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Summary 

The shorter product life-span of most of the mechanical machine parts 

subjected to relative motion in sliding or rolling is due to a lack of or an improper 

protective coating or lubrication. Polymers are very promising materials as coatings 

because of their better tribological properties found in their bulk form. Though 

polymers have many advantages as tribological coatings, there are very limited 

number of research papers that have studied this important aspect of polymer films. 

The main objective of this doctoral research is to develop polymer thin films (with 

some pre-modifications) on Si in order to greatly enhance friction and wear properties 

of Si substrate. The choice of Si as the substrate material has been prompted because 

of the application of Si, a poor tribological material, in many microsystems such as 

micro-electro mechanical systems (MEMS). 

  In this study, ultra-high molecular weight polyethylene (UHMWPE) is selected 

as the polymer for depositing film because bulk UHMWPE has low coefficient of 

friction coupled with very high wear resistance among all other polymers. Direct 

coating of UHMWPE film onto Si surface can increase wear durability to some extent 

but it is not sufficient for industrial applications where the desired life of the products 

is in millions of cycles. There are two main reasons for low wear durability of 

UHMWPE film on Si. First, polymer film is soft and easy to get penetrated by hard 

asperities of the counterface that increase friction due to contact with the substrate and 

reduce wear durability. Second, the surface wettability of Si controls the adhesion of 
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the polymer film to the substrate and thus film can be easily removed (peeled) under 

continuous sliding if adhesion of the film with the substrate is poor.  

 Hence, as the first approach in this work, hard diamond-like carbon (DLC) is 

introduced as an intermediate layer between Si substrate and UHMWPE film in order 

to increase the load bearing capacity of the polymer film. DLC offers penetration 

resistance and promotes wear durability of soft UHMWPE film. DLC (with different 

hardness values) and some other hard intermediate layers, such as CrN and TiN, on Si 

have shown remarkable improvement (at least by ten orders of magnitude) in the wear 

durability of the UHMWPE film when the thickness of the polymer film is optimized.  

 In the second approach, the wettability (as controlled by the surface energy) of 

the Si surface is modified (using 3-Aminopropyltrimethoxysilane (APTMS) and 

Octadecyltrichlorosilane (OTS) SAMs, heating, -H termination etc) before UHMWPE 

is coated onto it, since the wetting property of Si is an important criterion in achieving 

strong adhesion and wear durability. Studies on a range of surface wettability of Si 

have shown that the existence of extreme hydrophilic or hydrophobic properties prior 

to film coating provides low wear durability. An optimized surface wettability between 

these two extremes provides high wear durability for the top UHMWPE film. 

 In the last part of this thesis, the effect of surface energy on the initial 

coefficient of friction (static friction) of the polymer film has been studied.  The 

correlation between the initial coefficient of friction and surface energy is modeled and 

compared with the experimental results. Based on the experimental evidences, we 

propose an exponential relation between the initial coefficient of friction and the pull-
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off force (or the attractive force due to surface energy difference between two solids) 

between surfaces. 

 The main conclusion drawn from this thesis is that the friction and wear 

durability of UHMWPE film (or any polymer film) can be improved by orders of 

magnitude by using different hard interface layers between Si substrate and UHMWPE 

film and by modifying the surface wettability of Si prior to film deposition. Further, 

low load tribological interactions involving polymer surfaces is greatly influenced by 

the surface energies of the interacting surfaces. 
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Chapter 1 

Introduction 

1.1  The importance of tribology 

Tribology is defined as the study of friction, wear and lubrication of interacting 

surfaces in relative motion [Jost 1966]. When two surfaces are in contact, there is 

usually an attractive force between them and is called adhesion. When they start to 

move relative to each other in shear, a force resists the movement which is called 

friction.  Depending upon the attraction between surfaces and the nature of the surface 

materials, adhesion and friction can vary. For example, if the surface energy or surface 

tension of the sliding surfaces is high, the attraction becomes more and also the 

resulting friction will be higher. By changing the shape of the surfaces from flat in 

sliding to round in rolling, the friction can drop drastically as the rolling friction is 

usually much smaller than the sliding friction. Obviously, this understanding led to the 

invention of wheel in ancient times. Also, sliding objects on wax is much easier than 

that on wood because of the lubricating property of wax. This observation led to the 

use of wax as a lubricant in ancient time for chariots. Generally, high adhesion and 

friction tend to increase wear of surfaces by debris particle generation. The effective 

way to reduce adhesion and friction and thus also reduce wear is to provide a suitable 

lubricant, such as oil, grease or solid lubricant film, between sliding surfaces. Rolling 

elements also require similar protection against wear by surface fatigue. 
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In many engineering and industrial applications such as aerospace and land 

transportation, bearings, computer and electronic devices, domestic appliances, gears 

used in rolling and sliding, machining operations, power generation, vehicles where 

motion is encountered, tribology plays an important role for durability and reliability 

of the products. A small reduction in friction in bearings can save considerable amount 

of (frictional) power loss [Bowden and Tabor 1973]. Product failures, power wastage 

and maintenance problems related to tribology cost billions of dollars every year in 

industrialized nations [Devine 1976 and Peterson 1979]. Recent report stated that 1.3% 

to 1.6% of GDP (Gross Domestic Product) of a nation could be saved by giving proper 

attention to tribology [Jost 1990]. Saving, both in terms of energy and environment, 

can be tremendous if surfaces are designed to suit the application. 

 

1.2  A brief history of tribology 

The tribology is derived from the Greek word tribos which means rubbing. It 

was first recommended by Jost to use ‘tribology’ to cover the study of friction, 

lubrication and wear [Jost 1966]. Although the knowledge of tribology was limited in 

ancient time, people knew the use of lubricants as an easy way to drag things such as 

stones. Animal fats have been used in medieval time for the launching of ships into 

water by sliding it against a wooden ramp. 

 

1.2.1  Friction 

The scientific study of friction was first conducted by Leonardo da Vinci in the 

middle of fifteenth century. He discovered what is now known as the first law of 
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friction which states that the friction is proportional to the normal load. He also noticed 

that the friction was little dependent or independent of the contact area. This became 

the second law of friction. These two laws were rediscovered by Amontons in 1699 

and today they are more popularly known as Amontons’ laws of friction. In 1748, the 

famous mathematician Euler explained a clear distinction between the static and 

kinetic friction [Dawson 1998]. The force needed to initiate sliding is greater than the 

force needed to sustain sliding. Amontons’ discoveries were verified by Coulomb in 

1785. He also found that kinetic friction is independent of the sliding velocity which is 

known as the third law of friction or Coulomb’s law of friction. Coulomb believed that 

the origin of the friction was only because of the interlocking between surface 

asperities. Early researchers assumed that the friction originated from the ‘interlocking 

asperities’ which were rigid. However, in real world, not all the asperities are rigid. 

The shape of the asperities can be changed by elastic or plastic deformation while 

applying load. In fact, adhesion is an important factor in friction. 

 

1.2.2  Adhesion in friction 

When two surfaces come into contact, there should be certain amount of 

interatomic forces between them, depending upon the adhesion properties of the 

surface materials. The basic model of adhesion contributing to friction was first 

proposed by Bowden and Tabor [1986]. Their model states that when two surfaces are 

pressed together, the asperities at the contact points undertake elastic and plastic 

deformations. These deformations generate a real area of contact, Ar between two 

sliding surfaces. Actually, atoms in the range of Ar attract each other by interatomic 
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forces. When a tangential force is applied to slide, the shear stress, τ at the asperity 

contacts (because of the adhesion or interatomic forces between the atoms) will 

prevent the movement. The movement will only begin when the applied tangential 

force overcomes the interatomic forces in the region of the real contact area, Ar. 

Therefore, the friction force, F can be expressed as 

F = τAr                                                            (1.1) 

The above explanation is also known as the junction growth model.     

 

1.2.3  Wear  

 The understanding of wear mechanism is very important to prevent premature 

failure of products which brings economic loss. Though friction has been paid 

attention to and studied for centuries, a systematic study of the wear phenomenon has 

started only recently, largely due to the progresses made in the rail-road and surface 

transportation industry. The Organization of Economic Cooperation and Development 

(OECD) defined wear as the progressive loss of substance from the operating surface 

of a body occurring as a result of relative motion at the surface (OECD 1969). The 

mechanisms of wear can be divided into many factors notably: abrasion, adhesion, 

corrosion, delamination, erosion, fatigue and melting. It is difficult to separate 

contribution from each of wear mechanism in one wear process. Lim and Ashby 

constructed first ‘wear maps’ [1987 and 1990] which summarized the previous works 

of many researchers. Their wear maps are useful and easy tools to know the safe 

operating regimes of materials in which they operate. However, many problems are 

still remaining to solve as wear is not influenced by a single wear mechanism [Tabor 
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1995]. Many empirical equations to predict wear performance of specific materials and 

conditions have been proposed, and Archard equation [Archard 1953] is one of them. 

His equation is useful to estimate the dimensionless wear coefficient, k = VH/Ld where 

V is the wear volume relates to sliding distance d, H is hardness of the wearing 

material and L is normal load. Archard’s equation can be conveniently used to find out 

wear resistances of different materials if the sliding conditions and the counter surface 

material are fixed.     

 

1.2.4  Lubrication 

The effective way to reduce friction and wear in machines is to use a thin 

lubricating layer which prevents direct contacts between sliding surfaces. The history 

of lubrication goes back to 1400 BC where a lubricant was used on the axle of a 

chariot [Dawson 1998]. Although, people knew the usefulness of lubricant, only 

industrial revolution in the eighteenth century and further development of new 

technologies demanded advanced lubricants. Perhaps, it was Tower’s experiment in 

[1883] that successfully led to the realization of hydrodynamic lubrication, an ultra 

low coefficient regime when certain conditions of lubricant viscosity, bearing pressure 

and the relative speed are maintained. In order to fulfill this demand, numerous 

tribological solutions such as hydrodynamic bearing design, synthesis lubricants, solid 

lubricants and wear resistant materials have been developed [Mate 2008].   
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1.3  Solid lubricants 

 The application of petroleum oil or grease as a liquid lubricant was widely used 

in the eighteen century. The experimental study on the friction of oil-lubricated 

bearing was first conducted by Tower [1883]. He introduced the effect of 

hydrodynamic pressure on lubrication. Based on the experimental results of Tower, 

Reynolds derived the basic equation for the hydrodynamic lubrication [1886]. This 

idea leads to the application of various viscous liquids as liquid lubricants. These 

lubricants reduce friction by forming a thin adhered layer that lessens shear resistance 

and prevents direct contact between the sliding surfaces. It is known as hydrodynamic 

lubrication. Though the hydrodynamic lubrication is advantageous in many processes, 

there are many constraints, such as high load, low speed, low and high temperatures, 

misalignment, that hinder their applications. When the liquid lubricant is squeezed out 

due to any reason, the two surfaces come into direct contact through the liquid film. 

Because of some disadvantages of hydrodynamic lubrication in specific conditions, 

boundary or/and solid lubricants are used in conjunction with a liquid lubricant [Clauss 

1972].  

 
1.3.1  Inorganic and soft metal films  

Graphite and molybdenum disulphide are two most useful inorganic solid 

lubricants. Graphite is generally used as a dry powder or as dispersion in water, oil and 

various solvents. It is mainly applied in tools and dies in metal forming and in high 

temperature industrial applications. Molybdenum disulphide has replaced graphite in 

many applications due to its properties such as good lubrication, superior load carrying 

capacity, and more consistent properties [Lancaster 1984]. Some soft metals such as 
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gold, lead, silver, thallium and tin have low shear strength, high lubricity and good 

thermal conductivity. They can be easily bonded to metal surfaces as thin films.  

 

1.3.2  Polymeric films  

Polymers (especially linear thermoplastics) commonly have self-lubricating 

properties which allow them to be used as organic thin films in bearings and as binders 

for composites [Lancaster 1984, Loomis 1985, Gresham 1994 and Jamison 1994]. The 

polymers are used in powder or dispersion form and are coated onto the surface to 

provide lubricity, friction and wear resistance [Booser 1997]. The advantages of 

polymers are superior lubricity even under dry condition, low cost and weight, better 

corrosion and wear resistance, easy to coat onto different shapes and able to operate 

under low temperature and vacuum conditions. Because of their excellent lubrication 

properties under extreme conditions, polymers can be potential solid lubricating films.   

The earliest and most extensively used polymer is polytetrafluoroethylene 

(PTFE). The coefficient of friction for PTFE is as low as 0.04 which is lower than any 

known solid lubricant. On the other hand, the wear rate of Teflon is inferior to 

comparison with those of some other polymers. Another promising polymer that can 

be used as a good solid lubricant is ultra-high molecular weight polyethylene 

(UHMWPE). The coefficient of friction of UHMWPE is a little higher than that of 

PTFE but its wear performance is far superior to that of PTFE or any other polymer. In 

addition to good wear resistance, UHMWPE has better abrasion resistance that is 

preferable for bearings, gears, bushings and many equipment parts [Clauss 1972]. 
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 Though UHMWPE has excellent properties to be used as a protective 

lubricating thin film, it has not been widely studied as alternative tribological film. 

Recently, a few groups have explored some ways to coat UHMWPE film. Bao et al. 

have deposited UHMWPE onto a substrate using thermal spraying method by 

controlling the composition and other process parameters [Bao et al. 2005]. 

Satyanarayana et al. have used decahydronapthalin (decalin) as a solvent to dissolve 

UHMWPE powder [Satyanarayana et al. 2006]. After that, Si substrate was dipped 

into the solution and coated by the simple dip-coating method. The presence of 

UHMWPE film on Si provides a coefficient of friction in the range of 0.09 and wear 

durability of 12,000 cycles when slid against 4 mm diameter silicon nitride ball at a 

normal load of 70 mN and sliding speed of 0.042 m/s. These properties are superior to 

those of bare Si where the coefficient of friction is 0.65 and wear durability is only a 

few cycles at best. 

   Though UHMWPE film provides better tribological properties, it may still 

lack the product lifespan where the required wear durability is millions of cycles. 

Further research and development are necessary in the area of UHMWPE film to 

obtain high durability.  

 The UHMWPE film alone is relatively soft and easily gets penetrated by the 

hard sliding counterface and as a result, the real contact area is large as shown in 

Figure 1.1. As a way to increase the resistance to penetration and to reduce the real 

area of contact, a hard intermediate layer is proposed to be used between the substrate 

and soft UHMWPE film. By using hard (intermediate layer) and soft (UHMWPE) 

composite film, the hard layer decreases the contact area because of high load carrying 
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capacity whereas the soft layer reduces the shear stress. As a combined effect, the 

friction will drop as predicted by Equation (1.1) and the wear durability will increase. 

In this thesis, diamond-like carbon (DLC) is selected as a hard layer which is over-

coated with soft UHMWPE film. This composite layer is evaluated for its tribological 

properties. In order to obtain an additional confirmation of the advantage of hard 

intermediate layer on the tribological properties, different hard intermediate layers 

such as chromium nitride (CrN), titanium nitride (TiN) are also used and their friction 

and wear performances evaluated.  

 

Figure 1.1:  A schematic diagram of the effect of hard and soft layers on the real contact area, Ar. 
  

Another important parameter that determines the wear property of the 

UHMWPE film is the adhesion strength of the UHMWPE film to the substrate. The 

adhesion is controlled by the surface wettability or the surface energy. By changing the 

surface wettability of the substrate, the substrate can attract or repel the water 

molecules which can affect the adhesion strength between the polymer film and the Si 

substrate, and the resulting tribological properties. The effect of the surface wettability 

of the substrate on the tribological properties of UHMWPE film is also investigated. 

 It is known that the frictional properties of UHMWPE film can be influenced 

by many factors such as the sliding direction, the crystallinity and molecular 

orientation, the surface energy etc. For example in a bearing or gear system, the 

relative motion between two sliding surfaces is not always unidirectional but 

Ar 
Ar 
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bidirectional. The crystallinity and molecular orientation of UHMWPE can change 

during sliding. The surface energy of the UHMWPE film depends on the environment. 

For instance, the humidity, temperature and presence of any organic molecule can 

change the surface energy. These mentioned factors are inevitable in actual working 

conditions. They can determine the coefficient of friction and the wear durability of 

UHMWPE film. Hence, it is important to study in a systematic way the effects of 

crystallinity, molecular orientation, surface energy and environment on the friction and 

wear characteristics of UHMWPE film.  

 

1.4  Objectives of the thesis 

The main objectives of this thesis can be classified into two parts. The first part 

focuses on the enhancement of the tribological properties of UHMWPE film using 

different intermediate layers and surface modifications of the Si substrate. Many hard 

layers such as CrN, TiN and DLC (of different hardness values) have been used as 

intermediate layers between Si substrate and UHMWPE film. The presence of hard 

layers provides high penetration resistance (load carrying capacity) and reduces the 

contact area which in turn increases the wear durability. The modification of surface 

wettability of the Si substrate varies the adhesion strength of UHMWPE film to the Si 

substrate and affects the wear life of the polymer film. 

The second part presents the influences of sliding directions and surface energy 

on the friction characteristics of UHMWPE film. In the effect of sliding directions on 

friction, the mechanism of UHMWPE film is explained based on crystallinity and 
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molecular orientation. The effect of surface energy on friction, especially at low 

normal loads, is investigated using both theoretical and experimental methods. 

 

1.5  Structure of the thesis 

Chapter 2 presents a literature survey of different polymer films, coating 

techniques and their tribological properties.  

Chapter 3 provides details of the materials, the experimental procedures and all 

the techniques used to characterize the surfaces employed in this thesis. 

Chapter 4 explains the results and discussion of UHMWPE coated onto 

Si/DLC substrate. And then, the effect of UHMWPE film thickness on the wear 

durability of composite Si/DLC/UHMWPE film is explored.  

The effects of different hard intermediate layers (CrN, TiN and DLC) on the 

tribological properties of UHMWPE film are provided in Chapter 5.  

   Chapter 6 focuses on the modifications of surface wettability (surface energy) 

of Si substrate. The effect of surface wettability of the Si substrate on the adhesion, 

friction and wear durability of top UHMWPE film is then studied. 

In Chapter 7, changes in the crystallinity and molecular orientation of 

UHMWPE film are explored. The influence of those changes on friction is studied for 

different sliding directions. 

Chapter 8 presents the frictional behaviors of UHMWPE film with different 

surface energies. The constructed model is compared with the experimental results. 

Finally, Chapter 9 of the thesis summarizes the specific conclusions drawn 

from this work and suggests some future works.    
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Chapter 2 

Literature Review 

2.1  General properties of polymers 

 Polymers are organic compounds composed of many repeating molecules 

known as ‘mer’ (unit). The molecules in polymers have a few thousands to millions of 

mers depending upon the molecular weight of the polymers and they are usually 

referred to as macromolecules. These molecules are composed of covalently bonded, 

elements such as C, H, O and N.  

 “Natural polymers” such as cotton, rubber, silk and wood have been used for 

many centuries. Scientists have developed synthetic polymers such as fiber, plastic and 

rubber after World War II. With the development of synthetic polymers, the polymers 

became an important area for tribological applications such as ball bearings, cams, 

gears, journal bearings, seals of shafts and other mechanical parts, sliders, tires and so 

on [Suh 1986]. The advantages of polymers over metals or ceramics in tribological 

perspective are as follows: 

1. Easy to fabricate into complex shapes 

2. Eco-friendly and less contamination (when compared with the use of 

lubricants for metals) 

3. Low cost  

4. High impact resistance 
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5. Self-lubricity: Many polymers have low coefficient of friction even under 

dry and extreme conditions (for example low speed, low and high 

temperature) 

6. Wear durability and corrosion resistance 

 

2.2  Tribology of polymers 

 This section will present the mechanisms of friction and types of wear of 

polymers. It will review the historical background of the tribology of polymers in bulk, 

composite and thin film forms.  

 

2.2.1  The friction mechanisms and types of wear of polymers 

2.2.1.1 A brief summary of the friction mechanism of polymers 

The friction force (F) in polymers is the result of plowing of the asperities of 

the surfaces (Fp) and the adhesive interaction between the two surfaces in contact (Fa) 

[Bowden and Tabor 1986]. The first term, plowing is important if a hard body is 

sliding against a relatively soft surface. The second term, adhesion depends on the 

interfacial shear stress of the two surfaces in the absence of hard asperities. The shear 

stress, τ is directly proportional to the contact pressure, P [Bowden and Tabor 1986] as 

τ = τo + αP                                                        (2.1) 

where τo is the initial or intrinsic shear property and α is the pressure coefficient. τ can 

be calculated as the friction force, F divided by the real contact area, A which can be 

measured on the sliding track [Briscoe et al. 1973 and Briscoe and Tabor 1978]. P is 

the ratio of the applied normal load, L to the real contact area, A.  
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The Equation (2.1) can be re-written as 

F/A = τo + α (L/A)                                            (2.2) 

The initial shear stress, oτ  is often neglected and assumed zero when the applied load 

is too high [Briscoe and Tabor 1975]. Therefore, for higher applied loads, Equation 

(2.2) becomes  

F = αL or µ = α                                              (2.3) 

as the coefficient of friction is the friction force divided by the applied normal load.  

 The frictional behavior of polymers is not as simple as that of metals or 

ceramics. Because of the visco-elastic nature of polymers, many factors such as load, 

geometry and loading time affect the friction. For example, if the geometry and the 

loading time are fixed, the contact area of polymers is not proportional to the applied 

normal load, L, as it is so for metals. The friction force F for polymers is found to be 

proportional to Ln where n is nearly 0.75 for polymers [Bowden and Tabor 1986].  

 

2.2.1.2 Types of wear 

 Classifications of wear of polymers are shown in Table 2.1 [Briscoe and Sinha 

2002]. In the first generic scaling approach, wear is divided into cohesive and 

interfacial components which are a result of the two-term friction model of bulk and 

interfacial frictional work dissipations. In the phenomenological approach, which is 

based on the mechanism of material removal, the types of wear are abrasive, adhesive, 

chemical, delamination, erosive, fatigue, fretting and transfer. The last classification of 

wear is based on the material characteristics in which wear is divided into polymer 

classes as elastomers, glassy polymers, semi-crystalline polymers and thermosets.  
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Table 2.1: Classifications of wear of polymers. 

Generic scaling approach Phenomenological approach Material response approach 

Two-term interacting model: 

 Cohesive wear 

 Interfacial wear 

Origin of wear process model: 

 Abrasive wear 

 Adhesive wear 

 Chemical wear 

 Delamination wear 

 Erosive wear 

 Fatigue wear 

 Fretting wear 

 Transfer wear 

Polymer class model: 

 Elastomers 

 Glassy polymers 

 Semi-crystalline polymers 

 Thermosets 

  

Details of some mechanisms such as adhesive, abrasive and fatigue wear that 

occurs in most polymer wear [Opondo and Bessell 1982], as they do in metals, are 

explained below. 

 Adhesive wear is a very common form of wear as it cannot be eliminated when 

two surfaces slide against each other [Rabinowicz 1976]. Adhesive wear often leads to 

the transfer of the material from worn part to the wearing surface. Depending on the 

geometry of the counterface, the load and the surface energy of the two mating 

surfaces, the amount of transfer layer to the counterface can vary. The nature of the 

transfer layer greatly affects the steady-state coefficient of friction and wear rate of 

polymers. If the transfer film is thin enough to shield the counterface and if the 

polymer has linear molecules, the friction and wear rate reduce as the sliding is 

between polymer and polymer with easy shear. In addition, the molecular orientation 

can align along the sliding direction which can reduce the coefficient of friction. 
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However if the sliding direction is perpendicular or reversed to the orientation, the 

frictional behaviors change. If the transfer film is thick, back to back polymer transfer 

mechanism may occur that leads to high wear rate. Further, the intrinsic properties of 

the polymer such as molecule type and glass transition temperature have great 

influence on the tribological properties of the bulk polymers and the transfer layer. 

 Abrasive wear is another important mechanism in polymer. It has two types 

based on the type of interfaces: two-body and three-body abrasive wear. Only the 

polymer surface and the counterface involves in the case of two-body. When the hard 

debris, if any, or foreign particles are trapped between the two sliding surfaces, it 

becomes a three-body abrasive wear process. The wear rate can increase or decrease in 

abrasive manner. If the loose particles form a thin layer on either of the two sliding 

surfaces or both, the nature of the sliding mechanism may change from abrasive to a 

transfer layer dominated. 

 The abrasive wear can be related to the bulk mechanical properties as proposed 

by Ratner et al. [1964] and Lancaster [1969 and 1973], and the relation is given as, 

K LvV
HSe
µα                                                       (2.4)  

where V is the wear volume, K is the proportionality constant, L is the normal load, v is 

the sliding velocity, H is the hardness of the polymer, S is the ultimate tensile stress 

and e is the % elongation to break. Many researchers have experimentally proved the 

validation of Equation (2.4) and they have observed a linear relation between V and 

1
Se

 [Ratner et al. 1964, Briscoe 1981 and Shipway and Ngao 2003]. 
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Figure 2.1:  Schematic diagram of (a) adhesive, (b) abrasive and (c) fatigue wear mechanisms. 
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smaller in comparison to the wear by adhesive or abrasive but the effect can be very 

damaging to the mechanical component such as bearing.    

 

2.2.2  Tribology of bulk polymers 

 The first widely recognized bulk polymer in applications is rubber. Rubber is 

extensively used as tyres in automobile industry. The unique characteristic of rubber is 

its elastic deformation to high strain under small loads. It can retain elasticity as the 

load is removed. The friction of rubber increases rapidly with the sliding speed in a 

creep region and reaches a maximum limit. And then the friction drops as the sliding 

speed increases [Gough 1958 a, b]. Since rubber has poor thermal conductivity, the 

high frictional heat generated at the interface between a tyre and the road especially at 

high speeds affects the frictional properties. Ettles and Shen have studied the effects of 

frictional heat on the friction of rubber [Ettles et al. 1987]. It is also found that the 

friction of rubber is independent of applied load and decreases with temperature 

[Extrand et al. 1990]. 

