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ABSTRACT 

 

Inventory rationing among different demand classes is popular and critical for 

firms in many industries. In the literature most researchers consider the static rationing 

policies for the problems of inventory rationing in general are extremely difficult to 

analyze. Motivated by the wide application of inventory rationing and the potential of 

dynamic rationing policies in cost saving, this dissertation studies the dynamic inventory 

rationing in different circumstances.  

The first part of the dissertation studies the dynamic inventory rationing in systems 

with Poisson demand and backordering, using dynamic programming. For a multiperiod 

system with zero lead time, we show that the optimal rationing policy in each period is a 

dynamic critical level policy and the optimal ordering policy is a base stock policy. We 

then extend the analysis to a multiperiod system with positive lead time. For the problem 

is very difficult to solve and the structure of the optimal rationing and ordering policies 

may be very complicated, we develop a near-optimal solution using the dynamic critical 

level rationing policy. A tight lower bound on optimal costs is also established. Numerical 

results show that the costs of our policy are very close to the optimal costs and that our 



 vii

dynamic rationing policy can significantly reduce cost, comparing with current state-of-art 

static rationing policies: in many cases the cost reduction can be more than 10%.  

The second part extends the first part by changing Poisson demand to general 

demand processes. The rejected demands are also backordered. Assuming the system 

adopts the dynamic critical level rationing policy, optimization models for both single 

period and multiperiod systems are developed. A method is proposed to obtain near-

optimal parameters for the dynamic rationing and ordering policies. Some important 

characteristics of the rationing policy are also obtained. The numerical results show that 

the costs under the near-optimal dynamic rationing policy are quite close to the optimal 

costs in the examples.   

The third part of the dissertation analyzes dynamic inventory rationing in systems 

with Poisson demand and lost sales. We first consider a multiperiod system with finite 

horizon under a periodic review ordering policy in which the ordering amount per period 

is fixed. A dynamic programming model is developed. Important characteristics of the 

optimal rationing policy, the optimal cost function and the optimal ordering amount are 

obtained. The model is then extended to the case of infinite horizon. Some important 

characteristics of the optimal rationing policy, cost function and ordering amount are also 

obtained. A numerical study is also conducted to obtain some important managerial 

insights. 
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Chapter 1  

Introduction  

 

 

In many inventory systems customers who demand a common product may have different 

characteristics in terms of penalty cost of shortage, service level requirement and so on. It 

is a very important strategy for firms in many industries to segment customers according 

to their characteristics into several demand classes and differentiate the service for 

different demand classes to reduce cost, and/or increase profit, and/or improve customer 

satisfaction and so on. When inventory is not enough to satisfy demands from all demand 

classes, it is obvious that the inventory system should reject demands from some classes to 

reserve stock for possible future demands from more important classes. How to satisfy or 

reject demands from different classes is referred to as an inventory rationing policy, which 

is the key decision problem in these inventory systems with multiple demand classes. 

When inventory systems have multiple ordering opportunities to replenish stock, the
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 ordering policy will interact with the inventory rationing policy. In these cases how to 

replenish inventory is also a key decision problem.  

There are many examples of inventory rationing. One example is that a warehouse 

sells a kind of product to depots and the depots can place two kinds of orders to the 

warehouse: ordinary orders and emergent orders. These two kinds of orders can bring 

different profits to the warehouse. So the warehouse can divide the demands into two 

classes. When the on-hand inventory in the warehouse is low and not enough to satisfy all 

demands, the warehouse may reject some ordinary orders to reserve stock for possible 

future emergent orders.  

Another example is a kind of repair part that is consumed by airplanes from 

different airlines. These airlines have contracts with a company, which provide these 

repair parts to the airlines. Different airlines have different service level requirements, say, 

some airlines need a service level of 95% and some need a service level of 99% and so on.  

So the company that provides the repair part can classify demands according to the service 

level requirement and adopt an appropriate inventory rationing policy to increase its profit 

while satisfying its customers’ requirements. There are also many other examples of 

inventory rationing in industries such as automobile, computer, handphone and so on.  

