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Abstract 

Semi-volatile organic compounds (SVOCs), including polycyclic aromatic 

hydrocarbons (PAHs), organo-chlorine pesticides (OCPs) and polychlorinated biphenyls 

(PCBs), all of which targeted here are persistent organic pollutants (POPs), are ubiquitous 

and persistent in the environment. A comprehensive study on these pollutants was 

conducted in Singapore’s environment to measure their occurrence, and to assess their 

fate and transfer processes between environmental compartments.  

To quantify and characterize SVOCs present in trace levels, an exceptionally 

effective extraction technique, accelerated solvent extraction (ASE), was developed for 

the analysis of PAHs, OCPs and PCBs in both gaseous and particulate phases. Systematic 

optimizations were carried out to study the dependence of the extraction efficiency of 

SVOCs on ASE operating variable parameters such as the combination of solvents, 

extraction temperature and static extraction time. The optimal conditions for ASE 

extraction were established and validated with high procedural recoveries for subsequent 

field studies. 

 The levels of a range of PAHs, OCPs, and PCBs in atmospheric particulate and 

gaseous phases and rainwater samples were studied in Singapore from June 2007 to May 

2008. Monthly or seasonal variations were observed. Pearson correlation matrix was 

constructed to explore the effect of meteorological factors on the concentrations of 

atmospheric organic contaminants. A single-factor analysis of variance (ANOVA) was 

performed to determine temporal variations in daily average total concentrations of these 

compounds in air and rainwater. Diagnostic ratios and principal component analysis 
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(PCA) with the assistance of air mass backward trajectories were used to identify 

possible sources of PAHs, OCPs and PCBs in the atmosphere.  

Gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) and 

polychlorinated biphenyls (PCBs) were collected at a tropical site in SEA over 12-h 

periods during November and December 2006 to determine their gas/particle partitioning 

by analyzing integrated quartz filter and polyurethane foam samples. Gas/particle 

partitioning coefficients, Kp, were calculated, and their relationship with the subcooled 

liquid vapor pressure pL
o for both PAHs and PCBs was investigated.  The regressions of 

log Kp vs. log pL
o for most of samples gave high correlations for both PAHs and PCBs 

and the slopes were statistically shallower than -1, but they were relatively steeper than 

those obtained in temperate zones of the Northern Hemisphere. By comparison, the 

particle-bound fraction of low molecular weight (LMW) PAHs was underestimated by 

both Junge-Pankow adsorption and KOA (octanol-air partition coefficient) absorption 

models, while the predicted values from both ad- and absorption models agree relatively 

better with those field measured ones for high molecular weight (HMW) PAHs.  In 

addition, the adsorption onto the soot phase (elemental carbon) predicted accurately the 

gas-particle partitioning of PAHs, especially for LMW compounds. On the other hand, 

the KOA absorption model (R2=0.86) using the measured organic matter fraction (fOM) 

value fitted the PCB data much better than the adsorption model did, indicating the 

sorption of nonpolar compounds to aerosols might be dominated by absorption into 

organic matters in this area.  

A comprehensive atmospheric scavenging model has been developed with 

inclusion of major atmospheric deposition processes such as particle scavenging, 
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dissolution (Henry’s law) and surface adsorption affecting the total scavenging ratio of 

SVOCs.  This model was subsequently used in this study to calculate precipitation ratios. 

Particle scavenging, rather than gas scavenging was the dominant removal mechanism, 

accounting for 86-99% for PAHs and 98-99% for OCPs in terms of the particle 

contribution to the total scavenging. The variation of both total and particle scavenging 

ratios over the study period was smaller compared to those reported in the literature, 

which might be attributed to uniform ambient temperature prevailing throughout the year 

in this tropical area.  The effects of particle fraction, supercooled vapor pressure and 

rainfall intensity on particle scavenging of SVOCs were assessed.  The relationship 

between gas scavenging ratio and supercooled vapor pressure implied that the domination 

of gas scavenging might switch from dissolution to adsorption at supercooled vapor 

pressures around 10-3.5~10-4 Pa,  especially for PAHs with five or more aromatic rings.   

The external loading of SVOCs onto the sea surface in this tropical environment 

was investigated. Dry particulate and wet depositions, and air-water diffusive exchange 

in the Singapore’s south coastal area, where most of chemical and oil refinery industries 

are situated in, were estimated. Based on a yearly dataset, the mean annual dry particulate 

deposition fluxes and the wet deposition of ∑16PAHs and ∑7OCPs were calculated, 

respectively. Seasonal variation of atmospheric depositions was influenced by 

meteorological conditions.  Air-water gas exchange fluxes were shown to be negative 

values for PAHs, HCHs (hexachlorocyclohexane group) and DDTs 

(dichlorodiphenyltrichloroethane group), indicating Singapore’s south coast as a sink for 

the above-mentioned SVOCs. The relative contribution of each depositional process to 

the total atmospheric input was assessed by annual fluxes. The profile of dry particulate 
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deposition, wet deposition and gas exchange fluxes seemed to be correlated with 

individual pollutant’s properties such as molecular weight and Henry’s law constant, etc.  

For the water column partitioning, the organic carbon-normalized partition coefficients 

between particulate and dissolved phases (KOC) for both PAHs and OCPs were obtained. 

The relationships between KOC of PAHs and OCPs and their respective octanol-water 

partition coefficient (KOW) were examined. In addition, both adsorption onto combustion-

derived soot carbon and absorption into natural organic matter for PAHs in marine water 

column were investigated. Enrichment factors in the sea-surface microlayer (SML) of the 

particulate phase were 1.2~ 7.1 and 3.0 ~ 4.9 for PAHs and OCPs, and those of dissolved 

phase were 1.1 ~ 4.9 and 1.6 ~ 4.2 for PAHs and OCPs, respectively.  These enrichment 

factors are relatively higher than those reported for nearby coastal areas, which are most 

likely due to more organic surfactants floating in the south coastal surface of Singapore.  

In summary, this study has demonstrated the optimized ASE as a rapid and 

effective extraction method that can be applied onto both gaseous and particulate 

(including air and water-filer based) samples. Investigations have revealed that the 

ambient temperature affected gas/particle partitioning. This partitioning process plays an 

important role in the distribution of SVOCs in the tropical atmosphere, which can 

influence the subsequent dry deposition, precipitation scavenging, and liquid-gas 

diffusive processes. Overall, this study, based on a combination of laboratory 

experiments, field studies and theoretical models, has provided key insights into our 

understanding of the fate and distribution of SVOCs in the  multi-media environment of 

SEA. 
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Chapter 1. Introduction  

1.1. Research Background 

The atmosphere is stongly coupled with the terrestrial and marine environments 

especially in tropical areas because of strong vertical movement of air and abundant 

rainfall. Atmospheric pollution events, such as photochemical smog and acid rain, have 

major impacts on the terrestrial and water surface. Atmospheric pollution caused by 

organic chemicals has received increasing attention from the second half of the 20th  

century. Over 100,000 chemicals were registered in the European Inventory of Existing 

Commercial Substances (EINECS) in 1981. The latest estimate of marketed chemicals 

varies from 20,000 to as many as 70,000 (DBT, Danish Board of Technology, 1996), and 

most of these chemicals in daily use are organic in nature. In addition, a number of 

potentially hazardous organic chemicals are formed during combustion and industrial 

processes. Once released into the environment, many such chemicals turn out to be 

pollutants since they may pose short-term or long-term threats to the environment and 

human health. In order to assess potential impacts of these pollutants on the natural 

environment and human health, it is important to gain a comprehensive understanding of  

the fate and transfer of organic pollutants upon their release into the multi-media 

environment. The study of the distribution and transport of pollutants in the multi-media 

environment is based on the concepts of chemo-dynamics where the environment is 

divided into a number of phases e.g. atmospheric particle, atmospheric gas, rainwater and 

sea surface, etc. (Tinsley, 1979).  
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Among the organic chemicals in the atmospheric environment, semivolatile 

organic compounds (SVOCs) have received considerable attention because of their 

physic-chemical properties. SVOCs are compounds with high vapor pressures 

approximately between 10 and 10-6 Pa and can therefore easily turn to gases at normal 

ambient temperatures, but not as readily as volatile organic compounds (Müller, 1997). 

They are also found in the particulate-phase. The partitioning of SVOCs between gas- 

and particulate-phases is dependent on a number of factors including their physical-

chemical properties such as their volatility/vapor pressure and chemical structures  and 

also prevailing weather conditions, especially ambient temperature, relative humidity, 

and solar radiation intensity. SVOCs, which include a wide range of priority pollutants, 

such as polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides 

including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), are 

ubiquitously present in air, water, soil and biota, and even could be found in remote and 

pristine areas such as the Arctic (Baek et al., 1991; Stern et al., 1997; Yao et al., 2002; 

Riget et al., 2004). These three groups of SVOCs, namely persistent organic pollutants 

(POPs), are very resistant to natural breakdown processes and therefore extremely stable 

and long-lived in the environment. These SVOCs are of concern as they are potentially 

carcinogenic, mutagenic, and have endocrine-disrupting impacts even onto mammals at 

the top of the food chain via bioaccumulation in the lipid fraction of biological tissues 

and biomagnifications in the wildlife and humans (Jones and De Voogt, 1999; Oskam et 

al., 2004). 

PAHs, at least 100 compounds, have been identified in the environment. PAHs 

are among the most prevalent environmental contaminants, mainly derived from 
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incomplete combustion processes involving carbon fuels and materials such as vehicular 

traffic, power plants, chemical industries and oil refineries (Headley et al., 2002}. As for 

OCPs and PCBs, their usage has been banned in most developed countries, but they are 

still produced and used in some developing countries. OCPs including 

hexachlorocyclohexanes (HCHs) and DDTs (dichlorodiphenyltrichloroethane (DDT), 

dichlorodiphenyldichloroethylene (DDE) and dichlorodiphenyldichloroethane (DDD), 

are still used as pesticides in farming and plantation. These pollutants could exist in the 

environment for decades due to their resistance to degradation. On the regional scale, 

cities are the main sources of PCBs, emitted from buildings and PCB-containing 

materials such as transformers and capicitors, and also revolatilized from earlier 

contaminated soils, sediments, water reservoirs and even vegetations (Erickson, 1997). 

In recent years, a number of studies have been conducted to assess the occurrence 

of SVOCs in the atmosphere and / or precipitation in various regions including SEA 

(SEA). In Canada and the United States, the Integrated Atmospheric Deposition Network 

(IADN) is mandated to measure the deposition of toxic substances to the Great Lakes, 

and reported the concentrations of SVOCs in precipitation sampled between 1991 and 

1997 (Simcik et al., 2000).  In addition, the geographic and temporal distributions and 

trends between 1980 and 2001 were also reported for the atmospheric deposition of 

PAHs in Atlantic Canada (Brun et al., 2004).  In the regional observatory Kosetice, 

Czech Republic, a central European background station, SVOCs, have been continuously 

monitored since 1988 with  ten years (1996-2005) of air pollution measurement and four 

years of evaluating the origin of SVOCs which has been reported in the literature 

(Dvorska et al., 2008). The relationships between concentrations of SVOCs and climatic 
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conditions were investigated at Niigata Plain of Japan based on the concurrent 

measurements of SVOCs in air and rain over half a year in 2001 (Takase et al., 2003). 

Panther et al. (1999) and Karthikeyan et al. (2006) have conducted short-term 

measurement of SVOCs in the urban environment of SEA, but none of them have carried 

out systematic field studies of SVOCs to examine their seasonal variation in both 

particulate and gaseous atmospheric phases in SEA.  

The region of SEA has been reported to be one of the important sources for 

SVOCs (Iwata et al., 1993). Once these compounds are emitted into the atmosphere, they 

would migrate from the tropical to temperate and even to arctic zones through a number 

of cycles of condensation, deposition and re-evaporation. Semeena and Lammel (2005) 

found that PAHs and OCPs are transported to both temperate and polar regions through 

the grass-hopper effect, or global distillation. In addition, from tropical and subtropical 

regions of Asia, it has been reported that SVOCs could even be transported across the 

Pacific Oceans to Canadian west coast and arctic regions (Harner et al., 2005; Li et al., 

2007). Muir et al. (2004) have also observed atmospheric long-range transport of 

pesticides into 30 lakes in Canada and the northeastern United States and the half-

distance on the order of 560 to 1820 km was estimated by empirical modeling. 

An important aspect with regard to the atmospheric fate of SVOCs is their 

partitioning between the gas and particle phases as mentioned earlier. Once released into 

the atmosphere, generally SVOCs would be partitioned between these two phases and 

reach a partitioning equilibrium according to temperature dependences and the vapor 

pressure of the chemicals (Pankow and Bidleman, 1992; Cotham and Bidleman, 1995). 

The particles could be transferred from ambient air to other compartments of the 
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environment by dry deposition and wet deposition (particle-sorbed chemicals washed out 

by rain or snow). The gas concentrations of SVOCs could also be reduced through 

dissolution in rain droplets or by photo-degradation through exposure to ultraviolet rays.  

After SVOCs are deposited into the bulk seawater, water-column partitioning can affect 

the distribution of pollutants between the dissolved aqueous and the solid phases and 

eventually impact the fate of these compounds in oceans (Luo et al., 2004). Other than 

the above-mentioned processes, air-sea exchange can make SVOCs diffuse across the air-

sea interface. However, the sea surface microlayer (SML), a unique compartment at the 

air-sea boundary defined operationally as the upper millimeter (1 ~ 1000 µm) of the sea 

surface, has large storage capacity to delay the transport of SVOCs across the interface. 

This interfacial effect has been reported as the enrichment of contaminants with different 

physicochemical properties (Hardy, 1982; Chernyak et al., 1996; Wurl et al., 2006). A 

schematic overview of some major environmental phases and their interaction is given in 

Figure 1.1. Although a number of studies as mentioned above have been conducted to 

assess the SVOCs transport and transfer processes across wide geographical areas, little 

work has been done to determine the significance of these processes of SVOCs in SEA.  
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Figure 1.1. Schematic overview of the distribution processes of SVOCs between some 
major environmental phases 
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1.2. Research Objectives 

SVOCs such as PAHs, PCBs and OCPs are of global concern as they are 

persistent, ubiquitous and toxic. Atmospheric transport is the primary distribution 

pathway moving these pollutants from atmospheric emission sources via deposition to 

terrestrial and aquatic ecosystems. These organic compounds are transboundary 

pollutants and undergo long range atmospheric transport (LRAT) from sources to remote 

regions. Indeed, reductions of these persistent organic pollutants (POPs) are now the 

focus of a coordinated international regulatory framework under the Stockholm 

Convention. Consequently, environmental data are needed from all regions of the globe 

to improve the understanding of regional / global sources of POPs and the key processes 

that control their global distributions. Asia is of global importance economically, yet data 

of ambient persistent organic pollutant levels are sparse for the region.  At present, there 

is a paucity of reliable environmental data on the levels of SVOCs in SEA from which to 

assess the effectiveness of pollution control efforts to minimize the release of these 

chemicals to the environment.  The specific research gaps identified in the context of 

understanding the fate and transfer of SVOCs in SEA are summarized below: 

I.  Determination of atmospheric SVOCs by means of chemical analyses is often 

time-consuming due to the high diversity of these compounds present at low 

concentrations in ambient air.  It is an analytical challenge to be able to identify and 

quantify SVOCs distributed between particulate- and gaseous-phases in atmospheric 

samples with low detection limits. 
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II. Several studies have been conducted on short-term measurements of SVOCs in 

the urban environment of SEA, but their distributions in gas- and particulate phases as 

well as in rainwater and their seasonal variations remain poorly known in this region. 

III. Environmental distribution modeling is an important tool to simulate the 

exchange and transport processes of chemicals in the environment and to gain insights 

into their ultimate fate. Gas-particle partitioning, precipitation scavenging, and air-sea 

exchange models are particularly important in the case of SVOCs, but have never been 

applied to assess the migration of SVOCs in the multi-media tropical environment. 

This doctoral study was conducted to fill these knowledge gaps. The main aim of 

this study was to provide insights into the distribution of SVOCs in the tropical 

atmospheric environment and to assess their environmental fate under tropical weather 

conditions, characterized by deep convection of air and abundant rainfall, using a 

combination of field experiments and theoretical models. The specific objectives of this 

research were to: 

 develop, optimize, and validate an extraction method for the determination of 

atmospheric SVOCs distributed in both gas and particle phases under tropical 

conditions; 

 

 assess the occurrence and distribution of SVOCs in the atmosphere, precipitation 

(rainwater), and surface seawater in Singapore’s coastal area; 
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 evaluate the partitioning process of SVOCs between vapor- and particle-phases in 

the atmosphere using partitioning equilibrium models and experimental data 

obtained under field conditions; 

 

 examine the role of the precipitation scavenging of SVOCs to describe their 

distributions between gas/particle and aqueous phases under the regional climate 

conditions; 

 

 use fundamental physical-chemical properties of SVOCs in conjunction with 

experimental data to provide information on their equilibrium partitioning  

between the air and surface seawater. .  

 

 Overall, this study was designed to gain a better understanding of the distribution 

of SVOCs among the different compartments in the tropical environment in order to 

provide more insights into the transport of these selected compounds under various 

natural conditions. To assess the relative importance of key transport processes, to assess 

sources, and to validate models, it is important to make simultaneous measurements of 

prevailing concentrations of SVOCs in different environmental media. Furthermore, 

knowledge obtained on the fate of toxic organic chemicals in the tropical atmosphere 

may help develop adequate regulatory guidelines for the protection of the environment 

and human health on a regional scale. 
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1.3. Organization of Thesis 

The thesis is subdivided into the following chapters. 

 

o Chapter 2: Literature Review 

This chapter provides a comprehensive review of the properties of SVOCs 

targeted in this study and several environmental distribution processes 

such as gas/particle partitioning, precipitation scavenging and air - sea 

exchange, as reported by a number of investigators in the literature. This 

literarure review provides the background information for this doctoral 

study.    

o Chapter 3: Materials and Method 

This chapter describes the characteristics of sampling sites where field 

studies were conducted, the experimental procedures, analytical methods, 

and materials used in the entire project. 

o Chapter 4: Optimization of Accelerated Solvent Extraction (ASE) 

This chapter deals with the development and optimization of ASE 

extraction used for quantifying SVOCs in both gaseous and particulate 

samples. 

o Chapter 5: Levels, Temporal, and Seasonal Trends of Semi-Volatile 

Organic Contaminants In Ambient Air and Rainwater In Singapore 

This chapter reports the concentration and distribution of SVOCs in both 

gas/particle atmospheric phases and rainwater in this coastal marine 

environment of Singapore under different weather conditions.  
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o Chapter 6: Gas-Particle Partitioning of SVOCs in the Tropical 

Atmosphere of Southease Asia 

This chapter discusses the gas / particle partitioning of SVOCs in the 

tropical atmosphere based on a combination of experimental and 

theoretical studies.  

o Chapter 7: Precipitation Scavenging of Semi-volatile Organic 

Compounds (SVOCs) In A Tropical Area 

This chapter  presents data obtained from field studies to explain the role 

of the precipitation scavenging process as a removal mechanism of 

SVOCs from the atmosphere. 

o Chapter 8: The Exchange of SVOCs Across The Air-Sea Interface In 

Singapore’s Coastal Environment 

This chapter discusses the transfer of SVOCs from the atmosphere  onto 

Singapore’s coastal area through dry and wet deposition mechanisms and 

air-sea diffusive exchange processes. Partitioning of SVOCs in the water 

column and enrichment effect of SML are also discussed.  

o Chapter 9: Conclusions 

The major findings made in the doctoral study are summarized. The 

conclusions drawn from the study are also presented in this chapter. 
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Chapter 2. Literature Review 

2.1. Occurrence, Sources and Properties of SVOCs in the Atmospheric 

Environment 

2.1.1. Polycyclic Aromatic Hydrocarbons (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds with a planar structure 

of two or more fused aromatic rings interlinked in various arrangements. This means that the 

number of theoretically possible compounds is large. PAHs occur in oil, coal, and tar deposits, and 

are produced as byproducts of carbon-based fuel burning (whether fossil fuel or biomass). As 

PAHs are almost present in mixture, the composition can be complex and tremendous. Thus, only 

16 individual compounds were selected for evaluation in this study as follows: naphthalene, 

acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, 

benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, 

indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene and benzo[ghi]perylene. These compounds were 

chosen based on their toxicity, potential for human exposure and frequency of occurrence. 

Moreover, these 16 PAH compounds have been identified as priority pollutants by US 

Environmental Protection Agency (EPA). The structure of selected PAHs is shown in Figure 2.1. 

These PAHs display varying degrees of toxicity, but as a general rule of thumb, the toxicity of 

PAHs increases with their molecular weight (MW). Higher molecular weight (HMW) PAHs would 

be more inclined to be adsorbed on particles than exist in the gas phase as compared to lower 

molecular weight (LMW) PAHs (Fang et al., 2004; Terzi and Samara, 2004) due to lower vapor 

pressures.
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Figure 2.1. Structure of selected PAHs 
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The main concern regarding PAHs is associated with their toxicity following chronic 

exposure, although acute toxicity can be induced in feeding experiments with laboratory animals  

(Osborne and Crosby, 1987). More than 30 parent or unsubstitued compounds plus several hundred 

derivatives have carcinogenic activities (Bjorseth and Becher, 1986; Straif et al., 2005).  In addition, 

several pollutants among this group are associated with mutagenicity (Durant et al., 1996), 

genotoxicity (Georgiadis et al., 2001), immunotoxicity (Davila et al., 1995), neurotoxicity (Tang et 

al., 2003) and toxicity of the reproductive systems (Hoyer, 2005), and mostly those with four to six 

rings are considered to be very active carcinogens (Müller, 1997). 

Despite the fact that PAHs can occur naturally in the environment, primarily as a result of 

fires and volcanic activity, by far the greatest current contributions to the environmental burden 

arise from human activities (Simcik et al., 1996). PAHs can be formed during any incomplete 

combustion or high temperature pyrolytic process involving fossil fuels, or more generally, 

materials containing carbon and hydrogen (Bjorseth and Becher, 1986).  On heating, the organic 

compounds are partially cracked to smaller and unstable fragments (pyrolysis). These fragments, 

mainly highly reactive free radicals with a very short average lifetime, form more stable PAH 

formation through recombination reactions (pyrosynthesis) (Bonfanti et al., 1994). Consequently, 

B(a)P and other PAHs are formed through pyrolysis processes of methane, acetylene, butadiene 

and other compounds (Mastral and Callén, 2000). PAH formation in combustion can be explained 

like a waterfall mechanism in which PAH compounds are formed through small radicals to which 

more radicals add through a series of chain reactions forming compounds of higher molecular 

weight, soot and fullerenes (Kroto et al., 1991; Mastral and Callén, 2000). The PAH rearrangement 

and interconversion processes during combustion have also been shown by Visser et al. (1998). 

Motor vehicles account for the majority of PAH emissions in urban areas (Freeman and Cattel, 
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1990). In general exhaust emissions of PAH from mobile sources originate by three distinct 

mechanisms similar to the abovementioned processes: (i) synthesis from simpler molecules in the 

fuel, particularly from aromatic compounds; (ii) storage in engine deposits and subsequent 

emission of PAH already in the fuel; and (iii) pyrolysis of lubricants (Baek et al., 1991). The 

emission rates of PAH from vehicle exhausts depend on a large number of factors including engine 

type, operating conditions and composition of fuel, additive and lubricating oil (Candeli et al., 

1983). 

2.1.2. Organochlorine Pesticides (OCPs) 

Typically, pesticides refer to substances used for the destruction or control of insects, fungi, 

vegetation and any microbiological agents. (Smith, 1991). Organochlorine pesticides are potent 

contact pesticides which do not penetrate plant tissue. These compounds have high chemical 

stability because they are constructed largely from C-C, C-H and C-Cl bonds that tend to be 

chemically inactive under normal environmental conditions (Hassal, 1982). Two main families of 

OCPs were selected in this study: (i) dichlorodiphenyltrichloroethane (DDT) family including p, 

p’-DDT, p, p’-DDD and p, p’-DDE, characterized by low water solubility and the potential for high 

bioaccumulation and biomagnifications in birds, mammals and fish; (ii) hexachlorocyclohexane 

(HCH) family, with γ-HCH being the only isomer with insecticidal properties, characterized by 

higher water solubility and the potential for wide distribution in the environment (Wilkinson, 2002). 

The structure of selected OCPs is shown in Figure 2.2.  

2.1.2.1. HCHs 

Hexachlorocyclohexane is a mixture of the eight isomers of compound 1, 2, 3, 4, 5, 6-

hexachlorocyclohexane, denoted by α, β, γ, δ, ε, η, θ with the isomer existing in two enantiomeric 
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forms (Willet et al., 1998). HCH was created in 1825, but it was not discovered until 1943 that  γ 

isomer was responsible for the insecticidal activity of technical HCH (Brooks, 1974). Technical 

HCH is composed of 60 - 70% α-HCH, 5 - 12% β-HCH, 10 - 12% γ-HCH, 6 - 10% δ-HCH and 3 - 

4% ε-HCH (Kutz et al., 1991), while lindane consists of more than 99% pure γ-HCH. HCH is 

produced by chlorinating benzene in the presence of ultraviolet radiation. Subsequent treatment 

with methanol or acetic acid followed by fractional recrystallization can concentrate the -HCH 

isomer to 99.9% pure (Wilkinson, 2002). 

 
 

Figure 2.2. Structure of selected OCPs 
 

 
 
 
 
 
 
 
 
 
 

Figure 2.3. Structure of selected PCBs 

 
PCB 
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A significant proportion of technical HCH (~ 88%) is useless as an insecticide and 

unfortunately needlessly entered the environment where it has persisted for years. Recent total 

global consumption of technical HCH has been estimated at 6.0 million metric tones (Li et al., 

1998). The highest consumption of technical HCH occurred between 0 ~ 30oN latitude, while the 

highest consumption of γ-HCH occurred between 30oN ~ 60oN latitude (Voldner and Li, 1995). 

Technical HCH was replaced by lindane in North America and Western Europe in the 1970s and 

then in China (1983), Russia (1990) and India after 1990 (Li et al., 1998; Willet et al., 1998). Since 

then, lindane has been reported to be used as an insecticide on fruits, vegetable, rice paddies, as a 

seed treatment and for the management of forestry products; likewise, it has been applied for the 

treatment of lice and scabies on humans (Willet et al., 1998). Large quantities of HCHs are still 

found throughout the environment and are considered to be the most abundant organochlorine 

compounds in both air and water of arctic and sub-arctic regions (Bidleman et al., 1995). 

2.1.2.2. DDTs 

DDT synthesis was reported in 1874 and the insecticidal properties of the p, p-DDT isomer 

was discovered in 1939 (Cremlyn, 1978). DDT is produced by condensation of chloral and 

chlorobenzene in the presence of an excess of concentrated sulphuric acid. The crude product 

contains 80% p, p’-DDT, 20% o, p’-DDT and trace amounts of o, o’-DDT.  Pure p, p’-DDT can be 

produced by recrystallization from ethanol at 108oC with more cost (Wilkinson, 2002).  DDT began 

to be used commercially in 1943 and soon became the most widely used insecticide in the world, 

largely due to its use as a controlling agent against malaria and typhus and also its low toxicity to 

humans (Brooks, 1974). The adverse environmental effects of DDT started to draw attention after 

Rachel Carson published “Silent Spring” in 1962. The ability of DDT to persist in the environment 

and to bioaccumulate and biomagnify in food chains became well known in raptors, bald eagles and 
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peregrine falcons when their populations greatly dropped down due to eggshell thinning and 

reproductive failure. Consequently, DDT use was banned in the U.S. in 1973, in U.K. in 1984 and 

restricted in Canada in 1985 (Wilkinson, 2002). Approximately 2.5 billion people in over 90 

countries are at risk of contracting malaria (WWF, World Wildlife Fund,1998),  therefore DDT is 

still in use in many of these developing countries (UNEP, 2002). 

2.1.3. Polychlorinated Biphenyls (PCBs) 

Polychlorinated biphenyls (PCBs) are non-polar, aromatic, chlorinated hydrocarbons (see 

Figure 2.3). They have a biphenyl nucleus on which one to ten of the hydrogen atoms have been 

substituted by chlorine. Commercial PCBs were synthesized by chlorination of biphenyl with 

chlorine gas, in which a mixture of all 209 possible congeners was produced (Erickson, 1997). 

PCBs were first created in 1881, but these compounds were not produced commercially until 1929 

under Aroclor (Monsanto, U.S.) as a response for the electrical industries need for a safer insulator. 

The thermal stability, resistance to degradation and low dielectric properties of PCBs made them 

desirable for uses as hydraulic fluids, as a flame retardant in lubricating oils and as a cooling and 

insulating fluid for industrial transformer and capacitors. In addition, PCBs were also used as 

plasticizers in sealants, caulkings, synthetic resins, rubbers, paints, waxes and asphalts, and as 

surface coatings for carbonless copy paper (CCREM, Canadian Council of Resource and 

Environment Ministers, 1986). The manufacture, processing, distribution and uses of PCBs were 

banned in 1978 by U.S. congress (Erickson, 1997). Applications were restricted throughout the rest 

of the world soon after (Wilkinson, 2002). 

PCBs are semi-volatile, highly insoluble in water and capable of long-range atmospheric 

transport in the environment. The lower chlorinated PCBs are more volatile, generally capable of 
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long-range transport in the environment and also more easily excreted by fish and mammals. The 

higher chlorinated PCBs are less water-soluble. Therefore, they bind more readily to soil and 

particulate matter and accumulate in lipids to a greater extent (Waid, 1986). The persistence of 

PCBs coupled with their ability to bioaccumulate in food chains has caused great environmental 

damage (Erickson, 1997).  

2.2. Physicochemical Properties of Selected SVOCs 

 Simulation of the transport and distribution of selected SVOCs requires knowledge of the 

physiochemical properties of these compounds; namely, physical-chemical properties have been 

shown to be important in governing the distribution and fate of atmospheric SVOCs in the 

environment. The compound saturation vapor pressure, p (Pa), represents a key property. SVOCs 

generally exhibit relatively low compound saturation vapor pressures, but such compounds may 

still volatize and transport long distances in the atmosphere (Wania and Mackay, 1993). The 

compound saturation vapor pressure can be considered to represent equilibrium between the 

compound in the vapor phase and pure substance itself. The equilibrium distribution of chemicals 

between two essentially immiscible phases such as air and particle, air and water or water and lipid 

can be described by an equilibrium concentration ratio or partition coefficient (K) of a compound. 

Partition coefficients can be approximated from the ratio of the maximum solubilities of the 

chemicals in each of the phases. That is, for phases m and n, the partition coefficient for a specific 

compound distributed between m and n is expressed by 

m m
mn

n n

C S
K =

C S
         (2.1) 
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where Cm and Cn are the equilibrium concentrations and Sm and Sn are the maximum solubility of 

the chemical in the respective phases m and n. Maximum solubilities are temperature dependent, 

and thus, partition coefficients also have temperature dependence (Müller, 1997). 

The primary alcohol 1-octanol has been extensively employed as a surrogate for organic 

phase; hence octanol / water partition coefficient (KOW) is often regarded as a descriptor for the 

distribution of a chemical between organic phase and water. The magnitude of KOW is a measure of 

the hydrophobicity of a chemical and can be calculated by  

O
OW

W

S
K =

S
         (2.2) 

where SO and SW are the maximum solubility of a compound in octanol and water, respectively. 

Due to the importance of the organic phase / air partition coefficient in the estimation of 

organic matter (OM) / air partition coefficients of hydrophobic compounds, the octanol / air 

partition coefficient (KOA) has been introduced and can be obtained by 

 O O
OA

A

S S RT
K = =

S p
        (2.3) 

where R is the universal gas constant (8.3145 Pa m3 mol-1 K-1) and T is the absolute temperature 

(K). 

The Henry’s Law constant, H (Pa m3 mol-1), describes the distribution of a chemical 

between the aqueous phase and air. A dimensionless partition coefficient between air and water can 

be computed by 

 A
AW

W W

S p H
K = = =

S S RT RT
       (2.4) 

The properties of vapor pressure, water solubility, octanol-water partition coefficient (KOW), 

octanol-air partition coefficient (KOA) and the Henry’s law constant (H) are listed in Table 2.1. 
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Table 2.1 Physicochemical properties of selected SVOCs 
 

Compound 
Vapor  

Pressure Pa 
Water Solubility 

mg L-1 
Log KOW Log KOA kH Pa m3 mol-1 

PAHs      
Naphthalene 10.4 30.0 3.37 N.A. 48.8 

Acenaphthene 3.0 1.9 3.92 6.51 15.7 
Acenaphthylene 9 × 10-1 3.9 4.00 6.33 1.1 

Fluorene 9 × 10-2 1.8 4.18 6.79 6.4 
Phenanthrene 2 × 10-2 1.2 4.57 7.60 2.6 
Anthracene 7.6 × 10-4 7.6  × 10-2 4.54 7.71 1.8 

Fluoranthene 1.2 × 10-3 2.1  × 10-1 5.22 8.87 6.6 × 10-1 
Pyrene 6 × 10-4 1.4  × 10-1 5.18 8.81 2.5 × 10-1 

Benz[a]anthracene 2.8 × 10-5 1.0  × 10-2 5.91 10.28 1.0 × 10-1 
Chrysene 5.7 ×10-7 2.8 × 10-3 5.86 10.29 1.1 × 10-1 

Benzo[b]fluoranthene 6.7 ×10-7 1.2 × 10-3 5.80 11.33 1.2 
Benzo[k]fluoranthene 5.2 ×10-8 7.6 × 10-4 6.00 11.36 3.9 

Benzo[a]pyrene 7.0 ×10-7 2.3 × 10-3 6.04 11.55 4.9 × 10-2 
Benzo[ghi]perylene 6.0 ×10-8 2.6 × 10-4 6.50 12.54 1.5 × 10-2 

Indeno[1,2,3-cd]pyrene 7.0 ×10-7 6.2 × 10-2 6.58 12.42 7.0 × 10-3 
Dibenz[a,h]anthracene 3.7 × 10-10 5.0 × 10-4 6.75 12.58 7.4 × 10-3 

      
OCPs      
HCHs 4 × 10-5 ~ 0.08  1.0 ~ 30.0 3.8 ~ 4.4 7.5 ~ 8.7 2.0×10-3~0.8 
DDTs 2×10-4~ 9×10-9 1×10-3~5×10-3 5.5 ~ 6.0 9.6 ~ 10.1 1.2 ~ 6.0 

      
PCBs      

Mono-CBs 0.9 ~ 2.5 1.2 ~ 5.5 4.3 ~ 4.7 6.80 58.0 ~ 74.0 
Di-CBs 1.8×10-3~0.28 0.06 ~ 2.0 4.9 ~ 5.3 7.73 17.0 ~ 92.2 
Tri-CBs 0.014 ~ 0.14 0.015 ~ 0.4 5.5 ~ 5.9 8.01 24.3 ~ 92.2 

Tetra-CBs 5.9×10-5~5.4×10-3 4.3×10-3~0.1 5.6 ~ 6.5 8.47-9.29 1.7 ~ 47.6 
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Table 2.1 Physicochemical properties of selected SVOCs (cont’d) 
 

Penta-CBs 3.0×10-3~9.0×10-3 4×10-3~0.02 6.2 ~ 6.5 9.14 24.8 ~ 151.4 
Hexa-CBs 2×10-5~1.6×10-3 4×10-4~1×10-3 6.7 ~ 7.3 9.80 11.9 ~ 81.8 
Hepta-CBs 2.7×10-5 4.5×10-4~2×10-3 6.7 ~ 7.0 9.87 5.4 
Octa-CBs 2.7×10-5 2×10-4~3×10-4 7.1 N.A. 38.1 
Nona-CBs 6.3×10-6 1.8×10-5~1.1×10-4 7.2 ~ 8.2 N.A. 100.0 
Deca-CBs 5.0×10-3 1.2 × 10-6 8.3 N.A. 20.8 

   Note: Log KOW (25oC), water solubilities (25oC), vapor pressure (25oC) and Henry’s law constant of selected SVOCs adapted from 
Mackay et al. (1997). Log KOA (25oC) adapted from Harner and Bidleman (1996, 1998), Kömp and McLachlan (1997) and 
Wania et al. (2002). 
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KOA has been reported to be an excellent descriptor of gas to particle partitioning 

of which the extent of gas/particle (g/p) partitioning of SVOCs in the atmosphere affects 

the rates of dry and wet deposition as well as air-water exchange (Finizio et al., 1997). In 

addition, subcooled vapor pressure of SVOCs is also preferred to be used to describe g/p 

partitioning due to its strong relationship with g/p partitioning coefficient, KP, in the 

atmosphere (Finizio et al., 1997). For instance, lower chlorinated PCB congeners have 

lower KOA so that their particle fractions are lower due to higher vapor pressure (Harrad 

and Mao, 2004; Yeo et al., 2004). 

