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Abstract 

The analyses of performance versus complexity of all the available algorithms 

in hardware (HW) and software (SW) are necessary to the study of the effectiveness 

of the implementation in a SoC-based design environment. Several performance-

complexity analyses have been conducted, but no standard method has been reported. 

In this thesis, we propose a Performance Complexity Index (PCI) to evaluate the cost-

effectiveness of implementing one algorithm over the other of the same type, taking 

into account trade-offs in performance and complexity. Bit-rate and video quality are 

performance metrics, and number of instructions executed (Computational) and 

memory accesses (Data Transfer) per second are complexity metrics. As a 

demonstration, we analyze the performance and complexity of the two contending 

entropy coders adopted by H.264/AVC: the Context-based Adaptive Binary 

Arithmetic Coding (CABAC) and the Context-based Adaptive Variable Length 

Coding (CAVLC), in both variable and constant bit-rate implementations. Empirical 

test results using standard sequences show that it is more cost-effective to use 

CABAC for encoding when the Rate-Distortion Optimization (RDO) mode is turned 

off regardless of motion contents, configurations, in both variable and constant bit-

rate implementations. Also, it has been found out using empirical analyses that 

CABAC is more cost-effective for lower motion content sequences in variable bit-rate 

implementation when RDO is turned on. The conclusions based on PCIs are also in 

total agreement with the empirical results.  
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CHAPTER 1 INTRODUCTION 

The study of cost-effectiveness of algorithms plays an important role in SoC 

co-design flow. In this thesis, we introduce a measure for assessing the cost-

effectiveness of an algorithm in any specific scenario.  Note that even though there 

are various strategies and tools to measure complexities, no performance-complexity 

metrics have been defined. Performance of an algorithm alone is not sufficient to 

make a design decision. Its implication to the implementation cost is also needed to be 

taken into consideration. In light of that, we propose a performance-complexity metric 

in this thesis to facilitate assessment of the cost-effectiveness of any algorithm. 

The new video coding standard Recommendation H.264 of ITU-T also known 

as International Standard 14496-10 or MPEG-4 part 10 Advanced Video coding 

(AVC) of ISO/IEC [1], [2] is the latest standard in a sequence of the video coding 

standards. The previous standards, namely H.261 (1990) [3], MPEG-1 Video (1993) 

[4], MPEG-2 Video (1994) [5], H.263 (1995, 1997) [6], MPEG-4 Visual or part 2 

(1998) [7], reflect the technological progress in video compression and the adaptation 

of video coding to different applications and networks. Video telephony, video on 

CD, broadcast of TV, and networks used for video communication represent some of 

the applications where the previous video compression standards were used. The 

advancements in the field of network access technologies and the increased 

requirements for bandwidth savings led to the development of H.264/AVC. Evolution 

of new algorithms in H.264/AVC compression standard made much higher 

compression of video sequences possible.  

In comparison to the previous video compression standards, it provides higher 

coding performance and better error resilience through the use of improved or new 

coding tools at different stages of the video coding. Multiple reference frames, 1/4 pel 
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motion compensation, and integer transform are some of the new tools available in the 

new standard. H.264/AVC offers two new entropy coding schemes for coding its 

macroblock-level syntax elements: Context Adaptive Binary Arithmetic Coding 

(CABAC) [8] and Context Adaptive Variable Length Coding (CAVLC) [9]. For the 

first time, arithmetic coding is allowed in the compression standards. Both entropy 

coding schemes achieve better coding efficiency than their predecessors in the earlier 

standards as they employed context-conditional probability estimates. Comparatively, 

CABAC performs better than CAVLC in terms of coding efficiency. This is because 

arithmetic coding allows fractional coding of data, thus making it possible to 

efficiently encode symbols which exhibit a very high probability of occurrence. On 

the other hand, variable length codes have a fundamental minimum length limit of 

one. However, the higher coding efficiency of CABAC comes at the expense of 

increased complexity in the entropy coder. Arithmetic coding has a very high 

complexity in general. So as to reduce its complexity, alphabet reduction was used 

and only binary arithmetic coding is allowed in the new standard. Because of this, 

multiple passes are required to encode a single symbol using CABAC, which can be 

encoded by CAVLC in a single pass. This causes a complexity overhead in CABAC. 

This is one of the reasons why the developer team of H.264/AVC excludes CABAC 

from the Baseline profile [8].  

In this work, we conduct comprehensive analyses on entropy coder tools to 

identify situations where CABAC is seen as more cost-effective than CAVLC at the 

video coder level and verify them with the proposed Performance Complexity Index 

(PCI). Our approach has a major difference over other approaches: a PCI is proposed 

that takes into account both performance and complexity to determine the cost-

effectiveness of any algorithm over another of same type.  
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1.1 Research Work 

In this work, we propose a performance-complexity co-analysis methodology 

to identify scenarios where any new algorithm is more cost-effective than the existing 

algorithm. As an example, we take the new algorithm and existing algorithm as 

CABAC and CAVLC respectively. CABAC has a higher efficiency, though at the 

expense of increased complexity, when compared to CAVLC. In this work, we try to 

determine the scenarios where CABAC is more beneficial than CAVLC. The 

theoretical complexity models of CABAC and CAVLC are developed. The beneficial 

scenarios will be determined and assessed theoretically. The theoretical models will 

also be used in defining a performance-complexity metric that is capable of 

comparing these two algorithms. Comprehensive performance and complexity 

analyses of CABAC and CAVLC at the video encoder/decoder levels will be 

conducted using software verification model. Both variable bit-rate (VBR) video 

encoder and constant bit-rate (CBR) video encoder will be considered. Bit-rate 

savings (for VBR) and changes in peak signal-to-noise ratio (for CBR) of the video 

luminance component (Y-PSNR) will be used as performance metrics. Computational 

complexity and data transfer complexity will be used as complexity metrics. Based on 

the empirical data, the beneficial scenarios will be identified. Finally, the 

performance-complexity metric defined will be used to validate both the theoretical 

and empirical findings. The goals of the analyses are: 

 

(a) To present theoretical complexity models of CABAC and CAVLC 

(b) To identify scenarios where the use of CABAC is more cost-effective than 

CAVLC 
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(c) To define a performance-complexity analysis methodology that can be 

used to compare any algorithms in any scenario taking into account both 

their performance and complexity for analyses.  

(d) To present the computational and memory requirements of CABAC and 

CAVLC 

 

1.2 Motivation 

Performance of an algorithm alone is not sufficient to make a design decision. 

Its implication to the implementation complexity is also needed to be taken into 

consideration. Several performance-complexity analyses have been conducted, and no 

standard method has been reported. In light of that, we propose a performance-

complexity analysis metric in this thesis to evaluate the cost-effectiveness of any 

algorithm over another of the same type, taking into account trade-offs in quality, bit-

rate, computational complexity, and data transfer complexity. The need for such 

analysis methodologies is demonstrated using an example – entropy coding tools of 

H.264/AVC video codec. 

The CABAC tool is not supported in the Baseline profile of H.264/AVC. As 

such, it is commonly believed that using CABAC is computationally expensive for a 

video encoder. However, no work has been done on evaluating the complexity 

requirements of using CABAC except in [10], which gives a brief assessment of the 

effect of using CABAC on the video encoder’s data transfer complexity. (More 

details on the related works that have been carried out for H.264/AVC are given in 

Chapter 2.) 

[10] conducted an overall cost-efficiency study of various video tools 

proposed in the H.264/AVC, and reported that CABAC results in up to 16 % in bit-
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rate reduction, but entails an access frequency increase from 25 to 30%. However, the 

cost-efficiency relationship was reported by the low bit-rates, high PSNR, and 

comparable memory access and coding-time complexities. The complexity evaluation 

of CABAC was done only in one specific encoder configuration. No cost-efficiency 

relationship was established. Moreover, it also failed to include any complexity 

analyses of using CABAC at the decoder.  

There are several drawbacks in conclusions obtained from evaluating the 

complexity increment of using CABAC over CAVLC empirically. The major 

limitation is the inability to compare the performance and complexity of CABAC and 

CAVLC across different video coder settings. The results can be misleading as such 

complexity figures also depend on the choices of coding tools used in the video 

encoder. This makes comparison of such figures across different configurations less 

meaningful. Analyzing the complexity and performance of CABAC from the 

perspective of the video encoder will be difficult for implementers who wish to 

achieve a cost-effective realization of the video codec, as the performance and 

complexity not only depend on coder settings, but also on the video content. It is also 

less relevant for system designers of CABAC because of their requirement to design 

for all the coder settings and video sequences having different properties. Rather, they 

will all be more interested in the complexity performance of CABAC from the 

perspective of the entropy coder. 

 As such, these provide the motivation for comprehensive co-analyses on the 

performance and complexity of CABAC. It also gives enough reason to define a 

common performance-complexity metric which could be used to compare the cost-

effectiveness of any algorithm over a contending algorithm across various scenarios 

and video coder settings.  
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1.3 Thesis Contributions 

The thesis contributions are as follows. I have: 

(a) developed a theoretical complexity model for entropy coders of 

H.264/AVC video codec that can be used across multiple scenarios 

(b) defined a performance-complexity methodology that can be used for 

comparison of algorithms taking into consideration both performance 

and complexity 

(c)  provided findings from co-evaluation of performance-complexity 

analyses of CABAC and CAVLC-  that can assist implementer in 

deciding whether to use CABAC in the video encoder 

(d) determined scenarios where CABAC is more beneficial at a system 

level, which can be used both by implementers and system level 

designers 

(e) identified possible bottlenecks in CABAC and suggests 

recommendations on complexity reduction to system designer and 

software developers,  

(f) identified when the use of CABAC hardware accelerator may not be 

necessarily helpful in the video encoder, and 

(g) developed a set of profiler tools based on Pin [11], [12] for measuring 

computational and data transfer complexity of H.264/AVC that can also 

be used for any other video codec.  
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1.4 Thesis Organization 

The contents in this thesis are organized as follows. In chapter 2, an overview 

of Context Adaptive Binary Arithmetic Coding (CABAC), a review of the complexity 

analysis methodologies that have been used for video multimedia system, and a 

literature review of existing works will be given. Chapter 3 provides the theoretical 

complexity models of CABAC and CAVLC, and also derives the Performance-

Complexity Index (PCI), a metric to compare the performances and complexities of 

CABAC and CAVLC and to determine their suitability in any scenario. In Chapter 4, 

the performance and complexity of CABAC, benchmarked against CAVLC is given 

for the different video configurations so as to explore the inter-tool dependencies. 

Also, a performance-complexity co-evaluation is conducted to determine scenarios 

where CABAC is more beneficial empirically. Chapter 5 provides theoretical 

observations, a description of the performance-complexity analysis methodology, and 

uses the performance-complexity co-analysis methodology using PCI to quantitatively 

determine cost-effective scenarios of CABAC over CAVLC. Finally, conclusions are 

drawn in Chapter 6.  
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CHAPTER 2 BACKGROUND 

In this chapter, the role of the entropy coder is discussed and an overview of 

CABAC is given, followed by the presentation of the different encoder controls. 

Lastly, a review of the complexity analysis methodologies that have been used for 

video multimedia system, and a literature review of existing works will be given. 

 

2.1 Entropy Coder 

H.264/AVC employs three types of compression techniques to effectively 

remove redundancy – temporal, spatial, and statistical. Statistical compression, also 

called entropy coding, is lossless in nature. This means no information is lost after 

statistical compression, and all the information that was compressed can be retrieved 

after decompression. However, the main limitation of entropy coder (and decoder) in 

H.264/AVC is that the coding process cannot be parallelized. Thus they become the 

bottlenecks in multiprocessor systems, where all the other stages of H.264/AVC can 

be parallelized. So it becomes extremely important to study the performance gain 

obtained and the increase in complexity incurred of entropy coders. 

H.264/AVC offers two entropy coding schemes – CAVLC and CABAC. Note 

that previous video coding standards assumed stationary underlying statistics. So only 

specifically tailored but fixed VLCs were used. Context adaptation is introduced only 

in H.264/AVC. The entropy coder may serve up to two roles in a H.264/AVC video 

encoder. The primary role of the entropy coder is to generate the compressed 

bitstream of the video file for transmission or storage. For video encoders that 

optimize its mode decision using rate-distortion optimization (RDO), its entropy 

coder performs an additional role during the mode selection stage. The entropy coder 
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computes the bit-rates needed by each candidate prediction mode. The computed rate 

information is then used to guide the mode selection.  

2.2  Overview of CAVLC 

This is the method used to encode residual, zig-zag ordered 4x4 (and 2x2) 

blocks of transform coefficients. CAVLC is designed to take advantage of several 

characteristics of quantized 4x4 blocks: 

1.  After prediction, transformation and quantization blocks are typically sparse 

(containing mostly zeros). CAVLC uses run-level coding to compactly represent 

strings of zeros. 

2.  The highest non-zero coefficients after the zig-zag scan are often sequences of 

+/-1. CAVLC signals the number of high-frequency +/-1 coefficient (“Trailing 1s” or 

“T1s”) in a compact way. 

3.  The number of non-zero coefficients in neighbouring blocks is correlated. The 

number of coefficients is encoded using a look-up table; the choice of look-up table 

depends on the number of non-zero coefficients in neighbouring blocks. 

4.  The level (magnitude) of non-zero coefficients tends to be higher at the start of 

the reordered array (near the DC coefficient) and lower towards the higher 

frequencies. CAVLC takes advantage of this by adapting the choice of VLC look-up 

table for the “level” parameter depending on recently-coded level magnitudes. 

CAVLC encoding of a block of transform coefficients proceeds as follows. 

 

1.  Encode the number of coefficients and trailing ones (coeff_token) 

The first VLC, coeff_token, encodes both the total number of non-zero 

coefficients (TotalCoeffs) and the number of trailing +/-1 values (T1). TotalCoeffs 

can be anything from 0 (no coefficients in the 4x4 block) 1 to 16 (16 non-zero 



 10 

coefficients). T1 can be anything from 0 to 3; if there are more than 3 trailing +/-1s, 

only the last 3 are treated as “special cases” and any others are coded as normal 

coefficients. There are 4 choices of look-up table to use for encoding coeff_token, 

described as Num-VLC0, Num-VLC1, Num-VLC2 and Num-FLC (3 variable-length 

code tables and a fixed-length code). The choice of table depends on the number of 

non-zero coefficients in upper and left-hand previously coded blocks Nu and NL.  

2.  Encode the sign of each T1 

For each T1 (trailing +/-1) signalled by coeff_token, a single bit encodes the 

sign (0=+, 1=-). These are encoded in reverse order, starting with the highest-

frequency T1. 

3.  Encode the levels of the remaining non-zero coefficients. 

The level (sign and magnitude) of each remaining non-zero coefficient in the 

block is encoded in reverse order, starting with the highest frequency and working 

back towards the DC coefficient. The choice of VLC table to encode each level adapts 

depending on the magnitude of each successive coded level (context adaptive). There 

are 7 VLC tables to choose from, Level_VLC0 to Level_VLC6. Level_VLC0 is 

biased towards lower magnitudes; Level_VLC1 is biased towards slightly higher 

magnitudes and so on. The choice of table is adapted in the following way: 

(a)  Initialise the table to Level_VLC0 (unless there are more than 10 non-zero 

coefficients and less than 3 trailing ones, in which case start with 

Level_VLC1). 

(b)  Encode the highest-frequency non zero coefficient. 

(c)  If the magnitude of this coefficient is larger than a pre-defined threshold, 

move up to the next VLC table. 
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In this way, the choice of level is matched to the magnitude of the recently-

encoded coefficients.  

4.  Encode the total number of zeros before the last coefficient. 

TotalZeros is the sum of all zeros preceding the highest non-zero coefficient in 

the reordered array. This is coded with a VLC. The reason for sending a separate VLC 

to indicate TotalZeros is that many blocks contain a number of non-zero coefficients 

at the start of the array and (as will be seen later) this approach means that zero-runs 

at the start of the array need not be encoded. 

5.  Encode each run of zeros. 

The number of zeros preceding each non-zero coefficient (run_before) is 

encoded in reverse order. A run_before parameter is encoded for each non-zero 

coefficient, starting with the highest frequency, with two exceptions: 

(a)  If there are no more zeros left to encode (i.e. ? [run_before] = 

TotalZeros), it is not necessary to encode any more run_before values. 

(b) It is not necessary to encode run_before for the final (lowest frequency) 

non-zero coefficient. 

The VLC for each run of zeros is chosen depending on (a) the number of zeros 

that have not yet been encoded (ZerosLeft) and (b) run_before. For example, if there 

are only 2 zeros left to encode, run_before can only take 3 values (0,1 or 2) and so the 

VLC need not be more than 2 bits long; if there are 6 zeros still to encode then 

run_before can take 7 values (0 to 6) and the VLC table needs to be correspondingly 

larger. 
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2.3 Arithmetic Coding and Overview of CABAC 

 2.3.1   Arithmetic Coding 

Arithmetic coding is a type of entropy coding technique which can efficiently 

encode fractional codewords. This section explains the basic methodology of binary 

arithmetic coding and provides an insight into the cause of its efficiency. As this 

section is meant only to provide only an understanding, we will assume stationary 

probability model for simplifying the derivations.  

 

Figure 2.1: Arithmetic Coding Subdivision 
 

Let us consider an information source that is capable of generating two 

symbols A and B, with probabilities p and (1-p) respectively. During the entire 

derivation, we will consider an interval of the form [b, w], where b is the base of the 

interval and w is the width of the interval. Let us consider an initial interval of [0, 1]. 

