. Then, a unified output feedback NN control has been developed

for both pure-feedback systems and NARMAX system based output prediction approach.

In Chapter 7, we have studied adaptive NN control of nonaffine MIMO system in block-

triangular form and NARMAX form. The block triangular systems studied are of couplings

in every equation of each subsystem in pure-feedback form rather than only in the last

equation of each subsystem [157,158]. By further exploring the properties of block-triangular

form, the couplings of inputs and states among subsystems have been decoupled. For MIMO

systems in NARAMX form, our adaptive NN control incorporate discrete Nussbaum gain

technique to relax the requirement on the control gain matrix.

8.2 Future Research

In this section, some research topics are proposed for further investigation:

• Discrete-time adaptive control of nonlinear systems with varying parameters.

The discrete-time adaptive control presented in this thesis studies nonlinear strict-feedback

systems with constant unknown parameters. In practice, system parameter may change

under different conditions such that it is worth to study discrete-time adaptive control in

the presence of varying parameters. Some researches have been carried out in discrete-time

for slowly time varying case [56,60]. Adaptive control for systems with time periodic varying

parameters was studied in continuous-time [182] and recently, it has been investigated in

discrete-time [183] using lifting approach. It may be not possible to design discrete-time

adaptive control for arbitrary time varying parameters as pointed in [60], but it is worthwhile

to explore more general conditions of varying parameters for discrete-time adaptive control

design, such as spatial periodic varying parameters [184].

• Discrete-time adaptive control of systems with nonlinear parameterizations.

The systems studied in this thesis are assumed to be in LIPs form for adaptive control

design. Unlike in continuous-time, there are very few results in discrete-time studying

nonlinear parameterized systems. Recently, convex/concave nonlinear parametrization has
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been studied in [185, 186] by introducing the min-max strategy developed in continuous-

time [90] for adaptive control of simple first order nonlinear discrete-time systems. It is

meaningful to explore alternative adaptive control approach for high order nonlinear systems

with more general types of nonlinear parameterizations.

• Enhancement of NN learning ability to improve control performance.

In this thesis, much effort has been spent to guarantee the stability of the adaptive NN con-

trolled system, but few discussion is made on the possible way to enhance NN learning ability

for better control performance. In the literature, there are some explorations to improve

NN control performance, such as employment of self structuring NN [142], incorporation

of reinforcement learning into NN control design [99]. It is an interesting and challenging

problem to design smarter NN control approaches for uncertain nonlinear systems such that

control performance can be further enhanced.
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Appendix A

Long Proofs

Appendix 2.1: Proof of Proposition 2.1

Proof. Only proof of properties (ii) and (viii) are given below. Proofs of other properties

are easy and are thus omitted here.

(ii) From Definition 2.3, we see that ‖o[x(k)]‖ ≤ α(k) maxk′≤k+τ ‖x(k′)‖, ∀k > k0, τ ≥ 0,

where limk→∞ α(k) → 0. It implies that there exist constants k1 and ᾱ1 such that α(k) ≤
ᾱ1 < 1, ∀k > k1. Then, we have

‖x(k + τ) + o[x(k)]‖ ≤ ‖x(k + τ)‖+ ‖o[x(k)]‖ ≤ (1 + ᾱ1) max
k′≤k+τ

‖x(k′)‖,∀k > k1

which leads to x(k + τ) + o[x(k)] = O[x(k + τ)]. On the other hand, we have

max
k1<k′≤k+τ

‖x(k′)‖ ≤ ‖ max
k1<k′≤k+τ

x(k′) + o[x(k)]‖+ ‖o[x(k)]‖

≤ ‖ max
k1<k′≤k+τ

x(k′) + o[x(k)]‖+ ᾱ1 max
k1<k′≤k+τ

{‖x(k′)}

and

max
k1<k′≤k+τ

‖x(k′)‖ ≤ 1
1− ᾱ1

‖ max
k1<k′≤k

x(k′) + o[x(k′)]‖,∀k > k1

which implies x(k+τ) = O[x(k)+o[x(k)]]. Then, it is obvious that x(k+τ)+o[x(k)] ∼ x(k).

(viii) First, let us suppose that x1(k) is unbounded and define ik = arg maxi≤k ‖x1(i)‖.
Then, it is easy to see that ik → ∞ as k → ∞. Due to limk→∞ α(k) → 0, there exist

a k2 such that α(ik) ≤ 1
2 and ‖o[x1(k)]‖ ≤ 1

2 maxk′≤k ‖x1(k′)‖, ∀k > k2. Considering

x2(k) = x1(k)+o[x1(k)], we have ‖x2(ik)‖ = ‖x1(ik)+o[x1(ik)]‖ ≥ ‖x1(ik)‖−‖o[x1(ik)]‖ ≥
1
2‖x1(ik)‖, ∀k > k2 which leads to ‖x1(ik)‖ ≤ 2‖x2(ik)‖, ∀k ≥ k2. Then, the unboundedness

of x1(k) conflicts with limk→∞ ‖x2(k)‖ = 0. Therefore, x1(k) must be bounded. Considering

that α(k)→ 0, we have

0 ≤ ‖x1(k)‖ ≤ ‖x1(k) + o[x1(k)]‖+ ‖o[x1(k)]‖ ≤ ‖x2(k)‖+ α(k) max
k′≤k
‖x1(k′)‖ → 0
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which implies limk→∞ ‖x1(k)‖ = 0.

