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Summary 

 
Programmed cell death (PCD) is crucial for cellular growth and development in 

multicellular organisms. Although distinct PCD features have been described for 

unicellular eukaryotes, homology searches have failed to reveal clear PCD-related 

orthologs among these organisms. Previous studies revealed that a surface-reactive 

monoclonal antibody MAb 1D5 could induce apoptosis-like PCD in the protozoan 

parasite Blastocystis. In the present study, through two-dimensional gel 

electrophoresis and mass spectrometry, the cellular target of MAb 1D5 was identified 

as a cell surface-localized legumain, an asparagine endopeptidase that is usually found 

in lysosomal/acidic compartments of other organisms. Recombinant Blastocystis 

legumain displayed biphasic pH optima in substrate assays, with peaks at pH 4 and 

7.4. Activity of Blastocystis legumain was greatly inhibited by legumain specific 

inhibitor Cbz-Ala-Ala-AAsn-EPCOOEt (APE-RR), and moderately inhibited by MAb 

1D5, cystatin and caspase-1 inhibitor. It was found that inhibition of legumain activity 

induced apoptosis-like PCD in Blastocystis, observed by increased externalization of 

phosphatidylserine (PS) residues and in situ DNA fragmentation. In contrast to plants, 

in which legumains have been shown to play a pro-death role, legumain appears to 

display a pro-survival role in Blastocystis. The data strongly suggest that legumain 

has a key role in the regulation of Blastocystis cell death.   

 

Previous studies demonstrated that besides apoptosis, MAb 1D5 could elicit a PCD 

response in Blastocystis independent of caspases-like activity, mitochondria, or both, 

suggesting the existence of an alternative cell death pathway. In this study, the use of 

autophagic marker monodansylcadaverine (MDC) and autophagic inhibitors 3-



 vi

methyladenine and wortmannin showed the existence of autophagic cell death in 

MAb 1D5-treated Blastocystis. MAb 1D5-triggered autophagy was intensified in the 

presence of the caspase inhibitor zVAD.fmk and appeared to be dependent on 

mitochondrial outer membrane permeabilization (MOMP) since the MOMP inhibitor 

cyclosporine A could abolish MDC incorporation in MAb 1D5-treated cells, even in 

the presence of zVAD.fmk. This study is the first to report the occurrence of 

autophagy in Blastocystis through induction by a cytotoxic antibody. MDC staining of 

Blastocystis colony forms revealed that autophagy also occurs naturally in this 

organism. Amino acid starvation and rapamycin treatment are two common triggers 

of autophagy in mammalian cells and Blastocystis was found to rapidly up-regulate 

MDC-labeled autophagic vacuoles upon these inductions. Confocal microscopic and 

transmission electron microscopic studies also showed morphological changes 

suggestive of autophagy. The unusually large size of the autophagic compartments 

within the parasite central vacuole was found to be unique in Blastocystis. These 

results suggest that the core machinery for autophagy is conserved in Blastocystis and 

plays an important role in starvation response and cell death of the parasite. 

 

The last part of this study reports that staurosporine, a common apoptosis-inducer in 

mammalian cells, also induces cytoplasmic and nuclear features of apoptosis in 

Blastocystis, including cell shrinkage, PS externalization, maintenance of plasma 

membrane integrity, extensive cytoplasmic vacuolation, nuclear condensation and 

DNA fragmentation.  Staurosporine-induced PS exposure and DNA fragmentation 

was abolished by the MOMP inhibitor cyclosporin A and significantly inhibited by 

the broad cysteine protease inhibitor iodoacetamide. Interestingly, the apoptosis 

phenotype was insensitive to inhibitors of caspases and cathepsins B and L while 
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calpain-specific inhibitors augmented staurosporine-induced apoptosis response. 

While the identities of the proteases responsible for staurosporine-induced apoptosis 

warrants further investigation, these findings demonstrate that PCD in Blastocystis is 

complex and regulated by multiple mediators. 
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Chapter 1  

Introduction 

 

1.1 Biology of Blastocystis 

Blastocystis is a protozoan parasite found in the intestines of humans and many other 

animals. It is often the most common organisms isolated in parasitological surveys 

(Stenzel and Boreham, 1996; Tan, 2004, 2008; Zierdt, 1991a). The parasite was first 

described in the early 1900’s (Alexeieff, 1911; Brumpt, 1912) and has since then 

baffled researchers about its life cycle, pathogenesis, biochemistry, cellular and 

molecular biology. This organism has evoked considerable research interests due to 

its potential to cause intestinal diseases (Zierdt, 1991b) and the last decade or so has 

seen significant advances in our understanding of Blastocystis biology (Tan, 2008). 

 

1.1.1 Taxonomy and classification 

The taxonomic position of Blastocystis spp. has been controversial until the recently 

unambiguous placement of this organism into the stramenopiles (Arisue et al., 2002; 

Hoevers and Snowden, 2005; Silberman et al., 1996). It was initially suggested to be 

an yeast or fungus (Alexeieff, 1911; Brumpt, 1912) and the cyst of a flagellate 

(Haughwout, 1918). Zierdt and colleagues found that Blastocystis had some protistan 

features morphologically and physiologically. They classified this organism as a 

protist in the phylum Protozoa, subphylum Sporozoa (Zierdt et al., 1967), reclassified 

later to subphylum Sarcodina (Zierdt et al., 1988). Molecular sequencing studies of 

small-subunit rRNA indicated that Blastocystis is not monophylectic with the yeasts, 
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fungi, sarcodines or sporozoans (Johnson et al., 1989). Another study by Silberman et 

al. reported the complete sequence of Blastocystis small-subunit rRNA gene and 

showed that it could be placed among the stramenopiles (Silberman et al., 1996). Yet 

two studies using the sequence of elongation factor-1α (EF-1α) suggested that 

Blastocystis diverged before the stramenopiles and was related to Entamoeba 

histolytica (Ho et al., 2000; Nakamura et al., 1996). However, both studies with EF-

1α were criticized by its low statistical significance and other factors, which made the 

phylogenetic position of Blastocystis inaccurate (Tan, 2008; Tan et al., 2002). A 

recent study used multiple molecular sequence data (including small-subunit rRNA, 

cytosolic-type 70 kD heat shock protein, translation elongation factor 2 and the non-

catalytic ‘B’ subunit of vacuolar ATPase) and clearly showed that Blastocystis is a 

stramenopile (Arisue et al., 2002).  

 

The Stramenopiles, also called Chromista and Heterokonta, are a diverse group of 

unicellular and multicellular protists comprising of heterotrophic and photosynthetic 

representatives, and are characterized by their flagella and hair-like projections 

extending laterally from the flagellum (mastigonemes). Blastocystis does not have 

flagella and is non-motile. Therefore, it is placed in a new class called Blastocystea, 

subphylum Opalinata, infrakingdom Heteokonta, subkingdom Chromobiota, 

kingdom Chromista (Tan, 2008). The closest species to Blastocystis is Proteromonas 

lacertae (Arisue et al., 2002; Silberman et al., 1996). 

 

The designation of Blastocystis subsets has also been bewildering because different 

studies used different methods to subtype and classify Blastocystis sp., which made 

corroboration, comparison or criticism of publications very difficult. Due to the 
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urgency of a standard terminology in this research field, a group of investigators from 

different laboratories came up with a consensus on the terminology of Blastocystis 

subtypes (Stensvold et al., 2007a). In the past, Blastocystis isolates from humans was 

designated Blastocystis hominis, whereas Blastocystis isolates from other animals was 

usually named Blastocystis sp., or specific names according to the host origin, such as 

Blastocystis ratti. However, this old practice of assigning Blastocystis species 

according to host origin is misleading because of the extensive genetic diversity of 

this organism even among isolates from one host. Therefore, the current consensus 

terminology recommends that all mammalian and avian isolates are designated 

Blastocystis sp. and assigned to a subtype from 1 to 9 by a simplified small subunit-

rDNA typing method (Stensvold et al., 2007a; Stensvold et al., 2007b). Table 1.1 

shows the new designations of some commonly studied Blastocystis isolates. Humans 

can be host to Blastocystis spp. originated from various mammals (subtype 1), 

primates and pigs (subtype 2), rodents (subtype 4), cattle and pigs (subtype 5), and 

birds (subtype 6 and 7) (Tan, 2008). 

 

Table 1.1 Old and new classification of commonly studied Blastocystis isolates based 
on a consensus terminology* (adapted from Tan, 2008) 
 

Species Isolate(s) Culture type Host New designation 
B. hominis Nand II Axenic Human Blastocystis sp. subtype 1 
B. hominis Si Axenic Human Blastocystis sp. subtype 1 
B. hominis B, C, E, G, H Axenic Human Blastocystis sp. subtype 7 
B. ratti S1, WR1, WR2 Axenic Rat Blastocystis sp. subtype 4 
Blastocystis sp. NIH:1295:1 Xenic Guinea pig Blastocystis sp. subtype 4 
*proposed by Stensvold et al., 2007a 
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1.1.2 Morphology 

Blastocystis is a polymorphic organism and four major forms (vacuolar, granular, 

amoeboid and cyst) are commonly observed in fecal and laboratory culture samples 

(Stenzel and Boreham, 1996; Tan et al., 2002; Zierdt et al., 1967).  

 

The vacuolar form, also referred to as the central vacuole form, is the predominant 

cell form seen in stool samples and axenized in vitro cultures and considered to be the 

typical Blastocystis cell form (Figure 1.1 A). It is spherical and varies greatly in size, 

diameter ranging from 2 to 200 µm with average diameters of 4 to 15 µm (Stenzel and 

Boreham, 1996). The characteristic large vacuole occupies up to 90% of the cell 

volume, surrounded by a thin rim of cytoplasm containing organelles such as the 

nucleus, Golgi apparatus, endoplasmic reticulum and mitochondrion-like organelles 

(Tan et al., 2002).  

 

The granular form (Figure 1.1 B) is morphologically similar to the vacuolar form, 

except that there are granules in the cytoplasm or more commonly in the central 

vacuole. The granular form is slightly larger in size, with average diameters of 3 to 

80 µm (Dunn et al., 1989a; Zierdt and Williams, 1974). They are usually seen in non-

axenized and older cultures (Tan, 2004). 

 

The amoeboid form (Figure 1.1 C) has been rarely identified with conflicting reports 

on its morphology (Dunn et al., 1989a; McClure et al., 1980; Tan et al., 1996b). 

Generally it is irregular in shape and often has extended pseudopodia, but appears 

non-motile despite the observation of pseudopods. They are usually observed in old or 
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antibiotic-treated cultures (Zierdt, 1973), and in Blastocystis colonies grown in soft 

agar (Tan et al., 1996b). 

 

The cyst form (Figure 1.1 D) was discovered most recently (Mehlhorn, 1988; Stenzel 

and Boreham, 1991). It is smaller in size (2 to 5 µm) than the other three forms and is 

surrounded by a thick multi-layered cyst wall. The cyst form has been reported to 

withstand environmental stress. Unlike the vacuolar and granular form, cysts are able 

to resist lysis by distilled water, and are able to survive at room temperature for up to 

19 days (Zaman, 1998; Zaman et al., 1995). The cyst form has been shown to be the 

infective stage by several experimental infectivity studies with mice, rats and birds 

(Abou El Naga and Negm, 2001; Moe et al., 1997; Tan, 2008) 

 

 
 
Figure 1.1 Morphological forms of Blastocystis. Light micrographs of (A) vacuolar 
forms; (B) granular forms; (C) amoeboid pseudopod-like cytoplasmic extensions (*); 
and (D) cyst forms. CV, central vacuole; Nu, nucleus. (Tan, 2007) 
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1.1.3 Life cycle and mode of transmission 

A number of conflicting life cycles have been proposed for Blastocystis (Boreham and 

Stenzel, 1993; Singh et al., 1995; Zierdt, 1973) and controversies about these modes 

of division are due to the lack of experimental proof. Different modes of reproduction 

such as schizogony (Singh et al., 1995), plasmotomy (budding) (Tan and Suresh, 

2007), endodyogeny (Zhang et al., 2007) and sac-like pouches (Suresh et al., 1997) 

have been postulated based on observations in different studies. However, the only 

accepted mode of reproduction should be binary fission until proven otherwise (Tan, 

2008). 

 

A revised life cycle incorporating information on animal infection studies and the 

recent phylogenetic studies was proposed (Tan, 2004, 2008). The proposed life cycle 

(Figure 1.2) suggests that cyst form is the infective stage and the infection by this 

parasite occurs in humans and animals by fecal-oral route. The cysts develop into 

vacuolar forms in the large intestines. In the human intestine, vacuolar forms divide 

by binary fission and may develop into amoeboid or granular forms. Encystations of 

vacuolar forms may occur in host intestines and intermediate cysts may have a thick 

fibrillar layer which is lost during the passage in the external environment. Humans 

are potentially infected by seven or more subtypes (subtype 1 to 7) of Blastocystis and 

certain animals are reservoirs for transmission to humans. Subtype 1 is cross-infective 

among mammals and birds. Subtypes 2, 3, 4, and 5 are primate/pig, human, rodent 

and cattle/pig isolates respectively. Subtypes 6 and 7 are mainly avian isolates. 
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Figure 1.2 Life cycle of Blastocystis proposed by Tan, 2008. The proposed scheme 
suggests that humans are potentially infected by seven or more subtypes (subtype 1 to 
7 as shown by the numbers 1 to 7) of Blastocystis and that certain animals are 
reservoirs for transmission to humans. Hypothetical pathways are represented by 
dotted arrows. 
 

1.1.4 Epidemiology and prevalence 

Blastocystis is often the most frequently isolated parasite found in the fecal samples of 

both healthy individuals and patients suffering from intestinal disorders (Cirioni et al., 
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1999; Pegelow et al., 1997; Stenzel and Boreham, 1996; Wang, 2004). Prevalence of 

Blastocystis infection is higher in developing countries at a carriage rate up to 60% 

(Pegelow et al., 1997) and this has been linked to poor hygiene and deficient in 

sanitation facilities. Increased risk of infection may also be associated with 

occupations that involve exposure to animals (Rajah Salim et al., 1999). 

 

1.1.5 Pathogenesis 

The pathogenicity of Blastocystis is currently a matter of debate as there have been 

numerous studies either implicate or exonerate the parasite as a cause of diseases 

(Clark, 1997; Stenzel and Boreham, 1996; Tan et al., 2002).  

 

A prospective controlled study suggested that there was no obvious difference in the 

prevalence of Blastocystis in individuals with and without diarrhea and hence 

Blastocystis was not an important diarrhea-causing agent (Shlim et al., 1995). Another 

case-controlled study (Leder et al., 2005) concluded that there was no correlation 

between clinical symptoms and Blastocystis infection in immunocompetent 

individuals. However, these studies can be questioned because clinical outcome is 

multifactorial and influenced by host and parasite factors (Tan, 2008). For example, 

infections with other established enteric protozoan pathogens such as Giardia and 

Entameoba do not always lead to disease. In addition, many of these studies are based 

on the assumptions that Blastocystis is biologically homogenous, but in fact this 

organism may have inter-subtype and intra-subtype variation in pathogenesis.  

 

In two reports on placebo-controlled treatment of symptomatic but immunocompetent 

patients with Blastocystis as the solely identified pathogen (Nigro et al., 2003; 
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Rossignol et al., 2005), therapeutic improvement was found concomitant with the 

clearance of Blastocystis. However, critics of these studies may include the existence 

of some unidentified pathogen.  

 

There are also some in vitro studies sought to investigate the effects of Blastocystis on 

mammalian cell cultures. Walderich et al. showed that Blastocystis could cause 

cytopathic effects in Chinese hamster ovary and HT 29 cells (Walderich et al., 1998). 

Puthia et al. showed that cysteine proteases of Blastocystis were able to cause 

significant degradation of human secretory immunoglobulin A, compromise barrier 

function of intestinal epithelial cells, cause host cell apoptosis, and induce 

proinflammatory cytokines (Puthia et al., 2008; Puthia et al., 2006; Puthia et al., 

2005). These studies support a pathogenic role for Blastocystis. 

 

It is suggested that because there are no reports unequivocally proving Blastocystis is 

nonpathogenic and there are accumulating epidemiological, in vitro and animal 

studies strongly suggesting the pathogenic potential of the parasite, it would be 

prudent to consider Blastocystis as an emerging protozoan pathogen (Tan, 2008). In 

the meanwhile, a good animal model should be developed to test Koch’s postulates 

and to fill the gap of our understanding in the pathogenesis of Blastocystis. 

 

1.2 Types of cell death 

Cell death is a fundamental biological process. Programmed cell death (PCD) is 

generally opposed to 'accidental cell death', that is necrosis induced by pathological 

stimuli (Kroemer et al., 2005). PCD is a highly regulated cellular suicide process in 
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eukaryotes (Hatsugai et al., 2006). PCD is involved in a variety of biological events 

such as morphogenesis, aging, maintenance of tissue homeostasis and elimination of 

infected or malignant cells. Thus PCD plays a crucial role in the development and 

homeostasis of multicellular organisms and deregulation of this process contributes to 

major pathologies, including cancer, autoimmune diseases, and neurodegenerative 

diseases (Lenardo et al., 1999; Okada and Mak, 2004; Yuan and Yankner, 2000). 

 

Cell death can occur through different mechanisms resulting in distinct morphologies. 

Three major morphologies of cell death have been described: apoptotic (or Type I), 

autophagic (or Type II) and necrotic (or Type III) cell death (Clarke, 1990; Kroemer 

et al., 2005; Schweichel and Merker, 1973). 

 

1.2.1 Type I cell death – apoptosis 

Apoptosis is the most common and well-defined form of PCD. The term ‘apoptosis’ 

(meaning ‘falling leaves’ in Greek) was coined more than 30 years ago to remark on 

the distinctive morphological features observed in this type of cell death (Kerr et al., 

1972). A cell undergoing apoptosis shows a characteristic morphology including 

rounding-up of the cell, retraction of pseudopods, cellular volume reduction 

(pyknosis), chromatin condensation, nucleus fragmentation (karyorhexis), little or no 

ultrastructural modification of cytoplasmic organelles, plasma membrane blebbing, 

and maintenance of plasma membrane impermeability until late stages of the process 

(Ameisen, 2002; Kroemer et al., 2005). Blebbing of the plasma membrane leads to 

the formation of apoptotic bodies, which are engulfed by phagocytes in the absence of 

any inflammatory response(Henson et al., 2001; Savill et al., 2002). 
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Apoptosis in mammalian cells is mediated primarily, although not exclusively, by a 

family of cysteine proteases called caspases (Nicholson, 1999; Salvesen and Dixit, 

1999). Caspases cleave their substrates specifically after the aspartate residues. 

Caspases can be divided into inflammatory caspases and pro-apoptotic caspases, 

which can be further grouped into initiator and effector caspases (Leist and Jaattela, 

2001). They are normally expressed in healthy cells as inactive precursor enzymes. 

When initiator caspases such as caspases-8 or caspases-9 oligomerize and undergo 

autoproteolysis, they become active and cleave the precursor form of effector 

caspases, such as caspases-3, caspases-6 and caspases-7. Activated effector caspases 

in turn cleave a specific set of cellular substrates, leading to the biochemical and 

morphological changes associated with apoptosis.  

 

Three major pathways of apoptosis-associated caspase activation (Figure 1.3) have 

been firmly established – the extrinsic, intrinsic and granzyme B pathway  (Taylor et 

al., 2008). The extrinsic pathway is activated by the binding of extracellular death 

ligands such as FasL or tumor necrosis factor-α (TNF-α) to transmembrane death 

receptors on cell surface, inducing the formation of the death-induced signaling 

complex (DISC). DISC in turn recruits caspase-8 and promotes its autoprocessing and 

the cascade of procaspase activation that follows (Nagata, 1999; Peter and Krammer, 

1998; Wajant, 2002). In the intrinsic pathway, various extracellular and intracellular 

stresses activate one or more members of the BH3-only protein family. The activation 

of BH3-only protein above a threshold level overcomes the inhibitory effect of the 

anti-apoptotic B-cell lymphoma-2 (BCL-2) family members and promotes the pro-

apoptotic BCL-2 family members such as BAX and BAK to form pores in the 

mitochondria outer membrane. Upon mitochondrial outer membrane permeabilization 
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(MOMP), cytochrome c is released and seeds the assembly of apoptosome where 

caspase-9 becomes active and then propagates the caspase activation cascade 

(Kroemer et al., 2007). The granzyme B pathway takes place in cytotoxic lymphocyte 

killing where cytotoxic T lymphocytes (CTL) or natural killer (NK) cells release 

granules containing granzyme B and perforin to their target cells. Granzyme B enters 

target cells through pores formed by oligomerization of perforin, and directly 

activates effector caspases because they have the same specificity as that of caspases 

to cleave after aspartate residues (Lord et al., 2003; Martin et al., 1996). Granzyme B 

can initiate mitochondrial events by cleaving the BH3-only protein BID (BH3-

interacting domain death agnoist). Truncated BID (tBID) can promote mitochondrial 

cytochrome c release and apoptosome assembly (Barry et al., 2000). In some 

situations, BID also serves as a link between the extrinsic and intrinsic apoptotic 

pathways through caspase-8-mediated cleavage to tBID (Yin, 2000). 
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Figure 1.3 Caspase activation pathways (Taylor et al., 2008) 
 

Because of the pivotal roles of caspases in the execution of apoptosis, it has been 

frequently thought that apoptosis equals caspase activation. However, this belief is 

challenged by the fact that apoptotic cell death can still occur even when the caspase 

cascade is blocked, primarily because there are caspase-independent mechanisms of 

cell death,  the main mediators being certain mitochondrial proteins or noncaspase 

proteases (Abraham and Shaham, 2004; Kroemer and Martin, 2005; Yuan et al., 

2003). 
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The induction of MOMP is a critical event in apoptosis and often defines the point of 

no return (Kroemer and Reed, 2000). Most pathways upstream of MOMP are 

independent of caspases. Upon induction of MOMP, mitochondria can release 

cytochrome c and lead to the classical caspase-dependent pathway. However, other 

caspase-independent effectors such as apoptosis-inducing factor (AIF), endonuclease 

G and HtrA2/Omi can also be released from mitochondrial intermembrane space and 

promote caspase-independent death, although the mechanisms are not fully 

understood (Lorenzo and Susin, 2004; van Gurp et al., 2003). AIF is a flavoprotein 

which has important function in bioenergetic and redox metabolism and is confined to 

the mitochondria in healthy cells. When MOMP has occurred, AIF translocates to the 

nucleus, where it interacts with DNA, triggering chromatin condensation and DNA 

degradation into large fragments of about 50 kb (Cande et al., 2002; Susin et al., 

1999). Endonuclease G is another protein which translocates from mitochondria to the 

nucleus upon MOMP, and it extensively cleaves nuclear DNA into nucleosomal 

fragments (Li et al., 2001; van Loo et al., 2001). HtrA2/Omi is a mitochondrial serine 

protease which can be released into cytosol and induce apoptosis in a caspase-

independent manner through its protease activity as well as in a caspase-dependent 

manner by binding to inhibitor of apoptosis proteins (IAPs) and subsequently 

activating caspases (Hegde et al., 2002; Suzuki et al., 2001). 

 

Caspase-independent death can also result from stimuli that cause lysosomal 

membrane permeabilization (LMP) and the consequent release of cathepsin proteases. 

Lysosomal proteases were considered to only take charge of nonspecific degradation 

of proteins within lysosomes and contribute to necrotic cell death upon massive 

lysosomal rupture, but recently it has become evident that upon moderate lysosomal 
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damage lysosomal proteases have an active and specific role in apoptotic cell death, 

sometimes without the apparent activation of caspases (Johnson, 2000; Stoka et al., 

2007). The cathepsins family consists of cysteine cathepsins (cathepsin B, C, F, H, K, 

L, O, S, V, X, W), the aspartate protease cathepsin D and the serine protease 

cathepsin G (Turk et al., 2000). Cathepsin B and D are most stable at physiologic, 

cytoplasmic pH and are found to be involved in apoptosis. In bile salt-induced 

apoptosis of rat hepatocytes, cathepsin D and B were found to be activated in a 

cascade-like fashion downstream of caspases and cathepsin B translocated to the 

nucleus as the effector protease (Roberts et al., 1999; Roberts et al., 1997). Cathepsin 

B was also shown to be a dominant execution protease downstream of caspases in 

several tumor cell lines (Foghsgaard et al., 2001). However, cathepsin B can also be a 

cell death mediator independent of caspases in WEHI-S fibrosarcoma and non-small 

cell lung cancer (NSCLC) cells (Broker et al., 2004; Foghsgaard et al., 2001). 

Cathepsins can induce cell death in a mitochondrion-dependent manner, by cleaving 

the Bcl-2 family protein Bid and leading to the mitochondrial release of pro-apoptotic 

factors (Heinrich et al., 2004; Stoka et al., 2001), or by activating Bax with the 

subsequent release of AIF from mitochondria (Bidere et al., 2003). 

 

The calcium-dependent cytosolic protease calpains have also been described as 

mediators of apoptosis (Wang, 2000). Calpains can participate in apoptosis signaling 

downstream or upstream of caspases. For example, caspases have been shown to 

cause the cleavage of the natural calpain inhibitor calpastatin and lead to the 

activation of calpain (Porn-Ares et al., 1998). Calpains can act downstream of 

caspases and contribute to the degradation phase of apoptosis of HL-60 cells (Wood 

and Newcomb, 1999). In other apoptosis models, calpain activation is upstream of 
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caspases (Waterhouse et al., 1998) and calpain activates caspase-12 (Nakagawa and 

Yuan, 2000). However, calpain is also capable to execute cell death in complete 

absence and independent of caspases in vitamin D-induced apoptosis of the breast 

cancer cell line MCF-7 (Mathiasen et al., 2002). 

