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SUMMARY 

Due to its potential application to some high-thrust propulsion systems, the subject on 

detonation has been increasingly studied by many researchers from various quarters. 

The objective of this thesis is to study the cellular structure of H2/O2 detonation waves, 

which entails the formation, evolution and the dynamic characteristics of the cellular 

structure, as well as the influences of diverging/converging chambers on the 

detonation structure.  

 

In this work, a detailed elementary chemical reaction model with 9 species and 19 

elementary reactions is used for a stoichiometric H2/O2 mixture diluted with argon. 

The 3rd TVD Runge-Kutta method and the weighted essentially non-oscillatory 

(WENO) numerical scheme with high resolution grids are employed to discretize the 

temporal and convection terms in the governing equations, respectively, while the 

source terms are solved by the numerical package of CHEMEQ.  

 

First, the one-dimensional Chapman-Jouguet (C-J) detonation wave was simulated. 

The one-dimensional results were then mapped to two-dimensional grids as the initial 

condition of the two-dimensional numerical computation in a straight tube. By 

introducing some artificial perturbation, the cellular structure of the two-dimensional 

detonation wave was successfully simulated. Furthermore, the obtained 

two-dimensional detonation wave was placed at the entrance of a two-dimensional 

varying cross-sectional chamber. By allowing the detonation wave to propagate 
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through the diverging/converging walls, we investigated the influence of the 

diverging/converging walls on the detonation wave and its cellular structure. For 

further understanding of these influences, axisymmetric diverging/converging 

chambers were introduced. A comparison on the simulation results between the 

axisymmetric chambers and the two-dimensional chambers was presented, followed 

by a detailed analysis. 
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NOMENCLATURE 

a          Disturbance coefficient 

*a∞         Initial sonic speed ahead of the leading shock wave 

cjC         Sonic speed at the C-J plane 

iCp         Specific heat of the ith species  

xiC         Mole concentration of the ith species 

cjD         Detonation velocity at the C-J plane 

rd         Optimal weight coefficients 

e         Static energy per unit volume 

E         Total energy per unit volume 

f         A random number distributed in [-1.0, 1.0] 

1/ 2,i jF +        Numerical flux at the x direction 

( )F U
U

∂
∂

       Jacobi Matrix of ( )F U  

, 1/ 2i jG +        Numerical flux at the y direction 

( )G U
U

∂
∂

       Jacobi Matrix of ( )G U  

h         Enthalpy per unit mass 

ih         Enthalpy per unit mass of the ith species 

I         N-1 by N-1 identity matrix 

,f kK        Forward reaction rate constants in reaction k 

,b kK        Backward reaction rate constants in reaction k 

*l  Theoretic length of the reaction zone of 1-D 

gaseous detonation, 



   9
 

constL        Length of the uniform region 

indl         Calculated induction zone length 

rxnl         Calculated reaction zone length 

pL
uur

        Left eigenvectors of the Jacobi Matrices 

DM        Mach number of detonation wave 

M∞         Mach number of the free stream 

N        Number of species being considered   

p         Pressure 

0p          Initial pressure 

1 1 1 1 1, , , ,p T u c M  Pressure, Temperature, velocity, sound speed and 

Mach number of the unburnt gas 

2 2 2 2 2, , , ,p T u c M  Pressure, Temperature, velocity, sound speed and 

Mach number of the burnt gas 

3 3 3 3, , ,p T u c  Pressure, Temperature, Velocity and sound speed 

in the uniform region 

atmp        Atmospheric pressure 

cjp         Pressure at the C-J plane 

ignp         Pressure in the ignition area 

maxp  Maximum pressure at a certain location for some 

time period 

peakp         Peak pressure at the detonation front 

q         Heat release per unit mass of reactants 
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r         Relaxation coefficient  

R         Specific gas constant 

iR         Specific gas constant for the ith species 

uR         Universal gas constant 

pR
uur

        Right eigenvectors of the Jacobi Matrices 

0
iS         Standard state entropy 

T         Temperature 

chart  Characteristic time of cellular structures 

*T∞         Initial temperature ahead of the leading shock wave 

u         Velocity at the x direction 

cju         Flow velocity at the C-J plane      

Du         Detonation wave velocity 

v         Velocity at the y direction 

'
ikv  Forward chemical stoichiometric coefficients for 

the ith species in reaction k 
''
ikv  Backward chemical stoichiometric coefficients for 

the ith species in reaction k 

max
v  Absolute value of the maximum flow velocity at a 

certain location for some time period 

W         Mean molecular weight of the mixture 

iW          Molecular weight of the ith species 

iX         Mole fraction of the ith species 

iY         Mass fraction of the ith species 
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t∆         Time step 

,x y∆ ∆        Mesh size 

Greek Symbols 

α         Monotone flux 

1 7i iα α       Thermal parameters 

ikα         Third body coefficients 

β         Entrance angle of the detonation cellular structure 

rβ         Smoothness measurement of the flux function 

γ         Specific heat ratio 

δ  The acute angle between the incident wave and the 

triple-point trajectory line 

ε         A positive real small number 

θ         Sloping angle of Diverging or converging channels 

iλ         Eigenvalues of the Jacobian matrix of ( )F U  

jλ         Eigenvalues of the Jacobian matrix of ( )G U  

ρ         Density 

*ρ∞         Initial density ahead of the leading shock wave 

ϕ         Exit angle of the detonation cellular structure 

φ  The acute angle between the Mach stem and the 

triple-point trajectory line 

χ         Triple-point trajectory angle 

ψ  The acute angle between the transverse wave and 
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the incident wave 

ω         Transverse track angle 

iω&         Mass production rate of the ith species 

, , ,r r r rω ω α α+ − + −      Numerical weight coefficients  

∆  The acute angle between the incident wave and the 

Mach stem 
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Chapter 1 Introduction 

1.1 Background 

Combustion process is a vital mechanism in most propulsion systems. The 

combustion process can be characterized as either a deflagration or a detonation. The 

deflagration is mainly governed by mass and thermal diffusion and has a flame speed 

of several meters per second. Usually, a deflagration process produces a slight 

decrease in pressure and can be designed as a constant-pressure combustion process. 

Engines based on the deflagration process can be constructed to operate at steady state 

and are easily optimised with modular analyses of each subsystem. Most conventional 

engines, such as turbofans, turbojets, ramjets, and rocket engines, utilize a steady 

deflagration process.  

In contrast to deflagration, the detonation process takes place much more rapidly and 

produces a supersonic combustion wave, or a detonation wave, which propagates at 

around two thousand meters per second toward the unburnt reactants. The detonation 

wave can be described as a strong shock wave coupled to a reaction zone. The leading 

part of a detonation front is a strong shock wave propagating into the unburnt fuel. 

The shock heats up the material by compressing it, thus triggering chemical reaction, 

and a balance is attained such that the chemical reaction supports the shock. In this 

process, material is consumed at O(100) times faster than a flame, making detonation 

easily distinguishable from other combustion processes. For example, a good solid 

explosive converts energy at a rate of 1010 watts per square centimeter of its 
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detonation front, which can be compared with the solar energy intercepted by the 

earth. A 400m2 detonation wave operates at a power level roughly equals to all the 

power the earth receives from the sun (about 4×1016 watts). These virtues of 

detonation wave become the primary reason that has been driving people’s interests in 

developing engines that employ detonation processes. Examples of these engine 

concepts include those employing standing detonation waves, such as the detonation 

thrusters, the detonation ramjet, and the oblique detonation wave engine (ODWE), or 

those employing intermittent traveling detonation waves, such as the pulse detonation 

engine (PDE). 

The earlier studies on detonation have gone through various stages. First, the 

detonation phenomenon was independently discovered by Berthelot and Vielle (1882), 

Mallard and le Chatellier (1881). About 20 years later, the Chapman-Jouguet theory 

was used to evaluate some detonation parameters successfully. The simplest theory 

was proposed by Chapman (1899) and Jouguet (1905), usually referred to as the C-J 

theory. It treats the detonation wave as a discontinuity in one dimension. This theory 

can be used to predict the detonation wave velocity without the need to know the 

details of the chemical reaction and the detonation wave structure. A significant 

advancement in the understanding of the detonation wave structure was made 

independently by Zeldovich (1940) in Russia, von Neumann (1942) in the United 

States, and Döring (1943) in Germany. They considered the detonation wave as a 

leading planar shock wave with a chemical reaction zone behind the shock. Their 

treatment has come to be called the ZND model of detonation, and the corresponding 
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detonation wave structure is called the ZND detonation wave structure. Although all 

the experimentally observed detonation waves have much more complex cellular 

three-dimensional structures resulting from the strong nonlinear coupling between 

gas-dynamics and chemical kinetics (Glassman, 1996), the C-J theory and the ZND 

model, which assume a planar one-dimensional detonation wave, are still very useful. 

An overview of these theories is hence given in the following section to provide some 

basic knowledge on detonation physics. More detailed and extended discussions about 

detonation physics and phenomena can be found from several textbooks, such as 

Fickett and David (1979), Kuo (1986) and Glassman (1996). 

1.1.1 C-J Theory 

For a steady, planar, one-dimensional detonation wave, with both the reactants and 

products modeled as the same perfect gas and the detonation wave modeled as a 

discontinuity at which heat addition occurs, the conservations of mass, momentum, 

and energy in a coordinate system fixed at the wave front result in, 

1 2 2
2 2

1 1 2 2 2

( ) (1.1)
( ) (1.2)

D D

D D

u u u

p u p u u

ρ ρ

ρ ρ
γ

γ

= −                                                                                      

+ = + −                                                                    

2 21 2
2

1 2

1 1 ( ) (1.3)
1 2 1 2D D

p pu q u uγ
ρ γ ρ

+ + = + −                                              
− −

 

where Du  is the detonation wave velocity, q the heat release per unit mass of 

reactants due to chemical reaction, and γ  ratio of the specific heat of the gas. 1ρ , 1p , 

and 1u  represent the density, pressure, and velocity of the unburnt gas, and 2ρ , 2p , 

and 2u  represent the density, pressure, and velocity of the burnt gas. Since there are 

only three equations, an additional equation is needed to solve for the four unknowns 
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2p , 2ρ , 2u  and Du . This additional equation will be obtained through the following 

analysis. Combining the mass and momentum conservation equations leads to the 

Rayleigh relation,  

2 2
2 1 1

2 1

1 1( ) /( ) Dp p uρ
ρ ρ

− − = −  .                                                                   (1.4)  

Manipulating Eqs. (1.1) − (1.3) results in the following Hugoniot relation, 

2 1
2 1

2 1 2 1

1 1 1( ) ( )( ) .
1 2

p p p p qγ
γ ρ ρ ρ ρ

− − − + =                                                      (1.5)
−

 

Figure 1.1 shows the schematic of the Hugoniot curve and the Rayleigh line in the 

2 21/p ρ  plane. In this figure, the point corresponding to the unburnt gaseous state is 

denoted by A. Apparently, all the Rayleigh lines pass through this point A. The 

possible final states are defined by the points of intersection of the Rayleigh line and 

the Hugoniot curve. Among all the straight lines passing through point A, there are 

two lines which are tangential to the Hugoniot curve. The corresponding tangent 

points are defined as the C-J (Chapman-Jouguet) points, denoted in the figure by point 

U for the upper C-J point and L for the lower C-J point. The horizontal and vertical 

lines passing through point A correspond to a constant pressure and a 

constant-volume process, respectively. The Hugoniot curve is divided into five 

regions, namely regions I~V, by the two tangent lines and the horizontal and vertical 

lines. Region V is unphysical since the Rayleigh lines defined by Eq. (1.4) cannot 

have positive slope. Regions I and II are called detonation branch, within which the 

velocity of the wave front is supersonic; regions III and IV are called deflagration 

branch, within which the velocity of the wave front is subsonic. The upper C-J point 
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corresponds to a minimum detonation velocity, whereas the lower C-J point 

corresponds to a maximum deflagration velocity.  

Through simple mathematical derivations, i.e., by equating the slope of the Hugoniot 

curve to that of the Rayleigh line, the following relation, usually referred to as the C-J 

condition, can be obtained at the C-J points, 

2 2 2 2 2 2 2 2' / ' '/ 1 (1.6)Du u u p c or M u cγ ρ= − = =     = =                                      

where 2c  is the sound speed of the burnt gas, 2 'u  and 2 'M  the velocity and Mach 

number of the burnt gas relative to the wave front, respectively. The flow velocity 

relative to the wave front at the C-J points equaling to the local sound speed is one of 

the notable characteristics of the C-J points. At the upper C-J point, since 2 2 Du c u+ = , 

any rarefaction waves arising behind the wave front will not overtake the detonation 

wave and thus a self-sustained steady detonation wave can be established. 

Region I is called the strong-detonation region. In this region, the velocity of the burnt 

gas relative to the wave front is subsonic, i.e., 2 2 Du c u+ > , thus, any rarefaction waves 

arising behind the wave front will overtake and weaken the detonation wave. As a 

matter of fact, a strong detonation, also called overdriven detonation, is not stable and 

is thus seldom observed experimentally. It may, however, appear during a transient 

process or be generated with a driving piston.  

Region II is called the weak-detonation region. In this region, the velocity of the burnt 

gas relative to the wave front is supersonic, i.e., 2 2 Du c u+ < . If the ZND 
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(Zeldovich-von Neumann-Döring) detonation wave structure is adopted, the 

detonation wave can be considered as a shock wave and a following heat addition 

zone. The gas velocity immediately behind the shock relative to the wave front is 

known to be subsonic from classical shock dynamics theory. On the other hand, it is 

also well known that for a steady flow in a constant-area tube, the fluid cannot be 

accelerated from subsonic to supersonic by heat addition. This means that the velocity 

of the burnt gas relative to the wave front cannot be supersonic. Thus, region II is 

physically impossible as long as the ZND detonation wave structure is assumed. 

Another discussion leading to the same conclusion can be found in the textbook of 

Glassman (1996).  

Region III is called the weak-detonation region. The weak deflagration, or simply the 

deflagration, is often observed in experiments. A deflagration wave propagates toward 

the unburnt gas at a subsonic velocity. Across a deflagration wave, the velocity of the 

gas relative to the wave front is accelerated within the subsonic regime, and the 

pressure is reduced. 

Region IV is called the strong-deflagration region. Across a strong deflagration wave, 

the gas velocity relative to the wave front accelerates from subsonic to supersonic. 

Similar to the discussion for region II, this contradicts with the known theory that for 

a steady flow in a constant-area tube, the fluid cannot accelerate from subsonic to 

supersonic by heat addition. Therefore, region IV is physically impossible, and a 

strong deflagration can never be observed experimentally. Based on the discussions 
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above, the upper C-J point is the only possible state for a self-sustained steady 

detonation wave. Thus, the C-J condition, Eq. (1.6), can be used as an additional 

equation to Eqs. (1.1) ~ (1.3) to solve for the four unknowns aforementioned, 

i.e., 2 2 2, ,p uρ   and Du . It is convenient to find the detonation wave Mach number MD 

first and then express the other unknowns with respect to it. It can be shown through 

algebraic manipulation that the unknowns as well as several other properties of the 

final state take the following forms, 
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where R is the gas constant; 1T , 1c , 1ρ , 1p  are the temperature, sound speed, 

density and pressure of the unburnt gas, respectively; 2T , 2ρ , 2p , 2c , 2u  and 

2M , are the temperature, density, pressure, gas velocity, sound speed, and Mach 

number of the burnt gas, respectively.  
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For most cases, 
2

DM >> 1, and some of the expressions (1.7-1.14) can be 

approximately reduced to the following forms, 
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1.1.2 ZND Detonation Wave Structure 

The C-J theory has been very successful in predicting the detonation wave velocity. 

However, it cannot tell the details of the detonation wave structure. In the early 1940s, 

Zeldovich (1940), von Neumann (1942), and Döring (1943) independently extended 

the C-J theory to consider the detonation wave structure that has become the 

well-known ZND detonation structure. Their treatment is referred to as the ZND 

model. According to them, the detonation wave is interpreted as a strong planar shock 

wave propagating at the C-J detonation velocity, with a chemical reaction region 

following and coupled to the shock wave. The shock wave compresses and heats the 

reactants to a temperature at which a reaction takes place at a rate high enough for 

ensuring the deflagration to propagate as fast as the shock wave. The shock wave 
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provides activation energy for igniting the reaction, whereas the energy released by 

the reaction keeps the shock moving. Their assumption that no reaction takes place in 

the shock wave region was based on the fact that the width of the shock wave is in the 

order of a few mean free paths of the gas molecules, whereas the width of the reaction 

region is in the order of one centimeter (Kuo, 1986). 

Figure 1.2 shows schematically the variation of physical properties through a ZND 

detonation wave. Plane 1 denotes the state of unburnt gas. Plane 1' denotes the state 

immediately after the shock wave. Chemical reaction starts at plane 1' and finishes at 

plane 2, at which the C-J state reaches. If a single variable is used to represent the 

reaction progress or the degree of reaction, it will have a value of 0 at plane 1' and a 

value of 1 at plane 2. Following the Arrhenius law, the reaction rate increases with 

temperature. The chemical reaction region can be divided into an induction zone and a 

heat addition zone. The induction zone is directly behind the shock wave. In the 

induction zone, the temperature is not very high, and the reaction rate is relatively 

slow. As a result, the temperature, pressure, and density profiles are relatively flat. In 

the heat addition zone that is behind the induction zone, the reaction rate increases 

drastically to high values. A large amount of heat release from the reactions, and the 

gas properties change sharply. 

The ZND detonation wave structure can be also interpreted by Hugoniot curves 

shown in Figure 1.3. There are many paths, such as those labeled by a, b, c, and d, 

through which a reacting mixture may pass through the detonation wave from the 
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unburnt state to the burnt state (Kuo, 1986). In the limit of zero chemical-energy 

release in the shock, a path will reach point s, the intersection of the shock Hugoniot 

curve and the Rayleigh line, and then the upper C-J point. The point s is referred to as 

the von Neumann spike. The von Neumann spike pressure can be determined from a 

normal shock relation: 
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Using Eq. (1.12), the relationship between von Neumann spike pressure and the C-J 

pressure can be shown as, 

2

1 1

2sp p
p p

= −1                                                                    (1.22)  

Eq. (1.22) shows that the von Neumann spike pressure is about twice of the C-J 

pressure.  

The ZND model marks a great advancement from the C-J theory in recognizing the 

detonation wave structure. However, all the experimentally observed detonation 

waves exhibit much more complex cellular three-dimensional structures. The 

smoked-foil record of a detonation shown in Fig. 1.4 displays a typical cellular 

structure (Strehlow, 1968). More detailed discussions about these structures can be 

found in Kuo (1986) and Glassman (1996). 

1.1.3 ZND Detonation Wave Propagation in a Tube 

This subsection considers the ZND detonation propagation in a constant-area tube that 

is closed at one end and open at the other, shown schematically in Figure 1.5. The 
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tube is initially filled with a static premixed detonable mixture. Detonation is initiated 

at the closed end and propagates downstream toward the open end. Following the 

detonation wave is a centered rarefaction wave, known as the Taylor wave, emanating 

from the closed end to satisfy the stationary boundary condition there. After the 

passage of the Taylor wave, a uniform region forms. The corresponding wave form in 

the space-time plane is given in Figure 1.6. Figure 1.7 schematically shows the 

pressure profile within the tube. The width of the detonation wave is enlarged for 

visualization. The states 1, s, 2, and 3 denote the unburnt gas state, the von Neumann 

spike state, the C-J state, and the uniform region state, respectively. The von 

Neumann spike state and the C-J state can be readily determined using the equations 

derived in the previous subsection. The focus of this subsection is hence on the 

solution of the Taylor wave and uniform regions. 

The properties of the uniform region can be obtained as follows. Applying the 

Riemann invariant relation along the characteristic line passing through the Taylor 

wave from state 2 to state 3, one obtains 

3 3 2 2
2 2
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u c u c

γ γ
− = −  ,                                                                (1.23)

− −
 

where 3u  and 3c  are the velocity and sound speed in the uniform region, 

respectively. Since 3u  = 0, the above equation yields 
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where 2M  is the Mach number of the gas at state 2 expressed with Eq. (1.11). 
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Consequently, the temperature in the uniform region is 
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Through an isentropic relation from state 2 to state 3, the pressure can be determined 

as: 
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The relation of the sound speed 3c  with the detonation wave velocity Du  can be 

obtained by combining Eqs. (1.24), (1.10), and (1.8): 
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Since the rear of the Taylor wave propagates at 3c , the length of the uniform region, 

constL , can be calculated by the following expression, 

3constL c t=  .                                                                 (1.28)  

Similar to the previous subsection, considering that the square of the detonation wave 

Mach number, 2
DM , is much larger than 1, the above expressions, Eqs. (1.24) ~ (1.27) 

can be further simplified with approximation: 
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The length of the uniform region can thus be approximated as: 
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3
1
2const DL c t u t= ≅                                                        (1.33)  

It indicates that the length of the uniform region is about halfway between the 

detonation wave front and the head end (Fickett and Davis, 1979).  

The flow properties within the Taylor wave region, 3 Dc t x u t≤ ≤ , can also be derived. 

The Riemann invariant relation along the characteristic line from state 3 to the point 

(x, t) gives: 
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where u and c are the velocity and sound speed at point (x, t). On the other hand, since 

the forward characteristic lines are straight, thus, 

x u c
t
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Combining Eq. (1.34) with (1.35) leads to, 

3 3

2
1

u x
c c tγ γ

2
= −                                                    (1.36)

+ +1

3 3

1
1

c x
c c t

γ
γ γ

− 2
= +  .                                                  (1.37)

+ +1
 

3 3

1
1

T x
T c t

γ
γ γ

2
⎛ ⎞− 2

= +                                               (1.38)⎜ ⎟+ +1⎝ ⎠

3 3

1
1

p x
p c t

γ
γγ

γ γ

2
−1⎛ ⎞− 2

= +  .                                          (1.39)⎜ ⎟+ +1⎝ ⎠
 

1.2 Literature Review 

Studies of detonation that have been conducted for about a century can be classified 

into experimental and numerical studies.  
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1.2.1 Experimental Studies 

Experimentally, much effort has been expended in studying various important aspects 

of PDEs, including the detonation initiation, propagation and the blowdown processes 

etc. Some experiments can be used to determine the detonation initiation energy 

required for a given mixture or to measure the detonation wave properties. Both 

hydrogen and hydrocarbon fuels were involved in the experiments. The hydrocarbon 

fuels include both gaseous fuels such as ethylene (C2H4) and propane (C3H8) and 

liquid fuels such as JP10 (C10H16). Ethylene (C2H4) was selected by many researchers 

because of its well-documented detonation properties and as a common 

decomposition of some typical heavy hydrocarbon fuels.  

Detonation initiation is one of the major challenges in the PDE design. A detonation 

can be initiated either directly through a large amount of energy deposition or 

indirectly through a low-energy deposition along with a deflagration-to-detonation 

(DDT) process. Typical values for direct initiation energy for hydrocarbon fuel/air 

mixtures are of the order of Kilo-Joules to Meg-Joules (Benedick et al., 1986). The 

deposition of such high initiation energies is impractical for repetitive initiations. 

Most PDE experiments have thus relied on a DDT process for detonation initiation. 

According to the literature (Oppenheim, 1962; Lee and Moen, 1980; Kuo, 1986), a 

DDT process consists of the following sequence of events: 1) deflagration initiation – 

a deflagration combustion is initiated by a low-energy deposition; 2) shock wave 

formation – the energy released by the deflagration increases the volume of the 
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products and generates a train of weak compression waves that propagate into the 

reactants ahead of the flame and finally merge into a shock wave; 3) onset of “an 

explosion in an explosion” – the shock wave heats and compresses the reactants ahead 

of the flame, creates a turbulent reaction zone within the flame front, and eventually 

cause one or more explosive centers formed behind the shock front; 4) overdriven 

detonation formation – strong shock waves are produced by the explosions and 

coupled with the reaction zone to form a overdriven detonation; 5) stable detonation 

establishment – the overdriven detonation wave decreases to a steady speed at around 

the C-J detonation velocity.  

The distance from the ignition to the detonation formation point is referred to as the 

DDT length, which is in general a function of the fuel and oxidizer, the tube diameter 

and geometry, the tube wall surface roughness, and the method used to ignite the 

mixture. Sinibaldi et al. (2000) investigated the dependence of the DDT length on the 

ignition energy, ignition location, and stoichiometric mixture for a C2H4/O2/N2 

mixture. They found that ignition energies above 0.28 J had little effect on DDT 

length. The ignition location tests revealed that when the ignitor was placed 1.33 tube 

diameter from the head wall, the DDT length could be reduced by up to 32%. Their 

results also showed that the mixture equivalence ratio significantly affects the DDT 

length. The minimum DDT length of around 7.5 cm for the C2H4/O2 mixture was 

obtained with an equivalence ratio of 1.2. A drastic increase in DDT length was 

observed when the equivalence ratio is less than 0.75.  
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In general, the DDT length could be large compared to the tube length used in PDE 

experiments. Hinkey et al. (1995) carried out a series of tests with H2/O2 mixtures of 

various equivalence ratios and found that the DDT lengths are on the order of 30 to 

100 cm. They thus suggested using some DDT augmentation devices to enhance the 

DDT process and reduce the DDT length, which was adopted in most subsequent 

PDE experiments. In the early multi-cycle experimental work of Nicholls (1957) and 

Krzycki (1962), it is not clear whether full detonation waves were realized because a 

low-energy spark ignitor was used in their experiments and no DDT augmentation 

devices were implemented.  

