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Summary 

 

Recent developments of lab-on-a-chip devices call for better understanding of small 

scale multi-phase and multi-component (MPMC) flows for the optimal design, 

fabrication and operation of these devices. In this thesis, the lattice Boltzmann method 

(LBM) was used to investigate a range of MPMC flows near various substrates 

mainly at small scales, with the focuses on the “Lotus Effect”, mobility in diffuse 

interface modeling (DIM), substrate control for droplet manipulation and bubble 

entrapment during droplet impact. 

 

First, a 2D droplet moving in a channel made of one smooth and one grooved wall 

was studied. It was found that the wettability and the topography of the groove 

affected the flow much more under small scales than under macroscopic scales. With 

the grooved surface being sufficiently hydrophobic, the droplet was lifted and 

completely attached to the other wall, resulting in significantly reduced drag. For 

hydrophilic grooved surfaces, the effects of the two factors were found coupled with 

each other and a variety of interesting phenomena resulting from them were captured. 

Some of the simulations are expected to be helpful in elucidating the “Lotus Effect”. 

Next, the mobility in DIM was found to be closely related to the slip velocity of the 

three-phase lines, and it was discovered that it may even determine the routes through 

which a near-wall MPMC system evolves. Such mobility-dependent bifurcations were 

studied in detail through droplet dewetting, and also illustrated by droplet motions on 

a heterogeneous surface. Thirdly, droplets on surfaces with given wettability 

distributions and temporal variations were investigated in order to devise fast droplet 

manipulation methods. Several kinds of droplet behaviors were found under different 



 x 

substrate controls. When proper hydrophobic confinement and wettability switch were 

applied, rapid transport of droplets toward a desired direction was achieved. Key 

factors for such droplet transport were explored and their relations were identified. 

Finally, droplet impacts onto homogeneous surfaces were investigated. Several types 

of bubble entrapment during such processes were discovered and analyzed, and 

conditions for entrapment prevention were preliminarily estimated. 

 

In conclusion, investigations of several kinds of near-wall MPMC flow problems and 

some simulation issues on DIM have been carried out by using LBM. The results 

suggest that LBM is a fairly useful tool in the modeling and simulation of MPMC 

flows, especially those found in digital microfluidics involving complex physics and 

surface chemistry. They may also provide better understanding of MPMC flows over 

complicated surfaces in nature such as lotus leaves, and for some industrial 

applications involving droplets. 
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Chapter I 

Introduction 

 

 

There has been a fast growth in lab-on-a-chip technologies over the past decade due to 

their huge impacts on chemical and biological analyses (Stone et al. 2004). One of the 

important issues to be addressed in such systems is the near-wall multi-phase and 

multi-component (MPMC) flows at the scales of micron or even nanometer level. Due 

to the small scale, the surface to volume ratio in such flows is much larger than that in 

their macroscopic counterparts. As a consequence, the interfacial properties and 

boundary walls play dominant roles in determining the flow characteristics (Darhuber 

& Troian 2005, Squires & Quake 2005), and the thorough understanding of them is 

crucial to the optimal design and manufacturing of micro devices. However, the small 

scale poses considerable difficulties in detecting and measuring the dynamical 

quantities, such as the velocity fields and the evolving interface shapes. Thus, it is 

especially desirable to gain some useful information and even deep insights about 

these flows through physical modelings and computer simulations.  

 

In this chapter, an overview of the MPMC flows is first provided. After that, different 

approaches and methods for the modeling and simulation of near-wall MPMC flows 

are reviewed. Next, specific reviews of the lattice Boltzmann methods (LBM) for 

these flows are given. They are followed by the aims of the present research. This 

chapter is ended by highlighting several contributions arising from this work. 
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1.1 Overview of MPMC flows 

First an overview of MPMC flows is provided. The physical phenomena, the 

governing equations using the continuum descriptions, and the important factors in 

these flows are briefly introduced as follows. 

 

1.1.1 The phenomena 

MPMC flows are easily seen in nature and have applications in many industries (e.g., 

chemical engineering, pharmaceutics, food science and cosmetics) and in everyday 

life (e.g., the ink jet printing process) (de Gennes et al. 2004). The commonly 

encountered MPMC phenomena include bubbles in a liquid matrix, droplets1 in air, 

emulsions (e.g., water-in-oil and oil-in-water systems), and double emulsions (e.g., 

water-in-oil-in-water and oil-in-water-in-oil systems). Aside from single component 

two phase flows near critical points, the two phases or components are normally 

separated by an interface of thickness much smaller than the size of the bubble or 

droplet. The surface tension2 affects the flows by acting on the interfaces and their 

neighbouring parts. From the microscopic point of view, the surface tension is due to 

the different interactions between the fluid molecules of the same type and of 

different types (de Gennes et al. 2004). In contrast to bulk fluid molecules, molecules 

in the interfacial regions suffer from inhomogeneous forces. Under this effect, the 

interfacial area always tends to be minimized. To accurately describe these flows, it is 

necessary to properly incorporate the surface tension effect into the model.  

 

                                                 
1 Droplets are drops of very small sizes. In this thesis, “drop” and “droplet” are not strictly 
distinguished and may be used interchangeably. 
2 In this thesis, for convenience, the term “surface tension” is used generally to denote the 
interfacial tension force of various interfaces (e.g., gas-liquid, liquid-liquid, liquid-solid, etc.), 
and at some places it is also used to denote the surface tension coefficient (i.e., the specific 
value). 
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1.1.2 Governing equations and dimensionless numbers 

It would be useful to first look at the governing equations of MPMC flows in 

continuum models because they help to provide a general impression on the important 

factors that affect these flows. For simplicity, only isothermal incompressible flows 

are considered in this work. Before presenting the equations, it is worth having a 

quick review on two types of continuum modeling approaches. 

 

Among the continuum models, there is a sharp interface approach (also known as 

“interface tracking” in numerical modeling), in which interfaces are viewed as 

surfaces with zero thickness, and multiple sets of governing equations are applied in 

each phase or component, and the interfacial conditions are used as boundary 

conditions. This approach can provide very accurate results for cases without 

topological changes, and it forms the foundation of the front tracking (FT) methods 

(Unverdi & Tryggvason 1992)3. However, such an approach encounters singularity 

problems when topological changes (e.g., formation of droplets from a flat interface, 

breakup of bubbles) occur. Under those situations, artificial treatments are required. 

Here the governing equations and the relevant boundary conditions across interfaces 

in this approach will not be further discussed. The main focus is put on another type 

of approach. 

 

Contrary to the tracking philosophy, there exists another type of approach which uses 

a continuous function to distinguish different fluids (to be called “indicator function” 

thereafter). This type of approach appears to be able to deal with topological changes 

                                                 
3 The pure front-tracking method uses Lagrangian points to represent the interfaces. However, 
in the numerical implementations the interfaces may not be strictly treated as sharp; 
smoothing at the scale of grid size can be applied and an indicator function can be used as 
well (Unverdi & Tryggvason 1992). This is similar to some other methods described below. 
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naturally. The indicator function can be chosen as the volume fraction of one of the 

two phases/components, as in the volume-of-fluid (VOF) method (Scardovelli & 

Zaleski 1999), the signed distance to the interface, as in the level-set (LS) method 

(Osher & Fedkiw 2002), or the density/mass fraction of one phase or component (also 

called “order parameter” later), as in the diffuse interface models (DIM) (Anderson et 

al. 1998). In this type of approach, there is only one set of unified governing equations 

and the interfaces are implicitly captured (known as “interface capturing”).  

 

Because of the high relevance to the present work and also for conciseness, the 

governing equations for a two-component fluid system (for convenience, the two 

fluids are called “fluid-A ” and “fluid- B ”) of the same density and viscosity in the 

diffuse interface model will be discussed in detail. This set consists of three equations 

which reflect the mass conservation, Newton’s second law (as applied to the fluids), 

and the evolution of the order parameter through convection and diffusion4 (Jacqmin 

1999):  

0=⋅∇ u
r

,                                  (1.1a) 

( ) µφν ∇−∇+−∇=∇⋅+∂ uSuuut
rrrr 2 ,                    (1.1b) 

( ) µφφ 2∇=∇⋅+∂ Mut

r
.                            (1.1c) 

Here u
r

 is the fluid velocity, φ  is the order parameter (function of the mass fraction of 

“fluid- A ”), µ  is the chemical potential, ν  is the kinematic viscosity, M  is the 

mobility (assumed to be constant), and S  is used to enforce incompressibility yet not 

the pressure. The term µφ∇−  represents the surface tension effect in DIM and may 

be related to the surface tension σ  in some form depending on the choice of free 

                                                 
4 Note that in Eq. (1.1b) the last term is due to the surface tension force which contains the surface 
tension coefficient. More details will be given in Chapter II and III. 
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energy (FE) (details to be given in Chapter II). The third equation is known as the 

Cahn-Hilliard equation (CHE). For simplicity, this system of equations will be 

abbreviated as the NSCH (Navier-Stokes-Cahn-Hilliard) equations later. After being 

non-dimensionalized with a characteristic density cρ , a characteristic length cL  and a 

characteristic velocity cU , they become (for simplicity the same set of symbols are 

used for the dimensionless variables) 

0=⋅∇ u
r

,                                 (1.2a) 

( ) ( ) µφ∇−∇+−∇=∇⋅+∂ −− 121 ReRe CauSuuut
rrrr

,    (1.2b) 

( ) µφφ 21∇=∇⋅+∂ −Peut

r
.            (1.2c) 

where Re is the Reynolds number,  

ηρ ccc LU=Re ,                                                (1.3) 

( νρη c=  is the dynamic viscosity), Ca  is the Capillary number,  

ση cUCa = ,                                                     (1.4) 

and Pe  is the Peclet number (note that the definition of Pe  is not unique; some 

different definition is to be given later),  

σMLUPe cc
2= .                                                 (1.5) 

 

From the above equations, it is easy to find that in the physical problem itself there 

are two important dimensionless numbers: the Reynolds number which reflects the 

ratio of inertia force to viscous force, and the Capillary number which reflects the 

ratio of the viscous force over the surface tension force. It should be noted that the 

Peclet number is only relevant to DIM in which a convection-diffusion equation is 

used for the order parameter. Sometimes, the Webber number, defined as  

σρ ccc LUWe 2= ,                                            (1.6) 
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is also used, but it is not independent; in fact it can be related to the Reynolds number 

and Capillary number as ReCaWe= . Thus the Webber number actually reflects the 

ratio of inertia force to the surface tension force. For some problems, the Ohnesorge 

number, defined as  

cc LOh σρη= ,                                             (1.7) 

may be useful and it is easy to verify that 121 Re−= WeOh . 

 

1.1.3 Other important factors 

Until now, only the parameters for a simplified multi-component flow problem are 

listed. In reality, many other factors may be present, some of which can be reflected 

through dimensionless numbers whereas others can not. 

 

In the presence of external body forces such as the gravity force or a uniform 

electrical force, the Bond number, defined as  

σρ gLBo cc
2= ,                                                (1.8) 

is often used where g  is the body force density (e.g., gravitational constant for 

gravity force). When the flows are near solid walls, as mentioned at the beginning, the 

wall property can affect the flow significantly under small scales. Then, there comes 

another parameter, that is, the contact angle (CA) θ  (as measured in one of the fluid, 

say, fluid-A ). It characterizes the different interactions between the wall and the two 

fluids. Smaller θ  indicates stronger attraction between the wall and fluid- A  than that 

between the wall and fluid-B . Furthermore, if the wall is not smooth, either in the 

topographical or the chemical sense, it may be necessary to suitably model such 

heterogeneities in order to obtain correct fluid behaviors in simulations. Finally, when 
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the two fluids have different densities and viscosities, the density ratio, BAr ρρρ = , 

and the (kinematic) viscosity ratio, BAr ννν = , can be important to determine the 

flow characters under certain situations. All the above factors are summarized in 

Table 1.1. 

 

1.2 Modeling and simulation of MPMC flows 

In last section, a general view on the MPMC flows and various factors affecting them 

have been provided. This section comprehensively reviews how to model and 

simulate them.  

 

To numerically solve the governing equations given above is one of the mostly used 

strategies to study MPMC flows. But this may not be easy, especially for small scale 

problems. The reason is because, as mentioned above, MPMC flows usually involve 

scales of large contrasts, such as the interface thickness and the characteristic length 

in the flow, and the microscopic relaxation time (toward local equilibrium in the 

interfacial region) and the characteristic time for the flow. Detailed information at the 

finest scale is extremely difficult to be realistically included in the continuum 

modeling. Various methods besides the continuum modeling exist in the literature. All 

of them, including the continuum methods, are reviewed in the following.  

 

Note that for the interest of the present work, special focus is given on the near-wall 

MPMC flows at small scales. Before the reviews, two general components in the 

near-wall MPMC flows deserve to be highlighted again: the first is the interface 

between different phases or components, often characterized by the surface or surface 

tension and its geometrical curvature; the second is the interaction between the fluids 
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and the solid walls, often termed wetting (both static and dynamic). Failure to include 

either of them in an appropriate manner will lead to the uselessness of the whole 

method.  

 

Essentially two main approaches exist in the literature for the modeling and 

simulation of MPMC flows. Besides the continuum one (including FT, VOF, LS, and 

DIM), there are discrete particle methods of Lagrangian type. This category includes 

the methods of the molecular dynamics (MD) simulation, the dissipative particle 

dynamics (DPD) and the smoothed particle hydrodynamics (SPH). In addition, there 

is lattice Boltzmann method (LBM) which falls somewhere in between, but probably 

closer to the continuum one.  

 

1.2.1 Discrete particle methods 

Conceptually, the discrete particle methods can be further divided into the 

microscopic approach, namely MD simulations, and the mesoscopic approach, which 

involves coarse graining at the mesoscopic level. The DPD and SPH methods belong 

to the latter. 

   

1.2.1.1 MD simulation 

MD simulation is by far the most accurate and genuine, and it provides most detailed 

information about the system being studied. It starts from the molecules that 

constitute the fluids. The position and velocity of each individual molecule are 

evolved according to the Newton’s law. The macroscopic variables, including the 

density, velocity and temperature, are obtained by some proper statistical averaging 

(Rapaport 1995). MD simulations have been used to study the effects of wetting 
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properties on the boundary conditions at a solid wall by Barrata & Bocquet (1999), 

the dynamics of wetting of a water droplet on a textured surface composed of carbon 

atoms by Lundgren et al. (2003), and most recently the wetting on rough and 

heterogeneous surfaces at nanoscale by Lundgren et al. (2007). The interface and 

wetting are generally easier to model in MD - both are characterized by some certain 

interaction potentials between the molecules. Although MD is straightforward and 

fundamentally accurate, it often demands large amount of computational resource and 

time. Consequently the systems that can be investigated by MD are extremely small 

and contain very limited number of molecules; the time span of a single MD 

simulation is extremely short as well. 

 

1.2.1.2 DPD and SPH simulations 

DPD simulations are quite similar to the MD simulations. The differences lie in the 

averaging at certain mesoscopic level. DPD particles are much larger than the real 

molecules of the fluid; in fact, each DPD particle represents a cluster of fluid 

molecules and has internal degrees of freedom. Nevertheless, these large particles are 

evolved almost in the same way as that in MD except additional forces are included. 

Usually the forces acting on DPD particles consist of three parts: a conservative force, 

a dissipative force and a random force. The latter two, namely the dissipative and 

random forces, are due to the coarse graining and can be derived from statistical 

mechanics along a “bottom up” path (Flekkoy & Coveney 1999). DPD simulations 

have been applied to study a drop on a solid wall subject to simple shear by Jones et al. 

(1999), and most recently to simulate multi-phase flows in a fracture junction by Liu 

et al. (2007a) and in microchannel networks by Liu et al. (2007b).  
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In addition to DPD, the method of SPH, which originates from the study of 

astronomical hydrodynamics, has found its application in the study of MPMC flows. 

SPH also uses certain number of particles to represent the fluid system and they obey 

the Newton’s second law as well. Different from DPD, SPH follows a “top down” 

path in the sense that the forces acting on SPH particles are derived by some specific 

SPH approximations of the force terms in the Navier-Stokes equations (Liu & Liu 

2003). Recently SPH has been extended and applied to the MPMC flows near solid 

walls in which wetting is important (Tartakovsky & Meakin 2005). 

 

It is noted that both DPD and SPH studies of the near-wall MPMC flows are 

relatively new and most cases that have been studied using them are not quite 

complicated. In both methods, the fluids have some degree of compressibility, and the 

incompressibility condition is only approximately satisfied. This is understandable 

considering the fact that incompressible flow is just a mathematical model for fluids 

with very large sound speeds, and real fluids are always compressible even at a very 

low degree. LBM shares this kind of quasi-compressibility with these two particle 

methods. The accuracy of DPD and SPH has not been demonstrated sufficiently, 

possibly because this is still one aspect that needs to be greatly improved in future. In 

general, the accuracy of the mesoscopic particle methods depends on the size of the 

particles chosen in the simulation. The proper choice seems to be somewhat an art: 

too large particle size compromises the accuracy whereas too small particle size 

increases the computation cost. 
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1.2.2 Continuum methods 

As briefly discussed earlier, the continuum methods aim to solve the set of the partial 

differential equations (PDEs) that govern the fluid flows using Eulerian grids (fixed or 

sometimes dynamically adapted). In the following, only the application of the VOF, 

LS and DIM methods in the study of near wall MPMC flows are reviewed. 

 

1.2.2.1 VOF and LS methods 

The VOF method uses the volume fraction of one of the fluid phases or components 

(denoted as C ) to characterize the interfaces. In the bulk region (of a pure fluid), C  is 

equal to zero or unity; across the interfacial region, it varies smoothly in [ ]1,0 . The 

normal direction and the curvature of the interface are calculated from derivatives of 

this smoothed volume fraction function. The surface tension force is applied using 

these two computed quantities, and its magnitude is proportional to the surface 

tension σ . The balance of forces across the interface is purely reflected in the 

pressure field, and not in C . Thus besides an indicator, the major role of the volume 

fraction function is for the enforcement of the surface tension effect, and it is not 

obviously related to any physical energy. The volume fraction function is purely 

advected by the velocity field, i.e., it obeys the equation: ( ) 0=∇⋅+∂ CuCt
r

. Thus, it 

may be necessary to use various sophisticated schemes in numerical advections. 

Renardy et al. (2001) gave detailed discussions on how to apply the VOF method for 

the investigation of MPMC fluids involving contact line (CL) dynamics. They 

compared two different ways to include wetting in VOF: one extrapolated the volume 

fraction to the outside of the computation domain and use the known equilibrium CA 

to prescribe the interface normal at the wall; the other was to extend further the 

concept of volume fraction to the solids and thus to deal with the CL area as a three-
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phase problem. In addition, a suitable slip model with some slip length was used so 

that the singularity problem with the CLs was relieved. They argued that the first 

approach was better in VOF. Their investigations mainly focused on the numerical 

implementations and they only showed a few simple cases in two dimensions (2D) 

such as a drop under shear and a rising drop. 

 

Similar to the volume fraction function in the VOF method, the level set function φ  

used in the LS method is not endowed with physical meaning, either. It is defined as 

the signed distance away from the interface and is purely a geometrical variable. The 

role of φ  in LS is similar to C  in VOF and they actually are evolved according to the 

same equation except that in LS a re-initialization procedure may be required. The 

way to include wetting and CL dynamics in LS is similar to the first approach 

described above in VOF. That is, the interface normal on the solid boundary is 

determined from the CA. By incorporating a model on the dynamic CA dependent on 

the CL velocity, Spelt (2005) extended the LS method for MPMC flow simulations 

involving moving CLs with the hysteresis effect taken into account. Later it was 

applied to study shear flows over 2D droplets, also by Spelt (2006). 

 

1.2.2.2 Diffuse interface methods 

DIM originates from the theory for near-critical fluids, in which the fluid system is 

fundamentally viewed as a whole and the indicator function is associated with the 

energy of the system. In DIM the interfacial region has its own physics inside; but as 

the interface width becomes smaller and smaller (compared with the macroscopic 

length), it can be mathematically proved that DIM approaches the original sharp 

interface equations (Anderson et al. 1998, Liu & Shen 2003). Wetting and CL 
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dynamics are included in DIM through a surface energy term. Some important basic 

issues in numerical simulations using DIM have been studied by Jacqmin (1999), and 

the CL dynamics in DIM has been excellently analyzed for a simple 2D problem by 

Jacqmin (2000). Quite recently, it has been applied to study capillarity driven droplet 

spreading by Khatavkar et al. (2007a) and droplet impact on a surface by Khatavkar et 

al. (2007b). More detailed introductions about the theories in DIM will be presented 

in Chapter II. 

 

1.2.2.3 Some remarks on the continuum methods 

All of the above continuum methods have seen certain success in the study of MPMC 

flows. However, VOF and LS may be categorized into one type since both of them 

use an indicator function without significant physical meanings; DIM is another 

different type because the order parameter in DIM may be related to some physics 

such as the free energy and the equation of state. The reason why different methods 

using different indicator functions can simulate the same problem and get the same 

results is probably because they all approach the same sharp interface limit under 

which only the interface shape and the surface tension forces are important. Hence, it 

would be desirable to make the interface thickness (in VOF and LS, the size of the 

smoothing region) as small as possible. This makes the adaptive meshing technique 

especially attractive in the study of MPMC flows. Recently it has been applied in 

DIM to study drop dynamics in non-Newtonian fluids by Yue et al. (2006). But in this 

thesis, such techniques have not been incorporated. On the other hand, the above 

discussions hold for macroscopic systems (and probably also for mesoscopic ones); 

when the system scale is too small (for instance, in the submicron regime) or when the 

fluids are near the critical points, the true interface thickness may not be regarded as 
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infinitely small any longer. Under those situations, normal regular meshes may be 

sufficient, and DIM would probably be a better candidate due to its physical origin. In 

fact, DIM has been used as a tool for direct simulations of nanoscale fluid systems by 

Jacqmin (2000).  

 

As to the modeling of wetting and CL dynamics, VOF and LS often rely on explicitly 

finding the interface position and impose the CA or some sophisticated predetermined 

model on the interface near the wall; DIM addresses this issue in a seemingly more 

natural way by adding the surface energy contribution. In this aspect, VOF and LS 

appear to follow the “top-down” path because the CA or hysteresis models may be 

determined experimentally; DIM seems to be closer to the “bottom-up” concept 

because the coefficient in the surface energy might be extracted from molecular 

simulations (though it may use the CA as an input as well).  

 

1.2.3 General remarks and outlook 

After the above reviews of various methods, it is worth noting that there are simply 

different ways to tackle the same problem. As long as the modeling is correct and the 

simulation results are accurate, they should reach the same final solution. But in 

practice, this may not be exactly the case. For purely discrete particle methods, it is 

difficult to completely eliminate the fluctuations in the macroscopic quantities. Thus, 

the solutions obtained by MD and DPD often show some small irregularities and are 

not as smooth as those obtained through continuum methods or quasi-particle 

methods. Increasing the total simulation time (for the time averaging of steady 

problems) or the total number of simulations (for the ensemble averaging of unsteady 

problems) may help to alleviate the undesirable fluctuations, but that would also 
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increase the computational burden. At the same time, it would be fair to say that 

fluctuations always exist in real problems, but they are usually not very important for 

systems of the macroscopic and mesoscopic scales. On the other hand, the continuum 

and quasi-particle methods can provide nice results without fluctuations, but they may 

become insufficient to describe the physical problem in some part of the domain (e.g., 

CLs) or even the whole domain (e.g., very high Knudsen number gas flows). Thus, 

the two approaches actually complement with each other and it would be desirable to 

smartly combine both to form some hybrid methods, which forms the core idea of 

some multiscale modeling strategies. Excellent reviews and outlook of multiscale 

modeling have been given by E & Engquist (2003). Further discussions about this 

type of multiscale modeling are beyond the scope of this thesis. Here the focus is on 

LBM - a quasi-particle method which has its origin in kinetic theory and might hold 

the promise to be more easily combined with the pure particle methods as an effective 

multiscale modeling solution, which has been preliminarily demonstrated in a recent 

attempt to develop hybrid LBM-MD simulations by Dupuis et al. (2007). The review 

of LBM literature for near-wall MPMC flows is provided in the following section, 

and detailed introductions about the specific LBM used in the current work will be 

given in the next chapter. 

 

1.3 LBM studies of near-wall MPMC flows 

Historically, LBM evolved from the Lattice Gas Automata (LGA) with some defects 

of LGA being overcome (Chen & Doolen 1998, Succi 2001). One of the most popular 

and well established applications of LBM is the computations of low Reynolds 

number incompressible flows. In such applications, LBM resembles the artificial 

compressibility (AC) method (He et al. 2002). Probably the greatest potential of LBM 
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lies in the study of MPMC flows (especially in porous media) due to its relatively 

simple incorporation of interfacial physics and its simple treatment of complex 

boundaries (Succi 2001). In the following, various lattice Boltzmann models for 

MPMC flows are briefly tracked first; then efforts are concentrated on summarizing 

their studies of wetting and CL dynamics. 

 

1.3.1 LBM for MPMC flows 

Developments of LBM, including models for MPMC flows, appear fairly empirical 

when compared with the continuum methods probably due to its origin from LGA. 

The proposals of new models were often lack of very strict mathematical procedures 

though later some attempts were made to base the derivations more strictly on some 

theories in statistical mechanics. Yet this might not be the most important issue 

because the somewhat empirically developed models have worked reasonably well in 

many simulations. In the LBM community, the mostly used models include the color 

based model (C-LBM) (Gunstensen & Rothman 1991), the potential based model (P-

LBM) (Shan & Chen 1993, Shan & Chen 1994) and FE based model (FE-LBM) 

(Swift et al. 1995, Swift et al. 1996). Thus, studies of near-wall MPMC flows using 

these three types of approaches are mainly reviewed in the following. Other models 

derived more strictly from Enskog theory (Luo 1998, Luo & Girimaji 2003, Guo & 

Zhao 2005) will not be discussed further here because these models seem to be still in 

the early development stage and the wall effects on flows have not been included yet5. 

 

 

 

                                                 
5 This does not imply that they are less important than, or inferior to other models reviewed 
here. 
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1.3.2 LBM simulations of wetting and CL dynamics 

As mentioned earlier, in the presence of solid boundaries, modeling MPMC flows 

should incorporate the interactions between the solid substrates and the fluids of two 

phases or components properly. All the three models (C-LBM, P-LBM, and FE-LBM) 

have been extended to study such three-phase interactions. The problems that have 

been studied vary from very simple ones, like the density profile near the wall and the 

static CA of a droplet, to more complicated cases such as CL dynamics, capillary rise 

in confined geometries, and to even more complex cases including fluid slip near 

walls with alternating hydrophilic-hydrophobic patterns, droplets near walls with 

roughness characterized by certain grooves or pillars and MPMC flows near walls 

with both chemical and geometrical heterogeneities. 

 

1.3.2.1 Wetting and CL dynamics on smooth surfaces 

Latva-Kokko & Rothman (2005) proposed a color-based lattice Boltzmann model to 

study the capillary rise in confined geometries with minimal CA hysteresis. However, 

the color model deals with the interfaces in a somewhat artificial way, thus it looks 

more phenomenological and seems to lack a solid physical basis. Benzi et al. (2006) 

systematically studied the wetting and CA modeling in P-LBM. Detailed analyses, 

derivations as well as numerical results were provided for the density profile and CA 

determination; they further used the model to study the velocity slip near a wall with 

hydrophilic-hydrophobic patterns and obtained the effective slip lengths very close to 

previous hydrodynamic slip models. However, probably due to the not-so-natural 

mean field potential, P-LBM shares some similar problems with C-LBM: that is, it is 

not quite physically sound; in fact its thermodynamic inconsistency has been known 

for some time.  
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Different from these two models, Briant et al. (2002) included the wetting in LBM 

based on the FE concept. The FE-LBM may be viewed as a special implementation of 

the DIM discussed earlier, thus it inherits the general advantages of DIM, for instance, 

the use of the FE makes it appear physically sounder and capable to include the three 

phase interactions in a more consistent way. But their initial work was rather simple 

because they only studied a steady interface profile of a shear driven two phase flow 

between two parallel plates. Later the modeling and simulation of CL dynamics in 

FE-LBM were further developed by Briant et al. (2004) and by Briant & Yeomans 

(2004). In the two pieces of work, both near-critical liquid-vapor and binary fluid 

systems were studied, and comprehensive investigations of the inner region of the 

three-phase point, including the chemical potential field, were provided; besides, good 

comparisons with some other classical approaches for the contact-line problem were 

shown. Although incisive and very important, these studies remained fundamental and 

simple - the CA at the wall was fixed to be 90 degrees and the flows were all shear 

driven. 

 

1.3.2.2 Wetting and CL dynamics on rough surfaces 

Verberg et al. (2004) applied the FE-LBM to study the pattern formation in binary 

fluid systems confined between two grooved walls with chemical heterogeneities. The 

flows were either driven by shearing the two walls or by a pressure difference 

between the inlet and outlet. Interesting and diverse processes were observed. But this 

study was just qualitative, and quantitative information about the droplet shape 

evolutions and velocities was not provided. 
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Recently Dupuis & Yeomans (2005) investigated the droplets on superhydrophobic 

substrates with an FE-LBM. The superhydrophobicity was achieved by a nonwettable 

wall with an array of square micro pillars. Two static equilibrium states of a droplet as 

well as transitions between them were successfully simulated. However, the droplet 

was confined to stay static or at most to move only in the vertical direction. Although 

some insights about droplet behaviors near textured surfaces have been obtained in 

their study, there is still plenty of space in exploring the dynamics of these systems. 

More recently, Zhang & Kwok (2006) investigated the dynamics of a liquid drop 

driven by a body force inside a channel having grooved hydrophobic6 surfaces also 

using a slightly different FE-LBM (Zhang et al. 2004). They managed to capture a 

stick-jump-slip behavior of the drop and provided the advancing and receding angles 

together with comparisons with those predicted by some other theories. But in their 

study only hydrophobic surfaces were investigated. However, it has been postulated 

by Herminghaus (2000) that hydrophilic surfaces with similar microstructures may 

achieve apparent hydrophobicity as well. Hence it would be interesting to study drop 

motions in rough hydrophilic channels and compare them with their hydrophobic 

counterparts. 

 

1.3.3 Summary and some gaps of previous studies 

In summary, to date, various lattice Boltzmann models have been developed for 

MPMC flows, and they have been extended to include the surface wall effects having 

given wettabilities as well. Some studies have even addressed the most complicated 

problems, namely flows near rough walls with chemical heterogeneities. However, 

there are still some limitations in previous works: 

                                                 
6 Note that the terms “hydrophobic” and hydrophilic” are in a relative sense and in the present 
study the “neutral-wetting” case with the static CA being 90 degrees is used as a baseline. 
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• Most studies investigated relatively simple cases, often steady problems;  

• For those studying more complex flows, the results were either qualitative or 

restricted to some certain parameter regimes (e.g. hydrophobic walls only); 

• The roles of some important simulation parameters such as the mobility in the 

binary fluid model have not been fully investigated. 

• Some special interesting phenomena (e.g., bubble entrapment) in MPMC 

flows have not been well studied. 

Note that more in-depth reviews of these aspects will be provided later in each 

individual chapter that addresses one of the issues. 

 

1.4 Objectives of this study 

The overall objective of this study was to further investigate both some fundamental 

aspects and some practically important cases of the near-wall MPMC flows mainly at 

small scales by the FE based lattice Boltzmann models. More specifically, this work 

aims: 

• To study the effects of surface roughness on mechanically driven flows, not 

only for hydrophobic walls but also for hydrophilic ones; 

• To study the role of mobility in capillarity-driven flows, especially its relation 

with the CL velocity and its effects on the evolution of such flow systems; 

• To explore the feasibility of using numerical simulations as a designing tool 

for the manipulation of droplets through spatiotemporally controlled substrate 

wettability; 

• To investigate various “bubble” entrapment phenomena during droplet impact 

on homogeneous surfaces. 
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It is noted that the study of the near-wall MPMC flows is a very active and diverse 

research field and many factors, such as temperature, compressibility, phase transition, 

chemical reaction, magnetic field and tiny solid particles, may affect the flow 

characteristics. However, it would be virtually impossible to consider all of them in a 

single thesis. In the present work, only the “pure” isothermal and incompressible 

MPMC flows will be studied and the effects of evaporation and condensation, 

chemical reaction, magnetic field and solid colloids are beyond the scope of this study. 

