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Abstract

Beyond Visual Words: Exploring Higher-level Image Representation

for Object Categorization

Yan-Tao Zheng

Category-level object recognition is an important but challenging research

task. The diverse and open-ended nature of object appearance makes objects,

no matter from the same category or otherwise, possess boundless variation in

visual looks and shapes. Such visual diversity leads to a huge gap between visual

appearance of images and their semantic content. This thesis aims to tackle the

issues of visual diversity for better object categorization, from two aspects: visual

representation and learning scheme.

One contribution of the thesis is in devising a higher-level visual represen-

tation, visual synset. Visual synset is built on top of traditional bag of words

representation. It incorporates the co-occurring and spatial scatter information of

visual words to make it more descriptive to discriminate images of different cat-

egories. Moreover, visual synset leverages the ”probabilistic semantics” of visual

words, i.e. their class probability distributions, to group ones with similar distri-

bution into one visual content unit. In this way, visual synset can partially bridge

the visual differences of images of same class and leads to a more coherent image

distribution in the feature space.

The second contribution of the thesis is in developing a generative learning

model that goes beyond image appearances. By taking a Bayesian perspective,



we interpret visual diversity as a probabilistic generative phenomenon, in which

the visual appearance arises from the countably infinitely many common appear-

ance patterns. To make a valid learning model for this generative interpretation,

three issues must be tackled: (1) there exist countably infinitely many appearance

patterns, as the objects have limitless variation of appearance; (2) the appearance

patterns are shared not only within but also across object categories, as the objects

of different categories can be visually similar too; and (3) intuitively, the objects

within a category should share a closer set of appearance patterns than those of

different categories. To tackle these three issues, we propose a generative probabilis-

tic model, nested hierarchical Dirichlet process (HDP) mixture. The stick breaking

construction process in the nested HDP mixture provides the possibility of count-

ably infinitely many appearance patterns that can grow, shrink and change freely.

The hierarchical structure of our model not only enables the appearance patterns

to be shared across object categories, but also allows the images within a category

to arise from a closer appearance pattern set than those of different categories.

Experiments on Caltech-101 and NUS-WIDE-object dataset demonstrate

that the proposed visual representation, visual synset, and learning scheme, nested

HDP mixture, in the thesis can deliver promising performance and outperform

existing models with significant margins.
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Chapter 1

Introduction

Visual object categorization is a process in which a computing machine automati-

cally perceives and recognizes objects in images at category level, such as airplane,

car, boat, etc. As one of the core research problems, visual categorization has

spurred much research attention in both multimedia and computer vision commu-

nity. Visual categorization yields semantic descriptors for visual contents of images

and videos. These semantic descriptor has profound significance in effective image

indexing and search, video semantic understanding and retrieval and robot vision

systems [138, 85, 73, 113, 86].

1.1 The visual representation and learning

The ultimate goal of visual categorization system is to emulate the function of

Human Visual System [11] to perform accurate recognition on a multitude of object

categories in images. However, due to the biological complexity of human brain, the

human visual and perceptual process remains obscure. The uncertain biological and

psychological processes make the machine emulation of these cognitive processes

not feasible. Rather than replicating the human vision system, researchers attempt
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to capture the principles of this biological intelligence. The human visual system

allows individuals to quickly recognize and assimilate information from the visual

perception. This complicated cognitive process consists of two major steps [76], as

shown in Figure 1.1. First, the lens of the eye projects an image of the surroundings

onto the retina in the back of the eye. The role of retina is to convert the pattern of

light into neuronal signals. At this point, the visual perception of an individual has

been represented in a form that is readable by human intelligence system. Next, the

brain receives these neuronal signals and processes them in a hierarchical fashion

by different parts of the brain, and finally, recognizes the content of the visual

surroundings.

From the computational perspective, this human visual perception can be

restated as a process in which the eye, like a sensor, perceives and transforms sur-

roundings into a set of signals and the brain, like a processor, learns and recognizes

these signals. Inspired by this fact, researchers approach the visual categoriza-

tion in a methodology comprising of two major modules: visual representation and

learning [11, 134]. To some extent, this methodology is consistent with Marr’s

Theory [75] in 3-D object recognition setting, in which the vision process is re-

garded as an information processing task. The visual representation specifies the

explicit interpretation of visual cues that an image contains, while the algorithm

(or learning) module governs how the visual cues are manipulated and processed

for visual content understanding and recognition.

Figure 1.1 shows the overall flow of this modular and sequential methodology

of visual categorization. The significance of this methodology is that it sketches

the contour for designing visual recognition systems. Many researchers working

on visual recognition systems have organized their research effort according to this

methodology, by focusing either on representation or learning or both.
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Figure 1.1: The human vision perception and the methodology of visual cate-
gorization. Similar to the human vision perception, the methodology of visual
categorization consists of two sequential modules: representation and learning.

1.1.1 How to represent an image?

To identify the content of an image, the eye of human perceives and represents it

in the form of neuronal signals for the brain to perform subsequent analysis and

recognition. Similarly, computer vision and image processing represent the infor-

mation of an image in the form of visual features. The visual features for visual

categorization can be generally classified into two types: global feature representa-

tion and local feature representation. The global feature representations describe

an image as a whole, while the local features depict the local regional statistics of

an image [37].

Earlier research efforts on visual recognition have focused on global feature

representation. As the name suggests, the global representation describes an im-

age as a whole, in a global feature vector [62, 74, 68]. The global features are

image-based or grid-based ordered features, such as the color or texture histogram
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over the whole image or grid [74]. Examples of global representations include a

histogram of color or grayscale, a 2D histogram of edge strength and orientation, a

set of responses to a group of filter banks, and so on [68]. Up to date, the global

features have been extensively used in many applications, because of their attrac-

tive properties and characteristics. First, the global features produce very compact

representations of images. This representation compactness enables efficiency in

subsequent learning processes. Second, in general, the global feature extraction

processes are efficient with reasonable computational complexity. This property

make global features especially popular in online recognition systems that need to

process input images on the fly. More importantly, by generalizing an entire image

into a single feature vector, the global representation renders the existing similarity

metric, kernel matching and machine learning techniques readily applicable on the

visual categorization and recognition task.

Despite of the aforementioned strength, the global features suffer from the

following drawbacks. First, the global features are sensitive to scale, pose and

image capturing condition changes. Consequently, they fail to provide adequate

description on an image’s local structure and appearance. Second, global features

are sensitive to clutter and occlusion. As a result, it is either assumed that an

image only contains a single object, or that a good segmentation of the object from

the background is available [68]. However, in reality, either of these two scenarios

seldom exist. Third, the global representation assumes that all parts of images

contribute to the representation equally [68, 37]. This makes it sensitive to the

background or occlusion. For example, a global representation on an image of an

airplane could be more reflective on the background sky, rather than the airplane

itself.

Due to the aforementioned disadvantages of global features, much research

efforts have been motivated towards some visual representation that are more re-
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silient to scale, translation, lighting variations, clutter and occlusion. Recently, local

features have attracted much research attention, as they tackle the weaknesses of

global features in part, by exploiting the local regional statistics of image patches

to describe an image [37, 105, 60, 58, 59, 25, 3]. The part-based local features

are a set of descriptors of local image neighborhoods computed at homogeneous

image regions, salient keypoints and blobs, and so on [35, 37, 111]. Compared to

global features, the part-based local representations are more robust, as they code

the local statistics of image parts to characterize an image [37]. The part-based

local representation decomposes an image into its component local parts (local re-

gions) and describes the image by a collection of its local region features, such as

Scale Invariant Feature Transform (SIFT) [72]. It is resilient to both geometric

and photometric variations, including changes in scale, translation, view point, oc-

clusion, clutter and lighting conditions. The overlapped extraction of local regions

is equivalent to extensively sampling the spatial and scale space of images, which

enables the local regions to be robust to scale and translation changes. The local

regions correspond to small parts of objects or background, which makes them re-

silient to clutter and occlusion. Moreover, the variability of small regions is much

less than that of whole images [119]. This renders the region descriptor, such as

Scale Invariant Feature Transform (SIFT) [72], to be capable of canceling out the

effects caused by lighting condition changes.

1.1.2 Visual categorization is about learning

Paralleled by cognitive science and neuroscience studies, the visual recognition and

categorization are usually formulated as a task of learning on visual representation

of images. This formulation brings an essential linkage between visual categoriza-

tion and the paradigm of pattern recognition and machine learning. Hence, the

visual categorization research is naturally rooted in the mathematical foundations
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of pattern analysis and machine learning. In the setting of statistical learning,

the visual categorization is cast as a supervised learning and classification task on

image representation.

In general, the statistical learning methods for visual categorization can be

classified into two types: discriminative and generative learning. To distinguish

discriminative and generative learning, we assume an image I with feature X to

be classified to one of m categories C = {ci}m
i=1, as shown in Figure 1.2. In a

Bayesian setting, this classification task can be characterized as modeling posterior

probability p(c | X). Once probability p(c | X) are known, classifying image I to

category c with maximum p(c | X) gives the optimal categorization decision, in the

sense that it minimizes the expected loss or Bayes risk.

To categorize the unseen images, the generative learning approach estimates

the joint probability P (X; c) of image feature variables and object category vari-

able [69, 55]. This estimation can be factored to computing the category prior

probabilities p(c) and the class-conditional densities p(X | c) separately, according

to the Bayes’ rule. The posterior probabilities p(c | X) are then obtained using the

Bayes’ theorem

p(c | X) =
p(X | c)p(c)∑
c P (X | c)P (c) (1.1)

In general, the generative learning approaches assume a generative image

formation process, in which the image feature variables arise from a joint prob-

ability. This generative modeling of image formation provides the possibility to

explicitly identify the causal structure of image features [55]. It also helps to reveal

what variables are important to emulate human vision psychophysical processes.

Generally, the generative approaches characterize the inter-relation of all relevant

variables in terms of a probabilistic graph. The graph also helps to interpret how

the joint probability is factored into the conditional probabilities [55]. The causal
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Figure 1.2: The generative learning v.s. discriminative learning. Generative learn-
ing focuses on estimating P (X; c) in a probabilistic model, while the discriminative
learning focuses on implicitly estimating P (c | X) via a parametric model.

relationship defined in the graph can function as constraints to alleviate the infer-

ence computation.

In contrast to generative models, the discriminative approaches do not model

the joint probability, but the posterior probability P (c | X). Instead of explic-

itly estimating the density of the posterior probability, many approaches utilize a

parametric model to optimize a mapping from image feature variables to object

category variable. The parameters in the model can then be estimated from the

labeled training data. One popular and relatively successful example is the support

vector machine (SVM) [120, 59, 135]. In the task of visual categorization, SVM
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attempts to capture the distinct visual characteristics of different object categories,

by finding the maximum margin between them in the image feature space. It tends

to have good performance, when different visual categories have large inter-class

variation.

Despite of their promising practical performance, the discriminative methods

suffer from two major critic. First, the discriminative methods attempt to learn

the mapping between input and output variables only, rather than unveiling the

probabilistic structure of either the input or output domain [18]. This attempt is

theoretically ill-advised, as the probabilistic structure can reveal the inter-relation

among input image feature variables and output category variables, and therefore,

help the system to categorize new unseen images [18]. Second, in general, the

discriminative methods often require large amount of training data to produce

good classifier, while the generative approaches usually need lesser supervision and

manual labeling to deliver stable categorization performance [115].

In summary, the generative learning approach categorizes object images, by

estimating the joint probability model of all the relevant variables, including image

feature variables and object category variable [69, 55, 119]. In contrast, the dis-

criminative approaches adopt a direct attempt to build a classifier that perform well

on the training data, by circumventing the modeling of the underlying distributions

[49, 69, 88].

1.2 The half success story of bag-of-words ap-

proach

Recently, one of the part-based local features, namely the bag-of-words (BoW) im-

age representation, has achieved notably significant results in various multimedia

and vision tasks. Sivic el at. [105] and Nister and Stewenius [90] demonstrated
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Figure 1.3: The overall flow of the bag-of-words image representation generation.

that the bag-of-words representation is able to deliver state-of-the-art performance

in image retrieval, both in terms of accuracy and efficiency. Zhang el at. [136],

Lazebnik el at. [58] and many other researchers [130, 25, 3] showed that the

bag-of-words approaches give top performance in visual categorization evaluation,

such as PASCAL-VOC. Moreover, Jiang el at. [50] and Zheng el at. [141] also

exhibited that the bag-of-words approach outperforms other global or semi-global

visual features in the high level feature detection in TRECVID evaluation. The

simplicity, effectiveness and good practical performance of bag-of-words approach

have made it one of the most popular and widely used visual features for many

multimedia and vision tasks [130, 136, 59, 53]. Analogous to document representa-

tion in terms of words in text domain, the bag-of-words approach models an image

as a geometry-free unordered collection of visual words.

Figure 1.3 shows the overall flow of bag-of-words image representation gen-



10

eratation. As shown in Figure 1.3, the first step of generating bag-of-words repre-

sentation is extracting local regions in a given image I. This step determines which

part of local information will be coded to represent the image. After extraction of

M local regions {ai}M
i=1 from image I, the region descriptor, such as Scale Invariant

Feature Transform (SIFT) [72], is computed over the region. A vector quantization

process, such as k-means clustering, is then applied on the region descriptors to

generate a codebook of W visual words W = {w1, .., wW}. Each of the descrip-

tor cluster corresponds to one visual word in the visual vocabulary. The image I
then can be represented by a collection of visual words {w(a1) , ..., w(ai), ..}. The

bag-of-words representation has been demonstrated to be resilient to variations in

scale, translation, clutter, occlusion, and object pose, etc. The appealing proper-

ties of bag-of-words approach are attributed to its local coding of image statistics.

Extensive sampling of local regions enables the bag-of-words representation to be

robust to scale and translation changes. Describing local regions of an image also

makes the representation resilient to clutter and occlusion. Moreover, the local

region descriptor, such as Scale Invariant Feature Transform (SIFT) [72], makes

the bag-of-words approach robust to lighting condition changes.

1.3 What are the challenges?

Though various systems have shown promising practical performances of bag-of-

words approach [36, 124, 130, 136, 59, 53], the accuracies of visual object catego-

rization are still incomparable to its analogue in text domain, i.e. the document

categorization. The reason is obvious. The textual word possesses semantics and

the documents are well-structured data regulated by grammar, linguistic and lex-

icon rules. In contrast, there appears to be no well-defined rule in visual word

composition of images. The open-ended nature of object appearance makes ob-

jects, no matter from the same or different categories, have huge variation of visual
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Figure 1.4: A toy example of image distributions in visual feature space. The
semantic gap between image visual appearances and semantic contents is manifested
by two phenomena: large intra-class variation and small inter-class distance.

looks and shapes. Such huge object appearance diversities lead to sparse correla-

tion between visual proximity of object images and their semantic relevance. The

visual features, such as bag-of-words, color histogram, wavelet texture, etc, are,

therefore, not sufficiently capable to model the image semantics. This gap between

visual proximity of images and semantic relevance also makes most statistical and

machine learning models ineffective in visual object recognition. This gap is well

known as the semantic gap. From the perspective of statistics, the direct conse-

quences of this semantic gap are the large intra-class variation and small inter-class

distances, as shown in Figure 1.4.

In the context of bag-of-words image representation, the gap between visual

proximity of images and their semantic relevance can be regarded a form of ambi-
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guity and uncertainty of visual information representation [132, 133]. This repre-

sentation uncertainty is manifested by two phenomena: polysemy and synonymy.

The polysemous visual word is a one that might represent different semantic mean-

ings in different image context, while the synonymous words are a set of visually

dissimilar words representing the same semantic meaning. By sharing a set of pol-

ysemous visual words, the semantically dissimilar images might be close to each

other in feature space, while the synonymous visual words may cause the images

with the same semantic to be far apart in the feature space.

1.4 A higher-level visual representation

To achieve more effective object categorization, a higher-level visual content unit

is demanded so as to tackle the polysemy and synonymy issues caused by visual

diversity.

Polysemy issue

Polysemy encumbers the distinctiveness of visual words and leads to under-representations

[132], [133]. Its consequence is effectively low inter-class discrimination. The pol-

ysemy is rooted from two reasons. First, visual word is the result of vector quan-

tization (clustering of region descriptors) and each visual word corresponds to a

group of local regions. Due to visual diversity, it is impossible to make regions of

one visual word with homogeneous appearances. Such quantization error inevitably

results in ambiguity of visual word representation. Second, the regions represented

in a visual word might come from the object parts with different semantics but

similar local appearances. For example in Figure 1.5 (a), visual word A is not able

to distinguish motorbike from bicycle, as they share visually similar tires. However,

the combination of visual word A and B, i.e. the visual phrase AB, can effectively
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(a) The combination of visual word A and B, i.e. the visual phrase AB,
can effectively distinguish motorbike from bicycle.

(b) The combination of visual word C and D, i.e. the visual phrase CD,
can effectively distinguish pistol from scissor.