A classical approach for DDT enhancement is to place the Shchelkin spiral (Shchelkin, 

1940), into the detonation tube. Hinkey et al. (1995) first applied this approach to 

their single-pulse PDE experiments with H2/O2 mixture and found that the Shchelkin 

spiral reduced the DDT length by a factor of about 3. Recently, New et al. (2006) 

performed experiments on a multi-cycle PDE, running on a propane-oxygen mixture 

using a rotary-valve injection system and a low energy ignition source to investigate 

the effectiveness of Shchelkin spiral parameters on DDT. Their results showed that 

only spiral with the highest blockage-ratio were able to achieve successful and 

sustained DDT in the shorter length configuration. In addition to the Shchelkin spirals, 

other internal obstacles such as half-disk protrusions (Broda et al., 1999), blockage 

plates and orifice plates (Cooper et al., 2002), and coannulus (Mayer et al., 2002) 

have also been used by various researchers. It should be noted, however, while 

enhancing the DDT processes, all these obstacles result in significant total pressure 
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loss and degrade the propulsive performance. Cooper et al. (2002) reported that the 

DDT lengths could be reduced by an average of 65% in various C3H8/O2/N2 and 

C2H4/O2/N2 mixtures using obstacles with a blockage ratio of 0.43, whereas the 

impulse was reduced by up to 25%.  

Another traditional detonation initiation concept involves using a predetonator 

(Helman et al., 1986), which is in essence a detonation-to-detonation initiator. A 

detonation is initiated in a more easily detonable mixture called as the driver gas and 

then propagates into and initiates a detonation in the primary mixture. A simple 

example of this concept is to fill a fuel/oxygen mixture or the driver gas in an 

initiation section near the closed end of the detonation tube (Hinkey et al., 1995; 

Sanders et al., 2000). The minimum length of the initiation section is the DDT length 

of the driver gas. The aforementioned DDT augmentation devices can be further 

implemented within the initiation section to achieve more rapid initiation. A 

disadvantage of this concept is the need to carry an additional driver gas or oxygen 

generator, which increases the system weight. The additional driver gas also lowers 

the specific impulse since the weight flow rates of both the fuel and the driver gas 

should be taken into account in calculating the specific impulse. To mitigate this 

disadvantage, the amount of the driver gas or the volume of the driver gas region must 

be as small as possible. A practical way to reduce the volume of the driver gas region 

is to utilize an additional smaller tube for the driver gas. This additional tube, usually 

with a volume on the order of 1% of that of the main detonation tube, is called a 

predetonator. The detonation transmission from the predetonator to the main 
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detonation tube is thus a key issue in the predetonator applications (Sinibaldi et al., 

2001; Santoro et al., 2003).  

Diffraction of detonation from a small tube into an unconfined space has been 

extensively investigated in the past (Lee, 1984; Desbordes, 1988). According to the 

literature, a successful detonation transmission happens if the tube diameter is larger 

than the critical diameter. This critical diameter is usually expressed in terms of the 

detonation cell size of the mixture. It is now commonly accepted that the critical 

diameter is about thirteen times of the detonation cell size for smooth circular tubes. 

The detonation transmission from the predetonator to the main detonation tube has 

also been investigated recently (Sinibaldi et al., 2001; Santoro et al., 2003; Brophy et 

al., 2003). Successful detonation transmission from the predetonator to the main 

detonation tube could be achieved at predetonator tube diameters less than the critical 

diameter because of the confinement of the transition region and main detonation tube 

(Santoro et al., 2003).  

Other techniques proposed for promptly achieving detonation initiation include hot jet 

initiation, detonation wave focusing, etc. Hot jet initiation was observed by 

Knystautas et al. (1979) for sensitive fuel-oxygen mixtures. Lieberman et al. (2002) 

recently demonstrated the possibility of using a hot jet to initiate a detonation in a 

short detonation tube filled with the C3H8/O2/N2 mixture. The idea of the detonation 

wave focusing is to initiate the detonation in the main detonation tube through the 

merging of the detonation waves coming from a bunch of small tubes (Jackson and 
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Shepherd, 2002). 

Besides the above-mentioned works about DDT, detonation reflection and diffraction 

have also been investigated by some researchers experimentally. Guo et al (2001) 

described the Mach reflection processes of a detonation and revealed some 

characteristics by presenting some soot tracks formed by gaseous detonation waves 

diffracting around wedges with different wedge angles. The relationship between the 

trajectory angle of the triple point, wedge angle, and initial pressure in Mach 

reflection was also analyzed. Their results showed that the triple-point trajectory angle 

χ  is dominantly dependent on wedge angle θ  and is not sensitive to the initial 

pressure 0p . In addition, they also found that the triple-point trajectory could be 

detached from the wedge apex when the wedge angle is less than 30° in their 

experiments. For Mach-reflected detonations, the trajectory of the triple point was 

observed to be a curve line. 

Khasainov et al (2005) reported an experimental study on the detonation diffraction 

from circular tubes to cones of various angles in stoichiometric C2H2/O2 mixture, and 

they also proposed critical conditions for diffraction and investigated the mechanisms 

involved. Their research results showed that the critical transmission was due to a 

super-detonation that propagates transversally in shocked gas before the flame front. 

The critical conditions for diffraction were discussed, that is, at large cone angles 

( θ >40°), super-detonation originates at the axis of the flow and propagates 

tangentially to the cone wall, while at smaller angles (θ <40°), super-detonation 
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originates at the cone wall and propagates toward the axis.  

By using the chambers with different shapes from those by Khasainov et al. (2005), 

Thomas and Williams (2002) experimentally analyzed the interaction of gaseous 

detonations with obliquely inclined surfaces, which involves a planar inclined wall, 

two-dimensional propagation in a curved channel and finally three-dimensional 

interaction with a bend in a cylindrical pipe. The role of detonation structure was also 

discussed as well as the magnitude and duration of potentially damaging 

overpressures. Their numerical results showed that the presence of transverse 

structure influenced the reflection process directly and the natural transverse structure 

participated actively in the wave reflection processes occurring near the wedge. 

Detonation structure was found to play a crucial role when expansions were present, 

as expansion could lead to local failure of the transverse structure and hence of the 

detonation process locally. That local overpressures peaks up to six times the incident 

peak C-J pressure could occur and they were very short lived ( 10 sµ< ). 

1.2.2 Numerical Studies 

In addition to experimental investigations, substantial attempts have been made to 

numerically study detonation wave and its cellular structure since the late 1970s when 

the development of computer technology made possible the numerical simulations of 

detonation, especially on some aspects that cannot be studied easily in experiments, 

like propagating mechanism of self-sustained detonation, deflagration to detonation 

transition and the detailed detonation structure etc. In contrast to experiments in 

which ethylene (C2H4) is often used as the fuel, most numerical studies use hydrogen 
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(H2) as the fuel because of its relatively simpler chemical kinetics. Another significant 

difference between experiments and simulations is the detonation initiation. In 

experiments, as discussed above, the detonation is usually initiated indirectly through 

a low-energy deposition along with a DDT process since the direct initiation with 

high-energy deposition is not practical. In numerical simulations, however, a small 

spark region with high temperature and pressure is commonly implemented to directly 

initiate the detonation. 

One of the early studies on one-dimensional detonation was attributed to Cambier and 

Adelman (1988). Quasi-one dimensional simulations with multi-step finite rate 

chemical kinetics were carried out for a 50-cm-long detonation tube attached to a 

43-cm-long diverging nozzle with stoichiometric H2/Air mixture. The detonation was 

initiated at the closed end by a 2-cm-long spark region with a temperature of 1500 K. 

The refilling process started when the head-end pressure fell to 3.5 atm. The fresh 

reactants moved at speeds up to 350 m/s. The engine reached steady cyclic operation 

by the third cycle with a cycle frequency of about 667 Hz. Specific impulses up to 

6507 s were reported. These very high specific impulses may be due to the fact that 

their calculations were based on the gross thrust from the exit plane and that the 

contribution from the spark region on the impulse was not accounted for. 

Sterling et al. (1995) also conducted one-dimensional simulations with H2/air mixture. 

The detonation tube is 100 cm long. The spark region has a length of 0.5 cm with a 

temperature of 3000 K and a pressure of 50 atm. The refilling process began when the 

head-end pressure decayed to the atmospheric pressure. They calculated the specific 
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impulse for the sixth cycle based on the head-end pressure history and obtained a 

value of 5152 s, which is much smaller than that of Cambier and Adelman (1988). 

Cambier and Tegner (1998) examined the effect of the spark region on the 

performance in their quasi-one-dimensional and two-dimensional simulations with 

H2/air mixture for a 10-com-long detonation tube with various divergent nozzles. The 

spark region spans 0.4 cm, with a temperature of 2500 K and a pressure of 50 atm. 

They observed that the contribution from the spark region on the single-pulse peak 

impulse ranges from 17% to 27%. After subtracting this contribution, they obtained 

specific impulses of 3500 s ~ 4100 s based on the head-end pressure history of their 

quasi-one dimensional multi-cycle results. 

In addition to the differences in the operation conditions and in the calculation 

methods for the specific impulse, the exit boundary condition plays another important 

factor that cause the differences in the reported specific impulses from 

one-dimensional simulations (Kailasanath et al., 1999). The choice of appropriate exit 

boundary conditions poses a major challenge in one-dimensional simulations for 

PDEs. In general, if the outflow is supersonic, extrapolation of the condition from the 

interior points of the computational domain can be used. However, for subsonic 

outflow, the flow inside the domain near the exit relates to the flow field outside the 

domain, which is unknown for the one-dimensional simulations. The situation is 

further compounded by the existence of the unsteady detonation waves and other 

associated waves. Strictly, there are no accurate exit boundary conditions for this kind 
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of complex unsteady subsonic outflow. 

Most one-dimensional simulations have relied on a fixed-pressure boundary condition 

for the outflow (Cambier and Adelman, 1988; Starling, 1995). Ebrahimi et al. (2002) 

used the fixed-boundary condition as well as a varying-pressure condition based on 

corrections from two-dimensional simulations. They found that with the fixed 

pressure condition, the flow chokes as soon as the detonation wave arrives at the exit, 

whereas the varying-pressure result shows duration of a subsonic outflow before 

choking. Kailasanath et al. (1999) utilized a relaxing-pressure boundary condition. 

The pressure is set to reach the ambient value in a relaxation length from the end of 

the detonation tube. A larger value of the relaxation length implies a slower relaxation 

of pressure to ambient. Based on single-pulse operation, they observed that the 

specific impulse is larger for slower relation cases. They then concluded that the 

variations in specific impulses reported in the literature could be explained on the 

basis of exit boundary conditions used. 

For two-dimensional simulations, early numerical research works have shown the 

effectiveness and significance of a reasonably high spatial resolution and detailed 

chemical reaction model.  

Simple one- or two-step chemical reaction models were used to simulate an 

oxyhydrogen mixture by Taki and Fujiwara (1978). The calculation employed a plane 

C-J detonation as an initial condition. Two-dimensional disturbances were generated 

by artificially placing non-uniformities ahead of the detonation front. Regardless of 
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the given different initial disturbances, a fixed number of triple shock waves were 

generated for a fixed combination of mixture model and geometry ultimately. Their 

numerical result showed that for a given detonation tube geometry, any exothermic 

system had its own characteristic multidimensional structure.  

High resolution numerical simulations with simple reaction models have also been 

used to study the detailed detonation structure (Quirk 1993; Lefebvre and Oran 1995; 

Gamezo et al 1999). Additionally, using the multi-step, detailed reaction model, Oran 

et al (1991, 1998) successfully presented the triple-wave configuration for a low 

pressure argon-diluted H2/O2 mixture. The energy-release pattern in a detonation cell 

showed that, in addition to the primary release of energy behind the Mach stem, there 

was a secondary energy release that started about two-thirds of the way through the 

cell. In addition, it was also found that after the triple point collision, the structure 

evolves from a single-Mach configuration to double-Mach and more complex 

configurations. Resolution tests showed that the number of triple points or transverse 

waves, as well as global and local energy release, converges ultimately.  

However, relatively low resolution may lead to some disagreement, as shown by 

Sharpe (2001). Sharpe used a very high spatial resolution numerical simulation for the 

same mixture but with simple reaction models. The results showed that the structure 

has a double-Mach-like configuration of the strong type and there is no further change 

before and after the triple point collision. This observation may have led Sharpe to 

conclude that for simple kinetics, the failure to resolve accurately the structures as 
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predicted by steady analysis can induce qualitatively incorrect conclusions. Somewhat 

similar conclusions have also been reached for detonation diffraction problems that 

when the grid resolution is insufficient to capture the reaction zone and radius of 

curvature effects, large errors can arise (Wescott at al 2004; Arienti and Shepherd 

2005).  

By utilizing a high resolution of up to 0.025mm, detailed reaction model and high 

order numerical scheme, Hu et al. (2004) studied a low pressure argon-diluted H2/O2 

mixture and resolved the structure configuration and its evolution. The numerical 

results showed some fine structure features as characterized by the complex 

chain-branching reaction process. Through the triple point collision, three regular 

collision processes were observed, followed by a quick change to the 

double-Mach-like configuration. In addition, three different tracks associated with 

different triple points or the kink on the transverse wave were found. Resolution study 

showed that the discrepancies concerning the structure type by the coarser grid could 

be resolved using a sufficient find mesh size of 0.05mm or below.  

Besides the above-mentioned works and others, the interactions between detonation 

wave and a wedge or a sloping wall have been studied by some researchers 

numerically as well. Yu (1996) and Akbar (1997) performed some investigations of 

the interaction between a gaseous detonation and a wedge. Ohyagi et al (2000)’s 

numerical simulation of the detonation reflection processes on a wedge employed the 

flux corrected transport scheme and a two-step chemical reaction model for 
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stoichiometric H2/O2 mixture diluted with argon. Results showed that there exists a 

critical angle beyond which Mach reflection could not occur.  When Mach reflection 

occurred, the cell sizes in Mach stem were smaller than those in the incident waves. In 

addition, it was also found that there was an initiating stage during which the cells in 

the Mach stem were created. The trajectory of the Mach reflection triple point was 

observed to be a curved line.  

Regarding the work on oblique detonation waves, Li et al (1994) studied the 

two-dimensional, oblique detonations generated by wedge-induced shocks in 

H2/O2/N2 mixture, and revealed that the basic structure of such an oblique detonation 

was found to consist of a non-reactive oblique shock, an induction region, a set of 

deflagration waves, and a reactive shock in which the shock front is closely coupled 

with the energy release. In addition, the detonation structure was found to be stable 

and very resilient to disturbances in the flow. The entire detonation structure was 

steady on the wedge when the flow behind the structure was completely supersonic, 

while if the flow somewhere behind the structure was subsonic, the structure might be 

detached from the wedge and move upstream continuously. 

Papalexandris (2000) also investigated the wedge-induced oblique detonations. By 

using an unsplit algorithm which integrates the convective and reaction source terms 

simultaneously, Papalexandris discussed the evolution of the leading shock in two 

different geometrical configurations with various wedge angles, depending on 

whether the top corner would affect the structure of the reaction zone. The numerical 
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results showed that, for small wedge angles, the shock attached to the wedge would 

turn smoothly to an oblique ZND wave, while an explosion could occur at the front 

for high wedge angles. Studies of the effect of the wedge corner revealed that, when 

explosion occurred upstream of the corner, the expansion at the corner would not 

affect the evolution of the front. If explosion occurred downstream of the corner, the 

curvature of the front and the reaction process could be affected. It was also found 

that for wedge heights small enough, a detonation could not be established 

downstream, and the front decayed downstream to a Mach wave. 

Recently, Fusina et al (2005) employed CFD to investigate the formation and stability 

of a standing oblique detonation wave (ODW) near the C-J point. Simulating the 

formation of a near C-J ODW indicated that it reached a non-oscillatory position. The 

C-J ODW was observed to be resilient to inhomogeneities in the oncoming fuel-air 

flow; after displacing upstream slightly, it returned to its original position. The change 

in the combustion-inducing shock caused by the inhomogeneities was determined to 

be the leading cause of the ODW displacement and to be the part of the ODW 

structure most sensitive to disturbances. The test of an under-driven ODW’s stability 

showed that it displaced three times as much as its C-J counterpart. The study of the 

radical species formation in the induction region of the ODW revealed that HO2 is the 

first radical to appear in the induction zone and that the other radicals appear 

subsequently. 
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In addition, Walter et al (2006) conducted work on the interaction between the leading 

oblique detonation wave and the expansion waves generated by a wedge surface. 

Their computational results showed that for intermediate wedge angles, a C-J oblique 

detonation wave was obtained, while for wedge angles near to a maximum angle, the 

oblique detonation wave was decoupled. They also found that when decoupling 

occurred, the ratio between the height of the ramp h  and induction length il  of the 

chemical process downstream from the leading OSW of the overdriven ODW is 

smaller than when a C-J ODW is obtained. For given values of the induction length 

and ODW angle, the ramp height controls the pressure gradient of the expansion fan 

downstream from the ODW. 

1.3 Objectives of the Study 

1.3.1 Motivation 

As discussed above, some important topics like propagating mechanism of 

self-sustained detonations, deflagration to detonation transition, and detonation 

reflection and diffraction, to name a few, have not been well understood as yet 

(Oppenheim et al 1973, and Lee 1984). One of the key topics is the detonation 

reflection and diffraction associated with the shape or area change in the chambers 

considered. The importance of shape or area variation is intricately related to the 

different dimension chambers in an operating PDE (Wintenberger et al 2003). A 

typical air-breathing PDE consists of an inlet, a series of valves, one or multiple 

detonation tubes, and an exit nozzle. The different sections of the PDE invariably 

have different cross-sectional areas. For example, the pre-detonator PDE may be a 
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smaller size chamber and use more volatile fuel for ease of initiation of detonation 

and it expands into the larger size main detonation chamber filled with a different 

gaseous fuel. Besides the possibility that the detonation wave decays or dies in the 

expansion or contraction chambers, the overall performance of a PDE can also be 

strongly affected by the cross-sectional area variation in the PDE tube (Daniel 2003). 

Therefore, it is significant and even critical to study the detonation reflection or 

diffraction in a contraction or expansion chambers of various areas for a better 

understanding of the detonation transition. Although fairly extensive works have been 

carried out to investigate the reflection or diffraction of shocks in non-reactive gases 

by planar wedges, much less work has been done on the more complex reflection or 

diffraction of detonation. 

As mentioned above, Thomas and Williams (2002) found that there exists a transition 

region from the irregular cell structure to the ultimate regular cell structure as a 

detonation wave passes through a variable cross-sectional chamber. Due to the 

limitation of experimental setup, they did not investigate the relationship between the 

length of the transition region and the oblique angle of the sloping wall quantatively. 

In order to explore this relationship, if any, we can impose an existing detonation 

wave in the diverging/converging chambers as the initial condition and then study the 

evolution of the detonation cellular structure by using the numerical simulation 

technology. 

1.3.2 Objectives 
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The present research aims to study the detailed triple-wave configuration of a gaseous 

detonation wave, as well as the formation, evolution and the dynamic characteristics 

of the detonation cellular structure. 

Another aim is to observe the evolution of detonation cellular structures in variable 

cross-sectional chambers, and examine the influences of the variable cross-sectional 

walls on the detonation wave and its cellular structure. These variable cross-sectional 

chambers are either two-dimensional diverging/converging chambers or axisymmetric 

diverging/converging chambers.  

An extension to the study of the evolution of detonation cellular structure is the 

possibility of a relationship between the length of the transition region and the 

diverging or converging oblique angle. When the detonation wave passes through a 

diverging or converging sloping wall, its cellular structure would be distorted, until 

these detonation cells re-gain their regularity. The process can be viewed as a 

transition region, and its length is significant for the design of the industrial 

detonation propulsion systems.  

Finally, the diffraction and reflection of detonation waves are also studied. A 

relationship between the triple-point trajectory angle of Mach reflection and the 

oblique angle of a converging sloping wall is discussed.  

1.4 Organization of the Thesis 

In Chapter 2, the physical conditions and a detailed chemical reaction model are 
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introduced. The multi-species Euler equations with the multi-step chemical reaction 

model are solved by the third order TVD (Total Variation Diminishing) Runge-Kutta 

time integration technique for temporal discretization, the fifth order WENO-LLF 

(Weighted Essentially Non-oscillatory –Local Lax-Friedrichs) scheme for spatial 

discretization and the numerical package of CHEMEQ for the source terms of the 

governing equations. The two-dimensional code is efficiently parallelized by 

implementing the message passing interface (MPI) library and a domain 

decomposition technique. 

In Chapter 3, a variety of numerical experiments on shock wave are performed to 

validate the present code. The experiments include computation of shock waves in 

one-dimensional, two dimensional straight-duct, two-dimensional diverging 

/converging and axisymmetric diverging /converging channels. 

In Chapter 4, the one-dimensional detonation wave initialized by a strong shock wave 

is simulated. The fundamental characteristics and parameters relating to the 

one-dimensional detonation wave, as well as the variation in concentration of species 

are investigated. In addition, a resolution study is also performed.  

In Chapter 5, by introducing some artificial perturbation, the cellular structure of the 

two-dimensional detonation wave is simulated. The detailed triple-wave configuration, 

as well as the formation, evolution and the dynamic characteristics of the cellular 

structure are investigated, to be followed by a resolution study. 

In Chapter 6, profiles of the two-dimensional detonation wave passing through the 
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diverging/converging chambers with various oblique angles are presented. The 

influence of the diverging/converging walls on the detonation wave and its cellular 

structure, as well as diffraction and reflection of the detonation wave are discussed. 

In Chapter 7, profiles of the detonation wave passing through axisymmetric 

diverging/converging chambers with various oblique angles are presented. By 

comparison with the two-dimensional diverging/converging case, the influences of the 

axisymmetric diverging/converging walls on the detonation wave and its cellular 

structure, as well as diffraction and reflection of the detonation wave are discussed.  

Finally, Chapter 8 summarizes the present work and provides several 

recommendations for the future work. 
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Figure 1.1 Schematic of Rayleigh lines and Hugoniot curve  

in 2 21/p ρ plane (adapted from Kuo, 1986) 

Figure 1.2 Variation of physical properties through a ZND 

detonation wave (adapted from Kuo, 1986) 

Hugoniot Curve

Rayleigh Lines
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Figure 1.3 Schematic of ZND detonation structure 

in 2 21/p ρ plane (adapted from Kuo, 1986) 

Figure 1.4 Smoked-foil record of a detonation (Strehlow, 1968) 

Figure 1.5 ZND detonation propagation in a tube closed at one end 
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Figure 1.6 Space-time wave diagram for a ZND detonation wave propagation in a tube

Figure 1.7 Schematic of pressure profile for a ZND detonation propagation 

in a tube closed at one end. (adapted from Bussing and Pappas, 1994) 

(s) 
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Chapter 2 Physical and Mathematical Models 

2.1 Physical Model and Assumptions 

In the current research work, the fuel H2 (Hydrogen) is mixed with O2 (Oxygen) 

stoichiometrically, and the mixture is placed in a chamber of various geometries, with 

the initial pressure of 6670Pa. For better cellular regularity, the mixture is diluted by 

70% argon. For theoretical modeling of the detonation, viscosity, radiation and other 

dissipation effects are neglected. No heat exchange occurs between the fluid and the 

walls. All the gases involved are thermally perfect, and the equation of state for 

perfect gas is used. The chemical model we employ is 9 species (H2, O2, O, H, OH, 

HO2, H2O2, H2O, Ar) and 19 elementary reaction. All the species have different 

specific heats, same temperature. 

2.2 Governing Equations 

The governing equations for the idealized two-dimensional gaseous detonation with N 

species and a multi-step chemical reaction model are given as 

[ ( )] [ ( )]t x yU F U G U S+ + =
                         (2.1) 

where 
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2 2(u +v )= + .
2

E e p hρρ ρ= − +                                     

(2.1b) 

For the idealized axisymmetric detonation, the governing equations are given as  

[ ( )] [ ( )] ,t x rU F U G U S+ + =                          (2.2) 

where 

2

2 2

1 11 1

1 11 1

0
0
0

1, ( ) , ( ) , 0( ) ( ) (

N NN N

u v v
uv uvu u p

v uv v p v
U E F U G U SE p u E p v E

r
Y uY vY

Y uY vY

ρ ρ ρρ
ρ ρρ ρ

ρ ρ ρ ρ

ρ ωρ ρ

ρ ωρ ρ− −− −

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

= = = = −+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

&

M MM M

&

1

1

)

N

p v
vY

vY

ρ

ρ −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

+⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M

     (2.2a)  

2 2(u +v )= +
2

E p hρ ρ− +                                    (2.2b) 

In our present numerical computations, the source term at the central line of the 

axisymmetric chamber (i.e. 0r = ) is modified as, 
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The molecular weights of the species are listed in Table 2.1. The thermal parameters 

1 7i iα α−  are shown in Table 2.2, which comes from the JANAF (Stull, 1971).  

