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SUMMARY 

 

Concave surface boundary layer flow is subjected to centrifugal instability due 

to the imbalance between the centrifugal force and the radial pressure gradient, in 

addition to the viscous effect. This instability is called Görtler instability which 

manifests itself in the form of streamwise counter-rotating vortices, known as Görtler 

vortices. These vortices will be amplified resulting in three-dimensional boundary 

layer which gives rise to spanwise variation of streamwise velocity, boundary layer 

thickness, and wall shear stress. 

The main objective of the present work is to experimentally investigate the 

characteristics of the boundary layer in the presence of the most amplified wavelength 

Görtler vortices. The experiments were conducted in a 90° curved plexiglass duct 

connected to a low speed, blow down type wind tunnel. The wavelength of the Görtler 

vortices is pre-set by a set of vertical wires placed prior and perpendicular to the 

leading edge of a concave surface. The velocity measurements were carried out by 

means of hot-wire anemometers (single probe and X-wire probe). The growth and 

breakdown of the vortices were investigated for three different configurations of free-

stream velocities and wire spacings which correspond to the most amplified 

wavelength Görtler vortices. The pre-set wavelength Görtler vortices were found to 

preserve downstream which confirm the prediction of the most amplified wavelength 

Görtler vortices by using Görtler vortex stability diagram.  

The vortex growth rate can be expressed in term of maximum disturbance 

amplitude. Comparison with the previous available results shows that all data of 

maximum disturbance amplitude obtained from the same experimental set-up seem to 

lie on a single line when they are plotted against Görtler number, regardless of the 
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values of free-stream velocity and concave surface radius of curvature. The normal 

position of maximum disturbance amplitude reaches the maximum point at the onset 

of nonlinear region before it drastically drops as the secondary instability overtakes 

the primary instability. The secondary instability is initiated near the boundary layer 

edge when the flow is sufficiently nonlinear, and it manifests itself as either varicose 

or sinuous mode. 

The spanwise velocity measurement shows alternate regions of positive and 

negative spanwise velocity across boundary layer, indicating the appearance of 

Görtler vortices. The secondary motion is observed in the head of vortices, and this 

may be due to the amplification of free-stream disturbances caused by the secondary 

instability. The mushroom-like structures are found to oscillate in the spanwise 

direction, intensely at the vortex head and in the region near the wall. 

Near-wall velocity measurements were carried out to identify the “linear” 

layers of the boundary layer velocity profiles. The wall shear stress coefficient fC  

was estimated from the velocity gradient of the “linear” layer. The spanwise-averaged 

wall shear stress coefficient fC , which initially follows the Blasius curve, increases 

well above the local turbulent boundary layer value in the streamwise direction due to 

the nonlinear effect of Görtler instability and the secondary instability modes. The 

varicose mode is found to have a greater contribution to the enhancement of the wall 

shear stress than the sinuous mode. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

Flow instability may occur due to the dynamical effects of rotation or of 

streamline curvature. This instability is related to the occurrence of centrifugal force 

associated with the change of direction of fluid motion. The force decreases from the 

outer layer of boundary layer towards the wall, and consequently the fluid particles 

are pushed towards the wall. If a fluid particle is inflected from its equilibrium 

position due to the disturbances in the flow, then it will move to the zones of lesser or 

greater centrifugal force. Its movement is reinforced further downstream resulting in 

an amplification of the instability. 

The examples of flows which exhibit this type of centrifugal instability are 

Couette flow in two rotating coaxial cylinders, flow in a curved channel, and concave 

surface boundary layer flow. The instability observed in Couette flow in two rotating 

coaxial cylinders leads to a steady secondary flow in the form of toroidal vortices, 

known as Taylor vortices, which are regularly spaced along the axis of the cylinders 

(Taylor, 1921). A similar type of instability can also occur in a curved channel flow 

due to the pressure gradient acting round the channel. Such flow may cause the 

occurrence of the so-called Dean vortices (Dean, 1928). Lastly, the centrifugal 

instability that occurs in a concave surface boundary layer flow may form streamwise 

counter-rotating vortices called Görtler vortices, after Görtler (1940) who was the first 

to analytically show the occurrence of these vortices, as shown in Fig. 1.1. 

These vortices occur due to the imbalance between radial pressure gradient 
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and centrifugal forces in a concave surface laminar boundary layer flow. The vortices 

will be amplified downstream resulting in three-dimensional boundary layer which 

gives rise to spanwise variation of streamwise velocity, as well as boundary layer 

thickness. A thicker boundary layer is formed when low momentum fluid moves 

away from the surface, which results in lower shear stress region. This region is called 

upwash. Meanwhile, a thinner boundary layer is formed when high momentum fluid 

moves towards the surface resulting in higher shear stress region. This region is called 

downwash. 

The study of Görtler vortex boundary layer flow may be useful in some 

engineering applications, such as compressor blades (Peerhossaini, 1984; Shigemi et 

al., 1987), airfoils (Mangalam et al., 1985; Dagenhart and Mangalam, 1986), and heat 

transfer enhancements (McCormack et al., 1970; Syred et al., 2001), in which the 

wall shear stress becomes an important aspect to consider.  

 

1.2 Motivation 

The motivation of the present work is to further investigate the development of 

the most amplified wavelength Görtler vortices pre-set by a set of vertical thin 

perturbation wires in a concave surface boundary layer flows. Pre-setting the vortex 

wavelength is to overcome the non-uniformity of vortex wavelength in naturally 

developed Görtler vortices and hence the vortex growth rate. This will provide a more 

objective analysis of the development of Görtler vortices. The present work will be 

carried out on a concave surface of radius of curvature R of 1.0 m. In addition to mean 

and fluctuating velocity measurements, near wall velocity measurement will also be 

performed to obtain wall shear stress data. These experimental data will be useful for 

comparison with future analytical or numerical study of Görtler instability. The 
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spanwise velocity component w, which has hardly been reported in the literature, will 

also be measured in the present work to study its role in the development of Görtler 

vortices. 

 

1.3 Objectives and Scope 

The main objective of the present work is to experimentally investigate the 

characteristics of concave surface boundary layer in the presence of uniform 

wavelength Görtler vortices. The more specific objectives are listed in the following.  

1. To study the linear and nonlinear developments of Görtler vortices. The 

developments of the vortices are presented in their mean and fluctuating velocity 

distributions, shear-stress distributions, and amplification parameters of the 

vortex growth. 

2. To investigate the effect of curvature by comparing the present results for R = 1.0 

m with the previously reported results for different concave surface radii of 

curvature. 

3. To identify the secondary instability modes in the nonlinear region of Görtler 

instability. Spectral analysis will be performed to obtain the characteristic 

frequencies of the secondary instability. 

4. To study the development of the spanwise velocity component w in the nonlinear 

region of Görtler vortices. The X-wire will be used to measure the streamwise 

and spanwise velocity components. 

5. To study the effect of Görtler instability on the development of wall-shear stress 

in concave surface boundary layer flow by performing near-wall velocity 

measurement. Near-wall velocity gradient technique will be utilized to estimate 

the mean wall-shear stress. 
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The present study will focus on uniform wavelength Görtler vortices pre-set 

by a series of vertical thin perturbation wires placed prior and perpendicular to the 

leading edge of a concave surface. The growth and breakdown of the vortices will be 

investigated for three different cases of free-stream velocities and wire spacings 

which correspond to the most amplified wavelength Görtler vortices. 

 

1.4 Organization of Thesis 

This thesis documents the experimental results and analyses on most amplified 

wavelength Görtler vortices. It is organized into 9 chapters as briefly outlined in the 

following. 

The background, motivation, objectives and scope of the present study is 

presented in Chapter 1, while an extensive literature review on the development of 

Görtler vortices and wall shear stress along concave surface boundary layer flows is 

presented in Chapter 2. The experimental setup, instrumentations, and experimental 

procedures are described in Chapter 3.  

The experimental results and discussions are presented in the next four 

chapters. Chapter 4 presents the linear and nonlinear developments of Görtler vortices 

for three different cases. The mean and fluctuating streamwise velocity components, 

as well as the quantitative measurement of vortex growth rate, are discussed in this 

chapter. The flow characteristics in the nonlinear region of Görtler vortices, which 

correspond to the appearance of the secondary instability, are discussed further in 

Chapter 5, together with the spanwise harmonics of streamwise velocity and the 

frequency characteristics of Görtler vortices. The flow characteristics related to the 

spanwise velocity component in the nonlinear region of Görtler vortices are presented 

in Chapter 6, while the development of wall shear stress in the presence of Görtler 
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vortices is presented in Chapter 7. Near-wall velocity gradient technique is introduced 

to estimate the wall-shear stress from the near-wall velocity data. The substantial 

increase of wall shear stress in the nonlinear region of Görtler vortices are also 

highlighted in Chapter 7. 

Finally, the main conclusions and the recommendations for the future work are 

given in Chapter 8. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Growth and Breakdown of Görtler Vortices 

The characteristics of concave surface boundary layer flow are very different 

from those of the flat plate due to the presence of centrifugal instability which 

manifests itself into streamwise counter-rotating vortices, called Görtler vortices 

(Görtler, 1940). Such vortices will occur if the non-dimensional parameter Görtler 

number G , as defined by Smith (1955):  

 L LU
G

v R
   (2.1) 

exceeds a critical value (where v is the fluid kinematic viscosity, L  the Blasius 

boundary layer momentum thickness, U  the free-stream velocity, and R the concave 

surface radius of curvature).  

Many attempts had been made to establish a unique critical number in the 

early stage of Görtler instability study. Different neutral curves from different Görtler 

instability models had been suggested (Görtler, 1940; Smith, 1955; Herbert, 1979; 

Floryan and Saric, 1982; Hall, 1983; Finnis and Brown, 1989). Floryan and Saric 

(1982) found that the neutral curve appears to asymptotically level off at ,crG  = 

0.4638 which can be considered as a critical value. Finnis and Brown (1989) found 

that the minimum point of the unstable region occurs at G  = 1.38 and dimensionless 

wave number ω = 2   = 0.28 (where  is boundary layer momentum thickness 

and λ Görtler vortex wavelength), while Kottke and Mpourdis (1986) did not detect 

any sign of instability when the screens that act as a source of disturbance were placed 
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sufficiently far upstream. More recently, Mitsudharmadi et al. (2004) observed the 

appearance of forced wavelength Görtler vortices at G  = 2.39. These results show 

that the existence of a unique neutral curve in real developing boundary layer 

becomes questionable. Hall (1983) showed that the position of neutral stability curve 

depends on how and where the boundary layer is perturbed. This finding implies that 

the concept of a unique neutral curve does not apply in the Görtler instability 

problem, except for asymptotically small wavelengths. Hence, the work on Görtler 

instability is focused more on the development of the vortices rather than on the 

attempt to find a unique neutral curve. 

It is generally believed that the onset and development of Görtler vortices is 

influenced by the initial disturbances. Denier et al. (1991) addressed this issue by 

considering the vortex induced by wall roughness. It was found that free-stream 

disturbances are more important in generating the vortex modes than isolated wall 

roughness (Denier et al., 1991; Bassom and Hall, 1994). However, the distributed 

forcing disturbances are likely to be more important receptivity mechanism than the 

two disturbances mentioned earlier (Bassom and Hall, 1994). Hall (1989) used a 

model of a free-stream longitudinal vortex impinging on the leading edge of a curved 

surface as initial conditions to theoretically investigate the leading-edge receptivity 

problem. It was found that the leading-edge receptivity also has a strong effect in 

determining the flow structures.  

In addition to the receptivity process, the wavelength selection mechanism of 

Görtler instability is also not clearly understood yet. It appears that a competition of 

perturbations of different amplification rates is the only wavelength selection 

mechanism of Görtler vortices (Floryan, 1991). The Görtler instability will amplify 

the disturbances imposed by the rig facilities of the incoming flow (Kottke, 1988) and 
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at the same time damp other weak disturbances in the flow. Therefore, the observed 

vortices in the experiments correspond to the most amplified disturbances according 

to the linear theory (Bippes, 1978). If the disturbances’ wavelength introduced into 

the flow does not correspond to the most amplified wavelength Görtler vortices, 

splitting or merging of Görtler vortices will occur in the nonlinear region 

(Mitsudharmadi et al., 2005b). 

A simple method based on the Görtler vortex stability diagram can be used to 

predict the most amplified wavelength Görtler vortices. In this method, the non-

dimensional wavelength parameter  is defined as: 

 m mU

v R

    (2.2) 

where m  is the most amplified wavelength Görtler vortices. A constant  represents 

a family of straight lines which cross the Görtler vortex stability diagram. The most 

amplified wavelength Görtler vortices occurs when the non-dimensional wavelength 

parameter  is in the range of 220-270 (Meksyn, 1950; Smith, 1955; Floryan, 1991; 

Bottaro et al., 1996; Luchini and Bottaro, 1998; Mitsudharmadi, 2004 and 2006). 

Early experiments on Görtler vortices were conducted for naturally developed 

Görtler vortices (Liepmann, 1943; Tani, 1962; Wortmann, 1969; Bippes, 1978; 

Winoto and Crane, 1980; Swearingen and Blackwelder, 1987; Finnis and Brown, 

1989 and 1997). Liepmann (1943) investigated the effect of wall curvature on the 

boundary layer transition and found that a concave curvature decreased the critical 

Reynolds number, that is, the transition point occurred earlier than that in a flat plate 

boundary layer, although there was no significant effect of the curvature on the mean 

velocity profile. The development of transition downstream of Görtler vortices was 

visualized by Wortmann (1969) by tellurium method. Another instability mode, 
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consisting of regular three-dimensional oscillations, was observed following the 

steady vortex pattern. Later, Winoto and Low (1989, 1991) experimentally confirmed 

that the transition was started at the upwash at Gθ ≈ 7.5 by means of hot-wire 

anemometer measurements. 

It is evident that a primary instability in concave surface boundary layer flow 

first occurs in the form of Görtler vortices with the wavelengths depending on the 

boundary layer thickness and the wall curvature (Bippes, 1978). Following the 

primary Görtler instability, periodic spanwise vorticity concentrations develop at the 

upwash. Meandering of the vortices subsequently takes place prior to turbulence. 

Similar mechanism of the growth of forced wavelength Görtler vortices was reported 

by Mitsudharmadi et al. (2004) who found that the development of the vortices can be 

divided into three regions, namely linear region, nonlinear region, and decay of the 

mushroom structures. Each region is characterized by the growth rate of the 

disturbances which is clearly shown by the slope of the curve in the graph of the 

maximum disturbance amplitude ,maxu  versus the streamwise location (Winoto and 

Crane, 1980; Finnis and Brown, 1989). 

Detailed comparison between experimental results on the linear growth of 

Görtler vortices and the normal-mode linear stability analysis was carried out by 

Finnis and Brown (1997). The measured growth rates were considerably lower than 

those obtained from the theory due to the limitations of the normal-mode analysis. It 

was also suspected that the experimental data may not lie on the maximum 

amplification line in the Görtler vortex instability chart.  

Swearingen and Blackwelder (1987) experimentally studied naturally 

developed Görtler vortices and observed a strong inflectional streamwise velocity 

profiles in both the normal and spanwise directions at nonlinear state of instability, 



 
Chapter 2 Literature Review 

 10

indicating the lower-momentum fluid riding over the higher-momentum fluid, at the 

upwash. The secondary instability observed in the nonlinear region was found to be 

more related to the inflectional velocity gradient in the spanwise direction than to the 

normal gradient of the streamwise velocity. It was noticed from a stronger correlation 

between the r.m.s. fluctuations with u z   than with u y  . The growth rate of the 

secondary instability in term of the r.m.s fluctuations was found to be much faster 

than that of the primary Görtler instability. 

Several modes of secondary instability associated with the non-linear 

development of Görtler vortices have been experimentally observed. Wortmann 

(1969) identified a secondary instability in the form of twisted interfaces between the 

longitudinal vortices. However, this mode has not been reproduced by other 

researchers. Bippes (1978) perceived a meandering or sinuous mode of the 

longitudinal vortex street in the disturbed flow along a concave surface. This mode 

seems to be correlated with the unstable inflectional spanwise profiles of streamwise 

velocity (Swearingen and Blackwelder, 1987) and be responsible for the low 

frequencies in the power spectra. Aihara and Koyama (1981) observed the formation 

of the so-called “horseshoe” vortices as a result of interaction between the primary 

Görtler vortices and Kelvin-Helmholtz instability. This mode of instability is also 

known as varicose mode which gives rise to higher frequencies in the power spectra. 

Both sinuous and varicose modes are believed to be responsible for the transition 

process prior to turbulence in concave surface boundary layers.  

The dominant mode in transition process leading to turbulence has not been 

clearly understood. Peerhossani and Bahri (1998) measured the spanwise and normal 

gradients of the streamwise velocity and found that the spanwise gradient u z   grew 

faster than the normal velocity gradient u y  . This implies that the sinuous mode 
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dominates the transition process prior to turbulence. Similarly, Mitsudharmadi et al. 

(2005a) also showed that the secondary instability was of the varicose mode at the 

onset, and followed by the sinuous mode downstream prior to turbulence. These 

findings were also supported by the computational studies of Yu and Liu (1991) and 

Sabry and Liu (1991). However, Matsson (1995), who investigated the secondary 

instability of streamwise vortices in curved wall jet, detected only the horseshoe 

varicose mode of oscillation which leads the flow to turbulence. The same result was 

also reported by Aihara and Koyama (1981). Hall and Horseman (1991) 

computationally found that the dominant mode depends on several parameters such 

as: history of the vortex, wavelength parameter, and Görtler number. This finding was 

supported by Park and Huerre (1995) who found that the varicose mode is dominant 

in the case of large wavelength vortices while the sinuous mode is dominant in the 

case of small wavelength vortices.  

Recently, Girgis and Liu (2006) investigated the evolution of the single 

fundamental sinuous mode of secondary instability of longitudinal vortices and 

compared their numerical results with the experimental results of Swearingen and 

Blackwelder (1987) and Mitsudharmadi et al. (2004). It was found that the relevant 

part of comparison is limited to 7.5G   where the secondary instability in the 

experiment is still dominated by the sinuous mode. For 7.5G  , the maximum of the 

r.m.s of fluctuating component rmsu   obtained by Mitsudharmadi et al. (2004) lies 

beyond the numerical results (Girgis and Liu, 2006) which only considered a single 

fundamental sinuous mode. It was suspected (Girgis and Liu, 2006) that other modes 

of instability or transition to turbulence might have appeared.  

Li and Malik (1995) described the development of Görtler vortex secondary 

instability. It was shown that the dominance of the sinuous (odd) and varicose (even) 
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modes were affected by the Görtler vortex wavelength. For the short-wavelength 

 0.9 cm ,   the Görtler vortices grow faster and the odd mode secondary instability 

start to appear at the location where the amplitude of the Görtler vortices is about 

20%. For the medium wavelength  1.8 cm ,   the odd mode is the first to become 

unstable. Subsequently, the even mode takes over and becomes the most unstable 

mode further downstream. For the long wavelength  3.6 cm ,   the dominant mode 

is initially the odd mode, but it is very weak. Thus, before the odd mode growth rate 

becomes significantly large, the even mode begins to dominate. 

 

2.2 Wall Shear Stress in the Presence of Görtler Vortices 

2.2.1 Wall shear stress measurement 

The techniques available to measure wall shear stress have been discussed by 

Winter (1979) and Hanratty and Campbell (1983), for example. A brief description on 

the use of hot-wire to measure streamwise velocity near a wall in order to estimate the 

wall shear stress is provided here. 

Hot-wire or hot-film velocity measurements in the viscous sublayer to 

estimate the wall shear stress in turbulent boundary layer are generally associated with 

large methodological problems in the inner portions of the viscous sublayer. The 

setback is that the velocity in the sublayer is relatively small, and the heat loss due to 

free convection from the hot-wire or hot-film may give rise to erroneous readings. 

However, the hot-wire measurements in the viscous sublayer have been reported, for 

example by Bhatia et al. (1982), Alfredsson et al. (1988), and Chew et al. (1994). 

Alfredsson et al. (1988) measured the fluctuating wall shear stress with various types 

of hot-wire and hot-film sensors in turbulent boundary layer and channel flows. The 

mean wall shear stress in the oil channel was found to be accurately determined from 
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mean velocity measurements in the viscous sublayer. Chew et al. (1994) also 

successfully predicted the mean wall shear stress by means of the hot-wire with its 

active element positioned just above the wall within the viscous sublayer. 

Another problem is related to the small thickness of the viscous sublayer so 

that the probe may cause significant aerodynamic interferences to the flow. The 

length (l) of the active hot-wire element has to be sufficiently large to achieve a length 

to diameter (l/d) ratio greater than 200 (Blackwelder and Haritonidis, 1983; Ligrani 

and Bradshaw, 1987b). On the other hand, l has to be sufficiently small to avoid the 

spatial resolution problems. Ligrani and Bradshaw (1987a) showed that the turbulence 

intensity, flatness factor, and skewness factor of the streamwise velocity fluctuations 

are independent of wire length as long as the non-dimensional wire length 

( )l l u v+  does not exceed 20-25. 

