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SUMMARY 
 

 Due to their high hardness, thermal conductivity, electrical conductivity, wear 

resistance and customizable coefficient of thermal expansions (CTE), tungsten copper 

metal matrix composites (MMCs) have a wide variety of applications, especially in the 

fields of high current electrodes and thermal management. 

 Despite their widespread use, methods of manufacture have been largely confined 

to the infiltration of tungsten compacts produced by traditional powder pressing 

techniques. 

This study explored methods and conditions that would make Powder Injection 

Moulding (PIM), a relatively new technology, suitable as a manufacturing precursor in 

producing MMCs with the aim of developing a more compact and robust processing 

method which could produce samples with high hardness, conductivity and percentage 

copper while retaining microstructural homogeneity and zero porosity. Variables such as 

the atmosphere, sintering/infiltration temperatures, sintering/infiltration holding times 

and feedstock compositions were attempted and their resulting products characterized. 

Over moulding, infiltration joining, microwave sintering and powder pressing of 

yttria doped feedstocks were also attempted to further understand the mechanisms and 

processes involved. With the success of processing samples using tungsten and copper, 

the method was translated to the processing of tungsten silver MMC’s. 

Optimum conditions were established through the analysis of data and explanations 

of significant features were presented. Mathematical models of infiltration and the 

conditions required for joining were also presented. 
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heating profile and a sintering/infiltration temperature of 1150°C for 5 minutes 

under hydrogen. 
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LIST OF SYMBOLS 
 

ko  Grain growth equation constant 

R  Universal gas constant 

L Lorenz number 

g Acceleration due to gravity. 

G  Gravitational constant 

Re Reynold’s number 

Z Infiltration number 

Dfinal Final grain size 

Dinitial Initial grain size 

Q Activation energy 

T Sintering temperature 

t  Sintering time 

r Grain radius 

γ Surface energy per unit area (surface tension) 

HV Vickers hardness 

Dind Length of Vickers indentation 

σy Material yield strength 

ρresist Bulk resistivity 

s Spacing between probes of 4 point probe. 

I Applied current  

V Measured voltage 
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σ Electrical conductivity 

K Thermal conductivity 

B Length 

ρliquid Density of infiltrating liquid 

ρsample Density of sample 

ρwater Density of water  

ρw Density of tungsten  

wair  Weight in air 

wwater Weight in water 

θ Contact angle between liquid and solid phases 

θ c Critical contact angle 

X Depth of submergence of the particle 

F  Vickers indentation force 

Fdispl Displacement force 

FCapillary Capillary force 

Fυ Force acting on the particle-boundary interface 

Fsep Separation force 

Fdrag Drag force 

Fweight Weight 

Fgravitation Force of gravity 

η Viscosity of liquid metal 

v Velocity 

Vf Volume fraction 
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d Grain diameter 

Ps Pinning pressure 

σsinter bond pressure Sinter bond pressure 

J Neck diameter 

N Coordination number 

h Height 

l Neck radius and thinnest point 

µ Radius of curvature 

α Coefficient of thermal expansion of a material 

α W-Cu Coefficient of thermal expansion of tungsten copper MMC 

α W Coefficient of thermal expansion of pure tungsten 

α Cu Coefficient of thermal expansion of pure copper 

m Mass 
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1. Introduction 

Tungsten (also known to some as wolfram) as a basis of composites have been a 

mainstay in commercial and industrial applications in the last century. Tungsten’s high 

hardness (350HV) and high melting point (3422°C, the highest among all known metals) 

has made machining and casting difficult. Tungsten’s body centred cubic structure also 

results in its exceptionally low malleability, and makes cold working costly [1].   

Copper however tells an entirely different story. Copper is a soft (38HV) 

malleable metal that can easily be manipulated. The combination of copper’s abundance, 

high conductivity (Table 1.1) as well as its ease of processing has made it one of the most 

popular materials for electrical and thermal dissipation applications [2, 3]. 

 

Table 1.1:  Conductivities of Copper and Silver at 27°C 

Thermal conductivity of Copper 401W·m
−1

·K
−1

 

Thermal conductivity of Silver 429W·m
−1

·K
−1

 

Electrical conductivity of Copper 59.6 × 10
6
S·m

-1
 

Electrical conductivity of Silver 63.0× 10
6
S·m

-1
 

 

From heat sinks to electrical wires to bronze statues, copper has had a profound 

influence on society at large. Despite having lower conductivities as compared to silver 

(Table 1.1), the relative abundance of copper both from mined and renewable resources 

has made its price low and more preferred over silver in a wide range of applications. 
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Copper, however, is also not without its weaknesses. Copper is considered too 

soft for many applications and has an extremely high coefficient of thermal expansion 

(CTE, 16.5 x 10
−6

K
−1

 at 25°C). 

Given the merits and limitations of both materials, it was clear that a material that 

combined the hardness, wear resistance and low CTE of tungsten but possessed the 

conductive properties of copper would be in demand. 

Their first known patent application for a composite of this nature was granted in 

1915 and assigned to William D. Coolidge of the General Electric Company of America. 

His filing [4] was that of a simple composite where copper was adhered to a layer of 

tungsten by means of melting in a vacuum furnace. The proposed application of this was 

in the manufacture of X-ray targets. Tungsten being extremely dense is second only to 

lead when it comes to X-ray shielding. The method described in the patent was practiced 

in the early part of the 20
th

 century and was nonetheless crude, producing products of 

tungsten and copper that where at best layered sandwiches of the two metals. Over the 

following half century, this combination of materials received only a lukewarm reception 

from industry players due in part to the high hardness and melting point of tungsten that 

made it very difficult to process.  

Given Coolidge’s revelation in 1915, it became apparent that both copper and 

tungsten were in fact, suitable as co-composite materials. In 1917, Charles L. Gebauer of 

Cleveland Ohio filed a patent [5] in which two metals of differing melting points could 

be processed into a homogenized composite. This method described briefly a technique 

in which a loose collection of chopped tungsten wires could be infiltrated by a lower 

melting point metal. This filing however was limited by its lack of detail as to how a net 
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shape could be achieved. It is assumed from the patent description that the composite 

would take the shape of the receptacle by which infiltration occurred, and relied on post 

processing machining to develop the material into a desired shape. 

 Despite the knowledge that was present in producing MMCs based on the 

tungsten copper duality, the challenge at this point was to develop a process by which a 

net shape could be obtained with minimal need for post production machining. 

 The key to this seemed to be a method that had its roots as early as 1200 B.C. 

Powder Metallurgy (PM) is a technique that allows powders to be used in the formation 

of complex metal and ceramic parts. Despite its widespread use, it was only formally 

patented in 1941 by William Lamatter and Patrick Hume [6]. The relevance of this age 

old technique was the fact that it could be used to fabricate uniformly porous metal 

matrices through the formation of cold welds between adjacent particles. In 1925, 

Clemens A. Laise of Haworth, New Jersey filed a ground breaking patent that described a 

revolutionary method of manufacturing tungsten-copper metal matrix composites that 

had until then, not been used [7]. He described the formation of tungsten powder 

compacts by means of pressing and subsequent sintering at 900°-1000°C. These 

compacts were then dipped in baths of molten copper to produce metal matrix composites 

of copper and tungsten.  

 What Laise had done in his filing was described as the method which would later 

be popularly known as the press-sinter-infiltrate technique. Since his patent, there have 

been numerous variations of the process by which molten metals have been added into a 

porous preform produced by PM. The basis of producing the porous tungsten compacts 
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by means of PM is still practiced widely today by most industry players in forming 

tungsten based metal matrix composites. 

 In 1961 a similar patent [8] describing the infiltration of a tungsten preform was 

filed. The difference between Laise and Weeton et al. was that while Laise prescribed full 

immersion of the preform into the molten bath, Weeton et al. described the infiltration by 

means of capillary action, where the fine open pores within the tungsten matrix act to 

draw molten copper in. The tungsten matrix described in the latter patent was however 

merely a bundle of loosely cut wires and the question of homogeneity as well as 

composition within the final composite was also in question. 

 Despite the technological capability at this juncture, tungsten-copper metal matrix 

composites never really found head way as a commercial mainstay. Applications in the 

early and middle part of the 20
th

 century were limited. It was only with the advent of 

semiconductors in the 1960’s that an enormous application for tungsten copper was 

unearthed.  

 In 1959, two researchers at Fairchild Semiconductor, Jean Hoerni and Robert 

Noyce developed a way to make silicon transistors. This method proved highly 

successful and the discovery catalyzed a global consumer electronics boom. One vital 

component of a semiconductor component was its packaging. The packaging had to be 

durable enough to protect the silicon chip from the environment, while dissipating heat 

away from the silicon component to prevent heat induced damage. While copper was a 

good heat dissipater, it’s coefficient of thermal expansion (CTE) was considered too high 

to be compatible with a silicon substrate. CTE mismatches between a packaging and its 

carrier chip would result in strains within the chip, causing lower efficiency and possible 



25 

 

failure. This issue of CTE mismatch ruled out pure copper as a packaging material for 

silicon substrates in the billion dollar semiconductor industry[9]. The solution would lie 

in a composite of copper containing an amount of tungsten. A combination of both 

materials would result in a composite that could have its CTE tailored to one that 

matched the silicon substrate based on its operating temperature. The MMCs durability as 

well as its relatively high conductivity also made it an obvious choice for semiconductor 

packaging. 

 Apart from the use of tungsten-copper in the semiconductor industry, the middle 

of the century also brought about new applications for tungsten based composites as 

electrodes for high current applications like electro discharge machining (EDM), electro 

chemical machining (ECM) and resistance welding (RW) [10-12]. Tungsten’s high wear 

resistance and melting point complemented copper’s excellent conductivity and produced 

electrodes that were able to withstand the high temperatures produced in such high 

current applications. While the former two applications were isolated to the field of 

mould and die manufacturing, the latter application allowed the composite to tap into the 

growing automobile and aerospace industry [13]. With this technology, a related 

composite, tungsten-silver, began to emerge. Although silver was deemed too costly in 

the production of semiconductor packages, its high conductivity was deemed necessary in 

high current contacts and electrodes (usually in excess of 50A) where a slight increase in 

resistivity would lead to unnecessarily high heating rates and energy losses that would 

reduce the life of the composite. [14-16]. 

 In 1976, Ronald Rivers of Kokomo, Indiana officially filed a patent describing 

another method that could produce porous tungsten skeletons. This method, known 
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generally as Powder Injection Moulding (PIM), and in this context specifically as Metal 

Injection Moulding (MIM), was an offshoot of polymer injection moulding where the 

polymer feedstock now contained an additional component of metals. This new method 

boasted the versatility and speed of production at a reduced cost that was already 

synonymous with PIM. Borrowing manufacturing and design principles that had long 

been established during the formative years of injection moulding, porous compact 

formation by means of injection moulding and polymer removal became accepted as an 

alternative to the conventional methods that were described by Laise. 

 The broad focus of this doctoral study was to examine and establish a series of 

streamlined conditions by which tungsten-copper metal matrix composites could be 

manufactured using the PIM technique. Considerations of this study included the time 

used in producing a homogenous pore free component, the relative cost of production (in 

terms of minimizing material wastage) and finally, the control of tungsten grain growth 

within the tungsten matrix. There has been great interest with regards to grain size on the 

effect of metal components since Hall and Petch’s simultaneous discoveries [17]. This 

aspect, however, has not been studied with respect to tungsten-copper MMCs produced 

by PIM and was embarked on in this report.  

 The first step of the PIM process was the manufacture of feedstocks for both 

copper and tungsten. Copper and tungsten were separately mixed with suitable polymeric 

binders that facilitated the flow of the softened feedstock during the injection moulding 

process. The volume loading of the polymeric binders within the tungsten feedstock was 

determined based on the level of porosity that was to be present within the tungsten 

preform. The polymeric binders within the copper feedstock were calculated based on the 
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amount of copper to be present within the finished MMC. Polymeric binders and metal 

powders were heated, mixed and palletized to form pellets that could be easily fed into an 

Arburg Allrounder PIM machine and Battenfeld microsystem 50 micro injection 

moulding machine. 

 For the injection moulding process, pellets were fed into a heated injection 

moulding barrel via a hopper. The hopper feeds the pellets into a heated barrel by means 

of gravity. The barrel is heated to melt the polymeric binders present within the feedstock 

to lower its viscosity and facilitate its flow. A screw is present inside the barrel and both 

screw and barrel are coated with a layer of tungsten carbide to increase service life in 

light of the processing of hard metals and ceramics. The screw rotates and pushes 

softened heated feedstock towards the tapered tip of the barrel by means of displacement. 

The rotation of the screw also homogenizes the softened feedstock and contributes to the 

heating process by means of shear. The softened feedstock is then forced into the front of 

barrel (just behind the barrel nozzle) where the screw flight is shallower. During the 

injection moulding process, the screw is momentarily counter rotated and withdrawn. 

This causes a collection of feedstock to be accumulated at the front of the screw behind 

the barrel’s nozzle. This collection of softened feedstock at this point is known as a shot. 

The screw is then pushed forward at a high pressure acting as a plunger, forcing the shot 

out of the nozzle into a closed mould. The feedstock is then allowed to cool and solidify 

within the mould. The mould is finally opened and a finished, moulded component is 

ejected. 

 Several methods of injection moulding were attempted in this study. Components 

produced using the Arburg Allrounder S included bimetallic two material tensile bars 
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consisting of a layer of copper and tungsten, a component with complex features as well 

as a basic two material bar. Micro injection moulding of single as well as two-material 

micro tensile bars was also successfully conducted on the Battenfeld Microsystem 50 

micro injection moulding machine. 

 Following injection moulding, the moulded components were soaked in an 

organic solvent for four hours at 50°C and later heated in a hydrogen furnace at 450°C 

for 1 hour to remove polymeric binders from within the copper and tungsten moulded 

parts. 

 In the next phase of the study, a suitable atmosphere was determined for 

infiltration. Atmospheres ranging from hydrogen, air, vacuum and nitrogen were 

attempted with varying degrees of success. The aim was to establish the most optimum 

atmosphere by which a pore free homogenous composite could be obtained. 

Subsequently, various orientations of the copper portion with respect to the tungsten 

matrix were also permutated to define an optimum orientation for successful infiltration. 

 After both optimum atmosphere and orientation were determined, various 

sintering temperatures above the melting temperature of copper were attempted. These 

temperatures were maintained for 60 minutes to facilitate concurrent sintering and 

infiltration of copper. The purpose of this step was to characterize the behaviour of the 

resulting composite with regards to peak processing temperatures. 

 From the results obtained from the previous sub-studies, an optimum temperature 

was chosen and dwell times were then varied to determine its effect on the MMCs 

properties. 
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 Results obtained at this point using one micron tungsten powders were deemed 

satisfactory, having copper contents of as high as 35.0wt% copper. However, final 

tungsten grain sizes remained constant at the two micron range. 

 To achieve a finer tungsten grain size in the finished composite, it was necessary 

to begin processing with even finer tungsten powders. Hence further experiments 

involving a variation in dwell temperatures was attempted with tungsten powders 

averaging 100 nm in diameter. 

 On the side, microwave sintering (in air) was also attempted. This was done to 

determine if the inverse heating profiles and high heating rates that were synonymous 

with microwave sintering could lead to finer final grain sizes. 

 Experiments targeted at reducing the overall processing time and the amount of 

costly hydrogen used was also attempted. This was an economic consideration that would 

lower overheads (in terms of hydrogen, power and man hours) as well as increase 

production rate of the composite. These series of experiments saw the combination of the 

thermal debinding and sintering/infiltration cycle into one combined heat cycle. 

Subsequently an increase in heating rate from 3°C/min to 5°C/min was also used. The 

overall reduction in time was as much as 50% from start to finish, inclusive of the man 

hours required to start and stop the furnace. These changes to the heat cycles were met 

with success and tungsten-copper MMCs with an even higher percentage of copper were 

also achieved. 

The methods attempted managed to push the amount of copper within the 

composite to a maximum of 35.0wt%. Tungsten-copper MMCs with this amount of 

copper are commercially available although only through conventional PM methods. 
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There was, however, still a desire to further increase the amount of copper within the 

finished MMCs. This led to a change in the composition of tungsten feedstock where 

apart from the usual tungsten and polymeric binders, a small amount of copper (5.0wt%) 

was also added. The presence of copper reservoirs within the tungsten matrix meant that 

the overall percentage of copper within the finished MMC would be increased. The 

hypothesis was that upon melting, these reservoirs of copper within the tungsten matrix 

would decrease infiltration time through adhesion forces between the infiltrating copper 

and the copper reservoirs. While this new feedstock did manage to increase the overall 

amount of copper within the MMC, the copper reservoirs were not able to shrink upon 

the melting of copper, leading to regions of structural inhomogeniety. 

 The final phase of the study was to control the grain growth of tungsten via zener 

pinning. In this step, yttria was mixed into the tungsten feedstock. Yttria particles 

impinge against the tungsten grain boundaries and prevented them from necking, hence 

reducing subsequent densification and coarsening. Preliminary studies were done using 

various amounts of yttria mixed with tungsten and pressed using conventional PM 

methods. Favourable combinations were then translated into feedstock for PIM [18]. The 

infiltrated MMCs displayed a homogenous microstructure with fine tungsten grains and 

no presence of voids. The results of the tests were encouraging as yttria has been 

theorized to have a high contact angle with copper and could impede infiltration. 

 As with most research studies, this study was also fraught with non technical 

challenges. One major challenge that was faced during the entire duration of the 

experiment was with the purchase of tungsten powders. Ever since the events of 

September 11, 2001, the import of tungsten powder into South-East Asia has been strictly 
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controlled by the Department of Homeland Security of the United States of America. 

Declarations regarding the purpose and details of the purchasing organization have to be 

submitted before a sale can proceed. What this translated to during the course of the study 

was higher costs (especially for 100nm powders), longer lead times and smaller available 

quantities. In light of the small domestic demand and the difficulties involved, many local 

powder suppliers had given up dealing with tungsten powders completely. When a 

supplier was finally located, there was a nine month delay from the time the powder was 

first ordered to the actual receipt at the laboratory. 

 The use and availability of a suitable furnace was also limited. The very nature of 

the infiltration process and the presence of a molten fluid phase meant that the potential 

for furnace contamination was high. Running elevated temperatures under a flammable 

gas like hydrogen was dangerous and as such, there were numerous safety guidelines that 

had to be adhered to with regards to the operation of such furnaces. It was eventually 

decided that a CM tube furnace in SIMTech was suitable for the study, and that it was 

only to be done with the strictest supervision. This furnace was shared by other 

researchers on several other projects and the windows of opportunity by which the 

furnace could be utilized for the project was very limited. 