2.3 Numerical Methods 

Now we consider solving the Eq. (2.1). In the Eq. (2.1), [ ( )]xF U  and [ ( )]yG U are 

the convective (hyperbolic) terms, and S is the source terms for the chemical reactions. 

Because the reactions proceed rapidly once they are triggered, we expect that the 

source terms are stiff in time. Considering the stiffness of the source terms, we solve 

the Eq. (2.1) by using the Strang Splitting scheme.  

2.3.1 Strang Splitting Scheme 

Considering a linear ordinary equation, 

'y Ay By= +         (2.3) 

which we wish to solve by time splitting. We will use Strang Splitting (Oran and Boris, 

1987), which is 2nd order accurate. The method consists of solving two separate 

ordinary differential equations, 

'y Ay=           (2.4) 

'y By=           (2.5) 

To advance the solution one time step of size t∆ , we solve (2.4) with the given initial 
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data of (2.3) and a time step of
2
t∆ . We use the result as initial data to solve for (2.5) 

with a time step of t∆ . Then we use that result as initial data to solve (2.4) again with 

a time step of
2
t∆ . 

When this scheme is applied over a series of time steps, we can combine the 

back-to-back evaluations of (2.4). Thus, we start to solve (2.4) with a time step of
2
t∆ . 

Then we alternate (2.5) and (2.4) with time steps of t∆ . And we finish the series with 

an evaluation of (2.4) with a time step of
2
t∆ . 

We can apply this methodology to Eq. (2.1) and (2.2). By Strang Splitting, the Eq. 

(2.1) can be broken into two separate equations, 

[ ( )] [ ( )] 0t x yU F U G U+ + =        (2.6) 

tU S=           (2.7) 

where the first of these is the 2-D Euler equations for multi-species flow without 

chemical reactions, and the second is a purely reacting equation. In one step, we allow 

a non-reacting fluid to convect. In the other step, we allow a motionless fluid to react. 

2.3.2 Spatial Discretization 

In the current work, we use the 5th order WENO-LLF scheme (Jiang and Shu,1996) to 

compute the convective terms, which is based on the 3rd order ENO-LLF (Shu and 

Osher, 1988, 1989). 

Consider the vector equation (2.6), 

[ ( )] [ ( )] 0 .t x yU F U G U+ + =       

The WENO scheme, which approximates ( )xF U−  and ( ) yG U− at ,i jx , will take the 
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conservative from 

1/ 2, 1/ 2, , 1/ 2 , 1/ 2
1 1( ) ( )t i j i j i j i jU F F G G
x y+ − + −= − − − −

∆ ∆
   (2.8) 

The numerical flux 1/ 2,i jF +  can be computed by the following steps: 

1) The generalized Roe’s Approximate Riemann Solver is used to calculate the 

relevant variables which are needed to evaluate the eigenvalues and eigenvectors 

of the Jacobi matrix in the next step.  

The generalized Roe’s Approximate Riemann Solver is the most common solver 

among the various approximate Riemann solvers, because of its simplicity and its 

ability to satisfy the jump conditions across discontinuities exactly. To obtain a 

generalization for a non-equilibrium flow, we use a different, but more direct 

approach, which has been used by Wada et al. (1989) and Liu et al. (1989). In the 

generalized Roe Approximate Riemann Solver, we define 
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2) The eigenvalues and eigenvectors of the Jacobian Matrix of ( )F U at the 

point 1/ 2,i jx +  are then evaluated. 

Based on the works by Fedkiw et al. (1997), the Jacobian Matrix of F(U), i.e. 

( )F U
U

∂
∂

, can be written as uI JF JB+ +          (2.11) 

with, 

1 1

( )
( ) ( ) ( ) ( )f f f f f f

N

dp dp dp dp dp dpJF J J J J J J
d d u d v dE d Y d Yρ ρ ρ ρ ρ −
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  (2.12) 

( )T
b b b b 1 b N 1 bJB 1J uJ vJ H J Y J Y J−=          ... 
uur uur uur uur uur uur

        (2.13) 

where I is the N+3 by N+3 identity matrix, and 
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The eigenvalues of this Jacobian matrix of F(U) are, 

1 u cλ = −   

2 2N uλ λ += = =  L  

3N u cλ + = +         (2.15) 

The left eigenvectors, pL
uur

,are the rows of the following matrix. 

3 1 12 1 1 1 1 1

2 3 1 1 1 1 1 1 1

1

1

3 1 12 1 1 1 1 1

1
2 2 2 2 2 2 2 2 2
1

0 1 0 0 0
0 0 0

0 0 0
1

2 2 2 2 2 2 2 2 2

N

N

N

N

b b Zb b u b v b b Zu
c c

b b b u b v b b z b Z
v
Y

I
Y

b b Zb b u b v b b Zu
c c

−

−

−

−

⎛ ⎞+ + − − − − −⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟− + − + − − −⎜ ⎟
⎝ ⎠

L

L

L

M M M M

L

 (2.16) 

The right eigenvectors, pR
uur

,are the columns of the following matrix. 

1 1
1

1 1 1

1 1 1

1 1 0 0 0 1
0 0 0
1 0 0

1

0

0

N

N N N

u c u u c
v v v

H uc H v z z H uc
b

Y Y Y
I

Y Y Y

−

− − −

⎛ ⎞
⎜ ⎟− +⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟− − − +
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

L

L

M M M

     (2.17) 
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Here I is the N-1 by N-1 identity matrix, and  

2 2 2 ,q u v= +       2 ,pc γ
ρ

=       1 2

1 ,b
c

γ −
=       2

2 1 11 ,b b q b H= + −    

  
1

3 1
1

N

i i
i

b b Y z
−

=

= ∑ ,   .i
i

E

p
z

p
ρ= −              (2.18) 

3) Construct 'u and ( ')f u  by using U , ( )F U and the left eigenvectors of the Jacob 

matrix of ( )F U , which is given by, 

3
1/ 2,' _ ( )N

i ju F L U U+
+= , 3

1/ 2,( ') _ ( ) ( )N
i jf u F L U F U+
+=     (2.19) 

4) Implement the local Lax-Friedrichs (LLF) flux splitting 

1( ') ( ( ') ')
2

f u f u uα+ = + , 1( ') ( ( ') ')
2

f u f u uα− = −    (2.20) 

where the monotone flux 
, 1,

max '( ')
i j i ju u u

f uα
+≤ ≤

= . 

5) Compute 1/ 2if
+
+ and 1/ 2if

−
+ using WENO scheme, then 1/ 2,i jf + . 

2
( )

1/ 2 1/ 2
0

r
i r i

r

f fω+ + +
+ +

=

= ∑ , 
2

( )
1/ 2 1/ 2

0

r
i r i

r

f fω− − −
+ +

=

= ∑ , 1/ 2, 1/ 2 1/ 2i j i if f f+ −
+ + += +   (2.21) 

where  (0)
1/ 2 2 1

1 7 11( ' ) ( ' ) ( ' )
3 6 6i i i if f u f u f u+ + + +

+ − −= − +  

   (1)
1/ 2 1 1

1 5 1( ' ) ( ' ) ( ' )
6 6 3i i i if f u f u f u+ + + +

+ − += − + +  

   (2)
1/ 2 1 2

1 5 1( ' ) ( ' ) ( ' )
3 6 6i i i if f u f u f u+ + + +

+ + += + −  

(0)
1/ 2 2 1

1 7 11( ' ) ( ' ) ( ' )
3 6 6i i i if f u f u f u− − − −

+ + += − +  

   (1)
1/ 2 1 1

1 5 1( ' ) ( ' ) ( ' )
6 6 3i i i if f u f u f u− − − −

+ + −= − + +  

   (2)
1/ 2 1 2

1 5 1( ' ) ( ' ) ( ' )
3 6 6i i i if f u f u f u− − − −

+ − −= + −  .  

The weights are 2

0

r
r

ss

αω
α

+
+

+
=

=
∑

, 2

0

r
r

ss

αω
α

−
−

−
=

=
∑

  

2( )
r

r
r

dα
ε β

+
+=

+
, 2( )

r
r

r

dα
ε β

−
−=

+
, 0,1,2 .r =   

Hereε  is a positive real number which is introduced to avoid the denominator 
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becoming zero (in the present work, we take ε =10-6). The optimal weight 

coefficients rd are chosen: 0
1

10
d = , 1

3
5

d = , 2
3

10
d = . The smoothness 

measurement of the flux function rβ can be calculated by 

2 2
0 2 1 2 1

13 1( ( ' ) 2 ( ' ) ( ' )) ( ( ' ) 4 ( ' ) 3 ( ' ))
12 4i i i i i if u f u f u f u f u f uβ + + + + + + +

− − − −= − + + − +  

2 2
1 1 1 1 1

13 1( ( ' ) 2 ( ' ) ( ' )) ( ( ' ) ( ' ))
12 4i i i i if u f u f u f u f uβ + + + + + +

− + − += − + + −  

2 2
2 1 2 1 2

13 1( ( ' ) 2 ( ' ) ( ' )) (3 ( ' ) 4 ( ' ) ( ' ))
12 4i i i i i if u f u f u f u f u f uβ + + + + + + +

+ + + += − + + − +  

2 2
0 1 2 1 2

13 1( ( ' ) 2 ( ' ) ( ' )) (3 ( ' ) 4 ( ' ) ( ' ))
12 4i i i i i if u f u f u f u f u f uβ − − − − − − −

+ + + += − + + − +  

2 2
1 1 1 1 1

13 1( ( ' ) 2 ( ' ) ( ' )) ( ( ' ) ( ' ))
12 4i i i i if u f u f u f u f uβ − − − − − −

+ − + −= − + + −  

2 2
2 1 2 1 2

13 1( ( ' ) 2 ( ' ) ( ' )) (3 ( ' ) 4 ( ' ) ( ' ))
12 4i i i i i if u f u f u f u f u f uβ − − − − − − −

− − − −= − + + − +  

6) Use the scalar numerical flux functions along with the right eigenvectors to 

reconstruct the vector numerical flux function 1/ 2,i jF + . 

3 3
1/ 2, 1/ 2, 1/ 2,_ ( )N N

i j i j i jF f F R U+ +
+ + +=  

3
1/ 2, 1/ 2,

3

N
i j i j

N
F F +

+ +
+

= ∑         (2.22) 

Similarly, the numerical flux , 1/ 2i jG +  can be computed by the following steps: 

1) Evaluate the eigenvalues and eigenvectors of the Jacobi Matrix of ( )G U at the 

point , 1/ 2i jy + . 

Based on the works by Fedkiw et al. (1997), the Jacob matrix of G(U), i.e. 

( )G U
U

∂
∂

, can be written as uI JF JB+ +          (2.23) 

with, 

1 1

( )
( ) ( ) ( ) ( )f f f f f f

N

dp dp dp dp dp dpJF J J J J J J
d d u d v dE d Y d Yρ ρ ρ ρ ρ −

=          ... 
uur uur uur uur uur uur

  (2.24) 

1 1(1 )T
b b b b b N bJB J uJ vJ H J Y J Y J−=          ... 
uur uur uur uur uur uur

        (2.25) 
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where I is the N+3 by N+3 identity matrix, and 

        

0
0 0
1 1

, 0
0 0

0 0

f b

v

J Jv

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

=       =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

uur uur

M M

      (2.26) 

The eigenvalues of this Jacobian matrix of G(U) are, 

1 v cλ = −   

2 2N vλ λ += = =L  

3N v cλ + = +         (2.27) 

The left eigenvectors, pL
uur

,are the rows of the following matrix. 

3 1 12 1 1 1 1 1

2 3 1 1 1 1 1 1 1

1

1

3 1 12 1 1 1 1 1

1
2 2 2 2 2 2 2 2 2
1

1 0 0 0 0
0 0 0

0 0 0
1

2 2 2 2 2 2 2 2 2

N

N

N

N

b b Zb b u b v b b Zv
c c

b b b u b v b b z b Z
u
Y

I
Y

b b Zb b u b v b b Zv
c c

−

−

−

−

⎛ ⎞+ + − − − − −⎜ ⎟
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎜ ⎟− + − − + − −⎜ ⎟
⎝ ⎠

L

L

L

M M M M

L

 (2.28) 

The right eigenvectors, pR
uur

,are the columns of the following matrix. 

1 1
1

1 1 1

1 1 1

1 1 0 0 0 1
1 0 0
0 0 0

1

0

0

N

N N N

u u u
v c v v c

H vc H u z z H vc
b

Y Y Y
I

Y Y Y

−

− − −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− +
⎜ ⎟
⎜ ⎟− − +
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

L

L

L

L

M M M

      (2.29) 
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Here I is the N-1 by N-1 identity matrix, and  

2 2 2 ,q u v= +       2 ,pc γ
ρ

=       1 2

1 ,b
c

γ −
=       2

2 1 11 ,b b q b H= + −    

  
1

3 1
1

N

i i
i

b b Y z
−

=

= ∑ ,   .i
i

E

p
z

p
ρ= −              (2.30) 

2) Construct 'u and ( ')g u  by using U , ( )G U and the left eigenvectors of the Jacob 

matrix of ( )G U , which is given by,  

3
1/ 2,' _ ( )N

i ju G L U U+
+= , 3

1/ 2,( ') _ ( ) ( )N
i jg u G L U G U+
+=    (2.31) 

3) Implement the local lax-Friedrichs (LLF) flux splitting 

1( ') ( ( ') ')
2

g u g u uα+ = + , 1( ') ( ( ') ')
2

g u g u uα− = −    (2.32) 

where the monotone flux 
, , 1

max '( ')
i j i ju u u

g uα
+≤ ≤

= . 

4) Compute 1/ 2jg +
+ and 1/ 2jg −

+ using WENO scheme, then , 1/ 2i jg + . 

  
2

( )
1/ 2 1/ 2

0

r
j r j

r

g gω+ + +
+ +

=

= ∑ , 
2

( )
1/ 2 1/ 2

0

r
j r j

r

g gω− − −
+ +

=

= ∑ , 1/ 2, 1/ 2 1/ 2j j j jg g g+ −
+ + += +    (2.33) 

where  (0)
1/ 2 2 1

1 7 11( ' ) ( ' ) ( ' )
3 6 6j j j jg g u g u g u+ + + +

+ − −= − +  

   (1)
1/ 2 1 1

1 5 1( ' ) ( ' ) ( ' )
6 6 3j j j jg g u g u g u+ + + +

+ − += − + +  

   (2)
1/ 2 1 2

1 5 1( ' ) ( ' ) ( ' )
3 6 6j j j jg g u g u g u+ + + +

+ + += + −  

(0)
1/ 2 2 1

1 7 11( ' ) ( ' ) ( ' )
3 6 6j j j jg g u g u g u− − − −

+ + += − +  

   (1)
1/ 2 1 1

1 5 1( ' ) ( ' ) ( ' )
6 6 3j j j jg g u g u g u− − − −

+ + −= − + +  

   (2)
1/ 2 1 2

1 5 1( ' ) ( ' ) ( ' )
3 6 6j j j jg g u g u g u− − − −

+ − −= + −  

The weights 2

0

r
r

ss

αω
α

+
+

+
=

=
∑

, 2

0

r
r

ss

αω
α

−
−

−
=

=
∑

,  0,1,2r = ,  

2( )
r

r
r

dα
ε β

+
+=

+
, 2( )

r
r

r

dα
ε β

−
−=

+
. 

ε  is a positive real number which is introduced to avoid the denominator 
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becoming zero (in the present work, we take ε =10-6). The optimal weight 

coefficients rd are chosen: 0
1

10
d = , 1

3
5

d = , 2
3

10
d = . The smoothness 

measurement of the flux function rβ can be calculated by 

2 2
0 2 1 2 1

13 1( ( ' ) 2 ( ' ) ( ' )) ( ( ' ) 4 ( ' ) 3 ( ' ))
12 4j j j j j jg u g u g u g u g u g uβ + + + + + + +

− − − −= − + + − +

2 2
1 1 1 1 1

13 1( ( ' ) 2 ( ' ) ( ' )) ( ( ' ) ( ' ))
12 4j j j j jg u g u g u g u g uβ + + + + + +

− + − += − + + −  

2 2
2 1 2 1 2

13 1( ( ' ) 2 ( ' ) ( ' )) (3 ( ' ) 4 ( ' ) ( ' ))
12 4j j j j j jg u g u g u g u g u g uβ + + + + + + +

+ + + += − + + − +

2 2
0 1 2 1 2

13 1( ( ' ) 2 ( ' ) ( ' )) (3 ( ' ) 4 ( ' ) ( ' ))
12 4j j j j j jg u g u g u g u g u g uβ − − − − − − −

+ + + += − + + − +

2 2
1 1 1 1 1

13 1( ( ' ) 2 ( ' ) ( ' )) ( ( ' ) ( ' ))
12 4j j j j jg u g u g u g u g uβ − − − − − −

+ − + −= − + + −  

2 2
2 1 2 1 2

13 1( ( ' ) 2 ( ' ) ( ' )) (3 ( ' ) 4 ( ' ) ( ' ))
12 4i i i i i ig u g u g u g u g u g uβ − − − − − − −

− − − −= − + + − +  

5) Use the scalar numerical flux functions along with the right eigenvectors to 

reconstruct the vector numerical flux function , 1/ 2i jG + . 

3 3
, 1/ 2 , 1/ 2 , 1/ 2_ ( )N N

i j i j i jG g G R U+ +
+ + +=  

3
, 1/ 2 , 1/ 2

3

N
i j i j

N
G G +

+ +
+

= ∑         (2.34) 

2.3.3 Temporal Discretization 

Eq. (2.8) can be expressed as 

( )tU L U=        (2.35) 

The spatial operator ( )L U was already solved in Section 2.3.2. 

An attractive way for advancing this equation in time is via TVD Runge-Kutta 

methods (Shu, 1988), which restricts the occurrence of non-physical oscillations in 

the solution. This is an extremely important property of a numerical scheme when 

considering compressible flow which may have shocks and/or contact discontinuities 
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present. Herein, we will consider the third order TVD Runge-Kutta method. 

The third order TVD Runge-Kutta method is given by 

(1) ( )n nU U tL U= + ∆  

(2) (1) (1)3 1 1 ( )
4 4 4

nU U U tL U= + + ∆  

1 (2) (2)1 2 2 ( )
3 3 3

n nU U U tL U+ = + + ∆      (2.36) 

The intermediate values of the variable (1)U and (2)U  are used only for 

computational purpose. Note that this scheme is stable under the CFL restriction of, 

1 1( )(max , , ) 1.0i i j jt λ λ λ λ+ +∆ ≤      (2.37) 

where iλ and jλ are the eigenvalues of the Jacobian matrices of ( )F U and ( )G U , 

respectively. 

2.3.4 Chemical Kinetics 

Now, we consider solving Eq. (2.7). For Eq. (2.7), the first four equations imply 

that ( ) ( ) 0t t t tu v Eρ ρ ρ= = = = . Thus, , ,u vρ and E are constants. Using the fact 

that ρ is constant, we see that solving Eq. (2.7) reduces to solving the following 

differential equations, 

       

1 1 2 8

1
2 1 2 8

2

8
8 1 2 8

( , , , , )

( , , , , )

( , , , , )t

T Y Y Y

Y
T Y Y Y

Y

Y
T Y Y Y

ω ρ
ρ

ω ρ
ρ

ω ρ
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠
⎜ ⎟⎜ ⎟
⎝ ⎠

& L

& L

M
M

& L

      (2.38) 

where ρ is a constant. We solve this stiff system with the numerical package of 

CHEMEQ (Young, 1979), which uses the selected asymptotic integration method 
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(SAIM) to solve the chemical reaction equations. This one-step, 2nd order accuracy 

scheme can deal with the stiffness of the system well without the need of evaluating 

the Jacobian matrices. The method for calculating the finite production rate of each 

chemical species, iω& , is shown in the next section. 

2.3.5 Elementary Chemical Reactions 

In this work, a chemical model of 9 species, 19 elementary reactions is used to 

simulate the hydrogen-oxygen hydrogen-oxygen combustion (Wilson and 

MacCormack, 1990), as shown in Table 2.3. The reacting species are H2, O2, O, H, 

OH, HO2, H2O2, H2O and dilute argon is added to the gas mixture. The chemical 

reactions can be uniformly expressed as: 

,

,

8 8
' ''

1 1

f k

b k

k
ik i ik ik

i i

v x v x
= =
∑ ∑      k=1, 2,3…19      (2.39) 

where ix  denotes the ith species. The forward and backward reaction rate constants, 

, ,,f k b kK K , are controlled by the Arrhenius law and chemical equilibrium conditions. 

They are given by  

, exp( / )nk
f k k akK AT E RT= −    and   

9
'' '

1

( )

, , ,( / ) /
ik ik

i

v v

b k f k atm p kK K RT P K=

−∑
= ,   (2.41) 

where ( )( ){ }
9

'' ' 0
,

1

exp / /p k ik ik i i i
i

K v v S R h RT
=

⎡ ⎤= − −⎢ ⎥⎣ ⎦
∑ .  Herein, the finite production 

rate of each chemical species, iω& , is obtained by combining the elementary chemical 

reactions in the kinetic model so that 

' '''' '
, ,

1 1 1 1

( ) ( ) ( )ik ik

N NK N
v v

i i ik ik ik xi f k xi b k xi
k i i i

W v v C K C K Cω α
= = = =

⎧ ⎫⎧ ⎫= − −⎨ ⎬⎨ ⎬
⎩ ⎭⎩ ⎭

∑ ∑ ∏ ∏&  .   (2.42) 

The third body coefficients ikα are given as following:  1kα =2.5(H2), 8kα =16.0 
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(H2O), other ikα =0;  

Besides, the matrices of the forward and backward chemical stoichiometric 

coefficients 'v  and ''v are shown as following: 

0 1 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0
0 0 2 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 1 0 0 0 1
0 1 0 1 0 0 0 0 1

' 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 1 0 0

v

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪= ⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩

      

0 0 1 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 1 0
0 0 0 0 2 0 0 0 0
0 0 0 2 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 1

'' 1 1 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0 0
0 0 0 0 2 0 0 0 1
0 0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 1 0

v

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪= ⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩

 

 

0 1 1 1 1 0 0 0 0
1 0 1 1 1 0 0 0 0
1 0 0 1 1 0 0 1 0

0 0 1 0 2 0 0 1 0
1 0 0 2 0 0 0 0 1

0 1 2 0 0 0 0 0 1
0 0 1 1 1 0 0 0 1
0 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 0 1

'' ' 1 1 0 1 0 1 0 0 0
0 0 0 1 2 1 0 0 0
0 1 1 0 1 1 0 0 0
0 1 0 0 1 1 0 1 0
0 1 0 0 0 2 1 0 0
0 0 0 0 2 0 1 0 1
0 0 0 1 1 0 1 1 0
1 0 0 1 0 1 1 0 0
0 0 1 0 1

v v

− −
− −
− −

− −
−

− −
− − −

− − −
− − −

− = − −
− −

− −
− −

−
−

− −
− −

− 1 1 0 0
0 0 0 0 1 1 1 1 0

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎪ ⎪

− −⎪ ⎪⎭⎩

 

 

''
,9kv  stands for the third body effect '

,9kv  stands for the third body 

'' '
,9( )kv v− = 

8
'' '

1

( )ik ik
i

v v
=

−∑  
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2.3.6 Solving for Temperature  

In order to solve Eq. (2.38), we need to solve the temperatureT  first, which is a 

function of the mass fractions.  

Based on (2.2c), we get, 

2 3 4 52 3 4 5
1 6

1

1 ( )
2 3 4 5

N
i i i i

i i i i
i

h R T T T T Tα α α αρ α α
ρ =

= + + + + +∑     (2.43) 

Substituting it to (2b) yields, 

2
2 3 4 52 3 4 5

1 6
1

( 1)
2 3 4 5 2

N
i i i i

i i i
i i

uE R T T T T Tα α α α ρρ α α
=

⎧ ⎫= − + + + + + +⎨ ⎬
⎩ ⎭

∑   (2.44) 

Then we can use Newton-Rhapson method to solve for the temperature: 

2
2 3 4 52 3 4 5

1 6
1

( ) ( 1)
2 3 4 5 2

N
i i i i

i i i
i i

uF T R T T T T T Eα α α α ρρ α α
=

⎧ ⎫= − + + + + + + −⎨ ⎬
⎩ ⎭

∑  

2 3 4 5
0 1 2 3 4 5b b T b T b T b T b T= + + + + +         (2.45) 

where 2
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N
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b R aρ
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Also ' 2 3 4
1 2 3 4 5( ) 2 3 4 5 .F T b b T b T b T b T= + + + +          (2.46) 

Thus, the iteration formula can be expressed as: 

'

( )
( )

old
new old

old

F TT T
F T

= −  (2.47) 

2.3.7 Normalization 

In order to minimize the errors caused by extremely big or small values, 

non-dimensionalization serving as normalization is implemented. In our computation, 

four non-dimensional parameters are used: 
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1) *l : the theoretical length of the reaction zone of 1-D gaseous detonation, 

2) *ρ∞ : the initial density ahead of the leading shock wave, 

3) *a∞ : the initial sonic speed ahead of the leading shock wave, 

4) *T∞ : the initial temperature ahead of the leading shock wave. 