 

2.2.2 Wall shear stress development 

The appearance of streamwise counter-rotating Görtler vortices in nonlinear 

region will cause the friction drag to increase, especially when the secondary 

instability appears in the boundary layer. Although it gives unfavorable effects for the 

blades and airfoils, the increase of the wall shear stress and hence the heat transfer 

coefficient through Reynolds analogy may be useful in a thermal system. McCormack 

et al. (1970) reported a 100-150% increase in Nusselt number on concave surface 

boundary layer due to the presence of Görtler vortices, compared to that on a flat-

plate boundary layer. Liu (2008) explained this enhancement of the heat transfer as a 

result of transport effects of the nonlinear secondary instability, which leads to the 

formation of vortex structures in the flow. Momayez et al. (2009) proposed an 
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algorithm for calculation of heat transfer enhancement in a concave surface boundary 

layer flow. 

Swearingen and Blackwelder (1987) estimated the skin friction on a curved 

wall from the streamwise velocity profiles across boundary layer obtained by hot-wire 

anemometer measurements. It was found that the wall shear stress at downwash 

increases considerably at a streamwise (x) location until reaching a maximum value. 

Meanwhile, the wall shear stress at upwash decreases faster than that calculated from 

Blasius solution, and then increases after reaching a minimum value. Further 

downstream, the wall shear stress at both upwash and downwash move towards the 

same value.  

The increase of wall shear stress in the nonlinear region of Görtler instability 

has also attracted attention of some theoreticians (Sabry and Liu, 1991; Hall and 

Horsemann, 1991; Girgis and Liu, 2006). The computational results of Sabry and Liu 

(1991), who studied the nonlinear effects of Görtler vortices via a prototype problem, 

showed good qualitative agreement with the measurement of Swearingen and 

Blackwelder (1987). Hall and Horseman (1991) also managed to approximate the 

Swearingen and Blackwelder’s results up to a certain streamwise distance through the 

study of the linear inviscid secondary instability of Görtler vortices. Recently, Girgis 

and Liu (2006) focused on the nonlinear modification of the steady flow by the 

Reynolds stresses of the wavy disturbance, and found that the wall shear stress 

increased well beyond the local turbulent values as the flow developed downstream 

due to the presence of the secondary instability modes. 
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CHAPTER 3 

EXPERIMENTAL DETAILS 

 

3.1 Experimental Set-up 

The experiments were conducted in a 90° curved plexiglass duct connected to 

a low speed, blow down type wind tunnel as also used by Mitsudharmadi et al. (2004) 

and shown in Fig. 3.1. The wind tunnel has a rectangular cross-section of 150 mm x 

600 mm. The flow control was achieved by placing a honeycomb and five rectangular 

fine-mesh screens with decreasing mesh-sizes in the settling chamber prior to the 

contraction. The screens have the specification of ASTM E161 No. 35, 40, 50, 60, and 

80 with the mesh-size of 500, 425, 300, 250, and 180 μm, respectively from the 

blower to the entrance of the contraction section. The contraction consists of a 300 

mm straight channel of 600 mm  600 mm cross-section followed by a two-

dimensional contraction of 4:1 which reduces the cross-section to 150 mm x 600 mm.  

A concave surface of radius of curvature R = 1.0 m was mounted inside the 

curved duct by means of slots at the duct side walls at a distance of 50 mm from its 

bottom surface. The distance between the concave surface and its top cover is 100 

mm giving an aspect ratio of the test section of 6. The wind tunnel and the curved 

duct are connected by a straight channel of 150 mm length. The concave surface has a 

sharp leading edge with an angle of 45° to avoid flow separation. The free-stream 

turbulence levels in the test section are less than 0.45% for free-stream velocity range 

of 1.0 to 4.0 m/s. 

A series of vertical perturbation wires of 0.2 mm diameter were positioned 10 

mm prior and perpendicular to the concave surface leading edge to pre-set or to 
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“force” the wavelength of Görtler vortices. The spanwise spacing between the wires, 

which was found to be m , and the free-stream velocity U  were determined so that 

the wavelength parameter Λ = 250 [Eq. (2.2)], which corresponds to the most 

amplified wavelength m  of Görtler vortices, as also used by Mitsudharmadi et al. 

(2004). 

Using Eqn. (2.2), three different cases of the most amplified wavelengths were 

considered in the present study: (1) m  = 12 mm, for which the corresponding U  = 

2.8 m/s, (2) m  = 15 mm, for which U  = 2.1 m/s, and (3) m  = 20 mm, for which 

U  = 1.3 m/s. 

 
3.2 Instrumentations 

The measurement process (including data acquisition) and the traversing 

mechanism were automatically controlled by a personal computer. The block diagram 

of the hot-wire anemometer system and other instruments used in the experiments is 

shown in Fig. 3.2. The detailed description of the instruments and the process are 

given below. 

 
3.2.1 Hot Wire Anemometer and Sensors 

A single-normal (SN) hot-wire probe (Dantec 55P15) and a cross (X) hot-wire 

probe (Dantec 55P61) of special design for boundary layer measurement with a 5 μm 

diameter and 1.25 mm long platinum-plated tungsten wire sensors were used to obtain 

mean and fluctuating velocities data. The SN-probe was used to obtain streamwise 

velocity in all cases, including near-wall velocity measurements, while the X-probe 

was used to measure streamwise and spanwise velocities in the nonlinear region of 

case 1 ( m  = 12 mm, U  = 2.8 m/s). The probes were operated in a Constant 
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Temperature Anemometer (CTA) mode by connecting them to a CTA system which 

consists of 56C01 CTA Main Frame, 56C17 CTA Bridge, and 56N20 Signal 

Conditioner. Overheat ratio of 1.8 was used throughout the experiment. 

A Pitot-static tube, connected to a pressure transducer (Setra 235, 0-0.1 psid), 

was placed in the free-stream region and moved together with the hot-wire probe. It 

was used to calibrate the hot-wire(s) and to monitor the free-stream velocity.  

A T-type thermocouple, connected to Agilent 34970A Data Acquisition / 

Switch Unit equipped with 34901A 20-Channel Multiplexer, was also mounted on the 

traversing mechanism and moved together with hot-wire probe and Pitot-static tube to 

measure the free-stream temperature. The temperature data were sent to the computer 

through RS-232 cable. It was then used to compensate the hot-wire voltage readings 

due to the change in ambient temperature during the hot-wire calibration and 

measurements. 

A digital oscilloscope (Yokogawa DL1540) and multimeter (Keithley Model 

2000) were respectively used to monitor the output of CTA system and pressure 

transducer during the measurement process. 

The traverse mechanism control system was used to control the movement of 

sensors. The system consists of two linear slides which can move in the normal (y) 

and spanwise (z) directions by means of a stepper-motor installed on each slide. The 

mechanism allows the sensors to be moved in a step of 0.005 mm. 

 

3.2.2 Data Acquisition System 

Analog signals from the CTA system and pressure transducer were directly 

sent to analog to digital (A/D) data converter system. The system consists of a high-

speed multifunction DT3016 board and DT740 screw terminal panel. The board has 
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an analog I/O resolution of 16 bits with a maximum sampling frequency of 250 kHz 

for a single channel. The system also has a capability to send a digital signal with a 

maximum D/A throughput of 100 kHz. This feature allows us to control the 

movement of stepper motors from the computer. 

Agilent VEE Pro software was used for collecting data and controlling the 

measurement process from the computer, including the movement of stepper motors. 

It was also used in the post-processing of experimental data, such as a Fast Fourier 

Transform to obtain the spectra of the fluctuating velocity components. VEE 

programs were created by this software to provide visual interfaces in controlling data 

acquisition hardware. 

 

3.3 Experimental Procedures 

The CTA system was adjusted prior to its calibration and the subsequent 

experiments to ensure that the square-wave response at a maximum velocity expected 

in the experiments is greater than the sampling rate of the hot-wire signal of 6000 Hz. 

Basically, the experiments were divided into three major parts: (a) 

measurement of mean and fluctuating streamwise velocities by SN-probe, (b) near-

wall velocity measurement for estimating wall shear stress, and (c) streamwise and 

spanwise velocities measurement by X-probe to investigate the nonlinear development 

of spanwise velocity w, as well as the spectrum characteristics, in the nonlinear region 

of Görtler vortices. The detail of the experimental procedures is given below. 

 

3.3.1  Calibrations 

In-situ calibration of the hot-wire anemometer was carried out prior to the 

velocity measurement. The hot-wire anemometer was calibrated against a pressure 
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transducer which was connected to a Pitot-static tube. The pressure transducer was 

calibrated against a micro-manometer. The hot-wire calibration was based on the 

King’s Law with temperature compensation. It was accomplished in free-stream flow 

over the range of velocities encountered within the boundary layer.  

 

3.3.1.1 SN-probe calibration 

The Pitot-static tube and hot-wire probe were positioned in the free-stream 

region at the same streamwise (x) location. The output signals from both pressure 

transducer and CTA system were then sampled simultaneously. The pressure 

transducer signal was sampled at 500 Hz and the hot-wire signal was low-pass filtered 

at 3000 Hz and sampled at 6000 Hz for 21 seconds. The voltage output of pressure 

transducer was converted into free-stream velocity data. 

The relationship between the free-stream velocity U  and the voltage output 

of CTA system E is assumed to follow King’s law, 

 2 0.45E AU B   (3.1) 

where A and B are calibration constants. By taking into account the ambient 

temperature drift, Eq. (3.1) can be modified into 

 
2

* 0.45

w a

E
E A U B

T T    


 (3.2) 

where Tw is the hot-wire temperature, Ta the ambient temperature, A  and B  are the 

temperature compensated calibration constants. The hot-wire temperature was 

determined based on the overheat ratio used in the measurement. The free-stream 

velocity data were then plotted against *E , and linear regression was performed to 

obtain the calibration constants A  and B . Calibration check was subsequently 
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carried out for the operating free-stream velocity to ensure that the calibration error 

was less than 1.0%. 

 

3.3.1.2 X-probe calibration 

The main purpose of utilizing X-probe was to capture the spanwise oscillation 

of low-speed streaks in the nonlinear region of Görtler vortices. The oscillation 

frequency is likely to be of the same order as the characteristic frequencies of 

streamwise velocity u or even lower. Therefore, the sampling frequency of the hot-

wire and pressure transducer signals in the calibration and measurement were reduced 

to 600 Hz for 30 seconds. The hot-wire signals were low-pass filtered at 300 Hz prior 

to sampling. 

The calibration of the X-probe was carried out by using Ve-calibration 

methods, in which each wire in X-probe is considered independently. By extending 

King’s Law for X-probe, Eq. (3.1) can be written as: 

 2 0.45
eE A BV   (3.3) 

where the effective velocity Ve can be expressed as: 

 ( )eV Vf    (3.4) 

where ( )f   is the yaw function and V  the magnitude of the flow vector. Several 

expressions have been proposed for the yaw function. The most common method, as 

proposed by Hinze (1959), was used in the present experiments, that is, 

  1/ 22 2 2( ) cos sinf k     (3.5) 

where k is the yaw coefficient and   the yaw angle. By substituting Eq. (3.4) into Eq. 

(3.3), the hot-wire response equation becomes 

 
0.452 0.45ˆ( ) ( )E A B f V A B V      

   (3.6) 
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with ˆ( )B   defined by 

  0.45ˆ( ) ( )B B f   (3.7) 

In the calibration, X-probe was positioned normal to the free-stream at the 

mean yaw angles 1  and 2 , where 1 2 45      . The correction for ambient 

temperature drift was subsequently applied in Eq. (3.6). Hence, the hot-wire response 

equations for both wires become 

 
2

* 0.451
1 1 1

ˆ ( )
w a

E
E A B U

T T
    


 (3.8a) 

 
2

* 0.452
2 2 2

ˆ ( )
w a

E
E A B U

T T
     


 (3.8b) 

The velocity calibration at   will give the calibration constants 1 1, ( )A B    and 

2 2, ( )A B    for both wires. Since ( )B   contains two unknowns, B and ( )f  , yaw 

calibration is necessary to obtain the yaw coefficient ( 45 )k    . The value of 

(45 )k   for plated-probe with parallel-stem orientation is 0.15-0.20 (Brunn, 1995). A 

constant value (45 ) 0.2k    was used in the present experiments. 

Calibration check was performed regularly after each measurement across 

boundary layer (± 15 minutes) to make sure that the calibration error was less than 

0.5%. 

 

3.3.2  Measurement of Mean and Fluctuating Streamwise Velocities 

The mean and fluctuating streamwise velocities were measured by means of 

SN-probe. In the measurement process, the hot-wire signal was low-pass filtered at 

3000 Hz and sampled at 6000 Hz for 21 seconds. The output voltage of CTA system 

was subsequently converted into velocity data by interpolation of the calibration 
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points. Calibration checks were regularly performed to ensure that the drift is within 

an acceptable range of ±1%, otherwise the data obtained were rejected, resulting in a 

re-calibration of the hot-wire. 

The instantaneous velocity û  obtained from the hot-wire measurement can be 

expressed as: 

 û u u   (3.9) 

where u is the mean velocity and u  is the fluctuating velocity component. The mean 

velocity is obtained by time-averaging the sampled data, which is calculated as: 

 
1

1
ˆ , 1, 2, ,

n

i
i

u u i n
n 

    (3.10) 

where n is the total number of samples of velocity data within the sampling duration 

at a given point. The fluctuating velocity component is expressed in the turbulence 

intensity Tu, which is obtained from: 
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
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
  (3.11) 

The above procedures were repeated at every point of the measurement domains. 

The measurements of streamwise velocity component were carried out at 

several streamwise (x) locations. Five pairs of vortices were captured by the hot-wire 

measurement with 1.0 mm traversing step along the spanwise (z) direction and 0.5-1.0 

mm step along the normal (y) direction inside boundary layers. Mean streamwise 

velocity contours were then plotted to determine the locations of the upwash and 

downwash regions. Subsequently, the velocity profiles were obtained by measuring 

the streamwise velocity across the boundary layer at those locations with 0.5 mm step. 

The measurements were carried out for all three cases considered in the present work. 
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3.3.3 Velocities Measurement Using Cross (X) Hot Wire Probe 

The X-probe was used to measure the streamwise and spanwise velocity 

components in the nonlinear region of Görtler vortices. The hot-wire signals were 

low-pass filtered at 300 Hz and sampled at 600 Hz for 30 seconds. Three pairs of 

vortices were captured with 1.0 mm traversing step along both spanwise (z) and 

normal (y) directions. The measurement was carried out in nonlinear region of case 1 

( m  = 12 mm, U  = 2.8 m/s). 

The signal analysis was carried out by applying a simple sum-and-difference 

method. The streamwise and spanwise velocity components were respectively 

obtained from equations: 
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where 1eV , 2eV  are the effective velocities and ( )f  , ( )g   are the yaw functions. 

The effective velocity was obtained from data conversion of the measured voltage 

output of the CTA system. It was calculated by using the inverted calibration 

relationship: 
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where 1B  and 2B  are calculated from Eq. (3.7), 
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The yaw functions are given by 
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In addition to the mean velocity components u and w, other related fluid 

properties can also be evaluated, such as Reynolds stresses 2u , u w  , and 2w . 

 

3.3.4  Near-wall Velocity Measurement 

Basically, near-wall velocity measurement is identical with the streamwise 

velocity measurement (Section 3.3.2). The measurement was carried out by means of 

SN-probe to capture the region where the velocity profile is linear in order to estimate 

the wall shear stress. The signal was low-pass filtered at 3000 Hz and sampled at 6000 

Hz for 21 seconds. The hot-wire probe was initially positioned very near to the 

concave surface with the aid of a camera. The streamwise velocity measurement was 

subsequently performed with the step size of 50 μm across the boundary layer for 40 

points ranging from y equals 0.05 to 2.00 mm. Three pairs of vortices were captured 

in this near-wall streamwise velocity measurement with 2.0 mm traversing step along 

the spanwise direction. All three cases of different wavelengths were considered in 

this measurement. 
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CHAPTER 4 

LINEAR AND NONLINEAR DEVELOPMENT  
OF GÖRTLER VORTICES* 

 

4.1 Introduction 

In most experiments of naturally developed Görtler vortices, each vortex pair 

develops with different growth rate which may affect the growth of the neighboring 

vortices, resulting in vortices with non-uniform wavelengths. This non-uniformity in 

wavelengths (and hence the vortex sizes) makes it difficult to objectively study the 

behavior of the vortices. In order to generate naturally developed Görtler vortices with 

as uniform wavelengths as possible, the oncoming flow has to be carefully controlled 

and the concave surface has to be perfectly smooth, as previously done by Wortmann 

(1969) in a curved water channel and Dagenhart and Mangalam (1986) on an airfoil. 

To experimentally overcome this problem, the wavelength of Görtler vortices 

is pre-set or “forced” prior to the leading edge of the concave surface. Some methods 

have been suggested by introducing orderly disturbances at the concave surface 

leading edge. Aihara (1979) used a fine needle set at the gap in front of the leading 

edge and projected outward impulsively to give an artificial controlled disturbance. 

This method was also used by Tandiono et al. (2008a) who introduced a series of 

perturbation needles prior and perpendicular to the leading edge of the concave 

surface. Peerhossani and Bahri (1998) used a series of thin vertical wires placed prior 

and perpendicular to the concave surface leading edge. This method was also adopted 

by Ajakh et al. (1999), Toé et al.(2002), and Mitsudharmadi et al. (2004, 2005a, 

                                                 
* Parts of this Chapter have been published in Physics of Fluids (Tandiono et al., 2008b) and Journal of 

Visualization (Tandiono et al., 2009a). 
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2005b, 2006) since it could effectively generate Görtler vortices with uniform 

wavelengths equal to the pre-set spanwise spacing of the thin perturbation wires.  

The work of Mitsudharmadi et al. (2004, 2005a, 2006) was on the most 

amplified wavelength Görtler vortices. The experiments were conducted on a concave 

surface of R = 2.0 m for only one set of wire-spacing and free-stream velocity which 

corresponds to the most amplified wavelength. Although some studies have suggested 

the range of wavelength parameter Λ, as defined by Eq. (2.2), for the most amplified 

wavelength Görtler vortices which will appear in experiments, only a few 

experimental findings are available to confirm this suggestion. In addition, more 

information is also required to better explain the growth and breakdown of the pre-set 

wavelength Görtler vortices. 

This chapter discusses the linear and nonlinear development of the pre-set or 

“forced” wavelength Görtler vortices in the boundary layer on a concave surface of R 

= 1.0 m for three different cases of wires-spacing and free-stream velocity: (1) m  = 

12 mm, for which the corresponding U  = 2.8 m/s, (2) m  = 15 mm, for which U  = 

2.1 m/s, and (3) m  = 20 mm, for which U  = 1.3 m/s. The results will also be 

compared with those obtained by Mitsudharmadi et al. (2004) who used a concave 

surface of R = 2.0 m. 

 

4.2 Mean Velocity 

Streamwise velocities were obtained across a spanwise distance covering five 

pairs of vortices, and the iso-contours of the mean (time-averaged) streamwise 

velocities were plotted on the y-z and x-z planes by using a commercial software 

TECPLOT with no smoothing performed for all the contours presented here. Basically, 

the mechanisms of the vortex structure development for the three cases are similar. 
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Figures 4.1 and 4.2 show the mean streamwise velocity contours for case 1 ( m  = 12 

mm and U  = 2.8 m/s) on the y-z and x-z planes, respectively.  

As shown in Fig. 4.1, the wavy profile generated by the vertical perturbation 

wires placed upstream near the concave surface leading edge becomes more visible 

further downstream. Low-momentum fluid at mz n   (where n = 0, ±1, ±2, ) 

moves away from the wall to form low-speed regions called upwash with thicker 

boundary layer. Whereas, high-momentum fluid at 1
2( ) mz n     moves towards the 

wall to form high-speed regions called downwash. The thickening of the boundary 

layer at the upwash makes the boundary layer at the downwash thinner. However, the 

decreasing rate of the boundary layer thickness at the downwash is lower than the 

increasing rate of the thickness at the upwash. This observation implies that the 

boundary layer at downwash is more resistant to the effects of curvature, and 

therefore the inflectional point, as expected, is first observed at the upwash which is 

the most unstable region. 