In some flow problems, the non-Newtonian rheology can play important roles; but it 

is not included in this research either. 

 

LBM was chosen due to its ease in implementation of parallel computing, fair 

efficiency in computation of incompressible flows, and most importantly, its 

feasibility to incorporate the interfacial physics and the surface chemistry of the walls, 

even with certain roughness characterized by grooves or pillars. The most basic 

aspects of this method, including the theories, formulations and implementations, and 

the FE based models for MPMC flows will be presented in the next chapter in order to 

provide a clear illustration of the lattice Boltzmann modeling strategy as well as its 

suitability for the present study. 

 

Besides widening and deepening our knowledge of various phenomena in MPMC 

flows, this study could provide some guidelines on the design of micro- and nano-

fluidic devices (especially the substrates), and on the manipulation of extremely small 

volume of liquids by electrical or optical means in lab-on-a-chip systems. It may also 

provide some insights, for example, the relation between the mobility and the slip 

velocity at the three-phase point, on the diffuse interface modeling of MPMC flows as 
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well as on the dynamics of such MPMC systems. Finally, this work would be helpful 

to understand the so-called “Lotus Effect”, namely the superhydrophobicity of some 

plant leaves and some insect legs, because these biological surfaces are found to 

possess micro- or nano- structures and several cases studied later are just simplified 

models of the flows over them. 
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Table 1.1. Important factors in MPMC flows 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Name Expression Relation to others 
Reynolds number ηρ ccc LU=Re   

Capillary number ση cUCa =   

Webber number σρ ccc LUWe 2=  ReCaWe=  

Ohnesorge number 
cc LOh σρη=  121 Re−= WeOh  

Bond number σρ gLBo cc
2=   

Contact angle θ   
Density ratio 

BAr ρρρ =   

Viscosity ratio 
BAr ννν =   
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Chapter II 

LBM and Its Modeling of MPMC Flows 

 

 

In this chapter, the basics of LBM and the FE-based LBM are first introduced. After 

that, LBM modeling of wetting and CL dynamics, also in the FE framework, is given 

in detail. 

 

2.1 LBM - an introduction 

First, the simplest and also the most primitive LBM for single phase and nearly 

incompressible flows is introduced in this section. The key elements of LBM, such as 

its origin from kinetic theory, lattice velocity models, properties of the lattice tensors, 

its use of the artificial-compressibility methodology and the boundary and initial 

conditions, are reviewed.  

 

2.1.1 Basic theory and formulation 

Although originally developed from LGA, the lattice Boltzmann equation (LBE) has 

also been found to be derivable from the Boltzmann equation under the small Mach 

number assumption with suitable discretizations in the velocity space and coupled 

discretizations in space and time. For consistency and completeness, the formal 

procedure to derive the LBE from the Boltzmann equation is briefly described as 

follows. Note that more rigorous procedures and many of the formulas given below 

can be found in the work by He & Luo (1997a).  
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2.1.1.1 Brief derivation of LBE 

The starting point to derive the LBE is the Boltzmann equation for a dilute gas. 

Assuming no external body forces, it may be written in a general form as  

( )fffft
ˆ,Ω=∇⋅+∂ ξ

r
,                                               (2.1) 

where ( )txff ,,ξ
rr=  is the one-particle distribution function (DF) in the physical and 

velocity space, the left hand side (LHS) represents the effect of the streaming and the 

right hand side (RHS), often named “collision integral”, represents the change due to 

collisions between gas molecules. For monatomic gases, the mass density ρ , the 

momentum u
rρ , and the internal energy density eρ  (e is the internal energy per unit 

mass) can be obtained as the moments of the DF, 

∫= ξρ
r

fdm ,                                             (2.2a) 

∫= ξξρ
rrr

fdmu ,                                             (2.2b) 

( ) ∫ −== ξξρρ
rrr

fdumDRTe
2

2
1

2
1 ,                              (2.2c) 

where m  is the mass of a single gas molecule, D  is the dimension of the space, 

mkR B=  is the gas constant with Bk  being the Boltzmann constant, and T is the 

temperature. The mass density ρ  is related to the number density n  as mn=ρ . Here 

it is worth mentioning that the pressure is calculated from the density ρ  and 

temperature T  as (i.e., the equation of state for ideal gases) 

RTp ρ= .                                                   (2.3) 

Usually the number of molecules, the momentum and the energy are all conserved in 

collision, and the collision integral ( )ff ˆ,Ω  has the following properties 

( ) 0ˆ, =Ω∫ ξ
r

dff ,                                             (2.4a) 
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( ) 0ˆ, =Ω∫ ξξ
rr

dff ,                                             (2.4b) 

( ) 0ˆ,
2

2
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rr
dff ,                                           (2.4c) 

where 1, ξ
r

 and 
2

2
1 ξ
r

 are called “collision invariants”. It can further be proved that 

2

2
1 u

rr
−ξ  is also collision invariant. Thus, the density ρ , the momentum u

rρ  and the 

temperature T  are all conserved variables. The three quantities uniquely determine 

the local thermal equilibrium state under which the DF is given by the Maxwellian 
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.                           (2.5) 

Because the full collision integral is very complicated, the Bhatnagar-Gross-Krook 

(BGK) single-relaxation-time (SRT) model is often used as an alternative in many 

problems (Bhatnagar et al. 1954), 

( ) ( )( )eqffff −−=Ω τ1, ,                                    (2.6) 

where τ  is the relaxation time. In kinetic theory, τ  is normally related to the dynamic 

viscosity η  and the pressure p , and the relation is found through the Chapman-

Enskog multiscale analysis (Chapman 1990), 

pητ = .                                                       (2.7) 

In order to derive the LBE, the first step is to discretize the continuous velocity space. 

For instance, in 2D, if the D2Q9 model (see Fig. 2.1) is employed, the velocity space 

is discretized into nine discrete points ie
r

 ( 8,,1,0 L=i ) which can be expressed as 

( )[ ] ( )[ ]( )
( )

( )



=
=

−−
=

8,,1

0

41sin,41cos

0

L

r

i

i

cii
ei ππ

.                      (2.8) 

In 3D, the D3Q15 model (see Fig. 2.2) can be used. The discrete velocities for this 

model, ie
r

 ( 14,,1,0 L=i ), can be written in matrix form as 
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In the above RTc 3=  is the “lattice velocity”. The D2Q9 model includes the zero 

velocity and velocities in horizontal, vertical and diagonal directions, and it satisfies  

the requirements that guarantee the recovery of Navier-Stokes equations (see below 

for details) (Succi 2001). The D3Q15 model is one of the few models in three 

dimensions that satisfy similar requirements; other more complex models include 

D3Q19 and D3Q27, but they are not used here. After the discretization of the velocity 

space, the DF changes from the continuous ( )txf ,,ξ
rr

 to discrete ( )texf ii ,,
rr

. Then the 

discrete BGK Boltzmann equation can be written as 

( )( )eq
iiiiit fffef −−=∇⋅+∂ τ1

r
 ( bi ,,1,0 L= ),                      (2.10) 

where b  denotes the number of nonzero lattice velocities (8=b  for D2Q9, and  

14=b  for D3Q15). These equations are essentially 1+b  coupled partial differential 

equations. The discrete equilibrium DFs eq
if  can be obtained by expanding the 

Maxwellian with low Mach number approximation. Truncated at the second order (to 

( )( )2
cuO

r
), they can be expressed in a general form as, 
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1ρ ,                (2.11) 

where I
t

 is the second-rank unit tensor, “⊗ ” denotes tensor product (e.g., combining 

two vectors into one second-rank tensor), “:” represents contraction product between 

tensors, RTcs ≡ ( 3c=  for D2Q9 and D3Q15) is the isothermal sound speed 

conventionally defined in LBM, and iw  is the weight associated with the discrete 
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velocity ie
r

. Table 2.1 gives the weights for the D2Q9 and D3Q15 models. The 

macroscopic variables can be calculated from the discrete moments of the discrete 

DFs as 

∑=
i

ifρ ,                                                     (2.12a) 

∑=
i

ii feu
rrρ ,                                                   (2.12b) 

where the sum ∑
i

 is taken over all discrete velocities ( bi ,,0L= ). Note that for 

simplicity it is assumed 1=m  which leads to n=ρ . It can be shown that (Nourgaliev 

et al., 2003) the discrete equilibrium DFs eq
if  satisfy the following conditions 

ρ=∑
i

eq
if ,                                                  (2.13a) 
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due to the properties of the lattices 
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Here ( )nE  is called the lattice tensor of rank n . It is noted that for convenience and 

also for clarity the subscript forms are used in Eqs. (2.13, b-d) and (2.14, b-f). Later 

they will appear again in some other formulas, and Einstein summation applies for 

repeated Greek indices only (i.e., no summation over the repeated index i  for lattice 

velocity). 

 

In theory, there are no restrictions on which numerical method should be used to solve 

the discrete BGK Boltzmann equation. Common techniques, such as the finite 

difference method (FDM), finite volume method (FVM) and finite element method 

(FEM), may all be applied. But here only the simplest version, using the most popular 

lattice type discretization, is presented. The lattice Boltzmann equation results from 

coupled discretizations in space and time. First the discretization in time is performed: 

Eq. (2.10) can be integrated from t  to tt δ+ , which results in 

( ) ( ) ( ) ( )∫
+

−−=−++ tt

t

eq
iiittii dtfftxftexf

δ
τδδ 1,,

rrr
.                 (2.15) 

To achieve the second order accuracy, the trapezoidal approximation is employed for 

the RHS (Dellar 2001), which leads to 
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rrr δδ  
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With a new variable introduced as follows, 

( )eq
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t
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τ
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,                                   (2.17) 

it is straightforward to obtain the explicit evolution equation for if  as 

( ) ( ) ( ) ( )[ ]txftxftxftexf eq
ii

t

t
ittii ,,

5.0
,,

rrrrr −
+

−=−++
δτ

δδδ ,           (2.18) 



30 

where eq
i

eq
i ff =  (Dellar 2001). Now another relaxation parameter for if  can be 

defined, 

tR δττ += 5.0* ,                                           (2.19) 

and then it can be verified that if   corresponds to if  in common LBM and *
Rτ  is 

related to the viscosity as 

 ( ) ( ) 2* 5.0 stR cRTp νρηηδτ ===− .                           (2.20) 

In using if , the macroscopic variables are obtained by the following relations (Dellar 

2001) 
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where Π
t

 is the viscous stress tensor. This formulation (in if ) is adopted in the  

present work. For brevity, the over bar will be omitted, and τ  (instead of *
Rτ ) is used. 

After these simplifications, Eq. (2.18) becomes 

( ) ( ) ( ) ( ) ( )[ ]txftxftxftexf eq
iiittii ,,1,,

rrrrr −−=−++ τδδ ,                (2.22) 

which is exactly the same as the LBE mostly used in the literature.  

 

Until now, the spatial discretization has not been performed yet. It is most convenient 

to choose the regular lattice sites which exactly match the points (x
r

, tiex δrr + , …). 

This is the formulation used in most previous LBM studies and also in this work. 



31 

However, it is noted that other spatial discretization strategies, such as the 

interpolation-supplemented LBM by He et al. (1996) and the Taylor-series-expansion- 

and Least-square-based LBM by Shu et al. (2001), may also be used, and they may 

perform much better for certain cases. However, the implementations and further 

studies in this aspect are out of the scope of the present work. 

 

For the simplest version, the lattice Boltzmann equation is usually implemented 

through two separate steps, namely, collision and streaming (Col.-Str.): 

Collision: ( ) ( ) ( ) ( )[ ]txftxftxftxf eq
iiii ,,

1
,,

~ rrrr −−=
τ

,                 (2.23) 

Streaming: ( ) ( )txftexf ittii ,
~

,
rrr =++ δδ .                        (2.24) 

The collision step is completely local and the streaming step involves pure shift of 

DFs between neighbouring sites. The simplicity of LBM is clearly reflected by the 

Col.-Str. steps. But attention needs to be paid on the boundary sites. The issue of 

boundary conditions (BCs) will be discussed later in Subsection 2.1.2. 

  

2.1.1.2 Reference quantities, dimensionless numbers and compressibility 

In the LBM framework, it is a common practice to use the lattice velocity c  and the 

lattice length xδ  as the reference quantities for the velocity and length. Consequently, 

the reference time is given by  

cxt δδ = .                                                 (2.25) 

Then all other variables in length and time will be measured in xδ  and tδ , which are 

normally called the “lattice units” (LU). Under such a system, the (dimensionless) 

sound speed in D2Q9 and D3Q15 is 31* =sc . It should be noted that for the 

simulations in this thesis, LU is always used unless otherwise specified. It would be 
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useful to make some comparisons between LU and the units used in other particle 

methods. The use of LU in LBM is actually similar to MD simulations in which the 

reference quantities are chosen as those constants in the interaction potential (so-

called MD units) (Rapaport 1995); and it also bears similarity to DPD simulations in 

which the reference quantities are picked in such a way that the DPD particles are of 

unit mass, the cut-off distance for the interaction potential is unit and the temperature 

satisfies 1=TkB  (so-called DPD units) (Groot & Warren 1997).  

 

The above reference quantities of LU result in the following reference kinematic 

viscosity txr cc δδν 2== , and then the (dimensionless) kinematic viscosity expressed 

in LU is (for D2Q9 and D3Q15) 

( ) ( ) ( )5.0
3

1
5.0

2** −=−= ττν sc .                               (2.26) 

Suppose that the (dimensionless) characteristic velocity is *
cU  and the (dimensionless) 

characteristic length is *cL  (both in LU), then it is found that the Reynolds number is 

5.0

3
Re

**

*

**

−
==

τν
cccc LULU

.                                          (2.27) 

It is straightforward to inverse Eq. (2.27) to find the dimensionless relaxation 

parameter τ  from the Reynolds number as 

Re

3
5.0

**
cc LU

+=τ .                                                (2.28) 

For brevity, the superscript *  is usually omitted. In addition, a LBM Mach number can 

be defined as 

s

c
LBM c

U
Ma = .                                               (2.29) 

It is easy to find that LBMMa  is related to the normal Mach number as 



33 

MaMaLBM γ= ,                                           (2.30) 

where γ  is the specific heat ratio of the gas. The difference is due to the definition of 

sound speed: in LBM isothermal condition is assumed whereas under other situations 

the isentropic flow condition is normally assumed. Nevertheless, they are of the same 

order. 

 

It is worth giving some discussions on how LBM approximately solves the 

incompressible flow problems and the cautions to be taken in such simulations. 

Incompressibility is commonly expressed as  

0=⋅∇ u
r

,                                                (2.31) 

which results from the condition 

( ) 01 =dtdρρ .                                         (2.32) 

Here the simplified case with const=ρ  is discussed. As mentioned above, LBM 

resembles the AC method when used to compute incompressible flows. Hence, 

LBMMa  should be small (ideally approaching zero), so that the incompressibility 

condition is well satisfied. Assuming that the reference density is rρ , the reference 

pressure is then given by 

2cp rr ρ= .                                                (2.33) 

For single phase incompressible flows, the absolute values of the density and pressure 

are not important because they vary in a small range around their averages, for 

instance, 

 ( )( )21 MaO+= ρρ ,            ( )( )21 MaOpp += .          (2.34a, b) 

It is practicable to choose their averages to be, say, 3=ρ  and 1=p  (for scc 3= ). 

Models reducing compressibility errors have been proposed by He & Luo (1997b) to 
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better simulate the incompressible flows in which the equilibrium DFs are modified to 

be  

 ( ) ( ) ( )
















−⊗⊗+⋅+= Iceeuu

c
ue

c
wf sii

s
i

s
i

eq
i

trrrrrr 2
42 :

2

11ρρ .             (2.35) 

Although choosing a larger sound speed reduces the compressibility error, it should 

be also noted that a larger sound speed implies smaller time step and thus 

compromises the computational efficiency. Hence, the sound speed should be 

properly adjusted in order to achieve accurate and efficient simulations. 

 

To summarize, in LBM simulations of single phase incompressible flows, there are 

two important dimensionless parameters, one of which (the Reynolds number) reflects 

the flow physics of the problem whereas the other (the Mach number) may be 

regarded as a computational parameter that can be adjusted to achieve a optimum 

balance in the accuracy and efficiency. 

 

2.1.2 BCs in LBM 

LBM simulations are always carried out inside a finite domain. Hence, proper 

conditions need to be specified on the boundaries of the domain. The main variables 

in LBM are the discrete DFs. Therefore, BCs in LBM essentially specify how to 

determine the incoming DFs either from the outgoing DFs or from the given 

conditions for macroscopic variables (e.g., the velocity, the pressure). Simulations of 

MPMC flows require additional conditions that will be discussed later in this chapter. 

According to the interaction type at the boundary (fluid-solid or fluid-fluid), BCs can 

be categorized into (Yu et al. 2005):  

(a) BCs at solid walls;  
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(b) BCs at open boundaries.  

In the first type, BCs is to model the effect of solids outside the domain on the fluid 

flows being simulated. The second type can be further categorized into a few subtypes: 

(b1) BCs for a periodic problem; 

(b2) BCs at a fluid reservoir (with uniform pressure, velocity, etc.);  

(b3) BCs resulted from a suitable cut-off of the infinite domain; 

(b4) BCs at symmetric lines or planes. 

Comprehensive discussions of all the above BCs require considerable space. In what 

follows, only (a) and (b1) will be described in detail using the D2Q9 model for 

illustration. 

 

2.1.2.1 BCs at solid walls 

For clarity, two types of nodes in LBM, namely the fluid nodes and the buffer nodes, 

are first introduced. As implicated by the name, the buffer nodes are for buffer use 

only and are not involved in the Col.-Str. processes. Col.-Str. processes happen only 

on the fluids nodes and they can be further divided into the bulk fluid nodes and the 

boundary fluid nodes. A bulk fluid node does not have any buffer nodes as its 

neighbours; in other words, all its neighbouring nodes are fluid nodes. In contrast, the 

neighbours of a boundary fluid node consist of both buffer nodes and fluid nodes. It is 

noted that, unless specified otherwise, the by-link cases are assumed, in which the 

wall is 2xδ  away from the boundary fluid nodes.  

 

Consider a typical Col.-Str. process for a boundary node near the lower wall. After 

collision, all the DFs are updated from if  to if
~

 which can be grouped into (see Fig. 

2.1 for the numbering of lattice velocities):  
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   (Col.-Group-1) if
~

 ( 5,,0L=i ) (DFs streaming to neighbouring fluid nodes);  

   (Col.-Group-2) if
~

 ( 8,7,6=i ) (DFs hitting the wall).  

The DFs required in the streaming step can also be divided into two groups:  

   (Str.-Group-1) if  ( 8,,5,1,0 L=i ); 

   (Str.-Group-2) if  ( 4,3,2=i ).  

(Str.-Group-1) are directly obtained from the post-collision DFs of the neighbouring 

nodes, i.e., 

( ) ( )ttiii texftxf δδ −−= ,
~

,
rrr

( 8,,5,1,0 L=i ).                     (2.36) 

(Str.-Group-2) can be obtained for the post-collision DFs that will “hit the wall”, i.e., 

(Col.-Group-2). The boundary condition on a stationary wall is essentially the 

mapping from (Col.-Group-2) to (Str.-Group-2) which can be in general written as 

(Sbragaglia & Succi 2004) 
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where the matrix [ ]K  may be regarded as the “discrete scattering kernel”. Of course 

this mapping should include certain constraints such as mass conservation. In the 

following only the commonly used bounce back (BB) scheme is described. 

 

Conventionally, the BB scheme is used to enforce the no-slip condition (see Fig. 2.3 

for illustration and Fig. 2.1 for lattice velocity numbering). In the BB scheme, one 

assumes that the outgoing DFs first hit the wall and then are bounced back along the 

opposite directions with the same lattice speed. The interaction time with the wall is 

assumed to be zero. For the BB scheme, Eq. (2.37) can be simplified as 
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For a moving wall, the bounced DFs gain additional momentum after interacting with 

the wall. For the situation shown in Fig. 2.3, if the wall is moving with the velocity 

Wu
r

, Eq. (2.38) is modified to be (Mei et al. 1999) 
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2.1.2.2 BCs at the inlets and outlets for periodic problems 

BCs on solid boundaries may be complete for a few problems (for instance, the 

driven-cavity). But BCs for inlets and outlets are commonly encountered as well (for 

example, flows inside a channel). At inlets and outlets, there exist fluxes of the fluid 

variables (density, momentum, etc.). The simplest BCs in this category are the 

periodic BCs. Suppose a 2D problem is periodic, say, in the −x direction with 0=x  

being the left end, and Lx = , the right end. Then the periodic BCs for the DFs read, 

Lxixi OUTIN
ff

==
=

0
,    

0==
=

xiLxi OUTIN
ff                   (2.40a, b) 

where 8,2,1=INi  at 0=x  (correspondingly, 8,2,1=OUTi  at Lx = ), and 6,5,4=INi  at 

Lx =  (correspondingly, 6,5,4=OUTi  at 0=x ) for the D2Q9 model.  

 

2.1.3 Initial conditions in LBM 

Initial conditions are another important issue in LBM simulations, either for steady 

problems or unsteady problems. For steady flows, LBM acts as a special type of 

solver for the time-independent equations and the initial conditions may affect the 
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speed of convergence. For unsteady flows, LBM specifies how the system evolves, 

and the initial conditions should conform to the physical initial states. In LBM, it is 

common to set the initial DFs equal to the equilibrium DFs calculated from the given 

initial macroscopic fields (e.g., the density and velocity fields) (Skordos 1993). In the 

presence of velocity gradients, it is a better practice to include the first order 

correction of the non-equilibrium DFs. But in this thesis, it is not implemented 

because for most cases the initial velocity field is just uniformly zero.  

 

2.2 FE based LBM for MPMC flows 

In the above, the fundamentals of LBM simulations have been presented. Next LBM 

based on the FE concept for MPMC flows will be introduced. It is noted that the FE 

theory is independent of LBM, and LBM may be viewed as a special implementation 

used to simulate the MPMC fluid systems. Other types of methods (for instance, the 

FEM solutions of the NSCH equations) can also be employed to study such systems. 

But LBM possesses certain advantages as already discussed at the end of Chapter I. 

  

2.2.1 FE theory for liquid-vapor systems near critical points 

First it is useful to give some introductions on the FE theory for single component 

liquid-vapor (LV) systems near critical points (to be denoted as FE1) because it 

provides the core ideas of DIM and may serve as the basis for other models. More 

thorough descriptions about the theory can be found in the work by Papatzacos (2002). 

 

For a single-component LV system (e.g., water and water-vapor), suppose that the 

critical point of the fluid is characterized by the critical pressure cp , the critical 

density cρ  and the critical temperature cT . When the system temperature T  is lower 
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than, but close to, the critical temperature (i.e., cTT <  and ( ) 11 <<− cTT ), the liquid 

and vapor phases can coexist and the pseudo van der Waals (VW) model can be 

applied to describe such a fluid system. For convenience, two small dimensionless 

variables, relevant to the non-dimensional temperature and density respectively, are 

defined as follows 

( )( )clv TT−≡ 14τ ,                                            (2.41) 

( ) 1~ −≡ cρρρ .                                             (2.42) 

The Helmholtz FE per unit volume is given by 

( ) ( ) ( ) ( )TpTTWT lv −+= ρµρρψ ,, ,                               (2.43) 

where ( )Tµ  is the chemical potential, ( )Tp  is the pressure of the bulk fluid given by  

( ) ( )21 lvcpTp τ−= ,                                            (2.44) 

and  

( ) ( )22~, lvclv pTW τρρ −= ,                                    (2.45) 

is a function of the density and temperature. Across a flat interface, the densities of 

the liquid and vapor phases, lρ  and vρ , are the values of ρ  giving 0=lvW : 

( )lvcl τρρ += 1 ,   ( )lvcv τρρ −= 1 .                     (2.46a, b) 

The equation of state can be obtained from the definition of bulk pressure 

( ) ψρψρ −∂∂=bp ,                                           (2.47) 

and it is straightforward to get, 

( ) ( )lvc
b pp τρρρ 21~2~31~ 22 −+−+= .                       (2.48) 

The bulk chemical potential is defined by 

ρψµ ∂∂=b ,       (2.49) 

and is found to be, 
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( ) ( )Tp lvcc
b µτρρρµ +−= − 21 ~~4 .   (2.50) 

It is noted that when the temperature is assumed to be uniform (isothermal flows) it is 

unnecessary to determine µ  for it is simply a constant. In general, when solid 

boundaries are not present, the Helmholtz FE functional can be written as 

( )( )∫ ∇+=
V

dVF
2

21 ρκψ                                      (2.51) 

where V  is the volume of the system and κ  is a constant. Minimizing F  with the 

constant-mass constraint TV
MdV =∫ ρ  ( TM  is the total mass), one gets the Euler-

Lagrange variational equation 

( ) 02 =∇−−∂∂ ρκµρψ                                        (2.52) 

which holds throughout the whole domain. In the bulk region (of either a pure liquid 

or vapor), one has 02 =∇ ρ  and µρψµ =∂∂=b . It is worth noting that the chemical 

potential  

( ) ρκρψµ 2∇−∂∂=                                        (2.53) 

is a constant when the system is in equilibrium. For a one-dimensional problem, say, 

in −x direction, Eq. (2.52) can be integrated once, leading to 

( ) ( ) ( ) 021 2 =−+− dxdp ρκρµρψ                            (2.54) 

Substituting Eq. (2.43) into Eq. (2.54), one finds 

( ) ( ) ( )221 dxdWlv ρκρ =                                      (2.55) 

With the given form of the function ( )ρlvW , the surface tension can be calculated 

according to its definition, 

( )∫
∞

∞−
= dxdxdlv

2ρκσ ( ) 23234 lvcc p τκρ=                          (2.56) 
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(Note here the subscript is added to emphasize that it is for the liquid-vapor system, 

but usually it is omitted.) And if in addition 0>dxdρ , one can further find a 

particular solution of the function ( )xρ  as  

( ) ( )( )Tlvc lxx tanh1 τρρ += ,                                (2.57) 

where  

( ) 22 Wpl clvcT == τκρ ,                                  (2.58) 

with W  defined as the interface width. Fig. 2.4 shows a typical density profile across 

a flat interface based on the above model using 4=W . Note that it is often 

convenient to also define a sharp interface as the surface (line) where ( ) 2vl ρρρ +=  

( cρ=  for a flat interface) although in fact the interfacial region usually spans a few 

grid points. 

 

For general problems in any dimensions, there exists a conservation law according to 

Noether’s theorem due to the fact that the FE functional F  and the mass constraint 

are independent of the spatial coordinates (Anderson et al. 1998), 

0=⋅∇ SST
t

,                                                (2.59) 

where SST
t

 is a second-rank tensor given by 

( ) ( )( )ρρ ∇∂∂⊗∇−= LILTSS

tt

,                              (2.60) 

with L  given by 

( ) ( ) ρµρκρψ −∇+= 2
21L .                              (2.61) 

Thus, the tensor SST
t

 is, 

( )( ) ( ) ( )ρρκρκρκρ ∇⊗∇−∇+∇+−= IpT b
SS

tt 22 21 .            (2.62) 

After some further straightforward calculations, it can be found that, 
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( ) ( )[ ] 0=∇−=∇−∇−=⋅∇ µρρµµρSST
t

.                    (2.63) 

 

For dynamic cases, when the body forces are excluded, the governing equations for 

the isothermal single component LV systems are given by 

( ) 0=⋅∇+∂ ut

rρρ ,                                           (2.64a) 

( ) ( ) ( )Π+⋅∇=⊗⋅∇+∂
ttrrr

SSt Tuuu ρρ ,                        (2.64b) 

where Π
t

 is the viscous (dissipative) stress tensor given by 

( )( )Tuu
rrt

∇+∇=Π η .                                        (2.65) 

It can be seen that SST
t

 represents the reversible part of the stress tensor. 

 

2.2.2 FE theory for immiscible binary fluid systems 

Considering that the LV systems are made of the same kind of molecules whereas 

binary fluid systems consist two different kinds of molecules (e.g., water and silicon 

oil), it may be fair to say that the two types of systems differ fundamentally in this 

aspect. Nevertheless, the FE theory for immiscible binary fluid systems (denoted as 

FE2) normally seen in the literature is very similar to the above one for LV systems 

near critical points.  

 

2.2.2.1 A loose induction from FE theory for LV systems 

If the following compound variables are defined, 

( )( )11 −≡ clv ρρτφρ ,                                       (2.66) 

2
lvcpa τρ ≡ ,                                                      (2.67) 

( )2lvc τρκκρ ≡ ,                                               (2.68) 
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and further the two terms ( )ρµ T  and ( )Tp−  are neglected from the Helmholtz FE 

density, the results below can be obtained (note that there are no strict justifications 

for this simplification, and here it is just made to show the connections between the 

two FE models for liquid-vapor and binary fluid systems), 

(1) Across a flat interface,  

1=
lρφ ,   1−=

vρφ ;                                     (2.69a, b) 

(2) The simplified bulk FE density is,  

( ) ( )22 1−= ρρρ φφψ a ;                                              (2.70) 

(3) The simplified FE functional is,  

( ) ( )( )∫ ∇+=
V

dVF
2

2 ρρρ φκφψ ;                                 (2.71) 

(4) The surface tension is, 

( ) ρρκσ a234= ;                                              (2.72) 

(5) The interface width is,  

ρρκ aW 2= .                                                 (2.73) 

When ρφ  is reinterpreted as an order parameter to distinguish the two fluid 

components, then these results just provide exactly the same FE theory intensively 

used for immiscible binary fluids with uniform density. But after the above 

replacements and simplifications, some other formulas also change. Note the subscript 

“ ρ  “ will be omitted for binary fluid systems. Now the chemical potential µ  is 

calculated by taking the variation of the FE functional with respect to the order 

parameter, 

( ) ( ) φκφφφκφψδφδµ 222 14 ∇−−=∇−′== aF .                   (2.74) 

If the bulk pressure (sometimes also called “thermodynamic pressure”, see the work 
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by Lee & Lin (2005)) in FE2 is defined in a way similar to FE1 as,  

( ) ( )φψφψφ −′=bp                                                (2.75) 

then the reversible stress tensor in FE2 is, 

( )( ) ( ) ( )φφκφκφκφ ∇⊗∇−∇+∇+−= IpT b
SS

tt 22 21                  (2.76) 

and similarly it can be found that, 

( ) ( )[ ] 0=∇−=∇−∇−=⋅∇ µφφµφµSST
t

                        (2.77) 

For a flat interface, the analytical solution of the interface profile is 

( ) ( )( )2tanh Wxx =φ ,                                          (2.78) 

Similar to FE1, it is also a common practice to define a sharp interface as the surface 

(or lines) on which 0=φ . From Eqs. (2.72) and (2.73), the coefficients a  and κ  can 

be expressed in terms of σ  and W  as, 

( ) ( )Wa 43σ=                                                   (2.79) 

83 Wσκ =                                                     (2.80) 

 

However, as observed from the two different sets of governing equations, Eqs. (1.1, a-

c) and Eqs. (2.64, a & b), there exists a significant difference between FE1 and FE2. 