 The scientific study of the tribological properties of non-elastomeric 

(thermoplastics and thermosets) polymers was studied by Shooter and Thomas 

[Shooter and Thomas 1949]. They investigated the frictional behavior of different 

polymers such as PE, PMMA, PS and PTFE by sliding the polymer against a steel 

counterface. Their work concluded that the friction of linear polymers (PE and PTFE) 

were very low which was the beginning of the tribological applications of these two 

polymers in modern technology. The extensive study of tribology on bulk polymers 

have been reported since late 1950s. Many researchers have reported the frictional 
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properties of PTFE and other thermoplastics in 1960s and 1970s [Grosch 1963, 

Makinson and Tabor 1964, Ludema and Tabor 1966, Steijn 1968, Schonhorn and Ryan 

1969, Pooley and Tabor 1972, Tanaka et al. 1973, Tanaka and Miyata 1977]. Another 

interesting polymer, UHMWPE has also been studied because of its high wear 

durability in comparison with other thermoplastic polymers [Tetrault 1989, Fisher et 

al. 1994]. Currently, it is the only polymer suitable for hip, knee and total joint 

replacements [Livermore et al. 1990, Amstutz et al. 1991].  

     

2.2.3  Tribology of polymer composites 

 With the successful applications of bulk polymers, many new polymer 

composites with fibers, fillers, hard ceramic particles and lubricating particles have 

emerged. They have been used on a large scale in industrial applications because of 

their remarkable properties such as high specific strength (strength/density), high 

specific stiffness (modulus/density) and mechanical properties are adjustable by 

controlling the amount and the type of fillers or fibers through processing [Friedrich 

1984]. The early scientific investigation on the tribological advantages of polymer 

composites was conducted by Ricklin et al. in 1954 [Ricklin et al. 1954]. Followed by 

this observation, many research groups have been working thoroughly on polymer 

composites. For example, the role of the filler shapes on the tribological properties of 

PTFE was conducted [Speerschneider and Li 1962]. Their results showed that the 

presence of spherical shaped Al2O3 fillers could drastically enhance the abrasion 

resistant of PTFE composite. Briscoe et al. have studied the friction and wear 

properties of HDPE with lead oxide (Pb3O4) and copper oxide (CuO) as fillers 
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[Briscoe et al. 1974] and PTFE with carbon filler [Briscoe et al. 1977]. They observed 

that the addition of fillers helped to reduce the wear rate with optimum filler content. 

The effect of PTFE filler on the tribology of POM (polyoxymethylene) was 

investigated by Kar and Bahadur [1974]. They confirmed that the addition of PTFE 

filler considerably reduced the wear rate of POM as PTFE filler helped to reduce the 

coefficient of friction. In the 1980s and 1990s, Friedrich’s group has reported the 

tribological properties of PEEK by adding different types and amounts of particles or 

short-fiber reinforcements and tested them in a wide range of temperature [Friedrich et 

al. 1987 a, b, 1988, 1991 and 1996]. Bijwe’s group has studied the tribological 

properties of polyetherimide (PEI) and polyimide (PI) composites using carbon and 

glass fibers with different weight percentages [Bijwe and Tewari 1989 and 1990, 

Bijwe et al. 1990, Tewari and Bijwe 1991, Bijwe and Rattan 2007 a and b, and Rattan 

et al. 2008]. All the scientific investigations on polymer composites show that a 

combination of optimum amounts of fillers, fibers or particles, is helpful in improving 

the performance in terms of friction and wear.   

In 1990s, Bahadur and colleagues studied the advantages of micro size 

particles as reinforcements in polymer composites [Bahadur and Gong 1992, Bahadur 

et al. 1993, Van de Voort and Bahadur 1995, Bahadur and Polineni 1996, Yu and 

Bahadur 1998, Zhao and Bahadur 1999, Schwartz and Bahadur 2001]. Their results 

have shown that the wear rate depends on the particle size. Smaller particle size 

provides lower wear rate than larger size. These observations give an encouragement 

to use nano size particle in polymer composites for better efficiency [Wang et al. 1996, 

Xue and Wang 1997]. From then on, many successful polymer composites with nano 
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fillers have been introduced [Ng et al. 1999, 2001, Petrovicova et al. 2000, Reynaud et 

al. 2001, Seigel et al. 2001, Sawyer et al. 2003, Lee and Lim 2004, Burris and Sawyer 

2006].  

In summary, researchers have been successful in altering the bulk compositions 

of polymers for controlling the tribological performances. This has resulted in many 

industrial applications of polymer composites. 

 

2.2.4  Tribology of polymer thin films 

 The surface properties of the products can be improved by using a thin polymer 

film which prevents a direct interaction of the products to the environments that leads 

to longer product life-span.  

 The earliest study on the tribological performance of polymer film was that on 

PTFE (Teflon) [Fitzsimmons and Zisman 1956, 1958] where the thickness of the film 

was 15.2 µm to 17.8 µm. It was applied as protective coating film for aircrafts, 

ammunition cartridges, submarines and weapons. It is also applicable for bearings, 

gears, hinges, piston rings, shafts, valves and other industrial applications [Clauss 

1972]. Though PTFE film can reduce the friction, as mentioned in Table 1.1, its wear 

resistance is poor when compared to other polymers. Thus, PTFE film is most suitable 

for the following conditions: low sliding speed and/or low to moderate the applied 

load, and presence of an effective coolant such as air, oil or water [Fitzsimmons and 

Zisman 1958]. 

 Harrop and Harrop [1969] have studied the frictional behavior of sputtered 

PTFE film on mild and silver coated steel rods. The film thickness was in the range of 



Chapter 2: Literature Review 

 

 22 

0.01 µm to 12 µm and it was observed that the friction varied with the film thickness. 

Between 2 µm to 12 µm, the coefficient of friction, µ increases (from 0.09 to 0.1) with 

thickness due to an increased volume of polymer. Below 0.5 µm thickness, µ rises 

(0.13 at 0.5 µm thickness to 0.2 at no PTFE film) due to the high shear property of the 

hard metal substrates. The coefficient of friction, µ also decreases with increasing load 

for any given thickness. 

 Kitoh and Honda [1995] have investigated the tribological performance of 

sputtered polyimide film (20 nm thickness) on Si substrate. The results show that the 

abrasion resistance of PI film is three to five times better than that of PTFE film under 

a normal load of 0.49 N and a sliding velocity of 80 mm/s.  

Tsukruk and colleagues [Luzinov et al. 2001 and Sidorenko et al. 2002] have 

used thermoplastic elastomeric composite film (20 nm thickness) which consists of 

two parts: an elastomeric and a reactive interfacial. The elastomeric layer has the 

properties of largely reversible deformation and low shear stress. The reactive 

interfacial layer serves as an anchor between the elastomeric layer and the Si substrate. 

In their composite film, they selected tri-block polymer, poly [styrene-b-(ethyleneco-

butylene)-b-styrene] (SEBS) functionalized with 2% of maleic anhydride (MA) as the 

elastomeric film and epoxy-terminated SAM as a reactive anchoring interface on Si 

substrate. The MA groups from elastomeric react with the epoxy groups of the 

monolayer, thus enabling anchoring of the elastic blocks to the Si substrate. The 

friction and wear tests were conducted under a constant pressure of 1.2 GPa with a 3 

mm diameter steel ball. The wear durability of trilayer film is 3,300 cycles where the 

bare Si has failed within a few cycles.       
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 Liu et al. [2002] have prepared a polydimethylsiloxane (PDMS) film about 180 

nm thick on Si substrate using spin coating. The frictional behaviors of film were 

evaluated by sliding against an AISI-52100 steel ball of 3 mm diameter under a normal 

load of 0.5 N. The results showed that the wear resistance of PDMS film on the 

hydrophilic substrates (hydroxilated Si or vinyl terminated Si) was the best. They have 

summarized that the chemical characteristic of the substrate is an important factor for 

longer wear life of the PDMS film. Yamada [2003] has studied the effect of PDMS 

multi layers on the friction properties. He found that when there were three or more 

PDMS layers or above, the first layer adjacent to the Si substrate was strongly 

adsorbed onto the substrate surface and was immobile during sliding; the low shear 

stress was accomplished by the slipping of mobile middle layers and the friction 

reduced. He has shown that the magnitude of friction of two layer PDMS films (no 

mobile layers) is 6-8 times larger than that of the films having mobile middle layers. 

Ren et al. [2004] have investigated the tribological properties of a composite 

film consisting of C60 (fullerence) film onto polyethyleneimine (PEI) coated Si 

substrate. The coefficients of friction are 0.65 and 0.22 for bare Si and Si/PEI 

respectively. Si/PEI shows low friction but it fails instantly in sliding test as does bare 

Si sample. The presence of PEI film obtains amino-groups on Si surface that could 

undergo reaction with C60. Once C60 is coated onto Si/PEI, the friction is lowered to 

0.13~0.17 and wear life increases to 10,000 cycles under normal the load of 0.5 N. 

Sakata et al. [2005] have shown that PMMA brush on Si substrate has better 

wear resistance when slid against a stainless steel ball under a normal load of 0.49 N, 

when compared to the spin-coated PMMA film on bare Si. Sun et al. [2006] have 
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studied the effect of chemisorption of PI films on Si via reactive polymer layer 

(polyglycidyl methacrylate, PGMA). It is observed that the wear performance 

increases to 25,000 cycles whereas PI film on Si without the intermediate reactive 

polymer layer has failed at 800 cycles under the same test conditions. It proves that the 

chemical bonding between the polymer film and the substrate is important in 

enhancing the wear resistance of the polymer film. 

In a recent paper, Satyanarayana et al. [15] have used UHMWPE as a 

protective coating on Si by dip-coating method and showed that the coefficient of 

friction of Si/UHMWPE was 0.09 while that of bare Si was 0.65. In addition, after 

coating UHMWPE, the wear life of Si/UHMWPE increased more than 4000 times in 

comparison with that of bare Si.  

From the literature review of the tribology of polymers, it is obvious that the 

tribology of bulk polymers and polymer composites are well studied and understood.  

Though the polymer films are very useful for many engineering applications, their 

tribological properties have not been studied and optimized as much as those of bulk 

polymers and polymer composites. It is well understood that the tribology of polymer 

films is different from that of bulk or composite polymers. The film coated onto a hard 

substrate gives lower coefficient of friction than the bulk polymer value because of the 

efficient heat dissipation rate if the substrate is metallic. Another advantage of polymer 

films is easy change of its tribological performances by giving different treatments to 

the substrates or to the surface of the films and by adding fillers such as CNT (carbon 

nano tube) or nanoclay particles. It is obvious that this field is largely unexplored from 

engineering and scientific perspectives. Many researchers working in this area have 
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obtained ultra-thin polymer films which provide low friction but most of them are not 

durable in term of wear resistance for the total product lifespan.   

  

2.2.4.1 Polymer film coating techniques 

In a solution-based coating technique, polymer molecules are adsorbed from 

the solution and the solvent evaporates during the coating process. The polymer 

molecules are attached to the substrate by means of either physisorption or 

chemisorption depending on the coating technique. The attraction between the polymer 

molecules and the substrate greatly influences the overall tribological properties of the 

polymer film. The following solution-based techniques [Advincula et al. 2004] are 

widely used in applications in which molecules are physically attached to the 

substrate: 

 printing/droplet evaporation 

 spray coating 

 spin coating 

 dip-coating 

 doctor blading 

The extremely thin and good homogeneous films (starting from nanometer to 

micrometer thickness) can be obtained in dip-coating or spin coating processes with an 

appropriate control of the parameters such as the polymer concentration, the dipping or 

spinning speed and time, the post-heating temperature and post-heating time.  
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2.3  The properties of friction and wear resistance of bulk polymers  

 The friction and wear properties of some polymers that are widely used in 

many applications are summarized in Appendix A. The study of the tribology 

properties of bulk polymers is helpful in selecting a suitable polymer to be used as a 

film. Often, there are two important requirements for a better tribological performance 

of polymers: low or optimum friction and high wear resistance. Hence, the primary 

focus in this thesis will be on these two requirements. 

The glassy polymers, such as PC, PMMA and PS are transparent and widely 

used in optical applications. The bulky molecular structure and inability to deform 

plastically make glassy polymer prone to wear by fracture at the contacting surface. 

Friction coefficient is also generally high because of high surface energy and the 

surface deformational work [Briscoe and Sinha 2002]. The semi-crystalline polymers 

with linear structure such as PTFE and UHMWPE have the lowest kinetic friction with 

PTFE showing the coefficient of friction as low as 0.04 (detailed properties are 

provided in Appendix A). Though linear structure is an important factor for low 

friction, it alone is not enough for excellent tribological performances. Except for 

PEEK and UHMWPE, the others polymers have either high kinetic friction or 

relatively high wear rate. Though UHMWPE has higher kinetic friction than PTFE, its 

wear rate is much lower than all other polymers. The wear rate of UHMWPE is an 

order of magnitude lower than that of PEEK which has the second lowest wear rate 

[Lubricomp 1998]. Some mechanical properties of bulk UHMWPE and PEEK are 

provided in Table 2.2 for reference.  
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The above studies have shown that the bulk UHMWPE has lower coefficient of 

friction and comparatively higher wear resistance than any other polymer. From the 

perspectives of both friction and wear rate, UHMWPE is the most promising polymer 

to be used as a film. In spite of having superior wear performance in bulk form, the 

application of UHMWPE as a film is restricted due to its high viscosity in the melt 

form and inability to dissolve in most of the common solvents.  

 

Table 2.2: Mechanical properties of bulk UHMWPE and PEEK. 

Property UHMWPEa PEEKb 

Molecular weight (106 g/mole) 2-6 - 

Melting temperature (˚C) 125-138 340-343 

Poisson’s ratio 0.46 0.4 

Tensile modulus of elasticity (GPa

Tensile yield strength (MPa) 21-28 91 

Tensile ultimate strength (MPa) 39-48 70.3-103 

Tensile ultimate elongation (%) 350-525 30-150 

Impact strength, Izod (J/m of notch; 3.175 thick specimen) >1070 85 

Degree of crystallinity (%) 39-75 - 

aEdidin and Kurtz 2000 and bCallister 2007. 

In a recent paper, Bao et al. [2005] have applied UHMWPE coating by thermal 

spraying method in which the coatings were deposited by combustion using acetylene 

as the fuel gas and compressed air as the oxidant. This method consists of injecting 

powdered UHMWPE particles into a hot jet in which the particles melt and is 

projected onto a substrate to form a coating. An important requirement of this process 

is that the polymer particles must flow extensively upon impact on the substrate. This 
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enables them to make close contact with the surface irregularities of the underlying 

substrate and form denser coating. Therefore a well uniform coating by thermal 

spraying is difficult to form and it depends on many parameters such as molecular 

weight, particle size, additional binder and flame temperature as well as the impact 

velocity. Satyanarayana et al. [2006] have found that decahydronapthalin (decalin) 

solvent can dissolve UHMWPE if the solvent temperature and the dissolution process 

are carefully controlled. Their UHMWPE film was relatively uniform and the RMS 

roughness was 0.556 µm. As observed by other researchers, the tribological behavior 

of film is different from that of the bulk polymer. The coefficient of friction of 

UHMWPE film (0.09) [Satyanarayana et al. 2006] is lower than that of bulk 

UHMWPE (0.25). The wear durability of UHMWPE film on Si is 12,000 cycles 

whereas that of bare Si is only a few cycles when tested in sliding against a 4 mm 

diameter silicon nitride ball at a normal load of 70 mN and a sliding speed of 0.042 

m/s. 

The results of Satyanarayana et al. have shown ways to use UHMWPE as a 

film with good tribological performances. However, the wear life of this UHMWPE 

film is still low if the product life-cycle involves millions of cycles of sliding or 

revolution. Further research and developments are necessary to improve the wear 

durability of UHMWPE film. In the following sections, different modification 

techniques and concepts will be reviewed that are aimed at improving the wear 

durability of any tribological film.        
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2.4  The effect of substrate hardness on the tribology of polymer film 

Bowden and Tabor [1986] showed that the influence of hardness on friction is 

rather small by using tin on hard steel where the difference in the hardness values is by 

a factor of 100. When a soft material is slid against a hard counterface, though the 

shear stress, τ is small, the area of contact, A increases due to the low load carrying 

capacity of soft material. On the other hand, when a hard material is slid against a hard 

counterface, though the contact area, A is small, the shear stress, τ eventually increases 

again.  

The tribological requirements of high load carrying capacity and low shear 

stress can be obtained using a thin film of soft metal bonded to a hard substrate. For 

example, lead or silver coatings have been applied to bearing steels for shear stress and 

low coefficient of friction. 

Bowden and Tabor [1943] were some of the leading researchers who studied 

the effect of soft metallic film on the tribological properties of hard substrates. They 

demonstrated the role of soft film in reducing the friction using copper, indium and 

lead. Tsuya and Takagi [1964] have studied the frictional behavior of soft lead film 

with a thickness of 0.1 to 130 μm on hard copper substrate and they found that the 

presence of lead film could reduce the friction to 0.5 whereas the friction of uncoated 

copper was more than 1. Sherbiney and Halling [1977] have reviewed the tribological 

behaviors of soft metallic films (indium, lead and silver) on steel substrates. They 

observed that the tribological properties of the soft film depend on the coating 

technique and the film material, and greatly influenced by normal load, sliding 

velocity and film thickness. Spalvins and Buzek [1981] have observed similar 
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tribological advantage of soft gold and lead films deposited on stainless steel. They 

also investigated the effect of film thickness on the friction. Ajayi et al. [1991] have 

observed that the coefficient of friction was reduced by 50 % and the wear rate by one 

or two orders in magnitude in the presence of soft silver film (1 μm thickness) on 

silicon nitride ceramic substrate. Jang and Kim [1991] have studied the frictional 

properties of gold and silver films (less than 1 μm) deposited on Si substrate under 

normal loads of 100 mg and 1 g using pin-on-disc method. Their results showed that 

the coefficient of friction reduced from 0.38 (bare Si) to 0.21. 

 The above literature review confirms that applying a soft film on a hard 

substrate can considerably improve the tribological performances of the hard substrate. 

UHMWPE film can reduce the shear stress and the friction if coated onto a 

substrate. However, UHMWPE film has low load carrying capacity and is easy to be 

penetrated in sliding against a hard counterface which will result poor wear durability. 

A thin hard intermediate layer can improve the load carrying capacity of UHMWPE 

film. By doing this, both the friction and wear durability of UHMWPE film can be 

extended to a desired level. It is noted that if UHMWPE film is carefully optimized, 

this polymer has the potential of providing extremely high wear resistant film as seen 

in its bulk form.     

 

2.5  The effect of surface wettability on the tribology of polymer film 

 The adhesion between the polymer film and the substrate is an important factor 

in obtaining better tribological performances. However, polymers are difficult to 

adhere strongly to a substrate since many of them have no functional groups unless 
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they have been chemically functionalized. Some basic techniques to gain strong 

adhesion are wettability (increasing hydrophilic behavior) of the substrate, cohesion 

strength of the polymer films and removal of stress concentration in the coating films 

[Ryntz 1994].  

 Surface wettability is measured by contact angle which is directly correlated to 

the free energy of the substrate. Higher contact angle means lower surface energy and 

poor wetting. For instance, poly(olefins) have lower surface energy which is difficult 

to adhere to substrates. It can achieve better adhesion using silicone agents which can 

effectively promote the surface wettability [Ryntz 1994]. Rauhut [1969] has presented 

the effect of different pre-treatments such as UV light, flame, UV light in the presence 

of solvent and etched in chromic acid etc on the changes in the surface energy of the 

substrate and the final adhesive strength of polyethylene. He has observed that etching 

with chromic acid is the most effective way to attain higher surface energy. Increasing 

the oxidation layers on the substrate is one of the ways to enhance the surface 

wettability and adhesion.  

 The presence of condensed water on the substrate due to high surface 

wettability strongly dominates the adhesion strength of the film [O’Brien et al. 2006]. 

Moy and Karasz [1980] and Lee and Peppas [1993] have observed that the presence of 

water molecules on the substrate deteriorates the film properties. Water molecules can 

create some cracks or voids on the coating [Wong and Broutman 1985 and Xu and 

Ashbee 1991]. The adhesion loss of the coating is inevitable if water or other 

chemicals can reach the substrate through the cracks or voids. Under sliding condition, 
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these cracks are the potential sites for stress concentration and delamination of the 

film.  

From the above literature review, it is clear that the surface wettability is an 

important factor in determining the adhesive strength of a polymer film. Higher 

surface wettability of the substrate is desirable for better adhesion of the polymer film, 

but at the same time, it can attract water molecules from atmosphere to condense on 

the substrate and can weaken the adhesion. Depending upon the coating film and the 

substrate material, the wettability of a substrate needs to be optimized for better 

adhesion. 

 

2.6  The effect of sliding direction on friction in terms of crystallinity and 

molecular orientation 

 As mentioned before, the sliding on UHMWPE film in real applications is 

rarely unidirectional but bidirectional. It is interesting to explore the frictional 

properties of the film in changing sliding direction. The crystallinity and molecular 

orientation of the film especially for semicrystalline UHMWPE is clearly affected by 

the number of sliding cycles. Deeper understanding of the effect of sliding direction on 

the frictional behaviors of UHMWPE film with different number of sliding cycles is 

essential in order to use the film efficiently in applications. As the study of the 

tribology of the polymer film has started only recently, there is limited literature on the 

effect of sliding direction on the friction in terms of changing crystallinity and 

molecular orientation. Hence, the literature review is made on semicrystalline bulk 
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polymers that will be helpful in the understanding of the effect of crystallinity and 

molecular orientation on friction in the case of polymer films. 

 The early investigation on the effect of molecular orientation on friction for 

PTFE was conducted by Tabor and Williams [1961]. They found dependency of 

friction on the sliding direction. They also observed that when two oriented PTFE 

surfaces were slid against, the friction was approximately 30% higher when sliding 

across than when sliding in the direction of orientation. This was attributed to the 

molecular orientation prior to the sliding process. 

 Gorokhovskii and Agulov [1966] have studied to correlate the crystallinity and 

wear rate of PTFE as a function of sliding velocity and applied load. Their results 

showed that the wear rate reduced with increasing % crystallinity up to a certain 

amount of crystallinity. Beyond that limit, the wear rate increased again. In addition, 

they observed higher wear rate with higher sliding velocity and applied load at a given 

% crystallinity. For example, for 90 % crystallinity and 8 kg/cm2 applied pressure, the 

wear rate increased from 75 mg to 250 mg as the sliding velocity varied from 1.5 cm/s 

to 5 cm/s.  

 Pooley and Tabor [1972] have investigated the frictional behavior of PTFE 

slider and the effects of orientation and sliding direction on friction by sliding PTFE 

against a glass plate. The static friction of a fresh PTFE slider showed 0.2 for the first 

slide but it dropped to 0.07 when the slider is moved to a new glass plate and slid again 

parallel to the first track. When the slider was rotated by 90˚ angle and made a new 

track parallel to the previous tracks, a high static friction was observed. These results 

showed the importance of molecular orientation on friction of PTFE. 



Chapter 2: Literature Review 

 

 34 

 Extensive studies on the frictional behaviors of semicrystalline polymers such 

as PTFE, HDPE and UHMWPE have been conducted by Tanaka and Miyata [1977]. 

Similar results were found in their observations also and the static friction was very 

sensitive to the sliding direction as it was much smaller in sliding parallel to the initial 

orientation than that in sliding perpendicular to it. The molecular orientation was 

parallel to the sliding direction during the initial sliding process. Effect of degree of 

crystallinity on the friction and wear of PET was studied by Yamada and Tanaka 

[1986] under water lubrication. The tests were conducted using the pin-on-disk method 

under a normal load of 10 N. The coefficient of friction was little dependent on the 

degree of crystallinity under water lubrication. However, the higher degree of 

crystallinity reduced the wear rate with water lubrication. The results were in contrast 

to the wear rates under dry condition. The reason is water and some aqueous solutions 

inhibit the formation of transfer film on the counterface and as a result the wear rate is 

higher than that under dry condition [Lancaster 1972]. 

 Eleiche and Amin [1986] reported that the wear rates of PVC and PC decreased 

with increasing molecular orientation under a sliding speed of 27.5 cm/s and a normal 

load of 49 N tested by the pin-on-disc method. 

 In recent papers, Aoike et al. [2007] and Kanaga Karuppiah et al. [2008] have 

controlled the crystallinity of UHMWPE by giving different temperature treatments 

and studied the effect of crystallinity on friction. The results showed that the higher 

degree of crystallinity provides low friction (from 0.39 to 0.28), shallow wear depth 

(from 0.21 µm to 0.12 µm) and high scratch resistance.  
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   The role of crystallinity and molecular orientation on friction of different bulk 

polymers have been studied and reported by many researchers. However, their effects 

on friction of polymer films have never been investigated. Moreover, in studying the 

effect of sliding direction, many researchers have conducted the tests in parallel and 

perpendicular directions. It is also important to understand the frictional behavior of 

polymer films in both forward and reverse directions on the same track. 

 

2.7  The relation between surface energy and friction 

 It was earlier believed that the friction was only controlled by the geometry of 

the asperities of the surfaces involved. The Amonton’s Laws state that the friction 

force is directly proportion to the applied normal load. However, it was observed later 

that if two surfaces have adhesive interaction between them at rest, there is a finite 

value of friction even at no externally applied load. That means, friction is decided by 

not only the geometry of the asperities but also the surface energies or adhesion forces 

of the surfaces. If the effect of surface energy is taken into account in the JKR 

[Johnson et al. 1971] and DMT [Derjaguin et al. 1975] models and the contact radii in 

static condition from both models are derived, there is a deviation from the Hertzian 

contact radius. Israelachvili and Tabor [1972] experimentally measured the contact 

radius with adhesion effect. Both theoretical and experimental results proved that the 

role of surface energy on friction is not negligible especially when the applied load is 

very small. Thus, for two adhering surfaces, the total friction force can be expressed as 

F = µ (Lo + L) = Fo + µL                                (2.5) 

where Fo is a constant friction force due to adhesion at no external applied load.  
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Erhard [1983] and Lavielle [1991] used different polymer pairs and correlated 

the surface energies of different pairs with their frictional behaviors. Depending upon 

the surface energies of two sliding polymers, the frictional value has changed. They 

observed that the coefficient of friction increases with increasing surface energy and 

the relationship is exponential. 

Yoshizawa et al. [1993] have studied the correlation between friction and 

adhesion by means of adhesion energy hysteresis using the surface force apparatus. 