 

1.2.2 Type II cell death – autophagic cell death 

Type II, or autophagic cell death is characterized by increased number of autophagic 

vacuoles in the cytoplasm, without chromatin condensation (Kroemer et al., 2005; 

Schweichel and Merker, 1973). The autophagic vacuoles are double-membraned and 

contain degenerating cytoplasmic organelles or cytosol (Levine and Klionsky, 2004b). 

Type II cell death is morphologically distinct from apoptosis. In classical apoptosis, 

cytoskeletal elements collapsed early but organelles are preserved until late apoptosis, 

whereas in autophagic cell death, organelles are degraded early and cytoskeletal 

elements are preserved until late stage (Bursch et al., 2000). Autophagic cell death 

proceeds without chromatin condensation or DNA fragmentation, which are 

characteristics of apoptosis (Levine and Yuan, 2005). In vivo, residues of cells 

undergoing type II cell death are phagocytosed by neighboring cells, just like those of 

apoptosis, and there is no tissue inflammatory response (Schweichel and Merker, 

1973). The term ‘autophagic cell death’ often misleads people to believe that cell 

death is occurring through autophagy, but in fact the term simply describes cell death 

with autophagy because there is no conclusive evidence of a causal relationship 

between autophagy and cell death (Tsujimoto and Shimizu, 2005). 

 

Autophagy is the major mechanism used by eukaryotic cells to degrade long-lived 

proteins and perhaps the only known pathway for degrading organelles (Levine and 
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Klionsky, 2004a). It is believed to be a conserved process in all eukaryotic cells. 

Autophagy is kept at low basal levels to serve homeostatic functions but is rapidly up-

regulated in response to growth-factor withdrawal, starvation, differentiation and 

developmental triggers (Kuma et al., 2004; Levine and Klionsky, 2004a; Shintani and 

Klionsky, 2004; Takeshige et al., 1992). Autophagy also plays a role in the 

destruction of intracellular pathogens (Gutierrez et al., 2004). 

 

At least three forms of autophagy (chaperone-mediated autophagy, microautophagy 

and macroautophagy) have been recognized, based on their mechanisms, 

physiological functions and cargo specificity (Kourtis and Tavernarakis, 2009). 

Macroautophagy has been most extensively studied and is generally simply referred 

as autophagy. During macroautophagy (hereafter referred to as autophagy), a double-

membrane structure called phagophore forms and expands to sequester a portion of 

cytoplasm in the form of an autophagosome. The autophagosome will fuse with a 

lytic compartment and the engulfed materials are degraded and the resulting 

macromolecules are recycled (Figure 1.4) (Klionsky and Emr, 2000; Levine and 

Klionsky, 2004a).  
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Figure 1.4 Schematic model of the autophagic process (adapted from Xie and 
Klionsky, 2007). 
 
 

Our understanding of the molecular basis of autophagy has been significantly 

advanced by analyses of autophagy-defective mutants in yeasts (Klionsky et al., 2003; 

Tsukada and Ohsumi, 1993). There are 32 autophagy-related (ATG) genes identified 

in Saccharomyces cerevisiae and other fungi, and many yeast ATG genes have 

orthologs in mammalian cells (Kanki et al., 2009; Klionsky, 2007; Okamoto et al., 

2009). The ATG genes encode proteins required for the induction of autophagy, and 

the nucleation, expansion, maturation and recycling of autophagosomes (Xie and 

Klionsky, 2007). Upstream of Atg proteins, several protein kinases regulate 

autophagy, including at least the phosphatidylinositol 3-kinase (PI3K) and the target 

of rapamycin (TOR) kinase. TOR is the major inhibitory signal of autophagy during 

nutrient abundance because it negatively regulates autophagosome formation and 

expansion (Kamada et al., 2000). The class I PI3K/Akt signaling pathway is activated 
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by receptor tyrosine kinase and activates TOR to suppress autophagy in the presence 

of insulin-like and other growth factor (Lum et al., 2005a).  

 

As mentioned above, the exact role of autophagy in type II cell death is still unclear 

and has been an ongoing debate in the scientific community (Gozuacik and Kimchi, 

2004; Kroemer and Levine, 2008; Levine and Yuan, 2005). The presence of 

autophagic vacuoles in dying cells may result from two possibilities: autophagy is the 

death execution mechanism, or autophagy is an adaptive response to rescue cells 

under stress conditions. Theoretically, in order to determine that autophagy observed 

in a cell is truly a death mechanism, inhibition of autophagy by pharmacological 

inhibitors or RNA interference (RNAi) would prevent cell death. However, the 

inhibition of autophagy often shifts the appearance of cell death to another type such 

as apoptosis and necrosis, instead of effectively enhancing cell survival (Kosta et al., 

2004). In some cases, autophagic cell death is prevented while autophagy is still 

observed (Lee and Baehrecke, 2001). These may suggest that autophagy per se is 

neither sufficient nor required for autophagic cell death (Levine and Yuan, 2005).  

 

There are some studies which indicate that the autophagy pathway is capable of 

killing cells. Bax-/-, bak-/- murine embryonic fibroblasts (MEFs) fail to exhibit 

classical apoptosis upon exposure to cytotoxic agents, yet are capable of dying with a 

type II morphology. This death is blocked by RNAi against autophagy gene Atg5 and 

Atg6/Beclin 1 (Shimizu et al., 2004). In another study, RNAi directed against 

Atg6/Beclin 1 and Atg7 suppressed cell death in mouse L929 fibrosarcoma cells 

treated with the caspase inhibitor zVAD.fmk (Yu et al., 2004). In bax-/-, bak-/- MEFs, 

autophagy seems to be required for the induction of necrotic death in response to 
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endoplasmic reticulum (ER) stress (Ullman et al., 2008). However, the physiologic 

relevance of autophagy gene-dependent cell death in cells whose apoptotic machinery 

has been crippled is uncertain (Levine and Yuan, 2005). Recent studies of the 

Drosophila salivary gland development have shown that both apoptosis and 

autophagy are required for the degradation of these organs (Berry and Baehrecke, 

2007), giving the first strong evidence that even in the presence of apoptotic factors, 

autophagy is required for physiological autophagic cell death during development 

(Berry and Baehrecke, 2008). 

 

There are also studies supporting that autophagy in the dying cells is a pro-survival 

mechanism, and type II morphology may result from the failure of cells to adapt. For 

example, following growth factor withdrawal, bax-/-, bak-/- cells rapidly show 

reduced ATP levels and compromised bioenergetics and will die if autophagy is 

inhibited, but bax-/-, bak-/- cells with intact autophagic machinery can sustain 

viability for several weeks. Although these cells die eventually, at any point before 

cell death, the addition of growth factor reserves the catabolic responses and 

maintains cell viability (Lum et al., 2005a).  

 

The exact role of autophagy in cell death and survival is rather complicated and 

cellular context-dependent. It appears that autophagy probably functions initially as a 

cytoprotective response, but if cellular damage is too extensive or if apoptosis is 

compromised, excessive autophagy may be used to kill the cell. Autophagic cell death 

may be important for complete self-degradation when phagocytes are unavailable 

(Berry and Baehrecke, 2008). The resources generated by autophagic cell death of 

individual cells may promote survival of the organism (Galluzzi et al., 2008). 
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1.2.3 Type III cell death – necrosis 

Type III cell death, or necrosis, is usually defined negatively as a type of cell death 

without signs of apoptosis or autophagy (Kroemer et al., 2005). The morphological 

features of necrosis include early plasma membrane rupture, cytoplasmic swelling and 

vacuolation, dilation of cytoplasmic organelles such as mitochondria, ER and Golgi 

apparatus, as well as moderate chromatin condensation (Edinger and Thompson, 2004; 

Kroemer et al., 2005). Necrosis is usually a consequence of patho- or supra-

physiological condition, such as infection, inflammation, ischemia, mechanical force, 

heat or cold damage (Zong and Thompson, 2006). The traumatic cell destruction leads 

to release of intracellular components and triggers inflammatory immune responses 

(Edinger and Thompson, 2004). Although necrosis has been conceived as a passive 

and uncontrolled form of cell death, recent evidences suggest that necrosis can also be 

a regulated event and programmed necrosis may serve to maintain the integrity of 

tissue and organism (Festjens et al., 2006; Zong and Thompson, 2006). 

 

Table 1.2 summarizes the characteristics of the three different types of cell death 

(Gozuacik and Kimchi, 2004; Okada and Mak, 2004). 
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Table 1.2 Characteristics of different types of cell death 

 Type I apoptotic Type II autophagic Type III necrotic 
Nucleus Chromatin condensation  

DNA laddering 
Nuclear fragmentation 
 

Partial chromatin condensation 
Nucleus intact until late stages 
No DNA laddering 

Clumping 
Random degradation of DNA 

Cell membrane Blebbing 
 

Blebbing Swelling; rupture 

Cytoplasm Cytoplasmic condensation 
Fragmentation to apoptotic bodies  
 

Increased number of autophagic vesicles Increased vacuolation  
Organelle degeneration  
Mitochondrial swelling 
 

Biochemical 
features 

Caspases are active Caspase-independent 
Increased lysosomal activity 
 

Not well characterized 

Detection 
methods 

Electron microscopy  
TUNEL staining 
Annexin V staining 
Increase in sub G1 cell population 
Nuclear fragmentation detection 
Caspase activity assays 

Electron microscopy 
Test of increased long-lived protein 
degradation 
MDC staining 
Detection of LC3 translocation to 
autophagic membranes 
 

Electron microscopy 
Nuclear staining (usually negative) 
Detection of inflammation and damage 
in surrounding tissues 
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1.3 Programmed cell death (PCD) in protozoan parasites 

PCD has long been recognized as an essential process to eliminate the unwanted or 

damaged cells and thus to ensure normal growth and development in multicellular 

organisms. It was assumed that PCD arose with multicellular organisms (Vaux et al., 

1994). However, recently considerable experimental evidences have been 

accumulated towards the existence of PCD in unicellular eukaryotes. These include 

non-parasitic organisms, such as yeast (Madeo et al., 2002), the free living slime mold 

Dictyostelium discoideum (Arnoult et al., 2001; Cornillon et al., 1994), the free living 

ciliate Tetrahymena thermophila (Christensen et al., 1998; Kobayashi and Endoh, 

2005) and the dinoflagellate Peridinium gatunense (Vardi et al., 1999). In parasitic 

organisms, PCD has been described in the kinetoplastid trypanosomes (Ameisen et al., 

1995; Welburn et al., 1996) and Leishmania (Arnoult et al., 2002; Bera et al., 2003; 

Zangger et al., 2002), the apicomplexan parasite Plasmodium (Al-Olayan et al., 2002; 

Deponte and Becker, 2004), trichomonads (Mariante et al., 2006), Giardia lamblia 

(Chose et al., 2003) and Blastocystis (Tan and Nasirudeen, 2005). 

 

1.3.1 Occurrence of PCD in unicellular eukaryotes 

The baker’s yeast Saccharomyces cerevisiae is probably the best-known eukaryotic 

organism and its PCD machinery is also the best studied among unicellular organisms 

(Frohlich et al., 2007). The first observation that yeast can exhibit apoptotic markers 

was made on a strain carrying a mutation in the cell division cycle gene CDC48 

(Madeo et al., 1997). Mutations or heterologous expression of proapoptotic genes also 

induce PCD in yeast. Yeast can also undergo apoptosis in some physiological 

scenarios such as cellular aging, failed mating, or exposure to killer toxins (Buttner et 
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al., 2006). The yeast metacaspase YCA1 has been shown to have similar functions of 

caspase and mediate apoptosis in yeast (Madeo et al., 2002). Other crucial proteins of 

the basic molecular machinery executing cell death are also found to be conserved in 

yeast, such as AIF and HtrA2/Omi (Frohlich et al., 2007). Autophagy genes have 

been characterized in yeast (Klionsky, 2007) and autophagic cell death can be 

triggered (Abudugupur et al., 2002). Due to its ease of genetic manipulation and the 

simplicity of PCD pathway, yeast has been used as a model organism to study the 

mechanism of PCD and to identify new regulators of PCD from other organisms. 

 

Dictyostelium discoideum grows as a colony of cycling single cells, but upon 

starvation this slime mold forms multicellular aggregates made of a stalk of dead cells 

that support the viable spores (Ameisen, 2002). The ease to grow in vitro, availability 

of fully sequenced genome, and well established genetic tools make this protist a good 

model to study different modes of PCD (Tresse et al., 2007). Apoptotic and non-

apoptotic PCD features was observed in stalk cells in an in vitro system involving 

differentiation without morphogenesis (Cornillon et al., 1994), but no DNA 

fragmentation was detected in this study. However, in another study of similar 

settings, DNA degradation was detected and a homolog of human AIF of D. 

discoideum was shown to translocate from mitochondria to the nucleus during cell 

death, and was suggested to be involved in DNA degradation (Arnoult et al., 2001). A 

vacuolar, autophagic type of cell death was triggered by developmental stimulation of 

the D. discoideum HMX44A strain with no signs of apoptosis, whereas genetic 

inactivation of the Atg1 autophagy gene switched the mode of cell death to from 

autophagic cell death to necrotic cell death (Tresse et al., 2007). 
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Unicellular protozoan parasites cause a wide variety of human diseases. Current 

treatment of these infections is being challenged by increasing incidence of drug 

resistance and lack of effective vaccine (Croft et al., 2006; Fidock et al., 2008). 

Investigation of PCD pathways in these organisms might lead to discovery of novel 

parasite control strategies (Alvarez et al., 2008; Deponte and Becker, 2004). However, 

despite the many morphological and biochemical studies of PCD in protozoan 

parasites, most of the homologs of mammalian molecules involved in cell death 

signaling are missing in the protozoa and the molecular architecture of PCD in 

protozoan parasites therefore remains puzzling. 

 

The kinetoplastid parasites of the genera Leishmania and Trypanosoma cause 

different forms of leishmaniasis or trypanosomiasis such as Chagas disease (T. cruzi) 

and sleeping sickness (T. brucei). Different developmental stages of Trypanosoma 

and Leishmania have been shown to die with apoptotic or autophagic features by 

diverse triggering events (Debrabant et al., 2003). T. cruzi epimastigotes during in 

vitro differentiation exhibited cytoplasmic and nuclear morphological features of 

apoptosis (Ameisen et al., 1995). T. cruzi epimastigotes cell death could also be 

induced by human serum and inhibited by L-arginine-dependent synthesis of nitric 

oxide (Piacenza et al., 2001), whereas superoxide radicals resulted from 

mitochondrial calcium overload promotes human serum-induced cell death in T. cruzi 

and overexpression of mitochondrial super oxide dismutase had cytoprotective effects 

(Irigoin et al., 2009; Piacenza et al., 2007). Reactive oxygen species also induced 

PCD of procyclic forms of T. brucei by activating a calcium-dependent pathway 

because excess Ca2+ was observed in nucleus and Ca2+ chelators could inhibit DNA 

fragmentation (Ridgley et al., 1999). In this system, the nuclease activation was not a 
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consequence of serine protease, cysteine protease or proteasome activity nor did 

overexpression of Bcl-2 reverse mitochondrial dysfunction, so it was suggested that 

proteins involved in trypanosome PCD might be distinct from those in metazoans 

(Ridgley et al., 1999). In vitro cultures of T. brucei procyclic forms showed PCD 

features upon treatment with concanavalin A, a glucose- and mannose-specific lectin 

binding to glycoproteins (Welburn et al., 1996).  The proto-oncogene prohibitin and a 

receptor for activated protein kinase C was shown to be up-regulated in concanavalin 

A-induced cell death of T. brucei (Welburn and Murphy, 1998). Prostaglandin D2 and 

its derivatives can induce apoptosis-like PCD in T. brucei blood forms with increasing 

levels of intracellular reactive oxygen species (ROS), and pretreatment with low 

molecular weight antioxidants abolished formation of ROS, apoptotic features and 

inhibited cell death (Figarella et al., 2005; Figarella et al., 2006). 

 

Leishmania donovani exhibited apoptotic features in response to various stimuli, such 

as aging (Lee et al., 2002), oxidative stress (Das et al., 2001), antileishmanial drug 

amphotericin B (Lee et al., 2002) or the topoisomerase I inhibitor camptothecin (Sen 

et al., 2004). Autophagic cell death was observed when L. donovani was treated with 

antimicrobial peptides (Bera et al., 2003). L. major was found to succumb to the 

broad-spectrum protein kinase inhibitor staurosporine (Arnoult et al., 2002),  heat 

shock or serum deprivation (Zangger et al., 2002) with apoptotic features. The 

amastigote form of L. major died with DNA fragmentation when treated with nitric 

oxide, which could be produced by macrophages infected by the parasite (Zangger et 

al., 2002). Heat stress induced apoptotic-like death in L. infantum was found to be 

partially reversed by expression of the anti-apoptotic mammalian gene Bcl-XL (Alzate 
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et al., 2006) and mitochondrial superoxide was found to mediate this cell death 

(Alzate et al., 2007), suggesting an important role of mitochondria in this model.  

 

Apicomplexan protozoa of the genus Plasmodium cause malaria. It was found that the 

rodent parasite P. berghei undergoing differentiation from zygotes to ookinetes 

exhibited features typical of metazoan apoptotic cells including chromatin 

condensation, nuclear DNA fragmentation, exposure of phosphatidylserine (PS) from 

the inner to the outer layer of the cell membrane and caspase-like activity which was 

blocked by caspase inhibitors (Al-Olayan et al., 2002). Apoptotic like features were 

also observed in the human parasite P. falciparum blood stage cultures after treatment 

with the antimalarial drug chloroquine (Picot et al., 1997) or the apoptosis-inducer 

etoposide through a putative role of PfMCA1 metacaspase-like protein (Meslin et al., 

2007). However, as it might be difficult to analyze apoptotic markers in Plasmodium 

parasites (Deponte and Becker, 2004), some studies could not detect apoptotic 

markers during Plasmodium cell death (Nyakeriga et al., 2006), but observed 

secondary necrosis  (Porter et al., 2008) and autophagic-like cell death (Totino et al., 

2008).  

 

Trichomonads are amitochondrial parasites but possess hydrogenosome, an unusual 

anaerobic energy-producing organelle. T. vaginalis and T. foetus showed dramatic 

changes when treated with drugs and H2O2, including apoptotic features such as DNA 

fragmentation, exposure of PS in the outer leaflet of plasma membrane, 

hydrogenosomal membrane potential dissipation, and autophagic features such as an 

abnormal number of oversized vacuoles containing altered hydrogenosomes and 

misshapen flagella (Chose et al., 2002; Mariante et al., 2006). However, studies 
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related to trichomonads cell death are relatively few and more investigations are 

needed to understand how these parasites die without the known “mitochondrial cell 

death machinery” and the putative role of hydrogenosomes during cell death  (Chose 

et al., 2003). 

 

Blastocystis subtype 7 (previously known as B. hominis isolate B) underwent 

apoptosis-like death when treated with a cytotoxic monoclonal antibody (MAb 1D5) 

or the drug metronidazole (Nasirudeen et al., 2004; Nasirudeen et al., 2001b; Tan and 

Nasirudeen, 2005). Blastocystis cells displayed a number of morphological and 

biochemical features of apoptosis such as cell shrinkage and darkening, retention of 

plasma membrane integrity during initial stages of cell death, externalization of 

plasma membrane PS residues. DNA and nuclear fragmentation was also shown in 

situ although there was no DNA laddering pattern on agarose gels as seen in many 

apoptotic cells. Apoptotic bodies-like objects appeared to be deposited into the large 

central vacuolar space of the parasite by an invagination process (Nasirudeen et al., 

2004; Nasirudeen et al., 2001b; Tan and Nasirudeen, 2005). Caspase-3-like antigens 

and activity was detected during MAb 1D5-induced Blastocystis cell death; however, 

the identity of the caspase-3-like protein is still unknown (Nasirudeen et al., 2001a). 

Loss of mitochondrial membrane potential was noted in Blastocystis cell death 

(Nasirudeen and Tan, 2004). PCD that is independent of both caspase and 

mitochondria was also reported (Nasirudeen and Tan, 2005). On the other hand, 

ageing Blastocystis cells grown as colonies seemed to die with autophagic features, 

showing cytoplasmic vacuolation with myelin and lipid-like inclusions (Tan et al., 

2001a). 
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1.3.2 Implications of PCD in unicellular eukaryotes  

The existence of PCD in unicellular organisms may seem counterintuitive, as each 

cell can survive as an individual and the death of the cell means the death of an 

organism. However it has been suggested that unicellular organisms can organize 

themselves as populations and have intercellular communication (DosReis and 

Barcinski, 2001). A population of protozoan parasites infecting a host is usually 

founded by a single or a small number of individuals and most of the population share 

very similar or identical genetic information. Thus it is the entire parasite population 

of a host but not individual parasites that is subjected to evolutionary pressure 

(Bruchhaus et al., 2007). PCD may be useful in regulating the number of parasites to 

avoid damaging a host too early (Al-Olayan et al., 2002; Bruchhaus et al., 2007). 

PCD can also be a mechanism to control parasite growth under environmental 

pressure such as nutrient scarcity (Debrabant et al., 2003). Apoptosis-like death of 

parasites may avoid host inflammatory response leading to the killing of entire 

parasite population, and thus favour parasite evasion from the host immune system 

(Lee et al., 2002; Zangger et al., 2002).  

 

1.4 Objectives of the present study 

Despite increasing number of studies describing the cytochemical features of PCD in 

protozoan parasites, knowledge of the mechanism and molecular mediators of PCD in 

these unicellular organisms is very limited. Previous studies showed that Blastocystis 

succumbed to a cytotoxic monoclonal antibody MAb 1D5 by displaying features that 

are characteristic of apoptosis (Nasirudeen et al., 2001a; Nasirudeen et al., 2001b; 

Tan and Nasirudeen, 2005). MAb 1D5 was found to bind to a 30 kD protein of 
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unknown identity on the plasma membrane (Tan et al., 2001b; Tan et al., 1996a; Tan 

et al., 1997). The present study aimed to identify the cellular target of MAb 1D5 

through two dimensional gel electrophoresis and mass spectrometry based proteomic 

analysis followed by functional study of the protein. It is hoped that identifying and 

characterizing this protein would facilitate the discovery of cell death mechanisms in 

Blastocystis. 

 

It was reported that while DNA fragmentation was abolished, MAb 1D5-treated 

Blastocystis pre-exposed to zVAD.fmk and cyclosporine A was not rescued from cell 

death (Nasirudeen and Tan, 2004, 2005). Therefore, besides apoptosis, other cell 

death pathways might exist in Blastocystis and be triggered upon MAb 1D5 induction. 

In recent years, autophagic cell death (type II cell death) has received a lot of attention 

as an alternative PCD pathway (Baehrecke, 2005). The second part of the present 

study aimed to investigate if MAb 1D5 elicits alternative cell death pathway through 

autophagy and to characterize the autophagy phenomenon in Blastocystis. 

 

Different signaling pathways of PCD can be activated in the same cell in response to 

different stimuli (Taylor et al., 2008). Besides using cytotoxic antibody to induce 

PCD in Blastocystis, the present study also aimed to investigate if staurosporine, a 

common inducer of apoptosis in mammalian cells and the pathways of which has 

been extensively studied, can also elicit a PCD response in Blastocystis. Furthermore, 

by dissecting the mechanisms and regulation of the staurosporine-induced cell death 

pathway in Blastocystis may lead to discovery of novel mechanisms of PCD in this 

parasite. 
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Chapter 2  

Materials and Methods 

 

2.1 Culture of organism 

Blastocystis subtype 7 (previously known as B. hominis isolate B) was isolated from a 

local patient stool sample and axenized (Ho et al., 1993). Cells were cultured in 

Iscove’s modified Dulbecco’s medium (IMDM) containing 10% inactive horse serum 

and incubated anaerobically at 37 °C in an Anaerojar (Oxoid, UK).  Cells were 

subcultured at 3 to 4 days intervals and 4-day old cells at log-phase were used for all 

experiments. 

 

2.2 Preparation of monoclonal antibody (MAb) 1D5  

In this study, monoclonal antibody (MAb) 1D5, a surface-reactive IgM antibody, was 

used to induce PCD in Blastocystis. 

2.2.1 Hybridoma culture 

The hybridomas secreting MAb 1D5 were produced previously (Tan et al., 1996a). 

Briefly, three female BALB/c mice were immunized with 0.5 ml aliquots of the 

extract of Blastocystis subtype 7 (500 µg protein/ ml) emulsified in Freund’s complete 

adjuvant. Following booster immunization, spleen cells were harvests and fused with 

P3.X63.Ag8.U1 (P3U1) myeloma cells. The resultant hybridomas were selected by 

limiting dilution. Hybridoma cells were cryopreserved in IMDM containing 10% fetal 
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bovine serum in the presence of 5% dimethylsulfoxide (DMSO) and kept in liquid 

nitrogen tank in the Department of Microbiology, National University of Singapore. 

Cryopreserved hybridoma cells were thawed and cultured in IMDM supplemented 

with 10% fetal bovine serum. Culture supernatant was collected when the medium 

became acidic (orange to yellow in color) but before cells died and stored under 

sterile conditions at −20 °C. 