It is obvious that an inventory rationing policy can reduce much cost, comparing 

with the first-come-first-served policy (i.e., without inventory rationing). Because of the 

competitive pressure and thin profit margin in many industries, inventory rationing among 

demand classes has become a necessary strategic tool to firms rather than a competitive 
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advantage. If a new rationing policy can reduce cost even about 1%, comparing with 

current inventory rationing policies, it will be a very good improvement in performance, 

as the profit margin is quite thin in many industries. For firms with very large annual costs, 

a cost reduction of 1% means saving a very large amount of money. So an effective 

rationing policy is extremely important for firms in many industries.  

Though inventory rationing has many application areas in industries, the theory of 

inventory rationing is relative limited. Tsay et al. (1999) have explained that inventory 

rationing problems are extremely difficult to solve and generally considered intractable. 

So some papers consider only two demand classes and simple rationing policies. 

Inventory rationing has attracted more and more attention from researchers and 

practitioners in recent years. For the theory about inventory rationing is quite limited, in 

practice the application of inventory rationing is quite primitive. People often use simple 

rationing policies which in general are not optimal, but easier to implement than the 

optimal policies. For example, in a system with only two demand classes, when the stock 

drops to a certain constant value, then reject demands of the less important class. Even for 

these simple rationing policies, it is not unusual that the parameter values of these policies 

often are set according to practitioners’ experience, because obtaining the optimal 

parameter values of these simple policies also needs some complicated calculation.   

There are two types of rationing policies in the literature: static critical level 

policies and dynamic critical level policies. In these policies there is a critical level of on-

hand inventory for each demand class at any time point such that if the on-hand inventory 

is above the critical level of a certain class at a certain time, then the demand of this class 
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is satisfied, otherwise it is rejected. In the static rationing policy, the critical levels do not 

change with time, while in the dynamic rationing policy, the critical levels change with 

time. The critical level is also called threshold in some papers. In the literature most 

researchers consider the static rationing policies, which are not optimal in many cases for 

the inventory managers may use such information as the arrival times of replenishments to 

dynamically ration stock to reduce cost. The inventory problems under dynamic rationing 

policies are much more complicated than those under the static rationing policies. 

It is obvious that dynamic rationing policies are better than static rationing policies 

in many cases, but little is known about how much the benefit of implementing dynamic 

rationing policies is and how to find optimal or near-optimal parameters of the dynamic 

rationing policies and the ordering policies in typical practical settings. Recently 

Deshpande et al. (2003) consider the static critical level rationing policy for a typical 

practical setting with positive lead time. They have developed a lower bound on optimal 

costs under dynamic rationing policies. They do not provide particular dynamic rationing 

policies. They show that the gap between the lower bound and the cost under the static 

critical level policy is very large. In many cases it is more than 10% and in some other 

cases it can be more than 20%. People do not know whether their lower bound is tight and 

whether there truly exist such dynamic rationing policies that indeed can reduce cost 

significantly. Anyway, this gap brings interesting questions: Can the dynamic rationing 

policies significantly reduce cost, comparing with the static critical level policies? If yes, 

in what conditions?  
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Motivated by the wide application of inventory rationing in industries and the 

potential of dynamic rationing policies in cost saving, comparing with static critical level 

policies, we explore dynamic inventory rationing in different problem settings. Our main 

objective is to develop models to characterize optimal dynamic rationing policies, obtain 

effective dynamic rationing policies to reduce cost and derive managerial insights for 

inventory management. This research is divided into three parts according to properties of 

demand processes and whether the rejected demands are backordered or lost. For some 

problem settings, we obtain the optimal dynamic rationing policies. For other problem 

settings where the structure of the optimal rationing policies may be extremely complex, 

we obtain near-optimal solutions assuming a dynamic critical level rationing policy. The 

numerical results show that our dynamic critical level policy can indeed significantly 

reduce cost in many cases, comparing with the static critical level policy: in many cases 

the relative cost difference can be more than 10%. The costs under our dynamic rationing 

policy are also very close to the optimal costs. So Deshpande et al. (2003) show such a 

possibility in cost saving, while we find particular dynamic rationing policies which 

indeed can significantly reduce cost. Moreover, we characterize the structure of optimal 

rationing and ordering policies in some cases.  