The selected SVOCs are typically hydrophobic and characterized by a low water 

solubility and relatively high KOW value. Thus, they tend to volatalize from aqueous 

solution and be associated with organic matter of soil, sediments and suspended 

particulate matter in water column (Jones and De Voogt, 1999). In general, the less water 

soluble SVOCs, described by higher KOW, prefer to accumulate on organic matter and in 

biota to a greater extent. For example, HCHs have relative high water solubilities and low 

KOW < 4, and therefore their bioaccumulation is less significant (Van der Oost et al., 

2003). On the contrary, DDTs have higher KOW of 5.6 ~ 6.2 and are expected to have a 

significant bioaccumulative potential. PCB congeners are known to be variable in 

physicochemical properties in accordance with their chlorination levels. Water solubility 

and vapor pressure can vary by up to a magnitude of 108, with a decreasing order of these 

properties with increasing chlorination extent. The vapor pressure and water solubility are 

the key parameters of SVOCs to transfer into gas phase in the environment and therefore 

determine the potential to go through long-range transport (Bard, 1999; Wurl, 2006).  

Physicochemical properties of selected SVOCs certainly depend on prevailing 
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environmental conditions. They are subject to measurement uncertainties (Holmes et al., 

1993), and are reported in a wide range, rather than consistent, values (Mackay et al., 

1997), which makes it particularly challenging to theoretically simulate the behaviors of 

SVOCs in the environment.  

2.3. Gas-Particle Partitioning 

2.3.1. Conventional Simulative Approach 

The behavior and fate of SVOCs in the atmosphere greatly depends on the 

distribution of compounds between different sub-compartments of the atmosphere such 

as atmospheric gaseous and particulate phases. It has been summarized that gas-particle 

partitioning is controlling the relative importance of different deposition pathways for 

SVOCs from the atmosphere to the earth/waterbody surface (Bildleman, 1988). 

Pankow (Pankow, 1987) consolidated, and subsequently refined early approaches 

(Pankow and Bidleman, 1991, 1992) to describe the equilibrium partitioning between gas 

and particles based on adsorption theory (Junge, 1977; Yamasaki et al., 1982). Much 

attention has also been paid to the effect of relative humidity (Thibodeaux et al., 1991; 

Pankow et al., 1993; Storey et al., 1995) and non-exchangeable matter (Pankow, 1988). 

Pankow (Pankow, 1988) defined the gas-particle partition coefficient, KP (m3 µg-1), 

which can be related to measured fractions or concentrations in both gas (Cg - retained by 

adsorbent) and particulate phase (Cp – retained by the filter) and the total suspended 

particulates’ concentration (TSP), in µg m-3: 

p p gK   =  (C /TSP) C         (2.5) 

In case of adsorption, Pankow (1988) derived  
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L V(Q -Q )/RT
s TSP
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L
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K =
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       (2.6) 

where Ns is the surface concentration of sorption sites, ATSP is the specific surface 

area of the TSP, PL
o is the vapor pressure of the subcooled liquid, QL is the enthalpy of 

desorption from the surface and QV is the enthalpy of vaporization of the subcooled 

liquid, respectively.  

The dependence of KP on the subcooled vapor pressure of different compounds 

has been demonstrated by plotting log KP vs. log pL (Pankow, 1987; Pankow and 

Bidleman, 1991, 1992; Cotham and Bidleman, 1995). The correlation could be shown as  

o
P r L rlogK =m logp +b         (2.7) 

This regression of log KP against the temperature corrected log pL
o of the compound 

could potentially yield useful information on the distribution from the slope, mr and the 

y-intercept, br, of the trendline.  For equilibrium distribution, mr is expected to have a 

value of near -1 (Pankow and Bidleman, 1992). 

Similarly to partitioning in the water column, SVOCs partition through an 

absorption process in addition to physical adsorption onto the surface of particles.  

SVOCs would “dissolve” in the amorphous organic matter in the atmosphere, which 

exists both as primary (POA) and as secondary organic aerosols (SOA) (Lohmann and 

Lammel, 2004).  It has been demonstrated that the experimental data, the observed slopes 

near -1 of log KP vs. log pL
o, would also be applicable to absorption, e.g. into an organic 

aerosol fraction (Pankow, 1994a, b).  KP values measured on clean quartz sand at 

different relative humidities (Goss, 1992) are much lower than measured in urban aerosol 

(Storey et al., 1995), indicating that absorption to the organic carbon component of urban 
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particulate matter might be more important than adsorption to the available surface area. 

Some investigations with tobacco smoke (Pankow et al., 1994; Liang and Pankow, 1996) 

have further strengthened the case for absorption in the organic phase for urban 

particulate matter, which tends to have a relatively high content of organic material.  

Accordingly, Finizio et al. (1997) employed the octanol-air partition coefficient (KOA) to 

describe the partitioning of SVOCs between air and organic films on aerosols.  

Partitioning between gas-phase and particulate organic matter (OM) phase was 

empirically related to the partitioning coefficient between octanol and the gas phase, KOA, 

as in Equations (2.8) and (2.9) for PAHs and OCs, respectively: 

P OAlogK =0.79logK -10.01       (2.8) 

P OAlogK =0.55logK -8.23        (2.9) 

The relationship between log KP vs. log KOA has been furthered developed with 

the inclusion of SVOCs’ activity coefficients in octanol and OM and their molecular 

weights proposed by Harner and Bidleman (1998) and simplified to a linear relationship 

as shown in Equation (2.10) (Pankow, 1994b; Harner and Bidleman, 1998). 

P OA OMlogK =logK +logf -11.91      (2.10) 

For equilibrium partitioning the slope is expected to have a value of near + 1 in log KP – 

log KOA correlations. The intercept equals log fOM-11.91, depending on the organic matter 

content of aerosols which determines the absorptive capacity.  

2.3.2. Alternative Approaches 

The abovementioned models use single-parameter linear free energy relationships 

(spLFERs) to describe sorption to aerosol particles. Generally, spLFERs relate the gas-
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particle partition coefficient to the subcooled liquid vapor pressure, pL
o, or the octanol-air 

partition coefficient, KOA, of the chemical.  An alternative conceptual model for sorption 

to aerosol particles has been developed by Goss and co-workers (Goss, 1997; Abraham, 

2004; Roth et al., 2005a, b).  It has been advocated to describe gas-particle partitioning 

with polyparameter linear free energy-relationships (ppLEFRs). A ppLEFR describing 

the gas-particle partition coefficient has the general form 

PlogK =w W+x X+y Y+...+C         (2.11) 

Each multiplicative group on the right side of the equation describes an interaction 

between the chemical and the sorbent such as van-der-Waals interactions or hydrogen 

bonding. The multiplicative groups are composed of a term representing the chemical’s 

ability to participate in an interaction (W, X, Y …). To calculate KP for a chemical, one 

needs Abraham salvation parameters for the chemical (Achemical = W,X,Y,... ), a set of 

complementary sorbent parameters (Asorbent = w,x,y,... ), and the constant, C. In 

principal, the ppLFER approach can describe any surface adsorption or bulk phase 

absorption interactions that are possible between gas molecules and aerosols.  In 

laboratory and field studies, ppLFERs have been developed to describe the distribution of 

volatile organic compounds between the gas phase and various surfaces and bulk phases 

(Goss and Eisenreich, 1996; Nguyen et al., 2005; Roth et al., 2005a, b; Arp et al., 2006).  

  In 2007, a more general model of gas-particle partitioning has been developed 

(Götz et al., 2007), which combines existing ppLFERs for sorption to fine aerosols and 

components of coarse aerosols into a model that is applicable to aerosols with defined 

size distribution and composition. The new model is applicable to organic non-ionic polar 

and nonpolar chemicals, and can describe a wide range of aerosol properties. The 
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comparison and contrast was made between the spLFER and ppLFER models by (i) 

comparing the sorption models for a reference aerosol to identify compound classes 

where KP is sensitive to which model is used, and (ii) investigating the variability of KP 

among different aerosols.  Practical application of the general ppLFER model to a wide 

range of chemicals is currently still limited by data gaps in measured Abraham salvation 

parameters and uncertainties in estimation methods. 

 A different tool depending on quantitative structure-property relationship (QSPR) 

can be utilized to predict KP values for SVOCs. QSPR studies have been applied in 

chemistry, biochemistry and recently for solving environmental problems (Gramatica et 

al., 1999; Gramatica et al., 2001). The main idea of QSPR is to construct the 

correlationship by expressing a special physicochemical property of organic compounds 

in terms of appropriate molecular descriptors (Karelson et al., 1996). Wei et al. (2007) 

have explored the relationship between molecular descriptors and gas / particle 

partitioning of PCBs.  In their study, overall 14 molecular descriptors of each compound 

calculated using semi-empirical method parametric model 3 (PM3) were tested against 

log KP of selected PCBs to determine the best ones governing partitioning. Eight 

descriptors molecular weight, molecular volume, total energy, electronic energy, squared 

atom electron densities on carbon, hydrogen and chlorine atoms in a given molecule and 

average molecular polarizability  were found to be highly correlated with log KP 

compared to other molecular descriptors. Using Partial Least-Squares Regression method 

(PLS), two-, three- and four-descriptor QSPR models with good fitting characters were 

successfully developed.  
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2.4. Dry Particle Deposition 

Particle-sorbed SVOCs can settle by dry particle deposition, a uni-directional 

advective transport process from the atmosphere to earth/water surface, which is 

independent of the fugacities of SVOCs in the receiving medium. In its simplest form, the 

flux of chemicals to the surface Fdry (µg m-2 s-1) is expressed as a product of the 

concentration on particles Cp (µg m-3) and a dry deposition velocity Vd (m s-1) as follows: 

dry p dF =C V         (2.12) 

To date there has been no consensus on the appropriate dry deposition velocity to use in 

the flux estimation. Estimated (Hoff et al., 1996) and experimental (Holsen et al., 1991) 

dry deposition velocities of SVOCs range over an order of magnitude. 

One of the reasons for this discrepancy is that deposition velocity is a function of 

particle size. Gravitational settling has a significant effect on the deposition of coarse 

particles, while Brownian motion dominates the deposition of very fine particles (<0.1 

µm) (Seinfeld, 1986).  As the particle diameter increases, the magnitude of flux increases 

due to higher deposition velocities.  A recent study has shown that a multistep modeling 

approach, which divides the fine and coarse particle distributions into a number of 

intervals and assigns an appropriate deposition velocity to each interval, gives a better 

estimate of dry deposition than the approach shown in Equation (2.12)(Holsen and Noll, 

1992). Using this multistep model and other techniques it has been found that coarse 

particles (>2.5 µm) and compounds associated with them are responsible for the majority 

of dry deposition (Holsen et al., 1991; Holsen and Noll, 1992; Holsen et al., 1993). 

However, the information on size distributions combined with size-dependent deposition 
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velocities for SVOCs is still extremely limited and essentially non-existent for the off-

shore atmosphere, making it difficult to even estimate applicable mass median diameters. 

There have also been many efforts to measure dry deposition directly. However, 

there is no generally accepted method for collecting particulate dry deposition or gas 

exchange. Different kinds of surrogate surfaces including Teflon plates, Petri dishes, dry 

or diol-coated filters, buckets, pans filled with water, oil-coated glass plates, and greased 

strips have all been used to measure particle dry deposition (Bidleman, 1988). In addition, 

a moving sheet of water was used to passively trap dry particles and gases to trace 

organic chemicals (Waite et al., 1999). 

2.5. Wet Deposition and Scavenging 

SVOCs are scavenged from the atmosphere episodically by precipitation, both as 

vapors which dissolve in the raindrops, and bound to atmospheric particles, which are 

incorporated into the rain within or below the clouds. Wet deposition of gases and 

particles can be described as one bulk process by using a dimensionless total wet 

scavenging ratio WT, where WT is the sum of the effective scavenging ratio for the 

substance in the gas and particle phases, WG and WP, respectively: 

T P GW =W Φ+W (1-Φ)       (2.13) 

where ф is the fraction of chemical in air which is sorbed to aerosol. 

 It is generally assumed that equilibrium is attained rapidly between the vapor 

phase and the dissolved phase in a raindrop (Cousins et al., 1999).  It has been estimated 

that equilibrium can be established with the surrounding vapor phase during the time it 

takes a raindrop to fall a few meters (Ligocki et al., 1985a, b).  Therefore, vapor washout 
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ratio, WG, has been estimated using air-water equilibrium partition coefficients or 

Henry’s Law contant: 

R,dissolved
G

g

C RT
W = =

C H
      (2.14) 

where CR,dissolved is the dissolved concentration in water at equilibrium, and Cg is the 

vapor concentration in air at equilibrium. 

The particle scavenging ratio can be estimated: 

R,sorbed
P

P

C
W =

C
       (2.15) 

where CR,sorbed is the concentration of SVOCs sorbed on the particles scavenged by rain 

and CP is the concentration of SVOCs in atmospheric particulate phase. 

There have been numerous attempts to deduce scavenging ratios for SVOCs by 

simultaneously measuring rain and ground level air concentrations (Ligocki et al., 1985a, 

b; Leuenberger et al., 1988; Murray and Andren, 1992; Poster and Baker, 1996b; Franz 

and Eisenreich, 1998).  Washout ratios for SVOCs tend to be much smaller than those 

reported for trace metals and radio-nuclides (Ligocki et al., 1985a, b; Atlas and Giam, 

1988). Vapor scavenging is important especially for SVOCs with low Henry’s Law 

constants; however, deviations from equilibrium partitioning between air and rain have 

been observed (Cousins et al., 1999).  Particle scavenging is not really dependent on the 

concentration of the compound in the particle and can thus been described as the 

scavenging of the particles themselves. WP has been reported to be related to the particle 

size distribution to which SVOCs are sorbed (Poster and Baker, 1996a).  Both particle 

and vapor scavenging are affected by ambient temperature, which can presumably shift 

gas-particle partitioning of SVOCs in the atmosphere (Wania et al., 1998). 
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2.6. Diffusive Air-Sea Exchange 

SVOCs can diffuse across the air-water interface; the molecules in the vapor 

phase in air and the “truly” dissolved molecules in water participate in this diffusive 

transport which is driven by a deviation from chemical equilibrium between the air and 

water phase. Chemical equilibrium between two phases does not necessarily mean that 

the concentrations are equal, rather that the escaping tendency, or fugacity, is equal in 

both phases. This process is reversible and counteracts any fugacity gradient which may 

arise from precipitation scavenging, dry particle deposition, air mass changes over a 

water body, and temperature gradients. 

A detailed description of the model formulations commonly used to describe 

diffusive air - water exchange can be found in the work of Schwarzenbach et al.(2003) 

(2003). Briefly, the flux across the air - water interface (F in ng m-2 d-1) is expressed as 

the product of a kinetic parameter expressing the resistance to interfacial transfer and a 

term expressing the deviation from equilibrium as the driving force for interfacial transfer. 

A classical two-layer model (see Figure 2.4.), which has been previously applied to the 

air-sea exchange of SVOCs (Achman et al., 1993; Zhang et al., 2007; Li et al., 2009), 

assumes that the rate of gas transfer is controlled by the pollutant’s ability to diffuse 

across the air layer and sea surface water on either side of the air-water interface.  The 

molecular diffusivity of the pollutant, dependent on the amount of resistance encountered 

in the liquid and gas films, describes the rate of transfer while the concentration gradient 

drives the direction of transfer (Totten et al., 2001).  The flux Fair-water (ng m-2 day-1) is 

calculated by  

g
air-water OL truly

C
F =K (C - )

H'
     (2.16) 
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where KOL (m day-1) is the overall mass transfer coefficient, and g
truly

C
(C - )

H'
 describes the 

concentration gradient (ng m-3) where Cg is the gas-phase concentration of the compound 

in air that is divided by the dimensionless Henry’s law constant (H΄) with H΄=H/RT 

where R is the universal gas constant (8.315 Pa m3 K-1 mol-1), H is Henry’s law constant 

(Pa m3 mol-1) corrected by the temperature and salinity, and T is the temperature at the 

air-water interface (K). A positive flux indicates net volatilization out of the seawater and 

a negative flux indicates net absorption into the seawater.  The overall mass transfer 

coefficient (KOL) comprises resistances to mass transfer across the air layer and the water 

layer. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.4. Classical two-layer model of a gas-liquid interface 
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OL W a

1 1 1
= +

K K K H'
      (2.17) 

where Ka and Kw (m day-1) are the mass transfer coefficients across the air layer and 

water layer, respectively, dependent on wind speed, and several empirical relationship 

exist which relate them to the wind speed measured at a certain height above the water 

(Liss, 1973; Schwarzenbach et al., 2003). Temperature has an impact on the kinetics of 

air – sea transfer, i.e. influences the mass transfer coefficients. Molecular diffusivities in 

both air and water increase with temperature. Using semi-empirical approaches quoted in 

Schwarzenbach et al. (2003), diffusivities in air and water change by a factor of 1.2 and 

2.3 between 0 and 30oC. The main effect of temperature on the kinetics of air – sea 

exchange, is however, through its effect on Henry’s Law constant.  The availability of 

measured temperature-dependent Henry’s Law constants for specific SVOCs is still rater 

limited (Wania et al., 1998).  

2.7. Selected SVOCs in the Marine Environment of Singapore 

2.7.1. Usage and Emission of Selected SVOCs in Singapore 

Singapore is located about 120 km north (1o14΄ N, 103o55΄E) of the equator with 

Malaysia to the north and Indonesia to the south. This country is heavily industrialized 

with chemical industries, major power plants, oil refineries situated in a group of small 

islands on the west coast of the Singapore Island.  Singapore is home to the third largest 

petroleum refining industry in the world, with a refining capacity in excess of 1 million 

barrels per day.  Strategically located in the South China Sea and Straits of Malacca, this 

country is also a major port hub, with up to 142,000 ship movements per year (2002 data, 
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Wurl, 2006). Agricultural activities are extensive in the region of SEA, but almost non-

existent in Singapore. Due to its high urbanization, PAHs are mainly emitted by the local 

sources such as vehicles and industrial processes. OCPs and PCBs of concern in this 

study are officially banned in Singapore, but some of them have been banned quite 

recently (UNEP, 2002). According to UNEP Chemical’s regional report (UNEP, 2002), 

γ-HCH (lindane) has been banned by most countries in SEA, but the previous reports 

indicated the use of lindane in Malaysia (Kannan et al., 1995). It has been known that 

Aroclor 1248 was used most extensively with hydraulic and heat transfer media. Aroclor 

1254 was not only used in hydraulic media, but also was the main component in Askarel 

transformers and capacitors. The import of PCB-containing products was banned in 

Singapore since 1980, Malaysia in 1995 and in Indonesia in 1994 (UNEP, 2002). All 

electrical transformers containing PCBs should have been disposed of by end 2002 

(UNEP, 2002).  Due to its persistence, these pollutants still widely exist in different kinds 

of media in the environment in this region. 

2.7.2. Occurrence of Selected SVOCs in the Environment of Singapore 

The concentrations of PAHs in the atmosphere of Singapore have been reported 

since 1980s (Ang et al., 1986; Chee et al., 1997b; Karthikeyan et al., 2006), all of which 

are focused on the particulate phase and showed the contributions of 3-4 benzene ring 

PAHs to the total PAHs have increased considerably with the increasing of the number of 

on-road in Singapore. Basheer et al. (2003) have characterized PAHs in Singapore’s 

rainwater and northeastern and southwestern coastlines surface seawater (Basheer et al., 

2003a, b). Lim et al. (2007) have reported the atmospheric wet deposition of PAHs to the 



 36

sea-surface microlayer (SML) in Singapore’s coastal area by short-term sampling, with 

the concentration ranges of Σ PAHs 2.6 ~ 46.2 ng L-1 and 4.3 ~ 278.0 ng L-1 in the SML 

before rain and after wet deposition, respectively.   In the 1990’s, DDT residues were 

detected in human blood serum in Singapore and partially attributed to seafood 

consumption (Luo et al., 1997). More recently, Bayen et al (2005) reported 

concentrations of persistent organic pollutants in seafood consumed in Singapore with 

mean concentrations of 0.95, 3.72, and 3.76 ng g-1 for ΣChlordane, ΣDDTs and ΣPCBs, 

respectively. OCPs and PCBs were analyzed in unfiltered seawater samples collected 

around Singapore and the prevalence of HCHs (0.02 ~ 18 ng L-1) and PCBs (0.2 ~ 62 ng 

L-1) were shown, but DDTs appeared to be present in a lower concentration range of 0.02 

~ 1.4 ng L-1 (Basheer et al., 2003b). Several recent studies have investigated the 

occurrence of persistent organic pollutants in atmosphere, sea-surface microlayer and 

even sediment in Singapore’s environment (Wurl and Obbard, 2005a, b; Wurl et al., 

2006b), however, all the studies mentioned above have been based on short-term 

sampling, relatively more extensive dataset has not been set up to observe seasonal 

variation of selected pollutants and to investigate their systematic distribution and 

transfer between different matrices in this tropical environment. 
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Chapter 3. Materials and Method                                                                          

3.1. Location of Sampling Sites 

Singapore, as a representative industrialized country in SEA, is located near the 

equator (1.5oN and 104oE). Its tropical climate is marked with high humidity and 

abundant rainfall throughout the year. The ambient temperature and pressure are 

relatively uniform due to its maritime exposure and geographic location. The average 

humidity is 84% with maximum 100% during rainy days and temperature ranges from 

23-34oC.  The climate is governed mainly by Northeast and Southwest monsoons from 

December to March and June to September, respectively. The seasons caused by 

respective wind directions. Cloudy conditions exist in December and January with 

frequent afternoon showers. Spells of widespread moderate to heavy rain occur lasting 

from 1 to 3 days at a stretch.  Drier climate is usually observed during February till early 

March. The inter-monsoon seasons are influenced by light variable winds and localized 

weather. During the Southwest Monsoon period, Singapore’s air quality is influenced by 

emissions from biomass burning in the Indonesian province, Sumatra, when dry weather 

conditions prevail, leading to the occurrence of regional smoke haze in SEA (SEA).  The 

frequency of occurrence of smoke haze events and their intensity might vary from year to 

year. 

In this project, most air and rainwater samples were collected on an event basis at 

the atmospheric research station in National University of Singapore (NUS). The 

sampling site was located 67 m above sea level, approximately 1 km away from the open 

sea. The southern coastal area of Singapore was chosen for the study on sea subsurface 
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water and sea-surface microlayer. The major harbor, one of the busiest harbors in the 

world, is in the south coastal line of Singapore. Chemical industries as well as oil 

refineries are situated in a group of small islands on the southwest coast of the Singapore 

Island. The locations of sampling sites are shown in Figure 3.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1. Location of sampling sites: (a) SEA; (b) Singapore (* Sampling sites) 
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3.2. Sampling Instrumentation 

  A variety of instruments has been used for field measurements (Table 3.1). 

Table 3.1. Summary of field instrumentation used in this study 
 

Instrumentation Purpose 

High Volume PUF Air Sampler To collect both atmospheric particles and 
gas samples in the field by using pre-
combusted quartz microfiber filters and 
polyurethane foams (PUF) 
 

Automated Wet-Dry Sampler To collect wet-only samples (rainwater 
without interference from dust fall) 
 

Sea Water Sampler and Glass Plate 
Collector 

To collect the SSW and SML samples on 
the sea surface 
 

Weather Station in National University of  
Singapore 

To record all the relevant meteorological 
parameters (air temperature, total rainfall, 
solar incoming radiation, wind speed, etc.) 
during the sampling period 

 

3.2.1. High Volume PUF Air Sampler 

High volume samplers (Model: TE-1000PUF, Tisch Environmental, Inc. USA), 

equipped with filter holder and glass cartridge, were used for air sampling.  The use of 

correct flow rate is critical to the calculation of particle volume-based concentrations. As 

per TE-PUF sampler instructions, after every 360 sampling hours, calibration of the high 

volume sampler was performed by using TE-5040A calibrator (orifice)  without a foam 

plug or filter paper in the sampling module but with the empty glass cartridge remaining 

in the module. Magnehelic gage readings were taken at the beginning and end of each 

sampling period to obtain an average standard air flow rate. Pre-combusted quartz filters 

and polyurethane foams (PUF) were used to capture both ambient particulate and gaseous 
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phases at ca. 250 L min-1. These filters were heated at 450oC for 24 h and conditioned in 

a desiccator for 24 h prior to use. PUF plugs were pre-cleaned with hexane followed by 

acetone in 33-ml stainless steel vessels of a Dionex ASE 200 model at 100 atm and 120 

oC for 10 min.  The same pre-cleaning procedure was conducted six cycles till the 

targeted PAHs on PUF plugs were in the range of blank values of fresh solvents as above. 

The samples were collected on an event basis for 24 hr or 48 hr.  Prior to and after 

sampling, quartz filters were conditioned in a dry box under the same condition and then 

weighed to obtain the particle mass collected. After sampling, both filter and PUF 

samples were stored at -20oC prior to extraction. The sampling schedule is listed in Table 

3.2. 

3.2.2. Automated Wet-Dry Sampler 

The rainwater samples were collected by an automated wet-dry sampler (Model 

US-330, Ogasawara Keiki Seisakusho, Tokyo, Japan), which collects only rainwater with 

no interference from dust fall. All rainwater samples were stored in an internal 

refrigerator at 4oC by the automated sampler immediately after a rain event. The 

rainwater samples were collected from the field sites within 24 hours after each rain event. 

After collection, rainwater samples were filtered with pre-cleaned (heated at 450oC for 24 

h) Whatman GF/F filters (0.7 m, 47mm i.d.). The actual volume of each sample collected 

was measured and recorded after filtration. Before and after filtration, GF/F filters were 

conditioned in a dry box (maintained at 22oC and 30% RH), and then weighed to 

calculate the mass of suspended particles. 



 41

Table 3.2. Sampling conducted in this study 
 

Sampling Site Sampling Period & Type Quantity of Sample Objective 

Atmospheric research 
station (NUS)  
 

Jul. 2006  
(Air sampling) 

8 samples (24h sampling) To apply the optimized ASE 
technique 

Atmospheric research 
station (NUS)  
 

Nov. 2006 ~ Dec. 2006  
(Air Sampling) 

14 samples (12h day/night 
sampling) 

To investigate gas / particle 
partitioning process in Singapore 

Atmospheric research 
station (NUS)  
 

Jun. 2007 ~ May 2008 
(Both air and rainwater 
sampling) 

37 atmospheric samples (pairs of 
PUF (polyurethane foam) and 
quartz filter samples) and 32 
rainwater samples  
 

To obtain a yearly extensive 
dataset of atmospheric and 
precipitation concentrations of 
SVOCs 

St Johns Island coastal area  
 

Nov. 2007 ~ Dec. 2008 
(Both air, SSW and SML 
sampling) 

8 air samples, 8 SSW samples, 
and 8 SML samples 

To conduct short-term sampling 
for air-sea exchange study 



 42

3.2.3. Sea Surface Water Sampler and Sea Subsurface Microlayer Collector 

The SSW samples were collected at the depth of 1 m at a southern coastal area of 

Singapore with a 2-L glass amber bottle inserted in a stainless-steel sampling device. The 

SML samples (approximately 1 L) were collected simultaneously using the glass plate 

technique (Harvey and Burzell, 1972) and stored in an amber glass container.  Eight 

samples were collected for SSW and SML, respectively. After collection, all sea water 

samples were filtered with pre-cleaned (heated at 450 oC for 24 h) Whatman GF/F filters 

(0.7 m, 47mm i.d.).  The actual volume of each sample and mass of suspended particles 

were measured for rainwater samples. 

 

3.2.4. Weather Station in National University of Singapore 

The relevant meteorological parameters (air temperature, total rainfall, solar 

incoming radiation, wind speed, etc.) were obtained from an automated NUS weather 

station located in the same building where the atmospheric station is housed. This 

meteorological station has been in operation to provide real-time meteorological data to 

the NUS community. Ambient temperature, wind speed, incoming solar radiation and 

rainfall were measured by CS 500 T sensor (Vaisala, Helsinki, Finland), cup anemometer 

03001 (R.M.Young, Michigan, USA), LI-200X pyranometer (LI-COR, Nebraska, USA) 

and CS700 rainguage (Hydrological Services, Sydney, Australia) by mm of rainfall per 5 

min, respectively. 
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3.3. Materials 

3.3.1. Reagents 

All solvents used for this study were of pesticide grade: n-hexane (HEX), acetone 

(ACE), dichloromethane (DCM) and methanol (METH) (Tedia, USA). The standard 

mixture USEPA 610 including 16 priority PAHs (naphthalene (Naph), acenaphthylene 

(Acy), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), 

fluoranthene (Flt), pyrene (Pyr), benz[a]anthracene (B(a)A), chrysene (Chry), 

benzo[b]fluoranthene (B(b)F), benzo[k]fluoranthene (B(k)F), benzo[a]pyrene (B(a)P), 

indeno[1,2,3-cd]pyrene (Ind), dibenz[a,h]anthracene (DB(ah)A) and benzo[ghi]perylene 

(B(ghi)P)), in methanol: methylene chloride and the standard mixture of OCPs (α-,β -, γ- 

and δ-HCH and p, p’-DDD, p, p’-DDE and p, p’-DDT) included in Kit 608-S were 

purchased from Supelco (USA); standard for PCBs (C-QME-01, 41 congeners) was 

obtained from AccuStandard (New Haven, USA). Surrogate standards were used as 

follows: anthracene-d10, fluoranthene-d10 and benzo[e]pyrene-d12 (Sigma-Aldrich, St. 

Louis, MO, USA) for PAHs; 13C12-PCB 8 and 13C6-Hexachlorobenzene (Cambridge 

Isotope Laboratories, MA, USA) for OCPs; 13C12-PCBs congeners CB 77, 101, 141, 

178 (Cambridge Isotope Laboratories, MA, USA) for PCBs. In addition, internal 

standards were applied as below: phenanthrene-d10, pyrene-d10 and benzo[a]pyrene-d12 

(Sigma-Aldrich, St. Louis, MO, USA) for PAHs; 13C6-Tetrachlorobenzene and 13C12-

4,4 DDT (Cambridge Isotope Laboratories, MA, USA) for OCPs; and 13C12- PCBs 

congeners CB 8 and 206 (Cambridge Isotope Laboratories, MA, USA) for PCBs.  



 44

Silica gel and florisil, obtained from Merck (Germany) and used for the column 

pretreatment of organic samples, were heated at 600oC for 24 h to remove any organic 

contamination.  

3.3.2. Spiked standards 

For the preliminary study of ASE optimization, the standard samples were 

prepared by spiking 20 µL of USEPA 610 PAH mixture (2~20mg L-1), 20 µL of OCPs 

standard stock solution (500 g L-1) and 20 µL of PCBs standard stock solution (400 g L-1) 

for recovery evaluation on pre-baked quartz filters and pre-cleaned PUF plugs 

respectively, wrapped by pre-cleaned aluminum foils, and then followed by 

approximately 4h drying in a clean hood prior to extraction.  

3.4. Sample Preparation and Analysis 

A variety of instruments were used for sample preparation and laboratory analysis 

(Table 3.3).   