 

2.2.2 Purification of antibody 

MAb 1D5 was purified from hybridoma supernatants using Affiland Monoclonal IgM 

purification kit (Affiland S.A., Belgium). Briefly, 75 g of Precipitating Agent was 

added to 300 ml of hybridoma supernatant for 15 min with mild agitation. The 

mixture was allowed to stand for 30 min at 4 °C and spun at 3000×g for 10 min to 

collect the pellet. The pellet was dissolved in 30 ml of MAb IgM Binding Buffer and 

loaded to a pre-equilibrated Monoclonal IgM Binding Gel (SepharoseTM fast flow) 

column at a flow rate of 50 ml/h. MAb IgM Elution Buffer was used to elute MAb 

1D5 and the Optical Density (OD) of the eluent at 280 nm was monitored. Twenty-

one fractions of 2 ml eluent were collected (Figure 2.1 A) and 10 µl of each fraction 

was treated with β-mecaptoethanol, separated by SDS-PAGE and stained with 

Coomassie blue (Figure 2.1 B). Fractions A5 to A12 and B1 to B3 were protein 

containing fractions because of their high OD value (Figure 2.1 A) and also higher 

amount of proteins as seen on SDS-PAGE (Figure 2.1 B). To confirm these were 

indeed MAb 1D5, fraction A5 and A10 were checked by Western blotting using anti-

mouse Ig and the results showed two reactive bands of molecular weight 25 kD and 

50 kD, corresponding to the light chain and heavy chain of IgM. 
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Figure 2.1 Purification of MAb 1D5. A, OD plot of elution fractions. B, elution 
fractions were loaded onto 10% SDS-PAGE gels and stained with Coomassie blue. M, 
molecular weight marker (bands from top to bottom indicate 250, 150, 100, 75, 50, 37 
and 25 kD respectively).  C, elution fraction A5 and A10 were separated on a 10% 
SDS-PAGE gel and transferred to a PVDF membrane and probed with rabbit anti-
mouse Ig antibody.  
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Fractions A5 to A12 and B1 to B3 were pooled and the buffer of the eluant was 

changed to PBS and concentrated with a centrifugal filter unit (Amicon, Millipore). 

The protein concentration was assayed to be 16 µg/ml. The purified MAb 1D5 were 

stored at -20°C for experiments in this project and future use.  

 

2.3 2-D proteomics 

2.3.1 Sample preparation 

Blastocystis cells were collected by centrifugation at 2000×g for 10 min and washed 

three times with 1×PBS (137 mM NaCl, 2.7 mM KCl, 2 mM KH2PO4, 10 mM 

Na2HPO4). The final cell pellet was stored at -80 °C until further use. HALT Protease 

Inhibitor Cocktail, EDTA-free (Pierce) was added to the cell pellet before cells were 

lysed. The cell pellet was treated with different sample preparation methods. 

 

Method 1 Freeze-thaw 

Cell pellet was resuspended in equal volume of PBS with protease inhibitor cocktail. 

The suspension was subjected to three cycles of alternate freezing (2 min in liquid 

nitrogen) thawing (37˚C water bath) and centrifuged at 16000×g for 10 min at 4 °C. 

 

Method 2 Triton-X100 

Cells were lysed by 0.5% (v/v) Triton-X100 in the presence of protease inhibitor 

cocktail and allowed to sit on ice for 30 min with occasional shaking. 2-D sample 

buffer (7 M urea, 2 M thiourea, 4% CHAPS, 50 mM DTT, 0.2% Bio-lyte® 3/10 

ampholytes, 0.02% bromophenol blue) was added to the lysate for 10 min on ice, and 

clear supernatant was collected after centrifugation at 16000×g for 10 min at 4 °C. 



 35

 

Method 3 Trichloroacetic acid (TCA) precipitation 

Cell pellet was subjected to three cycles of freezing and thawing. Total proteins from 

clear cell lysate were precipitated by adding 100% (w/v) TCA to sample so that the 

final TCA concentration is 10% (w/v). The precipitation process was carried out at 

4 °C for 2 h and protein pellet was collected by centrifugation at 16000×g for 15 min 

at 4 °C. The pellet was washed twice with ice-cold acetone and allowed to air dry at 

room temperature. 

 

Method 4 DOC-TCA precipitation 

Lysates from freeze-thawed parasites was mixed with 1/100 of its volume of 2% DOC 

(sodium deoxycholate), incubated on ice for 30 min, and 100% (w/v) TCA was added 

to bring the sample to a final TCA concentration of 10% with immediate vortex. The 

sample was sat on ice for 2 h to precipitate proteins and protein pellet was collected 

by centrifugation at 16000×g for 15 min at 4 °C. The pellet was washed twice with 

ice-cold acetone and allowed to dry at room temperature. 

 

Method 5 TCA/acetone precipitation 

To 1 volume of freeze-thawed parasite lysates, 8 volumes of 11.3% (w/v) 

TCA/acetone was added to bring the final concentration of TCA to 10% (w/v). 

Protein precipitation was carried out at -20 °C for 2 h and protein pellet was collected 

by centrifugation at 16000×g for 15 min at 4 °C. The pellet was washed twice with 

ice-cold acetone and air dried at room temperature. 

 

Method 6 Chloroform/MeOH precipitation 
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To 1 volume of freeze-thawed parasite lysates, the following reagents were added 

sequentially with vortexing: 4 volumes of methanol, 1 volume of chloroform and 3 

volumes of water. After centrifugation at 16000×g for 2 min, aqueous top layer was 

removed and 4 volumes of methanol were added with vortexing. Protein pellet was 

collected by centrifugation of the mixture at 16000×g for 2 min and air dried at room 

temperature.  

 

Following each method described above, sample buffer (7 M urea, 2 M thiourea, 4% 

CHAPS, 50 mM DTT, 0.2% Bio-lyte® 3/10 ampholytes, 0.02% bromophenol blue) 

was added to the solution or pellet. Protein concentration was estimated by a modified 

Coomassie Plus protein assay kit (Pierce) with BSA as standard because urea found in 

the lysis solution is a compound that interferes with protein estimation. 

 

2.3.2 2-D electrophoresis 

For 2-D electrophoresis in mini gel format, 200 µg proteins in 125 μl of 2-D sample 

buffer were loaded into a 7 cm immobilized pH gradient (IPG) strip (Bio-Rad). After 

active rehydration for 12 h at 50 V, isoelectric point focusing (IEF) was performed in 

a Bio-Rad Protean IEF Cell under the following conditions: linear voltage ramp to 

150 V over 20 min; linear voltage ramp to 300 V over 20 min; linear voltage ramp to 

600 V over 20 min; linear voltage ramp to 1200 V over 1 h; linear voltage ramp to 

4000 V over 1.5 h; 4000 V for 12000 Vh. The IEF was performed at 20 °C at a 

maximum of 50 mA per strip. For big gel 2-D electrophoresis, 550 µg proteins in 

300 μl of 2-D sample buffer were loaded into a 17 cm IPG strip. Active rehydration 

was carried out in Bio-Rad Protean IEF Cell for 12 h at 50 V, followed by IEF using 

the following parameters: linear voltage ramp to 250 V over 30 min; linear voltage 
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ramp to 500 V over 1 h; linear voltage ramp to 2500 V over 1.5 h; linear voltage ramp 

to 10000 V over 2.5 h; 10000 V for 40000 Vh. After IEF, IPG strips were soaked in 

equilibration buffer (6M urea, 2% SDS, 0.375 M Tris-HCl pH 8.8, 20% glycerol) 

supplied with 2% (w/v) DTT for 15 min and then in equilibration buffer containing 

2.5% (w/v) iodoacetamide for 15 min. IPG strips of 7 cm length were then mounted 

onto a precast 8-16% Bio-Rad Ready Gel®
 using Easymelt agarose (Bio-Rad) and 

second dimension electrophoresis was performed in Bio-Rad Mini-PROTEAN® 3 

electrophoresis cell at constant voltage of 200 V. IPG strips of 17 cm length were 

mounted onto home-made 12% Laemmli SDS-PAGE gel (18×16 cm) and second 

dimension electrophoresis was performed in Bio-Rad Protean II xi electrophoresis cell 

at 16 mA/gel for 30 min and then 24 mA/gel for another 6 h at 4°C. Gels were stained 

using Coomassie Brilliant Blue (CBB). Stained gels were scanned with Bio-Rad GS-

800 densitometer and analyzed with PD Quest 7.1 software (Bio-Rad). 

 

2.3.3 In-gel protein digestion and protein identification by MALDI-TOF mass 

spectrometry 

Protein spots were manually excised from Coomassie blue-stained 2-D gels and were 

in-gel digested with trypsin. Briefly, gel pieces were soaked in 50% (v/v) acetonitrile 

(ACN) with 50 mM ammonium bicarbonate (NH4HCO3) and incubated at 37 °C for 

30 min to wash off the stain. The gel spots were then dried in Speedvac vacuum 

centrifuge (Savant Instruments) for 5 min. A digestion solution of 3.3 ng/µl 

sequencing grade modified trypsin (Promega) in 50 mM NH4HCO3 was added to the 

dried gel piece and incubated at 37 °C overnight. Peptides were extracted using 0.1% 

(v/v) trifluoroacetic acid (TFA; Sigma) in 50% ACN, sonicated at 37 °C for 10 min 

and then dried in a Speedvac evaporator. Peptides were mixed with an equal volume 
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of CHCA matrix solution (5 mg/ml α-cyano-4-hydroxycinnamic acid in 0.1% TFA, 

50% ACN) and spotted onto a 384-well MALDI sample plate (384 opti-TOF, ABI) 

followed by air-drying. MS and MS/MS (10 most intense ions from each sample were 

selected for MS/MS) analyses were carried out using the ABI 4800 MALDI-

TOF/TOF Mass Spectrometer (Applied Biosystems). Peptides derived from trypsin 

were used as an internal standard. Data from MS and MS/MS acquisitions were used 

in a combined search against the NCBI nonredundant protein database and an in-

house Blastocystis in silico translated protein database using MASCOT (Version 2.1; 

Matrix Science, London, UK). Mascot scores greater than 54 were considered to be 

significant (p<0.05).  

 

The genomic sequence contigs of Mascot hits were retrieved. The program 

GENSCAN was used to predict the locations and exon-intron structures of genes in 

genomic sequence contigs (http://genes.mit.edu/GENSCAN.html). Parameters used 

were Arabidopsis for organism and suboptimal exon cutoff of 1.00. In case of 

multiple genes predicted within the same contig, the most probable gene for the 

chosen protein spot was verified by the presence of matched peptides. The predicted 

protein sequence was searched against the Blastocystis EST database 

(http://tbestdb.bcm.umontreal.ca/searches/organism.php?orgID=BH) stored locally 

using StandAlone Basic Local Alignment Search Tool (BLAST) version 2.2.18. 

 

2.4 Western blotting 

Two-dimensional gel electrophoresis was carried out as described in section 2.3.2. For 

one-dimensional sodium dodecylsulphate-polyacrylamide gel electrophoresis (1D 

http://genes.mit.edu/GENSCAN.html
http://tbestdb.bcm.umontreal.ca/searches/organism.php?orgID=BH


 39

SDS-PAGE), Blastocystis cells were lysed in buffer (25 mM TRIS pH 7.5, 150 mM 

NaCl, 0.1% Triton X-100, 1 mM DTT, 1 mM EDTA, 1 mM EGTA, 10 mM NaF, 20 

mM β-glycerophosphate, 1 mM Na3VO4, Roche complete protease inhibitor) and the 

soluble fraction obtained by centrifugation (16000×g, 10 min) at 4 °C. Total protein 

concentration was estimated by Bradford assay, and 50 µg of total protein or 5 µg of 

purified protein was electrophoresed on a 10% SDS-PAGE gel. Following 1-D or 2-D 

electrophoresis, proteins were transferred onto a PVDF membrane (GE Healthcare) 

by semi-dry blotting (Bio-Rad), blocked with 3% BSA in TBS-T (triethanolamine-

buffered saline with 0.1% Tween 20), incubated with primary antibody, washed, 

incubated with secondary antibody and visualized by chemiluminescence (ECL plus, 

GE Healthcare) and exposed to an X-ray film (Kodak). 

 

2.5 Comparison of sequences 

The catalytic domain and C-terminal extension of Blastocystis legumain was 

amplified by PCR from a constructed cDNA library of Blastocystis subtype 7. 

Conceptual translation of the nucleotide sequence had 330 amino acids and the 

sequence was submitted to GenBank (accession number: ACO24555). Sequences of 

legumains from other species were retrieved from GenBank as the following: mouse 

(NP_035305), rat (NP_071562), human (AAH03061), bovine (NP_776526), frog 

(NP_001005720), zebra fish (NP_999924), Schistosoma (CAB71158), rice 

(BAC41386), tobacco (CAE84598), Haemonchus (CAJ45481) and Trichomonas 

(AAQ93040). Multiple sequence alignment was performed with ClustalW search 

engine and manually refined with program Vector NTI (Invitrogen). 
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2.6 Biochemical characterization of recombinant legumain 

2.6.1 pH optimum for enzymatic activity 

To measure the pH optimum of Blastocystis legumain enzymatic activity, purified 

recombinant legumain (10 µg) was placed in wells of a 96-well microplate. The 

reaction was started by adding legumain specific substrate Z-Ala-Ala-Asn-NHMec 

(finial concentration 10 µM) in assay buffers of different pH supplemented with 

1 mM dithiothreitol, 1 mM EDTA and 0.1% CHAPS. The series of buffers used were: 

50 mM citric acid-sodium citric, pH 3, pH 4, pH 5; 50 mM MES, pH 5.5, pH 6, pH 

6.5; 50 mM Tris-Cl, pH 6.8, pH 7, pH 7.5, pH 8, pH 8.8. The plate was incubated at 

30 °C for 30 min. Readings of fluorescence (excitation 353 nm; emission 442 nm) 

was taken by a TECAN fluorescence plate reader. Results were corrected by 

substracting the value obtained with legumain-heated inactive control.  

 

2.6.2 Pharmacological inhibitors of enzymatic activity 

Purified recombinant legumain was tested for its enzymatic activity in the presence of 

different inhibitors. The activity assay was carried as described in the previous section 

with PBS as reaction buffer. Inhibitors used were MAb 1D5 (1.2 μg/ml); non-specific 

IgM control (2 μg/ml); legumain-specific inhibitor Cbz-Ala-Ala-AAsn-RR-COOOEt 

(APE-RR, 1 mM); Z-Ala-Ala-Asn-NHMec (10 μM); cystatin (200 μg/ml); caspase-1 

inhibitor Ac-YVAD-CMK (4 μM); and cathepsin B inhibitor Z-FA-FMK (400 μM).  
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2.7 Subcellular localization of legumain by immunofluorescent staining 

Cells (1×107) were washed with cold PBS and incubated in IMDM medium 

containing 5 μg fluorescein diacetate (FDA) at 37 °C for 10 min. Cells were then 

washed and fixed with 3.7% (v/v) formaldehyde on ice for 30 min. To permeabilze 

cell, cell were incubated with 0.1% Trixton X-100 for 5 min. Cells were incubated 

with primary antibody (MAb 1D5 or anti-legumain, 1.2 μg/ml in PBS containing 3% 

BSA) for 2 h at room temperature, washed and incubated with AlexaFluor 594-

conjugated secondary antibody (anti-mouse IgM or anti-goat IgG, 2 μg/ml in PBS 

containing 3% BSA) for 1 h at room temperature. The cells were washed and stained 

with DAPI and viewed using a confocal microscope (Olympus FV500). 

 

2.8 Apoptosis detection assay 

2.8.1 Annexin V-FITC and PI staining 

Membrane permeability and exposure of phosphatidylserine (PS) were analyzed using 

an Annexin V-FITC apoptosis detection kit (BioVision). In brief, cells were washed 

with cold PBS and resuspended in 500 μl calcium-containing binding buffer. Five 

micro liter of Annexin V-FITC and propidium iodide (PI) each were added to the cell 

suspension and incubated at room temperature for 10 min. The cells were washed, re-

suspended in 500 μl of PBS and analyzed by a flow cytometer (DAKO CyAn ADP) 

with 488 nm argon-ion laser.  Annexin V-FITC was detected using an emission filter 

of 530-540 nm and PI was detected using an emission filter of 613-620 nm. 

 



 42

2.8.2 TUNEL assay  

Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) 

was performed using APO-BrdU kit (Invitrogen). In brief, cells were harvested, 

washed with cold PBS and fixed with 1 ml 3.7% (v/v) formaldehyde on ice for 30 min. 

After two washes with PBS, the pellet was re-suspended in 1 ml of 70% cold ethanol 

at -20 °C for 30 min to permeabilize cells. The cells were washed and incubated with 

50 μl labeling solution containing 5 ‑ bromo ‑ 2’ ‑ deoxyuridine 5’ ‑ triphosphate 

(BrdUTP) and terminal deoxynucleotidyl transferase at 37 °C for 1 h. After rinsing, 

cells were stained with AlexaFluor 488 conjugated anti-BrdU antibody at room 

temperature for 30 min. The cells were washed, re-suspended in 500 μl of PBS and 

analyzed by a flow cytometer (DAKO CyAn ADP) using a 488 nm argon-ion laser. 

Green fluorescence was detected using an emission filter of 530-540 nm. 

 

2.9 Autophagy detection assay 

2.9.1 Cell treatments 

Blastocystis cells were subjected to various treatments for the assessment of 

autophagy.  

 

For MAb 1D5 treatment, cells were pre-treated with 50 µM zVAD.fmk and/or 10 µM 

cyclosporine A for 30 min, and were then exposed to MAb 1D5 or non-specific IgM, 

and incubated anaerobically for 24 h at 37 °C.  

 

To test for the presence of autophagy in Blastocystis colonies, cells were grown in 

soft agar as previously described (Tan et al., 1996b) with minor modifications. 
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Approximately 1 × 104 cells taken from day 4 log-phase cultures were mixed in 1 ml 

of IMDM, added to 20 ml of the mixture of 0.36% Bacto agar and 0.1% sodium 

thioglycollate in IMDM supplemented with 10% horse serum at 40 °C, and poured 

into a 100 × 15 mm Petri dish (Nunclon). After gentle swirling to ensure good 

separation of cells, the Petri dish was kept at -20 °C for 10 min to allow the agar to set 

and then incubated in an anaerobic jar at 37 °C for 10 days. 

 

For amino acid starvation, 1 × 107 Blastocystis cells washed three times with PBS and 

incubated in 5 ml of Hank's Buffered Salt Solution (HBSS). The tubes were then 

incubated anaerobically at 37 °C for different time intervals (1, 2 or 3 h).  

 

Rapamycin treatment was done by incubating 1 × 107 Blastocystis cells with 100 nM, 

500 nM or 1000 nM rapamycin (Sigma) in 5 ml IMDM supplemented with 10% horse 

serum and were incubated anaerobically at 37 °C for 3 h. DMSO control was also 

included.  

 

To test the effect of the autophagy inhibitors 3-MA and wortmannin on Blastocystis, 

cells were pre-treated with 20 mM 3-MA (Sigma) or 50 µM wortmannin, and were 

incubated for 3 h prior to exposure to MAb 1D5, amino acid starvation or rapamycin 

treatment as described above. 

 

2.9.2 Monodansylcadaverine (MDC) staining 

Following various treatments, cells in liquid culture were spun down, washed once 

with PBS and resuspended in 500 μl PBS. Then 10 μl of 5 mM MDC (Fluka) in PBS 

was added to the suspension and incubated at 37°C for 15 min. After incubation, the 
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cells were washed thrice with PBS and mounted onto glass slides with coverslips. 

Cells were then visualized with a fluorescence microscope (Olympus BX60) using 

excitation filter of 360 nm and emission filter of 525 nm. The images were captured 

by a CCD camera (Olympus DP70). The percentage of MDC positive cells were 

determined by scoring 500 cells per group. 

 

To stain colony cultures of Blastocystis, colonies embedded in the agar were removed 

by a sterile inoculating loop and stained with 0.05 mM MDC in PBS for 30 min. After 

which, the colonies were washed in 1 ml PBS twice with 5 min interval between each 

wash. The colonies were then placed on a slide and pressed gently with a coverslip. 

The colonies were viewed under fluorescent microscope to examine the uptake of the 

stain by cells at the center and periphery of the colony.  

 

2.9.3 Confocal microscopy examination of MDC and Lysotracker Red costaining 

Following various treatments, the cell pellet was stained with 0.05 mM MDC for 15 

min at 37 °C and then with 50 nM Lysotracker Red DND-99 (Molecular Probes) for a 

further 30 min at 37 °C. After incubation, the cells were washed thrice with PBS and 

mounted onto glass slides with coverslips. Fluorescent images were obtained by using 

a confocal microscope (Olympus Fluoview FV500). MDC was excited at 405 nm, and 

emission was collected in the 505 nm to 525 nm bands and Lysotracker was excited at 

543 nm, and emission was collected in the 584 nm to 654 nm bands. 
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2.10 Transmission electron microscopy (TEM) 

The ultrastructural features of Blastocystis cells under various treatments were 

examined using transmission electron microscopy. Briefly, cells were fixed with 2% 

glutaraldehyde and 2% paraformaldehyde in PBS for 3 h at 4 ºC. The cells were then 

pelleted at 1000×g for 5 min, washed twice with PBS and twice with deionized water. 

After each washing step, cells were spun at 1500×g and the supernatant was discarded. 

Cells were then postfixed for 2 h with 1% osmium tetroxide containing 1% potassium 

ferro-cyanide at room temperature and dehydrated with graded ethanol series (25%, 

50%, 75%, 95% and 100%). Infiltration of embedding media was done by passing 

cells through three changes of mixtures of ethanol and the embedding media (LR 

White resin), and four changes of absolute LR White embedding media. After the last 

change of LR White, cells were resuspended in 100 – 200 µl LR White. The 

suspension was then transferred to a BEEM capsule and centrifuged at 1500×g for 15 

min to collect the cells at the bottom tip of the capsule. Capsules were then incubated 

for 48 h at 50ºC to allow polymerization of the embedding media. Cells were 

embedded into a microtome (Reichert-Jung) and sliced into 90 nm sections. Ultrathin 

sections were collected on a 200 mesh copper grid, stained with uranyl acetate and 

lead citrate each for 9 min and examined using an EM208S transmission electron 

microscope (Philips). 

 

2.11 Treatment with staurosporine to induce cell death 

Staurosporine (Sigma) was used to induce cell death in Blastocystis. Cells were 

inoculated into IMDM in a concentration of 2×106 cells per ml. Staurosporine (1 mM 

stock in DMSO, Sigma) was then added to a final concentration of 1 µM and 
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incubated with cells for 3 h or 12 h for flow cytometry analysis (as described in 

section 2.8) and ultrastructural studies (as described in section 2.10). Necrotic control 

was done by heating cells at 80 ºC for 15 min. The effect of protease inhibitors or 

cyclosporine A on staurosporine-induced cell death was tested by addition of protease 

inhibitors or cyclosporine A 30 min before the addition of staurosporine. The protease 

inhibitors used were: N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone 

(z-VAD.fmk); Z-Phe-Ala fluoromethyl ketone (z-FA.fmk); Z-Phe-Phe-fluoromethyl 

ketone (z-FF.fmk); (L-3-trans-(Propylcarbamyl)oxirane-2-carbonyl)-L-isoleucyl-L-

proline methyl ester (CA-074Me); Z-Leu-Leu-Leu-fluoromethyl ketone (z-LLL.fmk); 

N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal (ALLN); epoxomicin; (2S,3S)-trans-

Epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester (E64D) (all were obtained 

from Sigma, diluted in DMSO, and used at 50 µM unless otherwise stated). 

Iodoacetamide was purchased from Bio-Rad and diluted in water. Cyclosporine A 

(Sigma) was diluted in DMSO and used at 10 µM. 

 

2.12 Calpain activity assay 

The calpain activity assay was performed using the Calpain Activity Assay Kit 

(Biovision) according to the manufacturer’s protocol. Briefly, cells were treated with 

staurosporine for 3 h in the presence of different inhibitors. An equivalent number of 

cells (2 × 106) were pelleted, and the pellets resuspended and incubated in the 

supplied extraction buffer on ice for 20 min. After a brief centrifugation at 10000×g 

for 1 min, the clear lysates were transferred to a 96-well microplate, mixed with a 

fluorogenic calpain substrate Ac-LLY-AFC and incubated for 1 hour at 37 °C in the 
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dark. Fluorescence intensity was determined at 400 nm excitation and 505 nm 

emission by a TECAN fluorescence plate reader. 

 

2.13 Reproducibility of results and statistical analysis 

All experiments were repeated at least twice, except for transmission electron 

microscopy analysis, which was performed once. Quantitative data were statistically 

evaluated using the Student’s t-test and the level of significance was set at p<0.05. 

 



 48

Chapter 3 

Mechanisms of MAb 1D5-Induced PCD in Blastocystis 

 

3.1 Identification of legumain as MAb 1D5 targeted protein through 2-D 

proteome analysis 

The total set of proteins expressed from the genome of the cell at a given time is 

called the proteome (Anderson and Anderson, 1998). Two-dimensional gel 

electrophoresis (2-DE) is a powerful and most commonly used method for proteomic 

analysis (Gorg et al., 2004; O'Farrell, 1975). Complex protein mixtures extracted 

from cells and tissues can be separated first according to their isoelectric point and 

then by molecular weight. Thousands of protein spots can be separated on a 2-D gel in 

a highly reproducible manner. Unknown proteins of interest can be excised from the 

gel and digested by trypsin followed by mass spectrometric analysis giving a pattern 

of digested peptides which can be matched to the theoretical patterns derived from 

known protein databases and thus the identity of the unknown protein can be 

ascertained (Gorg et al., 2004). 