The remaining of this chapter is organized as follows. In Section 1.1, we present 

more applications of inventory rationing in industries. In Section 1.2, characteristics of 

inventory rationing problems and relevant research in the literature are summarized. In 

Section 1.3, an overview of the research in this dissertation is provided.  
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1.1   Application of Inventory Rationing  

Inventory rationing has a very wide application in industries. Here we present more 

examples of its application besides those referred to in the previous section. 

 Standardization of components is a very important strategy and a wide practice in 

every industry and inventory rationing problems arise with it. A kind of standard part may 

be used in the production of a family of products and different products in general bring 

different profits to the firm. When the inventory of the common standard component is 

low, how to allocate the inventory to produce different products is an inventory rationing 

problem. In industries such as automobile, printer, computer and handphone and so on, we 

can see many examples that a certain standard component is used in different products. 

Inventory rationing problems also appear in the course of machine maintenance. When a 

spare part is used by different machines and the breakdowns of different machines bring 

different loss to the firm, the firm needs to decide how to allocate the inventory of the 

spare part to repair these machines. It is also an inventory rationing problem (Dekker et al., 

1998, have provided such an example in an oil factory).  

Many inventory rationing problems appear in the supply chain environment. In a 

supply chain it is not unusual for the downstream stage to place ordinary orders and 

emergent orders and it is analyzed by many researchers in different conditions 

(Rosenshine and Obee 1976; Chiang and Gutierrez 1996, 1998; Tagaras and Vlachos 2001; 

Teunter and Vlachos 2001). These two kinds of orders can be regards as different demand 

classes by the upstream stage. So the upstream stage faces an inventory rationing problem 
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about how to satisfy these two demand classes. Another example is about the distribution 

of a product from a distribution center to many customer zones. There are different 

transportation costs from the distribution center to different customer zones. When the 

product is sold at the same price in the whole nation, then customers at different customer 

zones bring different benefit to the firm. How to send products from the distribution center 

to customer zones is also a rationing problem.  

Many inventory rationing problems come out with supply contracts which are a 

popular practice in industries. A certain firm provides products or services to its customers 

and different customers may have different contracts with this firm to require different 

service levels (Urban 2000; Bassok et al. 1997; Anupindi and Bassok 1999).  In the 

previous section we have already shown an example in which a firm provides to different 

airlines different service levels for a spare part that is consumed by airplanes.  

Military material management is also an area in which inventory rationing 

problems often appear. For example, Kaplan (1968) presents a rationing problem faced by 

the Army Material Command. As it notes: “Stock is in short supply, but at some known 

date in the future stock levels will be replenished. Before that time two types of demand 

must be satisfied, low priority and high priority.” Deshpande et al. (2003) present another 

example, managing the consumable service parts that are consumed by U.S. Army and 

Navy and they have different service level requirements.   

In the above examples, the systems often have multiple ordering opportunities and 

the inventory has a holding cost. There are also other examples of inventory rationing 

without multiple ordering opportunities, i.e., some initial inventory is sold over a finite 



Chapter 1                                                                                                                         Introduction 

 8

horizon. One example is the airline seat control in which the same seats are sold over a 

fixed finite horizon at different prices to different customers. However, there are some 

fundamental differences between the airline seats control and the general inventory 

rationing problems considered here. First, in the airline seat control problems, there are no 

ordering opportunities, while in the general inventory rationing problems there is an 

ordering policy.  The ordering policy interacts with the inventory rationing policy and it 

makes the problem very complicated, especially when the lead time is positive. Second, 

there is no holding cost in the airline seat control, while in the general inventory rationing 

problems the holding cost exists and it affects the decisions of ordering and inventory 

rationing. Third, when there are multiple legs in the airline seat control, the problems are 

also very complicated. It is somehow similar to the general inventory rationing problems 

with multiple products (with some substitutions) or multiple echelons, but without holding 

cost. While here we focus on the inventory rationing problems at one place with one 

product. So, from the above, we can see that inventory rationing indeed has very wide 

application in industries. Of course, there are other application areas besides the above 

ones. 