Appendix 2.2: Proof of Lemma 2.2

Proof. The proof has been given in [59] for m = 1 and n = 1 and it is easy to extend the

proof when m and n are larger than one at follows:

We will prove it by seeking a contradiction in a similar way as in [59]. Firstly, let us

suppose that

¯limk→∞‖X(k)−X(lk)‖ = ε > 0 (A.1)

where ¯lim denote the upper limit. Then we can take fromX(k) a subsequence {X(kj), j ≥ 1}
such that

‖X(kj)−X(lkj )‖ >
ε

2
, kj − lkj ≥ τ

According to the definition in (2.1), we have

‖X(kj)−X(k′)‖ > ε

2
, ∀0 ≤ k′ ≤ kj − τ

Noting that ki ≤ kj − τ , i < j, we have ‖X(kj)−X(ki)‖ > ε
2 , or equivalently

‖X(kj)−X(ki)‖ >
ε

2
, i 6= j

which means that {X(kj), j ≥ 1} is unbounded. This contradicts to sup{‖X(k)‖} < ∞.

Consequently (A.1) cannot hold and thus we have

limk→∞‖X(k)−X(lk)‖ = ¯limk→∞‖X(k)−X(lk)‖ = 0

where lim denotes the lower limit. Then, we have

lim
k→∞

‖X(k)−X(lk)‖ = 0

This completes the proof.

Appendix 2.3: Proof of Lemma 2.5

Proof. It is noted in system (2.3) that among the future states at the (k+1)th step, only the

last state ξn(k+1) depends on the control input, while other (n−1) states are independent

of u(k). Therefore, they can be predicted at the kth step provided that the system dynamics

is known exactly. This implies that these states are SDFSs. The prediction functions of one

step ahead states are as follows:

ξ̄i(k + 1) =


ξ1(k + 1)

...

ξi(k + 1)

 =


p1,1(ξ̄2(k))

...

p1,i(ξ̄i+1(k))

 := P1,i(ξ̄i+1(k)), i = 1, 2, . . . , n− 1 (A.2)
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where

p1,i(ξ̄i+1(k))
def
= fi(ξ̄i(k), ξi+1(k)), i = 1, 2, . . . , n− 1

According to Assumption 6.2, it can be checked that

∂p1,i(ξ̄i+1(k))
∂ξi+1(k)

= g1,i(·), |g1,i(·)| > 0 (A.3)

Moving one step forward in equation (A.2) and using the predicted states vector in

(A.2), we see that the first (n − 2) states at the (k + 2)th step are still independent of

control u(k) and thus, they are SDFSs.

ξ̄i(k + 2) =


ξ1(k + 2)

...

ξi(k + 2)

 =


p1,1(ξ̄2(k + 1))

...

p1,i(ξ̄i+1(k + 1))



=


p1,1(P1,2(ξ̄3(k)))

...

p1,i(P1,i+1(ξ̄i+2(k)))

 =


p2,1(ξ̄3(k))

...

p2,i(ξ̄i+2(k))

 := P2,i(ξ̄i+2(k))

i = 1, 2, . . . , n− 2 (A.4)

where

p2,i(ξ̄i+2(k))
def
= p1,i(P1,i+1(ξi+2(k))), i = 1, 2, . . . , n− 2 (A.5)

Continuing the procedure above iteratively, after (n − 2) steps, we note that the first

state at the (k + n− 1)-th step can be predicted by the states at the kth step as follows:

ξ1(k + n− 1) = p1,1(Pn−2,2(ξ̄n(k))) := pn−1,1(ξ̄n(k)) (A.6)

where vector valued function Pj,i(ξ̄j+i(k)), j = 3, 4, . . . , n− 2, i = 1, 2, . . . n− j, are defined

consistently via the above procedure. Then, we see that ξ1(k + n− 1) is still a SDFS.

For consistency, we denote

ξ̄1(k + n− 1) = pn−1,1(ξ̄n(k)) := Pn−1,1(ξ̄n(k)) (A.7)

In addition, according to Lemma 2.4, we see that the composite functions Pj,i(·), i =

1, 2, . . . , n− 1, j = 1, 2, . . . , n− i, are still Lipschitz functions. This completes the proof.

Appendix 2.4: Proof of Lemma 2.6

Proof. The first equation of system (2.3) can be written as follows according to the mean
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value theorem

y(k + 1) = f1(ξ1(k), ξ2(k))

= f1(y(k), 0) + g1,1(y(k), ξc2(k))ξ2(k) (A.8)

where ξc2(k) ∈ [min{0, ξ2(k)},max{0, ξ2(k)}] and the control gain functions

g1,1(·) =
∂f1(ξ1(k), ξ2(k))

∂ξ2(k)

has been assumed to be bounded. Due to function f1(·) satisfies Lipschitz condition, we

have

ξ̄2(k) = O[y(k + 1)], y(k + 1) = O[ξ̄2(k)] (A.9)

Similarly, the second equation of system (2.3) can be written as

ξ2(k + 1) = f2(y(k), ξ2(k), ξ3(k)) = f2(y(k), ξ2(k), 0)

+g1,2(y(k), ξ2(k), ξc3(k))ξ3(k) (A.10)

where ξc3(k) ∈ [min{0, ξ3(k)},max{0, ξ3(k)}] and g1,2(·) = ∂f2(y(k),ξ2(k),ξ3(k))
∂ξ3(k) has also been

assumed to be bounded. Substituting equation (A.10) into (A.8) yields

y(k + 2) = f1(y(k + 1), 0) + g1,1(y(k + 1), ξc2(k + 1))