 The biggest challenge faced within this project was however not administrative or 

technical, but in fact human. In July of 2005, a student was assigned to do an honours 

project related to this doctoral study. By September he was given access to the samples to 

do testing. However in November of 2005, the student disappeared, and took along 

several critical samples. This set back the projects progress by almost six months as he 

had taken a third of the samples that were fabricated at that point. In the next six months 
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that followed, the samples taken were painstakingly remanufactured and characterized. 

The student finally reappeared in July 2006, but by that time, the samples that he had held 

on to were already oxidized and were of no value to the project. 

In summary, this study was aimed at defining a method by which tungsten based 

composites could be successfully produced by the PIM route. Work was carried out with 

respect to streamlining the operational aspects without compromising on the quality of 

the finished product. Steps were also taken to increase the quantity of copper present 

within the MMC. Subsequently, the control of grain growth experienced within the 

tungsten matrix was also investigated with several options explored. Despite the many 

challenges that were faced during its course, it is nonetheless the hope that the findings of 

this project will have a positive impact towards the industrial mass production of tungsten 

products and its related composites. 
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2. Literature Review  

2.1.  Brief review of the tungsten copper MMC 

The first scientific record of the manufacture of tungsten copper MMCs was in 

1939 in an article written by Dr C.J  Smithells and published in nature [1]. Smithells 

described a method in which he had mixed tungsten, copper and nickel powders into a 

crucible. He later heated the mixture to 1450°C and moulded the resulting slag into a 

desired shape. This seminal discovery was for the purpose of radium shielding. The 

resulting composite was a solid dispersion of tungsten particles in copper. Being a 

dispersion and not within a contiguous network, the tungsten phase did not serve a 

structural function, but its high atomic mass made it suitable as a radiation shield. 

Tungsten copper is still used today in radiation shield applications [2, 3]. 

Apart from radiation shielding, applications ranging from disposable resistance 

welding electrodes [4, 5], heat sinks [6, 7] and semiconductor packaging [8-10] have 

made tungsten copper a popular candidate material in the consumer electronics industry. 

While the importance of the material has grown, the methods of manufacture have not 

been extensively researched. Many of the tungsten copper components today are still 

manufactured by methods developed during the early half of the 20
th

 century. 

Tungsten copper MMCs have intermediary properties of copper and tungsten, 

displaying excellent conductivities, a stable coefficient of thermal expansion and 

relatively high hardness [11-13]. The strong interfacial bonds formed between tungsten 

and copper [14, 15] accounts for its excellent toughness and strength. Tungsten copper 
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MMCs with tungsten grains in the region of 0.5μm have also been reported to be a 

candidate for ultra fine super strength materials [16]. 

Table 2.1 below shows a summary of the properties for some commercially 

available tungsten copper MMCs. 

Table 2.1: Properties of tungsten copper MMCs [17-19] 

Wt%Cu 
Relative density 

(%) 
CTE (10

-6
K

-1
) 

Electrical conductivity 

(%IACS) 

90 95 8.6 43% 

90 82 4.7 36% 

90 100 6.8, 6.0, 6.5 49%,  48%, 39% 

85 100 6.7,7.4 51%, 42% 

80 100 8.2, 8.2 54%, 45% 

75 100 9.9, 9.1 60%, 48% 

 

The manufacture of tungsten powder begins with the bulk purchase of 

Ammonium Paratungstate (APT), (NH4)10W12O41 . 5 H2O. This compound is the first 

intermediate material that is produced from tungsten ore purification. Subsequently, the 

APT is heated in a furnace under hydrogen at 900°C.  This reduces and dries the APT to 

produce the oxide of tungsten, W20O58. W20O58 is then heated at a lower temperature of 

800°C to produce pure tungsten powder. The powders are then agitated to break down 

any agglomerates and sieved by particle size. Due to the absence of high energy milling 

in the forming of fine tungsten powders, tungsten powders formed of 1µm and below are 

monoclinic [20, 21]. 
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Figures 2.1 and 2.2 show the nominal prices for both tungsten and copper for the 

last 100 years [22, 23]. 
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Figure 2.1: Tungsten prices for the last 300 years 
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Figure 2.2: Copper prices for the last 100 years. 

 

There has been a threefold surge in prices for both metals since 2000 despite 

advances in mining, extraction and recycling [24-30]. 
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There is rising concern that copper is reaching peak levels [31-34]. Copper, being 

a finite resource has been mined extensively throughout out the last century. According to 

the Hubbert Peak Theory [35], once peak production levels have been reached, there will 

be a gradual reduction in the exhaustible resource, resulting in escalating prices due to 

increase demand and a lack of a substitutable commodity. The highest price for copper 

was recorded on 8
th

 March 2008 and is set to rise further. 

From Figure 2.3, the main use of copper is still in the electrical and building 

sectors, where its use in power transmission and piping is still dominant. This industry is 

still predicted to grow with increased industrialization and globalisation [22].  
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Figure 2.3: Major uses of copper within the past 25 years. 

 

The use of tungsten is largely dominated by the carbide tooling industry (as seen 

in Figure 2.4). The introduction of power saving fluorescent illumination as opposed to 
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traditional tungsten filament light bulbs has reduced dramatically the use of tungsten in 

the consumer and household sectors [36, 37]. 
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Figure 2.4: Use of tungsten in cemented carbides within the 

past 25 years. 

 

For both materials, a combination of reduction in extraction as well as renewable 

resources and increase in demand has led to a sudden increase in prices within the last 

decade. It is therefore pertinent to explore new methods to reduce wastage within the 

manufacturing process. 

 

2.2. Methods of manufacture 

2.2.1. The press-sinter-infiltrate route 

The predominant method of manufacture of tungsten copper MMCs is using the 

press-sinter-infiltrate technique [38, 39]. In this method powdered tungsten metal is 

consolidated using pressurized compaction and sintered to form a tungsten matrix. The 

compact is then heated to the melting point of copper in the presence of the latter. Copper 
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is liquefied and distributes itself through the matrix while the tungsten matrix densifies 

and coarsens. Despite only being officially patented in 1999 by Yoo et al [40, 41], this 

method of infiltrating copper into a porous tungsten perform has been documented much 

earlier in previous publications [42, 43]. 

 

2.2.2. Compaction methods 

Powder compaction and consolidation can be done in two ways. Die compaction 

(PM) and PIM. Die compaction has been used for decades and while it provides a simple 

concise method in producing tungsten compacts, due to the one dimensional nature of 

compaction, parts produced are less complex in nature with features only present in the 

direction of compaction [44]. Post sintering machining is required to create complex 

features in PM sintered parts. This additional step leads to a rise in overhead costs. 

Due to friction between the tooling and powder, pressure gradients are present 

during PM compaction. These pressure gradients result in deformation during sintering 

and also dimensional scatter between individual components [45]. 

PIM does not have the limitations in part complexity as the die cavity does not 

change in shape during the compaction process. The lower pressures involved in PIM and 

the presence of a lubricating binder phase also reduces the amount of tooling-powder 

friction and results in a less undesirable pressure gradient.  

The ability to automate the entire PIM process [46, 47] also serves to advance the 

tungsten matrix manufacturing process. The ability to control the amount of material in 

each shot precisely using a metering method also minimizes material wastage [48]. 

The ability of the PIM process to produce two material parts [49-52] opens the 

opportunity of conjoined tungsten copper bimetallic green parts. Such parts can be heated 
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to produce copper infiltrated tungsten materials with minimum wastage and handling 

[53].  

PM methods also reduce the amount of possible copper infiltration as compacted 

samples are more closely packed due to the higher pressures involved. PIM techniques 

involve the addition of a lubricating polymeric binder that forms the open pore network 

when removed [54].  The open porosity evolved during the debinding process translates 

directly to the amount of copper that can be introduced into the sample during the 

infiltration process. 

In 2007, a report published [55] in a leading powder injection moulding journal 

reported that 60% of PIM companies based in North America (many with operations in 

Asia) have dedicated focuses on metal processing to serve the medical, aerospace and 

automotive industry. This value is likely to grow with further advances in metal injection 

moulding (MIM) technology, especially in the fields of micro-PIM components and 

MMCs [56]. The widespread acceptance of PIM over other traditional metal forming 

processes like machining and casting has made it an accessible and economical way to 

manufacture tungsten based composites. 

Despite the popularity and versatility of PIM in forming composites, the main 

industry standard for forming of tungsten copper compacts is still PM [20, 57, 58]. 

Research related to this field is by and large within the scope of standard traditional 

powder pressing. Little research has been done with regards to using PIM as a 

manufacturing method for tungsten copper MMCs. Even the limited literature available is 

inclined towards feedstocks comprising of admixed tungsten and copper [41, 59-62]. 
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2.2.3. Infiltration of tungsten by capillary action 

Infiltration of a pure tungsten compact by means of capillary action has been the 

most common way in which tungsten copper MMCs have been formed [40, 43, 53, 63, 

64] 

This method involves having molten copper present when sintering the tungsten 

matrix. Copper can be introduced in two main ways; admixed with the tungsten prior to 

compaction or independently to the pure tungsten matrix via spontaneous infiltration. The 

low contact angle of molten copper with tungsten makes this process very suitable[14]. 

 

2.2.4. Admixing of tungsten with copper 

Admixing copper and tungsten powders into homogenous powder mixtures has 

been a popular way of manufacturing tungsten based MMCs using powder precursors [59, 

62, 65-70]. Admixing involves introducing the copper into the tungsten matrix upon 

compaction. This process is also known as mechanical alloying and is done by mixing 

copper and tungsten powder mixtures into a high energy ball mill [67]. The resulting 

powder mix is then either pressed directly and sintered in the PM route, or mixed with 

polymeric binders and injection moulded via the PIM route. 

While this method has been shown to produce uniform microstructure, there is an 

inherent associated problem of porosity within the final MMC [65, 68]. Copper bleed out 

(Figure 2.5) is a common problem associated with admixed powders when copper 

amounts are large [71]. Bleed out leads to the necessity of post process machining and a 

significant drop in copper content. 
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Figure 2.5: Tungsten tensile bars infiltrated with copper displaying extensive 

copper bleed out. 

 

Contamination has also been a problem associated with the admixing process 

[72]. Apart from metallic and ceramic inclusions during contamination, the presence of 

moisture and oxygen inside the milling crucibles result in the formation of an oxide layer 

on the tungsten powders which increases the contact angle between the subsequent 

molten copper phase and the tungsten powders. The high cost of dedicated milling 

machines and the high hardness of tungsten make the introduction of contaminants an 

inevitable problem in the mechanical alloying process. 

 

2.2.5. Introduction of copper by means of spontaneous infiltration 

Several studies have been done with regards to infiltration mechanics. Early 

researchers used a bundle of capillary tubes to simulate a metal matrix during infiltration. 

While this presented a simple explanation to the infiltration process [73-75], this method 

has been recognised as being deficient in accuracy as it does not represent accurately a 

tungsten porous medium [76]. 

Monte carlo simulations have been presented by Shih et al to characterize the 

infiltration process in porous powder matrices, but the work was theoretical and was not 

properly verified with experimental data [77]. K. P. Trumble was able to derive 

explanations with regards to the infiltration of non cylindrical capillary systems [78]. In 

his research, Trumble used geometrical methods to derive a condition by which closely 
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packed spheres were able to be infiltrated through their tetrahedral pores. Pores are 

classified by their interstitial orientations (Figure 2.6). He suggested a critical contact 

angle, θc=50.7° as the upper limit for spontaneous capillary infiltration for closely packed 

spheres. However to date, there has been no research done specific to the spontaneous 

infiltration of tungsten matrices by molten copper. 

 

Figure 2.6: Diagram showing different interstatial sites. 

B represents an octahedral site, while A represents a tetrahedral site. 

 

2.3. Factors affecting tungsten copper MMCs 

2.3.1. Grain size 

Since its discovery, the Hall-Petch phenomenon has been extensively studied and 

it has been determined that within limits, smaller grain sizes in metals promote an  

increase in strength and hardness by means of grain boundaries impeding dislocation 

motion [79, 80]. This result was not only evident in steel but also in consolidated 

tungsten powders as well [81, 82]. As the strength of a metal matrix composite was 

determined by the strength of its constituent phases [83-85], increasing hardness and 

strength of the tungsten component of an MMC would strengthen the overall MMC. 

Studies have shown that hardness of porous tungsten matrices of 80% theoretical density  
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has been determined to be in the region of 200-220 HV [86]. Several methods in 

strengthening tungsten bodies by grain size refinement have been explored over the 

years. The common methods have been the variation of sintering parameters (sintering 

temperature and time), Zener additives and microwave sintering [87-89]. 

Studies with regards to the formation of sintered tungsten compacts have recorded 

grain sizes within the 2-4µm range [53, 82, and 90]. These samples were compacted with 

a variety of initial powder sizes and sintered in the range of 1000°C-1500°C. 

With the processing of finer powders also comes the unwanted problem of 

abnormal grain growth [87-89, 91]. This phenomenon has been observed extensively in 

tungsten compacts sintered from tungsten powders [92]. Work by Straumal et al 

displayed exaggerated abnormal grain growth up to 11 times the initial powder size [93]. 

This was later verified by Kecskes et al with sizes up to 10 times their initial powder size 

[94]. In this work tungsten powders were sintered at 2000°C for periods ranging from 0.5 

to 10.0 h. The results showed that with increasing sintering time, abnormal grains of as 

much as elevenfold the initial mean grains size was observed. 

 

2.3.2. Processing parameters 

Work by Kecskes et al [94] in the grain size control of Body Centred Cubic 

(BCC) metals has suggested that to produce fine grained tungsten, there is a need to 

reduce the sintering time, temperature, initial powder sizes and increase compaction 

pressure. 

Given the insolubility of tungsten in liquid copper [95], the only way to produce 

submicron tungsten grain sizes is through the use of even smaller tungsten powders [96, 
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97]. Work done with regards to sintering submicron powders showed that regardless of 

starting powder sizes, tungsten grain sizes averaged at 2-5µm [82, 98, 99]. This tapering 

of grain sizes regardless of initial size suggests stability of tungsten at diameters of 2-

5µm. 

With the use of submicron and nanoscale powders comes the problem of 

abnormal grain growth. Smaller powders with their higher free surface to mass ratio have 

a greater driving force towards coarsening. This is also usually at the expense of 

surrounding grains [92], a feature that decreases a material’s homogeneity. 

From studies done on sintering kinetic equations [88], it was determined that an 

increase in sintering time and sintering temperature result in both coarsening and 

densification. These relationships can be seen in Figure 2.7 below. Sintering is essentially 

a material transport process with components of diffusion, viscous flow and evaporation-

condensation. These components are all thermally activated with rates that increase with 

increased temperature and more discrete with extended periods of elevated temperatures. 

The relationship in final and initial powder size has been theorized and can be 

expressed as: 

2 2 expfinal initial o

Q
D D k t

RT

 
   

 
 

Where Dfinal and Dinitial are the final and initial grain size respectively, ko is the 

equation constant, Q is the activation energy, T is the sintering temperature, t is the time 

and R is the universal gas constant [100]. 
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Figure 2.7: Graph showing relationship between grain size, sintering time and 

temperature. 

 

It was also reported by Johnson et al [101] in 2005 that an increase in sintering 

temperature had a distinct effect on the densification of tungsten compacts sintered in 

liquid copper. In their study, temperatures varying from 900°C to 1500°C were used and 

it was noted that at temperatures exceeding the melting point of copper, greater shrinkage 

and a higher density were evident, likely due to the nature of the capillarity observed 

between adjacent tungsten particles caused by a copper liquid bridge. 

Microwave sintering has also shown promise as an emerging field in metal 

powder sintering. Microwaves are electromagnetic waves that are able to oscillate atoms 

within a microwave opaque target body. While bulk metals tend to reflect the 

microwaves, powdered metals have been shown to be excellent absorbers of microwaves 

[102]. As a result of this internal heating, the temperature of powdered metals within a 

microwave environment increases more rapidly than conventional sintering processes 

[103]. This mode of heating is more efficient as energy is not lost through 

conduction/convection within the furnace. Extremely high heating rates that are 
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ordinarily not possible with conventional heating methods [104-106] are possible with 

microwave sintering. 

Studies done with regards to the microwave sintering of tungsten have been 

proven to be successful [107]. Further studies have also shown the possibility of sintering 

tungsten powders in as short as 20 minutes with grain sizes of as low as 0.5µm [108]. A 

study by Mondal et al  [109] compared and contrasted the microwave and conventional 

sintering of tungsten copper (18.0wt%Cu) to 1300°C. The results are shown below. 

 

Table 2.2: Comparison between microwave and conventional sintering on 

tungsten compacts. 

 
Microwave 

Sintering 

Conventional 

Sintering 

Vickers Hardness (HV) 376 325 

Average heating rates (°C/min) 15 5 

Total heating profile time (min) 190 550 

Tungsten Grain Sizes (µm) 2 4 

 

It was evident that microwave sintering was able to reduce sintering profile time 

significantly (70%) and in the process reduce overall grain sizes and increased overall 

hardness. All samples were produced in a flowing hydrogen environment. 

The major concern with microwave sintering would be the use of hydrogen as a 

flowing gas. Despite being widely regarded as a microwave absorber, densely 

agglomerated metal powders can behave as a reflector and lead to sparking. Tungsten 

powder itself is also known to be pyrophoric [110] in nature and can result in an 

explosion should sparking occur. 
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2.3.3. Oxide dispersion 

One method in controlling grain growth during sintering is the addition of an 

incoherent phase that act to impinge grain boundaries [111, 112]. This process is known 

as Zener pinning. Zener pinning works by having a secondary incoherent particle at the 

grain boundary of two sintering grains. This secondary particle acts as a barrier to 

sintering and the pressure exerted by the particle counteracts the driving force of sintering 

between the two adjacent grains. 

  

Figure 2.8: Zener pinning diagram with grain boundary and incoherent pinning 

particle of radius r. γ denotes boundary energy. 

 

The total pinning force can be seen to act on the circumference by which the 

intersection of the boundary and particle occur. This circle has a radius of rcosθ and is 

denoted on Figure 2.8 above by a circle that intersects point A and B. The force per unit 

length acting along the diameter upwards is resolved to be γsinθ. The pinning force is 

resolved to be force per unit length acting in the direction of the dragging force against 

the boundary multiplied by the length of the circle for which the force acts.  

Fzener =  Circumference of circle  x  Force per unit length 

  = 2 cos sinr     
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This has been shown to be successful in tungsten heavy metals where yttria was 

added to a tungsten-nickel-iron composition[113]. Work done in Japan by Itoh et al [114] 

also displayed grain size suppression with increased amounts of yttria addition. There 

was also growth displayed by both tungsten and yttria particles at higher sintering 

temperatures. It was shown that the strength of the pure tungsten sample sintered at 

2037°C was greater than its yttria doped counterpart, although this trend was reversed at 

sintering temperatures of 2237°C and 2437°C. 

 

Figure 2.9 : Secondary Electron SEM image showing the effect of metal grain growth 

inhibition by an addition of a secondary oxide phase[113]. 