3.4.1. Accelerated Solvent Extraction (ASE) 

For preliminary optimization study, all extractions were conducted using quartz 

filters and PUF plugs spiked with standards together in 33-ml stainless-steel cells by 

Dionex (ASE 200).  Extractions were performed with 40 ml of solvent at 100 atm 

pressure by one static cycle. The vessels were rinsed with 10 ml of the same solvent, and 

the extracted analytes were purged from the sample cells using pressurized nitrogen at 

100atm. Varying the pressure in this range did not affect the results significantly (Li et al., 

1998a; Saim et al., 1998). 
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Table 3.3. Summary of instrumentation for sample preparation and laboratory analysis 
 

Instrumentation Purpose 

Accelerated Solvent Extractor 
(ASE) 

 

To extract both atmospheric particle and 
gas samples under optimized extraction 
conditions 

Liquid Liquid Extraction (Separatory 
Funnel) 

To extract SVOCs from water samples 
(rainwater, SSW and SML samples) 

Rotary Evaporator 
 

To reduce the volume of organic solvent 
extracts 

Soxhlet Extractor (SE) 
 

To extract the samples spiked with known 
concentrations of SVOCs standards to 
investigate the recoveries 

Microwave Assisted Extractor (MAE) 
 

To extract the samples spiked with known 
concentrations of SVOCs standards to 
investigate the recoveries 

Gas Chromatograph-Mass Spectrometer 
(GC-MS) 

To determine the amount of SVOCs in air, 
rainwater and seawater samples 

CHNS/O Analyzer 
 

To determine the amount of carbonaceous 
particles in ambient particulate samples 
(elemental and organic carbon) 

 

In the optimization study, the effects of the following parameters on the ASE 

efficiency were investigated and optimized: the combination of extraction solvents, 

extraction temperature, and static extraction time. To optimize the extraction solvents, 

three solvents (DCM, HEX, and METH) and two solvent mixtures (1:1 mixture of HEX 

and METH, 3:1 mixture of HEX and ACE) were compared for their efficiencies in 

extracting SVOCs (PAHs, OCPs and PCBs) from the spiked samples. The static ASE 

extraction was conducted at 100oC for 10 minutes.  All extractions were conducted in 

triplicates.  After the selection of the most appropriate solvent for the best extraction, 

extraction temperature and duration were evaluated by conducting extractions of the 

prepared samples at 60, 80, 100, 120oC for 10 min and 5, 10, 20, 30, 45, and 60 min at 

the optimum temperature, respectively.  
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Based on the outcome of the preliminary experiments described above, the real-

world atmospheric samples in PUFs and quartz filters plus filters for water samples were 

extracted separately under the optimum conditions by two static cycles in order to 

measure the target compounds. 

3.4.2. Liquid-Liquid Extraction (LLE) 

All water samples were extracted within the same collection day via liquid-liquid 

extraction using 3 × 50 ml DCM aliquots in a two liter separatory funnel (EPA method 

351oC). The samples were shaken for 10 min and allowed to settle for a further 10 min 

before the water phase was transferred back to the sample container; and the organic 

phase was collected in a 500-ml round-bottom flask.   

3.4.3. Rotary Evaporator 

All extracted analytes were concentrated to 3 ml by rotary evaporator (Inlabo, 

Italy) and further cleaned using silica gel (for PAHs) or florisil (for OCPs and PCBs) 

columns.  All extracts were finally blown by gentle nitrogen stream and reduced to 50 µL 

with internal standards for PAHs and organo-chlorine compounds, respectively, and kept 

in sealed vials at -20oC prior to GC-MS analysis.  
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3.4.4. Soxhlet Extractor (SE) 

In the preliminary optimization study, Soxhlet extraction, as a conventional 

extraction technique, was used to extract those samples spiked with SVOC standards to 

investigate the recovery comparison with ASE. The standard-spiked samples were placed 

in Soxhlet extraction thimbles (Scheider & Schuell GmbH, Dassel, Germany), and 

extracted with 200 ml n-hexane/acetone (1:1, v/v) for both PUF and filter sample for 8 h 

in a Soxhlet extractor (4-5 cycles/h), respectively. 

3.4.5. Microwave Assisted Extractor (MAE) 

A closed vessel microwave digestion system (MLS-1200 mega, Mileston s.r.l, 

Italy) was used for the extraction of the standard-spiked PUF and filter samples 

separately to investigate the recovery comparison with ASE as well. The procedure used 

requires 40 ml mixture of acetone:n-hexane (1:1) for extraction of PAHs at 150 W of 

microwave energy for 20 min extraction time. The solvents have to be changed manually 

after each extraction if one more extraction cycle is necessary. 

3.4.6. Gas Chromatograph-Mass Spectrometer (GC-MS) 

The analysis of target compounds (SVOCs) was performed using a QP2010 GC-

MS equipped with a Shimadzu AOC-5000 auto injector and a DB-5 fused silica capillary 

column (30 m length and 0.25mm I.D; film thickness 0.25 m) with purified helium as 

carrier gas.  Four microlitre sample was injected into the GC-MS in splitless mode with a 

sampling time of 1.5 min using high-pressure injection mode (pressure 2.47 atm 
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maintained for 2.0 min, initial column flow 3.17 ml min-1), as recommended in the GC-

MS manual (Shimadzu).  PAHs, OCPs and PCBs standards as well as extracted samples 

were measured separately in selective ion monitoring mode (SIM) with a detector voltage 

700 V.  The most abundant ions were selected for quantification. One to four reference 

ions were used for confirmation of each analyte in SIM mode.  Table 3.4 shows the GC 

temperature program and MS monitoring ions for all target compounds. 

3.4.7. CHNS/O Analyzer 

Organic carbon (OC) and elemental carbon (EC) were determined by using a 

laboratory two-step thermal procedure (Zappoli et al., 1999). Carbon contents were 

obtained by means of the CHNS/O analyzer (2400 series II, Perkin-Elmer Life and 

Analytical Sciences Inc.), which was operated in CHN mode with acetanilide (71.09% C, 

6.71% H, 10.36% N) as a calibration standard and with helium plus 8% oxygen as carrier 

gas. When the combustion furnace temperature was set at 450oC, the content of OC in a 

sample aliquot put in a combustion boat could be determined directly. When the 

combustion temperature was set as high as 950oC, the total of OC and EC was 

determined.  Prior to analysis, carbonates were removed by adding diluted HCl. EC 

content was then obtained by subtracting OC from the total of OC and EC. The fraction 

of organic matter (OM) phase on TSP, fOM, was in general obtained by multiplication of 

the fraction of OC on TSP with factor 1.5 for urban aerosols (Dachs and Eisenreich, 2000; 

Turpin et al., 2000; Turpin and Lim, 2001). 
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 Table 3.4. GC temperature programs and MS monitoring ions for analysis of SVOCs 
 

Compounds Monitoring ions GC Temperature 
Naphthalene (Naph) 128a

Acenaphthene (Ace) 152a

Acenaphtylene (Acy) 154a

Fluorene (Flu) 166a

Phenanthrene (Phe) 178a

Anthracene (Ant) 178a

Fluoranthene (Flt) 202a

Pyrene (Pyr) 202a

Benzo[a]anthracene (B(a)A) 228a

Chrysene (Chr) 228a

Benzo[b]fluoranthene (B(b)F) 252a

Benzo[k]fluoranthene (B(k)F) 252a

Benzo[a]pyrene (B(a)P) 252a

Indeno[1,2,3-cd]pyrene (Ind) 276a

Dibenzo[a,h]anthracene (DB(ah)A) 278a

PAHs 

Benzo[ghi]perylene (B(ghi)P) 278a

70℃ for 2 min 
15℃/min to 200℃ 
for 4 min 
5℃/min to 300℃ 
for 5 min 

α-BHC, β-BHC, γ-BHC, δ-BHC 219a,183,181,217
4,4’-DDE 246a,248OCPs 
4,4’-DDD, 4,4’-DDT 235a,237

4°C/min from 
125°C to 300°C 

PCB 17+18, 28+31,33 256a,258
PCB 44,49,52,70+95,74 292a,290
PCB 87,99,101,110,110,118 326a,328
PCB 128,149,151,132+153,156,169
183,138+158 

360a,362 

PCB 170,171,177,180,187,191 394a,396
PCB 194,195,199,205 430a,428
PCB 208 464a,394

PCBs 

PCB 209 498a,428

160°C for 10 min 
3°C/min to 250°C 
8°C/min to 300°C 

    a. Target ions 
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Chapter 4. Optimization of Accelerated Solvent Extraction 

(ASE) 

4.1. Introduction 

The quantification of SVOCs in atmosphere can be achieved through several 

established methods (Hawthorne et al., 1989; Chee et al., 1997a; Lenicek et al., 2000; 

Yeo et al., 2003a; Christensen et al., 2005). The USEPA method 3542 (Soxhlet extraction) 

has been used to extract semi-volatile organic pollutants from air samples such as filters, 

XAD-2® resin or polyurethane foam (PUF). Sonication is also one of the extraction 

methods mostly used to prepare air samples for determination of SVOCs. All these 

traditional procedures require large volumes of solvents, long extraction time and 

intensive labor due to little or no automation. In order to achieve faster extraction and 

reduction of solvent volume, some modern extraction techniques such as supercritical 

fluid extraction (SFE) and microwave-assisted extraction (MAE) have been developed 

for extraction of SVOCs from various environmental samples (Yang et al., 2003; 

Cortazar et al., 2005; Sun and Li, 2005). A recent advance in trace environmental 

analysis is the use of the accelerated solvent extraction (ASE) method, which represents 

an exceptionally effective extraction technique compared to alternative methods 

mentioned above such as SE and UAE (Fisher et al., 1997; Shen and Shao, 2005; 

Sporring et al., 2005; García et al., 2008). This extraction process takes advantage of the 

increased analyte solubility at temperatures well above the boiling points of common 

solvents.  In addition, the kinetic processes involved for analytes to desorb from the 

matrix are accelerated, and automated extractions can be carried out. However, despite its 
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significant advantages compared to traditional extraction methods, the effectiveness of 

ASE has not been sufficiently demonstrated for the extraction of SVOCs from ambient 

air samples. 

In this work, the feasibility of using ASE to extract different groups of SVOCs 

collected onto quartz filters and PUF plugs was studied. Different parameters affecting 

the extraction efficiency such as combination of extraction solvents, extraction 

temperature, and static extraction time were investigated and optimized. The performance 

of this optimized method, in terms of recovery on PUF and filter samples, was evaluated 

and compared with that of SE and MAE. Following optimization, a quality assured ASE 

method was developed and used for the extraction of SVOCs in ambient air samples 

collected in Singapore. The concentrations of SVOCs in air samples were quantified 

using GC-MS to demonstrate the practical applications of the ASE method. 

4.2. Experimental 

4.2.1. Extraction 

The ASE method has been optimized in this study as stated in Section 3.4.1.  For 

SE and MAE, the extraction parameters were selected based on previous successful 

investigations published in the literature (Sporring et al., 2005; Karthikeyan et al., 2006) 

and conducted as described in Sections 3.4.4 and 3.4.5. 

4.2.2. Sampling  

For the application of optimized ASE method, short-term field sampling was 

carried out. Particulate and gaseous air samples were collected using a hi-volume sampler 
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(Model: TE-1000PUF, Tisch Environmental, Inc., USA) at the atmospheric research 

station in National University of Singapore for 24 h duration in July 2006. Total 

suspended particles were collected by a quartz filter of 4’’ diameter loaded onto the filter 

holder followed by an adsorbent cartridge filled with 3 pieces of one-inch PUF plugs in 

series (each plug of 65 mm diameter and 25 mm length).  

4.2.3. Sample Preparation and Analysis 

The standard-spiked samples were prepared by the protocols in Section 3.3.2, 

extracted by ASE, SE or MAE, followed by evaporation, purged by gentle nitrogen 

stream till 50 µl.  

Real-world samples were extracted by the optimum ASE conditions for two 

cycles and evaporated by rotary evaporator to 3 ~ 5 ml. The concentrated ASE extracts of 

air samples showed yellow and sticky. As such, it was necessary to clean up the extracts 

before proceeding further.  

PAHs. One portion of the concentrated extract was cleaned up with a 

chromatographic column (30cm × 10 mm I.D) containing 5 g of silica gel topped with 2 

cm of anhydrous sodium sulfate. The column was pre-eluted with 2 × 15 ml of hexane 

and the eluate was kept just prior to exposure of the sodium sulfate layer to the air.  After 

the sample was transferred onto the column, the silica gel column was first eluted with 25 

ml of hexane, and followed by 30 ml of hexane-dichloromethane (3:2, v/v). The first 

fraction was discarded, and the second contained PAHs.   

OCPs and PCBs. A chromatographic column (30 cm×10 mm I.D.) containing 5 

g of florisil topped with 2 cm of anhydrous sodium sulfate was washed with 2 × 15 ml of 
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hexane and the eluate was also kept just prior to exposure of the sodium sulfate layer to 

the air. The other portion of the concentrated extract was then transferred onto the 

column and eluted with 150 ml hexane-acetone (9:1, v/v).  

The extract in each fraction was concentrated to approximately 3 ml at room 

temperature and further to 50 μl by nitrogen gas stream. Internal standards were added 

into both standard-spiked and real world sample extracts as described in Section 3.3.1. 

All extracts were then kept in sealed vials at -20oC prior to analysis. Sample analysis was 

conducted using a GC-MS (Shimadzu QP2010, Japan), as described in Section 3.4.6. 

4.2.4. Quality Control 

The analytical quality of the data obtained was determined using limit of detection 

(LOD), recovery, linearity, and by checking sampling artifacts, etc.  During each set of 

extractions, the field blanks (filter and PUF plugs) were included and the mean blank 

value was subtracted from the measured levels. Little or no PCBs congeners were 

detected while trace amount of OCPs was detected in the blanks.  Limits of detection 

(LOD) were derived from the blanks and quantified as the mean plus three times the 

standard deviation of the concentration in the blanks. LODs for SVOCs ranged from 0.05 

± 0.08 to 2.17 ± 0.95 pg m-3. 

The reliability of the entire analytical procedure for each sample was evaluated by 

using surrogate standards. The procedural recoveries of surrogates ranged from 86.7 ± 

6.8% (anthracene-d10) to 107.2 ± 6.9% (13C12-PCB141). The linearity of calibration 

standards was calculated by regression analysis with values ranging from 0.99–1.00 (r2) 

for SVOCs. Breakthrough was evaluated under field conditions by connecting three one-
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inch plugs in series and analyzing them separately.  For 24 hr samples, measured SVOCs 

at the third plug were in the range of blank values. Three one-inch plugs in series used in 

hi-volume PUF sampler therefore could trap gas-phase target compounds effectively. 

Control calibration standards spiked with internal standards were measured regularly to 

check instrument performance during analysis. 

4.3. Results and Discussion 

4.3.1. Optimization of ASE 

 A single recovery value is given for each of the four target SVOC compound 

group (PAHs, HCHs, DDXs, and PCBs). The recovery data discussed as below is based 

on the average of individual compound recomveries within the same group. 

4.3.1.1 Extraction Solvent 

Results obtained from the extractions using HEX/METH (1:1), DCM, HEX, 

HEX/ACE (3:1), and METH are illustrated in Figure 4.1. All of the extractions were 

performed at 100℃ for 10 min by using one static cycle. The standard deviation values 

show the reproducibility of the extraction method used. Among the solvent or solvent 

mixtures studied, the best yield was obtained using a mixture of 3:1 n-hexane and acetone 

in the range of 81-92% for all SVOCs while those of n-hexane/methanol (1:1), 

dichloromethane, n-hexane yielded recoveries of 52-83%, 62-81% and 53-88%, 

respectively. When the methanol alone was used, the recovery was even worse, with a 

range as low as 32% to a relatively high value of 72%. It has been reported that a 

combination of different solvent mixtures tends to improve the solvation of the analytes 
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of interest and thus improve overall efficiency of extraction (Hawthorne et al., 2000; 

Karthikeyan et al., 2006). In addition, the overall low standard deviations obtained for a 

3:1 mixture of HEX and ACE solvents are indicative of good reproducibility of 

experimental data. Based on the results obtained, the mixture of HEX/ACE (3:1) was 

therefore chosen as the extraction solvents in all subsequent studies. 

40

50

60

70

80

90

100

110

Hex-
Meth(1:1)

DCM Hex Hex-
Ace(3:1)

Meth

R
ec

ov
er

y%

PAHs BHCs
DDXs PCBs

  

 
Figure 4.1. Effect of solvent on ASE of SVOCs (PAHs, OCPs and PCBs). OCPs 

including HCHs, DDTs (recovery data for combined filter and PUF samples) 

4.3.1.2 Extraction Temperature 

Temperature is one of the most important parameters that affect ASE efficiency. 

Elevated temperature could increase desorption kinetics of target compounds, and also 

lower viscosity of solvent. Consequently the analytes could diffuse into the solvent 

matrix more easily (Hubert et al., 2000). ASE methods generally use temperatures 

between 60 and 180°C. According to previous reports, the extraction of SVOCs depends 

on both the level of total pollution and the degree of matrix complexity (Hawthorne et al., 

2000; Hubert et al., 2000; Karthikeyan et al., 2006). The compositions of the filters and 

PUF plugs are significantly different from other matrices such as soil, plants and fishes, 
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etc. It was therefore necessary to determine the response of temperature to extraction 

efficiency. Figure 4.2 shows the extraction efficiency carried out in the temperature range 

between 60 and 120°C in 20°C steps using 3:1 HEX/ACE as solvent for 10 min by one 

static cycle. The highest extraction yields were achieved at 100°C for two groups of 

pollutants (PAHs and HCHs). For all other compounds, the highest yields were attained 

at 120°C. The lower extraction efficiency observed at all other temperatures for different 

groups of compounds can be attributed to the adhesion or fusion of organic matrix 

containing pollutant fractions (Tao et al., 2002). Within the range of temperatures 

evaluated, the optimum appears to be somewhere between 100°C and 120°C. PUF is 

known to decompose around 180°C, and it was found that a high extraction temperature 

would lead to a relatively high weight loss of PUF of above 7%. After decreasing the 

extraction temperature to around 100°C, the weight loss could be minimized to 2% which 

is comparable to that encountered upon soaking PUF in hexane (Braun et al., 1986; Wurl 

and Obbard, 2005a). Based on the results obtained, the temperature was fixed at 100°C as 

the optimum for ASE extraction of SVOCs. 

 
 
 

Figure 4.2. Extraction temperature effect on the recoveries of POPs using a 3:1 
HEX/ACE as solvent (recovery data for combined filter and PUF samples) 
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4.3.1.3 Static Extraction Time 

Extraction time is the time needed for SVOCs to desorb and dissolve most 

efficiently from the sample matrix into extraction solvents. In order to determine the 

optimum extraction time for satisfactory recovery, ASE was performed at 100°C in 40 ml 

of solvent mixture for 5, 10, 20, 30, 45 and 60 min, respectively. Table 4.1 shows that the 

recovery reached a maximum between 20 and 30 min. For the time in excess of 30 min, it 

can be seen that the extraction yield decreased with increasing extraction time, which 

could be caused by a thermal degradation or the fusion of organic material within the 

matrix so that the pollutants become too stubborn to be extracted (Tao et al., 2002; 

PiiTeiro-Iglesias et al., 2004). It was therefore decided to use 25 min as static extraction 

time in all subsequent studies.  

In summary, the optimum ASE extraction conditions were achieved using a 3:1 

HEX/ACE combination at 100°C for 25 min. 

4.3.2. Recovery Evaluation 

Previously, both filters and PUF plugs spiked with standards were extracted and 

analyzed together. In order to determine whether the above ASE optimized conditions 

were suitable for filter as well as PUF samples, the ASE extractions were applied by two 

static cycles to standard-spiked filter/PUF samples, respectively, as described above.  All 

recoveries of SVOCs by ASE are shown in Table 4.2.  

With a single extraction step, it can be seen that the recoveries of PAHs, OCPs 

and PCBs from filters were in the range of 69.2 ~ 93.9%, 71.1~96.9% and 67.6~108.5%, 

respectively. The recoveries of those from PUF plugs were in the range of 67.8 ~ 92.2%, 
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Table 4.1. Extraction efficiencies (recovery %) depending on extraction time  
(recovery data for combined filter and PUF samples) 

Extraction time (min) 

Recovery(SD) 
(%) 

 
 
Compounds 

5 10 20 30 45 60 

PAHs 70.1(27.0) 82.3(51.3) 97.7(21.6) 107.0(13.3) 86.7(18.9) 75.0(11.9) 

HCHs 74.5(5.8) 74.3(1.9) 90.6(13.1) 84.5(12.6) 75.3(14.5) 59.8(6.1) 

DDTs 82.6(6.1) 82.0(8.2) 96.8(5.0) 92.6(8.0) 89.4(5.8) 93.9(12.1) 

PCBs 85.2(4.8) 88.2(13.4) 97.8(18.1) 98.8(16.6) 91.9(14.8) 90.4(17.2) 
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Table 4.2. The recovery (average of duplicates) of POPs by separate analysis of filter/PUF samples spiked with standards 
 

ASE-Recovery %  (Mean ± S.D) ASE-Recovery %  (Mean ± S.D) 
1st cycle 1st + 2nd cycle 1st cycle 1st + 2nd cycle Compounds 
Filter PUF Filter PUF 

Compounds 
Filter PUF Filter PUF 

Naph 77.6 ± 13.5  67.8 ± 10.8 90.4 ± 8.6  88.7 ± 6.1  PCB 52 80.5 ± 24.5 62.1 ± 16.0 95.2 ± 12.5 95.3 ± 14.3 
Ace 69.2 ± 10.6  74.1 ± 10.6 93.4 ± 12.8 90.1 ± 9.4  PCB 70 + 95 75.8 ± 19.9 63.6 ± 3.1 94.7 ± 10.7 85.2 ± 4.8 
Acy 89.4 ± 5.5  92.2 ± 2.9  95.5 ± 6.3  102.8 ± 9.5 PCB 74 78.2 ± 12.6 70.5 ± 1.9   90.8 ± 8.9 91.5 ± 6.9   
Flu 93.9 ± 4.2  91.0 ± 0.5  97.3 ± 6.5  93.2 ± 2.3  PCB 87 87.6 ± 12.6 73.9 ± 4.3  96.3 ± 8.6 92.7 ± 8.1  
Phe 92.7 ± 4.2  89.3 ± 2.6  95.4 ± 3.8  93.8 ± 5.3  PCB 99 75.7 ± 17.7 68.8 ± 12.3 94.6 ± 12.3 86.6 ± 9.3  
Ant 88.3 ± 3.5  84.5 ± 0.1  95.3 ± 5.3  93.7 ± 5.2  PCB 101 86.2 ± 11.8 83.0 ± 15.6 98.9 ± 9.7  96.2 ± 11.3 
Flt 92.3 ± 5.2  86.7 ± 4.7  98.4 ± 7.1  97.6 ± 5.6  PCB 110 80.9 ± 10.8 73.7 ± 8.1  95.2 ± 6.5 91.6 ± 6.9  
Pyr 86.0 ± 2.6  83.2 ± 0.7  93.7 ± 5.6  96.3 ± 7.1  PCB 118 85.3 ± 13.7 77.0 ± 10.6 93.4 ± 7.8 90.8 ± 11.3 
B(a)A 86.9 ± 4.7  87.2 ± 0.5  98.8 ± 6.8  94.6 ± 5.2  PCB 128 77.6 ± 13.5 67.8 ± 10.8 90.4 ± 8.6  88.7 ± 8.1  
Chr 87.4 ± 3.6  85.5 ± 0.3  94.7 ± 6.3  93.4 ± 4.3  PCB 149 67.6 ± 10.6 64.1 ± 10.6 93.4 ± 12.8  90.1 ± 9.4  
B(b)F 86.8 ± 5.7  82.7 ± 2.6  98.6 ± 5.6  92.5 ± 4.4  PCB 151 89.4 ± 5.5  92.2 ± 2.9  95.5 ± 6.3  102.8 ± 9.5 
B(k)F 85.0 ± 3.7  84.1 ± 2.2  94.9 ± 8.2  95.6 ± 5.3  PCB 132 + 153 93.9 ± 4.2  91.0 ± 0.5  97.3 ± 6.5  93.2 ± 2.3  
B(a)P 83.5 ± 2.8  84.0 ± 1.8  95.6 ± 6.5  91.3 ± 4.2  PCB 138 + 158 92.7 ± 4.2  89.3 ± 2.6  95.4 ± 3.8  93.8 ± 5.3  
Ind 86.0 ± 5.4  82.3 ± 2.4  95.3 ± 6.7  91.2 ± 4.6  PCB 156 88.3 ± 3.5  84.5 ± 0.1  95.3 ± 5.3  93.7 ± 5.2  
DB(ah)A 90.3 ± 2.8  87.4 ± 3.0  96.1 ± 7.3  94.6 ± 5.0  PCB 169 92.3 ± 5.2  86.7 ± 4.7  98.4 ± 7.1  97.6 ± 5.6  
B(ghi)P 90.2 ± 3.6  81.5 ± 8.3  98.4 ± 6.9  95.5 ± 8.4  PCB 170 86.0 ± 2.6  83.2 ± 0.7  93.7 ± 5.6  96.3 ± 7.1  
α-HCH 90.2 ± 7.6 90.6 ± 14.7 92.2 ± 4.1 96.6 ± 6.8 PCB 171 86.9 ± 4.7  87.2 ± 0.5  98.8 ± 6.8  94.6 ± 5.2  
β-HCH 89.7 ± 7.8 78.5 ± 18.9 101.3 ± 9.7 94.1 ± 4.5 PCB 177 87.4 ± 3.6  85.5 ± 0.3  94.7 ± 6.3  93.4 ± 4.3  
γ-HCH 81.7 ± 7.6 93.1 ± 2.5 93.5 ± 5.9 104.3 ± 8.9 PCB 180 86.8 ± 5.7  82.7 ± 2.6  98.6 ± 5.6  87.5 ± 4.4  
δ-HCH 86.7 ± 19.2 73.0 ± 8.5 98.1 ± 9.6 89.0 ± 5.5 PCB 183 85.0 ± 3.7  84.1 ± 2.2  94.9 ± 8.2  95.6 ± 5.3  
p, p'-DDE 71.1 ± 4.1 85.4 ± 10.6 93.1 ± 7.3 97.7 ± 8.1 PCB 187 83.5 ± 2.8  84.0 ± 1.8  95.6 ± 6.5  91.3 ± 4.2  
p, p'-DDD 96.9 ± 12.5 82.1 ± 13.8 97.4 ± 12.3 98.3 ± 11.5 PCB 191 86.0 ± 5.4  82.3 ± 2.4  95.3 ± 6.7  91.2 ± 4.6  
p, p'-DDT 84.3 ± 8.1 77.9 ± 18.2 93.4 ± 6.8 92.7 ± 13.7 PCB 194 90.3 ± 2.8  87.4 ± 3.0  96.1 ± 7.3  94.6 ± 5.0  
PCB 17 + 18 83.0 ± 9.3 75.2 ± 3.8 96.2 ± 7.4 88.5 ± 5.4 PCB 195 90.2 ± 3.6  81.5 ± 8.3  98.4 ± 6.9  89.5 ± 6.4  
PCB 28 + 31 72.5 ± 11.7 65.0 ± 4.9 87.3 ± 9.2 91.3 ± 7.6 PCB 199 95.0 ± 8.2  91.1 ± 8.7  96.2 ± 7.8  94.5 ± 7.8  
PCB 33 74.4 ± 9.8 67.0 ± 8.1 93.6 ± 12.1 89.3 ± 5.9 PCB 205 108.5 ± 1.5 106.0 ± 0.8 110.2 ± 8.6  107.0 ± 1.2 
PCB 44 89.7 ± 14.4 78.8 ± 11.5 95.6 ± 8.3 93.6 ± 5.5 PCB 208 86.0 ± 2.9  84.6 ± 2.6  94.5 ± 6.7  96.8 ± 6.5  
PCB 49 85.8 ± 9.6 79.7 ± 12.3 91.7 ± 6.5 89.3 ± 9.4 PCB 209 68.0 ± 2.6  66.0 ± 2.3  91.6 ± 8.4  85.9 ± 5.2  
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73.0 ~ 90.6% and 62.1 ~ 106.0%, respectively. When performing an additional extraction 

of 25 min with the same solvent mixture, most of the recoveries of SVOCs increased 

substantially by up to 20% for both PUF and filter media. These types of observations 

regarding improvement in recovery with additional extraction cycles have been reported 

for other environmental matrices as well (Björklund et al., 1999; Sporring et al., 2005). 

Most of the recoveries resulting from two extraction cycles were in the range of AOAC 

(Association of Analytical Communities) interval (80–115%) (AOAC, 2002).  

Reproducibility has been tested on the results after two extraction steps under 

univariate variance-component analysis at 5% significance level by using SPSS 13.0 for 

Windows (SPSS Inc., Chicago, IL, USA).  All P-values are greater than 0.05, indicating 

that no significant difference between both repetitive samples (inter-sample) and different 

sampling media (filter and PUF, inter-media) was observed by applying the optimized 

extraction for two static cycles. Consequently, two extraction cycles were selected for 

both PUF and filter samples in this study. 

4.3.3. Method Comparison 

For the comparison of the performance of ASE with commonly used extraction 

methods such as SE and MAE, standard-spiked PUF and filter samples were processed 

separately.  An overall comparison between the recoveries is shown in Figure 4.3, in 

which the individual bars represent the average values obtained from triplicate 

measurements for each target compound.  All extraction techniques used the HEX/ACE 

solvent composition and the optimized extraction time and temperature (for SE and MAE, 

the optimum conditions are from the literature, see Sections 3.4.4 and 3.4.5). The 
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recoveries of SE even after 8 h extraction were significantly lower than those of MAE 

(20 min) and ASE (40 min; 2 cycles x 20 min/cycle) for both PUF and filter samples, 

respectively. Although MAE and ASE-1 cycle achieved similar efficiencies, ASE-2 

cycles gave the best recovery for all target compounds. Furthermore, good reproducibility 

was also obtained for ASE, which is most likely due to the automation of the whole 

extraction procedure. 

 

 

 
 
       Figure 4.3. Average recovery of target compounds for different extraction techniques 
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4.3.4. Method Validation 

NIST certified reference material SRM 1649a (urban dust-organics) was applied 

to evaluate ASE method for the determination of selected PAHs, OCPs and PCBs under 

the optimized extraction conditions. The concentrations, expressed as mass fractions, for 

22 PAHs, 35 PCBs (some in combination) and 8 OCPs have been certified in SRM 1649a, 

of which 12 PAHs, 20 PCBs and 3 OCPs covered by our standards and separated well by 

the above GC-MS analysis methods were chosen for validation in this study. An 

accurately weighed 200 mg of SRM 1649a in duplicate was extracted by optimized ASE 

method, cleaned up according to the procedure as stated above and analyzed by GC-MS. 

As can be seen from Table 4.3, the recoveries were in the range of 82-126% for PAHs, 

73-136% for OCPs and 73-121% for PCBs, respectively. For the group of PAHs, only the 

recoveries of Phe (119%) and Ant (126%) were out of the range of AOAC (Association 

of Analytical Communities) recommended interval (80–115%). In the group of OCPs, the 

concentration of heptachlor provided by NIST is not the certified value but reference 

concentration, which was in good correlation with the measured value. The measured 

concentration of p, p’-DDE was relatively higher than the NIST-certified value, even 

though the samples had been cleaned up through the chromatographic column packed 

with florisil. This problem might be due to some potential interference from co-eluting 

compounds. To the best of our knowledge, this is the first study to use SRM 1649a to 

validate the extraction efficiency of PCBs from air sample using ASE, the measured 

values of PCB congeners chosen are in good agreement with NIST-certified
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Table 4.3. Analysis of NIST SRM 1649a for PAHs, OCPs and PCBs 
 

Compounds 
Measured value [1, 2] 

Mean ± S.D. 
Certified value [2] 

Mean ± S.D. 
% Recovery 
Mean ± S.D. 

Compounds
Measured value 

Mean ± S.D. 
Certified value
Mean ± S.D. 

% Recovery 
Mean ± S.D. 

Phe 4.95±0.64 4.14±0.37 119±15 PCB 52 22.05±2.10 24.65±0.97 89±9 
Ant 0.68±0.12 0.43±0.08 126±28 PCB 87 8.18±0.29 10.65±0.62 77±3 
Flt 5.20±0.42 6.45±0.18 81±7 PCB 99 8.55±1.20 9.58±0.69 89±13 
Pyr 4.59±0.30 5.29±0.25 87±6 PCB 101 40.91±3.45 52.9±1.0 77±6 

B(a)A 2.22±0.16 2.21±0.07 100±7 PCB 105 8.90±0.63 8.63±0.80 103±7 
Chr 2.92±0.25 3.05±0.060 96±8 PCB 110 23.74±2.47 26.6±1.6 89±9 

B(b)F 6.30±0.75 6.45±0.64 98±12 PCB 118 19.52±2.89 25.7±1.5 76±11 
B(k)F 1.80±0.11 1.91±0.031 94±6 PCB 128 7.68±0.97 6.35±0.69 121±15 
B(a)P 2.18±0.19 2.51±0.09 87±8 PCB 149 74.60±6.54 75.7±1.3 98±9 
Ind 3.29±0.38 3.18±0.72 104±12 PCB 151 42±1.81 34.3±3.9 122±5 

DB(a,h)A 0.27±0.10 0.288±0.023 94±35 PCB 156 19.35±1.38 16.25±0.77 119±8 
B(ghi)P 3.60±0.62 4.01±0.91 90±15 PCB 170 26.27±3.28 30.8±2.2 85±11 

p, p’-DDE 54.89±4.72 40.4±1.7 136±12 PCB 180 58.90±4.13 78.70±8.2 75±5 
p, p’-DDD 32.39±5.63 34.01±0.48 95±17 PCB 183 18.02±1.70 20.34±0.95 88±8 
p, p’-DDT 155.34±30.29 212±15 73±14 PCB 187 36.10±1.72 40.1±2.5 90±4 
Heptachlor  15.31±1.78 18.9±0.5 c 81±9 PCB 194 26.46±1.53 28.9±3.6 92±5 

PCB 44 11.29±1.47 15.4±1.6 73±10 PCB 195 9.13±0.21 9.63±0.37 95±2 
PCB 49 9.01±0.82 12.2±1.5 74±7 PCB 209 8.66±1.26 8.04±0.77 108±16 

[1] Average of duplicate. 
[2] The units of measured and certified value for PAHs are mg Kg-1 and for OCPs and PCBs are µg Kg-1. 
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values. Generally, the concentrations determined in this study correlate well with the 

NIST-certified and reference concentrations for most of the target compounds in SRM 

1649a, which demonstrated that the ASE method is suitable for extraction of SVOCs in 

air samples at trace levels. 

4.3.5. Application of Optimized ASE  

The optimized ASE method was applied to the collected filters and PUF plugs in 

a short-term sampling in July 2006 in Singapore, from which concentrations of SVOCs 

are discussed briefly as below.  