Further downstream, the wavy profiles develop into horseshoe vortices at x = 

300-400 mm, as shown in Figs. 4.1(c)-(d). The horseshoe structures propagate 

downstream and develop into mushroom-like structures. It is shown by the 

appearance of the small inflections at the sides of the stem of the vortices that move 

upward, lifting the head of the mushroom-like structures up. The inflection points in 

the velocity profile across boundary layer and the high-shear regions near the 

boundary layer edge are lifted up. Consequently, the support from the stem of the 

vortices to the mushroom-like structures’ head becomes weaker so that the vortex 

structures are susceptible to the free-stream flow. Finally, the vortex’s heads are 

dispersed and the flow turns into turbulence. 
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The development of the low-speed streaks for case 1 is shown in the velocity 

contours in the x-z planes at four different normal distances Ly   = 0.25, 0.50, 0.75, 

and 1.00, as shown in Fig. 4.2. At Ly   = 0.25, viscous effect is still very dominant 

in the linear region at both upwash and downwash so that the streamwise velocity is 

relatively very low. Downstream of x  350 mm where G   4.9, the viscous effect at 

the downwash becomes less significant compared to the effect of concave curvature. 

This can be seen from a considerable increase of the streamwise velocity component 

near that streamwise location. There is also an increase of velocity at the upwash, but 

it is not as large as at the downwash. The low-speed streaks become slightly narrower 

as the instability moves from linear to nonlinear at the location between x = 350 and 

450 mm, as shown in Fig. 4.2(a). This is due to the formation of mushroom-like 

structures, that is, the horseshoe vortices are inflected at normal position near the wall 

surface resulting in thinner low-speed streak at Ly   = 0.25. Once the mushroom-like 

structures are fully formed, the width of the low-speed streaks at this normal (y) 

position will not change anymore. The narrowing of the low-speed streaks is also 

observed at Ly   = 0.50, as shown in Fig. 4.2(b), at the streamwise location slightly 

downstream from those at Ly   = 0.25, that is, between x = 400 and 500 mm. This 

indicates that the inflected parts of the vortex structures are moving upward as the 

flow moves downstream. In contrast to the narrowing of the low-speed streaks at 

Ly   = 0.25 and 0.50, the same streaks at Ly   = 0.75 and 1.00 are observed to 

broaden in the nonlinear region, as shown in Figs. 4.2(c) and 4.2(d), respectively. 

While the low-speed streaks at Ly   = 0.25 and 0.50 represent the stem of the vortex 

structures, the streaks at Ly   = 0.75 and 1.00 represent the head of the vortex 

structures. Therefore, the broadening of the streaks in the nonlinear region shows that 
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the vortex structures, which are dominated by the mushroom-like structures, expand 

side ways until they break into turbulent.  

Figure 4.3 shows the downstream development of the streamwise velocity 

profile across boundary layer for case 1. The profiles presented here were obtained at 

the centers of the upwash and downwash and plotted in the graphs of u U  versus , 

where  y U xv   is the dimensionless coordinate normal to the wall. Velocity 

profiles of the Blasius flat plate boundary layer are also included for comparison. The 

maximum random error, apart from the calibration error (Section 3.3.2), in the 

measurement of u was estimated to be about 0.3%. 

Initially, at x = 100 mm, the velocity profiles at upwash and downwash are 

very similar to the Blasius flat plate laminar boundary layer velocity profile. Further 

downstream, the velocity profiles at both upwash and downwash depart from the 

Blasius profile. As shown in Fig. 4.3, the velocity profile becomes “thinner” at the 

upwash and “fuller” at the downwash. The departure from the Blasius profile is slight 

in the linear region ( 300x   mm), but significant in the nonlinear region ( 300x   

mm). Fuller velocity profile at the downwash shows an increase of wall shear stress, 

while thinner velocity profile at the upwash indicates a decrease of wall shear stress.  

A single inflection point first appears in the velocity profile at the upwash near 

the boundary layer edge at x = 350 mm, which corresponds to the region where the 

intense turbulence is found in the turbulence intensity contour (Fig. 4.6). The 

appearance of the inflection point in the velocity profile implies the occurrence of 

high-shear layer near the boundary layer edge which triggers the appearance of 

horseshoe vortices as the secondary instability of Görtler vortices (Floryan, 1991). 

The viscous effect is relatively unimportant near the boundary layer edge where the 
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inflection point first appears (Swearingen and Blackwelder, 1987), hence the main 

force causing the instability is the centrifugal force.  

As discussed earlier, the inflection point moves upward and the velocity 

profile defect increases as a consequence of the high-shear in that region. As the 

velocity defect grows progressively upward, a second inflection point appears in the 

region between the concave surface and the boundary layer edge, and the velocity 

profile evolves to become an S-shape, as shown at x = 500 mm in Fig. 4.3. Even 

though the second inflection point is not as obvious as the first one, it may be 

responsible for the transition process to turbulence. It can also be confirmed from the 

turbulence intensity (Tu) profile at the upwash, as shown in Fig. 4.6, where the 

highest peak is found between the concave surface and the boundary layer edge which 

is simply the location of the second inflection point in the velocity profile.  

 

4.3 Shear Stress 

Figure 4.4 shows the u y   iso-shear contours at several streamwise (x) 

locations for case 1. In addition to the strong shear at the wall, there are other regions 

of strong positive shear, which indicates high-shear regions, appear near the boundary 

layer edge at the upwash. These high-shear regions rapidly move upward at x = 300 

mm, as shown in Fig. 4.4(c), and followed by the formation of weak negative shear 

regions below the positive high-shear regions in the vicinity of the low-speed streaks 

of Fig. 4.2. These strong positive and weak negative shear regions are removed from 

the wall in the vicinity of the low-speed streaks (Bottaro and Klingmann, 1996) as a 

consequence of the net upward force at the upwash. The strong positive u y   shear 

region seems to correspond to the first inflection point near the boundary layer edge 

(Fig. 4.3), while the weak negative shear region corresponds to the second inflection 
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point between the boundary layer edge and the concave surface. Excluding the strong 

shear region near the wall, three maxima are found in the shear contours: one positive 

peak at the head of the mushroom-like structures and two relatively weak negative 

peaks in the vicinity of the stem. Further downstream, the structures that are formed 

by the weak negative shear regions in the contours become unorganized. This 

coincides with the decay of the mushroom-like structures attributed to the increased 

mixing due to the onset of turbulence (Mitsudharmadi et al., 2006). 

In addition to the inflection points in the normal direction which corresponds 

to the strong positive and weak negative u y   shear regions, the velocity profile is 

also inflected along spanwise direction as depicted by the high- u z   shear regions in 

the vicinity of the low-speed streaks, as shown in Fig. 4.5. Initially in the linear 

region, there are two peaks, which are symmetrical about the z-axis at the center of 

the iso-u mushroom structures, found in the contours for each vortex structure 

showing the concentration of the strong positive and negative u z   shears. Further 

downstream, in the nonlinear region, the peaks are separated into two at x = 400 mm, 

as shown in Fig. 4.5(e). The first ones are close to the wall, while the others are near 

the boundary layer edge, and are called “turn-over” region (Bottaro and Klingmann, 

1996) in which the secondary flow turns at this point and is directed towards the wall. 

Further downstream, the second peaks near the boundary layer edge decay as the flow 

reaches the location where the mushroom-like structures collapse prior to turbulence. 

It is evident that the secondary instability of Görtler vortices is triggered by 

the high-shear layer formed near the boundary layer edge (Floryan, 1991). By 

comparing the contours of u y   (Fig. 4.4) and u z   (Fig. 4.5) shears with the 

turbulence intensity (Fig. 4.6) at the same streamwise locations, it is observed that the 

development of the intense regions of fluctuation in the turbulence intensity contour 
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seems to be more correlated with the contour of u z   shear. The appearance of the 

second peaks of the u z   shear is consistent with the intense regions of fluctuation 

that appear near the boundary layer edge in Fig. 4.6. These peaks seem to be the most 

unstable region in the flow that cause an increase of turbulence intensity due to direct 

energy conversion from the primary motion to the fluctuating component of kinetic 

energy (Yu and Liu, 1994). Subsequently, it enhances the development of the vortex 

structures from the wavy profile to the horseshoe and mushroom-like structures 

further downstream prior to turbulence. These unstable regions correspond to the 

inflectional spanwise profile of streamwise velocity u that is suspected to be 

responsible for the sinuous mode of secondary instability (Yu and Liu, 1991) in the 

form of oscillations of the low-speed streaks observed in the smoke-wire flow 

visualization (Swearingen and Blackwelder, 1987). 

In contrast to the sinuous mode, in which the instability motions are the 

consequence of u z   shear, the motions of the varicose mode are due to u y  . 

Hence, the intense regions of fluctuation are strongly related to the high-shear layers 

in iso- u y   contours (Fig. 4.4) at the peak of the vortex structure and two smaller 

peaks on either side of the upper stem region of the vortex structure (Yu and Liu, 

1994).  

The iso- u y   shear contours in Fig. 4.4 show high-shear regions at the peaks 

of the vortex structure or low-speed streaks to form “dome” regions. These indicate 

intense regions of fluctuations in the iso-Tu contours in Fig. 4.6 which appear as 

varicose mode. Although the maximum of this region is not clearly observed in the 

contours due to the dominance of the sinuous mode, its existence is shown by the 

appearance of the peaks in the turbulence intensity profile across boundary layer at 

the upwash (Fig. 4.7). The second peak appears near the boundary layer edge, exactly 
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in the high-shear region in iso- u y   shear contour (Fig. 4.4), indicating the 

appearance of varicose mode of secondary instability. 

 

4.4 Fluctuating Velocity 

The fluctuating component of streamwise velocity u  for case 1 ( m  = 12 mm 

and U  = 2.85 m/s) is presented in term of turbulence intensity Tu [Eq. 3.11] for 

several streamwise (x) locations.  

Figure 4.6 shows the streamwise development of turbulence intensity (Tu) 

contours in y-z plane. Upstream of x = 300 mm, the turbulence intensity is still 

relatively very low and the intense region of Tu have not been seen clearly. The 

structures of two symmetric intense regions of Tu begin to appear at the low-speed 

(upwash) region at x = 300 mm (Fig. 4.6(c)), and becomes more pronounce further 

downstream. These intense regions are found near the stem of the vortex structures. 

Another pair of intense region of Tu appears near the boundary layer edge at x = 400 

mm, as shown in Fig. 4.6(e). The appearance of the second pair of intense regions, 

although the Tu is not as high as those found near the stem of the vortex structures, 

shows that another mechanism of instability appears in the boundary layer. Yu and 

Liu (1994) addressed this secondary instability as the sinuous mode which 

corresponds to the mushroom-like structures in the mean velocity contours (Fig. 4.1). 

The intense regions near the boundary layer edge become more visible further 

downstream to form a canopy structure covering the intense regions near the stem of 

the vortices. Both turbulence intensities near the stem of the vortices and of the 

boundary layer edge increase as the vortex structures grow upward and become more 

susceptible to the free-stream velocity. Transition to turbulence subsequently takes 

place as indicated by the significant increase of turbulence intensity in the range of x 
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= 700-800 mm. 

The downstream development of turbulence intensity (Tu) profile across 

boundary layer for case 1 is shown in Fig. 4.7. The profiles were obtained at the 

centers of the upwash and downwash and plotted against . The maximum random 

error in Tu was estimated to be about 0.4%.  

Similar to Tu contours, there is no increase of Tu observed before x = 300 mm. 

The first peak of turbulence intensity in the profile is observed at x = 300 mm. At x = 

350 mm, the second peak appears near the boundary layer edge, exactly in the high-

shear region in iso- u y   shear contour (Fig. 4.4). The peak further develops 

downstream and its amplitude increases significantly as the flow becomes turbulent. 

The transition to turbulence can be seen from the increase of magnitude of the peaks 

at both upwash and downwash at x = 700 mm, as a consequence of increased mixing. 

  Since parts of intense regions of both sinuous and varicose modes are located 

on either side of the low-speed streak near the stem of the vortex structure, the 

measured fluctuating velocity in those regions is affected by these two modes. It is 

very difficult to separate these two modes from the raw experimental data in those 

regions. However, as discussed earlier, the other parts of the intense region of the 

sinuous and varicose modes, which are located near the boundary layer edge, occur at 

different location. The intense turbulence corresponding to varicose mode occurs at 

the peak of the vortex structure or the low-speed streak to form a dome structure, 

while the one corresponding to sinuous mode occurs at the side of the low-speed 

streak near the boundary layer edge. By carefully measuring the maximum turbulence 

intensity in the intense regions near the boundary layer edge at both the dome 

structure (varicose mode) and the side of the low-speed streak (sinuous mode) for a 

number of streamwise locations along the nonlinear region, one can predict the 
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dominant mode of the secondary instability near the boundary layer edge although the 

largest turbulent intensities for both sinuous and varicose modes occur near the stem 

of the vortex structure. 

The maximum values of turbulence intensity are extracted from the 

experimental data for three regions: I, II, and III, as shown in Fig. 4.8. Region I is 

near the stem of the vortex structure where the maximum shear and turbulence 

intensity are found. The streamwise velocity fluctuations in this region are affected by 

the sinuous and varicose modes of secondary instability. Region II covers the area at 

the edge of low-speed streak where the high-shear region of u z   is observed in iso-

u z   shear contours. This region corresponds to the sinuous mode of secondary 

instability. Lastly, region III is the area with high u y   shear at the peak of the 

vortex structure or the low-speed streak (dome) which corresponds to the varicose 

mode of secondary instability.  

Figure 4.9 shows the development of the maxima of the intense turbulence in 

the three defined regions. The snapshot in the figure provides a clearer comparison 

between the maxima of turbulence intensities (Tumax) in regions II and III which 

correspond to the development of the sinuous and varicose modes near the boundary 

layer edge, respectively. The values of Tumax in region II are always above those in 

region III along streamwise locations, indicating that the sinuous mode is more 

dominant than the varicose mode in the nonlinear region. The ratio of Tumax in region 

III to that in region II is 0.45-0.62, that is, the fluctuations due to varicose mode is 

about two times smaller than those due to sinuous mode. It should be noted that these 

values are calculated from the experimental data in the region near the boundary layer 

edge. The Tumax in those regions is still very small compared to the Tumax in region I, 

as shown in the figure, in which the line of region I lies far beyond the lines of regions 
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II and III. It is also found that the spanwise location of Tumax is observed at either side 

of the stem of the vortex structure, instead of lying at the center of the iso-u vortex 

structure. It reveals that the pair of intense regions of fluctuation is still present further 

downstream. 

Comparisons of the present results with the experimental results of 

Mitsudharmadi et al. (2004) and the numerical results of Girgis and Liu (2006) are 

presented in Fig. 4.10. The snapshot of the figure captures the streamwise locations 

where the numerical study of Girgis and Liu (2006) was carried out to give a better 

comparison. These numerical results considered only the most amplified mode, which 

is the sinuous mode. 

In the linear development stage of Görtler vortices, the present results agree 

very well with the results of Mitsudharmadi et al. (2004). In the nonlinear region, 

both results also show the same mechanism of the streamwise evolution of the Tumax. 

The Tumax slightly decreases until a certain streamwise location, where the transition 

Görtler number ,trG  is about to be reached. Mitsudharmadi et al. (2004) found the 

,trG  to be 6.8 at x = 805 mm based on Finnis and Brown’s method (Finnis and 

Brown, 1997). After reaching the minimum value, Tumax increases considerably to a 

maximum value at the ,trG . Subsequently, Tumax slightly decreases in the transition 

region before drastically increasing due to the onset of turbulence. 

Since the experimental measurements are subjected to sinuous and varicose 

modes, the iso-Tu contours (Fig. 4.6) and Tumax (Fig. 4.10) are affected by these 

modes. This may explain why the numerical results of Girgis and Liu (2006) do not 

quite agree with the experimental results of Mitsudharmadi et al. (2004). However, as 

seen in the snapshot in Fig. 4.10, the present experimental results agree well with the 

numerical results of Girgis and Liu (2006) prior to the transition at ,trG  = 7.20. As 
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Girgis and Liu (2006) only considered the sinuous mode of secondary instability, the 

good agreement between present results and Girgis and Liu’s (2006) prior to the 

transition confirms that the sinuous mode is dominant over the varicose mode in the 

nonlinear region of Görtler instability. The large discrepancy between present results 

and Girgis and Liu’s (2006) after the transition is because their numerical study did 

not take into account the effect of transition. 

 

4.5 Vortex Growth Rate 

To assess the growth of the vortices in term of the mean streamwise velocity 

component, a vortex or disturbance amplitude u  (Winoto and Crane, 1980; Finnis 

and Brown, 1989) is defined as  

 
   
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d u
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u u
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 
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


  (4.1)  

where du  is the mean velocity at downwash, uu  the mean velocity at upwash. The 

developments of ,maxu  along the streamwise direction for the three cases are shown 

in Figs. 4.11 and 4.12 together with the results of Mitsudharmadi et al. (2004) and 

Finnis and Brown (1997) for comparison. Note that the present results for R = 1.0 m 

and Mitsudharmadi et al.’s (2004) for R = 2.0 m are for pre-set most amplified 

wavelength Görtler vortices, while Finnis and Brown’s (1997) are for naturally 

developed Görtler vortices for R = 4 m. The slope of the curves in the semi-log 

presentation in Fig. 4.11 corresponds to the constant value of vortex growth rate β 

assumed in the normal-mode analysis (Finnis and Brown, 1989). 

The development of ,maxu  in Fig. 4.11 can be divided into three regions of 

different disturbance growth rate (Mitsudharmadi et al., 2004). The first region is 

characterized by the steep increase of ,maxu  in the linear region of Görtler instability, 
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where the spanwise-periodic streamwise velocity profiles become wavier downstream 

along this region. At the end of linear region, at x  350 mm for cases 1 and 2 and at x 

 400 m for case 3, the slopes of the curves decrease considerably, that is, only a 

slight increase of ,maxu , in the second region before the negative growth as the 

mushroom-like structures decay prior to turbulence in the third region. The slight 

increase and then decrease of ,maxu  shows that the finite amplitude of the disturbance 

has been reached. In this region, the flow is dominated by the mushroom-like 

structures and transformed into the new possibly steady state in which the secondary 

instabilities may grow (Schmid and Henningson, 2001). The maximum ,maxu  before 

the decay of the mushroom-like structures is about 0.30 for Mitsudharmadi et al. 

(2004) and all the three cases in the present work, regardless of the concave surface 

radius of curvature and the free-stream velocity. Winoto and Crane (1980) reported 

that this value was in the range of 0.3 to 0.4. 

The effect of concave surface radius of curvature can be derived by comparing 

the slope of the curves in Fig. 4.11. As expected, the smaller concave surface radius 

of curvature results in higher vortex growth rate in the linear region due to the 

stronger centrifugal effect. The slopes obtained from the figure (which correspond to 

the vortex growth rate β) are 7.0 m-1, 4.7 m-1, and 3.7 m-1 for R = 1 m, 2 m, and 4 m 

respectively. Consequently, the onset of the nonlinear region is more upstream for the 

smaller radius of curvature. However, the vortex growth rate seems to be unaffected 

by free-stream velocity since the slopes of the curves for all cases in the present work 

with different free-stream velocities do not vary. The same is true for the Finnis and 

Brown’s (1997) results with two different free-stream velocities.  

By plotting ,maxu  against G , as shown in Fig. 4.12, all data of ,maxu  for pre-
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set wavelength Görtler vortices fall on a single line. Similarly, all data of ,maxu  for 

naturally developed Görtler vortices of Finnis and Brown (1997) also fall on another 

single line. Finnis and Brown (1997) mentioned that it was not clear whether this was 

a coincidence or whether the vortex maximum amplitudes would also lie on the same 

line. Based on the present results, it can be concluded that all data of ,maxu  obtained 

from the same experimental set-up for the most amplified vortex wavelengths will fall 

on a single line, regardless of the values of U  and R. The streamwise (x) locations 

where the tangent of the lines decreases significantly (which corresponds to the onset 

of the nonlinear region) for pre-set wavelength Görtler vortices occurs at about the 

same Görtler number G   5.0 and the disturbance amplitude ,maxu   0.29. 

The u  criterion is to quantify the growth of the vortices and to detect the 

maximum disturbance amplitude and the location of the most amplified disturbances 

in the boundary layer. However, to quantify the longitudinal amplification of 

disturbances, an integral criterion as suggested by Toé et al. (2002) may be more 

appropriate since it covers the whole boundary layer, not only at the middle of 

upwash and downwash. This criterion is defined as an amplification parameter (Pz) 

based on the spanwise gradient of the streamwise velocity ( u z  ), that is:  

 
2

0 0z y z

u
P dz dy

z



 




   (4.2) 

Figs. 4.13 and 4.14 show the streamwise variation of Pz and its variation with 

Görtler number G , respectively. The trend of the lines is similar to the maximum 

disturbance amplitude curves in Figs. 4.11 and 4.12. The development of Görtler 

vortices is first observed from the steep increase of Pz until x = 400 mm for cases 1 

and 2, and until x = 450 mm for case 3. It is noticed that these streamwise locations, 
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which are presumed to be the location of the onset of nonlinear region, are slightly 

downstream of those obtained from the ,maxu  curves (Fig. 4.11). Downstream of 

these streamwise locations, the slopes of the curves decrease significantly before the 

decay of the mushroom-like structures that turns the flow into turbulence. The slope 

of the lines in Fig. 4.13 corresponds to an exponential change of Pz with x in the form 

oxA , where βo is defined as the amplification rate of the perturbations (Toé et al., 

2002). For all cases in the present work, the exponential change of Pz per meter is 

found to be 5.6, and it compares well with 5.7 of Toé et al. (2002). 