 

3.1.1 Optimization of sample preparation for 2-D proteomics 

The choice of a suitable sample preparation method is of ultimate importance for a 

successful 2-DE analysis of the proteome and has to be adapted and optimized for 

specific cells and tissues (Shaw and Riederer, 2003; Weiss and Gorg, 2008). Most 

sample preparation protocols consist of a two-step process: cell disruption and 
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solubilization of proteins. Some samples may require an in-between step to remove 

interfering compounds.  

 

In the initial trial of sample preparation, Blastocystis cells were disrupted by freeze-

thaw cycling or by detergent lysis using Triton X-100 and protein solubilization was 

carried out in a commonly used 2-D sample buffer consisting of chaotropes (7 M urea 

and 2 M thiourea), zwitterionic detergent (4% CHAPS), reducing agent (50 mM DTT), 

and carrier ampholytes (0.2% Bio-lyte® 3/10 ampholytes). The protein samples were 

separated in the first dimension on a 7 cm IPG strip and in the second dimension on 

an 8-16% gradient mini gel. As visualized by Coomassie blue staining (Figure 3.1.1), 

only a minimal amount of proteins were resolved at the acidic and lower molecular 

weight region. The scarcity of resolved protein spots may be due to poor 

solubilization of proteins or impeded entry of proteins to IPG strips caused by 

interfering compounds. Horizontal streaks seen on the gels also indicated incomplete 

isoelectric focusing.  
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Figure 3.1.1 Coomassie blue-stained 2-D gels of Blastocystis. Cells were subjected to 
freeze-thaw cycling (A) or Triton-X 100 lysis (B) and then solubilized in 2-D sample 
buffer. Extracted proteins were then separated by IEF in the first dimension using a pI 
4-7 gradient IPG strip followed by 8-16% gradient SDS-PAGE gel in the second 
dimension. 
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Precipitation is the most common method to separate proteins from contaminants in 

the sample and to concentrate proteins. Four precipitation methods, namely TCA 

(trichloroacetic acid) precipitation, DOC (sodium deoxycholate)-TCA precipitation, 

TCA/acetone precipitation and chloroform/methanol precipitation, were evaluated 

using mini-gel format 2-D electrophoresis in order to choose the most reliable one for 

the best protein separation. With regard to the concern of protein loss during 

precipitation and the consequent washing, it was found out through Bradford assay 

that the various precipitation methods were equally satisfactory and at least 70% of 

the protein levels in crude lysates were recovered in each case. Figure 3.1.2 shows the 

representative results of 2D electrophoresis analysis by the four different precipitation 

methods. The TCA/acetone precipitation method (Figure 3.1.2 A) constantly yielded 

the most satisfactory result because the protein spots were best resolved. DOC-TCA 

precipitation (Figure 3.1.2 B) performed well to resolve proteins at the acidic region, 

but proteins near the neutral region were missing in the precipitate. TCA precipitation 

alone (Figure 3.1.2 C) was not as effective as the combination of TCA and acetone 

based on the observation of a great amount of horizontal streakings. 

Chloroform/methanol precipitation (Figure 3.1.2 D) appeared to fail in removing 

interfering compounds from Blastocystis proteins, since proteins did not enter IPG 

strip as effectively as the other three precipitation methods and the resulted 2D gel 

was virtually blank. Thus, the method of choice for precipitation of Blastocystis 

proteins is using TCA/acetone because of its good quality, reproducibility and 

quantity of detectable spots on the gel. 
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Figure 3.1.2 Two-dimensional electrophoresis analyses of Blastocystis cell lysates 
following precipitation with TCA (A), DOC-TCA (B), TCA/acetone (C), and 
chloroform/methanol (D). In each case, 200 µg of solubilized protein was loaded to a 
pI 4-7 gradient IPG strip (7 cm) and separated by IEF in the first dimension followed 
by 8-16% gradient SDS-PAGE gel in the second dimension. The gels were stained 
with Coomassie blue. 
 

3.1.2 Construction of 2-D proteome map of Blastocystis subtype 7 

Having established a standardized and reproducible method for the preparation of 

Blastocystis proteins for 2-D electrophoresis, a 2-D proteome map was created for 

Blastocystis subtype 7 (Figure 3.1.3). Proteins of Blastocystis subtype 7 vacuolar 

forms were precipitated using TCA/acetone, resolubilized and separated on 4-7 linear 

and 3-10 linear immobilized pH gradient strips of 17 cm length. The second 

dimension was separated on a 12% acrylamide gel. Coomassie blue-stained gels 

showed protein spots with a wide range of molecular weights, isoelectric points and 
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relative intensities. It was observed that majority of separated proteins had isoelectric 

points between pH 4 and 8.  

 

The number of protein spots was counted using the PDQuest software. A total of 1134 

spots were found on the pH 4-7 gel and 968 spots were detected on the pH 3-10 gel.  

 

 
 
Figure 3.1.3 2D gels of TCA/acetone precipitated Blastocystis cell extracts, separated 
by IEF in 17 cm IPG strips in the pH range 4-7 (A) and 3-10 (B), followed by 
separation in the second dimension using 12% SDS-PAGE gels. Protein detection was 
by Coomassie blue staining.  
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3.1.3 Identification of some landmark protein spots 

Sixteen protein spots (Figure 3.1.4) were excised and digested with trypsin. Their 

mass spectra were acquired with MALDI-TOF-TOF MS and the peak list was 

submitted for database searching using Mascot program against an in-house database 

of in silico translated draft genome database of Blastocystis. The sequence contigs of 

significant matches were retrieved and putative genes were predicted using 

GENESCAN program. The putative coded proteins were searched against NCBI 

Conserved Domain Database and the Blastocystis EST database to provide the 

possible functions of these proteins (Table 3.1.1). It was found that several clearly 

resolved spots appeared to be encoded by the same genes, such as spot 1 and 2, spot 5 

and 6, and spot 7 and 8, which may be due to different posttranslational modifications. 

The identified proteins have various cellular functions. There are metabolic enzymes 

involved in different metabolic pathways, such as lipid metabolism (long-chain acyl-

CoA synthetases, acyl-CoA synthetase, acetyl/propionyl-CoA carboxylase), amino 

acid metabolism (urocanate hydratase, and aminoacyl-histidine dipeptidase), and 

nucleotide metabolism (IMP dehydrogenase). Three protein spots (spot 13, 14 and 15) 

were found to belong to the C1 cysteine protease family. Other identified proteins 

have roles in protein synthesis (EF-2), vesicular trafficking (Rab), regulation of 

intracellular calcium homeostasis (calreticulin) and interaction with cytoskeletal 

proteins (calponin homology domain protein). 
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Figure 3.1.4 2-D electrophoresis map of Blastocystis proteins identified by mass 
spectrometry and database searching. Numbers indicate identified proteins (see Table 
3.1.1).  
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Table 3.1.1 Identification of selected proteins of Blastocystis subtype 7 
 
Spot 
number 

Measured 
Mw (kD) 

Measured 
pI 

Matched 
contig 

MASCOT 
Score* 

Predicted conserved 
domain(s) 

Matched EST 
cluster 

Annotation of EST 

1 47 4.35 Contig 0187 132 Calreticulin BHL00002741 Calreticulin domain containing 
protein 

2 44 4.4 Contig 0187 163 Calreticulin BHL00002741 Calreticulin domain containing 
protein 

3 100 4.8 Contig 1593 329 Calponin homology 
domain 

BHL00003062 Calponin homology domain 
protein 

4 70 5.9 Contig 1161 161 FAA1, Long-chain acyl-
CoA synthetases (AMP-
forming) [Lipid 
metabolism] 

BHL00000659 
 

Grlacs gonadotropin-regulated 
long chain acyl-CoA 
synthetase 

5 90 5.9 Contig 2221 114 Acyl-CoA synthetase BHL00001756 Acetyl-CoA synthetase 
6 90 6 Contig 2221 165 Acyl-CoA synthetase BHL00001756 Acetyl-CoA synthetase 
7 75 6.2 Contig 1903 490 Acetyl/propionyl-CoA 

carboxylase, alpha subunit  
 

BHL00001817 Propionyl-CoA carboxylase 
alpha chain, mitochondrial 
precursor related cluster 

8 75 6.3 Contig 1903 485 
 

Acetyl/propionyl-CoA 
carboxylase, alpha subunit 
 

BHL00001817 Propionyl-CoA carboxylase 
alpha chain, mitochondrial 
precursor related cluster 

        
      (Table continues on following page.) 
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Table 3.1.1 (Continued from previous page.) 
 
Spot 
number 

Measured 
Mw (kD) 

Measured 
pI 

Matched 
contig 

MASCOT 
Score* 

Predicted conserved 
domain(s) 

Matched EST 
cluster 

Annotation of EST 

9 70 6.3 Contig 1865 368 Urocanate hydratase 
[Amino acid transport and 
metabolism] 

BHL00001712 Probable urocanate hydratase 
related cluster 

10 45 6.2 Contig 1990 77 Inosine-5-monophosphate 
dehydrogenase (IMP  
dehydrogenase) 

BHL00001840 Inosine-5-monophosphate 
dehydrogenase 1 related 
cluster 

11 60 5.7 Contig 2160 136 aminoacyl-histidine 
dipeptidase 

BHL00001818 Aminoacyl-histidine 
dipeptidase related cluster 

12 30 6 Contig 2380 107 EF-2 BHL00000235 T6H22.13 elongation factor 2, 
putative / EF-2, putative 
[EC:3.6.5.3] [KO:K03234] 

13 29 4.7 Contig 1743 347 Peptidase_C1A_Cathepsin
X 

BHL00001238 Cathepsin Y related 
cluster/Cathepsin Z precursor 
related cluster 

14 28 4.6 Contig 2138 80 Cathepsin B group BHL00000346 Cathepsin B precursor related 
cluster 

15 17 4.35 Contig 1531 98 Peptidase C1 family  
and, 
Cathepsin propeptide 
inhibitor domain (I29) 

BHL00000315 Cysteine protease related 
cluster 

16 12 5.2 Contig 2304 54 Rab subfamily of small 
GTPases 

BHL00001604 Rab family GTPase Rab8 
related cluster 

* Protein scores greater than 54 are significant (p<0.05)
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3.1.4 Identification of legumain as MAb 1D5 targeted protein 

To identify the MAb 1D5 targeted protein(s), Blastocystis proteins were separated by 

2-D electrophoresis and transferred to a PVDF membrane which was subsequently 

probed with MAb 1D5 for immunoblot analysis. In the broad range pI 3-10 gel blot 

(Figure 3.1.5 A, left) one prominent and big spot could be visualized after film 

developing, and there were some fainter spots in the pI range of 4 to 7. The narrow 

range pI 4-7 gel blot (Figure 3.1.5 A, right) separated these spots better, and it was 

observed that besides the prominent big spot (arrow pointed), MAb 1D5 also 

recognized a tiny spot (dashed arrow pointed). All the other fainter spots were likely 

to be nonspecific binding of MAb 1D5 or the secondary antibody because their 

intensity was much lower. The Western blot was matched against CBB stained 2-D 

gel, and the big spot was found to be matched to three close spots of the same 

molecular weight but different pI. The molecular weight of the three spots was 30.5 

kD, consistent with 1-D Western blot result from previous studies (Tan et al., 1996a; 

Tan et al., 1997).  pI value of the three spots were 4.55, 4.6 and 4.75. It was likely that 

because the chemiluminescence signal was very strong so the three spots appeared as 

one in the Western blot. However, the attempt to match the tiny spot to CBB stained 

2-D gel was failed because the protein spot distribution in nearby region was complex 

and the original spot may be of low quantity to be detected by CBB staining. Using a 

micro-range of IPG strip (pI 4.7-5.9) might help to better resolve proteins in this 

region and to locate this spot. 

 

The three MAb 1D5 reactive protein spots were excised from CBB stained 2-D gel, 

digested by trypsin and analyzed by MALDI-TOF mass spectrometry (Figure 3.1.6). 

Base peaks of the three spots were all 1540, suggesting that the three spots had the 
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same most intense ion. The rest of mass peaks of mass-to-charge ratio (m/z) were also 

highly identical among the three samples. Therefore, the three spots should represent 

the same protein with slightly different charges. 

 

Individual peaks from the mass spectrum were further analyzed by tandem mass 

spectrometry (MS/MS) and seven tryptic peptides were sequenced in total (Table 

3.1.2). 

 

Table 3.1.2 MS/MS sequenced peptide of MAb 1D5 reactive protein 
 

Molecular weight (Dalton) Peptide sequence 
937 DDFQATLK.K 
1149 TETLNEQWK.R 
1540 HQADVAHAYQIMR.R 
1250 YQHTTGSEKAK.W 
1597 WEKLYLEEMSLR.Q 
2026 FNYDHQSSVAWDSRDAK.F 
2028 GVVVDYEGEDVTPENFMK.V 
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Figure 3.1.5 Identification of MAb 1D5 targeted protein by Western blotting of 2D 
electrophoresis gel. A, Western blot analysis of total proteins separated on pH3-10 
range (left) and pH4-7 range (right) IPG strips probed with MAb 1D5. One prominent 
and big spot could be visualized (arrow) and there was also a tiny spot (dashed arrow). 
B, a Coomassie blue (CBB) stained 2D electrophoresis gel area matched with 
immunoblot probed by MAb 1D5. The prominent big spot on the blot (black arrow) 
was matched to three close spots (white arrows) on the CBB stained gel, which were 
excised for mass spectrometric identification. 
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Figure 3.1.6 Mass spectrum of MAb 1D5 reactive protein spots from Figure 3.1.5 B 
(A, spot 1; B, spot 2; C, spot 3). The spots were excised from Coomassie blue stained 
2-D gel, digested by trypsin and analysed by MALDI-TOF mass spectrometry. 
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Mascot searches of the acquired peptide mass fingerprinting results against the in-

house Blastocystis database showed an excellent match with Contig 1466. Three 

genes were predicted in this genome sequence contig by the program GENSCAN 

(http://genes.mit.edu/GENSCAN.html) (Figure 3.1.7; Appendix I). One predicted 

gene (gene 2 in Figure 3.1.7 A) was found to cover all the seven sequenced peptides 

of MAb 1D5 target protein (Figure 3.1.7 B). Therefore, MAb 1D5 targeted protein 

should be encoded by this putative gene. Conserved domain analysis of the putative 

gene showed a complete peptidase C13 domain and incomplete NIF (NLI interacting 

factor-like phosphatase) superfamily domain. BLAST searches using the predicted 

gene as query sequence returned a list of legumain sequences from species such as 

corn, zebra fish, bovine and rat, suggesting that the protein analyzed might be a 

legumain. 

 

 

http://genes.mit.edu/GENSCAN.html
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1

23

Key:

>Contig1466|GENSCAN_predicted_peptide_2|563_aa
MKFVSIALLRVLALAAADNWAVLVAGSDGFWNYRHQADVAHAYQIMRRGGIPADHIVTMM
YNDVASSSFNPFPGELYNHPGDESPDVYKGVVVDYEGEDVTPENFMKVLLGDESTGKKVL
KTNENDNIFMFFSDHGGPNVLCFPNGDLSKDDFQATLKKMHEQKKYKHFVLYIEACYSGS
MGVGFPEDLGISIVTAANDSESSWGWYCGEEAVVKGKDIGSCLGDEFSVFWMEDTDKGEQ
RTETLNEQWKRIHDGVTKSHASRYGDVSFESDLIGEYVGYPEEKFNYDHQSSVAWDSRDA
KFLFLLYKYQHTTGSEKAKWEKLYLEEMSLRQQIDRYINSFAKESKLYSARVSGEINMEC
YMAGIEQMVAIFGHNDYQYKYYNVLANMASLRRSISKNTLEDDVLRTSTLRQSDIEKEFL
EYCSRFCEIVVFTASKQEYADRMLDFLDPEKKFIKHRLFRESCTKIGKVYVKDLNRLGRD
LRRTVIIDNSIVSFGYHLDNGIPICSWFDNWKDQEVGFLVGIECSYTTRLASCTLYKQCK
TFVPILLICLDSVKPSIASFVNE

A

B

C

 
Figure 3.1.7 Bioinformatic analyses of Contig1466 from Blastocystis draft genome. 
A, three genes were predicted from the nucleotide sequence of Contig 1466 by the 
program GENSCAN. Genes 1 and 2 were complete and gene 3 was incomplete. B, in 
silico translated peptide sequence of the predicted gene 2. Sequenced peptides of 
MAb 1D5 target protein were marked in red. C, conserved domain analysis of gene 2 
showing a complete peptidase C13 domain and incomplete NIF (NLI interacting 
factor-like phosphatase) superfamily domain. 
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3.2 MAb 1D5 targets a novel cysteine protease legumain at cell surface to trigger 

Blastocystis cell death 

3.2.1 Characterization of the cysteine protease legumain in Blastocystis 

A cDNA library was constructed for Blastocystis subtype 7 using CloneMinerTM 

cDNA Library Construction Kit (Invitrogen). Primers were designed to amplify part 

of the predicted legumain gene, starting from the N-terminus of the predicted gene 

product till the last MS/MS sequenced peptide. The complete peptidase C13 

superfamily domain was included in this sequence. The PCR product had 990 bps 

(Figure 3.2.1) and encoded a protein of 330 amino acid residues (GenBank accession 

number: ACO24555) (Figure 3.2.2). All the seven MS/MS sequenced peptides could 

be matched on the peptide sequence of the PCR product (Figure 3.2.2). Theoretical 

molecular weight of this peptide sequence was 37.5 kD and pI value was 4.9 as 

calculated by the software Vector NTI. As with other legumains, the Blastocystis 

ortholog presumably codes for a precursor which is auto-cleaved at the C-terminal 

asparagine residue (Chen et al., 2000), possibly at N285 to result in the mature form 

(30 kD protein). Blastocystis legumain contains a catalytic dyad with the motif His-

Gly-spacer-Ala-Cys, which is also found in other legumains (Figure 3.2.3) and in 

caspases (Chen et al., 1998). Multiple sequence alignment using ClustalW showed 

that Blastocystis legumain had a highly conserved catalytic domain of 40% to 60% 

sequence similarity to legumains from other species, but possessed unique N and C-

terminus regions (Appendix II). Signal peptide prediction (http://rpsp.bioinfo.pl) 

showed that the first 15 amino acids (KFVSIALLRVLALAAA) comprised a putative 

secretary signal peptide. 

 

http://rpsp.bioinfo.pl/
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1 KFVSIALLRV LALAAADNWA VLVAGSDGFW NYRHQADVAH AYQIMRRGGI

51 PADHIVTMMY NDVASSSFNP FPGELYNHPG DESPDVYKGV VVDYEGEDVT

101 PENFMKVLLG DESTGKKVLK TNENDNIFMF FSDHGGPNVL CFPNGDLSKD

151 DFQATLKKMH EQKKYKHFVL YIEACYSGSM GVGFPEDLGI SIVTAANDSE

201 SSWGWYCGEE AVVKGKDIGS CLGDEFSVFW MEDTDKGEQR TETLNEQWKR

251 IHDGVTKSHA SRYGDVSFES DLIGEYVGYP EEKFNYDHQS SVAWDSRDAK

301 FLFLLYKYQH TTGSEKAKWE KLYLEEMSLR

1

2

3

4

5

6 7  

Figure 3.2.1 Peptide sequence of PCR-amplified Blastocystis legumain (Genbank 
ACO24555). The seven sequenced peptides of MAb 1D5 target protein were marked 
in red and underlined. 
 
 

 
 
Figure 3.2.2 Multiple sequence alignment of the catalytic domain of the legumain 
family. The sequence segments containing known or putative catalytic residues in the 
legumain family were aligned by Vector NTI. Blocks of four predominantly 
hydrophobic residues (highlighted with a black background) are located 2 or 3 
residues preceding each of the catalytic residues (asterisk). Other residues in the 
catalytic domains are highly conserved in legumain family. Sequences compared and 
their accession numbers were mouse (NP_035305), rat (NP_071562), human 
(AAH03061), bovine (NP_776526), frog (NP_001005720), zebra fish (NP_999924), 
Schistosoma (CAB71158), rice (BAC41386), tobacco (CAE84598), Blastocystis 
(ACO24555), Haemonchus (CAJ45481) and Trichomonas (AAQ93040). 
 

Blastocystis legumain was overexpressed in E. coli with a glutathione S-transferase 

(GST) tag (Figure 3.2.3). The recombinant protein was purified and found to have the 

expected size of 65 kD. Western blot analysis using anti-human legumain IgG or 

MAb 1D5 confirmed that the purified recombinant protein was a bona fide target of 
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MAb 1D5. The variations in band intensities may be due to MAb 1D5 and anti-human 

legumain possessing different affinities for precursor and mature forms of legumain. 
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Figure 3.2.3 Expression, purification and verification of Blastocystis legumain. The 
Blastocystis legumain gene was inserted into pGEX-6p-1 and expressed in E. coli 
BL21(DE3) with induction of 0.5 mM IPTG at 16 °C (lanes 1-3). The expressed 
recombinant legumain was then purified by glutathione affinity column and purity 
assessed by SDS-PAGE (lane 4).  Purified legumain was subjected to Western 
blotting and probed with anti-GST to confirm the purification (lane 5). Western blots 
of purified legumain and Blastocystis cell lysate were performed and probed with 
anti-human legumain and MAb 1D5, showing distinct bands at 65 kD (legumain with 
GST tag) and 30 kD (legumain). (Picture courtesy of Dr. Wu Binhui, Department of 
Microbiology, National University of Singapore, used with permission) 
 

The purified recombinant legumain was incubated at 30 °C with the legumain specific 

substrate Z-Ala-Ala-Asn-NHMec to test its activity. Buffers with pH range from 3 to 

8.8 were used (Figure 3.2.4). It was found that enzymatic activity of legumain peaked 

at two pH values, i.e. pH 4 and pH 7.4, the latter being the most optimal pH. Activity 

of Blastocystis legumain had a steep increase between pH 3 to 4 and a steep decrease 

from pH 4 to 5. From pH 5 to pH 7.4, the activity of legumain increased gradually. At 

pH higher than 7.4, the activity decreased sharply, which may result from lower 

stability of the active legumain. The reason for the unusual biphasic activity profile is 
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not known but may be related to the localization of Blastocystis legumain in 

intracellular compartments and on the parasite surface (see section 3.2.2). 
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Figure 3.2.4 pH dependence of Blastocystis legumain. Purified recombinant legumain 
(r-legumain) and fluorogenic substrate (Z-Ala-Ala-Asn-NHMec) were incubated at 
30 °C with pH buffers in the range from 3 to 8.8. Legumain activity (fluorescence 
arbitrary units) was plotted against pH values. Data shown were means ± stand 
deviations (error bar) from three independent experiments. (Picture courtesy of Dr. 
Wu Binhui, Department of Microbiology, National University of Singapore, used 
with permission) 
 

3.2.2 MAb 1D5 targets legumain on the cell surface of Blastocystis 

In order to investigate the subcellular localization of legumain in Blastocystis cells, 

immunofluorescence studies of non-permeabilized cells were carried out using MAb 

1D5 or anti-human legumain as primary antibody and a secondary antibody 

conjugated to AlexaFluor 594 (red). DAPI (blue, staining nuclei) and FDA (green, 

staining cytoplasm and central vacuole) were also included as co-stains. It was 

observed that MAb 1D5 had the same staining pattern as anti-human legumain 

(Figure 3.2.5 and Figure 3.2.6). In healthy cells which were round and had strong 

stain of FDA (Breeuwer et al., 1995), only the cell surface was stained, showing a red 

color ring around the cell (arrow pointed). In contrast, red stains could be observed in 



 67

the cytoplasm, central vacuole and on the cell surface (triangle indicated) of those 

cells with irregular cell shape and faint FDA staining, which might have become 

unhealthy during the staining procedure and the antibody could penetrate into 

cytoplasm due to the loss of cell membrane integrity. In fact, the same staining pattern 

was observed in permeabilized cells as with unhealthy cells. These results suggest that 

Blastocystis legumain localizes on the cell surface as well as in cytoplasm and central 

vacuole, and MAb 1D5 targets the cell surface legumain of healthy Blastocystis cells. 
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Figure 3.2.5 Cell surface localization of MAb 1D5. Blastocystis cells were incubated 
with MAb 1D5 followed by incubation with AlexaFluor 594-conjugated secondary 
antibody (red). Nuclei were stained with DAPI (blue). Cytoplasm and central vacuole 
were stained with FDA (green). A, control experiment was performed with a non-
specific primary antibody. B, cells were not permeabilized prior to the addition of 
antibodies; arrow pointed were representative healthy cells showing cell surface 
staining while triangle indicated representative unhealthy cells showing staining of 
cell surface, cytoplasm as well as central vacuole. C, cells were permeabilized before 
antibody incubation.  
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Figure 3.2.6 Cell surface localization of anti-legumain. Blastocystis cells were 
incubated with antibody against human legumain followed by incubation with 
AlexaFluor 594-conjugated secondary antibody (red). Nuclei were stained with DAPI 
(blue). Cytoplasm and central vacuole were stained with FDA (green). A, control 
experiment was performed without primary antibody. B, cells were not permeabilized 
prior to the addition of antibodies; arrow pointed were representative healthy cells 
showing cell surface staining while triangle indicated representative unhealthy cells 
showing staining of cell surface, cytoplasm as well as central vacuole. C, cells were 
permeabilized before antibody incubation.  
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3.2.3 Inhibition of legumain activity by MAb 1D5 and other protease inhibitors 

triggered apoptosis in Blastocystis 

The protease activity of recombinant legumain was assessed using its fluorogenic 

substrate Z-Ala-Ala-Asn-NHMec in the presence of MAb 1D5, a non-specific IgM 

antibody, or different protease inhibitors (Figure 3.2.7). It was found that the 

legumain specific inhibitor Cbz-Ala-Ala-AAsn-RR-COOOEt (APE-RR) inhibited 

more than 90% of the legumain protease activity compared to MOCK control. Two 

other reported legumain inhibitors cystatin and Ac-YVAD-cmk (also known as the 

caspase-1 inhibitor) had about 45% and 15% inhibitory effect on the activity of 

recombinant legumain respectively. The cathepsin B inhibitor z-FA-fmk could not 

inhibit legumain activity even when the final concentration was increased to 5 folds. 