Average total (particle and gas) PAHs concentrations ranged between 13.62 and 

52.26 ng m-3 with an overall mean concentration of 33.54 ng m-3 (see Table 4.4). The 

concentration of gaseous PAHs varied from 11.90 to 45.74 ng m-3 with the mean 

concentration being 28.82 ng m-3 (i.e. 87.5% of the total concentration). The PAH 

concentration in particles was considerably lower and ranged from 1.93 to 7.53 ng m-3 

with a mean value of 4.72 ng m-3. The most abundant PAHs in all samples were Pyr (7.28 

ng m-3), Phe (7.18 ng m-3), and Flt (5.56 ng m-3).  In general, the concentration of heavier 

PAHs with five or more aromatic rings (B(b)F, B(k)F, B(a)P,  Ind, DB(ah)A, and B(ghi)P) 

was low ranging from 0.07 to 1.24 ng m-3. Average concentrations of the five most 

abundant PAHs and B(a)P observed in Singapore are compared to those reported in other 

urban regions. The sum (gas + particle) of mean concentrations of Pyr, Phe, Flt, Flu, Ant, 

and B(a)P in Singapore were 25.81 ng m-3 which are higher than those measured in the 

suburbs of Athens (14.20 ng m-3) (Mandalakis et al., 2002), while considerably higher 

levels of these six PAH members were determined in Guangzhou
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Table 4.4. Particle and gas phase concentrations of POPs in the air of Singapore (unit: ng 
m-3 for PAHs, pg m-3 for OCPs and PCBs) 

 
Particle Gas Total 

Compound 
Mean ± SD Mean ± SD Mean ± SD 

Naph 0.66 ± 0.31 0.79 ± 0.64 1.45 ± 0.95 
Ace 0.04 ± 0.01 0.14 ± 0.06 0.18 ± 0.07 
Acy 0.06 ± 0.05 0.25 ± 0.13 0.31 ± 0.18 
Flu 0.05 ± 0.04 3.71 ± 0.43 3.76 ± 0.47 
Phe 0.25 ± 0.16 6.93 ± 3.58 7.18 ± 3.74 
Ant 0.06 ± 0.03 1.97 ± 0.22 2.03 ± 0.25 
Flt 0.45 ± 0.27 5.11 ± 3.83 5.56 ± 4.10 
Pyr 0.37 ± 0.22 6.91 ± 6.22 7.28 ± 6.44 
B(a)A 0.17 ± 0.07 0.30 ± 0.09 0.47 ± 0.16 
Chr 0.26 ± 0.22 0.62 ± 0.45 0.88 ± 0.67 
B(b)F 0.62 ± 0.40 0.62 ± 0.42 1.24 ± 0.82 
B(k)F 0.12 ± 0.07 0.11 ± 0.07 0.23 ± 0.14 
B(a)P 0.31 ± 0.18 0.21 ± 0.13 0.52 ± 0.31 
Ind 0.67 ± 0.39 0.76 ± 0.45 1.43 ± 0.44 
DB(ah)A 0.06 ± 0.09 0.01 ± 0.003 0.07 ± 0.09 
B(ghi)P 0.57 ± 0.29 0.38 ± 0.20 0.95 ± 0.49 
ΣPAH 4.72 ± 2.80 28.82 ± 16.92 33.54 ± 19.32 
    
α-HCH 1.38 ± 0.86 102.81 ± 16.64 104.17 ± 17.50 
β-HCH 0.35 ± 0.54 22.50 ± 18.33 22.85 ± 18.87 
γ-HCH 1.36 ± 1.84 84.3 ± 33.03 85.66 ± 34.87 
δ-HCH 1.62 ± 0.62 25.93 ± 16.64 27.55 ± 17.26 
ΣHCH 4.71 ± 2.26 235.53 ± 84.64 244.95 ± 88.50 
    
4,4'-DDE 0.06 ± 0.08 0.51 ± 0.36 0.57 ± 0.44 
4,4'-DDD 0.24 ± 0.30 1.70 ± 1.53 1.94 ± 1.83 
4,4'-DDT 0.16 ± 0.14 5.01 ± 2.29 5.17 ± 2.43 
ΣDDT 0.46 ± 0.52 7.22 ± 3.59 7.68 ± 4.11 
    
PCB 17+18 0.23 ± 0.08 6.81 ± 2.65 7.04 ± 2.73 
PCB 28+31 0.56 ± 0.39 4.94 ± 2.73 5.5 ± 3.12 
PCB 44 0.31 ± 0.19 1.92 ± 0.98 2.23 ± 1.17 
PCB 52+49 0.20 ± 0.32 2.50 ± 1.42 2.70 ± 1.74 
PCB 74+70 0.15 ± 0.23 2.10 ± 0.83 2.25 ± 1.06 
PCB 87 0.36 ± 0.61 1.50 ± 1.47 1.86 ± 2.08 
PCB 101+99 0.18 ± 0.13 1.25 ± 0.63 1.43 ± 0.76 
PCB 110 0.18 ± 0.14 0.83 ± 0.26 1.01 ± 0.40 
PCB 118 0.21 ± 0.20 1.19 ± 0.52 1.4 ± 0.72 
PCB 128 0.43 ± 0.41 0.82 ± 0.23 1.25 ± 0.64 
PCB 132+153 0.22 ± 0.32 0.33 ± 0.41 0.55 ± 0.73 
PCB 138+158 0.60 ± 0.49 0.82 ± 0.95 1.42 ± 1.44 
PCB 149 0.13 ± 0.14 0.31 ± 0.24 0.44 ± 0.38 
PCB 151 0.17 ± 0.10 0.28 ± 0.44 0.45 ± 0.54 
PCB 156 0.40 ± 0.15 0.82 ± 0.67 1.22 ± 0.82 
PCB 169 0.28 ± 0.09 0.46 ± 0.14 0.74 ± 0.23 
ΣPCB 4.61 ± 3.99 26.88 ± 14.58 31.49 ± 18.56 
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 (76.07 ng m-3) (Bi et al., 2003), Hong Kong (71.79 ng m-3) (Lee et al., 2001), and 

Chicago (171.90 ng m-3) (Simcik et al., 1998).  

The concentration levels of ∑HCHs in particulate and gaseous phases were in the 

range of 2.45~6.97 pg m-3 and 150.89~320.17 pg m-3, respectively. Those of ∑DDTs in 

particulate and gaseous phases were 0.46 ± 0.50 pg m-3 and 7.22 ± 3.59 pg m-3, 

respectively.  It can be seen that, in general, the gaseous phase OCPs were dominant over 

those in the particulate phase. Mean total concentrations of HCHs were: α-HCH = 104.17 

± 17.50 pg m-3; β-HCH = 22.50 ± 18.87 pg m-3; γ-HCH = 85.66 ± 34.87 pg m-3; δ-

HCH = 27.55 ± 17.26 pg m-3. During the sampling period, p, p’-DDT, p, p’-DDE, and p, 

p’-DDD were detected with total concentrations of 0.57 ± 0.44 pg m-3, 1.94 ± 1.83 pg m-3, 

and 5.17 ± 2.43pg m-3, respectively. These concentrations were almost comparable to the 

recent data obtained in the Indian Ocean ( 2.5 ~ 33.2, mean 10.4 pg m-3) (Wurl et al., 

2006d), and the coast of Singapore ( 3.6 ± 0.3 ~ 11.3 ± 1.3 pg m-3).  

The mean concentrations of detectable PCB congeners measured during the 

sampling period were 28.0 ± 15.1 pg m-3 in the gas phase and 6.1 ± 4.6 pg m-3 in the 

particle phase, respectively. About 80% (mean) of total PCBs( particle + gas) was 

distributed in the gas phase, which is in good agreement with the trend reported in 

previous studies (Bidleman, 1988; Duinker and Bruchertall, 1989; Yeo et al., 2003a) , 

while the total concentration of PCBs (34.1 ± 19.7 pg m-3) was lower than those reported 

in other urban areas such as Seoul (Korea), Athens (Greece), Houston (USA), 

Birmingham (UK) (Park et al., 2001; Mandalakis et al., 2002; Harrad and Mao, 2004; 

Yeo et al., 2004).  
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4.4. Conclusion  

The prevalence and toxicity of SVOCs present the environment justifies the need 

to establish their content in atmosphere. An ASE method has been developed for the 

determination of SVOCs in both atmospheric particulate and gaseous phases. The best 

extraction solvent used in this study for the ASE is the mixture of HEX/ACE (3:1). The 

effective extractions should be performed at 100o
C for 25 min. The entire analytical 

procedure developed in this study proves to be reliable as evident from the analysis of 

specific surrogate standards with the good recoveries. As compared to SE and MAE, it 

shows advantages in terms of high efficiency and reproducibility. The optimized method 

was validated using NIST certified SRM 1649a, of which the results showed good 

agreement with certified values. The application of the new extraction method was 

demonstrated by analyzing a set of air samples and the results obtained were compared to 

the values reported from surrounding areas. Based on our results, the proposed ASE 

technique appears to be a promising alternative to commonly used extraction techniques, 

especially when applied to the investigation of a number of air samples due to its 

complete software-controlled automation. 
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Chapter 5. Levels, Temporal, and Seasonal Trends of Semi-

Volatile Organic Contaminants In Ambient Air and Rainwater 

In Singapore 

5.1. Introduction 

Atmospheric semivolatile organic compounds (SVOCs) impact human health, 

visibility and climate. Temporal, or seasonal trend in atmospheric concentrations are 

useful for identifying changes in their emission sources and in assessing progress toward 

regulatory requirements (Yang et al., 2008). The tropical climatic zone is characterized 

by high ambient temperatures and heavy rainfall, which may probably influence the 

occurrence and distribution of SVOCs in the environment. According to their physical 

and chemical characteristics, these substances are either present in the gaseous phase 

and/or bound to particles (de Souza Pereira et al., 2007) and the removal of these 

pollutants from the atmosphere and subsequent transfer to other compartments is largely 

driven by deposition mechanisms (McLachlan, 1997). For instance, wet deposition, an 

important process, scavenges SVOCs from the atmosphere to the ocean, the magnitude of 

which is related to the intensity of precipitation and its seasonal variations (Wania et al., 

1998).  

The objective of this study was to study the concentration and distribution of 

PAHs, OCPs and PCBs in this coastal marine environment of Singapore under different 

weather conditions. A 12-month field measurement was carried out in Singapore for 

selected SVOCs, in both gas/particulate phases and rainwater. The influence of 
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meteorological factors such as air temperature, wind speed, and incoming solar radiation 

on the occurrence and distribution of local atmospheric SVOCs was examined.  In 

addition, seasonal variation and possible sources of SVOCs were investigated based on 

air mass backward trajectory analysis, molecular diagnostic ratios and principal 

component analysis.  

 

5.2. Experimental  

 

5.2.1. Sampling 

Atmospheric gaseous, particulate, and precipitation samples were collected 

simultaneously at the National University of Singapore (NUS) atmospheric research 

station (1°18'N and 103°46'E).  Altogether 37 atmospheric samples (pairs of PUF 

(polyurethane foam) and quartz filter samples) and 32 rainwater samples were collected 

and studied under different weather conditions between June 2007 and May 2008 in the 

tropical environment.  

Particulate and gaseous PAHs, OCPs, and PCBs in the atmosphere were collected 

separately using a high volume sampler (Model: TE-1000PUF, Tisch Environmental, Inc. 

USA) by drawing air through 4'' circular quartz microfiber filters (Whatman, Tisch 

Environmental, Inc. USA) and polyurethane foam plugs (PUF, TE-1012, Tisch 

Environmental, Inc. USA) in series at ca.250 L min-1 on an event basis for 48 h every 

week, namely, three to four samples were collected every month.  The rainwater samples 

were collected by an automated wet-dry sampler (Model US-330, Ogasawara Keiki 
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Seisakusho, Tokyo, Japan), which collects only rainwater with no interference from dust 

fall. The relevant meteorological parameters (air temperature, total rainfall, etc.) were 

obtained from an automated NUS weather station located in the same building where the 

atmospheric station is housed. Monthly meteorological data and TSP concentrations 

during this sampling period were recorded and are summarized in Table 5.1. 

5.2.2. Sample Preparation and Analysis 

Prior to extraction, surrogate compounds were added to all samples.  Water filters, 

aerosol filters and PUF samples were extracted separately by Dionex ASE 200 under the 

following conditions: 3:1 n-hexane and acetone (HEX and ACE) combination at 100oC 

for 25 min as described in Section 3.4.1 for two cycles. All filtered water samples were 

extracted on the same day as collection via liquid-liquid extraction using 3 × 50 ml DCM 

aliquots in a two liter separatory funnel (EPA method 3510C), as described in Section 

3.4.2. All extracted analytes were concentrated to 3 ml by rotary evaporator and further 

cleaned using silica gel (for PAHs) or florisil (for OCPs and PCBs) columns, as described 

in Section 4.2.3.  All extracts were finally blown by gentle nitrogen stream and reduced 

to 50 µL with internal standards and kept in sealed vials at -20oC prior to analysis. 

Sample analysis was conducted using a GC-MS (Shimadzu QP2010, Japan), as described 

in Section 3.4.6. 
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Table 5.1. Meteorological conditions during June 2007 ~ May 2008 at NUS atmospheric station 

Sampling Period TSP 
(µg m-3) 

Temperature (Temp) 
(oC) 

Relative Humidity 
(RH) (%) 

Wind Speed (WS) 
(m s-1) 

Incoming Radiation 
(IR)  (w m-2) 

Jun 07 30.31 27.5 75 2.1 163.9 

Jul 07 26.89 27.2 76.2 1.9 126.7 

Aug 07 33.16 27.7 72.8 2.4 189.7 

Sept 07 25.11 27 75.3 2 161.7 

Oct 07 39.92 27 75.4 1.7 155.5 

Nov 07 24.44 26.3 77.3 2 122.2 

Dec 07 22.34 26.9 76.8 0.7 133.9 

Jan 08 25.75 25.9 75.5 3.2 148.5 

Feb 08 29.74 25.6 77.8 2.8 135.6 

Mar 08 20.44 25.4 81.4 2.3 114.6 

Apr 08 19.24 27.6 75.1 1.3 151 

May 08 27.07 27.8 72.7 2 141.9 
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5.2.3. Quality control 

The analytical quality of the data obtained was determined using limit of detection 

(LOD), recovery, linearity, and by checking sampling artifacts, etc. During each set of 

extractions, the field blanks (filter and PUF plugs) were included and the mean blank 

value was subtracted from the measured levels. The reliability of the whole analytical 

procedure was assessed by using surrogate standards for PAHs, OCPs and PCBs. The 

mean recoveries obtained per sample were greater than 80% and concentrations of all 

real-world samples were corrected accordingly.  The linearity of calibration standards 

was calculated by regression analysis with values ranging from 0.99–1.00 (r2) for SVOCs, 

and breakthrough was evaluated under field conditions by connecting three one- inch 

plugs in series and analyzing them separately.  For 48 hr samples, measured organic 

compounds at the third plug were in the range of blanks values. Three one-inch plugs 

used in series with the hi-volume PUF sampler could therefore trap gas-phase target 

compounds effectively.  Control calibration standards spiked with internal standards were 

measured regularly to check instrument performance during analysis.  

5.2.4. Airmass Backward Trajectory Analysis 

The latest, updated Hybrid Single-Particle Lagrangian Integrated Trajectory 

(HYSPLIT) model (Version 4.9) (Draxler and Rolph, 2003; Rolph, 2003) developed by 

the National Oceanic and Atmospheric Administration (NOAA), was used to compute 

backward trajectories for air samples taken from Jun 2007 to May 2008. Meteorological 

data were obtained from National Centers for Environmental Prediction (NCEP) Global 
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Data Assimilation System (GDAS, global, 2005-present). Kinematic 3D trajectories were 

used as they are reported to provide an accurate description of  the history of air masses  

in comparison with all of the other approaches (isentropic, isobaric) (Stohl, 1998; Stohl 

and Seibert, 1998).  Backward air trajectories were generated at eight starting times per 

sample (every 6 h during each sampling event) for 96 h back in time with 500 m-agl 

ending level. This level is very frequently used (Lee et al., 2006; Erel, 2007) and ensures 

that the trajectory starts in the atmospheric boundary layer (ABL) (Dvorská et al., 2009). 

In addition, cluster analysis was conducted by using HYSPLIT model (version 4.9) as 

well to classify the trajectory groups of similar length and curvature for monsoon and 

pre-monsoon seasons (Stohl, 1998).  

5.2.5. Data Statistical Analysis 

Since atmospheric sampling was conducted in this study for each event in a 

consistent manner (48 h at 250 L min-1), a median concentration with minimum and 

maximum values was used for assessing monthly or seasonal concentrations of SVOCs in 

the atmosphere.  However, in the case of rainwater, the rainfall amount for each event 

varied. Hence, those concentrations were calculated as volume-weighted mean (VWM) 

values. The standard error of the weighted mean (SEMw) was calculated according to the 

formula as follows (Offenberg and Baker, 1997): 

2 2
W 2

2 2
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where Pi is the precipitation amount of sample i, Xi is the concentration in sample i, P  is 

the mean precipitation amount for samples 1 to n, and  WX  is the precipitation weighted 

mean concentration.  

Correlation indicates the strength and direction of a linear relationship between 

two random variables. In this study, Pearson correlation matrix, obtained by dividing the 

covariance of the two variables by the product, was constructed to explore the effect of 

meteorological factors and TSP on the occurrence of atmospheric SVOCs in this tropical 

atmosphere and the confidence level was chosen at 95%. Single factor ANOVA (also 

known as one-way ANOVA) was performed to assess the seasonal variation of the 

occurrence of atmospheric SVOCs by using SPSS 13.0 for Windows (SPSS Inc., Chicago, 

IL, USA). 

5.3. Results and discussion 

5.3.1. Air Mass Categorization 

The 96-h backward trajectories of air masses arriving at the study site during this 

one-year sampling period were computed and are categorized in Figure 5.1.  

(1) SW – a category of continental air masses for southwest monsoon season 

(Jun-Sept 2007). This category accounts for 86.9% of all the air masses in the examined 

days during SW monsoon season with high mixing depth and high wind speed.  These air 

masses were partly terrestrial and partly oceanic in origin, passing through islands of 

southern Indonesia such as Sumba, Lombok and Sumbawa, Java Sea, mass islands of 

Java and southwestern Sumatra, and even on some cases crossing Kalimantan Island 

before arriving at Singapore. 
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Figure 5.1. Four types of air masses arriving at the study site during Jun 2007-May 2008 

((a) SW; (b)NE; (c) Pre-NE; (d) Pre-SW) 
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Figure 5.1. Four types of air masses arriving at the study site during Jun 2007-May 2008 

((a) SW; (b)NE; (c) Pre-NE; (d) Pre-SW) 
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(2) NE – a category of continental air masses for northeast monsoon season (Dec 

2007 – Mar 2008) coming from northeast areas with high mixing depth and high wind 

speed. This category accounts for 93.3% of all the air masses investigated during NE 

monsoon season. Most of air masses sampled were of oceanic character, travelling over 

the South China Sea; some originated from the Philippines and some were from Southern 

China such as Hainan, Canton province or Taiwan Island / strait as well.  

(3) Pre-NE and pre-SW – this category of air masses for pre-NE (Oct-Nov 2007) 

and pre-SW (Apr-May 2008) monsoon seasons with no dominant pathway.  For pre-NE, 

air mass origins were scattered and from various directions such as South China Aea, 

Java Sea, Indonesia Medan area and even Indian Sea during different events.  For pre-SW, 

air masses were located in low altitude and had a short pathway or with a loop trajectory 

with most time spending over the sampling point vicinity. Low mixing depth and low 

wind speed are typical meteorological characteristics during both pre-monsoon seasons. 

5.3.2. SVOCs in Air and Rainwater 

Table 5.2 shows the median, minimum and maximum concentrations of SVOCs 

and the frequency of detection among the total 37 samples collected in this study from 

June 2007 to May 2008.  The concentration of gaseous PAHs varied from 5.3 to 277.2 ng 

m-3 with a median value of 98.3 ng m-3.  The particulate PAH concentration was 

considerably lower and ranged from 3.1 to 52.7 ng m-3 with a median concentration of 

16.2 ng m-3, almost comparable to that reported (24.6 ± 9.6 ng m-3) in an earlier study 

based on short-term sampling for Singapore (Karthikeyan, 2006) considering variations 

in the intensity of PAH emissions from different sources during the one year 
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Table 5.2 Summary of atmospheric SVOCs concentration in Singapore between June 
2007 and May 2008 (n = 37) 

 
Particle-phase Gas-phase 

Compound 
Median Min. Max. 

FD*
Median Min. Max. 

FD*

PAHs (concentration in ng m-3) 

Naph 1.2 0.10 6.9 100 5.2 0.31 14.1 100

Acy 0.19 0.02 2.7 100 1.3 0.23 3.6 100

Ace 0.18 0.02 2.2 100 0.41 0.03 2.8 100

Flu 0.19 0.03 0.71 100 1.7 0.16 5.4 100

Phe 1.6 0.05 2.9 100 20.7 1.4 48.9 100

Ant 0.19 0.06 0.57 100 3.8 0.51 16.2 100

Flt 1.1 0.04 3.0 100 27.3 4.4 85.2 100

Pyr 1.5 0.05 3.5 100 24.8 0.2 141.3 100

B(a)A 0.50 0.02 2.4 100 3.2 0.91 21.6 100

Chry 1.0 0.08 4.9 100 2.6 0.04 16.6 100

B(b)F 1.6 0.28 4.8 100 0.44 0.09 2.3 100

B(k)F 0.63 0.12 2.3 100 0.10 0.02 1.5 100

B(a)P 0.54 0.04 2.5 100 0.11 0.03 1.9 100

Ind 1.3 0.17 5.9 100 0.12 0.01 1.7 100

DB(ah)A 0.26 0.03 2.5 100 0.03 0.01 0.40 100

B(ghi)P 1.7 0.15 3.8 100 0.08 0.01 0.91 100

Σ PAHs 16.2 3.1 52.7  98.3 5.3 277.2  

OCPs (concentration in pg m-3) 

α-HCH 20.4 0.52 86.7 100 277.3 13.2 615.6 100

β-HCH 6.9 0.20 32.3 100 85.5 3.6 480.7 100

γ-HCH 13.9 0.62 65.8 100 194.3 14.0 548.2 100

δ-HCH 8.2 1.7 27.6 100 71.4 10.9 258.1 100

p,p’-DDD 0.31 0.02 4.3 100 4.8 0.45 16.2 100

p,p’-DDE 0.27 0.05 1.4 100 3.2 0.66 12.4 100

p,p’-DDT 5.9 0.24 12.7 100 30.6 5.5 94.3 100

Σ OCPs 53.4 4.8 162.3  614.5 58.5 1529.1  
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PCBs (concentration in pg m-3) 

17+18 0.49 0.28 1.4 37.0 2.1 0.07 5.9 88.9

28+31 0.13 0.05 0.54 37.0 0.40 0.19 1.4 70.4

33 0.10 0.08 0.12 7.4 0.42 0.08 1.1 25.9

52+49 0.32 0.13 0.85 25.9 0.96 0.15 4.9 70.4

44 0.35 0.10 0.83 29.6 1.7 0.29 6.3 92.6

74 0.34 0.05 0.71 22.2 1.9 0.21 8.7 88.9

70+95 0.16 0.03 0.37 22.2 0.58 0.23 2.1 85.2

101 0.42 0.11 1.6 40.7 0.38 0.06 0.71 85.2

99 <LOD - 0.16 0.03 0.46 33.3

87 0.23 0.03 0.74 77.8 0.49 0.10 1.2 88.9

110 0.31 0.08 0.85 25.9 0.47 0.14 1.5 25.9

149 1.6 0.10 10.4 70.4 2.5 0.51 8.4 85.2

138+158 1.1 0.06 8.3 74.1 2.6 0.19 5.7 74.1

171 0.53 0.11 4.12 11.1 0.58 0.37 0.80 18.5

177 0.39 0.16 0.92 40.7 1.1 0.41 3.4 59.5

180 0.49 0.03 1.8 44.4 0.13 0.11 0.23 22.2

183 0.64 0.15 3.5 11.1 0.19 0.13 0.42 7.4

Σ PCBs 6.2 0.39 21.4  18.6 5.1 47.5  

* FD: frequency of detection % 
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period in this study.  The gaseous PAHs were dominant in the air as expected and found 

to be 85.9 % of the total concentration. The most abundant PAHs (particle + gas) in all 

samples were Flt (28.4 ng m-3), Pyr (25.3 ng m-3) and Phe (22.3 ng m-3), while the 

occurrence of heavier PAHs with five or more aromatic rings (B(b)F, B(k)F, B(a)P, Ind, 

DB(ah)A and B(ghi)P) was low ranging from 0.29 to 2.1 ng m-3. Compared with the data 

obtained in 1994 (Chee, 1997), the composition characteristics of PAHs in recent years 

have changed significantly since the contributions of 3-4 benzene ring PAHs to the total 

PAHs have increased considerably.  This change in the PAH composition can be 

attributed to an increase in the number of on-road vehicles in highly industrialized 

countries such as Singapore.   

The total concentrations of ∑HCHs in particulate and gaseous phases were in the 

range of 3.8 ~ 152.8 pg m-3 with a median concentration of 48.4 pg m-3 and 14.2 ~ 1441.7 

pg m-3 with a median of 559.4 pg m-3, respectively.  Among HCHs, α- and β-HCH 

dominated in the present study. The concentrations of HCHs were higher than those 

observed over Java Sea (75 pg m-3), Celebes Sea (120 pg m-3), but much lower than those 

in South China Sea (1300 pg m-3) measured more than a decade ago (Iwata et al., 1993). 

In addition, the current occurrence level of HCHs was comparable to those measured 

recently in Singapore over short-period sampling (Wurl and Obbard, 2005a; He et al., 

2009). It is thus confirmed that no significant decline of HCHs has occurred in this area 

over the past two decades.  The concentrations of ∑DDTs in particulate and gaseous 

phases were 7.1 (0.36 ~ 15.3) pg m-3 and 37.9 (7.3 ~ 115.9) pg m-3, respectively.  These 

concentrations were lower than those measured in surrounding areas of Asia, such as 

Hong Kong (180 ~970, mean 620 pg m-3) (Jaward et al., 2005), Pearl River Delta of 
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South China (280 ~ 3700, mean 1300 pg m-3) (Wang et al., 2007), but relatively higher 

than those reported from short-term sampling over the coast of Singapore ( 3.6 ± 0.3 ~ 

11.3 ± 1.3 pg m-3) (Wurl and Obbard, 2005a) and west area of Singapore (7.7± 4.1 pg m-3) 

(He et al., 2009).  The gaseous OCPs in the air were predominant as the case with PAHs, 

which was most probably due to their properties of semi-volatility.  

The yearly concentrations of 22 PCB congeners measured during the sampling 

period were 18.6 (5.1 ~ 47.5) pg m-3 in the gas phase and 6.2 (0.39 ~ 21.4) pg m-3 in the 

particle phase, respectively, indicating that about 75.0 % of total PCBs (particle + gas) 

was distributed in the gas phase.  The concentrations of PCBs measured in other Asian 

areas varied from tens to a few hundreds of picograms per cubic meter, with values in the 

range of 21 ~ 336, 7 ~ 247, and 12 ~ 84 pg m-3 for China, Japan and South Korea, 

respectively (Jaward et al., 2005).  Based on the historical data on PCBs reported for Java 

Sea (36 pg m-3), Celebes Sea (22 pg m-3), and the Strait of Malacca (30 pg m-3) (Iwata et 

al., 1993), it appears that the current occurrence of PCBs in the region did not undergo 

appreciable reduction over the years. Higher concentrations in the particle phase appeared 

in congeners with six to seven chlorine atoms such as PCB 149, PCB138 + 158, PCB 171, 

PCB 177, PCB 180 and PCB 183 (Table 5.2).  Lower chlorinated PCB congeners are 

known to have higher KOA (octanol-air partition coefficient) while the PCB homologues 

(> penta-CBs) are more easily condensed onto particles due to lower vapor pressure 

(Harrad and Mao, 2004; Yeo et al., 2004). 

Table 5.3 shows the VWM concentrations with SEMw and frequency of detection 

among the total 32 rainwater samples for SVOCs collected in this study from June 2007 

to May 2008.  In rainwater, the concentrations of PAHs and OCPs in particulate phase 
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were 233.3 ± 182.8 ng L-1 and 19.3 ± 14.2 ng L-1, respectively; those in operationally 

defined (non-filter retained) dissolved phase were  984.8 ± 685.7 ng L-1 and 94.9 ± 81.6 

ng L-1, respectively. Both PAHs and OCPs were predominantly associated with the 

operationally defined dissolved phase as compared with those in filter-retained particles. 

It could be because submicron particles which can not be retained by filters contribute 

greatly to the operationally defined dissolved phase (Poster and Baker, 1996a; Poster and 

Baker, 1996b). Poster and Baker (1996a) reported that hydrophobic organic contaminants 

in precipitation were up to 80% bound to non-filterable particulate material and less than 

9% were truly dissolved.  In addition, the lower molecular weight (LMW) PAHs were 

more prominent in rainwater as compared to those higher molecular weight (HMW) 

PAHs (those with five and six benzene rings) and HCHs was also present in rainwater in 

relatively larger amounts than DDTs (see Table 5.2).  Occurrence patterns in rainwater 

for PAHs and OCPs were consistent with their corresponding distributions in ambient air, 

implying that these SVOCs in rain were from the sources similar to those in the 

atmosphere. Concentrations of PCBs in both operationally defined dissolved and 

particulate phases of all rainwater samples were below the limits of detection in this study. 
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Table 5.3 Concentration of SVOCs in rainwater in Singapore between June 2007 and 
May 2008 (n = 32) 

 

Compound Particle-associated
(VWM ± SEMw) 

Frequency of 
detection % 

Dissolved 
(VWM ± SEMw) 

Frequency of 
detection % 

PAHs (concentration in ng L-1) 

Naph 48.5 ± 34.2 100 374.9 ± 179.2 100 

Acy 9.4 ± 12.1 100 21.9 ± 18.2 100 

Ace 12.3 ± 16.5 100 38.8 ± 36.5 100 

Flu 5.5 ± 7.5 100 35.6 ± 15.4 100 

Phe 38.9 ± 24.2 100 237.0 ± 172.7 100 

Ant 5.3 ± 3.9 100 28.6 ± 41.6 100 

Flt 28.9 ± 21.5 100 53.5 ± 44.8 100 

Pyr 30.1 ± 20.2 100 50.6 ± 57.7 100 

B(a)A 10.1 ± 6.5 100 13.4 ± 13.0 100 

Chry 13.1 ± 10.9 100 40.8 ± 36.5 100 

B(b)F 25.4 ± 16.3 100 45.3 ± 37.3 100 

B(k)F 0.77 ± 1.1 100 5.4 ± 6.0 100 

B(a)P 0.93 ± 1.2 100 2.9 ± 2.2 100 

Ind 0.71 ± 1.9 100 5.2 ± 2.0 100 

DB(ah)A 1.4 ± 1.9 100 12.1 ± 6.0 100 

B(ghi)P 2.2 ± 3.0 100 18.8 ± 16.6 100 

Σ PAHs 233.3 ± 182.8  984.8 ± 685.7  

OCPs (concentration in ng L-1) 

α-HCH 0.15 ± 0.11 62.5 45.1 ± 36.5 100 

β-HCH 0.31 ± 0.43 87.5 8.3 ± 7.4 100 

γ-HCH 4.6 ± 3.3 56.3 19.7 ± 15.7 100 

δ-HCH 0.61 ± 0.62 81.3 5.1 ± 3.9 100 

4,4'-DDD 0.40 ± 0.40 59.4 4.1 ± 4.1 100 

4,4'-DDE 0.42 ± 0.37 90.6 6.6 ± 8.6 100 

4,4'-DDT 13.2 ± 9.3 78.1 6.1  ± 5.4 100 

Σ OCPs 19.3 ± 14.2  94.9 ± 81.6  

PCBs: non-detectable in rainwater 
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5.3.3. Effect of Meteorological Factors and TSP 

During the sampling period, TSP concentrations ranged from 1.7 to 39.9 μg m-3; 

average temperature (Temp), relative humidity (RH), wind speed (WS) and incoming 

solar radiation (SR) values varied from 24.2 to 28.6o
C, 70.9 to 88.2%, 0.7 to 3.8 m s-1, 

and 65.3 to 199.8 W m-2, respectively.  

Positive correlations were observed between most SVOCs concentrations and 

ambient temperature except for particulate PAHs (Table 5.4). This observation suggested 

that higher temperatures might fasten the distribution of PAHs from particulate phase into 

gaseous phase and could also assist in re-emission of both OCPs and PCBs into the 

atmosphere because these two groups of compounds have been phased out in Singapore 

for decades and reemission from residual in sediment, soil or vegetations might be the 

major source. Among the meteorological parameters, SVOCs concentration showed 

negative correlations with relative humidity and wind speed.  In Singapore, the relative 

humidity is high and uniform throughout the year due to frequent rainfall and marine 

exposure. The scavenging effects of SVOCs can be caused by wet deposition and water-

drop adsorption. As for wind speed, this observation indicated that winds could play an 

important role in reducing the concentration of SVOCs by increased atmospheric 

dispersion and dilution (Miguel et al., 2004).  Incoming solar radiations showed positive 

correlations with most of SVOCs levels in the air, but were negatively associated with 

PAHs.  It is known that the reaction of volatile PAHs with active radicals such as ·OH is 

their most important atmospheric degradation mechanism (Finlayson-Pitts and Pitts, 

2000), which could be affected by the energy from incoming solar radiation.  However, 
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there were almost no correlations between SR and the occurrence of OCPs and PCBs.  

Theoretically, the photochemical reactions of organochlorine compounds with 

atmospheric oxidants are also likely to occur (Muir et al., 2004; Chu et al., 2005), but 

might be less predominant compared with PAHs due to the complexity of chlorinated 

benzene and the scarcity of hydrogen atoms needed for photo-reduction processes 

(Atkinson, 1986). Moreover, TSP showed moderate positive correlations with most of 

SVOCs in this study, most likely due to their presence in TSP via gas-particle 

partitioning process. 
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Table 5.4 Correlation matrix between atmospheric SVOCs and related meteorological factors plus TSP 
 

 p-PAH g-PAH p-OCP g-OCP p-PCB g-PCB TSP Temp RH WS SR 

p-PAH - 0.56 0.37 -0.17 0.68 -0.10 0.69 -0.18 -0.06 -0.39 -0.23 

g-PAH 0.56 - 0.08 0.50 0.14 0.56 0.49 0.35 -0.12 -0.28 -0.09 

p-OCP 0.37 0.08 - 0.65 0.55 -0.26 0.72 0.06 -0.26 -0.12 0.34 

g-OCP -0.17 0.50 0.65 - 0.43 0.02 0.42 0.29 -0.18 -0.02 0.33 

p-PCB 0.68 0.14 0.55 0.43 - 0.12 0.75 0.23 -0.07 -0.21 0.44 

g-PCB -0.10 0.56 -0.26 0.02 0.12 - 0.08 0.71 -0.16 -0.32 0.26 

TSP 0.69 0.49 0.72 0.42 0.75 0.08 - 0.22 -0.41 0.22 0.52 

Temp -0.18 0.35 0.06 0.29 0.23 0.71 0.22 - -0.83 -0.48 0.59 

RH -0.06 -0.12 -0.26 -0.18 -0.07 -0.16 -0.41 -.83 - 0.05 -0.75 

WS -0.39 -0.28 -0.12 -0.02 -0.21 -0.32 0.22 -0.48 0.05 - 0.11 

SR -0.23 -0.09 0.34 0.33 0.44 0.26 0.52 0.59 -0.75 0.11 - 
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5.3.4. Seasonal Variation and Source Apportionment 

A single-factor analysis of variance (ANOVA) was performed to determine 

temporal variations in daily average total concentrations of atmospheric PAHs, OCPs and 

PCBs.  The monthly variations of PAHs and PCBs were seen with p=0.56 and F=0.89 < 

Fcritical=2.28 for PAHs, and p=0.41 and F=1.13 < Fcritical=2.63 for PCBs, respectively; 

while the OCPs levels were not statistically different between months with p=0.03 and 

F=2.45 > Fcritical=2.23.  Namely, the variations were statistically significant for PAHs and 

PCBs, but not for OCPs based on both p and F values. 