Figure 1.5: The combination of visual words bring more distinctiveness to discrim-
inate object classes.

distinguish motorbike from bicycle. The polysemy issue can, therefore, be resolved

by mining inter-relation among visual words in certain neighborhood region. Yuan

el at. [133] and Quack el at. [99] proposed to utilize frequently co-occurring visual

word-set to address the polysemy issue. Specifically, Yuan el at. denote such visual

word-set as visual phrase. The major weakness of visual phrase approach is that

it merely considers the co-occurrence information among visual words but neglect

spatial information among them. To tackle such issue, we propose a new visual
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Figure 1.6: Example of visual synset that clusters three visual words with similar
image class probability distributions.

descriptor - delta visual phrase, which incorporates both co-occurrence and spatial

scatter information of visual words.

Synonymy issue

The synonymy is attributed to the visual diversity of objects of same semantic

class. Such appearance diversity makes multiple visual words share same or similar

semantic meaning. It is, in fact, an over-representation of semantics by visual words

[132, 133]. The consequence is large intra-class variations. In this circumstance,

both visual words and phrases become too primitive to effectively model the image

semantics, as their efficacy depends highly on the visual similarity and regularity of

images of same semantics. To tackle this issue, a higher level visual content unit is

needed. In text domain, when documents of same topic or categories are represented

by different sets of words, the word synset (synonymy set) that link words of similar
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semantics are robust to model them [10]. Inspired by this, we propose a novel

visual content unit, visual synset, on top of visual words and phrases. We define

visual synset as a relevance-consistent group of visual words or phrases with similar

semantics. However, it is hard to measure the semantics of a visual word or phrase,

as they are only a quantized vector of sampled regions of images. Rather than

in a conceptual manner, we define the ’semantics’ probabilistically as semantic

inferences P (ci|w) of visual word or phrase w towards image class ci.

Intuitively, if several visual words or phrases from different images share

similar class probability distribution, like the brand logos in car images shown in

Figure 1.6, then the visual synset that clusters them together shall possess similar

class probability distribution and distinctiveness towards image classes. The visual

synset can then partially bridge the visual differences between these images and

deliver a more coherent, robust and compact representation of images.

1.5 Learning beyond visual appearances

The open-ended nature of object appearance and the resulting semantic gap have

posed significant challenges to learning schemes for visual categorization in two

aspects. First, objects of different classes can share similar visual appearances.

This visual similarity leads to objects of different categories sharing similar visual

features, which consequently makes them appear in close proximity in the visual

feature space. In this case, the same visual feature pattern over-represents more

than one semantics, which is, in essence, an ambiguity issue of visual representation

[132, 143, 140]. The primary consequence is the small inter-class distance for objects

of different categories. Second, the objects of the same classes can have different

visual appearance. Such appearance diversity makes objects of same category have

distinct visual features and distributed far apart in the visual feature space. In

this case, multiple visual feature patterns may correspond to the same semantics.
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Figure 1.7: The generative interpretation of visual diversity, in which the visual
appearances arise from countably infinitely many appearance patterns.

This is an under-representation or uncertainty issue of visual feature. Hence, the

objects of the same category may have a large intra-class variation [132, 143].

Consequently, the visual diversity leads to a low correlation or large gap between

image proximity in the visual feature space and their semantic relevance. which, in

fact, is one of the causes of the well known ”semantic gap” problem.

The visual diversity of objects and its resulting semantic gap have presented

a harsh reality to learning schemes: it is usually difficult to learn the visual charac-

teristics of object categories for classification, as most object categories generally do

not have any distinct visual characteristics. Therefore, rather than directly mod-

eling object visual content, we need some learning scheme that goes beyond visual

appearances. As we know, the open-ended nature of object appearance brings in the

huge variation of visual appearances. We interpret the unbounded object appear-

ance diversity as a generative phenomenon, in which the diverse visual appearances
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arise from countably infinitely many common visual appearance patterns, as shown

in Figure 4.2. In this probabilistic generative interpretation, different object cat-

egories can still be visually similar and share similar visual appearance patterns.

However, the distribution and combination of appearance patterns can be distinct

for different object categories. The object categorization can then be cast as a

problem of analyzing the distribution and combination of appearance patterns or

the visual thematic structure of object categories. Effectively, the objects of same

class that are visually different can be adjacent in visual appearance pattern space.

Hence, the appearance patterns can bridge the visual appearance difference of ob-

jects in part.

However, to make the aforementioned generative interpretation valid, three

issues must be tackled. (1) There should exist countably infinitely many appearance

patterns, as the object visual diversity is boundless. (2) All the object categories

should share a universal set of visual appearance patterns, as the objects of different

categories can be visually similar too. (3) Intuitively, the objects of same category

should possess a closer set of appearance patterns than those of different categories.

To embody the generative interpretation of object appearance, we tackle the three

aforementioned issues by developing a hierarchical generative probabilistic model,

named nested hierarchical Dirichlet process (HDP) mixture. The stick

breaking construction process and Chinese restaurant franchise representation [117]

in the proposed nested HDP mixture model allow the countably infinitely many

appearance patterns to be shared within and across different object categories. The

designed model structure also enables the images of the same category to possess

a closer set of appearance patterns.
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1.6 Contributions

The thesis focuses on developing a higher-level visual representation and a new

generative probabilistic learning method for visual categorization. The main con-

tributions of the thesis are as follows.

1. Visual synset: a higher-level visual representation

In order to address the polysemy and synonymy issue of visual words, we

propose a novel visual content unit, visual synsets. To address the polysemy issue,

we exploit the co-occurrence and spatial scatter information of visual words to

generate a more distinctive visual compositional configuration, i.e. delta visual

phrase. The improved distinctiveness leads to better inter-class distance.

To tackle the synonymy issue, we proposed to group delta visual phrase with

similar ’semantics’ into a visual synset. Rather than in conceptual manner, the

’semantic’ of a delta visual phrase is probabilistically defined as its image class

probability distribution. The visual synset is therefore a probabilistic relevance-

consistent cluster of delta visual phrases, which is learned by Information Bottle-

neck based distributional clustering.

2. Nested HDP mixture: a learning scheme beyond visual appearances

To further recognize objects beyond their visual appearance, we adopt a gen-

erative interpretation of object appearance diversity, in which visual appearances

arise from countably infinitely many common appearance patterns. To embody this

interpretation, we propose a generative probabilistic model, called nested HDP

mixture, by tackling the following three issues in the interpretation: (1) there

should exist countably infinitely many appearance patterns, as the object visual

diversity is boundless; (2) all the object categories should share a universal set of

visual appearance patterns, as the objects of different categories can be visually
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similar too; (3) intuitively, the objects of same category should possess a closer set

of appearance patterns than those of different categories.

1.7 Outline of the thesis

Chapter 2 introduces the background knowledge and reviews the literature on visual

representation and categorization models, that are relevant to or share similar vision

with the thesis.

Chapter 3 presents the proposed higher-level visual representation, visual

synset, for visual categorization. It first delves into the process to construct the pro-

posed compositional feature, delta visual phrase, based on frequently co-occurring

visual word-set with similar spatial scatter. Then it presents the construction of

visual synset, based on the probabilistic ’semantics’, i.e. class probability distribu-

tion, of delta visual phrases.

Chapter 4 details the proposed generative probabilistic learning framework,

nested hierarchical Dirichlet process (HDP) mixture, to perform image categoriza-

tions beyond visual appearances. The proposed HDP mixture model learns the

common appearance patterns from diverse object appearances and performs cate-

gorization based on the pattern models.

Chapter 5 discusses the experimental observations and results on two large

scale image datasets: Caltech-101 [63] and NUS-wide-object dataset [23].

Chapter 6 concludes the thesis with highlight of contributions of this thesis.
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Chapter 2

Background and Related Work

This thesis is relevant to a range of research topics, including compositional feature

mining, distributional clustering, generative probabilistic models, etc. This chapter

serves to introduce the necessary background knowledge and concepts before delv-

ing deep into the proposed models. As some related work are also the rudimentary

elements of the proposed models, this Chapter presents the related work and back-

ground together on two dimensions: image representation and statistical learning

schemes for visual categorization.

2.1 Image representation

2.1.1 Global feature

From the global image feature representation in earlier research work to the more

advanced part-based local feature representation in recent research efforts, the im-

age representation for visual categorization has gone through significant evolution.

The earlier global features include color, texture and shape features. Due to the sim-

plicity and good practical performance, these visual features are still being widely

used in many research tasks and systems, such as content based image retrieval
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[102], visual categorization, and high level feature detection in TRECVID evalua-

tion [109], etc. Here, we briefly review color and texture feature representation.

Color

The color feature has been one of the most widely used visual features. It has

the relative advantages of robustness to background complication and invariance to

image size and orientation [102]. Among color features, color histogram is the most

commonly used. It depicts the pixel statistics in color spaces, which include RGB,

LAB, LUV, HSV and YCrCb. From the perspective of Bayesian, color histogram

denotes the joint probability of the pixel intensities of the three color channels. One

variation of color histogram is the cumulated color histogram proposed by Stricker

and Orengo [114], which aims to address the sparsity issue in color histogram.

Stricker and Orengo proposed the color moments approach to alleviate the

quantization issue in color histogram. The rational of color moments lies in the fact

that the color distribution can be characterized by its moments. Specifically, most

commonly used moments are the low-order ones, such as the first moment (mean),

and the second and third central moments (variance and skewness).

To capture the spatial correlation of colors, Huang et al. proposed the color

correlogram [46]. Rather than simple intensity distribution, the color correlogram

encodes (1) the spatial correlation of colors and; (2) the global distribution of local

spatial correlation of colors. Informally, a color correlogram of an image depicts the

probability of finding a pixel of a given color i at a given distance k from a pixel of

a given color j. For computational simplicity, color i and j are usually set to be the

same. The resulting feature is called autocorrelogram, which effectively depicts the

global distribution of local spatial correlations of the pixels with the same color.

Please refer to [81, 48, 89, 126] for complete study of color visual features.
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Texture

Texture denotes the visual patterns that have properties of repeatability and ho-

mogeneity, such as interwoven elements, threads of fabric, and so on [41]. It is

not the consequence of single color or intensity, but the visual property of object

surfaces [110]. In other words, it depicts the ”structural arrangement of surfaces

and their relationship to the surrounding environment”.

Texture features encode several types of visual information: (1) spectral

features, which include Gabor texture and wavelet texture; (2) statistical features,

which cover six Tamura texture features; and (3) the wold features. Among the

various texture features, the Gabor texture and wavelet texture are widely studied

and used for image retrieval, visual categorization and other multimedia and vision

tasks [22, 110]. Especially, the wavelet texture features have been reported to

well match the perception of human vision, and therefore, wavelet transform in

texture representation has been well studied in recent years [22, 110]. Smith and

Chang [110] proposed a texture representation, based on the statistics (mean and

variance) extracted from the wavelet subbands. Chang and Kuo [22] explored

the middle-band characteristics, a tree-structured wavelet transform, to construct

texture representation. For a more complete review on texture features, please refer

to [102, 101, 110].

2.1.2 Local feature representation

The major drawback of global features is that they are sensitive to scale, pose

and image capturing condition changes. On the other hand, the part-based local

image representations, such as bag of local features, have shown robustness and

resilience in photometric and geometric image variations, such as changes in scale,

translation, lighting condition, viewpoint, occlusion and clutter, in part [59, 68].

In general, the local regions in part-base representation are obtained by identifying
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Table 2.1: List of commonly used local region detection methods.
Method Description

Difference of
Gaussian (DoG)

Detect regions at local scale-space max-
ima of the difference-of-Gaussian. It
detects blob-like local image neighbor-
hoods [72].

Laplacian of
Gaussian (LoG)

Build scale-space representation by
successive smoothing of image with
Gaussian based kernels and detect
blob-like image structures [67].

Harris-Laplace Detect regions via the scale adapted
Harris function and the Laplacian-of-
Gaussian operator in scale-space. It
yields corner-like regions [78].

Hessian-Laplace Detect regions of the local maxima of
the Hessian determinant at space at
and the local maxima of the Laplacian-
of-Gaussian in scale [80].

Harris-Affine Detect regions via the scale invariant
Harris detector and extract affine shape
of a keypoint neighborhood [78].

Hessian-Affine Similar to Harris-Affine detector. The
difference is that Hessian-Affine detec-
tor chooses interest points based on the
Hessian matrix [78].

Salient region
detector

Detect regions of local maxima of the
entropy at scale-space. The entropy of
pixel intensity histograms is measured
for circular regions of various size at
each image position [54].

Maximally Sta-
ble Extremal Re-
gions (MSER)

Detect regions of homogenous color
[77].

Dense random
region detector

Randomly extract a large number of re-
gions from an image [91].



24

Figure 2.1: SIFT is a normalized 3D histogram on image gradient, intensity and
orientation (1 dimension for image gradient orientation and 2 dimensions for spatial
locations).

homogeneous image regions, local neighborhood of salient keypoints or blobs in the

image. Ideally, the local region identification process should possess two proper-

ties: (1) minimizing the intra-class variations caused by geometric and photometric

changes, such as different scale, lighting conditions, viewpoints, etc, (or maximiz-

ing the local similarities of images) by providing most repeatable regions among

images in the same class; and (2) maximizing the inter-class variations by sampling

discriminative local image regions. Towards these two goals, researchers have devel-

oped many local region extraction algorithms, such as Difference of Gaussian [72],

Harris-Laplace [78], Maximally Stable Extremal Regions (MSRE) [27] , based on

color or geometric saliency of keypoints or regions. Table 2.1 lists the most com-

monly used region detection methods and brief description of their characteristics.

For each detected local region, a feature descriptor (vector) is computed.

There exist several local region descriptors, such as Gradient Location and Ori-

entation Histogram (GLOH) [79], Scale Invariant Feature Transform [71, 72],

Speeded Up Robust Features (SURF) [9], and so on. Among the various fea-

ture descriptors, the Scale Invariant Feature Transform (SIFT), developed by Lowe
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[72], has been one of the most widely used descriptors. As shown in Figure 2.1,

SIFT is basically a normalized 3D histogram on image gradient, intensity and ori-

entation (1 dimension for image gradient orientation and 2 dimensions for spatial

locations). The nature of image gradient (intensity difference of neighboring pixels)

makes SIFT resilient to illumination changes. SIFT is also used as local feature in

our model in the thesis. Among the part-base local representation, bag-of-words

representation is the most widely used and has attracted much research attention,

which will be introduced in the subsequent Section.

2.1.3 The bag-of-words approach

Among all the part-based local representations, bag-of-words image representation

has been one of the most popular approaches and spurred much research attention

due to its simplicity, computational efficiency and good practical performance [105,

60, 58, 59, 25, 3]. Following the analogy of document representation in text domain,

the bag-of-words approach represent an image as an orderless bag of visual words.

Though it does not incorporate any geometric structure or spatial information,

the bag-of-words representation has achieved notably significant results in various

multimedia and computer vision tasks, such as image retrieval [105, 90], visual

categorization [136, 58, 59, 25, 3] and high level feature detection in TRECVID

evaluation [50, 141].

The idea of adapting text categorization approaches to visual categorization

can be traced back to the work in [144], in which Zhu et al. explored the vector

quantization of small square image windows, named ”keyblocks”, to represent im-

ages. They showed that these quantized ”keyblocks” features, together with the

”well-known vector-, histogram-, and n-gram-models of text retrieval”, can deliver

more ”semantics oriented” results than color and texture based approaches [25].

The bag-of-words representation has been previously utilized on texture clas-
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sification [61, 122, 57]. In the texture classification task, the cluster of local features,

or visual word, has another name, ”texton”. Recently, researchers have promoted

the usage of bag-of-words approach to other tasks. Sivic and Zisserman exploited

the bag-of-words representation for object and scene image (and keyframe) retrieval,

by borrowing the retrieval mechanism in the text retrieval analogy. Same as the text

analogy, the approach represents an image as an orderless bag of visual words that

are generated via vector quantization on affine-invariant regions. The bag-of-words

image representation enables the image retrieval system to utilize all the available

feature weighting schemes, like tf-idf, and indexing techniques, like inverted files

[131], in the text retrieval domain.

Similarly, Zhang et al. [137, 136] explored the bag-of-words representation

for texture classification and object categorization. The experimentations on PAS-

CAL VOC 06 dataset [28] and Caltech-101 dataset [63] have shown that the bag-

of-words approach achieves state-of-arts performance under challenging real-world

conditions, including significant intra-class variations and substantial background

cluttering.

2.1.4 Hierarchical coding of local features

To construct a more efficient and robust representation, many researchers have

proposed various improvements on bag-of-words approach. Nister and Stewenius

have exploited a hierarchical vector quantization process on local image features

to generate a hierarchical codebook, or multi-level vocabulary tree, of visual words

[90]. The multi-level vocabulary tree is constructed via the hierarchical k-means

clustering on local features, as shown in Figure 2.2. First, an initial k-means clus-

tering process is applied on the training set of local features. Consequently, the

training data is partitioned into k groups, where each group of local features corre-

sponds to one cluster. Then, the same k-means clustering process recursively runs
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Figure 2.2: The multi-level vocabulary tree of visual words is constructed via the
hierarchical k-means clustering.

on each partition of local features, which effectively defines the ”quantization cells

by splitting each quantization cell into k new ones”. The hierarchal representation

of local features enables the new images to be efficiently inserted into the database.

Moreover, the image representation can easily scale up to support efficient image

indexing, retrieval and recognition.