Interestingly, MAb 1D5 could also inhibit about 35% of legumain activity, whereas a 

non-specific mouse IgM monoclonal antibody had no inhibitory effect.  
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Figure 3.2.7 Regulation of legumain protease activity by antibody and inhibitors. 
Purified r-legumain and fluorogenic substrate were incubated at 30 °C in presence or 
absence of antibody or protease inhibitor in PBS. MOCK control was performed with 
same volume of solvent solution of antibody or inhibitors. Values are means ± 
standard deviations (error bar) from three independent sets of experiment. *, p <0.01 
versus MOCK control. (Picture courtesy of Dr. Wu Binhui, Department of 
Microbiology, National University of Singapore, used with permission) 
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Since the cellular target of MAb 1D5 was found to be legumain and MAb 1D5 could 

inhibit legumain activity, it was hypothesized that inhibition of the surface legumain 

activity would trigger cell death in Blastocystis. To test this hypothesis, Blastocystis 

cells were incubated with MAb 1D5, non-specific IgM or various protease inhibitors 

for 4 h and assayed with Annexin V-FITC and PI staining to detect flipping of 

phosphatidylserine (PS) to the outer layer of cell membrane, an early marker of 

apoptosis. The flow cytometry scatterplots (Figure 3.2.8) showed that as compared to 

a baseline of less than 10% Annexin V-postive cells in MOCK control and non-

specific IgM control, the treatment with MAb 1D5, cystatin and the legumain 

inhibitor APE-RR increased the percentage of Annexin V-positive cells to 18.29%, 

49.53% and 47.04% respectively. To ensure reaction specificity, competitive 

inhibition assays were included. This involved the pre-incubation of MAb 1D5 or 

legumain inhibitor APE-RR with purified recombinant legumain protein (r-legumain) 

at a molecular ratio of 1:2 for 30 min before adding to cells. It was found that the 

extensive Annexin V-positive population seen in MAb 1D5 or legumain inhibitor 

treated cells was abrogated when MAb 1D5 or legumain inhibitor was pre-incubated 

with purified recombinant legumain protein (r-legumain). Caspase-1 inhibitor or 

cathepsin B inhibitor treatment did not alter the percentage of Annexin V positive 

cells. These results suggest that when legumain activity is inhibited, Blastocystis cells 

exhibited apoptotic features. 

 

To confirm the correlation between legumain protease activity and Blastocystis cell 

death, TUNEL assay was performed to assess DNA fragmentation, a marker of late 

apoptosis. Blastocystis cells were subjected to treatments with MAb 1D5 and various 
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protease inhibitors for 24 h and flow cytometric analysis was employed to quantify 

cells displaying DNA fragmentation (Figure 3.2.9). It was observed that MAb 1D5-

treated cells exhibited high TUNEL-positivity of 47.17%. Cystatin-treated cells 

showed 90.11% DNA fragementation, and cells exposed to the legumain inhibitor 

APE-RR had 80.25% DNA fragmentation. Percentages of TUNEL-positive cells for 

caspase-1 inhibitor treatment (2.5%) or cathespin B inhibitor (0.97%) treatment were 

close to that of MOCK control, similar to the observations with Annexin V assay. 

When MAb 1D5 was pre-incubated with r-legumain, the percentage of TUNEL 

positive cells decreased to 3.63%. Similarly, when legumain inhibitor APE-RR was 

pre-neutralized by r-legumain before adding to the cells, the percentage of TUNEL-

positive cell population dropped to 9.64%.  

 

The relation of legumain protease activity with cell death as indicated by Annexin V 

assay and TUNEL assay was summarized in Figure 3.2.10. It can be inferred that 

when legumain protease activity is blocked by MAb 1D5 or legumain inhibitors, 

Blastocystis cells were induced to undergo apoptotic PCD. 
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Figure 3.2.8 Annexin V apoptosis assay for inhibitor-pretreated cells. Cells were 
pretreated under different conditions (cultured with antibody, inhibitors, or 
neutralized antibody and inhibitor) for 4 h. Cells were stained with Annexin V-FITC 
to detect phosphatidylserine (PS) on cell surface and PI was used to stain cells with 
loss of plasma membrane integrity. 20000 cells were analyzed by a flow cytometer. 
The R5 quadrant represents the percentage of apoptotic cells (Annexin V-FITC 
positive/ PI negative cells) in the total cell population. MOCK control was performed 
with the same volume of antibody (PBS) or inhibitor (DMSO) diluent. Non-specific 
IgM was used as negative antibody control. 
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Figure 3.2.9 TUNEL apoptosis assays for inhibitor-pretreated cells. Cells were 
pretreated under different conditions (cultured with antibody, inhibitors, or 
neutralized antibody and inhibitor) for 24 h. Fragmented DNA was detected with 
BrdUTP and labeled with AlexaFluor 488 conjugated anti-BrdU antibody. 20000 cells 
were analyzed by a flow cytometer. R3 represents the percentage of apoptotic cells in 
the total cell population. MOCK control was performed with the same volume of 
antibody (PBS) or inhibitor (DMSO) diluent. Non-specific IgM was used as negative 
antibody control.   
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Figure 3.2.10 Relationship between Blastocystis legumain protease activity and cell 
death. Data of purified r-legumain protease activity in presence or absence of 
antibody or protease inhibitor was retrieved from Figure 3.2.7 and combined with data 
on cell death percentages by Annexin V and TUNEL apoptosis assays retrieved from 
Figure 3.2.8 and Figure 3.2.9, respectively. Values were means ± stand deviations 
(error bar) from two independent sets of experiments. *, p <0.01 versus MOCK 
control. #, p <0.05 versus MOCK control.  
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3.3 MAb 1D5 induces alternative cell death pathway through autophagy in 

Blastocystis 

 

3.3.1 Autophagy induced by MAb 1D5 in Blastocystis 

Previous studies demonstrated that apoptotic features induced by MAb 1D5 such as 

DNA fragmentation could be inhibited by the caspase inhibitor zVAD.fmk and 

mitochondrial outer membrane permeability (MOMP) inhibitor cyclosporine A; 

however, the cells could not be rescued from death (Nasirudeen and Tan, 2005). It 

was suggested that MAb 1D5 could elicit a PCD response in Blastocystis independent 

of caspases, mitochondria, or both, probably through an alternative pathway other 

than apoptosis (Nasirudeen and Tan, 2005; Tan and Nasirudeen, 2005). Since 

autophagic cell death has often been triggered as an alternative cell death pathway 

when apoptosis is blocked (Gozuacik and Kimchi, 2004), it is of interest to investigate 

whether MAb 1D5 can induce autophagic cell death in Blastocystis.  

 

In order to evaluate the possibility of autophagic cell death in Blastocystis treated with 

MAb 1D5, alone or in the presence of zVAD.fmk and/or cyclosporine A, cells were 

labeled with monodansylcadaverine (MDC), an autofluorescent, autophagolysosome 

marker that specifically labels autophagic vacuoles in in vivo and in vitro conditions 

(Biederbick et al., 1995; Munafo and Colombo, 2001; Niemann et al., 2001). While a 

certain level of background staining was seen in all cells, the true MDC positive 

staining could still be identified by the prominent and punctuate fluorescence patterns. 

The cells in each treatment were visually scored for MDC positive staining by 

fluorescence microscopy (Figure 3.3.1 A and 3.3.2). Cells treated with growth media 
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or a non-specific IgM monoclonal antibody, alone or in the presence of zVAD.fmk 

and/or cyclosporine A showed a small percentage of MDC-positive cells (<15%). In 

contrast, MAb 1D5-treated cells had a higher percentage (18.9%) of MDC-positive 

population compared with control. In the presence of pan-caspase inhibitor 

zVAD.fmk, 37.9% of MAb 1D5-treated cells showed MDC-positivity. However, 

when cells were exposed to MAb 1D5 in the presence of cyclosporine A, the 

percentage of MDC-positive cells decreased to 11.6%.  MAb 1D5-treated Blastocystis 

pre-exposed to zVAD.fmk and cyclosporine A showed 10.8% MDC-positive cells.  

 

To evaluate if the incorporation of MDC was indeed via autophagy, cells were pre-

treated with 3-methyladenine (3-MA), a specific inhibitor of autophagy. In the 

presence of 3-MA, an inhibitory effect on the incorporation of MDC was observed by 

fluorescence microscopy (Figure 3.3.1 B and 3.3.2). The percentage of MDC-positive 

cells observed in cells treated with MAb 1D5 alone or in the presence of zVAD.fmk, 

decreased to 11.4% and 14%, respectively. Hence, it is apparent that MDC 

incorporation was inhibited by 3-MA. These results indicated that the phenomenon of 

autophagy was triggered by MAb 1D5 treatment and was intensified in the presence 

of zVAD.fmk. In addition, the MAb 1D5-elicited autophagy might be associated with 

the induction of MOMP.  
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Figure 3.3.1 Exposure to MAb 1D5 increased MDC-positive staining in Blastocystis. 
A, fluorescent images of MDC staining of healthy and treated Blastocytis cells. B, 
MDC staining of healthy and MAb 1D5-treated Blastocystis cells in the presence of 3-
MA. Bar = 10 µm. 
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Figure 3.3.2 Bar chart comparing MDC-positive Blastocystis cells under different 
conditions. 500 cells were counted in each treatment. Error bars = SD of two separate 
experiments. *, p<0.05. 
 

3.3.2 Occurrence of autophagy in Blastocystis colony 

Autophagy of Blastocystis has not been described in literature so far. However, one 

study reporting the ultrastructural observations of Blastocystis grown as colonies 

showed the presence of membrane-bound vesicles containing lysosome-like 

organelles, small particulate inclusions and mitochondria within the central region of 

colonies (Tan et al., 2001a), which implied the existence of autophagy in Blastocystis 

(Tan and Nasirudeen, 2005). 

 

To further characterize the autophagy phenomenon in Blastocystis colonies, MDC 

was used to stain Blastocystis colonies. Discrete, buff-coloured opaque colonies could 
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be observed macroscopically in agar plate inoculated with Blastocystis cells on day 10. 

Using an inverted microscope, distinct biconvex disc-shaped colonies embedded in 

the soft agar were observed. Individual colonies were picked up by an inoculating 

loop and stained with MDC to examine the uptake of the stain by cells at the center 

and periphery of the colony (Figure 3.3.3). Cells located in the center of the colony 

showed a significant proportion of MDC-positive cells whereas cells located at the 

periphery of the colony had virtually no MDC positive staining. The data suggest that 

autophagy may indeed be triggered in cells located at the center of the colony. 

 

 
 
Figure 3.3.3 MDC staining of colony forms of Blastocystis. Blastocystis colonies 
embedded in the agar were removed by an inoculating loop and stained with MDC. 
Arrows point to representative MDC-positive cells. 
 

3.3.3 Autophagy induced by nutritional stress in Blastocystis 

Because it has been shown in other eukaryotic cells that autophagy is often rapidly 

up-regulated when cells are under nutritional stress (Levine and Klionsky, 2004b; 

Munafo and Colombo, 2001; Takeshige et al., 1992), Blastocystis was deprived of 

amino acids supply to further study and ascertain the autophagy phenomenon in 

Blastocystis. 
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Blastocystis cells were incubated in normal IMDM medium (control) or in HBSS for 

one to three hours. After the treatments, cells were stained with MDC and the MDC 

positive cells were scored. As shown in Figure 3.3.4, the percentage of MDC-positive 

cells increased from 6.7±0.9% in cells incubated in normal growth medium to 

19.7±2.2% after one hour amino acid starvation. There was also a time-dependent 

increase of MDC-positive cells as the starvation progressed to two hour (28.6±0.2%) 

and three hour (38.0±1.4%) periods. Hence, these results suggested that autophagy 

was rapidly triggered in Blastocystis cells in response to amino acid starvation. 

 

Target of rapamycin (TOR) is a conserved Ser/Thr kinase and is a central controller of 

cell growth. It is a negative regulator of autophagy and inhibition of TOR leads to 

induction of autophagy (Meijer and Codogno, 2004). Nutrient starvation or absence of 

growth factors can inhibit TOR and triggers autophagy in yeast and mammalian cells 

(Lum et al., 2005b; Wullschleger et al., 2006). It is very likely that the TOR signaling 

pathway also exists and functions in Blastocystis and the accumulation of MDC 

staining observed in serum-starved Blastocystis cells was due to the inactivation of 

TOR. To verify the existence of TOR signaling network in Blastocystis, it was 

investigated whether rapamycin, the prototypical inhibitor of TOR, could induce 

autophagy in Blastocystis. 

 

Blastocystis cells were treated with 100 nM, 500 nM or 1000 nM rapamycin for a 

period of three hours. MDC staining was visually scored using fluorescence 

microscopy (Figure 3.3.5). Similar to amino acid starvation, punctuate intensive 

staining by MDC could also be observed in rapamycin-treated cells. As compared to 

DMSO control (8.0±1.0%), cells which had been incubated with 1000 nM rapamycin 
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had a significantly higher percentage of MDC positive cells (45.5±12.4%). 

Rapamycin at the concentration of 100 nM or 500 nM did not induce significant 

change in MDC accumulation. These results indicated that rapamycin could induce 

autophagy in Blastocystis and thus the TOR signaling pathway was likely to be 

conserved in Blastocystis. Trypanosome TOR was reported to have an IC50 for 

rapamycin of 152 nM after 72 h treatment (Barquilla et al., 2008). The fact that 

Blastocystis was insensitive to rapamycin concentration below 1000 nM may be due 

to the brief incubation period of 3 h. 

 

To evaluate if the incorporation of MDC was indeed dependent on autophagy, cells 

were pre-treated with 3-MA or wortmannin, inhibitors of autophagic sequestration. 3-

MA and wortmannin are phosphatidylinositol 3-kinase (PI3K) inhibitors and inhibit 

both class I and class III PI3K. Class I PI3K generates products to inhibit autophagic 

sequestration while class III PI3K products stimulate autophagic sequestration 

downstream of class I enzymes, so the overall effect of 3-MA and wortmannin is to 

block autophagy (Blommaart et al., 1997; Petiot et al., 2000). The addition of 3-MA 

to 3 h amino acid-starved cells decreased the percentage of MDC positive cells from 

38.0±1.4% to 9.5±0.6% and the addition of wortmannin decreased the percentage to 

5.5±3.1% (Figure 3.3.4). Similar inhibitory effect was seen in rapamycin treatment as 

the MDC uptake of cells treated with 1000 nM rapamycin dropped from 45.5±12.4% 

to 8.14±0.6% and 8.7±1.6% upon addition of 3-MA and wortmannin respectively 

(Figure 3.3.5). Therefore, in the presence of 3-MA or wortmannin, there was an 

inhibitory effect on the incorporation of MDC in both amino acid-starved and 

rapamycin-treated Blastocystis cells. 
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Figure 3.3.4 MDC staining of Blastocystis cells deprived of amino acids for 1 h, 2 h 
or 3 h. A, representative fluorescence images of MDC staining; arrows pointed to 
cells stained positive for MDC. B, percentages of MDC positive cells. Data were 
given as mean±SD of two independent experiments. *, p<0.05 versus control 
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Figure 3.3.5 MDC staining of Blastocystis cells treated with 100 nM, 500 nM, or 
1000 nM rapamycin for 3 h. A, representative fluorescence images of MDC staining; 
arrows pointed cells stained positive for MDC. B, percentages of MDC positive cells. 
Data were given as mean±SD of two independent experiments. *, p<0.05 versus 
control 
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It was observed that most of the MDC staining accumulated in the central vacuole. To 

elucidate the function of the Blastocystis central vacuole in autophagy, morphogical 

changes of amino acid-starved and rapamycin-treated cells was assessed via confocal 

microscopy after co-staining with MDC and Lysotracker. Lysotracker is a fluorophore 

which selectively accumulates in acidic compartments such as lysosomes whereas 

MDC was first described as a specific marker of autophagic vacuoles (Biederbick et 

al., 1995). By double staining, the dynamics of autophagy process was anticipated 

because early autophagosomes should only be stained with MDC and after their 

fusion with lysosomes co-localization could be observed. However, Figure 3.3.6 

showed that MDC staining and Lysotracker almost always co-localized. MDC or 

Lysotracker single-labeled controls were checked to ensure no cross-talk or bleed-

through of the two fluorescent dyes (results not shown). This was not surprising since 

the specificity of MDC staining was cautioned by other workers previously and MDC 

was suggested to be like other acidotropic dyes (e.g. Lysotracker) and may 

preferentially label later stages in the degradation process of autophagy. Early 

autophagosomes may not be readily labeled by MDC because they are not acidic 

(Bampton et al., 2005; Klionsky et al., 2008; Mizushima, 2004). Nonetheless, these 

results suggest that in Blastocystis MDC and Lysotracker labeled the same autophagic 

compartments of acidic pH although the detailed nature of the structure awaits further 

investigation. 

 

Examinations of the confocal microscopy images revealed unique MDC staining 

patterns in Blastocystis. Most of the extensive staining was seen inside the central 

vacuole as either individual circular specks or irregular shaped objects, which were 

likely to be clusters of several specks. The size of MDC-labeled individual specks was 
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0.5 - 1 µm, comparable to the autophagosomes in yeast (0.3 – 0.9 µm) (Yorimitsu and 

Klionsky, 2005). However, the size of the irregular shaped objects was 2 - 8 µm and 

has not be found in yeast or mammalian cells, except for the 5 – 10 µm 

autophagosomes containing bacteria or protozoan parasites (Andrade et al., 2006; 

Nakagawa et al., 2004). Interestingly, in another enteric protozoan parasite 

Entamoeba invadens, the sizes of autophagosome-like structure were very similar to 

the findings in Blastocystis (Picazarri et al., 2008). In their study, the size of Atg8-

associated structures varied from less than 1 µm to greater than 4 µm and the 

appearance of the large sized structures coincide with the initiation of encystation 

process.  
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Figure 3.3.6 A, B Confocal microscopy images of healthy Blastocystis cells stained 
with MDC and Lysotracker.  
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Figure 3.3.6 C, D Confocal microscopy images of Blastocystis incubated under 
amino acid starvation condition for 1 h and stained with MDC and Lysotracker. 
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Figure 3.3.6 E, F Confocal microscopy images of Blastocystis incubated under amino 
acid starvation condition for 2 h and stained with MDC and Lysotracker.  
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Figure 3.3.6 G, H Confocal microscopy images of Blastocystis incubated under 
amino acid starvation condition for 3 h and stained with MDC and Lysotracker. 
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Figure 3.3.6 I, J Confocal microscopy images of Blastocystis incubated with 
1000 nM rapamycin for 3 h and stained with MDC and Lysotracker.  
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Amino acid-starved or rapamycin-treated Blastocystis cells displayed ultrastructural 

features resembling those of autophagy (Figure 3.3.7). As compared to untreated 

control (Figure 3.3.7 A, B), most of the treated cells showed cytoplasmic vacuoles 

with membranous inclusions and numerous vacuoles were observed to be 

accumulating within the central vacuole. The content of the autophagic-like vacuoles 

included intact mitochondria, membrane whirls, and amorphous materials. The 

presence of vacuoles containing membranous inclusions or intact organelles is highly 

suggestive of autophagy. The size of most autophagic vacuoles observed in TEM was 

0.5 – 1 µm, while some were 2 µm (Figure 3.3.7 I), 4 µm (Figure 3.3.8 A) and 6 µm 

(Figure 3.3.7 K arrow pointed) in size. This is consistent with the size of MDC-

labeled structures observed by confocal microscopy. Less frequently, it was observed 

that cytoplasmic contents were invaginating through vesicle- or thin tube-like 

membrane structures into the central vacuole (Figure 3.3.8). Interestingly, there were 

vesicles budding at the end of the filament-like structures. We hypothesize that the 

autophagic vacuoles were formed in different ways: membrane expansion and 

sequestration of cytoplasmic material in the cytoplasm (Figure 3.3.7 L); extensive 

vacuolation in cytoplasmic regions near to the central vacuole and formation of 

vesicles which invaginate into the central vacuole (Figure 3.3.8 A-D); formation of a 

thin tube-like structure which extrudes into the central vacuole and budding off 

vesicles at the end of the tubular invagination into the central vacuole (Figure 3.3.8 E-

G). All of the autophagic vacuoles end up in the central vacuole. It is likely that 

lysosomes are transferred from the cytoplasm into central vacuole in the meantime 

and fuse with newly formed autophagic vacuoles (Figure 3.3.7 C, D). 
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Figure 3.3.7 A-E Ultrastructural observations of autophagic vacuoles deposited in the 
central vacuole of Blastocystis. A-B, untreated controls displayed normal cell 
morphology. The central vacuole has flocculent contents. Nu, nucleus; M, 
mitochondrion; G, Golgi apparatus; L, lipid inclusion; CV, central vacuole. C, an 
amino acid-starved cell showing numerous autophagic-like vacuoles within the 
central vacuole. D is enlarged from boxed region in C, showing a mitochondrion 
appearing to be in the process of fusion with a lysosome. E is enlarged from another 
boxed region in C, showing several double-membrane vesicles with more 
disintegrated contents.  
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Figure 3.3.7 F-I Ultrastructural observations of autophagic vacuoles deposited in the 
central vacuole of Blastocystis. F, a rapamycin-treated cell harboring numerous 
vesicles in the central vacuole. G, enlarged from boxed region in F, showing two 
vesicles with an inner limiting membrane (arrow) and another vesicle containing 
enclosed membrane sacs and a lipid granule (dashed arrow). H and I (enlarged from 
H), a double membrane vacuole within the central vacuole of a rapamycin-treated cell, 
containing a mitochondrion and some cytoplasmic materials. 
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Figure 3.3.7 J-N Ultrastructural observations of autophagic vacuoles deposited in the 
central vacuole of Blastocystis. J, an amino acid-starved cell. K is enlarged from J, 
showing a vesicle containing two mitochondia and cytoplasm (arrow), a vacuole 
containing membranous whirls (dashed arrow), a vacuole containing membranous 
whirls (dashed arrow), and another double membrane vacuole (arrow head). L is 
enlarged from J, showing a double membrane formed in the cytoplasm (arrow) and a 
cytoplamic vacuole (dashed arrow). M and N (enlarged from M), an amino acid-
starved cell. 
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Figure 3.3.8 A-D Ultrastructural observations of cytoplasmic invagination into the 
central vacuole when cells were deprived of amino acids or treated with rapamycin. 
A-D, invagination of membrane bound vesicles into the central vacuole. Multiple 
vacuolations were seen in the cytoplasmic region near the central vacuole and some 
vesicles appeared to be in the process of invaginating into the central vacuole. 
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Figure 3.3.8 E-G Ultrastructural observations of cytoplasmic invagination into the 
central vacuole when cells were deprived of amino acids or treated with rapamycin. 
E-G, invagination of membrane bound filaments into central vacuole with vesicles 
budding from the tip of the filament (arrow). 
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3.4 Discussion 

Previous studies showed that Blastocystis exhibited typical features of apoptosis when 

exposed to the surface reactive MAb 1D5 (Nasirudeen et al., 2001a; Nasirudeen et al., 

2001b; Tan and Nasirudeen, 2005). However, the mechanism is still unknown. It was 

shown that MAb 1D5 targeted specifically at a 30 kD protein on the plasma 

membrane (Tan et al., 2001b; Tan et al., 1996a; Tan et al., 1997). The MAb 1D5 

reactive protein is functionally important and identifying this protein will be a key 

initial step to delineate cell death pathways in Blastocystis. 