The monthly mean atmospheric SVOCs concentrations with possible diagnostic 

ratios are plotted in Figure 5.2.  As for PAHs, there was one clear peak appearing during 

the pre-NE monsoon (Oct-Nov 07) as shown in Figure 5.2(a).  As Singapore is a highly 

industrialized area (heavy vehicular traffic, chemical industries, major power plants and 

oil refineries, etc.), local emissions are the major PAH sources.  The diagnostic ratios of 

PAHs have been widely used to evaluate the impact of various sources on the air quality 

in a specific region (Yunker et al., 1996; See et al., 2007).  In order to assess possible 

differences in sources in this study, a variety of different PAH ratios (Ant/Ant + Phe, Flt/ 

Flt + Pyr and Ind/ Ind + B(ghi)P) were calculated and are plotted in Figure 5.2(a).  The 

average monthly ratios of Ant/Ant + Phe, Flt/ Flt + Pyr and Ind/ Ind + B(ghi)P were in 

the ranges of  0.18 ~ 0.31, 0.35 ~ 0.52 and 0.27 ~ 0.45, respectively. These diagnostic 

ratios demonstrated that liquid-fossil fuel combustion processes rather than unburned 

fossil fuels or biomass (wood and grass) burning (Yunker et al., 2002) were the 

predominant origin of PAHs measured at the sampling site.  It should be noted that 
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Figure 5.2. Seasonal variation of atmospheric SVOCs and diagnostic ratios (a) PAHs, (b) 

OCPs, and (c) PCBs 
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Figure 5.2. Seasonal variation of atmospheric SVOCs and diagnostic ratios (a) PAHs, (b) 

OCPs, and (c) PCBs 
 

between Jun and Oct 2007 there was no influence of regional biomass burning events 

over Singapore as evident from Daily Haze Map, NEA Singapore though biomass 

burning episodes have been a recurring air pollution problem in the Association of 

Southeast Asian Nations (ASEAN) region in the past few decades.  On the other hand, 

the monthly variations of ratios mentioned above seem to be insignificant, suggesting 

constant emission sources over the sampling period.  It has to be noted that PAH 

diagnostic ratios have some limitations for source apportionment as stated by Galarneau 

(2008) such as substantial intrasource variability and intersource similarity of PAH 

isomer ratios, unconservation of relative PAH concentrations due to particle/gas 

partitioning, precipitation scavenging, particle deposition, etc. However, considering 

Singapore is a small but highly industrialized country, the sampling area is mainly 

influenced by less complex local emissions of PAHs. The existing climate characteristics 
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in Singapore are such that there is little variation in temperature leading to relatively 

consistent gas/particle partitioning processes. In this study, the gas/partitioning effect has 

been overcome by calculating diagnostic ratios of total PAH concentrations (gas plus 

particles). As reported by He and Balasubramanian (2008), organic compounds with 

more volatility tend to be redistributed onto larger particles while the less volatile 

compounds remain onto the fine particles with which were directly emitted from their 

corresponding sources. From this distribution pattern, it is reasonable to hypothesize that 

the compounds with similar volatility (LMW or HMW) may have similar particle 

scavenging efficiency by precipitation or dry deposition because the particle size 

distribution of PAH species is a major factor affecting the efficiency of the above-

mentioned two removal processes. Based on these considerations, it is reasonable to 

conclude the diagnostic ratios used in this study may still provide some insights into 

source apportionment of PAHs. 

Periodical monsoon winds could assist in dispersing aerosol particles during NE 

and SW monsoon seasons; the lighter winds during the pre-monsoon seasons (Apr-May 

and Oct-Nov) might strengthen the accumulation of PAHs.  In addition, the rainy season 

(maximum rainfall occurring in Dec and Apr) could cause more PAHs to be washed out 

from the atmosphere.  The occurrence peak of PAHs in Oct and Nov 2007 could likely be 

due to the typical stagnant atmospheric conditions in pre-monsoon seasons and the 

relatively less rainfall.    

As for the seasonal variations of OCPs (Figure 5.2(b)), no obvious peak was 

observed over a-year long sampling period in this study.  However, the seasonal trends 

were seen for ratios of α-HCH/γ-HCH and 4,4’DDT /4,4’DDD + 4,4’DDE, which clearly 
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increased between Dec 2007 and Mar 2008.  It is known that HCHs  are available in two 

formulations: technical HCH mixture (α-HCH 55-80%, β-HCH 5-14%, γ-HCH 8-15%, δ-

HCH 2-16%  and ε-HCH 3-%%) and lindane containing >90% of  γ-HCH (Yang et al., 

2008). The ratio of α-HCH / γ-HCH has been used to identify HCH sources.  The ratio 

mentioned above is close to 1 in areas where the pesticide lindane was used and between 

3 and 7 in areas where technical HCH mixtures were used or in remote areas due to 

possible transformation of γ-HCH to α-HCH (Willet et al., 1998; Lee et al., 2000; 

Murayanma et al., 2003).  The ratios of α-HCH/ γ-HCH were found to be 1.45 ± 0.16 and 

3.25 ± 0.65 for SW and NE monsoon seasons, respectively.  According to UNEP 

Chemical’s regional report (UNEP, 2002), γ-HCH (lindane) has been banned by most 

countries in SEA, but the previous reports indicated the use of lindane in Malaysia 

(Kannan et al., 1995). High percentage of γ-HCH (up to 90%) has also been reported in 

Singapore and Malaysia (Monirith et al., 2003). During the SW monsoon season, most of 

air masses were transported from southern Indonesia and western Malaysia and the low 

ratio of α-HCH / γ-HCH might represent a mixture of sources from local residue re-

emissions and regional transport. On the contrary, during the NE monsoon, most air 

masses arriving at the sampling site originated from China which was one of the largest 

producers and consumers of technical HCH in the world (Li, 1999).  The high 

concentration of technical HCH mixture in China has also been reported by Monirith et al. 

(2003). The ratio of 4,4’DDT / 4,4’DDD+4,4’DDE is generally used as an indicator of 

aging DDTs. A minor value of 4,4’DDT/4,4’DDD+4,4’DDE ratio indicates aged 4,4’-

DDT while a value much greater than 1 implies fresh applications (Li et al., 2007).  The 

ratios of 4,4’DDT/4,4’DDD+4,4’DDE  were found to be 4.65 ± 1.05 and 5.95 ± 1.61 for 
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SW and NE monsoon seasons, respectively, indicating fresh input of 4,4’-DDT from  

external sources through transboundary movement of air masses.  In the surrounding 

areas, the high levels of 4,4’ DDT have been reported in China and Vietnam while lower 

levels of DDTs were observed  in mussels from the Phillipines, Cambodia, Indonesia and 

Malaysia (Minh et al., 2002; Monirith et al., 2003).  Furthermore, the usage of DDT 

possibly still occurs for malaria control in Papua New Guinea (UNEP, 2002), east of 

Singapore and Indonesia islands. Hence, this study suggests that some DDTs measured in 

the ambient air of Singapore during SW and NE seasons were likely derived from 

different regional sources via long-range transport.  During the two inter-monsoon 

periods, the ratios of 4,4’DDT/4,4’DDD+4,4’DDE were 2.81 ± 0.52 and 2.55 ± 0.45, 

respectively, probably indicating less influence of external air pollution sources within 

SEA.  

From Figure 5.2(c), a clear seasonal trend in PCBs could be observed, with 

relatively lower levels from Nov 2007 to Feb 2008 (covered by NE monsoon season).  In 

this study,  penta- and hexa- PCB congeners (Table 5.2) were dominant and the 

particulate fractions of these compounds were mostly greater than 50%, which are 

consistent with the composition of the dominant source of Aroclor 1254 (discussion as 

below) .  During the NE monsoon, maximum rainfall occurred in December and January.  

Also, generally high wind speeds reached 8 ~ 10 m s-1 in January and February.  These 

meteorological factors might explain the low concentrations of PCBs during this period 

due to their washout through rainfall and favorable advective transport of aerosols (Table 

5.4).  Principal component analysis (PCA) was applied to compare the composition of 

PCB samples analyzed in this study relative to Aroclor mixtures (Aroclor 1221, 1232, 
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1016, 1242, 1248, 1254, 1260 and 1262) by using Primer 5 for Windows (Version 5.2.4). 

PCB composition of each sample was normalized to concentration of total PCBs, and the 

Aroclor composition that was reported in the literature (Frame et al., 1996) was used 

(Figure 5.3.). All samples are similar in composition to that of Aroclor 1248 and 1254, 

but not exactly equivalent, except for few samples being more similar to Aroclor 1260 

and 1262.  Aroclor 1248 is characterized by tetra-PCBs and Aroclor 1254 is characterized 

by penta- and hexa-PCBs. It has been known that Aroclor 1248 was used most 

extensively with hydraulic and heat transfer media. Aroclor 1254 was not only used in 

hydraulic media, but also in Askarel transformers and capacitors (Lowenbach, 2002). A 

similar match has also been reported in house dust in Singapore (Tan et al., 2007).  

Therefore, this analysis might suggest that a mixture of tetra- to hexa-PCBs was 

introduced into Singapore’s atmosphere. 
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Figure 5.3 PCA score plot for the composition of atmospheric PCB congeners and 
Aroclor mixtures (the dots not labeled for samples) 
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A single-factor analysis of variance (ANOVA) was applied to examine temporal 

variations in daily average total concentrations of PAHs and OCPs in precipitation. The 

monthly PAHs levels in precipitation were not statistically different with p=0.04 and 

F=2.57 > Fcritical=2.49 while the monthly variations of OCPs were obvious with p=0.14 

and F=2.0 < Fcritical=2.89. The monthly mean SVOCs concentration in precipitation is 

plotted in Figure 5.4.  As discussed above, more rainfall occurred from December 2007 

to February 2008 which could scavenge more aerosols and introduce SVOCs into 

precipitation.  However, VWM concentrations of both PAHs and OCPs in rainwater were 

still relatively lower during this period.  It is known that the washout processes of 

atmospheric compounds are dependent not only on their aerosol sources and size 

distributions, but also on rain intensity and duration of rain events (Offenberg and Baker, 

1997).  From the sequential sampling of rainwater, it has been found that most of the 

compounds/ions experience an important scavenging process in the first few mm of 

precipitation, that is, the initial decrease in concentration is much more rapid during the 

first few mm of precipitation than by the rain samples subsequently collected (Encinas 

and Casado, 1999). High rain intensity and total precipitation volume are climatic 

characteristics of Singapore in this marine and tropical area during the abovementioned 

sampling period. Consequently, the high precipitation volume might cause low pollutant 

concentrations by dilution effect (He and Balasubramanian, 2008) since all 

concentrations for precipitation samples were volume-weighted mean values.  
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Figure 5.4 Seasonal variation of the total concentration of SVOCs in precipitation 
samples 
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5.4. Conclusion 

This study investigated the concentrations of SVOCs in particulate and gaseous 

phases of the atmosphere as well as in particulate and operationally defined dissolved 

phases of precipitation based on the sampling conducted from June 2007 to May 2008.  

The atmospheric yearly median concentrations of SVOCs were compared with the 

historical data in this region. The results indicated that no significant decline of SVOCs 

in the atmosphere has occurred in this area over the past decade. The observation of a 

similar occurrence pattern of SVOCs in both air and rainwater implied that SVOCs in 

rain were from the sources similar to those in the atmosphere. This conclusion is further 

supported by the air mass backward trajectory analysis and historical usage patterns of 

SVOCs such as OCPs and PCBs within this region. For air samples, the temporal 

variations were statistically significant for PAHs and PCBs, but not for OCPs based on 

both p and F values; for rainwater samples, the monthly PAHs levels in precipitation 

were not statistically different while the monthly variations of OCPs were obvious. The 

source apportionment showed that local emissions such as liquid-fossil fuel combustion 

were the major PAH sources. Most of OCPs such as HCHs and DDTs were transported 

from external pollution sources within the region.  PCBs were identified to be mainly 

from the commercial mixtures of Aroclors 1248 and 1254.  
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Chapter 6. Gas-Particle Partitioning of SVOCs in the Tropical 

Atmosphere of Southease Asia 

6.1. Introduction 

Partitioning of SVOCs between the gas and particle phases, as mentioned before, 

can affect their transport and transformation in urban and adjacent coastal atmospheres 

(Simcik et al., 1998). Once emitted into the atmosphere, generally SVOCs would be 

partitioned between these two phases and reach a partitioning equilibrium according to 

their vapor pressure and temperature dependencies (Yamasaki et al., 1982; Pankow and 

Bidleman, 1992; Cotham and Bidleman, 1995). Several models with the main emphasis 

on SVOCs gas/particle partitioning have already been proposed (Pankow, 1987, 1994a; 

Lohmann and Lammel, 2004; Roth et al., 2005b; Götz et al., 2007). 

 Several field studies have been carried out on the occurrence and distribution of 

PAHs and chlorinated organic compounds including PCBs in the tropical atmosphere 

(Ang et al., 1986; Panther et al., 1999; Wurl and Obbard, 2005a; Karthikeyan, 2006), but 

little is known about their gas/particle partitioning processes under prevailing tropical 

weather conditions. This partitioning process is an important mechanism affecting the 

fate and transfer of SVOCs. The present study was carried out to measure gaseous and 

particulate concentrations of PAHs and PCBs in Singapore urban air. The data were then 

applied to make an assessment of the Junge-Pankow absorption model (Junge, 1977; 

Pankow, 1987), the octanol-air partition coefficient (KOA) absorption model (Pankow, 

1994) and the combined KOA-Ksoot-air (adsorption coefficient to soot) (Lohmann and 

Lammel, 2004) for gas/particle partitioning of PAHs and PCBs in the tropical and coastal 
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atmosphere of SEA.  In this study, the contributions of adsorption and absorption to the 

gas-particle concentrations of PAHs and PCBs in the tropical atmosphere are discussed. 

6.2. Experimental 

6.2.1. Sampling  

 All the air samples were collected between November and December 2006 at the 

NUS (National University of Singapore) Atmospheric Research Station. Particulate and 

gaseous SVOCs in air were collected using a high volume sampler (Model: TE-1000PUF, 

Tisch Environmental, Inc. USA) at ca. 250 L min-1 by the same protocol as described in 

Section 4.2.2.. However, for this study, average sampling time was 12 h periods 

(successive day time 8.00 am-8.00 pm and night time 8.00 pm-8.00 am) and average 

sampling volumes were 180 m3. The filter and PUF samples were stored -20 oC prior to 

extraction.  

6.2.2. Sample Preparation and Analysis 

 Prior to extraction, surrogate compounds were added to all samples.  Both 

gaseous and particulate samples were extracted separately by Dionex ASE 200 under the 

following conditions: 3:1 n-hexane and acetone (HEX and ACE) combination at 100oC 

for 25 min as described in Section 3.4.1. Extractions were performed with 40 ml of 

solvent at a high pressure (100 atm) by two static cycles.  The extracted analytes were 

purged from the sample cell using pressurized nitrogen at 100 atm and concentrated to 3 

ml by rotary evaporator. All extracts were further cleaned using silica gel (for PAHs) or 

florisil (for PCBs) columns.   
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The extract in each fraction was then concentrated to approximately 3 ml at room 

temperature and further to 50 μl by nitrogen gas stream. Labeled PAHs (Phenanthrene-d10, 

pyrene-d10 and benzo[a]pyrene-d12)  and PCBs (13C6-Tetrachlorobenzene, 13C12- PCBs 

congeners CB 8, 206) were added to the extracted samples or blanks or calibration 

standards  as internal standards to quantify and account for the loss of these SVOCs 

during analysis.  All extracts were then kept in sealed vials at -20oC prior to GC-MS 

analysis. Sample analysis was conducted using a GC-MS (Shimadzu QP2010, Japan), as 

described in Section 3.4.6. 

6.2.3. Measurement of OC and EC 

Organic carbon (OC) and elemental carbon (EC) were determined as described in 

Chapter Section. All the OC and EC contents with total suspended particle (TSP) 

concentrations and ambient temperature (Temp) for this case study are listed in Table 6.1. 
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Table 6.1 Summary OC, EC, TSP data and fOM for this study (µg m-3) 
 

Date OC EC TSP-3 fOM (%) Temp (K)
17.11.2006 21.8 9.8 42.1 77.8 301.4
17.11.2006 15.6 7.0 40.5 57.9 298.9
19.11.2006 11.3 5.1 33.0 51.2 302.1
19.11.2006 9.5 4.3 29.3 48.6 298.5
23.11.2006 17.0 7.6 40.0 63.6 301.5
23.11.2006 13.9 6.3 36.2 57.7 297.7
04.12.2006 15.7 7.1 34.5 68.4 301.7
04.12.2006 12.7 5.7 30.5 62.5 299.7
06.12.2006 26.6 10.2 46.1 86.7 302.2
06.12.2006 18.4 8.3 37.6 73.6 298.6
11.12.2006 8.0 3.6 29.3 40.9 301.0
11.12.2006 6.2 2.8 24.9 37.5 298.7
13.12.2006 10.6 4.8 28.3 56.4 301.9
13.12.2006 8.9 4.0 25.4 52.8 297.8
15.12.2006 8.6 3.9 23.8 54.1 302.5
15.12.2006 5.4 2.4 19.6 41.3 299.6
20.12.2006 2.3 1.0 14.3 23.8 300.8
20.12.2006 2.5 1.1 18.5 20.4 298.1
22.12.2006 23.9 10.7 45.0 79.6 300.7
22.12.2006 19.6 8.8 41.8 70.4 298.7

Mean 12.9 5.8 32.0 56.3 300.1
S.D. 6.9 3.1 9.2 17.7 1.6 
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6.2.4. Quality Control 

The analytical quality of the data was determined using limit of detection (LOD), 

recovery, linearity, and by checking sampling artifacts as described before.  

Examination of suitability of data set for detailed analyses of gas-particle 

partitioning is necessary because there are a number of potential sampling artifacts that 

can lead to over- and under-estimations of SVOCs concentrations in the gas and aerosol 

phase (such as organochlorine compounds) (Mader and Pankow, 2001). A potential 

sampling artifact occurs when gaseous SVOCs sorb to filter and particle surfaces, thus 

leading to an over-estimation of particle-phase SVOCs (Dachs and Eisenreich, 2000). 

The sampling strategy in this study consisted of 12 h samples (diurnal and nocturnal 

samples, 180m3 per sample). Considering the ambient temperature variations were small 

and relative humidities were uniform and high, backup filters have been used to correct 

for gas adsorption of SVOCs to a front filter (Hart and Pankow, 1994; Dachs and 

Eisenreich, 2000; Turpin et al., 2000). According to the method by Mader and Pankow, 

2001, the Vmin,f (the volume that can deliver the gas phase mass amount required to 

achieve gas/filter adsorption equilibrium on filters) under the climate conditions similar 

to Singapore was close to 180 m3. In addition, it was found that less than 5% of mass 

recovered from the primary filter was sorbed on a secondary filter. 

 Breakthrough of SVOCs from the PUF can lead to under-estimated SVOCs gas 

phase concentrations.  In this study, breakthrough was evaluated under field conditions 

by connecting three one-inch plugs in series and analyzing them separately. For 12 h 

samples, measured SVOCs at the third plug were in the range of blank values. Three one-
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inch plugs in series used in high-volume PUF sampler therefore could trap gas-phase 

target compounds effectively.  

6.3. Results and Discussion 

6.3.1. Atmospheric Levels of SVOCs for This Short-term Study 

A statistical summary of the SVOCs measured in this study (Mean SVOCs 

concentration (Mean)) with their corresponding standard deviations (S.D.), mean particle-

bound fraction of SVOCs (Particle Fraction %), the number of samples in which the 

concentrations were above LOD (Detected Sample No.) is provided in Table 6.2.  Mean 

PAHs (gaseous and particulate) concentrations ranged between 22.1 and 44.6 ng m-3 with 

an overall mean concentration of 33.4 ± 11.2 ng m-3.  The most abundant PAHs in all 

samples were Pyr (7.3 ng m-3), Phe (7.2 ng m-3), and Flt (5.6 ng m-3).  In general, the 

concentration of heavier PAHs with five or more aromatic rings (B(b)F, B(k)F, B(a)P, 

Ind, DB(ah)A, and B(ghi)P) was low ranging from 0.07 to 1.2 ng m-3, most of which 

were dominant in particulate phase (>50%).  The concentrations of PAHs in this study 

are comparable to those measured on this island in 2005 (51.6 ± 27.6 ng m-3) 

(Karthikeyan, 2006), but relatively lower than those in other Asian urban areas such as 

Guangzhou (134.4 ~ 298.5 ng m-3) (Bi et al., 2003), Hongkong (1083.9 ± 929.7 ng m-3) 

(Lee et al., 2001). 
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Table 6.2 Concentrations of measured compounds for this study (PAHs-ng m-3; PCBs- pg m-3) 
 

Compounds Avg Con ± S.D. 
Particle 
Fraction % 

Detected 
Sample No. 

Compounds Avg Con ± S.D. 
Particle  
Fraction % 

Detected  
Sample No. 

Naph 1.5 ± 0.3 5.5 20 PCB 17+18 7.0 ± 2.7 3.3 15 

Ace 0.7± 0.07 2.9 20 PCB 28+31 5.5 ± 3.1 10.2 15 

Acy 0.3 ± 0.2 9.7 20 PCB 44 2.2 ± 1.2 13.9 14 

Flu 3.8 ± 0.5 1.3 20 PCB 52+49 2.2 ± 1.1 8.0 15 

Phe 7.2 ± 2.7 3.5 20 PCB 74+70 2.7 ± 1.7 6.7 13 

Ant 2.0 ± 0.3 3.0 20 PCB 87 1.9 ± 2.1 19.4 13 

Flt 5.6 ± 1.1 8.1 20 PCB 101+99 1.0 ± 0.4 14.9 15 

Pyr 7.3 ± 3.4 5.1 20 PCB 110 1.4 ± 0.8 14.0 15 

B(a)A 0.5 ± 0.2 36.2 20 PCB 118 1.4 ± 0.7 15.0 14 

Chr 0.9 ± 0.5 29.5 20 PCB 128 1.5 ± 0.6 22.8 11 

B(b)F 1.2 ± 0.6 50.0 20 PCB 132+153 0.6 ± 0.7 40.0 15 

B(k)F 0.2 ± 0.1 52.2 20 PCB 138+158 1.4 ± 1.4 42.3 16 

B(a)P 0.5 ± 0.3 59.6 20 PCB 149 0.4 ± 0.4 29.5 12 

Ind 0.8 ± 0.4 80.7 20 PCB 151 0.5 ± 0.5 37.8 14 

DB(ah)A 0.07 ± 0.09 85.7 20 PCB 156 1.2 ± 0.8 32.8 13 

B(ghi)P 1.0 ± 0.5 81.1 20 PCB 169 0.7 ± 0.5 37.8 16 

ΣPAH 33.4 ± 11.2   ΣPCB 31.7 ± 18.9   
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The mean concentrations of PCB congeners measured in this study were 31.7 ± 

18.9 pg m-3 and about 80% (mean) total PCBs (particle + gas) was distributed in the gas 

phase.  The concentration data obtained from this study are in agreement with those 

reported recently in Singapore and over Indian Ocean (Wurl and Obbard, 2005a; Wurl et 

al., 2006d). However, the concentrations of PCBs measured in other parts of Asia were 

broadly in the range of tens to a few hundreds of picograms per cubic meter, with values 

in the range of 21 ~ 336, 7 ~ 247, and 12 ~ 84 pg m-3 for China, Japan and South Korea, 

respectively (Jaward et al., 2005). 

6.3.2. Gas/particle Partitioning -log Kp versus log pL
o 

As stated before, SVOCs may occur either in the vapor phase or be associated 

with atmospheric particles in the natural atmosphere. These partitioning processes are 

affected by the particle properties such as the particle size distribution, organic carbon 

content, TSP and the prevailing ambient temperature, etc. (Yeo et al., 2003b). This 

partitioning process could be parameterized using the gas/particle partition coefficient, Kp 

(m3 μg-1), as described in Equation 2.5. 

In general, the partitioning of SVOCs between the gas and particulate phases 

could be described as either surface adsorption (Pankow, 1987), or absorption into 

organic matter (Pankow, 1994a).  Both paradigms relate the total suspended particulate 

matter (TSP, µg m-3), normalized partition coefficient, Kp, to the subcooled liquid vapor 

pressure, pL
o.  According to Simcik et al. (1998), from both adsorption and absorption 

processes, a linear fit between Kp and pL
o could be derived from Equation 2.7. 
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 At equilibrium, the slope (mr) for either adsorption or absorption should be close 

to -1 given the following assumptions: for adsorption, the difference between the 

enthalpies of desorption and volatilization and the number of available adsorption sites 

must remain constant over a compound class (Pankow, 1987); for absorption the activity 

coefficients must remain constant over the same compound class (Pankow, 1994a). 

However, the slopes, mr, yielded from several field measurements worldwide are largely 

diverse. While some are close to the theoretical value, significant deviations have also 

been reported (Cotham and Bidleman, 1995; Gustafson and Dickhut, 1997; Simcik et al., 

1998). A number of factors, ranging from the uniformity of ambient temperature during 

the sampling period to varying activity coefficients in organic matter in a compound class, 

have been proposed to explain these deviations, and several investigators argue that such 

deviations do not always indicate disequilibrium (Goss and Schwarzenbach, 1998; 

Simcik et al., 1998).  Moreover, there are a number of sampling limitations, which might 

lead to shallower slopes than -1 (Pankow and Bidleman, 1992; Simcik et al., 1998).  

In this study, the temperature-dependent vapor pressures were corrected using the 

Clausius-Clapeyron equation (Simcik et al., 1999; Currado and Harrad, 2000) for those 

compounds which had concentrations well above the detection limit for a given sample 

based on the enthalpies for PCBs (Falconer and Bidleman, 1994) and for PAHs (Lei et al., 

2002; Odabasi et al., 2006). Vapor pressures of co-eluting PCBs were calculated for the 

dominant PCB in each peak, which is justified by the fact that co-eluting PCBs have very 

similar vapor pressure. To ensure comparability between the different data sets, all log Kp 

values measured in this study and those reported in the literature were corrected to the 

same temperature of 298 K and RH of 70% as done by Lohmann and Lammel (2004). 
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When log Kp is regressed against the log pL
o of a group of SVOCs (Equation 2.7), 

meaningful information about the partitioning of the compounds can be extracted from 

the slope mr and the intercept constant of the trend line (Pankow and Bidleman, 1992; 

Goss and Schwarzenbach, 1998). Figures 6.1 and 6.2 show some representative 

regressions of log Kp vs log pL
o for those samples collected in November and December 

2006, which gave high correlations for individual samples for both PAHs (r2=0.80~95) 

and PCBs (r2=0.42~0.82), but the slopes and intercepts among samples varied 

significantly. The regression for high molecular weight (HMW) PAHs (with four and 

above aromatic rings (Pyr, B(a)A, Chr, B(b)F, B(k)F, B(a)P, Ind and B(ghi)P))) of all 

samples was plotted separately in Figure 6.1(c) and the slope, mr, was relatively smaller 

than that for those studied PAHs of all samples, but still greater than -1. Table 6.3 shows 

the slope and the intercept of log Kp vs log pL
o obtained for all samples from this study 

and some other studies reported in the literature (Simcik et al., 1998; Kaupp and 

McLachlan, 1999; Yeo et al., 2003b).  By comparison, it can be seen that the slopes (mr) 

of this study in Singapore for both PAHs and PCBs were relatively steeper than those 

reported for most of the other areas while they were still greater than -1.  It has been 

suggested that at equilibrium, the slope for either adsorption, or absorption should be 

close to -1 as stated above.  Since slopes that deviate from -1 have been determined in 

field measurements, intense debate has occurred concerning the range of values that 

slopes can take and the reasons why slopes mr can deviate from -1 (Pankow and 

Bidleman, 1991; Pankow et al., 1994; Goss and Schwarzenbach, 1998; Simcik et al., 

1998).  
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Figure 6.1. Log Kp(m
3 µg-1) (normalized to 298 K and 70% RH) vs log pL

o (298 K) for 
PAHs over Singapore (a)11/19/2006, (b) 12/15/2006 
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Figure 6.1. Log Kp(m
3 µg-1) (normalized to 298 K and 70% RH) vs log pL

o (298 K) for 
PAHs over Singapore (c) all samples for HMW PAHs (n=20), and (d) all samples (n=20) 
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Figure 6.2. Log Kp(m
3 µg-1) (normalized to 298 K and 70% RH) vs log pL

o (298K) for 
PCBs over Singapore (a)11/17/2006, (b) 12/6/2006 
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Figure 6.2. Log Kp(m
3 µg-1) (normalized to 298 K and 70% RH) vs log pL

o (298K) for 
PCBs over Singapore (c) 12/20/2006, and (d) all samples (n=11, based on samples of 

which both gaseous and particulate concentrations were above LOD) 
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Of the possible reasons, variations of ambient temperature during sampling period 

may not be applicable in this study as the sampling protocol with collection of two 12-h 

samples per day, one during the day and one at night, minimized the effect of changing 

temperature and atmospheric concentration during sampling, Furthermore, this tropical 

area is marked with uniform and high ambient temperature unlike the areas in temperate 

regions.  

According to Simcik et al. (1998), non-exchangeability can occur for PAHs 

because they are formed in combustion processes; the more volatile species may become 

trapped inside particles during formation resulting in elevated Kp values (Pankow, 1994a).  

However, PCBs are emitted into the atmosphere primarily as gases.  Hence, their non-

exchangeability process is not as important as for PAHs. Consequently, non-

exchangeability might be a possible factor for the slopes observed being less than -1 for 

PAHs, but not PCBs.   

The sampling site was located close to major roads with heavy traffic and harbors 

and oil refining and petrochemical manufacturing industries in Singapore, which is also 

regularly affected by regional biomass burning events in SEA. Thus, PAHs sources are 

multiple and complicated, and an important fraction of PAHs may have been only 

recently introduced in the atmosphere.  Sorption and desorption of SVOCs to combustion 

aerosols may take hours to reach equilibrium (Dachs and Eisenreich, 2000).  Furthermore, 

slower sorption is more likely to happen in the case of those heavier PAHs resulting in 

slopes smaller than -1 (Cotham and Bidleman, 1995; Terzi and Samara, 2004).  

PCB data from the air samples collected in our study provided a shallow slope (-

0.58, see Table 6.3).  The shallow slopes for PCB gas/particle partitioning were also 
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derived in the urban area of Chicago, Lake Michigan, Kyonggi-do in South Korea and 

Thisio of Athens in Greece only with values of -0.51, -0.49, -0.56 and -0.44, respectively 

(Simcik et al., 1998; Mandalakis et al., 2002; Yeo et al., 2003b). In SEA area, most 

countries have generally banned the import and use of organochlorine pesticides (OCPs) 

and PCBs and equipment containing PCBs (UNEP, 2002).  As for PCBs, due to their 

long half-lives, the residues in the environment and PCB wastes such as transformers and 

capacitors can still be the major sources in the urban area.  The shallow slopes, 

determined in this study, for PCBs may be due to slow re-equilibrium of reemitted PCBs 

from residues locally in the environment to freshly emitted particulate matter in the urban 

atmosphere (Lohmann et al., 2000). 

Other than the non-equilibrium between the aerosols and gas phase, 

thermodynamically aerosols equilibrate faster with SVOCs under warm conditions than 

cold conditions and low molecular weight species attain equilibrium more quickly than 

the heavier compounds (Kamens et al., 1995; Simcik et al., 1998). This might be one of 

the possible reasons why the slopes of log Kp versus log PL
o curves for both PAHs and 

PCBs in this study were greater than most of those obtained in temperate zones of the 

Northern Hemisphere (see Table 6.3).  In addition, the slopes of PAHs in this study were 

closer to -1 than those for PCBs and a similar observation was made in Manchester, UK 

(Lohmann et al., 2000). 
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Table 6.3. Slope (mr), intercept constant, coefficient of determination (R2) used for  
the log Kp vs. log pL

o for this study and other studies 
 

Sample (reference) Slope mr Intercept constant R2 Level of  ignificance 

PAH, Singapore ( this study) -0.76 -4.57 0.81 p<0.0001 

PAH, Chicago (US)  (Simcik et al., 1998) -0.69 -3.58 0.78 p<0.001 

PAH, Lake Michigan (US)  (Simcik et al., 1998) -0.70 -3.79 0.83 p<0.001 

PAH, Athens (Greece) (Mandalakis et al., 2002) -0.51 -4.75 0.78 p<0.001 

PCB, Singapore (this study) -0.58 -4.72 0.72 p<0.0001 

PCB, Chicago (US)  (Simcik et al., 1998) -0.51 -4.23 0.70 p<0.001 

PCB, Lake Michigan (US) (Simcik et al., 1998) -0.49 -4.41 0.70 p<0.001 

PCB, Kyonggi-do (South Korea) (Yeo et al., 2003) -0.56 -4.42 0.86 p<0.001 

PCB, Athens (Greece) (Mandalakis et al., 2002) -0.44 -4.73 0.79 P<0.001 
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To sum up, factors influencing the observed shallower slopes include non-

exchangeability of more volatile SVOCs bound to the particulate phase and non-

equilibrium effects caused by fresh emissions of SVOCs (Pankow and Bidleman, 1992; 

Helm and Bidleman, 2005). The scatter in field gas/particle partitioning data is likely to 

be caused by minor variations in ambient temperature, atmospheric concentrations and 

even properties associated with aerosols during the period of sampling (Callén et al., 

2008). However, it has also been suggested that shallower slopes may occur even at 

equilibrium (Simcik et al., 1998). Goss and Schwarzenbach (1998) illustrated this 

deviation for a number of compound classes due to the fact that the aerosol organic 

matter differs from that in the model solvent octanol, which would lead to slopes 

deviating from unity.  