 

Studies have been done with both haffnia and yttria in microwave sintering 

environments [108, 115]. In these studies, tungsten grain sizes of ~0.5µm were achieved 

using the above mentioned oxide dopants. Particles used had a starting average size of 

0.16µm. This was a reduction from the usual 2µm average grain sizes that were observed 

both in conventional as well as similar microwave sintering work [115]. 

No study however has been done using oxide dispersions in the manufacture of 

porous tungsten perform matrices. Infiltration of copper into a matrix of tungsten that 
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contains oxide dispersions might prove difficult due to their low wetting characteristics 

[116]. Livey and Murray [117] attribute this to like repulsion of the electron cloud within 

a liquid metal and the anionic monolayer of ionic compounds. 

The large contact angle molten copper displays on yttria surfaces [118] has been 

reported to be 130°. This non wetting characteristic of copper onto yttria is likely to act as 

a barrier for infiltration and will limit the amount of yttria that can be added to the 

tungsten as a grain growth inhibitor. An alternative to the system would be to include 

aluminium, which is said to reduce the contact angle from 130° to a mere 40°. However, 

the formation of copper-aluminium intermetallics is not desirable in the formation of 

tungsten copper MMCs. Many possible intermetallic combinations exist with variable 

physical, thermal and electrical properties which would inadvertently affect the quality 

and homogeneity of the resulting MMC [119]. 

 

2.3.4. Copper as a secondary phase 

When considering the strength and properties of composites, it is essential to 

consider all phases within the composite as final properties are dependent on constituent 

phases [83]. 

Copper, although softer than tungsten, is essential as being the infiltrated phase 

within an open pore structure, it exerts a considerable effect on the properties of the 

MMC. The hardness of a die pressed porous copper matrix of 80% theoretical density has 

a value of approximately 250HV [86]. 
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While tungsten contributes to the low CTE and high hardness of the material, 

secondary phases like copper and silver are added to enhance the conductive properties of 

the finished material.  

A reduction in conductivity and increase in hardness as compared to a law of 

mixtures result is due to strain hardening of the secondary, more conductive phase [120, 

121]. This is caused by increased dislocations and grain boundaries which act as regions 

of electron scatter [80]. Copper, being of a face-centred cubic (FCC) lattice structure, 

allows for highly mobile gliding dislocations in one general direction. However tungsten, 

with a BCC structure is more prone to producing more dislocations due to the slipping of 

screw dislocations into several planes [122]. 

It has also been noted that for most cited literature and commercial product 

details, there has been a limit to the amount of copper that is commercially available [18, 

19]. This value is due to the challenge within the industry of producing high copper 

composites with an acceptable degree of consistency. 

One major problem in the addition of copper within the sample to enhance 

conductivity is due to secondary phase bleed out. The main reason for the bleed out is 

isothermal densification of tungsten at a temperature above the melting point of copper. 

This causes the interparticulate pores between tungsten grains to shrink, and squeezes 

previously infiltrated copper out from the surface of the MMC. This was observed in 

tungsten copper composites produced using the method described in U.S. Patent. 

4,680,618 by Kurada et al [123, 124]. 
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2.4. Suggested improvements 

With this review it is clear that there are aspects within the field of tungsten 

copper MMCs that still have potential for research. 

Improvements in the manufacturing and streamlining of the processes have been 

lacking with current commercially accepted methods. PIM offers a versatile alternative to 

die compaction in producing the MMCs. However, limited work has been done in 

studying the capabilities of PIM in the manufacture of MMC. 

Secondly, while work has been done to control the grain size of tungsten 

compacts, there has been little or no work done in the study of controlling the grain sizes 

of porous tungsten compacts, and no work done in the study of how factors influencing 

grain growth would affect the subsequent infiltration of the matrix by copper. This is an 

avenue to be looked into as finer tungsten grains are likely to improve the properties of 

resulting MMCs. Factors like heating profiles, starting powder sizes and oxide 

dispersions are just some of the parameters that can be studied. 

Finally, with copper being a finite resource, it is imperative that an alternative 

infiltrant metal be found. One suggestion is that of silver. While currently more costly, 

the inevitable rise in copper prices and silver’s higher conductivity could make it a more 

cost efficient substitute to copper in the imminent future. 

These issues highlighted here will be the focus of this dissertation and will be 

covered in detail within the following chapters. 
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3. EXPERIMENTAL STUDY 

The aims of this study were to develop economical processing methods to 

manufacture tungsten based MMCs and also study the microstructure and properties of 

the produced MMCs. 

The broad layout of the experiment is shown clearly in the schematic chart below. 

 

Figure 3.1: Schematic diagram showing the sample preparation and the characterization 

processes 

 

3.1.  Sample process overview 

In this study, the steps involved in chronological order are; the initial planning, 

feedstock preparation, injection moulding, debinding of the moulded part and finally a 

combined sintering and infiltration step where the tungsten-copper MMC is produced.  
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3.1.1. Planning of sample preparation 

The careful planning of the samples to be manufactured is essential as this 

determines the processing variables to be modified. Adjustments to variables are based 

on data collected from tests conducted on samples manufactured previously. The overall 

aim is to achieve more desirable microstructural properties. 

The variables in this study were the materials used for the feedstock, the solid 

volume loading of the feedstock, the starting powder, the heating profile, the furnace 

atmosphere, the sintering/infiltrating temperature and the sintering/infiltrating dwell time. 

The ratio of thermoplastic polymer against solid powder affects the final 

properties of the tungsten matrix and the ease of injection moulding. Binder deficit will 

make the feedstock hard to inject as the binder serves to lower the viscosity of the melt 

during injection moulding by acting as an interparticulate lubricant (Figure 3.2).  

 

(i) (ii) 

Figure 3.2: Picture showing the interaction between polymer binder and feedstock metal 

with (i) insufficient polymer leading to contact between particles and (ii), excess binder 

allowing for the lubrication of the adjacent particles. While increase in binder 

concentrations result in smoother injection moulding, excessive binder amounts will lead 

to collapse of the moulded green part upon debinding. This is known as the critical solid 

loading concept. 
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Excessive binder addition will cause collapse of the powdered compact during 

debinding as the solid powders are not drawn close enough to maintain structural 

integrity upon debinding. Excessive binders will also lead to flashing (material wastage) 

and inhomogeneity within the final injection moulded component. It is important to note 

that in this process, a porous metal compact is desirable as the pores present serve as 

conduits by which the liquid metal infiltrant will later occupy. Hence the amount of 

polymer added must be carefully determined and be sufficient to produce porosity, but 

not excessive to the point where structural integrity and homogeneity of the MMC are 

compromised.   

In two material PIM where two feedstocks are overmoulded in a special die, solid 

loading of the feedstocks play a very important role. Unlike the overmoulding of 

polymeric components, the removal of binder in stages for PIM green parts result in 

differential shrinkage between both materials and dimensional mismatches. Such 

problems of distortion can be addressed in product design (e.g. increasing the moment of 

inertia of the component by the addition of ribs to prevent bending) but should 

nonetheless be carefully minimized with the careful planning of polymer contents within 

the relevant feedstocks to reduce shrinkage variations. 

Materials chosen for feedstock formulation affect directly the composition of the 

final MMC. Tungsten is invariant throughout the entire study while copper and silver are 

both used as the secondary infiltrating metal. The choice of the secondary infiltrating 

metal determines the lowest temperature by which the tungsten matrix can be sintered. 

The presence of additives introduced into the tungsten feedstock affects the final 

dimensional properties of the tungsten matrix. The addition of ceramic additives has been 
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shown [1] to constrain the growth of tungsten particles subjected to sintering. The 

presence of such additives can also affect the overall wetting characteristics of the 

tungsten matrix by an infiltrating metal [2]. 

 To achieve a designated tungsten grain size within the final MMC, starting 

tungsten powders have to be finer than the target grain size. This is to allow for grain 

growth and densification which will occur during sintering [3]. There has been no 

recorded dissolution of tungsten into molten copper or silver (in the absence of nickel) 

and hence no necessity to expect a significant reduction in tungsten particle sizes during 

liquid phase sintering. 

This study focused mainly on the changes associated with the integration of the 

thermal debinding process into the sintering/infiltration heat cycle as a means of reducing 

process time. The effect of solvent debinding on tungsten compacts has been studied 

previously by Hwang et al [4] and was not covered in the scope of this study. 

As the sample set up consists of two layers (high and low melting point 

components), there is therefore an option to vary the orientation by which moulded 

samples were placed inside the furnace during sintering. The different orientations of the 

layers determine the final density and microstructure of the sample as gravity can act as 

either a supplementary driving force or an unexpected obstacle. 

The heating profile in which the samples are subjected to is by far the most 

critical among all the variables. The infiltration/sintering temperature and holding time 

determines the final structure of the tungsten matrix, with a minimum temperature 

required to melt the infiltrant metal phase. The heating and cooling rates also determine 
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the stress levels between the two interweaving matrices and also affect grain growth 

characteristics of tungsten. 

Sintering atmospheres have an influence on both the tungsten and infiltrant phases. 

Oxides of tungsten are known to be volatile at high temperatures [5] and oxides in 

general are reported to display low wetting characteristics when subjected to liquid 

metals of copper and silver [2]. Hydrogen is also known to be soluble in several molten 

metals [6, 7] with diatomic hydrogen gas being evolved during the solidification process 

to produce smooth, rounded pores. 

 

3.1.2. Feedstock preparation 

Feedstock mixing is the process by which metal powders are admixed with 

relevant polymeric binders. The metal powders, thermoplastic polymer binders and 

dopant powders (where applicable) were first carefully measured using a Precisa 40SM-

200A and put into sealed receptacles. It is important to note that finely divided metals, 

specifically tungsten, are known to be pyrophoric in nature and care has to be taken that 

they are not exposed to sparking or an open flame. 

The three main metal powders used in this study were 10µm copper, 1µm 

tungsten and 100nm tungsten powder (morphology is shown in Figure 3.3 below). 

Polymeric binders used in this study consisted of three main components namely 

a backbone polymer that provided the bulk of the strength for the moulded component, a 

binder soluble in organic solvents that was to be removed in the first stage of debinding 

(solvent debinding) and finally a surfactant that allowed the backbone and soluble binder 

to bond with the metal and ceramic powders in use [8]. In this study, a standard polymer 
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mixture consisting of polypropylene as the backbone polymer, stearic acid as the 

surfactant and paraffin wax as the soluble component of the binder was used. 

 

(i) 

 

(ii) 

 

(iii) 

Figure 3.3: SEM photos showing morphology of the metal powders (i) 10µm copper 

powder, (ii) 100nm tungsten powders (with distinct agglomeration) and (iii) 1µm 

tungsten powder. 
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The tungsten, silver and copper feedstocks were prepared separately with their 

respective polymeric binders. This was done in a Ross double planetary mixer (Figure 

3.4). 

 

 

Figure 3.4: Photo of the Ross planetary mixer used in the mixing process 

 

In the mixing process, the mixer was first heated to 80°C with polymers 

(amounting to 50% volume of the final mix) present within the crucible. Upon melting, a 

tablespoon of the metal powder was then added. The double planetary mixer was then 

closed and left to rotate at 60 revolutions per minute for 10 minutes. After 10 minutes, the 

resulting slurry was then examined visually for homogeneity. If this was deemed 

satisfactory, more power was added, if not it would be mixed until it was homogenous. 

This step was done until all the metal powder had been introduced into the mixing 

crucible. When all the powder and polymer was added to the mixer and the mixture was 
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deemed to be homogenous, the temperature was then raised to 175°C and the mixer was 

evacuated to extract air. This was done to lower the viscosity of the mix to facilitate more 

uniform mixing while reducing the amount of trapped air. The resulting slurry is mixed 

for a total of four hours, with a change in rotating direction every hour. A slurry with 

consistency similar to toothpaste results. This was a rheological indicator that the 

feedstock could be injection moulded with ease at 175°C. After the cycle was complete, 

the slurry was removed, cooled and crushed manually to produce feedstock pellets small 

enough to be fed into the barrels of the respective PIM machines. The same general 

process was executed in the production of all feedstocks for PIM in this study. 

 

3.1.3. Injection moulding 

During the course of this project, PIM was done in three different machines, 

namely the Arburg Allrounder 220s, the Arburg Allrounder 420C (with two barrels 

capable of multi shot injection moulding) and the Battenfeld Microsystem 50 Micro 

injection moulding machine (Figure 3.5 below).  

 

(i) 

 

(ii) 
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(iii) 

Figure 3.5: Photos of PIM machines. From Top left corner (i) the Arburg 

Allrounder420C capable of Multi-shot injection moulding, (ii) the Battenfeld 

Microsystem 50 micro injection moulding machine (iii) the Arburg Allrounder 220S 

injection moulding machine 

 

 The injection moulding machine consists of several components. The main 

components are a hopper which directs the feedstock into the barrel, a barrel and screw 

assembly that is coated with carbide to ensure a longer service lifespan, and a mould with 

cooling channels and ejector pins. All these components are controlled through a central 

computer custom built into the PIM machine. 

The heated barrel (at a temperature of 165°C) melts the polymer present within 

the feedstock and reduces the melts overall viscosity. The screw within the barrel rotates 

to soften the feedstock further and also serves to homogenize the melted softened 

feedstock through shear. The flight depth of the screw gets progressively narrower 

towards the tip and this facilitates the removal of trapped gases through compression. The 

compressed feedstock is brought into the region in front of the screw tip behind the 

nozzle of the barrel. The feedstock accumulated in this region is called the shot, and it is 

filled when feedstock begins to “drool” from the barrel nozzle. The process of filling the 
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shot in this region is termed as metering and the shot volume is determined by the actual 

volume of the component and its associated sprues and runners. 

When sufficient material is accumulated behind the nozzle, the barrel is forced 

towards the runner inlet of a closed die. This forms a seal and the screw is forced forward, 

closing a check ring at the nozzle tip (that serves as a no return valve) that expels the 

feedstock into the mould at a high pressure and velocity to fill the cavity. 

Within the mould, the feedstock is cooled by means of custom built cooling 

channels that remove heat from the feedstock. This removal of heat solidifies the 

feedstock. When the feedstock has solidified, the die is parted and the part is ejected onto 

a cushioned platform by means of ejector pins. 

One unique feature of this study is the inclusion of two-material PIM into some of 

the processes investigated. There are several methods of multi-injection moulding, but 

the method used in this study is specifically over moulding where a portion of a 

previously injection moulded component (known as an insert) is put back into a larger die 

and a second shot of a second material is injected over, forming a two-material moulded 

part (Figure 3.6). In all experiments, tungsten was the insert material. 

  

(i) (ii) 

Figure 3.6: Photos showing overmoulded tensile bars, (i) Micro tensile bar with two 

halves made from copper and tungsten, (ii) Micro tensile dual layer bimetallic bar made 

from copper and tungsten. 
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Figure 3.7: SEM micrograph of a two material joining interface of a green part. The left 

half is of 100nm tungsten powders while the right half is of 10µm copper powders. 

Darker regions are metals while the lighter white regions are polymeric regions. 

 

Overmoulding is the fundamental system involved in the injection of parts that 

consist of two materials. Material combinations that can be successfully implemented 

using the over moulding method can be transferred to other more complex multi material 

moulding methods with relative ease. These methods include co-injection moulding, 

multi shot injection moulding, insert moulding, lamellar injection moulding and multi 

component injection moulding [9, 10]. 

 Bimetallic tensile bars of tungsten and its infiltrant metal reduce material wastage 

as fixed amounts of the infiltrant metals can be controlled through the formulation of 

feedstock to minimize excess. Handling and setting of the moulded sample is also 

simplified as only one component (the bimetallic component) is handled. Conventional 
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methods require the handling of both a tungsten component as well as a separate infiltrant 

metal component. 

Micro tensile bars were moulded in the Battenfeld Microsystem 50 micro 

injection moulding machine. Macro tensile bars and the diagnostic component were 

moulded in the Arburg Allrounder 220S injection moulding machine while rectangular 

bars were moulded in the Arburg Allrounder420C injection moulding machine. 

 

3.1.4. Debinding 

Following injection moulding, the polymeric binders were removed from the 

moulded component before sintering. This is done in two stages; the solvent and thermal 

debinding phases. 

In the first phase, known as solvent debinding, moulded components were put into 

a solution of heptane for four hours at a temperature of 50°C. For the sake of safety, a 

Memmeret heated water bath (Figure 3.8 below) was used as many organic solvents are 

flammable and not suitable to be heated over an open flame. 

 

Figure 3.8: The Memmeret WNB 45 waterbath used in the solvent debinding process. 
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During the solvent debinding process, paraffin wax that is soluble in the 

abovementioned organic solvent is dissolved into the heated bath, leaving behind only the 

backbone and surfactant polymers within the component. The voids left within the 

moulded sample act as conduits by which the remaining polymers flow out from. This 

has been shown to reduce considerably both the time required for the debinding process 

and the amount of distortion subjected to the debinded part [4, 11].  

Following solvent debinding, the solvent debinded samples were placed on a 

ceramic plate and put inside a furnace and heated to 450°C at a rate of 3°/minute under 

hydrogen. This temperature was held for a period of one to two hours depending on the 

heating profile and was done in a CM horizontal tube furnace (Figure 3.9 below).  

 

Figure 3.9: A standard CM horizontal tube furnace 

 

Thermal debinding decomposes the remaining polymers into vapours that flow 

out through the conduits left behind by the soluble binders. In the initial phases of the 
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study, thermal debinding was done as a standalone heating profile. This meant that 

following the 450°C heating, the sample was subsequently heated to a further 700°C, 

known as presintering, and then cooled to room temperature. This additional ramp up was 

to ensure that there was a degree of sinter bonding between adjacent powder particles 

such that the debinded part possessed sufficient green strength to withstand the shear and 

adhesive forces that were to come later in the infiltration phase. 

Heating profiles conceived later in the study integrated thermal debinding and 

sintering/infiltration into one heating profile, i.e. after thermal debinding at 450°C (see 

Figure 3.10),  the furnace was immediately heated up to the sintering/infiltration 

temperature. This was more effective as it resulted in overall time savings and also a 

savings on costly hydrogen gas. Heating profiles of this nature are referred to as direct 

sintering in this thesis. 
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Figure 3.10: An integrated thermal debinding and sintering/infiltration heating profile. 

In this integrated profile, the furnace is heated to 450°C at a rate of 3°C/min and held at 

450°C for one hour. It is then heated to the sintering/infiltrating temperature of 1150°C 

at a rate of 5°C/min and held for another one hour. Finally the temperature is lowered 

to 300°C at a rate of 3°C/min and subsequently left to cool naturally to room 

temperature. 
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3.1.5. Sintering/Infiltration 

Sintering and infiltration was done concurrently and to facilitate this, only 

temperatures above the melting point of the infiltrant metal were chosen. The lowest 

temperatures chosen for copper was 1150°C and not lower to give allowances for a slight 

deviation of heat distribution within the tube furnace. Sintering/infiltration were done in 

the same CM horizontal tube furnace that was used in the thermal debinding process. 