From the definition, ,maxu  is the maximum difference between the streamwise 

velocity at downwash and upwash at a particular streamwise (x) location. This 

difference causes the momentum transfer between the downwash and upwash which 

is a result of the flow instability. The normal distance from the wall where ,maxu  

occurs is denoted as ,max( )uy  , and may indicate the location of the most unstable 

region of the mean components of Görtler instability at a particular streamwise 

location. Figures 4.15 and 4.16 show the downstream variation of ,max( )uy   for all the 

three cases. The data were obtained across the boundary layer at the center of upwash 

and downwash. The measurements were carried out with the step of 0.05 mm for y = 

0.05-2.00 mm and 0.50 mm for y > 2.00 mm. 

As shown in Fig. 4.15, the ,max( )uy   increases downstream until it reaches its 

peak at x = 350 mm for case 1, at x = 350-400 mm for case 2, and at x = 450 mm for 

case 3. The peak of ,max( )uy   is shifted rightward and upward with decreasing free-

stream velocity. These shifts may be explained by lower centrifugal force and thicker 

boundary layer for lower free-stream velocity. By using G  as the abscissa, the peaks 

of ,max( )uy   occur at about the same G   5.0 which corresponds to the onset of the 
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nonlinear region, as shown in Fig. 4.16. In the nonlinear region, ,max( )uy   decreases 

due to the presence of secondary instability which is initiated near the boundary layer 

edge. The primary mode of Görtler instability seems to move towards the wall where 

the viscous effect and hence the damping effect is significant. This results in the 

secondary instability to become the dominant mode in the nonlinear region. 

Figure 4.17 shows ,max( )uy   normalized by the Blasius boundary layer 

thickness (δL) at some streamwise locations in terms of the corresponding Görtler 

numberG . In the linear region, the waviness of the streamwise velocity distribution 

along the spanwise direction is most pronounced at the normal distance slightly below 

half of Blasius boundary layer thickness, that is, between 0.4δL and 0.5δL. The 

normalized ,max( )uy   significantly decreases towards the surface region until G   6. 

This seems to indicate that in the range of Görtler number (G ) between 5 and 6, the 

secondary instability sets in and overtakes the primary Görtler instability. It is 

believed that the energy conversion from primary to secondary instability takes place 

at this range of Görtler number (Yu and Liu, 1994). The secondary instability is 

initiated near the boundary layer edge, as discussed previously, and penetrates down 

the primary instability towards the concave surface, as shown in Fig. 4.17 by the 

occurrence of ,maxu  near the concave surface downstream of G   6. The stronger 

viscous effect near the concave surface in the nonlinear region may explain why 

,maxu  does not grow as fast as in the linear region.  

 

4.6 Concluding Remarks 

Three different cases have been experimentally investigated for concave 

surface with R = 1.0 m by using different wire spacing and different free-stream 
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velocities but the same wavelength parameter   250 to produce the most amplified 

wavelength Görtler vortices. The wavy profiles caused by the perturbation wires are 

amplified downstream to form horseshoe vortices and subsequently mushroom-like 

structures in the nonlinear region as the result of the onset of secondary instability. 

The wavelengths of the vortices are preserved downstream for all cases which 

confirm the prediction of the most amplified wavelength Görtler vortices.  

The appearance of a second inflection point in the region between the wall 

surface and the boundary layer edge to form an S-shape velocity profile across the 

boundary layer at the upwash may be responsible for transition into turbulence. It is 

also confirmed from the turbulence intensity (Tu) profile in that region, where the 

highest peak is found between the wall surface and the boundary layer edge which 

simply corresponds to the location of the second inflection point in the velocity 

profile. This region is also well correlated with the peaks in the iso- u z   shear 

contours and with the inflectional spanwise profile of streamwise velocity, and it is 

suspected to be responsible for the sinuous mode of secondary instability. In contrast 

to the sinuous mode, the intense regions of fluctuation that is responsible for the 

varicose mode of secondary instability are more related to the high-shear layers in iso-

u y   contours. 

Three regions with the intense turbulence were found in the iso-Tu contours: 

near the stem of the vortex structure, at the edge of low-speed streak, and at the peak 

of the vortex structure (dome) which seem to correspond to developments of the 

maximum turbulence intensity (sinuous and varicose modes), sinuous mode, and 

varicose mode of secondary instability, respectively. The sinuous mode was found to 

be more dominant than the varicose mode in the nonlinear region. 



 
Chapter 4 Linear and Nonlinear Development of Görtler Vortices 

 43

Comparison of the present results with the previous results of larger radii of 

curvature shows that smaller radius of curvature results in higher vortex growth rate, 

as expressed in term of maximum disturbance amplitude ,maxu , in the linear region 

due to stronger centrifugal force. Consequently, the onset of the nonlinear region is 

found to be more upstream for the case of smaller radius of curvature, and it seems to 

be unaffected by the free-stream velocity. When ,maxu  is plotted against the Görtler 

numberG , all data obtained from the same experimental set-up seem to lie on a 

single line, regardless of the values of U  and R. 

The normal distance from the wall where ,maxu  occurs, denoted as ,max( )uy  , 

increases in the streamwise direction until the onset of the nonlinear region following 

the thickening of the boundary layer, and decreases towards the wall due to the 

presence of secondary instability which is initiated near the boundary layer edge. The 

primary instability is penetrated downward and damped by the viscous effect near the 

surface. The secondary instability is overtaking as the dominant mode in the flow in 

the range of Görtler number G  between 5 and 6. Downstream of the streamwise (x) 

position where G   6.0, the flow is dominated by the sinuous mode secondary 

instability. 
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CHAPTER 5 

SPECTRAL ANALYSIS ON SECONDARY 
INSTABILITY 

 

5.1 Introduction 

The linear development of Görtler vortices can be considered to have been 

well established both analytically and experimentally. Thus, a lot of attention has 

recently been directed to the secondary instability phenomenon in the nonlinear 

region of Görtler vortices. However, most experimental works on the secondary 

instability were carried out in the naturally developed Görtler vortices. In addition, 

very limited information on spectra of secondary instability modes of Görtler vortices 

can be found in the literature. The dominant secondary instability mode in nonlinear 

region of Görtler vortices, as well as the transition process leading to turbulence, has 

not been clearly understood. 

Bottaro and Klingmann (1996) showed that as the complexity of the flow field 

increases further downstream, the number of unstable modes in the eigenvalue 

spectrum increases, and the spectrum becomes more difficult to interpret. The number 

of spanwise harmonic mode required to interpret the spanwise variation of streamwise 

velocity correctly increases further downstream. Peerhossaini and Bahri (1998) 

performed spectral analysis of the spanwise distribution of streamwise velocity and 

found that seven modes are sufficient to represent the velocity field in the nonlinear 

regime. 

This chapter focuses on the spectral analysis of the secondary instability 

modes of the most amplified wavelength Görtler vortices. The nonlinear growth of 
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Görtler vortices of case 1 ( m  = 12 mm, U  = 2.8 m/s) is presented in this chapter. 

The discussion includes the spanwise harmonics of streamwise velocity and frequency 

characteristics of Görtler vortices. Fast Fourier Transform (FFT) algorithm was 

developed to obtain the power spectrum. 

 

5.2 Nonlinear Growth of Görtler Vortices 

The nonlinear development of Görtler vortices is initiated by a nonlinear 

reorganization of perturbation energy growth (Bottaro and Klingmann, 1996), in 

which the typical mushroom-like structures develop in the mean streamwise velocity 

contours (Fig. 4.1). In this region, the energy begins to depart from its exponential 

growth to reach an asymptote before finally it saturates at a constant level. The flow 

subsequently becomes susceptible to secondary instability. 

The perturbation energy e , which can also be used as the measure of 

perturbation growth, is defined as (Bottaro and Klingmann, 1996): 

  
22

0 0

1

2 Blase u U dydz
 

    (5.1) 

where u is the streamwise velocity, BlasU  the corresponding velocity based on Blasius 

laminar boundary layer velocity profile, and  m   the spanwise wavelength of the 

vortices. 

The leveling-off of the relative perturbation energy 0E e e  as the instability 

reaches nonlinear region is clearly shown in Fig. 5.1, where 0e  represents the initial 

energy defined at 0x  = 150 mm. The energy initially increases at a quasi-exponential 

rate in the linear region. It begins to depart from the quasi-exponential growth at x = 

350 mm and reaches its saturation level approximately at x = 500 mm. This range of 

streamwise (x) location corresponds to streamwise location where the formation of 
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horseshoe vortices takes place and develops further into the mushroom-like structures, 

as observed in the mean streamwise velocity contours (Fig. 4.1). This observation 

suggests that the transformation of the horseshoe vortices into the mushroom-like 

structures is a result of the nonlinearity development of Görtler instability. The 

secondary instability subsequently appears in the flow as the energy saturation level is 

reached. 

The nonlinear development of vortex growth rate can also be seen in the 

normal distribution of disturbance amplitude u  [Eq. 4.1], as shown in Fig. 5.2. The 

first peak appears as the wavy profiles observed in the mean streamwise velocity 

contours. In the linear region, where the perturbation energy increases exponentially, 

the peak of the u  profile becomes more pronounce. At x = 350 mm, where the 

energy begins to depart from its quasi-exponential growth, the peak (which also 

corresponds to the maximum disturbance amplitude ,maxu ) seems to saturate at 

,maxu  0.3. It is subsequently followed by the appearance of the second peak near the 

boundary layer edge at x = 400 mm. Further downstream, the first peak moves toward 

the wall while the second peak is lifted up before finally the flow becomes turbulence.  

It is interesting to note that the formation of the second peak occurs at the 

streamwise (x) location where the perturbation energy begins to depart from a quasi-

exponential growth until reaching the saturation level, that is at x = 350-500 mm. 

Once the perturbation energy reaches its saturation level, the second peak seems to be 

damped. This can be seen in Fig. 5.2 that the amplitude of the second peak begins to 

decrease at x = 500 mm and finally disappears as the flow becomes turbulent.  

Since the second peak is initiated at the boundary layer edge at x = 400 mm, it 

is therefore related to the head of the mushroom-like structures in the mean velocity 

contours. The decreasing magnitude of the second peak is hence a result of the 
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dispersing of the mushroom-like structures as the increased mixing due to the 

transition to turbulence. On the other hand, the first peak, which is located near the 

stem of the vortices, consistently maintain its magnitude until x = 750 mm, even 

though the second peak has died down. In addition, the wavy profiles still exist and 

there is no inflection point found in the spanwise distribution of mean streamwise 

velocity u(z) near the stem region. It may be due to the dominant effect of the viscous 

terms near the wall. 

 

5.3 Spanwise Harmonics of Streamwise Velocity 

The nonlinear development of Görtler vortices leads to a change in the 

spanwise distributions of streamwise velocity u(z). Figure 5.3 shows the typical 

spanwise distributions of u(z) in nonlinear region (x = 600 mm) for several normal (y) 

locations. The inflectional velocity distributions u(z), as the indication of the 

imminent onset of secondary instability, are observed at y = 0.50L to y = 1.00L. 

However, these inflectional velocity distributions are not found at the y = 0.25L 

(vortex’s stem region) and at y = 1.50L (the mushroom head region), as shown in 

Figs. 5.3(a) and (e) respectively. Corresponding to these normal (y) locations, the u(z) 

are still in the form of uninflected sinusoidal patterns. The velocity distribution at the 

stem region is narrow and sharp at upwash while at downwash is wide and flat. In 

contrast, the velocity distribution at the mushroom head region is wide and flat at 

upwash and narrow and sharp at downwash. 

The spanwise distributions of u(z) shown in Fig. 5.3 cover two pairs of 

vortices. Those vortices should have the same profiles if the vortices grow at the same 

rate. However, at y = 1.50L the first vortex (on the left hand side) seems to have a 

sinusoidal pattern while there is still a kink observed at the upwash region of the 
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second vortex (on the right hand side). The kink seen in the second vortex disappears 

at a slightly higher normal (y) distance at y  1.70L. This suggests that the growth of 

the second vortex seems to be somewhat faster than the first vortex. The difference in 

size of the vortices is also shown in the mean streamwise velocity contours (Fig. 

4.1(i)). It is observed that there is an alternate size of the mushroom-like structures in 

the spanwise direction. The structures of the larger vortices are later dispersed earlier 

than the smaller vortices. 

To have a closer look at the spanwise distribution of u(z), streamwise 

developments of the velocity distribution of the second pair of the vortices (on the 

right hand side of Fig. 5.3) for three normal (y) locations are plotted in Figs. 5.4 – 5.6. 

The locations correspond to the normal (y) locations of the first peak, the second peak, 

and between the peaks of the disturbance amplitude u  profile (Fig. 5.2), respectively. 

There is no inflection point observed in the spanwise distributions u(z) at both 

peaks of u  profile, as shown in Figs. 5.4 and 5.5. The first peak, which corresponds 

to the maximum disturbance amplitude ,maxu , appears as the Görtler instability 

occurs and is located at the vortex’s stem region. Whilst the second peak is initiated 

near the boundary layer edge and corresponds to the mushroom head region. The 

velocity distribution at the first peak seems to grow (Fig. 5.4) only in the normal (y) 

direction until x = 350 mm. Downstream of this location, the velocity distribution 

does not seem to further develop, indicating that the disturbances grow nonlinearly 

and saturation level is about to be reached. The second peak, which begins to appear 

at x = 400 mm, seems to be damped in the normal (y) direction further downstream. 

The velocity distribution at this location (Fig. 5.5.) becomes wide and flat at upwash 

and its amplitude becomes smaller further downstream. This signifies the energy 

conversion mechanism from the primary motion to the secondary instability motion 
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via rate of strain u y   which occurs mainly near the boundary layer edge (Yu and 

Liu, 1994). 

Comparing the spanwise distributions u(z) at the stem and mushroom head 

regions in Figs. 5.4 and 5.5 respectively, it is noticed that the velocity distribution at 

upwash transform from narrow and sharp near the wall surface into wide and flat near 

the boundary layer edge. The velocity distribution at the normal (y) distance between 

the first and the second peaks is shown in Fig. 5.6. The inflection points are clearly 

seen in the figure starting from x = 450 mm. However, the inflection points disappear 

further downstream as the transition to turbulence takes place. The amplitude of the 

inflected sinusoidal pattern becomes smaller, as well as the amplitude of the spanwise 

distribution u(z) at the second peak of u  profile. This finding suggests that the 

secondary instability mode that first appears near the boundary layer edge is more 

dominant in the flow and later leads the flow into turbulence.  

The inflected sinusoidal pattern of u(z) distribution suggests that the 

disturbance quantities are periodic in the z-direction with streamwise independent 

wavelength. Spectral analysis was subsequently carried out for the spanwise 

distribution of u(z). The periodic u(z) at any particular streamwise and normal 

locations 0 0( , )x y  can be described in terms of Fourier series expansion as: 

  0 0 0 0 0 0 0
1

( , , ) ( , ) cos( ) ( , )sin( )n n
n

u x y z u a x y n z b x y n z 




    (5.2) 

where 0u  is the spanwise-average of 0 0( , , ),u x y z  2 m    is the dimensional 

wavelength parameter, na  and nb  are the Fourier coefficients which correspond to the 

amplitude of the disturbances modes, and n = 1, 2, 3,  is the spanwise harmonic 

modes. The spanwise distribution of u(z) is an even function ( n nu u ), and thus only 

has cosine terms in its Fourier series. The spanwise harmonic modes therefore can be 
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obtained by calculating the corresponding Fourier coefficients at any particular 

streamwise and normal locations 0 0( , )x y  from: 
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 0nb   (5.3c) 

The development of the normal distributions of spanwise-average velocity  

profile u U , which can also be interpreted as mode 0 in Fourier series ( 0u U ), is 

shown in Fig. 5.7. The local velocity profiles at upwash and downwash are also 

included in the figure for comparison. Similar to the spanwise distribution of u, the 

normal distribution of u is also inflected. The inflection point is observed at upwash 

region, as well as the spanwise-average velocity profile, at x = 350 mm. Further 

downstream, the inflection points at upwash and spanwise-average velocity profiles 

move upward and the second inflection point subsequently appear near the wall to 

form an S-shape velocity profiles. On the other hand, no inflection point is observed 

at downwash until the mixing process due to transition to turbulence takes place at x = 

750 mm. 

Comparing the streamwise (x) locations where the inflection points were first 

found in the spanwise and normal velocity distributions in Figs. 5.6 and 5.7 

respectively, it is noticed that the normal velocity distribution is inflected earlier than 

the spanwise velocity distribution. The inflected velocity profile in the normal 

direction is found at x = 350 mm, while in the spanwise direction is at x = 450 mm. 

The unstable inflectional spanwise velocity profile is correlated to the sinuous mode 

of secondary instability (Swearingen and Blackwelder, 1987), while the inflectional 
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normal velocity profile is more related to the varicose mode. Therefore, this finding 

implies that the varicose mode appears first in the flow. It is subsequently followed by 

sinuous mode which will become a dominant mode further downstream and lead the 

flow into turbulence. 

The normal distributions of the amplitude of spanwise harmonic modes are 

presented in Fig. 5.8. The number of spanwise harmonics to be included in this 

analysis is limited by the spatial resolution of the hot-wire measurement in the 

spanwise direction. The streamwise velocity measurement was carried out with the 

traversing step size of 1.0 mm, and there are 12 data points measured for each pair of 

the vortex with the wavelength m  = 12 mm. The maximum number of harmonic 

modes obtained from the Fourier series that can be used to have a convergence results 

is therefore N = 6. Bottaro and Klingmann (1996) found that the reasonable 

convergence is obtained with N  3. In the following analysis, N = 5 will be used 

throughout. 

The characteristics of the spanwise harmonic modes presented in Fig. 5.8 

agree very well with the numerical results of Bottaro and Klingmann (1996). The 

amplitude of the first spanwise harmonic mode ( 1n  ), which can be interpreted as 

the maximum disturbance amplitude ,maxu  in Fig. 5.2, splits into two peaks at x = 400 

mm, as shown in Fig. 5.8(b). The first peak moves toward the wall, while the second 

peak is lifted up from the boundary layer edge as the mushroom head moves upward. 

The second peak is therefore associated with the velocity deficit at the head of 

mushroom-like structures.  

A similar development, but in the opposite phase, can be seen for the second 

mode. As the first and second modes split into two peaks, higher modes seem to 

appear and contribute to the inflected spanwise velocity distribution. Up to x = 400 
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mm, N = 2 should be sufficient to represent the flow field. At x = 450 mm, the third 

mode appears in the form of S-shape. Two peaks with positive and negative 

amplitudes corresponding to this mode are found at the vortex stem and mushroom 

head regions, respectively. In addition, the fourth mode is also observed at this 

streamwise (x) location, although its amplitude is much smaller than the lower modes. 

At x = 600 mm, those modes die down leaving the first and second modes present in 

the flow field. All the harmonics will finally disappear as the flow becomes fully 

turbulent. 

To provide a clearer view about the contribution of each spanwise harmonic 

mode to the spanwise distribution of u(z), Fast Fourier Transform (FFT) algorithm 

was used to obtain the power spectra of the velocity distribution. The results showing 

the development of the power spectra of spanwise harmonic modes for several normal 

(y) locations are shown in Fig. 5.9. The y-axis in the figure is the absolute value of the 

amplitude of the harmonic modes, instead of the square of the amplitude (power). 

The first spanwise harmonic mode, which increases exponentially in the linear 

region of Görtler vortices, seems to saturate as the instability reaches the nonlinear 

region. The discussion on the maximum disturbance amplitude ,maxu  reveals that this 

mode moves towards the wall in the nonlinear region. This may be the reason that the 

amplitude of the first harmonic at y = 0.25L does not descend abruptly prior to 

transition to turbulence, as shown in Fig. 5.9(a). Figure 5.9 also show that the second 

harmonic is stronger at y = 0.25L than at the other normal (y) locations. The 

contributions of the third and fourth harmonics become visible at x = 450 mm for all 

normal (y) locations, and they are relatively stronger at y = 0.25L and y = 0.50L. The 

third harmonic still exists near the wall (y = 0.25L) at x = 750 mm, and it seems to be 

stronger than the second harmonic. However, a closer look to the normal distributions 
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of these modes reveals that the contribution of the second mode is still more 

significant than that of the third mode, both near the wall and near the boundary layer 

edge. 

 

5.4 Frequency Characteristics of Görtler Vortices 

Spectral analysis was performed to obtain the characteristic frequencies of the 

secondary instability of Görtler vortices. Since the vortex structures, as shown in 

streamwise velocity contours (Fig. 4.1), seems to develop in alternating size along the 

spanwise (z) direction in the nonlinear region, the spectral analysis is therefore carried 

out for two pairs of vortex structures with different sizes. The corresponding spanwise 

(z) locations of those vortices in Fig. 4.1 are z  0 mm and z  12 mm for the first 

(smaller) and second (larger) vortices, respectively. The raw data were high-pass 

filtered at 60 Hz to remove electrical noise and low-frequency fluctuations. To reduce 

the uncorrelated statistical fluctuations, the Welch’s method was used in estimating 

the power spectral density from the raw data. 