×[f2(y(k), ξ2(k), 0) + g1,2(y(k), ξ2(k), ξc3(k))ξ3(k)] (A.11)

Noting the boundedness of g1,1(·) and g1,2(·), the Lipschitz condition of functions f1(·) and

f2(·), equations (A.9) and (A.11), we have

ξ̄3(k) = O[y(k + 2)], y(k + 2) = O[ξ̄3(k)]. (A.12)

Continuing the above procedure, we have

ξ̄i(k) = O[y(k + i− 1)], y(k + i− 1) = O[ξ̄i(k)] (A.13)

which results in ξ̄i(k) ∼ y(k + i− 1). From the last equation in (2.3), one has

|u(k)| = |ξn(k + 1)− fn(ξ̄n(k), 0, d(k))−O[ξ̄n(k)]
g1,n(ξ̄n(k), uc(k), d(k))

|

= O[ξn(k + 1)] +O[ξ̄n(k)]

= O[y(k + n)] (A.14)

191



where uc(k) ∈ [min{0, u(k)},max{0, u(k)}] and g1,n(·) has been assumed to be bounded.

This completes the proof.

Appendix 2.5: Proof of Lemma 2.7

Proof. According to Definition 2.9, all the subsystems Σl, l = 1, 2, . . . , n, are divided into n̄

groups, with each group denoted by a set Si, 1 ≤ i ≤ n̄. Considering Lipschitz properties of

systems functions and bounded control gains in system (2.5), we apply similar techniques

used for the proof of Lemma 2.6 in Appendix 2.4 to analyze signal orders in the followings.

Step 1: Consider the first equations of subsystems Σj1 ∈ S1 (j1 ∈ s1), i.e., ij1 = 1.

Because ij1 −mj1l = 1 + nl − n̄ ≤ 0, ∀l /∈ s1, only states vectors ξ̄j1,1(k) from subsystems

Σj1 ∈ S1 (j1 ∈ s1), are included in the first equations (ij1 = 1) of subsystem Σj1 . Then, it

is easy to show that

yj1(k + 1) =
∑
j1∈s1

O[yj1(k)] +O[ξj1,2(k)] and ξj1,2(k) = O[yj1(k + 1)] +
∑
l∈s1

O[yl(k)] (A.15)

Together with Proposition 2.1 and ξ̄j1,2(k) ∼ O[ξj1,1(k)] +O[ξj1,2(k)], we have∑
j1∈s1

O[ξj1,1(k)] ∼
∑
j1∈s1

O[yj1(k)],
∑
j1∈s1

O[ξ̄j1,2(k)] ∼
∑
j1∈s1

O[yj1(k + 1)] (A.16)

Step 2: sub-step 1 -Consider the second equations of subsystems Σj1 ∈ S1 (j1 ∈ s1),

i.e., ij1 = 2. Because ij1 −mj1l = 2 + nl − n̄ ≤ 0, ∀l /∈ s1 ∪ s2, only states vector ξ̄j1,2(k)

from subsystems Σj1 ∈ S1 (j1 ∈ s1) and ξj2,1(k) from subsystems Σj1 ∈ S2 ( j1 ∈ s2), are

included in the second equations (ij1 = 2) of subsystems Σj1 ∈ S1. Thus, using (A.15) we

have

ξj1,2(k + 1) =
∑
j1∈s1

O[ξ̄j1,2(k)] +
∑
j2∈s2

O[yj2(k)] +O[ξj1,3(k)]

=
∑
j1∈s1

O[yj1(k + 1)] +
∑
j2∈s2

O[yj2(k)] +O[ξj1,3(k)] and

ξj1,3(k) =
∑
j1∈s1

O[ξ̄j1,2(k)] +
∑
j2∈s2

O[yj2(k)] +O[ξj1,2(k + 1)]

=
∑
j1∈s1

O[yj1(k + 1)] +
∑
j2∈s2

O[yj2(k)] +O[ξj1,2(k + 1)] (A.17)

which together with (A.16), Proposition 2.1 and ξ̄j1,3(k) ∼ O[ξj1,3(k)] +O[ξ̄j1,2(k)] leads to∑
j1∈s1

O[ξ̄j1,3(k)] ∼
∑
j1∈s1

O[yj1(k + 2)] +
∑
j2∈s2

O[yj2(k)] (A.18)

sub-step 2 -Consider the first equations of subsystems Σj2 ∈ S2 (j2 ∈ s2), i.e., ij2 = 1.

Because ij2−mj2l = 2+nl−n̄ ≤ 0 for l /∈ s1∪s2, only state vectors ξ̄j1,2(k) from subsystems
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Σj1 ∈ S1 (j1 ∈ s1), and ξ̄j2,1(k) from subsystems Σj2 ∈ S2 (j2 ∈ s2), are included in the

first equations (ij2 = 1) of subsystems Σj2 ∈ S2. Thus, we have

yj2(k + 1) =
∑
j1∈s1

O[ξ̄j1,2(k)] +
∑
j2∈s2

O[yj2(k)] +O[ξj2,2(k)] and

ξj2,2(k) =
∑
j1∈s1

O[ξ̄j1,2(k)] +
∑
j2∈s2

O[yj2(k)] +O[yj2(k + 1)] (A.19)

which together with (A.16), Proposition 2.1 and

ξ̄j2,2(k) = O[ξj2,2(k)] +O[ξj2,1(k)],
∑
j2∈s2

O[ξ̄j2,1(k)] ∼
∑
j2∈s2

O[yj2(k)]

implies ∑
j2∈s2

O[ξ̄j2,2(k)] ∼
∑
j1∈s1

O[yj1(k + 1)] +
∑
j2∈s2

O[yj2(k + 1)] (A.20)

