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Summary

First order structural phase transitions arise from diffusionless rearrangement of

the solid crystalline lattice and are known to cause exotic behaviour in materials.

These are mainly a result of the characteristic complex microstructure which ac-

companies such transitions. An open problem in constitutive modeling of materials

is in developing approaches which tie material information at different length scales

in a consistent manner. In materials undergoing phase transitions such as shape

memory alloys, this problem takes on added significance due to the evolution of

microstructure of several different length scales during operation. It is thus imper-

ative to develop constitutive models which incorporate information from several

length scales and study the overall effect on the macroscopic properties.

Purely continuum models of materials have not been very successful in mul-

tiscale modelling: constitutive modelling incorporating the effect of several length

scales. Commonly, multiscale models use a combination of discrete and continuum

viewpoints. Discrete approaches incorporate the physics of small length scale fea-

tures of the microstructure more directly whereas continuum approaches allow the

problem to remain tractable.

Most multiscale models developed earlier have neglected thermal effects. Dur-

ing phase transitions, thermal effects are important and in this thesis we study

discrete models for such problems. We first study the origin of structural phase

transitions arising from vibrational entropy effects. Using statistical mechanics ar-

guments we isolate a phase transforming mode whose properties determine those of

the phase transitions. We then perform numerical simulations for a chain of atoms
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with a potential energy possessing these properties and study the dependence of

the phase transformation on the shape of the potential well. We also incorporate

a gradient energy term and study its effect on hysteresis and the length scale of

the resulting microstructure. While these simulations are performed to confirm

the role of the properties of the potential energy, these properties do not provide

a guide for a direct empirical fit of the interatomic potentials. In light of this,

we develop two phenomenological approaches for a discrete description of thermal

phase transitions.

Our first approach is a mean field description in which the effect of the sur-

rounding atoms on a particular atom is provided through a temperature dependent

substrate potential. It is important that the effect of the kinetic energy of the

discrete particles is accounted for consistently and not twice: in the interatomic

potential and in the kinetic energies of the particles. Using statistical mechanics

calculations we confirm that this is not the case. We derive macroscopic properties

such as the latent heat of transformation and the transformation temperatures for

this model.

Next, we modify the previous model to neglect the substrate potential and in-

stead consider purely temperature dependent nearest neighbour interactions. The

reason for this to facilitate extension of this model to two- and three-dimensional

cases which is not possible in the presence of a substrate potential. The configura-

tion of the surrounding atoms (which depends on temperature) changes the energy

of the interaction potential and the location of its minimum. We use a polynomial

Falk-type free energy, which is a polynomial expansion of a single strain compo-

nent, to describe the interaction potential. We restrict our studies in this work to a

one-dimensional chain of identical atoms with an additional gradient energy term

to penalize the presence of phase boundaries. We show numerically that these

models realistically depict thermal solid-solid structural phase transitions.
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Chapter 1

Introduction

1.1 Materials with microstructure

Atoms are the basic constituents of a material and they group themselves in repeat-

ing or periodic arrays over large atomic distances to form crystals or grains. There

may be several grains in the material with different orientations of the crystalline

lattice. Grain boundaries are the interfaces between grains of different crystal ori-

entations. The presence of grains forms distinctive patterns, with lengths ranging

from a few nanometres to a few micrometres and is an example of microstructure

in metallic materials. Many interesting phenomena demonstrated by materials

have been governed by their microstructure. Structural phase transitions are crys-

tallographic structural changes in a material due to applied mechanical and/or

thermal loads. These phase transitions result in rich microstructure and concomi-

tant change in the mechanical response.

Structural phase transitions are of great interest due to their role in foster-

ing technologically useful behavior in many materials such as metals, alloys and

ceramics [1, 2]. The mechanical effects of structural phase transitions range from

influencing commonplace properties such as hardness, strength or the elastic mod-

ulus [1] to causing more esoteric effects such as pseudoelasticity, shape memory [3]

and ferroelectricity [4]. The structural phase transitions of most interest are the re-
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versible, diffusionless, solid-solid transitions often referred to as ‘weak’ martensitic

transformations [5].

Martensitic phase transitions occur between a high-temperature parent phase,

in which the crystalline lattice is of relatively high-symmetry and a low-temperature

lower-symmetry product phase. This phase change is usually first-order and is ac-

companied by the generation and absorption of latent heat during the forward

(parent to product) and reverse (product to parent) transformations, respectively.

Since the product phase is of low crystalline symmetry, it arises in many energet-

ically equivalent variants and is anisotropic. This results in an important feature

of these transformations, which is the formation of rich microstructure. The mi-

crostructure that is formed is quite complex and is easily changed with applied

mechanical or thermal loads. Moreover the nature of the microstructure, such as

the orientation of the domain walls or the volume fraction of the particular variant

of the low-symmetry phase, has great influence on the mechanical response of the

bulk material. For example, the orientation of the interfaces in a twinned structure

affects dislocation and ledge motion on the twin boundary and thus the motion

of the twin boundary [6]. Since this microstructure ranges from length scales of

a few nanometers [7] to a few millimeters [8, 9], the nano and micromechanical

aspects require careful consideration. Thus a proper account of the effect of this

microstructure on the bulk response requires physical understanding of materials

from atomic scale to macroscopic scale.

1.2 Shape Memory Alloy behaviour

Phase transitions occur in Shape memory alloys (SMA) through a diffusionless rear-

rangement of atoms in the form of a displacive first-order phase transition. At high

temperatures SMA exist in a relatively higher symmetry austenite structure and at

lower temperatures a low symmetry, multivariant martensite structure is preferred.

The material thus undergoes martensite phase transformations with changes in
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Figure 1.1: Typical Differential Scanning Calorimetry curve of a SMA alloy.

temperature. The martensite phase usually consists of orthorhombic, trigonal or

monoclinic lattice structures. Differential Scanning Calorimetry (DSC) is a useful

method for monitoring and characterizing the temperature-induced transforma-

tion. A typical DSC curve of a SMA alloy is schematically shown in Figure 1.1.

The exchange of minima of the free energy of two phases at different temperatures

is the driving factor for the phase transformation. The forward transformation

(austenite-to-martensite) occurs when the free energy of martensite becomes less

than the free energy of austenite at a temperature below a critical temperature θo

at which the free energies of the two phases are equal. However, the transforma-

tion does not begin exactly at θo but, in the absence of stress, at a temperature

θms (martensite start), which is less than θo. The transformation continues to

evolve as the temperature is lowered until a temperature θmf (martensite finish)

is reached. When the SMA is heated from the martensitic phase in the absence

of stress, the reverse transformation (martensite-to-austenite) begins at the tem-

perature θas (austenite start), and at the temperature θaf (austenite finish) the

material is fully in the austenite phase. First-order phase transitions are char-

3
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Figure 1.2: A schematic of a pseudoelastic behaviour.

acterized by the generation of latent heat. Latent heat is the quantity of heat

that must be extracted/added to a system to transform from one phase to other,

while keeping the temperature of the system constant. The area below the peak

of the DSC curve in between transformation-start and finish temperatures gives

exothermic and endothermic transition of the latent heat of forward and reverse

transformation respectively.

Above the transformation temperature these alloys can be deformed by stress-

ing and they recover their undeformed shape from large strains. Figure 1.2 shows

a schematic of the stress-strain response of a SMA under an isothermal exten-

sion experiment. The material is initially in the austenite phase and stress causes

only elastic distortions of the austenite lattice o− a. At a critical stress (point

a), austenite becomes unstable and martensite starts to form. The stress plateau

a− b indicates the martensite transformation in the specimen without any addi-

tional stress. Unloading results in a elastic unloading of the martensite phase b− c

followed by reverse transformation to austenite from point c to point d. Further

unloading simply follows the initial loading path. The strain is fully recovered

4
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but not the applied mechanical work. This macroscopic phenomenon is called as

pseudoelasticity and also referred to as a stress-induced transformation.

Below the transformation temperature a similar deformation of these alloys

results in an apparently plastic strain as seen in Figure 1.3. However, this deforma-

tion can be recovered by increase in temperature. This phenomenon is termed the

shape memory effect. In Figure 1.3 the material is initially in a twinned martensite

phase (point o). Applied stress causes the detwinning along the path o− a− b.

Unloading results in elastic recovery of the detwinned material with some resid-

ual strain (point c). This residual strain is completely recovered by heating the

material above austenite finish temperature θaf . Along the path c− d, detwinned

martensite transforms to austenite. Cooling the material at this stage results in

the formation of twinned martensite without any change in the macroscopic length,

this process is called as self-accommodation.
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1.3 Multiscale modeling

Modeling of materials is an efficient way to understand, predict and control the

properties of materials. The scientific investigation of materials with microstruc-

ture greatly depends on the mathematical models and simulations of materials

at different length and time scales. Insofar as materials modeling are concerned,

the smallest length scale considered is the atomic scale at which the quantum-

mechanical (QM) state of electrons determine the property of the atoms and their

interaction through the Schrodinger equation. Two computational schemes to solve

the QM problem are the Quantum Monte Carlo (QMC) and Quantum Chemistry

(QC) methods which can be used accurately to study a few tens of electrons. On

the other hand, methods based on density functional theory (DFT) and local den-

sity approximation (LDA) can be employed for a few thousands of atoms. Tight

binding approximation (TBA) can be extended to reach the simulations to a few

nanometers and a few nanoseconds in time scale with concomitant loss in accuracy.

The atomistic problem is also studied at a length scale in which electronic

interactions are ignored, but instead the effects of bonding govern the interaction

between atoms. The interaction between atoms is represented by a potential func-

tion that depends on the atomic configuration. The interatomic potentials can be

developed from a quantum-mechanical description of the material or empirical or

semiempirical potentials obtained by fitting the lattice constants and elastic mod-

uli. Dynamic evolution of the atomic system is governed by classical Newtonian

mechanics and numerical methods are used to study the simultaneous motion and

interaction of atoms. Molecular Dynamics (MD) and Monte Carlo (MC) simula-

tions are widely used to provide insight in to atomic processes. MD simulations

can go up to approximately 109 atoms and time scales up to microseconds can be

reached. The mesoscopic scale in which dislocations, grain boundaries, and other

microstructural elements dictate the property of a material is another important

length scale at which materials are studied. The atomic degrees of freedom are

6



not explicitly treated and only larger scale entities are modeled. Approaches like

Dislocation Dynamics (DD) and Statistical Mechanics (SM) are derived from phe-

nomenological theories to study the kinetics of dislocations and consequently the

macroscopic mechanical response. DD models can be used to study systems a few

tens of microns in size. At the macroscopic scale, continuum fields such as den-

sity, velocity, temperature, displacement and stress fields play a major role, and

constitutive laws are used to describe the behavior of the physical system. The

governing equations are discretized and the finite element method (FE) is used to

examine the mechanical behaviour of materials.

The macroscopic behaviour of a material is influenced by the phenomena at

all the length scales outlined above. The models discussed above are efficient and

specialized in their respective scales, but they are inefficient in describing effects at

different length and time scales. Thus the current focus in the mechanics literature

is in developing methods to couple and address these multiscale phenomena. The

present multiscale approaches can be broadly categorized into two distinct kinds:

sequential and concurrent approaches.

Sequential approaches try to describe phenomena at the different scales sep-

arately but with the aim of passing relevant information between scales. These

are also referred to as serial, implicit or message-passing methods. For exam-

ple, the Peierls-Nabarro model incorporates information obtained from ab initio

calculations directly into continuum models. This approach can be applied to prob-

lems associated with dislocation core structure and cross slip process [10] which

neither atomistic nor conventional continuum models can handle separately. Com-

plex microstructure evolution during phase transformations can be studied using a

phase-field model in which the microstructural constituents are described by a set

of continuous order-parameter fields [11]. The temporal microstructural evolution

is obtained from solving kinetic equations that govern the time-dependence of the

spatially inhomogeneous order-parameter fields. The Kinetic Monte Carlo (KMC)

model is another approach which provides the means for coarse-graining the atom-
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istic degrees of freedom to a few mesoscopic degrees of freedom. For example,

KMC models have been used to study epitaxial growth [12].