 

Two-dimensional gel based proteomics is very useful in resolving individual proteins 

in complex protein mixtures followed by identifying the protein of interest through 

mass spectrometry. The present study aimed to establish a 2-D proteome map of 

Blastocystis and to detect and identify the MAb 1D5 targeted protein from the 2-D 

proteome map. Sample preparation is a crucial step in 2-D electrophoresis but there is 

no single method that can be applied universally for all kinds of samples (Gorg et al., 

2004). The sample preparation procedures have to be determined empirically while 

conform to the rules of being as simple as possible and minimizing any protein 

modifications. Direct extraction with sample solubilization buffer after cell disruption 

is easy to manipulate and also minimize protein loss or modifications from additional 

sample preparation steps. However, when applied on Blastocystis, this method failed 

to generate good separation of proteins on 2-D gel. This may be due to the presence of 

interfering compounds in the sample such as salts, nucleic acids, lipids and 

polysaccharides. Blastocystis was reported to store many lipid granules in the central 

vacuole as well as cytoplasm (Yoshikawa et al., 1995b). One study showed that 
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Blastocystis isolates had 1.19 mg to 4.3 mg total lipid per 108 cells (Keenan et al., 

1992) while only 1 to 2 mg protein can be isolated from 108 cells (unpublished 

observation). Lipids may interact with membrane proteins and consume detergent 

(Gorg et al., 2004). Blastocystis also has a lot of carbohydrates at various cellular 

locations (Yoshikawa et al., 1995a) and carbohydrates may interact with carrier 

ampholytes and proteins (Gorg et al., 2004). Carbohydrates and other unknown 

components in the slimy surface coat of Blastocystis increase the viscosity of the 

sample and can obstruct gel pores. It is thus desirable to remove these interfering 

compounds. Precipitation is a common method to separate proteins from 

contaminants in the sample and to concentrate proteins. After evaluation of four 

precipitation methods, it was found that the coupling of TCA with acetone yielded 

most satisfactory result in terms of protein resolution and spot intensity. As protein 

loss (less than 30%) in the precipitation and resolubilization processes is at an 

acceptable range, TCA/acetone method should be an efficient method for 2-D analysis 

of Blastocystis proteins. However, it should be noted that a different set of proteins 

may be obtained using the precipitation method compared to extracting with sample 

solubilization buffer directly (Weiss and Gorg, 2008). 

 

Based on the optimized sample preparation method, the proteome map was 

constructed for Blastocystis and over 1000 protein spots were well resolved on the pH 

4-7 gel and around 900 spots were detected on the pH 3-10 gel. The narrow range of 

pH 4-7 yielded higher number of protein spots due to the better resolution of proteins 

in this range where most of proteins have their isoelectric points. The full resolving 

potential of 2-D gel analysis can be even greater using a combination of several 

micro-range IPG strips with single pH unit such as pH 3.9–5.1, 4.7–5.9, and 5.5–6.7. 
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In the present study, Blastocystis proteins in the alkaline range also showed good 

isoelectric focusing and were well separated. This is in line with the fact that 

TCA/acetone precipitation is good for enrichment and visualization of alkaline 

proteins (Gorg et al., 2004). Future studies can use the current sample preparation 

method with narrow range gel of pH 7-10 if the proteins of interest are basic proteins. 

It is currently not clear how many proteins are expected in the Blastocystis proteome. 

A recently released Blastocystis EST database contains 3330 EST clusters (O'Brien et 

al., 2007). Because EST databases are likely to exclude many lowly or transiently 

expressed genes, the number of genes should be higher. Five protein species are 

estimated for each gene in human cells due to alternative splicing and 

posttranslational modifications (Jungblut et al., 1996). In other protozoans such as 

Toxoplasma gondii, one gene also encodes more than one protein. Therefore, the 

number of proteins in Blastocystis is definitely higher than the number of EST 

clusters. Despite the considerable resolution power of the 2-D analyses, it is important 

to note that the protein gels in this study represent only a fraction of all Blastocystis 

proteins and there are some inherent technical limitations with 2-D gel electrophoresis. 

Membrane proteins are usually underrepresented in 2-D gels due to their low 

solubility and are still a challenge in proteomic studies (Rabilloud, 2009). Proteins of 

low abundance are also difficult to detect and prefractionation of cell extract such as 

separating by cell organelles can enrich these proteins.  

 

MALDI-TOF mass spectrometry is a rapid and efficient method for protein 

identification. The protein of interest is digested by an enzyme such as trypsin, and 

then analyzed by MALDI-TOF mass spectrometry. The generated peptide mass 

fingerprint data are compared with theoretical fingerprint profiles derived from in 
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silico digestion of a database of known proteins (Henzel et al., 1993). However, there 

is no available protein database for Blastocystis. Searching NCBI nonredundant and 

Swissprot protein database using the peptide mass fingerprinting data of selected 

Blastocystis protein spots from 2-D gel failed to generate any significant matches. The 

feasibility of scanning the peptide mass fingerprint against the theoretical translation 

and proteolytic digest of an unpublished in-house draft genome was then investigated. 

The draft genome was not annotated yet and consisted of contigs of varied lengths. 

The contigs were in silico translated in all six frames for MASCOT searching. For the 

16 selected landmark proteins analyzed, it was demonstrated that statistically 

significant match to a certain genome contig could be produced by this method (Table 

3.1.1). The matched genome contig sequence was also found to cover the major peaks 

of the mass spectra. Subsequent bioinformatic analyses such as similarity search by 

BLAST and conserved domain prediction helped to preliminarily annotate the 

identified protein. Therefore, until any annotated genome database becomes available, 

this strategy can be used to identify Blastocystis proteins in future proteomic study 

and to facilitate downstream functional analysis. Very recently, a Blastocystis EST 

sequence database with automatic annotation was published (O'Brien et al., 2007). 

BLAST analysis of the 16 proteins identified through use of the draft genome 

translated database showed corresponding matches in the EST database, which also 

confirmed the robustness of the genome approach.  

 

This study aimed to identify the MAb 1D5 targeted protein. Using 2-D gel followed 

by immunolabeling with the MAb, the immunoreactive spots were precisely located. 

In-gel digestion of the targeted spots followed by MALDI-TOF MS analysis enabled 

the identification of genomic origin of the protein recognized by the MAb. After 
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MALDI-TOF MS, the protein of interest was further subjected to tandem MS analysis. 

In tandem MS, selected peptide ions are introduced to a collision chamber and a 

collision gas will cause stepwise fragmentation along the peptide backbone. The 

series of fragments differ in mass by a single amino acid and the amino acid sequence 

of the peptide can be deduced (Kuster et al., 2001). Tandem MS is believed to provide 

authoritative identifications of the partical amino acid sequences and combining the 

peptides mass fingerprint with the partial amino acid sequences obtained from 

MS/MS produces high confidence identification of proteins (Barrett et al., 2005). The 

application of tandem MS in the MAb 1D5 reactive protein spot was successful as 

seven tryptic peptides were sequenced in total. This facilitated the unambiguous 

identification of the genomic origin of the MAb 1D5 reactive protein. The current 

approach to identify the target of MAb is based on 2-D gel immunoblotting. An 

alternative and often used approach is through immunoprecipitation. However, the 

isotype of MAb 1D5 is IgM and the pentameric structure of IgM makes it difficult to 

use in immunoprecipitation. IgM antibodies also do not bind well to protein A or 

protein G. Therefore, this study demonstrates that 2-D gel immunoblotting is an 

effective method for identifying the target of IgM antibodies. 

 

Most of sequenced peptides were localized on a putative gene predicted by the 

program GENSCAN. Bioinformatic analysis of the translated protein sequence 

showed that the putative gene encoded a protein containing a complete peptidase C13 

domain and an incomplete NIF (NLI interacting factor-like phosphatase) superfamily 

domain. All of the sequenced peptides were within the peptidase C13 domain, and 

none fell within the NIF superfamily domain at C-terminus. Out of the four exons 

predicted in the putative gene by GENSCAN, the score for the predicted exon 
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containing the peptidase C13 domain was very high, whereas score for other exons 

were very low. Therefore, the real gene should definitely contain the regions covering 

the C13 domain, while other predicted exons may not be included. A 5' and 3' RACE 

(Rapid amplification of cDNA end) PCR will define the start and end of the coding 

sequence.  

 

The peptidase C13 domain characterizes a family of asparaginyl endopeptidases, also 

known as legumains (Chen et al., 1997). Legumain (EC3.4.22.34) is a novel class of 

cysteine protease and was originally identified from the plant legume, hence the name 

legumain (Abe et al., 1993; Ishii, 1994). It was first identified in animals in the blood 

fluke parasite Schistosoma mansoni (Dalton et al., 1995), and has since been found in 

mammals, helminth worms and the protozoan Trichomonas vaginalis  (Beck et al., 

2001; Chen et al., 2001; Maehr et al., 2005; Manoury et al., 1998; Shirahama-Noda et 

al., 2003). Legumains have specificity for the hydrolysis of bonds on the carboxyl 

side of asparagines (Li et al., 2003) and legumains from different species have been 

shown to function in the processing of other proteins, such as processing food storage 

proteins in plants(Muntz and Shutov, 2002), processing bacterial and endogenous 

peptides for MHC class II presentation in mammals (Manoury et al., 1998), and 

processing and activating cathepsin B zymogens in S. mansoni (Sajid et al., 2003).  

 

The present study is the first to describe the presence of a legumain in Blastocystis, a 

second protozoan legumain besides T. vaginalis legumain. Comparison of 

Blastocystis legumain protein sequence with other legumain sequences showed that 

Blastocystis legumain was 30.1% identical to human, 28.4% identical to blood fluke, 

and 22.8% identical to T. vaginalis legumains. Key conserved features include the 
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catalytic His-Cys dyad, 4 predominantly hydrophobic amino acids closely preceding 

each of the catalytic residues, putative N-terminal prodomain and C-terminal 

extension, activity against legumain substrates and inhibition by legumain-specific 

inhibitors. From the multiple sequence alignment, Blastocystis legumain possesses 

unique N and C terminal regions, suggesting downstream substrates, localization and 

other properties distinct from reported legumains.  

 

Regarding pH dependence of stability and activity, mammalian and plant legumains 

have been found to be unstable at neutral pH (Rotari et al., 2001), and exhibit optimal 

activity at low pH,  with the pH optimum of human legumain at pH 4.0 (Li et al., 

2003), pig legumain at pH 5.8 (Rotari et al., 2001) and kidney bean legumain at pH 

5.4 (Rotari et al., 2001). Legumains from parasite origins, in contrast, have pH 

optimum near neutral pH, e.g., T. vaginalis legumain at pH 7.0 (Leon-Felix et al., 

2004) and the helminth Haemonchus contortus and Schistosoma mansoni legumains 

at pH 7.0 (Oliver et al., 2006) and 6.8 (Dalton et al., 1995) respectively. Blastocystis 

legumain is active over the wide range of pH 4 to 8 with the optimum pH at 7.4, 

similar to what has been reported in T. vaginalis (Leon-Felix et al., 2004). It has been 

shown that parasitic cysteine proteases have a broad pH profile and serve various 

extra-lysosomal functions as opposed to the narrow pH range of mammalian 

lysosomal cysteine proteases which primarily exert their activity in the lysosome 

(Sajid and McKerrow, 2002). Interestingly, Blastocystis legumain has biphasic pH 

dependence, with peaks at pH 4.0 and 7.4, a property that has not been seen in 

legumains from all other origins. It is presently unclear why Blastocystis legumain 

exhibits two peaks of enzyme activity. The localization of the enzyme on the cell 

surface and in intracellular compartments is consistent with activity peaks at neutral 
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and acidic pH values. It is postulated that Blastocystis legumain possesses multiple 

functions and plays important roles at the cell surface and within acidic compartments. 

Legumains are generally located within lysosomes of mammalian cells and vacuoles 

of plant cells but have been reported to localize to the cell surface of metastatic 

tumors (Liu et al., 2003) and on the microvillar surfaces of helminth intestinal cells 

(Oliver et al., 2006). Surface legumains were suggested to activate local zymogens 

which may aid tumor invasion or participate in helminth alimentary digestion of host 

proteins. Blastocystis cysteine proteases are able to cleave human immunoglobulin A 

(Puthia et al., 2005) and also induce pro-inflammatory responses in host cells (Puthia 

et al., 2008). The presence of legumain on the parasite surface may similarly function 

to activate these proteases. The localization of Blastocystis legumain to the cell 

surface is probably promoted by its uncommon secretory signal peptide. Such signal 

peptide has only been explicitly described in the legumain of the Chinese liver fluke 

Clonorchis sinensis (Ju et al., 2009), which was found in the excretory-secretory 

products as a serological antigen. 

 

Blastocystis legumain activity was abolished by legumain specific inhibitor APE-RR, 

an aza-Asn derivative that does not cross react with caspases, papain and cathepsin 

(Asgian et al., 2002). It is moderately inhibited by cystatin and MAb 1D5 and weakly 

inhibited by caspase-1 inhibitor Ac-YVAD-CMK. Cystatins are potent inhibitors of 

the papain-like cysteine peptidases in the unrelated family C1 but also inhibit 

legumain, due to a separate site on the cystatin molecule (Alvarez-Fernandez et al., 

1999), while plant and mammalian legumains have been shown to cleave caspase-1 

substrates (Hatsugai et al., 2004; Rotari et al., 2001). Hence, Blastocystis legumain 

shares a number of characteristics with legumains of other origins. 
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In plants, legumain is essential for hypersensitive response cell death (Hatsugai et al., 

2004) and is also involved in fungal toxin FB1-induced plant cell death (Kuroyanagi 

et al., 2005). Virus-induced gene silencing of VPE revealed loss of VPE and caspase-

1 cleavage activities concomitant with loss of PCD features upon TMV-induction, 

resulting in increased virus proliferation. Hence, VPE-mediated cell death is 

important for resistance to pathogen infection. VPE targets that mediate HR cell death 

are currently unknown (Lam, 2005). In contrast to the plant model, the present studies 

suggest that Blastocystis legumain mediates pro-survival functions. This is evidenced 

by the significant PS-externalization and in situ DNA fragmentation upon incubation 

with legumain inhibitors. There was a positive correlation between the extents of 

these PCD features with the degree of legumain inhibition (Figure 3.2.10), with 

legumain-specific inhibitor and cystatin inducing the greatest amount of PS flipping 

and DNA fragmentation. The data indicates that PCD in Blastocystis is regulated by 

surface legumain activity and suggests a pro-survival role for the surface molecule. 

However, although cystatin only caused 45% inhibition of Blastocystis legumain 

activity as compared to 90% inhibitory effect by legumain-specific inhibitor, the 

extent of cell death induced by cystatin was even higher than that induced by 

legumain specific inhibitor. Since cystatin is also a high affinity inhibitor of family C1 

cysteine proteases, it is possible that there is a papain-like cysteine protease 

downstream of legumain whose inhibition triggers PCD and by inhibiting both 

legumain and this hypothetical substrate protease cystatin causes massive cell death in 

Blastocystis. Because cystatin is a cell impermeable inhibitor (Claveau et al., 2000), it 

is thus unlikely that PCD induction was due to inhibition of some other intracellular 

enzyme. It is speculated that Blastocystis cell surface legumain may be responsible for 

processing and activating a downstream cysteine protease which also localizes at the 
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cell surface and has important function in nutrition uptake. Alternatively, cystatin may 

independently trigger PCD by inactivating papain-like proteases on the parasite 

surface. Previous studies showed that MAb 1D5 exposure induces PCD features 

rapidly, evidenced by PS-externalization and caspase-like activity by 2 h post 

induction (Nasirudeen et al., 2001a; Nasirudeen and Tan, 2004), suggesting a direct 

role for legumain in Blastocystis PCD. In this study, it was demonstrated that MAb 

1D5 was able to inhibit Blastocystis legumain. It is known that enzymes can be 

inhibited by some of their specific antibodies through mechanisms such as steric 

hindrance and conformational changes (Gelboin and Krausz, 2006). MAbs of 

different Ig subtypes have been used to study the role of individual cytochrome P450 

isoforms. Because of their high specificity and high inhibitory activity, carefully 

selected MAbs were suggested to be superior to chemical inhibitors to target specific 

cytochrome P450 enzymes (Gelboin and Krausz, 2006). MAb 1D5 is the first reported 

legumain-specific antibody which has an inhibitory effect on this enzyme. The 

mechanism by which Blastocystis legumain modulates PCD is presently unclear. 

Human embryonic kidney (HEK) 293 cells overexpressing legumain appear more 

resistant to apoptosis compared to cells that have basal levels, and is associated with 

tumor invasion and metastasis in vivo (Liu et al., 2003). More work needs to be done 

to unravel the pro-survival mechanism of Blastocystis legumain and to determine if it 

is similar to that of tumor cells. Identification of the substrates of legumain will take 

us one step further in delineating the legumain-mediated PCD pathway. 

 

It was reported that MAb 1D5-treated Blastocytis pre-exposed to zVAD.fmk and/or 

cyclosporine A was not rescued from cell death (Nasirudeen and Tan, 2004, 2005). In 

the presence of either inhibitor, there seemed to be a compensatory mechanism as the 
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cells were able to trigger the mitochondrial-dependent death pathway in the absence 

of caspase-like activity, and vice versa. However, even though both caspase-like 

activity and MOMP were inhibited and DNA fragmentation was abolished completely, 

the cells continued to die. Therefore, besides apoptosis, other cell death pathways 

might exist in Blastocystis and be triggered upon MAb 1D5 induction. 

 

Autophagy has been suggested to play a role in alternative cell death pathway (Berry 

and Baehrecke, 2008; Kourtis and Tavernarakis, 2009). In order to investigate if 

caspase-independent PCD in MAb 1D5-treated Blastocystis occurred through 

autophagy, a specific autophagic marker monodansylcadaverine (MDC) was used. 

Autophagy is often characterized by the presence of vacuoles containing sequestered 

cytoplasmic components and organelles and MDC can accumulate in these vacuoles 

due to ion trapping mechanism and interaction with membrane lipid, functioning as a 

solvent polarity probe (Niemann et al., 2000).   

 

MDC-labeled vesicles were observed in MAb 1D5-treated Blastocystis and 18.9% of 

cells showed MDC positive staining, suggesting that autophagy was triggered by 

MAb 1D5. The interplay between apoptosis and autophagy is complex and not fully 

understood yet. Similar stimuli can induce either apoptosis or autophagy 

concomitantly, sequentially, or in a mutually exclusive manner (Maiuri et al., 2007). 

It appeared that MAb 1D5 could trigger both apoptosis and autophagy, although 

apoptosis was still the major mode of cell death. However, when Blastocystis was pre-

exposed to zVAD.fmk before incubation with MAb 1D5, the percentage of MDC-

positive cells increased to 37.9%, indicating an up-regulation of autophagy when 

caspase-like activity was blocked. This is consistent with many metazoan cell lines 
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which were sensitized to autophagic cell death in the absence of caspase activation 

(Vandenabeele et al., 2006; Yu et al., 2004). The current study also demonstrated the 

importance of mitochondrial outer membrane permeabilization (MOMP) in 

MAb 1D5-initiated autophagy as when MOMP was inhibited by cyclosporine A, 

MDC positive staining was abolished in MAb 1D5 treated cells, even with pre-

treatment of zVAD.fmk.  Mitochondrial damage has been reported to be a signal for 

autophagy in mammalian cells. Overexpression of mitochondrial calpain 10 was 

found to cause mitochondrial swelling and increased autophagy, which was blocked 

by cyclosporine A (Arrington et al., 2006). It is likely that autophagy was triggered in 

Blastocystis via MAb 1D5-mediated mitochondrial dysfunction. 

 

This study is the first to report the occurrence of autophagy in Blastocystis through 

induction by a cytotoxic antibody. Further analysis of Blastocystis colony forms 

revealed that autophagy also occurs naturally in this organism. Strong and punctate 

MDC staining was observed in cells located in the center of a Blastocystis colony. 

Within a colony, cells in the center have less access to nutrients and hence, they are 

mostly like to undergo starvation as compared to cells at the periphery of the colony. 

Cells grown in liquid culture but deprived of amino acids also had a high percentage 

of MDC-positive staining. In addition, time-dependent increase of MDC staining was 

observed during the first three hours of amino acid starvation. These results suggest a 

strong correlation between MDC staining and the nutritional state of the cell. Since 

MDC was reported to stain autophagic vacuoles and autophagy is rapidly up-

regulated in response to nutrient-deficient conditions in other organisms (Takeshige et 

al., 1992; Yorimitsu and Klionsky, 2005), the intensive MDC staining should be a 

good reflection of the autophagic activity in Blastocystis and can be used in future 
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investigation of autophagy in Blastocystis. The results also demonstrated that 

autophagy occurs naturally when cells have limited access to nutrients or can be 

rapidly induced by removing nutrients from culture media. 

 

Cells induce autophagy in response to nutrient scarcity and generate recycled 

metabolic substrates to maintain energy homeostasis (Meijer and Codogno, 2004; 

Tsukada and Ohsumi, 1993). However, when nutrient supply via autophagy becomes 

ultimately depleted in prolonged starvation, massive autophagy may contribute to cell 

death (Eskelinen, 2005; Galluzzi et al., 2008). Blastocystis grown in liquid culture 

also responded to starvation by initiating autophagy when the cells were deprived of 

amino acids.  

 

Results of the current study suggest that the some of the autophagy machinery is 

conserved in Blastocystis. Target of rapamycin (TOR) is a conserved Ser/Thr kinase 

and a negative regulator of autophagy. Rapamycin induces autophagy through 

inhibition of TOR (Meijer and Codogno, 2004). It was found that in Blastocystis, 

treatment with rapamycin elicited similar response to that of amino acid starvation. 

Rapamycin treatment was effective in intensifying MDC-labeled vesicles; hence 

Blastocystis is likely to have a homolog of TOR and the TOR signaling pathway 

should also exist and function in Blastocystis. The phosphatidylinositol 3-kinase 

(PI3K) inhibitors 3-MA and wortmannin was shown to inhibit the incorporation of 

MDC effectively. Both class I and class III PI3K have been reported to regulate 

autophagy in yeast and mammalian cells. Class I PI3K generates products to inhibit 

autophagic sequestration while class III PI3K products stimulate autophagic 

sequestration downstream of class I enzymes, so the overall effect of 3-MA and 
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wortmannin is to block autophagy (Blommaart et al., 1997; Petiot et al., 2000). 

Inhibition of MDC incorporation by 3-MA and wortmannin suggested similar 

regulation pathway existed in Blastocystis and also confirmed the autophagic nature 

of MDC-labeled vesicles. The concentration of 3-MA used to effectively inhibit MDC 

incorporation in Blastocystis is comparable to that in mammalian cells and many other 

cells (Munafo and Colombo, 2001).  However, the concentration of wortmannin 

needed to inhibit MDC incorporation was higher in Blastocystis (in the micromolar 

range) than in mammalian cells (in the nanomolar range), but is comparable to plants 

(µM) (Takatsuka et al., 2004). The different sensitivity range of wortmannin in 

Blastocystis, plants and mammalian cells may be due to the difference in the structure 

of PI3K subunit which wortmannin binds to. It was reported that wortmannin binds to 

the catalytic subunit of PI3K, while 3-MA interacts with the regulatory subunit of 

PI3K (Walker et al., 2000). 

 

Morphological examinations by confocal microscopy and transmission electron 

microscopy (TEM) revealed several unique features of autophagy in Blastocystis. 

Most of the extensive MDC staining was observed inside the central vacuole, 

suggesting a role of this organelle in the autophagy process. MDC stained structures 

either appeared as individual circular vesicles of size 0.5 - 1 µm or big clusters of 

several specks of size 2 - 8 µm. Similar big sized structures in autophagy was only 

described in another intestinal protozoan parasite E. invadens and their appearance 

was found to coincide with the initiation of encystation process (Picazarri et al., 2008). 

Since starvation was known to induce encystation in protozoan parasites such as 

Giardia lamblia and E. invadens (Avron et al., 1986; Lujan et al., 1996), it is possible 

that starvation has triggered some Blastocystis cells to transit into granular or cyst 
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forms and autophagy may promote the morphological changes through massive 

clusters of autophagic vacuoles. TEM is the most reliable method for monitoring 

autophagy (Mizushima, 2004). Highly polymorphic autophagic vacuoles were 

observed in amino acid-starved and rapamycin-treatecd cells. Based on these 

randomly observed profiles, it is postulated that the process of autophagy in 

Blastocystis starts from cytoplasmic membrane expansion to enclose organelles and 

other materials, or transfer of cytoplasmic components through vesicle- or tubular 

invagination and subsequent budding of vesicles into the central vacuole. 

Morphologically, the first scenario resembles that of macroautophagy, while the latter 

scenario is similar to microautophagy in the yeast. Regardless of the origin, all of the 

autophagic vacuoles appeared to be deposited into the central vacuole. The central 

vacuole is the largest organelle in Blastocystis vacuolar forms and takes up 

approximately 90% of the cell’s volume. It is speculated to be an important organelle 

of this organism. However, the function of central vacuole is still largely unknown 

(Tan, 2008). Through amino acid starvation and rapamycin treatment, the current 

study has clearly demonstrated a role of the central vacuole in autophagy. Previous 

studies using biochemical staining for carbohydrates or lipids showed that some cells 

accumulated these two substances in the central vacuole while some cells did not 

show any positive reactions to the stainings (Yoshikawa et al., 1995a; Yoshikawa et 

al., 1995b). It is likely that the lipids and carbohydrates are actually released from 

degraded autophagic vacuoles as autophagy serves to maintain homeostasis in healthy 

cells. The current study could also shed light to numerous unexplained observations 

with the central vacuole in previous studies. Cytoplasmic inclusions within the central 

vacuole reported in previously (Dunn et al., 1989b; Pakandl, 1999), which may be 

due to baseline autophagy in the parasites. The cytoplasmic projections into the 
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central vacuole was shown to increase during unfavorable culture conditions such as 

in the presence of high concentrations of antibiotics (Boreham and Stenzel, 1993). It 

is possible that the cells up-regulated autophagy in face of environmental stress. 