FE1 has only one mass conservation equation for the density, whereas FE2 has an 

additional equation to govern the evolution of the order parameter. In FE1, the density 

also plays the role of the order parameter and the pressure in the momentum equation 

is exactly obtained from the EOS. In FE2 for incompressible binary fluids, it is 

necessary to enforce the incompressibility condition, Eq. (1.1a). As discussed in 

Subsection 2.1.1.2, this is realized through the AC-like methodology in LBM. The 

details are provided in the next section. 
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2.2.2.2 Remarks on the order parameter 

It would render the model clearer if a few further remarks are made upon the order 

parameter φ . Although across a flat interface φ  changes from 1−  to 1 indicating a 

transition from one pure fluid to the other, the order parameter can take other values 

(close to 1−  or 1) in the bulk fluid when the interfaces have nonzero curvatures. For 

instance, the order parameters inside and outside a stationary droplet in equilibrium 

could be inin εφ += 1  and ( )outout εφ −−= 1  with inε  and outε  having some small 

positive values. Note that inε  and outε  are nearly constant “far” away (e.g., W2  away) 

from the interface (with typical variations less than 0.5%). This may be understood as 

a requirement either to minimize the FE functional or to satisfy the Laplace’s law on 

the relation between the pressure difference across the interface and the surface 

tension. Such a phenomenon was called “overshoots” and “undershoots” and was 

regarded inherent to the DIM using the above form of bulk FE (Jacqmin 1999). Hence, 

if the initial φ  field for a droplet (of a radius dR  and with its center positioned at CX
r

) 

is specified as, 

( ) ( ) ( )( )2tanh WRrr d−−=φ ,                                   (2.81) 

with 

( )∑
=

−=
D

CXxr
1

2

α
αα ,                                        (2.82) 

being the distance away from the droplet center (here D  is the dimension of space 

and 2=D  or 3), then the φ  field will evolve toward an equilibrium distribution with 

eq
in

eq
in εφ += 1  and ( )eq

out
eq
out εφ −−= 1  that satisfy the Laplace law, 

( ) ( ) ( )[ ]d
eq
out

b
out

eq
in

b
in RDpp 1−=− σφφ .                                     (2.83) 
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During this process, the droplet shrinks a bit. Only recently, this issue has been 

investigated systematically by Yue et al. (2007). It is noted that such a phenomenon 

has also been observed in the LBM simulations of the present work and some results 

will be given later. 

 

The above discussions give a concrete explanation on why the order parameter in 

DIM is different from other indicator functions such as the volume fraction in VOF 

and the signed distance function in LS (as mentioned in Subsection 1.2.2.3). But one 

may be questioned that how on earth to interpret the order parameter deviating from 

the bulk value: can it be the mass fraction of one component? The answer might be: it 

may not be exactly interpreted as the mass fraction or concentration; but rather, the 

DIM views the binary fluids as some sort of mixture for which phase transition may 

even occur under certain situations. Ultimately, DIM is just a model that mimics the 

real systems well provided that some conditions are satisfied. Thus, it may not be 

quite meaningful to ask for the strict physical explanations. 

 

2.2.3 Lattice Boltzmann formulation for immiscible binary fluids 

Now the lattice Boltzmann formulation for solving the set of governing equations 

(Eqs. (1.1, a-c)), denoted as FE2-LBM, is presented as follows. It is noted that here 

the term “solving” differs from other direct discretization techniques; it is in the LBM 

way - to recover the macroscopic equations in the long-time and long-wavelength 

limits. 
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In FE2-LBM, the FE is almost identical to that defined in Eq. (2.71) above except that 

an additional term is inserted into the volume integration to approximately enforce the 

incompressibility condition (Kendon et al. 2001, Verberg et al. 2004),  

( ) ( ) ( )( )∫ ∇++=∇ dVcF sV

22 2ln, φκφψρρφφ .                 (2.84) 

It is noted that the density ρ  in the above formula is dimensionless and it varies near 

unity (recall that here the binary fluid system is assumed to have uniform density).  

After the insertion of the term ρρ ln2
sc , the full pressure in FE2 is, 

IpTP hydro
SS

th
ttt

+−=                                                   (2.85) 

with the hydrodynamic pressure hydrop  (note the name follows Lee & Lin (2005)) 

being, 

2
s

hydro cp ρ=                                                      (2.86) 

and the divergence of the full pressure is, 

( ) hydrohydro
SS

th pIpTP ∇+∇=+−⋅∇=⋅∇ µφ
ttt

                           (2.87) 

Note that the forcing term due to the pressure that appears in the RHS of the 

momentum equation is thP
t

⋅∇− . Then, it becomes clear that the hydrodynamic 

pressure hydrop  matches the term S  in Eq. (1.1b). 

 

LBM allows different implementations within the above FE framework. Although 

different sub-models may differ in specific coefficients, they all approximately 

recover the same macroscopic equations when the Chapman-Enskog procedure is 

applied. Here two sub-models are described. 
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2.2.3.1 Lattice Boltzmann formulation - implementation A 

The first sub-model (denoted as FE2-LBM-A) is based on the work by Kendon et al. 

(2001). LBEs in the model read, 

( ) ( ) ( ) ( ) ( )[ ]txftxftxftexf eq
iifittii ,,1,,

rrrrr −−=−++ τδδ                    (2.88) 

( ) ( ) ( ) ( ) ( )[ ]txgtxgtxgtexg eq
iigittii ,,1,,

rrrrr −−=−++ τδδ                    (2.89) 

where if  are the DFs for the hydrodynamic fields, ig  are the DFs for the order 

parameter field. In Eqs. (2.88) and (2.89), fτ  and gτ  are the relaxation parameters 

related to the kinematic viscosity and the mobility respectively; the equilibrium DFs, 

eq
if  and eq

ig , are calculated from the density ρ , the velocity αu  and the order 

parameter φ   (plus its gradient, φ∇ , and its Laplacian, φ2∇ ) as follows, 

( ) ( ) ( ) ( )
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with the coefficients iA  and iB  given by, 

( )( )
( )[ ] )0(

)0(

1

1

0
1

0
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γγ                                   (2.92) 
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                                  (2.93) 

and the components of the tensor G
t

 are, 








 −= αβγγαβαβ δthth

s

P
D

P
c

G
1

2
1

4                                         (2.94) 

Here M
~

 is a parameter related to the mobility M  as ( ) tg MM δτ ~
21−=  and in the 

simulations, the second relaxation parameter is chosen as 1=gτ  leading to 
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( ) tMM δ~
21= . It is noted that unless specified otherwise, this relaxation parameter is 

always chosen to be this value in all models involving the distribution functions for 

the order parameter; also for convenience, the specific mobility values used in 

simulation are always given in terms of M
~

 later in this thesis.  

 

Recall that IpTP hydro
SS

th
ttt

+−=  is the full pressure, then the coefficients A  and αβG  

can be explicitly computed out, 

( ) ( ) ( )( )















 ∂∂
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22                (2.95) 
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44            (2.96) 

It can be verified that the above equilibrium DFs, eq
if  and eq

ig , satisfy 

ρ=∑
i

eq
if                                                     (2.97a) 

αα ρufe
i

eq
ii =∑                                                   (2.97b) 

th

i

eq
iii Puufee αββαβα ρ +=∑                                         (2.97c) 

( )αβγβαγγαβγβα δδδρ uuucfeee s
i

eq
iiii ++=∑ 2                         (2.97d) 

φ=∑
i

eq
ig                                                     (2.98a) 

αα φuge
i

eq
ii =∑                                               (2.98b) 

βααββα φµδ uuMgee
i

eq
iii +=∑

~
                              (2.98c) 

It is seen that in FE2-LBM-A, the basic strategy is to construct appropriate 

equilibrium DFs according to the full pressure tensor. 
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2.2.3.2 Lattice Boltzmann formulation - implementation B 

The sub-model used in the present work (FE2-LBM-B) is slightly different from FE2-

LBM-A. It essentially makes use of the relation in Eq. (2.77), 

( ) ( )[ ] µφφµφµ ∇−=∇−∇−=⋅∇ SST
t

. 

Because the chemical potential µ  contains the term φ2∇  which is a second order 

derivative, µ∇  involves the third order derivative. The term µφ∇  may be better dealt 

with in the following way: first, it is split into two terms, ( )φµ∇  and ( )φµ ∇− ; then 

the term ( )φµ∇  is put into the equilibrium DFs whereas the term ( )φµ ∇−  is put on 

the RHS of the LBEs as a body force. Such an implementation was previously used 

by Zheng et al. (2006) in a model for large density ratio multi-phase flows (to be 

described later) and is adopted in most simulations of present work. In accordance to 

the above implementation, the first LBE for FE2-LBM-B is modified to be 

( ) ( ) ( ) ( )( ) ( ) 2,,,, siitf
eq

iiittii cewtxftxftxftexf φµδτδδ αα ∂+−−=−++ rrrrrr
,   (2.99) 

and the modified equilibrium DFs are, 

( ) ( ) ( )
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with the coefficient A  now given by, 

( ) 22
ss ccA φµρ +=                                           (2.101) 

Then, the second order moments of eq
if  satisfy the following modified relation, 

( ) αββαβα δφµρρ ++=∑ 2
s

i

eq
iii cuufee                          (2.102) 

The modified equilibrium DFs in Eq. (2.100) no longer contain the terms involving 

the tensor G
t

 and the coefficient A  is much simplified as well. Such modifications 

seem to improve the model to some degree (some tests show that they can improve 
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the isotropy of interfacial region and reduce some undesired numerical artifact like the 

spurious currents, most probably due to the simplifications of the coefficients, which 

may help to remove certain discretization errors). 

 

2.2.3.3 Chapman-Enskog expansion and the macroscopic equations 

In applying the multiscale Chapman-Enskog expansion on Eqs. (2.99) and (2.89) as 

follows, 

( ) ( ) ( ) iitittii fetxftexf ααεδδ ∂+∂+=++ ,,
rrr

 

( )( ) ( )32
2
1 εε ββαα Ofee iitit +∂+∂∂+∂+       (2.103) 

( ) ( )21 εε Offf i
eq

ii ++=                                               (2.104) 

( ) ( ) ( ) iitittii getxgtexg ααεδδ ∂+∂+=++ ,,
rrr

 

( )( ) ( )32
2
1 εε ββαα Ogee iitit +∂+∂∂+∂+            (2.105) 

( ) ( )21 εε Oggg i
eq
ii ++=                                           (2.106) 

( )2

10
εε Ottt +∂+∂=∂                                            (2.107) 

with tδε =  being small compared to the macroscopic time scales, it can be found that 

the macroscopic equations are (detailed derivations are given in the Appendix), 

( ) 0=∂+∂ αα ρρ ut                                                    (2.108a) 

( ) ( ) ( )[ ] µφηδρρρ αβααββαββαβα ∂−∂+∂∂=+∂+∂ uucuuu st
2               (2.108b) 

( ) φφφ αααα ∂=∂+∂ Mut                                             (2.108c) 

It is noted that the continuity equation is slightly different from Eq. (1.1a). This 

reason is already mentioned above. That is, LBM assumes that the fluid is slightly 

compressible and makes use of the fact that the incompressible condition is 

approximately satisfied when the Mach number is small. 
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2.2.4 LBM for multi-phase flows with large density ratios 

For some problems investigated in this study, the model for large density ratio multi-

phase flows (denoted as LDR-LBM) by Zheng et al. (2006) is used. Note that the 

specifics for the model described here are not completely the same as those by Zheng 

et al. (2006); besides that model has been extended to include wetting in the present 

work. In the following it is briefly recaptured.  

 

Similar to previous LBM developed for large-density-ratio problems (Inamuro et al. 

2004, Lee & Lin 2005), it was based on the FE concept and was for a liquid-gas 

system with the (constant) liquid and gas densities being Lρ  and Gρ  respectively. 

The FE functional in this model is very similar to that in FE2 (except the definitions 

(or interpretations) of the order parameter and density), 

( ) ( )( )( )[ ]∫ +∂∂+=
V

s dVcF ρρφφκφψ αα ln2 2                         (2.109) 

where φ  is the order parameter related to the density difference and ρ  is the average 

density. The bulk FE ( )φψ  also has a double-well form (but the equilibrium values 

are *φ±  instead of 1±  in FE2), 

( ) ( )22*2 φφφψ −= a                                              (2.110) 

For a flat interface, the analytical solution of the interface profile is, 

( ) ( )( )2tanh* Wxx φφ = ,                                        (2.111) 

with the interface thickness W  given by, 

( ) aW κφ 21 *= ,                                              (2.112) 

And the surface tension can be calculated as,  

( ) ( )( )3*2 324 φκφκσ adxdxd == ∫
∞

∞−
                             (2.113) 
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The LBEs are almost the same as those in FE2-LBM-B. Since the use of this model in 

the present work involves an external body force, the LBEs for the hydrodynamic 

fields are modified to be, 

( ) ( ) ( ) ( )( ) ( ) 2,,,, siitf
eq

iiittii cgewtxftxftxftexf ααα ρφµδτδδ +∂+−−=−++ rrrrrr
  (2.114) 

where αg  is the component of the body force density in the αx  direction.  

 

2.3 Modeling of wetting and CL dynamics 

In last section, the general framework of modeling MPMC flows using the FE concept 

has been laid. In this section, the next two issues will be addressed: (1) how to include 

the wetting and CL dynamics in the above framework; (2) how to incorporate them in 

LBM. 

 

Wetting has been intensively studied in surface chemistry. It is still a fast-marching 

field despite its long history. It essentially studies the interactions between two 

fundamentally different phases: fluid and solid. Commonly the fluid contains two 

phases or components (though it is also possible that only one phase is present, or in 

the other limit, many fluid phases exist). Quite a number of factors affect wetting such 

as the temperature, surface roughness, electrical fields, local pH values and even the 

configurations of the fluid molecules. Although sometimes the deformation of solid is 

taken into account, it is usually negligible and is not considered in this thesis. The 

main focus in the present work is, of course, on how the fluid is affected by the solid. 

For convenience, the regions where interfaces between fluids (of two different phases 

and components) meet the solid boundaries are called “three-phase-line” (TPL).  
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The following FE theories for wetting assume that the solid wall is ideally smooth and 

has the same wetting property everywhere. In accordance to the above subsection, LV 

systems will first be addressed and next, FE2-LBM and then LDR-LBM. 

 

2.3.1 Wetting in LV systems 

To include wetting in the FE framework for LV systems, a surface energy term is 

added, leading to the modified FE functional, 

( )( ) ( )∫∫ +∇+=
SV

dSdVF σρϕρκψ 2
21                      (2.115) 

where S  denotes the surface of the wall, σρ  is the fluid density at the wall, and 

( )σρϕ  is the surface energy density (per unit area) which, for simplicity, is usually 

assumed to be (Papatzacos 2002, Briant et al. 2002) 

( ) σσ ωρρϕ −=                                            (2.116) 

Here ω  is a parameter related to the wetting property. Now minimizing the whole FE 

functional including the surface energy contribution, the natural boundary condition 

can be obtained, in addition to Eq. (2.52),  

( ) ( ) ωρκρκ −=∂∂=∇⋅ SS nn
r

         (2.117) 

where n
r

 is the unit normal at the wall pointing into the fluid. For one-dimensional 

problems, if ω  is within a certain range (details on how to determine the range can be 

found in (Papatzacos 2002) and are omitted here for brevity), four solutions for the 

boundary fluid density σρ  can be found, 

ωτρρ ~111 +−= lvc ,  ωτρρ ~112 −−= lvc ,             (2.118a, b) 

ωτρρ ~113 −+= lvc ,  ωτρρ ~114 ++= lvc ,             (2.118c, d) 

where the dimensionless parameter ω~  is given by, 
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( )clv pκτωω 2~ = .                                         (2.119) 

 

When 0≤ω , the normal gradient of the density at the wall is positive, thus the 

surface fluid density is smaller than the bulk fluid; σρ  at the boundary takes the value 

1ρ  if the bulk fluid is a vapor, and 3ρ  if the bulk fluid is a liquid. This means that the 

wall is hydrophobic and favors the vapor phase. The surface tension between the solid 

and vapor, svσ , and that between the solid and liquid, slσ , are calculated as 

( )∫+−= v

dWlvsv

ρ

ρ
ρρκωρσ

1

21 ,                              (2.120a) 

( )∫+−= l

dWlvsl

ρ

ρ
ρρκωρσ

3

23 ,                             (2.120b) 

respectively. When 0>ω , the normal gradient of the density at the wall is negative, 

thus the surface fluid density is larger than the bulk fluid; σρ  at the boundary takes 

the value 2ρ  if the bulk fluid is a vapor, and 4ρ  if the bulk fluid is a liquid. This 

implies that the wall is hydrophilic and favors the liquid phase. For this case, the 

surface tensions svσ  and slσ  are computed as, 

( )∫+−= 2

22

ρ

ρ
ρρκωρσ

v

dWlvsv ,                            (2.121a) 

( )∫+−= 4

24

ρ

ρ
ρρκωρσ

l

dWlvsl .                           (2.121b) 

According to Young’s equation, the CA measured in the liquid part is calculated as, 

( ) lvslsv σσσθ −=cos .                                      (2.122) 

For either 0≤ω  or 0>ω , it is found that, 

( ) ( ) ( )




 −−+=

33 ~1~121cos ωωθ ,                          (2.123) 
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from Eq. (2.56), and either Eqs. (2.120, a & b) or Eqs. (2.121, a & b). Thus, the wall 

property is uniquely determined by the dimensionless parameter ω~ . 

 

2.3.2 Wetting in binary fluid systems 

Wetting in binary fluid systems is modeled in a way similar to the above. That is, the 

surface energy contribution is further added, leading to the following FE functional 

(Briant & Yeomans 2004), 

( ) ( )( ) ( )∫∫ +∇+=
SV dSdVF σφϕφκφψ 2

2 ,                        (2.124) 

with ( )σφϕ  being the surface energy density which is assumed to be, 

( ) σσ ωφφϕ −= .                                    (2.125) 

Minimizing the whole FE functional including the surface energy, the natural 

boundary condition can be obtained, similar to Eq. (2.117),  

( ) ( ) ωφκφκ −=∂∂=∇⋅ SS nn
r

                               (2.126) 

By similar derivations, it is possible to find four solutions for the order parameter at 

the wall as, 

ωφ ~11 +−= , ωφ ~12 −−= ,                         (2.127a, b) 

ωφ ~13 −= , ωφ ~14 += .                            (2.127c, d) 

with the dimensionless parameter ω~  now defined as, 

( )aκωω 2~ = .                                            (2.128) 

The CA measured in the fluid with 0>φ  is found to be the same as Eq. (2.123). 
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2.3.3 Wetting in LDR-LBM 

Wetting in the LDR model is almost the same except that the additional parameter *φ  

needs to be taken into account. After the inclusion of the following surface energy 

( ) σσ ωφφϕ −=  in Eq. (2.109), the functional minimization procedure leads to, 

( ) ωφκ −=∇⋅ Sn
r

, and the CA (measured in the liquid with 0>φ ) is also given by Eq. 

(2.123). The differences are due to *φ . Now the four solutions for the order parameter 

at the wall are, 

ωφφ ~1*
1 +−= , ωφφ ~1*

2 −−= ,                     (2.129a, b) 

ωφφ ~1*
3 −= , ωφφ ~1*

4 += .                      (2.129c, d) 

and the dimensionless coefficient ω~  is given by, 

( )( )2*2~ φκωω a= .                                               (2.130) 

 

2.3.4 Implementation of wetting boundary condition 

The implementation of the wetting boundary condition (WBC) follows the way used 

by Briant et al. (2002). Since WBC is very similar in all the FE1, FE2 and LDR 

models, only the WBC for the LV system is introduced and the following formulas 

are given in terms of the density ρ . From Eq. (2.117), WBC is essentially the 

enforcement of a given normal gradient of the density (order parameter) on the wall,  

κ
ωρ −=









∂
∂

Sn
,                                               (2.131) 

Take a two dimensional horizontal wall at the lower side as an example (see Fig. 2.5). 

The following formulas, which are at least second order accurate, are used to evaluate 

the derivatives 
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where in evaluating 
ji

y
,
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 the following biased difference schemes, 
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and the central difference scheme 

x

jiji

ji
y δ

ρρρ
2

,2,

1,

−
≈

∂
∂ +

+

 ,   (2.135) 

are used. For horizontal walls at the upper side and vertical walls, similar formulas 

can easily be derived. Attention is required when the normal direction n
r

 is opposite 

to the y  or x  direction. The Laplacian is calculated as 

2

2

2

2
2

yx ∂
∂+

∂
∂=∇ ρρρ .    (2.136) 

Extensions to three dimensions are straightforward. Suppose that the wall is in the 

yx −  plane at 0=z , the following formulas can be used, 

x
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, (2.137a, b, c) 
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These derivatives are required in the calculations of the chemical potential or some 

other coefficients that appear in the equilibrium DFs (or the force term in FE2-LBM-

B and LDR-LBM). For all these formulas, the uniform mesh spacing (xδ ) in all 

directions is assumed. 

 

It is noted that when the normal BBL scheme is applied for the boundary nodes, the 

above scheme will introduce additional errors of order 2xδ  because the condition for 

the normal gradient is supposed to hold at the wall. But such deviations should be 

very small and may be neglected when the mesh is fine enough. 
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Table 2.1. Weights in the discrete equilibrium distributions 
 

Velocity model 
0w ( 00 =e

r
) iw ( cei =r

) 
iw ( cei 2=r

) iw ( cei 3=r
) 

D2Q9 94  91  361  NA 

D3Q15 92  91  NA 721  
 

 
 

Fig. 2.1. D2Q9 velocity model 
 

 
 

Fig. 2.2. D3Q15 velocity model 
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Fig. 2.3. Illustration of BB on the lower wall 
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Fig. 2.4. Typical density profile across a flat interface 
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Fig. 2.5. Illustration of WBC implementation on a flat wall 
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Chapter III 

Lattice Boltzmann Simulations and Validations 

 

 

In the last chapter, the basic theory of LBM and the FE based lattice Boltzmann 

modeling of MPMC flows including wetting have been presented. In this chapter, the 

lattice Boltzmann simulation procedure is first detailed. After that, a few remarks are 

made on how it solves steady and unsteady flow problems, on its stability, and then 

on the issue of convergence. Subsequently, some prototypical problems are 

investigated by using some of the models introduced before in order to validate both 

the models and the corresponding codes. Finally the parallel implementation of LBM 

simulation and its performance are addressed. 

 

3.1 Lattice Boltzmann simulation procedure 

A full computation cycle of a typical simulation using FE2-LBM-B is given as 

follows, 

(1) Collision:  

( ) ( )[ ] ( ) ( ) ( ) ( ) 2,1,11, siit
eq

ififi cewtxftxftxf φµδττ αα ∂++−=+ rrrr
, 

( ) ( )[ ] ( ) ( ) ( )txgtxgtxg eq
igigi ,1,11,

rrr ττ +−=+ ; 

(2) Applying BCs for if , ig ; 

(3) Streaming:  

( ) ( )+=++ txftexf ittii ,,
rrr δδ , 

( ) ( )+=++ txgtexg ittii ,,
rrr δδ ; 
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(4) Calculating of macroscopic variables: ρ , αu , φ , φα∂ , µ  and specifying φα∂  

on the solid boundaries; 

(5) Calculating of equilibrium DFs: eq
if  and eq

ig ; 

(6) Check if a prescribed criterion is satisfied (e.g., reaching the given number of 

steps or a steady state). If it is satisfied, the computation is terminated; 

otherwise, go to step (1). 

 

3.2 Some remarks on LBM simulations  

Before the validations results are shown, some remarks are worth mentioning here. 

 

3.2.1 On simulations of steady and unsteady flows 

As mentioned in Subsection 2.1.3, when LBM is used to study steady flows, it is 

simply a special solver to obtain the converged solutions in space, and the 

intermediate solutions are not important. In these simulations, there are no intrinsic 

time scales for the system evolution. Hence, as discussed in Subsection 2.1.1.2, it 

usually only requires that the lattice sound speed should be chosen in such a way that 

the compressibility error is minimized and the efficiency is not too low at the same 

time. By contrast, unsteady flows have one or even many characteristic time scales. 

For instance, in the capillary wave problem studied later, there is a characteristic time 

scale, namely, the period for interface oscillation. In this type of simulations, LBM is 

required to resolve not only the spatial functions, but also their time evolutions. Thus, 

when choosing the lattice sound speed, one must bear in mind the additional 

requirement that the time step resulting from the choice should be considerably 

smaller than the minimum characteristic time scale. If the time step is too large, one 

may sacrifice the accuracy, and sometimes the computation may even blow up. Note 
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that here only the standard LBM is considered, in which the time step is tied to the 

grid spacing and the lattice sound speed. Of course, this is not necessarily required in 

general. 

 

3.2.2 On the stability 

The usual LBM are subject to a few stability requirements. According to Sterling & 

Chen (1996), there are certain conditions that are imposed on the relaxation parameter 

and the LBM Mach number for a stable computation.  

 

First, the relaxation parameter (as given in Eq. (2.19)) must be greater than 0.5. In that 

limit, the viscosity tends to become zero. It is noted that the analysis by Sterling & 

Chen (1996) was based on a uniform mean flow. In the computations of more 

complex flows, the requirement is more stringent. In general, the simulation tends to 

become unstable when the viscosity becomes very low (even before reaching the limit 

of zero). Some other more sophisticated models using multiple relaxation times (MRT) 

(Lallemand & Luo 2000) may be able to reach lower limit of the viscosity than the 

single relaxation time model. But they are not used in this thesis because they are 

much more complicated and also due to the time limit. In fact, MRT models for 

MPMC fluid flows are developed just quite recently by McCracken & Abraham (2005) 

and by Premnath & Abraham (2007). The second condition requires that the 

maximum velocity (tied to the LBM Mach number) cannot go beyond certain limit. 

The specific value of this limit depends on other parameters, including the lattice 

model and the relaxation parameter (Sterling & Chen 1996). The typical values given 

by Sterling & Chen (1996) are larger than 0.3, which is often regarded as the limit of 
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the requirement by incompressibility approximation. In all simulations, the maximum 

velocity is much smaller than this value, thus this condition is well observed. 

 

3.2.3 On the convergence 

As mentioned earlier, when used for MPMC fluid systems, LBM may be viewed 

(though not strictly) as a special implementation of the DIM. Thus, the discussions on 

the convergence properties of the direct numerical solutions of the governing 

equations of DIM may apply for LBM as well. Jacqmin (1999) has pointed out that 

the convergence of numerical solutions of DIM equations to the corresponding sharp 

interface solutions depends on, in addition to the grid size xδ , the interface thickness  

W , and the mobility M . It can be regarded as the combination of two convergence 

issues: (1) the convergence of the DIM equations to the sharp interface equations as 

both W  and M  approach zero; (2) the convergence of the discrete numerical 

solutions to the continuum solutions of the DIM equations. The second point is just 

the same as the usual numerical solutions. But the overall convergence property 

depends on both, and it is much more delicate than the second.  

 

First, some discussions are provided on the first issue. As noted in Subsection 1.1.2, 

the Peclet number, σMLUPe cc
2= , is an additional parameter special to DIM. 

Besides, when the bulk FE in Chapter II is used, the interface thickness W  may be 

analytically related to the coefficients in the chemical potential µ ; then the 

momentum and Cahn-Hilliard equations in dimensionless form can be rewritten 

explicitly as, 

( ) ( ) ( )[ ] ( ){ }8313ReRe 221121 φφφφ ∇−−∇−∇+−∇=∇⋅+∂ −−− ChChCauSuuut
rrrr

    (3.1) 
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( ) ( )[ ] ( ){ }8313 22121 φφφφφ ∇−−∇=∇⋅+∂ −− ChChPeut

r
                  (3.2) 

where  

cLWCh=                                                     (3.3) 

is the Cahn number. Both W  and M  are relevant only in the interfacial region, and 

Ch  and Pe determine how the “microscopic” length and dynamics of the interface 

compare with the macroscopic or mesoscopic ones. It may be more appropriate to 

look at the effects of Ch  and Pe  (which may be viewed as some kind of 

“dimensionless W  and M ”). For fluid simulations at large scales, Ch  should be as 

small as possible (ideally, 0→W ) and Pe should be as large as possible (ideally, 

0→M ). In the above two limits, the forcing term in Eq. (3.1) becomes a singular 

one that mimics the surface tension force, and the RHS of Eq. (3.2) vanishes, making 

it a pure advection equation. At the same time, the rates for the two parameters to 

approach zero should be properly adjusted by considering the “micro-dynamics” 

inside the interfacial region and its interaction with the flow. This is a quite complex 

issue. More comprehensive analyses about it are given by Jacqmin (1999). Note that 

as mentioned in Chapter I, sometimes the Peclet number can be defined differently as 

(written in terms of the present symbols), σMWLU cc , which is related to the present 

one as PeChMWLU cc =σ . If that definition is adopted, then the RHS of Eq. (3.2) 

will take a different form as follows, ( ) ( )[ ]8313 22221 φφφ ∇−−∇− ChPe . 

 

According to Jacqmin (1999), it is difficult to know how the solution error compares 

with the truncation error. The actual overall convergence property can be determined 

(probably solely) through numerical tests for individual problems. 
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It should be pointed out that the convergence of the numerical solutions only applies 

for the continuum approach, in which the systems are viewed as continuous fields. 

Even for normal fluid systems at macroscopic scale, it is often not economic to use a 

very fine mesh. In the simulations presented later, meshes of intermediate size are 

normally used to achieve a good balance between accuracy and efficiency (sometimes 

the accuracy may be compromised). When the system scales down to micrometer or 

even nanometer level, it may be no longer appropriate to reduce the grid size and 

interface thickness infinitely because they can be not-that-small as compared with the 

system size or some notable parts of the system (such as the grooves or pillars on 

rough surfaces). It is in the small scale systems that the continuum description meets 

the discrete molecular description.  

 

Although the target macroscopic equations of LBM are the same as DIM, LBM 

contains some elements that are not present in DIM or different from DIM. That 

makes the convergence analysis even more complicated, especially for small scale 

flows. As pointed out by Sbragaglia et al. (2006), the continuum description of LBM 

is still unknown when strong surface fluctuations are present. Hence, the problems are 

especially challenging and many issues remain open, including the numerical 

convergence. 

 

3.3 Validations for single phase flows 

Next, simulation results of several typical problems are given for validation purposes. 

First, the MPMC codes are used to study some single phase incompressible flows to 

verify that they reduce to the simpler simulators when only one phase is present. 

Theoretically, single phase flows are special cases of MPMC flows. Thus, MPMC 
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models presented above should be able to simulate single phase flow problems. In fact, 

MPMC models include more factors in single phase flow simulations, for instance, 

the wetting property of the wall, which becomes more important as the systems scale 

down. But in the following, the wetting property is fixed to be neutral wetting so that 

the results can be compared with those obtained from pure single phase codes. The 

Couette, Poiseuille and driven cavity flows are simulated by the FE2-LBM-B, LDR-

LBM and FE2-LBM-B respectively. In all these simulations, the initial order 

parameter fields were set to be uniform with 1=φ  for FE2-LBM-B or *φφ =  for 

LDR-LBM. 

 

3.3.1 Couette flows 

The problem is depicted in Fig. 3.1. The upper wall at uyy =  is moving constantly 

with uU  and the lower wall at lyy = , lU . The flow is independent of x . Hence the 

velocity field is simplified as 

( ) xiyuu
rr = ,                                                  (3.4) 

and the full Navier-Stokes equations are simplified as 

0
2

2

=
dy

ud
.                                                      (3.5) 

The boundary conditions are  

lyy
Uu

l
=

=
, uyy

Uu
u

=
=

.                                     (3.6a, b) 

The velocity profile is a linear function of y , 

( ) ( )l
lu

lu
l yy

yy

UU
Uyu −

−
−+= .                                          (3.7) 

In the simulations (by the FE2-LBM-B model), a mesh of size 4010×  was used, and 

the upper and lower wall velocities were 01.0=uU  and 01.0−=lU  respectively. Fig. 
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3.2 compares the velocity profile from simulation with that from Eq. (3.7). It is 

obvious that the numerical solution matches the analytical one. 

 

3.3.2 Poiseuille flows 

The basic setup for the Poiseuille flow study is almost the same as shown in Fig. 3.1. 

But now both the upper and lower walls are stationary and a uniform force field is 

applied in the −x  direction, 

xigg
rr = .                                                    (3.8) 

For such a problem, the velocity profile is also a function of y . The simplified NSEs 

read, 

0
2

2

=+ g
dy

udν .                                              (3.9) 

The boundary conditions are  

0=
= lyy

u , 0=
= uyy

u .                                  (3.10a, b) 

Then, the analytical solution is found to be, 

( ) ( )( )lu yyyy
g

yu −−=
ν2

,                                    (3.11) 

with the maximum velocity being, 

( )2
max 82 lu

ul yy
gyy

uu −=






 +=
ν

.                           (3.12) 

In the simulations (by the LDR-LBM model), a mesh of size 3210×  was used, the 

magnitude of the body force was 510−=g , and the kinematic viscosity, 125.0=v . 

Fig. 3.3 gives the comparison between the numerical and analytical solutions. It is 

easily found that they agree with each other. 
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3.3.3 Pressure driven flows in a 3D rectangular channel 

The Couette and Poiseuille flows are the simplest two cases that have linear and 

parabolic velocity profiles respectively. Next a more complicated case is studied. It is 

the flow inside a 3D rectangular channel driven by a uniform pressure difference. The 

channel is infinitely long in −x direction, yH2  wide in −y direction, and zH2  high 

in −z direction. The pressure difference is in −x direction, and for simplicity, is 

modeled as a body force (its magnitude denoted as gρ ). For this problem, there exists 

an analytical solution for the velocity profile in the zy −  plane (van der Graaf et al. 