In the initial phases, various atmospheres were tested. The atmospheres were 

vacuum (700Pa), reducing and an inert environment. The gases used for the latter two 

were hydrogen and nitrogen respectively.  

Orientations of the infiltrant piece with respect to the tungsten matrix were 

investigated. Samples were tested and examined microscopically and the most suitable 

environment where low porosity, high homogeneity and high amounts of infiltrant metal 

present in the finished MMC was used for later studies. 

After a suitable atmosphere was determined, three different sintering/infiltraion 

temperatures were tested. For copper the three temperatures were 1150°C, 1200°C and 

1250°C. Subsequently, sintering/infiltration dwell time (time at which a chosen 

temperature was held at) was varied (times used were one minute, five minutes and 60 

minutes). The aim of this was to reduce the time tungsten particles were exposed to 

elevated temperatures and to minimize the degree of coarsening and increase the level of 

open porosity. 

During the sintering/infiltration phase two concurrent activities occur. The first is 

the coarsening and densification of the tungsten particles. This happens at as low as 70% 

of their absolute melting temperature [12]. The other step is that of infiltration. This 
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happens after the infiltrant metal has been melted and infiltrated through a series of 

displacement and capillary forces. 

Silver was later explored as a possible secondary infiltrant metal. Given the 

relatively low melting temperature of silver (961.78°C), temperatures used in the 

infiltration of silver were 1050°C and 1150°C. The aim of introducing silver was to 

expand the technology used to other tungsten based two material systems that had 

significant impact to the economy. 

 

3.1.6. Additional tests  

Apart from the standard PIM method described above, several other methods were 

also attempted in the manufacture of samples. 

As tungsten powder is costly and hard to obtain due to legal and security 

restrictions, Powder Metallurgy (PM) was used in this study as a means to test the 

viability of certain powder formulations before the addition of polymeric binders in the 

feedstock formulation. The key composition that utilized the PM intermediary was the 

addition of yttria as a Zener grain growth inhibitor. Tungsten powders of 1μm and 100 

nm particulate sizes were mixed with 2.0wt%, 4.0wt% and 10.0wt% yttria of particle size 

of 30 nm. Samples containing no yttria were also examined as a means of control. The 

testing sample matrix is given in Table 3.1 below. 

Table 3.1: Composition of compacts used in the study of yttria addition on the 

structure of sintered tungsten powders.  

Sample Wt% of 100nm W Wt% of 1m W Wt% of Y2O3 

1 0 100 0 

2 0 98 2 
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3 0 96 4 

4 100 0 0 

5 98 0 2 

6 96 0 4 

 

Dry tumbling of the mixture was conducted in an Inversina shaker mixer for 24 

hours under air. Powders were then separated into portions of 10g according to their 

sample composition. 

Separated powders were cold pressed in a Wabash 30-ton press at a pressure of 

370MPa for 300 seconds to form circular discs of 15mm in diameter and 1-2mm in 

height. The punch, die and a pressed disc are shown in Figure 3.11. 

Pressed discs were then sintered in hydrogen for one hour at 1250°C and the 

resulting product was sectioned, polished and examined microscopically for densification 

and grain growth. 

 

Figure 3.11: Photo showing components of the PM process clockwise from left, the 

punch, the die, the base and two pressed tungsten discs. 

 

Another test done in the earlier stages was that of microwave sintering. In this 

attempt, the samples were sintered and infiltrated inside a microwave furnace. It was 
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reported that microwave sintering of tungsten powders was able to produce nano-grained 

tungsten microstructures[13]. Microwave heating differs from conventional induction 

heating systems as the heating of the material is due to energy conversion of the 

electromagnetic radiation within the samples as opposed to other systems which rely on 

convective and conductive heat transfer. This results in extremely high heating rates and 

shorter sintering times that can result in smaller grain sizes. 

For this experiment, debinded tungsten copper samples (from 100nm size 

tungsten powders) were placed inside an alumina crucible that was then heated in a 

modified microwave oven. Unlike tests that were done in a CM tube furnace, a hydrogen 

environment could not be applied to this setup as the risk of arcing and sparking 

occurring between the metals under microwave could lead to combustion of the hydrogen 

gas. After the microwave cycle was complete, the alumina crucible was then emptied and 

its contents analyzed. 

Addition of copper into the tungsten matrix during the injection moulding phase 

was also explored. This test saw the inclusion of 5.0wt% of 10µm copper added to 

feedstock consisting of 1µm tungsten. The aim of this test was to increase the percentage 

copper within the final matrix by means of adhesion effects during infiltration. 

It is theorized that the addition of a small amount of copper (5.0% by weight) into 

the tungsten feedstock could increase the amount of copper infiltration within the finished 

sample. Upon reaching a temperature above the melting point of copper, these admixed 

grains of copper form reservoirs within the tungsten matrix that increase the flow of 

additional copper up through the matrix by the process of cohesion and surface tension. 

Cohesion effects between like materials attract the upwards flowing copper towards the 
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copper reservoirs. Upon contact, surface tension acts to join the copper reservoir and 

copper infiltrating front as one entity to reduce the free surface area of the liquid. This 

causes the reservoir to be pulled downwards into the copper front, but also exerts an 

equal force that pulls the copper front further up through the tungsten matrix. 

The high surface tension displayed by liquid copper (as shown in Table 3.2 below) 

also further makes it a suitable candidate for this admixing process. This infiltration 

process was carried out for one hour at 1150°C. 

Table 3.2 Surface tension data for several reference liquids 

Liquid Surface tension (Dyne/cm) 

Mercury @ 20ºC 435.5 

Water @ 20ºC 72.8 

Silver @ 962ºC 838.0 

Copper @ 1083ºC 1300.0 

 

3.2.  Characterization 

3.2.1. Microstructure evaluation 

The study of microstructure is to observe visually the building blocks of the 

material and attempt to relate its structure to its intrinsic properties. This is done with the 

use of a Scanning Electron Microscope (SEM)[14]. 

SEM works by aiming a focused electron beam towards a sample in vacuum. The 

incident electrons knock out secondary electrons within the sample. These secondary 

electrons are measured using a detector and the signal is sent to an amplifier. An image is 

then built up from the electrons emitted from each spot on the sample. The beam is 
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scanned back and forth across a sample, row by row, resulting in a complete image. To 

prepare a sample for SEM analysis, the sample has to be made smooth, scratch free and 

electrically conductive. The SEM machine used in this study was the JEOL JSM 5600LV 

SEM using a conventional tungsten filament. 

 

Figure 3.12: Visual schematic of an SEM 

 

Samples are prepared for SEM analysis by placing them into an epoxy 

thermosetting base. This is done by placing the sample into a latex mould using placing 

clips, and subsequently pouring catalyzed epoxy over the sample The catalyzed epoxy 

hardens to a hard clear plastic manifold that allows for the sample to be manipulated with 

ease (Figure 3.13 below). Epoxy was chosen over other resins like phenolic and acrylic 

resins as they have negligible shrinkage and harden quickly (approximately four hours 

under room temperature and pressure). 
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Figure 3.13: Polished sample mounted in epoxy with plastic placing clip visible. 

 

After the epoxy has hardened, the embedded samples are then wet ground and 

polished using a Persi Mecapol P225U polisher (shown below in Figure 3.14). This is 

done by grinding with successively finer abrasive media applied to a rotating disc. The 

abrasives used for this study were silicon carbide at the initial grinding stages and 

diamond paste for the final polishing stage. Unlike other metals, etching of tungsten 

based composites is usually not required as tungsten, given its high density, produces a 

much darker colouration in contrast to other lighter metals under SEM analysis, making 

grain boundaries distinguishable without the need for etching. 

 

Figure 3.14:  The Persi Mecapol P225U polisher/grinder used in this study. 

 

Tungsten 

copper 

sample 

Placing 

clip 

Epoxy Base 
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After polishing, samples were coated with a conductive layer of gold. This 

coating prevents electrons from building up within the insulating epoxy mould by 

discharging the electrons to the earth via the conductive stage. A build up of negatively 

charged electrons will deflect incoming electrons and result in a blurred signal. 

Common features observable by SEM analysis are that of grain size, 

compositional/microstructural homogeniety and porosity. Inhomogeniety and porosity in 

MMCs are undesirable as they lead to variations in resistivity and thermal conductivity, 

while grain size affects the strength of the material. The University of Texas Health 

Science Centre at San Antonio ImageTool version 3.0 software[15] was used in the 

analysis of porosity and grain size. 

 

3.2.2. Compositional analysis 

The composition of constituents within an MMC can be used to predict its 

properties based on their respective weight percentage value. A volume fraction method 

is used as a predictor for many intrinsic properties (Voight’s Law) for uniformly 

distributed composites. 

Compositional testing was done using an Energy dispersive X-ray spectroscopy 

(EDX, though sometimes also referred to as EDS). This test is done with a detector set up 

as an attachment to a standard SEM apparatus. The EDX used in this study was by 

Oxford Instruments and was linked to an INCA software system. 

When an electron bean is targeted at an atom, it knocks out electrons from within 

an inner valence shell. When a valence electron from an inner shell is knocked out, the 

atom drops in stability. To retain its original stability, an electron from an outer shell 
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makes a jump into the inner shell. This move causes a drop in energy as the outer shell 

electron is of a higher energy level. The energy that is released takes the form of X-rays 

that have unique wavelengths and energies. This data is then collected by a detector and a 

graph of X-ray intensity against energy level (measured in eV) is then plotted (Figure 

3.15 below). 

 

Figure 3.15: EDX scan of tungsten copper MMC with 41.6wt% copper. 

 

The position of the peaks is used to identify the material within the sample by 

comparing it with a database of known material peaks. 

To quantify the amount of elements within a scanned sample, background noise 

on the scan is first reduced through a Gaussian fit and the areas under the respective 

peaks are calculated. The values are then subjected to an algorithm (most common is the 

ZAF, Atomic number-Absorbance-Fluorescence Algorithm) to calculate the weight 

percent of an element within the sample. 
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One point to note when doing EDX scanning is to remove any coating from a 

sample before analysis. Though sputter coatings result in clearer SEM images, the level 

of error within the analysis is increased as the penetration level of electrons into the 

sample is reduced The addition of another element (common sputtering agents are Gold 

and Carbon) will cause additional peaks that affect the accuracy of Gaussian fit, altering 

the actual area under the peaks of various energy levels and subsequently affect the ZAF 

analysis. 

 

3.2.3. Hardness 

Hardness is an important property which determines a metals ability to resist 

plastic deformation under the effect of indentation. A common method of measuring 

hardness is the Vickers indentation test. In this method an indent is made on the material 

using an indenter with a fixed amount of force. The indenter used in Vickers hardness 

testing is a square-based pyramid whose opposite sides meet at the apex at an angle of 

136º. The Vickers Hardness value (HV) is calculated using the formula[16]: 

2
1.854V

F
H

D
  

Where F is force in KgF and D is length of the indentation in mm. To convert to 

an SI unit scale of MPa, the HV value is multiplied by the acceleration due to gravity, g, 

(commonly taken as 9.81m/s
2
). The force used in throughout this study was 100KgF and 

the method used was in accordance to ASTM E 384. 

Testing was done on samples that were already polished and mounted in epoxy. 

This ensured that there was a large flat base to ensure stability when the load was applied. 
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The presence of a sputter coat also made the indentation more distinguishable (as can be 

seen below in Figure 3.16) 

The apparatus used to determine the hardness was a Matsuzawa MMT-X3 Digital 

Vickers hardness tester. 

 

 

Figure 3.16: Photo showing on the left, the Matsuzawa hardness machine with a 

magnified indentation. D1 and D2 denote two diagonals used in the hardness 

measurement and right, SEM image of a Vickers indentation. 

 

The Vickers hardness value is exceptionally useful as it can be used to estimate 

the yield strength of the sample by the simple relationship: 

Vickers Hardness ~ 3 y  

Where σy is the yield strength of material. This is especially useful when a tensile 

test is not available. 

 

  D1 

D2 
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3.2.4. Conductivity 

Heat Sinks and electrodes are common applications of tungsten copper and 

tungsten silver metal MMCs. As these two applications are dependent on a material’s 

thermal and electrical conductance, it is therefore important to determine the conductivity 

of the sample produced. 

Bulk conductivity was measured using a four-point probe. The four point probe 

used in this study is a Keithley 4200 four point probe. 

The bulk resistivity for a sample is calculated as: 

2resist

V
s

I
 

 
  

   

Where ρresist is the bulk resistivity, s is the spacing between the probe tips (1mm), 

I is the applied current and V is the measured voltage. 

Conductivity is a reciprocal of resistivity and is expressed as a percentage of the 

conductivity of annealed copper (%IACS). This value is important as a major use of 

tungsten based composites is in the field of high voltage electrodes where the 

conductivity can determine the amount of energy loss within a system. For metals, the 

electrical conductivity is an excellent indication of its thermal conductivity and is 

proportional to the absolute temperature. This relationship is called the Wiedemann-

Franz law and it is expressed by [17]: 

K
LT


  

Where K is the thermal conductivity, σ is the electrical conductivity, T is the 

absolute temperature and L is the Lorenz number, the constant between two metals that is 

only variable to absolute temperature.  
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3.2.5. Dimensional change 

Dimensional analysis, specifically that of shrinkage, is an important parameter for 

PIM components as it determines the amount of shrinkage occurring from the post-

injection moulded green parts to the final sintered states. This data allows die makers to 

design dies that are able to produce samples of a final sintered size given the relevant 

shrinkage data. It also gives the production engineer data on how feedstock formulations 

can be adjusted to facilitate required tolerances. 

To quantify these features, measurements was done in two ways, the first with a 

digital vernier caliper, and the second with an optical comparator.  

The vernier caliper used was a Mitutoyo 500 series digital vernier caliper. The 

caliper had a resolution of 0.01 mm and was used only for disc, tensile and rectangular 

bar shaped samples. For compacted discs, their diameter and thickness were measured 

while rectangular injection moulded bars had their length, breadth and thickness 

measured. For tensile bars, apart from thickness and length, the breadth of both the 

thinner centre and the wider ends were measured. 

The optical comparator (Figure 3.17 below) was used to measure the dimensions 

of the more complex diagnostic component that consisted of gaps, through holes and 

overhang features (Figure 3.18 below). An optical comparator works by measuring the 

silhouette casted on a translucent screen. Features are then measured by moving the 

image along stipulated positions on the screen. The final displacement will be the length 

to be measured. Apart from linear dimensions, the optical comparator is also able to 

measure angles as well as the diameters of circular components. The comparator used in 

this study was a Deltronic DH 216 optical profile comparator. 
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Figure 3.17: An optical comparator. 

Figure 3.18: PIM diagnostic component 

featuring different linear, radial and 

resolution features. 

 

To collect useful data for the PIM process, dimensions were measured for post 

injection moulded components after the samples had been sintered and infiltrated. The 

corresponding dimensions are then compared and shrinkage data is calculated. 

 

3.2.6. Thermal expansion 

As the MMC investigated in this study is used in heat dissipation applications 

such as in semiconductor packaging as well as heat sinks, it is therefore important to 

determine the coefficient of thermal expansion (CTE) at the operating temperatures. 

Mismatch of CTE between heat sink and base materials will result in thermal stresses that 

can damage or reduce the lifespan of their base material. 

To determine CTE, the sample must first be ground into smaller pieces less than 

five millimeters thick with a parallel top and base. The grounded samples are then placed 
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into a thermo-mechanical analyzer where a quartz probe is used to measure the expansion 

of the sample as it is heated to a predetermined temperature. The samples are immersed 

in nitrogen during the heating process to prevent any oxidation. The TA instruments 

TMA 2940 was used in this study (Figure 3.19). The temperature range investigated was 

from 25°C to 450°C. 

 

Figure 3.19: Photo of TA instruments TMA 2940, the TMA used in this study 

 

The CTE is given by the expression: 

1B

B T


  
  

 
 

Where α is the coefficient of thermal expansion to be determined, ΔB is the 

change in length, B is the original length and ΔT is the change in temperature. 
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3.2.7. Density 

As with all materials made from powder constituents a comparison of theoretical 

density (calculated by the volume fraction of the constituent densities) and final density 

can be a good indication of the extent of sintering that has occurred. 

The most direct method of calculating density is by using the Archimedes 

principle of displacement and buoyancy. In this method, the sample is first weighed in air 

and subsequently  measured while immersed in a fluid of known density[18]. In this 

study, distilled water was used.  The density of the sample can then be determined by the 

formula given by: 

water

waterair

air

sample
ww

w
 











  

 

Where ρsample is the sample density, ρwater is the density of water, and wair , wwater 

are their weights in air and water respectively[18]. 

 

Figure 3.20: Density Determination kit.  

(Top cone is for measuring wair lower cone is for measuring wwater) 
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In this study, for every sample that is infiltrated, a non infiltrated tungsten 

skeleton is produced concurrently using the same conditions by which the infiltrated 

sample is produced. This uninfiltrated sample is also subjected to density measurements. 

A good use of this measured density is the calculation of composition. With the 

final density as well as the density of both copper and tungsten known, it is possible to 

establish the volume fraction of copper and tungsten with the material. This method can 

not only be used to determine the composition of the sample, it can also be used to 

determine if there has been porosity or incomplete infiltration occurring within the 

sample. 

The Precisa 40SM-200A (Figure 3.20) with a density measurement kit was used 

in this study to measure density. 

 

3.3. Overview of samples produced 

A complete summary of experiments planned and variables tested during the 

course of this study can be found in Appendix A. 
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4. RESULTS AND DISCUSSION 

This chapter will focus on explaining the mechanisms and theories of the results. 

A full presentation of results by sample can be found in Appendix B. 

 

4.1. Discussion of hypothesis investigated 

4.1.1. The effect of atmosphere on the infiltration process 

In the first stage, reducing (hydrogen), inert (nitrogen) and vacuum atmospheres 

were explored. These tests were covered in samples 1, 2 and 3. Sample 1, where the 

tungsten matrix was infiltrated with copper at a temperature of 1250°C under hydrogen 

for 60 minutes revealed a homogenous void-free finished product (Figure 4.1). Further 

microstructural analysis using commercial image analysis programs [1] showed the 

average particle sizes for sample 1 to be in the range of one to two microns. 

 

Figure 4.1: SEM micrograph of a polished cross sectional area of the infiltrated sample 

1. Light regions are tungsten and darker regions are of copper. 
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Samples 2 and 3, which were processed in nitrogen and vacuum (700Pa) 

respectively, showed no signs of infiltration. The post processed tungsten compacts for 

samples 2 and 3 were encapsulated within a copper shell when removed from the furnace. 

This can be seen in Figure 4.2 below. 