Rather than from the perspective of visual descriptors of local regions, Agar-

wal and Triggs [1] proposed a multilevel hierarchal coding, by recursively incor-

porating spatial information of local features. The proposed approach leverages
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Figure 2.3: The spatia pyrmaid is to organize the visual words in a multi-resolution
histogram or a pyramid at the spatial dimension, by binning visual words into
increasingly larger spatial regions.

the local histogram model to incorporate spatial information into bag-of-words

representation [98]. The goal of the proposed approach is to exploit the spatial

co-occurrence statistics at different spatial scales. The approach divides the images

into local regions with each region being characterized by a descriptor vector, like

SIFT. The base level representation contains bag of raw local descriptors. The

higher levels then code the local features into visual words, by applying vector

quantization on local features in the preceding level. The same process is then

repeated recursively at higher levels. At each level, it generates the visual words

by coding a local set of descriptor vectors from the preceding level. The resulting

image representation is named hyperfeatures [1].

2.1.5 Incorporating spatial information of visual words

To make bag-of-words representation more discriminative, Lazebnik el at. proposed

a spatial pyramid model to incorporate spatial information hierarchically into bag-
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of-words representation [59]. The proposed image representation is to organize the

visual words in a multi-resolution histogram or a pyramid at the spatial dimension,

by binning visual words into increasingly larger spatial regions, as shown in Figure

2.3. The advantage of this approach is that the finer spatial resolution level yields

more distinctive visual words, while the coarse level gives the tolerance to the

mismatch between two images. The main drawback, however, is that the increasing

spatial resolution will inevitably bring in the curse of dimensionality, as a new finer

spatial resolution will double the number of distinct visual words in the image

representation.

2.1.6 Constructing compositional features

To further strengthen the discriminativeness of visual representation, researchers

developed the compositional features that consists of several individual visual fea-

tures (words) with specific spatial or locality constraints. The rational of composi-

tional features is rooted in the compositionality principle [34, 15], which states that

”in cognition in general, especially in human vision, complex entities are perceived

as compositions of comparably” simple and widely usable parts [94].

Ommer and Buhmann [93, 94] proposed a category-dependent model of

composition of local features to represent images with intermediate groups of fea-

tures. The goal of the proposed approach is to generate compositions representative

to category-distinctive subregions, so as to achieve minor intra-class variations for

more effective learning afterwards. The approach first generates a codebook of vi-

sual words, by performing k-means clustering on local features. Then, by following

the principle of perceptual organization, namely Gestalt laws [70], the possible can-

didates of visual word compositions are selected. The relevant and discriminative

compositions are learned, in a weakly supervised fashion (with category label for

each image). Finally, the selected relevant compositions are coupled with a shape
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model.

Rather than building compositional features from supervised learning, Yuan

el at. [132] proposed a compositional visual configuration, visual phrase, by a un-

supervised mining of frequently co-occurring visual words. The rational is that the

spatially associated visual words can form more distinctive and informative visual

patterns. The visual phrase learning is formulated as a frequent itemset mining

task [40] in the database of the spatially adjacent visual word-sets. This approach

is closely related to our proposed visual descriptor, delta visual phrase. However,

different from the approaches above, the proposed delta visual phrase attempts to

exploit both co-occurrence and spatial scatter information of visual words, by uti-

lizing a series of varying support regions, so as to deliver more distinctive visual

configurations.

Similar to [132], Quack el at. [99] proposed a compositional visual configu-

ration model based data mining techniques for object detection task. The proposed

model first collects a large number of spatial neighborhoods of local features. It

then exploits an efficient frequent item-set mining algorithm [4] to discover associ-

ation rules among the neighborhoods. The association rules that are discriminative

to certain object categories are then selected for object detection task afterwards.

2.1.7 Latent visual topic representation

The performance of primitive visual features, like visual words and phrases reviewed

in previous section, depends highly on the visual similarity and regularity of object

categories. To mitigate such problem, researchers proposed to project images from

visual feature space to an intermediate latent topic feature space. As shown in

Figure 2.4, the latent topic functions as an intermediate variable that decomposes

the observation between visual words and image categories.

Inspired from the document topic mining work in text domain [38, 44, 45],
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Figure 2.4: The latent topic functions as an intermediate variable that decomposes
the observation between visual words and image categories.

Sivic el at. [104] proposed to model images with some higher level latent visual topic

features by exploiting the probabilistic Latent Semantic Analysis (pLSA) [43] and

Latent Dirichlet Allocation (LDA) [19]. pLSA and LDA are statistical models that

attempts to associate a latent variable (or aspect) with each observation (occurrence

of a visual word in an image) by capturing co-occurrence information between them.

The proposed approach applies pLSA and LDA, topic models originally proposed

for text document analysis, on visual words to project image representation from

visual word space to a latent topic space. The advantage of this approach is that the

visually different images of same category could share a similar set of latent topics,

and therefore, be in proximity in the latent topic space. The statistical learning can,

therefore, be more effective on discriminating different object categories. Agarwal

and Triggs also demonstrated the effectiveness of LDA in image classification in

[1].

The major drawbacks of the approach, however, are two-fold. First, the

number of latent topics need to be fixed. This rigid constraint is conflicting with

the open-ended nature of object appearances, which is that the objects can have

limitless variation of visual appearances. Second, the model in [104] does not

incorporate category knowledge and topic sharing information across different cat-
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egories. Though the latent topics are mined in a principled Bayesian framework, the

categorization can only be done with additional machine learning mechanism. To

some extent, the model in [104] is more proper to be regarded as an unsupervised

dimensionality reduction on the primitive visual features, like visual words.

2.2 Learning and recognition based on local fea-

ture representation

There exist a considerable variety of learning methods for visual categorization,

from simple nearest-neighbor schemes to more complicated discriminative kernel-

based classifiers, generative probabilistic Bayesian models, and so on. As the thesis

focuses on part-based local image representation, this section will mainly review

the learning and recognition methods based on local feature representation. It first

reviews the relevant literature work on discriminative models, and then, related

work on generative models.

2.2.1 Discriminative models

One advantage of using bag-of-words model is that the discriminative models used

in text document categorization, such as support vector machine (SVM) [120, 84],

adaptive boosting (AdaBoost) [31, 32], are readily available for visual classification.

In the discriminative models, the focus usually shifts to the distance metric of local

feature representation.

Berg el at. [12] explored the nearest neighbor classification framework based

on local features for object recognition task on Caltech-101 dataset [63]. The

approach first extracts a set of local regions and compute the geometric blur features

of local regions [13] to represent the visual characteristics of an image. Then, the

distance between images is computed by a correspondence algorithm that takes into
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account ”the similarity of corresponding geometric blur point descriptors as well

as the geometric distortion between pairs of corresponding” local regions [12]. By

taking the correspondence measure as the similarity metric, the image classification

is carried out by finding its nearest image neighbors. The advantages of nearest-

neighbor schemes are: (1) they are straightforward and simple to implement, in the

sense that they implicitly tackle the multi-class issue in visual categorization and;

(2) they can produce reasonably good results if the similarity metric are designed

carefully. The unpleasant aspect of nearest-neighbor schemes is also obvious. The

classification process can be computationally expensive, as the testing image need

to be compared against all the training images. This is especially so, when the

number of training data is huge.

Zhang el at. [136] investigate the kernel trick in SVM classifier for visual

categorization based on local features. Specifically, the work evaluated the effec-

tiveness of different kernels on two types of local feature representations: (1) bag of

local features and; (2) the quantized bag-of-words approach. The work pointed out

that the Earth Mover’s Distance (EMD) [100] gave satisfactory results on the bag

of local features representation and the χ2 distance delivered good performance on

bag-of-words representation. SVM possesses both theoretical and empirical suit-

ability for local feature based image classification, due to the following desirable

characteristics [51]. First, SVM has good capability to handle high dimensional in-

put space, while the local feature representation usually results in high dimensional

feature space (a few thousands visual words). The overfitting protection of SVM

enables it to handle such high dimensional feature space. Second, SVM has good

capability to handle sparse image vectors. The image vectors of bag-of-words rep-

resentation usually are sparse, due to the limited number of extracted local regions

per image and high dimensionality of visual word feature space.

To combine the edges of nearest neighbor classifier and SVM, Zhang el at.
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[135] proposed a discriminative nearest neighbor classification scheme, called SVM-

KNN, for visual categorization. The basic idea of the proposed model is to locate k

nearest neighbors of a given query image in the training database and train a local

support vector machine for the query image, based on its k nearest neighbors. To

some extent, this approach is similar to the local learning schemes in [21], which

also utilizes k-NN together with a set of local linear classifiers with ridge regular-

izer. To speed up the nearest neighbor searching process, the approach in [135]

first computes a crude distance between query images and training images to prune

the list of nearest neighbor candidates. The accurate distance are then computed

to determine the k nearest neighbors. The experiments on several datasets, like

Caltech-101, showed that this approach can deliver promising results with reason-

able efficiency.

Another paradigm of discriminative models is the multiple kernel learning

(MKL) [7]. Rather than using a single kernel in support vector machine (SVM),

the MKL schemes learn a kernel combination and the associated classifier that

fuses multiple informative features and kernels [56, 121]. The recently reported

work [56, 121, 66] have shown that the multiple kernel learning can deliver much

superior performance than tradition SVM approach, as it can leverage different

visual features simultaneously. For example, Varma and Ray [121] explored the

multiple kernel learning to combine a set of base visual features, such as bag-of-

words feature, global color histogram, etc, to perform visual categorization. The

premise is that different base visual features tend to capture different aspects of

image categories and hence share complementariness and redundancy in modeling

the visual contents.

Different from the multiple kernel learning schemes, the thesis focuses on

devising one higher-level local feature representation, on top of bag-of-words model,

rather than combining different visual features.
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2.2.2 Generative models

The discriminative learning focuses on optimizing the mapping between input image

feature and output category variables. In contrast to discriminative approaches,

the generative methods attempt to model the probabilistic inter-connectivity in the

input and output variable domain, by estimating the joint probability of all relevant

variables. The probabilistic inter-connectivity of variables reveals the structural

knowledge of inter-relation among variables, and therefore, helps to achieve better

generalization on categorizing new unseen images. For this reason, we approach

the object categorization task via generative probabilistic learning. This section

reviews the generative probabilistic work closely related to our proposed model in

the thesis. Prior to presenting the relevant literature work, we briefly introduce the

fundamentals of probabilistic graphical models.

Fundamentals of graphical models

As stated by Jordan [52], probabilistic graphical model are a ”marriage between

probability theory and graph theory” and a powerful framework for dealing with

uncertainty and complexity. A probabilistic graphical model is depicted as a graph

G = (V , E), in which nodes or vertices V correspond to random variables, and edges

E represent conditional independence assumptions [82]. Graph is to represent the

interrelation among variables (nodes), which are depicted by conditional indepen-

dencies (edges). Effectively, graph decomposes multivariate, joint distributions into

a set of local interactions among small subsets of variables. More importantly, such

decomposition leads to efficient learning and inference algorithm [115].

In general, there are two types of graphical models: undirected and directed.

The undirected graphical models are known as Markov networks. The directed

graphical models are known as Bayesian networks, belief networks, generative mod-

els, and some other names. Our focus here is directed graphical models. In directed
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Figure 2.5: The graphical model of Naive Bayes classifier, where parent node is
category variable c and child nodes are features xk. Given category c, features xk

are independent from each other.

graphical model, an edge (i, j) connects parent node i and child node j with an

arrow. The Markov property here is that a random variable xj is conditionally

independent of all the other variables, given its parent xi.

Among various directed graphical models, Naive Bayes classifier can be re-

garded as the simplest one. As shown in Figure 2.5, a Naive Bayes classifier assumes

that the effect of a variable (feature) xk on a given class c is independent of other

variables (features). The conditional class probability can then be computed as

below.

p(c | x1, ..., xK) =
p(x1, ..., xK | c)p(c)

P (x1, ..., xK)

.
= Πkp(xk | c)p(c)

(2.1)

Constellation models

In the family of directed graphical models, constellation models have spurred much

research attention for category-level object recognition. Similar to visual topic

learning like LDA on bag-of-words representation, the constellation models [30,

29, 129, 128, 127] attempt to represent an object class by a constellation of visual

parts (or topics). Constellation models take into account the geometric relation-

ship between different parts. This is significantly different from the bag-of-words
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approach that neglects the geometric information completely. Specifically, the con-

stellation models explicitly model the relative location, relative scale, and appear-

ance of these parts for a particular object category. For this reason, they tend to

be good at recognizing rigidly structured objects, such as car, airplane, people, as

these object categories present strong geometric clues.

The original idea of ”visual parts” model can be traced back to the work

by Fischler and Elschlager [30]. They proposed to model objects as spatially

deformable collections of parts [30, 127]. Weber el at. [129, 128, 127] extended this

idea to learn object class models from unlabeled and unsegmented cluttered images,

in an unsupervised fashion. First, the approach automatically identifies distinctive

parts in the training images by utilizing clustering techniques. Then, the statistical

shape model is learned via a greedy search over possible model configurations by

using expectation maximization. The models of constellation of parts can be applied

to discover object categories in an unsupervised fashion [127].

Fergus el at. [29] furthers the approach by Weber el at. [129] by repre-

senting visual parts in three dimensions: shape, appearance and relative scale. In

the proposed approach, an object model is defined to consist of a group of parts

and each part is depicted by appearance, relative scale and shape. Shape is rep-

resented by the mutual position of the parts. Appearance, scale and shape are

modeled by Gaussians probability density functions. Object category learning pro-

cess first detects regions and their scales, and then estimates the parameters of

density functions above, such that the resulting model best explains the training

data in the sense of maximum-likelihood. The recognition on a query image can

then be performed by the learned model in a Bayesian manner accordingly.
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(a) The graphical model of
hierarchical generative frame-
work for scene classification

(b) The graphical model of
LDA

Figure 2.6: Comparison of LDA model and the modified LDA model for scene
classification in [64]. Figure (a) (from [64]) shows the graphical models hierarchical
generative framework for scene classification that are extended from LDA. Figure
(b) shows the graphical models of LDA. x and c are image features and classes, z
is the index of visual topic , π is the parameter of a multinomial distribution for
choosing the visual topic, K is the total number of themes

Generative models with Bayesian priors

Fei-Fei et al [64] proposed a Bayesian hierarchical generative model for natural

scene classification, by modifying the latent Dirichlet allocation (LDA) [19] to in-

corporate category knowledge. Figure 2.6(a) and 2.6(b) show the graphical models

of the modified LDA model for scene classification and LDA model. The proposed

model in [64] takes the bag-of-words representation to identify an images as a col-

lection of visual words. It then associates the visual word of each local region to a
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latent visual theme to learn the distribution of visual words and the intermediate

visual themes. The categorization on unseen new images is performed, via Bayesian

learning on the visual theme model. The major drawback of the approach is that

it inherits the weakness of LDA, which is that the number of latent visual themes

must be fixed and visual themes can not grow or shrink flexibly. This structure

rigidity impedes the trained model to capture more visual complexity from the new

training images.

To tackle this issue, Wang et al [125] developed a variation of hierarchical

Dirichlet process, by incorporating spatial information of visual descriptors. Similar

to our proposed model, their approach allows different categories to share countably

infinitely many appearance patterns. However, it assumes that the visual themes

are independent of image categories and shared at image level only. This effec-

tively neglects the inter-relation between visual appearance patterns and object

categories and leads to an oversimplified model. In contrast, our model takes into

account the inter-relation between appearance patterns, objects and categories via

its hierarchical structure.

In this aspect, the model in [116] shares the same vision as our model.

However, their model neglects the fact that the images within same category tend

to arise from a closer set of appearance patterns than those of different category,

which our proposed model has tackled with its graphical model structure.
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Chapter 3

Building a Higher-level Visual

Representation

3.1 Motivation

In the task of visual object categorization, the bag-of-words (BoW) approaches have

achieved many significant results [36, 124, 130, 136, 59, 53]. However, compared

to the analogy of text document categorization, the performance of BoW based

image classification is far from satisfaction. Similarly, compared to its analogy of

text document representation, the BoW image representation looks much inferior.

From the perspective of statistical learning, a desirable image representation should

possess the following characteristics: it is distinctive to represent images of different

classes, and it is invariant to represent images of the same class. In this way, the

images will be well distributed in the feature space, by concentrating into clusters

according to their belonging classes. The BoW representation, however, forfeits

this desired property by two phenomena: polysemy and synonymy. As introduced

in Chapter 1.3, the polysemous visual word is a one that might represent different

semantic meanings in different image context, while the synonymous words are
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Figure 3.1: The overall framework of visual synset generation

a set of visually dissimilar words representing the same semantic meaning. The

polysemy issue impairs the distinctiveness the BoW representation and leads to

small inter-class distance, while the synonymy issue encumbers the invariance of

BoW representation and results in large intra-class distance. Hence, a higher-level

visual content unit is needed to tackle the issues of bag-of-words representation.

3.2 Overview

Prior to delving deep into the proposed representation of visual synset, we present

the overall process of building visual synset. The visual synset aims to improve the

traditional bag of words representation with better discrimination and invariance

power. Figure 3.1 illustrates the overall framework of building visual synsets. As
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shown, the overall flow of the proposed approach consists of 3 phases. Phase 1 con-

structs visual words or visual codebook. In phase 2, the approach strengthens the

inter-class discrimination power by constructing an intermediate visual descriptor,

delta visual phrase, from frequently co-occurring visual word-set with similar spa-

tial context. In phase 3, the approach achieves better intra-class invariance power,

by clustering delta visual phrases into visual synset, based on their probabilistic

’semantics’, i.e. class probability distribution. Hence, the resulting visual synset

can partially bridge the visual differences of images of same class.