Concurrent approaches tend to simultaneously use two or more models ap-

plicable to different length scales with appropriate matching conditions. These

are also referred to as parallel or explicit methods. For example, the Macroscopic

Atomistic Ab initio Dynamics (MAAD), developed by Abraham et al. [13, 14]

dynamically couples different length scales along their interface. The FE and MD

regions are coupled by scaling down the FE mesh to atomic dimension at the inter-

face of the two regions. MD atoms at the interface of quantum tight binding (TB)

region, include neighbour atoms whose positions are determined by the dynamics

of atoms in the TB region. This approach was used to study different problems like

dislocation dynamics [15], crack propagation [16, 17] and energetic particle-solid

collisions [18, 19]. The quasicontinuum method proposed by Tadmor et al. [20, 21]

systematically coarsens the atomistic regions using kinematic constraints. These

kinematic constraints are selected and designed so as to preserve the full atomistic

resolution where required. This method has been applied to a variety of problems

like dislocation structures [20, 21] and the interaction of dislocations with grain

boundaries in Aluminium [22].

In this thesis we take the sequential multiscale model as our paradigm and

develop discrete models for reversible, diffusionless, solid-solid structural phase

transitions such as those seen in shape memory alloys. In section 1.4 we review

different models developed to study phase transitions and highlight the need for

incorporation of an atomistic description. In section 1.5 we discuss different ap-

proaches used to derive the interatomic potential for phase transition.

1.4 Models for martensitic phase transitions

The behaviour of materials with microstructure has been described by a non-linear

elasticity theory [23] incorporating the crystallographic aspects of martensites [24].
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Global energy minimization used in this theory to address the static regime. For

example, it was shown by Bhattacharya [25], that certain microstructures are ge-

ometrically possible only if their lattice parameters satisfy highly restrictive con-

ditions. Although these theories provide useful information about the type of

microstructure formed, they do not completely determine the length scales due to

the dynamic origin of these aspects. To study the dynamics models were proposed

by Ball et al. [26], Friesecke et al. [27]. These relative energy minimizers predict

the formation of infinitely fine patterns, in contrast to static models which use a

global minimizer.

Continuum theories for shape memory alloys assume the dynamics to take

place isothermally. The free energy density as a function of deformation gradient is

the key to determining the stress. For martensite, the energy has to meet a symme-

try condition imposed by the austenite phase. The free energy symmetry function

with minimizers, appropriate elastic moduli and transition strains and phenomeno-

logical dependence on temperature are the main constitutive information needed

for continuum theories. Non-isothermal dynamics in the continuum setting has

been considered by several authors [28, 29, 30, 31, 32, 33, 34, 35]. The coexistence

of phases and interface propagation under applied thermal or mechanical loads

poses an additional challenge in their incorporation into constitutive equation. Ki-

netic relations for phase boundaries was first introduced by Truskinovsky [36] and

Abeyaratne and Knowles [37] as additional constitutive information to determine

the macroscopic response of the body.

Traditional continuum theories have been shown to be ill-equipped to study

multiscale problems since they do not incorporate length scale effects. Phase field

models [38, 39, 40, 41, 42] and strain-gradient theories [43, 44, 37, 45, 46, 30, 47, 48]

are being considered in order to incorporate length scales. The papers by Tri-

antafyllidis and Bardenhagen [45, 46] derive static gradient elasticity models from

discrete models. Predictions of discrete and strain-gradient continuum models

for martensitic materials are directly compared by Truskinovsky and Vainchtein
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[49, 50]. However, it is still difficult to incorporate nanoscale effects into the con-

stitutive equations of these augmented theories. Hence some of the recent efforts

in multiscale modelling involve discrete atomistic descriptions of the microstruc-

ture coupled with mesoscopic or macroscopic approaches in the more homogeneous

regions [51].

The complex nature of martensitic phase transitions casts some additional

difficulties in determining appropriate kinetic relations. Some first models to ob-

tain kinetic relations use discrete masses connected by nonlinear springs. Trav-

elling wave solutions for these lattice models have been studied by Truskinovsky

and Vainchtein [52] and show the radiation of lattice waves carrying energy away

from the propagating front, resulting in macroscopic dissipation. Abeyaratne and

Vedantam [6] use a Frenkel-Kontorova model [53, 54] to derive appropriate contin-

uum kinetic relations for twin boundary motion. More recently dynamics of steps

along a martensitic phase boundary have been studied by Zhen and Vainchtein

[55, 56].

1.5 Interatomic potentials for phase transform-

ing materials

One of the main difficulties in the atomistic calculations (apart from the computa-

tional time and memory expense) is in selecting appropriate interatomic potentials.

While developing the interatomic potentials from a quantum mechanical descrip-

tion of the material is the most physically appealing approach, it proves to be com-

putationally prohibitive. Instead, empirical and semi-empirical potentials are most

commonly used. Empirical potentials usually fit the parameters to lattice constants

and elastic moduli. However, for materials undergoing phase transitions, the lat-

tice constants and elastic moduli properties of multiple crystalline lattices (multiple

phases) need to be fitted in addition to other properties associated with the phase

transition such as the transformation temperature and latent heats. Most of these
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materials are binary or ternary alloys and reliable potentials for such multielement

materials are generally not available. In spite of these difficulties, there have been

some notable attempts to study phase transitions from an atomistic viewpoint

using a single Lennard-Jones potential [57], multiple Lennard-Jones potentials be-

tween different types of atoms [58, 59, 60] or many-body potentials [61]. The main

empirical fit to these potentials is the lattice spacing and the lattice structure of

the parent and product phases. In theory, one of the elastic moduli in the parent

or product phases may also be fitted empirically to these potentials. However, the

other important parameters of phase transitions such as the transformation tem-

perature and latent heat of transformation cannot be easily incorporated into these

potentials. In fact, little is known about the particular features of the interatomic

potential which determine these parameters. An alternative approach which has

been recently proposed to obtain appropriate interatomic potentials for materials

undergoing phase transitions is the use of temperature-dependent Lennard-Jones

parameters [62, 63]. While no molecular dynamics simulations were performed in

these studies, a detailed stability analysis revealed the existence of multiple stable

phases. The energy density as a function of the deformation and temperature of a

bi-atomic crystal was calculated using this method for use in continuum theories.

In another approach, vibrational entropy effects were incorporated into a discrete

model through domain wall stiffening [64]. While temperature-dependent poten-

tials are phenomenological, they prove to be useful in developing an understanding

of phase transitions from a discrete viewpoint.

1.6 Outline of thesis

In Chapter 2, we show the origin of structural phase transitions in vibrational

entropy effects. Using statistical mechanics arguments we isolate a phase trans-

forming mode which is the key to materials undergoing structural phase transitions.

The properties of the potential energy in the phase transforming mode determine
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the properties of the phase transformation. In particular the potential energy

slice along the phase transforming mode is required to have a low-energy wells

corresponding to the low-temperature phase and low-curvature region correspond-

ing to the high-temperature phase. We then perform numerical simulations for a

chain of atoms with a potential energy possessing these properties and study the

dependence of the phase transformation on the shape of the potential well. We

also incorporate a gradient energy term and study its effect on hysteresis and the

length scale of the resulting microstructure. While these simulations are performed

to confirm that these properties of the potential energy affect the phase transfor-

mation, it is still not easy to fit an interatomic potential to obtain these properties.

In the subsequent chapters we focus on more phenomenological approaches.

While we studied the origin of vibrational entropy-driven structural phase tran-

sitions in Chapter 2, in Chapter 3 we focus on a mean field approach to structural

phase transitions. The reasons for this are twofold: (1) the fundamental inter-

atomic potential is not known — only the properties of the total potential energy

along a particular mode and (2) the large differences in curvature of the potential

energy slice causes computational difficulties. Instead, here we propose a mean

field approach and assume that each atom experiences a substrate potential which

depends on the effect of the surrounding atoms (and is, therefore, temperature-

dependent). Such an approach is fraught with the possibility of counting the ki-

netic energy component of the system twice: once in the interatomic potential and

explicitly in the kinetic energies of the particles. Using statistical mechanics calcu-

lations we confirm that this is not the case. We derive the macroscopic properties

such as the latent heat of transformation and the transformation temperatures.

We perform statistical mechanical calculations for a system of N uncoupled oscil-

lators. We obtain analytical results for the Helmholtz free energy, entropy and the

specific heat.

In Chapter 4 we modify the previous model to neglect the substrate poten-

tial and instead consider purely temperature-dependent nearest-neighbour inter-
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actions. The reason for this to facilitate extension of this model to two- and

three-dimensional cases which is not possible in the presence of a substrate poten-

tial. The configuration of the surrounding atoms (which depends on temperature)

changes the energy of the interaction potential and the location of its minimum.

We use a polynomial Falk-type free energy, which is a polynomial expansion of a

single strain component, to describe the interaction potential. We restrict our stud-

ies in this work to a one-dimensional chain of identical atoms with an additional

gradient energy term to penalize the presence of phase boundaries.

In Chapter 5 we summarize the results of our findings and propose future

directions for extension of these results.

1.7 Key contributions of this thesis

In this thesis we have studied discrete models for materials undergoing structural

phase transformations. We have shown for the first time that the origin of the

vibrational entropy-driven phase transformations is in the properties of a para-

metric slice of the total potential energy of the system. We then developed a

phenomenological discrete model for phase transitions and showed the connection

to the macroscopic properties using statistical mechanics. In particular, the calcu-

lations show that it is possible to use a form of the continuum free energy for the

interatomic potential energy. Finally, we presented a modified model which allows

extension to two- and three- dimensional systems.
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Chapter 2

Interatomic potentials for phase

transforming materials

2.1 Introduction

One of the most successful applications of classical statistical physics in the solid

state has been the prediction of the high-temperature specific heats of solids.

Though the interaction between individual atoms in a solid is complicated, rec-

ognizing that the amplitude of vibration relative to interatomic distances is small

allows the effect of the surrounding atoms on a given atom to be approximated

by a harmonic potential field independent of neighboring atoms. In this uncou-

pled harmonic approximation, the kinetic and potential energies of each degree

of freedom contribute 1
2
kBθ (kB is the Boltzmann constant and θ is the absolute

temperature) to the internal energy and the resulting specific heat value matches

closely the empirical observations of Dulong and Petit [65].

Some materials, notably those known as shape memory alloys (SMAs), undergo

first-order diffusionless solid-solid structural phase transformations also called marten-

sitic transformations. These transitions are marked by a spike in the heat capacity

indicating the release or absorption of latent heat during the transformation. This

feature is not described by the simple model outlined above since an atom in a
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harmonic potential is incapable of undergoing a phase transition; anharmonic ef-

fects are essential. Moreover, the exchange in stability of the phases is due to an

increase in entropy associated with the high-temperature phase. The high entropy

of the high-temperature phase is related to softer phonons and large amplitude vi-

brations of the lattice in certain phase transforming modes [66]. There have been

few simple models capable of delineating these effects, particularly the role of large

amplitude vibrations and high entropy of the high-temperature phase in the phase

transition.

In this chapter we present a simple model in the spirit of the above classical

calculation of specific heats which is capable of describing vibrational entropy-

driven phase transitions occurring above the Debye temperature of the solid.