This phenomenon is attributed to the formation or a tenacious oxide layer on the 

free surfaces of the tungsten matrix. The equation for this oxidation is expressed as: 

2

1
( ) ( ) ( )

2
x yxW s yO g W O s     (4.1) 

The oxide layer forms as a result of exposure to air during the handling process. 

The high surface area attributed to fine powders makes it susceptible to spontaneous 

oxidation.  

 

(i) (ii) (iii) (iv) 

Figure 4.2: Photo showing failed infiltration when sintering/infiltrating under vacuum 

(i and ii) and under nitrogen (iii and iv). 

 

Metal oxides have been shown to display high contact angles with molten 

copper [2]. Low contact angles are necessary for effective capillary action [3]. 

Visual examination of all infiltrated products processed in hydrogen (samples 4-

21 and sample 33), showed that the integral features of the original injection moulded 

component were retained with little or no distortion. 
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Important observations from samples 7, 8 and 9 where a complex diagnostic 

component was produced (Figure 4.3 below) showed that small through holes remained 

open and no accumulation of copper at sharp angled corners was observed. Excess copper, 

when present, accumulated at the bottom of the sample and was easily removed with no 

damage to the bulk. Importantly, upwards infiltration was not obstructed by the gap. 

Resolution of the patterned feature on the top of the diagnostic samples also proved 

dimensionally congruent with the injection moulded green part and was proportionally 

reduced based on measured shrinkage factors. 

 

 

(i) (ii) 

Figure 4.3: Finished product showing (i) full resolution of infiltrated sample and (ii), no 

accumulation of excess copper at the edges of the lower edge. 

  

  
Figure 4.4: Macroscopic comparison of moulded component (left) and finished product 

showing clear resolution of injection moulded features and a direct shrinkage of the 

features in the finished component (right) Shrinkage factors were found to be between 

5.6%- 6.9% for diagnostic components sintered for 60 minutes. A paperclip is used as a 

reference for the scale that the sample can be reduced to. 
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To explain the phenomena of infiltration, a cubic close packing of spheres was 

used. In this arrangement, each sphere can be resolved three dimensionally into truncated 

decahedrons. This is an Archimedean solid that is able to perpetuate through the entire 

matrix and can be used as a model to represent uniform space filling [4]. Forces of 

capillary action and volumetric displacement serve to push the liquid copper through the 

pores of the tungsten matrix. Viscous drag will result in opposition towards infiltration. 

First we consider the effect of capillary action on the infiltration process. The interfacial 

force acting upwards on spherical particle acting at a liquid-gas interface has been 

derived to be [5]. 

 2 1 coscapillary

X
F r

r
  

 
   

 
    (4.2) 

Where r is the particle radius of the perform particles,γ is the surface tension of 

liquid, θ is the contact angle between liquid infiltrant and particle material and X is the 

depth of submergence of the particle. 

This capillary force acts to pull the liquid copper through the tungsten matrix. 

This force is largely dependent on the wettibility of liquid copper onto tungsten. Contact 

angle for liquid copper on tungsten has been found to be less than 20° [6] which is a 

condition suitable for spontaneous infiltration. 

When tungsten particles descend into the liquid copper, volumetric displacement 

will force the liquid up along the pores of the preform structure. The force required to 

raise the level of fluid to its new level (relative to the sphere, Figure 4.5) is analogous to 

the weight of the liquid melt displaced by the particle. This is a direct consequence of 

Archimede’s principle and can be shown mathematically by: 



105 

 

 2

3
displ liquid

X
F g X r 

 
  

 
    (4.3) 

Where ρliquid is the density of infiltrant and g is the acceleration due to gravity. 

  

Figure 4.5: Diagram showing the displacement of a sphere within a fixed volume of 

liquid. 

 

During infiltration, the tungsten preform sinks into the liquid metal at a constant 

speed. This can be related to terminal velocity and the equation governing Stokes law can 

be applied where the equation for viscous drag on a particle in fluid flow is given by: 

   6dragF rv      (4.4) 

Where η is the viscosity of liquid metal, v is the terminal velocity of metal 

preform into liquid metal, which can also be viewed as the speed for which the 

infiltration process proceeds. 

This force is the resistance to infiltration as it works against the direction of 

infiltration. Stokes’ Law for a sphere was found experimentally to be reasonably accurate 

for: 

Re=
2

1
liquidv r


  
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Mathematically, the summation for the entire process can be quantified as: 

Infiltrating Force =        Capillary force      +   Displacement force - Viscous drag 

                =    2 1 cos
X

r
r

  
 
  

 
        +  2

3
liquid

X
g X r 

 
 

 
  -  6 rv (4.5) 

Taking X=r for full submergence of the sphere within the infiltrant, the results 

can be reduced to: 

        =       2 cosr        +   32

3
liquid g r 

 
 
 

   -   6 rv   

           =     

2

2 cos 3
3

liquid gr
r v


   

 
  

  

       (4.6) 

For continual infiltration, it is required that the infiltration force (Equation 4.6) is 

positive, 

2

cos 3
3

liquid gr
v


  
 

  
  

 =  Z   >    0      (4.7) 

The value Z, henceforth referred to as the infiltration number, is an indication of 

the systems tendency towards spontaneous infiltration. A more positive value of Z would 

indicate a greater likelihood of infiltration by the liquid metal in the system. In sintering 

systems where ultrafine powders are the precursor, abnormal grain growth (which will be 

covered in greater detail later in this chapter) is often a distinct feature.  

The method used in the derivation of the formula is based on a uniform particle 

size. It is however more accurate to include the abnormal grain growth effect on the final 

value. In this context, as this model is based on a series of three dimensional building 

blocks, the effect abnormal grain growth has on infiltration can be referenced using the 

rule of mixture method: 
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V v


  
 

  
  

  =  Z’      >       0      (4.8) 

Vf represents the volume fraction of a particular particle size and Z’ is an 

adjusted infiltration number that takes into the account the distribution for a range of 

preform particle sizes. 

 

4.1.2. The effect of sintering temperature and tungsten powder sizes on the 

properties of the tungsten copper MMC 

After the selection of hydrogen as a suitable atmosphere for the processing of 

the tungsten-copper metal matrix composites, it was necessary to study the effect that 

starting tungsten powder size and the various sintering and infiltration temperatures had 

on the final metal matrix composites. 

In this phase two main parameters were investigated; starting tungsten powder 

size and sintering temperature. The two starting powder sizes were 100nm and 1µm, 

while sintering temperatures used were above the melting point of copper (1084.62°C) at 

1150°C, 1200°C and 1250°C respectively. 

 

Table 4.1: Summary of the properties of several tungsten copper MMCs. Sample 7, 8 and 

9 were manufactured from one micron tungsten powders with sintering temperatures of 

1150°C, 1200°C and 1250°C, respectively while samples 10, 11 and 12 are manufactured 

from 100nm powders at the same respective temperatures. 

 

Sample 
Composition 

(wt% copper) 

Mean hardness 

(HV) 

Mean 

conductivity 

(% IACS) 

Mean CTE 

(10
-6

K
-1

) 

7 38.46 206 44.70 13.05 

8 28.37 231 41.03 12.73 
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9 24.10 247 42.22 10.50 

10 18.32 253 21.91 13.56 

11 16.56 239 19.65 13.99 

12 14.11 244 19.76 13.46 

 

As solubility of tungsten in molten copper is negligible [7]. The synthesis of the 

metal matrix composite can be considered as comprising of two discreet stages; firstly, 

the solid state sintering of a tungsten preform, and subsequently the infiltration of the 

metal matrix preform by molten copper. 

Infiltration requires the flow of molten copper through the interconnected 

interstices of the tungsten skeletal matrix. At higher sintering temperatures, 

interconnected porosity is lowered as densification becomes more extensive [8, 9]. There 

are two main mechanisms in play at this point, densification and grain growth. 

Densification reduces the porosity within the samples, while grain growth leads to the 

increase in grain size, with some grains growing at the expense of its neighbouring grains 

[10]. While uniform densification and grain growth was evident in samples processed 

using 1µm tungsten powders, samples produced using 100nm tungsten powders showed 

abnormal grain growth within the tungsten matrix. 

The general trend of increasing hardness, resistivity, shrinkage factor, density 

and a decrease in the coefficient of thermal expansion (CTE) with increasing sintering 

temperatures for samples produced using 1µm tungsten powders is directly due to a 

decrease in infiltrant content. The large drop in percentage copper between samples 7 and 
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8 as compared to that between samples 8 and 9 is attributed to the lowering of 

densification rates at higher sintering temperatures for fine tungsten powders [11].  

Experimental values for hardness of 1µm tungsten powders were higher than 

those predicted by the law of mixtures (Figure 4.6). Upon cooling, the molten copper 

solidifies to produce two interwoven matrices of copper and tungsten. These two matrices 

have differing coefficient of thermal expansions (CTE for copper at 20ºC is 16.5x10
-6

K
-1

, 

CTE for tungsten at the same temperature is 4.5x10
-6

K
-1

) [12]. The copper matrix, which 

contracts more than the tungsten matrix, has a tensile stress subjected to it. The 

solidification shrinkage [13, 14] that is experienced by copper upon solidification also 

contributes to the tensile stress. Due to the ductile nature of copper, the copper matrix is 

in the process of shrinking strain hardened due to an increase in dislocation density, 

resulting in the significant elevation of hardness throughout the composite [15]. The 

compressive stress experienced by the tungsten matrix as a result of copper’s 

solidification shrinkage also constitutes to a hardening effect on the tungsten matrix [16]. 

Comparing samples 10, 11 and 12 where the starting powder used is 100nm, the 

drop in hardness for samples 11 and 12 despite containing less copper as compared to 

sample 10 is due to the higher density of abnormal grains (of 20-25µm diameter). This 

decrease in the density of grain boundaries allows for dislocations to continuously 

propagate without arrest, leading to hardness that is lower than theoretically predicted, 

despite a higher volume fraction of harder tungsten. Compared to samples 10 and 11 that 

were also produced using 100nm tungsten powders, the decrease in grain boundary 

density also resulted in a higher than expected conductivity for sample 12 as a reduction 
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in grain boundaries resulted in a longer mean free path for unobstructed electrons 

propagation. 
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Figure 4.6: Graph showing the theoretical and experimental values of hardness for 

samples 7 – 12 

 

The lower values of experimental electrical conductivity for all samples as 

compared to theoretical values (Figure 4.7) can also be attributed to increase in 

dislocation density [17, 18] within both copper and tungsten constituents due to CTE 

mismatch of copper and tungsten phases. Dislocations act as regions of electron 

scattering and this obstruction lowers the conductivity of the dislocated metal by posing 

as an obstacle and reduces the mean free path of an electron. The increase in grain 

boundary concentration in samples produced using 100nm tungsten powder as compared 

to those produced using 1µm powders resulted in a distinct drop in conductivity between 

samples using the two starting powder sizes. 
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Figure 4.7: Graph showing the theoretical and experimental values of conductivity for 

samples 7 – 12. 

 

It is important to note that from electrical resistivity, one can also predict the 

thermal resistivity of the composite using the Wiedemann-Franz law for metals [19], 

which states that for a given temperature, electrical resistivity is proportional to thermal 

resistivity. 

Experimental CTE values were also shown to be significantly higher than 

theoretical values. This is due to elastic stress strain interactions between the interwoven 

infiltrant and tungsten matrices of differing modulus. During heating, the copper matrix 

expands isotropically and is constrained by the tungsten matrix of a lower CTE both 

through physical obstruction and strong interfacial bonding [6]. The tungsten matrix is 

not a uniformly continuous network but consists of adjacent particles that are joined 

together by means of a narrow neck. Expansion of copper upon heating is hence able to 

produce sufficient stress upon the tungsten matrix to strain it. Some of the initial sintered 
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necks then rupture during the isotropic expansion of copper, resulting in a CTE that is 

closer to that of copper than the theoretically expected value.  

 

(i) (ii) 

Figure 4.8: Diagram showing the effect of copper phase expansion on the tungsten 

matrix. On the left, (i), shows a tungsten matrix in sea of solid copper at room 

temperature. The arrows show the tensile forces acting on the composite during the 

heating process. The diagram on the right, (ii), shows the same matrix after it has 

been heated to an elevated temperature. During the heating process, the continuous 

phase of copper expands isotropically and this causes some weak necks formed 

between adjacent tungsten particles to break, as shown by the circles in (ii). 
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Figure 4.9: Graph showing the comparison between theoretical and experimental CTE 

values for samples 7-12. 

 

A comparison between the different starting tungsten powder sizes (sample 7 vs 

sample 10, sample 8 vs sample 11 and sample 9 vs sample 12) for the identical 

processing conditions showed that MMCs processed with 100nm powders showed more 

extensive densification and thus a lower copper content. This lowering in copper content 

resulted in a lowering of conductivity and higher hardness. While a direct comparison 

between sample 7 to 10 and 8 to 11 yielded expectedly harder values for the latter 

samples, the comparison of 9 to 12 yielded an unexpected dip in hardness for the sample 

produced using 100nm powders. This phenomenon is attributed to the presence of 

abnormal grains that reduce the Hall-Petch strengthening effect as mentioned earlier. 

The most discernable difference between tungsten matrices produced using 

100nm and 1µm tungsten powders was the presence of abnormal grain growth. That 

observation was present in all sintered 100 nm samples. Abnormal grain growth was not 

observed in samples produced using 1µm tungsten powders. 
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Figure 4.10: SEM photo at 15,000 times magnification showing the assimilation of 

100nm tungsten grains into larger grains in excess of one micron in forming larger, 

more energetically stable tungsten particles. 

 

   

(i) (ii) (iii) 

Figure 4.11: SEM photographs showing abnormal grain growth in (i) an uninfiltrated 

tungsten matrix and (ii) an infiltrated tungsten matrix and (iii) close up of the edge of 

an abnormal grain showing preferential grain growth at the expense of neighbouring 

grains. 

 

For all sintering temperatures, the final grain size of the abnormal grains 

averaged at 20-25µm in diameter. More in depth examination showed an evidence of 

mass flow on the surface of the abnormal grains caused by the assimilation of the 

abnormal grain at the expense of its adjacent smaller neighbours (Figure 4.11(iii)). 
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The near perfect spherical configuration of the grains at this size was correlated 

directly to the lowest possible surface area to mass ratio. 

The driving force towards sintering is the reduction of free surface area. While 

densification reduces porosity, coarsening will lead to larger interparticulate pores. To 

compare the driving force of abnormally large grains forming in the tungsten matrix, we 

shall consider the reduction in surface area from the two starting powder constituents 

(100nm and 1µm powder) to a finished 20µm diameter tungsten grain. We shall assume 

that both starting and finished grains are perfectly spherical and fully dense. 

We will take the r to represent the lowest common factor for grain radius, which 

in this case would be 50nm. All subsequent radii will be multiples of r. 

First we determine the number of starting powders required to form a 20µm 

diameter tungsten sphere. This can be done by dividing the volume of the 20µm sphere 

by the volumes of the two starting grains sizes: 

For 100nm powders, the number of powders required to form a 20µm sphere is: 

 
 

3

3

3

4 200
3 200

4
3

r

r




       (4.9) 

For 1µm powders, the number of powders required to form a 20µm sphere is  

 

 

3

3

3

4 200
3 20

4 10
3

r

r






     (4.10) 

Next we calculate the total surface areas for the three respective grains for a 

fixed volume of tungsten as: 

For 100nm powders,  
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    3 2 6 2200 4 32 10r r        (4.11) 

For 1µm powders, 

     
23 5 220 4 10 32 10r r       (4.12) 

And for a 20µm powder is, 

    
2 4 24 200 16 10r r       (4.13) 

Dividing Equation 4.11 and 4.12 by Equation 4.13 respectively, we can see that 

the reductions in surface areas are 200 and 20 times respectively. 

Hence it can be seen that with 100nm powders as a precursor, the driving force 

in producing an abnormal grain of 20µm in diameter is 10 times greater than that of 1µm 

tungsten powders. Similar results were also observed in other independent studies [20]. 

 

Figure 4.12: The combination of sintering temperature and sintering time needed to 

produce a maximum grain size of 100nm for two starting tungsten particle sizes, 10nm 

and 20nm. All of these solutions are based on a 2GPa compaction pressure and sintered 

density of at least 96% of theoretical [20]. 
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4.1.3. The effect of holding times during sintering on the properties of the tungsten 

based composites 

The effect of holding times was experimented on samples produced using 

100nm tungsten powders. This was done in conjunction with an integrated debinding heat 

cycle. 

The main purpose of this experiment was to determine if grain growth could be 

controlled significantly with a reduction in time at the lowest possible sintering 

temperature (which in this study was determined to be 1150°C). Apart from grain size 

control, reduction in sintering time can also translate into economical savings. An overall 

reduction in process time would reduce the amount of power, hydrogen and man hours 

required for the manufacturing cycle. 

.  

Table 4.2: Summary of the properties of tungsten copper MMCs sample 15, 14 and 10 

produced using 100nm tungsten powders and infiltrated at temperatures of 1150°C for 

1min, 5min and 60min soaking times. 

 

Sample 
Composition 

(wt% copper) 

Mean hardness 

(HV) 

Mean 

conductivity 

(% IACS) 

Mean CTE 

(10
-6

K
-1

) 

15 10.28 281 27.69 14.80 

14 25.75 287 24.50 14.86 

10 18.32 253 21.91 13.56 

 

A short sintering and infiltrating time of one minute lead to a lower than 

expected amount of copper present within the final MMC. SEM examination of sample 

15 (Figure 4.13 below) showed that this reduction in copper content was due to 

incomplete infiltration of the tungsten matrix by copper when soaked at 1150°C for one 
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minute. As the focus of this study was in the synthesis of fully dense samples, our 

discussion will shift towards samples 10 and 14. 

 

Figure 4.13: SEM photograph of a sectioned sample of the MMC which has been 

infiltrated/sintered at 1150°C for one minute. The black regions are voids within the 

MMC. 

 

From SEM examination of the tungsten matrices of the two fully dense MMCs 

(sample 10 and 14). It was evident that a reduction in peak temperature dwell time from 

one hour to 5 minutes did manage to reduce significantly the final grain size of the 

tungsten matrix from 2 µm to an average of 500nm. This can be seen clearly in Figure 

4.14 below. 

  
(i) (ii) 

Figure 4.14: SEM photographs showing smaller tungsten grain sizes present in samples 

sintered and infiltrated at 1150°C for 5 minutes (i) as compared to samples done so for 

60 minutes (ii). 
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Table 4.3: Comparison between theoretical and experimental values of hardness, 

conductivity and CTE for samples 10 and 14. 