Step l, 3 ≤ l ≤ n̄ − 1: Consider the lth equations of Σj1 ∈ S1 (j1 ∈ s1), the (l − 1)th

equations of Σj2 ∈ S2 (j2 ∈ s2), . . ., and the first equations of Σjl ∈ Sl, (jl ∈ sl). Following

the procedure above and considering
∑
jl∈sl

O[ξ̄jl,l(k)] ∼
∑
jl∈sl

O[yjl(k)], we have

∑
j1∈s1

O[ξ̄j1,l+1(k)] ∼
∑
j1∈s1

O[yj1(k + l)] +
∑
j2∈s2

O[yj2(k + l − 2)] . . .+
∑
jl∈sl

O[yjl(k)]

∑
j2∈s2

O[ξ̄j2,l(k)] ∼
∑
j2∈s2

O[yj2(k + l − 1)] +
∑
j1∈s1

O[yj1(k + l − 1)]

+
∑
j3∈s3

O[yj3(k + l − 3)] + . . .+
∑
jl∈sl

O[yjl(k)]

...∑
jl∈sl

O[ξ̄jl,2(k)] ∼
∑
jl∈sl

O[yjl(k + 1)] +
∑
j1∈s1

O[yj1(k + l − 1)]

+
∑
j2∈s2

O[yj2(k + l − 2)] + . . .
∑

jl−1∈s3

O[yjl−1
(k + 1)] (A.21)

For subsystems Σjn̄ ∈ Sn̄ (jn̄ ∈ sn̄), the system order is one (njn̄ = 1) and obviously we

have ξ̄jn̄,1(k) = O[yjn̄(k)]. In summary of the analysis above and using Proposition 2.1, we

have

n̄∑
l=1

∑
jl∈sl

O[ξ̄jl,njl−i+1(k)] ∼
n̄∑
l=1

∑
jl∈sl

O[yjl(k + njl − i)], 1 ≤ i ≤ n̄ (A.22)
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where we let ξ̄jl,njl−i+1(k) = yjl(k + njl − i) = 0, if njl − i+ 1 ≤ 0. The equation above is

equivalent to

n∑
l=1

O[ξ̄l,ij−mjl(k)] ∼
n∑
l=1

O[yl(k + ij −mjl − 1)], 1 ≤ ij ≤ nj , 1 ≤ j ≤ n (A.23)

where ξ̄l,ij−mjl(k) = yl(k + ij −mjl − 1) = 0, if ij −mjl ≤ 0.

Considering the last equation of the jth subsystem, we have

|uj(k)| = |
ξj,nj (k + 1)− fj,nj (Ξ(k), ūj−1(k), dj(k))−O[Ξ(k)]

gj,nj (k)(Ξ(k), uc′j (k)), dj(k))
|

= O[Ξ(k + 1)] +O[ūj−1(k)] (A.24)

for j = 2, 3, . . . , n, where uc
′
j (k)) ∈ [min{0, uj(k)},max{0, uj(k)}]. From (A.24), it is obvious

that u1(k) = O[Ξ(k + 1)]. Next, we can deduce that u2(k) = O[Ξ(k + 1)] and consequently

uj(k) = O[Ξ(k + 1)]. This completes the proof.

Appendix 3.1: Proof of Lemma 3.4

Proof. Denote Θ̃i(k) = Θ̂i(k) − Θi, g̃i(k) = ĝi(k) − gi, and c̃i(k) = ĉi(k) − Lpi. It follows

from (3.62)-(3.65) that

ξ̃i(k + 1|k) = ξ̂i(k + 1|k)− ξi(k + 1)

= ξ̂ai (k)− ξai (k) + g̃i(k − n+ 2)ξi+1(k)

= Θ̃T
i (k − n+ 2)[Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i)]

+g̃i(k − n+ 2)[ξi+1(k)− ξi+1(lk−n+i + n− i)]

−[νi(ξ̄n(k − n+ i))− νi(ξ̄n(lk−n+i))] (A.25)

which yields

−{Θ̃T
i (k − n+ 2)[Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))]

+ g̃i(k − n+ 2)[ξi+1(k)− ξi+1(lk−n+i + n− i)]}ξ̃i(k + 1|k)

= −ξ̃2
i (k + 1|k)− [νi(ξ̄n(k − n+ i))− νi(ξ̄n(lk−n+i))]ξ̃i(k + 1|k)

≤ −ξ̃2
i (k + 1|k) + λLpi|ξ̃i(k + 1|k)|‖∆ξ̄n(k − n+ i)‖ (A.26)

where the last inequality is established by (3.71) and max1≤i≤n Lυi ≤ λ.