Previous models of entropy-driven transitions employed a Hamiltonian con-

sisting of a temperature independent three-well on-site potential (external field)

and anharmonic intersite coupling terms [64]. The presence of the on-site potential

allowed the model to overcome [64] the well-known absence of phase transitions

in one-dimensional models with finite range interactions [67]. The anharmonicity

of the intersite coupling strength effected a change in the stiffness of the low-

temperature phonons which was responsible for driving the phase transition [64].

In contrast, our model is motivated by a crystallographic consideration of the

phase transforming modes and a physical interpretation of the on-site potential.

The entropy changes arise from the on-site potential which stabilizes the high-

temperature phase. The intersite coupling represents the domain wall energy and

is assumed to be harmonic.

In this chapter we examine the properties of interatomic potentials for phase

transforming materials. A review of the relevant basic statistical mechanics con-

cepts is included in Appendix A. We begin with a description of the classical

calculation of the high-temperature specific heats of crystalline solids.
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2.2 Calculation of specific heat of solids

Consider a crystalline solid at finite temperature. All atoms in a crystal vibrate

about their equilibrium positions and interact with their neighbors through an

interatomic potential. To calculate the potential energy of the solid we require

knowledge of the interatomic potential and the trajectories of all the atoms which

is quite difficult in practice. Instead, the approach taken in a mean field model is to

assume that the effect of all the neighboring atoms provides a harmonic potential

field for each atom and that the vibration of each atom is independent of the

positions of its neighboring atoms. This assumption allows us to treat the solid as

a system of uncoupled harmonic oscillators.

The energy of a harmonic oscillator of frequency ω is, in one-dimension,

E =
1

2M
p2 +

1

2
Mω2q2, (2.1)

where p is the momentum and q is the position of the oscillator of mass M . Using

the classical formula for the average quantity in a canonical ensemble (given in

Appendix A), the average energy of the oscillator in thermal equilibrium is

<E >=

∫ +∞
−∞ ( 1

2M
p2)e−p2/2MkBθdp∫ +∞

−∞ e−p2/2MkBθdp
+

∫ +∞
−∞

Mω2

2
q2e−Mω2q2/2kBθdq∫ +∞

−∞ e−Mω2q2/2kBθdq
. (2.2)

Each term on the right is equal to 1
2
kBθ and so

<E >= kBθ (2.3)

for the simple harmonic oscillator in one-dimension.

The internal energy of N harmonic oscillators in three dimensions is then

U = 3N <E >= 3NkBθ, (2.4)
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or, for a mole of substance

UM = 3Rθ, (2.5)

where R = NAkB is the gas constant, and NA is Avogadro’s number, 6.023× 1023.

If we may consider that the atoms in a solid behave as harmonic oscillators

about their equilibrium positions, we see that classical theory predicts the lattice

contribution to the molar heat capacity at constant volume

CV =

(
∂UM

∂θ

)
V

(2.6)

of a solid should be, for a mole of atoms,

CV = 3R. (2.7)

This value, which is known as the Dulong and Petit value, is in good agreement

with the observed total heat capacity of many solids at elevated temperatures.

2.3 Vibrational entropy in first-order phase tran-

sitions

Our focus in this thesis is on systems capable of undergoing martensitic trans-

formations. The high-temperature phase (also known as the parent phase) is

termed austenite and is not stable at low-temperatures. The low-temperature

phase (also known as the product phase) is termed martensite and is not stable at

high-temperatures.

From the macroscopic point of view the latent heat of system undergoing first-

order phase transformation is given by

λT = θT (SM − SA), (2.8)
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where θT is the transformation temperature and SM and SA are the molar entropies

of the final and initial phase respectively. At the atomic scale, entropy is also

viewed as the amount of disorder in a system: the more disordered a system, the

greater its entropy. In the case of a crystalline solid with atoms localised on lattice

sites, the disordering is associated with its excitations, i.e., its phonons. From

the microscopic point of view, we show the vibrational phonon entropy difference

between a martensite and austenite phase drives the phase transformation.

Consider a material capable of undergoing phase transitions. When the ma-

terial is in the martensite state, we will describe it using a harmonic mean field

model and thus the Hamiltonian is

HM =
p2

2M
+

1

2
KMq2 (2.9)

where KM is the spring constant of martensite phase. The partition function Z

for a Hamiltonian in Eq. 2.9 is given by

ZM =

∫ ∞

−∞
dp

∫ ∞

−∞
dq exp(−HM/kBθ) (2.10)

The Helmholtz free energy of the martensite phase is given by

FM = −kBθ lnZM = −kBθ

2
ln(

4π2M(kBθ)2

KM

) (2.11)

At absolute zero temperature the austenite state has higher energy (and is therefore

not the stable phase). Thus consider a harmonic Hamiltonian HA for austenite

having a higher-energy

HA =
p2

2M
+ E0 +

1

2
KAq2 (2.12)

where E0 > 0 and KA is the spring constant of austenite phase. The free energy

of the austenite phase is given by

FA = E0 −
kBθ

2
ln(

4π2M(kBθ)2

KA

) (2.13)
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Figure 2.1: The Helmholtz free energy of martensite shown in red and austenite
shown in black.

If at higher temperatures, FA < FM , exchange of phase stability is possible. It

can easily be seen that this is possible only if KA/KM < 1. In Figure 2.1 we

show the schematic plot of Helmholtz free energy with temperature in the case of

KA/KM < 1. It is seen that at higher temperatures, the free energy of austenite

is lower and thus a phase transformation is possible.

The dependence of the transition temperature θT on E0 and KA/KM is found

from equating free energies FA = FM . This yields kBθT = − 2E0

ln KA/KM
(note that

this result does not depend on M). As expected, the greater the difference in

θ = 0 energies, the greater the transition temperature. And on the other hand

the smaller the KA/KM , the lower the transition temperature. Thus at high-

temperatures there is sufficient vibrational entropy to stabilize the parent state.

Further, if the vibrations are the same in the two states, state A will never be the

equilibrium state, i.e. θT →∞ as KA/KM → 1. The parent phase would never be

the stable equilibrium structure if its phonon entropy were not lower than that of
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the martensitic phase.

It is clear from the two harmonic potentials that what leads to the lower free

energy of austenite state is the softer spring constant i.e. the lower frequencies of

its vibrations. Note that these spring constants are not directly related to elastic

moduli of austenite and martensite phases. These spring constants are related to

the curvature of the interatomic potential, whereas the elastic moduli are related

to the curvature of the free energy. One simple way of seeing how this leads to an

increased entropy as the temperature is increased is by noting that as the curvature

of the potential is reduced, the particle can spread out more easily, i.e. it is more

disordered than in a stiffer potential at a given temperature. The two harmonic

potentials that have been used in the description are heuristic and the connection

to a mean field approach is tenuous. The mean field model we propose in the next

section makes the connection through crystallographic considerations.

2.4 Mean field model for phase transitions

2.4.1 Crystallography

Our model is motivated by a crystallographic consideration of the phase transfor-

mation and provides a physical interpretation of the on-site potential. For simplic-

ity of exposition, consider a unit cell in two dimensions of a material capable of

undergoing square to rectangle transitions as shown in Figure 2.2 (the argument

can easily be extended to phase transitions between any two parent and product

lattices in three dimensions). Taking the square lattice as the reference, the Bain

stretch matrices describing the two variants of the low-temperature phase are given

by

U1 =

 α 0

0 β

 , U2 =

 β 0

0 α

 , (2.14)
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where α and β are the stretches of the sides of the unit cell. Now, consider a

parametrization of the stretch matrices given by

U(q) =

 s1q
2 + s2q + 1 0

0 s1q
2 − s2q + 1

 (2.15)

with s1 = (α + β)/2 − 1 and s2 = (α− β)/2. q represents a homogeneous defor-

mation parameter for the unit cell; q = 0 represents the square phase and q = ±1

represent the two rectangular variants. Thus, if xi represent the position vectors of

atoms in the square lattice and yi the current position of the atoms, we can express

the current position of any atom in terms of its displacement as a part of a homo-

geneous deformation of the unit cell plus orthogonal shuffles. The homogeneous

deformation of the unit cell contributes to the structural phase transformation

and we will refer to this as the phase transforming mode (PTM). The orthogonal

shuffles do not contribute to the phase transformations. We write

yi = RU(q)xi + ξi, (2.16)

for each atom i of the unit cell. R is a rigid rotation of the unit cell and ξi represent

the displacements of atoms from the PTM positions.

Note that, in the simple lattice under consideration, we have one atom per

unit cell and therefore two degrees of freedom. One degree of freedom is provided

by the PTM and the other by the non-PTM.

2.4.2 Hamiltonian

The Hamiltonian for the system with sites labeled i is given by

H =
∑

i

p2
i

2m
+ V (yi) (2.17)
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Figure 2.2: A schematic of a square high-temperature parent phase (austenite) and
two variants of the low-symmetry product phase (martensite). The two variants
arise from the fact that the bond AB in the parent phase stretches to two different
lengths in the product phase.

where the potential energy V (yi) depends on the positions of all the atoms. In

the classical calculation, this potential is replaced by an effective harmonic field

on each atom irrespective of the positions of the surrounding atoms.

In our model we view the current position of the each atom as a superposition of

low-amplitude oscillations on the large amplitude PTMs of a unit cell to which the

atom belongs. Thus we consider a simple additive decomposition of the potential

energy

V (yi) =
∑

j

(Vξ(ξi) + Vq(RU(q)xi)) , (2.18)

Where Vξ is the potential energy contribution of the non-PTM which we choose to

be harmonic. Vq is the potential energy of anharmonic phase transforming mode.

In order to understand the form of the potential Vq(RU(q)xi) consider an

equilibrium homogeneous deformation of the unit cell in the lattice. Note that,
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Figure 2.3: A schematic of the anharmonic potential energy.

since the potential energy of the unit cell is unaffected by rigid rotations we may

write Vq(RU(q)xi) = V̄q(q). At absolute zero temperature the rectangular variants

are stable whereas the square phase is unstable and has higher energy. Thus the

potential will have minima at q = ±1 but not at q = 0 as shown in Figure 2.3. For

simplicity, we choose a piecewise quadratic form for the anharmonic potential

V̄q(q) =



1
2
km(q + 1)2, q ≤ −q∗

E0 − 1
2
kaq

2, −q∗ ≤ q ≤ q∗

1
2
km(q − 1)2, q ≥ q∗.

(2.19)

where E0 > 0 is the barrier height between the variants and km > 0, ka > 0. q∗ is

chosen such that the potential energy is continuous.

At low-temperatures, the unit cell is in one of the martensite variants and the

thermal vibrations will be localized to the corresponding minimum at 〈q〉 = ±1.

Where 〈q〉 represents the time average. At higher temperatures, the amplitude
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of the vibrations increases and at the critical temperature the vibration spans

both the wells. Due to the symmetry of the chosen potential, 〈q〉 = 0 at high-

temperatures. However, for this state to be characterized as the parent phase and

not a heterophase state, the time spent in q ∈ (−q∗, q∗) should be substantially

larger than the time spent in |q| > q∗. The probability of finding the cell in the

parent phase will then be larger than in either variant.

At high-temperatures, the vibration spans both wells, the ratio of time spent

around q = 0 and the side wells is tp/tm = O(1/
√

ka/km). For tp/tm � 1, we

require ka/km � 1 and the magnitude of curvature at q = 0 should be small

compared to the curvature at q = ±1. The softer potential at q = 0 implies that a

larger volume of phase space is sampled by the system and the vibrational entropy

is thus greater. Note, as stated earlier softer potential is not related to the elastic

moduli of the material.