As and when we encounter symbols generated from the source, we subdivide the 

interval according to the probabilities of the symbols A and B as follows. 
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Figure 2.1 is an attempt to shows the arithmetic coding subdivision as shown 

by the equation (2-1) visually. After subdividing the intervals for all the generated 

symbols, we can consider any of the numbers in the final interval to be the encoded 

message. However, for any practical purpose, the number in the interval with the least 

length (number of bits) is chosen to be encoded message.  

 Note that p and (1-p) are probabilities and have values lesser than 1. So, after 

each subdivision of the interval, the width w becomes smaller. In the final interval 

[bN, wN], the width wN will be the contributing factor to the final length. The length of 

the final encoded message will be, at max, the length of the interval. If wN is the 

interval value, its representation in binary will require log2(wN) bits, which will be the 

length of the final codeword.  

Let the source generate a total of N symbols, out of which let M { = p*N } be 

A, and (N-M) { (1-p)*N } be B. Consider the procedure used for sub-dividing the 

interval. The width is multiplied by the probability of the occurring symbol each time. 

So, the final value of wN will be pM * (1-p)(N-M). Thus, the final length will be 

 )]1(log)1()(log[ 22 ppppNL −×−+××=                   (2-2) 

So the number of bits per symbols is  

 )1(log)1()(log 22 ppppl −×−+×=                    (2-3) 

Note that the above expression is also the Shannon’s limit on the minimum 

encoded symbol length possible. This proves that arithmetic coding can achieve the 

Shannon’s limit and thus explains why it is very efficient.  
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Also, consider a case where p is very much greater than 0.5, for instance 0.95. 

In this case, arithmetic coding can actually encode each symbol with number of bits 

per symbols approx. 0.2 (by substituting the probability values in the above equation), 

which means it can encode using fractional length. However, the variable length 

codes have a lower limit of 1 bit/symbol.  

2.3.2 Overview of CABAC 

Context-based Adaptive Binary Arithmetic Coding (CABAC) [8] is the more 

efficient of the two entropy coding schemes in H.264/AVC. It is not supported in the 

Baseline profile. The following figure shows the block diagram of CABAC encoder 

and decoder. 

 
Figure 2.2: CABAC entropy coder block diagram 
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The encoding/decoding process using CABAC comprises of three stages, 

namely binarization, context modeling and binary arithmetic coding.  

 

2.3.3 Binarization 

Arithmetic coding, in general, is extremely computationally intensive. So, 

H.264 supports only Binary Arithmetic Coding. Binarization block takes care of the 

alphabet reduction.  

The binarization stage maps all non-binary syntax elements into binary 

codewords known as bin-string using Unary / kth order Exp-Golomb (UEGk) 

binarization scheme.  The Truncation Unary prefix part is context adaptive. However, 

on the other hand, the Exp-Golomb suffix part uses stationary context. Typically, for 

larger values, the EGk suffix part represents already a fairly good fit of the probability 

distribution.  

2.3.4 Context Modeling  

Note that proper probability distribution of the symbols is required to be 

known for efficient arithmetic coding. That’s where the Context Modeling stage 

comes into picture. Each bin in a bin string is encoded in either normal mode or 

bypass mode depending on the semantic of the syntax. For a bypass bin, the context 

modeling stage is skipped because a fixed probability model is always used. On the 

other hand, each normal bin selects a probability model based on its context from a 

specified set of probability models in the context modeling stage. In total, 398 

probability models are used for all syntax elements.  

There are four types of context. The type of context used by each normal bin 

for selecting the best probability model depends on the syntax element that is 

encoded. The first type of context considers the related bin values in its neighboring 
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macroblocks or sub-blocks. The second type of context considers the values of the 

prior coded bins of the bin-string. These two types of contexts are only used for non-

residual data syntax elements (NRDSE). The last two types of context are only used 

for residual data syntax elements (RDSE). One of them considers the position of the 

syntax element in the scanning path of the macroblock whereas the other evaluates a 

count of non-zero encoded levels with respect to a given threshold level. 

 

2.3.5 Arithmetic Coding 

In the binary arithmetic coding (BAC) stage, the bins are arithmetic coded. 

This follows the methodology described in Section 2.2. Binary arithmetic coding is 

based on the principle of recursive sub-division of an interval length as follows: 

 EPE LPSLPS ⋅=   (2-4) 

 LPSMPS EEE −=  (2-5) 

 LPSLPS EELL −+=  (2-6) 

 LLMPS =  (2-7) 

 

where E denotes the current interval length, L denotes the current lower bound of E, 

PLPS denotes the probability of least probable symbol (LPS) from the selected 

probability model. ELPS and EMPS denote the new lengths of the partitioned intervals 

corresponding to LPS and the most probable symbol (MPS). LLPS and LMPS denote the 

corresponding lower bounds of the partitioned intervals. For each bin, the current 

interval is first partition into two as given in equations from (2-4) to (2-7). The bin 

value is then encoded by selecting the new partitioned length that corresponds to the 

bin value (either LPS or MPS) as the new current interval. E and L are also referred as 

the coding states of the arithmetic coder. 
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 In H.264/AVC, the multiplication operation of interval subdivision in Eqn. 2-4 

is very computation intensive. So it is replaced by a finite state machine (FSM) with a 

look-up table of pre-computed intervals as follows: 

 ]ˆ][ˆ[ EPRangeTableE LPSLPS =   (2-8) 

The FSM consists of 64 probability states, LPSP̂  and 4 interval states, Ê . For the 

normal bins, the selected conditional probability model is updated with the new 

statistic after the bin value is encoded. Note that the 64 probability states are for the 

LPS, whose probability lies in the interval [0, 0.5]. So, the total probability states 

considered is actually 128.  

 

2.3.6 Renormalization 

 To prevent underflow, H.264/AVC performs a renormalization operation 

when the current interval length, E falls below a specified interval length after coding 

a bin. This is a recursive operation which resizes the interval length through scaling 

till the current interval exceeds the specified interval length. The codeword is output 

on the fly each time bits are available after the scaling operation.  

2.4 Encoder Control 

The encoder control refers to the strategy used by the encoder in selecting the 

optimal prediction mode to encode each macroblock. This forms part of the motion 

estimation block of H.264/AVC. In H.264/AVC, the encoder can select from up to 11 

prediction modes: 2 Intra prediction modes and 9 Inter prediction mode, including 

SKIP and DIRECT modes to encode a macroblock. Note that the encoder control is a 

non-normative part of the H.264/AVC standard. Several encoder controls have been 

proposed and are given below. 
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2.4.1  Non-RDO encoder 

For a non-RDO encoder, either the sum of absolute difference (SAD) or the 

sum of absolute transform difference (SATD) can be used as the selection criteria. 

The optimal prediction mode selected to encode the macroblock corresponds to the 

prediction mode that minimizes the macroblock residual signal, i.e. the minimum 

SAD or SATD value.  

 

2.4.2 RDO encoder 

For a RDO encoder, a rate-distortion cost function is used as the selection 

criteria for the optimal mode and is given as  

 RDJ λ+=  (2-9) 

where J is the rate-distortion cost, D the distortion measure, λ the Lagrange 

multiplier, and R the bit-rate. The optimal prediction mode used to encode the 

macroblock corresponds to the prediction mode that yields the least rate-distortion 

cost. Note that to obtain the bit-rate, entropy coding has to be performed for each 

candidature mode. This significantly increases the amount of entropy coding 

performed in the video encoder. 

 Also, another interesting observation here is that even though distortion and 

rate are not linearly related, we consider them to be linearly related via a Lagrange 

multiplier in the above equation.  

2.4.3. Fast-RDO encoder 

The fast-RDO encoder employs the fast RDO algorithm proposed in [13]. 

Similar to the RDO encoder, it uses the rate-distortion cost function in Eqn. 2-4 as the 

selection criteria. However, it does not perform an “exhaustive” search through all 
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candidate prediction modes. Rather, it terminates the search process once the rate-

distortion cost of a candidate prediction mode lies within a threshold - a value derived 

from the rate-distortion cost of the co-located macroblock in the previous encoded 

frame. The current candidate prediction mode whose rate-distortion cost lies within 

the threshold is selected as the optimal prediction mode, and the remaining prediction 

modes are bypassed. If none of the prediction modes meets the early termination 

criteria, the prediction mode with the least rate-distortion cost is then selected as the 

optimal prediction mode.   

2.5 Complexity Analysis Methodologies 

In this section, a review of the known complexity analysis methodologies is 

given. Complexity analyses are often carried out using verification models software 

(in the case of video standards) such as the Verification Model (VM) and the Joint 

Model (JM) reference software implementations for MPEG-4 and H.264/AVC 

respectively. These are unoptimized reference implementations but are sufficient for 

analyzing the critical blocks in the algorithm for optimization and discovering the 

bottlenecks. On the other hand, optimized source codes are needed or preferred for 

complexity evaluation when performing hardware / software partitioning as in [14] or 

when comparing the performance-complexity between video codec as in [15]. 
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2.5.1 Static Code Analysis 

Static Code Analysis is a methodology of analyzing programs without actually 

executing them. Note that any program will contain lots of branching instructions. If 

N is the number of branching instructions in the program, the order of the number of 

possible paths taken by the program increases as O(2N). When a program is executed, 

only one of all the possible paths is taken by the program. However, any Static Code 

Analyzer considers all the possible paths to determine the worst and average 

complexities of the program. Static code analysis is one way of evaluating the 

computational complexity of an algorithm, a program or a system. Such analysis 

requires the availability of the high-level language source code such as the C codes of 

the Joint Model (JM) reference software of H.264/AVC. The methods based on such 

analysis includes counting the number of line-of-code (LOC), counting the number of 

arithmetic and logical operations, determining the time complexity of the algorithms, 

and determining the lower or upper bound running time of the program by explicit or 

implicit enumeration of program paths [16]. Such analyses measure the algorithm’s 

efficiency but do not take into considerations the different input data statistic. In order 

to obtain an accurate static analysis, restricted programming style such as absence of 

recursion, dynamic data structure and bounded loop are needed so that the maximal 

time spent in any part of the program can be calculated.   

 

2.5.2 Run-time Computational Complexity Analysis 

For run-time complexity analysis, profiling data are collected when the 

program executes at run time on a given specific architecture. The advantage of run-

time complexity analysis is that input data dependency is also included. One method 

of run-time computational complexity analysis is to measure the execution time of the 
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program using ANSI C clock function [17]. An alternative is to measure the execution 

time of the program in terms of clock cycles using tools like Intel VTune, an 

automated performance analyzer or PAPI, a tool that allows access to the performance 

hardware counters of the processor for measuring clock cycle [18].  

Function-level information can also be collected for coarse complexity 

evaluation using profilers such as Visual Studio Environment Profiling Tool or Gprof 

[19]. Such profiling tools provide information on function call frequency and the total 

execution time spent by each function in the program. This information allows 

identifying the critical functions for optimization and help partial redesign of the 

program to reduce the number of function calls to costly functions.  

On a finer granularity, instruction level profiling can be carried out to provide 

the number and the type of processor instructions that were executed by the program 

at run-time. This can be used for performance tuning of program and to achieve more 

accurate complexity evaluation. However, the profiling data gathered is dependent on 

the hardware platform and the optimization level of the compiler. Unfortunately, there 

were few tools assisting this level of profiling. In [20], a simulator and profiler tool 

set based on SimpleScalar framework [21] was developed to measure the instruction 

level complexity. In our work, a set of profiler tools using Pin was developed to 

measure the instruction level complexity of the video codec [11], [12]. 

 

2.5.3 Data Transfer and Storage Complexity Analysis 

  Data transfer and storage operation is another area where complexity of the 

program can be evaluated. Such analyses are essential for data-dominant applications 

such as video multimedia applications where it has been shown that the amount of 

data transfer and storage operations are at least of the same order of magnitude as the 
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amount of arithmetic operations [22].  For such application, data transfer and storage 

will have a dominant impact on the efficiency of the system realization. 

 Data transfer and storage complexity analyses have been performed for a 

MPEG 4 (natural) video decoder in [22] and H.264/AVC encoder/decoder in [10] 

using ATOMIUM [23], an automated tool. This tool measures the memory access 

frequency (the total number of data transfers from and to memory per second) and the 

peak memory usage (the maximum amount of memory that is allocated by the source 

code) of the running program. Such analysis allows identifying memory related 

hotspots in the program, and optimization of the storage bandwidth and the storage 

size. However, the drawback of this tool is that it uses a “flat memory architectural 

mode” and does not consider other memory hierarchy such as one or more levels of 

caches. 

 

2.5.4 Platform Dependent /Independent Analysis 

Generally, two types of complexity analyses can be performed: platform 

dependent and platform independent. The complexity evaluation using automated 

tools like VTune and Pin are platform dependent, specifically for general purpose 

CISC processors such as Pentium 3 and Pentium 4. 

Platform independent analysis are generally preferred compared to platform 

dependent analysis as the target architecture on which the system will be realized is 

most likely different from that used to compile and run the reference implementation. 

Tools such as ATOMIUM and SIT [24] are developed with such a goal: to measure 

the complexity of a specific implementation of an algorithm independent from the 

architecture that is used to run the reference implementation. Besides these tools, a 

complexity evaluation methodology for video applications that is platform 
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independent is also proposed in [25]. In its methodology, the platform-independent 

complexity metric used is the execution frequencies of core tasks executed in the 

program and is combined with the platform-dependent complexity data (e.g. the 

execution time of each core task on different processing platforms) for deriving the 

system complexity on various platforms. However, this approach requires 

implementation cost measures for each single core task on different hardware 

platform to be available in the first place before the system complexity can be 

calculated. A similar platform-independent complexity evaluation methodology is 

also given in [26]. The difference lies in that for its platform-independent complexity 

data, it counts both the frequencies of the core tasks and the number of platform-

independent operations performed by each core task. The platform-dependent data is 

simply a mapping table that identifies the number and types of execution subunits in 

each hardware platform that are capable of performing basic operations in parallel. As 

such, this methodology removes the needs for obtaining the implementation cost 

measure of each core task for the different platform but leads to a lower bound of the 

complexity measure, which is a few factors lower than the actual complexity.  

 

2.6 Existing Works 

In most works, the complexity analyses of H.264/AVC are performed on 

general-purpose processor platforms. In [17], the complexity of H.26L (designation of 

H.264 in the early stage of development) decoder is evaluated using two 

implementations and benchmark against a highly optimized H.263+ decoder. One of 

the implementations is a non-optimized TML-8 reference version and the other is a 

highly optimized version. In their work, the execution time (measured using the ANSI 
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C clock function) is used as the complexity metric. The complexity of CABAC which 

falls into the high complexity profile of H.26L was not evaluated. 

Marpe et al. [8] reported that CABAC performs better than the baseline 

entropy coding method of H.264/AVC, i.e. CAVLC, with a range of acceptable video 

quality of about 30 to 38 dB, and an average bit-rate reduction of 9 to 14 %. 

In [26], the complexity of the H.264/AVC baseline profile decoder is analyzed 

using a theoretical approach. This approach allows the computational complexity of 

the decoder to be derived for various hardware platforms, thereby allowing classes of 

candidate platforms that are suitable for the actual implementation to be identified 

easily. The number of computational operations is used as the complexity metric in 

their work. The theoretical approach is as follow: for each sub-function, its 

complexity is estimated using the number of basic computational operations it 

performs on a chosen hardware platform and its call frequency. The number of basic 

computational operations it performed on each hardware platform varies depending 

on the number of execution subunits available in each hardware platform. These 

execution subunits allow basic operations such as ADD32, MUL16, OR, AND, Load 

and Store to be performed in parallel. The draw-back of theoretical complexity 

analysis is that overhead operations such as loop overhead, flow control and boundary 

condition handling are not included. The run-time complexity of the decoder running 

on an Intel Pentium 3 platform is also measured using Intel VTune, an automated 

performance analyzer tool. Compared to the measured complexity by VTune, the 

estimated complexity of the H.26L decoder using the theoretical approach for the 

same platform is some factor lower, giving a lower-bound of the actual computational 

complexity of the decoder. The complexity of CABAC is not evaluated in their work 

as it does not fall into the baseline profile. 
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In [27], the performance and complexity of H.26L video encoder are given 

and are benchmark against the H.263+ video encoder. The complexity analysis is 

carried out at two levels: the application level and the kernel (or function) level. At 

the application level, the complexity metric used is the execution time (measured 

using the ANSI C clock function) whereas at the kernel level, the number of clock 

cycles (measured using Intel VTune) is used as the complexity metric. In [27], the 

authors studied the performance and complexity for a set of specific video coder 

settings for low bit-rate sequences. However, no performance-complexity relating 

metric was proposed for use across different scenarios. 

In [10], the performance and complexity of H.264/AVC video 

encoder/decoder are reported. Unlike earlier works which focus on computational 

complexity, this work focused on data transfer and storage requirements. Such an 

approach proved to be mandatory for efficient implementation of video systems due 

to the data dominance of multimedia applications [28], [29]. To provide the support 

framework for automated analysis of H.264/AVC using the JM reference 

implementation, the C-in-C-out ATOMIUM Analysis environment has been 

developed. It consists of a set of kernels that provide functionalities for data transfer 

and storage analysis. In this work, all the coding tools have been used, including the 

use of B-frame, CABAC and multi-reference frame that were not evaluated in other 

works. Furthermore, the complexity analysis in this work explores the inter-

dependencies between the coding tools and their impact on the trade-off between 

coding efficiency and complexity. This is unlike earlier works where the coding tool 

under evaluation is tested independently by comparing the performance and 

complexity of a basic configuration with the use of the evaluated tool to the same 

configuration without it.  
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In [20], the instruction level complexities of the H.264/AVC video 

encoder/decoder are measured using a simulator and profiler tool set based on the 

SimpleScalar framework. Similar to [10], the complexity analysis is carried out on a 

tool-by-tool basis using the JM reference implementation. However, it addressed the 

instruction level complexity in terms of arithmetic, logic, shift and control operations 

that were not covered in [10]. It also proposed a complexity-quality-bit-rate 

performance metric for examining the relative performance among all configurations 

used for the design space exploration.  