6.3.3. Comparison of Adsorption and KOA Absorption Models 

Junge-Pankow Adsorption Model. This model was proposed by Junge (1977) and 

later critically reviewed by Pankow (1987), the Junge-Pankow model (Equation 6.1) is 

the most common method for estimating adsorption of semi-volatile organic compounds 

to aerosols. 

o
L  =  cθ (p  + cθ)  (6.1) 

This model relates the fraction of chemical adsorbed to particles (Φ) to the subcooled 

liquid vapor pressure of the pure compound (pL
o, Pa) and the particle surface area per unit 

volume of air (θ, m2 of aerosol per m3 of air).  The parameter c (unit, Pa·m) is based on 

the heat of desorption from the particle surface, the heat of vaporization of the compound, 
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and the moles of adsorption sites on the aerosol. The particle percentage Φ could be 

calculated by: 

p pΦ  =  K TSP (1 + K TSP)  (6.2) 

where Kp (m
3 μg-1) is the gas/particle partition coefficient and TSP is the concentration of 

total suspended particles in the air (µg m-3).  A value of c = 0.172 Pa·m is typically used, 

although Pankow (1987) suggested that this may vary with the class of SVOC 

compounds. Values for the surface area parameter, θ, are often assumed to be 1.1×10-3 

for urban air and (4.2-35) ×10-5 for rural air (Bidleman, 1988). 

KOA Absorption Model. It has been proposed by Pankow et al. (1994) that the 

absorption of gas-phase compounds into an organic film coating surrounding the particle 

makes an important contribution to the overall gas-particle partitioning process. The 

octanol-air partitioning coefficient (KOA) can be used to predict Kp with the assumption 

of predominant distribution process is absorption (Harner and Bidleman, 1998). The 

relationship between Kp and KOA is 

12
p OA OM OCT OCT OCT OM OMK K f MW ( MW 10 )     (6.3) 

where fOM is the fraction of organic matter (OM) phase on TSP; MWOCT, and MWOM  are 

the mean molecular weights of octanol and the OM phase (g mol-1), respectively; ρOCT is 

the density of octanol (0.820 kg L-1); ζOCT is the activity coefficient of the absorbing 

compound in octanol; ζOM is the activity coefficient of the compound in the OM phase. 

With the assumptions that ζOCT = ζOM and MWOCT/MWOM=1, Eq. (6.3) can be simplified 

as shown in Equation 2.10. 
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Table 6.4 Regression parameters of Equation (6.4) for calculation of KOA for SVOCs 
based on capillary GC data 

 
Compound A B Range (oC) 

Flu a -7.74 4332 0~40 

Phe a -5.62 3942 0~40 

Pyr a -4.56 3985 0~40 

Flt a -5.94 4417 20~40 

Acy b -1.97 2476 0~40 

Ace b -2.20 2597 0~40 

Ant b -3.41 3316 0~40 

B(a)A b -5.64 4746 0~40 

Chr b -5.65 4754 0~40 

B(b)F b -6.40 5285 0~40 

B(k)F b -6.42 5301 0~40 

B(a)P b -6.50 5382 0~40 

Ind b -7.00 5791 0~40 

DB(ah)A b -7.17 5887 0~40 

P
A

H
s 

B(ghi)P b -7.03 5834 0~40 

CB 18 c -6.00 4060 10~43 

CB 28+31 c -6.12 4190 10~43 

CB 44 c -6.20 4340 10~43 

CB 52 c -6.34 4340 10~43 

CB 101 d -3.82 3841 -10~30 

CB 110 c -6.16 4540 10~43 

CB 118 d  -5.92 4693 -10~30 

CB 149 c -6.50 4700 10~43 

CB 138 d -5.57 4584 -10~30 

P
C

B
s 

CB 153 d -6.02 4695 -10~30 
 a Harner and Bidleman, 1998; b Odabasi, et al., 2006; 
 c Harner and Bidleman, 1996;d Kömp and McLachlan, 1997.
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In Eq. (2.10), the octanol-air partition coefficient (KOA) is suggested to be an 

alternative to vapor pressure for describing absorption to aerosols. Values of KOA have 

been corrected as a function of temperature for several PCB congeners and PAHs using 

the following equation with the regression parameters (A and B) given by Harner and 

Bidleman (1996, 1998) and Kömp and McLachlan (1997), which are given in Table 6.4. 

OAlog K A B T     (6.4) 

Figure 6.3 compares the percent (Φ×100) on particles as predicted by the Junge-

Pankow adsorption model (using c = 0.172 Pa·m and θ = 1.1×10-3) and KOA absorption 

model with the average experimental values for PAHs and PCBs.  The KOA absorption 

model was applied using the average measured fOM value (0.563).  It can be seen that the 

gas-particle distribution of LMW PAHs with vapor pressure < 10-3 Pa or KOA < 108 was 

under-predicted by both models, while the predicted values agreed better with those 

observed ones for HMW PAHs (Figures 3(a), (b)). As hypothesized before, this may be 

related to the possibility that more volatile PAHs easily become bound within the 

particles during their formation in combustion and non-exchangeable with the 

atmosphere.  

In KOA absorption model, the organic matter fractions in general for urban 

aerosols between 10% and 20% (Viana et al., 2006; Callén et al., 2008), but the measured 

average fOM value in this study was much higher than those typically expected. The 

higher fOM could result from the local heavy traffic emissions and also from oil refinery 

and petrochemical industries, which are the primary contributors to the organic aerosols. 

From Figure 3(c), one can see that the Junge-Pankow model over-predicted PCBs 
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Figure 6.3. Comparison of predicted and measured particle percentage (Φ) for both PAHs 
and PCBs (a) J-P model for PAHs, (b) KOA model for PAHs, (c) J-P model for PCBs and 

(d) KOA model for PCBs 
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Figure 6.3. Comparison of predicted and measured particle percentage (Φ) for both PAHs 
and PCBs (a) J-P model for PAHs, (b) KOA model for PAHs, (c) J-P model for PCBs and 

(d) KOA model for PCBs 
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Sorption. However, in Figure 3(d), the KOA absorption model using the measured fOM 

value fits the PCB data much better under tropical climate conditions with uniform 

ambient temperature and high humidity, indicating the fOM might vary much in different 

areas. Hence, it is preferable to use the field-measured organic matter fraction, fOM, of 

urban aerosols instead of the standard values (0.1~0.2) while studying the gas-particle 

partitioning of SVOCs. In addition, high RH in this coastal area might be another 

important factor for this absorption predominance since the KP values of organo-chlorine 

compounds have been reported to be dominated by OM absorption for RH between 50% 

and 90% while adsorption to EC becomes the major sorption mechanism under dry 

conditions (RH<40%) (Götz et al., 2007).  Based on the investigations made in this study, 

it appears that the sorption of nonpolar chemicals, for example, PCBs to “environmental 

lipids” such as aerosols with high OM content might be dominated by absorption into 

organic matter under the warm and humid conditions in this highly industrialized area. 

 In this study, the fOM values were obtained by applying a conversion factor of 1.5 

from OC to OM, which was adopted from literature. It is known that this factor varies 

with organic aerosol chemical composition. Therefore, error analysis has been applied on 

the sensitivity of calculated Kp corresponding to the uncertainty in this conversion factor. 

To assess the random errors in the calculation of Kp, a propagation of error analysis 

(Shoemaker et al., 1996) was performed. Uncertainty in the fOM has been assumed to be 

40%, the random error in the Kp was below 1%, ranging between 6.7% - 59%, and below 

2% for LMW PAHs, HMW PAHs, and PCBs, respectively. The error analysis showed 

that the uncertainty of fOM is especially critical to the estimation of Kp by Equation 2.10 

for HMW PAHs.  
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6.3.4. Influence of Soot Carbon 

Soot particles are byproducts of the combustion of liquid and gaseous fuels and 

their production depends strongly on the ratio of carbon to oxygen during combustion 

(Mader and Pankow, 2001). PAHs are formed concurrently with soot particles and also 

play an important role in soot formation and particle growth (Seinfeld and Pandis, 1998).   

It has been found that PAHs have a high affinity for carbonaceous materials as discerned 

from adsorption experiments with carbon black and activated carbon (Walters and Luthy, 

1984).  The overall gas-particle partition coefficient that accounts for both the organic 

matter and the soot phases is given by the following equation (Lohmann and Lammel, 

2004): 

1210 ( ( ) ( ) )P OA OM OCT OCT OCT OM OM EC EC soot EC soot airK K f MW MW f a a K   
   (6.5) 

where fEC is the fraction of atmospheric elemental carbon; αEC is the specific surface area 

of elemental carbon and αsoot is the specific surface area of diesel soot derived from NIST 

SRM 1650; ρBC is the density of EC and 1 kg L-1 has often been assumed (Dachs and 

Eisenreich, 2000; Lohmann and Lammel, 2004); as assumed, the EC can be used as a 

surrogate for the soot carbon (Dachs and Eisenreich, 2000), αEC/αsoot is equal to one; 

Ksoot-air is the partitioning coefficient between soot and air.  To avoid the controversy 

surrounding the calculation of Ksoot-air from soot-water and air-water partition coefficients, 

this study employed the approach used by Van Noort (2003) that estimated Ksoot-air from 

the subcooled liquid vapor pressure (pL
o) and the soot specific area (αsoot):  

log 0.85log 8.94 log(998 / )o
soot air L sootK p           (6.6) 

100 m2 g-1 was used for αsoot (Bucheli and Gustafsson, 2000); the temperature-dependent 

vapor pressures were corrected as stated above.  
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The overall Kp values, derived from Equation 6.5, are presented for most of the PAHs 

characterized in this study and compared with measured Kp values and those predicted 

from the KOA model (Figure 6.4). As discussed above, the KOA-derived Kp generally 

under-predicted the observed Kp values; while the combined KOA-Ksoot-air model predicted 

results which more closely matched the observed ones.  The gas-particle partitioning 

coefficients increased by the combined model for LMW PAHs by 0.8~1.8 log units. 

However, for HMW PAHs, these coefficients increased only by 0.3~0.6 log unit. In this 

case, the gas-particle partitioning process of lighter PAHs was more affected by soot 

carbon than their heavier counterparts, indicating the lesser influence of soot sorption on 

predominantly particle-bound PAHs. A similar result was reported by Prevedouros et al. 

(2008) for solid-air and solid-water partitioning of PAHs with inclusion of soot sorption.  

These results differ from those of Helm and Bidleman (2005) who found that the 

combined KOA-Ksoot-air model over-predicted the measured Kp by 0.3-1.4 log units and 

1.2-2.2 log units for penta CN-50 and hexa CN-66-67, respectively. However, the 

partitioning behavior of PAHs in this area is consistent with observations in the literature 

(Dachs and Eisenreich, 2000; Fernández et al., 2002; Lohmann and Lammel, 2004) that 

elemental or soot carbon dominates in the partitioning of PAHs to aerosols in some 

circumstances, especially for LMW compounds. 

The fEC (7~24% with average of 17 ± 5 %) used for Equation 6.5 was directly 

determined from measurements of field samples, and the particulate elemental carbon 

ranged from 1.0 to 10.2 µg m-3 with an average of 5.8 ± 3.1 µg m-3.  The elemental 

carbon concentrations (fEC values) in this study are relatively higher than those in other 

urban areas such as Baltimore (1.3 µg m-3, 2.8%) (Brunciak et al., 2001), Chesapeake 
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Figure 6.4. Measured and predicted values of Kp (µg m-3) by KOA and the combined KOA 
+ Ksoot-air models in Singapore for PAHs (a) LMW PAHs, and (b) HMW PAH
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Bay (1.5 µg m-3, 5.1%) (Dachs and Eisenreich, 2000), Washington (2.2 ± 0.1%) and Chur 

urban aerosols in USA (2.1± 0.1%) (Roth et al., 2005b). 

Low OC/EC ratios indicate anthropogenic influences on aerosol composition due 

to the larger fraction of combustion derived elemental carbon (Kuhlbusch et al., 1998; 

Brunciak et al., 2001).  The mean ratio of OC/EC was 2.2 ± 0.3 in Singapore, much lower 

than that of 10.3 for rural Meadview, AZ, USA (Turpin et al., 2000). Since OC/EC ratios 

are source specific (Kadowaki, 1990; Kuhlbusch et al., 1998), the low variability in this 

study might suggest constant source profiles of both OC and EC, indicative of primary 

aerosols.  

The high content of EC of local aerosol might be associated with the human 

activities taking place in and around Singapore (heavy traffic emissions, dense oil/gas 

industries, biomass burning impacts in SEA, etc.).  Consequently, once the fresh PAHs 

have been emitted into atmosphere, diffusion from particles surface coated with thick 

elemental carbon may be the limiting mass transfer rate for the gas-particle partitioning 

of PAHs (Strommen and Kamens, 1999; Dachs and Eisenreich, 2000). 

6.4. Conclusion 

In summary, this research was conducted to study the gas/particle partitioning of 

PAHs and PCBs in Singapore, a highly industrialized city in SEA. Mean PAHs and PCBs 

concentrations (gas + particle) were 33.4 ± 11.2 ng m-3 and 31.7 ± 18.9 ng m-3, 

respectively; about 80% of these SVOCs were distributed in the gaseous phase in the 

urban atmosphere of Singapore. The relationship between log Kp and log pL
o of SVOCs 

here shows that the partitioning of SVOCs between particle and gas phases is well 

correlated with the sub-cooled liquid vapor pressure (pL
o), but slopes were still 
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statistically shallower than -1 (the theoretical value at equilibrium) under such a tropical 

climate.  KOA is able to explain gas/particle partitioning of PCBs, while the combined 

KOA-Ksoot-air is more suitable to describe that of PAHs, especially for LMW compounds.  
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Chapter 7. Precipitation Scavenging of Semi-volatile Organic 

Compounds (SVOCs) In A Tropical Area 

7.1. Introduction 

Precipitation scavenging represents a significant fraction of the total atmospheric 

deposition of SVOCs, which has been shown to be an important intermediate transport 

pathway for the removal of aerosol-bound as well as gaseous SVOCs from the 

atmosphere via in-cloud and below-cloud scavenging (Offenberg and Baker, 2002; Sahu 

et al., 2004; Simcik, 2004). In the past decades, several studies have been conducted to 

investigate the mechanisms of precipitation scavenging through the form of rain, snow 

and even fog (Ligocki et al., 1985a, b; Offenberg and Baker, 2002; Collett et al., 2008). 

Previous studies have shown the importance of particulate-bound SVOCs via physical 

processes controlled by size, number density, aerosol solubility along with 

meteorological conditions and microphysics, etc (Poster and Baker, 1996b; Sun et al., 

2006). Gas-phase SVOCs are washed out by falling rain simultaneously.  The transfer of 

SVOCs into the water droplets of precipitation could be determined by Henry’s law 

under equilibrium condition (Ligocki et al., 1985a, b).  However, the measured washout 

ratio of gaseous SVOCs has often been found to be higher than expected based on 

Henry’s law partitioning for fog, cloud or rain water (Capel et al., 1991; Murray and 

Andren, 1992; Aneja, 1993). It was concluded that this apparent supersaturation resulted 

from sub-micron sized particles (< 0.5 µm) that were not filtered out of the rainwater so 

that concentration of dissolved organic pollutants was over-estimated  (Leuenberger et al., 

1988; Poster and Baker, 1996a). The deviation of the observational data from the 
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predictions by Henry’s law has also been attributed to the adsorption of gaseous phase 

SVOCs to the surface of raindrops (Goss, 1994; Simcik, 2004). 

Although a considerable number of studies as those mentioned above have been 

conducted to assess the precipitation scavenging of SVOCs across wide geographical 

areas, little work has been done to determine the precipitation scavenging of SVOCs in 

SEA.  This region is considered to be an important source of SVOCs, which  circulate 

globally through a process known ‘grasshopper effect’ by which they are transported to 

both temperate and polar regions, far away from the original sources, via a repeated (and 

often a seasonal) process of evaporation and deposit (Iwata et al., 1994; Semeena and 

Lammel, 2005). It is therefore important to determine the precipitation (rain) scavenging 

of the two classes of semi-volatile organic pollutants in order to make a better assessment 

of their fate and transfer in a multi-media environment. In this study, a comprehensive 

mathematical model has been developed by taking into consideration various factors such 

as particle scavenging, dissolution (Henry’s law), and surface adsorption and used to gain 

insights into the wet removal of PAHs and OCPs in the tropical environment. The total, 

particle and gas scavenging ratios by precipitation have been calculated based on the 

extensive dataset containing the distribution of PAHs and OCPs in gas- and particulate-

phases and also in rainwater.  Relative contributions of various factors mentioned above 

to precipitation scavenging were evaluated. In addition, effects of chemical properties of 

PAHs and OCPs and meteorological conditions on scavenging processes were also 

investigated.  
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7.2. Theoretical Basis 

The washout ratios of SVOCs can be described by standard equation as described 

in Equation 2.12. WT, WP and WG are unitless total, particle and gas scavenging ratios, 

respectively. WP is defined as CR,P/CA,P where CR,P is the particle-associated 

concentration in rainwater (ng m-3 rainwater collected) and CA,P is the particulate 

concentration of SVOCs in air (ng m-3 air collected). Likewise, WG is defined as CR,D 

/CA,G where CR,D is the dissolved concentration of SVOCs (ng m-3 rain) and CA,G is the 

gaseous concentration in air (ng m-3 air); at equilibrium the gas scavenging ratio WG 

equals the dimensionless Henry’s law constant H' (1/H' =RT/H) where R is the universal 

gas constant (8.21 × 10-5 m3 atm K-1mol-1), T is the temperature (K), and H is the Henry’s 

law constant (atm m-3 mol-1). Ф, fraction of SVOCs associated with particles, could be 

obtained through the field measurement or calculated by Junge-Pankow model or Koctanol-

air (octanol-air partitioning coefficient) model. 

Due to the observational evidence that submicron particles (non-filter retained 

particles) do exist in the filtrate and influence the partitioning behavior of SVOCs in 

rainwater (Gschwend and Wu, 1985; Glotfelty et al., 1990), Equation 2.12 was modified 

considering the scavenging of submicron particles (Poster and Baker, 1996a): 

, , , , (1- )R
T P F P F P NF P NF G T

A

C
W W W W

C
           (7.1) 

where ,P F , ,P NF , T are the fractions of SVOCs bound to filter-retained particles, 

nonfilter-retained particles, and all particles. Offenberg and Baker (2002) then expanded 

Equation 7.2 to include a broader range of particle sizes: 

 ,1 ,1 ,2 ,2 , ,... (1- )R
T P P P P P X P X G T

A

C
W W W W W

C
            (7.2) 
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where each particle size’s washout ratio is exhibited and all sizes are summed to the total 

aforementioned WP as in Equation 7.1. 

Although the supersaturation could occur when the gaseous SVOCs from the air 

enter into rainwater partly due to the colloidal association of submicron particles as stated 

above, an additional mechanism requiring consideration is the adsorption of gaseous 

phase SVOCs to the surface to raindrops, either to an organic film or pure water (Simcik, 

2004). Thus, Simcik (2004) redefined the gas-phase scavenging equation as follows:  

, ,

1 6 1000

'G G DISS G ADS ia
R

W W W K
H d


          (7.3) 

where WG,DISS refers to the washout by dissolution involving only Henry’s law 

partitioning to the rainwater, defined as 1/H'; WG,ADS is the equilibrium adsorption gas-

phase scavenging ratio; Kia the air-water interface adsorption constant, used to describe 

the adsorption of SVOCs to the surface of water, defined as mass of SVOCs per m2 of 

water surface / mass of SVOCs per m3 of air; dR is the diameter of raindrops (mm) and 

1000 converts millimeters to meters.   

Therefore, a comprehensive model could be developed with inclusion of all the 

factors affecting the total scavenging ratio of SVOCs as given below:  

, ,
1

(1- ) 6000
(1 )

'

X
R T

T P i P i ia T
iA R

C
W W K

C H d

 


         (7.4) 

Offenberg and Baker (2002) explained the difficulty in the application of Equation 7.2 

due to the complexities in attributing particles of various sizes to their original 

atmospheric diameter and inefficiencies in separating small particles in rainwater.  As 

such, Equation 7.4 could be simplified as Equation 7.5 and applied to assess the 

precipitation scavenging of SVOCs on those samples collected in Singapore. 
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(1- ) 6000
(1 )

'
R T

T P T ia T
A R

C
W W K

C H d

           (7.5) 

where the parameters such as T , H' and Kia can all be correlated to the supercooled 

liquid saturated vapor pressure, 0
LP (Pa), of the compound of interest; the diameter of the 

raindrop, dR, could be derived from the rain drop size distribution (DSD) described by 

log-normal distributions  (Feingold and Levin, 1986; Mircea et al., 2000), or gamma 

distributions (Cerro et al., 1998).  

In this study, Henry’s law constants were corrected to the ambient air 

temperatures during this sampling period by using published enthalpy and entropy data 

for PAHs (Hulscher et al., 1992; Bamford et al., 1999b; Monte et al., 2006) and 

correlation between H and temperature for OCPs (Sahsuvar et al., 2003; Cetin, 2006).  

Equilibrium gas scavenging ratios (WG,DISS) were calculated for PAHs and OCPs using 

the temperature-corrected Henry’s law constants.  

For the calculation of WG,ADS, rain droplet size distributions have to be considered 

because they determine the geometric mean diameter dgm (mm) and the total number of 

raindrops for a rain event by precipitation rate po (mm h-1) (Calderón et al., 2008).  In this 

study, the log-normal distribution (Mircea et al., 2000) was chosen to derive dgm which 

could be used as dR for Equation 7.3. 

0.230.72 ( )gm od p mm         (7.6) 

The relationship among water-to-air equilibrium constant Kaw, air to interfacial 

water equilibrium constant Kia and interfacial water to bulk water equilibrium constant 

Kiw is as follows: 

Kia = Kiw / Kaw         (7.7)  
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where Kaw is equal to dimensionless Henry’s law constant, Kiw could be calculated by 

using Equation 7.8 (Kelly et al., 2004): 

( )

log 8.58 0.769log e

o
S

o

G aqo
L RT

iw

P
K

P

 
     

     (7.8) 

where PL
o is the supercooled vapor pressure of compounds of interest, corrected to the 

ambient temperature during this sampling period by using the correlations between PL
o 

and temperature for SVOCs (Hinckley and Bidleman, 1990; Lei et al., 2002; Xiao et al., 

2004; Odabasi et al., 2006); Po is the pressure (24.45 atm) of an ideal gas at 1 molar 

concentration and 298 K; ( )o
SG aq is the standard-state aqueous free energy of solvation 

of compounds of interest, of which the data calculated by Thompson et al. (2003) could 

be used for SVOCs. 

7.3. Experimental  

7.3.1. Sampling 

Both the atmospheric and precipitation samples were collected simultaneously at 

the National University of Singapore (NUS) atmospheric research station. Altogether, 37 

atmospheric samples (pairs of PUF and filter) and 32 rainwater samples were collected 

and studied under different weather conditions between June 2007 and May 2008 to get a 

fundamental understanding of precipitation scavenging processes in the tropical 

environment; gaseous and particulate-phase distributions of PAHs and OCPs were also 

measured concurrently.  Particulate and gaseous SVOCs in the atmosphere were collected 

separately using a medium volume sampler (Model: TE-1000PUF, Tisch Environmental, 

Inc. USA) by  drawing air through 4'' circular quartz microfiber filters (Whatman, Tisch 
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Environmental, Inc. USA) and polyurethane foam plugs (PUF, TE-1012, Tisch 

Environmental, Inc. USA) in series at ca.250 L min-1. The rainwater samples were 

collected by an automated wet-dry sampler (Model US-330, Ogasawara Keiki Seisakusho, 

Tokyo, Japan), which collects only rainwater with no interference from dust fall, as 

described in Section 3.2. All rainwater samples were stored in an internal refrigerator at 

4oC by the automated sampler immediately after a rain event. The rainwater samples 

were collected from the field site within 24 hours after each rain event. After collection, 

rainwater samples were filtered with pre-cleaned (heated at 450 oC for 24 h) Whatman 

GF/F filters (0.7 µm, 47mm i.d.). The actual volume of each sample collected was 

measured and recorded after filtration. Before and after filtration, GF/F filters were 

conditioned in a dry box under the same condition as for quartz filters, and then weighed 

to calculate the mass of suspended particles.  The relevant meteorological parameters (air 

temperature, total rainfall, etc.) were obtained as described in Section 3.2.4. 

7.3.2. Sample Preparation and Analysis 

Prior to extraction, surrogate compounds were added to all samples.  Water filters, 

aerosol filters, PUF samples and all water samples were extracted separately as described 

in Section 5.2.2. All extracts were evaporated, cleaned using silica gel (for PAHs) or 

florisil (for OCPs) columns, then evaporated and finally blown by gentle nitrogen stream, 

and reduced to 50 µL with internal standards for PAHs and OCPs, respectively, and kept 

in sealed vials at -20oC prior to GC-MS analysis. All extracts were then kept in sealed 

vials at -20oC prior to GC-MS analysis. Sample analysis was conducted using a GC-MS 

(Shimadzu QP2010, Japan), as described in Section 3.4.6. 
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7.3.3. Quality Control 

 The analytical quality was guaranteed by the same protocol as described in 

Section 5.2.3.  

7.4. Results and Discussion 

7.4.1. SVOCs in Air and Rainwater  

Table 7.1 shows the concentration range together with mean concentrations and 

corresponding standard deviations for the SVOCs measured in this study from June 2007 

to May 2008.  In ambient air the concentration of total PAHs varied from 15.9 to 484.8 

ng m-3 with the mean concentration of 128.1 ± 123.6 ng m-3 and that of OCPs in the range 

of 77.7-1655.9 pg m-3 with the mean concentration of 692.8 ± 370.2 pg m-3.  In rainwater, 

the mean concentrations of PAHs, BHCs and DDTs were 1185.5 ± 587.9 ng L-1, 72.2 ± 

130.9 ng L-1 and 13.5 ± 32.8 ng L-1, respectively. The lower molecular weight (LMW) 

PAHs were more prominent in rainwater as compared to those higher molecular weight 

(HMW) PAHs (those with five and six benzene rings) and BHCs were also present in 

rainwater in relatively larger amounts than DDTs. The same dataset was used for 

precipitation scavenging study as in Chapter 5 and discussion on occurrence of SVOCs in 

both air and rainwater could be referred in Section 5.3.2. 
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Table 7.1. Concentration of SVOCs in air (gas + particulate) and rainwater (dissolved + 
particulate) for precipitation scavenging study 

 
Air Rainwater  

Compound 
Range Mean ± S.D. Range Mean ± S.D. 

PAHs ng m-3 ng l-1 
  Naph 2.6-44.2 6.9 ± 8.8 59.4-780.2 400.1 ± 190.5 
  Acy 0.8-3.7 1.1 ± 1.1 1.3-71.5 21.9 ± 18.1 
  Ace 0.7-2.9 0.8 ± 0.7 3.3-759.7 145.7 ± 362.8 
  Flu 1.2-24.6 2.7 ± 4.5 10.8-72.3 38.5 ± 16.9 
  Phe 5.3-98.5 27.7 ± 27.9 65.3-262.8 257.2 ± 191.8 
  Ant 5.1-72.2 4.7 ± 12.2 1.1-181.0 31.4 ± 41.5 
  Flt 3.2-58.4 37.3 ± 41.6 12.8-237.7 68.4 ± 68.6 
  Pyr 4.3-41.9 33.8 ± 37.3 9.5-302.5 66.1 ± 82.1 
  B(a)A 9.0-61.4 4.6 ± 11.9 2.7-56.1 18.6 ± 15.7 
  Chry 2.1-17.2 4.1 ± 4.9 2.3-132.8 47.6 ± 34.4 
  B(b)F 1.3-6.6 1.9 ± 1.8 1.1-123.5 58.4 ± 36.7 
  B(k)F 0.3-1.9 0.4 ± 0.5 0.4-21.2 5.9 ± 5.7 
  B(a)P 0.4-2.2 0.5 ± 0.5 0.3-19.3 3.1 ± 3.8 
  Ind 0.2-2.4 0.6 ± 0.7 0.2-9.3 3.6 ± 2.9 
  DB(ah)A 0.1-1.4 0.2 ± 0.3 0.1-21.1 7.3 ± 7.6 
  B(ghi)P 0.2-2.5 0.7 ± 0.7 1.6-73.4 11.7 ± 14.2 
∑PAHs 15.9-484.8 128.1 ± 123.6 21.5-3122.3 1185.5 ± 587.9 
OCPs pg m-3 ng l-1 
  α-BHC 24.3-673.3 278.3 ± 180.5 1.1-21.7 4.0  ± 8.9 
  β-BHC 16.2-565.0 208.5 ± 162.8 7.1-43.0 17.2 ± 21.0 
  γ-BHC 14.9-487.9 81.8 ± 96.2 1.1-34.5 7.1 ± 16.0 
  δ-BHC 12.6-280.8 72.5 ± 62.5 3.1-72.2 43.8 ± 57.2 
∑ BHCs 43.8-1564.7 641.0 ± 357.6  14.7-183.2 72.2 ± 130.9 
  4,4'-DDD 0.5-18.2 6.2 ± 4.9 0.9-12.9 4.4 ± 9.8 
  4,4'-DDE 0.9-13.5 4.4 ± 3.3 0.2-17.1 6.0 ± 8.3 
  4,4'-DDT 8.6-101.2 41.2 ± 25 1.5-47.4 12.5 ± 32.6 
∑ DDTs 11.4-125.9 51.7 ± 30.6 2.34-75.6 13.5 ± 32. 
∑ OCPs 77.7-1655.9 692.8 ± 370.2 15.6-248.8 85.7 ± 141.2 
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7.4.2. Total Scavenging Ratios of SVOCs  

Particle fractions based on the field measurements and total scavenging ratios 

(particle + gas) for all PAHs and OCPs are summarized in Table 7.2. Total scavenging 

ratios (WT based on Equation 7.5) vary among the individual SVOCs ranging from (8.3 ± 

5.1) × 104 (β-BHC) to (1.2 ± 0.4) × 106 (Chry), comparable  to those reported from 

Chesapeake Bay region, USA (WT: 103~106 for PAHs) (Dickhut and Gustafson, 1995), 

Lake Michigan, USA (WT: 102~107 for PAHs) (Offenberg and Baker, 2002) and 

Mumbai, India (WT: 4.43 × 103~1.36 × 108 for PAHs) (Sahu et al., 2004); however, it has 

to be noted that the different sampling environments such as rural or urban areas must 

affect the pollutant compositions and levels of aerosols, which therefore may affect the 

observed values and could be one of the reasons of variations of scavenging ratios from 

literatures mentioned above. Generally the total scavenging ratios (WT) tended to be 

greater for less volatile compounds i.e., HMW PAHs compared to LMW PAHs; similarly, 

the WT of OCPs also increased with the decreasing of volatility of these compounds. 
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Table 7.2. Particle fraction and scavenging ratios of SVOCs 
  

ф×100 WP WG,DISS WG,ADS WT Compound 
Mean (S.D.)a Mean (S.D.) Mean (S.D.) 

Naph 0.6 (0.9) 2.7 (1.5)×107 24.3 (9.7) 0.2 (1.8) 1.6 (1.2)×105

Acy 1.2 (1.4) 1.4 (0.5)×107 1.4 (0.6)×102 2.2 (2.9) 1.7 (1.9)×105

Ace 5.0 (2.8) 5.5 (1.1)×106 1.2 (0.8)×102 1.6 (3.1) 2.8 (1.7)×105

Flu 3.4 (2.6) 4.7 (2.4)×106 2.6 (2.2)×102 5.3 (6.1) 1.6 (0.6)×105

Phe 2.8 (2.2) 4.3 (1.3)×106 7.1 (3.1)×102 21.4 (10.6) 1.2 (0.5)×105

Ant 3.5 (2.3) 4.0 (2.7)×106 8.2 (4.2)×102 24.7 (10.1) 1.4 (0.4)×105

Flt 2.7 (3.7) 3.3 (1.6)×106 1.6 (1.2)×102 2.6 (3.4) 8.9 (4.3)×104

Pyr 25.5 (12.7) 2.1 (0.7)×106 7.2 (1.3)×103 2.6 (1.2)×103 5.4 (3.8)×105

B(a)A 54.2 (9.6) 1.2 (0.3)×106 9.6 (1.9)×103 7.7 (2.5)×104 6.9 (1.6)×105

Chry 60.4 (11.3) 2.0 (0.9)×106 1.0 (0.4)×104 9.2 (1.6)×103 1.2 (0.4)×106

B(b)F 85.7 (11.2) 8.9 (3.6)×105 3.4 (1.4)×103 1.9 (0.5)×104 7.7 (2.3)×105

B(k)F 84.4 (9.2) 7.8 (2.1)×105 2.2 (0.8)×103 2.5 (1.6)×104 6.6 (3.9)×105

B(a)P 89.3 (6.7) 8.2 (2.7)×105 2.8 (1.9)×104 5.6 (1.1)×104 7.4 (4.8)×105

Ind 94.6 (7.9) 2.5 (0.6)×105 2.6 (2.5)×103 6.9 (2.7)×105 2.7 (1.5)×105

B(ghi)P 97.3 (8.3) 1.8 (0.4)×105 3.3 (1.7)×103 9.8 (1.0)×105 2.0 (1.2)×105

α-BHC 1.7 (1.2) 5.6 (2.6)×106 4.0 (0.8)×102 8.8 (6.8) 9.6 (4.3)×104

β-BHC 2.4 (2.7) 3.4 (1.4)×106 8.7 (0.6)×102 29.5 (23.2) 8.3 (5.1)×104

γ-BHC 4.2 (2.6) 3.7 (0.8)×106 8.6 (0.9)×102 28.3 (18.2) 1.6 (0.7)×105

4,4'-DDD 12.4 (6.9) 3.1 (1.3)×106 4.1 (2.9)×103 5.6 (2.9)×102 3.9 (2.3)×105

4,4'-DDE 18.5 (13.2) 2.4 (0.5)×106 5.6 (0.4)×103 1.6 (1.3)×103 4.5 (2.2)×105

4,4'-DDT 26.6 (10.3) 1.8 (0.6)×106 7.9 (2.0)×103 2.8 (2.2)×103 4.9 (1.9)×105

a. Standard deviation (S.D.) in brackets 
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Equation 7.5 applied in this study illustrates that WT is highly dependent on the 

particle fraction (ф) of SVOCs in the atmosphere. Therefore, correlations between WT 

and ф were evaluated and plotted in Figure 7.1.  Among all sampling events, moderate 

correlations were observed between log WT and log ф for both PAHs (R2=0.74) and 

OCPs (R2=0.62).  The slope for PAHs (0.94) was relatively higher than that for OCPs 

(0.82). This observation might be attributed by the HMW PAHs, the precipitation 

scavenging removal of which was more effective compared to LMW PAHs and OCPs of 

interest in this study (see WT in Table 2). Franz and Eisenreich (1998) reported a slope of 

0.89 for precipitation scavenging of PAHs.  The similarity of these slopes may suggest 

that the inherent process of scavenging of PAHs from the atmosphere may be reasonably 

consistent even under different meteorological conditions and concentration gradients 

(Van Ry et al., 2000).  