Figure 5.10 shows the most dominant frequency of secondary instability 

modes at several streamwise locations for the first vortex. The spectra were obtained 

from the point of the maximum power within the vortex structure. This location 

corresponds to the location of the intense turbulence of coherent structure near the 

wall in Fig. 4.6. Three peaks corresponding to the secondary instability modes are 

observed in the spectral distributions at the frequencies of 140, 180, and 280 Hz. The 

frequency of 140 Hz is observed initially at x = 650 mm followed by the other peaks 

of f = 180 and 280 Hz at x = 700 mm. The streamwise wavelengths of these modes are 

respectively 16.1, 12.6, and 8.1 mm for the frequencies of 140, 180, and 280 Hz. 
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Further downstream, the frequency of 180 Hz is found to be the most unstable mode, 

while the other two frequencies seem to be damped out. 

Different spectral distributions are observed for the second vortex, as shown in 

Fig. 5.11. The frequency of 140 Hz seems to be very dominant in all streamwise (x) 

locations since its first appearing at x = 650 mm. The other frequencies observed in 

the first vortex (180 Hz and 280 Hz), are believed to exist. However, these peaks are 

masked by the dominance of f = 140 Hz. Compared to other frequencies, including the 

ones observed in the first vortex, the instability mode corresponding to frequency of 

140 Hz has the largest power spectral density. Therefore, this secondary instability 

mode can be considered as the most unstable mode in the flow. This frequency is 

higher than the theoretical value of 110 Hz of Hall and Horseman (1991) and the 

experimental value of 130 Hz measured by Swearingen and Blackwelder (1987). 

These frequencies correspond to the sinuous mode of secondary instability. However, 

further analysis need to be carried out to ascertain the type of instability mode of the 

frequencies obtained in the present experiments. 

It is interesting to note from Figs. 5.10 and 5.11 that the dominant frequency is 

different between two adjacent vortices at the same streamwise (x) location, and both 

frequencies are preserved further downstream leading the flow into turbulence. This 

finding suggests that it is possible to have two different secondary instability modes to 

dominate the flow at the same time, but at different vortex structures.  

In addition to the streamwise development of the most unstable secondary 

instability mode, the following discussions are focused on the spectral distributions of 

the mode for several spanwise (z) and normal (y) locations. The most unstable mode 

in the present case is the one corresponds to the frequency of 140 Hz, which is found 

in the second (larger) vortex structure. The streamwise location x = 750 mm was 



 
Chapter 5 Spectral analysis on Secondary Instability 

 55

chosen to describe the spatial distributions of the most unstable secondary instability 

mode.  

Figure 5.12 shows the power spectral density of secondary instability modes at 

several spanwise (z) locations. Those spectra were obtained at the same normal (y) 

location, which corresponds to the location of the most unstable mode at Ly   = 0.30 

for the streamwise location x = 750 mm. The z = 0 mm corresponds to the middle of 

upwash region, which is also the line of symmetry in z about the upwash region 

(vortex structure). It can be seen clearly from the figures that the most unstable mode 

of f = 140 Hz occurs at the sides of the vortices at z = -1 mm and z = 1 mm, instead of 

the middle of upwash region (z = 0 mm). The second harmonic of the most unstable 

mode with f = 280 Hz is prominent at z = 0 mm, and it becomes more important at y = 

0.40L, as shown in Fig. 5.13(b). This indicates that there is a pair of the most 

unstable modes in each vortex, and likewise the intense turbulent region in Fig. 4.6, 

these modes are symmetric about z = 0 mm. 

The power spectral density of secondary instability at various normal (y) 

locations at the middle of upwash region for x = 750 mm are shown in Fig. 5.13. The 

power spectral density at the middle of upwash region is relatively small compared to 

that at the side of the vortex structure. In contrast to the first harmonic of the most 

unstable frequency (f = 140 Hz), the power spectral density of the second harmonic (f 

= 280 Hz) is larger at the middle of upwash region than at the side of vortex structure. 

At y = 0.20L, the first harmonic of the most unstable mode dominates the flow. 

However, the second harmonic becomes important near the half boundary layer 

thickness, as shown in Fig. 5.13(b) and (c) for y = 0.40L and y = 0.60L, respectively. 

Near the boundary layer edge (y = 0.80L), all instability modes seem to be 

insignificant compared to those near the wall and half boundary layer thickness 
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regions. Similarly, the second harmonic for the first (smaller) vortex structure (f = 360 

Hz) also has a larger power spectral density at the middle of upwash region than at the 

side of the vortex structure, even though the power is relative small compared to that 

of f  280 Hz which is also present in the spectral distribution. 

 

5.5 Concluding Remarks 

The spectral analysis has been performed for the streamwise velocity data 

obtained from hot-wire anemometer measurements in the nonlinear region of Görtler 

vortices of case 1 ( m  = 12 mm and U  = 2.8 m/s). Fast Fourier Transform (FFT) has 

been used to investigate the spanwise harmonics of streamwise velocity and 

frequency characteristics of Görtler vortices at several streamwise (x) locations. 

The nonlinear region of Görtler vortices is initiated by the departure of the 

perturbation energy from its quasi-exponential growth to reach a saturation level. The 

secondary instability subsequently appears in the flow. The streamwise (x) locations 

where the perturbation energy begins to depart from a quasi-exponential growth until 

reaching the saturation level corresponds to the formation of the second peak near the 

boundary layer edge in the normal distribution of disturbance amplitude u . Once the 

perturbation energy reaches its saturation level, the second peak seems to be damped. 

The spanwise distribution of streamwise velocity u(z) at the vortex stem 

region is narrow and sharp at upwash and wide and flat at downwash. In contrast, the 

velocity distribution at mushroom head region becomes wide and flat at upwash 

further downstream. However, no inflection points are observed at both sinusoidal 

patterns of the velocity distributions. The inflection points are found only between the 

stem and mushroom head regions. 
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The periodic u(z) at any particular streamwise and normal locations 0 0( , )x y  

can be described in terms of Fourier series expansion. In the linear region, it is found 

that the first two modes (N = 2) have been sufficient to represent the flow field. 

Higher modes will become significant only in the nonlinear region before finally all 

modes disappear as the flow becomes fully turbulent. 

The spanwise distribution of u(z), as well as the mean streamwise velocity 

contours, show an alternating size of the mushroom-like structures along the spanwise 

(z) direction in the nonlinear region. Two different dominant frequencies are observed 

in two different vortex structures. The frequency of 180 Hz is dominant in the smaller 

vortices, while the dominant frequency in the larger vortices is 140 Hz. The frequency 

140 Hz has the largest power spectral density, so this frequency can be considered as 

the most unstable mode in the flow. 

In contrast to the first harmonic of the most unstable frequency (f = 140 Hz), 

the power spectral density of the second harmonic (f = 280 Hz) is larger at the middle 

of upwash region than at the side of vortex structure, especially at normal (y) 

locations near the half boundary layer thickness.  
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CHAPTER 6 

SPANWISE VELOCITY COMPONENT IN 
NONLINEAR REGION OF GÖRTLER VORTICES 

 

6.1 Introduction 

After initial onset of Görtler instability, hot-wire measurements show that a 

finite-amplitude state, which evolves in the flow direction, is generated as the 

boundary layer grows. The flow becomes susceptible to secondary instability in the 

nonlinear region. This instability leads to the appearance of horseshoe vortices and 

mushroom-like structures. In some cases, the vortices become time-dependent and 

they meander as they develop further downstream (Hall, 1985). The meandering 

process may signify the importance of the spanwise velocity component in the Görtler 

vortex flow in the nonlinear region. 

Most studies of Görtler vortices were concerned with the streamwise velocity 

component. The contribution of spanwise velocity component in the development of 

Görtler instability seems to have received very little or no attention. Based on their 

numerical study, Yu and Liu (1994) explained the features of secondary instabilities 

via energy balancing mechanisms, in which the Reynolds stress-conversion 

mechanism, thus the spanwise velocity component, was also included in the 

discussion. However, no experimental result can be found in the literatures to confirm 

their numerical results. The measurement of spanwise velocity component is 

necessary in order to study the Reynolds stress, as well as other flow properties, in 

Görtler vortex boundary layer flow.   

Although the spanwise velocity component w is relatively very small 

compared with the streamwise velocity component u, it is believed to take part in the 
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appearance of secondary instability in the nonlinear region of Görtler vortices. 

Therefore, velocity measurements were carried out to obtain spanwise velocity data, 

especially the fluctuating component w . 

The discussion in this chapter focuses on the flow characteristics related to the 

spanwise velocity component in the nonlinear region of Görtler vortices. Streamwise 

and spanwise velocity components in the boundary layer on a concave surface of 1.0 

m radius of curvature for case 1 ( m  = 12 mm and U  = 2.8 m/s) were measured by 

an X-wire probe. The discussion in this chapter is limited only for the flow properties 

related to the spanwise velocity component, as the streamwise velocity component has 

been discussed in the earlier chapters. 

 

6.2 Mean Statistics 

Figure 6.1 shows the mean spanwise velocity (w) contours for several 

streamwise (x) locations in the y-z plane. The velocity is presented in the normalized 

spanwise velocity w U  for three pairs of vortex structures. The velocity contours are 

dominated by the regions of negative w, which are found near the wall and the head of 

the vortex structures. This may be because the center line of the wind tunnel is not 

exactly parallel with the center line of the concave surface test section. Therefore, the 

vortex structures, as shown in the streamwise velocity u U  contour in Fig. 6.2(i), are 

slightly skewed to the left. In addition to the regions of negative w, a region of 

positive w is found on the left of the vortex stem. It is believed that there is another 

region of negative w on the right of the vortex stem. However, since the vortex 

structures are skewed to the left, the region of negative w is therefore affected by the 

region of positive w from its vicinity. Consequently, the region of negative w is 

covered up by the region of positive w, and the secondary flow is formed in the head 
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of mushroom-like structures. As the vortices develop further downstream, the regions 

of negative w at the vortex’s heads are lifted up while the regions of positive w near 

the wall are pushed downward, as shown in Fig. 6.1(a) and (b). At x = 850 mm, both 

regions of positive and negative w disappear and the w U  contours become 

unorganized as the flow becomes turbulent. 

To confirm that there is a secondary flow in the vortex’s head at the upwash 

region, the mean spanwise velocities w U  across boundary layer are plotted for 

several spanwise (z) locations. Figure 6.2 shows the spanwise velocity profiles at four 

spanwise (z) locations for x = 650 mm. The spanwise (z) locations, which are shown 

in the streamwise velocity u U  contour in Fig. 6.2, include: (a) at the middle of 

downwash region, (b) at the side of downwash region, (c) at the side of upwash 

region, and (d) at the middle of upwash region.  

In concave surface boundary layer flow, the appearance of counter-rotating 

vortices are indicated by the positive w near the wall and negative w just above it for 

the region on the left of the vortex structure, to form an S shape spanwise velocity 

profiles. Such velocity profiles can be seen clearly in Figs. 6.2(b) and (c), which show 

the spanwise velocity profile at downwash and upwash regions, respectively. These 

shapes agree very well with the analytical results of Smith (1955) and the 

experimental results of Bippes (1978), especially at the downwash region. 

Since the streamwise counter-rotating vortices are symmetric in z-direction 

about the middle of upwash and downwash regions, the spanwise velocity across 

boundary layer should be zero at these spanwise (z) locations. However, the spanwise 

velocity at the middle of upwash that corresponds to the region of vortex’s head is to 

form a negative peak region, as shown in Fig. 6.2(d). This may be explained by the 

asymmetry of the vortices, which is slightly skewed to the left. The skewness of the 
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vortices is amplified by the secondary instability to produce a secondary motion in the 

vortex’s head region. At the vortex’ stems and the middle of downwash regions, the 

spanwise velocity profiles are not too affected by the asymmetry of the flow. These 

suggest that the region of vortex’s head is the most prone to the flow disturbances. 

The secondary instability, which is initiated at the boundary layer edge, amplifies the 

asymmetry of the free-stream flow. This also confirms the significance of the free-

stream disturbances in generating the vortex modes (Bassom and Hall, 1994). 

 Since the raw spanwise velocity data can be fitted with a spline and calculated 

for a fine mesh grid by interpolation, its derivatives can also be calculated in y-z plane 

and thus the iso-shear contours. Figures 6.3 and 6.4 show the w y   and w z   iso-

shear contours for some streamwise (x) locations in the nonlinear region.  

The alternate positive and negative w y   shear regions are found at the 

upwash region across the boundary layer, as shown in Fig. 6.3. The positive w y   

shear is dominant near the wall and the vortex’s head, while the negative w y   is 

dominant between those regions at the vortex’s body. Further downstream, the 

positive shear region at the vortex’s body is damped by the negative shears on its top 

and bottom. The negative shear regions are subsequently merged and lifted up to 

occupy the vortex’s head just below the positive shear region. As the vortex’ 

structures disperse due to turbulence, the shear regions also vanish. 

Unlike the symmetrical contours in z about the upwash region of the w y   

iso-shear contours, the w z   iso-shear contours are anti-symmetry in z about the line 

between upwash and downwash regions, as shown in Fig. 6.4. Two pairs of anti-

symmetric structures are found in the w z   iso-shear contours. Near the wall, 

positive and negative shear regions are found at downwash and upwash regions, 
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respectively. In contrast, at the vortex’s head, a positive shear is found at upwash and 

a negative shear is found at downwash. Although the values of w z   and w y   

shears are comparable, they are at least an order smaller than the streamwise shear 

stresses ( u y   and u z  ). 

 

6.3 Fluctuating Components 

It is evident from the flow visualizations that the low-speed streaks developed 

by the vortex field will experience periodic oscillations prior to transition 

(Swearingen and Blackwelder, 1987). The primary aim of the spanwise velocity 

measurement is to investigate the frequency characteristics of the spanwise velocity 

fluctuating component in the nonlinear region of Görtler vortices. It is believed that 

the frequencies of the spanwise oscillations are relatively lower than those of the 

streamwise velocity fluctuating component. The sampling rate in the hot-wire 

measurement was therefore reduced to 600 Hz to capture smaller frequency of the 

spanwise fluctuations up to 300 Hz. Spectral analysis was performed to obtain the 

characteristic frequencies of the spanwise oscillations. The raw data were high-pass 

filtered at 10 Hz to remove the very low-frequency fluctuations. The Welch’s method 

was subsequently used to estimate the power spectral density from the raw data and at 

the same time to reduce the uncorrelated statistical fluctuations. 

Figure 6.5 shows the power spectral density of the spanwise velocity 

component w for several streamwise (x) locations. Two dominant peaks 

corresponding to frequencies of 70 Hz and 90 Hz are observed at x = 650 mm, as 

shown in Fig. 6.5(a). Although it is not clear, the frequency of 140 Hz also appears at 

this streamwise location. The frequency of 140 Hz becomes dominant at x = 700 mm, 

and it is subsequently followed by the appearance of another unstable frequency of 
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180 Hz at x = 750 mm. The last two frequencies are believed to correspond to the 

streamwise velocity fluctuating component, as discussed in the previous chapter. 

Further downstream, all peaks in the spectral distribution die down and the power 

spectral density is distributed uniformly along the frequency band between 20 Hz to 

100 Hz, indicating the turbulence flow field, as shown in Fig. 6.5(e). 

The contours of Reynolds normal stress 2w  on the y-z plane are shown in Fig. 

6.6. Two intense regions are found at the stem and head of the vortex structures. This 

suggests that the mushroom-like structures oscillate in the spanwise direction, 

intensely at the head and stem of the vortices. As the vortices grow in the normal (y) 

direction further downstream, the intense region at the vortex’s head also moves 

upward, while the intense region at the stem moves towards the surface. At the 

vortex’s stem, the contours resemble closely to the normalized r.m.s spanwise 

velocity field of the most amplified sinuous mode computed by the linear viscous 

secondary instability analysis (Yu and Liu, 1994). However, the contours at the 

vortex’s head resemble more closely to the varicose mode although the intense region 

is only found on the left, instead of both shoulders of the vortices, due to the skewness 

of the vortex’s structures.  

The rate of total integrated kinetic energy of secondary perturbations, which is 

derived from the continuity and momentum equation, comprises the energy-

conversion mechanism from the primary instability and the rate of viscous dissipation 

(Yu and Liu, 1994). The energy-conversion mechanism from the primary to the 

secondary instability is accomplished through the work of the shear stresses u v   and 

u w   against the rates of strain of the primary motion, u y   and u z  . The present 

velocity measurements by means of X-wire provide the spanwise and streamwise 

velocity components, u and w. Therefore, the Reynolds stress u w  , as well as the 
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corresponding energy conversion from the primary to the secondary motion 

u w u z    , can be calculated from the experimental data. 

The contours of Reynolds shear stress u w   for several streamwise (x) 

locations are shown in Fig. 6.7. The Reynolds stress u w   is anti-symmetric in z-

direction, and it agrees with the computational result of Yu and Liu (1994). The 

structures resemble the u z   iso-shear contours (Fig. 4.5). Two intense regions of 

positive and negative shears are found at both the stem and head of the vortices. The 

intense values are more concentrated at the vortex’s stem than at the vortex’s head. 

Therefore, the energy conversion mechanism u w u z     occurs at the stem and head 

of the vortices, in which the most intense values are on the sides of the vortex’s stem. 

The locations of the most intense of u w u z     and its values (Yu and Liu, 1994) 

correlate well with the r.m.s values of u . This may explain the less intense 

turbulence, relative to the stem region, at the head of mushroom-like structures (Fig. 

4.9). 

The comparison of Reynolds shear stress u w   between the present 

experimental results and the computational results of Yu and Liu (1994) is shown in 

Fig. 6.8. The computational shear stress contours are given for both sinuous and 

varicose modes, as shown in Fig. 6.8(b) and (c). The contours were evaluated at the 

streamwise (x) location where secondary instability fluctuations are observed to grow 

rapidly compared to the saturated primary Görtler instability. In the present 

experiment, the secondary instability grows rapidly at Görtler number G  = 7.7 – 9.5 

(Fig. 4.9), which corresponds to the streamwise location of x = 600 – 800 mm. The 

Reynolds shear stress u w   at x = 700 mm in the present experiments is therefore 

chosen for comparison, as shown in Fig. 6.8(a). 
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It is clearly seen in Fig. 6.8 that both sinuous and varicose modes appear in the 

present experiment. Similar to 2w , the Reynolds shear stress u w   contour also 

shows the resemblance with the sinuous mode at the stem region and with the 

varicose mode at the shoulders of mushroom structures. Since the intense values are 

more concentrated at the stem region, the Görtler instability in the present case ( m  = 

12 mm and U  = 2.8 m/s) is therefore confirmed to be dominated by the sinuous 

mode. This also agrees with the analysis of the streamwise velocity component u, as 

discussed in Chapter 4. 

 

6.4 Concluding Remarks 

The characteristics of Görtler vortex boundary layer flow related to the 

spanwise velocity component has been investigated by X-wire measurements of the 

streamwise and spanwise velocity components, u and w, along a concave surface of R 

= 1.0 m for the nonlinear region of case 1 ( m  = 12 mm and U  = 2.8 m/s). The 

vortex structures obtained are slightly skewed to the left, so the contours are 

dominated by the regions of negative w. The appearance of streamwise counter-

rotating vortices is also shown by the spanwise velocity profiles across the boundary 

layer. The secondary motion appears in the vortex head region as an amplification of 

the free-stream disturbances by the secondary instability. 

The w y   iso-shear contours are symmetrical in z about the upwash, while 

the w z   iso-shear contours are anti-symmetrical in z about the line between upwash 

and downwash regions. In addition to the high-shear region near the wall, an alternate 

positive and negative w y   shears are found at the upwash region across the 

boundary layer. Unlike the w y   shear, two pairs of anti-symmetry structures are 
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found in the w z   iso-shear contours. At upwash region, positive and negative shear 

regions are found at the vortex head and near the wall, respectively. In contrast, 

positive and negative shear regions are respectively found near the wall and vortex’s 

head at the downwash region. 

Two dominant peaks corresponding to frequencies of 70 Hz and 90 Hz are 

initially observed in the spectral distribution of spanwise velocity w. The frequencies 

of 140 Hz and 180 Hz consecutively appear further downstream and they dominate 

the flow. The last two frequencies are believed to correspond to the streamwise 

velocity fluctuating component. When the flow becomes turbulent, the all peaks in the 

spectral distribution die down and the power spectral density is distributed uniformly 

along the frequency band between 20 Hz to 100 Hz. The most unstable frequency 

observed in the power spectral density is found exactly at the maxima of the 2w -

contours. Two intense regions of 2w  are found at the stem and head of the vortex 

structures, with the most intense region is at the vortex’s stem. This implies that the 

mushroom-like structures oscillate in the spanwise direction, intensely at the stem and 

head of the vortices. 