To prove the boundedness of all the estimated parameters, we choose the Lyapunov

candidate function as follows:

Vi(k) =
k∑

j=k−n+2

[‖Θ̃‖2 + g̃2
i (j) + c̃2

i (j)] (A.27)
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From (3.72), the difference of Vi(k) is given by

∆Vi(k) = Vi(k + 1)− Vi(k)

= Θ̃T
i (k + 1)Θ̃i(k + 1)− Θ̃T

i (k − n+ 2)Θ̃i(k − n+ 2)

+g̃2
i (k + 1)− g̃2

i (k − n+ 2) + c̃2
i (k + 1)− c̃2

i (k − n+ 2)

= {‖Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))‖2 + |ξi+1(k)− ξi+1(lk−n+i + n− i)|2

+λ2‖∆ξ̄n(k − n+ i)‖2}a
2
i (k)γ2ξ̃2

i (k + 1|k)
D2
i (k)

−{Θ̃T
i (k − n+ 2)[Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))]

+g̃i(k − n+ 2)[ξi+1(k)− ξi+1(lk−n+i + n− i)]}ξ̃i(k + 1|k)
2ai(k)γ
Di(k)

+λc̃i(k − n+ 2)|ξ̃i(k + 1|k)|‖∆ξ̄n(k − n+ i)‖2ai(k)γ
Di(k)

. (A.28)

According to the definition of Di(k) in (3.73) and inequality (A.26), the difference of Vi(k)

in (A.28) can be written as

∆Vi(k) ≤ a2
i (k)γ2ξ̃2

i (k + 1|k)
Di(k)

− 2ai(k)γξ̃2
i (k + 1|k)

Di(k)

+
2ai(k)γλĉi(k − n+ 2)|ξ̃i(k + 1|k)|‖∆ξ̄n(k − n+ i)‖

Di(k)

=
a2
i (k)γ2ξ̃2

i (k + 1|k)
Di(k)

− 2a2
i (k)γξ̃2

i (k + 1|k)
Di(k)

= −a
2
i (k)γ(2− γ)ξ̃2

i (k + 1|k)
Di(k)

(A.29)

where Lpi + c̃i(k − n+ 2) = ĉi(k − n+ 2) and equality (3.75) are used.

Noting that 0 < γ < 2, we can see from (A.29) that the difference of Lyapunov function

Vi(k), ∆Vi(k), is nonpositive and thus, the boundedness of Vi(k) is guaranteed. It further

implies the boundedness of Θ̂i(k), ĝi(k), and ĉi(k). Thus, there exist finite constants Θ̄, ḡ,

and c̄, such that

‖Θ̂i(k)‖ ≤ Θ̄, ĝi(k) ≤ ḡ, ĉi(k) ≤ c̄, i = 1, 2, . . . , n− 1 (A.30)

Taking summation on both hand sides of (A.29), we obtain
∞∑
k=0

a2
i (k)γ(2− γ)ξ̃2

i (k + 1|k)
Di(k)

≤ Vi(0)− Vi(∞)

which together with the boundedness of Vi(k) implies

a2
i (k)ξ̃2

i (k + 1|k)
Di(k)

:= αi(k)→ 0, i = 1, 2, . . . , n− 1 (A.31)
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From Assumption 3.3, Lemma 2.6, and the definition of Di(k) in (3.73), it can been seen

that

D
1
2
i (k) ≤ 1 + ‖Φi(ξ̄i(k))− Φi(ξ̄i(lk−n+i + n− i))‖+ |ξi+1(k)− ξi+1(lk−n+i + n− i)|

+λ‖∆ξ̄n(k − n+ i)‖ = O[y(k + i)], i = 1, 2, . . . , n− 1 (A.32)

From equation (A.31), for i = 1, 2, . . . , n− 1, we have

ai(k)|ξ̃i(k + 1|k)| = α
1
2
i (k)D

1
2
i (k) = o[D

1
2
i (k)] = o[O[y(k + i)]] (A.33)

Further, we have

ai(k)‖ ¯̃
ξi(k + 1|k)‖ ∼ ai(k)|ξ̃i(k + 1|k)| = o[O[y(k + i)]]

i = 1, 2, . . . , n− 1 (A.34)

From the definition of deadzone in (3.74), we have

|ξ̃i(k + 1|k)| ≤ ai(k)|ξ̃i(k + 1|k)|+ λĉi(k − n+ 2)‖∆ξ̄n(k − n+ i)‖ (A.35)

which together with (A.30), (A.33) and the definition of ∆s(k, i) in (3.78) yields

|ξ̃i(k + 1|k)| ≤ o[O[y(k + i)]] + λc1∆s(k, i) (A.36)

where c1 = c̄. Denote c̄1 = nc1, we further have

‖ ¯̃
ξi(k + 1|k)‖ ≤

i∑
j=1

|ξ̃j(k + 1|k)| ≤ o[O[y(k + i)]] + λc̄1∆s(k, i) (A.37)

Continuing the analysis above, for j-step estimation error ξ̃i(k+ j|k), i = 1, 2, . . . , n−1,

j = 2, 3, . . . , n− i, we have

ξ̃i(k + j|k) = ξ̂i(k + j|k)− ξi(k + j)

= ξ̆i(k + j|k) + ξ̃i(k + j|k + 1) (A.38)

where

ξ̃i(k + j|k + 1)
def
= ξ̂i(k + j|k + 1)− ξi(k + j)

ξ̆i(k + j|k)
def
= nm ξ̂i(k + j|k)− ξ̂i(k + j|k + 1) (A.39)