Scavenging ratios are frequently used to estimate probable SVOCs concentration 

in rain, especially in the context of mass balance modeling (Blanchard et al., 2006; Van 

Ry, et al., 2000). From a modeling perspective, it is useful to assess WT of an atmospheric 

contaminant from some measurable air parameters such as ф. In this article, the 

following regression equations based on extensive field measurements are recommended 

to estimate WT from ф for SEA region:  

PAHs: log WT = 0.94 log ф + 6.09 (R2=0.74, p<0.05)  (7.9) 

OCPs: log WT = 0.82 log ф + 6.34 (R2=0.62, p<0.05)  (7.10) 
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Figure 7.1. Correlations between total scavenging ratios (Log WT) and the air particle   
fraction (Log ф) (a) PAHs and (b) OCPs 



 140

7.4.3. Particle Scavenging vs. Gas Scavenging 

Particle scavenging is highly complicated and is determined by several factors 

such as meteorology, size of particles and rain droplets, etc (Offenberg and Baker, 2002). 

On the other hand, gas scavenging ratios (WG) are suggested to be near equilibrium as 

predicted by temperature-corrected H values (WG,DISS, operationally truly dissolved 

phase), or are supersaturated due to the adsorption of contaminants to the rain droplets 

(WG, ADS) or even the presence of nonfilterable submicron particles in the filtrate. 

Therefore, the relative importance of gas and particle scavenging on the total removal of 

contaminants from the atmosphere depends on the relative magnitudes of the terms WPф, 

WG,DISS(1-ф) (equivalent to (1- ф)/H’ )and WG,ADS(1-ф) (equivalent to Kia 6000/[dR(1- ф)]) 

as shown in Table 7.3.  

From Table 7.3 it can be seen that particle scavenging is an extremely efficient 

mechanism of removal of SVOCs from the atmosphere based on the thorough 

investigation conducted in this study; gas scavenging (WG,DISS(1-ф)+ WG,ADS(1-ф)) has 

much less relative importance as a scavenging mechanism for all individual compounds 

of interest.  The particle scavenging contribution to the total scavenging accounts for 86-

99% for PAHs and 98-99% for OCPs. This observation that the efficiencies of washouts 

from the atmosphere by precipitation are much higher in the particulate phase than in the 

gas phase is also supported by those reported by Ogura et al. (2001), Offenberg and 

Baker (2002) and Sahu et al. (2004).   
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Table 7.3.Relative contributions of particulate, gaseous (Henry’s law) and adsorbed 
individual SVOCs scavenging to the total scavenging process 

 
               Fraction % 
Compound WPΦ/WT WG,DISS(1-Φ)/ WT WG,ADS(1-Φ)/ WT 

Naph 99.99 0.01 0.00 
Acy 99.92 0.08 0.00 
Ace 99.96 0.04 0.00 
Flu 99.84 0.16 0.00 
Phe 99.41 0.57 0.02 
Ant 99.42 0.56 0.02 
Flt 99.82 0.17 0.00 
Pyr 98.65 0.99 0.36 
B(a)A 94.25 0.64 5.11 
Chry 99.37 0.33 0.30 
B(b)F 99.58 0.06 0.35 
B(k)F 99.36 0.05 0.59 
B(a)P 98.79 0.40 0.81 
Ind 86.35 0.05 13.60 
B(ghi)P 86.84 0.04 13.12 
α-BHC 99.58 0.41 0.01 
β-BHC 98.94 1.03 0.03 
γ-BHC 99.46 0.53 0.02 
4,4'-DDD 98.95 0.92 0.13 
4,4'-DDE 98.70 1.01 0.29 
4,4'-DDT 98.39 1.19 0.42 
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From Table 7.2, it can also be seen that particle scavenging ratios WP for the more 

volatile compounds were generally larger than those for less volatile ones. For PAHs, WP 

range from 1.8 × 105 to 2.7 × 107, relatively more scattered compared to those for OCPs 

which vary only within the same magnitude.  The reason might be because the group of 

PAHs has more variability in volatility than that of OCPs of interest does (see Φ in Table 

7.2).  On the other hand, the variation of both WT and WP is smaller compared to those 

mentioned above (Dickhut and Gustafson, 1995; Offenberg and Baker, 2002; Sahu et al., 

2004).  The particle fraction, Φ, of SVOCs in the atmosphere described by Junge-Pankow 

adsorption model  or Koctanol-air absorption model  which is a function of PL
o as affected by 

meteorological condition such as ambient temperature (Pankow, 1987; Harner and 

Bidleman, 1998).  Since the particle scavenging by rain dominates wet deposition, the 

effect of the yearly uniform ambient temperature in this tropical area on gas/particle 

partitioning might reduce the variability of precipitation scavenging ratios.  The larger WT 

and WP values found for more volatile compounds may be due to their preference to 

larger particles, that is,  more volatile compounds exhibit a broader distribution and can 

redistribute onto larger particles via gas-particle partitioning, while the less volatile 

compounds tend to stay on the particles on which they were emitted (Poster and Baker, 

1996b; Sahu et al., 2004); the below-cloud scavenging rates increase with particle size 

because the collision efficiency of particle-droplet encounter increase with increasing 

particle diameters (Sahu et al., 2004; Calderón et al., 2008). These observations indicated 

the consistency of the increase in WT and WP for compounds associated with larger 

particles with the particle scavenging mechanism.  
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Figure 7.2. Relationship between particle scavenging ratio WP and particle fraction Φ, 
supercooled vapor pressure PL

o and rainfall intensity po (a) PAHs: logWP vs.logΦ (b) 
PCBs: logWP vs.logΦ (c) PAHs: logWP vs.log PL

o (d) PCBs: logWP vs.log PL
o (e) PAHs: 

logWP vs.log po, and (f) PCBs: logWP vs.log po 
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Relationships between particle fraction (Φ), supercooled vapor pressure (PL

o), 

rainfall intensity Φ, and WP have been investigated as shown in Figure 7.2 and the 

correlations for all data were of significance (p<0.05).  It can be observed that particle 

scavenging decreased with particle fraction because the relationships for both PAHs and 

OCPs were with shallow negative slopes. The latter suggests that the particle scavenging 

by rain is less efficient for higher molecular weight SVOCs, which in the ambient 

atmosphere prefer to distribute into submicron particles.  This observation is supported 

by the reports published by Poster and Baker (1996b) and Franz and Eisenreich (1998).  

A similar behavior was shown by the relationship between log WP and log PL
o. Although 

the slopes were slightly positive, particle scavenging increased with PL
o, implying that 

lower molecular weight SVOCs with more volatility may have been associated with 

larger particles that were scavenged more efficiently as stated above. In addition, WP and 

po were positively correlated, signifying an increased efficiency for particle scavenging 

from the atmosphere with rainfall intensity. The role of other factors such as rain droplet 

size distributions and collision efficiency between particles and rain droplets for particle 

scavenging can not be disregarded (Seinfeld and Pandis, 1998).  Theoretical analysis of 

the Marshall-Palmer rain droplet size distribution shows that the number of rain-droplets 

increases with increasing rain intensity (Marshal and Palmer, 1948), which might lead to 

more removal of particles through more collision interaction between rain droplets and 

particles. 

Besides the abovementioned factors, some other factors might contribute to 

particle scavenging as well. Nucleation scavenging has been reported to be one of the 

dominant mechanisms by which particles, especially fine particles containing ammonium, 
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sulphate and nitrate, can be incorporated as cloud condensation nuclei (CNN) into cloud 

droplets (Sievering et al., 1984; Perry and Hobbs, 1994). The capability of an aerosol to 

be CCN depends on the particle number concentration and size distribution of the 

particles as well as chemical composition and the mixing state (Martinsson et al., 1999). 

There is little information on the scavenging of organic compounds within cloud by 

nucleation but it cannot be ignored. The organic compounds, in particular, have to be 

investigated further in terms of the effects of surface active compounds, effect on the 

droplet nucleation process and possible contribution to their total particle scavenging. In-

cloud scavenging collection mechanisms also include Brownian diffusion, directional 

interception, inertial impaction and electrical charge effects, all of which generally are 

affected by particle size distribution (Chate, 2005). Brownian diffusion is the main 

removal process for 0.01 ~ 0.5 µm particles while the particles in 0.5 ~ 2.0 µm are too 

large to have sufficient Brownian diffusivity and too small to get effectively collected by 

inertial impaction or directional interception (Laakso et al., 2003; Ma et al., 2004); in 

addition, the electrical force is one of the major effects for particles smaller than 1 µm 

(Jaward et al., 2005). In addition, the aerosol vertical profiles are quite important to 

rainwater concentrations by below-cloud scavenging (Gonçalves et al., 2000). The 

vertical distribution of aerosols partly depends on the position and strength of their 

sources. In general, the concentrations of aerosols (e.g. PM2.5) decrease with height 

because most sources are at or close to ground level (Qi et al., 2000; Xu et al., 2006). The 

vertical profile is also strongly affected by the extent of the atmospheric boundary layer 

and meteorological conditions (Tao et al., 2007). Unfortunately, evolutions of aerosol 

particle size distribution as well as the vertical profile of aerosols at various heights were 
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not investigated before and after rain events in this study. However, the contributions of 

electrical effects in collision efficiency combined with the Brownian diffusion, 

directional interception and inertial impaction have to be considered on in-cloud particle 

scavenging ratios and the below-cloud modeling coupled with different aerosol vertical 

profiles need to be explored in future research. 

In Equation 7.5, the gas scavenging is modified to include SVOCs dissolution into 

bulk rainwater and adsorption to the surface of raindrops, both of which are strong 

functions of particle fraction Φ. Since Φ is highly dependent on supercooled vapor 

pressure and ambient temperature, a relationship between dissolution (WG,DISS) or 

adsorption (WG,ADS) might be expected as plotted in Figure 7.3.  As supercooled vapor 

pressure decreased, the gas scavenging ratios for both adsorption and dissolution 

increased. From Table 7.2, it can be seen that WG,DISS ranges from  ~20 to as high as 104, 

and the WG,ADS ranges from <1 to as high as 105.  Since the slopes of log WG,DISS vs. log 

PL
o and log WG,ADS vs. log PL

o are different, both trends intersect as shown in Figure 7.3. 

At a supercooled vapor pressure of approximately 10-3.5~10-4 Pa, the relative importance 

shifted from dissolution dominated scavenging to adsorption dominated scavenging with 

decreasing of PL
o.  This observation was supported by the theoretical simulation of 

adsorption and dissolution scavenging for PAHs at assumed rainfall intensity (10 mm h-1) 

and full range of particle fraction (Φ: 0~100%) (Simcik, 2004).  SVOCs of interest with 

supercooled vapor pressures between 10-3.5 and 10-4 Pa used in this study mainly include 

PAHs with five or more aromatic rings.  From Table 7.3,  it can be observed that for 

B(b)F, B(k)F, B(a)P, Ind and B(ghi)P, the relative contributions of WG,ADS to WT were 

more dominant than those of WG,DISS to WT. In the case of Ind and B(ghi)P, their WG,ADS 
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contribution to the total scavenging can account for ~13%.  As mentioned above, this 

study cannot distinguish the contribution of nonfilterable submicron particles to the gas 

scavenging. Particle size distribution analysis might need to be considered in the future 

study. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
                    
 

Figure 7.3. Relationship between WG,DISS, WG,ADS and PL
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7.5. Conclusion 

This research was conducted to study the precipitation scavenging of PAHs and 

OCPs in Singapore, a country representing SEA in this study.  Particle scavenging was 

the dominant contributor to the total scavenging in precipitation.  Both WT and WP tended 

to be greater for less volatile SVOCs, but the values were more invariant as compared to 

those reported in the literature, which was most likely due to the uniform ambient 

temperature prevailing throughout the year in Singapore.  Relationships between particle 

fraction (Φ), supercooled vapor pressure (PL
o), rainfall intensity, and WP were 

investigated. Particle scavenging decreased with particle fraction Φ, but increased with 

supercooled vapor pressure. This observation suggests that the particle scavenging by 

rain is less efficient for higher molecular weight SVOCs, while lower molecular weight 

SVOCs with more volatility may have been associated with larger particles that were 

scavenged more efficiently.  In addition, the meteorological factors such as rain droplet 

size distributions and collision efficiency between particles and rain droplets also have to 

be considered since WP and rainfall intensity were positively correlated with significance 

of p<0.05. Other than the contribution from dissolved SVOCs in rainwater, the 

adsorption of SVOCs onto the surface of rain droplets might be dominant for those with 

suitable supercooled vapor pressure. For HMW PAHs such as Ind and B(ghi)P, their 

WG,ADS contribution to the total scavenging could be up to ~13%.  
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Chapter 8. The Exchange of SVOCs Across The Air-Sea 

Interface In Singapore’s Coastal Environment 

8.1. Introduction 

Major urban and industrial centers increase loadings of SVOCs to proximate sea 

waters through riverine transport, atmospheric deposition via dry particle deposition, wet 

deposition, and air-sea gas exchange (McVeety and Hites, 1988; Bidleman et al., 1995; 

Park et al., 2002; Fang et al., 2008). In addition to acting as sinks for SVOCs, oceans can 

act as sources of SVOCs to coastal atmospheres and play important roles in the global 

biogeochemistry of SVOCs (Hinckley et al., 1991; Dachs et al., 1999; Dachs et al., 2002).  

Particle-sorbed SVOCs can settle to the ocean surface by dry particle deposition, a uni-

directional advective transport process from the atmosphere to the water, the removal rate 

by which is a function of the physical and chemical properties of the aerosols and bound 

pollutants, meteorological conditions and surface characteristics (Wania et al., 1998; 

Odabasi et al., 1999).  In addition, SVOCs are removed from the atmosphere and 

transported to the waters by precipitation scavenging of atmospheric vapors and particles, 

which are incorporated into the rain within or below the clouds.  After SVOCs are 

deposited into the bulk seawater, water-column partitioning can affect the distribution of 

pollutants between the dissolved aqueous and the solid phases and eventually impact the 

fate of these compounds in oceans (Luo et al., 2004). Other than the abovementioned 

processes, air-sea exchange can make SVOCs diffuse across the air-sea interface; 

however, the sea surface microlayer (SML), a unique compartment at the air-sea 

boundary defined operationally as the upper millimeter (1 ~ 1000 µm) of the sea surface, 
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has large storage capacity to delay the transport of SVOCs across the interface. This 

interfacial effect has been reported to be responsible for the enrichment of contaminants 

in the SML (Hardy, 1982; Chernyak et al., 1996; Wurl et al., 2006b). 

Although a considerable number of studies as mentioned above have been 

conducted to assess the SVOCs exchange between air-sea interface across wide 

geographical areas, little work has been done to determine the significance of these fate 

and transfer processes of SVOCs in SEA.  The tropical regions of Asia are considered to 

be an important source of many SVOCs (Iwata et al., 1994) as stated before. Those 

SVOCs with a log KOA of around 8 and a log KOW of around -2 such as PCBs and OCPs 

can be classified as “multi-hoppers”, which can volatilize effectively after deposition to 

either soils and waters and thus undergo “multiple hops” to migrate from tropical to 

temperate and even polar regions (Wania, 2003).  In SEA, Basheer et al. (2003) (Basheer 

et al., 2003b) have characterized persistent organic pollutants (PAHs, OCPs and PCBs) in 

Singapore’s northeastern and southwestern coastlines surface seawater, but have not 

investigated any air-sea exchange processes mentioned above.  Wurl et al.  (Wurl et al., 

2006c) have studied the distribution of organochlorine compounds (OCCs, including 

OCPs and PCBs) in the SML and subsurface water (SSW) in Hong Kong. Wurl and 

Obbard  (Wurl et al., 2006b) have also determined the occurrence of OCs in the water 

column of shallow Johor Strait, between Malaysia and northeastern Singapore, by short-

term measurements; in addition, Wurl et al. (2006a) have investigated the role of the 

SML in air-sea gas exchange of OCs by snapshot sampling in the same sites of Johor 

Straits. However, the latter work by Wurl et al. (2006a) was just focused on diffusive 

exchange, one of the air-sea exchange processes only.  
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In this study, dry particle deposition and wet deposition of selected SVOCs were 

investigated based on an extensive set of yearly data.  In addition to receiving riverine 

inflows and direct emissions, coastal areas tend to experience higher atmospheric 

deposition than the rest of the oceans due to the proximity to the sources which are 

predominantly land-based. Singapore, a representative country of SEA, is a small but 

highly developed island with dense industrial parks in the Southwestern part, where the 

terrestrial sources affect the surrounding coasts.  In this study, Singapore’s Southern 

coastline was chosen during the Northeast monsoon season to evaluate if this coastal area 

is a sink or source for selected SVOCs via air-sea diffusive exchange as well as to 

investigate the SML enrichment effect.  Furthermore, the water-column partitioning was 

assessed by a short-term measurement on different aquatic particulate matrices in the 

ocean.                                                        

8.2. Theoretical Approach 

Atmospheric sampling was conducted in this study for each event in a consistent 

manner (24 ~ 48 h at 250 L min-1); weekly concentrations of SVOCs in the atmosphere 

were computed as arithmetic mean values. In the case of rainwater, the rainfall amount 

for each event varied. Hence, those concentrations were calculated as volume-weighted 

mean (VWM) values. 

Dry particulate and wet deposition flux can be calculated according to 
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where i
AC , i

VWMC  are the monthly particulate concentration of pollutant in air (ng m-3) and 

monthly total (dissolved plus particulate) concentration of pollutant in rain (ng L-1), 

respectively; dV is the deposition velocity (ms-1) and i
WP  is the rainfall (mm) for sampling 

month (i).  Vd at a particular vertical height is calculated as the inverse of the sum of a 

number of resistances (Seinfeld and Pandis, 2006) using the following equation. 

                         
1

d s
a b a b s

V v
R R R R v

 
 

      (8.3) 

where vs is the gravitational settling velocity (a function of particle size, density, and 

viscosity), Ra is aerodynamic resistance refers to turbulent transport from the free 

atmosphere down to the receptor surface (Ra =9/[uσθ
2], which is a function of wind speed, 

u and standard deviation of wind speed, σθ (Turner, 1986) and Rb is quasi laminar layer 

resistance, which is a function of particle size, Brownian diffusion, interception and 

impaction; Rb on water surface is given by van den Berg et al.( 2000). Each Ra and Rb is 

site specific and determined to a large extent by atmospheric properties. Meteorological 

parameters such as ambient temperature (K) of 299.6 ~ 303.2, wind speed (m s-1) of 1.1 ~ 

3.6, and standard deviation of wind direction σθ (rad) of 0.13 ~ 0.78 were observed 

during the sampling period.  In SEA air, a majority of aerosols observed in the size range 

of 0.1–20 µm by the optical counter was in the fine mode (less than 1 µm) (Kondo et al., 

2004).  

SVOCs in the water column partition into three phases: the truly dissolved phase, 

the particulate phase and the colloidal organic material (Totten et al., 2001). The truly 

dissolved and colloidal phases can be categorized as apparent dissolved phase, which 

refers to the non-filter retained fraction. The partitioning of SVOCs onto particulate and 
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colloidal phases results in the removal of SVOCs from surface layers via gravitational 

settling and consequently reduces their volatilization rates (Wania et al., 1998).  Based on 

the empirical estimation of sorption of hydrophobic pollutants onto natural sediments and 

soils (Karickhoff, 1981) and its application into water-column by Totten et al. (2001), the 

relationship between partition coefficient KOC and KOW can be derived as follows:  

log log( ) logP
OC OW

OC

K
K a K b

f
        (8.4) 

where KOC equals partition coefficient KP normalized by organic carbon fraction (fOC) in 

particulate phase. KP refers to the partitioning in the water column between the apparent 

dissolved and particulate phase (Totten et al., 2001), calculated as CP/(Cd,a × TSM) (CP: 

the concentration of SVOCs associated with the particulate phase; Cd,a: the concentration 

in the apparent dissolved phase; and TSM: the concentration of total suspended matter). 

KOW (L kg-1) was obtained from the best available experimental data and predictive 

models with careful evaluations (de Lima Ribeiro and Ferreira, 2003; Xiao et al., 2004; 

Shen and Wania, 2005; Zhou and Zhu, 2005; Lü et al., 2007). Since the temperature 

dependence of KOW for selected SVOCs is not significant (Bahadur et al., 1997; Lei et al., 

2000) and the temperature of seawater varied by no more than 4oC in this study, KOW has 

not been corrected for temperature.  

To accommodate additional sorption to soot phase, Accardi-dey and Gschwend 

(2002) modified Gustafsson’s model (Gustafsson et al., 1997) to yield a dual OC/BC 

model: 

1
,

n
P OC OC SC SC d aK f K f K C         (8.5) 

where fSC, KSC are soot carbon fraction in particulate phase of seawater and soot-water 

partition coefficient, respectively, and n is Freundlich constant. If n = 1, this model 
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assumes that soot-water partition was a linear isotherm, otherwise it is a nonlinear 

process. This model has been applied to multi media and especially the sediment-water 

(porewater) partitioning (Gustafsson et al., 1997; Cornelissen and Gustafsson, 2005; 

Prevedouros et al., 2008). Considering the similarity of distribution between sediment / 

water and between particulate/water in sea water column, Equation (8.5) can be 

reasonably applied to the latter process.  

The apparent dissolved concentrations of SVOCs (Cd,a) is the sum of the truly 

dissolved (Ctruly) and colloidal(CDOC, DOC-dissolved organic carbon, mg L-1) phases, 

onto both of which the fractions of SVOCs partitioned can be estimated as described in 

equation (8.5) by Totten et al.(2001) and 0Wurl et al., 2006a) 

7
, (1 10 )d a truly DOC truly OWC C C C K DOC          (8.6) 

A classical two-layer model, which has been previously applied to the air-sea 

exchange of SVOCs (Achman et al., 1993; Zhang et al., 2007; Li et al., 2009), assumes 

that the rate of gas transfer is controlled by the pollutant’s ability to diffuse across the air 

layer and sea surface water on either side of the air-water interface. The molecular 

diffusivity of the pollutant, dependent on the amount of resistance encountered in the 

liquid and gas films, describes the rate of transfer while the concentration gradient drives 

the direction of transfer (Totten et al., 2001).  The flux, F (ng m-2 day-1), is calculated by 

Equation 2.15. A positive flux indicates net volatilization out of the seawater and a 

negative flux indicates net absorption into the seawater. The overall mass transfer 

coefficient (KOL) comprises resistances to mass transfer across the air layer and the water 

layer, estimated by Equation 2.16. 
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The mass transfer coefficient Ka,comp (cm s-1) for a compound in air was calculated 

using the following equation  (Schwarzenbach et al., 2003): 

2

2

0.5 0.67
, , ( )H O

a comp a H O
comp

M
K K

M
       (8.7)  

where 
2,a H OK = 0.2×u10 + 0.3 and M (g mol-1) is molar mass of the compound. 

Wanninkhoff’s quadratic equation (Wanninkhof, 1992) for the mass transfer coefficient 

Kw has been applied in a number of studies (Totten et al., 2001; Wanninkhof et al., 2004; 

Wurl et al., 2006a), but this relationship was a semi-empirical estimation with low 

correlation (r2 = 0.66) only at steady winds. A more robust model was thus used in this 

study to calculate Kw,comp (cm s-1) for compounds of interest (Schwarzenbach et al., 2003): 
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(8.8) 

where the Schmidt number, Sc, is the ratio of kinematic viscosity νkin (cm2 s-1) and 

diffusivity D (cm2 s-1) by Sc= νkin/D. The kinematic viscosity of seawater is obtained 

using the method recommended by Chen et al. (1973). The diffusivities of compounds of 

interest in seawater were calculated using Equation (8.9) developed by Wilke and Chang 

(1955). 

0.5
8

0.6

(2.6 )
7.4 10 comp

comp

M T
D

V
         (8.9) 

where T is the average temperature during each sampling event, Vcomp is the molar 

volume of compound investigated (Mackay et al., 1992, 1996) and η is equal to the 
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kinematic viscosity of solution (in this case referring to seawater). The important 

parameters involved in the abovementioned equations are listed in Table 8.1. 
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Table 8.1. Relevant  parameters used in this study (source indicated in the text) 
 

Compound log KOW H΄(×10-4) Ka,comp (cm s-1) D (× 10-5 cm2 s-1) Sccomp(×10-4) Vcomp (cm3 mol-1) Kw,comp(×10-5cm s-1) 

Naph 3.37 1.28 ~ 1.48 0.99 ~ 1.96 1.95 ~ 2.00 4.46 ~ 4.72 169.8 3.49 ~ 3.62 
Ace 3.92 79.5 ~ 88.8 1.06 ~ 2.08 2.12 ~ 2.17 4.12 ~ 4.36 173.0 3.68 ~ 3.82 
Flu 4.18 45.4 ~ 50.4 1.09 ~ 2.13 2.09 ~ 2.14 4.17 ~ 4.42 188.0 3.65 ~ 3.79 
Phe 4.57 19.7 ~ 21.7 1.11 ~ 2.19 2.09 ~ 2.14 4.17 ~ 4.41 199.0 3.65 ~ 3.79 
Ant 4.54 23.9 ~ 26.5 1.11 ~ 2.19 2.10 ~ 2.16 4.14 ~ 4.39 197.0 3.67 ~ 3.81 
Flt 5.22 8.17 ~ 8.84 1.16 ~ 2.28 2.11 ~ 2.17 4.12 ~ 4.37 217.3 3.68 ~ 3.82 
Pyr 5.18 8.12 ~ 8.90 1.16 ~ 2.28 2.13 ~ 2.19 4.09 ~ 4.33 214.0 3.70 ~ 3.84 
B(a)A 5.91 5.42 ~ 6.20 1.21 ~ 2.37 2.07 ~ 2.13 4.20 ~ 4.45 248.0 3.63 ~ 3.77 
Chry 5.86 2.58 ~ 3.20 1.21 ~ 2.37 2.06 ~ 2.11 4.23 ~ 4.48 251.0 3.61 ~ 3.75 
B(b)F 5.75 0.29 ~ 0.32 1.25 ~ 2.46 2.08 ~ 2.13 4.19 ~ 4.44 268.9 3.63 ~ 3.78 
B(k)F 6.00 0.26 ~ 0.29 1.25 ~ 2.46 2.08 ~ 2.13 4.19 ~ 4.44 268.9 3.63 ~ 3.78 
B(a)P 6.04 0.20 ~ 0.22 1.25 ~ 2.46 2.11 ~ 2.16 4.14 ~ 4.38 263.0 3.67 ~ 3.81 
Ind 6.54 0.15 ~ 0.16 1.29 ~ 2.53 2.14 ~ 2.19 4.08 ~ 4.32    277.0 a 3.70 ~ 3.85 
B(ghi)P 6.50 0.14 ~ 0.15 1.29 ~ 2.53 2.14 ~ 2.19 4.08 ~ 4.32 277.0 3.70 ~ 3.85 
α-HCH 3.82 1.47 ~ 1.61 1.31 ~ 2.57 2.37 ~ 2.43 3.68 ~ 3.90 243.6 3.97 ~ 4.12 
β-HCH 3.80 0.17 ~ 0.19 1.31 ~ 2.57 2.37 ~ 2.43 3.68 ~ 3.90 243.6 3.97 ~ 4.12 
γ-HCH 3.72 1.10 ~ 1.15 1.31 ~ 2.57 2.37 ~ 2.43 3.68 ~ 3.90 243.6 3.97 ~ 4.12 
4,4'-DDD 6.33 4.80 ~ 5.22 1.35 ~ 2.66 2.14 ~ 2.19 4.08 ~ 4.32 312.6 3.70 ~ 3.85 
4,4'-DDE 6.93 29.0 ~ 33.1 1.35 ~ 2.65 2.16 ~ 2.22 4.03 ~ 4.27 305.2 3.73 ~ 3.88 
4,4'-DDT 6.39 5.05 ~ 5.73 1.40 ~ 2.75 2.16 ~ 2.22 4.03 ~ 4.26 333.5 3.73 ~ 3.88 
a. The molar volume of Ind is not available yet to the best of our knowledge. Due to its similarity of molecular structure and weight to B(ghi)P, it is reasonably 
presumed that the molar volume of B(ghi)P could be used for Ind. 
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8.3. Experimental  

8.3.1. Sampling 

Dry and Wet Deposition Sampling. For the study of depositional fluxes of 

selected SVOCs, both the atmospheric and precipitation samples were collected 

simultaneously at the National University of Singapore (NUS) atmospheric research 

station. Altogether, 37 atmospheric particulate samples and 32 rainwater samples were 

collected under different weather conditions between June 2007 and May 2008. More 

details are shown in Section 5.2.1. The SSW and SML samples were collected as 

described in Section 3.2. The relevant meteorological parameters (air temperature, 

rainfall, wind speed, etc.) were obtained from an automated NUS weather station located 

in the same building where the atmospheric station is located. This meteorological station 

has been in operation to provide real-time meteorological data to the NUS community. 

After collection, all water samples were filtered with pre-cleaned (heated at 450 oC for 24 

h) Whatman GF/F filters (0.7 µm, 47mm i.d.). The actual volume of each sample 

collected was measured and recorded after filtration. Before and after filtration, GF/F 

filters were conditioned in a dry box (maintained at 22oC and 30% RH), and then 

weighed to calculate the mass of suspended particles.   

8.3.2. Sample Preparation and Analysis 

Prior to extraction, surrogate compounds were added to all samples.  Water filters, 

aerosol filters and PUF samples were extracted separately by Dionex ASE 200 All 

filtered water samples were extracted on the same day as collection via liquid-liquid 
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extraction using 3 × 50 ml DCM aliquots in a two liter separatory funnel (EPA method 

3510C). Details of extraction for both air and water samples are shown in Section 5.2.2. 

After purification by the protocol in Section 4.2.3, all extracts were finally blown by 

gentle nitrogen stream and reduced to 50 µL with internal standards, and kept in sealed 

vials at -20oC prior to GC-MS analysis. Chemical analysis was performed using a GC-

MS (Shimadzu QP2010, Japan) equipped with an auto injector (Shimadzu AOC-5000 , 

Japan) and a DB-5 fused silica capillary column (30m length and 0.25mm I.D; film 

thickness 0.25μm) with purified helium as carrier gas. Organic carbon (OC) and 

elemental carbon (EC) were determined as described in Section 3.4.7. 

8.3.3. Quality Control 

The analytical quality was guaranteed by the same protocol as described in 

Section 5.2.3.  

8.4. Results and Discussion 

8.4.1. Dry and Wet Depositions of SVOCs  

Both dry and wet depositions were estimated on an annual basis based on the 

monthly concentrations of SVOCs as shown in Figure 8.1 using Equations (8.1) and (8.2), 

respectively. Vd (0.003 m s-1) was not derived from sampling with dry deposition plates in 

this study but calculated using Equation (8.3), which is also in the range of 0.001-0.01 m 

s-1 for PAHs, OCPs and PCBs as reported in the literature (Eisenreich et al., 1981; 

McVeety and Hites, 1988; Hoff et al., 1996). Concentrations of PCBs in both dissolved 

and particulate phases of all rainwater samples were below the limits of detection in this 

study. 
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Figure 8.1. Seasonal variation in both dry and wet depositions of selected SVOCs between Jun 2007 and May 2008 (a) dry deposition 
and (b) wet deposition



 163

In Singapore’s coastal area, the monthly dry deposition fluxes for PAHs, OCPs 

and PCBs were in the range of 46.0 ~ 275.6 µg m-2 month-1, 60.7 ~ 906.1 ng m-2 month-1 

and 3.1 ~ 93.1 ng m-2 month-1, respectively.  A significant increase in the dry deposition 

fluxes of most investigated pollutants was observed during the pre-NE monsoon (Oct-

Nov 2007) as shown in Figure 8.1(a), especially for PAHs. In this area, periodical 

monsoon winds could assist in dispersing aerosol particles during NE and SW monsoon 

seasons; the lighter winds during the pre-monsoon seasons (Apr-May and Oct-Nov) 

might strengthen the accumulation of particulate SVOCs. The monthly wet deposition 

flux for PAHs and OCPs ranged from 70.0 ~ 363.5 µg m-2 month-1 and 4.7 ~ 39.9 µg m-2 

month-1, respectively. High wet deposition fluxes were observed from Dec 2007 to Mar 

2008 for both PAHs and OCPs (Figure 8.1(a) in sharp contrast to the low dry deposition 

fluxes during the same period (Figure 8.1(b)). The rainy season during the period from 

Dec 2007 to Mar 2008 might have contributed to pronounced wet scavenging of aerosols 

containing SVOCs from the atmosphere. On the other hand, the peak in the dry 

deposition flux observed during Oct and Nov 2007 was likely be due to the typical low 

wind speeds during pre-monsoon seasons and the relatively less rainfall. 
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Table 8.2. Annual Mean Atmospheric Fluxes of selected SVOCs 
 

Compound 
Dry deposition flux 
(Mean ± S.D.) 

Wet deposition flux 
(Mean ± S.D.) 

Air-sea exchange 
(Mean ± S.D.) 