2006) 

( ) ( ) ×=
η

ρ
8

2
,

2 gH
zyu z  

( ) ( )( )
( ) ( )( )














−

−−+






 −− ∑
∞

=1
3

2

cos
cosh

cosh1
41

k
zzk

zyk

zyk

k

k

z

z HHz
HH

HHy

H

Hz α
α

α
α

 (3.13) 

where πα
2

12 −= k
k  ( L,2,1=k ). Note that the coordinates y  and z  are in the 

following ranges: yHy 20 << , zHz 20 << . The terms of the infinite series decrease 

quickly as the index k  increases, thus in calculation only the first five terms are kept. 

Since the solutions are independent of x , periodic boundary is used in this direction. 

The model is FE2-LBM-B. Figs. 3.4 (a & b) compare the velocity profiles along two 

center lines ( zHz =  and yHy = ) with the analytical solutions. The mesh is 

40203 ×× , the pressure gradient, 610−=gρ , and the viscosity, 1.0=η . Again, very 

good agreements between them were obtained. 
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3.3.4 Driven cavity flows 

To test the ability of the codes to study even more complex single phase problems, the 

2D driven cavity problem is chosen. The problem setup is shown in Fig. 3.5. The left, 

right and lower walls are stationary and the upper wall moves at a constant velocity 

U . For such a problem, no simplifications can be made on the NSEs.  

 

A case with the Reynolds number 1000Re=  was studied by the FE2-LBM-B code 

with a mesh 128128× , and another set of code using the vorticity-stream function 

formulation of the NSEs with a mesh 127127× 7. To decide whether steady states are 

reached, the following criterion was used, 

ε<
res

u
r

                                                     (3.14) 

where ε  is a small parameter (chosen to be 610−  here), and the quantity 
res

u
r

 

reflecting the change of the velocity field in two consecutive steps ( ntt = , 1+nt ) is 

defined as, 

∑∑ ++ −=
ji

n
ji

ji

n
ji

n
jires

uuuu
,

1
,

,
,

1
,

rrrr
                                   (3.15) 

with 22 vuu +=r
 being the module of the velocity. Fig. 3.6 compares the evolution 

of 
res

u
r

 by the two methods. It is seen that the vorticity-stream function formulation 

reaches the steady state faster and takes less computation time than LBM. As 

mentioned in Chapter I, this problem with LBM may be somewhat alleviated when a 

smaller sound speed is chosen. Once the steady state is reached, the two methods 

provide very close results as shown in Fig. 3.7 which compares the velocity profiles 

                                                 
7 On each time step, the discrete Fourier transforms were used as a solver; thus, no iteration 
was needed. 
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along the central horizontal and vertical lines respectively. Note that in Fig. 3.7 the 

spatial coordinates are scaled by the side length. 

 

3.4 Validations for MPMC flows 

In the above, a few validation cases were provided for single phase flow problems and 

good comparisons with either the analytical solutions or the numerical solutions by 

other methods have been obtained. Now some more cases will be investigated in the 

MPMC framework. They include:  

(1) the Laplace law verification for a stationary droplet,  

(2) the surface layers near hydrophilic and hydrophobic walls,  

(3) the study of static CAs, 

(4) the capillary waves,  

(5) a droplet in a shear flow. 

Note that in the first three cases, the systems are stationary, and in the other two, 

flows are present. 

 

3.4.1 Laplace’s law verification 

The verification of Laplace law for a stationary droplet or bubble is a basic and the 

mostly used validation case for MPMC fluid systems. The Laplace law has already 

been given in Eq. (2.83). Here only some results are presented. The initial setup is 

simple: in the center of a square domain, there is a circular droplet. The parameters 

for the simulations are given in Table 3.1, and Fig. 3.8 shows the evolution of the 

deviation in surface tension, σσ∆ , where σσσ −=∆ num  is the absolute deviation 

(with numσ  being the numerical surface tension calculated from Eq. (2.83)). The 

specific model is FE2-LBM-B. 
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From Fig. 3.8, it is seen that the relative deviation was %100−  at the beginning. This 

is because the order parameter field was initialized by Eq. (2.81), thus  

1≈inφ , 1−≈outφ                                                (3.16) 

which lead to a negligible pressure difference and thus 0=numσ . During the 

numerical evolution, the order parameter field is relaxed toward the equilibrium state 

in which the order parameters satisfy the condition given by Eq. (2.83). Note that the 

inside and outside order parameters were sampled at the droplet center and some point 

that is WRd 2+  away from the center respectively, thus both are safely outside the 

interfacial region. The evolutions of the maximum and minimum values of φ  are 

plotted in Figs. 3.9 (a & b) respectively, and the profiles along the center horizontal 

line midyy =  at the beginning and the end are shown in Fig. 3.10. From these figures, 

some fundamental features of DIM mentioned before are clearly reflected. 

 

3.4.2 Surface layers near hydrophilic and hydrophobic walls 

When the wall is not neutral wetting ( 0~ ≠ω ), the density or order parameter at the 

wall, σρ  or σφ , is different from the value in the bulk region. This means that, even if 

only one fluid phase or component is present, there is a near-wall transition layer 

developed for hydrophilic and hydrophobic walls. Such a layer is the interface 

between the fluid phase and the solid phase, and it also has a thickness of several grid 

points (similar to W ). For a suitably given ω~  and a certain bulk fluid, there exists 

analytical solutions for this surface layer. For example, when the bulk fluid (infinitely 

far away from the wall) corresponds to 1=φ  and the parameter ω~  is negative, the 

analytical solution is 

( ) ( ){ }σφφ 1tanh2tanh −+= Wx                                         (3.17) 
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with the order parameter at the wall given by 

ωφφσ
~13 −== .                                             (3.18) 

Note that the above results may be obtained in a way similar to that in deriving Eqs. 

(2.57) and (2.118) during which Eq. (2.54) and (2.55) are used. More details are found 

in (Papatzacos 2002) and the analogy between FE1 and FE2 is reflected through Eqs. 

(2.66-73). In what follows, simulation results of this example are compared with the 

analytical solutions for the FE2-LBM-B model. The problem is actually one-

dimensional but here the two-dimensional model (specifically, D2Q9) is used with 

only three grid points in the other side (along −y direction). The parameter that 

determines the wettability is 0.334933~ −=ω , which would correspond to a CA 

0120=θ  if both components are present. On the wall with given wettability, the way 

previously described is used to enforce the wetting condition; on the other side, to 

mimic the situation infinitely far away, the following conditions are imposed, 

1=
∞

φ , 0=∇
∞

φ , 02 =∇
∞

φ ;                         (3.19a, b, c) 

1=
∞

ρ , 0=
∞

u
r

;                                       (3.20a, b) 

∞∞
= eq

ii ff , 
∞∞

= eq
ii gg ;                                (3.21a, b) 

for the order parameter field, the hydrodynamic field and the DFs respectively, where 

the equilibrium DFs are calculated using the given macroscopic conditions. Figs. 3.11 

(a & b) compare the LBM results with the analytical ones for 3=W  and 9=W  

respectively. It is found that the numerical solutions agree with the analytical ones 

fairly well and the agreement becomes better as the interface thickness increases. 

Similarly, in Figs. 3.12 (a & b), comparisons for the hydrophilic case 0.334933~ =ω  

( 060=θ ) are shown. As mentioned earlier, in many simulations the interface should 

be made as thin (compared to the characteristic length scale) as possible, thus it is not 
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practicable to use an interface as thick as spanning nine grid points. Fortunately, an 

interface with 3=W  appears to be already sufficiently thick. 

 

3.4.3 Static CA study 

As given by Eq. (2.123), when two phases or components are near the solid wall, the 

CA is related to the parameter ω~ . Both FE2-LBM-B and LDR-LBM have been 

validated for this problem. Here the results for LDR-LBM are given. The initial 

condition is a semicircular stationary droplet sitting along the center line on the lower 

wall. The upper wall is neutral wetting, and on the left and right sides periodic 

boundaries are assumed. After the system reaches its equilibrium state, the droplet 

takes an arc shape (for example, see Fig. 3.13). For convenience, xR  is used to denote 

half of the distance between the two three-phase points on the lower wall and yH  

denotes the height of the droplet. Then, the CA θ  can be calculated using xR  and yH  

as, 










+
−−= −

2

2
1

1

1
cos

r

r

k

kπθ                                               (3.22) 

with yxr HRk = . In the above formula, θ  is expressed in radian. Quite a number of 

tests have been done in the range [ ]00 165,15  and with an spacing of 015 . The initial 

droplet radius is 25 . The mesh is 50101×  for the cases with θ  in the range 

[ ]00 135,45 , and 80201×  for the other cases. The comparisons of the CAs calculated 

by Eq. (3.22) using the numerically measured xR  and yH  with the theoretical values 

calculated from Eq. (2.123) are given in Fig. 3.14. It is seen that all of them are in 

good agreements (the deviation 03<∆θ ) with each other except for =θ 015  and 0165 . 
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The reason for the deviations may be that when the CA is closer to 00  or 0180 , it 

becomes more difficult to resolve the details in the interfacial region. 

 

3.4.4 Capillary wave study 

Next, a benchmark problem for dynamic MPMC fluid systems - the capillary wave 

generated by perturbing a flat interface - is studied. The problem is shown in Fig. 3.15. 

The distances from the upper and lower walls to the unperturbed fluid interface are 

both H  and the width of the domain is λ . For simplicity, the upper and lower fluids 

are assumed to have the same density and viscosity. At the beginning ( 0=t ), a 

sinusoidal perturbation is applied as, 

( ) ( )kxAxh p sin=                                                 (3.23) 

where λπ2=k  is the wavenumber and pA  is the amplitude (being small). When H  

is much larger than λ  and the fluids are both inviscid, the frequency 0ω  of the 

interface oscillation can be obtained as, 

( )ρσω 23
0 k=                                             (3.24) 

When the fluids are slightly viscous, the oscillation will be damped. Under some 

conditions, an approximate analytical solution can be obtained for the displacement 

cwa  scaled by the initial (maximum) value as (note here only the simplified solution 

for equal density fluids is given and more general solutions can be found in the work 

by Kim (2005)), 

( ) ( )
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where 

tt 0ω=′ , 0
2 ωνε k=                                          (3.26) 
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are the scaled time and dimensionless viscosity, iz  are the four roots of the algebraic 

equation, 

( ) 02
0

3

0
2

0
3

0
4 =++−− ωωεωεωε zzzz                            (3.27) 

and  

( )( )( )1413121 zzzzzzZ −−−= , ( )( )( )2124232 zzzzzzZ −−−= ,     (3.28a, b) 

( )( )( )3231343 zzzzzzZ −−−= , ( )( )( )4342414 zzzzzzZ −−−= ,     (3.28c, d) 

During the computation, the interface position (defined as the point where 0=φ ) 

along the vertical line 4λ=x  was monitored. To determine the position accurately, 

linear interpolation scheme was used. Fig. 3.16 compares the analytical results with 

the numerically captured interface evolutions using (1) a mesh 2128  with 5=W , 

10
~ =M ; (2) a mesh 2256  with 5=W , 20

~ =M ; (3) a mesh 2512  with 6=W , 

20
~ =M . It is seen that initially (for the first half period) all the numerical solutions 

agree with the analytical one very well, and the deviations become larger as time 

increases. Note that this trend was also observed by Kim (2005) when the NSCH 

equations were directly solved. According to Kim (2005) and references therein, the 

error between the numerical and analytical results is affected by the ratio px Aδ  (i.e., 

the ratio between the mesh size and the wave amplitude). As time increases, the 

amplitude of the wave becomes smaller and it becomes more difficult to resolve the 

interface positions accurately. The results on finer meshes seem to be better. 

 

3.4.5 Droplet in a shear flow 

Finally, a 3D droplet between two parallel moving walls is studied. More details 

about this problem can be found in the work by van der Graaf et al. (2006). The initial 

condition is shown in Fig. 3.17. The droplet radius is R . The upper and lower walls, 
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separated by a distance H , are moving at uU  and lU  respectively. This induces a 

shear flow between them and the shear rate γ&  is given by, 

 ( ) HUU lu −=γ&                                            (3.29) 

Then the Capillary number for this problem is specifically defined as, 

σγη RCa &=                                                 (3.30) 

The shearing causes the droplet to deform. When Ca  is small, the droplet can reach a 

steady state in which it takes an elliptic shape. Suppose the major axis of the ellipse is 

LR  and the minor, BR , then the deformation parameter fD  is calculated by, 

( ) ( )BLBLf RRRRD +−=                                         (3.31) 

Under very low Ca  in an unbounded shear flow, there exists a theoretical relation 

between the deformation parameter and the Capillary number (see the work by van 

der Graaf et al. (2006) and references therein), 

3235CaD f =                                                 (3.32) 

Note that the relation given here is for the special cases in which the two fluids have 

the same viscosity. A series of simulations for Ca  in [ ]3.0,05.0  with a spacing 05.0  

have been performed using the FE2-LBM-B model. The mesh is 404080 ××  (same 

as one of the test series by van der Graaf et al. (2006)), and the droplet radius is 10. 

The deformation parameter was manually measured using the image tools in GIMP8 

after the order parameter field reaches steady. The results are shown in Fig. 3.18. For 

comparison, the theoretic results from Eq. (3.32) and those by van der Graaf et al. 

(2006) are also plotted. Note that both simulation results differ from the theoretical 

ones, probably because the assumption that the two shearing walls are infinitely far 

away is not satisfied and the boundary walls have non-negligible effects on the flow. 

                                                 
8 http://www.gimp.org 
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But it is seen that the present results agree well with those by van der Graaf et al. 

(2006) when Ca  is small (e.g., in [ ]2.0,05.0 ). For larger Ca , fD  obtained by the 

present simulation increases faster. Considering that there exists a critical Ca  (about 

4.0  as given by van der Graaf et al. (2006)) under which the droplet breaks up, one 

may tend to postulate that the CaD f −  relation becomes nonlinear for large Ca . 

From this point of view, the present results seem to reflect such a transition better. It 

is noted that in the present work, the data was extracted when the change in the order 

parameter field became sufficiently small whereas in the work by van der Graaf et al. 

(2006) the data was extracted after certain number of steps. Differences between the 

two sets of simulations may also be due to that not all the parameters (e.g., the Cahn 

number and the Peclet number) match exactly. But the above evidences should be 

sufficient to verify that the present model and code work well for this problem. 

 

3.4.6 Test of convergence 

In the above study of capillary wave, some results on different meshes have been 

presented. To further investigate the convergence issue, a droplet spreading on 

hydrophilic surfaces was studied using FE2-LBM-B model. Initially there is a 

semicircular droplet (with CA 090 ; see Fig. 3.19) sitting on a hydrophilic substrate 

with equilibrium CA 015 . The droplet tends to spread on this substrate towards its 

equilibrium state. Three different meshes with increasing resolutions, 100200× , 

200400× , and 400800× , were used to calculated this problem. The nominal 

interface thickness W  and mobility M
~

 remain the same ( 3=W  and 10
~ =M ). Fig. 

3.20 compares the contour of the order parameter field in the range [ ]8.0,8.0−  with 

neighbouring lines separated by 2.0=∆φ  for the three test cases. It is obvious that on 
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a finer mesh the interface apparently become thinner, and it is seen that the interfacial 

regions on the finer meshes almost fall within those on the coarse meshes, indicating a 

good convergence property. In addition, the velocity vectors for the three cases are 

shown in Fig. 3.21. It is found that the flow fields on different meshes look almost the 

same as well. It is noted that in the above figures the time and space have been 

properly rescaled so that the comparisons are made at the same time and on the same 

coordinate. 

 

3.5 Parallel implementation and performance 

The underlying theories of LBM have been introduced in the above. In this subsection, 

a practical issue, the parallel implementation and performance of LBM, will be 

addressed. LBM is very suitable for parallel computation, and its implementation is 

relatively simple due to the intrinsic properties of the collision and streaming 

procedures (Succi 2001). Through numerical tests, LBM has been found to be able to 

achieve very nice speedup, especially for some 3D problems. 

 

3.5.1 Parallel implementation of LBM simulations 

The parallel implementation of LBM uses the domain decomposition strategy. It is 

illustrated in Fig. 3.22 for a division in the −x direction. After the whole domain is 

divided into several subdomains, the LBM procedures are carried out in each 

subdomain, but the distribution functions (and the order parameter for MPMC fluids) 

from neighbouring subdomains are required as boundary conditions at each time step. 

The exchange of the information is realized using the Message Passing Interface (MPI) 

library9 (available for both C and FORTRAN). 

                                                 
9 http://www-unix.mcs.anl.gov/mpi 
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3.5.2 Performance of parallel LBM codes 

Like in most parallel computations, the performance of a parallel LBM code depends 

on the ratio of the computation time over the communication time, commcomp TT , which 

is related to a number of factors including the numerical algorithm and problem 

geometry. As compared with serial computations, the communication time is 

additional. Larger commcomp TT  means smaller percentage of the communication time, 

and the speedup becomes better. The above division in the −x direction is most 

suitable for a problem with large aspect ratios ( 1>>yx LL , and 1>>zx LL ). For a 

given problem using the above decompositions, when the number of subdomains (of 

equal size) increases, the size of each subdomain decreases which reduces the 

computation time. Then, the ideal speedup becomes difficult to reach. Thus, for each 

individual problem with a specific decomposition, there is an optimal number of 

subdomains. Fig. 3.23 gives an example for the variation of computation time with the 

number of subdomains in the simulation of a 3D droplet by FE2-LBM-B. Note that in 

the simulations using the parallel codes, the optimal number of nodes was first 

determined by running the specific simulation for a relatively short time (e.g., 1000 

time steps). Then, it was picked for the complete simulation. 

 

3.6 Summary 

To summarize, the details of LBM simulation and implementation have been 

described and they are verified through comparisons with analytical results or other 

simulation work for a number of problems. Some other key issues, such as stability 

and convergence, have also been briefly addressed. 
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Table 3.1. Parameters for simulation in Laplace law verification 
 

Parameter Value 
Domain side length 65 
Surface Tension  0.001 
Interface Width  3 
Kinematic Viscosity 0.01 
Mobility  10 
Initial droplet radius 16 

 
 
 

 
 

Fig. 3.1. Illustration of the Couette flow 
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Fig. 3.2. Comparison of Couette flow velocity profile (numerical: symbol; analytical: 
line) 
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Fig. 3.3. Comparison of Poiseuille flow velocity profile (numerical: symbol; 
analytical: line) 
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Fig. 3.4. Comparison of velocity profiles along two center lines ( zHz =  and yHy = ) 

for flows in a 3D rectangular channel (numerical: symbol; analytical: line) 

 
 

Fig. 3.5. Illustration of the driven cavity flow 
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Fig. 3.6. Comparison of the convergence history (the evolution of 
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u
r

)  (LBM v.s. 

the vorticity-stream function formulation) 
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Fig. 3.7. Comparison of velocity profiles along the two center lines, 5.0=y  and 

5.0=x , for the driven cavity flow (LBM v.s. vorticity-stream function formulation) 
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Fig. 3.8. Evolution of the deviation in surface tension for a stationary droplet 
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Fig. 3.9. Evolution of the maximum and minimum values of the order parameter 
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Fig. 3.10. The center order parameter profiles before and after the equilibration  
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Fig. 3.11. Comparison of order parameter profiles for the surface layers near a 
hydrophobic wall 
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Fig. 3.12. Comparison of order parameter profiles for the surface layers near a 
hydrophilic wall 
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Fig. 3.13. Illustration on the calculation of θ  from xR  and yH  
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Fig. 3.14. Static CA validation (numerical v.s. theoretical) 

 
 

Fig. 3.15. Problem setup for capillary wave study 
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Fig. 3.16. Comparison of the interface position evolution for a capillary wave by three 
different simulations and the analytical solution 

 
 

Fig. 3.17. Illustration of the droplet in a shear flow 
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Fig. 3.18. Comparison of the variation of the deformation parameter with the capillary 
number for a sheared droplet 
 
 
 
 
 
 
 
 

 
 

Fig. 3.19. Initial condition in the convergence test for droplet spreading 
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dotted: 200-100-W3-M10
dashed: 400-200-W3-M10
solid: 800-400-W3-M10

 
 

Fig. 3.20. Comparison of the interface regions for three simulations of droplet 
spreading with different mesh sizes 
 

 
 
 
 
 

 
                          (a) 100200×                                                (b) 200400×  

 
(c) 400800×  

 
Fig. 3.21. Comparison of the flow fields for three simulations of droplet spreading 
with different mesh sizes 
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Fig. 3.22. Illustration of domain decomposition along horizontal direction for the 
parallel implementation of LBM 
 

  
 
Fig. 3.23. Variation of the computational time with the number of nodes used for the 
evaluation of a parallel LBM code 
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Chapter IV 

Investigation of MPMC Flows near Rough Walls10  

 

 

In the last chapter, many benchmark problems have been studied with the lattice 

Boltzmann models used in this thesis (specifically, FE2-LBM-B and LDR-LBM). 

Those results have confirmed that the models and codes can perform reasonably well. 

In this chapter, the LDR-LBM model will be used to investigate primarily the effects 

of surface roughness and wettability on the flows. This work was initially inspired by 

the interesting phenomenon called Lotus Effect. 

 

4.1 The Lotus Effect 

In recent years more and more researchers become interested in the Lotus Effect 

(Barthlott & Neinhuis 1997, Patankar 2004, Marmur 2004, Furstner et al. 2005). 

Water droplets on surfaces with Lotus Effect show very high CAs, and they are easy 

to roll off and experience small hysteresis (Barthlott & Neinhuis 1997). Some 

preliminary studies have found that, besides the interfacial and wetting properties, the 

micro- and nano-scale structures on lotus leaves may be essential for this intriguing 

phenomenon (Patankar 2004). This justifies the topography of the wall to be another 

important factor. 

 

                                                 
10 Materials in this chapter have been published in 
[1] Y. T. Chew, J. J. Huang, C. Shu and H. W. Zheng. Proceedings of “Enhancement and 
Promotion of Computational Methods in Engineering and Science X” (2006). 
[2] J. J. Huang, C. Shu, Y. T. Chew and H. W. Zheng. International Journal of Modern 
Physics C, 18 (4), pp. 492-500 (2007). 
[3] J. J. Huang, C. Shu and Y. T. Chew. Physics of Fluids 21, pp. 022103 (2009). 
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It has been reported that roughness may apparently increase the hydrophobicity or 

hydrophilicity of the surface. Considerable efforts have been spent on fabricating and 

investigating superhydrophobic surfaces with certain small scale structures such as 

pillar arrays (Yoshimitsu et al. 2002, Jopp et al. 2004, He et al. 2004). The Cassie-

Baxter’s theory (Cassie & Baxter 1944) and Wenzel’s theory (Wenzel 1949) are two 

well known theories which may explain the superhydrophobicity of such textured 

surfaces for droplets filling in or suspended on these structures respectively (though 

their validity is still questionable). It is noted that most of previous studies on this 

kind of problem were presented in the surface chemistry community, and they 

focused mainly on the measurements of static CAs, receding and advancing angles, 

and in the theoretical aspect, on calculations of apparent CA through minimization of 

the system FE under certain static configurations (Johnson & Dettre 1964, Eick et al. 

1975, Patankar 2003, McHale et al. 2004a). For the effects of roughness on 

hydrophilic surfaces, it has been observed by McHale et al. (2004b) that drop 

spreading was greatly enhanced on rough hydrophilic surfaces and these surfaces may 

be called superhydrophilic as well. Regarding lotus leaves, it has been generally 

believed that they are intrinsically hydrophobic and the small scale roughness further 

increases their hydrophobicity. However, some other researchers recently proposed 

that in contradiction to previous perceptions, the raw materials of lotus leaves are 

hydrophilic (Cheng & Rodak 2005). The underlying physics might be the so-called 

“roughness-induced non-wetting” (that is, the apparent hydrophobicity is due to the 

small structures) (Herminghaus 2000). 

 

In order to obtain a comprehensive understanding of these surfaces and possibly 

resolve the conflicting issues, it would be desirable to study the flows over surfaces 
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with different wettabilities and small structures, besides measuring some static and 

(limited) dynamic quantities. In this chapter, both 2D and 3D studies of droplet 

motions on rough surfaces (with rectangular grooves in 2D and square pillars in 3D) 

having different wettabilities are reported. Before the results are given, the issue on 

how to implement the wetting boundary condition (WBC) on such surfaces is first 

addressed. 

 

4.2 WBC on rough surfaces 

When the surface is not smooth, the WBC needs to be modified, specifically on the 

corner points where singularities of the surface curvature occur. Here only boundary 

nodes at the intersection of two perpendicular lines, encountered in 2D grooved 

channels, are discussed in detail (e.g., see Fig. 4.1). Note that the situations for similar 

nodes in 3D surfaces with pillars are much more complicated and are not illustrated 

here. The way to deal with them is through a simple coordinate transformation. That 

is, it is imagined that there virtually exist inclined planes (the dashed lines in Fig. 4.1) 

as a transition between the horizontal and vertical planes. On the transitional nodes, 

the normal and tangential gradients of the density are first evaluated in the inclined 

coordinate system (t , n ), and then transformed into the usual coordinate system 

( x , y ); the Laplacian is just evaluated in (t ,n ). The transformation of the derivatives 

between the (x , y ) and (t ,n ) coordinates can be written as  
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For the upper corner points in Fig. 4.1, the relation between the two coordinate 

systems can be written as, 
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then the transformation matrix can be explicitly written as, 
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For this point, 
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and the Laplacian φ2∇  is evaluated as, 
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For the lower transition points, the neighbouring points at 1,1 −+ ji  and 1,1 +− ji  are 

out of the domain, some additional approximations need to be used, specifically, they 

are 

jiji ,11,1 +−+ ≈ φφ , 1,1,1 ++− ≈ jiji φφ                              (4.7a, b) 

In the simulation, when the transition points are encountered, these formulas are used 

to replace those similar to Eqs. (2.131) to (2.138) in the calculations of the chemical 

potential and the force term in LDR-LBM. 
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Such a way seems to be able to regularize the geometrical singularities naturally and 

has not resulted in any nonphysical phenomena in numerical simulations. Of course it 

is not expected that the finest structures of the surface are accurately resolved; after all, 

truncations at the grid size level are somehow made in such an implementation. 

 

4.3 Two-dimensional study of a droplet driven by a body force over a 

grooved wall 

In this section, simulation results of a 2D droplet moving over a grooved wall will be 

presented. 

 

4.3.1 General description of the problem 

The initial condition is illustrated in Fig. 4.2. The darkest part represents the liquid, 

the lightest parts represent the gas, and the parts with darkness in between represent 

the solid walls or solid between grooves. Initially the liquid is stationary on the flat 

part of the channel and takes a rectangular shape. A constant body force of magnitude 

g  is applied in the liquid region ( 0>φ ) to drive the droplet to move over the grooved 

part. In Fig. 4.2, only an inclined force is shown, and the inclination angle is, 045− , 

with respect to x  direction. Another horizontal force (i.e., inclination angle 00 ) is also 

tested. For both, the magnitude of the horizontal component is 210 6− . On the left 

and right sides periodic boundary conditions are applied. Some common parameters 

(in LU) for most simulations are listed in Table 4.1. Note that the upper wall is kept 

stationary and neutral wetting ( 0~ =ω , 090=θ ). The size of the initial liquid segment 

is 55135× . 
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In this study, the main focus is on the flow pattern and the average velocity of the 

droplet, which is calculated by 
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where the function ( )φN  is defined as 
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The important dimensionless parameters, the Reynolds number and capillary number, 

are estimated using the liquid properties (viscosity 005.0=Lν , surface tension 

001.0=σ ), the channel height of the flat part (55) and a typical velocity of the 

droplet ( 4104 −× ). Then, it is found that 4.4Re= , 3102 −×=Ca . These indicate a 

rough regime which most of the following 2D simulations fall in. Here it may be 

helpful to provide some more information on the lattice units (LU) so that the 

conversions of variables between the physical system and the simulation system using 

LU are clear for MPMC flows. As introduced in Subsection 2.1.1.2, in LBM the 

lengths are measured by xδ  and the velocities are measured by the lattice velocity c . 

That sets the time unit as cxt δδ = , and the kinematic viscosities are thus measured 

by xcδ . In addition, for MPMC flows a reference density rρ  is introduced (here 

using the liquid density), and then the surface tension is measured by xr c δρ 2 . 

  

4.3.2 Effects of surface tension 

In this subsection, the effects of surface tension on the flow pattern are investigated. 

For conciseness only the results for all the walls being neutral wetting ( 090=θ ) are 

presented, and the inclined force is applied. Fig. 4.3 shows the comparisons of the 

evolution of liquid velocity with time for 410−=σ , 310−  and 3105.2 −× . Fig. 4.4 gives 
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the snapshots of the liquid position and configuration every 510  steps for the three 

cases. Using the average velocities at 5102×=t , rough estimations of the capillary 

numbers give 21035.6 −×≈Ca , 31036.1 −×  and 41068.1 −×  for the three cases. 

 

From Fig. 4.3, it is seen that the droplet velocity keeps increasing when 410−=σ  

whereas for 310−=σ and 3105.2 −× it first increases, then almost reaches a constant 

and after that it keeps decreasing. Such differences can be understood based on Fig. 

4.4. When the surface tension is small, the liquid experiences some fingering process 

and finally detaches from the wall surface due to the change of the channel geometry 

from the flat to the grooved part. This is an outcome of both the body force and the 

pinning at the transition point under the given conditions. Having less contact with the 

wall and thus experiencing very small drag, the droplet is accelerated quickly. In 

contrast, when the surface tension increases, it is unlikely to see the fingering and the 

pinning at the transition greatly decelerates the droplet as found for the two cases with 

310−=σ and 3105.2 −× . In fact when 3105.2 −×=σ , the droplet is almost stuck at the 

transition point. These results have clearly demonstrated that as the scale becomes 

smaller the surface tension and wall geometry become more and more important in 

determining the flow characteristics. 

 

4.3.3 Effects of lower wall wettability 

The effects of lower wall wettability with the groove size fixed as 1523×  are 

presented here. The inclined force is used. The wettability of the lower wall was 

varied to be hydrophilic ( ≈θ 045 , 060 ), neutral wetting ( 090=θ ) and hydrophobic 

( ≈θ 0120 , 0135 ). 
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Fig. 4.5 gives the comparison of the average liquid velocity under different 

wettabilities of the lower wall. A general trend observed from Fig. 4.5 is that the drag 

on the droplet decreases as the hydrophobicity of the lower wall increases. Fig. 4.6 

shows the comparisons of the snapshots of the liquid positions and configurations at 

5106×=t  for the five cases. It is seen that as the hydrophobicity increases the contact 

area between the drop and the lower grooved wall decreases. This may explain the 

above drag variation with the wettability. 

 

For the most hydrophilic case ( 045≈θ ), the liquid almost completely fills the grooves. 

For 060≈θ  the liquid no longer spreads deep enough to reach the bottom side of the 

groove and some concave arcs (as seen from the liquid side) are formed between the 

left and right sides of the grooves. For this case, even when the lower wall is 

hydrophilic, the apparent advancing angle appears much greater than 090 . This is in 

line with the idea of “roughness-induced non-wetting” under a dynamic situation. It is 

noted that this does not contradict with the hydrophilic property of the wall. In fact, if 

measured locally (down to the sub-groove scale), the CAs are still less than 090  (see 

Fig. 4.7). Of course, whether such a phenomenon occurs should depend on the 

specific geometry of the groove. This issue will be investigated later. For the neutral 

wetting case ( 090=θ ), the droplet only “skips” over the top sides of the “islands” 

between neighboring grooves. When the hydrophobicity increases to 0120≈θ , the 

droplet touches only some of the “islands” (not shown here) during the course over 

the grooved parts. When it is not in touch with the “islands”, the amplitude of the 

oscillation in the velocity is reduced (see Fig. 4.5). For the most hydrophobic case 

( 0135≈θ ), the liquid is lifted and attaches the upper wall completely. 
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4.3.4 Effects of body force direction 

To investigate how the direction of the body force affects the simulation outcome, the 

two ways of applying the body force ((1) inclined at 045  with magnitude 610− ; (2) 

horizontal with magnitude  210 6− ) are compared. As mentioned above, the 

horizontal component is kept the same whereas in the first case there is a vertical 

component that may affect the contact between the droplet and grooved wall. It is 

noted that here the droplet weight is not considered explicitly. Since it is found in the 

simulations that the force effects may be quite different under different wetting 

conditions, the results under three different wall wettabilities ( 045=θ , 090  and 0135 ) 

are presented here. 