1.2  Characteristics of Inventory Rationing Problems and Relevant 

Research 

When different demand classes have different service level requirements, one natural 

method of inventory rationing is to maintain independent stocks for different classes. But 

this method has a large disadvantage: it may lose the benefits of inventory pooling such as 
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reducing safety stock and so on (Eppen 1979; Schwatz 1989; Baker et al. 1986; Kim 

2002).  So in practice this method of separating inventory for different classes may not be 

used frequently and the popular practice is to maintain a common stock to satisfy different 

customers using a rationing policy. In some cases the inventory may not be able to 

separate, for example, the airline seats inventory. So in this research we consider only the 

cases using a common stock to serve different demand classes.  

The inventory rationing problems with multiple demand classes are significantly 

different from the classic inventory problems in which all customers are treated in the 

same way. These inventory rationing problems are very difficult to solve, many of which 

are regarded as intractable. When there exist multiple replenishment opportunities, the 

inventory rationing policy interacts with the ordering policy. It is often extremely difficult 

to find the optimal rationing and ordering policies simultaneously. Even given an ordering 

policy, in most cases it is also very difficult to find the optimal rationing policies under 

such an ordering policy. Researchers often consider the rationing problems assuming a 

certain ordering policy, sometime even assuming a certain type of rationing policy. For 

the great difficulty of rationing problems some researchers consider the cases with only 2 

demand classes. 

As noted in the previous section, there exist two types of rationing policies in the 

current literature: static critical level policies and dynamic critical level policies. Critical 

levels in the static rationing policy do not change with time, while in the dynamic critical 

level policy they change with time. The critical level is sometimes termed as threshold. 

Obviously, the dynamic rationing policy is more complicated and more difficult to 
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analyze than the static rationing policy, and the dynamic rationing policy can save cost 

comparing with the static rationing policy in many cases. The static critical level policy 

can be regarded as a special case of the dynamic critical level policy.  

In the literature most researchers consider the static critical level rationing policy 

and have made notable progress, while the literature considering dynamic rationing 

policies is quite limited. Researchers often analyze service levels or find appropriate 

parameters of the policies to minimize cost, assuming a static rationing policy and a 

certain ordering policy. Chapter 2 provides a detailed literature review.  

1.3  Overview of This Research 

In this research we study dynamic inventory rationing for different system settings. 

Analytic models to minimize cost are developed. For some inventory systems, important 

structural characteristic of the optimal dynamic rationing policy and ordering policy are 

obtained.  For other inventory systems, optimization models are developed and near 

optimal solutions with dynamic rationing policies are obtained. Many important 

managerial insights are also obtained. These dynamic rationing policies will provide a 

finer level of service differentiation and lower costs than current state-of-art rationing 

policies.   

The research is divided into three parts according to the type of demand processes 

and whether to backorder the rejected demands. The first part considers dynamic 

inventory rationing in systems with Poisson demands and backordering, the second part 
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analyzes systems with general demand processes and backordering, i.e., extending the first 

part from Poisson demand process to general demand processes, and the third part studies 

systems with Poisson demands and lost sales.  

Part 1: Inventory Rationing with Poisson Demands and backordering 

In this part we analyze dynamic inventory rationing in multiperiod systems, assuming 

Poisson demands and backordering. We first consider a multiperiod system with zero lead 

time. Dynamic programming models are developed.  We show that the optimal rationing 

policy in each period is a dynamic critical level policy and the optimal ordering policy is a 

base stock policy. Some other important characteristics of the optimal rationing policy and 

the optimal cost function are also obtained.  

We then investigate a multiperiod system with positive lead time and develop an 

optimization model to minimize average cost. In the case with positive lead time, the 

structure of optimal rationing and ordering policies may be very complicated and there is 

no closed-form expression for the average cost under many rationing policies, so we 

develop a near-optimal solution for it: applying the dynamic critical level rationing policy 

of the model with zero lead time to ration stock in each period and adopting a base stock 

ordering policy. Some important properties of such policy are obtained. A lower bound on 

the optimal costs under optimal rationing and ordering policies is also developed. 