The Reynolds shear stress u w   contour is anti-symmetric in z-direction, 

which resembles the u z   iso-shear contours. The contour comprises two intense 

regions of positive and negative shears at both the stem and head of the vortices. The 

energy conversion mechanism u w u z     also occurs at the stem and head of the 

vortices, in which the most intense values are on the sides of the vortex’s stem. 

Comparison with u w   contour obtained from computation shows that the contours 

obtained from experiment are more dominated by the sinuous mode of secondary 
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instability than that of varicose mode. This confirms the dominance of the sinuous 

mode in the present experiment. 
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CHAPTER 7 

WALL SHEAR STRESS IN GÖRTLER  
VORTEX FLOW* 

 

7.1 Introduction 

Unlike wall shear stress measurement in flat plate boundary layer, there is 

dearth of reported wall shear stress results (either experimental or numerical) in 

concave surface boundary layer flows. Experimental data on wall shear stress along 

concave surface boundary layer are scarce, which can be due to the difficulties 

associated with direct measurement of wall shear stress on concave surface.  

The available data (Swearingen and Blackwelder, 1987; Ajakh et al., 1996) 

were obtained from curve-fitting wherein only few points near the wall were 

considered so that the wall shear stress may not be accurately estimated. In addition, 

analytical and numerical studies cannot provide reliable solutions to understand the 

physics of Görtler instability problem without accurate experimental data. Therefore, 

the present study is focused on providing more extensive experimental wall shear 

stress data in the presence of Görtler instability. These experimental data will be 

useful for comparison with future analytical or numerical study of Görtler instability. 

The wall shear stress will be obtained from the near-wall hot-wire 

measurements using the near-wall velocity gradient technique (Hutchins and Choi, 

2002). The streamwise velocity was obtained for the first 2.00 mm of the normal (y) 

distance from the wall with the step size of 50 μm. Three pairs of vortices were 

captured in the measurement with 2.0 mm traversing step along the spanwise (z) 

direction. Three cases of different wavelengths and free-stream velocities were 

                                                 
* Parts of this Chapter have been published in Physics of Fluids (Tandiono et al., 2009b). 
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considered in the measurements: (1) m  = 12 mm, U  = 2.8 m/s, (2) m  = 15 mm, 

U  = 2.1 m/s, and (3) m  = 20 mm, U  = 1.3 m/s. 

 

7.2 Near-Wall Velocity Gradient Technique 

Measuring wall shear stress in the boundary layer using the mean velocity 

gradient at the wall is essentially a matter of accurately obtaining the velocity profile 

near the wall. The gradient of the line fitted to the linear portion of the velocity profile 

is assumed to be the same as the gradient at the wall, and it is then used to calculate 

the wall shear stress w  from the following expression: 

 
0

w

y

du

dy
 



 
  

 
 (7.1) 

where μ is the fluid dynamic viscosity, u the streamwise velocity, and y the normal 

distance from the wall. It is well established that the viscous sublayer, which extends 

to a value of y  ≈ 5, exists in all turbulent flows and the velocity gradient in this 

region is linear (Azad and Burhanuddin, 1983). Hence, Eq. (7.1) can be used to 

estimate the wall shear stress in concave surface laminar and turbulent boundary layer 

flows. 

To accurately measure the velocity near the wall, some difficulties may arise, 

for example, when the hot-wire probe is traversed into near-wall proximity, the 

undesired conductive heat transfer from the hot-wire to the wall and the aerodynamic 

interference to the flow due to the presence of the probe may give rise to the spurious 

increase in velocity. The wall effect on the spurious velocity measurements extends to 

a certain distance from the wall depending on the thermal conductivity of the wall 

material and the dimension of the hot-wire probe. For a low thermal conductivity 

material, for example plexiglass, the wall effect extends to y  ≈ 2.0-3.5 (Polyakov 
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and Shindin, 1978; Ligrani and Bradshaw, 1987b; Park and Wallace, 1993; Hutchins 

and Choi, 2002) in turbulent boundary layer, and higher for the material with a larger 

thermal conductivity. On the other hand, the velocity profile in a turbulent boundary 

layer is believed to be linear only up to y   5. Therefore, the remaining “linear” 

layer that is useful for estimating the wall shear stress from the velocity gradient 

becomes very thin. 

Previous experimental results (Swearingen and Blackwelder, 1987; Ajakh et 

al., 1996) show that the velocity profiles across boundary layer in the presence of 

Görtler vortices at both upwash and downwash do not follow either the laminar 

(Blasius) or turbulent (one-seventh power law) profiles. This fact gives rise to a 

difficulty in determining the useful linear region to estimate the velocity gradient at 

the wall. Fortunately, the region with the linear velocity profile in the concave surface 

boundary layer prior to turbulence, as shown in Fig. 7.1, is sufficiently thick to 

estimate the wall shear stress by near-wall velocity gradient technique. The least-

squares linear fit was then used to estimate the velocity gradient of the “useful” linear 

region.  

Figure 7.1 shows typical velocity data within 2.0 mm from the wall at upwash 

and downwash for x = 200 mm of case 2 ( m  = 15 mm and U  = 2.1 m/s). At this 

particular streamwise (x) location, the useful linear region can be seen to exist for 0.65 

mm  y  2.00 mm and 0.50 mm  y  1.50 mm for upwash and downwash 

respectively, which correspond to 3  y   8 in wall units for both upwash and 

downwash. These limits were determined based on the highest value of the Pearson 

product-moment correlation coefficient (r) with at least 10 data points involved in the 

least-square linear fitting. The minimum value of r for these experimental data is 0.99. 
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Unlike some other wall shear stress measurement methods, for example, 

sublayer fence, wall hot-wire, and wall pulsed wire, which require the information of 

the normal (y) position of the sensing element in the viscous sublayer to obtain an 

accurate reading, the near-wall velocity gradient technique only needs the velocity 

gradient in the linear region to calculate the wall shear stress. The error due to the 

probe wall positioning is therefore insignificant in this method, and the main 

contribution to the error will be due to the gradient fit. 

An error analysis was conducted on the least-square linear fit as applied to the 

near-wall velocity gradient technique to obtain the standard skin friction coefficient 

error. The standard error in velocity gradient was estimated following Box et al. 

(1978). The present experimental results give a maximum standard gradient error of 

3.3 %. 

To estimate the positional accuracy of the hot-wire probe in this measurement, 

the probe positioning was carried out by means of a camera equipped with zoom 

facility to ensure that the hot-wire probe starts from very near to the concave surface. 

Then one can rely on the fine-scale traverse mechanism for the subsequent velocity 

measurement across boundary layer. The positional accuracy of the hot-wire probe 

was approximated by the intercept of the line fitted from the linear region of the 

velocity profile with the x-axis (normal distance). It is found to be within 28 μm at x 

= 200 mm for case 2, which is similar to the errors of 25 μm reported (Orlando et al., 

1974; Brunn, 1995) using positioning method by mechanical probe stop. 

 

7.3 Boundary Layer Development 

The presence of Görtler vortices in concave surface boundary layer will give 

rise to thicker boundary layer at the upwash and thinner boundary layer at the 
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downwash. In the case of naturally developed Görtler vortices, the boundary layer 

displacement thickness initially follows the Blasius (flat plate laminar boundary layer) 

growth until a certain distance from the leading edge where the spanwise wavy profile 

becomes prominent (Swearingen and Blackwelder, 1987). Figure 7.2 shows the 

streamwise development of the boundary layer displacement thickness *  for the pre-

set wavelength Görtler vortices at upwash and downwash, as well as that obtained 

from the spanwise-averaged velocity profile at each streamwise (x) location for case 

2. The Blasius boundary layer displacement thickness is also included in the figure for 

comparison. 

The initial departure of *  at upwash from the Blasius curve, as shown in Fig. 

7.2, is due to the perturbation wires placed prior to the leading edge at the upwash. 

Apart from this, the development of *  in the present study is similar to that of the 

naturally developed Görtler vortices (Swearingen and Blackwelder, 1987). At the 

upwash, *  increases considerably from x = 250 mm and continues till it reaches a 

peak at x = 850 mm. In contrast, *  at downwash starts to decrease at x = 300 mm 

until reaching a minimum value at x = 550 mm. After reaching the maximum and 

minimum, *  at upwash and downwash begin to converge to the same value as a 

consequence of increased mixing due to the onset of transition to turbulence. Despite 

the large departures of *  at upwash and downwash from the Blasius curve, the 

streamwise development of the spanwise-averaged *  seems to follow the Blasius 

curve, although it is slightly thicker, especially in the upstream region. Similarly, the 

streamwise developments of boundary layer momentum thickness θ show 

approximately the same patterns as those of * , as shown in Fig. 7.3. 

The thickening of *  implies that more fluid from the outer flow is caught up 

by the retardation due to friction effect, which is given by viscous effect term 



 
Chapter 7 Wall Shear Stress in Görtler Vortex Flow 

 73

( 2 2v u y  ) in the momentum equation. The viscous effect also causes outward 

momentum transport from the wall. These phenomena are shown in the development 

of the spanwise-averaged *  and θ in Figs. 7.2 and 7.3, respectively. The spanwise-

averaged *  increases further downstream at a rate approximately the same with that 

of the Blasius curve, while the spanwise-averaged θ increases faster than the Blasius 

curve showing more momentum deficits in the concave surface boundary layer due to 

Görtler instability. However, the spanwise variation of both spanwise-averaged *  

and θ, which is shown in Figs. 7.4 and 7.5 respectively, suggests that, unlike in flat-

plate boundary layer, the viscous term in the spanwise direction ( 2 2v u z  ) in the 

momentum equation cannot be ignored for concave surface boundary layer. This 

term, which is derived from the rate of strain u z  , appears in the momentum 

equation for the concave surface boundary layer flow as a result of the interaction 

between centrifugal force and the viscous effect, as well as radial pressure gradient. It 

is responsible for the thicker and thinner boundary layers at upwash and downwash, 

respectively, in addition to the Reynolds stresses. Girgis and Liu (2006) found that the 

mechanism of the normal (y) transport of streamwise momentum due to the secondary 

instabilty is that of Reynolds stress u v  , in addition to the viscous diffusion.  

The Reynolds stresses are important features in explaining the nonlinear 

secondary instability structures. The positive value of Reynolds stress u v   indicates 

that the high-momentum fluid is transported toward the wall from the outer flow 

giving rise to the y steepening of the steady flow streamwise velocity profile in the 

nonlinear region (Girgis and Liu, 2006). This suggests that the appearance of the 

secondary instability will inhibit the normal (y) development of the vortex structures, 

thus the displacement thickness at the upwash. If this is true, the sudden decrease of 
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the growth rate of the displacement thickness at x = 400 mm of the upwash curve, as 

shown in Fig. 7.2, may be explained by the effect of the Reynolds stress u v   as the 

secondary instability modes arise. 

As discussed earlier, high-shear stress at downwash and low-shear stress at 

upwash will give rise to spanwise variation of boundary layer thickness. The 

distributions of both *  and θ, as shown in Figs. 7.4 and 7.5 respectively, are quite 

similar, that is, wavy profiles with the peaks at the upwash regions. At x = 200 mm, 

where Görtler instability is still in its linear development, the boundary layer 

thickness at downwash regions are spanwisely uniform. As a result of low-momentum 

fluid moving away from the wall at upwash, the mass and momentum deficits 

increase, as shown by thicker *  and θ respectively. Further downstream, as the 

velocity difference between the downwash and upwash increases, the rate of strain 

u z   increases too. This may explain the sharper wavy profile at downwash and the 

inflected wavy profile at upwash further downstream, as shown in Figs. 7.4 and 7.5. 

 

7.4 Wall Shear Stress Development 

For a flat plate laminar boundary layer, the wall shear stress w  decreases with 

x1/2 as the boundary layer grows, and increases with 1.5U  (see White (1999), for 

example). However, for a concave surface boundary layer in the presence of Görtler 

vortices, the wall shear stress varies in the spanwise (z) direction like the velocity 

profiles. The streamwise developments of w  in term of its coefficient fC  

( 20.5 ,w U    where  is the fluid density) for case 2 ( m  = 12 mm and U  = 2.1 

m/s) are presented in Fig. 7.6 at upwash and downwash together with the spanwise-

averaged values. The wall shear stress curves for the Blasius and turbulent boundary 
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layer flows in a flat plate are also included in the figure for comparison. The turbulent 

curve was obtained from the semi-empirical equation of Blasius for turbulent 

boundary layer on smooth surface using one-seventh power law velocity profile, that 

is: 1/50.0576 Ref xC  .  

The wall shear stress at upwash decreases at a rate faster than the Blasius 

curve until x = 350 mm, as shown in Fig. 7.6. After reaching its minimum point, that 

is 59% of Blasius value at that position, it increases downstream to reach the Blasius 

curve. This slight increase of the wall shear stress may be due to the effect of the 

secondary instability which occurs slightly before the location of the minimum wall 

shear stress (Bottaro and Klingmann, 1996). Further downstream, the wall shear stress 

follows the Blasius curve closely until the decay of the mushroom-like structures at x 

= 850 mm. Cases 1 and 3 also show the similar trend that there is a range of 

streamwise (x) distance in the nonlinear region where the wall shear stress at upwash 

follows the Blasius curve. In contrast to the present results, the wall shear stress 

obtained by Swearingen and Blackwelder (1987) at upwash simply crossed the 

Blasius curve after reaching its minimum point, instead of following the curve. This 

might be due to their coarse hot-wire measurements, where only 10 streamwise 

velocities were measured across boundary layer and the nearest point to the wall was 

1.0 mm. Please also note that Swearingen and Blackwelder (1987) measured in 

naturally developed Görtler vortices, while the present work deals with pre-set 

wavelength Görtler vortices.  

At downwash, the wall shear stress initially decreases at the rate slightly lower 

than the Blasius curve, but at x = 250 mm it starts to increase significantly 

downstream until x = 550 mm. Subsequently, the increasing rate reduces abruptly 

further downstream. The streamwise (x) location where the increasing rate of the wall 
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shear stress starts to reduce corresponds to the turning point in the boundary layer 

displacement thickness ( * ) curve at the downwash (Fig. 7.2). Downstream of this 

location, in contrast to a flat-plate boundary layer, the wall shear stress increases with 

increasing * . 

The spanwise-averaged curve in Fig. 7.6 also shows increasing wall shear 

stress from x = 300 mm. Computational studies (Sabry and Liu, 1991; Li and Liu, 

1992; Girgis and Liu, 2006) explained that further enhancement of the wall shear 

stress is due to the effect of nonlinear steady streamwise Görtler vortices. In the 

absence of secondary instability, the spanwise-averaged wall shear stress coefficient 

fC  has already appeared to a large extent to bridge the Blasius curve and the flat-

plate turbulent boundary layer curve. The presence of the secondary instability is to 

further increase fC  well beyond the turbulent values (Girgis and Liu, 2006). This 

finding may be useful in some engineering applications as increasing of wall shear 

stress suggests enhancement of heat transfer. In addition, the increasing wall shear 

stress, which is also observed in the transition region of flat-plate boundary layer 

flow, suggests that the growth and breakdown of Görtler vortices are quite similar to 

those in transitional and turbulent flow fields. Therefore, they can be used to 

experimentally model the eddy structures found in transitional and turbulent boundary 

layers (Bippes, 1978). 

Görtler instability is considered to be in the nonlinear region when the 

horseshoe vortices are observed in the iso-velocity contours (Mitsudharmadi et al., 

2004). The vortices are evolved from the wavy velocity profiles and subsequently 

transformed into the mushroom-like structures further downstream. The inflection 

points in both normal and spanwise directions, as a result of increasing shear stresses 

u y   and u z   respectively, are observed in the streamwise velocity profiles. The 
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nonlinear development also leads to an initial decrease of wall shear stress at the 

upwash (at upstream of x = 350 mm), prior to the subsequent slight increase due to the 

secondary instability, and an increase at the downwash (Bottaro and Klingmann, 

1996), as also revealed in Fig. 7.6. However, the spanwise-averaged wall shear stress 

coefficient fC  is larger than that in the flat-plate boundary layer. As the flow 

becomes nonlinear, it is more susceptible to the secondary instability which will 

further increase fC . Girgis and Liu (2006) used the concept of Reynolds stresses to 

explain the nonlinear secondary instability of Görtler vortices. They concluded that 

the further enhancement of fC  is contributed by the Reynolds stress u v   in much 

the same way as in turbulent boundary layer, although they possess different 

fluctuation mechanisms.  

As discussed earlier, the minimum wall shear stress at upwash occurs at x = 

350 mm (Fig. 7.6), which is coincidentally the same location where the growth of the 

maximum disturbance amplitude ,maxu  [Eq. (4.1)] ceases and approaches a plateau. 

This streamwise location is assumed to be the onset of the nonlinear region of Görtler 

vortices (Mitsudharmadi et al., 2004), as shown in the Fig. 7.7. However, Bottaro and 

Klingmann (1996) showed that the secondary instability occurs slightly upstream of 

the location where the wall shear stress at upwash is minimum, which is at slightly 

upstream of x = 350 mm. These two findings seem to contradict since it is not 

possible that the secondary instability occurs before the onset of the nonlinear region. 

The flow becomes susceptible to the secondary instability only after it is sufficiently 

nonlinear and the energy saturates at a constant level. Therefore, the use of the 

maximum disturbance amplitude curve, as shown in Fig. 7.7 for case 2 of the present 

work, to predict the linear and nonlinear regions of Görtler instability may not be as 
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accurate. The wall shear stress data may provide a better indication of the onset of the 

nonlinear region since it is more sensitive than the ,maxu . 

Based on the streamwise development of spanwise-averaged wall shear stress 

coefficient fC , three different regions can be identified, namely linear, nonlinear, and 

transition to turbulence regions, as shown in Fig. 7.6. In the linear region, fC  still 

follows the Blasius curve. In this region, the instability, as well as the perturbation 

energy, grows linearly, and therefore the linear stability analysis can still provide the 

satisfactory results. The nonlinear region is defined from the streamwise distance 

where fC  begins to depart from the Blasius curve (at x = 250 mm). The perturbation 

energy grows nonlinearly and finally reaches a saturation level where the flow 

becomes susceptible to the secondary instability. Lastly, the transition to turbulence 

region is shown by the increase and decrease of fC  at upwash and downwash 

respectively, eventually to converge to the same value, indicating the onset of the 

transition to turbulence and its consequence of increased mixing. The fC , as well as 

the turbulence intensity at upwash and downwash, in this region increase 

significantly. 

The streamwise developments of the spanwise-averaged wall shear stress for 

all three cases are shown in Fig. 7.8. As the wall shear stress is presented in non-

dimensional form (spanwise-averaged wall shear stress coefficient fC ), the 

streamwise (x) distance is also presented in non-dimensional Görtler number G . The 

results for all cases show the same development of fC , where it first decreases and 

then increases further downstream. The minima in all cases occur at about the same 

Görtler number G  = 4.0. After reaching its minimum point, it increases dramatically 
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with downstream distance until G   6.0. Downstream of this streamwise (x) 

distance, the increasing rate of fC  reduces for a finite range of G  before a 

substantial increase occurs again as a result of increased mixing due to the onset of 

flow transition to turbulence. 

As discussed earlier, the increase of fC  well above the local flat plate 

turbulent boundary layer value is due to the secondary instabilities. Furthermore, the 

secondary instabilities possess a close correlation with the rates of strain in which 

there is direct energy conversion from the primary motion to the secondary instability 

through the rates of strain, in addition to viscous dissipation. The motion of the 

sinuous mode is strongly correlated to the rate of strain u z   of the primary motion, 

while the varicose mode is more related to the rate of strain u y   (Yu and Liu, 

1994). The energy conversion mechanism from the primary motion to the secondary 

instabilities is performed via the work of Reynolds stresses u v   and u w   against 

the rates of strain of the primary motion u y   and u z  , respectively. Bottaro et al. 

(1996) found that the growth of the perturbation kinetic energy will level off in the 

nonlinear region, and finally lead to a state where the energy saturates at a constant 

level. It explains why the increasing rate of fC  reduces in a finite range of Görtler 

number prior to the flow transition to turbulence. 

It is evident that the type of the secondary instability mode, which of course 

affects the development of the wall shear stress, is directly influenced by Görtler 

vortex wavelength (Li and Malik, 1995). Additionally, the Görtler number 

distribution may have some bearing on the secondary instability mechanism indirectly 

through its effect on the development of Görtler vortices and their wavelengths 

relative to the boundary layer thickness. These evidences may explain the difference 
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in increasing rate of fC  among the three cases downstream of G   6.0. Furthermore, 

it would be interesting to investigate the influence of each mode of secondary 

instability to the increasing rate of wall shear stress in concave surface boundary 

layer. 