Ostermann et al. [30] presented a good review on H.264/AVC codec, and the 

performance of CABAC was reportedly similar to that mentioned in [10]. Among the 

reports on hardware implementations of CABAC [31]-[35], Osorio et al. [31], [35] 

claimed that Rate-Distortion Optimization (RDO-on) increases CABAC’s load by two 

orders of magnitude. Nunez-Yanez et al. [34] did not report the additional complexity 

of CABAC under RDO-on, yet claimed that the combined effect of RDO-on and 

CABAC gave rise to an additional 20 % savings in bit-rate.  

In [35], Kannangara et al. proposed a method to control the rate in a real-time 

system which also takes into account the distortion, rate, and complexity. However, 

the methodology proposes selections between coding a particular frame (or 

macroblock) and not coding it to reduce complexity. The paper, however, does not 

offer a selection criterion for choosing the best video coder configuration to encode 

the entire sequence. In [36], Tu et al. proposed an R-D model that could be used for 

making the mode decision at reduced complexity with performance comparable to 

that of the high complexity method proposed by H.264/AVC. However, the paper 

does not assess the effectiveness of CABAC or CAVLC in any specific situation. 
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2.7  Conclusion 

In this chapter, an overview of CAVLC, arithmetic coding and the main 

functional blocks of CABAC, and a review of the encoder controls of the video 

encoders have been given. This is followed by a discussion on the known 

methodologies used in evaluating complexity and the existing work that have been 

carried out for complexity evaluation of H.264/AVC. In the next chapter, the 

performance of CABAC, benchmarked against CAVLC for different video encoder 

configurations will be presented. 
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CHAPTER 3 DEVELOPMENT OF THEORETICAL 

MODELS 

3.1  Introduction 

In this chapter, the theoretical complexity model of CABAC and CAVLC are 

introduced. With the help of the complexity models a performance-complexity related 

parameter, Cost Effectiveness (CE), is derived. The Performance-Complexity Index 

(PCI), a metric to compare the performances and complexities of a new algorithm in 

comparison to an existing algorithm and to determine their suitability in any scenario, 

is defined. This PCI will be used in later chapters to determine the cost-effective 

scenarios of using CABAC over CAVLC. In the last section, some theoretical 

observations are made regarding the cost-effective scenarios of CABAC over 

CAVLC. These observations are validated using the PCI in later chapters. 

 

3.2 CABAC Complexity Model 

The complexity of CABAC is proportional to the number of times its Context 

Modeler and Coding Engine are run for encoding significant coefficients, as they 

contribute the most to the complexity of the CABAC module. The number of times 

the CABAC engine is run is proportional to the length (number of bins) of the binary 

codewords. The binary codewords themselves depend on the value of the non-binary 

syntax elements. The Binarizer converts non-binary syntax elements to binary 

codewords. To determine the number of times the CABAC engine is run for a non-

zero significant coefficient, we have to consider the Binarization process of CABAC. 
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The significant coefficients are binarized using Unary / 0th order Exp-Golomb 

(UEG0) binarization [8] as shown in the table below.  

 

Figure 3.1:  Unary/0th Order Exp-Golomb Binarization 
 

For any significant coefficient of value x, the length of its corresponding binary 

codeword l(x), which represents the number of bins in the codeword, can be written 

as: 
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For determining the complexity of CABAC we would be interested in the 

expected number of CABAC engine runs, instead of the number of runs due to any 

specific significant coefficient. We know that the expected number of runs of 

CABAC engine is equal to the expected length E{l(x)} of the binary codewords. 
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We know that 

   ∑ ×=
x

xlxpxlE )()()}({                    (3-2) 

Where p(x) is the probability of occurrence of a significant coefficient of value x 

and l(x) is its corresponding length. The above equation can be written as 
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Also, while the probability of the Truncation Unary part of any binary codeword 

is context adaptive, the probability of the each bin being 1 or 0 in the 0th order Exp-

Golomb part of the binary codeword is always 0.5. So, for a codeword corresponding 

to a significant coefficient x greater than 14, the probability will be 
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Now, consider the second summation. It is possible to calculate the value of the 

second summation because of the following reasons: 

Ø The probabilities are known 

Ø The summation to infinity converges to a value. This is because the 

exponential decrease is much larger than logarithmic increase. 

The value of the summation is 

35.714))-log(x*2(1 *  2 15
14))-log(x*2-(1 =+∑∞ +

               (3-6) 
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Thus, 
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Now, let us define l’(x) as follows 
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Now, the equation of E{l(x)} can be rewritten as follows 
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Where l’(x) is defined as above. 

The Context Modeler and Coding Engine are run once for each and every bin in 

the binary codeword. For a non-binary significant coefficient of value x the 

complexity of the CABAC will be directly proportional to E{l(x)}. So, the complexity 

of CABAC module can be seen as being directly proportional to the value of x (for 

values of x less than 14). The complexity of CABAC module is: 

   NFSMEComplexity lB ××××∝              (3-10) 

where El is the expected length of the significant coefficients E{l(x)}, M the 

number of search modes, S the frame size, F the frame rate, and N the number of 

reference frames.  Even though the length of each and every significant coefficient 

varies, the expected length is a good measure of the number of times the CABAC 

module is made to run per significant coefficient, which in turn determines the 

complexity of the CABAC module. Note that the complexity is directly proportional 

to the number of modes (M), the frame size (S), the frame rate (F), and the number of 

reference frames (N).  
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To change the proportionality into an equal to in the above complexity equation, 

we consider the following parameters.  

If p is the probability of occurrence of a non-zero significant coefficient in a 

frame, the complexity of CABAC module is: 

NFSMEDCpComplexity lBBB ×××××+×= )(            (3-11) 

where CB and DB refer to computational and data transfer complexities required 

per bin. Note that the above equation completely describes the complexity of 

CABAC.  

3.3 CAVLC Complexity Model 

The relationship between the value of the significant coefficient and the 

corresponding complexity to encode using CAVLC is much weaker. 

  NFSMDCpComplexity VVV ××××+×= )(              (3-12) 

where CV and DV refer to computational and data transfer complexities required 

per bin. The complexity of CAVLC is independent of E{l(x)} because CAVLC is 

usually encoded with the help of a lookup table, the complexity of which is 

independent of the value that is being looked up. Note that CAVLC is directly 

proportional to CV and DV. Also, the complexity is proportional to the number of 

modes (M), the frame size (S), the frame rate (F), and the number of reference frames 

(N), just like in the case of CABAC. 

3.4 Cost-Effectiveness Model 

Note that to achieve the highest coding efficiency, H.264/AVC uses a non-

normative technique called Lagrangian rate-distortion optimization (RDO) technique 

to decide the coding mode [38] for an MB. In order to choose the best coding mode 

for an MB, H.264/AVC encoder calculates the rate-distortion (RD) cost (RDcost) of 
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every possible mode and chooses the mode having the minimum value, and this 

process is repeatedly carried out for all the possible modes for a given MB. The 

RDCost J is defined as  

     RDJ λ+=                 (3-13) 

where D, R, and λ  are distortion, bit-rate, and lagrangian parameter, 

respectively. Also, we know that 

     DP∝−                  (3-14) 

where P is PSNR. We can also observe that even though PSNR and bit-rate are 

not linearly related, RDCost J considers the two terms to be linearly related via a 

lagrangian parameter. Similarly, we can relate PSNR and bit-rate to complexity 

linearly via another lagrangian parameter η  to obtain cost-effectiveness (CE) as 

follows:  

          MSFNpEDCRPCE lBBaBaB )( +−−= ηλ         (3-15) 

            pMSFNDCRPCE VVbVbV )( +−−= ηλ                       (3-16) 

In this work, influenced by the above two equations, we propose an aggregate 

Performance Complexity Index (PCI) metric and use it to quantify the cost-

effectiveness of using CABAC in each video coder setting. The PCI provides a single 

indicator for comparisons among different coder settings, and is defined as follows:  
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where the subscripts n and e refer to the new and existing algorithms, α , β , γ , 

δ , and ε  are coefficients obtained from linear regression plots of  a set of examined 

video sequences.   

This metric is explained further in the next section. 
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3.5 Performance Complexity Index (PCI) 

In this work, we propose an aggregate PCI metric and use it to quantify the 

cost-effectiveness of using CABAC in each video coder setting. The PCI provides a 

single indicator for comparisons among different coder settings, and is defined as in 

(3-17).  

Note that the PCI is a generalized relative metric that can be used for 

comparison of the net cost-effectiveness of any two algorithms. Y_PSNR increase and 

bit-rate reduction, being the measure of quality of output produced using any video 

coding algorithm, are seen as performance improvement indicators. Computational 

and data transfer complexities, which directly affect the speed of execution of any 

algorithm, are complexity increment indicators. The linear combination of the 

performance improvement indicators and the complexity increment indicators reflects 

the overall effect due to the changes in any algorithm.  

  CABAC is considered the new algorithm (n) and CAVLC is the existing 

algorithm (e). Though we determine the cost-effective scenarios of using CABAC in 

SW implementation in this thesis, PCI can also be as effectively used for HW 

implementations of CABAC and CAVLC. The computational and data transfer 

complexity not only depend on the algorithms, but also on their implementations. PCI 

can only be used for comparison of two algorithms in their specific implementations.  

3.6 Conclusion 

 In this chapter, the theoretical complexity model of CABAC and CAVLC 

were introduced. A performance-complexity relating parameter, Cost Effectiveness 

(CE), is derived with the help of the complexity models. The Performance-

Complexity Index (PCI), a metric to compare the performances and complexities of 
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any new algorithm with an existing algorithm and to determine their suitability in any 

scenario, is defined. This PCI will be used in later chapters to determine the cost-

effective scenarios of using CABAC over CAVLC. 
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CHAPTER 4 PERFORMANCE COMPLEXITY CO-

ANALYSIS 

4.1  Introduction 

The introduction of new entropy coding schemes, CAVLC and CABAC, 

represent major improvements in terms of coding efficiency. In previous standards, a 

set of fixed VLCs were used for encoding syntax elements. This was because 

stationary statistics was assumed. Though, this assumption is not true in practical 

situations. Context adaptation is introduced only in H.264/AVC. 

The use of new entropy coding schemes in H.264/AVC: CABAC and CAVLC 

is one of the reasons for its higher coding efficiency compared to earlier video 

standards. Both schemes adapts to the source statistic allowing bit-rates that are closer 

to the source entropy to be achieved. Amongst the two schemes, CABAC is capable 

of introducing higher compression. 

The CABAC scheme has been studied in the earlier chapters. We have 

reviewed the CABAC methodology, its capability to compress even up to Shannon’s 

limit, and the theoretical model. CAVLC, on the other hand is an entropy coding 

scheme based on variable length coding (VLC) using Exp-Golomb code and a set of 

predefined VLC tables. Note that CAVLC has a lower limit of one bit. It has been 

reported that CABAC reduces the bit-rate up to 16% in [8] and a lower 10% in [9]. In 

our work, we will benchmark the performance of CABAC against CAVLC using 

different video sequences having varied properties and different combinations of 

coding tools.  
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Also, note that the increase in performance of CABAC is not without a cost. 

CABAC has a reduced (binary) alphabet set, thus the name Context Adaptive Binary 

Arithmetic Coding. CAVLC, on the other hand, has a bigger alphabet size. This 

means that while CABAC can encode only one bin at any instant, CAVLC can 

encode a whole symbol at a time. This results in higher encoding complexity of 

CABAC. In this chapter, we will study the benefit of using CABAC by considering 

the performance-complexity tradeoffs for various sequences and different video coder 

settings. 

4.2 Performance Metric Definitions 

The performance metrics used are the bit-rate savings and the peak signal-to-

noise ratio of the luminance component (Y_PSNR). The assumption made here is that 

similar Y_PSNR values yields approximately the same subjective spatial video 

quality. The chrominance components (U and V) are not used as comparison metrics 

because the human visual system is less sensitive to chrominance components, which 

will have small effects on the perceived video quality. 

4.3 Complexity Metric Definitions 

4.3.1 Computational Complexity 

The computational complexity is the number of instructions executed for one 

complete cycle of operation (billions of instructions per second).  

 

4.3.2 Data Transfer Complexity 

The data transfer complexity is given in terms of the number of memory accesses 

performed for memory read or memory write operations for one complete cycle of 

operation (billions of memory accesses per second).  
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4.4 Implementation 

Performance analyses and complexity analyses of CABAC are both conducted 

using JM [39] reference implementation. In our work, the software version used is 

14.2. The PIN tool [11], [12] was used to profile the complexity. The tools were run 

on a Linux platform with a 3 GHz Pentium IV processor and 1 GB of RAM. 

PIN provides a set of fast application program interfaces (APIs) tools that 

analyze binary executables. Hardware events such as data cache access on the 

architecture in study were monitored. 

The video encoder and decoder were compiled using GNU GCC compiler 

with -O2 optimization option. Note that this level of optimization does not include 

optimization for space-speed tradeoff such as loop unrolling and function in-lining.  
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4.5 Test Bench Definitions 

A set of fourteen QCIF, CIF, and SD (720x576) sequences comprising a wide 

genre of video contents was used for obtaining exhaustive data which are used for 

making empirical analysis. The sequences are listed in Table 4-1. These sequences 

have been categorized based on the amount of motion content in them.  

 
Table 4-1: Test sequences and their motion content classification 

 
Sequence QCIF CIF 720x576 Motion 

Contents 
Akiyo X X  Low  

Mother & Daughter X X  Low 
Container X X  Low 
Foreman X X  Moderate 

Walk X X  High 
Coastguard X X  High 

Mobile Calendar 
(Mobcal)   X High 

Parkrun   X High 
      

 

The categorization of the video sequences is carried out by subjective 

evaluation. The low-motion contents test sequences have been shaded in grey, 

moderate-motion content test sequences have been shaded in white and high-motion 

contents test sequences have been shaded in black. These denotations will be used 

throughout this work. 

Sequences Akiyo, Mother & Daughter and Container are used to represent 

low-motion sequences while Coastguard, Foreman and Walk contain varying degrees 

of camera motion. Mobile Calendar (Mobcal) and Parkrun are high video motion 

content sequences with frame size 720x576. Most of these sequences have identical 

video content in their counterpart video format, which will be used to study the effect 

of picture size. All sequences comprises of 300 frames.  
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The configurations shown in Table 4-2 have been used for the analysis.  

Table 4-2: Encoder configuration cases 
 

 A B 
Intra 4x4 1 1 
Intra 16x16 1 1 
Inter modes 
16x16/16x8/8x16/8x8 1 4 

Sub-partition modes 
8x4/4x8/4x4 0 3 

Reference frame 1 5 
Search Range 8 16 
Hadamard 1 1 
B frame 1 1 
Slice per frame 1 1 

 

Note that config. A represents lower complexity, lower performance 

configuration and config. B represents higher complexity higher performance 

configuration. This includes the use of higher number of reference frames, larger 

search ranges, and smaller block sizes for motion estimation. Both the configurations 

have Intra 4x4 and Intra 16x16 prediction modes. However, while config. A has only 

Inter 16x16 prediction mode, config. B has 7 inter prediction modes (16x16, 16x8, 

8x16, 8x8, 8x4, 4x8, and 4x4). Note that allowing smaller block sizes mean fine 

searching which will ensure better performance. However, on the other hand, fine 

search also means more number of searches, thus higher complexity. In this work, a 

GOP is defined as 10 frames, with only the first frame being an Intra (I) frame. Each 

300-frame sequence was encoded using a group of pictures (GOP) of IBPBPBPBPB 

at a frame rate of 30 fps. The RDO tool is also turned off and on in RDO-off and 

RDO-on mode, respectively. Also, the analysis is performed in both Variable Bit-Rate 

(VBR) and Constant Bit-Rate (CBR) modes.  
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4.6 Performance Analyses 

4.6.1 Percentage bit-rate savings by CABAC in VBR Mode 

The use of CABAC advocates a reduction in bit-rate needed to encode a 

sequence at the same video quality. Table 4-3 gives the bit-rate savings by CABAC, 

benchmarked against CAVLC for some configurations using both RDO-off and RDO-

on video encoders in VBR mode for sequences of various frame sizes and motion 

contents.  

Table 4-3: Percentage Bit-rate Savings Due to CABAC in VBR mode 
 

RDO-off encoder RDO-on encoder  
A B  A  B 

Akiyo 4.58 4.46 4.54 4.30 
M&D 4.74 4.90 4.45 3.83 
Container 4.90 4.97 4.82 4.11 
Foreman 5.66 5.32 5.03 4.75 
Walk 6.92 6.71 4.95 6.05 

Q
C

IF
 

Coastguard 8.38 8.67 7.58 8.03 
Akiyo 6.76 6.92 6.43 6.03 
M&D 7.31 7.82 7.55 6.98 
Container 6.38 6.39 5.63 5.21 
Foreman 8.06 8.15 7.36 6.77 
Walk 8.19 8.22 7.50 7.84 

C
IF

 

Coastguard 9.93 9.49 8.95 9.10 
Mobcal 10.91 10.50 9.76 9.00 

S
D

 

Parkrun 12.43 12.96 11.73 11.06 

 

Bit-rate savings between 4-8% for QCIF sequences, 5-8% for CIF sequences 

and 9-13% for SD sequences have been obtained for all configurations. The effect of 

CABAC on the coding performance is additive as the bit-rate savings obtained for the 

same sequence is consistence across the configurations. In addition, the bit-rate 

savings obtained from the RDO-off video encoder is much higher than that from the 

RDO-on video encoder for the same sequence. This implies that CABAC performs 

better when RDO tool is off.  
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Other less significant observations includes the following: bit-rate savings 

obtained for low-motion content sequences are generally smaller than that of high-

motion content sequences. It is also observed that for identical video content, bit-rate 

saving are higher for larger frame sized sequences. 