The numerical results show the cost under the near-optimal solution is very close 

to the optimal cost for a practical range of parameters and also for poor service level 

conditions. It also shows that our dynamic rationing policy can significantly save cost, 
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comparing with current state-of-art static critical level policies. In many cases the cost 

saving can be more than 10%. From the numerical results, we also obtain many important 

managerial insights. 

Part 2: Inventory Rationing with General Demand Processes and backordering 

In this part we extend the research of Part 1 by changing demand process from Poisson 

process to very general ones, for example, the customer arrival process can be other non-

Poisson process and a customer can require more than one unit of the product. Under very 

general demand processes and positive lead time, little is known about the structure of 

optimal rationing policies. From Part 1 of this research we have known that the dynamic 

critical level policy can save much cost comparing with the static rationing policy. So we 

analyze dynamic inventory rationing, assuming a dynamic critical level policy in these 

systems. We develop models for both single period and multiperiod systems.  

We first consider a single period system assuming a dynamic critical level 

rationing policy. A method is proposed to obtain near-optimal parameters for the dynamic 

rationing policy, and approximate expressions for the cost function are also developed. 

Then we use these results to analyze inventory rationing in a multiperiod system with the 

periodic review, base stock ordering policy, denoted as (R, S) policy, and positive lead 

time, following a similar procedure to in Part 1. A near-optimal solution with a dynamic 

critical level rationing policy to the optimization problem is obtained.  

A numerical study is conducted to investigate effectiveness of the proposed 

method, assuming Poisson demands (for we can obtain optimal solutions for the Poisson 
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demand, we can compare them with those of the proposed method). The results show that 

the costs under the near-optimal dynamic rationing policy are very close to optimal costs 

in these examples.   

Part 3: Inventory Rationing with Poisson Demands and Lost Sales  

In the previous two parts, the rejected demands are backordered, while in the third part 

they are lost. We consider both finite and infinite horizon multiperiod systems with 

Poisson demands. For the finite horizon M-period system with a periodic review, fixed 

ordering amount ordering policy, denoted as (R, Q) policy, a dynamic programming 

model is developed to minimize total discounted cost, dividing each period into many 

small intervals. The optimal rationing policy in each period is shown to be the dynamic 

critical level policy.  

We then extend the model to infinite horizon. Important characteristics of the 

optimal rationing policy, cost function and ordering amount are also obtained. We show 

there is such an optimal dynamic rationing policy on the whole horizon in which the 

dynamic critical levels will not change from one period to another period, though dynamic 

critical levels in each period change with the remaining time before the end of the period. 

In other words the dynamic critical levels are independent on the index of the periods. A 

numerical study is conducted to obtain some important managerial insights. 
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The remainder of the dissertation is organized as follows. In Chapter 2, we provide 

a literature review about inventory rationing and a comparison between our research and 

relevant literature. In Chapter 3, we consider dynamic rationing for systems with Poisson 

demand and backordering. Chapter 4 studies dynamic rationing for systems with general 

demand processes and backordering. Chapter 5 analyzes dynamic rationing for systems 

with Poisson demand and lost sales. Finally, Chapter 6 concludes the thesis providing a 

summary of the research and a discussion of possible future research. 
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Chapter 2  

Literature Review 

 

 

Research about multiple class inventory problems can be traced back to Veinott (1965). It 

shows that the base stock ordering policy is optimal for the periodic review inventory 

systems under some conditions, in which there is no inventory rationing during each 

period and backorders are fulfilled according to demand class priority at the ends of 

periods when replenishments arrive. Inventory rationing among multiple demand classes 

is first analyzed by Topkis (1968) which shows the optimal rationing policy in a period is 

a dynamic critical level policy under some general demand processes. Since then there are 

many researchers to explore inventory rationing in different problem settings. 