3.3 Discovering delta visual phrase

To address the polysemy issue of visual words, we exploit the co-occurrence and

spatial scatter information of visual words to generate a more distinctive visual

configuration, delta visual phrase. The delta visual phrase is regarded as one kind

of compositional features, as it is a combination of its constituent primitive features

(visual words). The theoretical rational of compositional features is rooted in the

compositionality principle [34, 15]. According to the compositionality principle,

a complex expression with more semantic can be generated by ”the meanings of

its constituent expressions and the rules used to combine them” [94, 34]. In the

context of our thesis, the ”complex expression” here corresponds to the delta visual

phrase, while the ”constituent expressions” mean the individual visual words that

compose the delta visual phrase and the ”rules used to combine them” are the

co-occurrence and spatial context relation of visual words. The practical rational

of delta visual phrase is simple too. If two visual words co-occur frequently in

the similar spatial context, their corresponding visual parts are probable to belong

to the same geometric structure of objects or have strong correlation at semantic

level. By combining several visual words into one visual unit, the delta visual

phrase corresponds to a larger visual or structural pattern, and therefore, gives
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more visual distinctiveness to represent the object. Figure 3.2 illustrates examples

of composition of visual words possessing more distinctiveness than individual visual

words.

3.3.1 Learning spatially co-occurring visual word-sets

The first step to generate delta visual phrase is to mine the visual words that

are frequently spatially co-occurring together. To learn spatially co-occurring vi-

sual word-sets, researchers have proposed several approaches, such as visual phrase

mining [132, 133], frequent feature configuration mining [99], frequent co-occurring

word-set learning [139, 39], etc. Here, we borrow the approach in [132] to mine

spatially co-occurring visual word-sets, and furthermore, build our proposed delta

visual phrase.

Here we follow the notation of [132, 143, 142]. We first extract M local

regions {ai}M
i=1 from a given image I. We then sample approximately 1 million

local features {ai} and perform clustering on {ai} to generate visual codebook of

W visual words: Ω = {w1, ..., wW}, where wi is a visual word. The image I is

then represented by a bag of visual words {w(a1), ..., w(ai), ...}, where w(ai) is the

corresponding visual word of region ai. For each local region ai ∈ I, its local

spatial neighborhood G is defined as the group of its K nearest neighbor regions

{w(ai), w(ai1
), w(ai2

)...w(aiK
)}. By processing all image, a visual word group database

G = {Gi}N
i=1 will be generated, in which each record in the database correspond to

one group of visual words in the same spatial neighborhood. Figure 3.3 illustrates

the process of generating the database G. In the domain of data mining, the

database G can be regarded as a transaction database [40]. The discovery of

frequently co-occurring visual word-sets, i.e. visual phrases, can be reduced to a

task of frequent itemset mining (FIM) in the transaction database G [40, 132].
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Figure 3.2: Examples of compositions of visual words from Caltech-101 dataset.
The visual word A (or C ) alone can not distinguish helicopter from ferry (or piano
from accordion). However, the composition of visual words A and B (or C and D),
namely visual phrase AB (or CD) can effectively distinguish these object classes.
This is because the composition of visual words A and B (or C and D) forms a
more distinctive visual content unit, as compared to individual visual words.
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Figure 3.3: The generation of transaction database of visual word groups. Each
record (row) of the transaction database corresponds to one group of visual words
in the same spatial neighborhood.

3.3.2 Frequent itemset mining

Frequent itemset is defined as a group of items that are frequently co-occurring

in the given transaction database. Frequent itemset mining (FIM), also known

as association rule learning, is a popular and well studied method for discovering

relations between variables in the databases, in the data mining paradigm. The aim

of frequent itemset ming is to find association patterns and regularities in variables

(visual words here) in the database. There exist various FIM techniques in the

literature, such as FP-growth [2], Apriori algorithm [5], etc. We explore the FP-

growth algorithm to perform the FIM task, as it is reported to be one of the most

efficient algorithms for frequent itemset mining [2, 40, 20].

The FP-growth algorithm is based on an FP-tree structure, a prefix tree

representation of the given database of transactions [20]. This tree shape data
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structure can save considerable amounts of memory for storing the transactions

and allow for high efficiency. The FP-growth algorithm is basically a recursive

elimination scheme. A preprocessing step first scans the transaction database to

generate a list of frequent items in descending order. Based on the descending

list of frequent items, FP-growth transforms the database into a frequent-itemset

tree (FP-tree), in which the item association knowledge is embedded. The FP-tree

mining first discovers the frequent length-1 itemsets as initial suffix itemsets. It

then constructs the conditional FP-tree, based on the conditional itemset base.

The conditional itemset base contains the set of prefix paths (of items) that co-

occur with the suffix itemsets in the FP-tree. The recursive mining is performed

on the conditional itemset base. The discovered itemsets grow by concatenating

the suffix itemsets with the frequent itemsets mined from the conditional itemset

base. In summary, the FP-growth algorithm casts the task of frequent long itemset

mining to a task of searching for shorter ones recursively and then concatenating

the suffix [2, 40].

After frequent itemset mining in the visual word-set transaction database,

a visual word-set P ⊂ Ω is counted as a frequently co-occurring set or a visual

phrase, if its frequency freq(P) > θ. For example in Figure 3.3, the visual word

B and C may compose a frequently co-occurring word-set, if they occur together

frequently in the database. Specifically, the neighborhood G is called the support

region of P , as P is mined from the database of G. We follow the notation in [132]

to name the spatially co-occurring visual word-set as, visual phrase.

3.3.3 Building delta visual phrase

The major shortcoming of aforementioned visual phrase proposed in [132] is that

it neglects the spatial inter-relation among visual words. Namely, no matter how

big the spatial neighborhood G is, the visual words within G are treated equally in
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an orderless manner in one transaction record in the database G. In this way, the

information of their relative spatial location is completely neglected. The exclusion

of such information weakens the spatial correspondence between visual words in

two neighborhoods and results in visual phrases that do not incorporate the best

co-occurring visual word-sets.

To tackle this issue, we propose delta visual phrase that does not only in-

corporate co-occurrence information, but also the local proximity of visual words.

Such spatial proximity information defines the specificity of the visual phrase, which

can be determined by the size of support region that visual phrase is mined from.

Specifically, a delta visual phrase is defined in 2 dimensions: its member visual

word-set P and its scatter R, namely, how spread the visual phrase is across over

the image.

Prior to presenting the proposed delta visual phrase, we first introduce the

concept of minimal support region. The support region of visual phrase P is

the visual word group G of size K, where K is the number of visual words in the

neighborhood G. Let G1, G2,..., Gk−1, Gk,... be a series of support regions with same

centroid and growing size. The minimal support region is then defined as follows.

Definition 3.3.1. The region Gk is called minimal support region of visual

phrase P, if any smaller region Gk−i,∀i > 0 is not large enough to discover the

visual phrase P.

With respect to each support region Gk, the delta visual phrase is defined as

follows.

Definition 3.3.2. The delta visual phrase (dVP) of region Gk is the visual

phrase that has Gk as minimum support region. In other words, the delta visual

phrase of region Gk is the newly discovered visual phrases when the support region

just grows from Gk−1 to Gk. The size of Gk is therefore the scatter R of delta

visual phrase and R = |Gk| .
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Intuitively, the delta visual phrase is mined from the changes of support

regions. This is also why the word ”delta” is in its name. The visual word-set P is

deemed to be delta visual phrase [P , R], if it satisfies one of the following condition:

freqG
k

(P)− freqG
k−1

(P) > θk, (3.1)

where R = |Gk|, freqG
k
(P) is the frequency of a visual word-set P for support

region Gk and θk is the threshold. For example in Fig. 3.4 (a), the visual word-set

’CDF ’ will be considered as dVP with scatter R = |G3|, if the number of newly

discovered instances of ’CDF ’ resulted from the increase of support region (from

G2 to G3) is greater than the threshold. The Eq. (3.1) also ensures that the visual

words of a dVP are scattered over its support region. For example in Fig. 3.4 (b),

the instance of visual word-set ’AB ’ will not be counted for dVP with R = |G3|,
as it lies in region G2 as well and will be offsetted by Eq. (3.1). If we define the

size of first support region G1 to be 1, the resulted delta visual phrases are actually

visual words with scatter R = 1. In this way, we can combine visual words and

delta visual phrases into a unified representation.

Statistical Significance Measure

Yuan el at. [132] proposed to measure the statistical significance of visual phrase

based on its frequency and its component visual word frequencies. This measure-

ment, however, neglects the coherency of component visual words in visual phrase.

We measure the significance on the basis that the delta visual phrase should be a

visual word-set that is frequently and coherently occurring together, with respect

to certain semantic meaning. Specifically, the significance score L([P ,R]) of a dVP

[P , R] is defined as:

L([P ,R])) = freq([P ,R]) · P (P ,R|DI)
1 + P−(P |DI)

(3.2)
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Figure 3.4: Examples of delta visual phrases. (a) Visual word-set ’CDF’ is a dVP
withR = |G3|. (b) Visual word-set ’AB’ cannot be counted as a dVP withR = |G3|

where P (P ,R|DI) is the probability that the visual word-set P forms a valid dVP

with scatter R by satisfying the condition of Eq. (3.1) and it can be approximated

by docfreq([P,R]
T

, where docfreq([P ,R]) is the document frequency equal to number

of images containing dVP [P ,R]. P−(P|DI) is the probability that visual word-

set P forms some random and sporadic patterns, which can be approximated by

docfreq(P)
T

. freq([P ,R]) is the frequency of dVP [P ,R]. Intuitively, we want to

penalize the delta visual phrases whose member visual words also frequently co-

occur in a random and sporadic manner. In this way, we enforce the correlation

among member visual words, and therefore, ensures the coherency of delta visual

phrases.

Unique Counting of Maximal Visual Word-set

The subsets of a frequent visual word-set P are frequent as well, and therefore,

will be falsely counted as dVP. To address this problem, we exploit closed FIM

algorithms to discover maximal frequent itemsets, in the way that any of its subsets

will not be considered as frequent itemset, in the spirit of [132]. In the phase of

FIM, a word-set might be over-counted, if it lies in the overlapping area of different
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neighborhood regions. To overcome this problem, we borrow the approach in [132]

to re-count real instances of word-set through the original image database.

3.3.4 Comparison to the analogy of text domain

The BoW representation originates from text domain. It is therefore worth con-

trasting the proposed approach for polysemy issue with its analogy of text domain.

Though the text categorization has reached the levels of human experts, it faces the

polysemy issue too [42]. Due to langauge variability, polysemy makes the trained

text classifier wrongly categorize new documents. For example, a text document

containing ”jaguar” with topic on luxury cars might be wrongly classified to the

animal category. To resolve the aforementioned issues, the computational linguis-

tics exploit word sense disambiguation (WSD) to identify which sense (or meaning)

of a textual word in the sentence where it occurs, so as to achieve more effective

information retrieval and text categorization [47]. For example, the textual word

”jaguar” has two senses: (1) a large cat (panthera onca) chiefly of Central and

South America that is larger than leopard; and (2) a brand of a luxury car. Exam-

ple sentences with two senses can be: (1) Jaguar is a pretty mammal and; (2) sale

of Jaguar sports car starts. One of the approaches of word sense disambiguation is

to look at the surrounding neighbor words to determine the word sense [95]. For

instance, if the word ”jaguar” co-occurs with ”car” in the same context, the WSD

process will replace it with its more specified sense of car brand for subsequent text

categorization, to avoid ambiguity in document representation.

The word sense disambiguation shares the same vision as the proposed delta

visual phrase on tackling polysemy. The basic idea behind delta visual phrase is to

exploit the contextual inter-relation among visual words to build more distinctive

feature units, while the word sense disambiguation utilizes the context where the

word occurs. Analogically, a word sense is like a delta visual phrase. The context
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used for word sense disambiguation is equivalent to the co-occurrence and spatial

scatter information of visual words.

3.4 Generating visual synset

Though the mining on co-occurrence and spatial scatter information of visual words

gives rise to a more distinctive visual configuration, delta visual phrase, the syn-

onymy issue remains. The synonymy issue is a consequence of visual diversity of

objects of the same semantic class. The objects of the same class can have arbi-

trarily different visual appearances and shapes, which produces synonymous visual

words, with different visual appearance but same semantic meaning. The conse-

quence of synonymy issue is the large intra-class variations. In this circumstance,

both visual words and delta visual phrases become too primitive to effectively model

the image semantics, as their efficacy depends highly on the visual similarity and

regularity of images of the same semantic. To tackle this issue, we propose to ex-

ploit the prior available semantic knowledge, i.e. semantic class labels of training

images and their distributions, to generate a higher level visual content unit, called

visual synset, using a supervised learning process.

3.4.1 Visual synset: a semantic-consistent cluster of delta

visual phrases

In text literature, the synonymous words are usually clustered into one synset

(synonymy set) to improve document categorization performance, based on word-

document class distribution [10]. Such approach inspires us in solving the syn-

onymy issue in delta visual phrases. However, it is infeasible to define the semantic

meaning of delta visual phrase, as it is only a set of quantized vectors of sampled

regions of images. Hence, rather than defining the semantic of a delta visual phrase
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Figure 3.5: An example of visual synset generated from Caltech-101 dataset, which
groups two delta visual phrases representing two salient parts of motorbikes.

in a conceptual manner, we define it probabilistically, in the spirit of [10].

Definition 3.4.1. Given image categories C = {ci}m
i=1, the semantic of a delta

visual phrase v is its contribution to the classification of its belonging image, which

can be approximately measured by P (ci|v).

The probability distribution P (ci|v) implies the semantic inference of delta

visual phrase v, namely how much v votes for each of the classes. Intuitively, if

several delta visual phrases1 from different images share similar class probability

distribution, like the brand logos in car images shown in Figure 3.5, then the visual

synset that clusters them together shall possess similar class probability distribution

and distinctiveness towards image classes. The visual synsets can then partially

bridge the visual differences between these images and deliver a more coherent,

1Visual word can be considered as a special case of delta visual phrase with only one member
word and support region size = 1.
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robust and compact representation of images. Specifically, we define the visual

synsets as below.

Definition 3.4.2. The visual synset is a probabilistic concept or a semantic-

consistent cluster of delta visual phrases, in which the member delta visual phrases

might have different visual appearances but similar semantic inferences towards the

image classes.

The rational of visual synset is that due to the visual heterogeneity and

distinctiveness of objects, a considerable number of visual words/phrases are in-

trinsic and highly indicative to certain classes. This implies that some visual

words/phrases tend to share similar probability distribution P (ci|v), which might

peak around its belonging classes. Figure 3.6 shows examples of visual words/phrases

with distinctive class probability distributions generated from Caltech-101 dataset.

As shown, the distributions of these visual words/phrases tend to peak among their

belonging categories, which make these visual words/phrases highly distinctive and

indicative to their belonging categories. By grouping these highly distinctive and

informative visual words/phrases into visual synsets, the visual differences of images

from the same class can be partially bridged. Consequently, the image distribution

in feature space will become more coherent, regular and stable. For example in Fig.

3.6 (a), if two visually salient components (visual words of eye and nose) of human

face are grouped into one visual synset based on their image class probability distri-

bution, the visually different human face images will now have some commonality

in the feature space.

3.4.2 Distributional clustering and Information Bottleneck

As defined in Definition 3.4.1 and 3.4.2, the visual synset interprets a group of delta

visual phrases with similar image class inferences. This effectively formulates the
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(a) Visual word A and B are highly indicative to category Face, with their distributions
peaky at category Face

(b) Delta visual phrase C and D are highly indicative to category Tick, with their
distributions peaky at category Tick

Figure 3.6: Examples of visual words/phrases with distinctive class probability dis-
tributions generated from Caltech-101 dataset. The class probability distribution is
estimated from the observation matrix of delta visual phrases and image categories.
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visual synset construction as a clustering process on delta visual phrases, based on

their class probability distributions. Clustering on distributions originates in text

domain. Pereira et al. first introduced the concept of ”distributional clustering” in

[96]. In their work, nouns are represented as distributions over co-located verbs and

nouns with similar P (verb | noun) are clustered together distributionally. Later,

Baker and McCallum also exploited the distributional clustering to group words

into word-clusters for text categorization [8].

Distributional clustering gives us a clue on how to group delta visual phrases

into synsets. However, visual synset construction demands a more principled

method. Same as other data clustering algorithms, distributional clustering faces

the issue of similarity metric selection too. The clustering results depend on the

choice of similarity metric. The correctness of a metric selection relies on the ap-

plication and target. Pereira et al. [96] proposed to use the relative entropy or

Kullback-Leibler (KL) distance to measure the distributional similarity. The KL

distance, however, is not symmetric. To address this issue, Baker and McCallum

[8] proposed to utilize the average of KL divergence of each distribution as the clus-

tering similarity metric. Such metric, however, is not well-grounded or theoretically

principled.