Similar as the proof of Lemma 3.2 in Section 3.2.2, based on the result in previous steps,

for j-step estimation error ξ̃i(k + j|k), j = 2, 3, . . . , n − i, i = 1, 2, . . . , n − 1, we see that

there exist constants cj−1 and c̆j−1 such that

|ξ̃i(k + j − 1|k)| ≤ o[O[y(k + i+ j − 2)]] + λcj−1∆s(k, i+ j − 2)

|ξ̆i(k + j − 1|k)| ≤ o[O[y(k + i+ j − 2)]] + λc̆j−1∆s(k, i+ j − 2) (A.40)
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From (3.69) and (3.70), it is clear that ξ̆i(k + j|k) can be expressed as

ξ̆i(k + j|k) = ξ̂i(k + j|k)− ξ̂i(k + j|k + 1)

= ξ̂ai (k + j − 1|k) + ĝi(k − n+ j + 1)ξ̂i+1(k + j − 1|k)− ξ̂ai (k + j − 1|k + 1)

−ĝi(k − n+ j + 1)ξ̂i+1(k + j − 1|k + 1)

= Θ̂T
i (k − n+ j + 1)[Φi(

¯̂
ξi(k + j − 1|k))− Φi(

¯̂
ξi(k + j − 1|k + 1))]

+ĝi(k − n+ j + 1)[ξ̂i+1(k + j − 1|k)− ξ̂i+1(k + j − 1|k + 1)]

= Θ̂T
i (k − n+ j + 1)[Φi(

¯̂
ξi(k + j − 1|k))− Φi(

¯̂
ξi(k + j − 1|k + 1))]

+ĝi(k − n+ j + 1)ξ̆i+1(k + j − 1|k) (A.41)

According to the Lipschitz condition of Φi(·) and (A.39), the following equality holds:

‖Φi(
¯̂
ξi(k + j − 1|k))− Φi(

¯̂
ξi(k + j − 1|k + 1))‖ ≤ Li‖ ¯̆

ξi(k + j − 1|k)‖ (A.42)

From (A.38)-(A.42), it follows that there exist constants cj such that

|ξ̃i(k + j|k)| ≤ o[O[y(k + i+ j − 1)]] + λcj∆s(k, i+ j − 1)

Denote c̄j = ncj , then we have

‖ ¯̃
ξi(k + j|k)‖ ≤

i∑
j=1

|ξ̃j(k + j|k)|

≤ o[O[y(k + i+ j − 1)]] + λc̄j∆s(k, i+ j − 1) (A.43)

Let j = n − i, i = 1, 2 . . . , n − 1, then we see (A.43) leads to (3.76) and it completes the

proof.

Appendix 5.1: Proof of Lemma 5.2

Proof. Consider one-step prediction error of a given subsystem Σj ,

ξ̃j,ij (k + 1|k) = ξ̂j,ij (k + 1|k)− ξj,ij (k + 1), ij = 1, 2, . . . , nj − 1

Performing the similar technique in Section 3.2.2 (Proof of Lemma 3.2), we obtain

ξ̃j,ij (k + 1|k) = o[Dj,ij (k)] (A.44)

From the definition of Dj,ij (k) in (5.26) and Lemma 2.7, we have

Dj,ij (k) =
n∑
l=1

O[ξl,ij−mjl(k)] +O[ξj,ij+1(k)] =
n∑
l=1

O[yl(k + ij −mjl)] (A.45)
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Combining (A.44) and (A.45), we have

ξ̃j,ij (k + 1|k) =
n∑
l=1

o[O[yl(k + ij −mjl)]], ij = 1, 2, . . . , nj − 1 (A.46)

Next, let us analyze the two-step prediction error, ξ̃j,ij (k+2|k) = ξ̂j,ij (k+2|k)−ξj,ij (k+

2), ij = 1, 2, . . . , nj − 2.

ξ̃j,ij (k + 2|k) = ξ̃j,ij (k + 2|k + 1) + ξ̌j,ij (k + 2|k), with

ξ̃j,ij (k + 2|k + 1) = ξ̂j,ij (k + 2|k + 1)− ξj,ij (k + 2) =
n∑
l=1

o[O[yl(k + ij −mjl + 1)]]

ξ̌j,ij (k + 2|k) = ξ̂j,ij (k + 2|k)− ξ̂j,ij (k + 2|k + 1)

= ¯̂ΘT
j (k − nj + 3)[Ψ̂j,ij (k + 1|k)−Ψj,ij (k + 1)] (A.47)

Because the Lipschitz condition of Ψj,ij (·), we have

‖Ψ̂j,ij (k + 1|k)−Ψj,ij (k + 1)‖ ≤ Lj,ij [
n∑
t=1

‖ ¯̃
ξt,ij−mjt(k + 1|k)‖] + |ξ̃j,ij+1(k + 1|k)|

=
n∑
t=1

n∑
l=1

o[O[yl(k + ij −mjt −mtl)]] +
n∑
l=1

o[O[yj(k + ij + 1−mjl)]]

=
n∑
l=1

o[O[yj(k + ij + 1−mjl)]] (A.48)

Considering the boundedness of ¯̂ΘT
j (k − nj + 3), we have

ξ̃j,ij (k + 2|k) =
n∑
l=1

o[O[yl(k + ij + 1−mjl)]]

¯̃
ξj,ij (k + 2|k) =

n∑
l=1

o[O[yl(k + ij + 1−mjl)]], ij = 1, 2, . . . , nj − 2 (A.49)

Similarly, for the tth step prediction error ξ̃j,ij (k + t|k) = ξ̂j,ij (k + t|k) − ξi(k + t),

ij = 1, 2, . . . , nj − t, t = 3, 4, . . . , nj − 1, we have

ξ̃j,ij (k + t|k) =
n∑
l=1

o[O[yl(k + ij + t− 1−mjl)]] (A.50)

Let t = nj−ij , we complete the proof with ¯̃
ξj,ij (k+nj−ij |k) =

n∑
l=1

o[O[yl(k+nj−mjl−1)]].