 

Fig. 4.8 shows the droplet velocity evolutions for the six cases. When the wall is very 

hydrophilic, the droplet moves faster under the inclined force than the horizontal one. 

But for neutral-wetting and hydrophobic walls, the horizontal force drives the droplet 

to move faster. These observations are rather interesting. By noting that the downward 

component of the inclined force facilitates the contact between the droplet and the 

lower wall and thus may increase the drag, it is not difficult to explain the cases with 

=θ 090  and 0135 , but the hydrophilic case is a bit counter-intuitive. A plausible 

understanding could be reached after a close look at the droplet-groove interaction 

(see Fig. 4.9). Fig. 4.9 compares how the droplet moves across the first few grooves 

for the hydrophilic and neutral-wetting cases. When the lower wall is not very 

hydrophilic, the droplet just moves over the grooves. Hence, the less the contact, the 

faster the droplet runs. But if the wall is sufficiently hydrophilic, the droplet spreads 

into the grooves and reaches the bottom surface. During its passing over a groove, the 

advancing interface experiences substantial reconfigurations, in contrast to the less-
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hydrophilic cases. Such a process seems to accelerate the droplet (see the 

corresponding “bumps” on Fig. 4.8) and under similar conditions the droplet-wall 

contact becomes a plus. That may be the reason why the droplet moves faster under 

the action of the inclined force for 045=θ . 

 

Another important finding is that: for the hydrophilic case the inclined force helps the 

droplet overcome the pinning at the transition point (from flat to grooved part). This is 

probably because the vertical component of the force tends to cause the downward 

motion of the interface and with it the energy barrier at the transition point is easier to 

overcome. Obviously, the force may affect the droplet motion significantly. However, 

it is not viable to try all the possibilities. In the following subsections, only one of the 

two ways of applying the force will be focused.  

 

4.3.5 Effects of density ratio 

As mentioned above, the study in this chapter is based on a model for multi-phase 

flows with large density ratio by Zheng et al. (2006); thus it allows the study on the 

effects of density ratio over a wide range. Before carrying out any specific 

investigations, it is helpful to analyze a liquid droplet immersed in a gas medium in 

the presence of a uniform force field g  (e.g., gravity). Suppose that the droplet 

volume is LV . At zero velocity, the net force acting on it is estimated to be 

gVgV LGLL ρρ − . When Lρ  is much larger than Gρ , one may apply a force on the 

liquid part only with the force density modified to be ( )gLG ρρ−1  to study the 

droplet motion. In the following, not only is the gas density Gρ  modified ( Lρ  fixed to 

be 1), but also the magnitude of driving force is changed accordingly. Three gas 
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densities were tested, =Gρ 0.001, 0.01 and 0.1 (for which the density ratios are 1000, 

100 and 10 respectively). The corresponding force densities were ( )gg ≈999.0 , 

g99.0  and g9.0 . The inclined force was used. The CAs tested include =θ 045 , 090  

and 0105 , but only the typical results for =θ 045  and 0105  are shown below.  

 

Fig. 4.10 shows the average liquid velocities under the above different density ratios 

for =θ 045 and 0105 . It is seen that the liquid velocity is slightly lower when 

=Gρ 0.01 than =Gρ 0.001, but there is a notable decrease when =Gρ 0.1. However, 

if speaking of order of magnitude, the decrease of density ratio does not lead to 

significant change of droplet velocity. On the other hand, the change of lower wall 

wettability seems to cause much larger variations (e.g., see the cases for =θ 045  and 

0105  in Fig. 4.10). 

 

When the density ratio is varied, there may be appreciable differences in the interface 

positions at a given time. Fig. 4.11 compares the interface snapshots for the three 

density ratios at 610  time steps for =θ 045 . The difference in the advancing interface 

between =Gρ 0.001 and 0.1 appears to be the largest. At the same time, it is 

interesting to note that the interfaces inside the grooves (after the liquid passes them) 

have only negligible differences. This indicates that the density ratio mainly affects 

the speed of the droplet. Of course, these discussions are held in the present modeling 

framework. Under other conditions or setups, the density ratio could become a more 

critical factor. 
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4.3.6 Effects of groove width and depth for neutral-wetting and hydrophobic 

walls 

To investigate the effects of groove width, grooveW , and depth, grooveH , the following 

two values (23, 16) for the grooveW , and (15, 5) for the grooveH  with neutral-wetting and 

hydrophobic walls have been tested (only 0135≈θ  is presented for the hydrophobic 

case), and the inclined force is used. Including the previous test, there are totally three 

cases being compared ( =× groovegroove HW 1523× , 1516×  and 516× ). It has been 

found that the groove geometry only affects the droplet motion slightly when the 

lower wall is not so hydrophilic. 

 

When the lower wall is neutral-wetting, the droplet only touches the top sides of the 

solid islands between the grooves, irrespective of the groove geometry. From Fig. 

4.12, one can see that the change in the width has relatively stronger effects than the 

change in the depth. This is not unexpected because the liquid does not penetrate into 

the grooves, thus avoiding direct effects of the depth. It is also seen that the droplet 

moves faster when the width increases. This may be due to the fact that it has less 

total contact area with the wall for wider grooves. 

 

As the hydrophobicity of the lower wall further increases ( 0135≈θ ), the droplet 

completely attaches to the upper wall which is always kept at neutral-wetting. As 

found in Fig. 4.12, the changes in groove size do not affect the liquid motion much as 

the liquid has in fact no direct contact with the lower wall. Because the liquid-gas 

interface is very close to the lower wall and the interface has a finite thickness in the 

present model, certain small amount of difference is still recognizable especially for 

different groove widths. 
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4.3.7 Hydrophilic grooved walls: a detailed look 

When the lower wall is grooved, as previously exhibited, the droplet-wall interaction 

is enhanced and there exist more enriched phenomena. In this subsection, detailed 

studies of such flows are given.  

 

4.3.7.1 Effects of groove width and depth for hydrophilic walls 

The above three cases ( =× groovegroove HW 1523× , 1516×  and 516× ) are studied. Fig. 

4.13 shows the comparison of the image sequences every 5102×  time steps. It is seen 

from Fig. 4.13(b) that when the groove width changes from 23 to 16, the droplet only 

penetrates slightly into the groove and no longer touches the bottom (similar to the 

case in the last section with 060≈θ  and groove dimension of 1523× ). This results in 

reduction of the drag because the liquid velocity increases, as seen in Fig. 4.14. It is 

interesting to see that when the depth of the groove is further reduced to be 5, the 

droplet fills the whole grooves again even though the groove width is 16. Unlike the 

case with width 23, the periodic acceleration of the droplet becomes much more 

notable. In fact, as shown in Fig. 4.14, the maximum velocity of the droplet in each 

cycle almost reaches the initial maximum. The reason may be that it takes less time 

for advancing three-phase line to move across the vertical part of the groove when the 

groove depth decreases, and thus it reaches the bottom of the grooves earlier and 

benefits more from the spreading on the hydrophilic bottom surfaces. This is similar 

to the scenario of enhanced drop spreading on superhydrophilic surfaces in (McHale 

et al. 2004b). From these observations, it might be fair to conclude that by this driving 

mechanism whether rough hydrophilic surfaces expedites or impedes the droplet 

motion depends on the specific geometry (probably on the aspect ratio of the groove 

depth and width). 



107 

Based on the results shown above and also those reported by Reddy et al. (2005), it is 

expected that both the degree of lower wall hydrophilicity and the groove geometry 

are crucial to determine the degree of droplet filling in the grooves. Next, further 

numerical experiments aiming to clarify this issue are reported. First the groove 

geometry was fixed and the low wall CA θ  was varied to find the critical value 

beyond which the droplet would touch the bottom of the groove. And then θ  was kept 

constant and the groove width and depth were changed. The main focus is on the 

motion across the first groove. Later evolutions involving subsequent grooves are just 

briefly discussed. Also note that the inclined force is applied. 

 

4.3.7.2 Critical CA 

Firstly, the groove is fixed to have a dimension of 1523× . By testing different lower 

wall CAs, the regime in which the critical CA lies is gradually narrowed down. The 

narrowest that has been reached is 00 48.5220.51 << critθ . Fig. 4.15 shows how the 

advancing interfaces move across the first groove. Similar to what were observed 

before, for 048.52=θ  (the less hydrophilic one), the droplet attaches to the right side 

of the first groove before it touches the bottom surface; whereas for 020.51=θ  (the 

more hydrophilic case), it reaches the bottom surface first and shows considerable 

reconfigurations, resulting in an entrapped bubble inside the groove. 

 

4.3.7.3 Critical groove width and depth 

Next the CA is fixed to be 045=θ , and so is the depth of the groove ( 15=grooveH ). 

Then the groove width is varied. By similar practices, the critical width has been 

identified to be in the region 2019 << crit
grooveW . The advancing interface snapshots of 
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its passing the first groove for 19=grooveW  and 20=grooveW  are given in Fig. 4.16. At 

=t 2 , 5.2 ( 510× ), the difference is rather negligibly small; but after the time the 

droplet reaches the left-lower corner points (with 20=grooveW ), there are larger and 

larger disparities. This indicates that the droplet is somehow able to detect the 

geometry ahead of its arrival of the site of groove difference. This appears to be rather 

counter-intuitive. The reason could be that the slight difference in the groove 

geometry is reflected through the minor difference in the gas motion in the groove 

(e.g., the speed and amount of gases to be discharged out of the groove) and this in 

turn differentiates the advancing interface evolution. 

 

Finally, both the lower wall CA and the groove width are fixed ( 045=θ , 23=grooveW ), 

and the groove depth is changed. Similar investigations have found that the critical 

depth to be in 1817 << crit
grooveH . The relevant comparisons are shown in Fig. 4.17. By 

the same arguments as above, the disparities might be explained. 

 

If one roughly take the critical values for the groove width and depth as 5.19≈crit
grooveW  

and 5.17≈crit
grooveH , then it is easy to find that the aspect ratio of groove, groovegroove HW , 

for the two critical cases are 3.1  and 31.1 . This may imply that the aspect ratio is a 

more crucial and general factor (Huang et al. 2009a). It is expected that its critical 

values should vary under different conditions (e.g., Capillary number, relative droplet 

size with respect to the channel depth, etc.). But once other conditions are specified 

the critical aspect ratio could be fixed. Of course, further more simulations are 

required to confirm it. 
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4.3.7.4 Droplet motions over subsequent grooves 

In the above investigations of the critical values, the attention was focused only on the 

first groove. Although under many situations the interface configurations are almost 

the same in all the grooves, it is not necessary for this to always hold. In fact, it has 

been observed that near certain critical conditions even though the droplet does not 

fill the first groove, it can spread to the groove bottom surface when it reaches some 

subsequent grooves. Fig. 4.18 gives two examples: one is taken from the critical 

wettability study for fixed groove geometry and the other is from the study of critical 

groove depth. The reason for both filling seems to be similar. That is, when the 

receding interface was about to leave the flat part of the channel, the droplet was 

subject to more drag which slows it down. This allows sufficient time for the 

advancing interface to spread into the groove. Considering that they are already quite 

close to the critical condition, the magnitude of the disturbance required is not quite 

large. Thus, the change from one configuration to another is not difficult. 

 

4.3.8 Some analyses of the flow field 

Finally, some flow patterns are analyzed in order to gain a deeper understanding of 

the flows. The first one is from the critical groove depth study (with 18=grooveH ) at 

the time, =t 10 510× . Since the motion is mainly horizontal, the contour for the 

velocity component, u , is selected. The interfaces are shown as the background (see 

Fig. 4.19). From Fig. 4.19, one can observe, besides the major droplet motion, two 

other important features: the first is the discharge of gas from the groove in which the 

advancing interface fills; the other is the large velocity changes near the top corners of 

the solid “islands” immersed in the droplet. By considering that the present flow is 

dominantly horizontal and the viscous stresses mostly come from the gradient in u , it 
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seems fair to draw a qualitative conclusion that high stresses exist in such regions near 

the top of solid “islands”. The second is a flow field in the study of different ways of 

applying the body force. Specifically, the instantaneous “streamline” at the time 

=t 5 510×  is checked. The applied force is horizontal and the lower wall is 

hydrophobic (with 0135=θ ). The field is given in two different reference frames: one 

is static (see Fig. 4.20(a)) and the other is moving with the droplet (at its instant 

average velocity) (see Fig. 4.20(b)). In Fig. 4.20(a), it is easy to find some vortices in 

some grooves rotating in the clockwise direction. These are understandable because 

under the hydrophobic condition the droplet has no direct contact with the lower 

surface and the flow may be divided into upper and lower parts. The flow inside the 

grooves is similar to the standard driven cavity flow. From Fig. 4.20(b), in the moving 

frame, certain circulation patterns are observed inside the droplet and outside it as 

well (note that the outer circulation is split into two parts due to the periodic boundary 

condition used). It seems not easy to imagine these patterns directly by intuition. Only 

by numerical simulations could they be visualized. Besides, underneath the droplet, a 

thin layer of gas is seen passing from right to left. 

 

4.3.9 Some comparisons with previous work 

It may be important to compare the present results with those by Reddy et al. (2005). 

In their work, the Reynolds number was several order of magnitudes smaller than the 

present work, and the channel height was of comparable size with or even smaller 

than the groove dimension. Although in both work the entrapment of gas bubbles is 

related to the instability of stretched interfaces, the findings by Reddy et al. (2005) 

does not apply here. As previously observed, in the present work, the motion of 

droplet is sufficiently fast. Therefore, even when the advancing interface passes the 
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inner corner of the groove, it is still possible to see gas bubbles entrapped. The present 

work focuses on the effects of wettability and groove geometry. This is in line with 

the spirit of Seemann et al. (2005), in which the morphologies of three-dimensional 

static droplets on micro-grooved surfaces were investigated mainly by experiments 

and also by some numerical simulations. Note that an intriguing diagram simply 

based on the aspect ratio of the groove and the CA was obtained by Seemann et al. 

(2005). Depending on the two factors, liquid on micro-grooved surfaces (with groove 

depth between 0.1~0.9mµ  and groove width between 0.4~3mµ ) may display 

different morphologies such as droplets, filaments, pinned wedges or corner wedges: 

for instance, a large CA and a large aspect ratio (note that the aspect ratio used in the 

present work is the inverse of that by Seemann et al. (2005)) tend to lead to the 

formation of droplets whereas filaments or wedges are likely to be observed under 

small CAs and small aspect ratios (Seemann et al. 2005). This is in favor of some 

preliminary findings above and the postulations about droplets moving over 

hydrophilic walls though the present work studies dynamic interfaces. 

 

4.4 Effects of the grooves 

Having studied the droplet motion in grooved channels, it would be interesting to 

make some comparisons between the droplets moving inside the grooved channel and 

in a smooth channel without the grooved parts so that the effects of the grooves can be 

elicited. Here the groove dimension is 1523× , and the inclined force is applied. The 

typical three values for CA (=θ 045 , 090 , and 0135 ) are chosen. The comparisons of 

the average liquid velocity are shown in Fig. 4.21. It is noted that the same range and 

scale for the liquidu  axis are used in all the sub-figures. From Fig. 4.21, it can be seen 

that the effects of geometrical change on the droplet are obvious, and it is also 
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observed that they are different for different wettabilities. When the wall is flat, the 

evolution of the droplet velocity for different wettabilities follows a similar trend and 

the differences of the final velocity are not very large. However, when the groove is 

present, the differences become much more noticeable. For hydrophilic walls, the 

groove greatly decelerates the droplet as compared with the flat case and the 

deceleration is most prominent when the droplet is in the transition from the flat to the 

grooved parts, indicating a significant pinning effect. By contrast, for the hydrophobic 

walls, under the given conditions, the pinning at the transition point results in a lifting 

force and makes the droplet attach to the upper wall. Consequently, a lubrication layer 

forms between the droplet and lower wall. This significantly increases the droplet 

velocity as compared with the case over a smooth wall. 

 

4.5 Three-dimensional study of droplet spreading and dewetting on a 

textured surface 

In this section, preliminary investigations of 3D droplet motions near walls with one 

pillar and pillar arrays are reported. Unlike the above 2D cases, no body force is 

applied to drive the droplet, and motions are caused purely by surface tension forces in 

the 3D cases. 

 

4.5.1 Droplet near one pillar 

First a droplet near a single square pillar is studied. Initially the droplet is in a non-

equilibrium state. In other words, the total energy of the system is not minimized. Due 

to the specific geometry and wetting property the droplet will move towards an 

equilibrium state under the action of the surface tension force. For this case, the solid 

wall is neutral wetting ( 0~ =ω , 090=θ ). The initial droplet radius is about 7.5. Some 
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other parameters are given in Table 4.2. The initial and final (after 410  steps) states 

are shown in Figs. 4.22 (a & b). The apparent CA is larger than 090  finally. 

 

4.5.2 Droplet near multiple pillars 

In this subsection, a droplet near a 55×  pillar array is investigated. Three cases with 

the same initial condition but different wetting properties for the lower wall have been 

simulated. The parameter controlling wetting, ω~ , takes the value 0.477, 0 and 477.0−  

which correspond to the theoretical CA being 045≈θ , 090  and 0135 . Some other 

parameters are listed in Table 4.3. The initial droplet radius is about 12.5. The droplet 

configurations after 510  steps are given in Fig. 4.23, and the interface evolutions in the 

middle zy −  plane are shown in Fig. 4.24 for every 4105.2 ×  steps.  

From Figs. 4.23 and 4.24, one can find the different behaviors of the droplet as 

described below. For the hydrophilic case the droplet tends to spread over the wall 

surfaces and the final droplet becomes very flat, similar to that on a flat wettable 

surface. Such spreading seems to be even enhanced due to the presence of the pillars 

as seen from the evolution of the interface. Normally on a flat wall, the speed for the 

droplet approaching its equilibrium configuration decreases; however, in Fig. 4.24(a), 

significant changes still occur at consecutive sampling times even after long time 

evolution. For the neutral wetting and hydrophobic cases, the change of the interface 

position becomes smaller and smaller, indicating that it is approaching true static 

equilibrium. It is also interesting to note that finally the droplet is in contact with nine 

nearest pillars in the neutral wetting case whereas it is only in contact with five nearest 

pillars in the hydrophobic case. As the hydrophobicity increases, it might be expected 

that the droplet would just sit on one pillar similar to the above situation for a single 

pillar. 
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4.6 Summary 

In summary, both 2D and 3D droplets near rough surfaces have been studied by LBM. 

In the 2D study, the impacts of the adhesion and geometrical properties of the surface 

on the flow pattern and droplet velocity have been explored in detail. It has been found 

that the droplet can move faster on grooved hydrophobic surfaces than on their 

hydrophilic counterparts. Under certain conditions, the dynamic “roughness-induced 

non-wetting” has been captured for hydrophilic surface. The effects of density ratio 

have also been studied and it is found that it affects the droplet velocity but not in a 

very significant way. For rough hydrophilic walls the effects of the surface wettability 

and topography are found to be highly coupled with each other. The critical CA, 

grooved width and depth for the droplet to assume one of two different shapes in 

groove have been found under certain respective conditions. Based on the results, the 

aspect ratio of the groove is suggested to be a critical factor to determine the droplet 

motion. Some detailed analyses of the flow fields have been given for better 

understanding of the droplet motion, as well as the flow. In addition, a few 

comparisons between the droplet motions over grooved and smoothed channels have 

been provided to illustrate how the presence of groove affects the motion. Finally, 3D 

droplet behaviors near textured walls have also been preliminarily studied. The 

increase of apparent CA on textured hydrophobic walls has been observed and droplet 

motions from an initial non-equilibrium state to an equilibrium state under different 

wall wettabilities have been well captured. It should be noted that for the 3D cases the 

domain size is not so large and the resolution for the droplet and surface structures 

may be insufficient. To perform more realistic simulations (e.g., 3D droplet motion 

along a certain direction on texture surface), it is necessary to extend the domain size 
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as well as simulation time significantly. Due to the limited time and computational 

resource, that is left for future work. 
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Table 4.1. Common parameters for most 2D simulations near a grooved wall 
 

Parameters Values 
Liquid Density  1 
Gas Density  0.001 
Surface Tension  0.001 
Interface Width  3 
Kinematic Viscosity of Gas 0.1 
Kinematic Viscosity of Liquid  0.005 
Distance between Neighbouring Grooves 28 
Total Length 450 
Magnitude of body force 610−  
Inclination angle of body force 045−  

 
 

Table 4.2. Some parameters for the 3D simulation near a single pillar 
 

Parameters Value 
Liquid Density Lρ  1.5 

Gas Density Gρ  0.5 

Surface Tension σ  0.001 
Interface Width W  3 
Kinematic Viscosity ν  0.005 
Pillar Height 8 
Pillar Side Length  10 
Grid Size 303131 ××  

 
 

Table 4.3. Some common parameters for 3D simulations near a pillar array 
 

Parameters Values 
Liquid Density Lρ  1 

Gas Density Gρ  0.001 

Surface Tension σ  0.0001 
Interface Width W  3 
Kinematic Viscosity ν  0.01 
Pillar Height 7 
Pillar Side Length  6 
Distance between Neighbouring Pillars 4 
Grid Size 355151 ××  
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Fig. 4.1. Transition points at the intersections of two orthogonal walls 
 
 

 
 

Fig. 4.2. Illustration of the initial condition of 2D flows inside a grooved channel 
 
 

 
 

Fig. 4.3. Comparison of the liquid velocity evolution under different surface tensions 
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                 (a) 410−=σ                          (b) 310−=σ                       (c) 3105.2 −×=σ  

(Time from upper to lower: 0, 1, 2, 3, 4( 510× )) 
 
Fig. 4.4. Comparison of snapshots of the liquid positions and configurations every 

510  steps under different surface tensions 
 
 
 
 
 
 

 
 
Fig. 4.5. Comparison of the liquid velocity evolution under different wettabilities of 
the lower wall 
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 (CA from upper to lower: 045=θ , 060 , 090 , 0120  and 0135 ) 

 
Fig. 4.6. Comparison of snapshots of the liquid positions and configurations at time 
step 5106×  under different wettabilities of the lower wall 
 
 
 
 
 
 

 

 
 
 

Fig. 4.7. Enlarged view of local and apparent CAs at time step 5106×  for 060=θ  
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Fig. 4.8. Comparison of the liquid velocity evolution under different forces for 
045=θ , 090  and 0135  

 
 

     

          
Left: Inclined force;                                         Right: Horizontal force 

 
Fig. 4.9. Advancing interfaces at =t 5.0 , 1, 5.1 , 2 , 5.2 , 3 , 5.3 , 4 ( 510× ) under 
different forces for 045=θ  (upper row) and 090  (lower row) 
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Fig. 4.10. Comparison of the liquid velocity evolution under different density ratios 
for =θ 045 and 0105  
 
 
 

 
 

Fig. 4.11. Interface positions at =t 610  under different density ratios (=θ 045 ) 
 
 
 
 



122 

 
 

 
Fig. 4.12. Comparison of the liquid velocity evolution under different groove 
geometries for 090=θ  and 0135  
 
 
 

 

 

 

 

 

 

 
             (a) 1523× ;                            (b) 1516× ;                          (c) 516× . 

(Time from upper to lower:  0, 2, 4, 6, 8, 10( 510× )) 
 

Fig. 4.13. Comparison of snapshots of the liquid positions and configurations every 
5102×  steps under different groove widths and depths for 045=θ  
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Fig. 4.14. Comparison of the liquid velocity evolution under different groove 
geometries for 045=θ  

 
 

 
 

 
 

Fig. 4.15. Advancing interfaces at =t 2 , 5.2 , 3, 5.3  ( 510× ) below and beyond the 
critical contact angle 
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Fig. 4.16. Advancing interface positions at =t 2 , 5.2 , 3 , 5.3  ( 510× ) below and 
beyond the critical groove width 

 
 

 
 
Fig. 4.17. Advancing interface positions at =t 2 , 5.2 , 3 , 5.3  ( 510× ) below and 
beyond the critical groove depth 
 
 
 
 
 
 



125 

 
 (a) 048.52=θ , 23=grooveW , 15=grooveH  (in critical CA study) 

 
(b) 045=θ , 23=grooveW , 18=grooveH  (in critical groove depth study) 

 
Fig. 4.18. Advancing (right cluster) and receding (left cluster) interface positions at 
late stages (=t 8 , 5.8 , 9, 5.9 , 10( 510× ) from left to right for each cluster)  
 
 
 

 
 
Fig. 4.19. Contour of velocity component u  at =t 10 510×  for 18=grooveH  in critical 

groove depth study 
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   (a) Seen in the absolute reference frame;     (b) Seen in a frame moving with the 

droplet. 
 

Fig. 4.20. Flow field at =t 5 510×  with 0135=θ , 1523×  and a horizontal body force 
in the study of effects of different body forces 
 
 
 

 

 
 

(a) 045=θ                                                    (b) 090=θ  

 
(c) 0135=θ  

 
Fig. 4.21. Comparison of the liquid velocity evolution for flat and grooved walls (flat: 
line with symbol; grooved: line) 
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         (a) Initial Configuration                              (b) Configuration after 410  steps 

 
Fig. 4.22. Drop evolution near a single pillar 

 
 
 
 
 

      
                  (a) 045≈θ                           (b) 090=θ                              (c) 0135≈θ  

 
Fig. 4.23. Drop configurations on a pillar array after 510  time steps 
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                  (a) 045≈θ                           (b) 090=θ                              (c) 0135≈θ  
 
Fig. 4.24. Interface evolutions in the middle zy −  plane every 4105.2 ×  time steps 
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Chapter V  

Effect of Mobility in DIM Simulations of Binary Flu ids11 

 

 

In Chapter II, some discussions were provided on the convergence of the diffuse 

interface method (DIM) to sharp interface solutions, and it was also mentioned that 

for small scale fluid systems the conditions for the convergence (i.e., both the 

interface thickness and the mobility approach zero) may not always hold. In this 

chapter, the role of the mobility in DIM simulations of binary fluids is investigated 

using the lattice Boltzmann implementation. The specific model employed is FE2-

LBM-B. Emphasis will be placed on its effect near the solid boundaries, presumably 

at very small scales. 

 

5.1 Brief review on mobility in DIM simulations of binary fluids  

Recall that in DIM, the underlying governing equations consist of the Navier-Stokes 

equations for mass and momentum conservations, and the CHE for the evolution of 

the order parameter. The CHE is a convection-diffusion equation that is quite similar 

to the pure advection equation (without the diffusion term) in the LS and VOF 

methods (note that more strictly, these methods also allow certain diffusions, but they 

are just numerical and have no physical meanings). As compared with LS and VOF, 

the explicit inclusion of the diffusion term in the CHE, with its magnitude being 

proportional to the mobility M , provides a physical relaxation mechanism for the 

concentration. Such a mechanism provides flexibility for DIM to accommodate 

                                                 
11 Materials in this chapter have been published in 
J. J. Huang, C. Shu and Y. T. Chew. International Journal for Numerical Methods in Fluids, 
60, pp. 203-225 (2009). 
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various singularities, for instance, the pressure jump across a curved interface and the 

stress singularity in CL dynamics (Jacqmin 1999, 2000). 

 

Previously a few analyses have been given about the role of mobility, both as a 

computational parameter related to asymptotics of numerical methods and as a 

physical one involving diffusion properties in mixing, coalescence and CL problems. 

Jacqmin (1999) found, by some theoretical analysis and numerical investigations, that 

the mobility should be bounded between ( )2εO  and ( )εO  (here ε  being the 

dimensionless interface thickness) in order to carry out an appropriate DIM 

simulation that approximates the sharp interface solutions. Jacqmin (2000) also 

provided detailed analysis on the inner regions surrounding a TPL and identified a 

length scale (here denoted as CLl ) for such small regions related to the dynamic 

viscosity and the mobility, MlCL η∝ . Similarly, Chen et al. (2000) reported a length 

scale in the moving CL problems for the dissipative relaxation of the concentration 

determined by the interfacial thickness, the concentration diffusivity and the boundary 

velocity. Kendon et al. (2001) addressed the significance of using an appropriate 

mobility, similar to the conclusion reached by Jacqmin (1999), in the LBM 

framework; they also addressed the difficulty to use a concentration-dependent 

mobility in LBM. Briant & Yeomans (2004) studied the CL dynamics using LBM and 

derived a length scale proportional to 41M  for the region in which the diffusive 

effects are significant and argued that their results matches the classical work using a 

slip length model. Inamuro et al. (2004) found, by using a LBM, that in bubble rising 

problems, the mobility affects the coalescence of two bubbles. Vladimirova & Mauri 

(2004), and more recently, Lamorgese & Mauri (2006), showed some DIM 

simulations of droplet coalescences when the system is suddenly changed from two- 
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to one- phase region; results from both investigations led to the conclusion that 

different mobilities (Peclet numbers in their original papers) may cause qualitatively 

different mixing outcome. Khatavkar et al. (2006) also discussed the scaling issues in 

DIM and pointed out that it is necessary to know how to adapt the mobility in 

accordance with the artificial enlargement of the interface thickness so as to capture 

the bulk flow phenomena. Zheng et al. (2006) discovered that, similar to the findings 

by Inamuro et al. (2004), large mobility expedites the merging processes of two 

neighbouring bubbles. 

 

5.2 Aims of this chapter 

Obviously the mobility is an important parameter in the study of MPMC fluid systems 

by DIM. However, the effects of mobility in various flows may be diverse and they 

certainly deserve further investigations, either as a physical property or as a numerical 

parameter in DIM.  

 

Before discussing specific aims of this chapter, it is helpful to first examine two basic 

types of MPMC flows. According to the driving mechanism, the MPMC flows may 

be categorized into: (1) mechanically driven; (2) chemically driven (also called 

“capillarity-driven”). The first type includes the commonly encountered shear driven 

and body force driven flows. In the second type, the order parameter field is different 

from the equilibrium state and there exist chemical potential gradients in the system.  

In this chapter, the effects of mobility in both types of flows will be studied. In the 

first type, a droplet sitting on a substrate subject to a shear flow will be investigated. 

In the second type, the cases include droplet dewetting in hydrophobic surfaces, and 

droplets on chemically heterogeneous surfaces. All of these cases involve the CL. 
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Thus, the relation between the mobility and the CL velocity, and comparisons 

between the DIM and the slip model used in other methods will be discussed as well. 

 

For simplicity yet without losing the core physics, only binary fluid systems with the 

same density and viscosity are considered here (as assumed in FE2-LBM). The 

macroscopic governing equations are given by Eqs. (1.1, a-c), and their dimensionless 

forms are Eqs. (1.2, a-c) (for even more details, refer to Eqs. (3.1) and (3.2) as well). 

 

5.3 Sitting droplet subject to a shear flow 

First, a droplet sitting on a substrate subject to a shear flow is studied. The initial 

setup is shown in Fig. 5.1. The two walls are separated by a distance H . The lower 

wall is kept stationary, and the upper wall moves toward right with a constant speed 

U . This induces a linear shear flow field that pulls the droplet towards right. Periodic 

boundary conditions are applied in −x  direction. It was found in the simulations that 

under a small shear rate (here a small U  if H  is kept constant) the droplet deforms 

slowly first, then starts to move, and finally ceases to deform when reaching a certain 

shape with a constant moving speed dU .  