To address the issue above, we propose to utilize the Information Bottleneck

(IB) principle to guide the clustering process. The Information Bottleneck regards

clustering as a process of data compression (compressing a group of data into one

cluster) [106]. Given the joint distribution P (V, C) of the delta visual phrases

V = {v} and image classes C = {c}, the goal of IB principle is to construct the

optimal compact representation of V, namely the visual synset clusters S = {s},
such that S preserves as much information as possible about C. In particular, the IB

principle is reduced to the following Lagrangian optimization problem to maximize

L[P (s | v)] = I(S; C)− βI(V;S) (3.3)
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with respect to P (s|v) and subject to the Markov condition S ← V ← C. The

mutual information I(S; C) measures the information that S contains about C and

is defined as below.

I(S; C) =
∑

p(s)p(c | s) log
p(c | s)
p(c)

. (3.4)

β is the lagrange multiplier controlling the tradeoff between data compression and

information preservation. Intuitively, Eq. 3.3 aims to cluster or compress the

delta visual phrases into visual synsets through a compact bottleneck, under the

constraint that this compression keeps the information about image classes as much

as possible.

The IB optimization in Eq. 3.3 yields the solution of: (1) the prior prob-

ability P (s) for each visual synset cluster s ∈ S; (2) the membership probability

P (s|v) of delta visual phrase v to its visual synset cluster s; and (3) the visual

synset distribution P (c|s) over image classes, which are specifically defined in the

equations below:





P (s) =
∑

v

P (s|v)P (v)

P (c|s) =
1

P (s)

∑
v

P (s|v)P (v)P (c|v)

P (s|v) =
P (s)

Z(β, v)
exp(−βDKL[P (c|v)||P (c|s)])

(3.5)

where Z(β, v) is the normalization factor, β is a lagrange parameter and DKL[P (c|v)||P (c|s)]
is the Kulback-Libeler divergence between P (c|v) and P (c|s). The solutions for the

self-contained equations above can be obtained by starting with a random solution

and then iterating the equations. More importantly, this procedure is guaranteed

to converge [118].
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3.4.3 Sequential IB clustering

We adopt the sequential Information Bottleneck (sIB) clustering algorithm [107,

108] to generate the optimal visual synset clusters in our approach, as it is reported

to outperform other IB clustering techniques [107].

The target principled function that sIB algorithm exploits to guide the clus-

tering process is F(s) = L[P (s|v)] as shown in Eq. 3.3. The sIB algorithm takes

visual synset cluster cardinality |s|, and joint probability P (v, c) as input, where

P (v, c) = Nv(c)
N(c)

2 and starts with some initial random clustering s = {s1, s2, ..., sK}
on V . At each iteration, sIB takes some v ∈ V from its current cluster s(v) and

reassigns it to another cluster snew such that the cost (or information lost) of merg-

ing v into snew is minimum. As the mutual information function in Eq. 3.3 is

decomposable, the target function can be rewritten as F(s) =
∑

iF(si). Thus, the

merging cost dF(v, snew) can be defined as the target function difference before and

after reassigning v:

dF(x, snew) = F({snew, v})−F({snew})−F({v}) (3.6)

Specifically, dF(v, snew) is defined as (cf. [107] for more details):

dF(v, snew) = (P (v) + P (s)) · JS(P (c | v), p(c | s)) (3.7)

where JS(·, ·) is the Jensen-Shannon divergence [65].

As the new cluster of v is snew = arg mins∈s dF(v, s), the reassignment of

v either leads to a new clustering snew such that F(snew) > F(s) or no changes

to the original clustering snew = s. It is, therefore, easy to verify that the sIB

clustering will always converge, at least to a local maximum of target function

F(s). Specifically, the convergence speed depends on threshold ε. The clustering is

deemed to be converged, if the number of cluster assignment changes in the loop is

2Nv(c) is the frequency of delta visual phrase v in image class c, and N(c) is the total number
of delta visual phrase in c
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less than ε· | V|. In order to avoid being trapped in a local optima, several runs of

clustering with different random initialization are repeated and the run with highest

target function F(s) is chosen. Note that sIB utilized here is a ”hard” clustering

process, in which P (s | v) is deterministic and one visual word belongs to only one

visual synset.

3.4.4 Theoretical analysis of visual synset

Here, we theoretically analyze the properties of visual synset in various aspects

and compare it with other similar intermediate features by pLSA and LDA in the

literature.

Advantages of visual synset: The image representation of visual synsets

possesses several appealing properties and advantages over other part-based image

representation. First, the visual synset provides a means to connect images of

same class but with different visual appearances (visual words), and therefore, it

can reasonably address the huge intra-class image variation problem. For example

in Figure 3.7, two visually different salient components (delta visual phrases) of

motorbikes can be grouped into one visual synset, based on their image class prob-

ability distribution. Consequently, the visually different motorbike images will now

have some commonality in the feature space.

Second, as the visual synset is built on top of bag of visual words, it inherits

all the advantages of bag of visual words, such as robustness to different viewpoints,

poses, lighting conditions, scale changes etc. Third, from the statistical point of

view, visual synset can be regarded as a feature selection or generation process via

supervised dimensionality reduction on visual words. Most well-known feature se-

lection schemes, such as Mutual Information, Information Gain, etc, consider each

feature individually, in a greedy approach. In contrast, the visual synset implicitly

incorporates the inter-relation among visual words. Fourth, by fusing several visual
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Figure 3.7: An example of visual synset generated from Caltech-101 dataset, which
groups two delta visual phrases representing two salient parts of motorbikes.

words into one synset, the visual synset reasonably addresses the statistical sparse-

ness problem that is obvious in the bag-of-words image representation. Moreover,

compared to bag-of-words approach, visual synset provides a more compact im-

age representation that results in better computational efficiency. The information

bottleneck principle ensures that the compact representation has only a minor in-

formation loss, while compressing visual words to synsets. At last, the visual synset

is more robust to occlusion and clutter in images. If the visual words from cluttered

background follow the semantic inference distribution of meaningful visual words

sampled from objects of interest, they will be absorbed into useful visual synsets

respectively. If they follow the some spontaneous distributions, their negative effect

in classification will also be limited by the majority of useful visual synsets

Computational complexity: The complexity of distributional clustering

depends on the cost of the sequential Information Bottleneck process. At each

iteration, the cost of merging a delta visual phrase to a synset is on the order of

O(|C| · |S|). Hence, the time complexity of the whole process is on the order of

O(l · |V| · |C| · |S|), where l is the number of iterations in sequential IB clustering
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[106]. Since in general |C| is small and |S| can be much smaller than |V|, the

computational complexity mainly relies on the number of delta visual phrases |V|
linearly.

Comparison to pLSA and LDA: The pLSA and LDA approach are

similar to the proposed visual synset in the way that they are all some kinds of

intermediate features derived from primitive delta visual phrases. However, the

proposed visual synset is different from pLSA and LDA in the way that visual

synset is not a result of a generative model. Unlike pLSA and LDA, the proposed

visual synset is not a latent or hidden semantic variable in the middle of delta visual

phrases and image semantics. pLSA assumes a set of latent topic variable to tie

up documents/images and words, while LDA treats a latent topic as a multino-

mial distribution over words and the mixture of latent topics per document/image

[104]. The Markov condition in pLSA and LDA is V ← S ← C [118], where

V denotes the delta visual phrase, like visual words, S denotes the latent topic

variable, and C denotes object categories. On the contrary, the visual synset is

the results of supervised data-mining process of compressing delta visual phrases

via distributional clustering based on IB principle. Thus, it is only conditional on

delta visual phrases, which follow the joint distribution of delta visual phrases and

image classes. Consequently, the statistical causality is the Markov chain condition

of S ← V ← C, where S denotes visual synset variable, as shown in Figure 3.8.

3.4.5 Comparison to the analogy of text domain

Same as the BoW based image classification, its text analogy, automatic text cat-

egorization, suffers from synonymy too. The methods employed to address the

synonymy problem in the text domain have brought much inspiration to this the-

sis. In this section, we survey the solutions for synonymy problems in text domain

and emphasize its linkage to the proposed visual synset methodology.
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Figure 3.8: The statistical causalities or Markov condition of pLSA, LDA and visual
sysnet.

By carrying the same semantic meaning, the synonymous textual words pro-

duce much ambiguity in text categorization. For instance, a text classifier trained

on documents containing textual word ”astronaut” for space category may not be

able to recognize a new document about space topic, in which the word ”cosmo-

naut” occurs [42]. One approach to tackle this issue is to utilize the synonymy set

(synset) of textual words as terms for representation of documents. In this way, the

documents with synonymous keywords can be represented in a semantic consistent

manner, by a bag of synsets in the vector space. The weights of synsets in docu-

ments can then be computed using the same schemes for textual word terms [42].

WordNet is an intuitive source to obtain the synset knowledge [123]. Another

approach to mine the synset knowledge is to exploit the distributional linguistic

structures of textual words, from the computational perspective. Bekkerman et al.

proposed a new document representation based on word-clusters and showed that

the word-cluster representation can achieve better performance than bag of words

[10]. A word-cluster is defined to be a group of words with similar distributions,

but not necessarily similar semantic meaning. It is mined via the distributional
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clustering initially proposed by Pereira et al. [96]. This approach inspires us to-

wards a new way of measuring the semantic of a word, which is its distribution.

We borrow this idea to measure the ”semantic” of a visual word by its probabilistic

distribution. This measure circumvents the issue of how to represent the lexical

semantics of a visual word, as it might not even exist.

3.5 Summary

In order to address the polysemy and synonymy issue of visual words, we proposed

a novel image feature, visual synsets, for visual object categorization. To address

the polysemy issue, we exploit the co-occurrence and spatial scatter information of

visual words to generate a more distinctive visual configuration, i.e. delta visual

phrase, for better inter-class distance. To tackle the synonymy issue, we proposed

to group delta visual phrase with similar ’semantic’ into a visual synset. Rather

than in a conceptual manner, we define the ’semantic’ of a delta visual phrase

probabilistically as its image class probability distribution. The visual synset is,

therefore, a probabilistic relevance-consistent cluster of delta visual phrases, which

is learned by Information Bottleneck based distributional clustering. The effect of

visual synset is to partially bridge the visual difference of images of the same class,

and finally, reduce the intra-class variations.
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Chapter 4

A Generative Learning Scheme

beyond Visual Appearances

4.1 Motivation

Though the delta visual phrase and visual synset can partially alleviate the poly-

semy and synonymy issues caused by the visual diversity in objects, the gap between

visual proximity and semantic relevance remains significant. This gap has presented

us with a harsh reality: it is usually difficult to learn the visual characteristics of

object categories for classification, as most object categories generally do not have

any distinct visual characteristics. As shown in Figure 4.1, the open-ended nature

of object appearances makes the objects possess huge variations of visual looks and

shapes. Therefore, rather than directly modeling object semantics from low level

visual features, we need some learning scheme that goes beyond visual appearances.

Here, we approach this problem by taking a Bayesian perspective. We in-

terpret the huge diversity in object appearances as a generative phenomenon, in

which the diverse visual appearances arise from countably infinitely many common

visual appearance patterns, as shown in Figure 4.2. In this probabilistic genera-
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Figure 4.1: The objects of same category may have huge variations in their visual
appearances and shapes.

tive interpretation, different object categories can still be visually similar and share

similar visual appearance patterns. However, the distribution and combination

of appearance patterns can be distinct for different object categories. The object

categorization can then be cast as a problem of analyzing the distribution and

combination of appearance patterns or the visual thematic structure of object cat-

egories. Effectively, objects of same class that are visually different can be adjacent

in visual appearance pattern space. Hence, the appearance patterns can partially

bridge the visual appearance difference of objects.

However, to make the aforementioned generative interpretation valid, three

issues must be tackled. First, there should exist countably infinitely many appear-

ance patterns, as the object visual diversity is boundless. Second, all the object

categories should share a universal set of visual appearance patterns, as the ob-

jects of different categories can be visually similar too. Third, intuitively, the

objects of same category should possess a closer set of appearance patterns than

those of different categories. To embody the generative interpretation of object

appearance, we tackle the three aforementioned issues by developing a hierarchical

generative probabilistic model, named nested hierarchical Dirichlet process

(HDP) mixture. The stick breaking construction process and Chinese restaurant
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Figure 4.2: The generative interpretation of visual diversity, in which the visual
appearances arise from countably infinitely many appearance patterns.

franchise representation [117] in the proposed nested HDP mixture model allow

the countably infinitely many appearance patterns to be shared within and across

different object categories. The designed model structure also enables the images

of the same category to possess a closer set of appearance patterns.

4.2 Overview and preliminaries

Prior to presenting the proposed nested HDP mixture, we revisit the overall process

of the visual category recognition in the thesis, so as to give a clear picture of the

relation between visual synset and the nested HDP mixture model. Then, we
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Figure 4.3: The overall framework of the proposed appearance pattern model.

introduce some background knowledge on generative probabilistic models.

Given a collection of object images of category C = {cj}m
j=1, our target is to

infer the category of a new unseen image. As shown in Figure 4.3, the first step

is to extract local visual features and build image representation. We extract M

regions {ai}M
i=1 from the image and compute visual features of regions ai. We then

perform k-means clustering on the region features to generate a codebook of W

visual words W = {w1, .., wW}. Following the method in Chapter 3, we build delta

visual phrase and finally visual synset S = {s1, ..., sL} [143] on top of visual words

w, by incorporating spatial and distributional information of visual words wi. The

image I is then represented by a bag of visual synsets {s(a1) , ..., s(ai), ..}, where

s(ai) is the corresponding visual synset of region ai.

By representing image I as a bag of visual synsets {s(a1) , ..., s(ai), ..}, we

then apply our generative interpretation and learn the appearance patterns shared

by different object categories C = {cj}m
j=1, via the proposed nested hierarchical

Dirichlet process (HDP) mixture model. Furthermore, the visual thematic struc-

ture of each category cj is determined by the learned appearance patterns and the

categorization of unseen object images is then performed accordingly.
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Figure 4.4: The plots of beta distributions with different values of a and b.

4.2.1 Basic concepts of probability theory

Here, we introduce some preliminary probability concepts relevant to the proposed

nested HDP mixture.

Binary variables, Binomial and Beta distribution

Let random variable x denote the output of a probability experiment trial, with

x = 1 representing ”success” and x = 0 representing ”fail”. The random variable

x is called binary variable, as it can take only one of two possible values of 0 and

1. Let µ denote the probability of success trial or x = 1. The binomial distribution

is defined as the discrete probability distribution of the number of successes in a

sequence of N independent trials [26, 6], as below.

Bin(k | N,µ) =


 N

k


 µk(1− µ)N−k, (4.1)
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where k is the number of success trials, N is total number of trials and


 N

k


 is

the number of combinations of k objects out of N objects.

In the context of Bayesian learning, a beta distribution p(µ) is generally

introduced to be the prior distribution of µ, as below.

Beta(µ | a, b) =
Γ(a + b)

Γ(a)Γ(b)
µa−1(1− µ)b−1, (4.2)

where Γ(a) is the gamma function of a. One pleasant property of beta distribution

is conjugacy [14], which means the posterior distribution of µ and the prior dis-

tribution have the same functional form [16]. Figure 4.4 shows the plots of beta

distributions with different values of a and b. a and b are often called hyperparam-

eters of µ, because they control the distribution of the parameter µ [16].

Multinomial variables, multinomial and Dirichlet distributions

Multinomial variable is a generalization of binary variable. A random variable x

that denotes the output of a probability experiment trial is called a multinomial

variable, if it can take one of K possible mutually exclusive values [1 2 ... K]

[16, 17]. Let µk be the probability of x taking value of k. We then have
∑

k

µk = 1.

The multinomial distribution is the discrete probability distribution of the number

of trials with different outputs in a sequence of N independent trials [26], as below.

Mult(m1,m2, ..., mK | µ, N) =


 N

m1m2...mK


 ∏

k

µmk
k , (4.3)

where mk is the number of trials with x = k.

The Dirichlet distribution is a conjugate prior for the parameters µ of the

multinomial distribution above, which is defined as below.

Dir(µ | α) =
Γ(α0)

Γ(α1) · · · Γ(αK)

∏

k

µαk−1
k , (4.4)
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Figure 4.5: The plots of 3-dimensional Dirichlet distributions with different values
of α. The triangle represents the plane where (µ1, µ2, µ3) lies due to the constraint∑

µk = 1. The color indicates the probability for the corresponding data point.

where α = {αk} are the hyperparameters of µ = {µk}, α0 =
k=K∑

k=1

αk and Γ(αk) is

the gamma function of αk. Because the summation of µk is equal to 1, the Dirichlet

distribution of µk is a simplex of dimensionality K − 1. Figure 4.5 illustrates the

plots of a 3-dimensional Dirichlet distribution with different parameter values.

4.3 A generative interpretation of visual diver-

sity

We interpret the huge variation of object appearances as a generative probabilis-

tic phenomenon, in which different visual appearances arise from a common set

of countably infinitely many appearance patterns. The appearance pattern is to

represent the inter-relation of primitive visual descriptors. Specifically, it can be
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regarded as a distribution of random variables of visual descriptors, which can cor-

respond to any image descriptor, like color histogram, visual words, etc. Here, we

utilize visual synset as the image descriptor. By describing an image I as a bag of

visual synsets {s(a1), ..., s(ai), ..}, we define the appearance pattern as below:

Definition 4.3.1. The appearance pattern is a cluster or distribution F (θ) of

random variable visual synset s that reveals the visual or contextual relatedness of

visual synsets across different object categories, where s | θ ∼ F (θ) and θ is the

parameter associated with the appearance pattern.