The parameters involved are non-dimensionalized as following, 

*

*

xx
l

= , 
*

*

uu
a∞

= , 
*

* *2

PP
aρ∞ ∞

= , 
*

*

ρρ
ρ∞

= , 
*

*

TT
T∞

= , 
* *

*

t at
l

∞=  

 
*

* *2

ee
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= , 
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hh
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= , 
* *

* *

l
a

ωω
ρ∞ ∞

=
&

& , 
*

*
i

i
ρρ
ρ∞

= , 
* *

* .i
i

R aR
T

∞

∞

=   

Note that for simplicity, the thermal parameters in terms of α  (shown in Table 2.2) 

were not normalized in the present work, and we still use the unit system of 

(m-sec-mol-cal-K). 

2.4 Message Passing Interface (MPI) 

Due to the stiffness of the governing equations mentioned above, it takes a huge 

amount of CPU time to advance the equations in time. In order to improve the 

computational efficiency, we consider using parallel programming technology. In the 

present work, the Message Passing Interface (MPI) technology is employed to 

parallelize the computation job to multiple computers with distributed memory.  

MPI, the Message Passing Interface, is a standardized and portable message passing 

system designed by a group of researchers from academia and industry to function on 

a wide variety of parallel computers. The standardization process, involving over 80 

people from 40 organizations, began with the Workshop on Standards for Message 
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Passing in a Distributed Memory Environment in 1992. A preliminary draft proposal, 

known as MPI1, was put forward in 1992, and a revised version was completed in 

1993. 

An MPI program consists of autonomous processes, executing their own code, in a 

Multiple Instruction, Multiple Data (MIMD) style. In our current MPI design, the 

codes executed by each process are identical. The only difference among these 

processes is the initial conditions given to them. Using the initial conditions, each 

process executes its own code independently. After advancing for the first time step, 

each process exchanges its boundaries with its adjacent processes, and then continues 

advancing in time. The block partitioning with overlap and the communication pattern 

of the processes are shown in Figure 2.1. 

In this pattern, a total of N processes are employed. After every time step, each 

process needs to communicate with its adjacent processes to obtain some of its 

boundary conditions. Besides, for Process 0, the left boundary is the physical 

boundary, and for Process N-1, the right boundary is the physical boundary. 
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Table 2.1 Molecular Weight of Each Species (g) 

 H2 O2 O H OH HO2 H2O2 H2O Ar 

Wi 2.0159 31.9988 15.9994 1.0079 17.0073 33.0067 34.0147 18.0153 39.9480

Table 2.2 Thermal Parameters (K) (Stull 1971) 

 H2 O2 O 
a1i 0.30172281×101 0.32524882×101 0.28063958×101 

a2i 0.88727912×10-3 0.13058732×10-2 -0.55153963×10-3 

a3i -0.25767118×10-6 -0.49629683×10-6 0.32797643×10-6 

a4i 0.53895544×10-10 0.10165240×10-9 -0.78048938×10-10 

a5i -0.45914741×10-14 -0.79663144×10-14 0.66494386×10-14 

a6i -0.93687332×103 -0.10235836×104 0.29176829×105 

a7i -0.17284120×101 0.57751164×101 0.35329500×101 

 H OH HO2 

a1i 0.25017076×101 0.37882016×101 0.34491550×101 

a2i 0.44689446×10-15 -0.67413256×103 0.33062160×10-2 

a3i -0.34801365×10-18 0.79813467×10-6 -0.12868533×10-5 

a4i 0.98627573×10-22 -0.22767644×10-9 0.23032337×10-9 

a5i -0.92216057×10-26 0.20492525×10-13 -0.15522042×10-13 

a6i 0.25489817×105 0.36435184×104 0.13534267×104 

a7i -0.46008683 0.68024710 0.68028889×101 

 H2O2 H2O Ar 

a1i 0.31958586×101 0.37199834×101 0.25000000×101 

a2i 0.75744334×10-2 0.10936956×10-2 0.0 

a3i -0.21470192×10-5 0.31652569×10-6 0.0 

a4i -0.21868401×10-8 -0.16872305×10-9 0.0 

a5i 0.11687370×10-11 0.17920633×10-13 0.0 

a6i -0.17647714×105 -0.30265156×105 -0.74537502×103 

a7i 0.76737985×101 0.11801086×101 0.43660006×101 
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Table 2.3 Reaction Mechanism and the Related Parameters (cm3-mole-sec-cal)  

  kA  kn  akE  

1) H+O2 O+OH 6.00×1014 0. 16790 

2) O+H2 H+OH 1.07×104 2.80 5921 

3) OH+H2 H+H2O 7.00×1012 0. 4400 

4) O+H2O OH+OH 1.50×1010 1.14 17190 

5) H2+M H+H+M 2.90×1018 -1.00 104330 

6) O+O+M O2+M 6.17×1015 -0.50 0 

7) O+H+M OH+M 1.00×1015 0. -497 

8) H+OH+M H2O+M 8.80×1021 -2.00 0 

9) H+O2+M HO2+M 6.76×1019 -1.42 0 

10) HO2+H H2+O2 2.50×1013 0. 693 

11) HO2+H OH+OH 2.51×1013 0. 1910 

12) HO2+O OH+O2 2.00×1013 0. 0 

13) HO2+OH H2O+O2 1.20×1013 0. 0 

14) HO2+HO2 H2O2+O2 1.82×1012 0. 0 

15) H2O2+M OH+OH+M 3.19×1017 0. 47100 

16) H2O2+H H2O+OH 3.20×1014 0. 9000 

17) H2O2+H H2+HO2 4.79×1013 0. 7950 

18) H2O2+O OH+HO2 9.54×106 2.00 3970 

19) H2O2+OH H2O+HO2 1.00×1013 0. 1800 
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Figure 2.1 Block Partition with overlap and communication pattern 
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Chapter 3 Code Validation 

Computational results for several test cases are presented in this section. In order to 

demonstrate the accuracy of the present numerical method, these computed results are 

compared with those obtained by other numerical methods, experiments or analytical 

solutions wherever possible. Test cases 1-6 are chosen to validate the pure flow part of 

the code without chemical reactions，in which a calorically perfect ideal gas is 

assumed with the specific heat ratioγ=1.4. Firstly, the one-dimensional problems are 

investigated, which include Sod’s shock tube problem and Lax-Harten shock tube 

problem. Secondly, the two-dimensional problems are considered, involving the 

formation and reflection of an oblique shock wave, which include Steady 

two-dimensional oblique shock wave (test case 3) and Supersonic flow past a wedge 

(test case 4). Finally, two axisymmetric cases are employed to validate the code of the 

Euler equations in an axisymmetric geometry. Test case 5 is the shock wave reflection 

in a converging circular chamber with different oblique angles, while Test case 6 

shows the formed oblique shock as the supersonic flow passes through a cone. For the 

two one-dimensional cases, a grid study was also made to evaluate the grid 

convergence and ‘measure’ the convergence rate. (In addition, in order to validate the 

code of the combined flow and chemical reactions, the one-dimensional detonation 

wave is simulated, which is presented in Chapter 4.) In the simulation of the 

one-dimensional detonation wave, a thermally perfect ideal gas is assumed and γ is 

calculated using the thermodynamics relation /( )p pc c Rγ = − , where 
9

1
p i pi

i

c Y c
=

= ∑  
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and 
9

1
i i

i

R Y R
=

= ∑ . The effects of mesh sizes on the simulated detonation wave and the 

related detonation parameters were also studied.  

3.1 One-dimensional Cases 

Test case 1. Sod’s shock tube problem 

The classic Sod’s shock tube problem is computed in this test case using 100 cells, 

and the computational domain is assumed to be unity. Both of the ends in this tube are 

closed, i.e. the boundary conditions imposed on the left-hand end and the right-hand 

end are both reflecting boundary conditions. The initial conditions in the present 

computation are given as follows: 

1.000, 0, 1.0,0 0.5,
0.125, 0, 0.1,0.5 1.

u p x
u p x

ρ
ρ

= = = ≤ <
= = = ≤ ≤

 

The initial data are those of the Riemann problem proposed by Sod as also can be 

found in Osher (1984), which has become a standard test problem for many other 

published works. The left-half side in the tube is the high-pressure, high-density zone, 

which is separated from the low-pressure, low-density zone on the right-half side by a 

membrane placed in the middle of the tube. After the membrane is ruptured, a shock 

wave, a contact discontinuity and some expansion waves will be observed. The shock 

wave moves rightwards, while the expansion waves move leftwards. Figure 3.1 

compares the computed density, velocity, and pressure profiles with the exact solution 

at t=0.2, which depicts good concurrence. 

Test case 2. Lax-Harten shock tube problem 
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This is another well known test case for the shock tube problem. We present 

calculations for the Riemann problem 

0.445, 0.7, 3.52773,0 0.5,
0.500, 0.0, 0.57100,0.5 1

u p x
u p x

ρ
ρ

= = = ≤ <
= = = ≤ ≤

 

used by Lax and Harten (Lax 1954; Harten 1983). The boundary conditions imposed 

on the left-hand end and the right-hand end in this tube are both reflecting boundary 

conditions. The computation is performed using only 100 cells in this test case, and 

the computational domain is assumed to be unity. The difference between the 

Lax-Harten shock problem and the Sod shock problem is that the former uses a 

moving high-pressure zone on the right-hand side, instead of a stationary 

high-pressure zone. Therefore, the Lax-Harten shock problem can be interpreted as a 

moving high-pressure flow colliding with a stationary low-pressure flow. Similarly, a 

shock wave, a contact discontinuity and some expansion waves will be observed. The 

shock wave moves rightwards, while the expansion waves move leftwards.  Figure 

3.2 compares the computed density, velocity, and pressure profiles with the exact 

solution at t=0.15. There is reasonable concurrence of the computed results with the 

exact solution. 

3.2 Two-dimensional Cases 

Test case 3. Steady two-dimensional oblique shock wave 

A two-dimensional shock wave reflecting from a grid surface is considered in this test 

case. The computational domain is a rectangle of length 4.1 and height 1.0 units, with 

a uniform mesh size of 123×30. The following initial conditions are used: 
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( 2.0, ,0)

( 2.0, ,0)

( , , , ) (1, 2.9,0,1/1.4)

( , , , ) (1.69997, 2.61934, 0.50632,1.52819).
x y

x y

u v p

u v p

ρ

ρ
<

>=

=

= −
 

The boundary conditions are the reflecting surface along the bottom boundary, 

supersonic outflow along the right boundary, and prescribed fixed values on the other 

remaining two sides which are given as follows: 

(0, , )

( ,1, )

( , , , ) (1, 2.9,0,1/1.4)

( , , , ) (1.69997, 2.61934, 0.50632,1.52819).
y t

x t

u v p

u v p

ρ

ρ

=

= −
 

The boundary conditions comprise an incident shock angle of 29º and the free stream 

Mach number M∞  is 2.9. Figure 3.3(a) shows the computed density contours in the 

flow field for the shock reflection problem. The computed density distribution is 

compared with the exact solution at y=0.5 as shown in Figure 3.3(b). The comparison 

is reasonable considering that the present calculation was performed on a fairly coarse 

mesh; had a much finer mesh be employed, the resolution at the step change in the 

density plot (and others) would be even better. 

Test case 4. Supersonic flow past a wedge 

The case considered is the supersonic flow at M∞ =3.3806 past a 20º wedge. The 

Cartesian grid domain is a rectangle of length 4.0 and height 2.0 units, with a uniform 

mesh size of 100×50. The boundary conditions are the reflecting surface along the 

wedge surface, supersonic outflow along the right boundary, and fixed inflow values 

on other boundaries, which are given as: 

( , , , ) (1.0,1.0,3.3806,20 ).boundariesp Machρ α = ° www.australand.com.au 

We use the boundary condition above as the initial values in the whole computational 

domain as well, i.e. 0( , , , ) (1.0,1.0,3.3806,20 ).tp Machρ α = = ° The boundary conditions 
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produce an incident shock angle of 29º and the free stream Mach number M∞  is 2.9. 

The computational domain and the computed pressure contours in the flow field are 

shown in Figure 3.4. One can clearly see the shock, which is obtained at an angle of 

β =35.30º, in excellent correlation with the analytical solution β =of 35.23º.  

3.3 Axisymmetric Cases 

Test case 5. Shock wave reflection in a converging circular chamber 

In this case, a normal shock wave of M∞ =2.9 passes through a converging circular 

wall. The computational domain is shown in Figure 3.5, and the uniform mesh size is 

0.02x r∆ = ∆ = . The length of the computational domain ranges from 6.4 to 10, and 

the converging angle lies between 5° and 40°. The following initial conditions are 

used: 

( 2.0, ,0)

( 2.0, ,0)

( , , , ) (1, 2.9,0,1/1.4)

( , , , ) (1.69997, 2.61934, 0.50632,1.52819).
x y

x y

u v p

u v p

ρ

ρ
<

>=

=

= −
 

The boundary conditions are the reflecting surface along the bottom boundary, 

supersonic outflow along the right boundary, and prescribed fixed values on the other 

remaining two sides which are given as follows: 

(0, , )

( ,1, )

( , , , ) (1, 2.9,0,1/1.4)

( , , , ) (1.69997, 2.61934, 0.50632,1.52819).
y t

x t

u v p

u v p

ρ

ρ

=

= −
 

The converging oblique angle varies from 5º to 40º. As we can see in Figure 3.5, 

Mach reflection occurs at the oblique angleθ =5º to 30º. As the oblique angleθ  

increases, the angle between the circular wall and the triple-point trajectory line χ  

decreases, which agrees fairly well with the analytical results discussed in the 

subsequent chapters.  
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Test case 6. Supersonic flow past a cone 

The case considered here is the supersonic flow at M∞ =3.3806 past a 20º cone, 

which apparently is the axisymmetric counterpart of the test case 4. The 

computational domain is shown in Figure 3.6, and the uniform mesh size employed is 

0.02x r∆ = ∆ = . The length of the computational domain depends on the converging 

angle. The boundary conditions are the reflecting surface along the wedge surface, 

supersonic outflow along the right boundary, and fixed inflow values on other 

boundaries, which are given as: 

( , , , ) (1.0,1.0,3.3806,20 ).boundariesp Machρ θ = °  

We use the boundary condition above as the initial values in the whole computational 

domain as well, i.e. 0( , , , ) (1.0,1.0,3.3806,20 ).tp Machρ θ = = ° The boundary conditions 

produce an incident shock angle of 29º and the free stream Mach number M∞  is 2.9. 

The computational domain and the computed pressure contours in the flow field are 

shown in Figure 3.6. One can clearly see the shock, which is obtained at an angle of 

β =35.26º, in good correlation with the analytical solution β =35.23º.  

3.4 Grid Convergence Study 

To investigate further the present numerical method, we take the test cases 1, 2 and 3 

to study the grid convergence and “measure” the convergence rate. In the test cases 1 

and 2, five different mesh sizes are employed: 0.02, 0.01, 0.005, 0.004 and 0.002. In 

the test case 3, the mesh sizes 0.1, 0.05, 0.033, 0.025, 0.02 and 0.01 are employed. 

Figures 3.7(a) - (c) show the log-log plots of error versus mesh size for the test case 1, 

2 and 3, respectively. Herein, for the test cases 1 and 2, the error is defined 
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as

2
, ,

1

( )
N

num i exact i
i

p p

N
=

−∑
, where ,num ip  is the computed pressure at the node ‘i’ , while 

,exact ip  is the analytical solution at this node. For the test case 3, the error is defined 

as

2
, ,

1

( )
N

num i exact i
i

N

ρ ρ
=

−∑
at y=0.5, where ,num iρ  is the computed density at the node ‘i’ 

at y=0.5 , while ,exact iρ  is the analytical solution at this node. N is the number of 

nodes. As measured, the convergence rates for the test cases 1, 2 and 3 are 0.74, 0.74 

and 0.79, respectively, which is less than 1. This means that the WENO_LF method 

employed in our computation converges at less than first order for problems with 

embedded discontinuities (contributed in a large part in the locality of discontinuity), 

which agrees with the conclusion by Henrick et al (2005).  
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Figure 3.1 Comparison of the computed solution with the analytic  

solution for Sod shock problem at t=0.2 (Test case 1) 
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Figure 3.2 Comparison of the computed solution with the analytic solution 

for Lax-Harten shock tube problem at t=0.15 (Test case 2) 
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Figure 3.3 Computed density contours in the flow field 

    for stationary shock reflection problem (Test case 3) 

(a) Density Contour

(b) Density Distribution at y=0.5
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Figure 3.4 Computed pressure contours in the flow field  

 for supersonic flow past a 20º wedge (Test 4) 

For M1=3.3806 and α=20˚ 
Exact solution: β=35.23˚ 
Numerical result: β=35.30˚  
 
Grid: 100×50 

M1 Computational Domain 

α=20˚ 

(a) Computation Domain 

(b) Pressure Contour 
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Figure 3.5 Mach reflection in the axisymmetric  

converging chamber (Test 5) 

χ 

(a) θ = 5° (b) θ = 10° 

(c) θ = 14° (d) θ = 20° 

(e) θ = 25° (f) θ = 30° 

(g) θ = 35° (h) θ = 40° 
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For M1=3.3806 and α=20° 
Exact solution: β=35.23° 
Numerical result: β=35.26°  
 
Grid: 200×100 
 

Figure 3.6 Computed pressure contours for supersonic 

flow past an axisymmetric 20º wedge (Test 6) 



Chapter 3                 Code Validation 

 89

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Grid convergence study 

Convergence rate = 0.74 

(a)  Sod shock problem (Test case 1)

Convergence rate = 0.74 

(b) Lax-Harten shock tube problem (Test case 2)

Convergence rate = 0.79 

(c) Steady two-dimensional oblique shock wave (Test case 3)
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Chapter 4  Numerical Results of One-dimensional  

Detonation Wave 

4.1 Initialization 

In the present study, the mixture is made up of three thermally perfect gases, H2-O2-Ar, 

and these are mixed at the molar ratio of 2:1:7. The initial pressure and temperature 

are 6670Pa and 298K, respectively. On the left end of the one-dimensional tube, a 

high-pressure area is used to yield a strong shock, which in turn heats the mixed gas 

to a high temperature, thereby igniting the reactions and the associated heat released 

in turn drives the shock. A steady detonation wave will be produced finally, and travel 

at a constant detonation speed. In the present computation, the pressure in the ignition 

area is Pign = 28*P0. The temperature and density in the ignition area can be obtained 

by the Rankie-Hugoniot equation and the gas relationship. The computational domain 

is set as 0.6 m, and 24,000 grids are distributed in it uniformly, i.e. x∆ =2.5×10-5m. 

4.2 Boundary Conditions 

The tube is closed on its left end, while open on its right end. Therefore, the left end 

employs the non-reflective boundary conditions, and the right end is the specified 

initial inflow. The detailed boundary conditions (4 boundary points) are given:  

Left boundary: 1 4( )i iU ρ ρ= = ,    0,1,2,3i = ; 

    2( ) ( ) 0i iU uρ= = ,   0,1,2,3i = ; 

    3 4( ) ( ) ( )i iU e eρ ρ= = ,  0,1,2,3i = ; 

    3 4( ) ( ) ( )k i k i kU Y Yρ ρ+ = = , 0,1,2,3i = ; 1,...,8k = ; 
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Right boundary: ( ) ( )k N i k NU U+ = ,  1, 2,3,4i = ; 1,...,11k = ; 

4.3 Results and Discussions 

4.3.1 Fundamental Characteristics and Parameters 

Figures 4.1-4.4 show the profiles of pressure, velocity, temperature and density at 

time=360 sµ as the steady detonation wave propagates from left to right, respectively. 

It is found that the leading shock wave and the subsequent chemical reaction zone 

make up the detonation front, and then the rarefaction wave zone follows. The flow 

velocity decreases gradually in the rarefaction wave zone till the steady zone is 

reached at about 1/2 of the detonation distance (distance from the left boundary to the 

front). In the steady zone, both the flow velocity and the pressure remain constant, 

which agrees with the self-similar solution of the Chapman-Jouguet (C-J) model well. 

More importantly, the present numerical result shows the structure of the detonation 

wave that the C-J model cannot resolve, i.e. the profile of the leading shock wave and 

the subsequent chemical reaction zone. 

Figure 4.5 shows the details of the detonation parameters, as compared with those 

reported in other works. The mean one-dimensional detonation velocity obtained from 

the profile of the detonation wave is about 1625m/s, which is quite close to theoretical 

value of C-J (1618m/s) calculated by Gordon and McBride (1971). By using the C-J 

condition cj cj cjD u c= + , one can determine the location of C-J plane and measure the 

C-J pressure 93600cjp Pa= , which is very close to the experimental result (94000 Pa ) 

measured by Lefebvre (1995). The calculated von-Neumann peak pressure of the 
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leading shock is about 1.79 cjp , slightly smaller than the analytical value from the 

ZND model (1.86 cjp ). If the reaction zone is defined as the distance from the leading 

shock to the C-J plane, the length of the reaction zone obtained in the present 

numerical simulation is about 0.011m, which agrees well with the calculated value 

(0.012m) through the steady solution by Oran et al (1998). The induction zone length 

(which is defined as the distance from the shock front to the maximum heat release 

location) obtained in our present computations is 0.16 cm, which is slightly larger 

than the result (0.147cm) by Joseph et al. (2005).  

4.3.2 Changes in Concentration of the Species 

Besides the profiles of the pressure, temperature, density and velocity behind the 

leading shock, the detailed elementary reactions model can also tell us clearly how the 

concentration of each species changes in the chemical reaction, i.e. the process of the 

chemical energy release.  

Figures 4.6-4.8 are the molecular concentrations of each species at time=360 sµ . It is 

found that the chemical reactions mainly occur in the zone from the leading shock to 

the C-J plane. Nonetheless, the chemical reactions do not stop completely after the 

C-J plane. The slight decrease of the temperature in the rarefaction zone helps break 

the chemical equilibrium by producing more H2O, and some chemical energy is 

released. This energy cannot be transmitted to the detonation wave. Therefore, when 

using the detailed elementary reactions model, one should mainly calculate the energy 

released from the leading shock to the C-J plane, which is obviously smaller than that 

in the C-J model or ZND model.  
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As shown in Figures 4.6-4.8, the species involved, according to the magnitude of 

concentration change, can be classified into three groups. The first group includes H2, 

O2 and H2O. Their concentrations change most dramatically, which is in the order of 

1 310 /mol m− . The reactants, H2 and O2 are consumed rapidly in the reaction zone, and 

then change slowly in the rarefaction zone. The second group comprises OH, O and H, 

which change in the order of 2 310 /mol m− . After reaching their peak values rapidly, 

these attenuate quickly in the reaction zone, and slowly in the rarefaction until a 

steady value is obtained. The last group consists of H2O2 and HO2, which exhibits the 

least changes. Although the change in the concentration of HO2 is similar to that of 

the second group, its concentration peak is only about 5 310 /mol m− , and it reduces 

quickly. The concentration peak of H2O2 is about 4 310 /mol m− , and higher than HO2, 

but attenuates faster than that of HO2 too. In summary, these species involved have 

different characteristics and play different roles in the chemical reactions, which 

might be useful when we try to simplify the chemical reactions model to numerically 

simulate the structure of detonation waves better. 