 

The common parameters for the simulations are listed in Table 5.1. The mesh is 

50100× . The initial droplet radius is set to be =dR 25 and the initial droplet center is 

( ) ( )0,50, =CC YX . Both the upper and lower walls are neutral wetting. For 01.0=U  

with different mobilities M
~

 in the range [ ]20,5.0 , the final droplet configurations do 

not differ very much (as seen in Fig. 5.2 for two typical cases with 5.0
~ =M  and 

10
~ =M ), but the steady state droplet velocities may differ significantly (see Fig. 5.3). 
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To check how the droplet velocity varies with the mobility, dU  is plotted as a 

function of M
~

 in Fig. 5.4. Note that the M
~

 axis uses the “log” scale. From Fig. 5.4, 

it seems that there exist three regimes for the dU - M
~

 relation within the explored 

range: (1) 2
~

5.0 ≤≤ M ; (2) 4
~

2 ≤< M ; (3) 20
~

4 ≤< M . In each regime, dU  may be 

approximately expressed as a linear function of M
~

ln , for instance,  

21

~
ln kMkU d +=                                                 (5.1) 

where 1k  and 2k  are some constants. For the above three regimes, the constants 1k  are 

measured and estimated to be 144.1 , 889.0  and 752.0  respectively. The change in 

this constant may be caused by the change of the droplet shape (though relatively 

small) and consequently the dynamics. Since the lower wall is stationary and the 

droplet keeps a fixed shape upon reaching steady states, dU  is actually the slip 

velocity of the CLs. Thus, here the variation of slip velocity with the mobility has 

been measured (though for this specific problem only). Finally, to obtain an 

impression about the flows around the droplet, a snapshot of the steady state flow 

field (with the velocity in −x  direction being relative to the droplet, i.e., in a frame 

moving with the droplet) is shown in Fig. 5.5. From Fig. 5.5, it is seen that far away 

above the droplet, the shear flow is only slightly disturbed; as the flow approaches the 

droplet, the streamlines are increasingly deformed. Finally, in the lower region 

containing the droplet, two circulations are observed: one is inside the droplet and the 

other is outside and relatively flat (note that in Fig. 5.5 it is separated into two parts on 

the left and right sides of the droplet which can be connected together because the 

periodic boundary conditions are applied in the horizontal direction). 
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5.4 Chemically driven binary fluids 

Last section discusses about the effects of mobility in mechanically driven binary 

fluid systems. In this section, similar systems, but now driven by the imbalance of the 

chemical potential field, are investigated. 

 

5.4.1 Droplet dewetting 

First, droplet dewetting on a flat wall with spatially homogeneous wettability is 

studied. The lower wall is originally neutral wetting ( 0~ =ω , 090=θ ) and the droplet 

takes a semi-circular (in 2D) or hemispherical (in 3D) shape when in equilibrium.  

 

5.4.1.1 Two-dimensional droplet dewetting 

A 2D problem is considered first. The domain size is 50100×  for all cases. The initial 

droplet radius is set to be =dR 20 and the droplet center is ( ) ( )5.0,50, =CC YX . Note 

that the concentration field may need some time to reach equilibrium state after the 

initialization with the function ( ) ( ) ( )



 −+−= 2tanh 22 WYyXx CCφ . But since 

090=θ , it is assumed that the difference between the two states is small and the 

process for the droplet to evolve toward equilibrium is neglected.  

 

At the beginning, the lower wall is abruptly changed to be very hydrophobic 

characterized by a large static CA ( 5865.0~ −=ω , 0150≈θ , which results in an initial 

CA difference 000 6090150 =−=∆θ ). Such a change is similar to the situation in the 

electro-wetting experiment by Pollack et al. (2000) when a voltage is suddenly 

applied. In fact, researchers have invented some intriguing methods to modify the 

wall wettability such as shedding ultraviolet light or blue light onto a photoresponsive 
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surface (Ichimura et al. 2000). Another interesting way to achieve such a setup is 

given by Habenicht et al. (2005) which may deserve certain attention here due to the 

similarity between their observations and part of the simulation results that will be 

shown below. In that work, initially there were some triangular gold nanostructures on 

graphite; then, laser was applied to melt these structures which turned into liquid and 

the molten nanodroplets experienced a dewetting process. When they maintained the 

liquid form for sufficiently long time, such nanodroplets might jump off the surface. 

 

Before the results are shown, several quantities are firstly defined, which reflect some 

characteristics of this problem. The first two are the average center −y coordinate 

( dy ) and the average vertical velocity (dv ) of the droplet, calculated by 

( ) ( )∑∑=
ji

ji
ji

jijid NNyy
,

,
,

,., φφ ,  ( ) ( )∑∑=
ji

ji
ji

jijid NNvv
,

,
,

,., φφ        (5.2a, b) 

where the function ( )φN  is defined as in Eq. (4.9) of last chapter. Besides them, the 

total kinetic energy of the droplet and that of the whole field calculated by 

( ) ( )∑=
ji

jijid NuKE
,

,

2

,21 φr
,  ( )∑=

ji
jitotal uKE

,

2

,21
r

           (5.3a, b) 

are also monitored. To better appreciate the evolutions of the small regions around the 

three-phase point, the dynamic CA dynθ  is extracted from the phase field. The 

calculation follows the formula by Ding & Spelt (2007a), 

( ) ( )[ ]φφπθ ∇∇⋅−= ndyn

r
arccos180                                (5.4) 

Two points to note are in order for Eq. (5.4). Firstly, the interface spans a few grid 

points, thus several values for dynθ  are found across the interfacial region; but only the 

maximum one, which is the most accurate, is taken. Secondly, when the droplet is 

away from the surface after dewetting, dynθ  is simply set to be 0180  for convenience. 
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The last quantity to be calculated is xR  (as already defined in Subsection 3.4.3 in 

Chapter III). From xR , the CL velocity CLV  is calculated by simple differentiation 

with respect to time. For instance, the CL velocity at time step nt , n
CLV , is obtained as, 

( ) t
n
x

n
x

n
CL RRV δ1−−=                                              (5.5) 

where n
xR  ( 1−n

xR ) is the value recorded at nt  ( 1−nt ).  

 

Some other parameters for simulations are listed in Table 5.2. Note that these 

parameters are in LU. For a general case, the kinematic viscosity ν  and the surface 

tension σ  may be calculated from the given Reynolds number Re  and Capillary 

number Ca . However, for the present case, the characteristic velocity (maximum 

vertical velocity of droplet) is not known before the simulation. Thus, ν  and σ  are 

specified, which can be used to compute Re and Ca  once the maximum vertical 

velocity of the droplet is obtained from the simulation. 

 

Fig. 5.6 compares two series of snapshots of the droplet shapes every 310  steps for 

5
~ =M  and 15

~ =M . For both cases, when the wettability is abruptly changed, the 

droplet begins to contract, approaching the equilibrium configuration; after some time 

the droplet shrinks to such a shape that corresponds to a CA larger than the static 

equilibrium one. After that, two different outcomes occur: if the mobility is small 

( 5
~ =M ), the droplet spreads after this overshoot, and thereafter experiences some 

oscillations on the wall until it obtains the shape of static equilibrium; by contrast, if 

the mobility is large enough ( 15
~ =M ), the droplet jumps off the wall, oscillates as 

well but completely inside the ambient fluid and finally takes a circular shape. This 

resembles the experimental findings by Habenicht et al. (2005) to a large extent. 
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The dynamic CAs at the time steps shown in Fig. 5.6 are provided in Fig. 5.7. In all 

the three cases, the dynamic CA starts from about 090  in accordance with the initial 

condition. In the early stage, there are rather small differences between them: the 

dynamic CA just increases quickly to approach the equilibrium CA; after it 

approaches to the equilibrium one, it decreases slowly and then increases again. 

Significant differences occur between 3103×=t  and 3104× , after which the CA in 

the case with the largest mobility becomes 0180  whereas for the other two it 

experiences some oscillations before returning to the equilibrium state. 

 

In Fig. 5.8, the evolution of the droplet center and velocity in the vertical direction is 

given for 5
~ =M , 10 and 15. In agreement with the direct observations, when the 

mobility is small ( 5
~ =M , 10) dy  shows some oscillations before it finally reaches a 

constant value (13~ ) corresponding to the equilibrium configuration; but if 15
~ =M , 

dy  almost keeps increasing until it becomes constant ( 24~ ) when all the kinetic 

energy has been dissipated. Based on the maximum droplet velocity ( max
dv 004.0~ ), 

the Reynolds number and the capillary number are estimated to be 

νdd RvmaxRe= 16~  and ( ) σνρ max
dc vCa = 004.0~ . In addition, the Cahn number is 

15.0== dRWCh . Here the characteristic length is chosen as the drop radius. If it is 

chosen as the domain size, then the Cahn number will be 0.03. The Peclet number, 

( )[ ]σδ tdd MRvPe
~

212max= , is within range of 1287.42 ≤≤ Pe  (dependent on M ). 

 

Fig. 5.9 compares the evolution of the kinetic energy of the droplet as well as the 

whole flow field under the three mobilities. From Fig. 5.9 it is seen that for all cases, 

the kinetic energy increases quickly at the initial stage, reaches a maximum and then 
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decays quickly. This corresponds to the transformation of the chemical potential 

energy (due to the initial non-equilibrium configuration) of the concentration field 

into kinetic energy of the flow field, and then vice versa. The larger the mobility is, 

the higher the extreme kinetic energy can reach. This may suggest that the mobility 

facilitates the release of the potential energy at the beginning, possibly due to the 

increase of CL velocity with increasing mobility. After this stage, the kinetic energy 

decays due to dissipation effects. It is interesting to note that, contrary to the 

maximum in the initial stage, the next-to-maximum of the kinetic energy decreases 

when the mobility increases. This is probably due to the fact that the dissipation by 

molecular diffusion increases with larger mobility and it becomes more significant in 

the later stages. Finally it is observed that the droplet experiences more oscillations if 

it is completely immersed in the ambient fluid than when it still stays attached on the 

wall. This is reasonable because the wall tends to exert larger retardating force on it. 

 

Fig. 5.10 shows the evolutions of xR  on the wall from 0=t  to 4105.2 ×  for the three 

cases. This figure may illustrate the different evolutions of the droplet in a clearer way. 

It is found that xR  initially experiences some oscillations for 5
~ =M  and 10 , and 

finally approaches a finite value (8~ ) corresponding to the configuration with static 

CA; when 15
~ =M , xR  keeps decreasing and becomes zero at about 3106.3 ×=t  

which indicates that the droplet completely “jumps up”. 

 

As mentioned earlier, the CL velocity, CLV , can be obtained by differentiating xR  

with respect to time. Its evolution is plotted in Fig. 5.11. Similar to the dynamic CA, 

the evolutions of CLV  in the early stage for different cases are rather close. But there 
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are some differences at the beginning: the magnitudes of CLV  at 10=t  for 5
~ =M , 10 

and 15 are 0.01103, 0.01771 and 0.02264 respectively. For the case of 15
~ =M , CLV  

displays a plunge before the droplet moves away from the wall (at about 3106.3 ×=t ). 

The reason may be related to the singularity that occurs at this specific stage. After 

that, CLV  is not well defined; thus in Fig. 5.11 only the period during which the 

droplet was attached to the wall is shown. For the other two cases ( 5
~ =M  and 10), 

some oscillations and then a tendency to reach equilibrium are found, as expected 

from the evolution of xR . 

 

To obtain the critical value for mobility, many simulations have been carried out. Fig. 

5.12 shows the evolutions of xR  from 3000=t  to 5500 for a series of mobility 

across the critical value. From this figure, it is seen that the critical M
~

 lies in between 

10 to 1.10  (by a rough estimation, one may take 05.10
~ ≈crM ). 

 

In addition, from this set of numerical experiments, the initial CL velocity (at 10=t ) 

as a function of the mobility has been extracted (see Fig. 5.13). It is observed that the 

relation may be roughly described by a linear function ( MVCL

~∝ ). However, it should 

be noted that this relation may hold only within a certain range of M
~

 and at the early 

stage of dewetting, plus under the capillary number regime investigated. At late stages, 

it may not hold because of the change of the droplet shape and other non-linear 

factors. 
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Finally, it would be interesting to compare the above results with the work by Fetzer 

et al. (2005), in which the dewetting process of a thin liquid film was studied both 

experimentally and by using a lubrication model with a slip condition. The radius of 

the hole and the rim profile were mainly investigated. It was found that two different 

lubrication models can result from slip lengths different by order of magnitude. That 

is quite similar to the present findings though here the dewetting of semi-circular 

droplets is investigated.  

 

In the droplet dewetting process, the initial CA difference θ∆  and the surface tension 

σ  are certainly the two important factors. The variation of the critical mobility crM
~

 

with θ∆  (at a fixed σ ), as well as its variation with σ  (with θ∆  fixed) are worth 

studying. Series of simulations varying θ  while fixing σ  (and vice versa) were 

carried out to find crM
~

 to the accuracy of 0.1, and the average value was chosen as 

the critical one (similar to the above case in which 05.10
~ ≈crM ).  

 

Fig. 5.14 shows the variation of crM
~

 with θ∆  (while the surface tension is fixed as 

005.0=σ ). The results are from eleven series of tests with the lower wall CA varying 

from 0150  to 0160  (at 01  interval). Note that the crM
~

 axis is plotted using log scale. It 

is seen that as the CA difference increases, the crM
~

 decreases which means that the 

droplet jumps off the surface easier. This can be understood from the direct physical 

analysis. Large θ∆  is equivalent to large initial potential energy or driving force, thus 

bifurcation may still happen even when the slip on the wall (related to the mobility) is 

weak under such conditions. Another trend is that when θ∆  decreases, crM
~

 seems to 

increase faster and faster (i.e., the rate of increase becomes larger as well). In Fig. 
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5.14, crM
~

 is in log scale and the data distribution seems to be close to one straight 

line (the dashed line drawn for reference) for relative small θ∆  (roughly 065<∆θ ). 

It is close to another straight line (e.g., the dash-dot one) for relative large θ∆  

(roughly 065>∆θ ). For 065<∆θ , one may deduce that crM
~

 may increase 

exponentially as θ∆  decreases. In the simulations with 055=∆θ  ( 0145=θ ) the 

bifurcation could no longer be observed, i.e., no matter how the mobility was varied, 

the droplet always stayed on the lower wall after the dewetting process. This indicates 

that at this CA, crM
~

 (if any) already exceeds the one that would guarantee numerical 

stability. At the other end, for 065>∆θ , crM
~

 seems to decrease at a slower rate as 

θ∆  increases.  

 

The effect of the surface tension σ  on crM
~

 can be found in Fig. 5.15. Five series of 

simulations with σ  from 0.003 to 0.005 (at an interval of 0.0005) were performed at 

065=∆θ  (i.e., θ  fixed to be 0155 ). Both crM
~

 and σ  axes are plotted in log scale. It 

is found that the points are almost on a straight line (the dashed one). This suggests 

that the two may be related by 1
2

~ C
cr CM −= σ  where 1C  and 2C  are positive constants. 

It is obvious that crM
~

 decreases when σ  increases. From the trend, it is possible that 

crM
~

 could go beyond the value that allows numerical stability as σ  further decreases 

(to be far below 0.003); and for very large σ  (to be much larger than 0.005), the 

droplet might jump away from the wall for any (numerically allowed) value of M
~

 

(just like the situation for the crM
~

- θ∆  relation). However, the investigations of the 

two extremes are not within the scope of the present work. Besides, the crM
~

- σ  
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relation deduced from Fig. 5.15 may not hold when θ∆  varies. What it will be like as 

θ∆  changes is left for future study. 

 

5.4.1.2 Three-dimensional droplet dewetting 

In addition to the 2D study, a few 3D dewetting simulations, which are supposedly to 

be closer to the real situations, have also been performed. The domain size is 

509090 ×× , the initial droplet radius is set to be =dR 15 and the droplet center is at 

( ) ( )5.0,45,45,, =CCC ZYX . The viscosity ν , the interface width W  and other 

parameters remain the same as in the 2D study except that the surface tension is now 

smaller ( 002.0=σ ) (see Table 5.2). Like the 2D case, periodic boundary condition is 

implemented at all boundaries. Two values for the lower wall CA ( 0145 and 0150 ) 

were tested. In both cases, bifurcations depending on the mobility were observed. For 

a brief capture, the final states for the case of 0145=θ  with the mobility being 4.5 

and 5 are shown in Fig. 5.16. In Fig. 5.16(a), the droplet stays on the wall whereas it 

jumps off the surface in Fig. 5.16(b). The bifurcation diagrams in terms of the 

evolution of xR  (similar to the 2D definition, but now taken in the central zx −  plane) 

are given in Fig. 5.17. For the 3D case, the critical mobility crM
~

 is only found to the 

accuracy of 5.0 . Using an estimation based on the average of the two mobilities 

across the critical one, crM
~

 would be 4.75 and 2.25 for 0145=θ  and 0150  

respectively. For the four cases ( 0145=θ : =M
~

4.5, 5; 0150=θ : =M
~

2, 2.5), the 

recorded maximum droplet velocities in the −z direction ( max
dw ) (note that dw  is 

defined in a way similar to Eq. (5.2b)) are in the range from 0.0032 to 0.0034 (the 

mid-value 0.0033 is taken for convenience). Based on max
dw ~0.0033, the Reynolds 
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number and the capillary number are roughly given by νdd RwmaxRe= 9.9~  and 

( ) σνρ max
dc wCa = 00825.0~ . Besides, the Cahn number is 2.0== dRWCh , and 

the Peclet numbers, ( )[ ]σδ tdd MRwPe
~

212max= , are 371.25, 297, 165 and 148.5 

respectively for M
~

 = 2, 2.5, 4.5 and 5. By comparing Fig. 5.17 with Fig. 5.12, one 

can see clearly that the 3D results do confirm the finding in the 2D study. That is, 

there is a critical mobility for bifurcation with a given CA. 

 

5.4.2 Droplets on a chemically heterogeneous wall 

Next some results about the mobility effects on 3D droplets on a flat wall with 

chemical heterogeneity are presented. The computations were done in a domain of 

size 255050 ××  confined between two parallel walls at 0=z  and 25=z . On the 

other four sides, periodic boundary conditions were used; hence in equivalence a 

series of droplets are simulated and the neighboring droplets may coalescence with 

each other under certain conditions. Similar to the above cases of droplet dewetting, 

the initial conditions are given for the walls being neutral wetting and the droplets 

take hemispherical shape in equilibrium. The droplet radius is =dR 16.5 and the 

droplet center is ( ) ( )0,25,25,, =CCC ZYX . The wall at 25=z  is always kept neutral 

wetting. At the initial stage on the wall at 0=z , a narrow hydrophobic ( 432.0~ −=ω , 

0130≈θ ) stripe of width 6  is suddenly created near the center line of 25=x  (with 

slight asymmetry: 5.0  toward left) and all other parts are suddenly made hydrophilic 

( 335.0~ =ω , 060≈θ ) by some means (see Fig. 5.18; note that to better illustrate the 

situation, the right half ( 10050 ≤≤ x , 500 ≤≤ y , 250 ≤≤ z ), identical to the left, has 

been added). Some other parameters for simulations are listed in Table 5.3. For this 

problem, an average droplet velocity magnitude is defined by 
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where the function ( )φN  is defined as before.  

 

The evolution of this system is monitored every 310  steps. Fig. 5.19 shows the 

snapshots of the system evolutions for 2
~ =M  and 20

~ =M . Note that the data for the 

right half (50 100,0 50,0 25x y z≤ ≤ ≤ ≤ ≤ ≤ ) is duplicated from that for the left half 

in order to illustrate the evolution more clearly. It is easily seen that fundamental 

difference can be observed as a result of the change in mobility. Because the two 

cases evolved with different characteristic time, the snapshots were taken every 410  

steps for 2
~ =M  whereas the interval was 3104×  for 20

~ =M . The evolutions of the 

average droplet 
d

u
r

 (as defined by Eq. (5.6)) are shown in Fig. 5.20. The observed 

maximum values of the droplet velocity, 
max

d
u
r

, were 0.0017 and 0.0018 for 2
~ =M  

and 20
~ =M  respectively. Their average, 0.00175, may be taken to roughly estimate 

the dimensionless numbers as, == νdd
Ru

max
Re

r
5.775, 

( ) == σνρ max

dc uCa
r

0.00875, == dRWCh 0.18, and ( )[ ]σδ tdd
MRuPe
~

212maxr= = 

476.4 for 2
~ =M  and 47.64 for 20

~ =M . 

 

For both cases, the droplets are driven by the chemical heterogeneities towards the 

equilibrium configurations which minimize the total energy of the system. Probably 

due to the slight asymmetry in the position of the hydrophobic stripe, the droplets tend 

to move toward right; thus for each droplet the right tip is an advancing point and the 

left, receding. When the mobility is small, the droplets move much slower (smaller 

CL velocity). Note that both the advancing and receding speeds are small. But the 
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advancing point of the left droplet moves slower than the receding velocity of the 

right droplet and it is not able to catch up and coalesce with the right one; the droplets 

just experience some contractions when moving across the hydrophobic stripes and 

finally stay on the hydrophilic areas. If the mobility becomes much larger, the CL 

velocities of both the advancing and receding points increase. It seems that the 

increment in the advancing speed of the left droplet is more significant than that of the 

receding one of the right droplet. As a result, the left catches up with the right and 

merges with it. Eventually the all-connected large drop was again broken into small 

droplets staying on the hydrophilic parts separated by the hydrophobic stripes. It is 

noted that the two different processes are reflected in Fig. 5.20 as well. When the 

droplet was simply driven to the hydrophilic part without being splitted ( 2
~ =M ), 

d
u
r

 

had only two peaks; but when the droplet experiences the merging-and-splitting 

process ( 20
~ =M ), 

d
u
r

 showed three peaks and decayed to zero much faster. 

Obviously, for this problem there should also be some critical value of the mobility 

which differentiates the two routes. However, it may require a lot of simulation efforts 

to obtain this value for the 3D cases and this is left for future work. 

 

5.5 Summary and some remarks 

In this chapter, the effects of the mobility on both mechanically and chemically driven 

droplets have been studied in the DIM framework. For the interfacial flows, the 

degree of non-equilibrium in the order parameter function is probably highest in the 

interfacial regions. Thus, the mobility is expected to play its role mostly in these 

regions as well. Near solid walls, such regions are limited to just the small areas near 

the CLs. It is the solution in such areas that determines the slip velocity and also the 

transformation rate of surface energy into the fluid interfacial energy (and, most 
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probably, further into the kinetic energy of the droplets or films). For both types of 

MPMC flows, the change of slip velocity with the mobility has been found under 

certain conditions. Through extensive numerical investigations of the droplet 

dewetting process (both 2D and 3D) and a preliminary 3D study of droplets on 

heterogeneous surfaces, it has been discovered that the mobility can decide the 

evolutionary routes and final equilibrium states (Huang et al. 2009b). The variations 

of the critical mobility with the driving “force” magnitude (initial CA difference) and 

surface tension have been obtained from the 2D study. These findings are expected to 

give some useful hints to future study of MPMC flows with CLs using DIM.  
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Table 5.1. Common parameters for simulations of a sitting droplet subject to a shear 
flow 

 
Parameters Value 
Surface Tension  0.0025 
Interface Width  3 
Kinematic Viscosity 0.05 
Wall Wettability (CA) 090  

 
 

Table 5.2. Common parameters for simulations of droplet dewetting 
 

Parameters Value 
Surface Tension (2D / 3D) 0.005 / 0.002 
Interface Width  3 
Kinematic Viscosity 0.005 
Upper Wall Wettability (CA) 090  

 
 
Table 5.3. Common parameters for simulations of droplets on heterogeneous 
substrates 
 

Parameters Value 
Surface Tension  0.001 
Interface Width  3 
Kinematic Viscosity 0.005 

 
 

 
 

Fig. 5.1. Initial condition for a sitting droplet under shear 
 
 

 
 
Fig. 5.2. Comparison of droplet configurations in steady state with different mobilities 

under small capillary numbers (solid: 5.0
~ =M ; dashed: 10

~ =M ) (note that the 
horizontal line is drawn just for reference) 
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Fig. 5.3. Comparison of droplet velocity evolutions with different mobilities under 
small capillary numbers  
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Fig. 5.4. Variation of the steady droplet velocity with the mobility M

~
 (note that the 

straight lines are drawn for reference) 
 

 
 

Fig. 5.5. Steady flow field (relative to the droplet) around a droplet for 10
~ =M  
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(Fig. 5.6. to be continued) 
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Fig. 5.6. Snapshots of droplet shapes every 310  steps after the wall wettability is 
suddenly switched from neutral wetting to very hydrophobic  
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Fig. 5.7. Evolution of the dynamic CA at time intervals shown in Fig. 5.6 
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Fig. 5.8. Evolution of the average center −y coordinate ( dropy ) and the average 

vertical velocity ( dropv ) of the droplet under different mobilities 
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Fig. 5.9. Evolution of the kinetic energy of the droplet ( dropKE ) and the whole flow 

field ( totalKE ) under different mobilities 
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Fig. 5.10. Evolution of xR  on the wall for different mobilities 
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Fig. 5.11. Evolution of the CL velocity for different mobilities  
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Fig. 5.12. Bifurcation diagram of the evolution of xR  under different mobilities 
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Fig. 5.13. Variation of the initial CL velocity with the mobility 
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Fig. 5.14. Variation of the critical mobility with the initial CA difference (note that 
the dashed and the dash-dot lines are drawn for reference) 
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Fig. 5.15. Variation of the critical mobility with the surface tension (note that the 
dashed line is drawn for reference) 
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                                  (a) 5.4

~ =M ;                                         (b) 5
~ =M . 

 
Fig. 5.16. Snapshots of the 3D droplet at the end of simulation (Time: 10, 000) for 

0145=θ  
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Fig. 5.17. Bifurcation diagram of evolution of xR  under different mobilities for a 3D 

droplet 
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Fig. 5.18. Wettability distribution on the heterogeneous wall at 0=z  (slim stripe: 
hydrophobic; other parts: hydrophilic) 
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Fig. 5.19. Snapshots of droplet shapes for 2
~ =M  (every 410  steps in left column) and 

for 20
~ =M  (every 3104×  steps in right column) on chemically heterogeneous walls  
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Fig. 5.20. Evolution of the average droplet velocity 
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Chapter VI 

Droplet Manipulation by Controlling Substrate Wettability 12 

 

 

In this chapter, a more realistic problem, namely the actuation and manipulation of 

droplets by surface modification, is studied by using FE2-LBM-B. Several designs of 

the controlling on the substrate wettability in both space and time are investigated and 

compared with each other in order to find an efficient way to direct droplet motions at 

small scales. 

 

6.1 Droplet manipulation techniques in digital microfluidics 

According to Stone et al. (2004), “devices and methods for controlling and 

manipulating fluid flows with length scales less than a millimeter” are referred to as 

microfluidics. Microfluidic devices offer the chance to revolutionize the way to 

perform various chemical and biological analyses (Squires & Quake 2005). The 

transport of fluid samples is one of the key steps for chemical systhesis and reactions. 

There are two types of microfluidic systems: one uses continuous flows, and the other 

uses discrete droplets (thus called “digital microfluidics”) (Pollack et al. 2002). 

Droplet manipulation is of fundamental importance in digital microfluidics. As stated 

at the beginning of this thesis, fluid flows in small devices are strongly affected by the 

boundary walls, and the wettability of the substrates can play a pivotal role in 

determining the flow pattern and the motions of the droplets in these devices. Thus, 

the droplet motions may be controlled through the wall wettability adjustment. Also 

                                                 
12 Materials in this chapter have been published in 
J. J. Huang, C. Shu and Y. T. Chew. Journal of Colloid and Interface Science, 328, pp. 124-
133 (2008). 
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noticeable is that recent developments in surface chemistry have enriched the methods 

to modify the substrate wettability, for instance by using light or controlling the 

temperature, which can be used to direct droplet motions at small scales (Liu et al. 

2005). In parallel, applying controlled electrical fields has emerged as another 

promising way for droplet actuation by pseudo modification of the substrate 

wettability (Pollack et al. 2000, 2002). The underlying principles for driving droplets 

using these methods are similar, that is, to create some form of wettability gradient 

(WG) that further induces an imbalance of the forces acting on the droplets due to the 

system’s tendency to approach a configuration with lower energy. Take a two-

dimensional ribbon on a smooth substrate as an example. When the substrate has a 

small WG along the −x direction, the driving force can be found to be proportional to 

the gradient of the spreading parameter dxdS , which might be related to the WG in 

analytical form (de Gennes et al. 2004). Note that here the spreading parameter is 

defined as ( )σσσ +−≡ slsvS  (de Gennes et al. 2004) and “v” may denote “vacuum”, 

“air” or “another immiscible liquid”. For general situations in three dimensions, this 

force is a function of both the wettability distribution and the droplet shape (to be 

more specific, the TPL where each of the three phases meet the other two). When the 

FE theory including wetting (as described in Chapter II) is used, it has been shown 

that the substrate wettability can be solely characterized by a parameter ω~ , where 

larger ω~  corresponds to more hydrophilic surface (smaller CA). 

 

6.2 Simulations of droplet motion on substrates with 

spatiotemporally controlled wettability 

Droplet behaviors on substrates with different wettability distributions are the main 

focus of this section. The wettability distributions are characterized by a constant 
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gradient (depicted by a linear function) or by a sharp gradient (depicted by a 

Heaviside function) of ω~ . Intuitively, when an infinitesimally small droplet sits at a 

position with a constant WG, it may experience a constant driving force of finite 

magnitude toward the more wettable side. In contrast when the WG is sharp, such a 

force becomes infinitely large. In reality, these two types of WG are expected to result 

in different motion characteristics of the droplet. For the first one, the droplet velocity 

would be continuously increasing until the driving force is equal to the total viscous 

friction force; whereas for the second one, the droplet velocity would first increase to 

some peak value and then decay with time.  

 

6.2.1 Descriptions of the problem and simulation  

The detailed problem setups are given as follows. The initial condition is shown in 

Fig. 6.1: a stationary hemispherical droplet of diameter dD  sits on a smooth substrate 

at the bottom. Note that the hysteresis effects are assumed negligible, and so are the 

external body forces (gravitational, magnetic, etc.). 

 

The domain size is dddzyx DDDLLL ××=×× 24  and the initial droplet center is 

( ) ( )ddCC DDYX ,, = . Note that since the droplet is almost restricted to move on the 

substrate, only the ( )yx,  coordinates are concerned. Next, two types of bottom 

substrates with wettability distributions (in ω~ ) are introduced as shown in Fig. 6.2. In 

the first case, the WG is ( ) ( )dDdxd 4~~~~
minmax ωωωω −==∇ ; in the second case, 

periodical abrupt jumps of ω~  (from max
~ω  to min

~ω , and vice versa) occur along the 

lines dnDx =  ( 3,2,1,0=n ), and ω~  is uniform in the patches separated by these lines. 

For both cases, the wettability variations are in the range [ ]maxmin
~,~ ωω  where 



160 

476.0~
min −=ω  approximately corresponds to a CA of 0135≈phobicθ  and 476.0~

max =ω  

corresponds to 045≈philicθ . 

 

The aim is to obtain continuous unidirectional droplet movement on these substrates. 

For the first case, this should be easy to achieve within the range of constant WG. But 

for the second case, the droplet initially sits across the two hydrophobic-hydrophilic 

patches and is expected to be pulled to the hydrophilic patch completely; after that it 

will meet the next hydrophobic patch and may be pinned at the transition line. To 

ensure continual motion, it is intuitively straightforward to switch the wettability of 

the patches to the opposite (e.g., in terms of the CA: 00 13545 → , 00 45135 → ) at 

certain time, which bears some similarity to the principle used in the high energy 

particle accelerators or magnetic levitated high-speed train. However, this might not 

work for the “droplet accelerator” here under certain parameters (which will be shown 

later). Using very hydrophobic stripes to confine the droplet (similar to the idea used 

by Dupuis et al. (2005), Darhuber et al. (2003) and Kusumaatmaja & Yeomans (2007)) 

could help achieve this goal. Once the continuous droplet movement is realized in 

such a manner, it could possibly move much faster than on the substrate with constant 

WG. Hence, in addition to the two surface potential distributions in Fig. 6.2, a third 

case labeled (iii) with surface potential shown in Fig. 6.3 is included to illustrate the 

role of proper confinement by very hydrophobic stripes ( 586.0~ −=confω , 0150≈confθ ). 

In cases (ii) and (iii), the wettability is also periodically switched to the opposite at a 

frequency of switchTπ2  (note: for case (iii) only the confined middle part of a width 

confW  is switched). 
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Besides the bottom wall depicted above, it is assumed that there is a stationary wall 

with neutral wetting property ( 090=θ ) on the top side and periodic boundary 

conditions are imposed on the other four sides. On the top and bottom walls, the half-

way bounce back condition is used, and the wetting condition is implemented as 

described in Chapter II. The instantaneous droplet velocity ( )tud  is calculated by 

simple averaging over the domain enclosed by the interface (similar to Eqs. (4.8) and 

(5.2b)), and the droplet position is calculated by integrating the droplet velocity as,  

( ) ( ) ( )∫+=
t

t ddd dttutxtx
0

0  ( 0tt ≥ )                                (6.1) 

where ( )0txd  is the starting position at time 0t . 