An appearance pattern can be regarded as a cluster of visual synsets with

F (θ) as membership function. By representing a facet of inter-relation of primitive

visual descriptors as a cluster, an appearance pattern effectively depicts one aspect

of the object visual characteristics. The modeling of object categories is now based

on inter-relation of visual descriptors, rather than directly on primitive visual de-

scriptors. To learn the appearance pattern, we assume a generative process for

object images as below:

• Given a pool of countably infinitely many appearance patterns, for each image

I in corpus I:

• For each local region ai in image I:

1. Sample one appearance pattern or F (θ) from the appearance pattern

pool; and

2. Sample a region feature (visual synset s) conditioned on the appear-

ance pattern F (θ): s ∼ F (θ)

The aforementioned generative process also imposes two issues for the appearance

pattern modeling, which are

(a) The model should provide the possibility of a countably infinite number of

appearance patterns, as the visual diversity of objects is boundless.
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(b) The appearance patterns should be shared not only within but also across all

object categories, as the objects from different categories can share similar

visual appearance too.

Here, we add one more issue to reflect the inter-relation between appearance pat-

terns, objects and categories, as below.

(c) Intuitively, the objects of the same category should arise from a closer set of

appearance patterns than those of different categories.

For ease of reference, we list these three issues in Table 4.1.

Based on the generative process, we approach the appearance pattern mod-

eling by leveraging a mixture model of object category, in which an appearance

pattern corresponds to a mixture component. The appearance patterns can, there-

fore, be obtained by applying mixture model learning on the object categories.

However, most of the existing mixture models, like Gaussian mixture model, latent

Dirichlet allocation, etc, are not able to tackle the three issues in Table 4.1 simul-

taneously. Therefore, we proposed a probabilistic generative model, called nested

HDP mixture, based on the hierarchical Dirichlet process (HDP) [116], to model

the appearance patterns. The proposed nested HDP mixture is a hierarchical gen-

eralization of hierarchical Dirichlet Process (HDP) mixtures. It provides a Bayesian

mixture model that learns the hidden structures of related groups of data. The stick

breaking construction process, the Chinese restaurant franchise representation and

its hierarchical structure enable the nested HDP mixture to tackle all the issues

listed in Table 4.1. Prior to presenting nested HDP mixture, let us introduce HDP

mixture first.
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Table 4.1: Three issues in the generative interpretation of object appearance diver-
sity.

(a) The model should provide the possibil-
ity of a countably infinite number of
appearance patterns, as the visual di-
versity of objects is boundless

(b) The appearance patterns should be
shared across all object categories, as
the objects from different categories
may share similar visual appearance.

(c) Intuitively, the objects of the same cat-
egory should arise from a closer set of
appearance patterns than those of dif-
ferent categories

4.4 Hierarchical Dirichlet process mixture

The hierarchical Dirichlet process (HDP) mixture [117] is a hierarchical organiza-

tion of a number of Dirichlet process mixtures that share common global parameter

atoms. In the HDP mixture model, each mixture component is assumed to corre-

spond to one appearance pattern F (θ). As the random variable of visual synset s

is discrete and can only take up one of values {s1, .., sL}, F (θ) can, therefore, be

assumed to be a multinomial distribution of visual synset s. The task now is to

learn the pattern parameter θ only. Prior to presenting the hierarchical Dirichlet

process, the learning of pattern parameter θ in Dirichlet process (DP) mixture is

introduced first, as the stick breaking construction process in DP facilitates the

proposed nested HDP mixture in tackling the issue (a) in Table 4.1.
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4.4.1 Dirichlet process mixtures

• Dirichlet Process (DP): Let H be a probability measure (or distribution) on

the appearance pattern parameter space Θ and γ be some real positive number.

Dirichlet process (DP), denoted by DP(γ, H), is defined as below [117].

Definition 4.4.1. A Dirichlet process DP(γ, H) is a distribution over measures

on Θ, such that for any finite partition (Q1, ..., Qv) of appearance pattern param-

eter space Θ, the random vector (G(Q1) , ..., G(Qv)) is distributed as a Dirichlet

distribution as follows.

(G(Q1), ..., G(Qv)) ∼ Dir(γH(Q1), ..., γH(Qv)) (4.5)

Here, γ is the scalar concentration parameter that controls the similarity

of samples G ∼ DP(γ, H) from the base measure H. Intuitively, G is a measure

or distribution of the appearance pattern parameter θ on the space Θ, and the

Dirichlet process (γ, H) is the distribution that governs G. The sample G from

DP(γ, H) is a discrete distribution with probability one. This property is ensured

by the stick breaking construction process in DP [117] as follows:

θk ∼ H

βk = β′k

k−1∏

l=1

(1− β′l), β′k ∼ Beta(1, γ)

G(θ) =
∞∑

k=1

βkδ(θ, θk),

(4.6)

where βk denotes the probability of drawing θk.

As illustrated in Figure 4.6, a metaphor of stick breaking construction is as

follows. Given a stick of length 1, at first we break it and regard the stick partition

as β1. We then recursively break the remaining portion of the stick to obtain β2,

β3,... and so on. The stick breaking construction process of DP gives rise to two

implications. First, the probability β = {β1, ...βk, ...} is generated by using random
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Figure 4.6: The stick breaking construction process.

variable β′ to partition a unit length stick. Second, governed by β, the parameter

θ of G(θ) is actually from θk, which is independently drawn from the base measure

H. The θk from the base measure H then forms the pattern parameter atoms, as

defined below.

Definition 4.4.2. The parameter atoms are the set of infinitely many parame-

ters {θk}∞k=1 drawn independently from the base measure H. G(θ) is the probability

measure or distribution of these parameter atoms based on β.

For terminology simplicity, we let β ∼ GEM(γ) denote a sample G(θ) drawn

from the stick breaking process, with probability measure β on θ (GEM stands for

Griffiths, Engen and McClosekey; refer to [117] for detail). By providing infinite

parameter atoms, the stick breaking construction process can facilitate the proposed

nested HDP mixture in handling issue (a) in Table 4.1.

• Dirichlet Process Mixture Model: For terminology simplicity, let xi

be an observation denoting the visual synset s(ai) of local region ai. A mixture model

for the observation xi can be built by using the Dirichlet Process as non-parametric

prior on the parameters of the model. In the mixture model, the observation xi

arises in a generative process as follows:

θi | G ∼ G

xi | θi ∼ F (θi),
(4.7)



75

where F (θi) is the appearance pattern or the probability distribution of the ob-

servation xi with pattern parameter θi. Here, we let an indicator variable zi of

integer value denote the appearance pattern (or mixture component) index in G(θ)

associated with observation xi, such that xi ∼ F (θzi
). According to Eq. (4.6) and

(4.7), the Dirichlet process mixture follows the generative process below:

(a) β is distributed according to the stick breaking construction process: β | γ ∼
GEM(γ)

(b) The pattern parameter atom θk is distributed according to the base measure

H: θk | H ∼ H

(c) For each observation xi:

(i) Sample a pattern parameter index zi: zi | β ∼ β; and

(ii) Sample an observation xi from F (θzi
) :

xi | zi, (θk)
∞
k=1 ∼ F (θzi

)

According to the sticking breaking construction process or GEM(γ) in Eq

(4.6), the DP mixture has partially handled the issue (a) in Table 4.1. To fully

tackle issues (a) and (b), we add ”hierarchy” into the Dirichlet process mixture.

4.4.2 Hierarchical organization of Dirichlet process mixture

As introduced in Section 4.2.1, a Dirichlet process (DP) can provide a mixture

model on one group of data. An intuitive approach to model the appearance pat-

terns of multiple object categories is to apply one DP on each object category and

let all the DPs share the common base measure H. According to Definition 4.4.2,

the common base measure H will make DPs of all object categories share a com-

mon set of pattern parameter atoms θ and effectively the same set of appearance

patterns F (θ). The aforementioned solution is plausible but not valid. This is so
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Figure 4.7: The graphical model of hierarchical Dirichlet process.

because the base measure H is a continuous distribution and its parameter atoms

are uncountably infinite, while DPs have discrete distribution with probability one

and their parameter atoms are countably infinite. Consequently, the parameter

atoms in the base measure H and DPs will not be one-to-one corresponding. In

other words, the DPs will not share exactly the same set of parameter atoms. Ef-

fectively, the object categories will not share a common set of appearance patterns,

which conflicts with both issues (a) and (b).

To address the problem above, we simply put a DP on top of DPs of object

categories, as the base measure. This leads to the hierarchical Dirichlet process

(HDP) [117], as shown in Figure 4.7. G0 drawn from DP(γ, H) is the global
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random probability measure for Gj drawn from DP of object category j.

G0 | γ, H ∼ DP(γ, H)

G0(θ) =
∞∑

k=1

βkδ(θ, θk),
(4.8)

where γ is the concentration parameter, θk ∼ H and β = {β1, ...βk, ...} ∼ GEM(γ).

As shown in Eq (4.8), G0 is a discrete distribution on countably infinite pattern

parameters. This countable infinity ensures the one-to-one correspondence of pa-

rameter atoms θ between base measure G0 and its descendant DPs. Hence, the

global measure G0 enables Gjs of all object categories to share a common set of

parameter atoms θ, which can tackle both issues (a) and (b). The distribution Gj

from DP of category j is defined as:

Gj | α0, G0 ∼ DP(α0, G0)

Gj(θ) =
∞∑

k=1

πjkδ(θ, θk),
(4.9)

where πjk denotes the probability of θk in Gj.

According to Eq (4.8) and (4.9), the hierarchical Dirichlet process mixture

can be summarized as the following generative process:

(a) β is distributed according to the stick breaking construction process: β | γ ∼
GEM(γ)

(b) The appearance pattern atom parameter θk is distributed according to the

base measure H: θk | H ∼ H

(c) For each category j:

(i) πj = {πj1, ..., πjk, ...} is distributed according to DP(α0, G0): πj | α0, G0 ∼
DP(α0, G0)

(ii) For each observation xji:
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1. Sample a component parameter index zji: zji | πj ∼ πj; and

2. Sample an observation xji from F (θzji
) :

xji | zji, (θk)
∞
k=1 ∼ F (θzji

)

• The Chinese Restaurant Franchise: As shown in Figure 4.8, the

hierarchical Dirichlet process can be described by a metaphor called the Chinese

restaurant franchise [117]. In the metaphor, there is a Chinese restaurant franchise,

of which all the restaurants share a global menu of dishes from G0. The restaurant

j corresponds to Gj. The customer i at restaurant j corresponds to observation xji

(visual synset feature of a local region), and the global menu of dishes correspond

to the K parameter atoms θ1, ..., θK from G0. The ith table tji at restaurant j

has only one dish kji (appearance pattern parameter) that is shared by all the

customers (observations) sitting there. The dish (appearance pattern parameter) is

decided by the first customer (observation) of the table. By integrating G0 and Gj,

we can obtain the conditional distribution of table and dish assignment variables

as follows:

p(tji|tj1, ..., tji−1, α0, G0) ∼
∑

t

njt.δ(tji, t) + α0δ(tji, t), (4.10)

p(kji|k11, k12, ..., k21, ..., kji−1, γ) ∼
∑

k

m.kδ(kji, k) + γδ(kji, k), (4.11)

where njt. is the number of customers in restaurant j at table t, and m.k is the

number of tables in all restaurants serving dish k (or assigned with parameter atom

θk).

Metaphorically, Eq (4.10) tells that a new customer prefers to sit at a table

that has many customers already. Meanwhile, the customer can pick a new table to

sit at with the probability conditioned on α0. Eq (4.11) tells that customers tend

to order popular dishes, but a new dish can be ordered too with the probability

conditioned on γ. Intuitively, Eq (4.10) and (4.11) depict that in the hierarchical
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Figure 4.8: The Chinese restaurant franchise representation of hierarchical Dirichlet
process. The restaurants in the franchise share a global menu of dishes from G0.
The restaurant j corresponds to DP Gj. The customer i at restaurant j corresponds
to observation xji and the global menu of dishes correspond to the K parameter
atoms θ1, ..., θK from G0.

Dirichlet process, the object category can either reuse the existing appearance pat-

terns or create a new appearance pattern to capture the visual diversity. Figure

4.8 illustrates the metaphorical correspondences between the components of the

Chinese restaurant franchise and the hierarchical Dirichlet process.

4.4.3 Two variations of HDP mixture

Based on the HDP mixture introduced above, we have two variations of HDP

mixture with different representation of the mixture model and Chinese restaurant

franchise.

• Mixture model (a): As shown in Figure 4.9, the first variation of HDP

mixture, named mixture model (a), incorporates two levels of Dirichlet process.

This model is similar to the one introduced in [116]. In mixture model (a), each

category is assumed to correspond to one restaurant in the Chinese restaurant
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Figure 4.9: HDP mixture variation model (a): each category corresponds to one
restaurant and all the images of that category share one single DP.

franchise representation and all the images of a category share one DP of that

category. This arrangement allows the appearance patterns to be naturally shared

within and across different object categories. In this model, the probability p(θk |
cj) of an appearance pattern θk in a given category j can be computed by measuring

the count of assigning global appearance pattern k to the tables of category j.

p(θk | cj) = π̂jk, (4.12)

where π̂jk denotes the weight assigned to pattern k by the tables of category j.

• Mixture model (b): Figure 4.10 shows the second variation of HDP

mixture, namely mixture model (b). This is similar to the model presented in [125].

Mixture model (b) assumes that the appearance patterns are shared at the level of

images. In this model, each image is assumed to correspond to one restaurant in



81

Figure 4.10: HDP mixture variation model (b): each image corresponds to one
restaurant and has one DP respectively.

the Chinese restaurant franchise representation and have one DP drawn from the

global base measure G0. In this model, the probability p(θk | cj) of a pattern θk in

a given category j can be computed by counting frequency of pattern k assigned

to the tables of all categories.

4.5 Nested HDP mixture

So far, the presented model can handle both issues (a) and (b) in Table 4.1, as

it allows countably infinitely many appearance patterns to be shared within and

across object categories. However, the issue (c), namely the inter-relation of ap-

pearance pattern, object and category, is neglected. To tackle this issue, we propose

a generative probabilistic mixture model, called nested HDP mixture, based on a
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three-level tree of Dirichlet processes as shown in Figure 4.11. In this model, the

categories are ensured to share a global set of appearance patterns, by drawing DPs

from the base measure G0. Moreover, each image in the category also has its own

DP drawn from the category DP, as follows.

Gj | α0, G0 ∼ DP(α0, G0), for category j

Gji | α1, Gj ∼ DP(α1, Gj), for image i in category j
(4.13)

This designed hierarchical structure tackles issue (c) in Table 4.1, in the

way that the appearance patterns for images of the same category are sampled

from their own category DP and the category DPs are governed by a global based

measure DP G0. The nested HDP mixture can be summarized as the following

generative process.

(a) β is distributed according to the stick breaking construction process: β | γ ∼
GEM(γ)

(b) The appearance pattern atom parameter θk is distributed according to the

base measure H: θk | H ∼ H

(c) For each category j:

(i) πj = {πj1, ..., πjk, ...} is distributed according to DP(α0, G0): πj | α0, G0 ∼
DP(α0, G0)

(ii) For each image Iji:

(a) πji is distributed according to DP(α1, Gj): πji | α1, Gj ∼ DP(α1, Gj)

(b) For each observation xjik:

1. Sample a component parameter index zjik: zjik | πji ∼ πji; and

2. Sample an observation xjik from F (θzjik
) :

xjik | zjik ∼ F (θzjik
)
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Figure 4.11: The proposed nested HDP mixture model: each category corresponds
to one restaurant and has one DP. Each image corresponds to one restaurant in the
next level and has one DP respectively.

Similar to mixture model (a) and (b), the probability p(θk | c) can be com-

puted by counting frequency of pattern k assigned to the tables of the categories

respectively.

4.5.1 Inference in nested HDP mixture

Based on the representation of Chinese restaurant franchise, we utilize the Gibbs

sampling [33, 117] to perform the parameter inference in the nested HDP mixture

model. For terminology simplicity, we only present the sampling process at one
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Table 4.2: List of variables in Gibbs sampling for nested HDP mixture
Notation Explanation

xji the ith customer (observation) in
restaurant j

xjt the customers (observations) at ta-
ble t in restaurant j

tji the table i at restaurant j

t−ji {tji : all j, i} except tji

kji the index of atomic parameter θk

served at table i in restaurant j

k {kji : all j, i}
θkji

the global parameter atom of table
i in restaurant j.

njt. the number of customers in restau-
rant j at table t

m.k the number of tables in all restau-
rants serving dish k

m.. the number of tables in all
restaurants

γ the concentration parameter of
parent DP

α0 the concentration parameter of de-
scendent DP

restaurant level. The sampling for the nested HDP mixture is simply to iterate this

process for each DP from the bottom of the nested HDP structure.