 

4.6.2 Bit-rates in various configurations in VBR Mode 

For an overview, the joint performance of coding tools in improving the 

coding efficiency is given here. Table 4-4 summarizes the bit-rates obtained for 

different combinations of entropy coding schemes with config. A as well as config. B 

in a RDO-on encoder and RDO-off encoder.  

Table 4-4: Bit-rates in various configurations in VBR Mode 
RDO-off RDO-on 

A B A B 
  VLC BAC VLC BAC VLC BAC VLC BAC 

Akiyo 76.14 72.98 72.58 69.34 78.88 75.30 74.68 71.47 
Mother & Daughter  82.12 79.05 78.51 75.45 85.01 81.23 79.12 76.09 

Container  101.25 96.29 94.73 90.02 105.07 100.01 97.72 93.70 

Foreman  196.81 187.64 176.06 166.70 211.65 201.01 180.14 171.59 

Walk  365.40 347.43 313.11 292.11 403.89 383.89 321.07 301.65 

Q
C

IF
 

Coastguard  250.07 231.62 227.86 208.10 284.00 262.48 249.82 229.76 

Akiyo 196.16 184.87 187.40 176.31 205.75 192.51 194.25 182.54 

Mother & Daughter 223.41 209.32 215.02 202.50 232.41 214.87 217.40 202.23 

Container 375.81 351.83 358.33 335.44 408.46 385.45 386.32 366.20 

Foreman 659.19 612.67 558.03 518.13 705.06 653.16 574.78 535.86 

Walk 1093.65 1015.05 924.92 848.92 1195.74 1106.10 954.58 879.74 

C
IF

 

Coastguard 1144.91 1042.68 1058.08 957.65 1318.68 1200.66 1145.90 1041.61 

mobcal 2968.61 2644.63 2526.30 2260.96 3226.62 2911.59 2717.91 2473.41 

S
D

 

parkrun 9342.46 8181.35 8610.23 7493.95 10732.86 9474.05 9339.57 8306.97 
 

It can be seen from the above table that use of CABAC always achieves a 

lower bit-rate when compared to its counterpart, CAVLC. The use of RDO-on mode 

increases the bit-rate, but the PSNR of the sequences encoded using RDO-on mode is 

much higher. Complex configuration B always performs better than config. A.  
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4.6.3 Effect of CABAC on Y-PSNR in CBR mode 

In this sub-section, the effect of using CABAC in improving the coding 

performance at constant bit-rate is studied. The performance metric used is the Y-

PSNR. Table 4-5 lists the increases in Y-PSNR due to CABAC when using different 

video coder settings across different constant bit-rates for CIF video sequences. All 

Y-PSNR improvements are made with respect to the Y-PSNR values obtained for 

CAVLC. 

Table 4-5: ∆ Y-PSNR due to CABAC in different constant bit-rates 
256 512 1024 

  RDO-off RDO-on RDO-off RDO-on RDO-off RDO-on 
Akiyo 0.22  0.22  0.16  0.15  0.18  0.15  
M&D 0.24  0.29  0.20  0.21  0.22  0.16  
Container 0.38  0.28  0.27  0.29  0.31  0.33  
Foreman 0.82  0.99  0.34  0.32  0.34  0.29  
Walk 0.80  0.52  0.49  0.54  0.46  0.46  
Coastguard 0.26  0.23  0.42  0.46  0.44  0.53  

  

The results show that for lower motion-content sequences, usage of CABAC 

yields small increase in video quality. On the other hand, the usage of CABAC 

increases the video quality by up to 0.99 dB for higher motion content sequences in 

lower bit-rates. This indicates that CABAC is attractive as a tool for improving video 

quality at constant bit-rate for higher motion content sequences.  

4.7 Complexity Analyses 

 In this section and the next, the complexity analysis of CABAC is 

conducted using PIN tool. The complexity metrics are computational complexity and 

data transfer complexity.  

Analyses are carried out at the video encoder level. The additional workload 

required by the entropy coder when CAVLC is replaced by CABAC, is measured for 

different configurations in both non-RDO and RDO encoders. At the top-level video 
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encoder, the effect of using CABAC on the overall complexity of the video encoder is 

observed. Besides the encoder, the complexity of the decoder is also being addressed. 

To achieve an exhaustive analysis of CABAC, a wide genre of video contents has 

been used as test sequences.  

 

4.7.1 Effect of CABAC on the Computational Complexity in VBR encoder 

In this section, the computational complexity of CABAC when used in both 

non-RDO encoder and RDO encoder are analyzed, and are compared with reference 

to CAVLC. All computational complexity measurements are expressed as percentage 

increase from CAVLC to CABAC.  

Table 4-6: Percentage increase in computational complexity of the video coder due to 
CABAC in VBR mode 

RDO-off RDO-on 
  A B A B 

Akiyo 0.11  0.02  3.63  1.08  
M&D 0.21  0.04  3.48  1.04  
Container  0.10  0.02  4.48  1.29  
Foreman  0.15  0.05  4.72  1.48  
Walk  0.29  0.07  4.96  1.67  

Q
C

IF
 

Coastguard  0.19  0.04  5.03  1.65  
Akiyo 0.00  0.03  3.03  0.93  
M&D 0.00  0.00  2.95  0.91  
Container 0.24  0.00  3.91  1.15  
Foreman 0.23  0.05  3.96  1.26  
Walk 0.18  0.00  3.94  1.37  

C
IF

 

Coastguard 0.23  0.00  4.75  1.66  
Mobcal 0.10  0.02  4.38  1.39  

S
D

 

Parkrun 0.27  0.07  7.34  2.45  
 

The use of CABAC requires more computation to be performed compared to 

CAVLC. Table 4-6 shows the percentage increase in computational complexity of the 

entropy coder when CABAC replaced CAVLC across different configurations. 

It can be seen from the data that the computational complexity increase from 

CAVLC to CABAC in a RDO-off encoder is negligible (0.0-0.3%), irrespective of 
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usage of config.A or config.B. Also, from the data, CABAC increases the 

computational complexity of the entropy coder by up to 7% for an RDO encoder. 

Also, usage of a complex setting, ie config.B, in RDO-on mode causes lesser increase 

in complexity.  

From these observations, we can note that CABAC seems to be more effective 

in RDO-off mode.  

 

4.7.2 Effect of RDO on the Computational Complexity of VBR encoder 

 Table 4-7 tabulates the increase in computational complexity of the video 

coder when RDO tool is turned on for different video coder settings. 

 
Table 4-7: Change in Computational Complexity of VBR encoder due to RDO 

 VLC BAC 
Akiyo 22.33  26.64  
M&D 23.38  27.41  
Container  24.02  29.44  
Foreman  26.94  32.74  
Walk  26.22  32.09  

Q
C

IF
 

Coastguard  27.78  33.95  
Akiyo 17.56  21.12  
M&D 18.50  22.00  
Container 21.09  25.53  
Foreman 24.12  28.74  
Walk 23.65  28.29  

C
IF

 

Coastguard 28.10  33.88  
Mobcal 24.00  29.30  

SD
 

Parkrun 36.18  45.78  
 

The complexity increment factor is given by normalizing the average entropy 

instruction counts executed by the RDO-on encoder with that of the RDO-off encoder 

for the same configuration.  

The use of RDO as the video encoder control significantly increases the 

computational complexity of the entropy coder as can be seen in the table. It can be 
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seen that in a video coder using CABAC, the increase due to RDO on is higher than 

the increase in a video coder using CAVLC. This result was also observed in the 

previous section. This means that the use of RDO triggered a huge workload for the 

entropy coder and creates a bottleneck in it. Again, this observation means that 

CABAC is more effective in RDO-off mode. 

 

4.7.3 Overall Computational Complexity of VBR encoder 

Table 4-8 shows the computational complexities of the entropy coder for 

different combination of entropy coding schemes with different configurations in a 

RDO-off encoder and RDO-on encoder. All computational complexity measurements 

are expressed in billions of instructions executed per second. Results have been given 

with accuracy up two decimal places in order to show the finer differences among the 

values.  

The data provides an overview of the possible variations in computational 

complexity of the entropy coder due to the collective use of different video coding 

tools in H.264/AVC for different type of sequences.  

It can be seen from the table that the usage of CABAC causes an increase in 

complexity of the entire video encoder. Note that in RDO-on mode, the entropy 

coding stage is even used for motion estimation. So, in RDO-on mode, CABAC 

causes a much larger increase in complexity.  
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Table 4-8: Computational complexities of VBR encoder in different video coder 
settings 

RDO-off RDO-on 
A B A B 

  VLC BAC VLC BAC VLC BAC VLC BAC 
Akiyo 9.45  9.46  44.76  44.77  11.56  11.98  47.19  47.70  

M&D 9.54  9.56  45.18  45.20  11.77  12.18  48.01  48.51  

Container  9.91  9.92  45.72  45.73  12.29  12.84  48.69  49.32  
Foreman  10.16  10.17  46.62  46.65  12.89  13.50  50.20  50.95  

Walk  10.86  10.90  47.97  48.00  13.71  14.39  51.83  52.70  

Q
C

IF
 

Coastguard  10.26  10.28  46.53  46.55  13.11  13.77  50.29  51.12  
Akiyo 39.30  39.30  185.25  185.30  46.20  47.60  193.80  195.60  

M&D 40.00  40.00  187.90  187.90  47.40  48.80  197.70  199.50  

Container 42.20  42.30  189.90  189.90  51.10  53.10  201.29  203.60  

Foreman 42.70  42.80  192.10  192.20  53.00  55.10  205.70  208.30  

Walk 44.32  44.40  195.52  195.52  54.80  56.96  209.76  212.64  

C
IF

 

Coastguard 42.70  42.80  189.30  189.30  54.70  57.30  205.10  208.50  

mobcal 171.74  171.92  787.70  787.88  212.96  222.30  842.33  854.04  

S
D

 

parkrun 168.82  169.28  759.96  760.46  229.90  246.78  839.80  860.39  

 

Note that CABAC causes an increase in complexity of the video coder. Also, 

RDO-on mode causes a huge increase in the computational complexity of the video 

coder, particularly for coders with CABAC. Also, some of the obvious observations 

are that the computational complexity increases with the frame size of the video 

sequence and also the increase in complexity setting from config.A to config.B.  

 

4.7.4 Effect of CABAC on the data transfer complexity of VBR encoder 

In this section, the data transfer complexities of CABAC in both RDO-on 

encoder and RDO-off encoder are analyzed and compared with CAVLC. All the 

analyses are carried in a system with 1MB cache.  All data complexity measurements 

are expressed as the average number of memory access per second (in billions of 

memory accesses per sec.). 

The use of CABAC requires the entropy coder to access the memory more 

frequently as compared to CAVLC. Table 4-9 shows the percentage increase in data 
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transfer complexity of the entropy coder when CABAC replaced CAVLC across the 

different configurations.  

Table 4-9:  Percentage increase in data transfer complexity of the VBR 
encoder due to CABAC 

RDO-off RDO-on 
  A B A B 

Akiyo 0.16  0.00  4.52  1.25  
M&D 0.16  0.03  4.30  1.26  
Container  0.15  0.03  5.64  1.62  
Foreman  0.22  0.02  6.02  1.81  
Walk  0.22  0.07  6.30  2.03  

Q
C

IF
 

Coastguard  0.29  0.03  6.48  2.05  
Akiyo 0.00  0.04  3.97  1.17  
M&D 0.37  0.00  3.54  1.07  
Container 0.00  0.00  5.11  1.40  
Foreman 0.35  0.00  5.22  1.47  
Walk 0.00  0.00  5.56  1.44  

C
IF

 

Coastguard 0.00  0.00  6.21  1.99  
Mobcal 0.13  0.03  5.64  1.70  

S
D

 

Parkrun 0.36  0.08  10.18  3.21  
 

It can be seen from the above table that the increase in data transfer 

complexity from CAVLC to CABAC in RDO-off mode is negligible (0.0-0.4%). 

Whereas, in RDO-on mode, the increase in complexity from CABAC to CAVLC is 

quite significant (1 – 10%). This is because in RDO-on mode the entropy coding tools 

CABAC and CAVLC are also used in motion estimation. Note that this observation is 

similar to the one made in previous sections concerning computational complexity. 

Also, the increase in complexity is higher for config.A.  

It can also be noted that for higher motion content and higher frame sizes, the 

increase in data transfer complexity is higher. For the sequence parkrun, which is a 

SD sequence (720x576 pixels frame) with high motion content, the increase in data 

transfer complexity in config.A RDO-on mode is more than 10%. In Section 4.6.2, the 

performance in the form of bit-rate reduction is tabulated. It can be seen in that 
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section that for RDO-off mode, there is a higher decrease in bit-rate. So, again we 

observe in this section that CABAC performs better in RDO-off mode.  

 

4.7.5 Effect of RDO on the video coder  

The use of RDO has a large influence on the data transfer complexity of the 

entropy code. Table 4-10 gives the data transfer complexity increase of the video 

coder from a RDO-off mode to RDO-on mode. The complexity increment factor is 

given by normalizing the number of memory access performed by the RDO encoder 

with that of the non-RDO encoder for the same configuration.  

Table 4-10:  Effect of RDO on Data Transfer Complexity of VBR encoder 
 VLC BAC 

Akiyo 18.61  23.78  
M&D 19.84  24.80  
Container  20.00  26.58  
Foreman  22.75  29.85  
Walk  21.82  29.21  

Q
C

IF
 

Coastguard  23.13  30.72  
Akiyo 14.39  18.94  
M&D 15.61  19.26  
Container 17.25  23.24  
Foreman 20.21  26.04  
Walk 20.00  26.67  

C
IF

 

Coastguard 23.34  31.01  
Mobcal 19.87  26.46  

S
D

 

Parkrun 29.30  41.95  
 

The use of RDO increases the data transfer complexity of the CABAC video 

coder significantly (14-41%). Note that the increase in data transfer complexity from 

RDO-off to RDO-on coder for CABAC is much higher than that for CAVLC. Like 

explained previously, the increase is because entropy coding is used for motion 

estimation too in RDO-on mode. This again suggests that CABAC is more suitable 

for RDO-off mode. 
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Another observation is that the increase in data transfer complexity is higher 

for video sequences with higher motion content. However, the frame size does not 

affect the increase in data transfer complexity as much as motion content.    

 

4.7.6 Overall data transfer complexity of the VBR encoder 

Table 4-11 shows the data transfer complexities of the entropy coder for 

different combination of entropy coding schemes with different configurations in a 

RDO-off encoder and RDO-on encoder. All data transfer complexity measurements 

are expressed in terms of billions of memory accesses per second. Results have been 

given with accuracy up two decimal places in order to show the finer differences 

among the values.  

The data provides an overview of the possible variations in data transfer 

complexity of the entropy coder due to the collective use of different video coding 

tools in H.264/AVC for different type of sequences.  

It can be seen from the table that the usage of CABAC causes an increase in 

complexity of the entire video encoder. Note that in RDO-on mode, the entropy 

coding stage is even used for motion estimation. So, in RDO-on mode, CABAC 

causes a much larger increase in complexity.  
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Table 4-11: Data transfer complexities of VBR encoder in various video coder 
settings 

RDO-off RDO-on 
A B A B 

  VLC BAC VLC BAC VLC BAC VLC BAC 
Akiyo 6.34  6.35  29.88  29.88  7.52  7.86  31.21  31.60  

M&D 6.40  6.41  30.16  30.17  7.67  8.00  31.77  32.17  

Container  6.65  6.66  30.52  30.53  7.98  8.43  32.19  32.71  
Foreman  6.81  6.83  31.16  31.17  8.36  8.86  33.21  33.81  

Walk  7.30  7.31  32.06  32.09  8.89  9.45  34.27  34.97  

Q
C

IF
 

Coastguard  6.88  6.90  31.10  31.11  8.47  9.02  33.23  33.91  
Akiyo 26.40  26.40  123.75  123.70  30.20  31.40  128.40  129.90  

M&D 26.90  27.00  125.50  125.50  31.10  32.20  131.10  132.50  

Container 28.40  28.40  126.90  126.90  33.30  35.00  133.33  135.20  

Foreman 28.70  28.80  128.50  128.50  34.50  36.30  136.40  138.40  

Walk 30.00  30.00  131.00  131.00  36.00  38.00  139.00  141.00  

C
IF

 

Coastguard 28.70  28.70  126.70  126.70  35.40  37.60  135.70  138.40  

mobcal 115.18  115.34  526.31  526.46  138.07  145.85  557.22  566.70  

S
D

 

parkrun 113.00  113.40  508.08  508.49  146.10  160.97  552.18  569.92  

  

Note that CABAC causes an increase in complexity of the video coder. Also, 

RDO-on mode causes a huge increase in the computational complexity of the video 

coder, particularly for coders with CABAC. Also, some of the obvious observations 

are that the computational complexity increases with the frame size and motion 

content of the video sequence and also the increase in complexity setting from 

config.A to config.B.  