 

In this study, autophagy was found to be involved in the response to nutritional stress 

and in cytotoxic antibody mediated cell death. Triggering autophagy in response to 

nutrient scarcity may represent an adaptive response by generating recycled metabolic 

substrates to maintain energy homeostasis (Meijer and Codogno, 2004; Tsukada and 

Ohsumi, 1993). However, when nutrient supply via autophagy becomes ultimately 

depleted in prolonged starvation, massive autophagy may contribute to cell death 

(Eskelinen, 2005; Galluzzi et al., 2008). Autophagy may also serve as an alternative 

pathway to die when cells are stressed, such as with exposure to the cytotoxic 

antibody MAb 1D5, and may become the main pathway of cell death when classical 

apoptosis is inhibited. The cellular target of MAb 1D5 has been identified to be a cell 

surface legumain, an asparagine endopeptidase which was suggested to participate in 

helminth alimentary digestion of host proteins (Oliver et al., 2006). It is postulated 

that inhibition of legumain activity by MAb 1D5 hinders the nutritional uptake of 

Blastocystis and thus elicits a starvation response in the parasite.  

 

Figure 3.4.1 shows a proposed model of MAb 1D5-mediated PCD based on the 

present study and previous reports. The data in this chapter suggest that MAb 1D5 

targets at cell surface legumain to induce cell death in Blastocystis. Inhibition of 

legumain activity was also found to trigger apoptotic cell death in this organism. 

Since MAb 1D5 can inhibit legumain activity to some extent, the cytotoxicity of this 

antibody might be due to the inhibition of legumain. Besides apoptosis, autophagy 
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was also induced by MAb 1D5 in Blastocystis, which augment in the presence of 

caspase inhibitor. Since legumain as been suggested in the nutrient uptake of 

helminths, it is possible that autophagy triggered through legumain inhibition by MAb 

1D5 is similar to the starvation response. When cells are starved or treated with 

rapamycin, the target of rapamycin (TOR) is inhibited and autophagy is triggered. 

Autophagy may initially help the cells to survive by recycling its cytoplasmic 

constituents while eventually when cells fail to cope with stress it serve as alternative 

cell death pathway. However, this still requires further investigations.  

 

 

 
 
Figure 3.4.1 Proposed model of MAb 1D5 induced cell death in Blastocystis. CA, 
cyclosporine A. TOR, target of rapamycin. The binding of MAb 1D5 to legumain on 
the surface of Blastocystis leads to caspase-like proteases activation and MOMP, 
resulting in mainly apoptotic cell death and autophagic cell death to a less extent. In 
the presence of zVAD.fmk, the phenotype of cell death shifts more to autophagy. In 
addition, the presence of both zVAD.fmk and CA may trigger other death pathways 
which may be necrosis. 
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Chapter 4  

Mechanisms of Staurosporine-Induced PCD in Blastocystis 

 

4.1 Staurosprine triggers apoptotic features in Blastocystis 

Staurosporine, a protein kinase inhibitor, has been shown to induce PCD in all 

mammalian cells studied so far (Weil et al., 1996; Zhang et al., 2004) and is a 

valuable tool in PCD studies. Staurosporine at a concentration of 1 µM induced in 

Blastocystis a rapid cell death process with apoptotic features. As shown in Figure 

4.1.1, flow cytometry analysis of staurosporine-treated cells showed reduction in cell 

size at 3 h.  Dot plot of control cells displayed two distinct populations of cells. The 

population on the right represented larger cells (healthy cells and some early apoptotic 

cells) while the population on the left were necrotic cells, cellular debris and late 

apoptotic cells. When treated with staurosporine, there was a shift of the population to 

the left, indicating cell shrinkage. The histogram of forward size scatter (Figure 4.1.1 

B) also showed that staurosporine-treated cells were smaller than controls. The 

decrease in cell volume is an important early event of apoptosis that distinguishes it 

from necrosis (Maeno et al., 2000).  
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Figure 4.1.1 Effect of staurosporine on Blastocystis cell size as analyzed by flow 
cytometry. Blastocystis cells were incubated in the absence (Untreated) or presence 
(STS) of staurosporine (1 µM) for 3 h. DMSO control is the vehicle control. A, dot 
plot of forward (size) versus side (granularity) light-scatter. B, histogram 
representation of cell size. 
 

Blastocystis cells exposed to staurosporine maintained membrane integrity while 

exhibited phosphatidylserine (PS) externalization, another two characteristics of 

apoptotic cells (Figure 4.1.2). Propidium iodide (PI), when used in the absence of cell 

permeant, can only enters cells with damaged plasma membrane and stains the 

nucleic acid. Exclusion of PI demonstrates the preservation of membrane integrity. 

Combined use of PI and Annexin V, which binds to PS exposed on the outer layer of 

plasma membrane during apoptosis, can differentiate apoptotic, necrotic and healthy 

cells. As shown by flow cytometry analysis in Figure 4.1.2, staurosporine-treated cells 

had a very low percentage of cells with PI-positive staining, similar to that of 
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untreated and vehicle control. In contrast, heat-induced necrotic cells showed a very 

high percentage (86.31%) of PI-positive cells. While maintaining membrane integrity, 

staurosporine-treated cells had 33.17% subpopulation with Annexin V-positive and 

PI-negative staining, much higher than that of untreated and DMSO control. The 

response was rapid as Blastocystis was treated with staurosporine for only three hours. 

 

 

 
Figure 4.1.2 Preservation of membrane integrity and externalization of PS in cells 
treated with staurosporine. Blastocystis cells were incubated in the absence (Untreated) 
or presence (STS) of staurosporine (1 µM) for 3 h. DMSO control is the vehicle 
control. Necrosis was induced by heating the cells in an 80 ºC water bath for 15 min. 
A, representative dot plots of Annexin V-FITC and PI staining assay. B, fluorescent 
microscopy image of staurosporine-treated cells stained by Annexin V-FITC and PI. 
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DNA fragmentation is a hallmark of apoptosis and usually a late event in apoptosis 

(Collins et al., 1997). TUNEL assay relies on the specific binding of terminal 

deoxynucleotidyl transferase (TdT) to exposed 3’-OH end of DNA followed by the 

synthesis of a labeled deoxyuridine molecule. Hence formation of DNA strand breaks 

as a consequence of endonuclease activity can be detected by flow cytometry analysis 

and expressed as a percentage of TUNEL-positive cells. As shown in Fig. 3, cells 

treated with staurosporine for 12 h exhibited 56.09% TUNEL-positivity, whereas 

untreated cells or vehicle control had a very low percentage of TUNEL-positive cells. 

Therefore, these results demonstrate that as in mammalian cells, staurosporine is also 

a strong apoptosis inducer for Blastocystis. 

 

 

 
Figure 4.1.3 Representative histograms showing in situ DNA fragmentation analysis 
(TUNEL) of Blastocystis cells by flow cytometry. Cells treated with staurosporine for 
12 h had a significant increase in fluorescence intensity compared to untreated control 
or vehicle control. 
 

Transmission electron micrographs of staurosporine-treated cells also exhibited 

apoptotic features. As compared to the healthy control, cells exposed to staurosporine 

showed massive cytoplasmic vacuolation (Figure 4.1.4 A, D) and margination and 

segregation of nuclear chromatin (Figure 4.1.4 C, F). Condensed cells with collapsed 

central vacuoles were also observed (Figure 4.1.4 E). 
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Figure 4.1.4 Transmission electron microscopy of Blastocystis cells exposed to 
staurosporine for 3 h or 12 h. A, Healthy Blastocystis cell with normal morphology 
and DNA chromatin seen as a crescentic mass. B, massive cytoplasmic vacuolation in 
a cell treated with staurosporine for 3 h. C and F, condensed and segregated 
chromatin in cells treated with staurosporine for 12 h. D, coalescing of large 
cytoplasmic vacuoles with central vacuole in cell treated with staurosporine for 12 h. 
E, cell displaying collapsed central vacuole, severe shrinkage and multiple vacuoles. 
N, nucleus; CV, central vacuole; M, mitochondria. Bars, 2 µm. 
 

4.2 Regulation of staurosporine-induced apoptosis by mitochondria and cysteine 

proteases 

Since staurosporine was found to be a strong and robust inducer of apoptotic cell 

death in Blastocystis, it was used to screen potential regulators of Blastocystis PCD. 

The mitochondrion and cysteine proteases are the key regulators of apoptosis in 

higher eukaryotes. Therefore, the mitochondrial transition pore blocker cyclosporine 

A and inhibitors of a range of cysteine proteases was used to pre-treat the cells before 

their exposure to staurosporine. Staurosporine-treated Blastocystis showed 55.3±3% 

cells with PS exposure at 3 h and 51.3±1.7% cells with in situ DNA fragmentation at 
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12 h (Figure 4.2.3). Cyclosporine A completely abolished staurosporine-induced PS 

exposure and DNA fragmentation (Figures 4.2.1 and 4.2.2). The general cysteine 

protease inhibitor IA in the concentration range of 10 µM to 100µM could inhibit the 

two apoptotic features in a dose-dependent manner. However, even with the highest 

concentration 100 µM, IA could only reduce the percentage of Annexin V-positive 

cells and TUNEL positive cells to 25.6±3.8% and 22.7±3.1% respectively, and was 

thus not as effective as cyclosporine A. The effects of more specific inhibitors of 

different families of cysteine proteases were also investigated. The caspase inhibitor 

z-VAD.fmk and cathepsin B and L inhibitors z-FF.fmk, z-FA-fmk, CA-074-Me could 

not inhibit staurosporine-induced changes in PS exposure and DNA fragmentation. 

Interestingly, two calpain inhibitors z-LLL.fmk and ALLN could promote 

staurosporine-induced apoptotic responses, evidenced by the increased PS exposure to 

65.3±2.6% (z-LLL.fmk) and 64.6±2.2% (ALLN), and increased DNA fragmentation 

to 64.0±2.9% (z-LLL.fmk) and 62.7±2.0% (ALLN). However, because it was 

reported that the calpain inhibitor ALLN may also inhibit the proteosome (McDonald 

et al., 2001), the effect of the proteosome inhibitor epoxomicin was also tested. No 

inhibition of staurosporine-induced apoptotic features could be observed with pre-

treatment of epoxomicin (Figures 4.2.1, 4.2.2 and 4.2.3), indicating that the apoptosis-

promoting effect of calpain inhibitors should be due specifically to the inhibition of 

calpain activity. 
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Figure 4.2.1 Annexin V assay of inhibitor-pretreated cells. Cells were pretreated with 
protease inhibitors or CsA for 30 min before incubation with staurosporine for 3 h. 
The R4 quadrant represents the percentage of apoptotic cells (Annexin V-FITC 
positive/ PI negative cells) in the total cell population. Control was performed with 
the same volume of inhibitor diluent (DMSO). 
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Figure 4.2.2 TUNEL assay of inhibitor-pretreated cells. Cells were pretreated with 
protease inhibitors or CsA for 30 min before incubation with staurosporine for 12 h. 
The gated population represents the percentage of apoptotic cells (TUNEL positive) 
in the total cell population. Control was performed with the same volume of inhibitor 
diluent (DMSO). 
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Since calpain inhibitors were found to be augmenting staurosporine-induced apoptotic 

responses, the activity of calpain was assessed to see if there are any correlation 

between calpain activity and the apoptotic responses. As shown in Figure 4.2.3, 

calpain is constitutively active in healthy cells. However, exposure to staurosporine 

potently increased calpain activity to double that of the control. As expected, the 

calpain inhibitor z-LLL.fmk and ALLN completely inhibited the enzymatic activity of 

this protease. Therefore, the data suggests that Blastocystis calpain becomes more 

active upon exposure of cells to staurosporine and exerts a protective effect to the 

staurosporine challenge. The general cysteine protease inhibitors IA could inhibit 

some extent of the staurosporine-induced apoptotic responses whereas E64D, a broad-

range inhibitor of cathepsins and calpains had no inhibitory effect. The different 

inhibitory profile of these two protease inhibitors on calpain activity might provide an 

explanation to their opposing effects on apoptotic responses. Figure 4.2.3 showed that 

E64D was a potent inhibitor of calpain while IA only inhibited calpain activity 

moderately. It is likely that the two inhibitors could exert a protective effect on the 

cells by inhibiting an unknown protease which is responsible for mediating the 

staurosporine-induced apoptosis; however, the cytoprotective effect of E64D was 

neutralized by its apoptosis-promoting effect through inhibition of calpain. 
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Figure 4.2.3 Relationship between Blastocystis calpain protease activity and 
staurosporine-induced apoptosis. Data of Annexin V and TUNEL assays were 
retrieved from Figure 4.2.1 and Figure 4.2.2. Calpain activity assay was done by 
incubating cell lysates with fluorogenic substrate Ac-LLY-AFC. Values were means 
± standard deviation from three independent experiments. 
 

 



 125

4.3 Discussion 

In the present study, the PCD-inducing potential of staurosporine in Blastocystis was 

investigated and the staurosporine-induced apoptotic signaling pathway was analyzed. 

The results demonstrated that the protein kinase inhibitor staurosporine can induce an 

apoptotic cell death process with several cytoplasmic and nuclear features of 

mammalian apoptosis, including cell shrinkage, exposure of PS molecules, 

maintenance of plasma membrane integrity, extensive cytoplasmic vacuolation, 

nuclear condensation and DNA fragmentation.  

 

Apoptosis in mammalian cells is mediated primarily by the activation of a family of 

cysteine proteases called caspases which cleave substrates critical for cell survival 

(Taylor et al., 2008). Another major executionary pathway is through mitochondrial 

outer membrane permeabilization and subsequent release of cytochrome c and other 

pro-apoptotic molecules (Kroemer et al., 2007). Using the mitochondrial transition 

pore blocker cyclosporine A, we showed that mitchondria also play important roles in 

the execution of apoptosis induced by staurosporine because cyclosporine A could 

effectively abolish staurosporine-induced PS exposure and DNA fragmentation. In 

Hela cells, mitochondria were found to have a central role in staurosporine-induced 

apoptosis and inhibition of the mitochondrial permeability transition prevented 

apoptosis (Tafani et al., 2001) Mitochondrial dysfunction has also been frenquently 

observed among protozoan parasites which are induced to undergo apoptosis 

(Deponte, 2008).  The involvement of mitochondria in programmed cell death was 

suggested to be of very ancient evolutionary origin (Arnoult et al., 2002). However, 

the pro-apoptotic molecules released by mitochondria in Blastocystis may be very 

different from that of mammalian cells and other protozoan parasites, since this 
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organism has unusual mitochondria that has been reported to lack cytochromes 

(Lantsman et al., 2008). 

 

Despite the indispensable role of caspases in mammalian apoptosis, no orthologous 

sequences have been found in protozoan parasites. Nonetheless, a lot of studies 

showed caspase-like activity by the cleavage of synthetic peptide substrates during 

cell death of protozoa, including Blastocystis (Nasirudeen et al., 2001a). It was found 

that caspase-3-like activity was triggered with a cytotoxic antibody and inhibition of 

the caspase-like molecule by z-VAD.fmk could inhibit the apoptotic features to some 

extent (Nasirudeen and Tan, 2004, 2005). In contrast to the involvement of caspase-

like molecule in the previous studies, the present data suggest that staurosporine-

induced apoptosis is independent of caspase-like molecules, as pre-treatment with z-

VAD.fmk did not alter the PS exposure or DNA fragmentation induced by 

staurosporine.  However, the general cysteine protease inhibitor IA could reduce the 

apoptotic responses in a dose-dependent manner, suggesting the involvement of a 

cysteine protease in the execution of staurosporine-induced apoptosis. As cysteine 

cathepsins have been suggested to regulate cell death in mammalian cells (Turk and 

Stoka, 2007), the effect of inhibitors of cathepsins was examined. Three different 

inhibitors of cathepsins, namely z-FF.fmk (cathepsins B and L), z-FA.fmk (cathepsins 

B and L) and CA-074-Me (cathepsin B), were used to pre-treat Blastocystis cells 

before exposure to staurosporine; however, Annexin V and TUNEL assays revealed 

that the cathepsin inhibitors did not have any inhibitory effect on staurosporine-

induced apoptosis.  
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Interestingly, calpain inhibitors z-LLL.fmk and ALLN were shown to enhance 

staurosporine-induced apoptosis while these potently inhibited calpain protease 

activity. Calpains are non-lysosomal calcium-dependent cysteine proteases and have 

been implicated in cell death signaling (Broker et al., 2005). Calpain was reported to 

facilitate caspase-3 activation by initial cleavage of the pro-enzyme (Blomgren et al., 

2001). Cleavage of Bax to its proapoptotic Bax/p18 was found to be mediated by 

calpain and mediate cytochrome c release and execution of apoptosis (Gao and Dou, 

2000). On the other hand, anti-apoptotic roles of calpains have also been suggested. 

For example, proteolytic cleavage of p53 protected cells from apoptosis induced by 

DNA damage (Kubbutat and Vousden, 1997). Capn4-/- MEFs lacked calpain 

activities and were more susceptible to staurosporine- and TNFα-induced apoptosis. 

The anti-apoptotic function of calpain might be related to activation of the PI3-

kinase/Akt survival pathway (Tan et al., 2006). It seems that calpains also play a 

protective role in staurosporine-mediated apoptosis in Blastocystis. Identifying its 

substrates may help to further dissect signaling networks regulating cell death in 

Blastocystis. It is worth noticing that the pre-treatment with cyclosporin A blocked 

apoptotic features induced by staurosporine but calpain activity was still up-regulated. 

Previous studies showed that apoptotic features induced by a cytotoxic antibody in 

Blastocystis could be inhibited by the combined use of z-VAD.fmk and cyclosporine 

A, but the cells could not be rescued from death, suggesting the existence of 

alternative cell death pathways in this parasite (Nasirudeen and Tan, 2005). It is likely 

that despite rescue of staurosporine-induced apoptosis by pre-treatment with 

cyclosporine A, the cells still die through alternative cell death pathways and thus 

calpain activity was up-regulated as a survival response. 
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Figure 4.3.1 Proposed model of staurosporine-induced apoptosis in Blastocystis. 

 

A model on the mechanism of staurosporine-induced apoptosis was proposed based 

on the results in this chapter (Figure 4.3.1). In summary, the present study has shown 

that staurosporine can induce apoptotic features in Blastocystis, which is mediated by 

mitochondria and an as yet unidentified cysteine protease; furthermore, calpain 

activity is up-regulated to protect the cells from apoptosis induced by staurosporine. 
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Chapter 5 

Conclusion 

 

5.1 Conclusions 

1. This study, being the first proteomic study of Blastocystis, has established a reliable 

method for two-dimensional gel electrophoresis and constructed a reference proteome 

map for this organism. 

 

2. Through proteomic analysis, this study has identified the cellular target of the 

cytotoxic antibody MAb 1D5 as legumain, with a conserved asparagines-specific 

cysteine protease C13 family domain. This is the key initial step in elucidating the 

mechanism of MAb 1D5-induced programmed cell death in Blastocystis. The present 

study is the first to describe the presence of a legumain in Blastocystis, a second 

protozoan legumain besides T. vaginalis legumain. 

 

3. While legumains of other organisms are usually found in lysosomal/acidic 

compartments, this study has demonstrated a cell surface localization of legumain in 

addition to cytosolic localization. Thus MAb 1D5 can assess the legumain on the cell 

surface. 

 

4. Inhibition of legumain activity by a legumain specific inhibitor induced apoptosis-

like PCD in Blastocystis. MAb 1D5 was also found to inhibit legumain activity. 

Therefore, this study strongly suggests that legumain has a key role in the regulation 
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of Blastocystis PCD and legumain is the first PCD mediator characterized in this 

organism. 

 

5. By using the autophagic marker monodansylcadaverine (MDC) and autophagic 

inhibitors 3-methyladenine and wortmannin, this study has shown the existence of 

autophagy in Blastocystis colony culture, or through exposure to MAb 1D5, amino 

acid starvation and treatment with rapamycin. This is the first report of autophagy in 

Blastocystis.  

 

6. MAb 1D5-induced autophagy was found to up-regulate in the presence of caspase 

inhibitor and appeared to be mediated through mitochondrial outer membrane 

permeabilization. Hence this study demonstrated the interplay between apoptosis and 

autophagy in Blastocystis. 

 

7. This study has presented unique features of autophagy in Blastocystis. The 

autophagic compartments was found to have unusually large size and appeared to be 

deposited into the parasite central vacuole. The central vacuole was postulated to be a 

repository for autophagic vacuoles.  

 

8. This study showed that Blastocystis exhibited apoptotic features in response to a 

common apoptosis inducer staurosporine. The apoptosis appeared to be mediated by 

mitochondria and an as yet unidentified cysteine protease, but not caspases or 

cathepsins B and L.  Calpain was found to play a protective role. This study 

demonstrated that Blastocystis PCD has multiple regulators. 
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5.2 Future studies 

This study suggests that the seemingly simple protozoon possesses complex cell death 

machinery. Further studies are required for more insights into its cell death 

mechanism. Future studies can be conducted to identify the downstream substrates of 

legumain and further dissect the signaling network of MAb 1D5-induced PCD. A 

possible role of legumain in nutrient uptake and autophagy can also be investigated 

since MAb 1D5 was shown to induce autophagy and legumain in helminths was 

suggested to be involved in alimentary digestion of host proteins. It can be examined 

whether staurosporine can trigger autophagy, because mitochodria were found to 

mediate staurosporine-induced apoptosis as well as MAb 1D5-induced apoptosis and 

autophagy. Mitochondria may be an important switch between apoptosis and 

autophagy in Blastocystis. When a high quality and annotated genome database 

becomes available, bioinformatic analysis can be performed to search for the 

orthologs of proteins involved in apoptosis and autophagy.  Proteomic studies of 

differentially expressed proteins of healthy cells and cells undergoing PCD can also 

help to identify the potential regulators of PCD. Further research in the mechanism of 

protozoan PCD may facilitate the development of novel therapeutics targeting novel 

modulators of the protozoan cell death pathway. 
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Appendices 

 
 
 
Appendix I Bioinformatic analysis of Contig 1466 from Blastocystis draft genome 
 
 

GENSCANW output for sequence Contig1466 
 
 
GENSCAN 1.0 Date run:  6-Jun-109 Time: 08:15:49 
 
Sequence Contig1466 : 5798 bp : 44.77% C+G : Isochore 2 (43 - 51 C+G%) 
 
Parameter matrix: Arabidopsis.smat 
 
Predicted genes/exons: 
 
 
Gn.Ex Type S .Begin ...End .Len Fr Ph I/Ac Do/T CodRg P.... Tscr.. 
----- ---- - ------ ------ ---- -- -- ---- ---- ----- ----- ------ 
 
 1.01 Init +     87    218  132  2  0   81   61   126 0.269  14.36 
 1.02 Intr +    358    493  136  0  1  -18   14    64 0.040  -6.46 
 1.03 Term +   1265   2031  767  0  2   19   37  1468 0.146 133.38 
 1.04 PlyA +   2071   2076    6                              -3.64 
 
 2.05 PlyA -   2101   2096    6                               1.05 
 2.04 Term -   2397   2149  249  0  0  -27   42   136 0.529  -1.80 
 2.03 Intr -   2618   2430  189  2  0   18    3   273 0.620  16.58 
 2.02 Intr -   3249   3159   91  2  1   55   51   136 0.724  11.60 
 2.01 Init -   4563   3401 1163  0  2   31   46  1722 0.815 160.46 
 2.00 Prom -   4644   4605   40                              -8.86 
 
 3.00 Prom +   4859   4898   40                             -10.35 
 3.01 Init +   5123   5788  666  1  0   74    1   990 0.934  89.13 
 
 
Predicted peptide sequence(s): 
 
Predicted coding sequence(s): 
 
>Contig1466|GENSCAN_predicted_peptide_1|344_aa 
MVCISLVAYFVPFFEDILSVVGNFSDVITTFMFPAVMHLWVFRKNRESSPFEIHTQSFRF 
DHNLTKEKHRTDPFERFPEDNQDLNRYSCSKSQKKVSKKGKGKKVIDTMAKKEWYDVRAP 
NQFLVRDVCKTLVSRTSGLKIASEGLKGRIFEANLGDLSKNEEQGYRKIKLRVEDVQGDK 
CITLFYGMDITRDKLGSLIKKWKTLIECNVEVSTTDGYKLRLFCIAFTRKQDNQNKKTCY 
AQASQIHRIRAKMVEIITDEVSKCDLATLVPKLYMESIGARIQKECNKIYPLENTLIRKV 
KMIKSPKIDTVKLMEQHADVVKKEEEGVKVEETVAPMAGSGGRL 
 