4.4 Resolution Study 

In order to study the effect of mesh size on the fundamental detonation structure and 

the related parameters, we repeated the present one-dimensional detonation 

computation using 5 different mesh sizes: 32.0 10−× , 31.0 10−× , 45.0 10−× , 42.0 10−×  

and 41.0 10−× m. All the computations employ the same initial and boundary conditions, 

which were presented in Sections 4.1 and 4.2.  
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The numerical computation shows that the mesh size has negligible influence on some 

detonation parameters, but pronounced influence on others. Table 4.1 lists the related 

detonation parameters for various mesh sizes. Figure 4.9 shows the von-Neumann 

peak pressure and the length of the reaction zone at different mesh sizes. What is clear 

is that the integrated variables like detonation velocity, C-J pressure and wall pressure 

are fairly insensitive to mesh size. Reaction zone length varies when the mesh size is 

larger than 0.1mm, i.e. reaction zone length is convergent at mesh size = 0.1mm. On 

the contrary, the von-Neumann pressure and the induction zone length, show some 

variations as the mesh size reduces to 0.025mm. The variations between the two 

smallest mesh sizes are, however, fairly limited. One may note that at the mesh size 

0.5x∆ ≥ mm, the induction zone cannot be resolved. The possible reason is that the 

calculated shock front is comparable to the induction zone in thickness, so that they 

are indistinguishable from each other. At the mesh size 0.2x∆ ≤ mm, the calculated 

induction zone length reduces with the mesh size. The minimum induction zone 

length obtained in our present computations is 0.16 cm, which is slightly larger than 

the result (0.147cm) by Joseph et al. (2005) and much larger than the reported value 

( 32.0 10−× cm) by Oran et al. (1998). As Joseph et al. (2005) mentioned, it is believed 

that the value reported in the work of Oran et al. (1998) is a typographical error 

because agreement is obtained with other reported values from it.  
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Table 4.1 Detonation Parameters vs Mesh Size 

Mesh size 
(mm) 

Detonation 
Velocity (m/s) 

C-J Pressure 
(Pa) 

Wall 
pressure (Pa)

von Neumann 
pressure (Pa)

Reaction zone 
length (cm) 

Induction zone 
length (cm) 

2 1625 93600 32800 130000 3.8 ---- 
1 1625 93600 32800 144000 2.2 ---- 
0.5 1625 93600 32800 154000 1.8 ---- 
0.2 1625 93600 32800 161000 1.3 0.21 
0.1 1625 93600 32800 165000 1.1 0.17 
0.025 1625 93600 32800 168000 1.1 0.16 
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 Figure 4.1 Profile of pressure at time = 320 sµ  

  Figure 4.2 Profile of flow velocity at time = 320 sµ  
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      Figure 4.3 Profile of temperature at time = 320 sµ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.4 Profile of density at time = 320 sµ  
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 Figure 4.5 Comparison of the computed solution with other works 

Calculated detonation velocity DCJ =1625m/s versus 
DCJ value=1618m/s given by Gordon and McBride (1971); 

Calculated induction zone length of indl =1.6×10-3 m versus 

    1.47×10-3 m, given by Joseph et al (2005), and  
 2.0×10-5 m, given by Oran et al (1998); 

Calculated reaction zone length of rxnl =1.1×10-2 m versus 

1.2×10-2 m given by Oran et al (1998); 
Calculated Ppeak =1.79 PCJ versus  

1.86 PCJ for the ZND model. 

Here U and C denote the particle speed and the sonic speed, respectively,
Ppeak denotes the peak pressure on the front and PCJ is the pressure on the 
CJ plane. 
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 Figure 4.6 Molecular concentration of H2, O2 and H2O at time = 320 sµ  
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  Figure 4.7 Molecular concentration of O, H and OH at time = 320 sµ  

   Figure 4.8 Molecular concentration of HO2 and H2O2 at time = 320 sµ  
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Figure 4.9 Peak pressure and reaction zone width vs mesh size 
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Chapter 5  Numerical Simulation of Two-dimensional Detonation in a 

Straight Duct 

5.1 Initial and Boundary Conditions 

In this work, we are studying the detonation of hydrogen-oxygen system in a straight 

tube. Hydrogen and oxygen are mixed at the ratio of 2:1, diluted by 70% of argon. 

The initial pressure and temperature are 6670Pa and 298K, respectively, which are 

same as those in the one-dimensional computation. A strong shock wave (2 cjp ) is 

imposed on a one-dimensional domain to obtain an overdriven detonation wave. After 

a while, the overdriven detonation wave will evolve to be a steady detonation wave. 

Then, we put the steady one-dimensional detonation wave on a two-dimensional 

domain, serving as the initial condition for the two-dimensional computation. The 

initial detonation wave on the two-dimensional domain is shown in Figure 5.1. The 

computational domain is 20 20mm mm× , and 200 200× Cartesian grids are distributed 

uniformly, i.e. x∆ = y∆ =0.1mm.  

The boundary conditions (4 boundary points at each boundary) are given as below, 

Left boundary: Extrapolation outflow, defined for all the variables, 

1( , , , , , ) (1 )b i NB B u v E P Y B Bρ γ γ= = − +  

whereγ is the relaxation coefficient, 1B is the current value of the first cell near the 

boundary, and NB is the extrapolation limit. In our computation, we useγ =0.05 

and NB equals to the ambient fluid parameters. 

Right boundary: The unreacted inflow with specified initial parameters, i.e., 

0( ) ( )
xk N i k tU U+ == , 1, 2,3,4i = ; 1, 2,..,12k =  
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Upper boundary: Inviscid Solid wall (Reflective boundary condition), i.e., 

( ) ( )
y yk N j k N jU U+ −= ,  3 3( ) ( )

y yN j N jU U+ −= − , 1,2,3,4j = ; 1, 2,4,5..,12 .k =   

Lower boundary: Inviscid Solid wall (Reflective boundary condition), i.e., 

4( ) ( )k j kU U= ,  3 3 4( ) ( )jU U= − , 0,1,2,3j = ; 1, 2,4,5..,12k =  ,  

where 1 8( ) ( , , , , , ..., )kU u v e Y Yρ ρ ρ ρ ρ ρ= , and xN is the last non-boundary cell on 

the right side; yN is the last non-boundary cell on the upper end. 

Due to stiffness of the chemical reaction equations, the time step for the part of 

chemical kinetics must be very small, which implies expensive CPU cost in a given 

computational domain, especially for the two-dimensional case. Therefore, the present 

small computational domain is employed to reduce the cost. In order to keep the 

detonation front within the computational domain all the time, we use moving mesh 

in the two-dimensional straight-duct computation. The grids are set to move at the one 

dimensional steady detonation velocity in the positive x-direction, i.e. the reference 

frame is attached to the detonation front so that the relative position of the front 

remains essentially unchanged in the computational domain. Thus, the flux ( )F U  in 

the governing equations should be modified as: 

2

1 1

1 1

( ) ( )

cj

cj

cj

cj

cj

N N cj

u D
u P uD

uv vD
F U E P u ED

uY Y D

uY Y D

ρ ρ

ρ ρ

ρ ρ

ρ ρ

ρ ρ− −

−⎛ ⎞
⎜ ⎟

+ −⎜ ⎟
⎜ ⎟−⎜ ⎟

= ⎜ ⎟+ −
⎜ ⎟

−⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠

M

 

where cjD is the calculated one-dimensional C-J detonation velocity. 
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5.2 Artificial Perturbation 

In order to study the cellular structure of a detonation wave, we introduce random 

perturbations to the initial flow field. These artificial perturbations are used to 

simulate the real situation where a detonation wave develops into cellular structures 

with the existence of small disturbances. It has been known that without the initial 

perturbations, a planar detonation wave would not develop into cellular structures. In 

the present research, the numerical perturbations are imposed on the entire 

computation domain for the first time step in terms of *e e efα= + , where f is a 

random number distributed in [-1.0, 1.0], and α  is a fluctuation coefficient, ranging 

from 0 to 1. By adjusting the value ofα , we can control the intensity of the initial 

perturbations. These artificial disturbances imposed on the elementary reactions will 

affect the pressure and temperature in the flow field too. This means of introducing 

artificial perturbations is similar to that used by Gamezo et al. (1999), and the latter’s 

work is based on the simple one-step ZND model. Figure 5.2 shows the pressure 

contour with initial perturbations. The effect of the artificial perturbations on the flow 

field is hardly discernible. 

There are also some other means of introducing initial perturbations, such as initial 

non-uniform region or adding unreacted gas pocket behind the ZND detonation wave. 

By comparison, these methods require stronger artificial perturbations. In real 

circumstances, small disturbances are likely to be enough for a detonation wave to 

develop into cellular structures. As mentioned in the subsequent chapter, when using 

the present method to introduce artificial perturbations, the formation process of the 
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calculated cellular structures is similar to that observed in the experiment of shock 

reflection, and therefore, the present method is possibly more suitable for the 

simulation of detonation cellular structures.  

5.3 Formation and Evolution of the Cellular Structure 

The numerical simulation shows that the formation of cellular structures can be 

divided into two stages. Stage 1 is the formation of the triple wave configuration, 

while Stage 2 is the formation of the cellular structures with a constant number of 

transverse waves. The second stage requires much longer time than the first stage.  

Figure 5.3 shows the evolution of the pressure contours. It is found that the initial 

perturbations, with a =0.35, are very small and one can hardly tell the difference 

from the pressure contours calculated without the imposition of any numerical 

perturbations (see Figure 5.3(a), and 5.3(b)). However, as the detonation propagates, 

the effect of these perturbations is enhanced and many non-uniform regions are 

produced behind the leading detonation front. While the detonation front starts 

distorting, these non-uniform regions move in the transverse direction and become 

stronger, but the number of these regions declines. These non-uniform regions 

gradually develop into some transverse waves, traveling at about the sonic speed. 

There are many transverse waves at the beginning, but while these are enhanced in 

strength, the number decreases. The leading front also becomes more distorted. Thus, 

two regions with different strengths are observed, which, along with the transverse 

waves, gradually develop into the typical triple wave configuration (see Figure 5.3(f)), 
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i.e., transverse wave, Mach stem and incident wave. The transverse waves are 

traveling at supersonic speed. 

The Mach stem and the incident wave interchange their roles via the Mach/triple point 

collision as the detonation wave proceeds forward. These triple wave configurations 

move and collide irregularly in the transverse direction. Initially, the transverse waves 

are neither uniformly distributed, nor necessarily in pairs. Two adjacent transverse 

waves move in the same or opposite direction, and therefore they either collide or 

catch up with each other. The latter usually results in the merging of the two 

triple-wave configurations. Furthermore, because of the instability of triple wave 

configurations, new transverse waves might be produced at the triple-wave point, but 

overall, the number of transverse waves tends to decrease gradually till a certain 

number of transverse waves are obtained. Figure 5.4 shows the ultimate steady 

detonation structure at time=871 sµ .Our numerical results show that the evolution 

from the initial unsteady detonation structure to the steady detonation structure is a 

slow process, which requires several hundred of microseconds to one millisecond of 

physical time, and even more as the cross-sectional area of the duct increases. This 

agrees with the real gaseous detonation. Some experimental results have shown that 

when the width of the detonation duct is much larger than the width of the transverse 

wave, it is very difficult to obtain a steady detonation structure. Therefore, in the 

present numerical computation, a 20mm-high detonation duct is chosen. The number 

of the transverse waves is found to be 5.  
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Figure 5.5 are some continuous snapshots of pressure contours after the steady 

detonation structure is obtained, which shows that the same cellular structure occurs 

at about every 9.0us, called characteristic time of the detonation cell. In addition, it is 

also found that the average detonation velocity at the front is about 1625m/s, which is 

the same as that obtained in the one-dimensional computation.  

5.4 Structure Tracks 

The numerical smoke foil technique was widely used to study the tracks of the 

structure. Usually, a high speed flow can remove more soot than the lower speed 

counterpart, and so the tangential velocity discontinuity on the slip line is recorded 

dividing the regions behind the Mach stem and the transverse wave in a triple-wave 

configuration. Similarly, in the present work, the maximum flow velocity,
max

v , at all 

grid nodes in the time history are recorded to simulate the smoke foil tracks. That is,  

2 2
,max, , max

( ) , 0,i j endi j
v u v t t⎡ ⎤= + =⎣ ⎦  

Figure 5.6 shows the numerical detonation cells as an analogue of smoke foil tracks 

and how the tracks are left after the sweeping of the structure, respectively. The 

cellular structure from the present numerical result agrees very well with that from the 

experiment (Fickett, 1979). The cellular structure has two convex curvature tracks in 

the first half cell and two concave tracks in the second half. Through comparison with 

the pressure contours at different times, we can find that these tracks are actually the 

trajectory of the triple-wave points. The jet near the starting point of a detonation cell 

is also recorded in the numerical detonation cell. Based on Figure 5.6, the cell size in 

our present computation is 0.008m (cell width)×0.015m (cell length), which is 
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smaller than that by Oran et al (1998). By comparison with Oran et al’s computation, 

it is found that the present calculated C-J detonation speed, along with the shape of 

the cellular structures, are about the same as the latter. The only difference is that we 

use different chemical reaction models. Therefore, it is possible that the chemical 

reaction model has fair influence on the numerical cell size. More importantly, both of 

our numerical cell sizes are much less than the value from the experiment (0.17m) 

(Hanana et al., 2000). Although the numerical detonation cell size is different from the 

experimental value, the shape is very similar. The details of comparisons between the 

numerical simulation and experiments (Strehlow et al., 1968) are given in Table 5.1. 

Figure 5.7 shows the geometric relationship of a numerical cellular structure. As 

measured in the figure, the cell width/length ratio is about 0.55, which is in the range 

of the experimental result. When the Mach stem evolves into an incident wave, the 

angle change ∆ is about 30°. In addition, it is found that the entrance angle β  and the 

exit angle ϕ  follow the approximate relationshipϕ β= − ∆ . The transverse track 

angle ω is about 28°, similar to the experimental result.  

In our computation, it is observed that there are more transverse waves with good 

regularity at the early stage of the formation of the cellular structures, as shown in 

Figure 5.8 (a). As the detonation wave propagates forward, these transverse waves are 

not stable, and the cellular structures become irregular and the number of the 

transverse waves quantity decreases quickly (see Figure 5.8 (b)). After a long period 

of time which lasts about 500 microseconds, these irregular structures gradually 

become regular again and then sustain, as shown in Figure 5.8 (c). 
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5.5 Basic Characteristics of Cellular Structure 

Figures 5.9 – 5.11 show the computed pressure, density and temperature contours 

after regular cell structures are formed. The typical cell structures are made up of 

multiple triple-wave configurations, each of which is the combination of Mach stem 

(M), incident wave (I) and transverse wave (T). The discontinuity of density or 

temperature can be used to locate the slip line between the transverse wave and the 

Mach stem. As shown in the figures, the region around the triple-wave point has the 

highest pressure, density and temperature. The incident wave is much flatter and 

weaker than the Mach stem. The density and temperature gradients behind the 

incident wave are also smaller than those behind the Mach stem, which suggests that 

the reaction front around the incident wave lags behind that around the Mach stem. 

The plot of the computed pressure contours around the Mach stem front show that the 

pressure in the middle of the Mach stem is lowest, and increases towards the 

triple-wave points. The pressure peak is reached somewhere around the triple-wave 

point. The pressure around the incident wave, however, is much more uniformly 

distributed. A transverse wave is the shock wave traveling in the transverse direction, 

which is not very strong. The regions behind the transverse wave and the Mach stem 

are separated by a contact discontinuity. As we can see in Figure 5.11, there exists a 

low-pressure region behind the transverse wave where the density and pressure match 

with those behind the incident wave. Two adjacent transverse waves collide and the 

reflected waves are deflected against the wall. As a result, the reflected waves 

propagate in the direction nearly vertical to the wall, and therefore they are called 
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“transverse waves”.  

As far as a two-dimensional detonation is concerned, the cellular structure moves in a 

two-dimensional planar mode. Figure 5.12 shows the pressure contours for 6 

consecutive moments. As we can clearly see, the leading shock wave of the present 

gaseous detonation involve incident wave and Mach stems laid out alternately. The 

two transverse waves intersecting on the same Mach stem move further apart, while 

the transverse waves intersecting on the same incident wave are approaching one 

another. On the leading front, the incident wave keeps exchanging its role with the 

Mach stem, while the adjacent triple-wave configurations collide with each other. As 

shown in Figure 5.12, when the leading front moves from 875.0µs to 875.4µs, the two 

transverse waves intersecting on the same incident wave get closer to each other, 

thereby causing the shrinking of the incident wave. At time = 875.4µs, these two 

transverse waves collide, and the triple-wave configurations continue to move close 

until at time = 876.6µs, they bump face to face on each other. Then a new Mach stem 

is generated somewhere around the corresponding incident wave. Meanwhile, the two 

triple-wave configurations and the two transverse waves intersecting on the same 

Mach stem move apart from each other, and the Mach stem gradually shrinks. After 

the collision of the adjacent triple-wave configurations, the old Mach stem area is 

replaced by a new incident wave. As the detonation wave propagates, the incident 

waves exchange their roles with the Mach stems alternately, accompanied with the 

collisions of the triple-wave configurations. 
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5.6 Details of Cellular Structures 

5.6.1 Triple-wave Configuration 

One typical characteristic of detonation cellular structures is that the detonation front 

is always made up of one or more triple-wave configurations, and Mach stems 

exchange their roles with incident waves through collisions of the triple-wave 

configurations. Figure 5.13 shows the close-up view of the pressure contours at 4 

consecutive moments. As we can see, the triple-wave configuration at time = 875.0µs 

is a single-Mach structure, i.e. Weak Structure. The highest pressure in the cellular 

structure is located somewhere around the triple-wave point and on inner side of the 

Mach stem. Further away from the triple-wave point, the pressure declines. By 

comparison with the von-Neumann peak pressure, it is found that the peak pressure of 

Mach stem is higher than the von-Neumann pressure, while that of incident wave is 

lower than the von-Neumann pressure. Therefore, the detonation at Mach stem is 

overdriven, which is different from the sub-driven detonation at incident wave. As 

shown at time = 875.4µs, before these two triple-wave configurations collide, they 

have gradually evolved into more complex structures, called “Strong Structure”; that 

is, the original transverse wave (AB at time = 875.8µs) deflects near the triple-wave 

point and a new transverse wave is generated (AC at time = 875.8µs). The acute angle 

between the new transverse wave and the central line of the cellular structure is very 

small. As the adjacent triple-wave configurations move towards each other, the new 

transverse wave is strengthened.  

Before the triple-wave configurations collide, the adjacent transverse waves start to 
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collide at about half way of the cellular structure, giving rise to a high-pressure area 

where collision just happened. As shown at time = 876.2µs, the incident wave has 

been very weak, and the pressure of the leading shock is only about 100,000Pa, much 

lower than the von-Neumann pressure. The area behind the incident wave is a 

low-temperature unreacted area. These two transverse waves at the strong structure 

collide in an approximate face-to-face direction, bringing about a converging structure 

in the vicinity of collision. The so-called converging effect enhances the energy at the 

converging point dramatically, which can be considered as a blast wave. As calculated, 

the pressure of the blast wave is about 510,000 Pa, more than 5 times of the C-J 

detonation pressure (96,000 Pa). Figure 5.14 shows the pressure contours as the blast 

–like wave is formed and developed. It is observed that the blast wave gives rise to a 

new Mach stem by interacting with the incident wave, and the transverse segments of 

the blast-like wave develop into new transverse waves. Due to expansion effect of the 

blast-like wave, a rounded low-pressure region is formed around the collision point. 

In essence, colliding of two triple-wave configurations is a very complex process, 

which is very different from the collision of two shock waves. The converging effect 

plays an important role in the collision of the triple-wave configurations. 

5.6.2 Chemical Reactions in a Cellular Structure 

The change of concentration around the leading shock front can be used to study the 

process of the chemical reactions. Figure 5.15 shows the computed concentration 

contour of H2O at the vicinity of the reaction fronts. After a small white area behind 

the leading shock, there appears a concentration discontinuity, called “Reaction Front”. 
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The chemical reactions are nearly complete on the reaction front, and the 

concentration of species hardly changes in the subsequent broad area, called 

“Reaction Equilibrium Zone”. In the reaction equilibrium zone, very little chemical 

energy is released. In addition, it is observed in Figure 5.15 that there exists a reaction 

induction zone between the reaction front and the leading shock, i.e. the white area 

behind the leading shock. The chemical reactions behind the Mach stem are different 

from those behind the incident wave, in that the lagged time behind the Mach stem is 

very short while the lagged time behind the incident wave is much larger, especially at 

the ending part of the cellular structure. Due to the weaker or less intense incident 

wave, the lagged time and the reaction induction zone behind the incident wave are 

longer and wider. Therefore, in the concentration contour, the reaction front behind 

the incident wave is further back than that behind the Mach stem. Figure 5.16 shows 

the close-up view of the chemical reaction front with incident wave. It is found that 

the reaction front behind the incident wave is quite flat and parallel to the incident 

wave. However, due to the motion of the transverse waves across the associated 

incident wave, the flow field right behind the incident wave is secondarily 

compressed, thus causing the reaction to complete earlier. As the transverse waves 

move towards each other, more flow field behind the incident wave is secondarily 

compressed, and therefore, the reaction front takes on a concave shape, as shown in 

Figure 5.15.  

Based on the analysis above, a cellular structure can be classified into 5 regions in 

terms of characteristics of the chemical reactions, which are shown in Figure 5.17. 
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Region 1 is ignited by Mach stem, taking about 40% of the total area. Region 2 is 

ignited by incident wave, assuming about 25% or so of the area. Region 3 is 

secondarily compressed and ignited by transverse wave, which takes another 25% of 

the total area. The ignition occurs before the reaction front of the incident wave. 

Region 4 is enhanced by the collision of the transverse waves, which is about 7% of 

the entire cellular structure. Because the transverse waves collide behind the reaction 

front of the incident wave, the collision does not make big difference to the reaction 

front. The rest 3% is ignited by the collision of triple-wave configurations.  

A further analysis reveals that in the area where the triple-wave configurations collide, 

the chemical reactions are very complex. Figure 5.18 shows the H2O concentration 

before and after collision of the triple-wave configurations. As we can see, before the 

triple-wave configurations collide, the low-temperature un-reacted area behind the 

incident wave is surrounded, giving rise to an un-reacted gas pocket. Moreover, the 

transverse waves collide before the reaction front of the incident wave, thus igniting 

and accelerating the overdriven detonation reaction front. This overdriven reaction 

front instantly breaks the un-reacted pocket behind the incident wave into two parts. 

They collide with the two reaction fronts near the colliding triple-wave configurations. 

The collision among these three reaction fronts again accelerates the reaction fronts, 

making the detonation wave moves even faster.  

It has been mentioned in Chapter 4 that by investigating the variation of the 

concentration of each species in the process of chemical reactions, we can determine 
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its significance in the entire chemical reactions. As shown in Figure 5.19 and 5.20, the 

concentration of each species has different characteristics. The species H2O2 and H2O 

are consumed or produced rapidly in the reaction zone, and then change slowly in the 

reaction equilibrium zone. The equilibrium values for H2, O2 and H2O are 0.05 

mol/m3, 0.025 mol/m3 and 0.46 mol/m3, respectively. The species HO2 and H2O2 

reach their peak values near the reaction front and then reduce to their equilibrium 

values rapidly. Their peak values are 4.8×10-5 mol/m3 and 1.2×10-3 mol/m3. Their 

equilibrium values are 5.0×10-6 mol/m3 and 6.0×10-7 mol/m3, respectively. The 

species OH, H, and O also reach their peak values near the reaction front, but their 

peak values, however, vary at different locations of the reaction front. There exist 

more fluctuations in the chemical equilibrium zone, and the amplitude of the 

fluctuations is much bigger than that in the one-dimensional detonation. The peak 

values for O, H, and OH are 0.04 mol/m3, 0.082 mol/m3 and 0.086 mol/m3, 

respectively. Their equilibrium values are, O: 5.0×10-3 mol/m3, H: 1.5×10-2 mol/m3, 

OH: 2.8×10-2 mol/m3. 

In descending order of concentration, the species are listed as H2, O2, H2O, Ar, OH, H, 

O, H2O2 and HO2. Based on the concentration values, these species fall into 3 

categories. Category 1 has the highest order of concentration, which includes Ar, H2, 

O2 and H2O, followed by OH, H and O (Category 2). H2O2 and HO2 belong to 

Category 3, which has the lowest order of concentration. In descending order of the 

variation of concentration in the chemical equilibrium zone, these species, however, 

are listed as H, O, OH, Ar, H2O, O2, H2, HO2 and H2O2. In addition, one may have 
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noticed that the species H2O2 only exists for a very short time, while other species 

exist in the entire flow field. The species HO2 diminishes very quickly, and its 

concentration in the chemical equilibrium zone is only in the order of 10-7mol/m3. 

By comparison with the pressure and temperature contours at the same time, one may 

find that the chemical reactions are insensitive to the change of pressure, but very 

sensitive to the change of temperature. The change of temperature in the chemical 

equilibrium zone behind the shock is very limited, but the change of concentration is 

considerable. The sensitivity of these species to the change of temperature in the flow 

field varies. O, H and OH have the highest sensitivity to temperature variation.  

5.7 Variation of Detonation parameters in a Cellular Structure 

5.7.1 Detonation Velocity 

Figure 5.21 shows the trajectory of the leading front on the central line after the 

regular cellular structure is formed. The trajectory line is approximately a straight line, 

and there exists periodical fluctuations. The mean detonation velocity, as calculated, is 

about 1625 m/s, which is a little larger than the theoretical C-J detonation velocity 

1618 m/s (Gordon, 1971). In addition, the instantaneous detonation velocity of the 

leading front on the central line of the cellular structure can also be obtained from the 

trajectory line. Figure 5.22 shows the instantaneous detonation velocity as time 

progresses, which demonstrates good periodicity relating to the cellular structure. A 

fluctuation period is just equal to the time when the leading shock propagates through 

a cellular structure, i.e. characteristic time of cellular structures, chart . As shown in 
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Figure 5.22, in one period, the variation of the detonation velocity presents two stages: 

acceleration stage and deceleration stage. The acceleration stage involves the process 

where sub-driven detonation accelerates to overdriven detonation. The acceleration 

stage lasts about 0.15 chart , and the sub-driven detonation accelerates to C-J detonation 

velocity at around 0.018 chart . The peak velocity of the overdriven detonation is 

reached after the acceleration stage. The peak values for a few consecutive periods are 

normally quite close to each other, which is about 1.34 cjD . Then the period with a 

rather different peak value follows. The maximum peak velocity is up to 1.75 cjD . The 

deceleration stage involves the process where overdriven detonation decelerates to 

sub-driven. Based on the deceleration rate, the deceleration stage can be recognized as 

two parts. The deceleration in the first part is much faster than the second part. The 

turning point is normally located at around 0.37 chart , which is just the moment when 

the overdriven detonation decelerates to C-J detonation. The deceleration in the 

second part is unstable and sometimes it entails some oscillations, with the minimum 

value of 0.7 cjD . The peak velocity of the sub-driven detonation does not vary much in 

each period, which is around 0.8 cjD .  