 

4.7.7 Effect of CABAC on Computational and Data Transfer Complexities of VBR 

Decoder 

 The changes in complexity of CABAC with respect to CAVLC for video 

decoder are tabulated in Table 4-12.  

We recognize that RDO tool does not exist for H.264/AVC decoder. However, 

the RDO mode in the encoder determines the number of encoded bits, which in turn 

influences the computational and data transfer complexities at the decoder. We 

analyze the complexities at the decoder as results of both RDO-off and RDO-on for 
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both configurations A and B at the encoder. Table 4-12 presents the percentage 

change in computational and data transfer complexities of the CABAC-based 

decoder. Gray, white, and black shadings are used to differentiate among sequences of 

low, moderate, and high motion-content sequences, respectively. 

Table 4-12: Percentage Reduction in VBR Decoder’s Complexity using CABAC 
Computational Complexity  (%) Data Transfer Complexity (%) 
RDO-off (*) RDO-on (*) RDO-off (*) RDO-on (*) 

  

A B  A  B  A  B  A  B 

Akiyo 1.17 0.58 1.62 0.96 -0.42 -0.88 -0.05 -0.58 

M&D 1.11 0.24 1.52 0.90 -0.39 -1.13 -0.09 -0.61 

Container 3.07 2.48 2.84 2.15 0.29 -0.17 0.02 -0.55 

Foreman 4.16 1.69 4.88 2.57 1.01 0.79 1.41 0.19 

Walk 6.08 2.81 6.98 3.93 1.91 -0.51 2.42 0.21 

C
IF

 

Coastguard 8.92 5.67 9.93 7.46 3.96 1.21 4.37 2.42 

Mobcal 6.53 4.49 6.48 4.39 2.37 0.84 1.88 0.29 

S
D

 

Parkrun 11.91 9.80 11.12 8.65 3.94 2.05 2.56 0.45 
(*)  RDO-off / RDO-on indicate the settings at the respective encoders. 
(**) a negative value indicates increase in % of complexity. 
 

 The above table shows that up to 12% reduction in decoder’s computational 

complexity, and up to 4% reduction in data transfer complexity can be achieved with 

CABAC. Note that in some cases, a small increase (approximately 1%) in data 

transfer complexity is observed. Larger reduction is obtained for high motion-content 

than for low motion-content sequence. The amount of complexity reduction is also 

higher for configuration A compared to configuration B. Finally, the RDO tool has 

little effect on the complexity of the decoder. 

 In previous sections, we have reconfirmed that at the encoder, replacing 

CAVLC for CABAC requires a moderate to large increase in both computational and 

data transfer complexity. However, in this section, we found that at the decoder, 

because CABAC entropy coder results in less number of bits which leads to lower 

decoding complexity. As a consequence, replacing CAVLC for CABAC actually 

reduces both computational and data transfer complexity. 

 



 53 

4.7.8 Effect of CABAC on the Computational Complexity of CBR encoder 

 In this section, the computational complexity of CABAC when used in 

both non-RDO encoder and RDO encoder are analyzed, and are compared with 

reference to CAVLC for video coder in Constant Bit-Rate mode. All computational 

complexity measurements are expressed as increase from CAVLC to CABAC in 

billions of instructions per second. Note that all the sequences are CIF sequences. 

QCIF sequences have been omitted because they show similar results. Three constant 

bit-rates are considered- 256, 512 and 1024 Kbps. 

Table 4-13: Increase in Computation Complexity from CAVLC to CABAC (109/sec.) 
for CBR encoder 

256 512 1024 
  RDO-off RDO-on RDO-off RDO-on RDO-off RDO-on 

Akiyo 0.17  2.68  0.17  2.68  0.24  4.05  

M&D 0.19  2.56  0.09  2.75  0.02  3.84  

Container 0.27  2.59  0.68  2.70  0.63  4.19  

Foreman 0.17  2.85  0.70  2.50  0.54  3.68  

Walk 0.04  2.33  0.18  1.96  1.33  2.93  

Coastguard 1.65  2.28  0.85  2.20  0.19  3.01  
 

 It can be seen from the above table that the increase in the number of 

instructions from CABAC to CAVLC is much higher for RDO-on mode. This is 

similar to the results observed in VBR mode in the previous sections. This suggests 

that CABAC is more beneficial in RDO-off mode even in case of CBR.  

 

4.7.9 Effect of RDO on the computational complexity of video coder in CBR mode 

Table 4-14 tabulates the increase in computational complexity of the video 

coder when RDO tool is turned on for different video coder settings and for 3 

different bit-rates. 
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Table 4-14: Increase in Computational Complexity of CBR encoder when RDO tool 
is turned on (109/sec.) 

256 512 1024 

  VLC BAC VLC BAC VLC BAC 

Akiyo 9.90  12.40  13.36  15.87  15.90  19.72  

M&D 10.38  12.75  13.79  16.45  16.51  20.33  

Container 9.48  11.80  13.10  15.11  16.31  19.87  

Foreman 10.84  13.52  13.41  15.21  16.33  19.46  

Walk 11.04  13.33  13.43  15.21  15.96  17.56  

Coastguard 11.08  11.71  11.05  12.39  14.15  16.96  
 

The complexity increment factor is given by normalizing the average entropy 

instruction counts executed by the RDO-on encoder with that of the RDO-off encoder 

for the same configuration.  

The use of RDO as the video encoder control significantly increases the 

computational complexity of the entropy coder as can be seen in the table. It can be 

seen that in a video coder using CABAC, the increase due to RDO on is higher than 

the increase in a video coder using CAVLC in all the 3 constant bit-rates considered. 

This result was also observed in the previous section. This means that the use of RDO 

triggered a huge workload for the entropy coder and creates a bottleneck in it. Again, 

this observation means that CABAC is more effective in RDO-off mode. 

 
4.7.10 Overall computational complexity of the video coder in CBR mode 

Table 4-15 shows the computational complexities of the video coder for 

different combination of entropy coding schemes with different configurations in a 

RDO-off encoder and RDO-on encoder in CBR mode. All computational complexity 

measurements are expressed in billions of instructions executed per second. Results 

have been given with accuracy up two decimal places in order to show the finer 

differences among the values.  
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The data provides an overview of the possible variations in computational 

complexity of the video coder due to the collective use of different video coding tools 

in H.264/AVC for different type of sequences.  

It can be seen from the table that the usage of CABAC causes an increase in 

complexity of the entire video encoder. Note that in RDO-on mode, the entropy 

coding stage is even used for motion estimation. So, in RDO-on mode, CABAC 

causes a much larger increase in complexity.  

 

Table 4-15: Computational complexities of CBR encoder in different combinations of 
entropy coding schemes and configurations for RDO-off and RDO-on encoders in 

CBR mode (109/sec.) 
RDO-off RDO-on 

256 VLC BAC VLC BAC 
Akiyo 185.92 186.09 195.82 198.49 
M&D 188.51 188.70 198.89 201.45 
Container 192.21 192.48 201.69 204.28 
Foreman 195.51 195.68 206.35 209.20 
Walk 197.93 197.97 208.97 211.30 
Coastguard 185.14 186.79 196.22 198.50 

RDO-off RDO-on 
512 VLC BAC VLC BAC 
Akiyo 185.48 185.65 198.84 201.53 
M&D 188.34 188.43 202.13 204.88 
Container 188.24 188.92 201.33 204.03 
Foreman 192.89 193.59 206.31 208.80 
Walk 195.51 195.68 208.94 210.90 
Coastguard 185.14 185.99 196.18 198.38 

RDO-off RDO-on 
1024 VLC BAC VLC BAC 
Akiyo 180.74 180.98 196.64 200.69 
M&D 186.81 186.83 203.32 207.17 
Container 182.94 183.57 199.25 203.44 
Foreman 189.26 189.80 205.59 209.27 
Walk 190.00 191.33 205.96 208.89 
Coastguard 183.44 183.63 197.59 200.59 
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Note that CABAC causes an increase in complexity of the video coder. Also, 

RDO-on mode causes an increase in the computational complexity of the video coder, 

particularly for coders with CABAC.  

 

4.7.11 Effect of CABAC on the Data Transfer  Complexity of video coder in CBR 

 In this section, the data transfer complexity of CABAC when used in 

both non-RDO encoder and RDO encoder are analyzed, and are compared with 

reference to CAVLC for video coder in Constant Bit-Rate mode. All data transfer 

complexity measurements are expressed as increase from CAVLC to CABAC in 

billions of instructions per second. Note that all the sequences are CIF sequences. 

QCIF sequences have been omitted because they show similar results. Three constant 

bit-rates are considered- 256, 512 and 1024 Kbps. 

 
Table 4-16: Increase in Data Transfer Complexity from CAVLC to CABAC (109/sec.) 

in CBR mode 
256 512 1024 

  RDO-off RDO-on RDO-off RDO-on RDO-off RDO-on 
Akiyo 1.13  2.02  0.99  2.13  0.90  3.25  
M&D 0.44  1.92  0.30  2.15  0.02  3.06  
Container 0.51  1.98  0.19  2.17  1.76  3.37  
Foreman 0.99  1.55  1.41  1.97  0.24  2.96  
Walk 0.02  1.63  0.46  1.56  1.56  2.40  
Coastguard 0.00  1.46  0.22  1.68  0.18  2.36  

 

 It can be seen from the above table that the increase in the number of 

instructions from CABAC to CAVLC is much higher for RDO-on mode. This is 

similar to the results observed in previous sections. This suggests that CABAC is 

more beneficial in RDO-off mode even in case of CBR.  
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4.7.12 Effect of RDO on the Data Transfer Complexity of video coder in CBR mode 

Table 4-17 tabulates the increase in data transfer complexity of the video coder 

when RDO tool is turned on for different video coder settings and for 3 different bit-

rates. 

 
Table 4-17: Increase in Data Complexity of CBR encoder when RDO tool is turned 

on (109/sec.) 
256 512 1024 

  VLC BAC VLC BAC VLC BAC 
Akiyo 5.57  6.47  7.73  8.87  9.04  11.39  
M&D 5.93  7.41  8.04  9.89  9.53  12.57  
Container 5.24  6.72  7.47  9.45  9.26  10.88  
Foreman 6.57  7.13  7.78  8.33  9.38  12.10  
Walk 6.60  8.20  7.79  8.90  9.17  10.01  
Coastguard 5.77  7.23  6.34  7.81  8.17  10.35  

 

The complexity increment factor is given by normalizing the average entropy 

instruction counts executed by the RDO-on encoder with that of the RDO-off encoder 

for the same configuration.  

The use of RDO as the video encoder control significantly increases the data 

transfer complexity of the entropy coder as can be seen in the table. It can be seen that 

in a video coder using CABAC, the increase due to RDO on is higher than the 

increase in a video coder using CAVLC in all the 3 constant bit-rates considered. This 

result was also observed in the previous section. This means that the use of RDO 

triggered a huge workload for the entropy coder and creates a bottleneck in it. Again, 

this observation means that CABAC is more effective in RDO-off mode. 

 
4.7.13 Overall Data Transfer Complexity of the video coder in CBR mode 

Table 4-18 shows the data transfer complexities of the video coder for 

different combination of entropy coding schemes with different configurations in a 
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RDO-off encoder and RDO-on encoder in CBR mode. All data transfer complexity 

measurements are expressed in billions of instructions executed per second.  

The data provides an overview of the possible variations in data transfer 

complexity of the video coder due to the collective use of different video coding tools 

in H.264/AVC for different type of sequences.  

It can be seen from the table that the usage of CABAC causes an increase in 

complexity of the entire video encoder. Note that in RDO-on mode, the entropy 

coding stage is even used for motion estimation. So, in RDO-on mode, CABAC 

causes a much larger increase in complexity.  

Table 4-18: Data Transfer Complexities of video coder in different combinations of 
entropy coding schemes and configurations for RDO-off and RDO-on encoders in 

CBR mode (109/sec.) 
RDO-off RDO-on 

256 VLC BAC VLC BAC 
Akiyo 124.22 125.35 129.80 131.82 

M&D 125.91 126.35 131.84 133.76 

Container 128.37 128.88 133.61 135.60 

Foreman 130.65 131.64 137.22 138.77 

Walk 132.39 132.41 138.99 140.61 

Coastguard 124.75 124.75 130.52 131.98 

RDO-off RDO-on 
512 VLC BAC VLC BAC 
Akiyo 124.01 125.00 131.74 133.87 

M&D 125.88 126.18 133.91 136.06 

Container 125.78 125.98 133.26 135.43 

Foreman 128.97 130.38 136.75 138.72 
Walk 130.77 131.23 138.56 140.12 

Coastguard 123.70 123.92 130.05 131.73 

RDO-off RDO-on 
1024 VLC BAC VLC BAC 
Akiyo 120.84 121.73 129.88 133.12 

M&D 124.87 124.90 134.40 137.46 

Container 122.23 123.99 131.49 134.86 

Foreman 126.57 126.80 135.95 138.91 

Walk 127.09 128.65 136.26 138.66 

Coastguard 122.67 122.84 130.83 133.19 
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Also note that CABAC causes an increase in complexity of the video coder. 

Also, RDO-on mode causes an increase in the data transfer complexity of the video 

coder, particularly for coders with CABAC. An obvious observation is that the 

complexity increases with the motion content of the sequence. 

 

4.7.14 Analysis of CABAC over CAVLC for CBR Decoders 

The changes in complexity of CABAC with respect to CAVLC for video 

decoder are tabulated in Table 4-19.   

 
Table 4-19: Percentage Reduction in CBR Decoder’s Complexity using CABAC 

Computational Complexity (% change) Data Transfer Complexity  (% change) 
RDO-off (*) RDO-on (*) RDO-off (*) RDO-on (*) 

  

A B  A  B  A  B  A  B 

Akiyo 1.48 0.86 0.96 1.67 -0.51 -2.01 -1.00 -0.20 

M&D 0.89 1.34 -0.29 1.28 -0.97 -1.76 -2.05 -0.43 

Container 1.27 1.30 1.03 1.66 -0.86 -0.92 -1.22 -0.54 

Foreman -0.63 -2.16 -3.27 -0.97 -1.89 -3.39 -4.55 -2.00 

Walk 1.31 1.85 2.06 1.17 -0.43 0.40 0.56 -0.02 25
6 

K
bp

s 

Coastguard -4.39 -2.48 0.87 -0.57 -6.21 -4.11 -0.55 -2.09 

Akiyo 5.32 3.72 5.23 4.21 1.44 -0.18 1.31 0.18 

M&D 3.80 2.23 4.35 2.47 0.44 -1.15 1.03 -1.06 

Container 5.32 4.85 4.23 4.07 1.07 0.48 0.10 -0.15 

Foreman 3.12 2.06 2.40 2.34 0.11 -0.86 -0.72 -0.72 

Walk 1.83 0.77 2.15 0.93 -0.81 -1.60 -0.53 -1.61 51
2 

K
bp

s 

Coastguard 2.93 2.00 3.89 2.78 -0.29 -1.08 0.69 -0.34 

Akiyo 9.58 8.2 10.18 8.26 3.39 1.94 3.82 1.68 

M&D 8.11 5.47 7.86 6.27 2.81 0.17 2.28 0.61 

Container 9.01 8.36 9.51 8.14 2.64 1.80 3.25 1.64 

Foreman 6.37 3.94 6.43 4.65 1.27 -0.95 1.24 -0.55 

Walk 5.32 2.99 4.89 3.37 0.91 -1.14 0.45 -1.00 10
24

 K
bp

s 

Coastguard 6.46 4.38 6.70 5.17 1.32 -0.62 1.42 -0.05 
 (*)  RDO-off / RDO-on indicate the settings at the respective encoders. 
(**) a negative value indicates increase in % of complexity. 
 
Gray, white, and black shadings are used to differentiate among sequences of 

low, moderate, and high motion-content sequences, respectively. Table 4-19 shows 

that up to 10% reduction in decoder’s computational complexity and up to 4% 

reduction in data transfer complexity can be achieved with CABAC. Note that in 
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some cases, an increase in computational complexity is observed.  However, the data 

transfer complexity seems to be higher for CABAC, especially for lower bit-rates. 

Larger reduction in complexities is obtained for higher bit-rates. Contrary to the video 

coder, in general, CABAC is found to result in lower computational complexity at its 

decoder. 

 

4.8 Performance-Complexity Co-evaluation  

In the previous sections, the performance and complexity of CAVLC and 

CABAC in different scenarios of both VBR and CBR mode have been analyzed 

extensively, but separately. This section deals with co-evaluation of performance and 

complexity together for analysis and to determine possible cost-effective scenarios of 

CABAC. 

4.8.1 Analysis of Variable Bit-Rate Encoder Implementations 

In this section, the use of CABAC in Variable Bit-Rate (VBR) encoder is 

analyzed. The benefit of using CABAC is assessed by considering the performance-

complexity tradeoffs. The performance metric is the bit-rate reduction under constant 

video quality, and the complexity metrics comprise of computational complexity 

(billions of instructions per second), and data transfer complexity (billions of memory 

accesses per second). 

 Due to the overwhelming amount of data, we use scatter plots to 

represent changes in bit-rate and complexities. Figure 4.1 shows the scatter plot of 

computational complexity versus bit-rate across different coder settings for the CIF 

and SD sequences. Figure 4.2 shows the corresponding plot of data transfer 

complexity versus bit-rate. The test sequences are numbered and listed in order of 

increasing complexity. For each sequence, a connecting line is made between 
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CABAC implementation and its corresponding CAVLC implementation assuming the 

same configuration. The connecting lines help draw visual interpretation among the 

changes. The slope of a connecting line is an indicator for complexity increment for a 

given reduction in bit-rate. The steeper the connecting line, the higher the required 

complexity for the same amount of bit-rate reduction. Moreover, the length of a 

connecting line is an indicator for the relative reduction in bit-rate. The longer the 

connecting line, for a given slope, the larger the amount of bit-rate reduction. We will 

be making some observations based on these visual rules. 