Their results show that the friction force is directly proportional to the adhesion 

hysteresis. In a recent paper, Corwin and de Boer [2004] have investigated the effect 

of adhesion on static and dynamic frictions on Si substrate. They observed that the 

interfacial adhesion due to surface energy has affected static and dynamic coefficient 

of friction at zero applied loads. The adhesive force is the same for both static and 

dynamic conditions. 

Recent molecular dynamics computer simulations by Robbins and co-workers 

have shown that the coefficient of friction is strongly dependent on the surface energy 

[He et al. 1999, He and Robbins 2001, Müser et al. 2001 and Rotter and Robbins 

2001]. 

Though the effect of surface energy on friction of different polymers have been 

studied and reported, the actual relation between surface energy and friction is not well 

understood in term of surface forces. Therefore, in the last part of the thesis, this 

correlation will be studied by varying the surface energies of UHMWPE film and the 

counterface ball along with the effect of applied load. The validity of theoretical model 

will be confirmed with our experimental results.  
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2.8  A summary of the research plans followed in the present thesis 

 From the literature review on the tribology of polymers, it is clear that bulk 

polymers and polymer composites have been widely explored and used in industrial 

applications. Polymer films are potentially useful in enhancing the product lifespan 

especially where the bodies are sliding or rolling. The polymer used as film must fulfill 

the requirements of low friction and high wear durability. From the results of previous 

studies, UHMWPE is one of the most suitable polymers for coatings. However, more 

research on the fundamental understanding and property enhancing strategies of 

UHMWPE films are still necessary to explore in terms of friction and wear durability.  

 Therefore, the following research plans have been adopted in the present thesis: 

1. Enhancement of the friction and wear durability of UHMWPE thin film by 

using hard intermediate layers (such as CrN, TiN and DLC) and optimization 

of UHMWPE film thickness 

2. Enhancement of the friction and wear durability of UHMWPE thin film by 

optimizing the surface wettability (surface energy) of the Si substrate 

3. Understanding the effect of crystallinity and molecular orientation on the 

frictional properties of UHMWPE thin film with different sliding directions 

and number of sliding cycles 

4. Correlation between the surface energy of UHMWPE thin film and the 

coefficient of friction as a function of the applied normal loads 

Si is used as the substrate in this work because of the importance Si as micro-

electro mechanical systems (MEMS). Si is a very poor tribological material and hence 
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a research on improving the tribological properties of Si surface would have great 

technological impact for the future growth of microsystems.  

The motivation, background and detail procedures of each study are provided 

in the respective Chapters. 
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Chapter 3 

Materials and Experimental Methodologies 

 In this Chapter, the general materials used in the present research work, the 

preparation of UHMWPE film and various common methods used to characterize the 

chemical, mechanical, physical and tribological properties of the polymer films will be 

described. Additional information on specific materials, preparation methods, 

characterization techniques and calculation procedures will be provided in the 

respective Chapters. 

 

3.1  Materials 

3.1.1  Silicon 

 Polished n-type Si (100) wafers (obtained from Engage Electronics (Singapore) 

Pte Ltd), about 455–575 μm in thickness and hardness of 12.4 GPa, were used as the 

substrate. Roughness of the Si wafers was measured with an atomic force microscopy 

(AFM) and given as 0.41 nm. Various modifications and additional intermediate layers 

were deposited on Si wafers before UHMWPE film was deposited as the top layer. 

 

3.1.2  UHMWPE  

Ultra high molecular weight polyethylene (UHMWPE) powder (Grade: GUR 

X143) was (supplied by Ticona Engineering Polymers, Germany) dissolved in 
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decahydronapthalin (decalin) and deposited onto Si substrate. The physical properties 

of UHMWPE used in this study are provided in Table 3.1. 

 

Table 3.1: Physical properties of UHMWPE, as provided by the supplier. 

Properties Units Value 

Melt index MFR 190/15 G/10 min 1.8 ± 0.5 

Bulk density g/cm3 0.33 ± 0.03 

Average particle size d50 µm 20 ± 5 

 

3.1.3  Perfluoropolyether (PFPE) 

 In order to extend the wear durability of UHMWPE film, a commercial 

perfluoropolyether (PFPE) Z-dol 4000 (dissolved into H-Galden ZV60 purchased from 

Ausimont INC) was overcoated onto UHMWPE film. Chemical formulae of Zdol and 

H-Galden ZV60 are  

PFPE (Zdol 4000): HOCH2CF2O–(CF2CF2O)p–(CF2O)q–CF2CH2OH  

H-Galden ZV60: HCF2O–(CF2O)p–(CF2CF2O)q–CF2H  

where the ratio p/q is 2/3. The physical properties of PFPE (Zdol 4000) used in this 

study are provided in Table 3.2. 

 

3.1.4  Silicon nitride ball 

 A silicon nitride (Si3N4) ball of 4 mm diameter was used as the counterface in 

determining the tribological properties of UHMWPE films. The hardness and 

roughness (RMS) of the ball are 1500 HV and 5 nm respectively. Young’s modulus 

and Poisson’s ratio of Si3N4 used in this research are 310 GPa and 0.22 respectively.    
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Table 3.2: Physical properties of PFPE (Zdol 4000). 

Properties Units Value 

Functional group - Alcohol (-OH) 

Appearance Visual Clear liquid 

Color APHA Colorless 

MW (NMR) Amu 4000 

Difunctional content (NMR) % 90 

C2/C1 ratio (NMR) - 1 

Kinematic viscosity cSt 100 

Density @ 20˚C g/ml 1.82 

Vapor pressure @ 20˚C Torr 1 x 10-8 

Vapor pressure @ 100˚C Torr 1 x 10-4 

Refractive index @ 20˚C - 1.296 

Surface Tension @ 20˚C dyne/cm 22 

Polydispersity @ 20˚C Mw/Mn 1.15 

 

3.2  Preparation of UHMWPE film 

3.2.1  Cleaning of Si substrate 

 The removal of contaminants and undesired particles from Si substrate is the 

most important and an essential step in the coating procedure. A proper cleaning 

process provides better bonding of the coated films to the substrate.  In the cleaning 

process, Si substrates were rinsed for 1 minute and ultrasonically cleaned for 15 

minutes in soap water, distilled water and acetone, respectively. Ultrasonic energy can 

remove loose surface materials and organic contaminants. The cavitation bubbles 

produced from the change in pressure during ultrasonication have the capacity of 

blasting contaminants away from the surface [Dunbar 1994]. The cleaned substrates 
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were blow-dried with pure nitrogen gas and immersed into a piranha solution (70 

vol.% H2SO4 and 30 vol.% H2O2) at a temperature of 70 ˚C for an hour. The objectives 

of piranha treatment are hydroxylation and removal of any organic/inorganic 

contaminants present on Si substrate. The measured RMS roughness of piranha treated 

Si surface was 0.3~0.5 nm. After piranha treatment, the substrates were rinsed again 

with distilled water and acetone for 1 minute each and finally dried with nitrogen gas. 

 

3.2.2  Preparation and deposition of UHMWPE film 

 UHMWPE powder was dissolved in decahydronapthalin (decalin) at a 

temperature of 150 ˚C for 30 minutes and 250 ˚C for another 30 minutes with a 

magnetic stirrer. The purpose of using a magnetic stirrer was to fasten the dissolution 

rate. After UHMWPE powder was completely dissolved, the cleaned Si substrate was 

immersed in the solution for 30 seconds and withdrawn at a speed of 2.4 mm/s. After 

that, the samples coated with UHMWPE were given heat treatment in a clean air oven 

at 100 ˚C for 15 hours. After heat treatment, the samples were cooled to room 

temperature in the same oven. The measured RMS roughness of UHMWPE films 

coated on Si was 0.56 μm, measured within a scan area of 10 μm × 10 μm using AFM.  

In order to understand the effect of residual solvent in UHMWPE film, if any, 

both bulk UHMWPE powder and coated UHMWPE film were examined using 

differential scanning calorimetry (DSC60, Shimadzu) under an argon gas flow with a 

heating rate of 20 ˚C/min. No additional peak corresponding to the decalin (solvent) 

was observed in UHMWPE film. This suggested that the solvent must have evaporated 

completely from UHMWPE film during the heat treatment. The results confirmed that 
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there was no effect of the solvent on the mechanical or tribological properties of the 

coated polymer film.  

 

3.3  Surface analysis techniques 

3.3.1  Contact angle 

A common method to estimate the surface energy is to measure the wetting 

property using solid-liquid contact angle method. This technique uses the spreading 

ability of a liquid in response to the surface tension generated due to the difference in 

the surface energies at the solid and liquid interface. Depending on the interfacial 

surface energy, the profile of a liquid droplet on the surface can change. The simplest 

relationship between the contact angle and the surface free energy is stated by Young’s 

equation as, 

cosSV SL LVγ γ γ θ= +                                           (3.1) 

where γ  is the surface free energy and the subscripts SV, SL and LV represent surface-

vapor, surface-liquid and liquid-vapor interfaces, respectively. Therefore, Sγ  can be 

calculated from Equation (3.1) if SLγ , Lγ  and θ are known. Lγ  is generally known 

from data source and θ from contact angle measurement. In the later part of the thesis, 

detailed calculation procedures of SLγ  and Sγ  will be presented.  

 

3.3.1.1  Types of surface wettability 

 Based on the profile of a droplet on the surface, the surface wettability can be 

classified as [Mate 2008]  



Chapter 3: Materials and Experimental Methodologies 

 

 44 

 Wetting - The contact angle of the droplet on a surface is zero or close to 

zero.  

 Partial wetting - The contact angle is greater than zero. 

 Non-wetting - A subset of partial wetting where the contact angle is greater 

than 90˚.  

Surfaces can also be described as 

 Hydrophilic - A surface with a low water contact angle (generally less than 

90˚) which attracts water. 

 Hydrophobic - A surface with a high water contact angle (~ 90̊  or more)  

which repels water.  

 

 

  

 

 

Figure 3.1:  (a) Hydrophilic and (b) hydrophobic surfaces. 
 

3.3.1.2  Contact angle measurements 

 The contact angle measurements were conducted using VCA Optima Contact 

Angle System (AST product, Inc., USA) machine (Figure 3.2) with a distilled water 

droplet of 0.5 µL. The contact angle is measured at the edge of the droplet on a 

surface. A droplet is placed on the surface using a syringe and a microscope is used to 

examine the edge of the droplet. The contact angle is typically measured by capturing 

a video image or manual examination through the microscope eyepiece and 

determining θ with the computer software.  

(a) (b) 
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 In this thesis, the contact angle is reported as an average value of at least five 

independent measurements for three different samples. The variation in the contact 

angles at various locations of a sample is ± 2˚ and measurement error is ± 1˚. 

 

 

                              

 

 

 

 

 

 

 

 

 

Figure 3.2:  Experimental setup for measuring contact angle. 

 

3.3.2  Nanoscratching and nanoindentation 

The nanoscratch resistance of Si/UHMWPE and Si/DLC/UHMWPE was 

measured using MTS Nano Indenter XP machine. The indenter used for 

nanoscratching was a conical shape diamond tip with 90˚ cone angle and a tip radius of 

5 µm. The scratch tests were conducted using a ramp loading setup from 0~250 mN at 

a constant velocity of 10 µm/s. The topography of the nano scratches was studied with 

a JEOL JSM-5600 LV scanning electron microscope (SEM). 

Syringe 

Microscope 

Light source 
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Nanoindentation is widely used to characterize the surface mechanical 

properties of thin polymer films or thin surface layers [Zeng 2009]. It is applicable to 

determine the elastic modulus and hardness of the polymer film at submicron or 

nanometer levels. Nanoindentation tests were conducted using the MTS Nano Indenter 

XP machine. A triangular pyramid Berkovich diamond tip was used for 

nanoindentation tests with a fixed maximum normal load of 40 mN. The average 

hardness and elastic modulus values were calculated from the data of a total of 10 

indentations made on different random surface locations. 

 

3.3.3  X-ray photoelectron spectroscopy (XPS) 

The chemical state of Si surface after modifications was studied by XPS which 

is a useful technique for quantitative analysis of the surface chemical composition. 

XPS is sensitive to the chemical environment of an atom. In the XPS measurement, a 

sample surface is exposed to a monochromatic X-ray radiation that is generated either 

by Mg or Al source. If Eo is the energy of an X-ray, and Ej is the binding energy of the 

electron in the atom, Eo-Ej is the energy of the ejected electron. In other words, the 

difference between the energy of X-ray, Eo (1253 eV for Mg and 1486 eV for Al) and 

the binding energy of the electron, Ej gives the valuable information of the ejected 

electron. 

 In the present research, XPS measurements were conducted with a Kratos 

Analytical AXIS HSi spectrometer with a monochromatized Al Kα X-ray source 

(1486.6 eV photons) at a constant dwell time of 100 ms and pass energy of 40 eV. A 

photoelectron take-off angle of 90˚ (with respect to the sample surface) was applied to 
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obtain the core level signals. All binding energies (BE) were referenced to the C1s 

hydrocarbon peak at 284.6 eV. 

 

3.3.4  Fourier transform-infrared spectroscopy (FTIR) 

FTIR technique is used to measure the absorption or transmission of infrared 

radiation with respect to the wavelength. The infrared absorption bands identify 

molecular components and structures. The absorbed IR radiation at the sample surface 

generally excites molecules into a higher vibrational state. The absorbed or transmitted 

wavelengths are due to the molecular structure of the sample.  

An interferometer with a broadband infrared source is used to modulate the 

wavelength. The intensity of the reflected or transmitted light is recorded with a 

detector as a function of its wavelength. The recorded data are analyzed with a 

computer using Fourier transforms to obtain a single-beam infrared spectrum.  

The percent crystallinity of UHMWPE film inside the wear tracks was 

measured using Fourier Transform Infrared Spectroscopy (FTIR, Spectrum 1000, 

Perkin Elmer Life and Analytical Sciences, Boston, MA, USA). The spectra were 

obtained with an accumulation of 16 scans in transmission mode with a spot size of 

100 μm diameter. 

 

3.3.5  Microscopy 

3.3.5.1 Optical microscopy 

 Olympus microscope was used to study the polymer transfer mechanism 

between the ball and the polymer film, the extent of polymer transfer and the surface 
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morphology. It uses monochromatic light source to enhance the contrast between light 

and dark regions. 

 

3.3.5.2 Scanning electron microscopy (SEM) 

In an electron microscopy, an electron beam is produced from a tungsten 

filament which is focused by magnetic lenses in a high vacuum chamber. The electron 

beam is composed of the primary electrons that are reflected from the surface without 

any energy change. As the energy of the primary electrons are much higher than the 

energy of the electrons which are bound to the nucleus, the electrons of the atoms from 

the sample can be knocked out easily. These knocked out electrons are called 

secondary electrons. 

The intensity of the secondary electrons is basically used in the SEM technique 

[Barraud et al. 1974 and Janssen et al. 1980]. When some of the secondary electrons 

re-combine with ions at the surface, some photons are released. Depending on the 

intensity of the photons; the SEM image capability can vary. SEM is widely used in 

the study of interface and sub-surface morphology, defects, patterns, pinholes etc 

[Ulman 1991]. 

In the present research, the surface morphologies of the nano scratches were 

observed with a JEOL JSM-5600 LV scanning electron microscope (SEM) coupled 

with energy dispersive spectroscopy (EDS). 
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3.3.5.3 Field emission scanning electron microscopy (FESEM) 

The surface topography of the scratches and the thickness of the polymer film 

are examined with a field emission scanning electron microscope (FESEM) (Hitachi 

S4300) machine coupled with an energy dispersive spectrometer (EDS). Before taking 

FESEM images, gold coating was performed on the tested polymer films at 10 mA for 

40 seconds (JEOL, JFC-1200 Fine Coater) to impart conductivity to these films. EDS 

tests were performed on the scratches with gold coating to indentify and to record 

carbon and silicon peaks.  

 

 

 

 

 

 

 

 

 

Figure 3.3:  (a) Optical microscopy and (b) FESEM. 
 

The samples coated with UHMWPE films were cut and mounted with their 

cross-sections horizontal under FESEM to measure the thickness. At least ten 

measurements were randomly carried out for each film and an average value was 

reported. The thickness variation of the film is within ± 1 μm. 

 

(a) (b) 
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3.3.6  Adhesion strength with a scratch tester 

The study of the adhesion strength of UHMWPE film on differently modified 

Si substrates was conducted using a scratch tester with a diamond tip of 2 µm tip 

radius. The scratching velocity and the linear scratch distance were fixed at 0.1 mm/s 

and 1 cm respectively. The applied normal load was varied from 10 mN with an 

increment of 10 mN. The critical load of each film was determined by measuring Si 

peak inside the scratches using EDS or by observing debris particles or delamination 

of the film. In these tests, the critical load was defined as the applied normal load at 

which the film failed during scratching.  

 

3.3.7  Friction and wear tests 

The friction and wear tests were conducted on a ball-on-disc tribometer (Figure 

3.4 a). A 4 mm diameter silicon nitride (Si3N4) ball was chosen as a stationary 

counterface whereas UHMWPE coated samples acted as the rotating disc. Before the 

tests, Si3N4 balls were cleaned with acetone to remove any contaminant. The wear 

track radius and the normal load were 1~2 mm and 40 mN respectively. The rotational 

speed chosen for the tests was 500 rpm giving a linear speed in the range of 

0.052~0.105 m/s. A schematic diagram of the cantilever for normal and frictional force 

measurement is given in Figure 3.4 (b). The normal load was converted from the 

vertical displacement of the double cantilever that was measured using a laser 

displacement sensor. The friction force was continuously measured using four strain 

gauges attached to the cantilever arms. The sampling rate used to measure the friction 

data was 5 Hz. The tests were carried out in a class 100 clean booth environment at a 
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temperature of 25 ± 2 ˚C and a relative humidity of 55 ± 5%. The initial coefficient of 

friction was taken as an average value of the first 4 seconds of sliding. In this study, 

the wear life of UHMWPE film is defined as the number of cycles when the 

coefficient of friction exceeds 0.3 or large fluctuations of the coefficient of friction 

(indicative of film failure) occur continuously, whichever happens first. This definition 

of wear life is consistent with previous studies dealing with thin films. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4:  (a) Photographs and (b) schematic diagram of the ball-on-disc tribometer. 
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Energy dispersive spectroscopy (EDS) (Hitachi S4300 FESEM/EDS system) 

tests were conducted on every wear track in order to confirm the failure of the film by 

observing the presence of Si peak. Both the coefficient of friction and the wear life 

data reported are averages of at least three repeated tests. 

The specific materials, experimental procedures and instruments of certain 

research environments will be presented in the respective Chapters. 
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Chapter 4 

Tribology of DLC/UHMWPE as Hard and Soft Composite 

Film on Si 

 In this Chapter the evaluation of the tribology of UHMWPE film (28 µm 

thickness) on Si with and without DLC (diamond like carbon) film as an intermediate 

layer will be presented. Perfluoropolyether (PFPE) is applied onto UHMWPE film to 

further extend the wear durability and results will be discussed. The effect of 

UHMWPE film thickness on the tribology of Si/DLC/UHMWPE will also be 

presented in the later part of the Chapter. 

As mentioned in Chapters 1 and 2, bulk UHMWPE is a very promising 

polymer to be used as a solid lubricant in relative sliding components. It has been 

found that UHMWPE film provides a very low coefficient of friction because of the 

low shear strength of the polymer. However, the main disadvantage is its low load 

carrying capacity that leads to large contact area, high friction and failure after a few 

thousand cycles of sliding. One solution to reduce the contact area is the application of 

a hard layer between the soft UHMWPE film and the Si substrate. By introducing a 

new hard intermediate layer, the top polymer film help to reduce the friction whereas 

the underlying hard layer provides the load bearing capacity and thus longer wear life. 

In a recent paper, Gadow and Scherer [2002] have coated polymer film on hard 

coatings such as Al2O3 or TiO2 which showed longer wear durability coupled with low 

coefficient friction by pin-on-disc method. Jiang et al. [2007] have proved the 
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tribological advantage of soft MoS2–PTFE top layer on hard cBN–TiN substrate in 

reducing the friction in a ball-on-disc test. 

In selecting a hard layer, DLC film is found to be an excellent medium from 

tribological perspective because of its chemical inertness, corrosion resistance [Liu et 

al. 1998 and 1999], high hardness, high wear resistance [Robertson 1992] and low 

surface energy [Grill and Patel 1993]. A very wide range of the coefficient of friction 

(0.001~0.7) of DLC has been reported [Erdemir and Donnet 2000] which depends not 

only on the chemical and structural properties of carbon contents but also on the test 

conditions such as the applied load, chemistry of the environment, counterface 

material, humidity, rotational speed and the substrate etc [Erdemir and Donnet 2006]. 

In this work, DLC is chosen as an intermediate layer schematically as shown in Figure 

4.1. The high load carrying capacity of DLC would help in reducing the contact area 

between UHMWPE film and the counterface because of the substrate effect and finally 

promote the wear resistance. 

 
 
 
 
 
 
 Si/UHMWPE/PFPE              Si/DLC/UHMWPE/PFPE 
 

Figure 4.1: Schematic diagram (not to scale) of different layers coated on Si substrate. 
 

4.1  Materials and preparation of different layers 

Tetrahedral amorphous carbon, ta-C, (non-hydrogenated DLC) film was 

deposited onto n-type Si substrate by Filtered Cathodic Vacuum Arc (FCVA) 

technology (Nanofilm Technologies International Pte. Ltd, Singapore) and the detailed 
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deposition procedure can be found in Tay et al. [2000]. The thickness of DLC is in the 

range of 50 nm and hardness is 57 GPa, as provided by the supplier. Before UHMWPE 

was coated onto the samples, Si/DLC samples were ultrasonically cleaned in ethanol 

for 30 minutes whereas Si samples were cleaned as mentioned in Section 3.2.1. 

The cleaned samples were then dip-coated using an UHMWPE solution of 5 

wt.% (that gave approximate film thickness of 28 μm). And then, the tribological 

results for UHMWPE films with and without DLC intermediate layer are compared. 

For further enhancement on the wear durability, PFPE (0.2 wt.% in H-Galden ZV60) 

was dip-coated onto UHMWPE film with and without the intermediate DLC film, at 

dipping and withdrawal speeds of 2.4 mm/s with a fixed dipping duration of 30 

seconds. This coating condition is expected to give a few (3~4 nm) nanometers PFPE 

film thickness. 

 To explore the effect of UHMWPE thickness on the tribological properties of 

Si/DLC/UHMWPE films, Si/DLC samples were dipped into 0.5 wt.%, 1 wt.%, 3 wt.% 

and 5 wt.% UHMWPE solutions at the same dipping/withdrawal speeds and dipping 

duration. The UHMWPE film thicknesses after dip coating into different weight 

concentrations were found to be approximately 3.4 μm, 6.2 μm, 12.3 μm, 28 μm 

respectively. The reported UHMWPE thickness was measured using the Field 

Emission Scanning Electron Microscopy (FESEM, Hitachi S4300). The samples were 

cut and mounted with their cross-sections horizontal under the FESEM to measure the 

polymer thickness as shown in Figure 4.2. At least ten independent measurements on 

three samples were carried out for each film and an average value is reported. The 

thickness variation is within ± 1 μm which is expected because of the roughness of the 
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polymer film after coating. The UHMWPE coatings on Si or Si/DLC substrates were 

of uniform thickness with no sign of uncoated area or pinholes in the film. However, 

when the thickness was brought down to below 3 μm, the film showed patchiness and 

non-uniformity. The UHMWPE coated samples were kept in a clean room for 24 

hours before any test was carried out. 

 

 

 

 

 

 

 

 

Figure 4.2: A demonstration of the measurement of UHMWPE film thickness using FESEM. 
 

4.2  Experimental procedures 

 The surface analyzing techniques such as contact angle measurement, AFM 

topography, nanoscratching and nanoindentation were used to characterize the surface 

properties of UHMWPE film with and without DLC intermediate layer. The friction 

and wear durability were measured using ball on disc method with a custom-built 

tribometer. The contact point between the ball and the film was shown in Figure 4.3 

where the diameter of the ball was 4 mm. Detailed characterization procedures have 

been explained in Chapter 3. 

 

 

Si 
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Figure 4.3: A photograph of the contact point between the ball and the film. The radius of 
curvature of the ball was 2 mm. 

 

4.3  Results 

4.3.1  Contact angle results 

The water contact angles of bare Si, Si/UHMWPE, Si/UHMWPE/PFPE, 

Si/DLC, Si/DLC/UHMWPE and Si/DLC/UHMWPE/PFPE (28 μm UHMWPE 

thickness) are shown in Table 4.1 where the water droplet size was 0.5 μL. Bare Si 

substrate was hydrophilic with a contact angle of 21˚ . After giving the piranha 

treatment to bare Si, hydroxyl groups (OH) form on Si which can react with water 

molecules to form hydrogen bonds. The hydrogen bonds tend to be in hydrophilic in 

nature [Good 1993]. The contact angle of Si/DLC was 81˚. The DLC film used in this 

study is non-hydrogenated and has only sp3 hybridized carbons which are less reactive 

with water molecules. This is the possible reason for a higher contact angle. After 

coating UHMWPE film onto bare Si and Si/DLC, the surfaces became more 

hydrophobic with water contact angle of 93˚ and 91˚ respectively. When PFPE is 

applied as a top layer, the contact angles further increased to 95˚ and 102˚ for 

Si/UHMWPE and Si/DLC/UHMWPE, respectively. The hydrocarbons in UHMWPE 

and the fluorocarbons in PFPE do not form hydrogen bonds and thus their surface 
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tensions are low, in other words, their water contact angles are high [Good 1993]. The 

increasing contact angle is desirable in eliminating the stiction or adhesion problem 

arising from the capillary forces at the contact points [Mastrangelo 1997 and 

Maboudian and Howe 1997]. The differences in the contact angles for UHMWPE and 

PFPE layers on bare Si and Si/DLC are nearly the same and the variations are within 

the measurement error. This shows that there is no influence of the intermediate layer 

on the water contact angle of the top layer. 

 
Table 4.1: Water contact angles of different surfaces on Si [Minn and Sinha 2008 a]. 