 

 Experimental Theoretical 

Sample 
Hardness 

(HV) 

Conductivity 

(% IACS) 

CTE 

(10
-6

K
-1

) 

Hardness 

(HV) 

Conductivity 

(% IACS) 

CTE 

(10
-6

K
-1

) 

14 287 24.50 14.86 216 60.53 9.64 

10 253 21.91 13.56 243 53.51 8.41 

 

While CTE and conductivity value deviations can be attributed to explanations 

covered in 4.1.2, a comparison between experimental and theoretical hardness values (as 

shown in Table 4.3 above) showed that while experimental hardness for samples sintered 

and infiltrated for one hour showed a 4% decrease, samples sintered for five minutes had 

a value of hardness that was 33% higher than determined theoretically. This phenomenon 

is clearly due to Hall-Petch strengthening where the finer tungsten grains lead to 

strengthening [21] of the matrix. 

 

4.1.4. Tungsten feedstock containing 5.0wt% copper  

1µm tungsten powders were mixed with 5.0wt% copper in the manufacture of 

sample 21. The purpose of this addition was to increase the amount of copper infiltrant 

within the final product by means of adhesive forces that draw the infiltrating front of 

copper up further when it came into contact with copper reservoirs present within the 

tungsten matrix. 
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Figure 4.15: SEM micrograph showing a tungsten matrix with copper reservoirs left 

behind by the incorporation of 5.0wt% copper into the tungsten feedstock during mixing. 

 

It can be seen from Figure 4.15 that bulk structural homogeneity was an issue 

with this sample. The tungsten matrix contained gaps that were formed from the presence 

of solid tungsten particles included during the mixing process. These “reservoirs” of 

copper were not able to shrink during the sintering phase and remained throughout the 

entire framework. While it is also theorized that smaller copper powders might result in 

smaller copper reservoirs, this could not be attempted due to material supply limitations.  

 

 

 

 

 

 

 

Copper reservoir 
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Table 4.4: Summary of the properties of pure tungsten feedstock (sample 20) and 

tungsten feedstock mixed with 5.0wt% copper (sample 21). Both samples were sintered 

at 1150°C for 5 minutes. 

 

Sample 
Composition 

(wt% copper) 

Mean hardness 

(HV) 

Mean conductivity 

(% IACS) 

Mean CTE 

(10
-6

K
-1

) 

20 34.62 198 26.21 13.21 

21 40.43 161 29.33 14.81 

 

From Table 4.4 above, lowering of the mean hardness, increase in CTE and 

increase in mean conductivity can be attributed to an increase in the amount of copper 

within the sample. The small disparity in CTE between sample 21 and 20 despite a 17% 

difference in copper content can be attributed to the presence of copper reservoirs. 

Assuming a linear law relationship for shrinkage, we will get the relation: 

W Cu Cu Cu W WV V      

Where αW-Cu is the overall CTE, VCu and Vw are the volume fraction of copper 

and tungsten respectively and αCu and αW are the CTE values for copper and tungsten 

respectively. With this in mind, we now consider Figure 4.16 below. 

In the figure it can be seen that the central region (denoted by box 2B) has a 

greater volume fraction of copper as compared to the other eight boxes. As such, the 

expansion within the region 2B during heating will act to push the other eight regions 

uniaxially apart. 
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Figure 4.16: Diagram showing expansive effect copper reservoirs have on the composite. 

The arrows show the net force experienced by the expanding copper reservoir on that 

surrounding regions. 

 

To determine the ability of the tungsten matrix to deformation, it is important 

then to establish the ability of the tungsten matrix in withstanding deformation. Standard 

tensile and three point bending tests attempted yielded inconclusive results as the 

tungsten porous matrix would fail suddenly and catastrophically.  

Hence the Vickers hardness test was used to determine the yield strength of the 

matrix. The relationship between Vickers hardness and yield strength can be seen in 

Equation 4.14 below. 

3v yH       (4.14) 

Where Hv is the Vickers hardness and σy is the yield strength of the tungsten 

matrix. 

An uninfiltrated tungsten matrix produced using the same conditions as sample 

10 and 14 was then analysed for its Vickers hardness and yielded a hardness of 198HV 

(1942MPa) and a matrix yield strength of 647MPa. 
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Let us now consider the definition of young’s modulus as being: 

y y y
E

B T
B

  

 
  

 
    (4.15) 

Where E is the Young’s modulus, σy is the material stress, ε is the material strain, 

B is the original length of the material, α is the coefficient of expansion of the material 

and T is the temperature in Kelvin. Hence rearranging of Equation 4.15 will lead to 

 yE T        (4.16) 

Using values of copper obtained from the Smithell’s metal reference handbook 

[22] and an operating temperature of up to 350°C from 25°C, the value of thermal stress 

induced by copper is 627MPa. This value is lower than the matrix yield strength of 

647MPa obtained for the tungsten matrix.  

Hence the tungsten matrix is able to sufficiently constrain the reservoir of copper 

during thermal expansion, resulting in an experimental CTE that is lower than that 

obtained by theoretical methods. 

 

4.1.5. Investigating the viability of microwave sintering and infiltration 

Microwave sintering of tungsten has been investigated and its ability to produce 

fine tungsten grains within pressed samples [23, 24] displayed a possible potential in 

producing fine grain tungsten copper MMCs otherwise not possible with standard 

sintering methods. 

Under microwave, copper was able to melt and liquefy. However, the powdered 

compact of tungsten oxidized, forming oxides of tungsten which eventually sublimed. 

Oxides of tungsten are known to be volatile and have been shown to sublime rapidly 
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above 750°C. [25]. It was also documented that above 1300°C, the rate of sublimation 

exceeds oxide formation, causing a continuous removal of tungsten (Figure 4.17). Upon 

inspection, it was also observed that the alumina crucible used in microwave sintering 

was coated with a yellow green powder that is shown in Figure 4.18. EDX analysis 

identified the coloured powder to be tungsten trioxide (WO3). 
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Figure 4.17: Evaporation rates of tungsten trioxide (WO3) versus temperature [26] 

 

 

Figure 4.18: Tungsten trioxide (WO3) extracted from the sides of the crucible after 

microwave sintering. 
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The inverse heating profile synonymous to microwave sintering transfers energy 

directly to the sample and minimizes a significant amount of thermal losses. This 

efficiency provided a favourable path for the sublimation of the oxide. Bathing the setup 

in an inert or reducing environment would have proved more successful in producing 

meaningful results but given the limitations of the microwave furnace available, only 

open room atmosphere and pressure was available. 

 

4.1.6. The effect of yttria addition on PM tungsten discs 

Grain growth of micron and submicron tungsten even at moderate temperatures 

(1150°C) proceeds relatively quickly on the onset of thermal energy, despite the presence 

of pores that exert pore pinning pressure onto the tungsten grains [27]. An addition of a 

nano structured oxide at grain boundaries could have an effect in inhibiting grain growth 

by means of Zener pinning by an oxide phase [28]. 

From Figure 4.19 it can be seen that without yttria (samples 22 and 26), 

extensive densification was observed in samples produced by both 100nm and 1µm 

tungsten powder. However, when 2.0wt% yttria was added (sample 23 and 27), the 

samples showed a homogenous pore distribution throughout the samples. For the samples 

with powder size 100nm doped with 4.0wt% yttria (sample 24), abnormal grain growth 

was seen. This was not observed in the 1µm tungsten counterpart (sample 28). 
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Sample 22 (100nm W-0% Y2O3) Sample 26 (1µm W-0% Y2O3) 

  

Sample 23 (100nm W-2.0% Y2O3) Sample 27 (1µm W-2.0% Y2O3) 

  

Sample 24 (100nm W-4.0% Y2O3) Sample 28 (1µm W-4.0% Y2O3) 

Figure 4.19: Microstructure of pressed tungsten samples with varying starting powder 

sizes and yttria additive quantities. 

 

Growth in tungsten at the 4.0wt% yttria level for 100nm tungsten can be 

attributed to grain growth of yttria at higher concentrations. This observation was also 

observed by Itoh et al [29]. At 4.0wt%, the high concentration of dispersed yttria within 
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the sample was able to contact adjacent yttria particles. These particles would then grow 

into larger yttria grains that were unable to exert sufficient pinning pressure on the 

relatively small tungsten grains according to the following equation: 

v
s

F
p

r


     (4.17) 

The equation above shows the inverse relationship of zener additive particle size, 

r on pinning pressure, Ps. where Fυ is the force acting on the particle-boundary interface, 

and γ is the surface energy per area [9]. Hence as the yttria particles grow in size 

(increased r), a decreased pinning pressure (Ps) results. 

On the other hand, the total pinning pressure of the larger yttria grains was still 

able to inhibit the growth of 1µm tungsten particles and resulted in grain growth being 

inhibited in the latter. 
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Figure 4.20. Vickers hardness values against amount of yttria addition for the sintered 

tungsten pressed using PM methods for 1µm and 100nm tungsten powders. 
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Hardness levels for samples produced without yttria were relatively constant at 

approximately 116HV. The drop in hardness with addition of yttria is related to porosity 

throughout the bulk sample which will inadvertently lead to a reduction in its ability to 

withstand deformation due to an increase in the number of stress concentrators and an 

overall reduction in material. Drop in hardness with increased yttria addition is also a 

result of yttria particles impinging at tungsten grain boundaries. The pinning pressures 

against the boundaries serve to separate them, reducing the force required to deform the 

bulk by means of grain boundary separation. Due to only initial stage sintering being 

present, the yttria grains impinging against adjacent tungsten powders reduces the force 

required to separate them, lowering the amount of force needed to deform the matrix and 

hence lowering its hardness. 

 

Figure 4.21: Diagram showing a zipper-like effect on a tungsten matrix when subjected 

to indentation. Fsep shows the separation force caused by the indentation while F’sep 

shows the force on adjacent tungsten grains caused by the presence of impinging yttria 

grains. 
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 It was concluded that the optimum value of yttria addition to tungsten to 

minimize grain growth is at the 2.0wt% level. Although pure tungsten matrices were 

superior in terms of matrix hardness and strength, the submicron structures of matrices 

formed with a 2.0wt% addition of yttria ensured greater homogeneity, greater bulk 

porosity (which would translate to greater infiltrate volumes in the finished MMC) and 

smaller grain sizes that would serve to strengthen subsequent infiltrated metal matrix 

composites by means of the Hall-Petch relation. 

PIM tungsten feedstock doped with 2.0wt% yttria was then formulated, injection 

moulded and subjected to copper infiltration at 1150°C for 5 minutes. A comparison of 

the properties of this MMC with its non doped counterpart can be seen in Table 4.5 

below. 

Table 4.5: Properties of pure tungsten feedstock (sample 20) and tungsten feedstock 

mixed with 2.0wt% yttria (sample 33). Both samples were sintered at 1150°C for 5 

minutes. 

 

Sample 
Composition 

(wt% copper) 

Mean hardness 

(HV) 

Mean conductivity 

(% IACS) 

Mean CTE 

(10
-6

K
-1

) 

20 34.62 198 26.21 13.21 

33 34.33 215 24.21 13.54 

 

Composition, conductivity and CTE are comparable for both sample 20 and 32. 

With yttria’s CTE of 8.1x10
-6

K
-1

differing significantly from that of tungsten (4.5x10
-6

K
-1

) 

and copper (16.5x10
-6

K
-1

).The higher hardness of sample 33 as compared to sample 20 

can be attributed to additional CTE mismatches experienced by the MMC with the 

presence of yttria. 
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4.1.7.    Studies on tungsten-silver MMCs 

With the success of copper as an infiltrant in forming tungsten copper MMCs by 

PIM, another commonly used metal in making tungsten based MMCs, silver, was also 

explored.  

Despite its higher price, silver is commonly used for a number of current 

applications [30, 31] where it’s superior conductivity over copper results in lower thermal 

losses. The melting point of silver is also lower than that of copper, opening the avenue 

for lower processing temperatures, shorter manufacturing cycles and finer tungsten grains. 

All three samples were debinded at 450°C for one hour and subsequently heated to 

1150°C and held for five minutes before cooling. The entire heat cycle was conducted in 

a hydrogen environment. While sample 30 and 31 consisted of 1µm and 100nm tungsten 

powder matrices respectively, sample 32 had 2.0wt% of yttria added to the tungsten 

powder during feedstock preparation to act as a grain growth inhibitor. 

SEM analysis (Figure 4.22 below) showed abnormal grain growth in sample 31, 

the sample produced using 100nm tungsten powders. Comparing sample 30 and 32, 

samples produced using 1µm tungsten powders, it was observed that smaller, more 

uniform and discreet tungsten grains were present in sample 32 where yttria was used as 

a dopant. 

   

Figure 4.22: SEM micrographs showing from left to right, microstructures of samples 

30, 31 and 32. 
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SEM analysis also displayed the obvious presence of pores throughout the entire 

bulk of all three samples. Porosity associated with the solidification of molten metals can 

be attributed to a variety of reasons. 

Shrinkage pores are a result of molten metal cooling too rapidly within a matrix. 

When a liquid phase solidifies and shrinks, its volume decreases. Due to the presence of a 

secondary matrix which hinders the translation of mass during the solidification process, 

cavities are formed [13]. High cooling rates prevent cavities from closing before 

solidification, resulting in pores. The pores formed from shrinkage are elongated and 

non-spherical. 

Gaseous pores are smooth pores formed through the evolution of gases during 

the solidification process. As a metal melt solidifies, gas is precipitated as a result of the 

lowering of gases solubility in the metal. Pores of this nature are spherical. 

A third possibility in the formation of pores is that of incomplete infiltration. 

This can be due to lack of infiltrant or lack of time allocated to the infiltration process. 

Pores of this nature are non spherical and usually agglomerate at regions furthest away 

from the origin of infiltration. 

It was observed that the pores within the samples were rounded and adhered to 

the tungsten matrix, characteristic of gaseous pores. Although hydrides of silver have not 

been observed in earlier studies, the solubility of hydrogen in silver has been reported 

[32]. During the solidification of silver, solubility of atomic hydrogen within silver 

decreases. This results in the evolution of hydrogen from within the matrix as a gas. 

Given the low viscosity of silver at 1150°C (2.96mNsm
-2

 for silver and 3.96mNsm
-2

 for 
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copper), the partial pressure of the evolved hydrogen gas is sufficient enough to produce 

discernible gaps in the silver matrix. 

 

Figure 4.23: Graph showing the solubility of hydrogen gas in silver at 98 kPa. 

  

Table 4.6: A comparison between theoretical and experimental values of hardness, 

conductivity and CTE for samples 30, 31 and 32. 

 

  Experimental Theoretical 

Sample 
Composition 

(wt% silver) 

Hardness 

(HV) 

Conductivity 

(% IACS) 

CTE 

(10
-6

K
-1

) 

Hardness 

(HV) 

Conductivity 

(% IACS) 

CTE 

(10
-6

K
-1

) 

30 36.41 133 51.02 15.10 190 66.34 10.65 

31 28.74 153 42.30 14.31 217 60.33 9.60 

32 37.53 127 53.49 13.03 173 61.68 10.69 

 

Lower values of conductivity and higher values of CTE as compared to 

theoretical values are attributed to reasons cited in 4.1.2.  

Lower values of experimental Vickers hardness as opposed to that predicted by 

theoretical values was however not in line with the explanations expounded in 4.1.2. The 

two main reasons for the drop in hardness would be firstly, the presence of gaseous pores 

throughout the bulk sample which reduced the overall material density and secondly the 
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presence of yttria particles impinging against adjacent tungsten grains. The yttria particles 

(as explained in section 4.1.6) serve to pushing the grains in the tungsten matrix apart, 

leading to a lowering in overall hardness. 

 

4.1.8.  Joining of tungsten matrices in forming an MMC 

This section will cover the joining of two adjacent tungsten matrices during the 

infiltration process. This observation was not hypothesized but showed immense 

potential for commercialization due to its repeatability and ease of implementation. 

Sample 1 MMCs were produced in three orientations with the position of the 

tungsten matrix relative to the copper layers. All three set ups were debinded at 450°C for 

one hour, pre-sintered at 700°C for one hour and finally infiltrated/sintered at 1250°C for 

another hour. The entire process was done in a hydrogen reducing environment. The 

orientations can be seen clearly in Figure 4.24 below. 

 
(i) (ii) (iii) 

Figure 4.24: The three setups that were tested in the joining of two tungsten preforms 

to produce singular tungsten copper MMCs from left (i) copper below, (ii) copper in 

between, and (iii) copper on top. The arrow shows the direction of copper infiltration. 

 

SEM analysis revealed presence of voids in samples produced using setup (ii) 

and (iii) (Figure 4.25 below), which was due to the presence of encapsulated gases within 

the MMCs that were unable to release themselves during infiltration. Molten copper 
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flowing upwards in the case of setup (i) rises in fronts, resulting in a systematic expulsion 

of gases. This process is represented diagrammatically in Figure 4.26 below. 

 
 

Figure 4.25: SEM photograph of the tungsten copper MMC showing voids (circled) 

present due to incomplete infiltration. 

 

 
(i) (ii) 

Figure 4.26: Diagram showing (i) infiltration of copper upwards into a tungsten matrix 

where no gases are trapped and (ii) infiltration of copper downwards into a tungsten 

matrix that can lead to encapsulation of gases. 
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Further examination of the samples produced using set up (i) was conducted. 

Both optical and SEM analysis (Figure 4.27 and 4.28 respectively) at the joining interface 

of the two matrices showed no discernable distinction. 

 

Figure 4.27: Optical microscopy photo showing the joining interface at a magnification 

of 100x. The white arrow points to the location of joining interface line. The dark 

regions are tungsten while the lighter regions is copper 

  

 

Figure 4.28: SEM micrograph showing the joining interface at magnification of 3000x. 

The white arrow points to the location where the interface terminates. 

 

Examination of hardness and composition were conducted along the joining 

interface and along two parallel lines 1mm above and below the interface as shown in 

Figure 4.29 below. 

End of interface 
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Figure 4.29: Location of areas subject to composition and Vickers hardness testing. 

 

Compositional analysis using Electron Dispersive X-ray (EDX) analysis showed 

a slightly higher copper content noted at the interface as compared to the regions above 

and below the interface. However, all values were still within 5.0% of each other (Figure 

4.30). 
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Figure 4.30: Graph showing the percentage weight of copper present at the interface 

and at lines 1mm parallel to the interface as obtained by EDX analysis 

  

Vickers hardness testing yielded results similar for indentations done at the 

interface and 1mm below and above the interface (Figure 4.31). The difference in 

hardness was less than 4.0% for the readings for the three locations. 
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Figure 4.31: Graph showing the experimental Vickers hardness at the interface and at 

lines 1mm parallel to the interface as obtained by Vickers hardness indentation tests. 

 

Upon debinding, the preform consisted of tungsten grains that were held 

together by a combination of lightly sintered necks as a result of initial stage sintering [9] 

and forces of attraction formed by interactions between minute particles as set forth by 

Newton’s Law of Gravitation [33]. 