The Chinese restaurant franchise representation has two types of assign-

ments: (1) the restaurant j can have many local appearance patterns (tables) tji,

which are assigned to the global atom patterns (global dish menu) kji and; (2) each

observation (customer) xji is assigned with some local appearance pattern (table)

tji. The Gibbs sampler, therefore, has two types of sampling: sampling the table

assignment t of customers and sampling the pattern assignment k of tables. For

clarity, we list the variables used in this Section in Table 4.2.
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Sampling table assignment t of customers

Here, we compute the conditional posterior for tji by using the prior distribution

of tji and the likelihood of observation xji. Eq (4.10) defines the prior of tji. The

probability of tji taking a previously used value t is proportional to njt., and the

probability of tji taking a new value tnew is proportional to α0. The likelihood of

observation xji given tji with value of previously used t or tji = tused is: f(xji|θkji
).

According to Eq (4.11), the likelihood of observation xji given tji = tnew is then:

P (xji | tji = tnew, k) =
∑

k

m.k

m.. + γ
f(xji|θkji

) +
γ

m.. + γ
f(xji|θknew), (4.14)

where k = {kji : all j, i}, m.. is the number of tables in all restaurants, and m.k is

the number of tables serving dish k. The conditional distribution of tji is then:

P (tji = t|xji, t−ji, k) ∝





α0P (xji | tji = tnew, k) if t = tnew

njt.f(xji|θkji
) if t = tused,

(4.15)

where t−ji denotes {tji : all j, i} except tji. The probability for a restaurant to

create a new local appearance pattern (table) is proportional to:




γf(xji|θknew) if k = knew

m.kf(xji|θkji
) if k is used

(4.16)

Sampling dish assignment k of tables

The dish assignment kjt of table j in restaurant t is shared by all the customers

(observations) xjt at that table, as there is only one dish for each table. Hence, the

likelihood of xjt given kjt = k is f(xjt|θkjt
). The conditional probability of kjt can

then be computed as:





γf(xjt|θknew) if k = knew

m.kf(xjt|θkji
) if k is used

(4.17)
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The indicator variable zji of appearance pattern associated with observation xji can

then be uniquely determined and updated by the observation xji’s table assignment

tji and the corresponding table’s pattern assignment kji

Insensitivity to hyperparameters and base distribution

Overall, Gibbs sampling is to infer the posterior distribution of table-customer

assignment and dish-table assignment from conditional prior and observation like-

lihood, based on Bayes rules as below.

posterior ∝ conditional prior · observation likelihood (4.18)

The conditional prior is jointly determined by the hyperparameters in base distri-

bution and CRF representation, while the observation likelihood is derived from

the distribution function F (θ) of visual synset and CRF representation. As Gibbs

sampling is an iterative computational process, the posterior distribution is up-

dated jointly by conditional prior and observation likelihood at each iteration. As

the iteration goes on, the posterior distribution will be more and more dominated

by the observation likelihood, namely the data, until convergence. Hence, the in-

ference of posterior distribution is insensitive to the initial hyperparameters in the

base distribution H.

4.5.2 Categorizing unseen images

After learning the appearance patterns, the nested HDP mixture can then per-

form categorization on unseen images. Assume the unseen image I consists of

M local regions {ai}M
i=1 and is represented by the observation set of visual synsets

{s(a1), ..., s(ai), ..s(aM )}. According to Definition 4.3.1, we have p(s|θk) = F (θk). The
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likelihood probability p(I | c) of image I for category c can then be computed as:

p(I | c) =
∏

i

p(s(ai) | c) =
∏

i

(
∑

k

p(s(ai) | θk)p(θk | c)) (4.19)

According to Bayes rules [87], p(c | I) can be computed as:

p(c | I) =
p(I | c)p(c)

p(I)
(4.20)

The categorization can then be made based on:

c = arg max
c

p(c | I) (4.21)

The direct computing of Eq. (4.19) involves multiplication of a number

of decimal fractions. This leads to the arithmetic underflow problem, in which

the floating operations yield a result that is smaller in magnitude than the smallest

quantity representable. To circumvent this problem, we compute the log probability

as below:

log p(I | c) = log
∏

i

p(s(ai) | c) =
∑

i

log p(s(ai) | c) (4.22)

4.6 Summary

Due to the open-ended nature of object appearances, the objects, no matter from

the same or different categories, can have arbitrarily different visual looks. To ad-

dress this visual diversity issue for object categorization, we take a probabilistic

Bayesian perspective and explore a generative interpretation of object appearance

diversity. The object appearance diversity is interpreted as a probabilistic gener-

ative phenomenon, in which the object visual appearance arises from countably

infinitely many common appearance patterns. To make a valid model for this

interpretation, three issues must be tackled: (1) the model should provide the

possibility of countably infinitely many appearance patterns, as the object visual
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appearance is boundless; (2) the appearance patterns are shared not only within

but also across object categories, as the objects of different categories can be vi-

sually similar too; and (3) intuitively, the objects within a category should share

a closer set of appearance patterns than those of different categories. We propose

a generative probabilistic model, named nested hierarchical Dirichlet process

(HDP) mixture, to tackle these three issues and embody our generative inter-

pretation. The proposed model exploits the stick breaking construction process

to provide the possibility of countably infinitely many appearance patterns. The

designed hierarchical structure of our model not only enables the appearance pat-

terns to be shared across different object categories, but also takes into account the

inter-relation between appearance patterns, objects and categories, thus allowing

the objects within a category to share closer appearance pattern set.
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Chapter 5

Experimental Evaluation

This chapter presents the experimental evaluation on the proposed visual represen-

tation, visual synset; and the proposed learning framework, nested HDP mixture,

respectively.

5.1 Testing dataset

We evaluate the proposed visual synset and nested HDP mixture model using two

large-scale datasets: 1) Caltech-101 dataset [63]; and 2) NUS-WIDE-object dataset

[23]. The Caltech-101 dataset contains 102 image categories and a total of 9233

images. Figure 5.1 illustrates the example images of 36 categories from Caltech-

101 dataset. As shown in Figure 5.1, the difficulties of Caltech-101 are its large

number of classes and huge intra-class appearance variations, while its easiness is

that most visual objects are dominant objects positioned at the center of their

images with clean or no background. For benchmark purpose, we follow the setting

of [59, 83, 103, 125, 36, 121, 136] to set the number of training images per category

to 30.

To compensate the weakness of Caltech-101 dataset, we utilize another more
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Figure 5.1: The example images of 30 categories from Caltech-101 dataset.

challenging real world image dataset, NUS-WIDE-object dataset [23]. NUS-WIDE-

object is a large-scale dataset that consists of 31 object categories, such as computer,

coral, dog, rock, etc, and 30,000 images in total. Figure 5.2 shows example images

of 15 categories from NUS-WIDE-object dataset. Compared to Caltech-101, the

difficulty of NUS-WIDE-object dataset lies in its large visual and scale variation.

Figure 5.3 (a) presents the average images of 16 object categories from NUS-WIDE-

object. The average image is made by averaging 100 images per category together.

As shown, most average images are gray images with high entropy and low visual

information. Compared to the average image of caltech-101 dataset in Figure 5.3
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Figure 5.2: The example images of 15 categories from NUS-WIDE-object dataset.

(b), the objects of NUS-WIDE-object does not have much distinct visual or spatial

characteristics.

The evaluation criteria here is the average of classification accuracy of all

categories.

Generation of visual codebook

To construct the codebook of visual words, we follow the approach of [92] to ran-

domly sample M = 5, 000 local regions per image and compute the Scale Invariant

Feature Transform (SIFT) [72] feature for each region. We then subsample approx-

imately 1 million SIFT features from images in the dataset. A k-means clustering is

performed on the SIFT features to generate a codebook of 2000 visual words. The

same procedures are applied on both Caltech-101 and NUS-WIDE-object datasets

to generate two visual codebooks for them respectively.
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(a) Average images of 16 categories from NUS-WIDE-object dataset

(b) Average images of 6 categories from caltech-101 dataset.

Figure 5.3: Average images of Caltech-101 and NUS-WIDE-object dataset.
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5.2 The Caltech-101 Dataset

In this section, we evaluate the performance of the proposed models on the Caltech-

101 Dataset. The focus of this section is to examine the performance of visual

synset. The experimental characteristics of nested HDP mixture is only briefly

introduced. Next section will present the results of the nested HDP mixture in

detail.

5.2.1 Evaluation on visual synset

Experimental setup

By using the aforementioned codebook of visual words, we build the delta visual

phrases. We perform FIM on the database G of approximately 2 million visual

word groups with the support region size of 1, 4 and 8 respectively. Based on the

significance score in Equation 3.1, we construct the delta visual phrase codebook

by selecting the top K delta visual phrases (dVP) with the highest scores. In

the experiments, K is set to 2200, 2400, 2600, 2800, 3000, 3200, 3600 and 4000

respectively. To test the performance of delta visual phrase and visual synset, we

adopt support vector machines (SVM) [120] with generalized RBF kernel as the

classifier.

For benchmark purpose, we follow the setup of [59] and [136] by selecting

30 images from each category for training and 30 images per category for testing.

The evaluation criteria is the mean classification accuracy, which is the average of

evenly weighed recognition rate of each category.

Performance of delta visual phrase

We first perform classification, based on 2000 visual words. The bag-of-words ap-

proach yields a mean classification accuracy of 44%. This classification is used as
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Figure 5.4: The average classification accuracy by delta visual phrases on Caltech-
101 dataset.

the baseline of our experiments.

Next, we perform object categorization, based on 2200, 2400, 2600, 2800,

3000, 3200, 3600 and 4000 delta visual phrases respectively. As shown in Fig. 5.4,

the performance increases as more delta visual phrases are incorporated up to 2800.

In particular, the codebook with 2800 delta visual phrases gives the highest accuracy

of 49.2%. This demonstrates that by incorporating co-occurrence and spatial scatter

information, the delta visual phrases do carry more discriminative information than

visual words. Fig. 5.5 shows some examples of delta visual phrases with different

spatial scatter. As shown, when objects share some appearance similarity in a large

scope, the delta visual phrase can combine the ambiguous visual words scattered in

such area into one distinctive unit, which can contribute to distinguishing objects

of different classes with larger inter-class distance and better classification. We also

observe that a delta visual phrase (dVP) consists of on average only two member

visual words . This is so because the significance measure for dVP selection favors

frequent dVP. A dVP with three or more member visual words have much lower

frequency than those with two member words, as it requires more visual words to

be frequently co-occurring together.
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dVP [
AB
, 8]
 dVP [
CD
, 4]


Figure 5.5: The examples of delta visual phrases generated from Caltech-101
dataset. The first dVP consists of disjoint visual words A and B with a scatter of
8 and the second has joint visual words C and D with a scatter of 4

With optimal performance at 2800 delta visual phrases, we increase the

codebook size to further investigate the performance of dVP. When the number

of lexicons is above 3200, the performance drops drastically and even becomes

inferior to the original visual word representation. We attribute such performance

degradation to two reasons. First, the newly incorporated delta visual phrases

with lesser significance score might not be statistically substantial. Though these

delta visual phrases might still be distinctive patterns, their statistical sparseness

renders image distributions in feature space more incoherent, sporadic or even noisy.

Second, the increased dimensionality inevitably leads to the curse of dimensionality

and intensifies the issue of statistical sparseness of image representation.

Performance of visual synset

We evaluate the effectiveness of visual synset, by performing IB-based distributional

clustering on the codebook of 2800 delta visual phrases (best run from previous sec-

tion). Specifically, we set the cardinality of visual synsets |S| to 200, 600, 1200,

1600, 1800, 2000, 2200 and 2400. Fig. 5.6 gives the average classification accuracies.

From Fig. 5.6, we observe that with proper cardinality, the visual synset represen-
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Figure 5.6: The average classification accuracy by visual synsets on Caltech-101
dataset.

tation can deliver superior results over both delta visual phrases and visual words

with a more compact representation. For example, the run with only 200 visual

synsets can achieve an accuracy of 39.4%, while the runs with 1200 visual synsets

has achieved superior accuracies over the run with 2800 delta visual phrases. This

representation compactness does not only enable high computational efficiency but

also alleviate the issue of curse of dimensionality.

The best run is the one with 1600 visual synsets and it achieves an accuracy

of 56.6%. We attribute such improvements to two factors: (1) by fusing semantic-

consistent delta visual phrases together, the visual synset reduces the intra-class

variations and renders the image distribution in feature space more coherent and

manageable; and (2) the visual synset is a result of supervised dimensionality re-

duction and the properly reduced dimensionality can partially resolve the statistical

sparseness problem of delta visual phrases and also enable better classification.

We also observe that the number of visual synsets plays an important role

in its performance. A too small number of visual synsets usually gives bad perfor-

mance. This is because a small number of visual synsets will force the distinctiveness-

inconsistent visual words together and generate noninformative and nondistinctive
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Figure 5.7: Example of visual synset generated from Caltech-101 dataset.

visual synsets. Overall, the experimental results show that the number of visual

synsets between 1/3 and 2/3 of delta visual phrase codebook size usually gives a

reasonably good performance. Fig. 5.7 shows examples of visual synset generated

from Caltech-101 dataset.

Comparison with other visual features: Here we compare the perfor-

mance of visual synset, delta visual phrase and visual words with other global and

semi-global visual features, such as wavelet texture. To benchmark the performance

of different visual features, we follow the same experimental setting of visual synset

to perform the following runs of experiments with different visual features:

1. CH: color histogram

2. CC: color correlogram

3. CM: color moments

4. TC: texture cooccurence

5. WT: wavelet texture
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Here, the classifier is SVM for all the runs. For CM, we compute the first

3 moments of RGB color channels over 55 grids to form a 225D feature vector.

For WT, we divide a keyframe into 43 grids and compute the variance in 9 Haar

wavelet sub-bands for each grid. Table 5.1 lists the average accuracy of all the visual

features. As shown, the part-based local feature, i.e. bag-of-words, outperforms

other global or semi-global features, like color correlgoram, with significant margins.

This is consistent with that reported in [50], which further confirms the strength

of local features over global features.

Compared to the bag-of-words approach, the proposed delta visual phrase

improves the performance of visual words by 5.2%, by building more distinctive

delta visual phrases with co-occurrence and spatial scatter information. Moreover,

the visual synset further advances the performance of delta visual phrases by 7.4%,

by incorporating the distributional information.

Comparison with LDA and pLSA: We also compare the visual synset to

pLSA and LDA in the same setting, as all of them can be considered as some kind of

dimensionality reduction. pLSA and LDA are essentially a process of unsupervised

dimensionality reduction from delta visual phrase space to hidden topic space. We

set the number of hidden topics to 50, 100, 150 and 200 and run pLSA and LDA

on the codebook of 2800 delta visual phrases (best run of delta visual phrases). We

then utilize these hidden topic features to train SVM classifiers to classify the testing

images. The runs with the best accuracy are selected for comparison. Specifically,

LDA and pLSA give an accuracy of 51.4% and 52.8% respectively, both of which

are lower than the accuracy delivered by visual synset. This demonstrates visual

synset gives rise to more effective dimensionality reduction, by leveraging the prior

distributional information of visual words in a supervised fashion.
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Table 5.1: Comparison of performance by visual synset (VS), delta visual phrase
(dVP), bag-of-words (BoW) and other visual features with SVM classifier.

VS dVP BoW CH CC CM TC WT

Accur(%) 56.6 49.2 44 16.1 27.3 19 16.4 20.5

5.2.2 Performance of nested HDP mixture model

By taking the visual synset representation as input, we apply the proposed nested

HDP mixture model to perform the categorization. Here, we ran Gibbs sampler

for 20 iterations to perform the parameter inference. This gives rise to an average

categorization accuracy of 64.1%. Figure 5.8 illustrates the confusion matrix of the

categorization. The nested HDP mixture results in further 7.5% improvements in

accuracy over SVM. This demonstrates that the generative framework of nested

HDP mixture is able to model the image data better than the discriminative ap-

proach of SVM. Section 5.3 shall delve deeper into the examination of the nested

HDP mixture model.

5.2.3 Comparison with other state-of-the-arts methods

Here, we benchmark the performance of our proposed models with other existing

approaches on the Caltch-101 dataset. By applying the nested HDP mixture on

the representation of 1600 visual synsets, we achieve an accuracy of 64.1%. Table

5.2 summarizes the accuracies of other reported systems. As shown in Table 5.2,

the proposed visual synset approach outperforms most of existing systems and

delivers a comparable result with the state-of-the-arts methods. One exception is

the approach proposed in [121], which delivered a much higher accuracy of 78.43%.

This is because their approach has utilized multiple visual features and multiple

kernels in SVM. As different visual features tend to capture different aspects of

visual characteristics of image categories, they tend to share complementariness
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Figure 5.8: The confusion matrix of the categorization by visual synset with nested
HDP as classifier on Caltech-101 dataset. The rows denote true label and the
columns denote predicted label.

and redundancy in modeling the visual contents. This complementariness and

redundancy result in better categorization performance. In comparison, our work

utilized only one type of part-based local features.

To evaluate the effect of incorporating more features, we perform a simple

experiment by combining the categorization results of the runs of VS + nested

HDP, together with those obtained by using color corrlegram (CC) + SVM and

wavelet texture (WT) + SVM. Here, CC and WT are the two global features with

highest reported accuracies, as mentioned in the previous Section. The feature

combination is done in a late fusion manner [112]. Specifically, the prediction

scores of classifiers on each individual feature are normalized to the range of 0 and
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Table 5.2: Benchmark of classification performance on Caltech-101 dataset. VS
means visual synset and Fusion (VS + CM + WT) indicates the fusion of visual
synset, color correlogram (CC) and wavelet texture (WT).
run VS +

nested
HDP

VS +
SVM

Fusion (VS +
CC + WT)

[103] [136] [83] [36] [125] [59] [121]

(%) 64.1 56.6 72.8 42 53.9 56 58 63 64.6 78.43

1. The SVM outputs of CC and WT features are normalized via a sigmoid function

[97]. The final classification score is the linear summation of the scores of all the

classifiers on individual feature. This simple late fusion of visual synset, CC and

WT features gives an average classification accuracy of 72.8%, which is comparable

to the performance of the multiple kernel learning approach reported in [121].