Although it follows the same trend as those in case 1 ( m  = 12 mm and U  = 

2.8 m/s) and case 2 ( m  = 15 mm and U  = 2.1 m/s), fC  in case 3 ( m  = 20 mm and 

U  = 1.3 m/s) is larger than those in cases 1 and 2 for the same Görtler number. To 

explain this phenomenon, fC  is plotted against Reynolds number Re  ( U v ), as 

shown in Fig. 7.9. Before reaching their minima, fC  for all cases seems to follow the 

same line. The values of Re  at the minima are respectively 150, 140, and 110 for 

case 1, 2, and 3. Larger vortices reach their minima at lower Re  values which could 

be because larger vortices are more “vigorous” (Bottaro et al., 1996). In the nonlinear 

region, larger vortices consistently produce higher wall shear stress at any value of 

Re . 

Associated with the nonlinear region of Görtler vortices, the spanwise 

distributions of the mean velocity u U  become distorted such that the downwash 

becomes flat and the upwash becomes narrow and sharp (Aihara, 1976; Aihara and 

Koyama, 1981), as shown in Fig. 7.10 at a distance y = 0.5L (where L is Blasius 

boundary layer thickness) at several streamwise positions. The broken-line refers to 

the spanwise-averaged value of u U  at the corresponding streamwise (x) position. 

There is a tendency of wavy velocity distribution to approach a finite amplitude, 

which can be quantified by the maximum disturbance amplitude ,maxu , as the flow 

becomes sufficiently nonlinear.  



 
Chapter 7 Wall Shear Stress in Görtler Vortex Flow 

 81

The spanwise distributions of u U  at downwash region at x = 200 mm (Fig. 

7.10(a)) and 300 mm (Fig. 7.10(b)) are not as flat as that at x = 400 mm (Fig. 7.10(c)). 

The “kinks” at the downwash indicate that other disturbances, besides the one 

generated by thin vertical wires, are present in the flow. However, at x = 400 mm the 

“kinks” disappear, resulting in a flat spanwise distribution at downwash region before 

being inflected due to the secondary instability. The appearance of the “kinks” in the 

spanwise distributions of u U  at the early stage of boundary layer indicates that 

Görtler instability amplifies the disturbances imposed by the rig facilities on the 

incoming flow (Kottke, 1988), including the disturbances generated by the 

perturbation wires. A competition of disturbances of different amplification rates, as 

the only wavelength selection mechanism of Görtler vortices, damps the disturbances 

other than the one generated by the wires, resulting in a uniform wavelength of 

Görtler vortices that preserves itself downstream. 

As the growth of the vortices in the y direction reaches a finite amplitude, the 

spanwise distribution of u U  is then inflected, as shown in Fig. 7.10(d) to (h), and 

the flow is dominated by the mushroom-like structures. The inflected velocity profiles 

in the spanwise direction, as well as the inflected velocity profiles across the boundary 

layer which occur earlier, indicate the appearance of the secondary instability. Further 

investigation reveals that it is related to the sinuous mode of secondary instability 

(Swearingen and Blackwelder, 1987). 

The spanwise distributions of the wall shear stress in term of fC  for several 

streamwise positions are presented in Fig. 7.11, where the broken-line is the 

spanwise-averaged value fC  at the corresponding streamwise position. Initially, the 

spanwise distribution of fC  seems to correlate with the spanwise distribution of 
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u U  until x = 300 mm. Further downstream, there is no indication of the spanwise 

distribution of fC  to become flat at the downwash and narrow or sharp at the upwash, 

as observed in the spanwise distribution of u U . Instead, the fC  distribution at the 

downwash region becomes narrower, and there is no inflection point found in the 

distribution. This may be because the sinuous mode of secondary instability, which is 

initiated near the boundary layer edge, is not strong enough to alter the distribution of 

the wall shear stress. This also explains why the increasing rate of fC  (in Fig. 7.6) 

reduces significantly prior to the flow transition to turbulence. The main contribution 

to the wall shear stress enhancement in a concave surface boundary layer flow may be 

attributed to the varicose mode of the secondary instability. This is concluded from 

the fact that the waviness in fC  distribution becomes more pronounced and the 

spanwise-averaged value fC  increases significantly at the early stage of the nonlinear 

region where the flow instability, in the present work, is still dominated by the 

varicose mode. 

 

7.5 Concluding Remarks 

The streamwise development of wall shear stress in Görtler vortex boundary 

layer flows has been experimentally studied on a concave surface of radius of 

curvature R = 1.0 m for three different cases of different wire spacing and different 

free-stream velocities. The wall shear stress was estimated by using the near-wall 

velocity gradient technique. Near-wall velocity measurements with a very fine step-

size were carried out to obtain sufficient streamwise velocity data within the “linear” 

layer.  
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The boundary layer displacement and momentum thicknesses develop further 

downstream in a similar pattern. Initially, both boundary layer displacement and 

momentum thicknesses increase at the rate similar to the Blasius curve until a certain 

streamwise location for both upwash and downwash. Further downstream, they depart 

from the Blasius curve in such a way that they increase at upwash and decrease at 

downwash before finally converging to the same value due to the enhanced mixing as 

a consequence of the transition to turbulence. The streamwise development of the 

spanwise-averaged boundary layer displacement thickness seems to follow the 

Blasius curve indicating that the net mass transport from the outer flow into the 

boundary layer is somewhat similar to that of the flat-plate boundary layer. However, 

the spanwise-averaged momentum thickness increases at the rate higher than the 

Blasius curve, showing more momentum deficits in the concave surface boundary 

layer, compared with the flat-plate boundary layer, due to the Görtler instability. 

The wall shear stress at downwash initially decreases at a slightly lower rate 

than the Blasius curve, and subsequently increases after reaching its minimum point. 

In contrast, the wall shear stress at upwash region decreases at a higher rate than the 

Blasius curve. The minimum wall shear stress is found to be 59% of the Blasius value 

at that position. After reaching its minimum point, the wall shear stress increases 

slightly due to the secondary instability as the onset of secondary instability is just 

slightly before the location of the minimum wall shear stress at the upwash. The 

spanwise-averaged wall shear stress coefficient fC , which initially follows the 

Blasius curve, increases well above the local turbulent boundary layer value further 

downstream due to the nonlinear effects of Görtler instability and the secondary 

instability modes. 
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The wall shear stress data provides a more accurate indication of the onset of 

nonlinear region than the ,maxu  criterion (Mitsudharmadi et al., 2004). Three 

different regions can be identified based on the streamwise development of spanwise-

averaged wall shear stress coefficient fC , namely linear, nonlinear, and transition to 

turbulence. The onset of the nonlinear region is defined as the streamwise location 

where fC  starts to depart from the Blasius curve. The transition to turbulence is 

initiated by a significant increase in fC . At the same time, the wall shear stress at 

upwash also drastically increases, but it decreases at downwash as a result of 

increased mixing due to turbulence. 

Unlike the spanwise distribution of streamwise velocity, the spanwise 

distribution of fC  becomes narrower at the downwash in the nonlinear region, and 

there is no inflection point found further downstream. This may be because the 

sinuous mode of the secondary instability is not strong enough to alter the spanwise 

distribution of the wall shear stress. The reduction in the increasing rate of fC  in the 

later part of the nonlinear region, where the instability is dominated by the sinuous 

mode, seems to suggest that the main contribution to the wall shear stress 

enhancement in a concave surface boundary layer flow may come from the varicose 

mode of the secondary instability. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 

8.1 Conclusions 

The development of the most amplified wavelength Görtler vortices has been 

experimentally studied by means of hot-wire anemometer measurements. Three 

different cases were investigated on a concave surface of 1.0 m radius of curvature by 

using different vortex wavelengths and different free-stream velocities but keeping the 

wavelength parameter  = 250 to produce the most amplified wavelength Görtler 

vortices. The three cases include: (1) m  = 12 mm and U  = 2.8 m/s, (2) m  = 15 mm 

and U  = 2.1 m/s, and (3) m  = 20 mm and U  = 1.3 m/s. The wavelengths of the 

vortices were “forced” or pre-set by means of a series of 0.2 mm diameter vertical 

perturbation wires positioned 10 mm prior and perpendicular to the concave surface 

leading edge.  

The streamwise velocity measurements have been carried out by means of a 

single-normal (SN) hot-wire probe. The vortex wavelengths were observed to 

preserve downstream for all cases. This shows that the vertical perturbation wires can 

be effectively used to pre-set the wavelength of Görtler vortices and confirms the 

most amplified wavelength Görtler vortices as predicted by Görtler vortex stability 

diagram. The wavy profiles caused by the perturbation wires are amplified 

downstream to form “horseshoe” vortices and subsequently “mushroom-like” 

structures in the nonlinear region before turbulence sets in. The onset of nonlinear 

region is initiated by the departure of the perturbation energy from its quasi-
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exponential growth to reach a saturation level. As the flow is sufficiently nonlinear, it 

becomes susceptible to the secondary instability. 

Two inflection points were observed in the velocity profiles across the 

boundary layer in the nonlinear region. The first inflection point appears in the 

velocity profile at the upwash near the boundary layer edge. The location of the 

inflection point corresponds to the region where intense turbulence is found in the 

turbulence intensity (Tu) contours. As the velocity defect grows progressively 

upward, a second inflection point subsequently appears in the region between the 

concave surface and the boundary layer edge, and the velocity profile evolves to 

become an S-shape. The appearance of the first inflection point implies that high-

shear layer occurs near the boundary layer edge. The high-shear layer subsequently 

triggers the appearance of horseshoe vortices as the secondary instability of Görtler 

vortices.  

The spanwise distribution of streamwise velocity u(z) at the vortex stem 

region is narrow and sharp at upwash and wide and flat at downwash. In contrast, the 

velocity distribution at mushroom head region becomes wide and flat at upwash 

further downstream. However, no inflection points are observed at both sinusoidal 

patterns of the velocity distributions. The inflection points are found only in the 

region between the stem and mushroom head regions. The appearance of the second 

inflection point in the normal velocity profile is followed by the appearance of the 

inflection point in the spanwise distribution of u(z). These inflection points are related 

to the sinuous mode of secondary instability that leads the flow into turbulence. 

Comparison of the present results with the previous results of different radii of 

curvature has been carried out. The vortex growth rate is expressed in term of 

maximum disturbance amplitude ,maxu , which is also the amplitude of the first mode 
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of the spanwise harmonics of streamwise velocity. For smaller radius of curvature, the 

vortices are found to grow faster in the linear region due to the stronger centrifugal 

force. The onset of nonlinear region therefore occurs at a more upstream streamwise 

location for the case of smaller radius of curvature, and it is independent of free-

stream velocity. When ,maxu  is plotted against the Görtler number G , all data 

obtained from the same experimental set-up seem to lie on a single line, regardless of 

the values of free-stream velocity and concave surface radius of curvature. 

The spectral analysis was performed by using Fast Fourier Transform (FFT) to 

investigate the spanwise harmonics of streamwise velocity and frequency 

characteristics of Görtler vortices for case 1. The periodic streamwise velocity along 

spanwise can be represented by at least two first modes (N = 2) of the Fourier series. 

Higher modes will appear only in the nonlinear region before finally all modes die 

down as a consequence of transition to turbulence. Two dominant frequencies of 140 

Hz and 180 Hz were observed in the power spectral density of streamwise velocity at 

the side of vortex stems in the nonlinear region. The second harmonics of these 

frequencies are found to be significant at the middle of upwash, especially at normal 

(y) locations near half bondary layer thickness. 

Streamwise and spanwise velocity components, u and w, have been maeasured 

by means of X-wire for the nonlinear region of case 1 ( m  = 12 mm and U  = 2.8 

m/s). The appearance of streamwise counter-rotating vortices is shown clearly in the 

spanwise velocity profiles across the boundary layer, as well as the spanwise velocity 

contours in the y-z plane, in which the regions of positive and negative w are observed 

across the boundary layer in an alternate way. The secondary motion, as a result of the 

amplification of free-stream disturbances, appears in the vortex’s head due to the 

secondary instability. 
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Two dominant peaks correspond to the frequencies of 70 Hz and 90 Hz 

initially appear in the spectra of w. The frequencies of 140 Hz and 180 Hz, which are 

found earlier to be related with the streamwise velocity, consecutively appear and 

dominate the flow further downstream. All peaks in the spectral distributions die 

down as the flow turns into turbulent, and the power spectral density is distributed 

uniformly along the frequency band of 20 Hz to 100 Hz. The most unstable 

frequencies are found exactly at the intense region of 2w -contours. Two intense 

regions of 2w  are found at the stem and head of the vortex structures, with the most 

intense region is at the vortex’s stem. This implies that the mushroom-like structures 

oscillate in the spanwise direction, intensely at the stem and head of the vortices. The 

Reynolds shear stress u w   contour, which resembles the u z   iso-shear contours, 

suggests that the energy conversion mechanism from primary to secondary motions 

u w u z     also occurs at the stem and head of the vortices, in which the most 

intense values are on the sides of the stem region. 

Near wall velocity measurements have also been carried out by means of 

single-normal (SN) hot-wire probe to study the streamwise development of wall shear 

stress in Görtler vortex boundary layer flows. The region with the “linear” velocity 

profile in the concave surface boundary layer prior to turbulence is sufficiently thick 

to estimate the wall shear stress. Therefore, the near-wall velocity gradient technique 

(Hutchins and Choi, 2002) has been used to estimate the wall shear stress based on the 

slope of the “linear” layer. 

The wall shear stress at downwash decreases at a slightly lower rate than the 

Blasius curve and it subsequently increases after reaching its minimum point. In 

contrast, the wall shear stress at upwash decreases at a higher rate than the Blasius 

curve. After reaching its minimum point, it increases slightly due to secondary 
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instability as the onset of secondary instability occurs slightly before the location of 

the minimum wall shear stress at the upwash. The spanwise-averaged wall shear 

stress, which initially follows the Blasius curve, increases well above the value of the 

local flat plate turbulent boundary layer further downstream. This may be attributed to 

the nonlinear effect of Görtler instability and the secondary instability modes. 

The spanwise distribution of wall shear stress coefficient fC  exhibits a 

sinusoidal pattern with lower fC  at upwash and higher at downwash. Unlike the 

spanwise distribution of streamwise velocity, the spanwise distribution of fC  

becomes narrower at downwash in the nonlinear region, and there is no inflection 

point found further downstream. This may be because the sinuous mode of secondary 

instability is not strong enough to alter the spanwise distribution of the wall shear 

stress. 

The wall shear stress data provides a more accurate indication of the onset of 

nonlinear region than the ,maxu  criterion (Mitsudharmadi et al., 2004). Three 

different regions can be identified based on the streamwise development of spanwise-

averaged wall shear stress coefficient fC , namely linear, nonlinear, and transition to 

turbulence. The onset of the nonlinear region is defined as the streamwise location 

where fC  starts to depart from the Blasius curve. The transition to turbulence is 

initiated by a significant increase in fC . At the same time, the wall shear stress at 

upwash also drastically increases, but it decreases at downwash as a result of 

increased mixing due to turbulence. 

 

8.2 Recommendations 

The following recommendations can be considered for future works: 
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1. The success of pre-setting the wavelength of Görtler vortices by means of a series 

of vertical wires make it possible to control and study the development of Görtler 

vortices. Other methods to pre-set Görtler vortex wavelength may also be 

considered, for example, by introducing saw-tooth pattern at the leading edge of 

concave surface as recently reported by Akaishi et al. (2007). 

2. The resulting wavelength of Görtler vortices follows the spanwise distance 

between the wires, and preserves downstream. It will be interesting to 

concurrently pre-set the Görtler vortices with the different wavelengths near the 

leading edge. The development of the vortices can be subsequently investigated. 

This may give a clearer picture about the wavelength selection mechanism of 

Görtler vortices that is still not understood yet. 

3. The physical flow visualizations, for example: smoke visualization, can be tried to 

compliment the present quantitative data obtained by hot-wire anemometer. 

However, the safety regulations in the laboratory made it not possible to carry out 

the smoke visualization. An attempt will be worthy to be made in the future to 

provide more detailed pictures of the development of the most amplified 

wavelength Görtler vortices. 

4. The wall shear stress results estimated from the near-wall velocity gradient 

technique confirm a substantial increase of wall shear stress, thus heat transfer 

enhancement, at the downwash of the nonlinear region of Görtler vortices. Further 

investigation on wall shear stress, as well as heat transfer enhancement, in Görtler 

vortex flows can therefore be considered. Velocity and temperature measurements 

inside the concave surface boundary layer can be carried out in the future. 

5. Comparison between computational simulations and experimental studies is very 

important, in order to gain a better understanding on the physical insights of the 
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phenomenon. Hence, computational simulations on Görtler vortex boundary layer 

flows should be attempted. The flow simulation and modeling can be carried out 

by a computational fluid dynamics (CFD) software, such as ANSYS Fluent or 

ANSYS CFX, coupled with the user-defined functions (UDF) that allow us to 

enhance the standard features of the software. 



 

92 

REFERENCES 

 

Aihara, Y., "Nonlinear analysis of Görtler vortices," Physics of Fluids, 19, 1655 

(1976). 

Aihara, Y., "Görtler vortices in the nonlinear region," in Recent developments in 

theoretical and experimental fluid mechanics: Compressible and 

incompressible flows, edited by Muller, U., Roesner, K. G., and Schmidt, B. 

(Springer-Verlag, Berlin, 1979), pp. 331-338. 

Aihara, Y. and Koyama, H., "Secondary instability of Görtler vortices: Formation of 

periodic three-dimensional coherent structure," Transactions of the Japan 

Society for Aeronautical and Space Sciences, 24, 78 (1981). 

Ajakh, A., Kestoras, M., and Peerhossaini, H., "Experiments on the Görtler 

instability: its relation to transition to turbulence," in Proceedings of the 1996 

ASME Fluids Engineering Division Summer Meeting. Part 2 (of 3), San 

Diego, 1996, (ASME, New York, 1996), pp. 613-621. 

Ajakh, A., Kestoras, M. D., Toe, R., and Peerhossaini, H., "Influence of forced 

perturbations in the stagnation region on Görtler instability," AIAA Journal, 

37, 1572 (1999). 

Akaishi, K., Nishikawa, H., Jumonji, K., and Ito, A., “Visualization of secondary 

instability flows generated between forced wavelength Görtler vortices,” The 

9th Asian Symposium on Visualization, 4-8 June 2007, Hong Kong, ASV0008-

002. 

Alfredsson, P. H., Johansson, A. V., Haritonidis, J. H., and Eckelmann, H., "The 

fluctuating wall-shear stress and the velocity field in the viscous sublayer," 

Physics of Fluids, 31, 1026 (1988). 



 
 References 

 93

Azad, R. S. and Burhanuddin, S., "Measurements of some features of turbulence in 

wall-proximity," Experiments in Fluids, 1, 149 (1983). 

Bassom, A. P. and Hall, P., "Receptivity problem for O(1) wavelength Goertler 

vortices," Proceedings of the Royal Society of London, Series A: 

Mathematical, Physical and Engineering Sciences, 446, 499 (1994). 

Bhatia, J. C., Durst, F., and Jovanovic, J., "Corrections of hot-wire anemometer 

measurements near walls," Journal of Fluid Mechanics, 122, 411 (1982). 

Bippes, H., "Experimental study of the laminar-turbulent transition of a concave wall 

in a parallel flow," NASA TM-75243 (1978). 

Blackwelder, R. F. and Haritonidis, J. H., "Scaling of the bursting frequency in 

turbulent boundary layers," Journal of Fluid Mechanics, 132, 87 (1983). 

Bottaro, A. and Klingmann, B. G. B., "On the linear breakdown of Görtler vortices," 

European Journal of Mechanics, B/Fluids, 15, 301 (1996). 

Bottaro, A., Klingmann, B. G. B., and Zebib, A., "Goertler vortices with system 

rotation," Theoretical and Computational Fluid Dynamics, 8, 325 (1996). 

Box, G. E. P., Hunter, W. G., and Hunter, J. S., Statistics for experimenters: an 

introduction to design, data analysis, and model building (John Wiley & Sons, 

Inc., New York, 1978). 

Bruun, H. H., Hot-wire anemometry: principles and signal analysis (Oxford 

Unversity Press, Oxford, 1995). 

Chew, Y. T., Khoo, B. C., and Li, G. L., "A time-resolved hot-wire shear stress probe 

for turbulent flow: use of laminar flow calibration," Experiments in Fluids, 17, 

75 (1994). 

Dagenhart, J. R. and Mangalam, S. M., "Disturbance functions of the Görtler 

instability on an airfoil," AIAA Paper 86-1048, 1986. 



 
 References 

 94

Dean, W. R., "Fluid motion in a curved channel," Proceedings of the Royal Society of 

London. Series A, Containing Papers of a Mathematical and Physical 

Character, 121, 402 (1928). 

Denier, J. P., Hall, P., and Seddougui, O., "On the receptivity problem for Görtler 

vortices: vortex motions induced by wall roughness," Philosophical 

Transactions of the Royal Society, Series A (Physical Sciences and 

Engineering), 335, 51 (1991). 