>Contig1466|GENSCAN_predicted_CDS_1|1035_bp 
atggtgtgcatctcgctggtcgcttatttcgtgcccttctttgaggatattctgagcgtc 
gtcggaaacttcagcgatgtcattaccacgtttatgttcccggcggtgatgcatttgtgg 
gtgtttaggaagaatagggaatcttctccattcgaaattcacacacaatcttttcgattt 
gatcataatttgacaaaagaaaagcaccgtactgaccctttcgagcgattccctgaggac 
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aaccaagatttaaatcgatattcttgcagcaagtctcagaagaaagtcagtaagaaagga 
aagggaaagaaggtgattgataccatggctaagaaggagtggtacgacgtgcgtgccccg 
aaccagttcctggtgcgtgatgtttgcaagacgctggtgtctcgtacttcgggattgaaa 
atcgcttcggagggtctgaagggacgtattttcgaggccaatctgggtgatctgagcaag 
aacgaggagcagggttaccgcaagatcaagctgcgagtggaggacgtgcagggagataag 
tgcatcaccctcttctacggaatggacatcacccgcgacaagctgggttctctgatcaag 
aagtggaagactctgatcgagtgcaacgtggaggtgtctaccaccgacggttacaagctg 
cgtctgttctgcatcgcgttcacccgcaagcaggacaaccagaacaagaagacttgctac 
gcgcaggcctctcagatccaccgcattcgtgcgaagatggtggagatcatcacggacgag 
gtgtcgaagtgcgatcttgcgacgctggttccgaagctgtacatggagtcgatcggtgct 
cgcattcagaaggagtgcaacaagatctatcctctggagaacacgctgatccgcaaggtg 
aagatgatcaagtcgcccaagatcgatacggtgaagctgatggagcagcacgccgatgtc 
gtgaagaaggaggaagagggcgtgaaggtggaggagactgtggctcccatggctggatcg 
ggaggtcgtctataa 
 
>Contig1466|GENSCAN_predicted_peptide_2|563_aa 
MKFVSIALLRVLALAAADNWAVLVAGSDGFWNYRHQADVAHAYQIMRRGGIPADHIVTMM 
YNDVASSSFNPFPGELYNHPGDESPDVYKGVVVDYEGEDVTPENFMKVLLGDESTGKKVL 
KTNENDNIFMFFSDHGGPNVLCFPNGDLSKDDFQATLKKMHEQKKYKHFVLYIEACYSGS 
MGVGFPEDLGISIVTAANDSESSWGWYCGEEAVVKGKDIGSCLGDEFSVFWMEDTDKGEQ 
RTETLNEQWKRIHDGVTKSHASRYGDVSFESDLIGEYVGYPEEKFNYDHQSSVAWDSRDA 
KFLFLLYKYQHTTGSEKAKWEKLYLEEMSLRQQIDRYINSFAKESKLYSARVSGEINMEC 
YMAGIEQMVAIFGHNDYQYKYYNVLANMASLRRSISKNTLEDDVLRTSTLRQSDIEKEFL 
EYCSRFCEIVVFTASKQEYADRMLDFLDPEKKFIKHRLFRESCTKIGKVYVKDLNRLGRD 
LRRTVIIDNSIVSFGYHLDNGIPICSWFDNWKDQEVGFLVGIECSYTTRLASCTLYKQCK 
TFVPILLICLDSVKPSIASFVNE 
 
>Contig1466|GENSCAN_predicted_CDS_2|1692_bp 
atgaaatttgtgagtatcgccttacttagagttttggctcttgctgctgctgataactgg 
gccgtgcttgttgccggttctgatggtttctggaactacagacaccaggctgatgttgcc 
cacgcgtatcagatcatgagacgcggaggaattcctgctgatcacattgtgacgatgatg 
tacaacgatgttgcttcttcttctttcaatcctttccctggtgagctttacaaccaccct 
ggtgacgaatctcctgatgtgtacaagggagtggtcgttgattacgagggagaggatgtg 
acccctgagaacttcatgaaggtgctgcttggagacgagtccactggaaagaaggtcctg 
aagaccaacgagaacgataacattttcatgttcttctctgaccacggtggcccgaacgtg 
ctttgcttccctaacggagatctgtctaaggatgacttccaggctactctgaagaagatg 
cacgagcagaagaagtacaagcacttcgtgctgtacattgaggcttgctactctggttcc 
atgggtgttggtttccctgaagatttgggcatcagcattgtcaccgctgccaacgactct 
gagtccagctggggctggtactgtggagaagaggccgttgtgaagggaaaggacattggt 
agctgccttggtgatgagttctccgtgttctggatggaggatactgacaagggcgagcag 
agaaccgagactctgaacgagcagtggaagcgcattcacgacggtgtgaccaagagccac 
gcttctcgctacggagatgtctccttcgagagcgatctgattggtgagtatgtgggctac 
cccgaggagaagttcaactacgaccaccagagctctgttgcctgggattctcgtgatgcc 
aagttcctcttccttctgtacaagtatcagcacactactggaagcgagaaggcgaagtgg 
gagaagctctatcttgaggagatgagccttcgtcagcagattgatcgctacatcaactcg 
tttgctaaggagagcaagctctactctgctagagttagcggtgagatcaatatggagtgc 
tacatggctggtattgagcagatggtggctatcttcggtcacaatgattaccagtacaag 
tactacaacgtgctggctaacatggctagtttacgaaggtcgatatccaagaatacactt 
gaggacgatgttcttcgaacaagcaccttgagacaaagcgacattgaaaaggagtttcta 
gagtattgctcccggttttgtgaaatcgtggtcttcacagcatcgaaacaggagtatgcg 
gatcgtatgctggactttttggatccggagaagaaattcatcaagcatcgcctgttccgc 
gaaagttgtaccaaaatagggaaggtctacgtgaaagatttaaatcgtttgggtcgagat 
ttgagacgaactgtgattatcgataactcgatcgtgtcctttggatatcatttagataat 
ggaattccgatttgctcatggtttgacaactggaaggatcaagaagtggggtttctagta 
ggaatcgagtgtagctatacaacgcggctcgcatcatgtactctttacaagcagtgcaag 
acgttcgtccctatattactaatatgtttagactccgtgaaaccatcgattgcttcattt 
gtgaatgaataa 
 
 
>Contig1466|GENSCAN_predicted_peptide_3|222_aa 
MHYSMLIQGSPTNGSFTWVNPYKYKNPYITSMTVLFHPNGSMFNNVDTTNVVTNSNDEKV 
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TIPAGYYTISEIIALLNMMTDTTFSISTNASSFGCIWIQSPHTIDFTDAPDIREILGFDG 
RTVILPTSFSGSNVIDITRNRQVIQVYSTIVRSSDLKIANQNNNLLTTMIIDDPTADYVR 
SVEDVRIPMITRFDQLMFVFRDMDGKMMRLNGEFELQLTIDD 
 
>Contig1466|GENSCAN_predicted_CDS_3|666_bp 
atgcactactccatgcttattcaaggctcacctaccaacggctcatttacatgggttaat 
ccgtacaagtacaagaatccctatatcacttccatgactgtgttgtttcatcctaatggt 
tcgatgttcaacaacgtagacacgaccaatgtggttactaacagcaatgacgagaaggta 
acgatccctgctggttattacacgatcagtgagatcattgccttgctcaatatgatgacc 
gatactacattttccatatcgacgaatgcctcgtcgttcggctgtatctggattcagtct 
ccacacaccattgatttcacagatgcacctgacattcgtgagatcctcggcttcgatgga 
cgaacggtcattctacctacttcgttcagtggatcgaacgtgattgatatcacgcgaaat 
cgacaagtgattcaggtctactcgacgatcgtgcgatcatcggacctgaagattgccaac 
cagaacaacaacctgctcaccacgatgatcattgacgatccaacggctgactacgtgcga 
agtgtggaagacgtgcgtataccaatgatcactcggtttgatcaattgatgttcgtgttc 
cgcgatatggatggcaagatgatgcgactgaacggcgaattcgaactccagttgacgatt 
gatgac 
 
 
Explanation 
 
Gn.Ex : gene number, exon number (for reference) 
Type  : Init = Initial exon (ATG to 5' splice site) 
        Intr = Internal exon (3' splice site to 5' splice site) 
        Term = Terminal exon (3' splice site to stop codon) 
        Sngl = Single-exon gene (ATG to stop) 
        Prom = Promoter (TATA box / initation site) 
        PlyA = poly-A signal (consensus: AATAAA) 
S     : DNA strand (+ = input strand; - = opposite strand) 
Begin : beginning of exon or signal (numbered on input strand) 
End   : end point of exon or signal (numbered on input strand) 
Len   : length of exon or signal (bp) 
Fr    : reading frame (a forward strand codon ending at x has frame x 
mod 3) 
Ph    : net phase of exon (exon length modulo 3) 
I/Ac  : initiation signal or 3' splice site score (tenth bit units) 
Do/T  : 5' splice site or termination signal score (tenth bit units) 
CodRg : coding region score (tenth bit units) 
P     : probability of exon (sum over all parses containing exon) 
Tscr  : exon score (depends on length, I/Ac, Do/T and CodRg scores) 
 
Comments 
 
The SCORE of a predicted feature (e.g., exon or splice site) is a 
log-odds measure of the quality of the feature based on local 
sequence properties. For example, a predicted 5' splice site with 
score > 100 is strong; 50-100 is moderate; 0-50 is weak; and below 0 
is poor (more than likely not a real donor site). 
 
The PROBABILITY of a predicted exon is the estimated probability 
under GENSCAN's model of genomic sequence structure that the exon is 
correct. 
This probability depends in general on global as well as local 
sequence properties, e.g., it depends on how well the exon fits with 
neighboring exons.  It has been shown that predicted exons with 
higher probabilities are more likely to be correct than those with 
lower probabilities. 
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Conserved domain searches of Contig1466|GENSCAN_predicted_peptide_2 
 
 
 
 
 
 
List of domain hits 

 

 
 
 
 
 

 

Description PssmId Multi-dom E-value 
cl02159, Peptidase_C13, Peptidase C13 family 121134 N/A 5e-98 
Peptidase C13 family The best-scoring hit on this query sequence is by member pfam01650: 

CD Length: 258  Bit Score: 353.52  E-value: 5e-98 
                      10        20        30        40        50        60        70        80 
              ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 
25185      19 NWAVLVAGSDGFWNYRHQADVAHAYQIMRRGGIPADHIVTMMYNDVASSSFNPFPGELYNHPgdESPDVYKGVVVDYEGE 98 
pfam01650   1 LWAVLVAGSNGYYNYRHQADVCHAYQLLKKFGIKDENIIVMMYDDIANNPENPFPGKIFNKP--NGTDVYKGVPIDYTGN 78 

                      90       100       110       120       130       140       150       160 
              ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 
25185      99 DVTPENFMKVLLGDEST---GKKVLKTNENDNIFMFFSDHGGPNVLCFPNGD-LSKDDFQATLKKMHEQKKYKHFVLYIE 174
pfam01650  79 DVTPRNFLAVLLGDKSAlkgSGKVLKSGPNDNVFIYFTDHGAPGVLGFPELDyLYAKDLAEALKKMHARGKYKKLVFYVE 158

                     170       180       190       200       210       220       230       240 
              ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 
25185     175 ACYSGSMGVGFPEDLGISIVTAANDSESSWGWYCGEEAvvkgkdIGSCLGDEFSVFWMEDTDKGEQRTETLNEQWKRIHD 254
pfam01650 159 ACESGSMFEGLPKDINIYATTAANADESSWGTYCPDPE------DGTCLGDLFSVNWMEDSDDHDLSKETLEQQFELVKN 232

                     250       260 
              ....*....|....*....|....* 
25185     255 GVTKSHASRYGDVSFESDLIGEYVG 279 
pfam01650 233 RTTGSHVMQYGDKSIPQLPVSLFQG 257  

cl02680, NIF, NLI interacting factor-like phosphatase 141620 N/A 2e-31 
NLI interacting factor-like phosphatase The best-scoring hit on this query sequence is by member TIGR02251: 

CD Length: 162  Bit Score: 132.42  E-value: 2e-31 
                      10        20        30        40        50        60        70        80 
              ....*....|....*....|....*....|....*....|....*....|....*....|....*....|....*....| 
25185     418 EFLEYCSRFCEIVVFTASKQEYADRMLDFLDPEKKFIKHRLFRESCTKIGKVYVKDLNRLGRDLRRTVIIDNSIVSFGYH 497 
TIGR02251  49 EFLERVSKWYELVIFTASLEEYADPVLDILDRGGKVISRRLYRESCVFTNGKYVKDLSLVGKDLSKVIIIDNSPYSYSLQ 128 

                      90 
              ....*....|....*... 
25185     498 LDNGIPICSWFDNWKDQE 515 
TIGR02251 129 PDNAIPIKSWFGDPNDTE 146 

Blast search parameters  
Options:  Database: CDD   Low complexity filter: yes   E-value threshold:  0.010   Max. hits:  100  
Data Source:  Live blast search RID = 2MSPFVE101R  
System:  Search creator: newblast   Software: blastp 2.2.20+   Service: rpsblast  

http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=121134
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=25185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=CDD&term=pfam01650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=25185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=CDD&term=pfam01650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=25185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=CDD&term=pfam01650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=25185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=CDD&term=pfam01650
http://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=141620
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=25185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=CDD&term=TIGR02251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=Protein&term=25185
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&doptcmdl=GenPept&db=CDD&term=TIGR02251
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Appendix II Multiple sequence alignment of legumain sequences from Blastocystis and other species 
                 1                                                                                       90 
        1    (1) -------------KFVSIALLR-------VLALAAADNWAVLVAGSDGFWNYRHQADVAHAYQIMRRGGIPADHIVTMMYNDVASSSFNP 
        2    (1) ------------------------------STPSNIAGWAG-GKENLSVIPYIFQADVCHAYQLLKDGGLKDENIIVFMYDDIANNRENP 
        3    (1) -MMLFSLFLISILHILLVKCQLDTNYEVSDETVSDNNKWAVLVAGSNGYPNYRHQADVCHAYHVLRSKGIKPEHIITMMYDDIAYNLMNP 
        4    (1) -------------------------MFLVFSALSVSKQWAVLMAGSRGYNNYRHQADIFHIYDIIKTRGFPKENIITLAYNDVVRHKDNP 
        5    (1) --MIWEFTVLLSLVLGTGAVPL-------EDPEDGGKHWVVIVAGSNGWYNYRHQADACHAYQIVHRNGIPDEQIIVMMYDDIANSEDNP 
        6    (1) --MVWKVAVFLSVALGIGAVPI-------DDPEDGGKHWVVIVAGSNGWYNYRHQADACHAYQIIHRNGIPDEQIVVMMYDDIAYSEDNP 
        7    (1) --MTWRVAVLLSLVLGAGAVPVGV-----DDPEDGGKHWVVIVAGSNGWYNYRHQADACHAYQIIHRNGIPDEQIIVMMYDDIANSEENP 
        8    (1) --MIWKVAVLLSLVLGAGAVHIGV-----DDPEDGGKHWVVIVAGSNGWYNYRHQADACHAYQIIHRNGIPDEQIIVMMYDDIANNEENP 
        9    (1) --MLLHLAALVSFVLGATSLPF-------SNSEDTGKHWVVLVAGSNGWYNYRHQADVCHAYQIVKRNGIPDEQIVVMMYDDIANNEENP 
       10    (1) --MSPKTVAVLGLALSLGLVVSGF----PAEQPENGKHWVVIVAGSNGWYNYRHQADVCHAYQIVHKNGIPDEQIVVMMYDDLAESPDNP 
       11    (1) MTLLFRIAPLAALVISVASLAIP-------EIEG--ELYALLVAGSDGWWNYRHQADVSHAYHTLINHGVKPDNIIVMMKDDIANHERNP 
                 91                                                                                     180 
        1   (71) FPGELYNHPGDESPDVYKG-VVVDYEGEDVTPENFMKVLLGDESTGK-----KVLKTNENDNIFMFFSDHGGPNVLCFPN---GDLSKDD 
        2   (60) RPGVIINNPH--GHDVYKG-VPKDYVLEDVNANNFYNVILGNKSAVVG-GSGKVVNSGPNDHIFIYYTDHGGPGVVSMPSG--EDVYAND 
        3   (90) FPGKLFNDYN--HKDWYEG-VVIDYRGKKVNSKTFLKVLKGDKSAGG-----KVLKSGKNDDVFIYFTDHGAPGLIAFPD---DELYAKQ 
        4   (66) YPGKIFATAD--HKNVYPGRENIDYTGQDANAENFFRVLLGDTHNGR------ALQSTAEDDVFVYYDDHGAPGLLCVPHNNGPEIYADN 
        5   (82) TPGIVINRPN--GSDVYQG-VLKDYTGEDVTPKNFLAVLRGDAEAVKGVGSGKVLKSGPRDHVFVYFTDHGATGILVFPN---EDLHVKD 
        6   (82) TPGIVINRPN--GTDVYQG-VPKDYTGEDVTPQNFLAVLRGDAEAVKGIGSGKVLKSGPQDHVFIYFTDHGSTGILVFPN---EDLHVKD 
        7   (84) TPGVVINRPN--GTDVYKG-VLKDYTGEDVTPENFLAVLRGDAEAVKGKGSGKVLKSGPRDHVFIYFTDHGATGILVFPN---DDLHVKD 
        8   (84) TPGVVINRPN--GTDVYKG-VPKDYTGEDVTPENFLAVLRGDEEAVKGKGSGKVLKSGPRDHVFVYFTDHGATGILVFPN---EDLHVKD 
        9   (82) TKGIIINRPN--GTDVYAG-VLKDYTGDDVTPKNFLAVLSGDAEAVKGKGSGKVIHSGPNDHVFVYFTDHGAPGLLAFPN---DDLHVME 
       10   (85) TKGVVINRPN--GSDVYKG-VLKDYIGDDVTPENFLAVLKGDAASVKG-GSGKVLKSGPNDHVFVYFTDHGAPGLLAFPN---DDLHVDD 
       11   (82) YKGKIFNDPS--LTDVYEG-VVIDYKDKSVTPSNFLAILQGNETAVKG-GNGRVIHSTVNDRIFVYFSDHGGVGTISFPY---ERLTAKQ 
                 181                                                                                    270 
        1  (152) FQATLKKMHEQKKYKHFVLYIEACYSGSMGV-GFPEDLGISIVTAANDSESSWGWYCGEEAVVK--------GKDIGSCLGDEFSVFWME 
        2  (144) LIDVLKKKHASGTYDRLVFYLEACESGSMFDGLLPEGLDIYVMTASEPNEDSWATYCGEGTPDDPCLVECPPPEFQGVCLGDLYSVAWME 
        3  (169) FMSTLKYLHSHKRYSKLVIYIEACESGSMFQRILPSNLSIYATTAASPTESSYGTFCDDPT--------------ITTCLADLYSYDWIV 
        4  (148) IASVISQMKKEKKFRNLFFVIEACYSGSVAL--NITEPNVFIITAASDQQPSYSAQWDSRLHTFR-----------SNEFTQNFLKYILE 
        5  (166) LNETIRYMYEHKMYQKMVFYIEACESGSMMN-HLPPDINVYATTAANPRESSYACYYDEQR---------------STFLGDWYSVNWME 
        6  (166) LNETIHYMYKHKMYRKMVFYIEACESGSMMN-HLPDNINVYATTAANPRESSYACYYDEKR---------------STYLGDWYSVNWME 
        7  (168) LNKTIRYMYEHKMYQKMVFYIEACESGSMMN-HLPDDINVYATTAANPKESSYACYYDEER---------------GTYLGDWYSVNWME 
        8  (168) LNKTIRYMYEHKMYQKMVFYIEACESGSMMN-HLPDDIDVYATTAANPNESSYACYYDEER---------------STYLGDWYSVNWME 
        9  (166) LNKTIQLMYEKKTYKKLVFYIEACESGSMMN-HLPNNINVYATTAANSHESSYACYYDEKR---------------DTYLGDLYSVSWME 
       10  (168) LMDTIKYMHSNNKYKKMVFYVEACESGSMMK-PLPVDINVYATTAANPDESSYACYYDEAR---------------DTYLGDWYSVNWME 
       11  (165) LNSVLLDMHRKDKFGHLVFYLETCESGSMFHNILKKNINVYAVTAANPDESSYATYCFEDPR--------------LPCLGDEFSVTWMD 
                 271                                                                                    360 
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        1  (233) DTDKGEQRTETLNEQWKRIHDGVTK--------SHASRYGDVSFESDLIGEYVG----------------YPEEKFNYDHQSSVAWDSRD 
        2  (234) DSDVTDRDADSVQGQHSRVANRTAANITYGGYGSHVTEYGDIVVSFDRLSTYMGEASTNHSHASVNAMSFSTSSKSVDQYSAELFYLFTK 
        3  (245) DSQTHHLTQRTLDQQYKEVKRETNL--------SHVQRYGDTRMGKLHVSEFQG-SR--DKSSTENDEPPMKPRHSIASRDIPLHTLHRQ 
        4  (225) HPDG-----RLIDSANAAAERTVHS---------HVLSFGDMKLAKLPLSTFLLNAEPEEVNNEDSGDSENSVENGASTHVAALEYLQRR 
        5  (240) DSDVEDLTKETLHKQYQLVKSHTNT--------SHVMQYGNKSISAMKLMQFQGLKH---QASSPISLPAVSRLDLTPSPEVPLSIMKRK 
        6  (240) DSDVEDLTKETLHKQYHLVKSHTNT--------SHVMQYGNKTISTMKVMQFQGMKR---KASSPVPLPPVTHLDLTPSPDVPLTIMKRK 
        7  (242) DSDVEDLTKETLHKQYHLVKSHTNT--------SHVMQYGNKSISTMKVMQFQGMKH---RASSPISLPPVTHLDLTPSPDVPLTILKRK 
        8  (242) DSDVEDLTKETLHKQYHLVKSHTNT--------SHVMQYGNKSISTMKVMQFQGMKH---RASSPISLPPVTHLDLTPSPDVPLTILKRK 
        9  (240) DSDLEDLTKETLHKQFVLVKQHTNT--------SHVMQYGNRTISQMKVNQFQGNGK---ITSPPLNLEPVKHMDLTPSPDVPLAILKRK 
       10  (242) DSDVEDLSKETLAKQFKIVKAKTNT--------SHVMQYGNKTLSHMKVMAFQGSSKGLDKAVEPVSLPVIAEHDLMSSPDVPLAILKRK 
       11  (241) DSDETDITLETLNEQFDHVRDLVEE--------SHVQRYGNATMSKFPVSWFHGSGK--VKKVPKVMNKNRRRSGKWPSRDVELMYLERM 
                 361                                                                                    450 
        1  (299) AKFL-FLLYKYQHTTGSEKAKWEKLYLEEMSLR--------------------------------------------------------- 
        2  (324) HQNAPEGSHEKFEAHARLKEAISQRTQVDNNVKHLGELLFGVEKGNEVLHSVLPAGQPLVDSWDCLKSYVKIFEAHCGRLTSYGKKHIRG 
        3  (324) IMMT-NNAEDKSFLMQILGLKLKRRDLIEDTMKLIVKVMNNE----EIPNTKATIDQTLDCTESVYEQFKSKCFTLQQAPEVGG--HFST 
        4  (301) LKET-TSKEEANAIKGQIEHEVQRRARSDKIFDGITRRIVSNG---LPVGTKFVNYIDYDCYRTAIEGFRTYCGEIDENELAKMN-IFTH 
        5  (319) LMST-NDLQESRRLVQKIDRHLEARNIIEKSVRKIVTLVSGSAAEVDRLLSQRAPLTEHACYQTAVSHFRSHCFNWHNPTYEYALRHLYV 
        6  (319) LMNT-NDLEESRQLTEEIQRHLDARHLIEKSVRKIVSLLAASEAEVEQLLSERAPLTGHSCYPEALLHFRTHCFNWHSPTYEYALRHLYV 
        7  (321) LLRT-NDVKESQNLIGQIQQFLDARHVIEKSVHKIVSLLAGFGETAERHLSERTMLTAHDCYQEAVTHFRTHCFNWHSVTYEHALRYLYV 
        8  (321) LLRT-NNMKESQVLVGQIQHLLDARHIIEKSVQKIVSLLAGFGETAQKHLSERAMLTAHDCHQEAVTHFRTHCFNWHSVTYEHALRYLYV 
        9  (319) LMAT-NDILQARDIVREIKTHQEAKLLIKESMRKIVNMVTESDELTEEILTDQVIINDMHCYRDAAEHFKRQCFNWHNPLYEYALRHLYA 
       10  (324) LQKT-NDVDAVVGYLNEIHAHLQVRELLGNTMRKIVEHVVQDKEEVQDYLDGRSDLTQYNCYKTAVRHYKKHCFNWHEQKFEYALRHLYA 
       11  (321) KHFG-LATAEADDRISEIHKERQR---IEAVFENLVDSLVKDQTERSRILEERGGVEDLDCHDDVVTSLDSVCPDISKHDYVLK--FMNV 
                 451                        480 
        1  (331) ------------------------------ Blastocystis (ACO24555) 
        2  (414) IANICNAGITSEQMASTSAQACSS------ tobacco (CAE84598) 
        3  (407) LYNYCADGYTAETINEAIIKICG------- Blood fluke (CAB71158) 
        4  (386) LCERTDKKTILEDIKKECPVIQWDQEELYF Trichomonas (AAQ93040) 
        5  (408) LVNLCENPYPIDRIKLSMNKVCHGYY---- bovine (NP_776526) 
        6  (408) LVNLCEKPYPLHRIKLSMDHVCLGHY---- human (AAH03061) 
        7  (410) LANLCEAPYPIDRIEMAMDKVCLSHY---- mouse (NP_035305) 
        8  (410) LANLCEKPYPIDRIKMAMDKVCLSHY---- rat (NP_071562) 
        9  (408) LVNLCESGYPIERIHKAMDKVCNSWN---- frog (NP_001005720) 
       10  (413) LVNLCEGGYQAHRITAAMDDVCYFRD---- zebra fish(NP_999924) 
       11  (405) LNNLCTKFNDSAKIIKAMRATCSRRRS--- Haemonchus (CAJ45481) 
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