 
Surface Contact Angle, θ (˚) 

Bare Si 21 

Si/DLC 81 

Si/UHMWPE 93 

Si/DLC/UHMWPE 91 

Si/UHMWPE/PFPE 95 

Si/DLC/UHMWPE/PFPE 102 

 
 

 

4.3.2  Roughness measurements using AFM 

RMS roughness measurements were conducted using AFM (atomic force 

microscopy) within a scan area of 10 μm × 10 μm. The measured roughness of Si and 

Si/DLC surfaces are 0.41 nm and 34.8 nm respectively whereas that of UHMWPE 

films coated on both Si and Si/DLC are 0.56 μm. The roughness values for UHMWPE 

films measured within the 10 μm x 10 μm scan area did not change for different film 
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thicknesses. Since the thickness of PFPE overcoat is in the range of a few nanometers, 

it does not affect much on the roughness of UHMWPE film which is in micron scale. 

Therefore, the roughness of Si/UHMWPE/PFPE and Si/DLC/UHMWPE/PFPE was 

also found to be same as 0.56 µm. 

 

4.3.3  Nanoscratching and nanoindentation analysis 

Figure 4.4 (a) shows nanoscratch resistances of Si/UHMWPE and 

Si/DLC/UHMWPE (28 μm thickness) samples. The scratch tests were conducted using 

a ramp loading setup from 0 to 250 mN at a constant scratch velocity of 10 μm/s using 

a 90̊  conical shaped diamond tip with 5 μm tip radius.  There is a clear distinction 

between the penetration depths for the two films as the load increases. It is noted that 

the load carrying capacity or the scratch hardness of Si/UHMWPE is much inferior to 

that of Si/DLC/UHMWPE.  

The behaviors of scratch on both films were studied using SEM and images are 

shown in Figure 4.4 (b). It is seen that Si/UHMWPE film was easier to penetrate and 

peel off the substrate as can be observed at the end of the scratch. A clear damage of 

polymer was observed along both sides of the scratch and there was a pile of the 

polymer at the end of the scratch by a process of plastic deformation and partial 

delamination [Briscoe et al. 1996]. However, there were no clear wear debris, visible 

detachment or delamination of the film along the scratch for Si/DLC/UHMWPE film 

and the scratch resembled plastic deformation of the polymer by ploughing. 
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Figure 4.4: (a) Scratch penetration depth as a function of progressively applied normal load and 

(b) SEM images of the scratch deformation for Si/UHMWPE and Si/DLC/UHMWPE 
films. The thickness of UHMWPE is 28 μm for both cases. The progressive scratch 
tests were conducted using a 5 µm-radius 90˚-conical shape diamond tip with scratch 
velocity of 10 µm/s for a scratch distance of 500 µm. Normal load varied from 0 to 
250 mN and the scratching direction is from left to right. 

 

The hardness, elastic modulus and penetration depth values for UHMWPE film 

with different thicknesses using nanoindentation are shown in Table 4.2. It is 

indicative that the presence of hard DLC layer provides higher hardness and elastic 

modulus with shallower penetration depth than those of Si/UHMWPE (i.e. without 

Si/UHMWPE Si/DLC/UHMWPE 
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DLC layer) where UHMWPE thickness is 28 μm. For Si/DLC/UHMWPE film, the 

hardness and elastic modulus increased and accordingly the penetration depth 

decreased as the thickness of UHMWPE film was reduced. Comparing with the bulk 

polymer, the hardness and elastic modulus of the bulk UHMWPE is approximately one 

order of magnitude lower than those of the 28 μm thickness film which indicates that 

there is considerable amount of substrate effect. It is also observed that the effect of 

hard DLC layer became more prominent for UHMWPE films of thickness below 6.2 

μm. As a result, the contact area decreases gradually with a significant increase in the 

contact pressure. 

 

Table 4.2: Mechanical properties and other parameters for different samples. 

Sample 

Thickness 

of 

UHMWPE 

(µm) 

Hardness 

(GPa) 

Elastic 

Modulus 

(GPa) 

Theoretical 

contact area 

(10-10m2) 

Theoretical 

contact 

pressure 

(MPa) 

Nanoindentation 

penetration 

depth (µm) 

Bulk UHMWPE - 0.038 0.993 80 7.7 7.25 

Si/UHMWPE 28 0.06 6.51 23.5 26 5.3 

Si/DLC/UHMWPE 

3.4 11.9 171.87 3.7 165 0.45 

6.2 0.86 43.74 7.3 85 1.52 

12.3 0.12 18.65 12 51.6 3.81 

28 0.09 8.81 19.4 31.8 4.5 

 

4.3.4  Comparison of UHMWPE film with and without DLC interface for friction 

and wear 

Bare Si without any protective coating gives high friction (0.65) and low wear 

life within a few sliding cycles. It is easy to generate wear debris after five sliding 

cycles as shown in Figure 4.5. Clear indications of Si debris are observed at both sides 

of the track along the sliding. The damage of the counterface ball is also found. 
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Figure 4.5: Optical images of (a) wear track on bare Si and (b) counterface ball after five cycles. 
The scale bars are 100 μm. 

 

The friction and wear life data for samples with differently coated layers are 

provided in Figure 4.6 where UHMWPE film thickness was 28 μm. Bare Si and 

Si/DLC surfaces show high coefficients of friction of 0.65 and 0.25, respectively. In 

the presence of UHMWPE film on Si and Si/DLC, the initial coefficient of friction 

reduces to 0.18 and 0.13, respectively because of the self-lubricating properties of 

UHMWPE. This softness is able to reduce shear stress in comparison with bare Si or 

Si/DLC. After applying PFPE layer onto UHMWPE film, the coefficient of friction 

further reduces to 0.06 and 0.07 for Si/UHMWPE/PFPE and 

Si/DLC/UHMWPE/PFPE, respectively. PFPE molecules serve as liquid lubricant that 

can reduce shear stress and as a result friction is very low. The effect of PFPE 

overcoating onto UHMWPE film in reducing the coefficient of friction is well 

explained in a previous work [Satyanarayana et al. 2006]. 

It is seen in Figure 4.6 (b) that the hard DLC layer intermediate has provided 

approximately five times improvement in wear durability in comparison with 

Si/UHMWPE. This implies that the underlying DLC provides high load carrying 

capacity to the UHMWPE film, reduces the contact area and thus a better tribological 

result of Si/DLC/UHMWPE film.  

(a) (b) 
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It is obvious that a composite film of hard DLC and soft UHMWPE layers can 

provide better tribological performances. When PFPE is overcoated, the coefficient of 

friction reduces even further and the wear life is improved by several times to a few 

orders of magnitude. In the case of Si/DLC/UHMWPE/PFPE, the composite film did 

not show any sign of failure when the experiment was stopped due to long test 

duration. The coefficient of friction remained low for the entire sliding test and no 

wear debris was observed on the wear track after 300,000 cycles of sliding. In order to 

detect film failure, EDS test was conducted on the track to check for the intensity of Si 

peak. EDS result shows no Si peak inside the wear track and it was concluded that the 

film had not failed even after 300,000 sliding cycles. Figure 4.6 (c) shows the 

coefficient of friction trace versus sliding cycles for some films. 
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(a)      (b) 

 

 
(c) 

 
 
Figure 4.6: (a) Coefficient of friction, (b) wear life (logarithmic scale) of bare Si and Si coated 

with different single and composite films and (c) coefficient of friction versus sliding 
cycles of some films at a normal load of 40 mN and at a rotational speed of 500 rpm 
(linear speed is 5.2 cm/s) where UHMWPE thickness is fixed as 28 µm for all coated 
samples. (A1 = bare Si, A2 = Si/UHMWPE, A3 = Si/UHMWPE/PFPE, A4 = Si/DLC, 
A5 = Si/DLC/UHMWPE, A6 = Si/DLC/UHMWPE/PFPE) 

 
 

The optical images of Si/UHMWPE/PFPE and Si/DLC/UHMWPE/PFPE 

before and after the sliding tests, and, the counterface balls after the sliding tests, are 

shown in Figure 4.7. It is obvious from the wear track image of Si/UHMWPE/PFPE 
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that the film is worn severely after the sliding test (100,000 cycles). It can be seen on 

the counterface ball that much polymer is transferred from the film to the ball for 

Si/UHMWPE/PFPE whereas Si/DLC/UHMWPE/PFPE composite film shows very 

little polymer transfer. The transferred polymer has greatly influenced the coefficient 

of friction by roughening the interface and by increasing the adhesion between the film 

and the counterface. Hence, there are many factors that provide the best tribological 

performances of Si/DLC/UHMWPE/PFPE. Firstly, hard DLC has high load carrying 

capacity and provides better penetration resistance and reduces the contact area. 

Secondly, the linear UHMWPE has self-lubricating property that helps reduce shear 

stress. In other words, although the hard DLC alone has high shear stress, the 

overcoating of soft UHMWPE layer onto DLC can reduce the shear stress drastically. 

Thirdly, the water contact angle of Si/DLC/UHMWPE/PFPE is 102˚ compared with 

95˚ for Si/UHMWPE/PFPE and hence the surface energy of the film is reduced 

because of DLC interlayer. Surface energy has strong influence on the friction, wear 

and material transfer, as will be presented in Chapter 8 of this thesis. Fourthly, the 

higher thermal stability and excellent lubricating properties of PFPE can provide 

further reduction in the coefficient of friction and increase the resistance to frictional 

heating. Also, frictional heat dissipation is less when the coefficient of friction is low. 
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Figure 4.7: Optical images of Si/UHMWPE/PFPE (first column) and Si/DLC/UHMWPE/PFPE 
(second column) surfaces (a) before the test, (b) after sliding 100,000 cycles and (c) 
counterface ball after 100,000 cycles. The scale bars are 50 μm. 

 
 

(a) (a) 

(b) (b) 

(c) (c) 
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4.3.5  Effect of UHMWPE thickness on the friction and wear 

The effect of UHMWPE thickness on the friction and wear properties of 

Si/DLC/UHMWPE is shown in Figure 4.8. At the early stage of sliding cycles, the 

coefficients of friction are the same and variations are within the measurement errors 

for all thicknesses. However, the effects of thickness are observed on friction and wear 

as the number of sliding cycles is increased. For a film thickness of 3.4 μm, the 

coefficient of friction increases with increasing number of cycles and the role of 

underlying hard DLC is dominant which causes high shear stress or coefficient of 

friction and the film fails at ~100,000 cycles. For the 6.2 μm film, the friction shows 

the same trend as thinner film (3.4 μm), but the shear stress or coefficient of friction on 

6.2 μm film is lower  in comparison with that on 3.4 μm film and thus the wear life 

extends to 200,000 cycles. The coefficient of friction for 12.3 μm film is stable at 0.14 

± 0.02 for 300,000 cycles when experiments are stopped. Although the coefficient of 

friction of 28 μm film is low until 20,000 cycles, the friction starts showing large 

fluctuations and fails at 100,000 cycles. These large fluctuations are due to the 

different removal rates of polymer from the sliding track that increases roughness. 

Detailed explanations on this aspect will be provided in Section 4.3.7. 
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Figure 4.8: (a) Coefficient of friction with respect to sliding cycles in typical runs for different 
thicknesses of UHMWPE in composites films of Si/DLC/UHMWPE, (b) Wear life for 
different UHMWPE thicknesses for Si/DLC/UHMWPE. Data are averages of three 
repeated tests. For 12.3 µm thick film there was no failure at 300,000 cycles of sliding 
when the experiments were stopped due to long test duration. 
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4.3.6  Wear mechanisms for different UHMWPE thicknesses 

The optical images of the wear tracks for Si/DLC/UHMWPE film of different 

thicknesses with respect to the number of cycles are shown in Figure 4.9. The widths 

of the wear tracks increase as the number of sliding cycles increases for all films. The 

increase in the width of the contact area leads to high friction as the sliding progresses. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9: Wear track optical images of 3.4 µm, 6.2 µm, 12.3 µm and 28 µm UHMWPE 

thicknesses for Si/DLC/UHMWPE (at a normal load of 40 mN, at a rotational speed 
of 5.2 cm/s (500 rpm) and test radius 1 mm) against Si3N4 counterface ball after 
10,000, 50,000 and 100,000 sliding cycles. The scale bars are 50 μm. 

 

It is clearly seen in the optical images that the contact stress is a major factor 

contributing to friction and wear of 3.4 μm film thickness. It agrees well with the 

nanoindentation results (Table 4.2) where the contact pressure of 3.4 μm film is 

highest and contact area is lowest. As a result, the surface image shows some kind of 

polymer degradation possibly due to high frictional heat generated within a small 
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contact area. The optical image of 6.2 μm film thickness after 50,000 cycles shows 

smooth surface after removing the asperities and the effect of roughness on friction 

diminishes after 50,000 cycles. It is indicative of a very smooth track that suggests 

softening of the sliding surface [Tanaka et al. 1973]; soft polymer surface can help 

maintain low coefficient of friction. It is obvious from the optical images of 12.3 μm 

and 28 μm films that the rates of material removal from the sliding track are not 

uniform. The surface becomes roughened because of the asperities of the films that are 

removed non-uniformly at an early stage. Though there is an uneven removal of the 

polymer for 12.3 μm film thickness, the surface becomes as smooth as 6.2 μm film 

thickness with increasing cycles and the effect of surface roughness on friction and 

wear becomes less. On the other hand, 28 μm thick film fails quite easily.  The 

possible reason is that the large amount of polymer being transferred to the ball causes 

large fluctuations in the coefficient of friction. The optical images of Si3N4 balls after 

sliding against different UHMWPE thicknesses are provided in Figure 4.10. The 

amount of polymer transferred from the thickest film (Figure 4.10 d) is much greater 

than that from film of any other thickness. 

 

4.3.7  Discussion 

Nanoscratching data shows a large difference in penetration resistance between 

Si/UHMWPE and Si/DLC/UHMWPE for 28 μm UHMWPE thickness. The slope of 

load penetration depth of Si/UHMWPE is steeper than that of Si/DLC/UHMWPE, 

which means the penetration resistance of the latter is greater due to the higher load 

carrying capacity provided by the hard DLC intermediate layer. In other words, the 
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contact area of Si/UHMWPE is larger than that of Si/DLC/UHMWPE and as a result 

the friction of former is higher than that of the latter. The hardness data from 

nanoindentation (Table 4.2) are consistent with nanoscratching results. At the early 

stage, the initial penetration depth (5.3 μm for Si/UHMWPE) is shallower than the 

whole film thickness (28 μm).  

 

 
 

 

 
 

 

 
 

 

 
 

 
Figure 4.10: Optical images of Si3N4 counterface ball against Si/DLC/UHMWPE with different 

polymer film thicknesses (a) 3.4 µm (b) 6.2 µm (c) 12.3 µm and (d) 28 µm after 
sliding 100,000 cycles. Figures (a, b and c) are magnified 500 times and Figure (d) is 
magnified 200 times. The scale bars are 50 μm. 

 
However, as the sliding continues, the transferred film on the ball surface is 

progressively renewed by wearing out of the polymer from the contact point and the 

(a) (b) 

(c) (d) 
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ball reaches the Si substrate after about 20,000 cycles due to weak penetration (low 

hardness) resistance and large contact area. For Si/DLC/UHMWPE, no sign of film 

failure was observed until 100,000 cycles because of strong penetration resistance and 

small contact area in comparison with Si/UHMWPE. 

The elastic modulus of Si/DLC/UHMWPE is also higher than that of 

Si/UHMWPE. That means Si/DLC/UHMWPE layer has greater relaxation time for 

any change in the elastic property due to the interfacial temperature or creep. This is 

because of the lower elastic modulus and the higher mobility of the molecules to flow 

in viscous manner due to less strong inter-molecular bonding. Hence, the relaxation 

time for larger contact area decreases with decreasing elastic modulus [Gorokhovskii 

and Agulov 1966] and thus the film is prone to damage because of thermal effect. As a 

result, the polymer is easily removed from the sliding track due to thermal and time 

dependent changes in the modulus of the film and the wear life of Si/UHMWPE is 

shorter than that of Si/DLC/UHMWPE. Thus, better bonding strength of the 

UHMWPE molecules with DLC and better mechanical properties of DLC with self-

lubricating property of UHMWPE are the main reasons for higher tribological 

performance of Si/DLC/UHMWPE film. 

The hydrophilic nature of bare Si attracts water molecules and the presence of 

these water molecules effectively weakens the adhesion strength between substrate and 

UHMWPE [Armstrong and Wright 1993 and Mansfeld 1995]. The investigation of 

surface wettability on the tribology of UHMWPE film will be discussed in Chapter 6. 

When DLC is coated onto bare Si, the film surface became hydrophobic and repels 

water. The adhesion strength between Si/DLC and UHMWPE is stronger than that 
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between bare Si and UHMWPE. As a consequence, the polymer from Si/UHMWPE is 

easily removed during contact sliding in comparison with that from 

Si/DLC/UHMWPE.  
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Figure 4.11: Contact area and contact pressure vs. UHMWPE thickness for Si/DLC/UHMWPE 
where contact area and contact pressure are theoretically calculated using Hertzian 
equation and nanoindentation data presented in Table 4.2. 

 

In order to further extend the wear life, because of its high lubricity and 

thermal stability, PFPE was coated onto Si/UHMWPE and Si/DLC/UHMWPE. After 

PFPE coating, the coefficient of friction was lower than 0.1 for both films, and, wear 

lives extended to 100,000 cycles for Si/UHMWPE and at least 300,000 cycles for 

Si/DLC/UHMWPE when the experiments were stopped. The chemical bonding 

between UHMWPE and PFPE films is ruled out since UHMWPE film does not have 

any reactive chemical groups. It is assumed that PFPE molecules are trapped in the 

initial roughness of the UHMWPE films and these molecules may serve as liquid 

lubricant to reduce shear stress and friction [Satyanarayana et al. 2006]. Another 
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possible reason for better enhancement in the wear durability is the thermal stability of 

PFPE, which can withstand higher (up to a range of 327-477 ˚C [Lei et al. 2001]) 

frictional heat generated at the interface without degradation. The lower coefficient of 

friction in the presence of PFPE also means low frictional energy dissipation and less 

heating of the interface. 

As the UHMWPE film thickness decreases, the load carrying capacity of the 

film is greatly affected by the underlying hard DLC layer and the effects of shear stress 

(in the dynamic case) and contact pressure becomes high leading to the high friction 

and early failure of the film. As shown in Figure 4.11, the relationship between the 

contact area and UHMWPE film thickness is linear but the contact pressure has two 

trends: below 6.2 μm it increases significantly and above 6.2 μm it displays a gradual 

decrease. For the thin film (3.4 μm), though the contact area decreases slightly, its 

contact pressure increases significantly which means that the shear stress could 

increase significantly since the ratio of shear stress to contact pressure is assumed to be 

constant within the experimental range. If the film thickness is too low in comparison 

with the contact radius, the counterface ball will reach DLC film and detach the DLC 

particles. The detached particles can serve as third-body abrasive particles at the 

interface which will increase friction and initiate wear [Arnell 1990]. For the 6.2 μm 

film, the contact area is high and the shear stress is low and its wear life extends to 

200,000 cycles. Under this condition, UHMWPE film helps in lubricating the interface 

without any failure of the DLC which was seen in the case of 3.4 μm thick film. 

When the film thickness increases, the contact area will increase with deeper 

penetration depth that leads to large friction coefficient (due to large transfer of the 
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film polymer to the counterface) and low wear life. This result agrees with the work of 

Aubert et al. [1990]. At the early stage of the test, the asperities of the film are 

removed by microcutting [Sherbiney and Halling 1977] and the removal rates of the 

polymer film vary in different parts of the sliding tracks (28 μm film in Figure 4.8), 

which lead to non-uniform contact points. 

When the amount of transferred polymer on the ball surface is large and 

surface becomes rough, the coefficient of friction between non-uniform film and 

roughened polymer adhered ball is highly fluctuating. As a result, the thicker film (28 

μm) fails earlier at about 100,000 cycles. For the 12.3 μm film, though its optical 

image (Figure 4.9) shows similar non-uniform pattern as that of the 28 μm film, the 

amount of polymer transferred is relatively low. Furthermore, the surface becomes 

smoother as the sliding cycles increases. Thus, though the coefficient of friction for 

12.3 μm film is slightly high, it shows consistent value at 0.14 ± 0.02 for at least 

300,000 cycles when the experiments are stopped. In order to obtain higher wear life 

for the UHMWPE film, the film thickness should be in an optimum range to avoid 

factors that increase or fluctuate friction, such as high contact stress, large contact area 

and greater polymer transfer to the counterface. 

According to the present results, the range of optimum thickness to obtain 

higher wear life for Si/DLC/UHMWPE film is approximately within 6.2 μm-12.3 μm. 

The advantage of high wear resistant UHMWPE film can be obtained only if the film 

thickness is optimum so as to avoid the large interface/substrate effect on friction and 

wear (for low film thickness) or, the substantial polymer transfer to the counterface 

(for high film thickness).  
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4.4  Summary 

The current Chapter presented the results on the advantages of 

Si/DLC/UHMWPE composite film (with and without PFPE as the top overcoat) and 

the role of UHMWPE thickness on the tribological performance. After coating 

UHMWPE onto Si, the coefficient of friction reduced to 0.18 and wear durability is 

remarkably increased to 20,000 cycles compared to only few cycles for bare Si 

surface. The presence of DLC intermediate layer provides higher load carrying 

capacity (high hardness and elastic modulus) and better adhesion between UHMWPE 

and DLC coated substrate and as a consequence, the coefficient of friction decreased 

to 0.13 and wear durability extended to 100,000 cycles for Si/DLC/UHMWPE. This is 

five times improvement over the film without DLC intermediate layer. Overcoating 

with PFPE as the top layer gave coefficient of friction as low as 0.06 and wear 

durability increased to 100,000 cycles and more than 300,000 cycles for 

Si/UHMWPE/PFPE and Si/DLC/UHMWPE/PFPE, respectively, when thickness of 

UHMWPE was fixed at 28 μm. For Si/DLC/UHMWPE film, the wear lives of thin 

film (3.4 μm) and thick film (28 μm) are approximately 100,000 cycles, which are 

shorter than those of the moderate (optimum) thicknesses (6.2 μm and 12.3 μm). The 

wear lives of moderate films are 200,000 cycles and more than 300,000 cycles for 6.2 

μm and 12.3 μm, respectively. The lower wear durability of 3.4 μm thick film is due to 

high contact stress that generates high frictional heat at the interface contributing to 

film failure and that of 28 μm thick film is due to larger contact area owing to soft 

layer and large fluctuations in the coefficient of friction with occasional high peaks 

due to polymer transfer to the counterface. 
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It should also be noted that some other parameters can affect the frictional 

characteristics of the films. For example, the interfacial strength and the crystallinity of 

the polymer film are two very important parameters and an investigation on their 

effects on the frictional characteristics of UHMWPE film will be presented in next 

Chapters. 
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Chapter 5 

Tribology of UHMWPE Film with Different Hard 

Intermediate Layers 

 Detailed studies on the tribological advantages of UHMWPE film on Si in the 

presence of hard DLC as an intermediate layer were presented in Chapter 4. The 

effects of UHMWPE thickness on the friction and wear performances were 

investigated too. Though superior tribological properties of the composite hard and 

soft films have been well recognized, the exact relationship between the wear life of 

the composite film and the hardness of the intermediate harder layer is still unclear. In 

this Chapter, an attempt is made to investigate such a relation with an UHMWPE 

thickness of 4-5 μm which is in the optimum range of thickness. 

Silicon was used as the substrate with its hardness value of 12.4 GPa. Different 

hard intermediate layers such as CrN, TiN and tetrahedral amorphous carbon, (ta-C or 

DLC) were deposited onto Si substrate and then followed by a soft UHMWPE film as 

top layer. Firstly, the tribological properties of different composite films are compared 

at a fixed applied load of 40 mN. Secondly, scratch tests with different applied normal 

loads are conducted on the composite films in order to understand the critical scratch 

load for film failure. A correlation between the critical loads and the wear durability 

has been discussed using scratch tests. Thirdly, perfluoropolyether (PFPE) is 

overcoated onto UHMWPE film to further reduce the shear stress and enhance the 

wear life for the composite films.  
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5.1  Experimental procedures 

5.1.1  Materials 

Polished n-type Si (100) wafers (obtained from Engage Electronics (Singapore) 

Pte Ltd), of about 455-575 µm in thickness and with a hardness of 12.4 GPa, were 

used as the substrate. Chromium nitride, titanium nitride and tetrahedral amorphous 

carbon, ta-C (non-hydrogenated DLC) films with different hardness values were 

deposited onto Si substrate. All the films were deposited by Nanofilm Technologies 

International Pte Ltd, Singapore using Filtered Cathodic Vacuum Arc technique. The 

thicknesses of all hard films were fixed in the range of 50 nm. UHMWPE powder 

(bulk density = 0.33 ± 0.03 g/ cm3 and average particle size of 20 ± 5 µm) was 

dissolved in decahydronaphthaline (decalin) for the purpose of dip-coating UHMWPE 

films (Section 3.2). In order to further extend the wear life of the film, a commercial Z-

dol 4000 of 0.2 wt% (dissolved into H-Galden ZV60 purchased from Ausimont INC) 

was overcoated onto UHMWPE film. 

 

5.1.2  Preparation of different layers on Si substrate 

The detailed procedures of cleaning substrates and preparing UHMWPE 

solution have been described in Section 3.2. The cleaned samples were dipped in 

UHMWPE solution for 30 seconds with a fixed dipping and withdrawal speeds of 2.4 

mm/s. The thickness of the UHMWPE film was approximately 4-5 µm and its 

roughness (Ra) was approximately 0.56 μm (measured by AFM). For some samples, 

PFPE (0.2 wt.% in H-Galden ZV60) was dip-coated onto UHMWPE film at dipping 

and withdrawal speeds of 2.4 mm/s with a fixed dipping duration of 30 seconds. The 
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thickness of PFPE is expected to be a few (3-4 nm) nanometers as measured in an 

earlier study. After coating, the samples were kept in a clean room for 24 hours before 

any test was conducted. A schematic diagram and a FESEM image of the coated layers 

on the Si substrate are provided in Figure 5.1. The image shows cross-section of the 

sample. The polymer coating is clearly visible whereas the hard intermediate coating is 

not very precisely identifiable due to very low thickness (~ 50 nm). 

 

 

 

 

 

         

        (a)                 (b) 

Figure 5.1: (a) Schematic (not to scale) diagram of different layers coated onto Si substrate and 
(b) FESEM image of the cross-section of UHMWPE (white region) film on Si 
substrate. The scale bar is 10 μm. The thickness of the polymer film is in the range of 
4-5 μm. 