 
Figure 4.1: Plot of computational complexity (109/sec.) versus bit-rate (Kbps) of 

various video coder settings for CIF and SD sequences in VBR mode. (CIF: 1-Akiyo, 
2-M&D, 3-Container, 4-Foreman, 5-Walk, & 6-Coastguard, SD: 7-Mobcal & 8-

Parkrun) 
 

In both Figure 4.1 and Figure 4.2, four clusters can be seen: 1) SD sequences 

using complex configuration B; 2) SD sequences using simple configuration A; 3) 

CIF sequences using configuration B; 4) CIF sequences using configuration A. 
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Within each cluster, the upper half is associated with RDO-on mode, and the 

lower half is with RDO-off mode. Figure 4.1 shows that for RDO-off mode, by 

replacing CAVLC with CABAC, the connecting lines have gradual slopes indicating 

that significant bit-rate reductions can be achieved (3 to 13%) for small increases in 

computational complexity (up to 0.5%) regardless of motion-content and 

configurations. Figure 4.1 also shows that for sequences with high motion-content, the 

connecting lines are longer on the linear bit-rate axis (9 to 13%). Note that for 

sequence 7-Mobcal, even though the connecting line seems to be short, its relative 

reduction is large (10 to 11%) because of the usage of larger scale on the bit-rate axis. 

For RDO-on mode, when using CABAC, the slopes of the connecting lines are 

steeper indicating higher requirement of computational complexity (1 to 7%) for 

similar reduction in bit-rate (3 to 12%). It can also be seen that for RDO-on mode, as 

the motion content increases the slope of the connecting line increases. This in turn 

suggests that CABAC is more beneficial for lower motion content sequences when 

compared to higher motion content sequences in RDO-on mode. 

Figure 4.2 shows similar behaviors. For RDO-off mode, by replacing CAVLC 

with CABAC, the connecting lines have gradual slopes indicating significant bit-rate 

reductions can be achieved (3 to 13%) for little increases in data transfer complexity 

(up to 1%) regardless of motion-content and configurations. Figure 4.2 also shows 

that for sequences with high motion-content, their connecting lines are longer on the 

linear bit-rate axis (6 to 12%).  Note that for sequence 7-Mobcal, even though the 

connecting line seems to be short, its relative reduction is large because of the larger 

scale in the bit-rate axis (9 to 10%). For RDO-on mode, when using CABAC, the 

slopes of the connecting lines are steeper indicating higher requirement of data 

transfer complexity (1 to 10%) for similar reduction in bit-rate (3 to 12%). t can also 
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be seen that for RDO-on mode, as the motion content increases the slope of the 

connecting line increases. This again suggests that CABAC is more beneficial for 

lower motion content sequences when compared to higher motion content sequences 

in RDO-on mode. 

 
 
 

Figure 4.2: Plot of data transfer complexity (109/sec.) versus bit-rate (Kbps) of various 
video coder settings for CIF and SD sequences in VBR mode. (CIF: 1-Akiyo, 2-
M&D, 3-Container, 4-Foreman, 5-Walk, & 6-Coastguard, SD: 7-Mobcal & 8-

Parkrun) 
 
 

Empirical data (plots not shown) were also obtained for the QCIF-sequences, 

and similar behaviors are observed, and the relative scales of bit-rate reduction are 

found to be less than those of the CIF and SD sequences. 

Our analyses differ from [10] in one point. In [10], data transfer complexity 

(i.e. access frequency) was claimed to increase from 25-30% compared to CAVLC, 

whereas in our report, data transfer complexity is increased by only up to 10%. The 
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main difference can be that the reference software used in [10] was JM version 2.1, 

whereas JM 14.2 was used in our study. 

In this section, we have studied and identified situations where the reduction 

in bit-rate is perceived to be more than the increase in complexities for VBR 

encoders. We use the term beneficial hereafter to indicate a situation where the 

amount of bit-rate reduction is perceived to be more than the amount of complexity 

incurred. From the analyses, we conclude that it is beneficial to use CABAC in RDO-

off mode, regardless of motion-content and configurations; and that high motion-

content sequences result in larger bit-rate reduction. Also, CABAC is more beneficial 

for lower motion content sequences than higher motion content sequences in RDO-on 

mode. In the next chapter, we use a PCI to quantify if the discussed beneficial 

situations are in fact cost-effective. 

 

4.8.2 Analysis of CABAC-Based Constant Bit-Rate Implementations 

Constant bit-rate (CBR) codec has been implemented in the asynchronous 

transfer mode (ATM) networks, and is supported by the H.264/AVC standard. We 

analyze the benefit of using CABAC in CBR encoder in this section. The performance 

metric is the increase in Y_PSNR under CBR, and the complexity metrics comprise of 

computational complexity and data transfer complexity. 

Figure 4.3 and Figure 4.4 show the scatter plots of Y_PSNR versus 

computational complexity and Y_PSNR versus data transfer complexity respectively, 

across constant bit-rates of 256, 512, and 1024 Kbps for CIF sequences. For each 

sequence, a link is made between CABAC-based and CAVLC-based coder assuming 

the same configurations. A horizontal link indicates Y_PSNR can be increased for 
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negligible increase in complexity, while an upward diagonal link indicates Y_PSNR 

is increased for some increase in complexity. 

The diamond, square and shadowed square points represent data associated 

with RDO-off mode, while the circle, triangle and shadowed triangle points RDO-on 

mode. Figure 4.3 shows that for RDO-off mode, by replacing CAVLC with CABAC, 

the long connecting lines having gradual slopes indicate that significant Y_PSNR 

improvements (3-12%) can be achieved for little increases in computational 

complexity regardless of motion-content and configurations. 

 

 
Figure 4.3: Plot of computational complexity (109/sec.) versus bit-rate (Kbps) of 

various video coder settings for CIF and SD sequences in CBR mode. (CIF: 1-Akiyo, 
2-M&D, 3-Container, 4-Foreman, 5-Walk, & 6-Coastguard) 

 
Also, it can be seen from Figure 4.3 that for RDO-on mode, by replacing 

CAVLC with CABAC, the long connecting lines having much steeper slopes suggest 
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higher requirement of computational complexity (up to 6%) for the same increase in 

Y_PSNR (up to 12%). 

Similarly, Figure 4.4 shows that by replacing CAVLC with CABAC, the short 

connecting lines having very steep slopes indicate that very little Y_PSNR increase 

can be achieved with huge increase in data transfer complexity (up to 10%) for all 

modes except high motion-content sequences in RDO-off mode. For high motion-

content sequences in RDO-off mode, by replacing CAVLC with CABAC, significant 

Y_PSNR improvement can be achieved for little increases in data transfer complexity. 

 
Figure 4.4: Plot of data transfer complexity (109/sec.) versus bit-rate (Kbps) of various 
video coder settings for CIF and SD sequence in CBR mode. (CIF: 1-Akiyo, 2-M&D, 

3-Container, 4-Foreman, 5-Walk, & 6-Coatguard) 
 

From the analyses, we conclude that it is beneficial to use CABAC in RDO-

off mode for high motion-content sequences, regardless of configurations. 
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In this section, we have studied and identified situations where the increase in 

Y_PSNR is perceived to be more than the increase in complexities for CBR encoders, 

and found that CABAC is beneficial for encoding high motion-content sequences 

under RDO-off mode. 

 

4.9  Conclusion 

In this chapter, the performance and complexity of the video coder under 

various video coder settings and with video sequences of different motion contents 

and frame sizes have been analyzed, both individually and then together. 

In VBR mode, the bit-rate savings due to CABAC is higher in RDO-off mode. 

Also, the increase in computational complexity due to CABAC in VBR mode when 

RDO tool is turned off mode is negligible, as opposed to the increase in RDO-on 

mode, which can be up to 8%. 

The increase in data transfer complexity due to CABAC in VBR mode when 

RDO tool is turned on is up to 10%, as opposed to the negligible increase when RDO 

tool is off. The low complexity of CABAC from the perspective of the non-RDO 

encoder suggests the feasibility of implementing CABAC in software without any 

hardware assistance.  

In video decoder, the effect of CABAC is just the opposite. Up to 12% 

reduction in decoder’s computational complexity and up to 4% reduction in data 

transfer complexity can be achieved with CABAC. This is because CABAC results in 

less number of encoded bits, which in turn strongly influences the performance of the 

decoder.  

In CBR mode, similar behavioral patterns can be seen. The increase in 

computational complexity is up to four billion instructions per second for CABAC 
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when RDO tool is on. When RDO is off, the increase in complexity is negligible. The 

same behavior is seen for data transfer complexities. This means CABAC is less 

complex for both VBR and CBR mode and irrespective of other video coder settings 

as long as RDO tool is off. 

As with VBR, up to 10% reduction in decoder’s computational complexity 

and up to 4% reduction in data transfer complexity can be achieved with CABAC in 

CBR mode. Contrary to the video coder, in general, CABAC is found to result in 

lower computational complexity at its decoder. 

In the performance-complexity co-evaluation, certain conclusions were drawn 

based on visual interpretation of data. In VBR mode, connecting lines are made 

between CABAC implementation and its corresponding CAVLC implementation 

assuming the same configuration in the plots. The slope of a connecting line is an 

indicator for complexity increment for a given reduction in bit-rate. The steeper the 

connecting line, the higher the required complexity for the same amount of bit-rate 

reduction. In the computational complexity versus bit-rate plot, for RDO-off mode, by 

replacing CAVLC with CABAC, the connecting lines have gradual slopes indicating 

that significant bit-rate reductions can be achieved (3 to 13%) for small increases in 

computational complexity (up to 0.5%) regardless of motion-content and 

configurations. In the data transfer complexity versus bit-rate plot, for RDO-off mode, 

by replacing CAVLC with CABAC, the connecting lines have gradual slopes 

indicating significant bit-rate reductions can be achieved (3 to 13%) for little increases 

in data transfer complexity (up to 1%) regardless of motion-content and 

configurations. From the analyses, we conclude that it is beneficial to use CABAC in 

RDO-off mode, regardless of motion-content and configurations in VBR mode. 
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In the CBR mode, when considering computational complexity versus bit-rate 

plot, for RDO-off mode, by replacing CAVLC with CABAC, the long connecting 

lines having gradual slopes indicate that significant Y_PSNR improvements (3-12%) 

can be achieved for little increases in computational complexity regardless of motion-

content and configurations. Similarly, the data transfer complexity versus bit-rate plot 

shows that by replacing CAVLC with CABAC, the short connecting lines having very 

steep slopes indicate that very little Y_PSNR increase can be achieved with huge 

increase in data transfer complexity (up to 10%) for all modes. 

All these analyses lead to the conclusion that CABAC is more beneficial in 

RDO-off mode. However, the conclusions drawn in this chapter are based on 

empirical data. In the next chapter, we use the proposed PCI methodology to validate 

the conclusion obtained in this chapter. 
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CHAPTER 5 QUANTIFICATION OF COST-

EFFECTIVENESS OF CABAC-BASED CODERS 

In the previous chapter, we used empirical analysis to determine the cost-

effective scenarios of using CABAC. Initially, we had analyzed performance and 

complexity separately. Either performance or complexity alone cannot be used for 

judging any algorithm. They have to be considered together. We also had a 

performance-complexity co-evaluation in the previous chapter. Though this 

methodology is comparatively better than individual analyses, it doesn’t consider all 

the components of complexity along with performance together. 

In Chapter 3, we used a theoretical model to develop a performance-

complexity metric (PCI). The PCI metric defined in that chapter relates performance, 

computational complexity, and data transfer complexity together to assess the overall 

effectiveness of CABAC in any scenario.  

In this chapter, we first use a theoretical analysis to determine the cost-

effective scenarios of CABAC. Then the method to be followed to obtain PCI values 

is described. PCI is used later in this chapter to determine the cost-effective scenarios 

of using CABAC. Note that the methodology can be applied for determining the cost-

effective scenarios of any algorithm. PCI equations are derived and PCI values are 

summarized for various sequences in all the video coder configurations.  Based on the 

obtained PCI values, certain conclusions will be drawn. 
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5.1 Theoretical Analysis 

First, we make some theoretical observations to determine cost-effective 

scenarios of CABAC. Observation one is that arithmetic coding can efficiently encode 

fractional codewords. This has been elaborately explained in Section 2.2. For an 

information source that is capable of generating two symbols with probabilities p and 

(1-p), the number of bits per symbols is  

)1(log)1()(log 22 ppppl −−+=     (5-1) 

Note that the above expression is also the Shannon’s limit on the minimum 

encoded symbol length possible. This proves that arithmetic coding can achieve the 

Shannon’s limit and thus explains why it is very efficient.  

Also, consider a case where p is very much greater than 0.5, lets say 0.95. In 

this case, arithmetic coding can actually encode each symbol with number of bits per 

symbols approx. 0.2 (by substituting the probability values in the above equation), 

which means it can encode using fractional length. However, the variable length 

codes have a lower limit of 1 bit/symbol.  

In RDO-off mode, there are lots of significant coefficients having very small 

values, whose probabilities exceed 0.5 many times for all sequences. For example, the 

probability of significant coefficients having absolute value 1 for Foreman sequence 

is 0.58 in RDO-on mode as compared to 0.77 in RDO-off mode. So, we can conclude 

that the performance of CABAC in RDO-off mode is very high. 

Observation two is that the values of significant coefficients in RDO-on mode 

are much larger than the corresponding values in RDO-off mode, which in turn makes 

the expected length of the significant coefficients, El, much larger for RDO-on mode. 

Due to the nature between the complexity and El of significant coefficients (from Eqn. 

(3-11)), the complexity of the CABAC module in RDO-on mode is very much larger 
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than the complexity of the module in RDO-off mode. However, the increase in 

complexity of CAVLC engine from the RDO-off to RDO-on mode is not very 

significant (from Eq. (3-12)).  

From the above explanations, it can be seen that in RDO-off mode CABAC 

gives significantly better performance than CAVLC without incurring much increase 

in complexity. This shows that CABAC is more cost-effective in RDO-off mode.  

Configuration A, being a simple configuration, results in lower performance 

when compared to configuration B. This in turn means that the final bit-rate will be 

higher for configuration A because of its lower performance. Higher bit-rate in 

configuration A means a much higher expected length of significant coefficients than 

configuration B. Because of the direct dependence of complexity of CABAC with the 

expected length, the complexity of CABAC in RDO-on using configuration A is 

much higher. Also, CABAC performs better if the expected length is shorter. 

5.2 PCI Methodology 

5.2.1 Method for Computing PCI in VBR Implementations 

The following algorithm is proposed: 

Step1: For each and every configuration, and for each and every test sequence, 

obtain the bit rates (Kbps) for both new algorithm (Rn) and existing algorithm (Re). 

Subsequently, obtain the ratio of bit rate due to the new algorithm over that due to the 

existing algorithm (Rn/Re). 

Step2: For each and every configuration, and for each and every test sequence, 

obtain the computational complexity measures (MIPS) for both new algorithm (Cn) 

and existing algorithm (Ce). Subsequently, obtain the ratio of computational 

complexity due to the new algorithm over that due to the existing algorithm (Cn/Ce). 
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Step3: Draw a new plot. On the bit-rate ratio vs. computational complexity 

ratio plot, for each and every configuration, and for each and every test sequence, plot 

a point {Rn/Re, Cn/Ce}. 

Step4: On the plot obtained, draw a linear regression line for all the points. 

Derive the corresponding linear regression equation. 

Step5: Repeat Steps 2 to 4 for each and every remaining complexity measure 

such as data transfer complexity, power, area, etc. 

Step6:  Assign a weight to each and every complexity measure (computational 

complexity, data transfer complexity, power, area, etc). The weights are influenced by 

the underlying architectures, design rules, and technologies involved. Linearly add the 

weighted linear regression equations. 

Step7: Simplify the superimposed equation obtained in Step6. PCI_VBR is 

expressed in the final equation. 

5.2.2 Method for Computing PCI in CBR Implementations  

The following algorithm is proposed: 

Step1: For each and every configuration, and for each and every test sequence, 

obtain the Y_PSNR (dB) for both new algorithm (Pn) and existing algorithm (Pe). 

Subsequently, obtain the ratio of bit rate due to the new algorithm over that due to the 

existing algorithm (Pn/Pe). 

Step2: For each and every configuration, and for each and every test sequence, 

obtain the computational complexity measures (MIPS) for both new algorithm (Cn) 

and existing algorithm (Ce). Subsequently, obtain the ratios of computational 

complexity due to the new algorithm over that due to the existing algorithm (Cn/Ce). 
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Step3: Draw a new plot. On the bit-rate ratio vs. computational complexity 

plot, for each and every configuration, and for each and every test sequence, plot a 

point {Pn/Pe, Cn/Ce}. 

Step4: On the plot obtained, draw a linear regression line for all the points. 

Derive the corresponding linear regression equation. 

Step5: Repeat Steps 2-4 for each and every remaining complexity measure 

such as data transfer complexity, power, area, etc. 

Step6:  Assign a weight to each and every complexity measure (computational 

complexity, data transfer complexity, power, area, etc). The weights are influenced by 

the underlying architectures, design rules, and technologies involved. Linearly add the 

weighted linear regression equations. 