Figure 5.23 shows the details relating to the different stages of the instantaneous 

detonation velocity on the center line of the cellular structure. One may find that the 

acceleration stage actually starts from the ending part of the last cellular structure. The 

maximum overdriven detonation velocity is reached somewhere right behind the apex 

of the cellular structure. The overdriven detonation then decelerates rapidly to the 

sub-driven detonation at about 0.3 l , followed by a long and slow deceleration process 
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until at the ending part of the cellular structure where the minimum sub-driven 

detonation velocity is reached. Therefore, in a cellular structure, sub-driven detonation 

occupies much more spatial extent than overdriven detonation. 

The variation of detonation velocity in the rest of a cellular structure is different from 

that on the center line. In the first half cell, the leading front is Mach stem, and it 

keeps spreading out. The detonation velocity on both sides of the central line 

decelerates in a slower rate. The deceleration rate near the triple-wave configuration is 

slowest, and the overdriven detonation sustain until the colliding of the triple-wave 

configurations. On the contrary, in the second half cell, the detonation front is 

associated with the incident wave that keeps contracting. The detonation velocity on 

both sides of the cellular structure is not much different from that on the central line. 

They are all sub-driven detonation. Therefore, the overdriven detonation in the rest of 

the cellular structure occupies a smaller spatial region, which is similar to the case on 

the central line. 

5.7.2 Pressure 

Figure 5.24 shows the pressure distribution on the central line of a detonation cellular 

structure. As we can see, the pressure varies in the same way as the detonation 

velocity does. In the first 1/5 of the dimensional length of the cellular structure, the 

effect of rarefaction waves is strong, but get weaker as the detonation approaches C-J 

detonation. After the C-J detonation, the pressure profile becomes flat. When the 

detonation wave moves to the location of 1/10 of the length, there appear new 

pressure peaks somewhere far behind the leading front, which can be attributed to the 
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colliding of transverse waves. These new pressure peaks ‘chase’ after the leading 

shock, thus weakening the rarefaction effect behind the leading shock. These results 

agree well with the experimental result (Hanana et al., 2000).    

The change of pressure in the rest part of the leading front is similar to the change of 

detonation velocity. The change of pressure around the Mach stem is milder on both 

sides than that on the central line. Around the incident wave, however, the change of 

pressure on both sides is nearly same as that on the central line. Near the apex of the 

cellular structure, the pressure peak is on the central line. In the subsequent half cell, 

the pressure peak takes on the quantity on the side of Mach stem near the triple-wave 

point. This peak value is much higher than the von-Neumann pressure, but it changes 

very mildly. In the second half cell, the pressure peak is in the vicinity where 

transverse waves collide, instead of where the leading front is.  

5.7.3 Triple-wave Configuration 

Except in the proximity of the end point of a cellular structure where a complex 

strong structure may occur, the triple-wave configuration always shows a single Mach 

structure, which involves transverse wave, incident wave and Mach stem. By 

calculation, the pressure ratio of one side of the transverse wave to the other remains 

about 2.2. The pressure ratio measured by experiments (Edwards and Jones, 1978) is 

about 1.5, smaller than the present numerical result. A possible reason is that the 

sensor is too large to measure precisely the strength of the transverse wave near the 

Mach stem. Figure 5.25 shows a typical triple-wave configuration obtained by 

numerical simulation. The acute angle ψ  between the transverse wave and the 
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incident wave is about 65°. The acute angle ∆  between the incident wave and the 

Mach stem is 30° or so. The acute angle δ  between the incident wave and the 

triple-point trajectory line is around 50°, and the acute angle φ  between the Mach 

stem and the triple-point trajectory line is about 90°. Through numerical analysis, it is 

found that the angles above are relatively constant as the detonation front propagates. 

When moving along the triple-point trajectory, the triple-wave configuration is like 

rotating along the triple-point trajectory. The rotational angle is about half of the 

difference between the entrance angle and the exit angle, i.e. β ϕ− . 

5.8 Resolution Study 

On the grid convergence for the two-dimensional detonation simulations, we repeated 

the two-dimensional straight-duct computation with the mesh sizes 0.2mm and 

0.05mm. We compare them with the result at mesh size of 0.025mm by Hu et al. 

(2004). Figure 5.26 shows the comparison among the pressure contours computed 

with mesh sizes of 0.2mm, 0.1mm, 0.05mm. Figures 5.27 show the close-up view of 

the pressure, density and temperature contours at time t=871 sµ obtained using mesh 

size 0.1mm depicting the structure within one transverse wave for a detailed 

comparison to the counterparts obtained using mesh size 0.2mm, 0.05mm and 

0.025mm (Hu et al., 2004) shown in Figures 5.28-5.30. By comparison, it is clear that 

mesh size has a fair influence on the numerical simulation of the cellular structure. 

For the result with mesh size 0.2mm, the triple-wave configuration is only shown very 

vaguely. The detailed features around the triple point, however, are not at all resolved. 

The position of the triple point is not precisely defined. More importantly, till at time 
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t=3ms, the number of the transverse waves is still about 7, which is believed to be 

unstable. For the results with 0.1mm, 0.05mm and 0.025mm, the cellular structures 

have become steady and regular early at about 800us. In additional, a finer mesh size 

can resolve the structure details well. The numerical results based on the mesh size of 

0.1mm present much more information than that of 0.2mm. In Figure 5.27, there 

seems to be the presence of a slip line dividing the regions behind the Mach stem and 

the transverse wave, and the features are more clearly defined in Figures 5.29 and 

5.30. Strictly, a transverse wave can be divided into two parts: one is the part 

connected to the triple-wave point called the main transverse wave; the other part 

extends from the main transverse wave and is called the extending transverse wave. 

There should be a turning point between these two parts. However, in Figure 5.28, the 

transverse wave seems to be extended from the triple-wave points smoothly, and there 

is no distinct turning point, and therefore the configuration may look like a 

single-Mach configuration, which is one of the hallmarks of a weak structure. Figures 

5.29 and 5.30, based on the mesh size of 0.05mm and 0.025mm, respectively, shows 

the detailed cellular structure and clear features around the triple point, and therefore 

is more satisfactory. Some selected features of the cellular structure with different 

mesh sizes are given in Table 5.2. In short, the results with mesh size 0.1mm, 0.05mm 

and 0.025 show similar resolution of the basic cellular structure. The mesh size of 

0.05mm and 0.025mm can resolve more and finer features of the structure, such as 

more slip lines and additional shock wave, which was the focus of Hu et al. (2004), 

but not the intent of the present work. In addition, using finer mesh size like 0.05mm 
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or 0.025mm requires much more CPU resources. This is one reason why the mesh 

size of 0.1mm is used as the standard resolution for computation and analysis in the 

present work. 

5.9 Experiment with Artificial Perturbations 

In order to study the effect of the artificial perturbations on the present numerical 

computation, we repeated the two-dimensional straight-duct computation with the 

disturbance coefficient α =1.0. Figures 5.31 and 5.32 show the pressure contours of 

the structure with the disturbance coefficient α =0.35 and 1.0, respectively. The latter 

disturbance amplitude is much larger than the former. A comparison between Figure 

5.31 and Figure 5.32 shows that increasing the intensity of initial perturbation by a 

higher value of a can shorten the time for the initial formation of the triple wave 

configuration (15us versus 25us). However, the same mode regular structure 

(including the structure regularity and cell size) is reached at almost the same time 

provided the channel height is kept constant. This numerical perturbation experiment 

suggests that the final cellular structure is fairly independent of the initial conditions. 
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Table 5.1 Comparison of cell geometries between the current simulation and experiments  

Cell geometries Current results Experiments* 
Width/length (d/l) 0.55 0.5-0.6 

Exit angle (ϕ ) 8° 5°-10° 

Entrance angle (β) 38° 32°-40° 
Transverse Track angle (ω) 28° ~30° 

* From Strehlow (1968) 

 

 

Table 5.2 Properties of the structures in a straight duct at different resolutions  
Mesh size 
(mm) 

Number of 
Detonation Cells 

Number of Slip 
lines around one 
transverse wave 

Number of triple-wave 
points around one 
transverse wave 

Additional 
shock waves

0.2     
0.1 2.5 1 2 No 
0.05 2.5 2 2 Yes 
0.025* 2.5 2 2 Yes 

* From Hu et al. (2004) 
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     Figure 5.1 The computational domain and initial shock 

 wave for the 2-D detonation computation 

 

 

 

 

 

 

 

 

 

         Figure 5.2 The initial pressure contour with artificial perturbations 
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Figure 5.3 Formation and evolution of the triple-wave configuration

(c) Time = 10µs (d) Time = 15µs 

(a) Time = 0µs 

(e) Time = 20µs (f) Time = 25µs 

(b) Time = 5µs 
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Figure 5.4 The regular triple-wave configuration at time = 871µs 
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Figure 5.5 Periodical evolution of triple-wave configuration 

Time = 880µs Time = 879µs Time = 878µs 

Time = 884µs Time = 882µs Time = 881µs 

Time = 877µs Time = 876µs Time = 875µs 
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Figure 5.6 Numerical cellular structures obtained in the 2-D detonation simulation 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Numerical detonation cell and its geometry parameters 
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Figure 5.8 Evolution of the cellular structures with time 

 (a: 200-250µs, b: 500-550µs, c: 1000-1050µs) 

 

(a) 

(b) 

(c) 
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Figure 5.9 Pressure contours at time = 871µs 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Density contours at time = 871µs 

ρ  



Chapter 5   Numerical Simulation of Two-dimensional Detonation in a Straight Duct 

 131

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Temperature contours at time = 871µs 
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Figure 5.12 Pressure contours at 6 consecutive moments 

 

Time = 875.8µs Time = 876.2µs

Time = 876.6µs Time = 877.0µs

             Time = 875.0µs Time = 875.4µs
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   Figure 5.13 Close-up view of the pressure contours at 4 consecutive moments 

            Time = 875.0µs             Time = 875.4µs 

            Time = 875.8µs              Time = 876.2µs 
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 Figure 5.14 Pressure contours as the blaster-like wave is formed

           Time = 876.4µs           Time = 876.6µs 

          Time = 877.0µs           Time = 877.4µs 
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  Figure 5.15 Concentration contour of H2O with the reaction fronts at time = 871µs 
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Figure 5.16 Close-up view of the reaction front 

behind the incident wave at time = 871µs 

 

 

 

 

 

 

 

 

 

Figure 5.17 Five regions of a cellular structure 

 H2O 
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Figure 5.18 H2O concentration at 6 consecutive moments 

     Time = 875.0µs   Time = 875.2µs 

   Time = 875.4µs   Time = 875.6µs 

   Time = 876.0µs   Time = 875.8µs 
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Figure 5.19 Concentration contours of H2 and O2 at time = 875µs 
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 Figure 5.20 Concentration Contours of O, H, OH, HO2, H2O2 and Ar at time = 875µs 
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   Figure 5.21 Location of the detonation front vs time 

 

 

 

 

 

 

 

 

 Figure 5.22 Instantaneous detonation speed vs time
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   Figure 5.23 Distribution of the instantaneous detonation speed on a cellular structure 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 Pressure distribution on the central line of a cellular structure 
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         Figure 5.25 Geometric relationship of a numerical triple-wave configuration 
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Figure 5.26 Comparison of the Pressure contours with different mesh size at time = 871µs

(b) Mesh size = 0.1mm

(a) Mesh size = 0.2mm

(c) Mesh size = 0.05mm
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        Figure 5.27 Structure with one transverse wave with the mesh size of 0.1 mm 
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      Figure 5.28 Structure with one transverse wave with the mesh size of 0.2mm 
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        Figure 5.29 Structure with one transverse wave with the mesh size of 0.05mm 
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      Figure 5.30 Structures with One Transverse Wave with the mesh size of 0.025mm 

       (Hu et al., 2004) 
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Figure 5.31 Formation of Triple-wave Configuration  

with the disturbance coefficient α =0.35 
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   Figure 5.32 Formation of Triple-wave Configuration  

    with the disturbance coefficient α =1.0
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Chapter 6  Two-dimensional Detonation Wave in a Diverging 

/Converging Chamber 

6.1 Computational Setup 

In this chapter, the numerical simulation models a detonation propagating from left to 

right in a two-dimensional converging/diverging chamber with a stoichiometric H2/O2 

mixture diluted with 70% argon at an initial pressure and temperature of 6.67kPa and 

298K, respectively. Figure 6.1 (a, b) shows the schematic of the two chambers 

considered for the present computation for the converging and diverging case. Each 

case consists of a short 2-D straight duct, followed by a converging/diverging duct 

with a wedge angle θ. The wedge angle θ is varied from 14 to 46 degree while the rest 

of the dimensions are provided in the figure. Cartesian coordinate system is employed 

in the present work. The mesh size is fixed at 0.1mm, i.e. 0.1x y mm∆ = ∆ = . The 

number of grids in the y direction is defined as below, 

200, 0.02 ;
:

int(( 0.02) tan / ) 200, 0.02 ;
y

y

N if x m
Diverging Case

N x y if x mθ

=                                                  <=⎧⎪    ⎨ = − ∆ +         > ⎪⎩
 

200, 0.02 ;
:

200 int(( 0.02) tan / ), 0.02 ;
y

y

N if x m
Converging Case

N x y if x mθ

=                                                  <=⎧⎪    ⎨ = − − ∆         > ⎪⎩
 

Figure 6.1(c) shows the sketch of the computational grids employed for the diverging 

case. 

6.2 Initial and Boundary Conditions 

In order to study the influences of geometry on the cellular structure and the 

detonation velocity of an existing detonation wave, we place the 2-D straight-tube 
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results obtained in Chapter 5 on this converging/diverging computational domain, 

serving as the initial condition, that is, the governing equations described in Section 

2.2 are solved with an initial distribution of a stable 2-D detonation triple-shock 

structure. The initial pressure distributions are shown in Figure 6.2 for both the 

converging and diverging duct.  

In the CJ detonation wave, the state behind the CJ plane is supersonic, and therefore 

could not affect the upstream state. As such, extrapolation is used for the inlet 

boundary condition. Neumann boundary condition is imposed on the outlet. The upper 

and lower walls use the reflected boundary conditions. The detailed boundary 

conditions (4 boundary points) are given as below, 

Left boundary: Extrapolation outflow, defined for all the variables, 

1( , , , , , ) (1 )b i NB B u v e P Y B Bρ ρ γ γ= = − +  

whereγ is the relaxation coefficient, 1B is the current value of the first cell near the 

boundary, and NB is the extrapolation limit. In our computation, we useγ =0.05 

and NB equals to the ambient fluid parameters. 

Right boundary: The unreacted inflow with specified initial parameters, i.e., 

0( ) ( )
xk N i k tU U+ == , 1, 2,3,4i = ; 1, 2,..,12k =  

Upper boundary: Inviscid solid wall (Reflected boundary condition) 

The details for the upper boundary are shown in Figure 6.1 (c). In Figure 6.1 (c), BP1, 

BP2, BP3 and BP4 are the boundary points. P1, P2, P3 and P4 are the points inside 

the computational domain. 

Lower boundary: Central line (Reflected boundary condition), i.e., 
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4( ) ( )k j kU U= ,  3 3 4( ) ( )jU U= − , 0,1,2,3j = ; 1, 2,4,5..,12k =  

where 1 8( ) ( , , , , , ..., )kU u v e Y Yρ ρ ρ ρ ρ ρ= , and xN is the last non-boundary cell on 

the right side;  

6.3 Results and Discussions 

6.3.1 Diverging Chamber 

The development of the detonation is illustrated in Figure 6.3 in the form of the 

grey-scale contours of the maximum pressure, maxp , reached at each point in space. 

We refer to these figures as calculated smoke-foil records because they look similar to 

experimental patterns produced by a detonation wave on a coated surface. One may 

find that in Chapter 5, the contour of the maximum flow velocity,
max

v , was employed 

as analogue of the smoke foil tracks used widely in experiments. Herein, we do not 

use the maximum flow velocity because the expansion effect caused at the diverging 

corner will accelerate the present supersonic flow, thus affecting the recording of the 

original cellular structure. Figure 6.3(a)-I shows the typical detonation cells pattern 

when the detonation wave propagates through the diverging chamber set at the 

sloping angle of θ=45º. From left to right, three regions are broadly identified, 

demarcated by A, B and C. The detonation cells in region A have good regularity and 

these are not affected by the diverging oblique wall. As the detonation wave moves 

through B, the initial regular cells becomes bigger and irregular by distorting upwards, 

until one of the cells nearly takes up the entire height of the tube. Due to the 

expansion effect at the diverging turning point, the detonation wave in region B is 

weaker than that in the region A. Then these big cells begin to split into more small 
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cells, which are shown in region C. These cells vary in size at the beginning. After 

complicated triple-point collisions and interactions, these cells tend to re-obtain their 

regularity and become uniform in size, which is shown in Figure 6.3(a)-II 

for 0.64x m≥ . Figure 6.3(a)-II can be viewed as the fourth region (demarcated by D). 

From this point of view, region B and C can be construed as a transition to the 

ultimate regular detonation structure of region D. The transition region is therefore 

defined as the combination of regions B and C. One may note the division or 

demarcation between region B and C is to some extent qualitative with the reiteration 

that region B is dominated by expanding/growing cell structure while region C is 

characterized by contracting cell structure. In addition, it is easily found that, the cell 

size in D is about 13.9mm long (x-direction), 7.72mm wide (y-direction), fairly 

similar to that found in region A (14.0mm long, 7.8mm wide).  

Figures 6.3(b)-(d) show the other three cases with various diverging angles. As we can 

see, as the diverging angle increases, the detonation cells in region B are larger, and 

then more new cells arise in region C. Table 6.1 shows the length of transition region, 

the ultimate cell size and the width/length ratio at various oblique angles. Figure 6.4 

shows the change of the transition length with the diverging angle graphically. It is easily 

discerned that as the diverging angle increases, the length of transition region gets 

shorter and the ultimate cell size becomes bigger, until at the diverging angle of 45º, 

the ultimate cells approximate their initial size found in region A. Although the 

ultimate cell size is considerably affected by the diverging angle, the width/length 

ratio tends to be approximately constant, i.e. the shape of the detonation cells remains 
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the same. In another word, when a fully-developed detonation wave propagates 

through a diverging surface to a straight tube, the detonation cells become distorted 

and irregular before they re-obtain their regularity. The ultimate regular cell size and 

the length of the transition region are noticeably affected by the oblique angle of the 

diverging surface, while the width/length ratio of the cells is nearly independent of it. 

From the point of view of engineering, a larger oblique angle can shorten the 

transition process. Thus, in order to re-obtain a regular cellular structure after the 

diverging surface, one will need a shorter straight tube. 

Shown in Figure 6.5 is a series of pressure contour plots with time around the first 

corner turning point P1 for the case of diverging angle of 30º. Detonation diffraction 

occurs as the front enters the diverging section. An expansion region can be clearly 

identified, marked by ER in Fig. 6.5(b), in which the pressure is decreased due to a 

series of expansion waves. As time progresses, the expansion region grows by 

spreading downstream. Additionally, there exists a shock wave, marked by S, at the 

edge of the expansion region, which can be found in the diffraction of a non-reactive 

shock wave as well. The possible reason is that, as the detonation front moves 

downstream, the gases expand freely into the diverging tube at a higher rate than can 

be accommodated by the pressure and density drops behind the detonation wave. 

Inward facing compression waves hence coalesce and form inward facing shocks. 

Due to the expansion of the surface area of the front, the detonation cell becomes 

bigger in width while the number of triple points on the front remains constant. The 

expansion effect of shock reduces the ensuing pressure reduce, thus possibly allowing 
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the detonation cells to grow bigger, which can also account for what we have seen for 

the typical region B as depicted in Fig. 6.3.  

Figures 6.6 and 6.7 follow the time series of Fig. 6.5 and show the pressure and 

temperature contours around the second corner turning point P2, respectively. As we 

can see in Figure 6.6, when propagating through this turning point, the detonation 

wave is compressed, and wave reflection occurs. Opposite to the situation around the 

first corner turning point P1, the effect of compression around P2 can cause the local 

pressure to increase and the detonation cells therefore become smaller and some new 

cells are created, which can be seen at the typical region C or the corresponding 

regions in Fig. 6.3. In Figure 6.6(b), we can see the Mach reflection clearly; the 

presence of the incident wave, regular reflection and Mach reflection are marked by I, 

R and M, respectively. Due to the compression effect, the pressure behind the Mach 

reflection wave is increased. At this moment, four transverse waves are identified, 

marked by TW1-4. In Figure 6.6(c), TW1 is bounced off the upper wall, and the 

pressure in the reflected TW1 is increased further. As time goes on, TW2 moves 

upward and collides with the reflected TW1 and the initial R before itself being 

reflected off the upper wall. The reflected TW1, TW2, and R interact with each other 

and the pressure and temperature are intensified greatly. Thus, as shown in Figure 

6.6(d), a blast wave from a strong localized explosion occurs, which originates from 

this collision region. The localized explosion in turn increases the strength of the 

detonation wave ahead, which is similar to the localized explosion observed in the 

work of Khokhlov et al (2004).  
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As the detonation front moves through the turning point P2, due to the localized 

explosion and the detonation reflection, the pressure behind the detonation front 

increases, and the detonation cells therefore becomes once again smaller, which can 

account for what we have seen for the subsequent typical region C or the 

corresponding regions found in Fig. 6.3. As described above, when the detonation 

wave moves through the turning points P1 and P2, the shock wave S and the 

reflection wave R were formed respectively. The shock wave S propagates 

downstream, while the reflection wave R moves upstream. They will collide in the 

transition region and R is bounced off the central line, thus dividing the local flow 

domain into three different pressure regions, as shown in Figure 6.8. Figure 6.8 traces 

clearly the evolution of the collision of waves. 

In summary, when passing through the turning points P1 and P2, the detonation wave 

is expanded and compressed, respectively. The detonation cells are enlarged by the 

expansion waves after P1. Due to compression around P2, the size of the detonation 

cells starts to reduce again. Ultimately, these detonation cells tends to become smaller 

than their original size shown in the typical region A or the corresponding regions of 

Fig. 6.3, but the width/length ratio of the ultimate cells keeps constant and it is hardly 

affected by the oblique angle. The mean detonation velocity at the front declines 

because of the expansion effect caused by the diverging chamber. 

6.3.2 Converging Chamber 

The development of the detonation in the converging chamber is illustrated in Figure 
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6.9 in the form of the grey-scale contours of the maximum velocity,
max

v , reached at 

each point in space. The contour of the maximum flow velocity is employed as 

analogue of the smoke foil tracks used widely in experiments. Figure 6.9(a) shows the 

detonation cells pattern as the detonation wave propagates through the converging 

chamber of 46°. From left to right, four regions are identified, marked by regions A, B, 

C and D, which is similar to that for the diverging configuration. The detonation cells 

in region A have good regularity and they are not affected by the converging oblique 

wall. The detonation cells formed by the Mach stem are shown in region B. Region A 

is separated from region B by a triple-point trajectory line, which involves incident 

wave, reflection wave and Mach stem. Those cells in B lose their regularity and they 

are much smaller than those in A, which results from the effect of the compression 

wave. As the detonation wave moves to region C, the cells become bigger and they 

vary in size at the initial stage. After some triple-point collisions and interactions, 

these cells tend to be uniform in size and finally they re-obtain their regularity in 

region D. Similarly to the discussion in the diverging case above, region B and C can 

be construed as a transition to the ultimate regular detonation structure of region D. 

The transition region is therefore defined as the combination of regions B and C. The 

division or demarcation between region B and C is to some extent qualitative with the 

reiteration that region B is dominated by contracting cell structure while region C is 

characterized by expanding/growing cell structure, which is just opposite to that in the 

diverging case.  

Figures 6.9(b)-(d) show the other three cases with various converging angles. Table 
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6.2 shows the length of transition region, the ultimate cell size and the width/length 

ratio at various oblique angles. Figure 6.10 shows the change of the transition length with 

the converging angle graphically. It is found that as the converging angle increases, the 

length of transition region gets shorter and the ultimate cell size in region D becomes 

bigger and also increasingly closer to the initial cell size found in region A, which are 

similar to the trend found for the diverging wall case. Although the ultimate cell size 

is considerably affected by the converging angle, the width/length ratio tends to be 

constant approximately. In another word, when a steady detonation wave propagates 

through a converging surface to a straight tube, the detonation cells become distorted 

and irregular before they re-obtain their regularity. The ultimate regular cell size and 

the length of the transition region are noticeably affected by the oblique angle of the 

converging surface, while the width/length ratio of the cells is nearly independent of it. 

From the point of view of engineering, a larger oblique angle can shorten the 

transition process. Thus, in order to re-obtain a regular cellular structure after the 

converging surface, one will need a shorter straight tube.  