 

6.2.2 The parameters 

Specific parameters are given as follows. The droplet diameter dD  is 45. Thus, the 

computational domain is 4590180 ××=×× zyx LLL . The surface tension σ  is set to 

be -3101.167×  and the interface thickness spans about 3. The density and viscosity are 

assumed to be uniform everywhere ( 1=ρ , 005.0=ν ) and the mobility M
~

 is fixed to 

be 10. The period for wettability switch in cases (ii) and (iii) is =switchT  18 310× . The 

width of the confined part in case (iii) is 20=confW  (near to half of the droplet 

diameter). Based on the maximum velocities observed in the simulations, the 

Reynolds numbers ( ηρ dUD=Re ) are estimated to be in the range of ( ) ( )10~1 OO  

and the Capillary numbers ( σηUCa = ) are in the range of ( ) ( )23 10~10 −− OO . When 

hydrophobic confinement was used, the droplet was allowed to first equilibrate for 

=equilT 9 310×  time steps (i.e., to contract to stay between the confining stripes) during 

which the middle part was kept neutral wetting and the droplet did not move in the 
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−x direction (note that this period is excluded from the evolution of droplet velocity 

in the figures and is not counted, i.e., equilTt =0  is chosen in this case); after that the 

sharp WG was applied and periodically switched. Some of the common parameters 

are summarized in Table 6.1. 

 

6.2.3 Comparison of droplet motions under different controls 

Fig. 6.4 shows the comparisons of the droplet velocity evolution and droplet velocity 

at different positions for the three cases. Note here only the velocity and position in 

the horizontal direction is studied. In Fig. 6.4(a) only the first 90 310×  steps (i.e., 

switchT5  for case (iii)) are plotted. The points “A”, “C”, “E” and “G” denote the time of 

the wettability switches for the first switchT3  steps in (iii), and “B”, “D”, “F” are the 

mid points in each switchT , which are also close to the peak values of the velocity. 

Their correspondents in the velocity-position graph are given in Fig. 6.4(b). In general, 

Fig. 6.4 is in accordance with the postulations given earlier. For case (i) (constant 

WG), the droplet is accelerated continuously but slowly, and the acceleration rate 

decreases with time; eventually it stops at the right end, as observed from Fig. 6.4(b), 

due to the pinning effect (note: periodic boundary condition used in the −x direction 

creates a jump in wettability at the two ends 0=x , xL ). For case (ii) (sharp 

alternating WG), the droplet velocity only displays a surge for the first switchT ; after 

that it varies slightly near zero, which means that the droplet almost stays at the same 

place (as seen from Fig. 6.4(b)). Overall, the droplet is transported fastest in case (iii) 

with both the hydrophobic confining stripes and the dynamic wettability switch. In 

each switchT , the droplet velocity increases first (e.g., the paths “A”-“B”, “C”-“D”, 

“E”-“F”) and then decreases (e.g., the paths “B”-“C”, “D”-“E”, “F”-“G”). Note that 
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the variation of the droplet velocity in the first switchT×3  steps shows some 

irregularities; but after the droplet adjusts its motion well, it becomes relatively more 

regular. In general, the trend agrees with that observed in the electrowetting 

experiment by Pollack et al. (2002) although the experimental setup is somewhat 

different. In spite of such oscillations, the droplet almost always keeps moving toward 

right and the average velocity over the whole period is much larger than that in case 

(i), leading to the rapid transport. More details on the droplet shape and the TPL for 

cases (ii) and (iii) are given below in an attempt to explain these observations better. 

Fig. 6.5 shows the evolutions of the droplet shape and the TPL distribution in case (ii) 

for every 9 310×  steps. Note that the substrate surface potential distribution (in ( )ω~− ) 

is added as the background in each TPL distribution graph (“white” - hydrophilic; 

“light-green” - hydrophobic). It is seen that after the first 9 310×  steps the droplet 

sticks to the second patch (initially hydrophilic) even when this patch is later switched 

to be hydrophobic. It is worth mentioning that several switch frequencies spanning a 

wide range have been tested and such a “stick-to-one-patch” phenomenon has always 

been observed. The reason may be that without the confining stripes the droplet 

spreads much more on the hydrophilic patch and the initial momentum along the 

−x direction is diverted to the other directions (y  and z ) due to the large pinning 

effect at the transition line where the wettability jump from hydrophilic to 

hydrophobic occurs. Subsequent changes of the wettability just cause the droplet to 

oscillate in the form of alternate spreading and dewetting, and this happens mostly in 

the −z direction on a single patch (see Figs. 6.5 (c-f)). 

 

Similar snapshots for case (iii) are shown in Fig. 6.6. where the subfigures (a-e) 

correspond to the points “A” to “E” in Fig. 6.4. The blue parts in the TPL graphs 
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represent the very hydrophobic confining stripes. It is found that these confining 

stripes make the droplet contract and stay almost only in the middle part. Upon 

careful examinations of Fig. 6.6, it is interesting to observe that the motion takes the 

following steps. Initially the WG drives the lower part of the droplet, and under the 

action of surface tension, the upper part of the droplet is accelerated subsequently. 

Probably because of the lower friction at the fluid-fluid interface (as compared with 

the fluid-solid interface), this part obtains a larger average velocity. When the lower 

part is pinned at the transition line, the upper part continues moving forward and pulls 

the lower part to the next desirable position where it can absorb the energy from the 

wettability switch once more. Following this loop, the movement is sustained. Based 

on these observations, it seems that the continuous droplet movement critically 

depends on at least the following factors: (1) large WG; (2) proper confinement; (3) 

suitable droplet inertia. First, sufficiently strong wettability contrast provides large 

driving forces, thus results in the prompt acceleration of the droplet and makes inertia 

important. The function of the hydrophobic confining stripes is two folds: they not 

only prevent too much droplet spreading on the hydrophilic patch (as compared with 

case (ii)) but also reduce the pinning effect at the transition line. Finally the inertia of 

the droplet helps it overcome the energy barrier at the transition lines. It is worth 

mentioning that the functions of the WG and confining stripes are ultimately related 

to the TPL (including its length and its distribution on patches of different 

wettabilities). The TPL on different patches should be long enough for the droplet to 

gain sufficient driving force, and at the same time it should not be overly extended so 

that the pinning across the transition line does not prevent the droplet from reaching 

the next suitable position. Having said the advantages of the three factors, one should 

also be aware that they must be within certain ranges. Large WG would also lead to 
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very large energy barrier (or pinning effect). Strong confinement may reduce the 

driving force and if the flow is inertia-dominant, the surface tension would not play 

significant roles which may be unacceptable in the WG driven flows. In addition, the 

frequency of wettability switch should be important; so is the width of the middle part 

being confined. These two factors are further investigated in the following. 

 

6.2.4 Effects of the switch frequency and confined stripe size 

In the second and third type of surface control, the frequency of wettability switch, 

swT , should be important; and so is the width of the middle confined part, confW . More 

detailed studies of these two factors are reported in this subsection. 

 

First, for a given confW  (within the range that guarantees continuous droplet 

movement with a proper swT ), varying swT  is found to lead to several distinct droplet 

motions. Here a typical group of cases with 20=confW  are extensively discussed. Fig. 

6.7 shows the droplet position evolution under a series of swT  (12, 15, 16, 17, 18, 21, 

22, 23, 24, 27) 310× . When the frequency was excessively high (swT  being small, e.g., 

=310swT 12, 15), the droplet was pulled back before it was able to move across the 

patch, and then it just moved backward and forward alternately in the −x direction 

near the wettability transition line. As swT  increases (the frequency decreases) to a 

certain value (here around 16 310× ), the above problem disappears and the favorable 

continuous droplet movement is realized. The value (16 310× ) seems to be nearly 

optimal for this group of cases because further increasing swT  leads to poorer 

performance (see the cases with =310swT 17, 18, 21, 22 even though the continuous 
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movement may be sustained). Note that the period was varied just at an interval of 

swT∆ = 310 . This applies for other cases shown below in search of the optimal period. 

Thus, “optimal” is meant only to such a degree of accuracy. For higher accuracy, 

more refined simulations are required. It is interesting to see that with even larger swT  

( =310swT 23, 24, 27), continuous movement is still achievable over certain time 

period; but the droplet may be in need of an initial adjustment (to first move backward 

and then forward, as for =310swT 23) or it may move in the opposite direction instead 

(for =310swT 24, 27). For all the three cases ( =310swT 23, 24, 27), the droplet did 

not move as smoothly as in previous optimal or near-optimal cases, thus the transport 

efficiency was low. Another point to be mentioned is that when the frequency was too 

low (for =310swT 27), eventually the droplet would not receive timely energy input 

and got stuck at some position. 

 

From the above it has been found that there seems to be a frequency range within 

which the desired movement can be achieved, and a possible optimum exists. Hence, 

it is worthy finding out in which way the droplet motions under different swT  differ 

within such a range. Fig. 6.8 provides the evolution of the droplet velocity (see Fig. 

6.8(a)) and the velocity at different positions (Fig. 6.8(b)) after the droplet has 

evolved into a stage of continuous movement for =310swT 16, 17, 18 with 20=confW . 

As already shown previously, the droplet has alternating accelerations and 

decelerations, but its velocity remains positive. It seems that the droplet gradually 

reaches a semi-steady state (in terms of one period averaging), but it reaches such a 

state relatively faster under larger swT . As swT  increases, the maximum velocity the 

droplet achieved, maxU , remains almost unchanged (around 0.0035) whereas the 



167 

length of deceleration stage (the descending part) extends, and the minimum droplet 

velocity declines (e.g., in the last period shown in Fig. 6.8(a), it is about 0.0016, 

0.0011 for =310swT 16 and 17 respectively, but only 0.0006 for =310swT 18). This 

delays the time for the droplet to reach the same position. Further examination of Fig. 

6.8(b) reveals that the differences lie mostly in the late-deceleration and early-

acceleration stages, and the velocity-position plots almost match each other for 

different swT  over a large portion of the deceleration stage. This should be 

understandable because only the timing (not the place) to switch the surface 

wettability is considered. Also interesting is that in Fig. 6.8(b) the lines for different 

cases are somehow shifted closer than in Fig. 6.8(a).  

 

In addition to the switch frequency, the width between the confining stripes also plays 

important roles in such systems as well. Several different values of confW  have been 

tested, each with a series of switch frequency.  

 

To study the effects of confW , a few cases for 30=confW  are presented below to 

compare with those in Fig. 6.8 with 20=confW . Note that the “local optimal” swT  

varies for different confW , and for 30=confW , numerical tests of different swT  (varied 

by 310 ) show that now the optimum may be about =310swT 13. Fig. 6.9 gives the 

velocity-time and velocity-position plots for =310swT 13, 14, 15 with 30=confW . Fig. 

6.9 generally shows some trends similar to Fig. 6.8. However, the amplitude of 

velocity oscillation for 30=confW  becomes much larger than that for 20=confW . The 

change in the oscillation amplitude is mainly due to the increase in the maximum 
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velocity (now =maxU 0.0045 as compared with =maxU 0.0035 for 20=confW ), rather 

than due to the decrease of the minimum (though slight difference is still there).  

 

Besides 30=confW , two other series with 24=confW  and 34=confW  have been run. 

The respective optimal switch periods were found to be around =310swT 14 and 12. 

Fig. 6.10 compares the evolution of droplet position with time for the four series 

( =confW 20, 24, 30, 34), each under its own optimal conditions ( =310swT 16, 14, 13, 

12 correspondingly). It is obvious that the droplet moves the fastest under =confW 34 

with =310swT 12. However, as confW  becomes larger, the speed of increment in the 

transport capability seems to decrease, indicating that there may be an upper limit. 

This trend is also seen in Fig. 6.11 which compares the velocity-position relations for 

the four cases. Take the maximum droplet velocity maxU  at the last cycle shown in Fig. 

6.11 for analysis. Simple calculations give the rates of change in maximum velocity 

with respect to the change in confW , confWU ∆∆ max , as follows: 410175.1 −×  

( =confW 20 , 24), 4108.0 −×  ( =confW 24 , 30) and 410625.0 −×  ( =confW 30 , 34). 

Obviously, confWU ∆∆ max  keeps decreasing. Subsequent tests with =confW 40 

confirm indirectly the existence of such a limit since the desired droplet motion was 

no longer observed with =confW 40 (not shown here). Thus, the critical width cr
confW  

should have some value between 34 and 40 for the current investigation. Besides, 

from Fig. 6.11, it is interesting to note that even when confW  varies, the position where 

maxU  is realized remains almost the same for all these cases. 
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The above observations quantitatively confirm some of the discussions in Subsection 

6.2.3. That is, within a proper range, the longer the TPL near the WG (here the length 

is related to confW ) is, the larger the driving force will be (as reflected from the 

maximum velocity). They also imply that as long as the continuous movement is 

achievable (or at least within the range tested, 3420 ≤≤ confW ), the benefits due to the 

increase of confW  seem to overtake the impedance effects caused by pinning (which 

also increases with confW ). However, it is possible that the opposite might be true as 

confW  further increases from some point up to cr
confW  (though this range might be quite 

narrow). To find the “global optimal” parameters, careful adjustments and tests are 

required. 

 

Finally, to have an overall picture on how the two factors, swT  and confW , are related, 

the variation of the “local optimal” swT  with confW  is plotted in Fig. 6.12. Also shown 

in this figure is the change of the maximum droplet velocity, maxU , with confW , but of 

course in a different scale.  

 

6.2.5 Effects of initial droplet position 

For the above simulations with the third type of substrate control, the initial droplet 

center was set to be ( ) ( ) ( )45,45,, == DDYX CC  for which CX  coincides with the first 

wetting-non-wetting transition line. Under such a condition, the initial bottom area of 

droplet and the TPL on the wetting and non-wetting patches are equal. When the 

initial CX  is varied, they become unequal on the two contrasting patches and the 

droplet motion may be affected. A few simulations with different values of CX  
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( =CX 30, 34, 56, 60) for one of the optimal parameter groups (for 45=CX ), namely 

34=confW  and 12103 =swT , have been carried out to investigate the initial position 

effect. For these cases, the change of CX  with respect to the original one ( 45=CX ) 

are =∆ CX 15− , 11− , 11, 15 respectively.  

 

Fig. 6.13 shows the droplet velocity evolution and Fig. 6.14 gives the change of 

droplet position with time for these cases. For better comparison, the case with 

45=CX  is also included in the figures. It is seen that the initial droplet position can 

become a determinant factor in deciding which direction the droplet would move. For 

the cases with =CX 30, 34, there only exist some differences at the initial stage of 

acceleration (see Fig. 6.13) as compared with =CX 45. After the initial adjustment, 

the droplet soon achieves the desirable state of continuously moving toward right. 

However, when =CX 60, the initial adjustment stage is so different from the three 

cases that the droplet moves in the opposite direction after the initial stage. However, 

the average droplet velocity magnitude remains almost the same (around 0.004). 

Probably the most undesirable case is the one with =CX 56. For such an initial 

position, the desired droplet motion cannot be realized and the droplet just oscillates 

near the second wetting-non-wetting transition line located at =x 90 (see Fig. 6.14).  

 

The effects of the initial position may be understood from the following aspects. 

Essentially, the continuous droplet motion critically depends on the synchronization 

of the droplet motion and the acceleration due to the wettability gradient. Change in 

the initial position affects the amount of acceleration the droplet gains during the first 

period. Since the wettability distribution and its switch obey some preset pattern, the 
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initial acceleration (in terms of amount and duration) may determine if the above-

mentioned synchronization is achievable. Based on these results, it seems that even 

when CX  is moderately shifted toward the non-wetting patch (e.g., about one third of 

the diameter for the case =CX 30, 15−=∆ CX ), such synchronization is still 

realizable. But when shifted to the other side, the droplet seems to be less predictable 

and can move in opposite direction (as for =CX 60, 15=∆ CX ). The above 

conclusion is based on 4 case studies. A complete understanding of initial position 

effect may need more simulations and even under more parameter groups for confW  

and swT . This is left for future endeavor. 

 

6.3 Some further discussions and remarks 

In essence, the above workable scheme of driving droplets makes use of some kind of 

resonance effect (specifically, by matching the wettability switch frequency with the 

frequency of the droplet motion as determined by its inertia effect). It would be 

interesting to compare the present work with that by Daniel et al. (2005). In that work, 

the droplet motion was induced by asymmetric lateral vibrations of the substrate 

which was uniformly non-wetting. Thus, that scheme was purely mechanical. 

However, there are some similar aspects between the two. First, both schemes depend 

on the droplet inertia, thus the Reynolds number must not be too low. Second, both 

found different types of droplet motion under different “forcing” applied and possible 

optimal frequencies were identified. One possible advantage of the present scheme is 

that by tuning the frequency properly it is easier for the droplet to avoid backward 

motions (i.e., to retain positive velocities), which seems to be difficult when the 

substrate is vibrated back and forth. Of course in the present work only a scheme of 
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driving droplet is proposed by numerical simulations, and the means of switching the 

wettability is not specified yet. This is different from the work by Daniel et al. (2005) 

which also provides experimental demonstration. 

 

Besides the above comparisons, some limitations of the present work may need to be 

addressed. Firstly, it is assumed that the patch size was almost the same as the droplet 

diameter. Thus, for a given substrate the above way of manipulation may apply for 

droplets of sizes within certain range. However, if the optical method is used to 

modify the wettability, as in the work by Ichimura et al. (2000), the restriction may be 

alleviated provided that the lighting sources can be flexibly fabricated; but at present 

there still seem to be difficulty in achieving a fast wettability switch using such kind 

of methods. Secondly, in this study, the substrates were assumed to be ideally smooth 

and hysteretic effects were neglected. Under many real situations when the substrates 

possess some microscopic chemical and/or topographical heterogeneity, it is harder to 

drive the droplet, and there may be a corresponding hysteresis in the droplet motion in 

response to the wettability switch. This issue was well elaborated by Walker & 

Shapiro (2006). Thus, future improvements of the present simulation model are 

necessary in order to take this effect into account. Nevertheless, the basic principles 

obtained in the current work should still apply. Another note is that it is most 

desirable to dynamically changing the wettability of the patches using some feedback 

systems to capture the instant position and shape of the droplet (perhaps more 

accurately, the information of the three-phase line). If such systems are successfully 

fabricated and integrated into microfluidic devices, it would become much easier and 

more flexible to manipulate the droplets through controlling surface wettabilities. 
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6.4 Summary 

To summarize, the diverse behaviors of droplets on chemically-patterned substrates 

have been studied by LBM. Three types of wettability distributions (and temporal 

variations for two of them) of the substrate have been tested. It has been found that 

under certain conditions, the droplet displays rapid continuous unidirectional 

movement. The TPL has been identified to be especially important in affecting the 

droplet motion based on the observations under small scales. Besides, the droplet 

inertia has also been found necessary for the desirable outcome. For the most 

favorable setup, the trend of the “optimal” frequency variation with the size of the 

confined stripe has been roughly obtained. Within all the frequency-stripe size pairs, 

there seems to be a best one under a specific condition (e.g., surface tension and WG, 

etc.) (Huang et al. 2008). The effect of initial droplet position has also been studied 

preliminarily and it was discovered that the initial position would affect the droplet 

motion critically within certain range. The effects of many other factors, such as the 

fluid viscosity and droplet size, would require further studies. Nevertheless, the 

present findings would be helpful in giving some guidelines on manipulating droplets 

by surface wettability control in lab-on-a-chip systems. 

 

 

 

 

 

 

 

 



174 

Table 6.1. Common parameters for the droplet manipulation problem 

Parameters Value 
Surface Tension  0.001167 
Interface Width  3 
Kinematic Viscosity 0.005 
Domain Size 4590180 ××  
Droplet diameter 45 

 

 

 
 

Fig. 6.1. Initial condition and problem setup for droplet manipulation 
 
 
 

 

       
                                   (i)                                                                (ii) 
 
Fig. 6.2. Two types of surface potential distribution (in ω~− ) of the substrate: (i) ω~  
varies linearly from non-wetting to wetting ( constdxd =ω~ ); (ii) the substrate is 

made of alternating non-wetting-wetting patches of equal length ( ±∞→dxdω~  at the 
transition lines nDx =  ( 3,2,1,0=n ) and vanishes otherwise). 
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Fig. 6.3. The surface potential distribution (in ω~− ) of the substrate in case (iii): 
similar to (ii) except that additional very non-wetting stripes are used to confine the 
droplet to move on the middle part of width confW . 
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Fig. 6.4. Evolution of the droplet velocity and the velocities at different positions 
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                     (a)                                   (b)                                       (c) 

 

     
                   (d)                                     (e)                                         (f) 
 

Fig. 6.5. The droplet shape and the TPL distribution every 9 310×  steps for case (ii) 
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Fig. 6.6. The droplet shape and the TPL distribution every 9 310×  steps for case (iii) 
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Fig. 6.7. Droplet position evolution ( )txd  under different switchT  (12, 15, 16, 17, 18, 21, 

22, 23, 24, 27( 310× )) with 20=confW  
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Fig. 6.8. Evolution of the droplet velocity and the velocities at different positions 
(after achieving continuous motions) under different switchT  (16, 17, 18( 310× )) with 

20=confW  
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Fig. 6.9. Evolution of the droplet velocity and the velocities at different positions 
(after achieving continuous motions) under different switchT  (13, 14, 15( 310× )) with 

30=confW  
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Fig. 6.10. Comparison of droplet position evolutions under four “local-optimal” 
conditions 
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Fig. 6.11. Comparison of droplet velocity at different positions under four “local-
optimal” conditions 
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Fig. 6.12. Variations of the “local-optimal” period for wettability switch switchT  and 

the respective maximum droplet velocity maxU  with the size of confined stripe confW  
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Fig. 6.13. Comparison of droplet velocity evolutions for different initial droplet 
positions =CX 30, 34, 45, 56, 60 
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Fig. 6.14. Comparison of droplet position evolutions for different initial droplet 
positions =CX 30, 34, 45, 56, 60 
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Chapter VII 

Bubble Entrapment during Droplet Impact 13 

 

 

In this chapter, droplet impact on dry surfaces is studied by using FE2-LBM-B with 

specific focus on the entrapment of bubbles during such processes. Numerous 3D 

simulations are performed and several types of entrapment are found under specific 

impact conditions. Dissections of the entrapment processes are carried out, and 

detailed analyses of the flow fields and interface motions are provided at selected 

moments for certain cases. The effects of various factors, including the Reynolds 

number, the Weber number and the surface wettability are analyzed. Finally, the 

impact condition to prevent entrapment is preliminarily estimated in terms of the 

Ohnesorge number upon examination of numerous simulations. 

 

7.1 Introduction on bubble entrapment in droplet impact 

Droplet-surface interactions are commonly encountered in many industry applications 

(e.g., ink-jet printing and surface coating). Depending on the impact conditions, 

various outcomes such as deposition, splashing, breaking-up and rebounding, may be 

observed (Yarin 2006). Besides, a special phenomenon, namely the entrapment of 

bubbles, may occur under certain specific conditions (Chandra & Avedisian 1991, 

Pasandideh-Fard et al. 1996, Thoroddsen & Sakakibara 1998, Fujimoto et al. 2000, 

Mehdi-Nejad et al. 2003, Thoroddsen et al. 2005, Khatavkar et al. 2007b). Chandra & 

Avedisian (1991) provided probably the earliest report of a kind of entrapment in 

                                                 
13 Materials in this chapter have been published in 
J. J. Huang, C. Shu and Y. T. Chew. Lattice Boltzmann study of bubble entrapment during 
droplet impact. (International Journal for Numerical Methods in Fluids, in press) 
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droplet-surface collision experiments. Later, Pasandideh-Fard et al. (1996) 

successfully captured it by numerical simulations using a VOF method. Thoroddsen 

& Sakakibara (1998) also managed to observe similar entrapment in their 

experimental study and gave more detailed theoretical explanations on its formation. 

After that, several specific studies, exclusively devoted to entrapped bubbles, 

appeared in the literature (Fujimoto et al. 2000, Mehdi-Nejad et al. 2003, Thoroddsen 

et al. 2005). Fujimoto et al. (2000) investigated experimentally a water droplet in air 

hitting a solid surface and reported a type of bubble entrapment due to an initial ring-

shape contact. Mehdi-Nejad et al. (2003) simulated bubble entrapments for three 

types of impacting droplets in air (water, n-heptane and molten nickel) by using a 

VOF method. Excellent agreements were obtained between their numerical results 

and previous experimental photographs. The mechanism for the entrapment in that 

study was similar to that of Fujimoto et al. (2000). That is, a high pressure region 

develops under the central part of the gap between the droplet and the solid surface, 

which distorts the droplet interface and causes the ring-shape-like contact. 

Thoroddsen et al. (2005) showed time-resolved observations of the air disk entrapped 

resembling the above by using an ultra-high-speed video camera. Their work spanned 

a wide range of impacting conditions and a special type of compound droplet (liquid-

in-air-in-liquid-in-air) was reported. Quite recently, Khatavkar et al. (2007b) used an 

axisymmetric DIM model to study droplet impact on a smooth, flat, and homogeneous 

surface, and successfully captured diverse impact behaviors under different conditions, 

including entrapped bubbles. Besides air-liquid systems, it is interesting to note that 

the entrapment phenomena also occur in immiscible binary fluids such as an oil-water 

system. In the work by Staicu & Mugele (2006), oil film entrapment due to 
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electrowetting and its destabilization (into micro droplets) was shown and the 

formation of these micro droplets was also analyzed theoretically. 

 

Droplet-surface interactions are in general important in many practical applications. 

As noted by Thoroddsen et al. (2005), the study of entrapment is becoming even more 

important recently because of some quite new applications involving droplet impact, 

such as the fabrication of large displays and polymeric circuits through printing 

processes. In these applications, it is usually desirable to prevent the entrapment from 

occurring. Besides, the entrapment in systems other than air-liquid is relatively less 

studied. Thus, there is still a demand of more entrapment study in droplet impact 

under various conditions. For both the air-liquid and oil-water systems, the 

entrapment processes are determined by the interface motions and the underlying 

mechanisms are most likely the same. Here in this thesis the focus is exclusively on 

binary fluid systems with the ambient fluid having the same density and viscosity as 

the enclosed one. Thus, “bubble” does not actually mean air bubbles in a liquid; 

instead it is used to denote more general cases in which one fluid is surrounded by 

another (immiscible fluid). The model used here is a fully three-dimensional version 

of FE2-LBM-B. As compared with previous numerical studies of entrapment by 

Pasandideh-Fard et al. (1996), Mehdi-Nejad et al. (2003), and Khatavkar et al. 

(2007b), a unique feature of this work is that the simulations are fully three-

dimensional other than axisymmetric. This feature is essential to capture some real 3D 

phenomena (further details to be given later). 
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7.2 Problem description and simulation setup 

The basic simulation setup is shown in Fig. 7.1 (for illustration). All the following 

cases are 3D and have moderately large domain sizes ( =×× zyx LLL 100180180 ××  

or 120240240 ×× ). The quantities are given in LU. It is worth noting that no 

simplifications are made by assuming axisymmetric conditions; instead, a box domain 

is used and periodic conditions are applied for the four side planes. As compared with 

the axisymmetric simulations, such periodic conditions somehow introduce 

asymmetry along two angle groups (00 , 090 , 0180 , 0270 ) and  ( 045 , 0135 , 0225 , 

0315 ) in the azimuthal direction. Although in many cases the impact process is almost 

axisymmetric, the introduced asymmetry becomes critical in some of them when the 

entrapped ring evolves into four or eight bubbles due to the interface instability. Such 

phenomena due to asymmetry cannot be captured in axisymmetric models. Initially, a 

droplet with a radius dR  is put at the center (( ) ( )2,2, yxCC LLYX = ), close to the 

bottom wall ( 6+= dC RZ , i.e., the lowest point of the droplet is 6 away from the 

wall), and also a velocity zU  (with a negative value) is given in the z  direction. 

Under such conditions, there are still certain symmetries, namely, symmetries about 

the middle zx −  and zy −  planes. Thus, in the simulation, only a quarter of the 

domain is actually used and it is noted that in the figures shown below, data in the 

other parts are duplicated according to the symmetric conditions. The surface tension 

is σ . For this particular problem, the Reynolds and Weber numbers are defined as, 

νzd UR2Re= ,                                                      (7.1) 

 σρ 2
2 zd URWe=                                                     (7.2) 

For droplet impact dynamics, the Ohnesorge number is often used. It is defined as 
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( )dROh 2ρσρν=                                            (7.3) 

As given in Chapter I,  Oh can also be written as 121 Re−= WeOh . 

 

The impact velocity zU  is either 01.0−  or 05.0−  (thus the nearly-incompressible 

condition for LBM is satisfied), the radius dR  is equal to 30, 40 or 50, the viscosity 

ν  takes either 005.0  or 02.0 , and the surface tension is fixed to be 001.0 . The 

interface thickness is roughly 3 and the mobility is 5.0  (provided that 1=gτ ). The 

Cahn number ( ( )dRWCh 2= ) takes one of the following values, 0.05, 0.0375 and 

0.03 (corresponding to the above three drop radii respectively). The Peclet number 

( ( ) σMRUPe dz
22= ) will be given for each specific case later. Besides, the CA (in 

static equilibrium) for the bottom wall is θ , having one of the following three values: 

075 , 090  and 0105 . 

 

7.3 Results and discussion 

Next, four different types (I-IV) of entrapment due to different impact conditions (Re 

and We), as well as surface wettabilities (θ ), are reported and analyzed. Three of 

them are distinctive and another one may be viewed as a combination of two of them. 

It is worth mentioning that numerous cases have been investigated and the cases 

presented here are picked from them as typical representations of various entrapment 

phenomena. The evolution of the interfaces in the middle zx −  plane, as well as the 

TPLs in the bottom yx −  plane are examined. Some types may contain more than 

one case. In the middle zx −  planes, the instantaneous velocity fields are also 

overlaid to provide more insights into the whole fluid motion and its interaction with 
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the interfaces. For a clear overview, key parameters for all cases are listed in Table 

7.1 and some other simulation parameters are given in Table 7.2. 

 

7.3.1 Types I and II: Entrapment during slow impact 

In the first and second types, the impact velocity is relatively small ( 01.0−=zU ) and 

the Weber number is also small (≤ 10).  

 

For the first type, two cases are presented with drop radius =dR 40 and 30 ( =We 8 

and 6, =Re 160 and 120, respectively). The nominal Peclet numbers based on initial 

velocity are 51028.1 ×  and 4102.7 × . The CA is =θ 090 . In both of them, initially the 

droplet approaches the wall slowly. During this period, the droplet deforms and 

becomes relatively flat (especially when near the solid wall), and a gap of roughly 

equal height develops. After certain time, part of this gap is enclosed by the droplet 

and the wall, somehow forming a flat disk. But once the droplet touches the wall (here 

in the form of a ring, see Fig. 7.2), the TPLs move in such a way that the droplet 

configuration corresponds to the equilibrium CA, as required by the force balance. 

Since the Weber number is small, the surface tension effect tends to be dominant in 

this type. The two cases in Type I are slightly different, as seen from the snapshots 

taken in the middle zx −  plane at =t 18000 (see Figs. 7.3 and 7.4). Note that the 

length scale for the snapshots of the middle zx −  plane in these two figures is 

different from that in the bottom plane in Fig. 7.2. Besides, the time periods for 

significant variations in the two planes are not the same; therefore the snapshots in the 

middle plane do not exactly match those at the bottom. This also applies for other 

figures shown later.  
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The Weber number of Case 1 is slightly larger ( 8=We ) than Case 2 ( 6=We ) 

because of the change of the droplet radius. This makes the size of the entrapped disk 

in Case 1 become larger and hence more unstable. It is observed that the central part 

of the upper surface of the disk is bended toward the wall in Case 1, whereas in Case 

2 the entrapped part quickly assumes a spherical shape. Figs. 7.5 and 7.6 give closer 

views of the flow fields near the contact line regions for the two cases, at two selected 

moments of interest ( 18000=t  and 24000=t ). It is easy to see that there exist three 

major vortices in Case 1 at 18000=t . The outer lower one is due to the spreading 

motion which appears to be the most dominant one at this stage. It is interesting to 

note that similar pattern has been reported elsewhere (see Fig. 3 in the work by Ding 

& Spelt (2007b)) during initial droplet spreading. Besides this major one, there is an 

inner lower one that seems to be caused by contraction of the entrapped bubble. 