Step7: Simplify the superimpose equation obtained in Step6. PCI_CBR is 

expressed in the final equation. 

PCI_VBR and PCI_CBR are metrics that give a measure of the cost-

effectiveness of an algorithm over its contending algorithm. Similar to the PCI 

equation derived in Section II, the PCI values that are obtained using the above 2 

methodologies are dependant on both the performance and complexity parameters, 

thus making them an effective metric to assess the cost-effectiveness of any new 

algorithm.   

In the next section, we will be using the above described methodologies to 

identify cost-effective scenarios of CABAC over CAVLC. We will also compare the 

results obtained using PCI values and the empirical results obtained in the previous 

chapter.  
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5.3 PCI Methodology for Analysis of CABAC and CAVLC 

We now apply the above explained methodology to determine the cost-

effective scenarios of CABAC. Figure 5.1 shows the plot of computational 

complexity ratio versus bit-rate ratio for various CIF sequences in all the video coder 

settings for VBR implementation. A linear regression line is drawn to obtain the 

relationship between computational complexity ratio and bit-rate ratio for the CIF 

sequences. In the figure, the cluster of points around computational complexity ratio 

1.00 corresponds to RDO-off mode. The points near the linear regression line 

correspond to RDO-on using configuration B. As explained in Chapter 3, we take the 

relationship between the computational complexity ratio and bit-rate ratio to be linear, 

thus influencing our choice of using a linear regression plot to obtain the relationship. 

All the data points which lie below the regression line are more cost-effective using 

CABAC, as the computational complexity ratio is smaller in this region. 

Consequently, all the data points above the regression line indicate configurations 

which favor CAVLC mode. 
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Figure 5.1: Plot of computational complexity ratio versus bit-rate ratio of various 
video coder settings in VBR mode for CIF sequences 

 

From the equation of the regression line, we can conclude that CABAC is 

more cost-effective if the following equation is satisfied. 

0065.1 )055.0(
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>+−−
V

B

V

B

C
C

R
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     (5-2) 

In the above equation R denotes bit-rate, C the computational complexity, and 

the subscripts B and V refer to CABAC and CAVLC respectively. Similarly, an 

equation can be obtained using the plot of data transfer complexity ratio versus bit-

rate ratio of CIF sequences in various video coder settings for VBR implementation as 

shown in Figure 5.2. Again, the region above the regression line indicates 

configurations which favor CAVLC, and region below regression line indicates 

configurations which are more cost-effective using CABAC.  
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Figure 5.2: Plot of data transfer complexity ratio versus bit-rate ratio of various video 
coder settings in VBR mode for CIF sequences 

 

Using the equation of the regression line, the equation to be satisfied for 

CABAC to be more cost-effective is obtained as follows. 
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         (5-3) 

where D refers to data transfer complexity. The Y_PSNR of CABAC and 

CAVLC are the same in these analyses.  

                         1=
V

B

P
P

       (5-4) 

where P refers to Y_PSNR. It has been reported that every year the processor 

speed increases by 60%, while the memory speed increases by a modest 7% [40]. 

Therefore, the weight associated with the linear regression line (5-2) is (100/60), 

while the weight associated with the linear regression line (5-3) is (100/7). Recall 

from (3-17) that PCI is a function of 4 ratios (Y_PSNR, Bit-rate, Computational 
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Complexity, and Data Transfer) and a constant. We take the weighted sum of the 

above three relations (5-2), (5-3), and (5-4) with weights (100/60) for (5-2) and 

(100/7) for (5-3) to obtain PCI in that form.  

275.17285.14670.1135.1 +−−−=
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PCI          (5-5) 

It is noted that the PCI is the weighted sum of the LHS of (5-2), (5-3), and (5-

4). In order for CABAC to be more cost-effective than CAVLC, PCI must be greater 

than the sum of RHS of the 3 equations, which is 1. 

Similarly, PCI equations were obtained for QCIF, and SD sequences in VBR 

implementations.  

Figure 5.3 shows the plot of computational complexity ratio versus PSNR 

ratio for CIF sequences in CBR mode at a constant bit-rate of 512 Kbps. 

 

Figure 5.3: Plot of computational complexity ratio versus PSNR ratio of various video 
coder settings in CBR mode for CIF sequences at 512 Kbps 
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Note that in the above plot, the X-axis is PSNR as in CBR mode, the 

performance parameter in PSNR. Similarly Figure 5.4 shows the plot of data transfer 

complexity ratio versus PSNR ratio for CIF sequences in CBR mode at a constant bit-

rate of 512 Kbps. 

 

Figure 5.4: Plot of data transfer complexity ratio versus PSNR ratio of various video 
coder settings in CBR mode for CIF sequences at 512 Kbps 

 

PCI equations were obtained for CBR modes of 256, 512, and 1024 Kbps and 

the PCI values were tabulated. The methodology used was the same as explained 

earlier for VBR mode CIF sequences, but the equations used were different, as shown 

in Figures 5.3 and 5.4.  

Regression lines’ goodness of fit [41] can be expressed in terms of their r2 

values. The r2 value of a regression line is defined as 

                                
tot

reg

SS
SS

r −= 12
                                            (5-6) 
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where SSreg is the sum of squares of distances of the data points from the 

regression line, and SStot is the sum of the squares of distances of the data points from 

the null hypothesis line. Note that the null hypothesis line is the horizontal line 

passing through the mean of all the values on the vertical axis. The value r2 is a 

fraction between 0.0 and 1.0, and has no unit. An r2 value of 0.0 implies that there is 

no linear relationship between bit-rate and complexity.  When r2 equals 1.0, all points 

lie exactly on a straight line, implying that if the bit-rate is known, then the 

corresponding complexity can also be derived. The r2 values of the regression lines of 

QCIF, CIF, and SD are 0.88, 0.89 and 0.83 respectively. This means that the linear 

relationships established in the plots are valid. Note that we get 0.83 for SD sequences 

because of the fewer number of points in the plot, which in turn is due to lesser 

number of SD sequences (only 2- Mobile Calendar and Parkrun) as opposed to 6 

QCIF or CIF sequences. 

5.4 PCI Values and Inferences 

All the PCI values, calculated using the obtained equations, are tabulated in 

Tables 5-1 and 5-2 for VBR and CBR encoder implementations respectively. 

Considering the VBR implementation, as can be seen, the PCI values are greater than 

1 in RDO-off mode, implying that CABAC is more cost-effective in RDO-off mode. 

This is independent of any video coder settings. This confirms our earlier theoretical 

analysis and also the exhaustive empirical analyses in the previous chapter. Even in 

RDO-on mode, some lower motion-content sequences in configuration B for VBR 

mode seem to have a PCI greater than 1, suggesting that CABAC is more cost-

effective in these configurations.  

For VBR implementations in RDO-on mode, the PCIs corresponding to lower 

motion-content are higher than those of higher motion-content sequences suggesting 
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that CABAC is more cost-effective for lower motion content sequences than for 

higher motion content sequences. We made this similar observation in the previous 

chapter. 

We have conducted the empirical analyses and analyses using PCI in VBR 

implementations, and have shown that the latter confirms the results of the former. 

This validates the effectiveness of the PCI approach to identify the more cost-

effective of any two contending algorithms in any scenario. 

In CBR implementations, again, the PCI values are greater than 1 for all the video 

sequences in RDO-off mode, irrespective of the frame sizes, motion-contents or video 

coder settings. In RDO-on mode, higher motion-content sequences in configuration B 

seem to have a PCI greater than 1, indicating CABAC’s cost-effectiveness in these 

scenarios. 

In RDO-off mode, the SD sequences seem to have a higher PCI than CIF and QCIF 

sequences in VBR implementation, suggesting that CABAC is more cost-effective for 

sequences having larger frame sizes. 

 
Table 5-1: Comparison of PCI for VBR Encoders in Different Video Coder Settings 

RDO-off RDO-on Configuration 
A B A B 

Akiyo 1.28  1.30  0.60  1.11  
M&D 1.27  1.29  0.63  1.10  

Container 1.29  1.31  0.43  1.05  
Foreman 1.27  1.31  0.37  1.02  

Walk 1.27  1.32  0.33  1.00  

QCIF 

Coastguard 1.29  1.35  0.33  1.03  
Akiyo 1.25  1.26  0.64  1.07  
M&D 1.21  1.25  0.72  1.10  

Container 1.26  1.26  0.46  1.03  
Foreman 1.21  1.27  0.46  1.03  

Walk 1.27  1.28  0.41  1.05  
CIF 

Coastguard 1.29  1.30  0.32  0.98  
Mobcal 1.39  1.40  0.52  1.12  SD   
Parkrun 1.38  1.43  0.15  0.92  
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Note that these results are in line with the empirical results obtained in the 

earlier chapter. It was noted that bit-rate savings are more for larger framed 

sequences. It can also be seen from the above Table 5-1 that PCI values of SD 

sequences are larger in RDO-off mode.   

Note that the proposed PCI methodology has been applied to entropy coding 

techniques CABAC and CAVLC in this chapter, and the results have been found to be 

the same as theoretical analysis and the empirical analysis. 

 
Table 5-2: Comparison of PCI for CBR Encoders in Different Video Coder Settings 

and Bit-Rates for CIF sequences 
RDO-off  RDO-on Configuration 
A B A B 

Akiyo  1.17  1.20  0.49  0.97 
M&D  1.23  1.20  0.48  0.99 
Container  1.19  1.29  0.49  0.99 
Foreman 1.23  1.25  0.50  1.00 
Walk  1.18  1.26  0.41  0.99 

25
6 

K
bp

s 

Coastguard  1.24  1.28  0.63  1.08 
Akiyo  1.23  1.22  0.40  0.96 
M&D  1.19  1.22  0.40  0.97 
Container  1.25  1.25  0.36  0.98 
Foreman 1.23  1.26  0.51  1.01 
Walk  1.21  1.27  0.61  1.05 

51
2 

K
bp

s 

Coastguard  1.31  1.31  0.59  1.07 
Akiyo  1.29  1.32  0.05  0.91 
M&D  1.27  1.31  0.19  0.95 
Container  1.36  1.37  0.00  0.94 
Foreman 1.33  1.36  0.30  0.99 
Walk  1.32  1.38  0.52  1.08 

10
24

 K
bp

s 

Coastguard  1.37  1.41  0.43  1.10 

  

5.5 Conclusion 

In this chapter, the PCI methodology has been introduced. The methodology 

has been used to compare the 2 entropy coding techniques of video coding standard 

H.264/AVC to assess the cost-effective scenarios of the new algorithm CABAC. The 
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results obtained using PCI is the same as the theoretical analysis and also the 

empirical analysis in previous chapter. 

CABAC is more cost-effective in RDO-off mode. The theoretical analysis 

shows that CABAC offers a better performance than CAVLC in RDO-off mode 

because of its capability to encode small values. Also, the increase in complexity due 

to CABAC in RDO-off mode is much lesser when compared to RDO-on mode. This 

is because of the usage of the entropy coding stage for motion estimation in RDO-on 

mode.  

For VBR implementations in RDO-on mode, CABAC is more cost-effective for 

lower motion content sequences than for higher motion content sequences.  

The PCI values also lead to the same conclusion. The PCI values are greater 

than 1 for RDO-off mode irrespective of the video sequence or the video coder setting 

in both VBR and CBR implementations. 
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CHAPTER 6 CONCLUSIONS 

6.1 Introduction 

In this thesis work, a method using an aggregate indicator, the Performance 

Complexity Index (PCI), for evaluating the cost-effectiveness of trading complexity 

for performance for any newly proposed algorithms when compared to the existing 

algorithm in computing fields is introduced. This Performance Complexity Index is 

used to identify the cost-effective scenarios of CABAC over CAVLC. Comprehensive 

analyses on the performance and complexity of CABAC have been conducted, and 

the scenarios identified using Performance-Complexity analysis method has been 

verified. A summary of the findings that have not yet been reported or not highlighted 

in other works are given below.  

 

6.2 Findings and Contributions 

� The methodology using PCI metric introduced in this work can be used for 

evaluating the cost-effectiveness of any new algorithm in comparison to the 

existing algorithm. PCI metric was used to determine the cost-effective scenarios 

of using CABAC over CAVLC, which are the entropy coding algorithms used in 

H.264/AVC standard. The empirical analysis and the theoretical analysis led to 

certain conclusions about the cost-effective scenarios of CABAC. The same 

conclusions were later obtained using the proposed PCI methodology. 

 

� The cost-effectiveness of CABAC largely depends on the encoder control used 

by the video encoder. The performance of CABAC is much higher in RDO-off 
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mode when compared to RDO-on mode. This is because of the presence of a lot 

of small values in RDO-off mode, and the capability of arithmetic coding to 

encode efficiently values that occur very frequently. Also, the computational and 

data transfer complexity of CABAC is much lesser in RDO-off mode when 

compared to RDO-on mode. In RDO-on mode, the entropy coding stage is used 

during motion estimation. This increases the complexity of CABAC in RDO-on 

mode. So, it can be concluded that CABAC is more cost-effective in RDO-off 

mode. 

 

� CABAC is more cost-effective for lower motion-content sequences than for 

higher motion-content sequences in RDO-on mode VBR implementation. We 

obtained this result from both the proposed performance-complexity analysis 

method and exhaustive empirical analysis. 

 

� As opposed to the analytical results obtained at the encoder, CABAC actually 

reduces both the computational and data transfer complexity of the decoder. 

CABAC entropy coder, because of its better performance, results in lesser number 

of encoded bits at the output of the video encoder. This means lesser number of 

bits for the decoder to process. This decreases the complexity of the video 

decoder. The use of CABAC is always beneficial to the decoder as it results in 

lower computational and data transfer complexities of the decoder. (This was not 

reported in any work although in [10], similar result has been obtained for one of 

their test sequences). This leads to lower processing power, which is attractive for 

power-limited devices.  
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� In video decoder, the complexity reduction due to CABAC is much higher for 

video sequences with higher motion content in VBR implementations. In CBR 

mode, larger reduction in complexities is obtained for higher bit-rates. 

  

� The efficiency of an encoder using CABAC in RDO-off mode suggests that no 

CABAC hardware accelerator is required for a video encoder using RDO-off 

mode. However, and encoder using RDO-on mode will require a CABAC 

hardware accelerator. 

 

� H.264/AVC standard defines certain profiles. Profiles suggest the set of tools to 

be used for any specific application, based on the resource constraints. According 

to H.264/AVC standard, CABAC is not suitable for Baseline and Extended 

profiles. The finding that CABAC is cost-effective in RDO-off mode suggests 

that RDO-off mode should be used in Main and higher profiles. 

 

� Both the use of CABAC and RDO improve the coding efficiency. However, in 

terms of coding efficiency improvements and complexity increases in the video 

encoder, CABAC is much more useful than RDO as it provides a substantial 

improvement in coding efficiency without incurring a high increases in 

computational and data transfer complexities of the video encoder. Furthermore, 

CABAC delivers consistent coding efficiency improvements regardless of the 

configuration used in the video encoder whereas the coding performance of RDO 

is dependent on the choice of coding tools used in the video encoder. It is found 

that the use of complex coding tools saturates the overall coding efficiency for 

low-motion content sequences, making the use of RDO for further bit-rate 
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reduction less effective in such cases. However, the use of RDO has negligible 

impact on the decoder’s complexity. This makes the use of RDO presently more 

suitable for off-line encoding applications, where bandwidth is a more important 

issue over coding time and processing power. 

 

� For constant bit-rate encoder, the use of CABAC in comparison to CAVLC results 

in improvement in video quality. However, the complexity increase is negligible 

when RDO-off mode is used. This indicates that CABAC is a useful tool for 

improving the video quality at constant bit-rate. 

6.3 Future Work 

� The proposed PCI metric has been used and verified for entropy coders for 

H.264/AVC video codec. The PCI metric has been used only with computational 

and data transfer complexities being considered as complexity parameters. 

However, as explained earlier in the thesis, the PCI metric can be extended to 

include any parameters such as area, power, delay etc. In the future, the PCI 

metrics can be defined to include those parameters to determine the cost-effective 

scenarios of an algorithm in a HW platform. 

� The defined PCI metric can also be extended for communication systems and 

used to identify cost-effective scenarios of communication algorithms. 

� The proposed PCI method makes a comprehensive comparison between two 

algorithms in any specific implementation. The method should be made more 

generalized by including implementation specific parameters that would free the 

methodology of the requirement of same implementation for the two algorithms. 

� PCI method could be used for making on the fly decisions regarding the 

algorithm to be chosen. For instance, in case of H.264 encoder, the PCI method 
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could be used to make on the fly decision of choosing CABAC or CAVLC to 

encode the video stream. Practical implementation difficulties can arise when 

implementing the PCI method as part of H.264 video encoder. For real-time 

video streaming applications, which require the encoding to be real time, addition 

of the PCI decision-making block can in itself contribute to certain amount of 

increase in complexity. So, the PCI decision-making block should be streamlined 

and be made to incur very little increase in complexity.    
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APPENDIX: Procedure on Installations and Configurations for 

Empirical Analyses 

The exhaustive empirical analyses done are an integral part of this thesis. The 

installations and configurations done to obtain all the relevant data are described as 

follows: 

� JM, which is H.264/AVC video codec reference software, has to be installed in 

the system. This involves downloading the software and using the make files to 

obtain the encoder and decoder executables. 

� The video coder settings are listed in configuration file (*.cfg) which are used by 

the encoder executables. The configuration files have to be varied for empirical 

analysis across different settings. 