Appendix 6.1: Proof of Lemma 6.1

Proof. Firstly, let us consider the following inequality of V (k) ≥ 0

V (k + 1) ≤ c(k)V (k) + b(k) (A.51)
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where |c(k)| ≤ c̄ < 1 and |b(k)| ≤ b̄. It is straightforward to show that

V (1) ≤ c̄V (0) + b̄

V (2) ≤ c̄V (1) + b̄ ≤ c̄2V (0) + (c̄+ 1)b
...

V (k) ≤ c̄kV (0) +
1− c̄k

1− c̄
b̄ ≤ V (0) +

b̄

1− c̄

and furthermore,

lim
k→∞

sup{V (k)} ≤ lim
k→∞

c̄kV (0) + lim
k→∞

1− c̄k

1− c̄
b̄ =

b̄

1− c̄

Now, if we choose c(k) = max{ci(k)}, i = 1, 2, . . . ,m, then, the inequality (6.3) in Lemma

6.1 becomes (A.51) . It is easy to see that equation (6.4) holds.

Appendix 6.2: Proof of Corollary 6.1

Proof. Define V j
i (l) = Vi(ln + j) and V j(l) =

∑m
i=1 V

j
i (l), where l ∈ Z+

−n, i = 1, 2, . . . ,m,

j = 0, 1, . . . , n− 1. It is obvious that V j(0) ≤ V̄ (0). Then, from the definition of V j(l), we

have

V j(l + 1) =
m∑
i=1

V j
i (l + 1) =

m∑
i=1

Vi((l + 1)n+ j)

= V (ln+ n+ j) (A.52)

According to equation (6.5), it is easy to obtain

V (ln+ n+ j) ≤
m∑
i=1

ci(ln+ j)Vi(ln+ j) + b(ln+ j)

=
m∑
i=1

cji (l)V
j
i (l) + bj(l) (A.53)

where cji (l) = ci(ln+j) and bj(l) = b(ln+j). Combining equation (A.52) and (A.53) results

V j(l + 1) ≤
m∑
i=1

cji (l)V
j
i (l) + bj(l) (A.54)

Noting that |cji (l)| ≤ c̄ and |bj(l)| ≤ b̄, we apply Lemma 6.1 to equation (A.54) and it results

V j(l) ≤ V j(0) +
b̄

1− c̄

≤ V̄ (0) +
b̄

1− c̄

lim
l→∞

sup{V j(l)} ≤ b̄

1− c̄
(A.55)
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It is obvious that ∀k, k ≥ n−1, there exist j = k(mod n), j ∈ {0, 1, . . . , n−1}, and l = k−j
n ,

such that we can obtain

V (k) =
m∑
i=1

Vi(ln+ j) =
m∑
i=1

V j
i (l)

= V j(l) ≤ V̄ (0) +
b̄

1− c̄
, k ≥ n− 1

lim
k→∞

sup{V (k)} ≤ b̄

1− c̄
(A.56)

This completes the proof.

Appendix 6.3: Proof of Lemma 6.2

Proof. Noting that max0≤i≤n−1{V (i)} ≤ C0, we have the following inequality from Corol-

lary 6.1

V (k) ≤ C0 +
b̄

1− c̄
, lim
k→∞

sup{V (k)} ≤ b̄

1− c̄
(A.57)

From the definition of V (k), we have

e2(k) ≤ 1
ae
V (k)

W̃ T (k)W̃ (k) ≤ 1
aW

V (k) (A.58)

Combining equation (A.57) and (A.58), we have that

|e(k)| ≤

√
1
ae

(C0 +
b̄

1− c̄
) := cemax

lim
k→∞

sup |e(k)| ≤

√
b̄

ae(1− c̄)
:= ces

‖W̃ (k)‖ ≤

√
1
aW

(C0 +
b̄

1− c̄
) := cW̃ max

lim
k→∞

sup ‖W̃ (k)‖ ≤

√
b̄

aW (1− c̄)
:= cW̃s (A.59)

Then, it is easy to show that

‖ξ̄n(k)‖ ≤ C1 max
k≤i≤k+n−1

{|y(i)|}+ C2

≤ C1 sup
yd∈Ωyd

{|yd(k)|}+ C1cemax + C2

‖Ŵ (k)‖ ≤ ‖W ∗‖+ ‖W̃ (k)‖ ≤ ‖W ∗‖+ cW̃
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and

lim
k→∞

sup ‖ξ̄n(k)‖ ≤ C1 sup
yd∈Ωyd

{|yd(k)|}+ C1ces + C2

lim
k→∞

sup ‖Ŵ (k)‖ ≤ ‖W ∗‖+ ‖W̃ (k)‖ ≤ ‖W ∗‖+ cW̃s

This completes the proof.

Appendix 6.4: Proof of Lemma 6.3

Proof. Case (i)

According to the prerequisite that g1 ≤ |g(k)| ≤ g2, g(k) is either strict positive or negative.