 

5.1.3  Surface characterizations 

The surface wettabilities of different hard interfaces on Si substrate were 

determined by measuring the water contact angles with a VCA Optima Contact Angle 

System (AST product, Inc., USA). Distilled water droplets of 0.5 µL were used for the 

measurements. The contact angles are reported as an average of five independent 

measurements on the samples. The measurement error is within ± 3˚. 

In order to verify the hardness of different intermediate layers provided by the 

supplier, nanoindentation tests were conducted on samples using a constant load of 

Si substrate 

UHMWPE 

Si substrate 

Hard interface 
(~ 50 nm) 

UHMWPE 
(4-5 μm) 

PFPE (3~4 nm) 
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300 µN with a 100 nm radius diamond tip. The nanoindentation system consists of the 

Nanoscope IIIa controller (Digital Instruments, Santa Barbara, CA, USA) with a 

triboscope indenter system (Hysitron Inc., MN, USA). The time taken during loading 

on the sample was 5 seconds with a constant holding time of 10 seconds before 

unloading. The penetration depth of indentations was less than 5 nm.  

In order to understand the load bearing capacity of the composite films, 

microhardness tests were also carried out on Si/UHMWPE films with different hard 

intermediated layers using Shimadzu-HMV automatic digital microhardness tester. 

The microhardness test was performed using a Vickers indenter (manufactured by 

Gilmore Diamond Tools, Inc) under a test load of 10 gf and a dwell time of 15 

seconds. 

 

5.1.4  Friction and wear tests 

Friction and wear tests were carried out on a custom-built ball-on-disc type 

tribometer (Figure 5.2). A 4-mm diameter silicon nitride (Si3N4) ball (Vickers hardness 

= 1500 Hv, from supplier’s data) was used as a stationary counterface whereas the 

sample coated with UHMWPE film acted as the disc. The test radius was ~ 1 mm with 

a fixed disc rotational speed of 500 rpm (linear relative speed at the sliding contact = 

0.052 m/s). During the sliding tests, the vertical and lateral displacements of the force 

sensing cantilever holding the ball were carefully measured using laser instruments 

(MTI Instruments Inc., New York, USA). These displacement values were then 

converted to forces (normal and frictional) using a calibration chart. The sensitivity of 

the laser instrument is 0.5 µm which is equivalent to a force of 0.125 mN according to 
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our calibrations. In this study, the wear life of each sample is defined as the number of 

cycles when the coefficient of friction exceeds 0.3 or large fluctuations of the 

coefficient of friction occur continuously, whichever happens earlier. Energy 

dispersive spectroscopy (EDS) (Hitachi S4300 FESEM/EDS system) tests were used 

to identify the presence of Si peak on the wear tracks in order to confirm the failure of 

the sample. The tribological tests were conducted in a class-100 clean booth 

environment at a temperature of 25 ± 2 ̊C and a relative humidity of 55 ±  5 %. The 

reported friction and wear data are averages of at least three repeated tests.  

 

 

 

 

 

 

 

 

 

 

Figure 5.2: A ball on disc tribometer with two laser sensors. 
 

5.1.5  Scratch tests 

A 2 µm radius diamond tip was used to conduct scratch tests on every sample 

in order to compare the adhesion strength and load carrying capacity of the samples. 

The diamond tip was indented into the UHMWPE film under an increasing applied 

Laser 
displacement 
sensors 
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load from 10 mN to 100 mN with an increment of 10 mN. The scratching velocity and 

the linear scratch distance were fixed at 0.1 mm/s and 5 mm, respectively. After the 

scratch test, the scratches were studied under an FESEM in order to observe the 

surface failure mechanisms such as the generation of debris particles or delamination 

of the film. Before taking FESEM images, gold coating was performed on the tested 

polymer films at 10 mA for 40 seconds (JEOL, JFC-1200 Fine Coater). EDS (energy 

dispersive spectroscopy) tests were conducted on the scratches on samples with gold 

coating to record carbon and silicon peaks.  

 

5.2  Results and Discussion 

5.2.1  Surface analysis 

The surface wettability of the film can be determined by measuring the water 

contact angle which is an important parameter for better adhesion between the polymer 

film and the substrate.  Greater hydrophilic surface generally can provide better 

adhesion of the film to the substrate and higher wear durability. However, at the same 

time, this hydrophilic surface tends to attract more water molecules from atmosphere. 

The presence of water molecules can, on the other hand, reduce the adhesion strength 

[O’Brien et al. 2006] of the film to the substrate. The relationship between surface 

wettability and wear durability will be discussed in next Chapter in detail. In addition 

to surface wettability, the hardness of the substrate is also an important factor in 

determining the tribological properties of composite films as it can provide better load 

carrying capacity. 
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The water contact angle and nanoindentation hardness values of different hard 

intermediate layers are provided in Table 5.1. The water contact angle of bare Si 

shows 21̊  that indicates very hydrophilic nature. The contact angles of all the rest 

coatings are in the range of 68̊  - 81˚. Within this range, the effect of contact angle 

(surface wettability) on the adhesion strength between UHMWPE film and the 

substrate is assumed to be comparable. In the presence of UHMWPE as top layer, all 

composite films show a contact angle of 91˚. The water contact angle for the Si3N4 ball 

was measured as 70˚.  

 
Table 5.1: Water contact angles and nanohardness for different intermediate hard layers. 

 
Interface Contact angle (˚) Nanohardness (GPa) 

Bare Si 21 12.4 

Si/CrN 80 13.5 

Si/DLC15 79 15 

Si/TiN 68 24 

Si/DLC57 81 57 

Si/DLC70 80 70 

 
  

Bare Si and Si/CrN have the lowest hardness values of 12.4 GPa and 13.5 GPa 

respectively. Increasing hardness values were observed for DLC15, TiN, DLC57 and 

DLC70 films as 15 GPa, 24 GPa, 57 GPa and 70 GPa respectively. The suffix 

mentioned in various DLCs represented their respective hardness values. The 

nanoindentation hardness of the UHMWPE film was measured as 35 MPa for all 

samples regardless of the intermediate layers and the variation was within the 

measurement errors where the indentation depth was approximately 400 nm. This 
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shows that in nanoindentation test there is no substrate effect in the measurement of 

nano-mechanical properties of several micron thick polymer films.   

The microhardness of the composite data in Table 5.2 also confirms that the 

film with harder intermediate layer provides higher overall hardness and hence better 

load carrying capacity. Consistent with the nanoindentation hardness of the 

intermediate layers, there is considerable increase in the microhardness of the 

composite films with the DLC57 and DLC70 intermediate layers. Obviously, this 

increase in microhardness is arising from the substrate effect as the depth of 

indentation in microhardness is large [Buckle 1973, Ross et al. 1987, Lebovier et al. 

1989, and Manika and Maniks 1992].  

 
 
Table 5.2: The microhardness, critical loads in scratching and wear lives of 4~5 μm thick UHMWPE 

films with different intermediate hard layers. The applied load used for wear life 
determination is 40 mN. 

 
Interface Microhardness (HV) Critical load (mN) Wear durability (cycles) 

Bare Si/UHMWPE 11.2 ± 1 20 1,000 

Si/CrN/UHMWPE 11.4 ± 1 20 2,000 

Si/DLC15/UHMWPE 12.5 ± 0.8 30 35,000 

Si/TiN/UHMWPE 15.4 ± 1.7 60 >300,000 

Si/DLC57/UHMWPE 23 ± 1.7 60 >300,000 

Si/DLC70/UHMWPE 30.7 ± 1.9 80 >300,000 
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5.2.2  Friction and wear results on hard intermediate layers 

 In order to understand their individual performances, the friction and wear tests 

were conducted on all hard layers used before depositing UHMWPE film onto them. 

Figure 5.3 shows the typical graphs of the coefficient of friction versus the number of 

sliding cycles in the sliding tests with an applied load of 40 mN. Data show that except 

for DLC70, the friction of all other hard films increased above 0.3 within 50-400 

number of sliding cycles which was considered as film failure by the current 

definition. Si/CrN and Si/DLC15 layers have shown higher coefficients of friction and 

failed within 50 cycles and 200 cycles, respectively, whereas Si/TiN and Si/DLC57 

have a wear durability of nearly 400 cycles. In all cases, the wear of the silicon nitride 

ball was observed and a clear wear track was seen on the film indicating wear of the 

film as well. DLC70 film gave very low coefficient of friction and also the wear life 

was much longer than for other hard films. However, even for this film, the maximum 

life was only ~ 11,000 after which there were large fluctuations in the coefficient of 

friction reaching as high as 0.25. The silicon nitride ball and the film showed wear 

even in this case.  The initial coefficient of friction and wear durability are also 

summarized in Table 5.3.  
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Figure 5.3: The variation of coefficient of friction with respect to the number of sliding cycles for 
Si/CrN, Si/DLC15, Si/TiN, Si/DLC57 and Si/DLC70. 
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Table 5.3: The initial coefficient of friction and wear durability of different intermediate layers. The ball 
and the film are worn at failure in all cases. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4:  The optical images of Si3N4 balls after sliding against (a) CrN, (b) TiN, (c) DLC57 

and (d) DLC70 films with respective number of cycles mentioned in Table 5.3. The 
scale bars are 100 μm. 

 

Sliding pair Initial coefficient of 

friction 

Wear durability 

(Cycles) 

Remark at failure 

CrN film – Si3N4 ball 0.25 ± 0.15 50 CoF is above 0.3 

DLC15 film – Si3N4 ball 0.14 ± 0.11 200 CoF is above 0.3 

TiN film – Si3N4 ball 0.13 ± 0.05 400 CoF is above 0.3 

DLC57 film – Si3N4 ball 0.18 ± 0.05 400 CoF is above 0.3 

DLC70 film – Si3N4 ball 0.05 ± 0.018 11,000 Occurrence of large fluctuations 

between 0.03 and 0.25 

(a) (b) 

(c) (d) 
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5.2.3 Friction and wear results of UHMWPE film with different hard intermediate 

layers 

The tribological properties of the UHMWPE films coated onto different hard 

layers are shown in Figure 5.5. At the start of the sliding, the initial coefficient of 

friction is mostly related to the shear strength of the UHMWPE film and is in the range 

of 0.08~0.13 for all the composite films. During the test, the coefficients of friction of 

Si/UHMWPE and Si/CrN/UHMWPE are above 0.3 when the sliding reaches 1,000 

cycles and 2,000 cycles, respectively. This early failure could be related to the 

hardness of the intermediate layer. Though UHMWPE has self-lubricating property 

and can reduce the coefficient of friction, it is easy to be penetrated in its coated form 

owing to its softness. The easy penetration of the counterface ball increases the real 

area of contact and the amount of polymer peeled out from the polymer film increases 

as well. The results suggest that the substrates with lower hardness limit the wear life 

of the composite film. When UHMWPE is coated onto a harder layer (e.g. 

Si/DLC15/UHMWPE), the wear life extends to 50,000 cycles. With further increase in 

the hardness of the intermediate layer as in Si/TiN/UHMWPE, Si/DLC57/UHMWPE 

and Si/DLC70/UHMWPE, the composite films did not show any sign of failure till 

300,000 cycles of sliding when the experiments were stopped. The results confirm that 

higher hardness of the intermediate layers provides better penetration resistance to the 

softer UHMWPE film and reduces the contact area of the ball and promotes wear 

durability [Minn and Sinha 2008 a].  
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(b) 

Figure 5.5: (a) Coefficients of friction and (b) wear lives of Si substrate coated with different 
composite films. The applied load was 40 mN and the rotational speed was 500 rpm 
(linear speed = 0.052 m/s). 

 

Experiments stopped 
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5.2.4  Polymer transfer mechanism 
 

The polymer transfer mechanism during sliding between the ball and the 

polymer film is an important phenomenon as the transfer film can greatly influence the 

friction and wear characteristics. When a hard ball is slid against a soft UHMWPE 

film, the transfer film will eventually be formed on the ball. At this stage, the sliding is 

between the polymer film and the transfer film on the ball. Thus, because of the self-

lubricating property of UHMWPE, in the beginning of the transfer process, the shear 

stress will reduce further and so will the coefficient of friction [Makinson and Tabor 

1964, Briscoe 1981, Bahadur and Tabor 1984, Blanchet et al. 1993 and Bahadur 

2000].  

As the sliding continues, the polymer will deform plastically and more polymer 

debris will accumulate on the ball (counterface) which in turn widens the wear track 

and increases the friction gradually. The material transfer process is studied under an 

optical microscope and the optical images of the balls and the wear tracks for 

Si/TiN/UHMWPE, Si/DLC57/UHMWPE and Si/DLC70/UHMWPE films are shown 

in Figure 5.6. The sliding test conditions were fixed as 40 mN applied load, 500 rpm 

sliding speed and 300,000 sliding cycles. The transferred polymer consists of lumps 

that seem to be from the asperities and the top layer of the film which were sheared by 

the ball. The lumps from Si/TiN/UHMWPE (which has lower hardness than the other 

two composite films) are larger and thicker. The amount of polymer transferred is 

directly related to the track width as the polymer has been pulled out from the track. It 

is obvious that, because of its lower hardness, TiN layer provides lower penetration 

resistance to the UHMWPE film in comparison to DLC57 and DLC70 layers. As a 
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consequence, the contact area or track width on Si/TiN/UHMWPE film becomes 

larger with greater polymer transfer.  

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Optical microscopy images of (a) Si/TiN/UHMWPE, (b) Si/DLC57/UHMWPE and (c) 
Si/DLC70/UHMWPE films (first column) after sliding against respective Si3N4 balls 
(second column) for 300,000 cycles where the normal load is 40 mN and the linear 
sliding speed is 0.052 m/s. The vertical or horizontal scales correspond to 100 μm. 

 

(a) 

(b) 

(c) 
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However, harder intermediate layers (such as Si/DLC57/UHMWPE and 

Si/DLC70/UHMWPE) have better ability to provide penetration resistance and reduce 

the contact area. Hence, the amount of polymer transfer is less with smaller contact 

area.  It can be seen that the lumps of polymer transfer is less and thin (Figures 5.6 b 

and c).  

 

5.2.5  Critical load in scratch tests and film adhesion 

 For a better understanding of the supportive role of different hard intermediate 

layers on the tribological properties of top UHMWPE film, scratch test was conducted 

using a 2 μm diamond tip at a fixed scratching velocity of 0.1 mm/s and a scratching 

distance of 5 mm. The applied load was varied from 10 mN to 100 mN with an 

increment of 10 mN as the critical loads required to peel the top UHMWPE film can 

vary with different hard intermediate layers. In this study, the critical load is defined as 

the applied normal load when the film fails during scratching exposing the 

intermediate layer and the substrate.  

 

 

 

 

 

 

 
Figure 5.7: The FESEM image of a scratch on Si/DLC70/UHMWPE where the normal load was 

80 mN and the scratching velocity was 0.1 mm/s. The Si peak seen in the EDS 
indicates film failure due to scratching. 

 

EDS 
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The failure of the film is confirmed by observing the debris shape originating 

from the film and by measuring the Si peak inside the scratches using EDS. Because of 

the lower  thickness of the intermediate layers used in this study (50 nm), it is difficult 

to measure the peaks of the elements such as Cr, N and Ti when the film fails. And 

hence, Si peak is used as a reference peak to indentify polymer film failure from the 

substrate. A summary of the critical loads of UHMWPE films with different hard 

intermediate layers is provided in Table 5.2. It is found that the critical loads of 

Si/UHMWPE and Si/CrN/UHMWPE are the lowest at 20 mN. The critical load of 

Si/DLC15/UHMWPE increased to 30 mN. Higher critical loads were found for 

Si/TiN/UHMWPE and Si/DLC57/UHMWPE as 50 mN and 60 mN respectively. For 

Si/DLC70/UHMWPE film, the high intensity of Si peak was observed when the 

applied load was 80 mN; a 4 times increase over bare Si as the substrate. An FESEM 

image of Si/DLC70/UHMWPE film where the applied load was 80 mN is shown in 

Figure 5.7. Clear signs of severe plastic deformation with brittle debris were produced 

at both edges of the scratch and the debris at the centre of the scratch were Si 

fragments, as confirmed by EDS (see Figure 5.7 inset). This brittle Si debris release 

was observed for all samples when the films failed by scratching.  

The critical loads of the films are consistent with their respective wear lives as 

presented in Table 5.2. The critical loads of Si/UHMWPE and Si/CrN/UHMWPE are 

the lowest and their wear lives are 1,000 cycles and 2,000 cycles respectively. The 

critical load of Si/DLC15/UHMWPE is 30 mN and its wear life extends to 35,000 

cycles. The critical loads of the rest three films are 60 mN (for Si/TiN/UHMWPE and 
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Si/DLC57/UHMWPE) and 80 mN (for Si/DLC70/UHMWPE) and they did not fail till 

300,000 cycles when the experiments were stopped.  

 

5.2.6 Friction and wear results of Si/TiN/UHMWPE, Si/DLC57/UHMWPE and 

Si/DLC70/UHMWPE films at higher normal load 

 To facilitate a better understanding of the tribological performances of the best 

three films, the applied load was increased to 70 mN. The friction and wear data of 

these three films are shown in Figure 5.8. A sharp increase in the coefficients of 

friction for Si/TiN/UHMWPE and Si/DLC57/UHMWPE films is observed in early 

cycles and their wear lives are 8,000 cycles and 22,000 cycles respectively. Large 

amount of lumpy polymers pulled out from the film is found around the contact point 

of the ball in both cases. The coefficient of friction of Si/DLC70/UHMWPE film 

gradually increases with the number of sliding cycles and reaches above 0.3 after 

120,000 cycles. The hardest intermediate layer (Si/DLC70) still provides maximum 

wear life. When the applied load is increased to 70 mN, the contact radius becomes 

larger and then the shear stress force is largely determined by the shear property of the 

composite film [Arnell 1990]. As a result, the coefficient of friction increases and the 

wear durability of all composite films are shortened, as would be expected.  

 

5.2.7  Effects of PFPE overcoat on composite films  

 In order to increase the wear lives of the composite films by further reducing 

the shear stress, PFPE was applied as a top lubricant on UHMWPE film. PFPE with its 

presence of fluorine is a very effective nano-lubricant which can reduce friction and 



Chapter 5: Tribology of UHMWPE Film with Different Hard Intermediate Layers 

 

 96 

increase wear life of a polymer film [Satyanarayana and Sinha 2005]. Friction tests 

were conducted on Si/Ti/UHMWPE/PFPE, Si/DLC57/UHMWPE/PFPE and 

Si/DLC70/UHMWPE/PFPE samples with an applied normal load of 70 mN and at a 

rotational speed of 500 rpm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8:  (a) Coefficient of friction and (b) wear life of Si substrate coated with different 
composite layers (as mentioned in the figures). The applied load was 70 mN at a 
rotational speed of 500 rpm (linear speed = 0.052 m/s). 
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With PFPE overcoat, none of the three films failed till one million cycles when the 

experiments were stopped. UHMWPE film used in this study has no reactive chemical 

group and it is not expected to form any chemical bonding between UHMWPE and 

PFPE. It is assumed that PFPE molecules are trapped in the valleys of the UHMWPE 

film [Satyanarayana et al. 2006]. PFPE over-coated layer provides more hydrophobic 

property with a water contact angle of 102̊. High contact angle means lower surface 

energy which in turn reduces the adhesion between the ball and the film (thus, no 

polymer transfer to the silicon nitride ball counterface).  

The optical images of the balls and the films after friction tests are shown in 

Figure 5.9. The images of the ball surfaces do not show any significant amount of 

polymer transfer. During the sliding, some PFPE molecules can transfer to the ball and 

provide lubrication. Another advantage of PFPE is its thermal stability and it can 

withstand high frictional heat generated at the interface without being degraded. In 

fact, the presence of PFPE molecules at the interface results in less frictional heating 

because of the overall low coefficient of friction (~ 0.07). The low friction and wear 

resistance characteristics of PFPE coated films are seen even after one million sliding 

cycles at the highest applied normal load used.  
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Figure 5.9:  Optical microscopy images of (a) Si/TiN/UHMWPE/PFPE, (b) 
Si/DLC57/UHMWPE/PFPE and (c) Si/DLC70/UHMWPE/PFPE films (first column) 
after sliding against respective Si3N4 balls (second column) for one million sliding 
cycles. The ball surfaces show transfer of PFPE molecules but very little of 
UHMWPE. The applied load was 70 mN and the linear sliding speed was 0.052 m/s. 
The vertical and horizontal scales correspond to 100 μm. 
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5.3  Summary 

 The tribological properties of UHMWPE film (thickness of 4~5 μm) coated 

onto five different hard intermediate layers (CrN, DLC15, TiN, DLC57 and DLC70) 

with Si as the substrate are studied using a ball-on-disc method. The top UHMWPE 

film reduces the shear stress and the coefficient of friction because of its self-

lubricating property while the hard intermediate layers provide higher load carrying 

capacity that can increase the wear durability by several folds to orders of magnitude. 

The wear life of UHMWPE composite film is directly related to the hardness of the 

intermediate layer as higher hardness provides higher wear life. The lowest hardness 

layer, bare Si/UHMWPE, has a wear life of 1,000 cycles whereas the higher hardness 

layers, Si/TiN/UHMWPE, Si/DLC57/UHMWPE and Si/DLC70/UHMWPE have 

shown the wear lives of more than 300,000 cycles at an applied normal load of 40 mN 

and a sliding speed of 0.052 m/s. The critical loads from scratch tests are also 

consistent with the tribological test results, as Si/UHMWPE failed at 20 mN whereas 

Si/DLC70/UHMWPE, with the hardest intermediate layer, at 80 mN. Based on the 

critical load data, the friction and wear tests are conducted on the best three composite 

films at a higher applied load of 70 mN. The influence of hard intermediate layer on 

the wear life is still observed as the wear lives of Si/TiN/UHMWPE, 

Si/DLC57/UHMWPE and Si/DLC70/UHMWPE are obtained as 8,000 cycles, 22,000 

cycles and 120,000 cycles, respectively. Over-coating with few nanometers thickness 

of PFPE as a top layer on these three films further reduces the coefficient of friction (~ 

0.07) and extends the wear lives to more than one million cycles under an applied 

normal load of 70 mN and a sliding speed of 0.052 m/s. 
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 The present composite films will find applications in many tribological 

components such as bearing and gears where extremely high wear life is desirable with 

low and stable coefficient of friction.   
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Chapter 6 

Effects of Interfacial Surface Energy on the Tribology of 

UHMWPE Film on Si 

Despite the wider use of polymers as protective coating film in industrial 

applications, the wear durability is relatively low compared to the desired product 

lifespan. One of the main properties that affect the wear durability is the adhesion 

strength between the polymer film and the substrate. It is very difficult to obtain strong 

adhesion between UHMWPE and many substrates since, like most of the polymers, 

UHMWPE has no functional groups unless it has been chemically functionalized. The 

poor adhesion strength can lead to rapid detachment of the polymer film from the 

substrates. It is necessary to give a pre-treatment to the substrate in order to enhance 

adhesion [Ryntz 1994]. The surface wettability of the substrate is an important 

parameter to determine the adhesion of a polymer film. The presence of moisture 

contents on a substrate can also change the surface energy of the substrate that strongly 

affects the adhesion strength of a coating [O’Brien et al. 2006]. Moy and Karasz 

[1980], Lee and Peppas [1993] and Nogueira et al. [2001] have shown that the 

moisture content on the substrate lowers the glass transition temperature of the 

coatings that deteriorates the mechanical properties of the films. Wong and Broutman 

[1985] and Xu and Ashbee [1991] have proved that the presence of moisture on a 

substrate can create cracks or voids in the coatings. As a consequence, the adhesion 

loss between the coatings and the substrate is inevitable [Armstrong and Wright 1993 
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and Mansfeld et al. 1998]. Yoon et al. [1997] have studied the adhesion force between 

a glass sphere and a silica plate by varying the surface hydrophobic nature with OTS 

(octadecyltrichlorosilane). Their results show that the adhesion force increased with 

increasing hydrophobicity of the substrate. It is obvious from the literature that the 

surface wettability is an important factor in determining the adhesion strength of a 

polymer film to a substrate. 

In this Chapter, friction and wear durability of ultra-high molecular weight 

polyethylene (UHMWPE) is studied with a variation in the surface energy or surface 

wettability of the Si substrate. Different interfaces (different surface wettabilities) were 

first prepared as the first layer on the Si substrate followed by the coating of the 

UHMWPE (6 μm thickness) film as the second layer. The friction and wear tests were 

conducted on every sample with different interfaces including on one control sample 

without any interface modification (i.e. bare Si coated with UHMWPE). The adhesion 

strengths at the polymer/substrate interfaces were determined by scratch tests on all 

samples with various applied normal loads. 

 

6.1  Experimental procedures 

6.1.1  Materials 

3-aminopropyltrimethoxysilane (APTMS) and Octadecyltrichlorosilane (OTS), 

obtained from Aldrich Inc., were used without further purification. The chemical 

formulae of APTMS and OTS are H2N(CH2)3Si(OCH3)3 and CH3(CH2)17SiCl3, 

respectively. Toluene (99.5% anhydrous) was used as the solvent for the preparation of 
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APTMS and OTS solutions. Decahydronapthalin (decalin) was used as the solvent to 

dissolve UHMWPE powder for dip-coating purpose. 

 

6.1.2  Preparation of different interfaces on Si substrate 

The detailed cleaning procedure of Si substrate is mentioned before. The 

cleaned Si substrates were heated in an oven for 1 hour at 100 ˚C in order to remove 

water content and are referred as heated Si in this study. The hydrogen terminated 

silicon (Si-H) substrates were obtained by immersing cleaned Si substrates into a 

dilute aqueous solution of hydrofluoric acid (2 vol%) for 30 seconds. After that, Si-H 

substrates were rinsed with distilled water for 1 minute and dried with nitrogen gas. 

In this study, two well known self-assembled monolayers (ATPMS and OTS) 

have been chosen as surface modifiers for the purpose of changing the surface 

wettability of the Si substrates. APTMS and OTS SAMs were formed on the Si 

substrates by immersing the cleaned Si substrates into 3 mM and 5 mM concentrations 

of APTMS and OTS solutions, respectively, for 5 hours each. After that, the SAMs 

coated substrates were ultrasonically washed for 7 minutes each with toluene and 

methanol to remove any physisorbed SAM molecules (that could remain on Si sample) 

and finally, the samples were dried with nitrogen gas. 