2.4.3 Calculation of thermodynamic properties

Using the potential energy for the uncoupled system in Eq. (2.19) and the Hamil-

tonian Eq. (2.17), we calculate the thermodynamic quantities. The canonical

ensemble partition function in this case is given by Z = ZpZξZq where

Zq =

∫ +∞

−∞
exp

(
− V̄q(q)

kBθ

)
dq

=

∫ −q∗

−∞
exp

(
−km(q + 1)2

2kBθ

)
dq +

∫ q∗

−q∗

exp

(
−2E0 − kaq

2

2kBθ

)
dq

+

∫ +∞

q∗

exp

(
−km(q − 1)2

2kBθ

)
dq (2.20)

Since the terms in the Hamiltonian corresponding to p and ξ are quadratic, Zp

and Zξ each contribute 1
2
kB to the specific heat and will not be explicitly consid-

ered henceforth. The partition function for the phase transforming mode can be
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explicitly evaluated to be

Zq =

√
2πkBθ

km

[
1√

ka/km

exp

(
− E0

kBθ

)
erfi

(√
ka

2kBθ
q∗

)]

+

√
2πkBθ

km

[
erfc

(√
km

2kBθ
(q∗ − 1)

)]
(2.21)

in which erfi denotes the imaginary error function and erfc = 1 − erf is the com-

plementary error function. Thus the free energy is given by

F = −kBθ lnZ, (2.22)

and the entropy is given by

S = −∂F

∂θ
. (2.23)

The internal energy is thus

U = F + θS = −kBθ lnZ − θ
∂F

∂θ
, (2.24)

and the specific heat capacities

cV =
∂U

∂θ
. (2.25)

Since the partition function is explicitly known the above expression can be

evaluated. The free energy as a function of temperature is shown in Fig. 2.4(a)

for a set of chosen parameters, E0 = 0.01, ka/km = 10−4 and q = 0.99. Figure

2.4(b) and Figure 2.5(a) show the entropy and internal energy respectively. The

entropy does undergo a step change indicating that this represents an entropy-

driven transition.

In Figure. 2.5(b) we show the specific heat as a function of temperature for

two different values of α holding the other values fixed. For larger ka/km the spike

in the specific heat curve widens out. In a first-order transition, the spike in the

specific heat curve approaches a delta function. Thus we see from the form of
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(a)

(b)

Figure 2.4: (a) Free energy as a function of temperature. (b) Entropy as a function
of temperature
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(a)

(b)

Figure 2.5: (a) Internal energy as a function of temperature. (b) Specific heat as
a function of temperature for ka/km = 10−4 and ka/km = 10−1.
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the potential that the curvatures of the austenite and martensite regions of the

potential well govern the first-order phase transition.

2.5 Phase transformations in one-dimensional chain

We next consider a one-dimensional system of coupled oscillators in which the

coupling potential has the properties described above. For ease of computations

we choose a smoother potential instead of the potential in Eq. (2.19).

2.5.1 Interatomic potential

Since we restrict attention to a one-dimensional setting, we describe an analog of

the above lattice configurations.

Consider a chain of N equidistant atoms separated by distance a as shown

in Figure 2.6. This is the reference configuration and is taken to represent the

austenite lattice. Thus a is the lattice constant of the austenite phase. We take

the lattice constants of the two variants of martensite (M±) to be a± uM .

Let the reference equilibrium positions of the atoms (in the austenite phase)

from a fixed origin be given by xi; thus xi = ia. Let the current position of the

atom i be given by yi. Then yi = ia + ui where ui is the displacement of the i

atom from its reference position. The interatomic potential between adjacent pairs

of atoms i and i + 1 is chosen so that the minima are at ui+1 − ui = 0 for the

austenite phase and ui+1−ui = ±uM for the two variants of the martensite phase.

The energy of the ith bond is chosen as a function of the bond length `i = yi+1−yi,

W (`i) =
1

2

(
A exp(−ka`

2
i ) + B[1− exp(−km(`i + uM))]2

+B[1− exp(km(`i − uM))]2 + C

)
(2.26)

where km, ka determine the curvatures of martensite and austenite wells. The

depth and height of the austenite well is represented by A and B respectively. The
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Figure 2.6: Chain of atoms with nearest-neighbor anharmonic interactions, xi is
the reference equilibrium positions of the atoms from a fixed origin, yi is the current
position of the atom from a fixed origin.

energy of martensite wells at `i = ±1 set to be zero by C. A plot of potential

W (`i) is shown in Fig. (2.7).

2.5.2 Interfacial energy

When adjacent unit cells (in our one-dimensional case, the bond lengths) in the

material are in different phases or variants, the resulting interface has higher energy

than if the cells were in the same phase. The term interfacial energy is used in

the context of interaction between adjacent unit cells. When adjacent unit cells

are in different variants, this energy provides the interfacial energy. When the

adjacent cells are transforming between variants, this provides nearest neighbor

(NN) interaction energy. We incorporate this interfacial energy through a simple
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Figure 2.7: A plot of W (`i) for km/ka = 3, B = 0.15 (solid line) and km/ka =
5, B = 0.1 (dash-dot line). Depth of the austenite well A = 0.0175 for both the
curves.
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gradient energy of the form

Wg = λ

(
ui+1 − ui

2
− ui − ui−1

2

)2

, (2.27)

where λ is a gradient coefficient. This energy is motivated by harmonic strain-

gradient energy terms in augmented continuum theories. The strain- gradient

in our case arises from the difference between adjacent bond lengths. In non-

dimensional form the gradient energy becomes

W̄g =
λ̄

4
(ūi+1 − 2ūi + ūi−1)

2 (2.28)

where W̄g = 3Wg/Au8
M and λ̄ = 3λ/Au6

M .

2.5.3 Equations of motion

Let the masses of the particles in the chain be identical and equal to m. The

Langevin equations [68] of motion

müi = −∂W (`i)

∂ui

− ∂W (`i−1)

∂ui

− ∂Wg

∂ui

− γu̇i + Fi(t), (2.29)

Note that `i = ui+1−ui and `i−1 = ui−ui−1 are the “strains” of the i and i−1 bonds

respectively. Letting γ̄ = γ
√

3m/Au2
M be a non-dimensionalized counterpart of

the friction coefficient γ we obtain the non-dimensional Langevin equations

¯̈ui = −∂W̄ (`i)

∂ūi

− ∂W̄ (`i−1)

∂ūi

− ∂W̄g

∂ūi

− γ̄ ¯̇ui + F̄i(t), (2.30)

where F̄ is a non-dimensional distributed Gaussian force whose magnitude is given

by the fluctuation-dissipation theorem

<Fi(t1)Fj(t2)>= 2γkb(θ + 1)δijδ(t1 − t2). (2.31)
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where kb = kBθM

√
Au6

Mm/3 is a non-dimensional Boltzmann’s constant.

2.6 Numerical simulations

2.6.1 Thermal cycle

We solve Eqs. (2.30) for a chain of N = 1000 atoms using the velocity Verlet algo-

rithm [69] to discretize the equations. A detailed description of the Velocity Verlet

algorithm is included in Appendix B. A non-dimensional time step ∆t = 10−3 is

used. The non-dimensional friction coefficient is chosen to be γ = 0.002 based on

trial simulations for a series of test systems and observing how well the system

maintains the desired temperature. If γ is too high the flow of energy between

the physical system and the reservoir is slow. If γ is too low, then the energy

oscillates unphysically, causing equilibration problems. The atoms are given small

initial random displacements about the equilibrium position and small random

velocities. Averages are calculated over a time period of τav = 600.

We study a thermal cycle of the system by cooling the chain from austenite

phase followed by heating. During cooling, the target temperature is divided by a

factor r = 1.2 and the system is allowed to equilibrate and averages are calculated.

Heating is achieved by multiplying the target temperature by the same factor. The

atoms at the boundaries are free (they only experience forces from the interior of

the domain).

2.6.1.1 Zero interfacial energy

We first study the thermal cycle of the chain of atoms in the absence of interfacial

energy by setting λ = 0. We have chosen a potential well with km/ka = 5, A =

0.00175, B = 0.1, C = 0.05 as shown in Fig.2.7.

Figure 2.8(a) shows the bond length between a representative pair of atoms

during the cooling and heating cycle. The bond length oscillates around 0 at high-

temperature indicating austenite phase. As the temperature is lowered, the bond
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(a)

(b)

Figure 2.8: (a) The bond length `i between representative atoms 500 and 501 in
the chain with time. (b) The bond length `i between atoms 499 and 500 in the
chain with time.
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length transforms to a value +1 which indicates M− variant of the martensite

phase. The two variants of martensite are energetically equivalent and the atoms

can randomly transforms to any one of the variant, see in Figure 2.8(b) the bond

length transforms to M+ variant. At the end of martensite transformation, we

plotted the random distribution of twins of M+ and M− variants in the middle of

the chain from atom number 475 to 525, shown in Fig.2.9(a). The width of the

twin is the size of regions of a single variant and the dotted line represent the twin

boundaries. In this simulation with 1000 atoms the average twin width is 1.9 unit

cells, fine twins formed due to absence of interfacial energy. As the temperature is

increased the chain completely transforms to austenite.

The time average of the strain in the bonds in the chain of the atoms during

cooling and heating cycle is shown in Fig. 2.9(b). The average positions of the

atoms are initially close to 0 indicating the austenite phase. Once cooled, average

position of the atoms randomly distributed either to +1 or −1 indicating marten-

site variants and further heating of the chain transforms all atoms to austenite

phase. This is the origin of self-accommodation in these materials.

The transformation temperature of the system depends on the height of the

austenite potential energy. The potential energy with the two barrier heights are

shown in Fig.2.7. The plot of time averaged total energy <E > with temperature

is shown in Fig.2.10(a) for barrier height B = 0.1 and B = 0.15 by lines with

circles and squares respectively, whereas the dashed and solid lines represent the

cooling and heating cycle respectively. For a barrier height B = 0.15 the curve

shifts towards right indicating a higher transformation temperature compared to

B = 0.1. Due to the absence of the interfacial energy, the internal energy curve of

the system during cooling and heating cycles for a certain barrier height does not

show hysteresis.

The derivative of the internal energy with respect to temperature is the specific

heat of the chain. Figure 2.10(b) shows a plot of the specific heat with temperature.

The resulting plot shows the peaks representing the exothermic and endothermic
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(a)

(b)

Figure 2.9: (a) Plot of strain along the middle of the chain at τ = 1800 from atom
number 475 to 525. The dotted line represent the twin boundaries. (b) Plot of
strain along the chain with time.
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processes during the austenite to martensite and martensite to austenite phase

transformation respectively. The peaks shift towards right for B = 0.15 which rep-

resents the higher transformation temperature. This is a realistic representation of

the differential scanning calorimetry (DSC) measurements of materials undergoing

structural phase transitions, refer Shaw and Kryiakides [70] the experimental DSC

thermogram for NiTi alloy.

2.6.1.2 Effect of interfacial energy

We choose a potential with km/ka = 3, A = 0.00175, B = 0.1 and λ = 0.2 in

the following simulations. In Fig. 2.11(a) and Fig. 2.11(b) we plot the average

energy per atom with temperature in the absence and presence of interfacial energy,

respectively. The presence of a finite interfacial energy increases dispersion of the

energy of transformation through lattice vibrations and this contributes to the

domain wall entropy, thereby enhancing hysteresis. Note that with zero interfacial

energy, the heating and cooling cycles trace the same path.