However, compared to the late fusion, the multiple kernel learning schemes have

more complicated learning models and higher computational complexity.

5.3 The NUS-WIDE-object dataset

This section tests the proposed models on the NUS-WIDE-object dataset. It briefly

presents the testing on visual synset and examines the experimental prosperities of

the proposed nested HDP mixture model in detail.

Experimental setup

The NUS-WIDE-object dataset contains 31 object classes, such as boat, fish, coral,

etc, as shown in Figure 5.2. For efficiency purpose, we utilize 30 images per cate-

gory for training and 200 for testing. We follow the same experimental setup for

Caltech-101 to generate codebook of 2000 visual words and incremental number of

delta visual phrases and visual synsets. The evaluation criteria adopted here is the

average categorization accuracy.
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Table 5.3: Average categorization accuracy of the NUS-WIDE-object dataset based
on bag-of-words (BoW), best run of delta visual phrases and best run of visual
synsets (VS).

bag-of-words delta visual phrase visual synset
Average accuracy 11.7% 12.4% 13.8%

Performance of visual synset

Table 5.3 summarizes the results of classification based on visual words only, delta

visual phrases and visual synsets. The classifier adopted here is SVM with gener-

alized RBF kernel. The baseline classification with visual words give an average

accuracy of 11.7%. Similar to Caltech-101, the mean accuracy increases as more

delta visual phrases are incorporated and reaches its peak of 12.4%, when the num-

ber of delta visual phrases is 2300. The optimum number of delta visual phrases

here is lesser than 2800 in Caltech-101. We attribute this to the fact that the images

of same category in NUS-WIDE-object are more visually diverse and less geomet-

rically consistent. Therefore, the resulting delta visual phrases are less statistically

stable. Based on the best run of delta visual phrases, we generate visual synsets

and perform the classifications. Consistent to the observation in Caltech-101, the

visual synset achieves both compactness and superior performance. Specifically,

the run with 1000 visual synsets delivers the best mean accuracy of 13.8%.

5.3.1 Evaluation on nested HDP

In this Section, we take visual synset as image representation and evaluate the

proposed nested HDP mixture model in detail.

Appearance Pattern Learning

First, we investigate the appearance pattern learning in the proposed nested HDP

mixture and the HDP variation model (a) from [116] and (b) from [125]. We
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ran Gibbs sampler for 20 iterations to perform the parameter inference in all three

models respectively. We also set the initial number of parameter atoms θk to

K = 20. For efficiency purpose, we limit the number of training images per category

to T = 30.

• The number of appearance patterns: Figure 5.9 shows how the

number of appearance patterns changes in the three models, as Gibbs sampler is

running. As shown, the appearance patterns in all three models are free to shrink

and grow, so as to best explain the visual data in the current iteration of Gibbs

sampling. In each iteration, the Gibbs sampler can generate new appearance pat-

tern, if the existing appearance patterns are not sufficient to explain the given

data. Similarly, it can also eliminate existing appearance patterns, if the evolving

appearance patterns make some of them redundant to interpret the data observa-

tions. Specifically, during the Gibbs sampling, the number of appearance patterns

in HDP mixture model (a) and (b) goes through large fluctuation and then con-

verge at certain point. In contrast, the appearance patterns in the proposed nested

HDP mixture does not fluctuate much and converge to 24 after iteration 12. This

indicates that the model structure of nested HDP mixture fits the data better than

HDP model (a) and (b). We attribute the smoother change of appearance patterns

in the proposed nested HDP mixture to the fact that it handles issue (c), while the

other two models do not.

• Sharing appearance pattern across object categories: To investi-

gate how the appearance patterns are shared across object categories, we visualize

how the categories are distributed in the embedding space of appearance patterns.

We use the visual appearance patterns generated by the nested HDP mixture. First,

we compute the pair-wise distance of object categories in the appearance pattern
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Figure 5.9: The number of appearance patterns in nested HDP mixture, HDP
mixture model (a) and (b) for each iteration of Gibbs sampling.

space, by using symmetrized Kullback Leibler (KL) divergence [24] as follows.

KL(ci, cj) =
∑

k

p(θk | ci) log
p(θk | ci)

p(θk | cj)
+ p(θk | cj) log

p(θk | cj)

p(θk | ci)
, (5.1)

where KL(ci, cj) is the symmetrized KL divergence of category ci and cj. To get

a sense of how the categories are distributed in the appearance pattern space, we

utilize the metric multidimensional scaling (MDS) to plot the categories, based their

pairwise symmetrized KL divergence. Multidimensional scaling (MDS) is a tool

that can visualize how near or far the data points are from each other. Its required

input is the similarity of data points, rather than their location coordinates, which

fits our task here. Figure 5.10 illustrates how the object categories are distributed

in the two-dimensional embedding of appearance pattern space by the metric MDS.

As shown, the animal type objects are clustered on the upper left corner, while the

transport type objects are concentrated on the right side. This indicates that these

two types of objects arise from a fairly different set of appearance patterns. Another

observation is that the categories ”sun” and ”book” are far apart from the rest of

the categories. This is attributed to the fact that the visual appearances of ”sun”

and ”book” are not tightly related to any of the other categories.
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Figure 5.10: The visualization of object categories in the two-dimensional embed-
ding of appearance pattern space by metric MDS.

Categorization Performance

Here, we evaluate the effectiveness of the generative interpretation and its embodi-

ment, nested HDP mixture model, for object categorization. We set the number of

training images per category T = 30 and the number of testing images to 200 per

category. First, we run the proposed nested HDP mixture, which yields an average

classification accuracy of 0.167. With the same experimental setting, we run the

HDP model (a) from [116] and (b) from [125], which deliver average accuracy

of 0.15 and 0.11 respectively. The result of the proposed nested HDP mixture is

superior to that of model (a) and (b), by a margin of 11% and 52% respectively.

We attribute this performance improvement to the graphical model structure of

the nested HDP mixture that is more appropriate to interpret the object visual

characteristics. Moreover, among three models, model (b) yields the lowest accu-

racy, which indicates that its assumption of appearance pattern sharing at image

level is improper. Compared to model (a), the proposed nested HDP mixture can

improve the average accuracy by 11% relatively. We attribute this improvement
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Figure 5.11: The average accuracy by proposed nested HDP mixture, k-NN, SVM,
approach in on visual synsets and visual words respectively.

to the model structure difference between nested HDP mixture and model (a). In

the nested HDP mixture, the objects of same category are assumed to arise from a

closer set of appearance patterns, so as to tackle issue (c) in Table 4.1.

• Benchmark: To further evaluate the effectiveness of our generative

interpretation of object appearance diversity and the proposed embodiment model,

we compare the performance of nested HDP mixture to other methods, as below.

• HDP model (a) from [116] with visual synset, denoted by “model (a) from

[116]”.

• HDP model (b) from [125] with visual synset, denoted by “model (b) from

[125]”.

• k-NN on visual synset (vs), denoted by “k-nn+vs”.

• SVM on visual synset (vs), denoted by “svm+vs”.
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Figure 5.12: The categorization accuracy for all categories by the proposed nested
HDP mixture and SVM.

• SVM with spatial pyramid kernel proposed in [59] on visual synset (vs),

denoted by “ [59]+vs”.

To further evaluate the contribution by visual synset descriptor, we also perform

the following runs, based on visual words:

• k-NN on visual words (vw), denoted by “k-nn+vw”.

• SVM on visual words (vw), denoted by “svm+vw”.

• SVM with spatial pyramid kernel proposed in [59] on visual words, denoted

by “ [59]+vw”.

Here, we choose the discriminative classifiers of k-NN, support vector machine

(SVM) [120] and SVM with spatial pyramid kernel [59] for benchmark, as they

are reported to be robust and deliver performance comparable to state-of-the-arts

approaches [59, 113, 135]. The “k” parameter in k-NN is tuned from 10 to 20

and the run with best accuracy is selected. The kernel of SVM is RBF and its

gamma and cost parameter is determined by a 3-fold cross validation. For the spa-

tial pyramid kernel, we follow the setting in [59] and set the pyramid level to 2.



108

Figure 5.11 displays the accuracy of all the runs. As shown, the proposed nested

HDP mixture delivers the best results, outperforming other runs with substantial

margins. Specifically, it outperforms k-NN on visual synset by 94% relatively, SVM

on visual synset [143] by 34% relatively, SVM with spatial pyramid kernel [59] by

21% relatively, and SVM on visual words by 42% relatively.

As show in Figure 5.11, the proposed nested HDP mixture model consis-

tently outperforms SVM based discriminative models on only 30 training images

per category. We attribute this partially to the appealing prosperities of generative

learning models over the discriminative ones. In contrast to discriminative mod-

els, generative models attempt to explicitly identify the causal structure of image

features by modeling the probabilistic inter-relation of all the variables as a joint

probability distribution. This enables generative models to have better general-

ization. On the other hand, discriminative models attempt to learn a mapping

between input feature and output category variables only, rather than unveiling

the probabilistic structure of input or output domain. Consequently, it requires a

large amount of training data to produce good classifiers.

Furthermore, we carry out a detailed examination on the accuracy of each

category by the proposed nested HDP mixture and SVM on visual synset. As shown

in Figure 5.12, we observe that among the 31 object categories, the proposed HDP

mixture outperforms SVM on 20 categories, while SVM gives better accuracy on

the other 11 categories, such as leaf, zebra, whale, etc. We conjecture that the

better performance of SVM is due to the fact that these categories have relatively

distinct visual patterns, which suit discriminative models like SVM. For example,

the category ”zebra” may be dominated by its homogeneous and distinct texture

pattern. In this circumstance, the discriminative approach of SVM may be more

advantageous.
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Chapter 6

Conclusion

6.1 Summary

The motivation for research in this thesis stemmed from the meditation on why the

bag-of-words representation in visual categorization cannot perform at comparable

level to its analogy of document categorization in the text domain. After a careful

examination of the differing natures of image and text categorization, we realize

that the main reason for the unsatisfactory performance in visual categorization is

partially rooted in visual representation. Existing visual features are not capable of

associating the semantic relevance of images with their proximity in visual feature

space. This apartness of image semantic and its visual features is also widely known

as the semantic gap. We, therefore, devoted our effort on developing a higher-level

visual representation. As the bag-of-words image representation has consistently

delivered the state-of-the-art performance, we took the bag-of-words approach as

the base feature, from which we built a higher-level representation.

After careful investigation of bag-of-words representation, we found that the

robustness of bag-of-words approach was hindered by two basic issues: polysemy

and synonymy. The polysemous visual word is the one that might represent different
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semantic meanings in different image contexts, while the synonymous words are

the set of visually dissimilar words representing the same semantic meaning. By

sharing a set of polysemous visual words, the semantically dissimilar images might

be close to each other in the feature space, while the synonymous visual words may

cause the images with the same semantic to be far apart in the feature space. The

direct consequences of polysemy and synonymy are small inter-class distance and

large intra-class variation. In other words, the image distributions in the feature

space tend to be disordered, sporadic and incoherent. This statistically explains

why the image categorization based on bag-of-words approach is not comparable to

its analogy in text domain. To tackle these aforementioned issues, we proposed a

higher-level visual unit, named visual synset, on top of the bag-of-words approach.

This is done, by incorporating co-occurrence, spatial scatter and distributional

information of visual words.

Though the resulting visual synset is superior over the bag-of-words ap-

proach, its robustness is still limited by the open-ended nature of object visual

appearances. Namely, the objects, no matter from the same class or otherwise,

tend to possess huge variations of visual looks and shapes. To achieve better vi-

sual categorization, we focused on devising a learning scheme that can categorize

images beyond their visual appearances. To do so, we first admitted the fact that

objects from the same class are not necessarily visually similar. Then, we took

a Bayesian perspective to explain the object appearance diversity in a generative

interpretation. Namely, the diverse visual appearances of objects arise from a set

of countably infinitely many common appearance patterns. Based on this inter-

pretation, we devised a generative learning framework, named nested HDP mixture

model, to perform image categorization. The testing on two large-scale datasets,

Caltech-101 and NUS-WIDE-object, show that the proposed visual representation,

visual synset, and the generative learning model, nested HDP mixture, can deliver
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promising performances.

6.2 Contributions

The work of the thesis consists of two major parts: building a higher-level visual

representation and developing a new generative probabilistic learning method for

visual categorization. The contributions of the thesis are listed as follows.

Visual synset: a higher-level visual representation

We proposed visual synset, a higher-level visual representation, built on top of vi-

sual words. Visual synset attempts to address the polysemy and synonymy issues

of visual words. To address the polysemy issue, we exploited the co-occurrence and

spatial scatter information of visual words to generate a more distinctive compo-

sitional visual configuration, i.e. delta visual phrase. The improved distinctiveness

leads to better inter-class distance.

To tackle the synonymy issue, we proposed to group delta visual phrase

with similar ’semantic’ into a visual synset. Rather than in conceptual manner,

we define the ’semantic’ of a delta visual phrase probabilistically as its image class

probability distribution. The visual synset is therefore a probabilistic relevance-

consistent cluster of delta visual phrases, which is learned by Information Bottleneck

based distributional clustering. By grouping different delta visual phrases into one

unit, the visual synset can partially bridge the visual differences between these

images and deliver a more coherent, robust and compact representation of images.

Nested HDP mixture: a learning scheme beyond visual appearances

To further recognize objects beyond their visual appearance, we developed a learn-

ing model that categorizes images beyond their visual appearances. By taking a
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Bayesian perspective, we interpreted the object visual diversity as a probabilistic

generative phenomenon, in which the visual appearance arises from the countably

infinitely many common appearance patterns. To make this generative interpre-

tation valid, three issues were tackled: (1) there exist countably infinitely many

appearance patterns, as the objects have boundless variation of appearance; (2)

the appearance patterns are shared not only within but also across object cate-

gories, as the objects of different categories can be visually similar too; and (3)

intuitively, the objects within a category should share a closer set of appearance

patterns than those of different categories. To embody the generative interpre-

tation, we proposed a generative probabilistic model, named nested hierarchical

Dirichlet process (nested HDP) mixture, to tackle the three issues above. The stick

breaking construction process in the nested HDP mixture provides the possibility

of countably infinitely many appearance patterns that can grow, shrink and change

freely. The hierarchical structure of our model not only enables the appearance

patterns to be shared across object categories, but also allows the images within

a category to arise from a closer appearance pattern set than those of different

categories.

6.3 Limitations of this research and future work

While the works in the thesis contributed to the advancement of image categoriza-

tion, they do suffer from some limitations. First, the generation of delta visual

phrase is a time-consuming task. The time complexity does not only lie in the

frequent itemset mining, but also the extraction of delta visual phrases from new

images. The generation of delta visual phrases requires the spatial neighborhood in-

formation of local regions. As the number of local regions per image is usually large

(in the order of thousands), the computation of pairwise spatial distance between

local regions tend to be time consuming. A more efficient algorithm is required.
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One possible solution is to utilize approximate distance estimation, such as hashing

or indexing of spatial locations of local regions.

Second, delta visual phrase is not guaranteed to be scale invariant. The basis

of delta visual phrase generation is co-occurring and spatial scatter inter-relation

of visual words. The scale invariance aspect is not taken into consideration. This

renders the scale invariance degree of a delta visual phrase solely relying on its

component visual words. The visual words achieve scale invariance by extracting

local regions at multiple scale levels at the given image. One possible solution to

this issue is to incorporate scale consistency inter-relation of visual words when

constructing delta visual phrases.

Third, how the number of classes changes the semantic inference distribution

of delta visual phrases and how this affects the visual synset generation and final

classification have not been investigated. The number of classes indirectly deter-

mines the resolution of probabilistic semantic, as a large number of classes gives a

fine class conditional distribution. The investigation of this issue is one direction

of our future work.

Fourth, one limitation of the proposed nested HDP is that it is not theoret-

ically adaptable to scene classification task. This is so because of the generative

assumption of image formation that the graphical model takes. The model assumes

that appearances of local parts of object arise from a universal pool of appearance

patterns. This assumption is justifiable for objects, because the appearances of ob-

ject’s local parts are constrained by object form and structure. On the other hand,

the local appearances of a scene is much more complicated and unconstrained,

as objects from any categories might be locally visible in a scene. This visual

complexity and randomness render the generative assumption of local appearances

ill-posed.

Fifth, in the process of developing the generative learning model, we neglect
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the semantic ontology of image classes. However, this semantic inter-relation be-

tween image categories, such as vehicle and car, can provide much informative clues

for categorization. One of our future works is on exploring how to incorporate such

inter-relations into the model structure. The incorporation of semantic ontology

might contribute to another future work, which is to extend the proposed cate-

gorization model to perform multi-label learning task. In the multi-label context,

images are annotated with more than one labels. The semantic inter-relation of

labels in the same image could provide useful information in building the learning

model.
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