The thickness of the UHMWPE film after heat treatment was confirmed as 6 ± 

2 μm. A schematic diagram of UHMWPE coating on the Si substrates with different 

interfaces is shown in Figure 6.1.   
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Figure 6.1: A schematic diagram of the Si/UHMWPE sample with different interfaces. Interfacial 

conditions used were bare Si (i.e. no interface modification), heated Si, APTMS, 
hydrogen-terminated Si and OTS. 

 

6.1.3  Surface characterizations 

The surface wettabilities of different interfaces on Si substrate were determined 

by measuring the contact angles with a VCA Optima Contact Angle System (AST 

product, Inc., USA). The contact angles are reported as an average of five independent 

measurements on the samples using a distilled water droplet of 0.5 μL. The data scatter 

is within ± 3˚. The nanoindentation and XPS tests were conducted according to the 

procedures mentioned in Sections 3.3.3 and 3.3.4.    

 

6.1.4  Friction and wear tests 

The friction and wear tests were conducted on a ball-on-disc tribometer 

(detailed description are available in Section 3.3.7). A 4 mm diameter silicon nitride 

(Si3N4) ball was used as a stationary counterface whereas the coated Si substrate acted 

as rotating disc. The normal load and the rotational speed were 40 mN and 500 rpm, 

respectively. The test radius was 2 mm giving a linear sliding speed of 0.1 m/s. The 

initial coefficient of friction is taken as an average of the first 4 seconds of sliding. The 

wear life of each sample is defined as the respective number of cycles when the 

coefficient of friction exceeds 0.3. The friction and wear data are reported as an 

Si 
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average of three repeated tests. After the friction tests, an optical microscope is used to 

study the transfer films and the wear track morphology.  

 

6.1.5  Scratch tests 

As a comparison of adhesion strength, a 2 μm tip radius (diamond tip) was 

used to conduct a scratch test on every sample. The scratching velocity and the linear 

scratch distance were fixed at 0.1 mm/s and 1 cm, respectively. The applied normal 

load was varied from 10 mN to 70 mN with an increment of 10 mN. The surface 

topography of the scratches was observed under field emission scanning electron 

microscopy (FESEM) as described in Section 3.3.5.3.  

 

6.2  Results and discussion 

6.2.1  Surface characterizations (nanoindentation and XPS peaks) 

Nanoindenation tests were performed on the coated films for obtaining the 

hardness and the elastic modulii of the polymer films. The measured hardness and 

elastic modulus were 35 MPa and 1 GPa, respectively, for all samples regardless of the 

interface and the variation was within the measurement errors. The penetration depth 

was approximately 400 nm. 

The wide scan spectrum of XPS results of bare Si, heated Si, Si/APTMS, Si-H 

and Si/OTS samples before UHMWPE coating are provided in Figure 6.2. As can be 

seen, the C1s peaks on bare Si, heated Si and Si-H is due to the organic contaminants 

which could not be removed during the piranha treatment or were adsorbed from the 

atmosphere before the XPS tests. The highest O1s peak for bare Si indicates the 
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presence of oxide and moisture on the surface. The O1s peak for heated Si is lower 

than that in bare Si. The possible reason is that the moisture, which can increase the 

O1s peak, is removed during the heat treatment of Si. The hydrogen termination on Si 

can prevent the formation of oxide and as a result the O1s peak is the lowest for the Si-

H specimen. Because of the amine terminal group, the N1s peak can be seen in the 

Si/APTMS surface. The C1s concentration is the highest in Si/OTS due to its long 

hydrocarbon chain. The XPS results confirm the successful formation of different 

layers onto the Si substrate. Any chemical bonding between the modified Si substrates 

and the polymer films in a dip-coating method is not expected as the UHMWPE used 

in present tests was non-functionalized. For additional confirmation, XPS tests were 

conducted to study the chemical bonding for all samples. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.2: XPS wide spectrum for (a) bare Si, (b) heated Si, (c) Si/APTMS, (d) Si-H and (e) 

Si/OTS surfaces. 
 

In order to remove chemically-unbonded UHMWPE coating, the UHMWPE 

coated samples were dipped into the decalin solvent and heated in an oven at 250 ̊ C 
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for 15 minutes and ultrasonically cleaned in acetone for 15 minutes. The EDS tests 

were conducted on the cleaned samples and the original bare Si in order to compare 

the Si peak and the results showed that the intensities of the Si peak were nearly the 

same for both the surfaces. 

The XPS tests were conducted on the cleaned samples and there was no 

additional or extra peak of any chemical bonding except Si and UHMWPE peaks. The 

presence of the Si peak is due to the uncovered Si substrate and the UHMWPE peak is 

due to residual polymer. These tests have proved that UHMWPE molecules do not 

chemically bond with the Si substrate in the dip-coating process as followed in this 

study. Hence, all interactions between UHMWPE and the Si substrate are physical or 

mechanical in nature.  

Thus, it is confirmed that the different interfacial layers have no effect on the 

hardness and the elastic modulus of the top surface of UHMWPE film and there is no 

chemical bonding between different interfacial layers and the UHMWPE film. 

 

6.2.2  Friction and wear results 

The tribological properties of the UHMWPE film with different interfaces on 

Si substrate are shown in Figures 6.3 (a) and (b). The initial coefficients of friction for 

all samples are nearly the same at 0.17, since the uppermost layers for all the samples 

are UHMWPE films. As the top layer is the same, the wear life of each sample is 

determined entirely by the properties of the interfaces. Three types of interfaces based 

on surface wettability: very hydrophilic (Si), very hydrophobic (Si/OTS) and an 
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intermediate wettability between these two extremes were selected to compare the 

wear durability. 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 6.3: Friction and wear properties of UHMWPE film with different interfaces where the 
normal load is 40 mN and sliding speed is 500 rpm (0.1 m/s). (a) Typical friction 
traces as a function of the number of sliding cycles for all samples. (b) Consolidated 
wear life data for all samples. 
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The coefficients of friction of Si/UHMWPE and Si/OTS/UHMWPE did not 

increase slowly but abruptly. The sudden change in the coefficient of friction indicates 

that within a small number of sliding cycles, a large amount of polymer is pulled out 

from the substrate and gets transferred to the ball surface leading to the early failure of 

the film. As a result, when the sliding continues, first, the polymer from the ball may 

get transferred back to the substrate that increases the roughness and, second, the 

lumps of polymer in the ball make the wear track very uneven.  

The coefficient of friction increases sharply within a few sliding cycles and 

wear initiates due to the presence of exposed Si surface. The wear lives of the films 

with the most hydrophilic (Si), and the most hydrophobic (Si/OTS), 

substrate/interfaces are 1,000 cycles and 6,500 cycles, respectively. Due to the 

presence of moisture on hydrophilic Si substrate, it is seen that the UHMWPE film 

does not strongly adhere to bare Si. The possibility of the presence of condensed 

moisture on a surface decreases with increasing water contact angle [O’Brien et al. 

2006]. Though the highly hydrophobic Si/OTS substrate has less moisture content, the 

UHMWPE solution is difficult to coat onto Si/OTS due to non-wettability of the 

substrate. It is hard to obtain a uniform coating and some patches of polymer are 

clearly seen on the Si/OTS/UHMWPE. This indicates that very low and very high 

surface energies (water contact angles) of Si cannot provide sufficient adhesion to 

UHMWPE in order to enhance the wear durability. In contrast to bare Si and Si/OTS 

substrates, the coefficients of friction of the heated Si/UHMWPE, 

Si/APTMS/UHMWPE and Si-H/UHMWPE samples increased rather slowly with the 

number of cycles of disc revolution. Heated Si/UHMWPE has a wear life of 
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approximately 60,000 cycles. Since the water contact angle of heated Si is higher than 

that of bare Si, heated Si has less attraction for water molecules and as a result the 

adhesive strength and the wear resistance of the film increase significantly. After 

increasing the surface wettability further, the Si/APTMS/UHMWPE (water contact 

angle of 52˚) and Si-H/UHMWPE (water contact angle of 71˚) films have wear 

durability of 100,000 cycles and 250,000 cycles, respectively. The wear durability 

increases with increasing water contact angle of the substrates up to an optimum value 

of the water contact angle. Beyond that value, the wear durability decreases again as 

observed in the case of Si/OTS/UHMWPE film. The optimum wear life is found when 

the surface wettability is approximately 71˚ (Si-H). 

The investigation of the adhesive strength between UHMWPE and different 

interfaces is studied and explained in Section 6.2.6 using scratch tests. 

 

6.2.3  Study of the wear track morphology 

The interfaces with different surface energies can be grouped into two. One 

group has either very hydrophilic or very hydrophobic, and, the other with interfaces in 

between these two extremes. In this section and the following section, the results of 

one sample from these two groups will be compared. The wear tracks on the 

Si/UHMWPE and Si-H/UHMWPE films after 1000 cycles are shown in Figures 6.4 

(a) and (b). The tests were conducted under a normal load of 40 mN with 500 rpm (0.1 

m/s). The wear track on Si/UHMWPE (Figure 6.4 a) shows a clear wear groove and 

some small debris particles. The small particles either remain on the wear track or get 

transferred to the ball surface. Continuous sliding over the same track induces further 
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wear of the substrate and high friction [Fusaro 1982]. If the adhesion strength between 

the polymer and the interface is strong enough, the probability of the polymer getting 

pulled out from the substrate is less.  

 

 
 

 

 
 

 

 
Si/UHMWPE 

 
  

 
Si-H/UHMWPE 

 

Figure 6.4:  Optical microscopy images of (a) Si/UHMWPE film and (b) Si-H/UHMWPE film after 
sliding against Si3N4 ball for 1,000 cycles where the normal load is 40 mN and the 
sliding speed is 500 rpm (0.1 m/s).  (c) is the image of the ball after sliding against 
(a), and, (d) is image of the ball after sliding against (b). Solid arrows indicate the 
direction of sliding; white circles indicate the point of contacts. 
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substrate giving higher wear life to the polymer film. In fact this interface-film 

combination did not show any removal of the polymer but only sliding mark (due to 

ironing or flattening of the asperities of the polymer film) on the wear track (Figure 6.4 

b). Similarly, the ball surface for Si-H/UHMWPE is clear without the transfer of any 

wear debris. 

Figure 6.5 (a) shows the optical image of the wear track on the Si-

H/UHMWPE film after 250,000 cycles of sliding, which is the wear life of this film as 

defined in this study. The coefficient of friction at this point was 0.3. A clear wear 

track can be seen but there is no accumulation of loose wear debris or material pile-up 

along it. The central dark colored scratch mark on the track indicates deeper grooves. 

This type of wear track formation without wear is typical of the UHMWPE film, 

which indicates extensive plastic deformation in the very top thin layer of the film. The 

bulk of the film remains firmly attached to the substrate through the interface. 

 

 
 

 
 
 

 

Figure 6.5:  Optical microscopy images of (a) Si-H/UHMWPE film after sliding against Si3N4 ball 
for 250,000 cycles where the normal load is 40 mN and the sliding speed is 500 rpm    
(0.1 m/s).  (b) is the image of the ball after sliding against the film shown in (a). Solid 
arrow indicates the direction of sliding. The white cycle indicates the point of contact. 
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6.2.4  Optical microscopy: study of the transfer films 

Polymer transfer to the ball was studied with an optical microscope. Figures 

6.4 (c) and (d) show the polymer transfer to the balls that were slid against 

Si/UHMWPE and Si-H/UHMWPE after 1,000 cycles of sliding. It is obvious that 

extensive polymer transfer had taken place on the ball slid against the Si/UHMWPE 

film. The lumpy transfer films increase the roughness and the sliding becomes uneven 

in the contact zone causing further wear to take place [Weightman and Light 1986]. 

The thickness of the transfer polymer near the contact zone (1) is thinner than that 

away from the contact zone (2). The transfer films seem to be pushed away from the 

contact zone in the direction of the sliding. The thicker transfer film can block or 

impose resistance against the sliding, and at that stage the coefficient of friction 

sharply increases and the film fails. For a coated specimen, lumpy removal of 

materials from the substrate exposes the substrate (Si) to wear against silicon nitride 

ball at a very fast rate. 

The transfer films formed against the heated Si/UHMWPE, 

Si/APTMS/UHMWPE and Si-H/UHMWPE films are different from those formed 

against the Si/UHMWPE and Si/OTS/UHMWPE films. The transfer films of the 

former group showed elongated fibrous structures. These structures were formed by 

the asperities of the film while the bulk of the film was firmly attached to the substrate. 

There was no gross transfer of the film from Si to the silicon nitride ball. 

Figure 6.5 (b) shows the optical image of the counterface ball that was slid 

against the Si-H/UHMWPE film after 250,000 cycles, i.e. at the point of failure as 

defined by the coefficient of friction. The transfer polymer on the ball consists of some 
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fibrous structure and detached wear debris. No evidence of extensive polymer transfer 

film means that the counterface did not change throughout the test. Continuous sliding 

causes plastic deformation and accumulates more polymer debris, which in turn 

widens the wear track and increases the friction gradually. 

 

6.2.5  Effect of interfacial energy 

Five different interfaces (water contact angles) as substrates for the UHMWPE 

polymer coating were used in this study. Figure 6.6 shows a sketch of the interaction 

between the polymer molecules and the surfaces with hydrophilic, moderate surface 

energy and hydrophobic conditions. Since the presence of moisture is independent of 

the polymer coating [Vogt et al. 2004], its presence is mainly dependent upon the 

surface energy of the substrate prior to film deposition. Highly hydrophilic surface 

attracts a large number of water molecules that leads to low adhesion [O’Brien et al. 

2006] of the polymer molecules to the substrate. The samples with water contact angle 

and wear life are shown in Table 6.1.  
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Figure 6.6:  A diagrammatic model showing the interactions between the polymer molecules and 
the Si surface with different wettabilities as measured by water contact angle. θ1, θ2 
and θ3 represent relative water contact angles of the interfaces before polymer 
coating where θ1< θ2< θ3.  

 
 
Table 6.1: Water contact angles and wear lives for different interfacial modifications on Si. 
  

Interface Bare Si heated Si Si/APTMS Si-H Si/OTS 

Contact angle (º) 21 46 52 71 104 

Wear life (cycles) 1,000 60,000 100,000 250,000 3,000 

 

The water contact angles of bare Si, heated Si, Si/APTMS, Si-H and Si/OTS 

interfaces are 21˚, 46˚, 52˚, 71˚ and 104˚, respectively. Increasing the water contact 
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angle of the interface provides a strong adhesion between the substrate and the 

polymer film. As a consequence, the wear life increases with increasing water contact 

angle of the interfacial layer. However, when the surface is very hydrophobic (>100˚), 

the surface becomes difficult to wet and behavior of dewetting happens as soon as the 

sample is brought out of the UHMWPE solution. Some patchy or island type 

deposition is clearly seen on Si/OTS/UHMWPE. UHMWPE molecules cannot 

properly hold onto the substrate. As a result, there is lumpy transfer of the polymer to 

the counterface and the wear life of Si/OTS/UHMWPE is drastically reduced.  

 

6.2.6  Study of interfacial adhesive strength using scratch tests 

The adhesion strengths of UHMWPE films on different interfacial conditions 

were compared by scratch tests using a 2 μm diamond tip with different applied loads. 

The critical loads of the film were determined by measuring the Si peak inside the 

scratches using EDS. The scratch length was 1 cm and the scratching velocity was 0.1 

mm/s. 

 
Table 6.2:  The critical load as a function of different interfaces; the scratch length is 1 cm and the 

scratching velocity is 0.1 mm/s. 
 

Interface Bare Si heated Si Si/APTMS Si-H Si/OTS 

Critical load (mN) 20 40 40 70 20 

 

Table 6.2 provides the critical loads of samples where critical load refers to the 

applied normal load when the film fails during scratching. It is seen that the critical 

loads of Si/UHMWPE and Si/OTS/UHMWPE are the same at 20 mN. The FESEM 
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images of the scratches on the Si/UHMWPE and Si/OTS/UHMWPE films under the 

applied load of 20 mN are shown in Figure 6.7.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.7: The FESEM images of the scratches on (a) Si/UHMWPE and (b) Si/OTS/UHMWPE 

where the normal load is 20 mN and the scratching velocity is 0.1 mm/s.   
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The scratch on Si/UHMWPE (Figure 6.7 a) shows severe plastic deformation 

with polymer debris (breakage) at both edges of the scratch. There is a clear sign of 

debris particles coming from the Si substrate as they are fragments owing to brittle 

fracture. The EDS result, in fact, confirms that those brittle particles are Si debris. In 

the Si/OTS/UHMWPE film (Figure 6.7 b), pores or cracks are clearly visible which 

are formed by the delamination of the polymer from the surface during scratching. The 

high intensity of Si peak of EDS test on the pores (see inset) confirms that the 

UHMWPE film has failed along the centre line of the wear track. The Si substrate was 

also scratched by the sharp end of the diamond tip.  

The scratches on the heated Si/UHMWPE and Si/APTMS/UHMWPE films 

showed a similar trend. Their critical loads were higher. Neither pores nor cracks were 

seen on the scratches until the applied load reached 40 mN. Higher critical load means 

that the scratching resistance or the adhesion strength of UHMWPE film on the heated 

Si and Si/APTMS substrates, is higher than those on bare Si and Si/OTS. Although the 

critical load increases, some pores are clearly seen when the film has failed. The 

presence of pores is indicative of the detachment of the polymer from the substrate, 

which could be the main reason for film failure. 

For the Si-H/UHMWPE film, the high intensity of Si peak was observed when 

the applied load was 70 mN. However, no pores were found at the interface even at the 

critical load of 70 mN. This shows that the polymer film is still strongly attached to the 

Si-H interface and the adhesion strength is very strong compared with all other 

interfaces tested. Figure 6.8 shows the FESEM images of Si-H/UHMWPE where the 

applied loads were 20 mN, 40 mN and 70 mN.  
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The scratch, under the applied load of 20 mN (Figure 6.8 a), shows that the 

polymer film is very ductile and no wear debris particles are observed along the 

scratch. The scratch width increases with increasing applied load. Severe plastic 

deformation was obvious under higher loads. At 70 mN, some occasional brittle debris 

particles (Si, as confirmed with EDS) were observed on the track. After careful 

investigation along the scratch, no pores were found. That means, UHMWPE film was 

not pulled out or torn from the substrate. Therefore, the adhesion strength at the 

interface is much stronger than those shown for other interfaces.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.8 Continued to the next page… 
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Figure 6.8: The FESEM images of the scratches on Si-H/UHMWPE films where the normal loads 

are (a) 20 mN, (b) 40 mN and (c) 70 mN, and the scratching velocity is 0.1 mm/s.   
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Si/OTS/UHMWPE is the lowest (20 mN) and their wear lives are also the shortest. 

The critical load and wear lives of heated Si/UHMWPE and Si/APTMS/UHMWPE are 

moderate. The critical load of Si-H/UHMWPE is the highest (70 mN) and as a result, 

its wear life is the longest. It is interesting to note that strong adhesion of UHMWPE 

molecules on hydrogen terminated Si (Si-H) does not change the property of the 

polymer in any way. For example, the extensive plastic deformation in the very top 

layer of the polymer helps in providing low shear stress (low coefficient of friction) 

and no generation of debris particles. Thus, a combination of strong adhesion of 

UHMWPE and Si-H substrate and extensive plasticity in the top layer of the polymer 

film is responsible for very high wear life. 

 

6.3  Summary 

The friction and wear properties of UHMWPE film on Si with different 

interfacial energies were determined using a ball-on-disc method. Though the initial 

coefficients of friction are the same, approximately 0.17, the wear life is strongly 

related to the surface wettabilities of the interfaces. The most hydrophilic interface, 

Si/UHMWPE, has a wear life of 1,000 cycles whereas the most hydrophobic interface, 

Si/OTS/UHMWPE, has a wear life of 6,500 cycles. Between these extremes, heated 

Si/UHMWPE, Si/APTMS/UHMWPE and Si-H/UHMWPE have shown wear lives of 

60,000 cycles, 100,000 cycles and 250,000 cycles, respectively. The adhesion results 

studied by a scratch test were consistent with the friction and wear data. The critical 

loads for Si/UHMWPE and Si/OTS/UHMWPE are the same at 20 mN. The critical 

loads for heated Si/UHMWPE and Si/APTMS/UHMWPE are also the same at 40 mN, 
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whereas that of Si-H/UHMWPE is the highest at 70 mN. Except for the Si-H interface, 

the rest have shown some pores inside the scratches which clearly indicate inferior 

adhesion strengths of the polymer coatings. The final conclusion is that by simply 

modifying the surface wettability in an optimum range, the tribological performance of 

UHMWPE film can be increased by several orders of magnitude. Hydrogen 

termination of Si substrate currently works well with UHMWPE film for high wear 

durability. 
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Chapter 7 

Molecular Orientation, Crystallinity, and Topographical 

Changes in Sliding and their Frictional Effects for 

UHMWPE Film 

 

In the previous Chapters, different modification techniques of enhancing the 

tribological properties, especially the wear durability, of UHMWPE thin film on Si 

were presented. In fact, when the polymer film is applied in actual working 

environment, in addition to the interfacial bond strength there are many other factors 

that affect the friction property of the polymer film. For example, the sliding or rolling 

on polymer film is not always in uni-direction but bi-directional. The changes in the 

sliding direction can have great influence on the frictional properties. As UHMWPE 

film is semicrystalline, the molecular orientation and crystallinity can vary with the 

number of sliding cycles, especially in dry sliding. Not only from the application point 

of view but also from the scientific perspective, the understanding of these molecular 

and crystallinity changes with the number of sliding cycles and the effect of those 

changes on friction are very important to explore. In the present Chapter, these effects 

on friction behavior of UHMWPE film will be studied. 

Bulk UHMWPE has been widely used as a bearing material in total knee and 

hip joint replacement [Kurtz et al. 1999] and as a solid lubricant film [Satyanarayana 

et al. 2006 and Minn and Sinha 2008 a]. Though it has been extensively used, the 
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tribological and mechanical properties of this polymer still limit the lifespan of such 

load bearing applications. Many researchers have tried to improve the wear resistance 

of UHMWPE by means of different approaches. Among them, cross-link density is 

one of the ways to enhance the wear resistance of UHMWPE [Muratoglu et al. 1999]. 

Cross-link density promotes the resistance to plastic flow and lamellae alignment 

[Wang et al. 1997 and Edidin et al. 1999]. Providing treatments such as radiation 

[Muratoglu et al. 1999 and 2001] and ion-implantation [Shi et al. 2001 and Ge et al. 

2003] can increase the degree of cross-linking of the polymer. Simis et al. [2006] 

established the link between the mechanical properties and the microstructure in terms 

of crystalline mass fraction, lamellae size, and distribution. Sperling [2006] has also 

proved that the wear resistance of a polymer is affected by its mechanical properties 

which are related to the crystallinity of the polymer. These studies show that the 

crystallinity is one of the most important factors in determining the friction and wear 

properties of UHMWPE.  

However, it is also to be noted that when UHMWPE is used as a film, its 

crystallinity can be changed during the course of sliding process which in turn affects 

the friction and wear properties, especially in continuous sliding tests. Another factor 

that affects friction is the molecular orientation of the polymer film. The molecular 

orientation of bulk PTFE has been extensively studied by Tabor’s and Tanaka’s groups 

[Pooley and Tabor 1972, Tanaka and Miyata 1977] in the 1970’s in which they 

showed that the polymer molecules were oriented along the sliding direction during 

the course of sliding process. They also showed that when the sliding direction was 

perpendicular to the highly oriented polymer, the friction was remarkably increased. 
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However, they did not study how the friction would behave for example when the 

sliding direction was reversed. This Chapter will explore a deeper study of the friction 

of UHMWPE films in terms of changes in the crystallinity, molecular orientation, and 

micro-topography due to the sliding cycles and directions. 

 
7.1  Experimental procedures 

7.1.1  Materials 

Tetrahedral amorphous carbon, ta-C (non-hydrogenated DLC) was deposited 

on Si (100) wafers. The thickness of the DLC film is in the range of 50 nm and 

hardness is 57 GPa. UHMWPE film was coated onto a cleaned Si/DLC substrate by 

simple dip-coating. The cleaning and coating procedures have been explained in 

Section 3.2. The thickness of the UHMWPE film used was approximately 12.3 μm. 

 

7.1.2  Friction measurements 

The friction measurements were conducted on a custom built tribometer. The 

setup has been described in Section 3.3.7. A silicon nitride ball of 4 mm diameter with 

a surface roughness of 5 nm was used as the stationary counterface. The normal load 

of 40 mN was applied which gave a normal contact pressure in the range of 51.6 MPa 

calculated using Hertzian contact model. The test track radius and rotational speed 

were fixed at 1 mm and 500 rpm (0.052 m/s), respectively. In order to study the effects 

of the number of initial sliding cycles and the sliding directions on the frictional 

behavior of the polymer film, 10,000, 30,000, 50,000, and 100,000 sliding cycles were 

selected as different initial test cycles. After running different cycles, the experiments 

were stopped and the counter ball was replaced with a new one in order to diminish the 
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effects of the transfer film deposited on the ball during the initial sliding cycles. Then, 

the new friction tests were continued precisely on the same track in the same direction 

as the initial sliding in forward direction (denoted as FD) or in the reverse direction 

(denoted as RD). All experiments were carried out in a clean booth environment at a 

temperature of 25 ± 2 ˚C and a relative humidity of 55 ± 5%. The optical microscopy 

was used to examine the surface morphologies of the samples and the balls before and 

after the tests. All experiments were repeated at least three times and the averages of 

the data are reported. 

 

7.1.3  Nanoscratching and nanoindentation 

Nanoscratching and nanoindentation tests were carried out using a MTS Nano 

Indenter XP machine. The indenter for nanoscratching was a conical shape diamond 

tip with 90˚ cone angle and a tip radius of 5 μm. The applied load, the scratch velocity, 

and the scratch distance were 5 mN, 10 μm/s, and 50 μm, respectively. The scratching 

was conducted on the wear track after having done the sliding tests in both forward 

(FD) and reverse directions (RD). The main purpose of conducting nanoscratching is 

to examine localized frictional behavior in micrometer range and then to compare it 

with the ball-on-disc test data.  