At 1150°C, the copper portion melted and flowed up through the pores of the 

porous matrix by means of capillary and displacement forces [3]. Fluid flow resulted in 

shear forces being imposed onto the tungsten grains, dragging particles in the direction of 

flow. The force imposed on each particle by the molten copper moving up in fronts can 

be generalized as being analogous to Stokes’s drag; 

rvFdrag 6      (4.18) 

Where Fdrag is the drag force, η is the viscosity of the molten copper, r is the 

equivalent powder grain radius and v is the velocity of the copper flow relative to the 

tungsten matrix. Given the unpressurized nature of the process, Reynolds number for the 

laminar flow of molten copper through the pores of the preform skeleton can be taken to 

be less than unity (Re < 1). 
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Translation of tungsten grains into the interface gap by means of stokes drag 

(Figure 4.32, 4.33) is produced by the flowing copper. This translation serves to move the 

upper layer of tungsten grains of the lower preform into the interface. 

 

Figure 4.32: Effect of laminar fluid flow has on lifting a spherical particle. The solid 

lines depict laminar flow while the dashed arrow indicates the direction of lift. 

 

 
Figure 4.33: Illustration showing the effect of drag forces on the topmost layer of 

spheres of the lower skeleton. 

 

This lifting force is opposed by three main forces; the weight of the individual 

grain, the gravitational force that acts upon it due to its proximity with other particles and 

finally the sinter bond strength of the necks.  

The force acting on a tungsten particle due to the effect of earth’s gravitation on 

its mass is expressed as: 
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mgFweight =
 

Where m is the mass of the tungsten particle and g is the acceleration due to 

gravity. We can also re-express the particle’s mass as a function of its particulate radius 

(r) and density (ρw) where: 

w

3ρrπ
3

4
m =

 
Hence with this derived term we can express the function of force to be: 

gρrπ
3

4
F w

3

weight =      (4.19) 

The force contributed by the intra particle gravitation can be derived based on 

Newton’s law of gravitation. The force of attraction acting on two masses (m1 and m2) at 

a distance of 2r apart can be expressed as: 

2

21

ngravitatio )r2(

mGm
F =  

Where G is the gravitational constant. As the powders used are assumed to be of 

equal size and mass, m1 = m2 = m, Hence: 

22
3 4 2 2

2 2

4 4

4 4 3 9
gravitation w w

Gm G
F r r G

r r
   

 
   

 
  (4.20) 

 

The sintering pressure [34] contributed by sintering strength at the necks has 

been calculated to be: 

2 2

sinter bond pressure 2
2 2

y f

J N J
V

r r
 



   
    

   
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Where, σsinter bond pressure the sinter bond pressure, is the pressure required to break 

a sinter bond, σy is the inherent material strength, N is the coordination number, Vf is the 

fractional density of the preform and J is the neck diameter. 

The force acting on the grains due to necking is expressed as: 

 
2

sinter bond strength sinter bond pressure
2

J
F  

 
  

 
 

Where 

2

2

J

 
 
 

is the cross sectional area of the sintered neck. Hence the 

sintering force can be expressed as: 

2 2 2

sinter bond strength 2
2 2 2

y s

J N J J
F V

r r
 



     
      

     
 

= 

6

432

y sV NJ

r

 
  
 

   (4.21) 

The forces contributed by both the sintered necks and inter particle gravitational 

forces act diagonally and have to be resolved into vertical components. To simplify this 

calculation we consider the packing of tungsten grains to be of a close packing [35] 

arrangement as can be seen in Figure 4.34. 

 

Figure 4.34: Illustration showing close packing of spheres representing the preform 

structure. 
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From Figure 4.34 above it can be seen that each sphere is influenced by three 

other spheres from the bottom layer. The forces holding it is resolved as lines of force 

intersecting the contact points and centres of all four spheres. This results in the 

formation of a tetrahedron where the affected sphere has its centre at the apex of the 

tetrahedron while the three influencing spheres have their centres at the basal vertices. 

The three diagonal edges represent vectorally lines of forces by which the forces of inter 

particular gravitational attraction and sinter bond act. The vertical height of the 

tetrahedron is analogous to the vector of the resolved vertical force. In this model the 

particle horizontally adjacent to the affected particle is ignored as the lines of action fall 

within the horizontal plane and do not have a vertical component. 

  
(i) (ii) 

Figure 4.35: Figure showing (i) view of a sphere in a close packing arrangement 

showing its coordination with three lower spheres in the adjacent layer. (ii) tetrahedron 

formed by joining the corresponding centres of the four spheres. The edges of the 

tetrahedron represent the lines of force acting between the three packed spheres. 

 

To determine the height of the tetrahedron in Figure 4.35(ii), we consider a 

plane perpendicular to the base that intersects the apex (z) and a basal vertex (in this case 

x). A projection of this plane can be seen in Figure 4.36 below. 
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Figure 4.36: Diagram showing on the left, a tetrahedron with a plane perpendicular to 

the base intersecting the apex and one basal vertex; and on the right, a projection of the 

plane used in determining the height, h, of the tetrahedron. 

 

By means of Pythagoras theorem, we can determine the length of the base of the 

plane where, 

2

2 3

2 2

a
xy a a

  
    

   

 

As the base of the tetrahedron is an equilateral triangle where the distance of a 

vertex to its circumventer is given as two-thirds of the length of its sides, the length of xw 

can be determined to be; 

2 2 3 3

3 3 2 3
xw xy a a

 
    

 
 

Hence with both length xw and the xz, we can determine the height wz (h) to be 

2

2 2 2 3 6

3 3
wz xz xw a a a

 
      

 
 

 Hence from Figure 4.36, as ha 
3

6

 
to resolve the forces in a vertical direction, 

we will need to multiply the diagonal forces by a multiple of
3

6
. 
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 To drag a layer of grains into the interface, the equation has to fulfil the relation: 

 







   strengthbond  Sintergravitaionweightdrag FF

3

6
NFF0  

 As we consider only the gravitational and sinter strength forces having a 

component in the vertical direction and not in the horizontal, the coordination number of 

the grain, N,  can be reduced to a value of three. Therefore; 

6

3 4 2 2

4

4 6 4
0 6 3

3 3 9 32

y s

w w

V NJ
rv r g r G

r


    

   
            

 (4.22) 

 As the temperatures used are low relative to the absolute melting point of tungsten 

and presintering time is short, we can assume that that the neck diameter, J→0, and the 

equation can be further simplified to:  

 w
w

2

Gr64g12
9

r
v60 


     (4.23)                    

As molten copper moves into the interface, liquid bridges are formed between the 

two opposing layers by means of capillarity and adhesive forces. Figure 4.37 shows a 

liquid bridge and two spheres: 
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Figure 4.37: Diagram showing the two spheres and a liquid capillary neck. With l being 

the neck radius at its thinnest point, γ is the surface tension at the liquid-vapor interface 

and µ being the radius of curvature of the liquid meniscus. 

 

Heady and Cahn [36] theorized the force acting on the top grain downward to be 

quantified as;  













1

l

1
ll2F 2

capillary  

As with Equation 4.22, we need to take into account the effect of interparticle 

gravitational attraction and weight. Hence the equation takes the form; 

 







   strengthbond  Sintergravitaionweightcapillary FF

3

6
NFF0  

Also adopting the assumption that X→0, hence Fsinter bond strength →0, and, 

2

w

4

w

3
2

Gr
9

64
gr

3

4l
l0 




     (4.24) 

Liquid bridge  → 
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The resulting effect of a capillary bridge causes the grains at the top of the 

interface to be pulled downwards into the interface, as well as a smaller, less pronounced 

reaction force that acts to raise the lower grains up into the boundary. (Figure 4.38). 

 
Figure 4.38: Illustration showing the influence capillary effect has in pulling both 

tungsten skeletons together. 

  

Further flow of the molten copper into both preforms eventually leads to a fully 

saturated system comprising of tungsten grains in molten copper. This collection of solid 

particles in an incompressible fluid is subject to Brownian motion [37, 38]. Soaking at 

1150ºC, Brownian motion serves as a vehicle by which the relatively mobile tungsten 

grains at the interface rearrange to configurations that possess lower grain boundary 

energies. [39, 40]. This effect has been observed in other research [41, 42] and leads to an 

overall homogenizing of the system at the interface. 

Equations 4.23 and 4.24 have been derived to determine the susceptibility of 

joining metal matrix composite systems that can be processed using the press-sinter-

infiltrate route. It is also important to note that there is a directly proportional relationship 

between susceptibility of joining and the magnitude of the values obtained in Equations 

4.23 and 4.24. 
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From Equations 4.23 and 4.24, we are able to determine the theoretical range of 

tungsten grain sizes suitable for copper and silver joining through the infiltration process. 

For stoke’s drag to be applicable, Reynolds number < 1, Hence, 



 vr2
Re1

liquid
  

Where ρliquid is the density of the infiltrating liquid metal. Rearranging we get, 

liquidr2
v




      (4.25)  

Rearranging Equation 4.23, we get the form 

  
2

12 4 6
54

w
w

r
v g Gr





     (4.26) 

Solving Equations 4.25 and 4.26 simultaneously, given values of ρw = 1.93 

x10
4
kg/m

3
, ρliquid = 8.00 x10

3
kg/m

3
 and η = 4.00 x10

-3
Ns/m

2
 for copper and G = 6.67 x10

-

11
m

3
/kgs

2
,  π = 3.14 and g = 9.81m/s

2
  [22, 43] we obtain the final quartic equation: 

 

threshold

734 R105.2r10516r54.30     (4.27) 

 

Where positive values of Rthreshold indicate the range of solutions for r where 

Equation 4.27 holds true. We shall limit the scope of our analysis to metal powder sizes 

(r <50µm) that are commonly used in powder metallurgy and injection moulding. Hence 

by solving Equation 4.27 graphically for r < 50µm it can be seen from Figure 4.39 that 

only tungsten radii of less that 29µm and 27µm satisfy Equation 4.23 for copper and 

silver respectively. 
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Figure 4.39: Values of Rthreshold against tungsten grain size, r. This plot is used to 

determine graphically the range of tungsten grain sizes that fulfil Equation 4.23. 

 

For excess liquid used in infiltration, the liquid capillary bridge can be 

simplified to a cylinder linking both spheres, resulting in the value of   and rl   

(Figure 4.40 below). Substituting into Equation 4.24 the range of tungsten grain sizes 

obtained from Figure 4.39, where the surface tension of liquid copper and silver, γ, is 

1.303N/m and 0.966N/m respectively  [12], we obtain positive values within the range 0 

< r < 29µm, hence satisfying both conditions for successful joining for the given system. 

The above relations derived in this research have guided further experimental 

work with respect to the joining of the tungsten silver dual metal system. Tungsten 

copper systems where the tungsten powder sizes were as small as 100nm were also 

conducted with relative success. Also, being a purely mechanical process whereby the 

miscibility of the metal phases is not an issue, this system has the added advantage of 

being applied to form composite sandwiches where a common liquid infiltration phase 

Copper 

Silver 
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exists during the manufacturing process. The tungsten copper/molybdenum 

copper/tungsten copper sandwich is one such sandwich that could be produced using this 

technique. 

 

Figure 4.40: Excess liquid at a liquid bridge leading to a smoothened meniscus where 

meniscus radius µ→∞ and neck radius l→r 
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5.  Conclusions 

The focus of this doctoral study was to examine and establish a series of 

conditions by which tungsten copper MMCs could be manufactured using the PIM 

technique. Presented below is a summary of the achievements and findings of this study. 

 

5.1. Conditions for the manufacture of tungsten copper MMCs 

 It was determined that for successful infiltration of copper to produce tungsten 

copper MMCs in a CM tube furnace, reducing hydrogen atmospheres were required at 

temperatures in excess of 1150°C. The reducing hydrogen environment prevented the 

formation of a tenacious oxide layer which impeded infiltration, while 1150°C was in 

excess of the melting point of copper. An infiltrating orientation where the tungsten 

portion was placed over the molten copper was preferred as the rising of molten copper 

upwards in fronts prevented the trapping of gases within the finished MMC. 

  Powder injection moulding was successfully used in the production of tungsten 

preforms. Use of powder injection moulding to produce bimetallic green parts of copper 

and tungsten by over moulding was also successful. The integration of the thermal 

debinding and sintering/infiltration cycles into one comprehensive heat cycle was also 

successfully implemented, significantly reducing furnace run times. 

 The ability to produce tungsten copper MMCs through the joining of two tungsten 

matrices was also demonstrated and this was deemed to be able to ease the manufacture 

of complex components whose net shape could not be injection moulded directly. 
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5.2. Effect of process variables on MMC properties 

 It was demonstrated that in general, a higher sintering/infiltration temperature 

resulted in higher hardness, lower CTEs and lower conductivities due to more extensive 

densification of the tungsten matrix which resulted in less open porosity for subsequent 

copper infiltration. 

 An average tungsten grain size of 2µm was produced when sintered for one hour. 

This was independent of starting tungsten powder sizes and sintering temperatures. 

 It was however noted that samples which were produced using 100nm tungsten 

powders displayed more extensive densification and also a presence of abnormal grains. 

 When sintering/infiltration times for samples using 100nm tungsten powders were 

reduced to 5 minutes at 1150°C, it was shown that tungsten grain sizes as fine as 500nm 

were produced with a higher CTE, conductivity, hardness and percentage copper as 

compared to its one hour counterpart. This change was due to less extensive densification 

of the tungsten preform upon sintering, and also the Hall-Petch phenomenon produced by 

the smaller grain sizes. 

 An addition of 5.0wt% of copper to the tungsten feedstock resulted in 

exceptionally high amounts of copper (40.43 wt% copper) in the final tungsten copper 

MMC and this was due to the presence of copper reservoirs formed within the MMC. 

 The addition of 2.0wt% of 30nm yttria as a Zener dopant resulted in tungsten 

grains as small as 200nm when added to feedstocks produced using 100nm tungsten 

powders. Subsequent infiltration of copper to tungsten matrices containing 2.0wt% yttria 

was also successful with no porosity detected. 
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 Tungsten silver MMCs were also successfully synthesized using the method 

developed; however smooth pores were evident in the final microstructure. The smooth 

pores were due to the evolution of hydrogen gas resulting from a reduction in gaseous 

solubility during solidification. 

 

5.3. Development of models to explain various phenomenon 

 A mathematical equation (Equation 4.8) was derived to predict the viability of 

infiltrating a porous matrix with a liquid. A second set of mathematical equations 

(Equations 4.23 and 4.24) were also derived to determine the viability of joining two 

porous bodies using the infiltration method to produce a single MMC. 

 A conceptual model (as shown in Figure 4.16) was developed to explain the lower 

than expected CTE values experienced by samples produced using tungsten feedstocks 

with 5.0wt% copper added. 

  Finally a physical model (Figure 4.21) was produced to explain the lowering of 

hardness values for pressed tungsten samples subjected to yttria doping. 

 

5.4. Recommendation for future work 

Due to the high cost of silver powder, work done on tungsten silver was limited. 

With the work done with copper, it is possible to translate the processes studied and 

developed into the tungsten silver context. Copper and silver both belong to group 11 in 

the periodic table of elements and possess one electron in their outermost valence shell. 

Elements within the same group display similar chemical properties and thus can be used 

in similar processes. 
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Microwave sintering in alternative environments other than air should also be 

studied further. While this was not possible during the course of the study due to 

equipment restrictions, microwave furnaces which have dedicated abilities to safely sinter 

samples in controlled environments have become more readily available commercially 

within the last few years. With higher heating rates and lower process times associated 

with microwave processing, further studies with this technology could yield increased 

process efficiency and refined microstructures for improved properties.
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Appendix A: Sample conditions table 
 

Sample Atmosphere 
Thermal debinding 

conditions 

Sintering/Infiltration 

conditions 

Formed 

sample 

Matrix 

Material 
Infiltrate  Hypothesis Investigated 

1 Hydrogen 450°C for one hour, 

and subsequently 

700°C and held for 

another hour under 

Hydrogen 

1250°C for 1 hour 

Two 

material 

macro 

tensile bar 

1µm 

tungsten 

powders 

Copper 

To determine the effect 

sample orientation and 

atmosphere have on the 

samples. 

2 Vacuum 

3 Nitrogen 

4 

Hydrogen 

450°C for one hour, 

and subsequently 

600°C and held for 

another hour under 

Hydrogen 

To determine the effect 

presintering temperature 

has on 

5 

450°C for one hour, 

and subsequently 

800°C and held for 

another hour under 

Hydrogen 

6 

450°C for one hour, 

and subsequently 

900°C and held for 

another hour under 

Hydrogen 
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7 

Hydrogen 

450°C for one hour, 

and subsequently 

700°C and held for 

another hour under 

Hydrogen 

1150°C for 1 hour 

Diagnostic 

component 

1µm 

tungsten 

powders 

Copper 

Effect of 

sintering/infiltrating 

temperature on the samples 

made with 1µm tungsten 

powders 

8 1200°C for 1 hour 

9 1250°C for 1 hour 

10 1150°C for 1 hour 

Two 

material 

micro tensile 

bar 

100nm 

tungsten 

powders 

Effect of 

sintering/infiltrating 

temperature on the samples 

made with 100nm tungsten 

powders 

11 1200°C for 1 hour 

12 1250°C for 1 hour 

13 1100°C for 1 hour 

14 
1150°C for 5 

minutes 

Two 

material 

micro tensile 

bar 

100nm 

tungsten 

powders 

To investigate the effect 

reduced 

sintering/infiltration time 

had on the samples. 

15 1150°C for 1 minute 

16 
1150°C for 5 

minutes 

Rectangular 

bar 

1µm 

tungsten 

mixed with 

5.0wt% 

copper 

To investigate the effect 

that an addition of 5.0wt% 

of copper would have on 

the sample 

17 450°C for one hour, 1150°C for 1 hour Two 1µm To investigate the viability 
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and subsequently 

heated directly to 

1150°C 

material 

macro 

tungsten 

powders 

of integrating thermal 

debinding and 

sintering/infiltration into 

one heat cycle. 

18 

Hydrogen 

450°C for one hour, 

and subsequently 

700°C and held for 

another hour under 

Hydrogen 

N/A 
Two 

material 

micro tensile 

bar 

100nm 

tungsten 

powders 

Copper 

To investigate the viability 

of microwave sintering. 

19 

450°C for one hour, 

and subsequently 

heated directly to 

1150°C 

1150°C for 5 

minutes 

100nm 

tungsten 

powders 

To investigate the effect of 

having an integrated heat 

cycle with a lower 

maximum temperature and 

shorter sintering time. 