  



Chapter 2                                                                                                                Literature Review 

 16

The literature can be categorized by different criteria, for example, number of 

demand classes that a model can apply to (many papers address the cases with only 2 

demand classes), whether customers would like to wait for later fulfillment when shortage 

occurs (backordering or lost sales), property of the ordering policy (periodic review or 

continuous review, single or multiple ordering opportunities), and type of rationing 

policies (static or dynamic rationing policies). We organize the literature according to the 

type of rationing policies, for how to ration inventory is the key decision in these 

inventory problems and problems considering dynamic rationing policies are significantly 

different from those considering static rationing policies.  

As noted in the previous chapter, in the literature there exist two types of rationing 

policies: static critical level policies and dynamic critical level policies. The critical level 

is sometimes termed as threshold. In the dynamic critical level rationing policy, the 

critical levels change with time, while in the static critical level policy, they are constants.   

Though the first paper (Topkis 1968) addressing inventory rationing considers the 

dynamic rationing policy, it is surprising that since then most of later papers consider the 

static rationing policy and have made notable progress, and at the same time quite limited 

progress is made about the dynamic rationing policy. One main reason is that the dynamic 

rationing policies are extremely difficult to analyze. Another reason is that the static 

critical level policy is easy to understand and implement by inventory practitioners.  
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The remainder of this chapter is organized as follows.  We first summarize papers 

considering static rationing policies, then papers considering dynamic rationing policies. 

In Section 2.1, we compare our work with relevant literature.  

Research Considering Static Critical Level Policies 

Inventory rationing with static rationing policies is considered by many researchers and 

they have made notable progress. Though in most cases the static rationing policy is not 

optimal for the system managers may dynamically ration stock to save cost using such 

information as the arrival time of the next replenishment and so on, in some special cases 

the static critical level policy is indeed optimal and some researchers have shown it.   

Some people analyze the service levels of different classes and obtain expressions 

for them, assuming the static critical level rationing policy and a certain ordering policy. 

Nahmias et al. (1981) consider inventory rationing in both periodic review and continuous 

review (r, Q) systems with 2 demand classes and backordering, and obtain approximate 

expressions for service levels. Moon et al. (1998) extend the work of Nahmias et al. 

(1981). They extend the single period model in Nahmias et al. (1981) from 2 demand 

classes to multiple demand classes, and develop a single period model assuming the 

demands are deterministic and constant. They also develop two simulation models. 

Dekker et al. (1998) consider inventory rationing for a system with continuous review (S-

1, S) ordering policy, 2 demand classes and backordering and approximate expressions for 

service levels are also developed.  
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Some authors develop optimization models to minimize cost, assuming the static 

critical level rationing policy and a certain ordering policy, trying to obtain optimal or 

near-optimal parameters of rationing and ordering policies. Cohen et al. (1988) consider 

inventory rationing in a system with periodic review (s, S) ordering policy, deterministic 

lead time, 2 demand classes and lost sales. An approximate, renewal-based model is 

derived and a greedy heuristic is developed to minimize expected cost subject to a fill rate 

service constraint. In this model, inventory is issued at the end of each period according to 

priority of demand classes, in other words, it assumes the static critical level for any class 

is 0. In some other optimization models the shortage cost is explicitly included in the total 

cost expressions.  

Melchiors et al. (2000) analyze inventory rationing in a continuous review (s, Q) 

inventory system with 2 demand classes and lost sales, deterministic lead time and at most 

one outstanding order, assuming the static critical level rationing policy. For Poisson 

demand and deterministic lead times, the paper presents an expression for the average 

inventory cost and a simple optimization procedure based on enumeration and bounds.  

Like Melchiors et al. (2000), Deshpande et al. (2003) also consider a (s, Q) 

inventory system with 2 demand classes, but the shortages are backordered. It assumes a 

threshold clearing mechanism for backorder clearing when a replenishment arrives. This 

backorder clearing mechanism is assumed to make the problem tractable. Under these 

assumptions exact expressions for average cost are obtained, and an efficient solution 

algorithm for computing stock control and rationing parameters is established. 