Another significant feature of the interfacial energy is the formation of wider

twins during cooling. In all the simulations, the two variants form in approximately

equal amounts resulting in self-accommodation. However, the number of twin

decreases with increasing gradient coefficient. In Fig. 2.12, we plot the strain along

the middle of chain from atom number 475 to 525. The dotted lines represent the

twin boundaries. In Fig. 2.12(a), for λ = 0 very fine twins are formed, whereas

for λ = 0.2 some wider twins are also formed as shown in Fig. 2.12(b). Generally

wider twins are formed near the boundaries of the chain. This is more clearly seen

in the plot of the average twin width (Number of atoms/Number of interfaces) as

a function of the gradient coefficient λ. In Fig. 2.13 the average twin width in the

absence of interfacial energy is about 1.9 unit cells, whereas average twin width

for λ = 0.25 is about 6.3 unit cells.

36



(a) Plot of the average total energy per atom with temperature

(b) Plot of the specific heat with temperature

Figure 2.10: Lines with circle represents barrier height B = 0.1 and lines with
squares represents barrier height B = 0.15. The heating curve is shown using a
solid line and cooling curve is shown using dashed line.
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(a) λ = 0

(b) λ = 0.2

Figure 2.11: Heating path is shown using solid line and the cooling path is shown
using dashed line.
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(a) λ = 0

(b) λ = 0.2

Figure 2.12: Plot of strain along the chain from atom number 475 to 525 (a) in
the absence of interfacial energy and (b) for finite interfacial energy. The dotted
lines represent the twin boundaries. The width of the twins increases with λ.
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Figure 2.13: A plot of average twin width of the chain of 1000 atoms along with
interfacial gradient coefficient λ.

2.6.2 Mechanical cycle

We study pseudoelasticity and the shape memory effect for a chain of N = 1000

atoms at a temperature well above and below the transformation temperature

respectively. A force is applied to the both ends of the chain as shown in Fig.

2.14 and the system is allowed to equilibrate over a time period of τav = 600. The

cumulative strain of the chain due to the applied force is calculated at each step.

2.6.2.1 Pseudoelasticity

We start the simulation at a high-temperature austenite phase, incremental tensile

force applied to the atoms at the either end of the chain. In Fig. 2.15(a) we

plot the change in strain `i of each atom along with the time step. At time

t = 0 the bond length of atoms oscillates around 0 indicating austenite phase.

At each time step a incremental tensile force f = 0.1 applied as a result bond

length of the atoms gradually moves towards the M+ variant. At time t = 20 the

40



Figure 2.14: A force applied to the both ends of the chain

bond length of the atoms oscillates around +1 indicating the complete martensite

phase transformation. Further loading the chain results in elastic deformation of

martensite. Upon unloading the force, bond length of the atoms gradually moves

back to austenite phase. At time t = 68 the bond length of atoms oscillates around

0 indicating the complete recovery of austenite phase.

In Fig. 2.15(b) we plot the cumulative strain of the chain during loading and

unloading cycle. Hysteresis is observed during the pseudoelastic cycle.

2.6.2.2 Shape memory effect

We now study the detwinning and shape memory effect in the chain by loading and

unloading at a low-temperature at which martensite is stable. In these simulations

we have chosen a potential well with km/ka = 3, A = 0.00175, B = 0.15 and

interfacial energy λ = 0.1. In Fig. 2.16(a) we plot the change in strain `i of each

atom along with the time step. We start the simulation at a high-temperature

at which austenite is the stable phase and cool the system to produce twinned

martensite, as shown at time t = 12 marked b. From this point the temperature

of the chain is kept constant and a force is applied to the atoms at both ends of

the chain. Now the atoms preferentially move in the direction of the applied force

and transform to the M+ variant as shown at the time t = 20 marked d; this is

the detwinning process. Further loading results in the elastic deformation of M+

variant from time t = 20 to t = 30 (d to e). From point e the chain is unloaded

and all the atoms remain in the M+ variant (f). This results in a residual strain.

Upon heating, the chain completely transforms to austenite as shown by point

g. Residual strain is completely recovered by this heating cycle. Further cooling

results in the twinned martensite and this process is the shape memory effect.
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(a)

(b)

Figure 2.15: (a) Plot of the strain of each atom in the chain during the simulation
cycle. (b) Plot of applied force vs. length of the chain during the simulation cycle.
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Figure 2.16: (a) Plot of the strain of each atom in the chain during shape memory
effect simulation cycle. (b) Plot of cumulative strain of the chain during shape
memory effect simulation cycle.

43



In Fig. 2.16(b) we plot the respective cumulative strain Σ`i of the chain for

the shape memory effect simulation cycle. During a− b, austenite transforms to

twinned martensite upon cooling the chain. During b− c− d, the applied force

at constant temperature causes detwinning. During d− e, the martensite phase

deforms elastically. During e− f , the unloading cycle resutls in a residual strain

(point f). During f − g, the M+ variant of martensite transforms to austenite

upon heating the chain. Finally, during g − h, twinned martensite is obtained

upon cooling the chain. This is a realistic representation of the shape memory

effect, refer [71] the experimental stress-strain-temperature response for NiTi alloy.

2.7 Summary

• Identified physical mechanism for phase transformation in a discrete setting.

• A parameterization of the potential energy indicates the properties required

for entropy-driven phase transformation.

• Austenite well need to be softer compared to martensite well.
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Chapter 3

Temperature dependent substrate

potential

3.1 Introduction

In the previous chapter we proposed a parametrization of the total potential energy

of a discrete system to obtain a phase transforming mode and showed that partic-

ular properties of the parametrization allow vibrational entropy induced structural

phase transitions. This calculation does not directly address the particular form

of the individual empirical interatomic potentials to be chosen — only that the

parametric slice of the PTM must have certain properties which can be related

to the phase transformation. Thus this is only an indirect characterization of the

actual interatomic potential.

In this chapter we present a more direct empirical model of the interatomic

potential. Our motivation for this model is as follows: consider a single atom in a

material capable of undergoing phase transformations. At finite temperature, the

atom vibrates with a finite amplitude as do all its surrounding atoms. Calculation

of the motion of the atom under consideration is a many-body problem which is

extremely difficult to solve. Instead, we take the mean field approach and view the

average effect of the surrounding atoms as providing a substrate potential well for
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the atom1. In fact we assume that this substrate potential is harmonic with the

minimum about the equilibrium position. When the material undergoes a phase

transformation, the atom now vibrates about a new equilibrium position as do its

neighbors. Presumably the substrate energy of the atom is now different as is the

location of its minimum. We will again assume a harmonic energy with the min-

imum about the new equilibrium positions in each variant. At high-temperature,

the well corresponding to the austenite has lower energy than the wells correspond-

ing to martensite. Conversely, at low-temperatures, the martensite wells have lower

energy than the austenite well.

Thus the empirical model that we consider is that of a temperature depen-

dent interaction between atoms providing the potential energy for the atoms. In

molecular dynamics approaches the interatomic potential is not considered to be

dependent on temperature (which is a macroscopic quantity). We view this as a

constitutive model for the discrete system for describing temperature dependent

phenomena. With this approach, the continuum free energy can be used conve-

niently to describe the discrete system.

Note that if the interatomic potential is made temperature dependent, the

kinetic energy implicitly enters the potential energy calculation and explicitly in

the kinetic energy calculation in a MD simulation. Using statistical mechanics

calculations, in this chapter we clarify the effect of this possibility for a temperature

dependent interatomic potential.

3.2 Single oscillator model

3.2.1 Substrate potential

In the model envisaged here, temperature is manifested in the vibration of a single

atom as well as in the potential substrate energy due to the surrounding atoms.

1Such an approach is taken in basic statistical mechanics calculations of the high-temperature
specific heat of solids. The resulting value of the specific heat with an assumption of a harmonic
substrate potential is in very good accord with experimental data of Dulong and Petit [65].
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(b)

(c)

-UM

(a)

+UM

Figure 3.1: Plot of the substrate potential versus atom position for different tem-
peratures: (a) Θ < Θt, (b) Θ = Θt and (c) Θ > Θt.

This is in contrast to the classical molecular dynamics viewpoint in which the

interatomic potentials are independent of temperature.

We begin by considering a single particle of mass M . Let X represent the

reference position of the atom and Y , the current position. The displacement is

U = Y −X. Denoting the absolute temperature by Θ, we assume that the particle

experiences a substrate potential (mean effect of all of its neighbors) W (U, Θ)

with the above properties (shown in Fig. 3.1 for three different representative

temperatures). The central minimum at U = 0 represents austenite and the side

wells at U = ±UM , the two variants of martensite equilibrium positions. As

mentioned earlier, the two martensite wells have equal energies at all temperatures

since the two variants are symmetry related to each other [72]. We neglect the

change in lattice spacing with temperature.

A piecewise harmonic substrate potential energy with the above properties is
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given by

W (U, Θ) =



1
2
µm(U + UM)2 + HmΘ, U ≤ −UT ,

1
2
µaU

2 + Ha(Θ + Θo), −UT ≤ U ≤ UT ,

1
2
µm(U − UM)2 + HmΘ, U ≥ UT .

(3.1)

where UT is the intersection of the austenite and martensite energies, µa and µm

are the elastic moduli of austenite and martensite phase respectively. HaΘo is the

energy of austenite phase at absolute zero temperature. For transition to occur we

require that Ha < Hm. The transition temperature Θt is related to Θo through

Θt =
HaΘo

Hm −Ha

. (3.2)

For convenience, we consider the following non-dimensionalization

u =
U

a
, uM =

UM

a
, uT =

UT

a
, w =

W

µaa2
, θ =

Θ

Θt

, hm =
HmΘt

µaa2
, ha =

HaΘt

µaa2
,

(3.3)

where a is a lattice constant of the material. Then u is the “strain” and uM is the

“transformation strain”. In non-dimensional form, the substrate potential is given

by

w(u, θ) =



1
2
µ(u + uM)2 + hmθ, u ≤ −uT ,

1
2
u2 + ha(θ + ϑ), −uT ≤ u ≤ uT ,

1
2
µ(u− uM)2 + hmθ, u ≥ uT ,

(3.4)

where we have set µ = µm/µa and ϑ = (hm − ha)/ha and used Eq. (3.2) to

eliminate θo. The point of intersection of the austenite and martensite wells uT is

temperature dependent and given by

uT (θ) =

√
µ2u2

M + (1− µ)(µu2
M + 2ϑha(θ − 1))− µuM

1− µ
, (3.5)
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where we have chosen the positive root. Note that 0 ≤ uT ≤ uM .

3.2.2 Motion of an atom in the substrate potential

We now study the motion of an atom under the influence of the above substrate

potential. Nondimensionalizing time T using the frequency of oscillations in the

austenite well: t = T
√

µa/M , the equation of motion of the atom is

ü =



−µ(u + uM), u ≤ −uT ,

−u, −uT ≤ u ≤ uT ,

−µ(u− uM), u ≥ uT

(3.6)

where the superimposed dot represents differentiation with respect to the non-

dimensional time t.

Consider the following thought experiment. Let the atom start from a state

of rest at the bottom of one of the martensite wells at absolute zero temperature.

As the temperature is gradually increased, the average kinetic energy of the atom

increases. Solving Eq. (3.6) for an atom in, say, the right martensite well we obtain

u(t) = uM +
vm√

µ
sin
√

µt, (3.7)

where vm is the maximum speed of the atom (attained at u = uM). The average

kinetic energy of the atom is < K >= 1
4
v2

m. From statistical mechanics we know

that the average kinetic energy equals 1
2
kBΘ where kB is the Boltzmann’s constant.

Thus the temperature of the system when the atom is localized in the martensite

well is given by

θ =
v2

m

2kb

(3.8)
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where we have set kb = kBθT /(µaa
2). Thus we can rewrite Eq. (3.7) as

u(t) = uM +

√
2kbθ

µ
sin
√

µ(t− tm) (3.9)

where tm is a time at which the atom is at the bottom of the martensite well.