Figure 6.11 shows the pressure contours around the first turning point P1 with the 

converging oblique angle of 25°. Five transverse waves are identified in Figure 

6.11(a), marked by TW1-TW5. When propagating through the turning point P1, the 

detonation wave is compressed and wave reflection occurs. Meanwhile, TW1 is 

bounced off the converging surface and interacts with the incident wave and the 

reflection wave. Shown in Figure 6.11(b) is the interacting Mach reflection 

configuration comprising the incident wave, regular reflection and Mach reflection 
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(which are marked by “I”, “R”, and “M”, respectively). In Figure 6.11(c), TW2 is 

bounced off the sloping surface, which creates a local high-pressure region in its 

interacting with the Mach reflection configuration, marked by “LH1”. As time goes 

on, the reflected TW2 moves downstream and collides with TW3. Another local 

high-pressure region, marked by “LH2” is created.  

Physically, in the region B, due to the reduction of the surface area of the front, the 

detonation cell becomes smaller in width while the number of triple points on the 

front still remains constant. The compression effect of shock causes the pressure to 

rise, thus possibly allowing the detonation cells to shrink, which is observed for the 

typical cellular structure in the corresponding regions as depicted in Fig. 6.9. Figure 

6.12 shows the close-up of detonation cells near the converging surface at various 

angles. As we can see in Figure 6.12, there exists a line that separates the undisturbed 

area (i.e. the area behind the incident detonation wave) from the Mach reflection area 

(i.e. the area behind the Mach reflection). This line is usually referred to as the 

trajectory of the triple point caused by Mach reflection. It is easily found that as the 

converging angle increases, the trajectory angle χ  decreases. When the converging 

angle reaches at about 46°, the trajectory angle tends towards to 0°, i.e. no Mach 

reflection occurs. This finding agrees reasonably with Guo et al (2001) experiments. 

Table 6.3 lists the details of the triple-point trajectory. Strictly speaking, the 

triple-point trajectory is not straight, which may be attributed to the interaction 

between the transverse waves and the converging wall, i.e. the trajectory of the triple 

point is affected by both Mach reflection and the transverse waves. However, for inert 
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shock waves, the triple point trajectory is only a function of the incident Mach number 

and the wedge angle, and therefore it is a straight line. This is an essential difference 

between the Mach-reflected shock waves in non-reactive air and Mach-reflected 

detonation waves in combustible gas mixture. In order to measure the trajectory angle 

of the Mach-reflected detonation waves, one has to make a best linear fit to the 

irregular line to measure the trajectory angle. The dashed line in Figure 6.12(a) is the 

linearly-fitted trajectory. When the converging angle is larger than 14°, the triple-point 

trajectory is very clear and it cuts through some of the detonation cells in the 

undisturbed area.  

In addition, it is observed that both the size and the shape of the detonation cells have 

changed after Mach reflection. The cell size behind the Mach stem is smaller, which 

conforms to the fact that Mach stem is overdriven detonation. The cellular structure 

behind Mach stem is not as clear as that behind the incident detonation wave. The 

deflection angle caused by the colliding of transverse waves is smaller, which 

suggests that the cellular structures behind Mach stem are weaker. As the converging 

angle increases, the cellular structures behind Mach stem are even more difficult to 

distinguish. When the converging angle is 25° or above, the cellular structures behind 

Mach stem disappear for while before they come out again. When the converging 

angle is larger than 30°, the cellular structures behind Mach stem disappear 

completely.   

Figure 6.13 shows the pressure contours around the second turning point P2 with the 
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converging angle of 25°. The detonation wave diffracts when it passes through the 

turning point, and an expansion region, marked by “ER”, is created. The pressure in 

the expansion region is decreased by a series of expansion waves. At the edge of the 

expansion region, there exists a shock wave “S”, which is formed because the gases 

expand at a higher rate than can be accommodated by the pressure and density drops 

behind the detonation wave. Due to the expansion effect caused by detonation 

diffraction as the detonation front moves through the turning point P2, the pressure 

behind the detonation front decreases, and the detonation cells therefore become 

bigger again, which can account for what we have seen for the typical region C also 

depicted in Fig. 6.9.  

In summary, when passing through the turning points P1 and P2, the detonation wave 

is compressed and expanded, respectively. Due to the compression effect around P1, 

the detonation cells shrink. However, after the turning point P2, the size of the 

detonation cells is enlarged again, which results from the expansion waves arising 

around P2. Ultimately, these detonation cells tends to become smaller than their 

original size shown in the typical region A or the corresponding regions of Fig. 6.9, 

but the width/length ratio of the ultimate cells keeps constant and it is hardly affected 

by the oblique angle. The mean detonation velocity at the front increases because of 

the compression effect caused by the converging chamber. 

Lastly, it may be noted to continue where we left off in Section 2.6 to further 

investigate the effect of mesh size on our present variable cross-sectional detonation 
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simulations, we repeated the simulation for the converging configuration with the 

mesh size of 0.05mm. The 25° converging case is taken as an example for the 

resolution study. Figure 6.14 shows the detonation cell pattern (similar to the analogue 

of smoke foil tracks) based on mesh size 0.1mm and 0.05mm as the detonation wave 

propagates through the converging chamber around the two corners. The cell structure 

and its evolution for both of the mesh sizes are almost identical. Figure 6.15 and 6.16 

depict the close-up of the pressure contours around the two turning points calculated 

with the mesh size of 0.05mm. Comparison to the counterparts on Figures 6.11(c) and 

6.13(a) based on the mesh size of 0.1mm shows good agreements in the main features 

of the transverse waves and the reflected waves. Figures 6.17 shows the close-up view 

of the pressure and temperature contours obtained using mesh size 0.1mm depicting 

the structure near the sloping wall for a detailed comparison to the counterparts 

calculated with mesh size 0.05mm shown in Figures 6.18. It is found that the results 

with mesh size 0.1mm and 0.05mm show similar resolution of the basic cellular 

structure. The mesh size of 0.05mm can resolve more and finer features of the 

structure, such as additional shock wave and local high-temperature region, which is 

not the primary intent of the present work. Quantitative comparison of the specific 

geometric parameters of the structure gives an almost identical trajectory angle χ  = 

10° for both mesh sizes, and a transition length of 0.29m for the mesh size of 0.05mm 

versus 0.285m based on the mesh size of 0.1mm. The ultimate width/length ratio of 

the detonation cell measures 1.807 based on the mesh size of 0.05mm which is almost 

identical to that found on Table 6.2 for the larger mesh size of 0.1mm and different 
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converging oblique angles.  

Through the above resolution analysis (and those in Section 2.6) and considering that 

one objective of our present work is to study the “broad dimension” of the detonation 

cellular structures, including the evolution of the detonation cells in the 

diverging/converging chambers, and how the length of the transition region changes 

with the diverging/converging angles, as opposed to the investigation of very fine and 

detailed structures/sub-structures around the detonation triple-wave configurations, 

we reckon the employment of mesh size 0.1mm in the present work shows faithfully 

the evolution of the transverse waves and main features of the detonation cell 

structures in response to the different sloping chamber wall imposed. The computed 

results obtained can certainly be compared to (future) experiments of smoke foil 

tracks. (Of course much finer cellular structure especially at the detonation front may 

not be captured clearly and explicitly as shown in Hu et al. (2004) for the straight-duct 

configuration based on their mesh size as fine as 0.025mm; this will be our future 

work.)   
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Table 6.1 Transition region and ultimate cell size at various diverging angles 

Diverging Angle Length of Transition 
Region 

Ultimate Cell Size  
in Region D (Width, length ) 

width/length 
ratio 

14º 0.752 m 6.15mm, 11.11mm 1.806 

25º 0.674 m 6.70mm, 12.12mm 1.808 

30º 0.641 m 7.30mm, 13.19mm 1.806 

45º 0.593 m 7.72mm, 13.90mm 1.801 

 

Table 6.2 Transition region and ultimate cell size at various converging angles 

Converging Oblique 
Angle 

Length of Transition 
Region 

Ultimate Cell Size
(Width, length ) 

width/length ratio 

14º 0.330 m 4.10mm, 7.40mm 1.806 

25º 0.285 m 5.60mm, 10.12mm 1.807 

30º 0.260 m 5.70mm, 10.30mm 1.807 

45º 0.250 m 6.40mm, 11.56mm 1.806 

 

Table 6.3 Details of the triple-point trajectory 

Converging Angle,θ  10º 14º 20º 25º 30º 35º 46º 

Trajectory Angle, χ  20º 18º 14º 10º 6º 5º 0º 
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(b) Computational domain of diverging case (not to scale) 

 Central Line 
 y 

 x 

Figure 6.1 Computational domains and boundary conditions 

(a) Computational Domain of converging case (not to scale) 

 y 

 x 
 Central Line 

Central Line (Reflected boundary conditions) 

(c) Sketch of the boundary conditions 

In A and C, the boundary conditions are: 

( ) ( )k BPi k PiU U= ,  3 3( ) ( )BPi PiU U= − , 

where 1,2,3,4i = ; 1, 2,4,5..,12k =  
In B, the boundary conditions are: 

( ) ( )k BPi k PiU U=  
2 2

2 2 3( ) ( ) (cos sin ) 2( ) sin cosBPi Pi PiU U Uθ θ θ θ= − +
2 2

3 3 2( ) ( ) (sin cos ) 2( ) sin cosBPi Pi PiU U Uθ θ θ θ= − + , 
where 1,2,3,4i = ; 1,4,5,6,..,12k =  
 
Note: the values of ( )PiU  are obtained by interpolation of 
the values of the 4 node points surrounding the point Pi. 
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Figure 6.2 Initial pressure distributions 

(b) 

(a)
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Figure 6.3 Detonation cells pattern at various diverging angles 
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Figure 6.4 Transition length versus the diverging angle 
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Figure 6.5 Pressure contours around the turning point P1 

for configuration of diverging angle 30° 

(c) (d)

(b)(a)
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Figure 6.6 Pressure contour around the turning point P2 

for configuration of diverging angle 30° 

(c)  (d)

  (e)   (f) 

  (b)  (a) 
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Figure 6.7 Temperature contour around the turning point P2 

for configuration of diverging angle 30° 

  (e) (f)

(d)  (c) 

(b)  (a) 
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(a) (b)

(c) (d)

Figure 6.8 Collision of R and S for configuration of diverging angle 30° 
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  Transition Region 

Figure 6.9 Detonation cells pattern at various converging angles 
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Figure 6.10 Transition length versus the converging angle 
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Figure 6.11 Pressure contours around the turning point P1  

for configuration of converging angle 25° 

(d) (c) 

(b)(a) 
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Figure 6.12 Detonation cells at various converging angles 

(c)  θ = 30º (d)  θ = 46º 

(b)  θ = 25º (a)  θ = 14º 
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  (b)

(a)

Figure 6.13 Pressure contours around the turning point P2 

for configuration of converging angle 25°
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Figure 6.14 Detonation cells pattern in the converging chamber 

around the two corners with different resolutions 

(a)   Mesh size .0 1x y mm∆ = ∆ =

(b)   Mesh size .x y mm∆ = ∆ = 0 05  
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Figure 6.15 Pressure contours around the turning point P1 with the mesh size of 0.05mm
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Figure 6.16 Pressure contours around the turning point P2 with the mesh size of 0.05mm
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Figure 6.17 Structure near the sloping wall with the mesh size of 0.1mm 

at time=10.0us
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 Figure 6.18 Structure near the sloping wall with the mesh size of 0.05mm  

at time = 10.0us 
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Chapter 7  Detonation Wave in an Axisymmetric Converging 

/Diverging Chamber 

7.1 Computational Setup 

In this chapter, the numerical simulation models a detonation propagating from left to 

right in an axisymmetric converging/diverging chamber with a stoichiometric H2/O2 

mixture diluted with 70% argon at an initial pressure and temperature of 6.67kPa and 

298K, respectively. Figure 7.1 (a, b) shows the schematic of the two chambers 

considered for the present computation for the converging and diverging cases. Each 

case consists of a short axisymmetric straight duct, followed by an axisymmetric 

converging/diverging duct with a wedge angle θ. The wedge angle θ is varied from 14 

to 46 degree while the rest of the dimensions are provided in the figure. As mentioned 

in Chapter 2, for the axisymmetric computational domain, the governing equations of 

the gaseous detonation can be modified as,  

[ ( )] [ ( )]t x rU F U G U S+ + =                           
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2 2
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As mentioned in Chapter 7, in our present numerical computations, the source term at 

the central line of the axisymmetric chamber (i.e. 0r = ) is modified as, 
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In order to solve the governing equations above, an axisymmetric coordinate system 

is employed in the present work. The mesh size is fixed at 0.1mm, i.e. 

0.1x r mm∆ = ∆ = . The number of grids in the r direction is defined as below, 

200, 0.02 ;
:

int(( 0.02) tan / ) 200, 0.02 ;
r

r

N if x m
Diverging Case

N x r if x mθ
=                                                  <=⎧

      ⎨ = − ∆ +         > ⎩
 

200, 0.02 ;
:

200 int(( 0.02) tan / ), 0.02 ;
r

r

N if x m
Converging Case

N x r if x mθ
=                                                  <=⎧

    ⎨ = − − ∆         > ⎩
 

7.2 Initial and Boundary Conditions 

Similar to the case of 2-D converging/diverging detonation presented in Chapter 6, the 

1-D Chapman-Jouguet (CJ) detonation wave obtained in Chapter 4 is placed on a 

two-dimensional straight-duct domain and some artificial disturbances are imposed on the 

computational domain. The initial CJ detonation wave will evolve into a stable triple-shock 

structure eventually. Then this stable 2-D detonation wave is placed in the straight-duct 

section of the axisymmetric converging/diverging geometry, serving as the initial condition of 

the present axisymmetric computation, and let it propagate through the axisymmetric 

converging or diverging channel, that is, the governing equations described above are 

solved with an initial distribution of a stable 2-D detonation triple-shock structure. 

The initial pressure distributions are shown in Figure 7.2 for both the converging and 
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diverging duct.  

In the present axisymmetric converging/diverging computations, we use the same 

boundary conditions as the 2-D converging/diverging case in the last Chapter 6. These 

are: extrapolation is used for the outlet boundary condition, specified initial inflow 

conditions are imposed on the right end, and the upper and lower walls use the 

reflected boundary conditions. The extrapolation inflow boundary can be expressed as 

(defined for all the variables), 

1( , , , , , ) (1 )b i NB B u v e P Y B Bρ ρ γ γ= = − +  

The unreacted inflow condition is given as, 

0( ) ( )
xk N i k tU U+ == , 1, 2,3,4i = ; 1, 2,..,12k =  

The reflected boundary for the upper wall is same as the the 2-D converging/diverging 

case in Chapter 6 . The details are shown in Figure 6.1 (c). 

Similarly, the reflected boundary condition for the central line is given as, 

4( ) ( )k j kU U= ,  3 3 4( ) ( )jU U= − , 0,1,2,3j = ; 1, 2,4,5..,12,k =  

where 1 8( ) ( , , , , , ..., )kU u v e Y Yρ ρ ρ ρ ρ ρ= , and xN is the last non-boundary cell on 

the right side;. 

7.3 Results and Discussions 

7.3.1 Converging Chamber 

The evolution of the detonation in the converging chamber is illustrated in Figure 7.3 

in the form of the grey-scale contours of the maximum velocity,
max

v , reached at each 

point in space. Same as the converging case in Chapter 6, the contours of the 
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maximum flow velocity is employed as analogue of the smoke foil tracks used widely 

in experiments. Figure 7.3(a) shows the detonation cells pattern as the detonation 

wave propagates through the converging chamber of 14°. From left to right, four 

regions are identified, marked by regions A, B, C and D. The detonation cells in 

region A have good regularity as they are not yet affected by the converging oblique 

wall. The detonation cells formed by the Mach stem are shown in region B. Region A 

is separated from region B by a triple-point trajectory line, which involves incident 

wave, reflection wave and Mach stem. Those cells in B lose their regularity and they 

are much smaller than those in A, which results from the effect of the compression 

wave. As the detonation wave moves to region C, the cells become bigger and they 

vary in size at the initial stage. After some triple-point collisions and interactions, 

these cells tend to be uniform in size and finally they re-obtain their regularity in 

region D. The division or demarcation between region B and C is to some extent 

qualitative with the reiteration that region B is dominated by contracting cell structure 

while region C is characterized by expanding/growing cell structure. Physically, in the 

region B, due to the reduction of the surface area of the front, the detonation cell 

becomes smaller in width while the number of triple points on the front still remains 

constant. The compression effect of shock causes the pressure to rise, thus possibly 

allowing the detonation cells to shrink, which is observed for the typical cellular 

structure in the corresponding regions as depicted in Fig. 7.3. The qualitative analysis 

above is same as that in the converging case shown in Chapter 6.  

However, the measurements of the present cellular structure and its development in 
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the axisymmetric chamber are different from those in the converging case shown in 

Chapter 6. Table 7.1 shows the length of transition region (defined as the combination 

of regions B and C), the ultimate cell size and the width/length ratio at various oblique 

angles, as well as the comparisons with the 2-D converging case in Chapter 6. It is 

found that as the converging angle increases, the length of transition region gets 

shorter and the ultimate cell size in region D becomes bigger and also increasingly 

closer to the initial cell size found in region A. In other words, a larger oblique angle 

actually shortens the transition process. Thus, in order to re-obtain a regular cellular 

structure after the converging wall, one will need a shorter straight tube. Although the 

ultimate cell size is considerably affected by the converging angle, the width/length 

ratio tends to be constant approximately. In another word, when a steady detonation 

wave propagates through a converging surface to a straight tube, the detonation cells 

become distorted and irregular before they re-obtain their regularity. The ultimate 

regular cell size and the length of the transition region are noticeably affected by the 

oblique angle of the converging surface, while the width/length ratio of the cells is 

nearly independent of it, which is similar to that found for the 2-D converging case in 

Chapter 6. However, it is also found that the length of the transition region in the 

axisymmetric converging chamber is shorter than its counterpart in the 2-D 

converging chamber. The ultimate cell size is slightly smaller, while the shape of the 

detonation cells is nearly same as that found in the 2-D converging chamber. Figure 

7.4 shows the change of the transition length with the converging angle, as well as the 

comparison with the 2-D converging case graphically.  
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Figure 7.5 shows the close-up of detonation cells near the converging surface at 

various angles. As we can see in Figure 7.5, there exists a line that separates the 

undisturbed area (i.e. the area behind the incident detonation wave) from the Mach 

reflection area (i.e. the area behind the Mach reflection). As we mentioned in Chapter 

6, this line is usually referred to as the trajectory of the triple point caused by Mach 

reflection. It is easily found that as the converging angle increases, the trajectory angle 

χ  decreases. When the converging angle reaches at about 46°, the trajectory angle 

tends towards to 0°, i.e. no Mach reflection occurs. This changing trend is same as 

that found in the 2-D converging case. Table 7.2 lists the details of the triple-point 

trajectory, as well as the comparison with the 2-D converging case discussed in 

Chapter 6. Figure 7.6 shows the change of the trajectory angle with the converging 

angle graphically. It is found that the trajectory angle captured in the axisymmetric 

converging chamber is close to the trajectory angle in the 2-D converging chamber 

within measurement uncertainty.  Similar to the 2-D converging case in Chapter 6, 

due to the interaction between the transverse waves and the converging wall, the 

triple-point trajectory is not straight. The trajectory of the triple point is affected by 

both Mach reflection and the transverse waves. However, for inert shock waves, the 

triple point trajectory is only a function of the incident Mach number and the wedge 

angle, and therefore it is a straight line. In order to measure the trajectory angle of the 

Mach-reflected detonation waves, one has therefore to make a best linear fit to the 

irregular line to measure the trajectory angle. The dashed line in Figure 7.5(a) is the 

linearly-fitted trajectory.  
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As mentioned in the 2-D converging case in Chapter 6, both the size and the shape of 

the detonation cells have changed after Mach reflection. The cell size behind the 

Mach stem is smaller, which conforms to the fact that Mach stem is overdriven 

detonation. The cellular structure behind Mach stem is not as clear as that behind the 

incident detonation wave, and the deflection caused by the colliding of transverse 

waves is smaller. This suggests that the cellular structures behind Mach stem are 

weaker. As the converging angle increases, the cellular structures behind Mach stem 

are even more difficult to distinguish. When the converging angle is 25° or above, the 

cellular structures behind Mach stem disappear for a while before they show up again. 

When the converging angle is larger than 30°, the cellular structures behind Mach 

stem disappear completely.   

In order to find out the reason why the Mach reflection of detonation has the 

characteristics described above, we take the present numerical result of 14º 

converging case for example to investigate the detailed process of a Mach reflection 

around the apex of a wedge. When a detonation wave moves toward the wedge, the 

leading shock of the upper half cell collides with the wedge first, and a reflection 

wave is generated. The reflection wave interacts with the detonation cellular structure, 

thus bringing about various reflection modes. Figure 7.7 shows the related reflection 

process at the converging chamber of 14º. It is seen that a reflection wave and a Mach 

stem are generated at the wedge apex, but no sensible tracks are formed. The possible 

reason is that the wedge angle is small, and the triple-point trajectory angle χ  is 

larger than half of the exit angle ϕ  after the colliding of the triple-wave 
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configurations. The reflection wave is weaker than the transverse waves, therefore no 

sensible tracks are found. The reflection wave then collides with the transverse wave 

of the half cell. Because the reflection wave is much weaker than the transverse wave, 

the consequence of the collision is a large deflection of the reflection wave. The 

triple-point trajectory angle changes much, but the cellular structures hardly change. 

After reflected at the wedge surface, the transverse wave catches up with the weak 

reflection wave and ‘absorbs’ it. Thus, the triple-point trajectory χ  is incorporated 

into the cellular structures. Because the track of the reflection wave cannot be 

observed, the cellular structure that collides with the reflection wave and overwhelms 

or overshadows it is usually referred to as the triple-point trajectory. Obviously, the 

trajectory does not originate from the wedge apex, but somewhere behind the wedge 

apex. When the wedge apex is at a different position in the half cell, the specific 

reflection process varies, and the point of origin of the triple-point trajectory may be 

located in a different position on the wedge surface. Further analysis suggests that, no 

matter where the wedge apex is, the reflection wave generated at the apex will be 

absorbed by the transverse wave in the cellular structures quickly. At the same time, 

the triple-point trajectory is incorporated into the cellular structures. 

When the wedge angle θ  is small (say a few degrees only), the experimental result 

by Strehlow et al. (1972) showed that the impact on the leading shock caused by the 

wedge presence is much less significant than the colliding of the transverse waves. 

Therefore, after passing through the wedge apex, the cellular structures would adapt 

to their original status in a short while. As the wedge angle increases the reflection 
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wave generated at the wedge apex becomes stronger, which can be observed in our 

present numerical simulations. If the wedge angle is larger than a certain critical 

angle critθ where the reflection wave starts to become stronger than the transverse wave, 

the collision between them will make the transverse wave deflect dramatically. When 

the wedge angle continues to increase, the reflection wave becomes even stronger. 

After colliding with the reflection wave, the transverse wave will be absorbed by the 

reflection wave. This is why the cellular structures behind Mach stem is less distinct 

and even disappear when the wedge angle is larger than say about 30°. The value 

of critθ can be evaluated through the geometrical relationship of the detonation cellular 

structure, which is essentially the wedge angle where the reflection wave starts to 

become stronger than the transverse wave. The collision between the transverse waves 

in the cellular structures is approximately equivalent to the Mach reflection of the 

leading shock on a wedge given by the oblique angle ∆ . The angle ∆  is also the 

acute angle between the incident wave and the Mach stem in the leading shock. If the 

triple-point trajectory angle χ  is smaller than half of the exit angle ϕ  in the 

cellular structure, then the reflection wave is stronger than the transverse wave. 

Therefore, we have, 1
2critθ ≅ ∆ . Our present numerical computation shows that ∆  is 

approximately equal to the difference between the exit angle and the entrance angle. 

The mean entrance angle, based on our computations, is about 38° and the exit angle 

is around 8° (see Table 5.1 in Chapter 5). Therefore, the critical angle critθ , as 

evaluated, is about 15°, which agrees well with the present numerical result: when the 

converging angle is larger than 14°, the triple-point trajectory is very clear and the 
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cellular structures behind the Mach stem are smaller and less distinct.  

Figures 7.8 and 7.9 show the pressure contours around the first turning point P1 and 

the second turning point P2 at the converging oblique angle of 25°, respectively. 

Similar to the 2-D converging case discussed in Chapter 6, some local high-pressure 

regions, the Mach reflection, as well as the collisions of the transverse waves around 

P1, and the expansion region around P2 can be easily observed.  

In summary, when passing through the turning points P1 and P2, the detonation wave 

is compressed and expanded, respectively. Due to the compression effect around P1, 

the detonation cells shrink. However, after the turning point P2, the size of the 

detonation cells is enlarged again, which results from the expansion waves arising 

around P2. Ultimately, these detonation cells tend to become smaller than their 

original size shown in the typical region A or the corresponding regions of Fig. 7.3. 

The width/length ratio of the ultimate cells keeps constant and it is hardly affected by 

the oblique angle, while the transition length and the ultimate cell size have 

dependence on the converging angle. As the converging angle increases, the length of 

the transition region decreases, and the ultimate cell size increases. However, they are 

all smaller than their counterparts in the 2-D converging case discussed in Chapter 6. 