Chapter 2                                                                                                                Literature Review 

 19

Arslan et al. (2005) extend the model in Deshpande et al. (2003) by allowing more 

than 2 demand classes. This paper shows the equivalence between the considered 

inventory system and a serial inventory system. Based on this equivalence, a model for 

cost evaluation and optimization is developed. It proposes a computationally efficient 

heuristic and develops a bound on its performance. Unlike Deshpande et al. (2003) this 

model is to minimize holding cost subject to service level requirement. 

In the above papers the inventory supply is exogenous. Some people consider 

inventory rationing in make-to-stock production systems where the supply is modeled 

explicitly as a production facility. In some cases, the static critical level rationing policy is 

indeed optimal. Ha (1997a) considers inventory rationing in a make-to-stock production 

system with exponential production time, Poisson demands, multiple demand classes and 

lost sales. It shows the optimal rationing policy is a static critical level policy and the 

optimal production policy is a base stock policy. For the property of memoryless of the 

exponential production time and the Poisson demand, it is quite intuitive that the optimal 

rationing policy is a static critical level policy. This production policy is equal to (S-1, S) 

ordering policy with exponential lead time.  

Ha (1997b) extends Ha (1997a) by allowing backorders, but the model can apply 

to cases with only 2 demand classes. It shows that the optimal production policy is of base 

stock type and the optimal rationing policy has a monotone switching curve structure.  

Véricourt et al. (2002) extend the model of Ha (1997b) by allowing more than 2 

demand classes. It shows that the optimal rationing policy is a static critical level policy. It 
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is also quite intuitive for the inventory system is memoryless. It has also developed an 

efficient algorithm to compute optimal parameters of the rationing policy. 

Ha (2000) considers an inventory system that is the almost the same as Ha (1997a) 

expect the production time is modeled as an Erlang-k distribution. The work storage level 

(inventory level plus the finished stages for a job) is used to capture information regarding 

inventory level and the status of current production. The optimal rationing policy is 

characterized by a sequence of critical work storage levels. The optimal production policy 

is also characterized by a sequence of critical work storage levels.  

Like Ha (2000), Gayon et al. (2004) consider inventory rationing in a make-to-

stock system with the information about the production status. The production time is also 

an Erlang-k distribution, but the shortages are backordered in this model while shortages 

are lost in Ha (2000). It shows the optimal rationing policy is also the static critical level 

(of work storage) policy.  

Lee and Hong (2003) analyze inventory rationing in a (s, S) controlled production 

system with 2-phase Coxian process times, Poisson demands and lost sales. Assuming a 

static critical level rationing policy, expressions for the steady state probability 

distribution of the system are obtained.  

Research Considering Dynamic Critical Level Policies 

The literature on dynamic critical level rationing policies is quite limited comparing with 

those on static rationing policies, though the earliest paper (Topkis 1968) about inventory 
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rationing considers the dynamic rationing policy. Topkis (1968) first analyzes dynamic 

rationing in a single period system with general demand processes. By dividing the single 

period into some small intervals, a dynamic programming model is developed which can 

apply to cases of backordering, lost sales and partial backordering. It shows the optimal 

rationing policy is a dynamic critical level policy. Then he embeds the single period 

model into a multiperiod inventory system with zero lead time. Independent of Topkis 

(1968), Evans (1968) and Kaplan (1969) present some results similar to Topkis (1968) for 

the case with 2 demand classes.  

Melchiors (2003) considers dynamic inventory rationing in an inventory system 

with lost sales, Poisson demands, deterministic lead time, continuous review (s, Q) 

ordering policy and at most one outstanding order, assuming a restricted dynamic critical 

level policy (called restricted time-remembering policy in the paper) which has some 

constraints for critical levels. In this rationing policy the lead time is divided into some 

intervals. It assumes the critical levels in each interval are constant and the critical levels 

when there is an outstanding order are the same as those in the first interval of the lead 

time. Expressions for the expected average cost are developed, given parameters of 

ordering and rationing policies. Based on some empirical observations a neighbor 

searching heuristic is developed to find appropriate values for policy parameters.  