20 
Diagnostic 

component 

1µm 

tungsten 

powders 

21 
Rectangular 

Bar 

1µm 

tungsten 

mixed with 

5.0wt% 

copper 
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22 

Hydrogen 

No thermal 

debinding done as no 

binder was used 

1150°C for 1 hour 
PM pressed 

discs 

100nm 

tungsten  

No 

Infiltration 

Investigate the effect yttria 

addition had on the 

structure of tungsten 

matrices formed using 100 

nm tungsten powders 

23 

100nm 

tungsten 

doped with 

2.0wt% 

yttria 

powders 

24 

100nm 

tungsten 

doped with 

4.0wt% 

yttria 

powders 

25 

100nm 

tungsten 

doped with 

6.0wt% 

yttria 

powders 
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26 

Hydrogen 

No thermal 

debinding done as no 

binder was used 

1150°C for 1 hour 
PM pressed 

discs 

1µm 

tungsten  

No 

Infiltration 

Investigate the effect yttria 

addition had on the 

structure of tungsten 

matrices formed using 1 

µm tungsten powders 

27 

1µm 

tungsten 

doped with 

2.0wt% 

yttria 

powders 

28 

1µm 

tungsten 

doped with 

4.0wt% 

yttria 

powders 

29 

1µm 

tungsten 

doped with 

6.0wt% 

yttria 

powders 
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30 Hydrogen 

450°C for one hour, 

and subsequently 

heated directly to 

1150°C 

1150°C for 5 

minutes 

Diagnostic 

component 

1µm 

tungsten 

Silver 

Infiltration with silver 

31 Hydrogen 
Micro tensile 

bar 

100nm 

tungsten 

32 Hydrogen 

Rectangular 

Bar 

1µm 

tungsten 

doped with 

2.0wt% 

yttria 

Infiltration of copper and 

silver into tungsten 

matrices made from 1µm 

tungsten powders and 

2.0wt% yttria 
33 Hydrogen 

1µm 

tungsten 

doped with 

2.0wt% 

yttria 

Copper 
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APPENDIX B: SUMMARY OF RESULTS 
 

Summary of results for sample 1 

 

 

Figure B-1: SEM image (x2000) of copper infiltrated tungsten produced using 1µm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1250°C for 1 hour under hydrogen. 
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Summary of results for sample 2 and 3 

 

(i)         (ii)          (iii)      (iv) 

Figure B-2: Photo showing failed infiltration of samples sintered/infiltrated under conditions 

of vacuum (i and ii) and under nitrogen (iii and iv). 
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Summary of results for sample 4 

 

 

Figure B-3: SEM image (x2000) of copper infiltrated tungsten produced using 1µm 

tungsten powders with a pre-sintering temperature of 600°C and at a sintering/infiltration 

temperature of 1250°C for 1 hour under hydrogen. 
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Summary of results for sample 5 

 

 

Figure B-4: SEM image (x2000) of copper infiltrated tungsten produced using 1µm 

tungsten powders with a pre-sintering temperature of 800°C and at a sintering/infiltration 

temperature of 1250°C for 1 hour under hydrogen. 
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Summary of results for sample 6 

 

 

 

Figure B-5: SEM image (x2000) of copper infiltrated tungsten produced using 1µm 

tungsten powders with a pre-sintering temperature of 900°C and at a sintering/infiltration 

temperature of 1250°C for 1 hour under hydrogen. 
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Summary of results for sample 7 

 

  

(i) (ii) 

Figure B-6: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an uninfiltrated 

tungsten matrix, produced using 1µm tungsten powders with a pre-sintering temperature 

of 700°C and at a sintering/infiltration temperature of 1150°C for 1 hour under hydrogen. 

 

Table B-1: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1150°C for 1 hour under hydrogen. 

 

Composition 

Wt% Copper 38.46 

Wt% Tungsten 61.54 

Mean hardness (Hv)  205 

Mean conductivity (%IACS)  44.70 

Mean dimensional change (%)  -5.60 

Mean CTE (10
-6

K
-1

)  13.05 

Mean density (g/cm3)  13.45 
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Summary of results for sample 8 

 

  

(i) (ii) 

Figure B-7: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an uninfiltrated 

tungsten matrix, produced using 1µm tungsten powders with a pre-sintering temperature 

of 700°C and at a sintering/infiltration temperature of 1200°C for 1 hour under hydrogen. 

 

Table B-2: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1200°C for 1 hour under hydrogen. 

 

Composition 

Wt% Copper 28.37 

Wt% Tungsten 71.63 

Mean hardness (Hv)  231 

Mean conductivity (%IACS)  41.03 

Mean dimensional change (%)  -6.39 

Mean CTE (10
-6

K
-1

)  12.73 

Mean density (g/cm3)  13.54 
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Summary of results for sample 9 

 

  

(i) (ii) 

Figure B-8: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an uninfiltrated 

tungsten matrix, produced using 1µm tungsten powders with a pre-sintering temperature 

of 700°C and at a sintering/infiltration temperature of 1250°C for 1 hour under hydrogen. 

 

Table B-3: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1250°C for 1 hour under hydrogen. 

 

Composition 

Wt% Copper 24.10 

Wt% Tungsten 75.90 

Mean hardness (Hv)  247 

Mean conductivity (%IACS)  42.22 

Mean dimensional change (%)  -6.88 

Mean CTE (10
-6

K
-1

)  10.50 

Mean density (g/cm3)  13.62 
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Summary of results for sample 10 

 

  

(i) (ii) 

Figure B-9: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an uninfiltrated 

tungsten matrix, produced using 100nm tungsten powders with a pre-sintering 

temperature of 700°C at a sintering/infiltration temperature of 1250°C for 1 hour under 

hydrogen. 

 

Table B-4: Summary of properties for copper infiltrated tungsten produced using 100nm 

tungsten powders with a pre-sintering temperature of 700°C at a sintering/infiltration 

temperature of 1250°C for 1 hour under hydrogen. 

 

Composition 

Wt% Copper 18.32 

Wt% Tungsten 81.68 

Mean hardness (Hv)  253 

Mean conductivity (%IACS)  21.91 

Mean dimensional change (%)  -7.01 

Mean CTE (10
-6

K
-1

)  13.56 

Mean density (g/cm3)  14.47 
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Summary of results for sample 11 

 

  

(i) (ii) 

Figure B-10: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 100nm tungsten powders with a pre-

sintering temperature of 700°C and at a sintering/infiltration temperature of 1200°C for 1 

hour under hydrogen. 

 

Table B-5: Summary of properties for copper infiltrated tungsten produced using 100nm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1200°C for 1 hour under hydrogen. 

 

Composition 

Wt% Copper 16.56 

Wt% Tungsten 83.44 

Mean hardness (Hv)  239 

Mean conductivity (%IACS)  19.65 

Mean dimensional change (%)  -6.88 

Mean CTE (10
-6

K
-1

)  13.99 

Mean density (g/cm3)  13.43 
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Summary of results for sample 12 

 

  

(i) (ii) 

Figure B-11: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 100nm tungsten powders with a pre-

sintering temperature of 700°C and at a sintering/infiltration temperature of 1250°C for 1 

hour under hydrogen. 

 

Table B-6: Summary of properties for copper infiltrated tungsten produced using 100nm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1250°C for 1 hour under hydrogen. 

 

Composition 

Wt% Copper 14.11 

Wt% Tungsten 85.89 

Mean hardness (Hv)  244 

Mean conductivity (%IACS)  19.76 

Mean dimensional change (%)  -7.14 

Mean CTE (10
-6

K
-1

)  13.46 

Mean density (g/cm3)  13.78 
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Summary of results for sample 13 

 

 

Figure B-12: SEM image (x3000) showing uninfiltrated tungsten matrix produced using 

1µm tungsten powders with a pre-sintering temperature of 700°C and at a 

sintering/infiltration temperature of 1250°C for 1 hour under Hydrogen. No infiltration 

occurred for all sample 13 parameters. 
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Summary of results for sample 14 

 

  

(i) (ii) 

Figure B-13: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 100nm tungsten powders with a pre-

sintering temperature of 700°C and at a sintering/infiltration temperature of 1150°C for 5 

minutes under hydrogen. 

 

Table B-7: Summary of properties for copper infiltrated tungsten produced using 100nm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Copper 25.75 

Wt% Tungsten 74.25 

Mean hardness (Hv)  287 

Mean conductivity (%IACS)  24.50 

Mean dimensional change (%)  -1.67 

Mean CTE (10
-6

K
-1

)  14.86 

Mean density (g/cm3)  14.15 
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Summary of results for sample 15 

 

  

(i) (ii) 

Figure B-14: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 100nm tungsten powders with a pre-

sintering temperature of 700°C and at a sintering/infiltration temperature of 1150°C for 1 

minute under hydrogen. 

 

Table B-8: Summary of properties for copper infiltrated tungsten produced using 100nm 

tungsten powders with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1150°C for 1 minute under hydrogen. 

 

Composition 

Wt% Copper 10.28 

Wt% Tungsten 89.72 

Mean hardness (Hv)  281 

Mean conductivity (%IACS)  27.69 

Mean dimensional change (%)  -6.59 

Mean CTE (10
-6

K
-1

)  14.80 

Mean density (g/cm3)  14.24 
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Summary of results for sample 16 

 

  

(i) (ii) 

Figure B-15: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 1µm tungsten powders premixed with 

5.0wt% copper with a pre-sintering temperature of 700°C and at a sintering/infiltration 

temperature of 1150°C for 5 minutes under hydrogen. 

 

Table B-9: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders premixed with 5.0wt% copper with a pre-sintering temperature of 700°C 

and at a sintering/infiltration temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Copper 34.17 

Wt% Tungsten 65.83 

Mean hardness (Hv)  217 

Mean conductivity (%IACS)  31.13 

Mean dimensional change (%)  -5.66 

Mean CTE (10
-6

K
-1

)  13.00 

Mean density (g/cm3)  13.41 
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Summary of results for sample 17 

 

  

(i) (ii) 

Figure B-16: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 1µm tungsten powders and a direct sintering 

heating profile with a sintering/infiltration temperature of 1150°C for 1 hour under 

hydrogen. 

 

Table B-10: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders and a direct sintering heating profile with a sintering/infiltration 

temperature of 1150°C for 1 hour under hydrogen. 

 

Composition 

Wt% Copper 31.74 

Wt% Tungsten 68.26 

Mean hardness (Hv)  221 

Mean conductivity (%IACS)  41.06 

Mean dimensional change (%)  -6.36 

Mean CTE (10
-6

K
-1

)  14.71 

Mean density (g/cm3)  13.70 
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Summary of results for sample 18 

 

 

 

Figure B-17: Photo showing Copper (II) Carbonate that was extracted from the crucible of 

the microwave furnace. No infiltration occurred in the process. 

 

 

 



B-18 

 

Summary of results for sample 19 

 

  

(i) (ii) 

Figure B-18: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 100nm tungsten powders and a direct 

sintering heating profile with a sintering/infiltration temperature of 1150°C for 5 minutes 

under hydrogen. 

 

Table B-11: Summary of properties for copper infiltrated tungsten produced using 100nm 

tungsten powders and a direct sintering heating profile with a sintering/infiltration 

temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Copper 32.98 

Wt% Tungsten 67.02 

Mean hardness (Hv)  190 

Mean conductivity (%IACS)  26.59 

Mean dimensional change (%)  -8.96 

Mean CTE (10
-6

K
-1

)  15.01 

Mean density (g/cm3)  14.04 
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Summary of results for sample 20 

 

  

(i) (ii) 

Figure B-19: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 1µm tungsten powders and a direct sintering 

heating profile with a sintering/infiltration temperature of 1150°C for 5 minutes under 

hydrogen. 

 

Table B-12: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders and a direct sintering heating profile with a sintering/infiltration 

temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Copper 34.62 

Wt% Tungsten 65.38 

Mean hardness (Hv)  198 

Mean conductivity (%IACS)  26.21 

Mean dimensional change (%)  -4.17 

Mean CTE (10
-6

K
-1

)  13.21 

Mean density (g/cm3)  13.62 
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Summary of results for sample 21 

 

  

(i) (ii) 

Figure B-20: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 1µm tungsten powders premixed with 

5.0wt% copper and a direct sintering heating profile with a sintering/infiltration 

temperature of 1150°C for 5 minutes under hydrogen. 

 

Table B-13: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders premixed with 5.0wt% copper and a direct sintering heating profile with 

a sintering/infiltration temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Copper 40.43 

Wt% Tungsten 59.57 

Mean hardness (Hv)  161 

Mean conductivity (%IACS)  29.33 

Mean dimensional change (%)  -9.84 

Mean CTE (10
-6

K
-1

)  14.81 

Mean density (g/cm3)  12.63 
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Summary of results for sample 22 

 

 

Figure B-21: SEM image (x2000) of a PM pressed disc made from 100nm tungsten 

powders sintered at 1150°C for 1 hour. 

 

 

Table B-14: Hardness of a PM pressed disc made from 100nm tungsten powders sintered 

at 1150°C for 1 hour. 

 

Mean hardness (Hv)  114 
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Summary of results for sample 23 

 

 

Figure B-22: SEM image (x2000) of a PM pressed disc made from 100nm tungsten 

powders doped with 2.0wt% yttria sintered at 1150°C for 1 hour. 

 

 

Table B-15: Hardness of a PM pressed disc made from 100nm tungsten powders doped 

with 2.0wt% yttria sintered at 1150°C for 1 hour. 

 

Mean hardness (Hv)  79 
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Summary of results for sample 24 

 

 

Figure B-23: SEM image (x2000) of a PM pressed disc made from 100nm tungsten 

powders doped with 4.0wt% yttria sintered at 1150°C for 1 hour. 

 

 

Table B-16: Hardness of a PM pressed disc made from 100nm tungsten powders doped 

with 4.0wt% yttria sintered at 1150°C for 1 hour. 

 

Mean hardness (Hv)  61 
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Summary of results for sample 25 

 

 

Figure B-24: SEM image (x2000) of a PM pressed disc made from 100nm tungsten 

powders doped with 6.0wt% yttria sintered at 1150°C for 1 hour. 

 

 

Table B-17: Hardness of a PM pressed disc made from 100nm tungsten powders doped 

with 6.0wt% yttria sintered at 1150°C for 1 hour. 

 

Mean hardness (Hv)  82 
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Summary of results for sample 26 

 

 

Figure B-25: SEM image (x2000) of a PM pressed disc made from 1µm tungsten 

powders sintered at 1150°C for 1 hour. 

 

 

Table B-18: Hardness of a PM pressed disc made from 1µm tungsten powders sintered at 

1150°C for 1 hour. 

 

Mean hardness (Hv)  119 
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Summary of results for sample 27 

 

 

Figure B-26: SEM image (x2000) of a PM pressed disc made from 1µm tungsten 

powders doped with 2.0wt% yttria sintered at 1150°C for 1 hour. 

 

 

Table B-19: Hardness of a PM pressed disc made from 1µm tungsten powders doped 

with 2.0wt% yttria sintered at 1150°C for 1 hour. 

 

Mean hardness (Hv)  52 
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Summary of results for sample 28 

 

 

Figure B-27: SEM image (x2000) of a PM pressed disc made from 1µm tungsten 

powders doped with 4.0wt% yttria sintered at 1150°C for 1 hour. 

 

 

Table B-20: Hardness of a PM pressed disc made from 1µm tungsten powders doped 

with 4.0wt% yttria sintered at 1150°C for 1 hour. 

 

Mean hardness (Hv)  39 
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Summary of results for sample 29 

 

 

Figure B-28: SEM image (x2000) of a PM pressed disc made from 1µm tungsten 

powders doped with 6.0wt% yttria sintered at 1150°C for 1 hour. 

 

 

Table B-21: Hardness of a PM pressed disc made from 1µm tungsten powders doped 

with 6.0wt% yttria sintered at 1150°C for 1 hour. 

 

Mean hardness (Hv)  39 
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Summary of results for sample 30 

 

  

(i) (ii) 

Figure B-29: SEM image (x3000) of (i) silver infiltrated tungsten and (ii), an uninfiltrated 

tungsten matrix, produced using 1µm tungsten powders and a direct sintering heating 

profile with a sintering/infiltration temperature of 1150°C for 5 minutes under hydrogen. 

 

Table B-22: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders and a direct sintering heating profile with a sintering/infiltration 

temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Silver 36.41 

Wt% Tungsten 63.59 

Mean hardness (Hv)  133 

Mean conductivity (%IACS)  51.02 

Mean dimensional change (%)  -2.22 

Mean CTE (10
-6

K
-1

)  15.10 

Mean density (g/cm3)  13.16 
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Summary of results for sample 31 

 

  

(i) (ii) 

Figure B-30: SEM image (x3000) of (i) silver infiltrated tungsten and (ii), an uninfiltrated 

tungsten matrix, produced using 100nm tungsten powders and a direct sintering heating 

profile with a sintering/infiltration temperature of 1150°C for 5 minutes under hydrogen. 

 

Table B-23: Summary of properties for copper infiltrated tungsten produced using 100nm 

tungsten powders and a direct sintering heating profile with a sintering/infiltration 

temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Silver 28.74 

Wt% Tungsten 71.26 

Mean hardness (Hv)  153 

Mean conductivity (%IACS)  42.30 

Mean dimensional change (%)  -4.33 

Mean CTE (10
-6

K
-1

)  14.31 

Mean density (g/cm3)  14.51 
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Summary of results for sample 32 
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Figure B-31: SEM image (x3000) of (i) silver infiltrated tungsten and (ii), an uninfiltrated 

tungsten matrix, produced using 1µm tungsten powders doped with 2.0wt% yttria and a 

direct sintering heating profile and a sintering/infiltration temperature of 1150°C for 5 

minutes under hydrogen. 

 

Table B-24: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders doped with 2.0wt% yttria and a direct sintering heating profile and a 

sintering/infiltration temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Silver 37.53 

Wt% Tungsten 58.98 

Wt% Yttrium 1.37 

Wt% Oxygen 2.12 

Mean hardness (Hv)  127 

Mean conductivity (%IACS)  53.49 

Mean dimensional change (%)  -3.94 

Mean CTE (10
-6

K
-1

)  13.03 

Mean density (g/cm3)  13.48 
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Summary of results for sample 33 
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Figure B-32: SEM image (x3000) of (i) copper infiltrated tungsten and (ii), an 

uninfiltrated tungsten matrix, produced using 1µm tungsten powders doped with 2.0wt% 

yttria and a direct sintering heating profile and a sintering/infiltration temperature of 

1150°C for 5 minutes under hydrogen. 

 

Table B-25: Summary of properties for copper infiltrated tungsten produced using 1µm 

tungsten powders doped with 2.0wt% yttria and a direct sintering heating profile and a 

sintering/infiltration temperature of 1150°C for 5 minutes under hydrogen. 

 

Composition 

Wt% Copper 34.33 

Wt% Tungsten 64.01 

Wt% Yttrium 1.66 

Wt% Oxygen 2.44 

Mean hardness (Hv)  215 

Mean conductivity (%IACS)  24.21 

Mean dimensional change (%)  -2.19 

Mean CTE (10
-6

K
-1

)  13.54 

Mean density (g/cm3)  15.72 
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