Only proof with positive g(k) is given here and the proof with negative g(k) is omitted

because they are quite similar. It should be noted that because ∆x(k) is nonnegative, we

have x(k) = xs(k) and f(xs(k)) = ±x
3
2 (k).

Firstly, let us consider that x(k) grows without bound. If the sign of sN (x(k)) changes

infinite times, then the switching curve f(xs(k)) = ±x
3
2 (k) will be crossed infinite number

of times. Then, the first properties in Definition 4.1 is satisfied. In the following, we prove

that sN (x(k)) definitely change its sign for infinite number of times if x(k) grows without

bound. Suppose that sN (x(k)) = 1 remains positive in an interval {l1 ≤ k ≤ l2}, where

x(l1) > δ0 and noting that x(k) ≥ 0, we have

S′N (x(l2)) =
l2∑
k=0

N ′(x(k))∆x(k)

= c1 +
l2∑

k=l1

x(k)g(k)∆x(k) ≥ c1 + g1

l2∑
k=l1

x(k)∆x(k) (A.60)

where c1 =
∑l1−1

k=0 N
′(x(k))∆x(k). It is noted that in equation (A.60), the inequality cannot

be obtained without ∆x(k) ≥ 0. This is why the restriction ∆x(k) ≥ 0 is indispensable.

Since x(k) > δ0 ≥ ∆x(k), ∀k ∈ {k|l1 ≤ k ≤ l2}, we have

∆{x(k)}2 = x2(k + 1)− x2(k)

= 2x(k)∆x(k) + {∆x(k)}2

≤ 2x(k)∆x(k) + x(k)∆x(k) = 3x(k)∆x(k) (A.61)

Substituting equation (A.61) into (A.60), we have

S′N (x(l2)) ≥ g1

3 x
2(l2 + 1)− g1

3 x
2(l1) + c1 (A.62)

which implies that when sN (x(k)) = 1, S′N (x(l2)) increases at least as fast as g1

3 x
2(l2 + 1)

as l2 increases. Therefore, it is obvious that the switching curve f(xs(k)) = x
3
2 (k) will be

crossed as l2 increases if x(k) is unbounded.
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On the other hand, suppose that sN (x(k)) = −1 remains on the interval {k|l1 ≤ k ≤ l2},
then, by the similarly approach we have

S′N (x(l2)) =
l2∑
k=0

N ′(x(k))∆x(k) = c1 −
l2∑

k=l1

x(k)g(k)∆x(k)

≤ c1 − g1

l2∑
k=l1

x(k)∆x(k) = −g1

3
x2(l2 + 1) +

g1

3
x2(l1) + c1 (A.63)

It implies S′N (x(k)) decreases at least as fast as −g1

3 x
2(l2 + 1) when l2 increases so that

the switching curve of f(xs(k)) = −x
3
2 (k) will always be crossed as l2 increases if x(k) is

unbounded.

According to the above analysis, it is impossible for sN (x(k)) to keep its sign unchanged

as x(k) grows unbounded. Therefore, sN (x(k)) will change infinite times as k → ∞. It

is equivalent to that SN (x(k)) grows unbounded in both positive direction and negative

direction as x(k) grows unbounded. By now, it is proved that the first property in Definition

4.1 is satisfied.

Secondly, let us consider that x(k) is bounded, i.e., x(k) ≤ δ1. Let us denote

lim
k→∞

sup{x(k)} = x̄

Note that x(k) is a monotonic nondecreasing sequence, we have x(k) ≤ x̄. According to the

definition of N(x(k)), we have limk→∞ |N(x(k))| = x̄ and |N(x(k))| ≤ x̄, ∀k.

Then, it is easy to derive

|S′(x(k))| = |
k∑

k′=0

g(k′)N(x(k′))∆x(k′)|

≤
k∑

k′=0

|g(k′)||N(x(k′))|∆x(k′) ≤ g2x̄
k∑

k′=0

∆x ≤ g2x̄
2 (A.64)

Since the two properties in the definition of discrete Nussbaum gain are satisfied, it is

concluded that g(k)N(x(k)) is also a discrete Nussbaum gain.

Case (ii)

Noting that −ε0 ≤ C(k) ≤ ε0 and ∆x(k) ≥ 0, then, we have

SN (x(k))− ε0x(k)− ε0 ≤
k∑

k′=0

N ′(x(k′))∆x(k′) ≤ SN (x(k)) + ε0x(k) + ε0 (A.65)

where SN (x(k)) is defined in (4.1). It is noted in (A.65) that the inequality will not hold

without ∆x(k) ≥ 0. This is the reason why the restriction ∆x(k) ≥ 0 is indispensable.
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According to the properties of discrete Nussbaum gain N(x(k)), when x(k) increase without

bound, it is easy to obtain the following

lim
k→∞

sup
x(k)≥δ0

{SN (x(k))± ε0x(k)± ε0}

= lim
k→∞

sup
x(k)≥δ0

[x(k){±ε0 ±
ε0
x(k)

+
1

x(k)
SN (x(k))}] = +∞ (A.66)

and similarly,

lim
k→∞

inf
x(k)≥δ0

{SN (x(k))± ε0x(k)± ε0} = −∞ (A.67)

Then, from (A.65) we conclude that N ′(x(k)) satisfies the first property in Definition 4.1.

When x(k) is bounded, from the property of N(x(k)), it is obvious SN (x(k)) is bounded.

Therefore, it is easy to see from (A.65) that N ′(x(k)) also satisfies the second property in

Definition 4.1. This completes the proof.
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