Similarly, after transformation, the atom is localized in the austenite well and

its motion can be described by

u(t) =
√

2kbθ sin(t− ta) (3.10)

where ta is a time at which the atom is at the bottom of the austenite well.

3.2.3 Transformation temperatures and specific heat of pure

phases

At very low-temperatures, the austenite well is above the martensite wells and

may be considered to be unstable. The temperature at which austenite well begins

to become metastable (austenite start temperature) can be calculated using the

condition uT (θas) = 0. The austenite start temperature is thus given by

θas = 1− µu2
M

2ϑha

. (3.11)

The temperature above which the martensite wells are unstable is given by the

condition uT (θaf ) = uM which by using Eq. (3.5) gives

θaf = 1 +
u2

M

2ϑha

. (3.12)

The calculation of the specific heat in the pure phases is straightforward. Since

the average energy at temperature θ in our model is given by kbθ + hmθ (contri-

butions of kbθ/2 from the average potential and kinetic energies), the specific heat
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of the martensite phase (below the transformation start temperature) is given by

cm = kb + hm. (3.13)

Similarly the specific heat in the austenite phase (above transformation finish tem-

perature) is given by

ca = kb + ha. (3.14)

3.3 Statistical mechanics of N uncoupled oscilla-

tors

The calculations presented in the last section are for a single oscillator. In reality,

there are N atoms moving at different velocities following the Maxwell distribu-

tion. In a canonical NVT ensemble, the probability distribution of the microscopic

quantities is weighted by the factor exp(−βh) where β = 1/kbθ and h is the Hamil-

tonian of the system.

In our case, the non-dimensional Hamiltonian is temperature dependent and

given by

h = w(u, θ) +
1

2
u̇2, (3.15)

with w specified by Eq. (3.4).

The one-dimensional single particle partition function Z is given by

Z =

∫ ∞

−∞

∫ ∞

−∞
exp(−βh)du du̇ (3.16)

which can be factored as Z = ZuZu̇ where Zu̇ is the one-dimensional kinetic energy

contribution and can be easily evaluated to be

Zu̇ =

∫ ∞

−∞
exp(−β

1

2
u̇2)du̇ =

√
2kbπθ. (3.17)
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The one-dimensional potential energy contribution Zu is given by

Zu =

∫ ∞

−∞
exp(−w/kbθ)du. (3.18)

Using Eq. (3.4) the potential energy contribution to the partition function is given

by

Zu =

∫ −uT

−∞
exp

(
−(µ(u + uM)2/2 + hmθ)

kbθ

)
du

+

∫ uT

−uT

exp

(
−(u2/2 + ha(θ + ϑ))

kbθ

)
du (3.19)

+

∫ ∞

uT

exp

(
−(µ(u− uM)2/2 + hmθ)

kbθ

)
du

The integrals can be evaluated in terms of the error function and thus Zu can be

written explicitly as

Zu =
√

2kbπθ

{
exp

(
−ha(θ + ϑ)

kbθ

)
erf

(
uT√
2kbπθ

)
+

1
√

µ
exp

(
−hm

kb

)[
1 + erf

(√
µ

2kbπθ
(uM − uT )

)]}
(3.20)

From the partition function, we can calculate the thermodynamics functions

of interest. Specifically, the Helmholtz free energy per atom is given by

F = −kbθ lnZ

= −kbθ ln(2kbπθ)− kbθ ln

{
exp

(
−ha(θ + ϑ)

kbθ

)
erf

(
uT√
2kbπθ

)
+

1
√

µ
exp

(
−hm

kb

)[
1 + erf

(√
µ

2kbπθ
(uM − uT )

)]}
(3.21)

The first term of the right is the standard contribution due to the harmonic

potential whereas the second term is the contribution reflecting the exchange of

stability of the phases. The Helmholtz free energy is plotted in Fig. 3.2(a) for

some representative values of the constants, µ = 0.4, ha = 5, hm = 35, kb = 5

and uM = 10. Notice a sharp change in the slope of the curve around the phase

52



(a)

(b)

Figure 3.2: (a) Free energy as a function of temperature. (b) Entropy as a function
of temperature.
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(a)

(b)

Figure 3.3: (a) Internal energy as a function of temperature. (b) Specific heat as
a function of temperature.

54



transformation temperature θT . The entropy per atom is obtained by

S = −∂F

∂θ
(3.22)

and the internal energy per atom is given by

U = F + θS. (3.23)

The specific heat capacity at constant volume per atom is given by

cV =
∂U

∂θ
. (3.24)

In Fig. 3.2(b) we plot the entropy as a function of temperature. Entropy is

constant at low-temperature and at high-temperature, whereas during transforma-

tion undergoes a step change indicating the entropy-driven phase transformation.

In Fig. 3.3(a) and Fig. 3.3(b) we plot the internal energy and specific heat

respectively. The spike in the specific heat curve indicates the first-order phase

transformation and the area under the spike represents the latent heat of the

system.

3.4 Summary

The statistical mechanics calculations of the uncoupled oscillators show the role

of the temperature dependent parameters in the interatomic potential in the free

energy and the specific heats. No contradiction in using temperature dependent

potential energy. It is thus possible to interpret the thermodynamic variables in

terms of these constitutive parameters.
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Chapter 4

Temperature dependent

interatomic potential

4.1 Introduction

In the previous chapter we studied the role of a temperature dependent substrate

potential in a phase transforming material from a statistical mechanical viewpoint.

In this chapter we numerically study a chain of coupled oscillators. We do not

consider a substrate potential but instead consider temperature dependent nearest-

neighbor interactions of the form described in the previous chapter.

In this chapter, we take the latter approach of temperature dependent poten-

tials, but from a different standpoint. Suttan [73] discusses temperature dependent

interatomic potentials in detail. The pair potentials in [62, 63] are temperature

dependent Lennard-Jones type single well potentials in a multicomponent system.

In contrast, we choose a single component system but allow the (nearest-neighbor)

interatomic potential to have multiple temperature dependent wells. In a material

undergoing a phase transition, the surrounding atoms have different configurations

depending on the temperature. Thus an atom under consideration has multiple

equilibrium bond lengths relative to its nearest-neighbor atoms corresponding to

the lattice constants of the parent and product phases. The configuration of the
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surrounding atoms (which depends on temperature) changes the energy of the

interaction potential and the location of its minimum. In the previous chapter

we studied the effect of an anharmonic temperature dependent substrate poten-

tial and derive the transformation temperatures and latent heat as a function of

the substrate properties. In this paper we use a polynomial Falk-type free energy

[74], which is a polynomial expansion of a single strain component, to describe

the interaction potential. In the discrete setting here we assume the interaction

potential to be a function of the distance between nearest-neighbor pairs of atoms.

We restrict our studies in this work to a one-dimensional chain of identical atoms.

An additional feature of our model is a gradient energy to penalize the presence of

phase boundaries.

In Section 4.2 we describe the features of the interaction potential required to

obtain stability of the various phases at different temperatures. We also describe

the gradient energy which is a chosen to be a simple quadratic form. The tem-

perature of the system is controlled using a Nosé-Hoover thermostat [75, 76] and

the resulting equations of motion are presented. Next, in Section 4.3 we study

the model under different loading and unloading conditions and the effect of the

interatomic potential on the thermodynamic properties of the material. The model

reproduces realistic hysteresis as well as specific heat dependence on temperature.

Finally, in Section 4.3.2 we study mechanical loading of the chain and present

pseudoelasticity and shape memory effects in this system.

4.2 Model

In this section we describe the interaction potential and gradient energy and obtain

the equations of motion of atoms in a one-dimensional chain. Our interatomic

potential is motivated by the same considerations as the free energy derived in

continuum theories (e.g., [74]).
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Figure 4.1: Chain of atoms with nearest-neighbor anharmonic interactions.

4.2.1 Energy

4.2.1.1 Interatomic potential

Consider a chain of N equidistant atoms separated by distance a as shown in Figure

4.1. This is the reference configuration and is taken to represent the austenite

lattice. Thus a is the lattice constant of the austenite phase. We take the lattice

constants of the two variants of martensite (M±) to be a± uM .

Let the reference equilibrium positions of the atoms (in the austenite phase)

from a fixed origin be given by xi; thus xi = ia. Let the current position of the

atom i be given by yi. Then yi = ia + ui where ui is the displacement of the i

atom from its reference position. The interatomic potential between adjacent pairs

of atoms i and i + 1 is chosen such that the global minimum of the energy is at

yi+1− yi = a for θ > θT and at yi+1− yi = a±uM for θ < θT in order to reflect the

properties of the phase transition described above. In terms of the displacements
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the minima occur at ui+1 − ui = 0 for the austenite phase and ui+1 − ui = ±uM

for the two variants of the martensite phase. The energy of the ith bond is chosen

as an eighth order polynomial of the bond length `i = yi+1 − yi,

W (`i, θ) = A(`i − a)8 + B(`i − a)6 + C(`i − a)4 + D(`i − a)2 + E. (4.1)

Since the two variants of martensite are energetically equal we have retained only

the even powers terms in the polynomial expansion. We choose A, B to be tem-

perature independent and E = 0. We allow the coefficient of the harmonic term

to be temperature dependent; when the harmonic coefficient D(θ) < 0, austenite

is unstable whereas when D(θ) > 0 austenite is metastable. The temperature at

which the coefficient D becomes negative is the martensite finish temperature θM .

Next we take the martensite lattice parameter to be independent of temperature

and accordingly obtain C = −D/2. Finally, setting the martensite wells to be

at `i = a ± uM we obtain A/B = −3/4. The fitting of the coefficients to the

properties of the free energy are described in more detail in Falk [74]. The main

difference between our potential and the Falk free energy is that we require our

martensite bond length to be independent of temperature and hence we choose an

eighth order polynomial in contrast to the Falk-type sixth order polynomial.

For convenience we operate in a non-dimensional setting in which our energy

is written as

W̄ (¯̀i, θ̄) = 3¯̀8
i − 4¯̀6

i − 2θ̄ ¯̀4
i + 4θ̄ ¯̀2

i , (4.2)

where ¯̀
i = (`i − a)/uM , W̄ = 3W/Au8

M and θ̄ = (θ − θM)/θM . We note that

¯̀
i = ūi+1 − ūi where ūi = ui/uM is the non-dimensional displacement. Thus ¯̀

i

is proportional to the “strain” in bond i. We will drop the bars for convenience

henceforth.

The features of the interatomic energy for the ratios of the coefficients given

by Eq. (4.2) are:

1. Austenite becomes unstable at θ = 0 and martensite becomes unstable
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Figure 4.2: A plot of W (`i, θ) for three different θ. For θ > 3 the martensite phase
is unstable whereas for θ < 0 austenite is unstable. At θ = 0.5 both phases have
equal energy.

(austenite finish temperature) at θ = 3. The transformation temperature

at which both phases have equal energy is given by θT = 0.5.

2. The martensite wells are at `i = ±1 for θ < 3.

3. The austenite elastic modulus is given by µa(θ) = 8θ and the martensite

modulus is given by µm(θ) = 48− 16θ.

A plot of the potential W (`i, θ) is shown in Fig. (4.2) for θ = −0.5 (dashed line),

θ = 0.5 (solid line) and θ = 3 (dash-dot line).

4.2.1.2 Interfacial energy

When adjacent unit cells (in our one-dimensional case, the bond lengths) in the

material are in different phases or variants, the resulting interface has higher energy

than if the cells were in the same phase. When the adjacent cells are transforming
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between variants, this provides nearest neighbor (NN) interaction energy. We

incorporate this interfacial energy through a simple gradient energy of the form

Wg = λ

(
ui+1 − ui

2
− ui − ui−1

2

)2

, (4.3)

where λ is a gradient coefficient. This energy is motivated by harmonic strain-

gradient energy terms in augmented continuum theories. The strain-gradient in our

case arises from the difference between adjacent bond lengths. In non-dimensional

form the gradient energy becomes

W̄g =
λ̄

4
(ūi+1 − 2ūi + ūi−1)

2 (4.4)

where W̄g = 3Wg/Au8
M and λ̄ = 3λ/Au6

M .