7.3.2 Diverging Chamber 

Same as the diverging case in Chapter 6, we use the grey-scale contours of the 

maximum pressure, maxP , reached at each point in space to record the traces of the 

cellular structures, which is similar to the smoke foil technique used in experiments. 
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Herein, we use the maximum pressure maxP , instead of the maximum flow 

velocity
max

v . This is because the expansion effect caused at the diverging corner will 

accelerate the present supersonic flow, thus affecting the recording of the original 

cellular structure. Figure 7.10 shows the evolution of the present detonation cellular 

structures as the detonation wave propagates through the diverging chamber of 

different sloping angles. At the oblique angle of 14° as shown in Figure 7.10(a), the 

evolution of the detonation cells through the diverging section can be clearly observed. 

The initial detonation cells have good regularity and they have not been affected by 

the diverging oblique wall yet. As the detonation wave passes through the diverging 

wall, the regular cells becomes bigger and irregular by distorting upwards, until one 

of the cells nearly takes up the entire height of the tube. Due to the expansion effect in 

the diverging section, the detonation wave becomes weaker and weaker. However, the 

detonation is still sustained before it enters the subsequent straight duct. Then these 

big cells begin to split into small cells. These cells are in different size, which is 

shown in Figure 7.10(a)-II for 0.15x m≥ . After complex triple-point collisions and 

interactions, these cells tend to re-obtain their regularity and become uniform in size. 

As mentioned in Chapter 6, the transition region, defined as the region from the 

turning point P1 to the location where the ultimate regular detonation structure is 

formed, is made up of two parts. Part 1 is dominated by expanding/growing cell 

structure while part 2 is characterized by contracting cell structure, which are 

counterparts of region B and C in the 2-D diverging case in Chapter 6. In addition, it 

is found that, the length of the transition region is about 0.648, shorter than its 
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counterpart (0.752) in the 2-D diverging case, and the ultimate cell size is about 11.53 

mm long (x-direction), 6.39 mm wide (y-direction), which is slightly bigger than that 

found in Chapter 6 (11.11 mm long, 6.15 mm wide).  

Figures 7.10(b)-(d) show the other three cases with various diverging angles. As we 

can see, as the diverging angle increases from 25° to 45°, the detonation cells 

disappear somewhere in the diverging section, which means that the detonation fails 

to sustain in these diverging chambers. The possible reason is that, due to the 

expansion effect caused by the large area change in the diverging section, the pressure 

in the flow field becomes too low for the detonation to sustain.  

Figure 7.11 shows the pressure contours plots in the diverging section at the diverging 

angle of 30°. Detonation diffraction occurs as the front enters the diverging section. 

An expansion region can be clearly identified, marked by ER in Fig. 7.11(a), in which 

the pressure is decreased due to a series of expansion waves. As time progresses, the 

expansion region grows by spreading downstream. Additionally, there exists a shock 

wave, marked by S, at the edge of the expansion region, which can be found in the 

diffraction of a non-reactive shock wave as well. The possible reason is that, as the 

detonation front moves downstream, the gases expand freely into the diverging tube at 

a higher rate than can be accommodated by the pressure and density drops behind the 

detonation wave. Inward facing compression waves hence coalesce and form inward 

facing shocks. As the pressure in the flow field continues to drop, the leading shock of 

the detonation wave is decoupled from the following reaction zone and therefore the 
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detonation dies out, which is shown in Figure 7.10(c). The reason why the detonation 

can be sustained in the 2-D diverging case, but fails to sustain in the present 

axisymmetric diverging chamber is related to the area expansion ratio of the diverging 

configuration (The area expansion ratio is defined as the ratio of the cross-sectional 

area of the straight tube before the diverging section to the the cross-sectional area of 

the straight tube after the diverging section). In the 2-D diverging case discussed in 

Chapter 6, the area expansion ratio is 0.5. However, in the present axisymmetric 

diverging configuration, the area expansion ratio is 0.25. This means that the pressure 

drop in the axisymmetric diverging chamber is much bigger than that in the 2-D 

diverging case. In other words, the big pressure drop leads to the decay of the 

detonation. In addition, the rate of the pressure drop is also important. That is why the 

detonation in the diverging chamber of 14° sustains, but dies out in the diverging 

chamber of 25° or above, although the diverging chamber of 14° has the same area 

expansion ratio as that of 25° or above. 

Shown in Figures 7.12-7.14 are a series of pressure contours with time for the 

diverging angle of 14°, 25°, and 45°. By comparison with the case of 30° discussed 

above, it is found that in the diverging chamber of 14° or 25°, the expansion effect 

around the first turning point P1 is weaker, and the expansion region “ER” is smaller 

than that in the diverging chamber of 30°. On the contrary, the expansion effect in the 

diverging chamber of 45° is stronger, and the expansion region “ER” is larger, which 

agrees with our analysis above.  
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Figure 7.15 shows the location of the leading front on the central line with time for 

the diverging chamber of 14°. The trajectory line is a curved line, and there exist 

small periodic fluctuations. By making linear fit to the curved line, one may find that 

the line is made up of essentially three segments with different slope (AB, BC and 

CD). The slope theoretically stands for the mean speed of the leading front. These 

three segments therefore correspond to the three sections in the present diverging 

configuration, respectively. The instantaneous speed of the leading front on the central 

line can be obtained from the location of the leading front with time. The speed of the 

leading front in the diverging section (BC) is observed to be slower because of the 

expansion effect, which agrees with our analysis. The instantaneous speed of the 

leading front on the central line can also be obtained from the location of the leading 

front with time. Figure 7.16 shows the ratio of the instantaneous detonation speed 

over the C-J speed as time progresses, which depicts the fluctuation and its relation to 

the cellular structure. Similar to the straight-duct case in Chapter 5, each fluctuation 

cycle consists of two stages: acceleration stage and deceleration stage. The 

acceleration stage involves the process where sub-driven detonation accelerates to 

overdriven detonation. The peak velocity of the overdriven detonation is reached after 

the acceleration stage. The deceleration stage involves the process where overdriven 

detonation decelerates to sub-driven. As we can see in Figure 7.16, when the 

detonation wave passes through the diverging section, the front speed slows down 

because of the expansion waves. Herein, the detonation is sub-driven. After the 

diverging section, the front speed goes up and the detonation is back to over-driven 
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again.  

Figures 7.17 to 7.19 show the ratio of the instantaneous speed of the leading front 

over the C-J speed the diverging chamber of 25°, 30° and 45°, respectively. Similar to 

the diverging case of 14° shown in Figure 7.16, when passing through the diverging 

section, the detonation becomes sub-driven, and the front speed for these cases drops 

below the C-J speed. However, the difference is that, unlike the case of 14°, the 

detonation dies out completely and the speed of the leading shock does not come up 

to C-J speed again 

7.4 Concluding Summary for Chapter 7 

Numerical simulations of the reflection and diffraction processes of gaseous 

detonation waves in the axisymmetric diverging and converging chambers have been 

performed by using weighted essentially non-oscillatory (WENO) scheme, coupled 

with a detailed chemical reaction model and the numerical package of CHEMEQ. The 

following conclusions are drawn: 

1. As a detonation wave propagates through the converging surface to a straight 

duct, there exists a transition region. In the transition region, the detonation cells 

become irregular and distorted at the initial stage, but they will finally re-gain their 

regularity. The length of the transition region and the ultimate regular cell size are 

affected by the converging angle. A larger oblique angle can shorten the transition 

process. However, the width/length ratio of the ultimate cells tends to be constant and 

it is hardly affected by the oblique angle. The findings above are similar to the 2-D 



Chapter 7    Detonation Wave in an Axisymmetric Converging/Diverging Chamber 

 198

converging case in Chapter 6. However, the length of the transition region, and the 

ultimate cell size are smaller than those in the 2-D converging cases, while the 

width/length ratio of the ultimate regular cells (i.e. the shape of the cells) is nearly the 

same. 

2. For Mach reflection occurring in the axisymmetric converging chambers, the 

triple-point trajectory is not a straight line. As the oblique angle in the converging 

chamber configuration increases, the trajectory angle χ  decreases, which is similar 

to that found in the 2-D converging case in Chapter 6. The value of the trajectory 

angle χ  is also very comparable with its counterpart in the 2-D converging case. 

3. For the axisymmetric diverging chamber of 14°, the evolution of the detonation 

cellular structure is similar to the 2-D diverging case in Chapter 6. The difference is 

that the length of the transition region is shorter and the ultimate cell size is slightly 

larger than its counterpart in the 2-D diverging case. 

4. For the axisymmetric diverging chamber of 25° and above, the small area 

expansion ratio and a large diverging angle lead to a considerable pressure drop, 

which in turn makes the detonation die out. 
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Table 7.1 Transition region and ultimate cell size in the axisymmetric converging 

chamber vs in the 2-D converging chamber 

Length of Transition 
Region 

Ultimate Cell Size 
(Width, length ) 

width/length ratio  
Converging 

Oblique 
Angle 

2-D  
Chamber 

Axisymmetric 
Chamber 

2-D  
Chamber 

Axisymmetric 
Chamber 

2-D  
Chamber 

Axisymmetric
Chamber 

14º 0.330 m 0.21m 4.1mm, 7.4mm 4.0mm, 7.2mm 1.806 1.80 

25º 0.285 m 0.17 m 5.6mm, 10.12mm 5.2mm, 9.37mm 1.807 1.802 

30º 0.260 m 0.166 m 5.7mm, 10.3mm 5.4mm, 9.72mm 1.807 1.80 

46º 0.250 m 0.16 m 6.4mm, 11.56mm 6.0mm, 10.8mm 1.806 1.80 

 

Table 7.2 Details of the triple-point trajectory in the axisymmetric converging 

chamber vs in the 2-D converging chamber 

Converging Angle,θ  10º 14º 20º 25º 30º 35º 46º 

2-D Chamber 20º 18º 14º 10º 6º 5º 0º Trajectory 

Angle, χ  Axisymmetric 
Chamber 

20º 18º 12º 9º 6º 3º 0º 
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Figure 7.1 Computational domains for the axisymmetric 

chambers (not to scale) 
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(b) 

P1 

P2 

P1 

P2 

r

x  Central Line

 Central Line
r

x



Chapter 7    Detonation Wave in an Axisymmetric Converging/Diverging Chamber 

 201

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Initial pressure distributions for 

the axisymmetric cases 

(b) 

(a)



Chapter 7    Detonation Wave in an Axisymmetric Converging/Diverging Chamber 

 202

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) θ = 14°

A B C D 

Transition Region 

Close-up view of region C 

(b) θ = 25° 

Close-up view 

(c) θ = 30° 

Close-up view 

Figure 7.3 Evolution of the detonation cellular structures in the converging 

chamber of different sloping angles 

(d) θ = 46°

Close-up view 
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Figure 7.4 Transition length versus the converging angle 
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Figure 7.5 Detonation cells and the trajectory angles at various converging angles 
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Figure 7.6 Trajectory angle versus the converging angle 
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Figure 7.7 The process of a Mach reflection around the wedge apex  
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Figure 7.8 Pressure contours around the turning point P1  

for configuration of converging angle 25°
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Figure 7.9 Pressure contours around the turning point P2 

for configuration of converging angle 25° 
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Figure 7.10 Evolution of the detonation cellular structures in the diverging 

chamber of different sloping angles 

(b) θ = 25°

(c) θ = 30°

(d) θ = 45°

(a) θ = 14°
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Figure 7.11 Pressure contours in the diverging section  

 for the diverging configuration of 30° 

(a) 

(b) 
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Figure 7.12 Pressure contours in the diverging section  

 for the diverging configuration of 14° 

(a)

(b)
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Figure 7.13 Pressure contours in the diverging section  

 for the diverging configuration of 25° 

 (a)

 (b)
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Figure 7.14 Pressure contours in the diverging section  

 for the diverging configuration of 45° 

(a)

(b)
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Figure 7.15 Location of the leading front on the central line 
versus time in the diverging chamber of 14° 
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Figure 7.16 Instantaneous speed of the leading front versus 
time in the diverging configuration of 14° 
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Figure 7.17 Instantaneous speed of the leading front versus 
time in the diverging chamber of 25° 
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Figure 7.18 Instantaneous speed of the leading front versus 
time in the diverging chamber of 30° 
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Figure 7.19 Instantaneous speed of the leading front versus 
time in the diverging chamber of 45° 
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Chapter 8  Conclusions and Recommendations 

8.1 Concluding Summary 

A detailed elementary chemical reaction model with 9 species and 19 elementary 

reactions was used for a stoichiometric H2/O2 mixture diluted with argon. The 3rd 

order TVD Runge-Kutta method and the weighted essentially non-oscillatory (WENO) 

numerical scheme with fairly good resolution were employed to solve the 

multi-species flow without chemical reactions, while the chemical reactions were 

solved by the numerical package of CHEMEQ.  

The one-dimensional Chapman-Jouguet (C-J) detonation wave was simulated. The 

structure of the detonation front, detonation velocity at the front, concentration profile 

of each species and the effect of mesh size on the result were investigated as well. The 

one-dimensional results were then mapped to two-dimensional grids as the initial 

condition of the two-dimensional numerical computation in a straight duct. By 

introducing some artificial perturbation, the cellular structure of the two-dimensional 

detonation wave was successfully simulated. The detailed triple-wave configuration, 

as well as the formation, evolution and the dynamic characteristics of the cellular 

structure, were investigated. Furthermore, in order to study the influence of the 

diverging/converging walls on the detonation wave and its cellular structure, we 

placed the obtained two-dimensional detonation wave in two-dimensional 

diverging/converging chambers and let the detonation wave propagate through the 

varying cross-sectional chambers. For further understanding and quantitative analysis 
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of these influences, axisymmetric diverging/converging chambers were also 

configured to substitute for the above-mentioned two-dimensional diverging / 

converging chambers. A comparison on the simulation results between them was 

presented. 

8.1.1 One-dimensional Detonation Wave 

The present numerical computation of one-dimensional detonation shows that the 

detonation front is made up of the leading shock wave and the subsequent chemical 

reaction zone, followed by the rarefaction wave zone. The flow velocity decreases 

gradually in the rarefaction wave zone till the steady zone is reached at about 1/2 of 

the detonation distance. In addition, the mean detonation velocity obtained from the 

profile of the detonation wave is about 1625m/s, which is quite close to the calculated 

C-J value (1618m/s) by Gordon and McBride (1971). The C-J pressure cjp , as 

calculated, is 93600 Pa  comparable to the experimental result (94000 Pa ) by 

Lefebvre (1995). The calculated von-Neumann peak pressure of the leading shock is 

about 1.79 cjp , which is slightly smaller than the analytical value from the ZND 

model (1.86 cjp ). The length of the reaction zone obtained in the present numerical 

simulation is about 0.011m, which agrees well with the calculated value (0.012m) 

through the steady solution by Oran et al (1998).  

Based on the order of concentration change, the species involved can be classified 

into three groups. H2, O2 and H2O belong to the first group, and their concentrations 

change is in the order of 1 310 /mol m− . The second group includes OH, O and H, 
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whose concentrations change is a in the order of 2 310 /mol m− , followed by the last 

group: H2O2 and HO2, which exhibits the least change of O( 410− ) or ( 5 310 /mol m− ).  

The mesh study shows that the mesh size has negligible influence on some detonation 

parameters, but sensible influence on others. The integrated variables like detonation 

velocity, C-J pressure and wall pressure are fairly insensitive to mesh size. Reaction 

zone length varies when the mesh size is larger than 0.1mm, i.e. reaction zone length 

is convergent at mesh size = 0.1mm. On the contrary, the von-Neumann pressure and 

the induction zone length, show some variations as the mesh size reduces to 0.025mm. 

The variations between the two smallest mesh sizes are, however, fairly limited. At 

the mesh size 0.5x∆ ≥ mm, the induction zone cannot be resolved. At the mesh 

size 0.2x∆ ≤ mm, the calculated induction zone length reduces with the mesh size. 

The minimum induction zone length obtained in our present computations is 0.16 cm, 

which is slightly larger than the result (0.147cm) by Joseph et al. (2005). 

8.1.2 Two-dimensional Detonation in a Straight Duct 

The numerical simulation shows that the formation of cellular structures can be 

divided into two stages. Stage 1 is the formation of the triple wave configuration, 

while Stage 2 is the formation of the regular cellular structures with a constant 

number of transverse waves. The second stage requires much longer time than the 

first stage. The regular cellular structures formed at the beginning of Stage 2 are not 

stable. The numerical smoke foil technique was widely used to study the tracks of the 

cellular structure. In the present work, the maximum flow velocity,
max

v , on all grid 
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nodes in the time history are recorded as an analogue of smoke foil tracks. The shape 

of the cellular structure from the present numerical result agrees well with that from 

experimental results, but the cell size in our present computation is smaller than 

experimental results.  

A typical cellular structure is made up of multiple triple-wave configurations, each of 

which is the combination of Mach stem (M), incident wave (I) and transverse wave 

(T). When the detonation wave propagates along the duct, on the leading front, the 

incident wave keeps exchanging its role with the Mach stem, accompanying with the 

collision between two adjacent triple-wave configurations. The detonation at Mach 

stem is overdriven, while that at incident wave is sub-driven detonation. The present 

numerical computation shows that before the two triple-wave configurations collide, 

they tend to evolve into a more complex structure, called “Strong Structure”. 

Compared to purely shock waves, the colliding between two triple-wave 

configurations in a detonation cellular structure is much more complicated. The 

converging effect plays an important role in the colliding of the triple-wave 

configurations. The converging effect enhances the energy at the converging point 

dramatically, which can be considered as a blast wave. The blast wave gives birth to a 

new Mach stem by interacting with the incident wave. The transverse segments of the 

blast wave develop into new transverse waves. The chemical reaction front is located 

behind the leading shock. The reaction front behind the incident wave is further back 

than that behind the Mach stem. The reaction induction zone behind the incident wave 

is wider. One functional role of transverse waves is to secondarily compress and ignite 
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the mixture in the induction zone behind the incident wave, thus shortening the 

reaction induction zone. 

When a detonation wave propagates through the cellular structure, the variation of the 

detonation velocity presents two stages: acceleration stage and deceleration stage. The 

acceleration stage involves the process where sub-driven detonation accelerates to 

overdriven detonation, while the deceleration stage involves the process where 

overdriven detonation decelerates to sub-driven. The detonation state, when far away 

from C-J detonation, is not stable. In a cellular structure, sub-driven detonation state 

occupies more space than the overdriven detonation state.  

The study on the grid convergence for the two-dimensional detonation simulations 

shows that mesh size has fair influence on the numerical simulation of the cellular 

structure. For the result with mesh size 0.2mm, the triple-wave configuration is only 

shown or detected roughly. The detailed features around the triple point, however, are 

not at all resolved. The position of the triple point is not precisely defined. More 

importantly, till at time t=3ms, the number of the transverse waves is still about 10, 

which is believed to be yet unstable. The results with mesh size 0.1mm, 0.05mm and 

0.025 show similar resolution of the basic cellular structure. The mesh size of 0.05mm 

and 0.025mm can resolve more and finer features of the structure, such as more slip 

lines and additional shock wave, which was the focus of Hu et al. (2004), but not the 

intent of the present work. In addition, using finer mesh size like 0.05mm or 0.025mm 

requires much more CPU resources. That is the reason why the mesh size of 0.1mm is 
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used as the standard resolution for computation and analysis in the present work. 

8.1.3 Two-dimensional Detonation in a Diverging /Converging Chamber 

Numerical simulations of the reflection and diffraction processes of gaseous 

detonation waves in the diverging and converging chambers were performed. The 

following conclusions were derived: 

1. Due to the change in the surface area of the front while the number of triple 

points on the front remains constant, detonation diffraction tends to increase the 

detonation cell size and detonation reflection decreases the detonation cell size. 

2. By diffraction, a detonation wave is expanded and decayed by a series of 

expansion waves and an expansion region is formed, which is opposite to the 

compression effect by detonation reflection. For Mach reflection detonation, the 

triple-point trajectory is not a straight line; as the oblique angle in the converging 

chamber configuration increases, the trajectory angle χ  decreases. 

3. As a detonation wave propagates through a diverging or converging surface to a 

straight tube, there exists a transition region, in which the detonation cells become 

irregular and distorted at the initial stage, but they will finally re-gain their regularity. 

The length of the transition region and the ultimate regular cell size are relevant to the 

diverging/converging angle. A larger oblique angle can shorten the transition process. 

However, the width/length ratio of the ultimate cells tends to be constant and it is 

hardly affected by the oblique angle. 

4. By the collision of transverse waves and reflected transverse waves as in a 

diverging chamber configuration, a blast wave from a strong localized explosion 
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occurs, which is similar to the localized explosion observed in the work of Khokhlov 

et al (2004). 

8.1.4 Detonation Wave in an Axisymmetric Diverging /Converging Chamber 

Numerical simulations of detonation reflection and diffraction processes in the 

axisymmetric diverging and converging chambers show that:  

1. As a detonation wave propagates through the converging surface to a straight 

duct, there exists a transition region. In the transition region, the detonation cells 

become irregular and distorted at the initial stage, but they will finally re-gain their 

regularity. The length of the transition region and the ultimate regular cell size are 

relevant to the converging angle. A larger oblique angle can shorten the transition 

process. However, the width/length ratio of the ultimate cells tends to be constant and 

it is hardly affected by the oblique angle. The findings mentioned are the same as the 

2-D converging case in Chapter 6. However, the length of the transition region, and 

the ultimate cell size are smaller than those in the 2-D converging cases, while the 

width/length ratio of the ultimate regular cells (i.e. the shape of the cells) is nearly 

same. 

2. For Mach reflection occurred in the axisymmetric converging chambers, the 

triple-point trajectory is not a straight line; as the oblique angle in the converging 

chamber configuration increases, the trajectory angle χ  decreases, which is similar 

to that found in the 2-D converging case in Chapter 6. The value of the trajectory 

angle χ  is also very comparable with its counterpart in the 2-D converging case. 

3. For the axisymmetric diverging chamber of 14°, the evolution of the detonation 
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cellular structure is similar to the 2-D diverging case in Chapter 6. The difference is 

that the length of the transition region is shorter and the ultimate cell size is slightly 

larger than its counterpart in the 2-D diverging case. 

4. For the axisymmetric diverging chamber of 25° or above, the small area 

expansion ratio and a large diverging angle lead to a considerable pressure drop and a 

high rate of the pressure drop, which in turn makes the detonation die out. 

8.2 Recommendations for Future Work 

Gaseous detonation has a very complicated cellular structure. The mode and details 

of the cellular structure depends on many factors. The underlying mechanisms are 

still not well known. Therefore, both the present numerical simulations and the 

theoretical analysis have room for improvements. The future work can be carried 

out on the following aspects: 

1) Work on three-dimensional numerical simulation 

In the current study, for simplicity, only the two-dimensional or axisymmetrical 

chambers were considered. In fact, the assumption that the computational domain 

is two-dimensional or axisymmetrical is not often justified because the chambers in 

the actual engineering design are usually irregular in shape. Furthermore, in the 

case of a complex geometry, detonation decay or re-ignition, and the detailed 

cellular structures are interesting topics, which need to be examined closely. So a 

three-dimensional calculation, including complex geometries, should be made for 

the further research work. 
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2) Work on the fluid with viscosity considered 

In the current study, the flow model was assumed to be inviscid, and the governing 

equations used were the Euler equations, instead of the compressible Navier-Stokes 

equations. However, the actual fluid is viscous. For a fluid with high Reynolds number, 

the effect of viscosity is very limited and it could be neglected except for the near wall 

region. For the fluid with lower Reynolds number, the effect of viscosity is not 

negligible. Therefore, for the fluid with low Reynolds number, the fluid viscosity 

should be taken into account by solving the Navier-Stokes equations in future work 

although this will increase the complexity of the problem significantly.  

3) Work on finer mesh size 

As discussed in this work, the mesh size is very important to a proper resolution of the 

detailed features around the triple-wave configuration. The mesh size employed in the 

present study is 0.1mm, which shows faithfully the evolution of the transverse waves 

and main features of the detonation cell structures in response to the different sloping 

chamber wall imposed, but it is not fine enough to resolve the very fine and detailed 

structures/sub-structures around the detonation triple-wave configurations. Thus, a 

finer mesh size, like 0.025mm, should be considered to study the detailed detonation 

structures/sub-structures, and eliminate the effect of mesh size. 

4) Study of DDT (Deflagration to Detonation Transition) 

In the current numerical simulations, the detonation is initiated directly by a small 

spark region. However, in most experiments, the detonation is initiated through a 
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deflagration-to-detonation-transition (DDT) process. It might be useful to incorporate 

this DDT process into numerical simulations so that more detailed comparisons with 

experiments could be made. In addition, it has been found experimentally that, a 

Shchelkin spiral configuration can shorten the DDT time. The numerical simulation of 

the DDT process will be very helpful for us to understand the specific mechanism for 

that.  

5) Work on simplified chemical reaction models 

The present elementary chemical reaction model is very complicated, which involves 

solving 19 elementary chemical reactions. The stiffness of the source terms in the 

governing equations relating to the elementary chemical reactions requires huge 

computer resources. Therefore, it is worth spending some time in simplifying the 

present chemical reaction model.  
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