Finally, on the upper side there is another vortex. Its formation may be understood as 

follows: as the outer contact line (ring) moved outward, the outer interface was highly 

bended and a capillary wave propagated upwards, causing that part to move upward 

temporarily; at the same time the outer fluid was moving downward to fill in the 

vacant space. Such a mutual motion led to this third vortex. After this stage was over, 

the whole system became closer to equilibrium, the motions became mild and the 

vortices disappeared (as found at 24000=t  in Fig. 7.5).   

 

In Case 2 at 18000=t , the outer spreading motion seems to be in an earlier stage as 

the outer lower vortex appears to be less violent and much lower (closer to the contact 

line, see Fig. 7.6); and there is no inner vortex observed probably because the 

entrapped bubble did not start to contract yet. As time progressed, the outer lower 

vortex moved upward whereas a small inner vortex came into being around the 
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entrapped bubble (as seen at 24000=t  in Fig. 7.6). For the two cases, the evolution 

of the entrapped bubble diameter (diameter of the inner circle in the bottom plane inD ) 

and the spreading process (as reflected from the outer circle in the bottom plane outD ) 

were also monitored (see Fig. 7.7). 

 

Based on the observations, it may be deducted that when the droplet radius is 

increased, the initial entrapped disk size is expected to be enlarged as well. One 

possible further consequence is that beyond certain value, the central part will pinch 

off and generate a child droplet, as found by Thoroddsen et al. (2005). For such cases, 

the propagation of the capillary wave from the circumference to the center has to be 

fast enough so that the pinch-off can occur timely; otherwise the parent droplet will 

contact the wall from the center and spread out, as shown below in the second type. 

 

In the second type, the Weber number and Reynolds number are a little larger than in 

the first type, due to the increase of the droplet radius. Now the drop radius is =dR 50, 

and the Weber number is =We 10, and the corresponding Reynolds number is 

=Re 200. The Peclet number is 5102×=Pe . For this type, there are also two cases 

presented here. These two cases are different only in the CA ( =θ 090  and 075 ). 

Typical results are shown in Figs. 7.8-7.11.  

 

For this type the initial disk of surrounding fluid under the droplet has such large 

volume that the surface tension is not strong enough to pull the fluid together to form 

a dome. Thus, the disk collapses from the center (see the snapshots at =t 18000 in 

Figs. 7.8 and 7.9, and that at =t 16000 in Fig. 7.11). After the central tip contacts the 

wall, spreading occurs from there and the flat disk becomes an entrapped ring (see the 
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snapshot at =t 22000 in Fig. 7.9, and that at =t 18000 in Fig. 7.11). Under the 

specific simulation conditions (with four corners and four sides), the ring is not stable 

and may either evolve into four separate bubbles (for the case of 090=θ ; see Fig. 7.9) 

distributed along the two diagonal lines, i.e., in the North-East (NE), North-West 

(NW), South-West (SW) and South-East (SE) directions; or it may become eight 

isolated bubbles of two sizes (for the case of 075=θ ; see Fig. 7.11) that are 

distributed, in addition to the above four directions, in four more directions (North (N), 

West (W), South (S) and East (E)).  

 

From Fig. 7.11, it is obvious that the bubbles that only appear after increasing the 

surface hydrophilicity in N, W, S and E directions are relatively smaller than the other 

four in the NE, NW, SW and SE directions. For Type II, some enlarged views of the 

flow fields near the contact lines are also provided in Figs. 7.12 and 7.13 for Cases 1 

and 2, respectively. Again the outer vortex, which probably initiated from the outer 

contact line (ring), is observed at 18000=t  and 24000=t  for both cases. 

 

From Fig. 7.12 (at 18000=t ), besides the vortex, the approaching of the bent 

interface toward the wall is also obvious. Such motion later led to the entrapped ring 

( 22000=t  in Fig. 7.9). Also from Fig. 7.12 (at 24000=t ) the diversion of the 

downward moving fluid inside the droplet due to the outer spreading and the inner 

contraction of the entrapped ring is also easily observed. Due to the decreased contact 

angle in Case 2, the whole progress is “ahead of” that in Case 1, as reflected from the 

vortex positions in Fig. 7.13. It is interesting to note the two different stages of 

contraction of the entrapped bubble in Fig. 7.13: at 18000=t  it was still in a ring 

shape (see Fig. 7.11), the inner side contact angle was not in its equilibrium and the 
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fluid motion was outward; at 24000=t  it was already a separated bubble but still in 

an elongated shape (see Fig. 7.11 again), and the main motion was upward so that a 

spherical shape would be established (as observed at 26000=t  in Fig. 7.11). 

 

The mechanism of entrapment in the first and second types is very similar to those 

reported by Chandra & Avedisian (1991), Pasandideh-Fard et al. (1996), Thoroddsen 

& Sakakibara (1998), Fujimoto et al. (2000), and Mehdi-Nejad et al. (2003). In both 

types, a high pressure region is developed under the droplet, which delays or even 

prevents the central part from contacting the wall. Fig. 7.14 shows the total pressure 

distributions at 6000=t  along the center line at the bottom plane for all the cases in 

Types I and II. Note that here the total pressure is defined as 

 ( )[ ]















 ∇−∇−−′+= 222

2

1 φκφκφψφψφρ stot cp                   (7.4) 

and it is related to the full pressure tensor (see Eqs. (2.85) and (2.76) in Chapter II) as 

( ) ( )[ ]IIpP tot
th

ttt 2φφφκ ∇−∇⊗∇+=                               (7.5) 

Also note that the pressure in Fig. 7.14 is a relative value (with respect to a reference 

one at the corner of the simulation box farthest away from the center), and only the 

left half parts are shown for clarity. It is easily seen that the pressure at the center is 

the highest in all the cases. For the two cases in Type 2, the pressure distributions 

almost overlap with each other completely. This is expected because the two cases are 

differentiated by the contact angle, and at 6000=t , the droplet did not touch the wall 

yet. 

 

The differences between the present work and previous work are possibly due to the 

initial conditions. In the present work, the droplet was initialized to be spherical and 
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only a few lattice sites away from the wall, and a uniform velocity was assigned to it. 

The falling stage is rather short and the droplet deformation in this stage is relatively 

small (as compared to previous experimental work). This can lead to a different shape 

of its bottom surface, which indeed affects the impacting process. 

 

7.3.2 Type III: Entrapment during fast impact 

The third type of entrapment is completely different from the above two. In this type 

the Weber number is one order of magnitude larger though the Reynolds number is 

kept the same order. The initial impact velocity is now 05.0−=zU  and the droplet 

radius is 30=dR . Besides the viscosity is increased to 02.0=ν . These values give 

150=We  and 150Re= . The Peclet number is 5106.3 ×=Pe . The CA is =θ 0105 .  

 

The evolutions in the middle zx −  plane as well as in the bottom plane are given in 

Fig. 7.15. The initial contact between the droplet and the wall is similar to the second 

type (the droplet interface at the bottom has a convex shape). However, due to the 

dominating inertial effect (over the surface tension effect), the droplet spreads so fast 

that the interface near the TPL does not have sufficient time to bend to form a ring. 

After the droplet reaches the maximum radius in the spreading, it retracts back to the 

center under the action of the surface tension. Note that the average interface 

curvatures in the outer regions are in general smaller than those in the inner regions, 

and it seems to be easier to bend an interface with smaller curvatures (similar to the 

cases for elastic membranes). Thus, the outer regions suffer more from the surface 

tension, and the interfaces there retract faster than in the inner regions. This 

essentially contributes to the entrapment of bubble at the center. In this type, the final 

stable state is a compound droplet (e.g., oil-in-water-in-oil). Such a type of 
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entrapment was also reported by Khatavkar et al. (2007b) under a Reynolds number 

130 and CA 0120 . Note that the Webber number was much lower (1.5) in the work by 

Khatavkar et al. (2007b), and other simulation conditions differ from the present one 

as well (e.g., the density ratio and viscosity ratio). Probably these differences affect 

mainly the time scale of the impact process but not the interface shape evolutions 

because a large degree of similarity is easily found between the figure series in the left 

column of Fig. 7.15 and those in the right most column of Fig. 14 in the work by 

Khatavkar et al. (2007b). 

 

Here a note about the snapshots at =t 12, 000 may be in order. On the view at the 

bottom plane, there is a ring; but when viewed at the middle zx −  plane, the part 

enclosed by the ring actually corresponds to an isolated small cap (thin film). 

Probably because it was too thin to be resolved by the numerical model, it 

disappeared after a few time steps. Such a phenomenon is possibly due to the property 

of the phase field model; similar observations have also been reported and discussed 

by Khatavkar et al. (2007b), Khatavkar et al. (2005), and Yue et al. (2007). 

 

7.3.3 Type IV: Hybrid type entrapment 

Parameters in the fourth type are the same as in the third one ( 05.0−=zU , 30=dR , 

02.0=ν , 150=We , 150Re= , 5106.3 ×=Pe ) except that the CA is different 

( 090=θ ). As may be expected, an entrapment similar (but not identical) to the third 

type occurs in this case as well. However, at the same time, it also has some 

entrapment features of the second type though it appears only transiently (see Fig. 

7.16). This is clearly seen in the snapshot of the bottom plane at =t 18000 which has 

a small circle at the center and a ring at the peripheral part. The central circle is 
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caused by both the dewetting of the thin film resulted from the initial spreading and 

the retraction process under the action of surface tension. The formation of the outer 

ring is the same as Type II. However, the local scale of the entrapped ring was too 

small, thus it disappeared after some time (similar to the disappearance of the thin cap 

in Type III discussed above). The final equilibrium state is almost the same as in Type 

III except that the local CAs are different. Nevertheless, as a good example, this case 

has demonstrated how the wall wettability affects the entrapment process. 

 

7.3.4 Preliminary look at the entrapment condition 

In the above, some of the cases were crudely differentiated by “slow” and “fast” for 

convenience. It may be more appropriate to look at the Reynolds and Webber 

numbers, and also the wall wettability (CA). However, from the above cases, one may 

only see the variation of entrapment type with given parameters and has no 

information on whether entrapment will occur under certain conditions. 

 

As noted previously, in fact many simulations have been carried out and they spanned 

a much wider parameter regime. In many others, which are not shown here, the 

simulation parameters are quite different and the entrapment phenomena may or may 

not occur. It should be helpful to look at the whole parameter regime to obtain some 

clues on the conditions that facilitate the entrapment. Fig. 7.17 shows the points on 

the We−Re  and WeOh−  maps for all cases that have been studied. Those with 

entrapment are shown in “hollow diamonds” and the above cases are highlighted by 

“big circles”. From Fig. 7.17 it seems that entrapment phenomenon may occur over a 

wide range of Reynolds and Webber numbers, but tends not to happen when the 

Ohnesorge number is large (for all the cases with entrapment observed in our 
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simulations, 2.0<Oh ). Of course, it is still too preliminary to use this as a criterion 

due to the limited number of cases investigated. Besides, as discussed above, the CA 

is also an important parameter and could play a determinant role under certain 

Reynolds and Webber numbers. Finally, it is expected that other surface properties, 

such as roughness and chemical heterogeneity which may be essential for CA 

hysteresis, will affect the droplet impact process and can be advantageous for 

entrapment to occur. Such factors are not considered in the current work and are left 

for future study.  

 

7.4 Summary 

To summarize, the phenomena of bubble entrapment have been studied in the course 

of a droplet impact upon a dry surface. Under different We, Re numbers and the wall 

wettabilities, four types of entrapment have been observed. The detailed dynamics of 

such processes have been analyzed. For small We  and Re  numbers, bubble 

entrapment is more likely due to the development of a high pressure region which 

further leads to a negative curvature of the lower droplet surface. Some direct 

numerical evidences have been supplemented for such a mechanism. Although the 

mechanism is similar to some other work, new pattern evolutions on the wall have 

been observed and analyzed. For large We  and Re  numbers, the lower droplet 

surface has positive curvature at the time of contact, and such entrapments either 

occur near the TPL when the spreading of the droplet slows down sufficiently and the 

action of surface tension takes over, or at the center during the retraction stage after a 

dewetting process; depending on the wall wettability, a hybrid form of entrapment 

combining the two may take place. Based on the simulations carried out, it appears 

that large Ohnesorge number might prevent the entrapment from occurring. 
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Table 7.1: Key parameters for the cases in Types I-IV of bubble entrapment 
 

Type zU  R  ν  We Re Oh θ  Domain size 

1 40 8  160 0.0177 
I 

2 
01.0−  

30 
005.0  

6  120 0.0204 
090  100180180 ××  

1 090  
II 

2 
01.0−  50 005.0  10 200 0.0158 

075  
120240240 ××  

III 05.0−  30 02.0  150 150 0.0816 0105  100180180 ××  
IV 05.0−  30 02.0  150 150 0.0816 090  100180180 ××  

 
 

Table 7.2: Some simulation parameters for all cases in Types I-IV 
 

Type σ  W  M  Ch  Pe 
1 0375.0  51028.1 ×  

I 
2 

001.0  3 5.0  
05.0  4102.7 ×  

1 
II 

2 
001.0  3 5.0  03.0  5102×  

III 001.0  3 5.0  05.0  5106.3 ×  
IV 001.0  3 5.0  05.0  5106.3 ×  

 
 
 
 

 
 

Fig. 7.1. Illustration of the initial condition of droplet impact 
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Time: 16000      Time: 18000     Time: 20000      Time: 22000 
 

Fig. 7.2. Snapshots of the bottom plane (Type I; Case 1) 
 
 

 
 Time: 0                              Time: 6000 

 
Time: 12000                        Time: 18000 

 
Time: 24000                         Time: 30000 

 
Fig. 7.3. Snapshots of the middle zx −  plane (Type I; Case 1) (note that for display 
convenience the scale of Fig. 7.3 for middle planes is different from that in Fig. 7.2 
for bottom planes though they are taken from the same process, and this scale 
difference in display applies for Figs. 7.8 & 7.9, and Figs. 7.10 & 7.11 as well) 
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Time: 12000                       Time: 18000 

 
Time: 24000                      Time: 30000 

 
Fig. 7.4. Snapshots of the middle zx −  plane (Type I; Case 2) 

 
 
 
 

 
Time: 18000                       Time: 24000 

 
Fig. 7.5. Enlarged views of the flow fields in the middle zx −  plane at selected time 
(Type I; Case 1) 
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Fig. 7.6. Enlarged view of the flow fields in the middle zx −  plane at selected time 
(Type I; Case 2) 
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Fig. 7.7. Evolution of the inner and outer diameter of the circles on the bottom plane 
(Type I; Cases 1 & 2) 
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Time: 24000                         Time: 30000 

 
Fig. 7.8. Snapshots of the middle zx −  plane (Type II; Case 1) 
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Fig. 7.9. Snapshots of the bottom plane (Type II; Case 1) 
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Fig. 7.10. Snapshots of the middle zx −  plane (Type II; Case 2) 
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Time: 16000           Time: 18000           Time: 20000 

 
Time: 22000          Time: 24000          Time: 26000 

 
Fig. 7.11. Snapshots of the bottom plane (Type II; Case 2) 

 
 
 
 
 

 
Time: 18000                       Time: 24000 

 
Fig. 7.12. Enlarged view of the flow fields in the middle zx −  plane at selected time 
(Type II; Case 1) 
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Time: 18000                       Time: 24000 

 
Fig. 7.13. Enlarged view of the flow fields in the middle zx −  plane at selected time 
(Type II; Case 2) 
 
 
 
 
 

 
 
Fig. 7.14. Pressure distribution along the center line at the bottom plane for Types I 
and II 
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(Fig. 7.15: To be continued)          
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Time: 24000 

                                   
Time: 30000 

 
Fig. 7.15. Snapshots of the middle zx −  plane (left column) and the bottom plane 
(right column) (Type III) (for convenience of display the scales for the left and right 
columns are not the same; this applies for Fig. 7.16 below as well); the middle column 
shows some snapshots at certain time from the right most column of Fig. 14 in the 
work by Khatavkar et al. (2007b) (selected based on the similarity of interface shape, 
not the exact time) 
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(Fig. 7.16: To be continued) 
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Fig. 7.16. Snapshots of the middle zx −  plane (left column) and the bottom plane 
(right column) (Type IV) 
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Fig. 7.17. We−Re  and WeOh−  maps for all droplet impact cases studied (both axes 
in log scale; small “dot”: all cases; “hollow diamond”: cases with entrapment; “big 
circle”: cases analyzed in detail) 
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Chapter VIII  

Conclusion and Future Work 

 

 

In this thesis, LBM has been applied to investigate near-wall MPMC flows, mostly at 

small scales. The effects of various important factors, such as the surface wettability 

and topography, and the mobility, have been studied for several different types of 

problems. Besides, a prototype of droplet manipulation by controlling substrate 

wettability has been devised and explored, and droplet impact on a surface has also 

been investigated with special concentration on the entrapment phenomena. 

 

8.1 The effects of surface topography and wettability 

First, the surface topography and wettability were found to strongly affect the droplet 

motions driven by a body force in a 2D microchannel with a smooth neutral-wetting 

upper wall and a rough lower wall (with varying geometry and wettability). As the 

hydrophobicity of the rough wall increases, the droplet tends to experience less drag. 

This agrees with the intuitive expectations. One noticeable discovery was that when 

the rough wall was sufficiently hydrophobic, the droplet attached completely to the 

upper side, thus benefiting greatly from the lubrication layer formed under it. This 

could be attributed to the pinning effect when the droplet entered the rough region. 

Another important finding was that even when the rough wall was hydrophilic, the 

droplet might move over the rough surface with an apparent hydrophobic CA. This 

confirms previous theoretical postulations of the “roughness induced non-wetting” 

phenomenon (Herminghaus 2000). Such an interesting phenomenon occurs only when 

the groove geometry and surface wettability satisfy certain conditions. Through a few 
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series of simulations, the critical values for the contact angle, groove width and depth 

were obtained, and the interface motions under sub-critical and super-critical 

conditions were clearly demonstrated. However, for a better understanding of similar 

phenomena in real life, for example, water droplets on lotus leaves, 3D simulations 

should be carried out. Due to the enormous time required to carry out meaningful 3D 

simulations, only a limited number of 3D cases for droplet motion on rough surfaces 

were investigated with the surface geometry fixed. Nevertheless, the preliminary 

results are satisfactory to reflect at least the effects of wettability when a complex 

textured surface is present. Overall, the research in this part represents a major step 

toward the better understanding of coupled effects of surface geometry and wettability 

under dynamic conditions at small scales. 

 

8.2 The mobility effects 

Secondly, the mobility in DIM was found to play a significant role in flows at low Re 

and Ca involving CLs by using a LBM implementation. The relation between the 

mobility and CL velocity was obtained for both a steady shear driven, and an 

unsteady capillarity driven flow. In the latter type, a droplet was driven by the abrupt 

change in the substrate wettability from neutral wetting to hydrophobic, and the 

mobility was found to determine whether or not the droplet would jump off the wall. 

The possible reason is that the mobility controls the diffusion in the regions around 

CLs which is critical for the slip velocity, and further affects the rate of energy 

transformation (from the system’s FE to the droplet’s kinetic energy). When the 

mobility becomes larger, the slip velocity increases correspondingly and it becomes 

easier for the droplet to leave the wall. Such observations agree qualitatively with 

previous experimental observations by Habenicht et al. (2005) and also theories 
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employing slip velocity models by Fetzer et al. (2005), though the problem setups 

were different. The bifurcation diagrams for the dewetting droplets (both 2D and 3D) 

were obtained through numerous simulations under different mobilities. In another 3D 

study of droplets on a chemically heterogeneous surface characterized by alternating 

hydrophobic-hydrophilic patches, it was found that the mobility determined whether 

the droplet was transferred completely to the hydrophilic patch, or was split in half 

and merged with neighbouring droplets. Such an observation could also be attributed 

to the relations between the mobility and the slip velocities of CLs. It is noted that all 

the above investigations considered only geometrically smooth surfaces. It would be 

interesting to include the roughness and check how the mobility affects the dynamics 

under such more complex situations. However, it is not explored in this study due to 

the considerable time and efforts required. Although the cases studied here seem to be 

relatively simple, they have provided direct and important illustrations of the 

mobility-dependant bifurcations in MPMC systems, and are expected to provide some 

useful implications for future numerical study in microfluidics. 

 

8.3 Droplet manipulation by surface wettability control 

Thirdly, a prototype of droplet manipulation system using proper spatio-temporal 

control in substrate wettability was devised and simulated. Several systems with 

different wettability distributions were studied and compared in detail and an efficient 

scheme was identified. It used hydrophobic patches to confine the droplet from two 

sides and also dynamically switched alternating hydrophobic-hydrophilic patches 

under the droplet. Such a scheme essentially realized some kind of “resonance” 

between the droplet motion and the wettability switch. Only if the wettability switch 

period approximately matched that of the droplet to move across one unit could rapid 
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unidirectional transport of the droplet result; otherwise the droplet stopped at one 

patch and oscillated in the normal direction in response to the periodic wettability 

switch. Relations between two key parameters in this scheme, namely the period of 

switching the wettability and the size of the confinement, were studied through a 

number of simulations. The variations of the extreme droplet velocity with them were 

obtained as well. However, in these simulations the CA hysteresis effect was not 

considered. Further studies including fairly efficient CA hysteresis modeling should 

be quite valuable since they may provide results closer to experiments. Nonetheless, 

this work gives very useful information about the key factors in the design and control 

of the substrates in digital microfluidics. 

 

8.4 Bubble entrapment during droplet impact 

Finally, the formation of entrapped bubbles during the course of a droplet impact 

upon a homogeneous surface was studied, and several types of entrapment were 

discovered, depending on We and Re, and the surface wettability. Different 

mechanisms for entrapment were identified, and they agree with previous numerical 

or experimental studies. For one of them, a few new entrapment phenomena were 

captured with the fully 3D model (which is impossible for previous axisymmetric 

models). Based on numerous simulation results, it was proposed that as the Ohnesorge 

number increases the probability of entrapment may be reduced. It is noted that the 

total number of simulations was still limited due to the high computational cost, and it 

is possible that future studies under different conditions could uncover new types of 

entrapment. Besides, similar to the study of droplet manipulation, the hysteresis effect 

was neglected, the inclusion of which could reveal more diverse entrapment 

phenomena beyond those reported here. However, it can be concluded that this 
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research extends broadly our understanding of the entrapment phenomena, and 

possesses certain reference values for some recent industrial applications, such as 

making large displays by ink-jet printing, in which bubble entrapment is undesirable. 

 

8.5 Concluding remarks and future work 

Several issues related to this thesis are not completely understood or developed, and 

further investigations should be conducted. They may be categorized into “problem-

related” and “simulation-related”. 

 

Some of the problem-related topics were already mentioned before, and here they are 

summarized and also extended. First, further investigations are recommended to find 

the critical aspect ratios under various conditions such as different Capillary numbers, 

wall wettabilities and droplet sizes for the droplet moving over grooved wall. The 

study of the Lotus Effect is still preliminary and it would be interesting to construct 

walls with double structures that mimic the real micro and nano structures on a lotus 

leaf. Considerable 3D simulations would be necessary to completely resolve this 

intriguing phenomenon. It is fair to say that it remains a very challenging problem in 

the near future due to the multiple scales of the surface and their complicated effects 

on the flow. Second, there is still much space left on devising smart ways to actuate 

and manipulate tiny droplets. For example, the following questions should deserve 

further studies: (1) how to set the degree of contrast in the wettability of different 

patches; (2) how the droplet size (relative to the patch size) affects the outcome; (3) 

how to take into account the hysteresis effects of surfaces manufactured by different 

methods or under different conditions. Besides, the even simpler yet fundamentally 

important problem, i.e., the CL motion on smooth substrates, requires considerable 
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work though there are many previous studies using either experimental or simulation 

approaches. For instance, in addition to the viscosity and mobility, it is also 

interesting to simulate how the wettability affects the slip velocity. Finally, many 

parameters and factors in droplet impact remain to be explored. Besides the hysteresis 

effect, the ratios of density and viscosity of the two fluids, and the variation of the 

surface either geometrically or chemically, may be investigated. 

 

The first simulation-related issue is about the development of LBM for multi-phase 

flows with large density ratios. As mentioned in Chapters I and II, LBM for multi-

phase flows needs a more rigorous foundation. Many papers in this subject do not 

distinguish single component two phase systems from two component fluids, and they 

use two sets of distribution functions for the hydrodynamic fields and the indicator 

function respectively (He et al. 1999, Inamuro et al. 2004, Lee & Lin 2005, Zheng et 

al. 2006). The usual air-water system is, in fact, obviously not a single component 

system. It might be more appropriate to use the mass fraction or mole fraction as the 

indicator function for such a system. Many problems in large density ratio models 

arise probably due to the attempt to extend the theory for single component fluid 

systems near critical points to regimes far away from critical points, which may not be 

admissible. Thus, it is suggested to base the models on more solid theories for binary 

fluids such as the one by Lowengrub & Truskinovsky (1998). The second is to extend 

the lower limit of the viscosity (in equivalence, the lower limit of Ca for small scale 

MPMC systems, and the upper limit of Re for macroscopic flows). In Chapter III, it 

was mentioned that the models using multiple relaxation times may help in this aspect. 

MRT models may achieve this by employing suitable separate relaxation times for the 

moments of the distribution functions and decoupling the hydrodynamic moments 
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from those higher order moments (Lallemand & Luo 2000). However, the benefits 

might be limited: MRT models work better than BGK models simply because they 

eliminate some unwanted effects of high order moments on the lower ones, but they 

can not actually improve the evolutions of lower order moments. In addition to MRT 

models, suitable turbulence modeling could help to some extent for high Re flows. 

However, considerable efforts for model development are still required for extremely 

low Ca flows. Thirdly, it is very desirable to incorporate some sophisticated mesh 

adaptation techniques for the study of MPMC problems involving interfaces. For 

uniform grids, the interfaces are usually unavoidably enlarged. When the grid is 

refined in interfacial regions, both the accuracy and efficiency of the simulations can 

be improved. 

 

To conclude, the small scale MPMC flows near substrates are becoming more and 

more important as the focus on micro- and nano- fluidic devices increases. It is an 

exciting opportunity to explore this field, but it is also challenging due to the need to 

integrate the knowledge dispersed in many relevant fields (e.g., the physics of 

condensed matter, electronics, magnetism and optics, physical chemistry and fluid 

dynamics). Many more efforts are required to understand the small world completely 

so that the physics unique at these scales can be fully utilized. 
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Appendix 

Chapman-Enskog Expansion and Macroscopic Equations 

 

 

The Chapman-Enskog multiscale expansion procedure as applied to the FE2-LBM-B 

is detailed in the following. 

 

Recall that for FE2-LBM-B the two sets of LBEs are given by Eqs. (2.99) and (2.89), 

( ) ( ) ( ) ( )( ) ( ) 2,,,, siitf
eq

iiittii cewtxftxftxftexf φµδτδδ αα ∂+−−=−++ rrrrrr
 

( ) ( ) ( ) ( ) ( )[ ]txgtxgtxgtexg eq
iigittii ,,1,,

rrrrr −−=−++ τδδ  

and the multiscale expansions are applied to them as in Eqs. (2.103-2.107), 
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2
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eq
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( )2

10
εε Ottt +∂+∂=∂  

with tδε =  being small compared to the macroscopic time scales. 

 

The LBE for the distribution function if  used for the hydrodynamics fields is studied 

first. After the expansion, the LHS of Eq. (2.99) becomes 
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and the RHS, 
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By matching the terms at different orders of ε , one gets 
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Substituting (A1) into (A2), one obtains 
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Note that one can use the following solvability conditions for ( )k
if  ( L,2,1=k ), 

( ) 0=∑
i

k
if ( L,2,1=k )                                         (A4) 

( ) 0=∑
i

k
ii feα ( L,2,1=k )                                      (A5) 

and also the conditions for if  and eq
if , as given by Eqs. (2.97 a, b, d) and (2.102), 
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with the equilibrium distribution function eq
if  given by Eq. (2.100).  

 

The zeroth and first order moments of (A1) lead to, 

( ) 0
0

=∂+∂ αα ρρ ut                                                (A6) 
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0 st cuuu                        (A7) 

It is straightforward to prove that Eq. (A7) is equivalent to 

 ( ) { } µφδρρρ ααββαβα ∂−=+∂+∂ 2
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The moments of (A2) lead to, 
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where the tensor ( )1
βαΠ  is defined as 

( ) ( )∑=Π
i

iii fee 11
βαβα                                               (A11) 

and can be calculated as 
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where the properties of the lattice tensors and Eqs. (A6) and (A7) have been used. 

Then, Eq. (A10) becomes 
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To obtain the macroscopic equations, one simply sums the equations at different 

orders together. When Eq. (A9) is multiplied by εδ =t  and added to Eq. (A6), one 

gets 

( )αα ρρ ut ∂+∂ ( )φµδ αα ∂∂+ t2
1

0=                                    (A13) 

And similarly, when Eq. (A12) is multiplied by tδ  and added to Eq. (A6), it is easy to 

find, 
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The term ( )φµ αα ∂∂  in Eq. (A13) is multiplied by tδ , and the chemical potential µ  is 

a small quantity. Therefore, it may be neglected and the equation is approximately 

( )αα ρρ ut ∂+∂ 0=                                               (A15) 

which is exactly the continuity equation.  

 

Similar arguments apply for the terms 















 −∂∂ φµτδ α 2
1

0 ftt  and ( )φµδ α∂∂
02

1
tt  in Eq. 

(A14). The term γβαρ uuu  in Eq. (A14) is of order ( )3MaO . The term 
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 −∂ µµφτδ αββαβ uuft 2
1

 also includes tδ , and besides ( )µµφ αββα ∂+∂ uu  is 

of order ( )MaO  as compared with µφ α∂  on the RHS. Hence, they may all be 

neglected and Eq. (A14) approximately becomes 
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If the dynamic viscosity is introduced as 






 −=
2
12

ftsc τδρη , Eq. (A16) becomes, 

( ) ( )αββαβα δρρρ 2
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This is just the momentum equation. 

 

Next, the LBE for the distribution function ig  used for the indicator function is 

studied. After the expansion of Eq. (2.89) and the match of terms at different orders, 

one obtains, 

( ) ( )11
0 i

g

eq
iit gge

ταα −=∂+∂    at ( )εO                               (A18) 

( )( ) ( )2
2

1
2
1

001 i
g

eq
iitit

eq
it ggeeg

τ
τ ββαα −=∂+∂∂+∂







 −−∂    at ( )2εO         (A19) 

The zeroth moments of Eqs. (A18) and (A19) are 
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where the following solvability conditions for ( )k
ig  ( L,2,1=k ), 
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k
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and the conditions for eq
ig , as given by Eq. (2.98), 



232 

φ=∑
i

eq
ig  

αα φuge
i

eq
ii =∑  

βααββα φµδ uuMgee
i

eq
iii +=∑

~
 

have been used. From Eq. (A20), one gets  
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Then, Eq. (A21) is simplified as 
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By using Eqs. (A6), (A8) and (A20), one can find that  

( ) ( )βααβ φφ uuut ∂+∂
0

( )[ ]µφρ
ρ
φ

αα ∂−∂−= 2
sc                      (A26) 

In Eq. (A25), the two terms are after the differential operator β∂ . Assuming that these 

high order derivatives can be omitted, one simplifies Eq. (25) as 

φ
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                                           (A27) 

When Eq. (A27) is multiplied by tδ  and added to Eq. (A20), one gets, 

( )αα φφ ut ∂+∂ µδτ αα∂






 −= tg M
~

2
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                                (A28) 

If the mobility is introduced as tg MM δτ ~
2
1







 −= , Eq. (A16) becomes, 

( )αα φφ ut ∂+∂ µαα∂= M                                         (A28) 

This is the approximate Cahn-Hilliard equation. 

 

To summarize, the continuity equation, the momentum equation and the Cahn-Hilliard 

equation have been obtained as Eqs. (A15), (A17) and (A28) respectively. 
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