4.2.2 Equations of motion

Let the masses of the particles in the chain be identical and equal to m. Setting the

non-dimensional time t̄ = t
√

Au6
M/3m, we obtain the non-dimensional equations

of motion

üi = −∂W (`i, θ)

∂ui

− ∂W (`i−1, θ)

∂ui

− ∂Wg

∂ui

, (4.5)

where we have, once again, dropped the bars for convenience. Note that `i =

ui+1−ui and `i−1 = ui−ui−1 are the “strains” of the i and i−1 bonds respectively.

In order to mimic the presence of a heat bath at temperature θ in contact

with the system we use the Nosé-Hoover thermostat [75, 76]. The Nosé-Hoover

thermostat introduces an additional degree of freedom which evolves according to

the difference between the temperature of the system and the reservoir (target)
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temperature. With the Nosé-Hoover thermostat, the equations of motion are

üi = 8`i(3`
4
i − θ)(`2

i − 1)− 8`i−1(3`
4
i−1 − θ)(`2

i−1 − 1) + λ(ui+1 − 2ui + ui−1)− γu̇,

γ̇ = 1
Q

(∑N
i=1

1
2N

u̇2
i − kb(θ + 1)

)
,

(4.6)

where kb = kBθM/Au8
M is a non-dimensional Boltzmann’s constant.

4.3 Numerical simulation

4.3.1 Thermal cycle

We solve Eqs. (4.6) for a chain of N = 1000 atoms using the velocity Verlet

algorithm to discretize the equations. A non-dimensional time step ∆t = 10−4 is

used. The thermal inertia parameter is chosen to be Q = 0.002. The atoms are

given small initial random displacements about the equilibrium position and small

random velocities. Averages are calculated over a time period of τav = 100.

We study a thermal cycle of the system by cooling the chain from austenite

phase followed by heating. During cooling, the target temperature is divided by a

factor r = 1.1 and the system is allowed to equilibrate and averages are calculated.

Heating is achieved by multiplying the target temperature by the same factor. The

atoms at the boundaries are free (they only experience forces from the interior of

the domain).

4.3.1.1 Zero interfacial energy

We first study the thermal cycle of the chain of atoms in the absence of interfacial

energy by setting λ = 0.

Figure 4.3(a) shows the bond length between a representative pair of atoms

during the cooling and heating cycle for kb = 0.1. The bond length oscillates

around 0 at high-temperatures indicating the austenite phase. As the temperature

is lowered, the bond length transforms to a value -1 which indicates M− variant of
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(a) kb = 0.1

(b) kb = 0.2

Figure 4.3: The bond length `500 between atoms 500 and 501 in the chain with
time. The chain is initially at high-temperature θ = 3 and is cooled to θ = −0.7
after which it is reheated to θ = 3.
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the martensite phase. At τ ≈ 3000 the chain is heated and transforms to austenite.

It may be noted that the amplitude of oscillations decrease with temperature

(more clearly seen away from the transformation) as is to be expected. The non-

dimensional Boltzmann’s constant kb relates the interatomic potential energy to

the amplitude of the thermal oscillations. This can be seen by the amplitude of

oscillation of the representative atom for two values of kb. In Fig. 4.3(a), kb = 0.1

and the amplitude of oscillation is higher than in Fig. 4.3(b) in which kb = 0.2.

We next plot the instantaneous energy per atom in Fig. 4.4. The instantaneous

potential energy of the chain is calculated using

V =
N−1∑
i=1

(
3`8

i − 4`6
i − 2θ`4

i + 4θ`2
i + 2φiθ

)
+

N−1∑
i=2

λ

4
(ui+1 − 2ui + ui−1)

2 , (4.7)

where φi = 1 if the bond is in the martensite phase and φi = 0 otherwise. The

lowest curve in Fig. 4.4 is the instantaneous kinetic energy of the chain per atom.

Note that the instantaneous kinetic energy per atom is equal to the Boltzmann

constant times the absolute temperature. The middle curve is the potential energy.

The phase transition can be observed from the sharp changes in the potential

energy during the heating and cooling cycles.

The plot of time averaged total energy < E > (internal energy of the chain)

with temperature is shown in Fig. 4.5(a) for kb = 0.1 and Fig. 4.5(b) for kb = 0.2.

It is seen that the hysteresis is larger for smaller kb. As the amplitude of oscillations

becomes close to zero, the width of the hysteresis tends towards the difference

between the temperatures at which the austenite wells and martensite wells become

unstable, which for this potential is ∆θ = 3. For finite amplitude oscillations,

the nucleation of the austenite (resp. martensite) occurs at lower (resp. higher)

temperatures and the width of the hysteresis loops is smaller. Henceforth we use

kb = 0.2 in the rest of our simulations.

The derivative of the internal energy with temperature is the specific heat of

the chain. Figure 4.6 shows a plot of the specific heat with temperature. The
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Figure 4.4: Plot of the instantaneous energy as a function of time. The lowest
curve is the instantaneous kinetic energy per atom (= 1

2
kb(θ + 1)), the middle

curve is the instantaneous potential energy per atom and the upper curve is the
instantaneous total energy per atom.
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(a) kb = 0.1

(b) kb = 0.2

Figure 4.5: Plot of the average total energy per atom with temperature.
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Figure 4.6: Plot of the specific heat with temperature. The heating curve is shown
using dashed line whereas the cooling curve is shown using a solid line.

resulting plot shows constant specific heat in each of the pure phases and peaks

representing the exothermic and endothermic processes during the austenite to

martensite and martensite to austenite phase transformations respectively. This is

a realistic representation of differential scanning calorimetry (DSC) measurements

of structural phase transitions, refer Shaw and Kryiakides [70] the experimental

DSC thermogram for NiTi alloy.

Figure 4.7(a) shows the time averaged strain in the bonds along the chain of

the atoms during the cooling and heating cycle. The solid curve shows the cooling

curve and the dashed curve shows the heating curve. The average positions of the

atoms are initially close to 0 indicating the austenite phase. As the temperature

is lowered, martensite phase is formed with an approximately equal distribution of

the two variants. At time τ ≈ 3000, the chain is heated and the austenite phase

is recovered. In the martensite phase, the two variants are formed with a random

distribution of twins of M+ and M− variants. The width of a twin is the size of
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regions of a single variant. In Fig. 4.7(b) we show a close up of a region in the

middle of the chain from atom number 475 to atom number 525. It can be seen

that several fine twins of just unit cell width are formed. This is possible since

there is no energy penalty associated with twin boundaries in these simulations.

4.3.1.2 Effect of interfacial energy

In the absence of interfacial energy, very fine twins are formed. In the simulation

shown in Fig. 4.7(a), there are 493 interfaces which implies that the average width

of the twin is 1.97 unit cells. In the presence of a finite interfacial energy, obtained

by setting the gradient coefficient λ = 0.5, wider twins are formed especially near

the boundaries. The average twin width in the presence of interfacial energy is

about 2.3 unit cells.

In Fig. 4.8 we plot of the average energy per atom with temperature to study

the effect of the interfacial energy. The energy of the martensite phase in the

presence of the interfacial energy at a given temperature. Another significant

feature is the presence of higher hysteresis in the case with interfacial energy. The

presence of interfacial energy increases dispersion of energy of transformation of a

bond through the chain and this contribution to the domain wall entropy enhances

the hysteresis in the process.

4.3.2 Mechanical cycle

We study the pseudoelasticity and shape memory effect for a chain of N =

200 atoms. Thermal inertial parameter is chosen to be Q = 0.002 and a non-

dimensional time step ∆t = 10−4. The non-dimensional Boltzmann’s constant

kb = 0.1, and the temperature of the system is kept constant by Nosé-Hoover ther-

mostat. A force is applied to the both ends of the chain as shown in Fig. 4.9 and

the system is allowed to equilibrate over a time period of τav = 700.
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(a)

(b)

Figure 4.7: (a) Plot of strain along the chain with time. (b) Plot of strain along
the middle of the chain at τ = 3000 from atom number 475 to 525. The dotted
lines represent the twin boundaries.
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Figure 4.8: Plot of the average energy with temperature. The lines without circles
show the case of λ = 0 whereas the lines with circles represent the case with
λ = 0.5. In both cases, the solid lines represent the cooling curve and the dashed
lines represent the heating curve.

Figure 4.9: A force applied to the both ends of the chain
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4.3.2.1 Pseudoelasticity

The atoms are set in the austenite equilibrium positions and small initial random

velocities are given. The system temperature is kept at θ = 2.5 at which the

austenite is stable. The interfacial energy of the chain is chosen to be λ = 35.

Once the system reaches the austenite stable phase, a incremental tensile force

f = 0.25 is applied to first and last atom in the chain and averages of the martensite

volume fraction and cumulative strain of the chain are calculated. Fig. 4.10(a)

shows a plot of the force-% of martensite volume fraction of the chain. The chain is

initially in the austenite phase, applied force at the end of chain causes only elastic

deformation of the austenite phase. At some critical force (point a in Fig. 4.10(a))

austenite becomes unstable and martensite starts to form. With further applied

force, martensite spreads in the chain with very less incremental applied force and

at point b in Fig. 4.10(a) the chain is completely transformed to martensite phase.

Further loading results in the elastic deformation of martensite (as shown in path

b− c). Unloading the force at this point results in the complete recovery of the

deformation of the chain, at point d martensite is unstable and austenite starts

to spread in the chain. At point e the chain is completely recovered to austenite

phase. Fig. 4.10(b) shows the strain of the each atom in the chain during loading

and unloading cycle. At time t = 0 the strain of the individual atom in the chain

is close to 0, representing the austenite phase and at time t = 50 the strain is close

to 1.1 representing elastically strained martensite. Upon unloading at this stage

the complete recovery to austenite is achieved and the strain is 0 at time step 100.

This is a realistic representation of the pseudoelasticity in shape memory alloys,

refer [71] the experimental stress-strain response for NiTi alloy.

Next we study the pseudoelastic behavior of the chain at different system

temperatures. In Fig. 4.11(a) we plot the cumulative strain of the chain with

the applied force at temperatures θ = 3.5, 2.5 and 1.5. Strain in the chain is

completely recovered. Hysteresis is due to the energy dispersion in the chain

due to interfacial energy. In Fig. 4.11(b) we plot the required transformation

71



(a)

(b)

Figure 4.10: (a) Plot of the change in the martensite volume fraction with applied
force. Loading path is shown in solid line and unloading path is shown in dashed
line. (b) Plot of the strain in each atom with time
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(a)

(b)

Figure 4.11: (a) Plot of pseudoelasticity in the chain at temperatures θ = 3.5, 2.5
and 1.5. (b) Plot of the transformation force as function of temperature.
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force ft during loading and unloading at different temperatures, force required for

forward and reverse transformation increases with increase in temperature. Shaw

and Kyriakides [70] report experimental observations of increasing transformation

stress with temperature but report a growth in the width of hysteresis loops with

increasing temperature.

4.3.2.2 Shape memory effect

We now study detwinning and the shape memory effect in the chain by loading and

unloading at a low-temperature θ = −0.5, at which martensite is stable. For this

study we choose the interfacial energy λ = 0.1. In Fig. 4.12(a) we plot the change

in strain `i of each bond with time. We start the simulation at a high-temperature

austenite stable phase and cool the system to produce twinned martensite, as

shown at time t = 14 marked as point b. From this point the temperature of the

chain is kept constant and force is applied to the atoms at the either end of chain.