PAHs µg m-2 y-1 µg m-2 y-1 ng m-2 day-1 

Naph 65.3 ± 56.0 850.7 ± 428.8 -1608.4 ± 869.6 
Acy 28.0 ± 13.1 62.9 ± 60.9 - 
Ace 32.7 ± 20.5 102.7 ± 106.5 -36.5 ± 8.0 
Flu 19.6 ± 10.3 82.6 ± 46.0 -27.3 ± 22.0 
Phe 130.6 ± 78.4 554.4 ± 395.6 -457.7 ± 489.7 
Ant 19.6 ± 14.0 68.1 ± 91.4 -210.6 ± 53.9 
Flt 112.0 ± 88.6 165.6 ± 133.2 -394.5 ± 283.5 
Pyr 140.0 ± 13.1 162.2 ± 156.5 -674.4 ± 359.3 
B(a)A 62.5 ± 52.3 47.2 ± 39.2 -192.2 ± 137.4 
Chry 121.3 ± 102.6 108.3 ± 95.2 -825.1 ± 669.0 
B(b)F 102.6 ± 78.4 142.1 ± 107.7 -383.1 ± 131.7 
B(k)F 62.5 ± 72.8 12.4 ± 14.3 -405.6 ± 386.8 
B(a)P 75.6 ± 89.6 7.7 ± 6.8 -630.0 ± 563.0 
Ind 149.3 ± 168.0 11.9 ± 7.8 -21.7 ± 20.2 
DB(ah)A 39.2 ± 67.2 27.1 ± 15.9 - 
B(ghi)P 168.0 ± 121.3 42.2 ± 39.4 -17.0 ± 6.6 
Σ PAHs 1328.8 ± 961.1 6,667.1 ± 1,745.2 -5884.0 ± 4040.7 
OCPs ng m-2 y-1 µg m-2 y-1 ng m-2 day-1 
α-HCH 1847.6 ± 1136.8 45.5 ± 36.8 -73.7 ± 31.3 
β-HCH 625.2 ± 439.8 8.7 ± 8.8 -44.4 ± 37.8 
γ-HCH 1390.3 ± 711.5 24.4 ± 19.1 -48.4 ± 30.4 
δ-HCH 933.1 ± 765.2 5.8 ± 4.6 - 
4,4'-DDD 54.1 ± 74.6 0.45 ± 0.44 -2.9 ± 1.8 
4,4'-DDE 41.1 ± 35.5 0.71 ± 0.89 -0.74 ± 0.67 
4,4'-DDT 531.9 ± 261.3 1.9 ± 1.4 -1.1 ± 0.85 
Σ OCPs 5421.4 ± 3426.7 87.5 ± 72.1 -171.3 ± 102.8 
PCBs ng m-2 y-1  
CB 17+18 58.8 ± 34.5 - - 
CB 28+31 14.9 ± 10.9 - - 
CB 33 9.3 ± 2.8 - - 
CB 52+49 34.5 ± 22.4 - - 
CB 44 31.7 ± 22.4 - - 
CB 74 29.9 ± 23.3 - - 
CB 70+95 17.7 ± 13.1 - - 
CB 101 39.2 ± 46.7 - - 
CB 99 24.3 ± 16.8 - - 
CB 110 34.5 ± 28.0 - - 
CB 149 168.0 ± 105.3 - - 
CB 138+158 121.3 ± 79.3 - - 
CB 171 63.5 ± 9.3 - - 
CB 177 43.9 ± 21.5 - - 
CB 180 51.3 ± 49.5 - - 
CB 183 72.8 ± 9.3 - - 
Σ PCBs 811.8 ± 578.3 - - 
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  The mean annual atmospheric fluxes of selected SVOCs are summarized in 

Table 8.2. Particulate dry deposition fluxes of ∑16PAHs, ∑7 OCPs and ∑21 PCBs were 

1328.8 ± 961.1 µg m-2 y-1, 5421.4 ± 3426.7 ng m-2 y-1 and 811.8 ± 578.3 ng m-2 y-1, 

respectively.  The dry particulate deposition fluxes of ∑7OCPs and ∑21 PCBs were much 

lower than that of ∑16-PAHs. This is most likely due to the local heavy PAH emissions 

into the atmosphere.  In addition, the wet deposition fluxes of ∑16PAHs and ∑7 OCPs 

were 6,667.1 ± 1,745.2 and 87.5 ± 72.1 µg m-2 y-1, respectively, which were much more 

dominant over their dry particulate deposition fluxes. However, it has to be noted that 

only particles were considered for dry deposition, but both particulate and dissolved 

phases were included for wet deposition in this study.  

The profile of particulate ∑16PAHs fluxes was dominated by B(ghi)P (12.8%), 

Ind (11.4%), Pyr (10.7%), Phe (10.0%) and Chry (9.3%) on an annual basis; and in wet 

precipitation, the dominant pollutants were Naph, Phe, Flt and Pyr, accounting for 12.8%, 

8.3%, 2.5% and 2.4% of the ∑16PAHs fluxes, respectively. Previous studies indicated that 

volatile organic compounds could be redistributed onto larger particles via gas-particle 

partitioning, while the less volatile compounds tend to stay on the particles on which they 

were emitted (Sahu et al., 2004; He and Balasubramanian, 2009).  One can see in Table 

8.2 that the dry deposition fluxes of high molecular weight (HMW) PAHs are comparable 

to those of low molecular weight (LMW) PAHs. HMW PAHs have been reported to 

contribute more to the dry deposition (Gigliotti et al., 2002), this anomaly in present 

study may be because the particulate fractions of LMW PAHs in aerosols which prefer to 

be in coarse-mode readily settled. Table 8.2 clearly shows that the contribution of the 

LMW PAH pollutants in wet deposition was increased as compared to those in dry 
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deposition. The main processes contributing to wet deposition fluxes of SVOCs are 

precipitation scavenging of particle-sorbed and gaseous chemicals, but particle 

scavenging, rather than the gas scavenging, is the dominant removal mechanism 

(Offenberg and Baker, 2002; Sahu et al., 2004). The below-cloud scavenging rates 

increase with particle size because the collision efficiency of particle-droplet encounter 

increases with increasing particle diameters (Calderón et al., 2008). In this study, it is 

understandable that the washout of those volatile pollutants attached with coarse particles 

dominated the wet depositional flux of SVOCs such as LMW PAHs and HCHs, 

considering the high rainfall amount and precipitation intensities in Singapore. However, 

scavenging of fine particles needs to be considered and could contribute as well via 

nucleation, Brownian diffusion, etc (Perry and Hobbs, 1994; Chate, 2005).  

8.4.2. Water Column Partitioning 

In sea subsurface water (SSW), the apparent dissolved and particulate occurrence 

levels of SVOCs are reported in Table 8.3. The mean concentrations of PAHs were 43.9 

± 35.8 and 131.4 ± 101.8 ng L-1 for both phases, respectively, showing a 3-fold 

enrichment of PAHs in the suspended particulate-phase in this marine environment.  For 

HCHs and DDTs, the total mean concentrations were 1147.8 ± 898.5 and 361.9 ± 271.8 

pg L-1 in the dissolved phase, and 728.9 ± 622.0 and 560.3 ± 501.5 pg L-1 in the 

particulate phase, respectively. The levels of both HCHs and DDTs were comparable to 

those reported for Straits of Johor located between Singapore and Malaysia previously 

reported by Wurl et al. (2006b). 
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Table 8.3. Concentrations of SVOCs in SSW, SML and atmospheric gas phases during Nov to Dec 2007 in Singapore’s coastal area 
 

SSW SML Gas 
Compound 

C d,a Cp FDOC,C (%) C d,a Cp Ca 

PAHs  ng L-1  ng L-1 ng m-3 

Naph 18.4 ± 10.6 33.5 ± 23.8 0.10 ± 0.13 19.6 ± 16.1 43.2 ± 22.2 8.7 ± 6.0  

Ace 0.58 ± 0.39 3.1 ± 1.8 0.32 ± 0.47 1.4 ± 1.5 2.7 ± 1.6 0.98 ± 0.84 

Flu 2.3 ± 3.6 6.1 ± 4.6 0.58 ± 0.44 4.7 ± 3.5 11.0 ± 10.2 3.7 ± 3.2 

Phe 6.2 ± 2.0 17.7 ± 8.4 1.4 ± 1.2 16.9 ± 12.1 60.6 ± 20.5 34.8 ± 22.4 

Ant 0.38 ± 0.25 1.5 ± 2.6 1.3 ± 0.92 2.1 ± 3.0 6.8 ± 4.4 3.4 ± 1.8 

Flt 5.8 ± 9.1 6.5 ± 8.6 5.5 ± 3.2 3.8 ± 2.6 17.2 ± 3.3 51.8 ± 38.7 

Pyr 1.1 ± 0.43 3.9 ± 2.5 5.1 ± 5.7 7.4 ± 5.9 19.6 ± 4.5 56.3 ± 44.1 

B(a)A 1.3 ± 1.2 9.2 ± 5.9 18.7 ± 14.8 2.5 ± 2.1 20.0 ± 8.5 15.1 ± 25.9 

Chry 1.5 ± 1.4 6.8 ± 4.1 17.3 ± 12.0 3.2 ± 2.1 26.5 ± 14.7 8.0 ± 5.9 

B(b)F 0.74 ± 0.50 5.6 ± 5.2 14.5 ± 13.2 4.2 ± 2.2 25.1 ± 15.3 1.9 ± 0.96 

B(k)F 0.58 ± 0.36 8.4 ± 6.1 21.4 ± 19.1 1.7 ± 1.3 27.9 ± 18.5 0.61 ± 0.56 

B(a)P 1.2 ± 0.72 15.7 ± 11.0 22.7 ± 16.3 4.5 ± 4.2 47.6 ± 27.9 0.85 ± 0.74 

Ind 0.91 ± 1.6 5.1 ± 8.4 42.5 ± 23.9 3.1 ± 1.5 12.7 ± 8.7 0.026 ± 0.014 

DB(ah)A 2.1 ± 2.8 0.97 ± 0.72 51.9 ± 24.7 1.9 ± 1.3 3.0 ± 2.7 0.010 ± 0.007 

B(ghi)P 0.87 ± 0.79 7.3 ± 8.1 40.7 ± 23.8 3.8 ± 2.0 26.3 ± 12.5 0.028 ± 0.025  

∑PAHs 43.9 ± 35.8 131.4 ± 101.8  80.8 ± 61.3 365.3 ± 209.1 187.5 ± 138.3 
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OCPs  pg L-1  pg L-1 pg m-3 

α-HCH 403.3 ± 206.7 230.0 ± 186.9 0.26 ± 0.37 509.7 ± 194.4 465.5 ± 249.9 415.5 ± 135.7 

β-HCH 306.5 ± 280.2 326.6 ± 258.9 0.25 ± 0.36 835.3 ± 533.9 506.7 ± 314.4 238.6 ± 143.1 

γ-HCH 257.4 ± 181.2 112.7 ± 131.4 0.20 ± 0.30 232.2 ± 240.2 230.5 ± 145.9 195.9 ± 193.6 

δ-HCH 180.6 ± 230.4 59.6 ± 44.8 - 310.5 ± 319.5 208.9 ± 219.2 109.1 ± 101.3  

∑HCHs 1147.8 ± 898.5 728.9 ± 622.0  1887.8 ± 1288.1 1411.7 ± 929.5 958.9 ± 336.7 

4,4'-DDD 28.6 ± 22.4 8.7 ± 7.9 33.4 ± 22.7 39.3 ± 36.9 26.3 ± 32.5 7.5 ± 5.9 

4,4'-DDE 91.2 ± 50.5 10.3 ± 16.1 40.1 ± 33.9 165.9 ± 50.6 34.6 ± 20.3 3.3 ± 2.4 

4,4'-DDT 242.1 ± 198.9 541.3 ± 477.5 35.9 ± 23.1 290.6 ± 130.2 1179.8 ± 872.4 28.7 ± 11.5 

∑DDTs 361.9 ± 271.8 560.3 ± 501.5  493.4 ± 214.1 1240.7 ± 925.1 39.5 ± 7.7 

* C d,a: concentration in apparent dissolved phase; CP, concentration in suspended particulate phase in seawater; FDOC,C: the fraction of 
SVOCs sorbed onto DOC; Ca, concentration in atmospheric gas 
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8.4.2.1. Relationship between KOC and KOW  

The organic carbon-normalized partition coefficients between particulate and 

dissolved phases (KOC) for both PAHs and OCPs were obtained based on the data 

obtained from field measurements. The relationships between KOC of PAHs and OCPs 

and their respective KOW were investigated with the inclusion of predicted KOC values by 

Karickhoff’s model (Karickhoff, 1981) as in Figure 8.2.  In Figure 8.2(a), the observed 

KOC values, especially for those PAHs with smaller KOW, are much larger than predictions 

and the log KOC is poorly correlated with log KOW with low slope value of 0.13 only.  It 

has been suggested that the slope of log KOC/log KOW relation should be equal to 1 when 

partitioning is in equilibrium (Chiou et al., 1983; Gschwend and Wu, 1985). Researchers 

initially hypothesized that the significant deviation from 1 may mainly be due to the non-

equilibrium or the sorption of compounds to colloids but not particulate phase (Gschwend 

and Wu, 1985). Till now, a number of studies have reported that the field measured KOC 

values were higher than the theoretically predicted ones in many different settings such as 

lake, sediments, and rain water (Baker et al., 1991; Poster and Baker, 1996a; Accardi-dey 

and Gschwend, 2002). These results suggest the presence of particulate phase like soot 

(black carbon), to which the parent PAHs are more strongly associated than with natural 

organic matter/carbon. In contrast, field-obtained KOC values for OCPs are correlated 

better with KOW with a slope of 0.79 closer to theoretical value and greater R2 = 0.66 

(Figure 2(b)). In addition, these KOC for OCPs are typically lower, but agree better with 

the model simulations, indicating the dominant influence of organic-carbon on water 

column partitioning for OCPs.  Similar observations for hydrophobic polychlorinated 
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biphenyls (PCBs) have been widely reported as well (Baker et al., 1991; McGroddy et al., 

1996; Poster and Baker, 1996a). 

 

 
 

Figure 8.2. Relationship between log KOC (measured and predicted) and log KOW  (a) 
PAHs and (b) OCPs 
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8.4.2.2. Sorption of PAHs to Soot Carbon 

The observed partition coefficients (KP) between particulate and dissolved phases 

are compared with predicted values by Equation 8.5 as shown in Figure 8.3 for lower 

molecular weight (LMW) PAHs such as Flu, Phe, Ant, and Pyr and higher molecular 

weight (HMW) PAHs such as B(a)A, Chry, B(b)F, B(k)F, B(a)P, and B(ghi)P.  The use 

of Freundlich exponent n = 0.62, which was derived for pyrene in sediment by Accardi-

dey and Gschwend (2002), over-estimates the sorption of both LMW (Figure 8.3(a)) and 

HMW (the predicted line not shown in Figure 8.3(b)) to the particulates in Singapore’s 

coastal sub-surface seawater using the measured fOC and fSC values, indicating the 

sorption dynamics may be different due to variations in specific surface areas and surface 

chemistries of soot carbons of various origins. Freundlich exponent, n, was varied to 

achieve the best fit at n = 0.80 for LMW PAHs and at n = 1.2 for HMW compounds. 

Both optimized Freundlich exponents are not equal to one, implying that KBC is 

dependent on sorbate levels and the sorption of PAHs to soot carbon is a nonlinear 

process.  For LMW PAHs such as Phe, Ant, Pyr, n<1 has been reported (Cornelissen and 

Gustafsson, 2005; Prevedouros et al., 2008), but for HMW compounds such as B(a)P, KP 

was over-predicted by a factor of 2 ~ 5 by using n<1 (Prevedouros et al., 2008).  At the 

optimum Freundlich exponents, KP values increased by 1.4 ~ 1.6 log units and 0.7 ~ 1.3 

log units for LMW and HMW PAHs, respectively. Soot carbon was the dominant sorbent 

here since its sorption contributed ~ 90% of the total partition coefficients, while the OC 

fraction was still an important sorbent and contributed to ~ 10% of the overall KP values.  

It is hypothesized that sorptions onto both combustion-derived soot carbon and natural 

organic matter act in parallel to bind PAHs to particulate phase in marine water column. 
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Additionally, it can be seen that the inclusion of soot carbon sorption reduced the 

dissolved water concentrations and increase the particulate enrichment of PAHs. The soot 

carbon fraction would lower the chemical availability of PAHs as compared to that 

expected from fOCKOC alone so that the bioavailability may be reduced accordingly.  

 

 
Figure 8.3. Comparison of predicted and observed KP (a) Flu, Phe, Ant, and Pyr; (b) 

B(a)A, Chry, B(b)F, B(k)F, B(a)P, and B(ghi)P 
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8.4.3. Air-Water Diffusive Exchange 

8.4.3.1. Truly dissolved SVOCs 

Those SVOCs sorbed onto colloidal matter (DOC) are not available for air-water 

exchange. The partitioning between truly dissolved and colloidal phases has to be 

investigated in order to obtain the truly dissolved concentrations of SVOCs. In this study, 

DOC concentrations are in the range of 0.6 ~ 7.8 mg L-1. The predicted mean fractions 

adsorbed to DOC for individual PAH varied in the range of 0.1 ~ 40% as can be seen 

from Table 8.3.  It clearly showed that HMW PAHs are more readily adsorbed to DOC 

(10 ~ 50%) than those LMW compounds (below 10%).  α-, β-, and γ-HCH were adsorbed 

to DOC at a mean fraction of 0.26, 0.25 and 0.20 %, respectively. These values are 

consistent with the values (~ 0.4%) reported by Wurl et al. (2006b), while FDOC,C (%) for 

DDTs was much higher in the range of 30 ~ 40%. This distribution pattern suggests that 

the sorption of SVOCs onto DOC in the seawater is correlated with the chemical’s KOW, 

namely, pollutants with higher KOW are more easily sorbed onto DOC. 

8.4.3.2. Air-water gas exchange flux 

Atmospheric gas-phase mean concentrations of ∑PAHs, ∑HCHs and ∑DDTs 

during Nov and Dec of 2007 (Table 8.3) were 187.5 ± 138.3 ng m-3, 958.9 ± 336.7 pg m-3 

and 39.5 ± 7.7 pg m-3, respectively, which were in the range of levels reported previously 

(He et al., 2009). The mean annual fluxes of SVOCs across the air-water interface were 

estimated and are summarized in Table 8.2.  

The fluxes of the individual PAH compound were in the range of -21.7 ± 20.2 ~   

-1608.4 ± 869.6 ng m-2 day-1 and ∑PAH flux reached up to -5884.0 ± 4040.7 ng m-2 day-1. 
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All PAHs showed negative fluxes indicating the tendency to transfer these contaminants 

from air to water (net absorption). The magnitude and direction of PAH fluxes varied 

widely on temporal and spatial scales all over the world.  In Chesapeake Bay, individual 

fluxes ranged from 14200 ng m-2 y-1 net volatilization of Flu to 11400 ng m-2 day-1 net 

absorption of Phe on different sampling events (Bamford et al., 1999a).  Both New York 

harbor and Raritan Bay systems exhibited net volatilization fluxes for the majority of 

PAHs (Gigliotti et al., 2002), while LMW PAHs showed positive fluxes and HMW PAHs 

showed negative values in Mumbai harbor of India (Pandit et al., 2006).  The magnitudes 

of net PAH fluxes are comparable to the reported values (-0.01 ~ -21.2 µg m-2 day-1) in 

an urban lake in Guangzhou, China (Li et al., 2009). The large net absorption fluxes in 

this island were likely a result of high gaseous concentrations of PAHs, attributed to the 

highly uniform ambient temperature and the strong terrestrial sources such as island-wide 

vehicular traffic, chemical industries, major power plants and oil refineries. 

Air-water gas exchange fluxes were estimated in the range of -44.4 ± 37.8 ~ -73.7 

± 31.3 ng m-2 day-1 and -0.74 ± 0.67 ~ -2.9 ± 1.8 ng m-2 day-1 for HCHs and DDTs, 

respectively (Table 8.2), indicating Singapore’s south coastal line as a sink for both 

HCHs and DDTs. The fluxes estimated here were comparable to those for the Johor strait 

located between Singapore and Malaysia with -8.2 ~ -66.8 ng m-2 day-1 (Wurl et al., 

2006b).  It has been reported that air-water gas exchange of SVOCs is a dynamic process 

that is especially sensitive to fluctuations in concentrations of both air and water phases 

(Wilkinson et al., 2005).  Even though the Henry’s law constants of DDTs are larger than 

those of HCHs, their net absorption was still much lower than that of HCHs, most likely 
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due to much higher occurrence levels of gaseous HCHs, driving more HCHs transferred 

across the air-sea interface.  

Annual air-sea gas exchange fluxes were calculated by multiplying the average 

daily fluxes by 365 days and the relative contribution of each depositional process to the 

total atmospheric deposition is shown in Figure 8.4.  For OCPs, most contribution to total 

OCP inputs was from wet deposition and air-sea exchange gas fluxes, while the dry 

particulate deposition dominated the total PAH inputs for Ind and B(ghi)P with ~ 80% of 

contribution.  As molecular weight increases from the low- to medium-molecular weight 

PAHs, dry deposition fluxes contribution generally increased, reflecting more fractions 

on particles.  Wet deposition dominated the total PAH inputs for LMW compounds from 

Naph to Phe, and the profile of wet deposition contribution to total PAH inputs (Figure 

8.4) was similar to that of wet deposition fluxes for individual PAH compounds (Table 8. 

2). The contribution of air-sea gas absorption has been reported to decrease with the 

increasing of molecular weight (Gigliotti et al., 2002).  However, in this study, it mostly 

prevailed for medium molecular weight compounds from Ant to B(a)A, but not for LMW 

PAHs. This may be because the volatile degassing of these LMW compounds from the 

seawater to air under this tropical climate offsets their transfer from gas to seawater and 

led to the low net absorption fluxes observed here. 
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Figure 8.4. The relative importance of dry particulate deposition, wet deposition, and air-sea gas exchange flux to total atmospheric 
deposition in the Singapore’s south coastal area 
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Figure 8.5. Enrichment factors (EF) of PAHs and OCPs in the sea-surface microlayer of Singapore’s coastal line 
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8.4.4. Sea-Surface Microlayer Enrichment 

SML has an enrichment effect of SVOCs, most likely due to their hydrophobic 

character and high affinity for surfactants collected at the air-water interface (Hardy, 

1982; Chernyak et al., 1996; Wurl et al., 2006a). This effect can be quantified by the 

enrichment factor EF, calculated as the ratio between SML and SSW concentrations 

(Manodori et al., 2006) as shown in Figure 8.5. EFs in the SML of particulate phase were 

1.2~ 7.1 and 3.0 ~ 4.9 for PAHs and OCPs, and those of dissolved phase were 1.1 ~ 4.9 

and 1.6 ~ 4.2 for PAHs and OCPs, respectively. EFs in the SML for HCHs found in this 

study were relatively higher than those reported for the Johor Strait between Malaysia 

and Singapore (EF = 1.1 ~ 1.4 for particulate phase and EF = 3.3 ~ 4.4 for dissolved 

phase) by Wurl et al. (2006b).  Similar profiles were found in the SML that EFs generally 

increased with an increase in molecular weight for both particulate and dissolved phases. 

In addition, the individual components exhibited similar trends in both phases, with 

relatively higher enrichments for particulate than for dissolved SVOCs.  It is known that 

the major harbor, one of the busiest harbors in the world, is in the south coastal line of 

Singapore, and chemical industries as well as oil refineries situated in a group of small 

islands on the southwest coast of the Singapore Island. It is understandable that more 

organic film floats in the south coastal surface than in the north area (Johor Strait), 

resulting in more SVOCs enriched in the SML of the south coastal area.  It also indicated 

that SML really has larger storage capacity (per volume) and may be able to delay the 

transport of SVOCs across the interface to SSW.  In addition, the SML is a relatively 

dynamic compartment, highly influenced by changes of the meteorological and 
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hydrographical conditions (Guitart et al., 2007). This may be the reason for high variation 

of EFs obtained in this study.  

8.5. Conclusion 

Both dry and wet depositions were estimated on the basis of the monthly 

concentrations of SVOCs. The dry particulate deposition showed lower fluxes during the 

monsoon seasons but a significant increase within the pre-NE monsoon. It was also 

observed that the high wet deposition fluxes took place during the rainy season (Dec 

2007 ~ Mar 2008) in sharp contrast to the low dry deposition fluxes during the same 

period. It has to be noted that the deposition profile was significantly influenced by 

meteorological/atmospheric conditions in this study. In SSW, the observed organic 

carbon-normalized partition coefficients between particulate and dissolved phases (KOC) 

values for PAHs were much larger than predictions and the log KOC is poorly correlated 

with log KOW, while the field-obtained KOC values for OCPs are correlated better with 

KOW. The study of sorption of PAHs to soot carbon showed that soot carbon was the 

dominant sorbent for PAHs since its sorption contributed ~ 90% of the total partition 

coefficients, indicating soot carbon sorption reduced the dissolved water concentrations 

and possibly lowered the bio-availability of these pollutants in the sea water column. 

Other than the soot sorbent, colloidal matter (DOC) also played an important role in the 

partitioning of SVOCs in the water column, and reduced the availability of SVOCs for 

air-water exchange. In the air-water exchange study, all mean negative gas exchange 

fluxes showed net absorption of SVOCs onto the Singapore’s south coastal sea-surface. 

The contribution of this process mostly prevailed for medium molecular weight 

compounds from Ant to B(a)A, but not for LMW PAHs as compared to dry particulate 
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and wet depositions. Lastly, in the investigation of SML enrichment, a similar increasing 

trend of EFs for both particulate and dissolved phases was found with an increase in 

molecular weight and the individual components had relatively higher enrichments for 

particulate than for dissolved SVOCs. In addition, this study also implied that SML may 

have the large storage capacity to delay the transport of SVOCs across the interface to 

SSW. 

Coastal areas are vulnerable to the accumulation of semivolatile organic 

compounds, such as PAHs, OCPs and PCBs from atmospheric inputs. From this study, 

dry particulate and wet depositions were estimated to contribute around 510 kg of the 

abovementioned pollutants per month onto Singapore’s territorial sea surface. Monthly or 

seasonal variation was dry and wet deposition was observed to be affected by 

meteorological conditions. Negative gas diffusive exchange fluxes showed net absorption 

of SVOCs, indicating the Singapore’s south coastal area is a pure sink for PAHs and 

OCPs. In SSW, the study showed that the organic carbon can dominate the sorption of 

OCPs while the black carbon was the dominant sorbent for the sorption of PAHs in the 

water column, indicating organic / black carbon might be able to reduce the bio-

availablity of these pollutants in the aqueous environment. The large storage capacity of 

SVOCs in SML, where the particulate phase had EF 1.2~ 7.1 and 3.0 ~ 4.9 for PAHs and 

OCPs, dissolved phase had 1.1 ~ 4.9 and 1.6 ~ 4.2 for PAHs and OCPs, respectively, 

demonstrated that SML may delay the transport of these pollutants across the interface.  
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Chapter 9. Conclusions 

9.1. Summary and Major Conclusions 

In general, the targeted SVOCs, including PAHs, OCPs and PCBs, could be partitioned 

between the gaseous and particulate phases and reach a partitioning equilibrium 

according to temperature dependences and the vapor pressure of the individual chemicals.  

Airborne particles can also naturally fall out onto ground/water surface, which is affected 

by gravitational force, Brownian diffusion, atmospheric disturbance, etc. In addition, both 

the particles and gas could undergo natural precipitation scavenging processes. 

Furthermore, the gaseous compounds could diffuse between the interfaces of air and 

water / seawater surface. In order to assess potential risks of these pollutants for the 

natural environment and human health, it is important to understand their fate once they 

are introduced into the environment. This thesis represents one of the first studies that 

systematically investigated the fate and transfer of PAHs, PCB, and OCPs  in the tropical 

atmosphere and the factors that affect their distributions in the multi-media environment.  

The major conclusions drawn from each segment of the study are presented below 

i n the same order as in the Results & Discussion chapters.  

To determine the atmospheric concentrations of PAHs, PCBs, and OCPs present 

in trace levels, an accelerated solvent extraction (ASE) method was developed for the 

extraction of semi-volatile organic compounds (SVOCs) distributed in both atmospheric 

particulate and gaseous phase. Conclusions : 

(a) Optimal extraction conditions determined for SVOCs were  as follows: a 

mixture of n-hexane and acetone (3:1) at 100 oC for 25 min by two static cycles.  
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(b) The proposed extraction method is very simple, fast, and effective and appears 

to be a promising alternative to commonly used extraction techniques such as Soxhlet 

extraction, ultra-sonication and microwave solvent assisted extraction, especially when 

applied to the investigation of a number of air samples due to its  software-controlled 

automation. 

The levels of SVOCs in particulate and gaseous phases of the atmosphere as well 

as those in particulate and operationally defined dissolved phases of precipitation were 

evaluated based on the field sampling conducted from June 2007 to May 2008. 

Conclusions : 

(a) The yearly average concentrations of SVOCs indicated no significant decline 

in their atmospheric levels in this area over the past decade as compared with the 

historical data in this region. The air mass backward trajectories showed that most air 

masses were partly terrestrial and partly oceanic, originating from Southern Indonesia 

during the southwest (SW) monsoon season, while during the northeast (NE) monsoon 

season, they were mainly derived from China, travelling over the South China Sea to 

Singapore.  

(b) For air samples, the monthly variations were statistically significant for PAHs 

and PCBs but not for OCPs; for rainwater samples, the monthly PAHs levels in 

precipitation were not statistically different unlike those of OCPs. This difference in 

occurrence patterns seems to be influenced by the regional meteorological conditions.  

(c) Diagnostic ratios and PCA analysis showed that local emissions such as 

liquid-fossil fuel combustion, air mass transport and commercial mixtures of Arocolors 

1248 and 1254 are the likely sources of PAHs, OCPs and PCBs, respectively. All these 
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observations were consistent with the air mass origins analyzed here and historical usage 

records in this region. 

In order to examine the distribution patterns of SVOCs between vapor and 

particulate phases in this region, the gas/particle partitioning for PAHs and PCBs was 

studied on the basis of characterization and quantification of SVOCs in the atmosphere.  

Conclusions : 

(a) The non-exchangeability of more volatile SVOCs bound to particles and non-

equilibrium (slower sorption than expected)  appear to be the major reasons for the 

deviation of  the observed quantitative relationships between between log Kp and log pL
o  

from theoretical predictions (slope < -1).  

(b) However, the slopes of log Kp versus log PL
o (small or capital P- be consistent, 

see the above (a)) curves for both PAHs and PCBs in this study are smaller than those 

obtained in temperate zones of the Northern Hemisphere. This discrepancy is most likely 

due to  tthat aerosols, thermodynamically, equilibrate faster with SVOCs under warm 

conditions than cold conditions and low molecular weight species attain equilibrium 

more quickly than the heavier compounds. 

(c) The simulative results showed that the combined KOA-Ksoot-air is more suitable 

to describe PAHs behavior, especially for low molecular weight (LMW) compounds. It is 

obvious that PAHs have a high affinity for carbonaceous materials, especially the black 

carbon, because these compounds are formed concurrently with soot particles and also 

play an important role in soot formation and particle growth. In addition, although the 

soot-inclusive method for estimating KP provided considerably better estimates of 

empirical KP values for LMW PAHs, it still over-predicted KP for high molecular weight 
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(HMW) PAH compounds, which demonstrates the need to better constrain the parameter 

values in the modified models. 

Rain samples were collected concurrently with gas-phase and particulate samples 

from June 2007 to May 2008 in Singapore and processed to investigate precipitation 

scavenging of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides 

(OCPs). Conclusions : 

(a) Particle scavenging, dissolution (Henry’s law) and surface adsorption are 

major factors affecting the total scavenging ratio of SVOCs.  In this study, particle 

scavenging was the dominant contributor to the total scavenging in precipitation.  

(b) Both WT (total scavenging)and WP (particulate scavenging) tended to be 

greater for less volatile SVOCs, most likely due to the uniform ambient temperature 

prevailing throughout the year in Singapore.  

(c) In addition, the equations used to estimate total scavenging based on the 

particle fraction (Φ) can be summarized as: log WT = 0.94 log ф + 6.09 (R2=0.74) for 

PAHs and log WT = 0.82 log ф + 6.34 (R2=0.62) for OCPs. 

Coastal areas are vulnerable to the accumulation of SVOCs such as PAHs, OCPs 

and PCBs from atmospheric inputs. The external loadings from dry particulates and wet 

deposition and air-sea exchange were summarized as below: 

(a) Dry particulates and wet deposition were estimated to contribute around 510 

kg of the above-mentioned SVOCs per month onto Singapore’s territorial sea surface. 

Monthly or seasonal variations of dry and wet deposition were observed to be affected by 

meteorological conditions. 

(c) Negative gas diffusive exchange fluxes showed net absorption of SVOCs, 

indicating that Singapore’s south coastal area is a pure sink for PAHs and OCPs.  
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(d) In SSW, the study showed that the organic carbon can dominate the sorption 

of OCPs while the black carbon was the dominant sorbent for the sorption of PAHs in the 

water column, indicating organic/black carbon might be able to reduce the bio-availablity 

of these pollutants in the aquatic environment.  

(e) In SML, the particulate phase had enrichment factors 1.2~ 7.1 and 3.0 ~ 4.9 

for PAHs and OCPs, and the dissolved phase had 1.1 ~ 4.9 and 1.6 ~ 4.2 for PAHs and 

OCPs, respectively. This suggests that the SML has a large storage capacity of SVOCs 

and may therefore delay the transport of these pollutants across the interface.  

In conclusion, this work has fulfilled its objectives and provides new insights into 

the fate and distribution of targeted SVOCs in Singapore’s tropical and coastal 

environment. These studies serve as a solid knowledge-base for further work to advance 

our understanding of the regional and global distribution of SVOCs, particularly in the 

tropical regions of SEA.  

9.2. Suggestions for Further Studies 

Specific recommendations for future studies include: 

(i) The assumptions made in the use of diagnostic ratios, namely, source 

specificity and species conservation, do not generally hold for PAHs as a class due to 

their emissions from a variety of sources and changes in source intensities and 

atmospheric removal/transformation processes over the study period (Galarneau, 2008). 

As Galarneau (2008) recommended, the regional-scale air quality modeling based on 

regional emission inventories may represent a better approach to source apportionment of 

PAHs in ambient air as it would overcome the above-mentioned drawbacks of 

conventional source apportionment methods. A larger number of ambient air (gas and 
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particulate phases) and rainwater samples obtained from a network of strategic sampling 

locations are needed to gain a better understanding of the fate and transport of SVOCs on 

a regional scale, such as in SEA. 

(ii)  Studies on the bioaccumulation of targeted SVOCs in the tropical marine 

biota and environmental degradation processes are sparse and comprehensive 

investigations are therefore necessary to serve as inputs to environmental fate models. 

(iii)  Considering the present global distributions of persistent organic pollutants 

and the role of the ocean on their transport and fate, more systematic studies may need to 

be conducted to investigate how the atmospheric behavior of such chemicals as PBDEs  

released would be controlled by their physico-chemical properties and the meteorological 

conditions and how those compounds would affect the quality of adjacent water bodies. 
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