�  PIN is a tool for the dynamic instrumentation of programs. PIN does not 

instrument an executable statically by rewriting it, but rather adds the code 

dynamically while the executable is running. This makes it possible to attach PIN 

to an already running process. PIN has to be downloaded and installed in the 

system. 

� PIN provides a set of APIs which can retrieve register contents, instruction type 

etc. However, we will have to write programs using these APIs to obtain the 

required data.  

� Once the profiling program is written using the APIs provided by PIN, we have 

to compile it using the following compiler options: 

 “g++ -g -Wl,-u,malloc -Wl,--section-start,.interp=0x05048400  -L$PIN_D/Lib/ -
L$PIN_D/ExtLib/ -lpin  -lxed -ldwarf -lelf -ldl -g -Wall -Werror -Wno-unknown-
pragmas -g -O3 -DBIGARRAY_MULTIPLIER=1 -DUSING_XED -g -fno-strict-
aliasing -I$PIN_D/Include -I$PIN_D/Include/gen -I$PIN_D/InstLib -
DTARGET_IA32 -DTARGET_LINUX” 
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� Compilation will generate the shared library file which should be used along with 

the PIN executable and the executable to be profiles as follows to obtain the 

profile data: 

pin -t <shared library profiling file> -- <executable to be profiles : lencod/ldecod> 

The lencod and ldecod are the JM executables responsible for H.264/AVC 

encoding and decoding process respectively.  

� Note that the above process has to be repeated for every possible video coder 

setting and all the video sequences. A bash script (Linux Shell Script) can be 

used to automate this task. A line from the script that was used is as follows: 

pin -t run_pin_complexity -- ./lencod.exe -d encoder_cif_A_cabac_no_rdo.cfg -p 
SourceWidth=352 -p SourceHeight=288 -p RateControlEnable=0 -p 
InputFile="./seq/cif/soccer_cif.yuv">"soccer_cif_A_cabac_no_rdo.dat" 
 
 

Profiling code using PIN - a static and dynamic opcode  mix profiler  

 

#include "pin.H" 
#include "instlib.H" 
#include "portability.H" 
#include <vector> 
#include <iostream> 
#include <iomanip> 
#include <fstream> 
 
using namespace INSTLIB; 
 
/* Commandline Switches */ 
 
KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE,         "pintool", 
    "o", "opcodemix.out", "specify profile file name"); 
KNOB<BOOL>   KnobPid(KNOB_MODE_WRITEONCE,                "pintool", 
    "i", "0", "append pid to output"); 
KNOB<BOOL>   KnobProfilePredicated(KNOB_MODE_WRITEONCE,  "pintool", 
    "p", "0", "enable accurate profiling for predicated instructions"); 
KNOB<BOOL>   KnobProfileStaticOnly(KNOB_MODE_WRITEONCE,  "pintool", 
    "s", "0", "terminate after collection of static profile for main image"); 
#ifndef TARGET_WINDOWS 



 96 

KNOB<BOOL>   KnobProfileDynamicOnly(KNOB_MODE_WRITEONCE, 
"pintool", 
    "d", "0", "Only collect dynamic profile"); 
#else 
KNOB<BOOL>   KnobProfileDynamicOnly(KNOB_MODE_WRITEONCE, 
"pintool", 
    "d", "1", "Only collect dynamic profile"); 
#endif 
KNOB<BOOL>   KnobNoSharedLibs(KNOB_MODE_WRITEONCE,       "pintool", 
    "no_shared_libs", "0", "do not instrument shared libraries"); 
 
 
/* ================================== */ 
 
INT32 Usage() 
{ 
    cerr <<"This pin tool computes a static and dynamic opcode mix profile\n"; 
    cerr << KNOB_BASE::StringKnobSummary(); 
    cerr << endl; 
    return -1; 
} 
 
/* =================================== */ 
/* INDEX HELPERS */ 
/* =============================== */ 
 
const UINT32 MAX_INDEX = 4096;       // enough even for the IA-64 architecture 
const UINT32 INDEX_SPECIAL =  3000; 
const UINT32 MAX_MEM_SIZE = 512; 
const UINT32 INDEX_TOTAL =          INDEX_SPECIAL + 0; 
const UINT32 INDEX_MEM_ATOMIC =     INDEX_SPECIAL + 1; 
const UINT32 INDEX_STACK_READ =     INDEX_SPECIAL + 2; 
const UINT32 INDEX_STACK_WRITE =    INDEX_SPECIAL + 3; 
const UINT32 INDEX_IPREL_READ =     INDEX_SPECIAL + 4; 
const UINT32 INDEX_IPREL_WRITE =    INDEX_SPECIAL + 5; 
const UINT32 INDEX_MEM_READ_VARIABLE =  INDEX_SPECIAL + 6; 
const UINT32 INDEX_MEM_WRITE_VARIABLE =  INDEX_SPECIAL + 7; 
const UINT32 INDEX_MEM_READ_SIZE =  INDEX_SPECIAL + 8; 
const UINT32 INDEX_MEM_WRITE_SIZE = INDEX_SPECIAL + 8 + 
MAX_MEM_SIZE; 
const UINT32 INDEX_SPECIAL_END   =  INDEX_SPECIAL + 8 + 
MAX_MEM_SIZE + MAX_MEM_SIZE; 
 
 
BOOL IsMemReadIndex(UINT32 i) 
{ 
    return (INDEX_MEM_READ_SIZE <= i && i < INDEX_MEM_READ_SIZE + 
MAX_MEM_SIZE ); 
} 
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BOOL IsMemWriteIndex(UINT32 i) 
{ 
    return (INDEX_MEM_WRITE_SIZE <= i && i < INDEX_MEM_WRITE_SIZE 
+ MAX_MEM_SIZE ); 
} 
 
/* =================================== */ 
 
LOCALFUN UINT32 INS_GetIndex(INS ins) 
{ 
    if( INS_IsPredicated(ins) ) 
        return MAX_INDEX + INS_Opcode(ins); 
    else 
        return INS_Opcode(ins); 
} 
 
/* ===================================== */ 
 
LOCALFUN  UINT32 IndexStringLength(BBL bbl, BOOL memory_acess_profile) 
{ 
    UINT32 count = 0; 
    for (INS ins = BBL_InsHead(bbl); INS_Valid(ins); ins = INS_Next(ins)) 
    { 
        count++; 
        if( memory_acess_profile ) 
        { 
            if( INS_IsMemoryRead(ins) ) count++;   // for size 
            if( INS_IsStackRead(ins) ) count++; 
            if( INS_IsIpRelRead(ins) ) count++;             
            if( INS_IsMemoryWrite(ins) ) count++; // for size 
            if( INS_IsStackWrite(ins) ) count++; 
            if( INS_IsIpRelWrite(ins) ) count++;             
            if( INS_IsAtomicUpdate(ins) ) count++; 
        } 
    }     
    return count; 
} 
/* ================================= */ 
LOCALFUN UINT32 MemsizeToIndex(UINT32 size, BOOL write) 
{ 
    if( size == VARIABLE_MEMORY_REFERENCE_SIZE ) 
    { 
        return write ?  INDEX_MEM_WRITE_VARIABLE : 
INDEX_MEM_READ_VARIABLE; 
    } 
    else 
    { 
        return (write ? INDEX_MEM_WRITE_SIZE : INDEX_MEM_READ_SIZE ) + 
size; 
    } 
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} 
 
/* =============================== */ 
LOCALFUN UINT16 *INS_GenerateIndexString(INS ins, UINT16 *stats, BOOL 
memory_acess_profile) 
{ 
    *stats++ = INS_GetIndex(ins); 
    if( memory_acess_profile ) 
    { 
        if( INS_IsMemoryRead(ins) )   
 *stats++ = MemsizeToIndex( INS_MemoryReadSize(ins), 0 ); 
        if( INS_IsMemoryWrite(ins) )  
 *stats++ = MemsizeToIndex( INS_MemoryWriteSize(ins), 1 );         
        if( INS_IsAtomicUpdate(ins) ) *stats++ = INDEX_MEM_ATOMIC;         
        if( INS_IsStackRead(ins) ) *stats++ = INDEX_STACK_READ; 
        if( INS_IsStackWrite(ins) ) *stats++ = INDEX_STACK_WRITE;         
        if( INS_IsIpRelRead(ins) ) *stats++ = INDEX_IPREL_READ; 
        if( INS_IsIpRelWrite(ins) ) *stats++ = INDEX_IPREL_WRITE; 
    } 
    return stats; 
} 
/* =============================== */ 
 
LOCALFUN string IndexToOpcodeString( UINT32 index ) 
{ 
    if( INDEX_SPECIAL <= index  && index < INDEX_SPECIAL_END) 
    { 
        if( index == INDEX_TOTAL )            return  "*total"; 
        else if( IsMemReadIndex(index) )       
 return  "*mem-read-" + decstr( index - INDEX_MEM_READ_SIZE ); 
        else if( IsMemWriteIndex(index))       
 return  "*mem-write-" + decstr( index - INDEX_MEM_WRITE_SIZE ); 
        else if( index == INDEX_MEM_READ_VARIABLE )   
 return  "*mem-read-variable"; 
        else if( index == INDEX_MEM_WRITE_VARIABLE )  
 return  "*mem-write-variable"; 
        else if( index == INDEX_MEM_ATOMIC )  return  "*mem-atomic"; 
        else if( index == INDEX_STACK_READ )  return  "*stack-read"; 
        else if( index == INDEX_STACK_WRITE ) return  "*stack-write"; 
        else if( index == INDEX_IPREL_READ )  return  "*iprel-read"; 
        else if( index == INDEX_IPREL_WRITE ) return  "*iprel-write"; 
        else 
        { 
            ASSERTX(0); 
            return ""; 
        } 
    } 
    else 
    { 
        return OPCODE_StringShort(index); 
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    }     
} 
 
/* ==================================== */ 
/* =================================== */ 
typedef UINT64 COUNTER; 
 
/* zero initialized */ 
 
class STATS 
{ 
  public: 
    COUNTER unpredicated[MAX_INDEX]; 
    COUNTER predicated[MAX_INDEX]; 
    COUNTER predicated_true[MAX_INDEX]; 
    VOID Clear() 
    { 
        for ( UINT32 i = 0; i < MAX_INDEX; i++) 
        { 
            unpredicated[i] = 0; 
            predicated[i] = 0; 
            predicated_true[i] = 0; 
        } 
    } 
}; 
STATS GlobalStatsStatic; 
STATS GlobalStatsDynamic; 
 
class BBLSTATS 
{ 
  public: 
    COUNTER _counter; 
    const UINT16 * const _stats; 
 
  public: 
    BBLSTATS(UINT16 * stats) : _counter(0), _stats(stats) {}; 
 
}; 
 
LOCALVAR vector<const BBLSTATS*> statsList; 
 
 
 
/* ============================== */ 
 
LOCALVAR INT32 enabled = 0; 
LOCALFUN VOID Handler(CONTROL_EVENT ev, VOID *val, CONTEXT * ctxt, 
VOID *ip, THREADID tid) 
{ 
    switch(ev) 
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    { 
      case CONTROL_START: 
        enabled = 1; 
        break; 
      case CONTROL_STOP: 
        enabled = 0; 
        break; 
      default: 
        ASSERTX(false); 
    } 
} 
 
LOCALVAR CONTROL control; 
/* =============================== */ 
 
VOID docount(COUNTER * counter) 
{ 
    (*counter) += enabled; 
} 
 
/* ======================================= */ 
 
VOID Trace(TRACE trace, VOID *v) 
{ 
    if ( KnobNoSharedLibs.Value()         && 
IMG_Type(SEC_Img(RTN_Sec(TRACE_Rtn(trace)))) == 
MG_TYPE_SHAREDLIB) 
        return; 
     
    const BOOL accurate_handling_of_predicates = KnobProfilePredicated.Value(); 
 
    for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl = BBL_Next(bbl)) 
    { 
        const INS head = BBL_InsHead(bbl); 
        if (! INS_Valid(head)) continue; 
        // Summarize the stats for the bbl in a 0 terminated list 
        // This is done at instrumentation time 
        const UINT32 n = IndexStringLength(bbl, 1); 
        UINT16 *const stats = new UINT16[ n + 1]; 
        UINT16 *const stats_end = stats + (n + 1); 
        UINT16 *curr = stats;         
        for (INS ins = head; INS_Valid(ins); ins = INS_Next(ins)) 
        { 
            // Count the number of times a predicated instruction is actually executed 
            // this is expensive and hence disabled by default 
            if( INS_IsPredicated(ins) && accurate_handling_of_predicates ) 
            { 
                INS_InsertPredicatedCall(ins,IPOINT_BEFORE,                                     
AFUNPTR(docount),IARG_PTR, 
&(GlobalStatsDynamic.predicated_true[INS_Opcode(ins)]), 
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                                         IARG_END);     
            } 
            curr = INS_GenerateIndexString(ins,curr,1); 
        } 
        // string terminator 
        *curr++ = 0;         
        ASSERTX( curr == stats_end );         
        // Insert instrumentation to count the number of times the bbl is executed 
        BBLSTATS * bblstats = new BBLSTATS(stats); 
        INS_InsertCall(head, IPOINT_BEFORE, AFUNPTR(docount), IARG_PTR, 
&(bblstats->_counter), IARG_END); 
        // Remember the counter and stats so we can compute a summary at the end 
        statsList.push_back(bblstats); 
    } 
} 
 
/* ============================== */ 
VOID DumpStats(ofstream& out, STATS& stats, BOOL predicated_true,  const 
string& title) 
{ 
    out <<"#\n# " << title << "\n#\n#  opcode    count-unpredicated    count-
predicated"; 
    if( predicated_true ) 
        out << "    count-predicated-true"; 
    out << "\n#\n"; 
 
    for ( UINT32 i = 0; i < INDEX_TOTAL; i++) 
    { 
        stats.unpredicated[INDEX_TOTAL] += stats.unpredicated[i]; 
        stats.predicated[INDEX_TOTAL] += stats.predicated[i]; 
        stats.predicated_true[INDEX_TOTAL] += stats.predicated_true[i]; 
    } 
     
    for ( UINT32 i = 0; i < MAX_INDEX; i++) 
    { 
        if( stats.unpredicated[i] == 0 && 
            stats.predicated[i] == 0 ) continue; 
         
        out << setw(4) << i << " " <<  ljstr(IndexToOpcodeString(i),15) << " " << 
            setw(16) << stats.unpredicated[i] << " " << 
            setw(16) << stats.predicated[i]; 
        if( predicated_true ) out << " " << setw(16) << stats.predicated_true[i]; 
        out << endl; 
    } 
} 
 
 
 
/* ================================== */ 
static std::ofstream* out = 0; 
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VOID Fini(int, VOID * v) 
{ 
    // static counts     
    DumpStats(*out, GlobalStatsStatic, false, "$static-counts");     
    *out << endl; 
    // dynamic Counts  
    statsList.push_back(0); // add terminator marker 
    for (vector<const BBLSTATS*>::iterator bi = statsList.begin(); bi != 
statsList.end(); bi++) 
    { 
        const BBLSTATS *b = (*bi); 
        if ( b == 0 ) continue;         
        for (const UINT16 * stats = b->_stats; *stats; stats++) 
        { 
            GlobalStatsDynamic.unpredicated[*stats] += b->_counter; 
        } 
    } 

DumpStats(*out, GlobalStatsDynamic, KnobProfilePredicated, "$dynamic-
counts");  

*out << "# $eof" <<  endl; 
    out->close(); 
} 
 
/* ==================================== */ 
 
VOID Image(IMG img, VOID * v) 
{ 
    for (SEC sec = IMG_SecHead(img); SEC_Valid(sec); sec = SEC_Next(sec)) 
    { 
        for (RTN rtn = SEC_RtnHead(sec); RTN_Valid(rtn); rtn = RTN_Next(rtn)) 
        { 
            // Prepare for processing of RTN, an  RTN is not broken up into BBLs, 
            // it is merely a sequence of INSs  
            RTN_Open(rtn); 
             
            for (INS ins = RTN_InsHead(rtn); INS_Valid(ins); ins = INS_Next(ins)) 
            { 
                UINT16 array[128]; 
                UINT16 *end  = INS_GenerateIndexString(ins,array,1); 
 
                if( INS_IsPredicated(ins) ) 
                { 
                    for( UINT16 *start= array; start < end; start++) 
GlobalStatsStatic.predicated[ *start ]++; 
                } 
                else 
                { 
                    for( UINT16 *start= array; start < end; start++) 
GlobalStatsStatic.unpredicated[ *start ]++; 
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                } 
            } 
 
            // to preserve space, release data associated with RTN after we have processed  
            RTN_Close(rtn); 
        } 
    } 
    if( KnobProfileStaticOnly.Value() ) 
    { 
        Fini(0,0); 
        exit(0); 
    } 
}     
/* ========================================= */ 
int main(int argc, CHAR *argv[]) 
{ 
    PIN_InitSymbols();     
    if( PIN_Init(argc,argv) ) 
    { 
        return Usage(); 
    }     
    control.CheckKnobs(Handler, 0); 
    string filename =  KnobOutputFile.Value(); 
    if( KnobPid ) 
    { 
        filename += "." + decstr( getpid_portable() ); 
    } 
    out = new std::ofstream(filename.c_str());     
    TRACE_AddInstrumentFunction(Trace, 0); 
    PIN_AddFiniFunction(Fini, 0); 
    if( !KnobProfileDynamicOnly.Value() ) 
        IMG_AddInstrumentFunction(Image, 0); 
    // Never returns 
    PIN_StartProgram();     
    return 0; 
} 
 
/* End-Of-Code*/ 
 

 