A constant load of 40 mN with a standard Berkovich diamond tip was used for 

nanoindentation. For each indentation, loading time duration of 100 seconds followed 

by 10 seconds of holding time at the final depth of indentation and unloading 

(retracting of the tip) was set. Fifteen independent indentations were conducted and 

averages of their hardness were reported. The nanoindentation results provided 
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information on any changes in the mechanical properties of the film as a result of 

different sliding cycles. 

 

7.1.4  Measurement of molecular crystallinity of UHMWPE on the sliding track 

The percent crystallinity of UHMWPE on the wear tracks was measured using 

Fourier Transform Infrared Spectroscopy (FTIR, Spectrum 1000, Perkin Elmer Life 

and Analytical Sciences, Boston, MA, USA). The spectra were obtained with an 

accumulation of 16 scans on transmission mode with a spot size of 100 μm diameter. 

The crystalline peaks were observed at 729 cm-1 [Cole et al. 2000] and 719 cm-1 [Elliot 

1969 and Alves et al. 2005], respectively. The relative percentage crystallinity was 

calculated as the total area under the crystalline peaks (A and B) divided by the overall 

area (A, B, and C) [Davey et al. 2004], as shown in Figure 7.1. Five independent 

measurements were conducted on the track for each sample and the average values are 

reported in this paper. 

 
Figure 7.1: UHMWPE curve with amorphous and crystalline peaks using FTIR.   
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7.1.5  Wear track profilometry 

Surface roughness was measured by Tencor P-10 alpha step profiler using a 

diamond tip (2 μm radius) with a load of 2 μN. The scanning speed was 5 μm/s and the 

sampling rate was 100 Hz. The RMS roughness (rms) reported in this paper was taken 

from a scan length of 50 μm along the sliding track. 

 

7.2  Results 

A prior friction test was performed on the new UHMWPE film for the purpose 

of comparing the coefficients of friction before and after slidings. After sliding for 

different numbers of cycles, the counterface was replaced with a new ball in order to 

prevent the effects of the transfer films on the friction. During replacing the ball, the 

old ball was carefully replaced without moving the test location in order to obtain the 

friction precisely on the same track. As an additional confirmation of the exact 

location, the tracks were examined under an optical microscope after every test. There 

were no additional track confirming that all the friction data reported were recorded on 

the same track for different initial sliding cycles and in different sliding directions. 

 

7.2.1  Friction of UHMWPE film as a function of sliding cycles in the forward 

direction 

The coefficients of friction of UHMWPE film as a function of sliding cycles in 

the forward direction are shown in Figure 7.2. The initial coefficient of friction (FD) 

on new film was generally observed as less than 0.05. The coefficients of friction of 

10,000 cycles and 30,000 initial sliding cycles in the forward direction were 
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approximately in the range of 0.07-0.08. However, if a new counterface ball was slid 

against the surface of higher initial number of cycles such as 50,000 cycles and 

100,000 cycles, it is seen that the coefficient of friction drops to 0.05 or less. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2: Coefficient of friction of UHMWPE film plotted against cycles in forward direction. 

FD refers forward direction. 10000_FD means after sliding 10,000 cycles in forward 
direction, the counterface has been replaced with a new ball and continued on the 
same track in forward direction. 
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7.2.2  Friction of UHMWPE film as a function of sliding cycles in the reverse 

direction 

The coefficients of friction of UHMWPE film as a function of cycles in the 

reverse direction after different numbers of initial sliding cycles are shown in Figure 

7.3. The coefficient of friction on new film in the forward direction (FD) is provided 

for the purpose of comparison. When the sliding direction is reversed, the most 

significant observation is that all the friction data in the reverse direction are higher 

than that of the original (new) film as well as that in the forward direction for the same 

number of sliding cycles (measured by a new silicon nitride ball). 

Changing the sliding direction to reverse remarkably affected the friction for all 

number of initial cycles. The friction in the reverse direction generally increases as the 

number of initial sliding cycles increases. It is seen that up to 30,000 cycles, the 

friction in the reverse direction increases gradually to 0.15. However, beyond that 

number of sliding cycles the friction is observed to fall again. This behavior suggests 

that the frictional property of UHMWPE film is influenced by the number of initial 

sliding cycles which probably changes some features of the polymer film such as 

crystallinity, molecular orientation and topography. Those changes are major factors 

on friction when the sliding direction is reversed after different number of initial 

sliding cycles. Therefore, it is important to understand the frictional behavior of 

UHMWPE film with two sliding directions for different numbers of initial sliding 

cycles. The changes in friction in the reverse direction are re-examined by conducting 

nanoscratching test on the track. 
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Figure 7.3: Coefficient of friction of UHMWPE film plotted against cycles in reverse direction. 
RD refers reverse direction. 10000_RD means after sliding 10,000 cycles in forward 
direction, the counterface has been replaced with a new ball and continued on the 
same track in reverse direction. 
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the polymer debris that adhered to the tip by abrading the asperities in scratching. 

Except for this sudden change, both the initial frictions from ball-on-disc and 

nanoscratch tests were the same (less than 0.05). The coefficients of friction with 

different number of cycles using nanoscratching in forward direction have shown 

similar results as for ball-on-disc.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Coefficient of friction of UHMWPE film plotted against scratch distance in reverse 

direction. RD refers reverse direction. 10000_RD means after sliding 10,000 cycles in 

forward direction, the nanoscratching has been done on the same track in reverse 

direction. 
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However, when the sliding direction is reversed after different number of 

sliding cycles, it is observed that the coefficient of friction increases with increasing 

number of initial sliding cycles. The nanoscratching data are well consistent with the 

ball-on-disc sliding test data. The coefficient of friction drops when the number of 

initial sliding cycles is high enough (see data for 100,000 RD in Figure 7.4). The 

FESEM images of the nanoscratches, for example with initial sliding of 10,000 cycles 

and 100,000 cycles, are shown in Figure 7.5. The wear track width for 10,000 cycles is 

approximately 22 µm and that for 100,000 cycles is in the range of 50 μm.  

The debris and the curled marks were observed in the image of 10,000 cycles 

(Figure 7.5 a) but there was no mark in the image of 100,000 cycles (Figure 7.5 b). It 

is found that there is not much amount of debris on the scratch conducted on 100,000 

cycles. In nanoscratching, the role of the debris which comes out from the polymer 

film has been taken into account. The sizes of the debris pulled out from the film were 

comparatively small for 4 mm diameter Si3N4 ball and their effects could be neglected 

in ball-on-disc test. However, their sizes could not be negligible in nanoscratching as 

they can block and resist the scratching. That is why the coefficients of friction 

increased in nanoscratching. Except this small deviation, it is confirmed that the 

coefficient of friction is strongly affected by the number of initial sliding cycles and 

sliding directions.  
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Figure 7.5: The FESEM images of nano-scratches which were done on wear tracks after sliding 

(a) 10,000 cycles and (b) 100,000 cycles. The scratches were conducted from right to 
left that was opposite to the initial sliding direction. 

 

7.3  Discussion 

The transfer mechanism of UHMWPE film on the counterface ball was studied 

under an optical microscope. The images of the balls after sliding 10,000 cycles and 

100,000 cycles against the films are shown in Figure 7.6. Both images have lumpy 

polymers near the contact point and sharp-edged polymers are pulled out in the sliding 

direction. Lumps indicate that polymer first adheres to the ball as soon as the sliding 

starts. As the sliding continues, more polymer debris are attached near the contact zone 

and become thick. Sharp-edged polymer debris indicates that the morphology of the 

polymer on the track has been changed. The roughness of the film can increase with 

the changes in the surface morphology. Those changes are critically dependent on the 

number of sliding cycles. As the sliding cycles increase, a steady-state is achieved 

when all asperities are compressed and there is very little further transfer of the 

polymer to the ball. At the steady-state, the surface roughness can decrease as the 

sliding cycles increased. 

 

Wear track 

 Nano-scratch 

Wear track 

 Nano-scratch 
(a) (b) 
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Figure 7.6: Optical images of Si3N4 ball surface after sliding (a) 10,000 cycles and (b) 100,000 
cycles against UHMWPE film in forward direction. White cycles show the contact 
points. The scale bars are 50 μm. 

 

After different initial sliding cycles, nanoindentation tests were conducted in 

the track in order to examine the changes in the hardness of the film and the results are 

summarized in Table 7.1. The hardness of new UHMWPE film was 0.12 GPa and 

there was no significant variation until 30,000 cycles. It is obvious that all the 

frictional changes occurring in this range are not affected by the hardness of the 

substrate but by the surface morphology changes of the track. This was proved by 

recording the surface profiles of the wear track at different points. All measurements 

showed wear track depth of 0.3 ± 0.1 μm for all sliding cycles which was closer to the 

initial roughness of the film and much lower than the thickness of the film. Thus, 

within the given experimental conditions, there is no change in the film thickness due 

to sliding and only topographical changes take place due to the plastic deformation of 

the asperities. Hence, high hardness for the film after sliding 50,000 and 100,000 

cycles is attributed to the changes in the physical state of the film rather than due to the 

substrate effect. At the early stage of sliding, the material removal rate from the film 

by detachment of the asperities was not uniform and the film surface became 

(a) (b) 
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roughened. This was confirmed by recording surface roughness profile on the wear 

tracks (Table 7.1). As the sliding continued with a new ball on the same track in the 

forward direction (Figure 7.2), the coefficient of friction for 10,000 cycles and 30,000 

cycles increased because of the increased roughness of the film. When the sliding 

cycles were above 30,000 cycles, the surface became smooth again because of the 

plastic deformation in the top layer and molecular orientation and as a result the 

hardness has slightly increased. The high hardness of the film provides higher 

resistance to penetration which in turn reduces the contact area and the coefficient of 

friction. During the initial sliding process the molecules on the top layer of the film get 

plastically deformed and oriented in the direction of sliding. Such orientation of the 

molecules has effect on increasing the relative crystallinity and the strengthening of 

the film [Gorokhovskii and Agulov 1966]. Moreover, as the number of sliding cycles 

increases, the density will be high with longer pressing time that can also reduce the 

friction [Gracias and Somorjai (1998)]. 

 

Table 7.1:  The hardness and roughness of UHMWPE film with different number of sliding cycles 

[Minn and Sinha 2009]. 

 

Sliding cycles Hardness (GPa) Roughness, Rrms (nm) 

0 0.12 ± 0.008 118.8 ± 2.5 

10,000 0.12 ± 0.008 123.8 ± 2.5 

30,000 0.12 ± 0.009 135.8 ± 3.0 

50,000 0.122 ± 0.023 43.0 ± 1.0 

100,000 0.138 ± 0.022 32.0 ± 1.0 
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However, as can be seen in Figure 7.3, the coefficients of friction of different 

cycles are higher in the reverse direction than that in the forward direction. It proves 

that rather than the effects of the surface roughness and hardness, there are other 

factors such as the relative crystallinity and the molecular orientation that have 

influenced this change in the coefficient of friction. 

The relation between the relative crystallinity on the track and the coefficient 

of    friction in the reverse direction as a function of initial sliding cycles is shown in 

Figure 7.7. The results suggest that the crystallinity of the film varies with the number 

of the initial sliding cycles. The film before the test had a relative crystallinity of 76%. 

The degree of relative crystallinity increased to 79% after 10,000 cycles of sliding. A 

higher degree of relative crystallinity is because of the molecular arrangement in the 

amorphous regions due to sliding. The degree of alignment or relative crystallinity 

increases with sliding cycles but beyond 10,000 cycles the relative crystallinity fell and 

reached the lowest value of 66% after 50,000 cycles. One possible reason is that as 

sliding continued, the elevated asperities of the film were flattened and plastically 

deformed. The plastically deformed top layer must have partially covered the original 

crystalline region and hence reduced the overall relative crystallinity. The interesting 

fact is that the degree of relative crystallinity increased again beyond 50,000 cycles 

and it showed a high value of 87% after 100,000 sliding cycles. This increase in the 

relative crystallinity beyond 50,000 sliding cycles could be an indication of the 

molecular alignment in the direction of sliding after the asperities have been flattened 

in the beginning of the sliding process. This alignment also has a greater strengthening 

effect as seen in the nanoindentation data for the film after 100,000 sliding cycles 
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(Table 7.1). The results in Figure 7.7 show that the coefficient of friction in the reverse 

direction increased with increasing number of cycles up to a point and then decreased 

with higher number of cycles. The friction was inversely proportional to the 

crystallinity of the film. The presence of the amorphous region in lower relative 

crystallinity region is high which can extend and align during the sliding that can 

increase friction. In contrast, high relative crystallinity somewhat hardens the polymer 

film and reduces the coefficient of friction. Furthermore, the asperities of the polymer 

film are unevenly deformed and the remaining roughness features are inclined in the 

direction of sliding. This change in the surface morphology is coupled with the initial 

increase in the film roughness when measured along the wear track. When the sliding 

direction is reversed, the oriented polymers are now against the new sliding direction. 

This is another important reason for the increase in the friction upon changing the 

sliding direction. Complete molecular orientation of the polymer takes many initial 

sliding cycles. However, Pooley and Tabor [1972] also showed on PTFE film that if 

the molecules were highly oriented in the sliding direction, the coefficients of friction 

were not very different in both directions (i.e. forward or reverse of the initial sliding 

directions). When the initial sliding cycles were 100,000, the coefficient of friction in 

the reverse direction decreased because of:  

(a)  nearly complete orientation of the molecules by plastic deformation,  

(b) higher relative crystallinity that increased the hardness, the load carrying 

capacity and reduced the contact area of the film, and  

(c) general smoothness of the film (i.e. no more asperities deformed in the 

direction of initial sliding) 
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Figure 7.7: The relation between crystallinity and coefficient of friction (in reverse direction) as a 

function of sliding cycles. 

 

A better understanding of the relative crystallinity and surface morphology on 

the track is studied by FESEM. Their topography images are shown in Figure 7.8. A 

distinct type of lamellae structure that is a sign of crystalline region [Turell and Bellare 

2004] is clearly seen in Figure 7.8 (a) (before sliding). The images of the tracks after 

sliding 10,000 cycles and 50,000 cycles (Figures 7.8 b and c) consist of covered and 

uncovered areas. 

The covered areas are due to the plastically deformed layers which were 

formed by flattening the taller asperities of the crystalline zone. As the sliding cycles 

increased, the coverage by the deformed polymers on the track appears more and as a 

result the relative crystallinity of the original film surface drops. It is also found that 

there are sharp corners with steps at the leading edges of the covered layers that 

increase with the number of cycles (Figures 7.8 b and c). In the case of the reverse 
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direction sliding, these steps and corners could obstruct the sliding and increase the 

friction.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: The FESEM images of UHMWPE film (a) before sliding and after sliding (b) 10,000 
cycles, (c) 30,000 cycles and (d) 100,000 cycles. Image (a) is taken with 4000 times 
and the rest are taken with 2000 times magnifications. Solid arrows show the sliding 
directions. 

 

It can be seen in Figure 7.8 (d) that the coverage by deformed and oriented 

molecules is near complete with probably majority of the polymer molecules oriented 

in the initial sliding direction. Thus, for very high number of initial sliding cycles, the 

early roughness effect in the reverse direction is lessened and the molecular orientation 

is increased. It is also possible that the relative crystallinity of the layers below the top 

plastically deformed layer can increase for the long sliding period [Albrecht and Strobl 

1995]. The high crystallinity due to molecular orientation and smoothness of the wear 

(a) 

(d) (c) 

(b) 
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track for 100,000 initial sliding cycle case, therefore, reduced the frictional resistance 

in the reverse direction.  

 

7.4  Summary 

This Chapter has presented the changes in the relative crystallinity and 

molecular orientation of UHMWPE film for different numbers of initial sliding cycles. 

It is seen that the coefficient of friction is different in the forward or reverse directions. 

During the initial sliding the roughness can increase before the surface becomes very 

smooth at approximately 50,000 cycles or more. There is slight increase in the 

hardness of the film because of changing molecular orientation and relative 

crystallinity effects. The coefficient of friction remains on the higher side until the top 

film surface is completely modified because of the sliding phenomenon. In the reverse 

direction, the relative crystallinity, molecular orientation and changes in topography 

influence the coefficient of friction. As the sliding starts, the asperities of the top layer 

are plastically deformed that cover the original crystalline region of the film. Initial 

plastic deformation of the film leads to a decrease in the relative crystallinity in the 

middle range of sliding cycles (30,000-50,000 cycles) due to the change in the 

molecular orientation. As the molecules are further aligned along the sliding direction, 

the sharp corners and steps appear that can provide obstacles to the slider if it were to 

slide in the reverse direction. The appearance of these patterns is much more in the 

middle range of the initial sliding cycles. Because of the lower crystallinity and higher 

number of sharp edges, the coefficients of friction in the reverse direction after 30,000 

cycles and 50,000 cycles of sliding are higher than the lower and the higher number of 
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initial sliding cycles. For the lower number of initial sliding cycle case, the relative 

crystallinity of the film is still high (original film relative crystallinity) and the 

topography of the film is not much changed. For very high number of initial sliding 

cycle case, the film has been totally covered with highly oriented polymer molecules 

and the surface is also very smooth. 

This study has shown that the friction coefficient of a polymer film is highly 

dependent on the molecular orientation and relative crystallinity and hence these 

parameters should be considered while making highly lubricious polymer films on a 

substrate. Also, the process of the continuous sliding in one direction can change the 

above parameters of the film bringing a clear change in the film frictional behavior. 
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Chapter 8 

The Frictional Behaviors of UHMWPE Film with Different 

Surface Energies at Low Normal Loads 

The enhancement of the tribological properties of UHMWPE film is studied 

using different methods of modification and its results are reported from Chapter 4 to 

Chapter 6. The changes in molecular crystallinity, orientation and surface topography 

of UHMWPE film with different number of sliding cycles and their effects on friction 

with respect to different sliding directions are reported in Chapter 7. In the present 

Chapter, the roles of the surface energy of UHMWPE film and the applied normal load 

on the initial friction of UHMWPE film are studied.  

The Amonton’s Laws states that friction is only controlled by the geometry of 

the asperities of surfaces and the friction force needed to slide against an applied load 

is decided by the apex angles of the asperities. Bowden and Tabor later proposed the 

two-term model of friction where friction force is separated into the interfacial and 

cohesive components. The interfacial friction relates to the shear taking place at the 

very top layer of the surfaces and the cohesive friction is the force required in 

deforming the materials if there are asperity-asperity interactions. More recently, it has 

been found that if two surfaces adhere to each other at rest, there is a finite value of 

friction upon sliding even at no external applied load [Dowson 1998]. It means, 

friction is decided by not only the geometry of the asperities and two-term model, but 

also the adhesion energy (surface energy) of the surfaces. JKR [Johnson et al. 1971] 
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and DMT [Derjaguin et al. 1975] models have shown that the contact radius was 

different from the calculated one using the Hertzian model in static contact when 

surface energy is taken into account. Israelachvili and Tabor [1972] experimentally 

measured the contact radius with adhesion effect which is directly proportional to the 

surface energy. Both theoretical and experimental results proved that the role of 

surface energy on friction is not negligible especially when the applied load is very 

small. The role of surface energy is still a critical factor in the study of dynamic 

friction.  

Yoshizawa et al. [1993] studied the correlation between friction and adhesion 

by means of adhesion hysteresis and energy dissipation. Recently, Corwin and de Boer 

[2004] also studied the effect of adhesion on friction in micromachining. In order to 

reduce the adhesion, monolayer thickness lubricants (usually polymers) are applied on 

surfaces of the devices [Maeda et al. 2002]. The frictional behavior of polymers in 

terms of adhesion is well studied [Lee 1974, Briscoe and Tabor 1978 a and b, and 

Briscoe 1978]. For thin liquid films, the surface energy changes with the thickness of 

the liquid film. Above a critical thickness, the surface energy normally decreases 

[Tyndall and Leezenberg 1998] but the initial friction increases sharply [Tian and 

Matsudaira 1993] because of the presence of liquid meniscus between the contacting 

surfaces. In this study, a fixed film thickness is used for all samples to eliminate the 

effect of film thickness on the surface energy and initial friction. Effects of surface 

energy and applied load on the frictional behaviors of UHMWPE film are studied. The 

initial coefficient of friction and surface energy are correlated using a model and 

compared with experimental results. 
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 The surface energy is associated with surfaces or interfaces and has a unit of 

energy per unit area (ergs/cm2 = mJ/m2). The simplest way to measure the surface 

energy of a solid is to measure the contact angle using water (or any liquid) droplet on 

it. If the molecules of water (or any liquid) have stronger attraction to each other than 

to the molecules of the solid (cohesive force is stronger than adhesive force), the 

droplet will show a spherical shape and does not wet the solid. If the molecules of the 

water (or any liquid) have stronger attraction to the solid than to each other (cohesive 

force is weaker than adhesive force), the droplet will spread and wet the solid.   

 

8.1  Experimental procedures 

8.1.1  Materials and sample preparations 

UHMWPE film was coated onto Si wafer with a thickness of 12 μm. The 

detailed preparation procedure of UHMWPE film was mentioned in Section 3.2. 

Silicon nitride (Si3N4) ball with 4 mm diameter was used as the counterface material 

against UHMWPE film in ball-on-disc sliding tests. In order to change the surface 

energy of the Si3N4 ball and the UHMWPE film, some surface treatments were given 

to them. For changing the surface energy of Si3N4 ball, air-plasma treatment with 10 

minutes exposure time was given and as another treatment, 3-4 nm thick PFPE film 

was overcoated onto it. The air-plasma treatment could provide hydrophilic nature 

whereas PFPE layer could make the surface hydrophobic. It is difficult to enhance the 

surface hydrophobicity of Si3N4 ball only by a physical treatment. This is the reason 

why PFPE overcoating was chosen as a treatment for hydrophobicity by slightly 

changing the surface chemistry without affecting the surface roughness.  
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Perfluoropolyether (PFPE) Z-dol 4000 of 0.2 wt% was dissolved into H-

Galden ZV60 solvent. Chemical formulae of PFPE and H-Galden ZV60 are 

HOCH2CF2O-(CF2CF2O)p-(CF2O)q-CF2CH2OH and HCF2O-(CF2O)p-(CF2CF2O)q-

CF2H, respectively, where the ratio p/q is 2/3. The dipping and withdrawal speeds 

were fixed as 2.4 mm/s. 

For the UHMWPE film, since it has hydrophobic property, we did not attempt 

to increase its surface hydrophobic property. In this case, UHMWPE film was given 

the air-plasma treatment with different exposure times (30 seconds, 5 minutes and 10 

minutes) in order to change the surface energy by making the surface hydrophilic.  

Harrick Plasma Cleaner/Steriliser was used for air-plasma treatment with the 

different exposure times and a RF power of 30W under vacuum.  

 

8.1.2  Contact angle measurements and surface energy analysis 

After giving different treatments to the samples, their surface energies were 

determined by the contact angle measurement. The relationship between the contact 

angle and the surface free energy was first demonstrated by Young with a single 

droplet on the surface [Young 1855]. The Young equation is written in the form, 

cosSV SL LVγ γ γ θ= +                                           (8.1) 

where θ is the contact angle, γ  is the surface energy and the subscripts SV, SL and LV 

represent surface-vapor, surface-liquid and liquid-vapor interfaces, respectively. In 

determining the surface energy from the contact angle measurement, we used acid-

base method [van Oss 1994 a] in which at least three test liquids are required. In three 

liquids, at least two have known acid and base fractions larger than zero and at least 
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one must be equal basic and polar parts usually water. In the contact angle 

measurements in this study, four different liquids: distilled water, ethylene glycol, 

methanol and hexadecane were used with VCA Optima Contact Angle System (AST 

product, Inc., USA). The surface tension components and the parameter of the liquids 

used in this study are provided in Table 8.1 [van Oss 1994 b]. 

 
 
Table 8.1:  Surface tension component and parameters of distilled water, ethylene glycol, methanol and 

hexadecane in mJ/m2. 
 
Liquid LW

Lγ  AB
Lγ  +

Lγ  -
Lγ  Total surface energy, Lγ  

Distilled water 21.8 51 25.5 25.5 72.8 

Ethylene glycol 29 19 1.92 47 48 

Methanol 18.2 4.3 0.06 77 22.5 

Hexadecane 27.47 0 0 0 27.47 

 

Droplets of 0.5 μl and 0.05 μl were used for the contact angle measurements of 

the surfaces (UHMWPE film and Si) and Si3N4 ball, respectively. The droplet size for 

the measurements on Si3N4 balls was reduced because of the curvature of the spherical 

ball. As an additional confirmation of the effect of droplet size (from 0.05 μl to 5 μl), 

water contact angles were measured on a flat surface with different droplet sizes and 

the results did not show any droplet size effect within the given size range.  A total of 

five independent measurements were conducted randomly on three samples and an 

average value was taken for each sample. The measurement error was within ± 3˚. 

After measuring the contact angle with different liquids, the surface energies were 

calculated using the software installed in the same contact angle equipment. In order to 

confirm the accuracy of the technique used to determine the surface energy of the 
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samples, PFPE was overcoated on flat Si and UHMWPE film, and then the measured 

surface energy values were compared with the reported value [Solvay Solexis 2009].   

The friction between two solid bodies depends not only on the surface energies 

but also on the surface roughness [Tabor 1977]. Therefore, the roughness of the ball 

and UHMWPE film were measured before and after surface treatments using dynamic 

MEMS optical profilers (Veeco Wyko NT1100) (a non-contact profiling device). The 

scanning area for the measurement was 124 μm x 93 μm on VSI (vertical scan 

interferometery) mode.    

 

8.1.3  Surface energy and attractive force between surfaces 

It is known that when two surfaces (e. g. ball and a flat surface) come into 

contact, there is finite force acting between them called attractive or pull-off force, Fo. 

This force, which depends upon the surface energies of the solids, was first derived by 

Bradley [1932] and is given as, 

( )o 1 2 122F Rπ γ γ γ= + −                                  (8.2) 

where 1γ  and 2γ  are surface energies of the two surfaces and ( )2

12 1 2γ γ γ= − . 

The attractive or pull-off force, Fo between two different surface energies of 

the ball and UHMWPE film was calculated using Equation 8.2. A detailed calculation 

procedure of Fo can be found in references [Bradley 1932 and Tabor 1977].  