Now the atoms preferentially move towards the direction of applied force. All the

atoms are moved to M+ variant as shown at the time t = 36 marked d, this process

is detwinning. Further loading results in the elastic deformation of M+ variant,

time t = 37 to t = 53 (d to e). From the point e the chain is unloaded and all the

atoms are still at M+ variant (f), this results in a residual strain. Upon heating,

the chain completely transforms to austenite as shown by point g. The residual

strain is completely recovered by this heating cycle. Further cooling results in the

twinned martensite and this process is shape memory effect.

In Fig. 4.12(b) we plot the respective cumulative strain Σ`i of the chain for the

shape memory effect simulation cycle. Path a− b, austenite to twinned martensite

by cooling the chain. Path b− c− d, detwinning by the applied force at constant

temperature. Path d− e, elastic deformation of the martensite phase. Path e− f ,

unloading cycle ends up with a residual strain (point f). Path f − g, martensite to

austenite by heating the chain. Path g − h, back to twinned martensite by cooling

the chain. This is a realistic representation of the shape memory effect, refer [71]
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Figure 4.12: (a) Plot of the strain of each atom in the chain with time. (b) Plot
of shape memory effect in the chain.
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the experimental stress-strain-temperature response for NiTi alloy.

4.4 Summary

• The model shows that it is possible to use a form of the continuum free

energy for the interatomic potential energy and the dispersion of energy by

the strain gradient term causes hysteresis.

• We studied the numerical simulation of this model for temperature-induced

phase transition, pseudoelasticity and shape memory effect.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions and discussion

In this thesis we examined discrete models for materials undergoing structural

phase transitions. Our focus was on the properties of interatomic potentials which

allow phase transitions. We first showed that the properties of the phase trans-

forming mode are critical in allowing a material to undergo phase transitions. In

particular the potential energy slice in the phase transforming mode must have

energy wells corresponding to the low-temperature phase as well as a relatively

flat region corresponding to the high-temperature phase. This allows the vibra-

tional entropy to dominate at high-temperatures allowing the free energy of the

high-temperature phase to become smaller than the low-temperature phase and

thus an exchange of phase stability.

In Chapter 2 we presented a one-dimensional discrete model, in which the

interatomic potential energy of the discrete masses is assumed to be independent

of the system temperature. We assumed a potential well with two minima for two

martensite variants and a flat region for austenite phase. Such discrete models

allow the atoms to oscillate between the three wells in the potential well with

the mean position of the oscillating atoms determining the phase of the atom.

At high-temperature the atoms spend most of the time in the flat region and
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their mean position is that of the austenite phase and at low-temperature the

atoms spend most of the time in one of the martensite wells. Interfacial energy

between different phases or variants is incorporated as a gradient energy term.

The vibrational entropy controls the structural phase transition. We studied the

temperature-induced phase transition for a one-dimensional chain of atoms by

numerical simulation. The results represent a realistic temperature-induced phase

transition by exothermic and endothermic dissipation of energy during forward and

reverse transformation respectively. Hysteresis arises due to energy dissipation and

the width of the twins increases with the interfacial energy. The transformation

temperature of the chain of atoms increases with increase in barrier height of the

potential well. Pseudoelastic simulations are done by applying a force to the atoms

at the either end of the chain, and the temperature of the atoms is maintained

above the transformation temperature. The cumulative strain in the chain along

with the force applied represents a transformation to martensite variants and a

complete recovery to austenite phase. The shape memory effect simulations show

a realistic recovery of twinned martensite.

In continuum theories, free energy of system incorporates temperature depen-

dent parameters. Motivated by these theories we developed a discrete model, in

which the interatomic potential changes with the temperature. In Chapter 3, we

presented a discrete phenomenological model in which a temperature dependent

substrate potential provides a mean field effect of the surrounding atoms. The

possibility of double counting the effect of the kinetic energy in the potential and

that of the atoms is examined. The phenomenological parameters are adjusted to

avoid this possibility.

In Chapter 4 we assume an atom under consideration has multiple equilibrium

bond lengths relative to its nearest-neighbor atoms corresponding to the lattice

constants of the parent and product phases. The configuration of the surround-

ing atoms (which depends on temperature) changes the energy of the interaction

potential and the location of its minimum. We use a polynomial Falk-type free en-
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ergy, which is a polynomial expansion of a single strain component, to describe the

interaction potential. At high-temperatures the potential well has one minimum,

representing the austenite phase. At low-temperatures the potential well has two

minima, representing the martensite phase with two variants and at transforma-

tion temperature all the three wells exist. We studied the numerical simulation of

this model for temperature-induced phase transition, pseudoelasticity and shape

memory effect.

5.2 Future work

In this thesis our main focus was to develop discrete models to study the tem-

perature dependent phase transition, pseudoelasticity and shape memory effect in

SMA. We simplified the problem by assuming model to be one-dimensional chain

of discrete masses with two energetically equivalent martensite variants. The three

models we developed are capable of qualitatively depicting the phenomena of SMA.

However complex nucleation phenomena, twin formation and phase boundary mo-

tion with temperature and stress cannot be studied with a one-dimensional model.

Two- and three-dimensional models will be useful in studying the kinetic relation

of moving boundaries and also their dependency on temperature.

The potentials to be used in higher dimensional models are a simple general-

ization of the one-dimensional model. We outline the basic framework to extend

the interatomic potential energy of the type discussed in Chapter 4 to a two-

dimensional lattice shown in Figure 5.1.

Each discrete mass is assumed to be interacting with four nearest-neighbours.The

nearest-neighbours form the four quadrants surrounding each lattice. Based on

the atomic positions of the nearest-neighbour atoms, we calculate the deforma-

tion gradient FI(ui,j, ui+1,j, ui,j+1), FII(ui,j, ui−1,j, ui,j+1), FIII(ui,j, ui−1,j, ui,j−1),

FIV (ui,j, ui+1,j, ui,j−1) of each quadrant. The potential energy of a lattice point (φ)

is a function of energy of four quadrants (φI(FI), φII(FII), φIII(FIII), φIV (FIV )).
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Figure 5.1: Two-dimensional discrete model.
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Thus the total potential energy of the atom under consideration is given by

φ = f(φI , φII , φIII , φIV ). (5.1)

The interatomic potential energy of each quadrant can be a function of tempera-

ture as in Chapter 4 (and a particular choice of the potential energy can be the

continuum free energy).

The molecular dynamics of the atoms can be performed by solving the New-

ton’s equations

üi,j = − ∂φ

∂ui,j

. (5.2)

Similar to quasi-continuum models, two dimensional discrete models can be

coupled with the finite element nodes to study the temperature dependent struc-

tural property of SMA.
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Appendix A

Review of statistical mechanics

Consider a system of interest, whose microstate refers to a specific detailed mi-

croscopic configuration and macrostate refers to its macroscopic properties such

as temperature and pressure. In statistical mechanics, the macrostate is char-

acterized by a probability distribution on a certain set of microstates, and this

provides a framework for relating microscopic properties of individual atoms and

molecules to the macroscopic properties of materials. Gibbs [77] first introduced

the concept of an ensemble of systems. An ensemble is a collection of a very

large number of systems. Macroscopic environmental constraints lead to differ-

ent types of ensembles such as, for example, a thermally isolated system which is

referred as microcanonical ensemble with volume V , number of particles N and

energy E fixed. A canonical ensemble is one in which N , V and temperature θ are

fixed. An ensemble of this system can exchange its energy with a heat reservoir. A

grand canonical ensemble exchanges particles along with energy with the reservoir.

Our focus here is on a canonical ensemble to study the macroscopic properties of

coupled oscillators. In this section we will review the thermodynamic variables

obtained using canonical ensemble.
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A.1 Canonical ensemble

In a canonical or NVT ensemble, the probability distribution Pi is given by Boltz-

mann distribution.

Pi =
e−βEi

Z
. (A.1)

where β = 1/kBθ and kB is Boltzmann’s constant. Ei is the energy of the ith

microstate of the system. The probabilities of the various microstates must add to

one ΣPi = 1, and the normalization factor in the denominator, Z, is the canonical

partition function.

A.2 Partition function

Physically, the partition function encodes the underlying physical structure of the

system. The partition function is given by Z = ZpZq where

Zq =

∫ +∞

−∞
exp

(
− V̄ (q)

kBθ

)
dq, (A.2)

and

Zp =

∫ +∞

−∞
exp

(
−K̄(p)

kBθ

)
dp, (A.3)

where Zp and Zq are the partition functions associated with the momentum and

position respectively. The potential energy is V (q) and the kinetic energy is K(p)

and thus the total Hamiltonian is

H = V + K. (A.4)

A.3 Thermodynamic functions

The thermodynamic variables of the system, such as the average energy < E >,

entropy S and free energy F can be expressed in terms of the partition function
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or its derivatives. Total energy of the system is the sum of the microstate energies

weighted by their respective probabilities

< E >= ΣiEiPi =
1

Z
ΣiEie

−βEi = − 1

Z
dZ
dβ

. (A.5)

Internal energy U can be interpreted as average total energy

< E >= U = −d logZ
dβ

, (A.6)

and entropy can be calculated by logarithm of the number of microscopic config-

urations

S = −kBΣiPi log Pi = logZ + βU. (A.7)

Finally, the Helmholtz free energy of a system F is given by

F = U − θS = − logZ
β

= −kBθ logZ. (A.8)

Thus with knowledge of the Hamiltonian, the macroscopic thermodynamic

variables can be obtained.
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Appendix B

Velocity Verlet algorithm

Verlet algorithm [69] is a numerical method used to integrate Newton’s equations

of motion. It is frequently used to calculate trajectories of particles in molecular

dynamics simulations. The basic form of the Verlet algorithm is derived by adding

Taylor expansions for the positions of the particles at a forward-time and backward-

time as given in Eq. (B.1) and E. (B.2) respectively

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 +

1

6
b(t)∆t3 + O(∆t4) (B.1)

r(t−∆t) = r(t)− v(t)∆t +
1

2
a(t)∆t2 − 1

6
b(t)∆t3 + O(∆t4) (B.2)

Where r(t) is the position of the particle at time t and ∆t is the incremental

time step. v(t) is the velocity and a(t) is the acceleration.

By adding Eq. (B.1) and E. (B.2),

r(t + ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 + O(∆t4) (B.3)

From Newton’s equations, a(t) is the force divided by mass as given in Eq.

(B.4). The force in molecular simulation is a function of the positions.

a(t) = − 1

m
∇V (r(t)) (B.4)

94



The truncation error of the algorithm when evolving the system by ∆t is of the

order of ∆t4. This algorithm is simple to implement. A problem with this version

of the Verlet algorithm is that the velocities are not directly generated. Velocity is

important to evaluate the kinetic energy of the system and verify the conservation

of the total energy. Velocities can be computed indirectly from the positions by

using Eq. (B.5)

v(t) =
r(t + ∆t)− r(t−∆t)

2∆t
(B.5)

The error associated is of the order of ∆t2 rather than ∆t4. Velocity Verlet

scheme overcome this difficulty by calculating the positions, velocities and accel-

erations at time t + ∆t from the same quantities at time t in the following way

r(t + ∆t) = r(t) + v(t)∆(t) +
1

2
a(t)∆t2 (B.6)

v(t +
∆t

2
) = v(t) +

1

2
a(t)∆t (B.7)

a(t + ∆t) = −(
1

m
)∇V (r(t + ∆t)) (B.8)

v(t + ∆t) = v(t +
∆t

2
)) +

1

2
a(t + ∆t)∆t (B.9)
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