Finnis, M. V. and Brown, A., "Stability of a laminar boundary layer flowing along a 

concave surface," Journal of Turbomachinery, 111, 376 (1989). 

Finnis, M. V. and Brown, A., "The linear growth of Görtler vortices," 18, 389 (1997). 

Floryan, J. M., "Görtler instability of boundary layers over concave and convex 

walls," Physics of Fluids, 29, 2380 (1986). 

Floryan, J. M., "On the Görtler instability of boundary layers " Progress in Aerospace 

Sciences, 28, 235 (1991). 

Floryan, J. M. and Saric, W. S., "Stability of Görtler vortices in boundary layers," 

AIAA Journal, 20, 316 (1982). 

Girgis, I. G. and Liu, J. T. C., "Nonlinear mechanics of wavy instability of steady 

longitudinal vortices and its effect on skin friction rise in boundary layer 

flow," Physics of Fluids, 18, 024102 (2006). 

Görtler, H., “Über eine dreidimensionale Instabilität laminarer Grenzschichten an 

konkaven Wänden”, Ges. D. Wiss. Göttingen, Nachr. a. d., Math., 2 (1) 

(1940); translated as “On the three-dimensional instability of laminar 

boundary layers on concave walls”, NACA TM 1375 (1954). 

Hall, P., "The linear development of Görtler vortices in growing boundary layers," 

Journal of Fluid Mechanics, 130, 41 (1983). 



 
 References 

 95

Hall, P., "The Görtler vortex instability mechanism in three-dimensional boundary 

layers," Proceedings of the Royal Society of London, Series A (Mathematical 

and Physical Sciences), 399, 135 (1985). 

Hall, P., "Görtler vortices in growing boundary layers: The leading edge receptivity 

problem, linear growth and the non-linear breakdown stage," NASA CR-

181962 (ICASE Report No. 89-81) (1989). 

Hall, P. and Horseman, N. J., "Linear inviscid secondary instability of longitudinal 

vortex structures in boundary layers," Journal of Fluid Mechanics, 232, 357 

(1991). 

Hanratty, T. J. and Campbell, J. A., "Measurement of wall shear stress," in Fluid 

mechanics measurements, edited by Goldstein, R. J. (Hemisphere Publishing, 

Washington DC, 1983), pp. 559-615. 

Herbert, T., "Higher eigenstates of Görtler vortices," in Recent developments in 

theoretical and experimental fluid mechanics: Compressible and 

incompressible flows, edited by Muller, U., Roesner, K. G., and Schmidt, B. 

(Springer-Verlag, Berlin, 1979), pp. 322-330. 

Hinze, J. O., Turbulence. An introduction to its mechanism and theory (McGraw-Hill, 

New York, 1959). 

Hutchins, N. and Choi, K.-S., "Accurate measurements of local skin friction 

coefficient using hot-wire anemometry," Progress in Aerospace Sciences, 38, 

421 (2002). 

Kottke, V., "On the instability of laminar boundary layer along a concave wall 

towards Görtler vortices," in Propagation and non equilibrium systems 

(Springer, Berlin, 1988). 



 
 References 

 96

Kottke, V. and Mpourdis, B., "On the existence of Taylor-Görtler vortices on concave 

walls," in Proceedings of the Fourth International Symposium, Paris, 1986, 

(Hemisphere, Washington, 1987), pp. 475-480. 

Li, F. and Malik, M. R., "Fundamental and subharmonic secondary instabilities of 

Görtler vortices," Journal of Fluid Mechanics, 297, 77 (1995). 

Liepmann, H. W., "Investigations on laminar boundary layer stability and transition 

on curved boundaries," NACA Wartime Report ACR No. 3H30 (1943). 

Ligrani, P. M. and Bradshaw, P., "Spatial resolution and measurement of turbulence 

in the viscous sublayer using subminiature hot-wire probes," Experiments in 

Fluids, 5, 407 (1987). 

Ligrani, P. M. and Bradshaw, P., "Subminiature hot-wire sensors: development and 

use," Journal of Physics E: Scientific Instruments, 20, 323 (1987). 

Liu, J. T. C., “Nonlinear instability of developing streamwise vortices with 

applications to boundary layer heat transfer intensification through an 

extended Reynolds analogy,” Philosophical Transaction of The Royal Society 

A, 366, 2699 (2008). 

Luchini, P. and Bottaro, A., "Görtler vortices: a backward-in-time approach to the 

receptivity problem," Journal of Fluid Mechanics, 363, 1 (1998). 

Mangalam, S. M., Dagenhart, J. R., Hepner, T. E., and Meyers, J. F., "Görtler 

instability on an airfoil," AIAA Paper 85-0491, 1985. 

Matsson, O. J. E., "Experiments on streamwise vortices in curved wall jet flow," 

Physics of Fluids, 7, 2978 (1995). 

McCormack, P. D., Welker, H., and Kelleher, M., "Taylor-Goertler vortices and their 

effect on heat transfer," Transactions of the ASME. Series C, Journal of Heat 

Transfer, 92, 101 (1970). 



 
 References 

 97

Meksyn, D., "Stability of viscous flow over concave cylindrical surfaces," 

Proceedings of the Royal Society of London. Series A, Mathematical and 

Physical Sciences, 203, 253 (1950). 

Mitsudharmadi, H., Winoto, S. H., and Shah, D. A., "Development of boundary-layer 

flow in the presence of forced wavelength Görtler vortices," Physics of Fluids, 

16, 3983 (2004). 

Mitsudharmadi, H., Winoto, S. H., and Shah, D. A., "Secondary instability in forced 

wavelength Görtler vortices," Physics of Fluids, 17, 074104 (2005a). 

Mitsudharmadi, H., Winoto, S. H., and Shah, D. A., "Splitting and merging of Görtler 

vortices," Physics of Fluids, 17, 124102 (2005b). 

Mitsudharmadi, H., Winoto, S. H., and Shah, D. A., "Development of most amplified 

wavelength Görtler vortices," Physics of Fluids, 18, 014101 (2006). 

Momayez, L., Dupont, P., Delacourt, G., Lottin, O., and Peerhossaini, H., “Genetic 

algorithm based correlations for heat transfer calculation on concave 

surfaces,” Applied Thermal Engineering, 29, 3476 (2009). 

Orlando, A. F., Moffat, R. J., and Kays, W. M., "Turbulent transport of heat and 

momentum in a boundary layer subject to deceleration, suction and variable 

wall temperature," NASA CR-139655 (1974). 

Park, D. S. and Huerre, P., "Primary and secondary instabilities of the asymptotic 

suction boundary layer on a curved plate," Journal of Fluid Mechanics, 283, 

249 (1995). 

Park, S. R. and Wallace, J. M., "Flow field alteration and viscous drag reduction by 

riblets in a turbulent boundary layer," in Proceedings of the International 

Conference on Near-Wall Turbulent Flows, Tempe, AZ, USA, 1993, (Elsevier 

Science Publishers B.V., Amsterdam, 1993), pp. 749-760. 



 
 References 

 98

Peerhossaini, H., "On the subject of Görtler vortex," in Cellular structures in 

instability, edited by Wesfreid, J. E. and Zaleski, S. (Springer, Berlin, 1984), 

pp. 376-384. 

Peerhossaini, H. and Bahri, F., "On the spectral distribution of the modes in nonlinear 

Görtler instability," Experimental Thermal and Fluid Science, 16, 195 (1998). 

Polyakov, A. F. and Shindin, S. A., "Peculiarities of hot-wire measurements of mean 

velocity and temperature in the wall vicinity," Heat and Mass Transfer, 5, 53 

(1978). 

Sabry, A. S. and Liu, J. T. C., "Longitudinal vorticity elements in boundary layers. 

Nonlinear development from initial Goertler vortices as a prototype problem," 

Journal of Fluid Mechanics, 231, 615 (1991). 

Schmidt, P. J. and Henningson, D. S., Stability and transition in shear flows 

(Springer, New York, 2001). 

Shigemi, M., Johnson, M. W., and Gibbings, J. C., "Boundary layer transition on a 

concave surface," IMechE Paper No. C262/87, 1987. 

Smith, A. M. O., "On the growth of Taylor-Görtler vortices along highly concave 

walls," Quarterly of Applied Mathematics, 13, 233 (1955). 

Swearingen, J. D. and Blackwelder, R. F., "Growth and breakdown of streamwise 

vortices in the presence of a wall," Journal of Fluid Mechanics, 182, 255 

(1987). 

Syred, N., Khalatov, A., Kozlov, A., Shchukin, A., and Agachev, R., "Effect of 

surface curvature on heat transfer and hydrodynamics within a single 

hemispherical dimple," ASME J. Turbomachinery, 123, 609 (2001). 

Tandiono, Kelvin Neo C. T., Winoto, S. H., and Shah, D. A., “Pre-setting Görtler 

vortices using perturbation needles”, The 3rd International Symposium on 



 
 References 

 99

Advanced Fluid/Solid Science and Technology in Experimental Mechanics, 7-

10 December 2008, Tainan, Taiwan, Paper No. 122 (2008a). 

Tandiono, Winoto, S. H., and Shah, D. A., “On the linear and nonlinear development 

of Görtler vortices”, Physics of Fluids, 20, 094103 (2008b). 

Tandiono, Winoto, S. H., and Shah, D. A., “Visualizing shear stress in Görtler vortex 

flow”, Journal of Visualization, 12, 195 (2009a). 

Tandiono, Winoto, S. H., and Shah, D. A., “Wall shear stress in Görtler vortex 

boundary layer flow”, Physics of Fluids, 21, 084106 (2009b). 

Tani, I., "Production of longitudinal vortices in the boundary layer along a concave 

wall," Journal of Geophysical Research, 67, 3075 (1962). 

Taylor, G. I., "Experiments with rotating fluids," Proceedings of the Royal Society of 

London. Series A, Containing Papers of a Mathematical and Physical 

Character, 100, 114 (1921). 

Toe, R., Ajakh, A., and Peerhossaini, H., "Heat transfer enhancement by Görtler 

instability," International Journal of Heat and Fluid Flow, 23, 194 (2002). 

White, F. M., Fluid Mechanics (McGraw-Hill, Boston, 1999), 4 ed. 

Winoto, S. H. and Crane, R. I., "Vortex structure in laminar boundary layers on a 

concave wall," International Journal of Heat and Fluid Flow, 2, 221 (1980). 

Winoto, S. H. and Low, H. T., "Transition of boundary layer flows in the presence of 

Goertler vortices," Experiments in Fluids, 8, 41 (1989). 

Winoto, S. H. and Low, H. T., "Transition of boundary layer flows in the presence of 

Goertler vortices," Experiments in Fluids, 10, 281 (1991). 

Winter, K. G., "An outline of the techniques available for the measurement of skin 

friction in turbulent boundary layers," Progress in Aerospace Sciences, 18, 1 

(1979). 



 
 References 

 100

Wortmann, F. X., "Visualization of transition," Journal of Fluid Mechanics, 38, 473 

(1969). 

Yu, X. and Liu, J. T. C., "The secondary instability of Görtler flow," Physics of Fluids 

A, 3, 1845 (1991). 

Yu, X. and Liu, J. T. C., "On the mechanism of sinuous and varicose modes in three-

dimensional viscous secondary instability of nonlinear Görtler rolls," Physics 

of Fluids, 6, 736 (1994). 



 
Figures 

 101

 

R

  

(a) 

downwash 
du  

uu  

U  

(b) 

upwash 

 

FIG. 1.1 Sketch of Görtler vortices and the definitions of upwash, downwash, and 
vortex wavelength. 
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 (a) x = 100 mm 

(b) x = 200 mm 

(c) x = 300 mm 

(d) x = 350 mm 

(e) x = 400 mm 

(f) x = 450 mm 

(g) x = 500 mm 

 

FIG. 4.1 Mean streamwise velocity (u U ) contours on y-z plane for case 1 ( m  = 

12 mm and U  = 2.8 m/s). 
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 (h) x = 550 mm 

 

(i) x = 600 mm 

 

(j) x = 700 mm 

 

(k) x = 800 mm 

 

FIG. 4.1 Continued. 
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 (a) x = 100 mm 

 

(b) x = 200 mm 

 

(c) x = 300 mm 

 

(d) x = 350 mm 

 

(e) x = 400 mm 

 

(f) x = 450 mm 

 

(g) x = 500 mm 

 

 
w

u y

u y

 
 

 

FIG. 4.4 Iso-shear ( u y  ) contours on y-z plane for case 1 ( m  = 12 mm and U  = 

2.8 m/s). 
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 (h) x = 550 mm 

 
 

(i) x = 600 mm 

 
 

(j) x = 700 mm 

 
 

(k) x = 800 mm 
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FIG. 4.4 Continued 
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 (a) x = 100 mm 

(b) x = 200 mm 

(c) x = 300 mm 

(d) x = 350 mm 

(e) x = 400 mm 

(f) x = 450 mm 

(g) x = 500 mm 
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FIG. 4.5 Iso-shear ( u z  ) contours on y-z plane for case 1 ( m  = 12 mm and U  = 

2.8 m/s). 
 



 
Figures 

 111

 

(h) x = 550 mm 

 

(i) x = 600 mm 

 

(j) x = 700 mm 

 

(k) x = 800 mm 
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FIG. 4.5 Continued. 
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 (a) x = 100 mm 

 

(b) x = 200 mm 

 

(c) x = 300 mm 
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FIG. 4.6 Turbulence intensity (Tu) contours on y-z plane for case 1 ( m  = 12 mm 

and U  = 2.8 m/s). 
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FIG. 4.6 Continued. 
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FIG. 4.8 Schematic of three regions representing the maxima of the intense 
turbulence intensity. 
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FIG. 4.9 Maxima of the intense turbulence versus G  at three defined regions (see 

Fig. 4.8) for case 1 ( m  = 12 mm and U  = 2.8 m/s). 
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FIG. 4.11 Development of maximum disturbance amplitude ,maxu  for case 1: m  = 

12 mm and U  = 2.8 m/s, case 2: m  = 15 mm and U  = 2.1 m/s, case 3: 

m  = 20 mm and U  = 1.3 m/s. The results of Mitsudharmadi et al. (2004) 

and Finnis and Brown (1997) are included for comparison. 
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FIG. 4.12 Maximum disturbance amplitude ,maxu  versus G  for case 1: m  = 12 

mm and U  = 2.8 m/s, case 2: m  = 15 mm and U  = 2.1 m/s, case 3: m  

= 20 mm and U  = 1.3 m/s. The results of Mitsudharmadi et al. (2004) 

and Finnis and Brown (1997) are included for comparison. 
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FIG. 4.13 Spatial amplification of perturbations Pz for case 1: m  = 12 mm and U  = 

2.8 m/s, case 2: m  = 15 mm and U  = 2.1 m/s, case 3: m  = 20 mm and 

U  = 1.3 m/s. 
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FIG. 4.14 Spatial amplification of perturbations Pz versus G  for case 1: m  = 12 

mm and U  = 2.8 m/s, case 2: m  = 15 mm and U  = 2.1 m/s, case 3: m  

= 20 mm and U  = 1.3 m/s. 
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FIG. 4.15 The normal position of the maximum disturbance amplitude ,max( )uy   for 

case 1: m  = 12 mm and U  = 2.8 m/s, case 2: m  = 15 mm and U  = 2.1 

m/s, case 3: m  = 20 mm and U  = 1.3 m/s. 
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FIG. 4.16 The normal position of the maximum disturbance amplitude ,max( )uy   

versus G  for case 1: m  = 12 mm and U  = 2.8 m/s, case 2: m  = 15 mm 

and U  = 2.1 m/s, case 3: m  = 20 mm and U  = 1.3 m/s. 
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FIG. 4.17 The normal position of the maximum disturbance amplitude normalized 
with Blasius boundary layer thickness for laminar flow  

,maxu
Ly


  versus 

G  for case 1: m  = 12 mm and U  = 2.8 m/s, case 2: m  = 15 mm and 

U  = 2.1 m/s, case 3: m  = 20 mm and U  = 1.3 m/s. 
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FIG. 5.1 Development of the relative perturbation energy 0E e e  showing the 

leveling off of the perturbation energy in the nonlinear region. 
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FIG. 5.7 Normal distributions of spanwise-average velocity (ũ0/U∞) profile (mode 
0) at several streamwise (x) locations. The corresponding velocity profiles 
at upwash and downwash are included for comparison. 
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FIG. 5.8 Normal distributions of the amplitude of spanwise harmonic modes at 
several streamwise (x) locations. 
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FIG. 5.10 The most dominant frequency of secondary instability modes at several 
streamwise (x) locations for first (smaller) vortex. 
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FIG. 5.11 The most dominant frequency of secondary instability modes at several 
streamwise (x) locations for second (larger) vortex. 
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FIG. 5.12 Power spectral density of secondary instability modes at several spanwise 
(z) locations. The spectra are obtained from the location of the most 
unstable mode at Ly   = 0.30 for the streamwise location x = 750 mm. 
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FIG. 5.13 Power spectral density of secondary instability at various normal (y) 
locations at the middle of upwash for x = 750 mm. 
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FIG. 6.1 Mean spanwise velocity ( w U ) contours on y-z plane. 
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(i)  Streamwise velocity contour showing 
four different spanwise (z) locations: 
(a) middle of downwash region 
(b) side of downwash region 
(c) side of upwash region 
(d) middle of upwash region 

 

FIG. 6.2 Mean spanwise velocity ( w U ) profiles at some spanwise (z) locations 

(see Fig. 6.2(i)) for x = 650 mm. 
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FIG. 6.3 Iso-shear ( w y  ) contours on y-z plane at several streamwise (x) 
locations. 
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FIG. 6.4 Iso-shear ( w z  ) contours on y-z plane at several streamwise (x) 
locations. 
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FIG. 6.5 Power spectra density of the spanwise velocity component w at several 
streamwise (x) locations. 
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FIG. 6.6 Reynolds normal stress ( 2w ) contours on y-z plane at several streamwise 
(x) locations. 
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FIG. 6.7 Reynolds shear stress ( u w  ) contours on y-z plane at several streamwise 
(x) locations. 
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FIG. 6.8 Contours of Reynolds shear stress u w  : (a) experimental result at x = 700 
mm, and computational results of Yu and Liu (1994) for (b) sinuous mode, 
(c) varicose mode. 
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FIG. 7.1 A typical near-wall streamwise velocity measurements at upwash and 
downwash measured at x = 200 mm for case 2 ( m  = 15 mm and U  = 2.1 

m/s). 
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FIG. 7.2 Developments of boundary layer displacement thickness *  for case 2 ( m  

= 15 mm and U  = 2.1 m/s). 
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FIG. 7.3 Developments of boundary layer momentum thickness θ for case 2 ( m  = 

15 mm and U  = 2.1 m/s). 
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FIG. 7.4 Spanwise distribution of boundary layer displacement thickness *  at 
several streamwise (x) locations for case 2 ( m  = 15 mm and U  = 2.1 

m/s). 
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FIG. 7.5 Spanwise distribution of boundary layer momentum thickness θ at several 
streamwise (x) locations for case 2 ( m  = 15 mm and U  = 2.1 m/s). 



 
Figures 

 146

 

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 200 400 600 800 1000
x  (mm)

transition to 
turbulencelinear region nonlinear region

C
f 

0    2  4    6 8     10 
G  

FIG. 7.6 Wall shear stress coefficient fC  for case 2: m  = 15 mm and U  = 2.1 

m/s (  : at upwash, О : at downwash, − + − : spanwise-averaged value 

fC ,   : Blasius boundary layer, ----- : turbulent boundary layer). 
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FIG. 7.7 Development of maximum disturbance amplitude ,maxu  for case 2 ( m  = 

15 mm and U  = 2.1 m/s) showing three different regions, namely linear 

region, nonlinear region, and decay of the mushroom structures. 



 
Figures 

 147

0.000

0.002

0.004

0.006

0.008

0.010

0 2 4 6 8 10 12

 case 1: m  = 12 mm and U  = 2.8 m/s 

case 2: m  = 15 mm and U  = 2.1 m/s 

case 3: m  = 20 mm and U  = 1.3 m/s 

C
f 

G  
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FIG. 7.9 Spanwise-averaged wall shear stress coefficient fC  versus Reynolds 

number Re  for case 1: m  = 12 mm and U  = 2.8 m/s, case 2: m  = 15 

mm and U  = 2.1 m/s, and case 3: m  = 20 mm and U  = 1.3 m/s. 
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FIG 7.10 Spanwise distributions of mean streamwise velocity u U for case 2: m  = 

15 mm and U  = 2.1 m/s at y = 0.5L (------ is spanwise-averaged value of 

u U  at corresponding streamwise position). 
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FIG. 7.11 Spanwise distributions of wall shear stress coefficient fC  for case 2: m  = 

15 mm and U  = 2.1 m/s (------ is spanwise-averaged value fC  at 

corresponding streamwise position).  
 
 