 

8.1.4  Friction tests 

 Friction tests were carefully conducted using a custom-built ball-on-disc 

tribometer (Figure 8.1) where normal and lateral displacements (converted to normal 
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load and friction force respectively) of the cantilever were simultaneously measured 

with laser displacement sensors (MTI Instruments Inc., New York, USA). The 

equipment is a further modification of the ball-on-disc tribometer (mentioned in 

Section 3.3.7) in which we used four-bridge strain gauge in order to measure the 

lateral displacement. In the modified equipment, we replaced the strain gauge sensor 

with a laser sensor. The sensitivity of the laser sensor was 0.5 µm which was 

equivalent to 0.125 mN force according to our calibrations. UHMWPE film was used 

as a rotating disc and silicon nitride balls with modified surface energies were used as 

the stationary counterface.  The sliding track radius was 1 mm with a fixed disc 

rotational speed of 2 rpm (linear relative speed at the contact was in the range of 0.21 

mm/s). The sampling rate used in recording data was 10 Hz. In order to eliminate the 

effect of loading time on friction, the tests were conducted immediately after applying 

the normal load. The initial coefficient of friction was taken as the maximum friction 

value as soon as the sliding test started. Three repeats of sliding tests on at least three 

samples were conducted and averages were reported as the final values. The 

temperature and the relative humidity were fixed at 25 ˚C and 65 %, respectively.  
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Figure 8.1:  (a) The modified ball-on-disc tribometer, (b) larger view of the cantilever and the 
sample holder. 

 

8.2  Results and discussion 

8.2.1  Surface energy and roughness 

The surface treatments, surface energies and roughness of the ball and the 

surfaces used are summarized in Table 8.2. The surface energy of PFPE reported in the 

literature is in the range of 22~24 mJ/m2 depending upon the concentration and 

molecular weight [Solvay Solexis 2009]. The currently measured values of PFPE 

layers on Si3N4 ball, Si surface and UHMWPE film are 17.9 mJ/m2, 24.13 mJ/m2 and 

23.7 mJ/m2 respectively. A slight change in the surface energy of Si3N4 ball may be 

because of the different measurement conditions between flat surfaces (Si and 

UHMWPE film) and spherical surface (Si3N4 ball). Except this small deviation, our 

measured values and the data provided by the supplier in reference [Solvay Solexis 

2009] are close. It shows that our method of surface energy measurement is reliable.  
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Table 8.2: A summary of surface roughness, treatments and surface energy of silicon nitride ball, 
UHMWPE film and Si surface. PFPE refers perfluoropolyether (Z-dol 4000) which was 
coated as 3-4 nm film on the solids mentioned. 

 

Sample Roughness Treatment 
Surface Energy (mJ/m2) 

Dispersive Acid Base Total 

Si3N4 ball ( 1γ ) 5 nm 

PFPE coated 10.5 2.4 5.7 17.9 

No treatment 21 - 24.9 21 

Air Plasma (10 mins) 24.7 0.1 62.5 29.7 

UHMWPE 

coated Si ( 2γ ) 
0.6 μm 

PFPE coated 23.5 0.1 0.1 23.7 

No treatment 26.9 - 2.6 26.9 

Air Plasma (30s) 27.4 2.5 30.7 44.92 

Air Plasma (5 mins) 27.4 2.9 29.6 45.93 

Air Plasma (10 mins) 27.3 2.4 38.5 46.52 

Bare Si ( 2γ ) 0.41 nm PFPE coated 13.6 1.9 14.6 24.13 

 
Though the surface energy of most ceramic materials is very high, the surface 

energy of silicon nitride ball used in this study is low as evident from the contact angle 

measurements. Before giving any surface treatment, its contact angle was 83.4̊. By 

giving plasma treatment for 10 minutes, the contact angle dropped to 38˚ but it was 

still measurable. After PFPE overcoating, the contact angle rose to 95.3˚ in the 

hydrophobic range. The water contact angle measurement images on Si3N4 balls with 

different treatments are shown in Figure 8.2. 

 

 

 

 

Figure 8.2:  The water contact angle measurement on Si3N4 balls with different treatments. 
 

The surface energy of UHMWPE without plasma treatment was 26.9 mJ/m2. 

An increase in the surface energy of UHMWPE was observed by the air-plasma 
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treatment. After 30 seconds of air-plasma exposure time, the surface energy rose to 

44.92 mJ/m2. This value did not change further in any significant way with increasing 

exposure time to 5 minutes and 10 minutes. 

The measured roughness value on Si3N4 ball and UHMWPE film were 5 nm 

and 0.6 μm (Figure 8.3), respectively. Negligible differences in the surface roughness 

were observed in the cases of Si3N4 ball and UHMWPE film after air-plasma or PFPE 

treatments. Therefore, the effect of surface roughness on the measured surface energies 

was neglected. Also, the surface roughness did not vary within one single friction test. 

The effect of interfacial temperature was also neglected as the friction tests were 

conducted at very low sliding speeds in a temperature controlled environment. 

 

 

 

 

 

 

 

 
  (a)               (b) 
 
Figure 8.3:  The roughness measurement on UHMWPE film using DMEMS. (a) 2D and (b) 3D 

images where the scan size is 124 μm × 93 μm. 
 

Based on the surface energy of Si3N4 ball and UHMWPE film with different 

treatments, the attractive force, Fo was calculated using Equation (8.2). The calculated 

attractive forces between different surface pairs are shown in Table 8.3. 
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Table 8.3: The attractive force, Fo between Si3N4 ball and UHMWPE film with different surface 
energies. 

 
Si3N4 Ball ( 1γ ) UHMWPE film ( 2γ ) 

Fo (mJ/m2) 
Treatment 

Surface Energy 

(mJ/m2) 
Treatment 

Surface Energy 

(mJ/m2) 

PFPE coated 17.9 No treatment 26.9 0.55 

No treatment 21 Air Plasma (10 mins) 46.52 0.79 

Air Plasma (10 mins) 29.7 No treatment 26.9 0.71 

PFPE coated 17.9 Air Plasma (10 mins) 46.52 0.72 

No treatment 21 No treatment 26.9 0.6 

Air Plasma (10 mins) 29.7 Air Plasma (10 mins) 46.52 0.93 

 

8.2.2 The relationship between the initial shear stress and the surface energy of 

UHMWPE film  

The friction tests were conducted using the different pairs of Si3N4 ball and 

UHMWPE film mentioned in Table 8.3, and the shear stress, τ was calculated by 

dividing the measured friction force with the contact area [Bowden and Tabor 1986]. 

In order to obtain the contact area between the ball and the UHMWPE film, JKR 

model (Equation 8.3) was applied in which the effect of surface energy is taken into 

account.  

                                 ( )( )23 3π {6 π 3 π }Ra L R RL R
K

γ γ γ= + + +                    (8.3) 

where a is the contact radius, R is the sphere radius, K depends upon the Poisson’s 

ratio and the elastic modulus of the materials, L is the applied load and γ is the surface 

energy. The Poisson’s ratios and elastic modulii of the materials used are provided in 

Table 8.4. The contact pressure, P was calculated by dividing the applied normal loads 

with the contact area, πa2. By varying the applied normal load from 15 mN to 75 mN, 



Chapter 8: The Frictional Behaviors of UHMWPE Film with Different Surface  

 

 154 

the calculated contact pressure is varied from 59 MPa to 117 MPa for the mentioned 

contacting surfaces. 

 
Table 8.4: The Poisson’s ratio and elastic modulus for silicon nitride ball and UHMWPE film. 
 
Material Poisson’s ratio Elastic modulus (GPa) 

Silicon nitride ball 0.22 310 

UHMWPE film 0.46 1 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 8.4:  Shear stress versus contact pressure on UHMWPE film. For all Fo, there is a linear 
relation between the shear stress and the contact pressure.  
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them as shown in Figure 8.4. It is seen that τ increases linearly with increasing P 

although the magnitude of τ is strongly influenced by the attractive force, Fo (that is 
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the adhesive interactions between the surfaces). It is well noted that higher Fo provides 

higher τ. The data also confirms the linear relation τ = τo + αP as proposed by Bowden 

and Tabor [Bowden and Tabor 1986] where the pressure coefficient, α = 0.0013, is 

same for all Fo. However, the normal pressure-independent initial shear stress, τo 

increases as Fo is increased within the range of the presently applied loads. Robbins et 

al. [He et al. 1999, He and Robbins 2001, Müser et al. 2001, and Rottler and Robbins 

2001] have also shown by molecular dynamic simulation that τo increases as adhesion 

or attractive force is increased whereas α does not change. τo is the initial shear stress 

when the contact pressure, P = 0. 

The adhesion between contacting solids at rest is partially transformed into 

elastic strain in the cantilever at the onset of lateral sliding motion. The stored elastic 

energy in the cantilever will be released when the initial friction force measured by the 

deflection of the cantilever reaches the failure of the adhesion at the contact, also know 

as static friction. This is the point at which the actual sliding starts giving the lateral 

force at release (or slip) as the initial friction. τo is an important parameter controlling 

initial friction (also referred to as static friction) which changes with the pull-off force, 

Fo. Figure 8.5 presents the data for Fo and τo for Si3N4 ball and UHMWPE film. It is 

evident that τo increases slightly with Fo up to 0.72 mN and beyond this value, τo rises 

exponentially. As we mentioned before, the application of PFPE could affect the 

frictional behavior of UHMWPE film. It could help to lower the friction in addition to 

lowering the surface energy. However, when the data of PFPE are removed from 

Figure 8.5 (a), it is obvious that the relationship between Fo and τo is still an 

exponential curve (see in Figure 8.5 b) with only slight changes in the curve fitting 
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parameters.  Thus, this behavior between Fo and τo can be modeled by an exponential 

curve of the following form,  

τo = c1 exp (n Fo)                                             (8.4) 

where c1 and n are constants that depend upon the nature of the surface materials. The 

values of c1 and n shown in Figure 8.5 (a) are 9 x 10-5 MPa and 8.4 (mN)-1, 

respectively. 

 

 

 

 

 

 

 

 
 
Figure 8.5:  The initial shear stress, τo as a function of the attractive force, Fo of UHMWPE film 

(a) with PFPE data and (b) without PFPE data. There is an exponential relation 
between the two.   
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8.2.3 The relationship between the initial coefficient of friction and the surface 

energy of UHMWPE film  

Since τ = τo + αP and the initial friction force, Fi = τA, we can write as 

         Fi = τoA+ αPA                                                   (8.5) 

By dividing Equation (8.5) with applied load, L, we obtain the initial 

coefficient of friction, μi as 

o
i A

L
τµ α = × +  

                                     (8.6) 

where P = L/A. Finally, we can correlate μi as a function of attractive or pull-off force, 

Fo using Equation (8.4) and (8.6) as 

 1 o
i

exp( )c nF A
L

µ α = × +  
                                        (8.7) 

For the visco-elastic materials such as UHMWPE film, Bowden and Tabor 

[1973] suggested that the contact area, A is nearly proportional to L0.75. Since A = c2 

L0.75 where c2 is a constant, Equation (8.7) then becomes,  

1 2 o
i 0.25

exp( )c c nF
L

µ α = +  
                                            (8.8) 

In order to verify this relationship, we measured μi at different Fo on 

UHMWPE film for different normal applied loads. In Figure 5, the curves show a very 

similar exponential relation between μi and Fo for different applied loads and variations 

are within experimental errors. In addition, it might be assumed that the highest 

frictional value at 0.93 mN (Fo) (which represents the ball and UHMWPE film that 

were given 10 minutes plasma treatment) has additional effect of covalent bonding 

between oxygen species that were introduced onto the ball and UHMWPE film due to 
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air-plasma treatment. Despite some additional chemical effects, we observe that the 

relation between the initial coefficient of friction and the pull-off force due to surface 

energy is of exponential type.  

Similar exponential trend has been shown by Erhard [1983] and Lavielle 

[1991]. They studied friction between different polymers with different surface 

energies (55-90 mJ/m2) and found that the coefficient of friction was exponential to the 

surface energies of the sliding polymers. In the present study, we have used a fixed 

polymer film (UHMWPE) with modified surface energies and similar exponential 

relation is observed. Another interesting behavior we have seen from this study is that 

μi drops with increasing load (Figures 8.6 a and b) as predicted by Equation 8.8 within 

the load range adopted here. 

 

 

 

  

 

 

 

 

 

 

                                            (a)                                                                                           (b) 

Figure 8.6:  The initial coefficient of friction of UHMWPE film versus Fo for different applied 
loads; (a) low loads and (b) higher loads.  
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8.2.4  Material transfer between UHMWPE film and different surface energy balls 

The tracks on UHMWPE films after two cycles of sliding against PFPE coated 

Si3N4 and untreated Si3N4 balls are shown in Figures 8.7 (A1 and B1) respectively. 

The tests were conducted under an applied load of 15 mN and a rotational speed of 2 

rpm. The track on UHMWPE film, which was slid against low surface energy (PFPE 

coated) ball, shows some orientation of the polymer asperities made by the ball 

surface. Because of the low adhesion between UHMWPE film and PFPE coated ball, 

the probability of materials being pulled out, plastically deformed or scratched is very 

less.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7: (A1) and (B1) are FESEM images of UHMWPE films after sliding against (A2) PFPE 
coated Si3N4 and (B2) bare Si3N4 balls respectively, where the applied load is 15 mN.  
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After the sliding test, the optical images of the ball surface were taken under an 

optical microscope. From the image, it is obvious that the amount of material 

transferred to PFPE coated ball was very less if any (Figure 8.7 A2). However when 

UHMWPE film was slid against high surface energy (untreated) ball, the track shows 

discontinuous scratches. It proves that high surface energy ball provides strong 

adhesion and as a result polymer is pulled out when sliding is introduced. The 

discontinuous nature of the scratch marks on the track suggests the effect of high 

surface energy in material removal of the counterface rather than scratching by the 

asperities on the ball surface which is very smooth (5 nm roughness). It is also clear in 

the optical image (Figure 8.7 B2) that lumps of polymer transfer easily to the ball 

surface when the surface energy of the ball is high. The microscopic images show the 

differences in the shear mechanisms when surfaces with different surface energies are 

involved. This basically governs the materials’ wear characteristics. 

 

8.3  Summary 

In summary, we have studied the shear stress, τ, with the contact pressure, P on 

UHMWPE film in conjunction with the effect of attractive or pull-off force, Fo. Data 

show that τ increases linearly with increasing P as proposed by Bowden and Tabor 

whereas the pressure-independent initial shear stress, τo increases exponentially with 

Fo. Based on the trends between τo and Fo from the experimental data, an exponential 

relation is proposed. According to this model, the initial coefficient of friction, μi, 

increases exponentially with increasing Fo. Further, μi shows a decreasing trend with 
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increasing applied load, L, at a given Fo for polymer surface because of its visco-

elastic nature.  

Since the attractive force is directly proportional to the surface energy 

(Equation 8.2), we can control friction by modifying the energies of the solids 

involved. This study will provide a better understanding of the initial friction and 

nanolubrication in small devices such as MEMS/NEMS where the surface energy of 

small moving parts can be easily changed and controlled. Surface energy is also 

directly responsible for the removal of the polymer material as wear debris. 
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Chapter 9 

Conclusions and Future Recommendations 

 This Chapter will present the main conclusions from the present thesis and will 

suggest the recommendations for future study. 

 

9.1 General conclusions 

 The main objectives of this thesis are to develop a new micron meter range 

polymer coating film that could be useful to industrial applications, to optimize the 

different coating and modification parameters for enhancing the friction and wear 

properties of the polymer film, and to understand the frictional behaviors of the 

polymer film with regards to the effects of sliding directions and surface energy that 

are inevitable in any actual working environments. 

 

9.1.1 Optimizing the parameters for UHMWPE film 

 As stated at several places in this thesis, polymers are very promising as 

coatings because of their better tribological properties in their bulk form. Though 

polymers have many useful advantages to be used as coatings, there are very limited 

numbers of research papers that have studied the properties of polymer films. A 

polymer must be qualified in terms two major properties: low friction and high wear 

resistance in enhancing the tribological properties. After extensive study on the 
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tribology of bulk polymers, UHMWPE turned out to be the most suitable polymer for 

using as a coating film due to its low friction and excellent wear resistance.  

 In optimizing the parameters of UHMWPE film, this work has focused on the 

thickness of the UHMWPE film, the hardness of the substrate and the surface 

wettability of Si substrate which strongly influences the tribology of the UHMWPE 

film. A summary of the optimizing parameters and their respective wear durability of 

UHMWPE film are provided in Table 9.1.  

 

9.1.1.1 Effect of thickness on tribology of UHMWPE film with and without DLC 

interface 

1. The bare Si without any coating failed within 5 cycles. After coating 28 μm 

thickness UHMWPE onto Si, the coefficient of friction reduces to 0.18 and 

wear durability is increased to 20,000 cycles. 

2. The presence of DLC as an intermediate layer provides higher load 

carrying capacity and better adhesion and as a result, the coefficient of 

friction decreases to 0.13 and the wear durability extends to 100,000 cycles 

for Si/DLC/UHMWPE.  

3. Overcoating with PFPE as a top layer provides lower coefficient of friction 

of 0.06 and the wear durability increases to more than 300,000 cycles (test 

stopped due to long duration) for Si/DLC/UHMWPE/PFPE. 

4. In studying the effect of UHMWPE thickness for Si/DLC/UHMWPE, it is 

observed that the wear lives of thin film (3.4 μm) and thick film (28 μm) 

are approximately 100,000 cycles. The wear lives of optimum (moderate) 
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thickness films are 200,000 cycles and more than 300,000 cycles for 6.2 

μm and 12.3 μm, respectively.  

Table 9.1:  The summary of the optimizing parameters of UHMWPE film thickness, interface layer 

thickness and surface wettability of Si substrate with respect to their wear durability. All 

tests were conducted with a normal load of 40 mN at a range of sliding (0.052 m/s to 0.1 

m/s) except some cases that are mentioned in remarks. 

Sample 

Thickness of 

UHMWPE 

film (μm) 

Wear 

durability 

(cycles) 

Reference Remarks 

Effect of film thickness 
Si Nil 5 

Minn and 

Sinha 2008 a 

 

 

Si/UHMWPE  28 ± 1 20000  

Si/UHMWPE/PFPE  28 ± 1 100000  

Si/DLC57/UHMWPE 28 ± 1 100000  

Si/DLC57/UHMWPE/PFPE 28 ± 1 300000  

Si/DLC57/UHMWPE  3.4 ± 1 100000  

Si/DLC57/UHMWPE 6.2 ± 1 200000 Optimum 

thickness range Si/DLC57/UHMWPE 12.3 ± 1 300000 

Effect of hard interlayer 
Si/UHMWPE  

4~5 

1000 

Minn and 

Sinha 

Submitted 

 

 

Si/CrN/UHMWPE  2000  

Si/DLC15/UHMWPE  50000  

Si/TiN/UHMWPE 300000 
Best interfacial 

hardness range 
Si/DLC57/UHMWPE 300000 

Si/DLC70/UHMWPE 300000 

Si/TiN/UHMWPE/PFPE  1 million 
Applied load is 70 

mN 
Si/DLC57/UHMWPE/PFPE 1 million 

Si/DLC70/UHMWPE/PFPE 1 million 

Effect of surface energy of the substrate 
Si/UHMWPE  

6 ± 2 

1000 

Minn and 

Sinha 2008 b 

 

 

heated Si/UHMWPE  60000  

Si/APTMS/UHMWPE  100000  

Si-H/UHMWPE  250000 
Optimum surface 

wettability 

Si/OTS/UHMWPE  6500  
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9.1.1.2 Effect of hard intermediate layer on tribology of UHMWPE film 

1. In this study, it is observed that the wear durability of UHMWPE film is 

directly related to the hardness of the intermediate layer. The lowest 

hardness layer, bare Si/UHMWPE (film thickness is 4~5 μm), has a wear 

life of 1,000 cycles whereas the higher hardness layers, Si/TiN/UHMWPE, 

Si/DLC57/UHMWPE and Si/DLC70/UHMWPE have shown the wear lives 

of more than 300,000 cycles. 

2. The critical loads from scratch tests are also consistent with the tribological 

test results, as Si/UHMWPE failed at 20 mN whereas 

Si/DLC70/UHMWPE with the hardest intermediate layer at 80 mN.  

3. When the applied load is increased to 70 mN, the wear lives of 

Si/TiN/UHMWPE, Si/DLC57/UHMWPE and Si/DLC70/UHMWPE 

dropped to 8,000 cycles, 22,000 cycles and 120,000 cycles respectively. 

Thus, Si/DLC70/UHMWPE with the hardest interlayer shows the 

maximum wear durability. 

4. Overcoating with PFPE as the top layer on the best three films further 

reduces the friction and extends the wear lives to more than one million 

cycles under an applied load of 70 mN and a sliding speed of 0.052 m/s. 

 

9.1.1.3 Effect of surface wettability on tribology of UHMWPE film 

1. The initial coefficients of friction are the same, approximately 0.17 

regardless of the surface wettability of interfaces on Si substrate. 
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2. However, the wear durability of UHMWPE film is directly related to the 

surface wettability of the interfaces. The most hydrophilic interface, 

Si/UHMWPE, has a wear life of 1,000 cycles. The most hydrophobic 

interface, Si/OTS/UHMWPE, has a wear life of 6,500 cycles. Surfaces with 

intermediate wettability, heated Si/UHMWPE, Si/APTMS/UHMWPE and 

Si-H/UHMWPE have shown wear lives of 60,000 cycles, 100,000 cycles 

and 250,000 cycles, respectively. 

3. The surface wettability of Si-H is 71̊  that is the best condition for better 

adhesion of UHMWPE film to Si substrate. The adhesion strength data 

studied from scratch test also confirmed that the critical load for Si-

H/UHMWPE film was the highest at 70 mN.  

 

9.1.2 Effects of unidirectional dry sliding on the frictional behaviors of UHMWPE 

film  

 The following conclusions can be drawn from the study of the frictional 

behaviors of UHMWPE with different sliding directions with respect to the number of 

sliding cycles: 

1. Depending on the number of initial sliding cycles, the coefficient of friction 

is greatly different if a new sliding ball is slid in the forward and reverse 

directions. 

2. During the initial sliding up to 50,000 cycles, the surface roughness 

increases before it finally becomes very smooth at around 50,000 cycles. 

The nanoindentation results showed that the polymer film becomes harder 
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because of changing molecular orientation and relative crystallinity effects. 

The coefficient of friction remains on the higher side until the top film 

surface is completely modified. 

3. When the sliding direction is reversed after certain number of cycles, 

because of the changes in the relative crystallinity and molecular 

orientation during initial sliding, the coefficient of friction in the reverse 

direction is higher than that in the forward direction.  

4. As the sliding starts, the asperities of the top layer are plastically deformed 

that cover the original crystalline region of the film. Initial plastic 

deformation of the film leads to a decrease in the relative crystallinity in the 

middle range of sliding cycles (30,000-50,000 cycles) due to the change in 

the molecular orientation. Because of the lower crystallinity and higher 

number of sharp edges, the coefficients of friction in the reverse direction 

after 30,000 cycles and 50,000 cycles of sliding are higher than the lower 

and the higher number of initial sliding cycles.  

5. After very large number of sliding cycles (100,000 cycles), there is no 

difference in the friction coefficients for forward and reverse directions. 

 

9.1.3 Effects of surface energy of UHMWPE film on friction, adhesion and wear 

In the last part of the thesis, the correlation between the friction of UHMWPE 

film and the surface energy has been studied. The surface energy or the surface 

wettability of a film could easily be changed due to many parameters such as 

temperature, humidity and chemical means etc. The following conclusions are drawn: 
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1. The higher surface energy promotes the attractive or pull-off force between 

surfaces which is dominant for soft surfaces at low normal loads 

2. The present film of UHMWPE satisfies the Bowden and Tabor relation 

given as τ = τo + αP where τ is the shear stress, τo is the initial shear stress, α 

is the pressure coefficient of friction and P is the contact pressure.  

3. The relation between the attractive force and the initial shear stress is 

observed to be exponential. Since the initial shear stress (τo) is directly 

proportional to the initial coefficient of friction, we can model the relation 

between the initial coefficient of friction and the attractive force (Fo) or 

surface energy by an exponential equation, τo = c1 exp (n Fo) where c1 and n 

are 9 x 10-5 MPa and 8.4 (mN)-1, respectively, for UHMWPE film used in 

this work. 

4. The initial coefficient of friction for UHMWPE film decreases with 

increasing applied load for a given surface energy because of the visco-

elastic nature.  

5. Since the attractive force is directly proportional to the surface energy, the 

coefficient of friction could be controlled by modifying the surface energies 

of the solids.  
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9.2 Future recommendations 

 The following recommendations are given for future study: 

1. UHMWPE films using other coating techniques such as spin coating, 

sputtering can be thinner and uniform. The tribological properties of 

thinner films should be evaluated with different effects: load, speed, 

hardness etc. 

2. The surface wettability of different hard intermediate layers is modified 

and further studies on the combined effect of hardness and surface 

wettability on UHMWPE film are necessary to be explored. 

3. Chemical constituents can change the frictional behavior of UHMWPE 

film. Further studies on the friction with the effect of different chemical 

environments should be revealed. 
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Appendix A 

The Tribological Properties of Bulk Polymers 

 
Table A.1: Tribological properties of bulk polymers.        

Polymer 

 

Chemical structure 
Static 

friction 

Kinetic 

friction 

Wear rate 

(10-15m3 

/Nm) 

Reference 

Phenol-formaldehyde 

(Phenolic) 

 
- 0.78 29 

a 

Polycarbonate (PC) 

 

 
0.31 0.38 50 

b 

Polyetheretherketone 

(PEEK) 
 0.2 0.25 4.0 

b 

Ultra high molecular 

weight polyethylene 

(UHMWPE) 

  

- 0.2 0.1-1.6 
c 

Polyethylene terepthalate 

(PET) 
 

- - 3.2 
d 

Polyimide (PI) 

 

- 0.65 1.7 
a 

Polymethylmethacrylate 

(PMMA) 

 

- 0.55 170 
a 

Polyoxymethylene  

(POM, Acetal) 
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Polystyrene (PS) 

 

0.28 0.32 60 
b 

Polytetrafluoroethylene 

(PTFE) 
 

0.04 0.05 100 
f 

 

aLancaster 1968,  bLubricomp 1998, cTetrault 1989, dSantner 1989, eMens 1991 and 
fArkles 1977. 
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