Teunter and Haneveld (2008) consider dyanmic inventory rationing in a single 

period system with backordering, Poisson demand and two demand classes. They first 

assume the system adopts a dynamic critical level policy and the critical level at the end of 

the period of the less important class is zero. Let iT denote the time when the critical level 



Chapter 2                                                                                                                Literature Review 

 22

rises from 1−i  to  i . They then develop a heuristic to find the times iT  through finding 

the lengths 1−−= iii TTL . The expressions for iL  are complicated and long and their 

method is not appropriate for large values of critical levels. In fact, in the paper they just 

show the expressions of iL  for 5≤i .  

Dynamic rationing policies have also been studied in the airline seat control in 

which a pool of identical seats is sold at different prices to different customers. The paper 

most relevant to our research is Lee and Hersh (1993). They consider the dynamic seats 

rationing over a finite horizon, assuming demands of each class follow a Poisson process. 

They show that the dynamic critical level rationing policy is optimal. It is a single period 

problem with no holding cost. While in our research, we consider inventory rationing in 

the multiperiod systems with ordering policies and holding cost, where the multiple 

ordering opportunities and holding cost make the problems much more complicated than 

the single period airline seat control problems. For more information about airline seat 

control or airline revenue management, see McGill et al. (1999), which presents a good 

review on airline revenue management.  

2.1  Comparison between Our Work and Literature 

From the above we can see that notable progress has been made about the static rationing 

policy and theory about the dynamic rationing policy is quite limited. Motivated by 

possible significant potential of dynamic rationing policies in cost saving, this dissertation 
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considers dynamic inventory rationing in different situations with typical practical 

problem settings, for example, the lead time in some multiperiod systems is positive.  

This research is divided into three parts. The first part considers the dynamic 

rationing for multiperiod systems with Poisson demand and backordering. We first 

consider dynamic inventory rationing in a multiperiod system with zero lead time. 

Characteristics of optimal ordering and rationing policies are obtained. Then we consider 

a multiperiod system with positive lead time and infinite horizon. An optimization model 

to minimize average cost is developed and a near-optimal solution is obtained. A lower 

bound on the optimal cost under optimal ordering and rationing policies is also established. 

In the literature most researchers consider inventory rationing assuming static rationing 

policies and only Topkis (1968) characterizes the optimal dynamic rationing policy in a 

single period system and then embeds the single period model into a multiperiod system 

with zero lead time. In this dissertation we also characterize the optimal rationing and 

ordering polices for a multiperiod system with zero lead time. There are some notable 

differences between Topkis (1968) and our work. One main difference between our work 

and Topkis is that the single period model with backordering in Topkis (1968) is a multi-

dimensional dynamic programming one, while our model for dynamic inventory rationing 

during each period is a one-dimensional dynamic programming one without the curse of 

dimensionality which Topkis’s model suffers. Another difference is that the penalty cost 

in our model includes a part of penalty per unit and a part of penalty per unit per unit time, 

which is more accurate than that in Topkis. In addition we also consider the case with 

positive lead time. In this case a near optimal solution is obtained and a lower bound on 
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optimal cost is developed. Our multiperiod model with positive lead time is quite practical 

and the dynamic critical level policy is easy to calculate and implement in practice. 

The second part of this research studies dynamic rationing for systems with very 

general demand processes and backordering. Under such general demand processes, one 

customer may demand a random amount of product and the arrivals of customers may not 

follow Poisson process. When the demand processes is very general and the lead time is 

positive in multiperiod systems, little is known about the structure of the optimal rationing 

policy. Currently we have not found other papers to address dynamic rationing in such 

cases. By assuming the dynamic critical level policy, we develop methods to obtain near 

optimal parameters for the dynamic rationing policy and ordering policy. Our work places 

a benchmark for relevant future research.  

The third part of the research analyzes dynamic rationing for multiperiod systems 

with lost sales and Poisson demand. We first consider a multiperiod system with finite 

horizon, assuming a periodic review, fixed ordering amount ordering policy, and a 

dynamic programming model is developed. Characteristics of the optimal dynamic 

rationing policy, optimal cost function and optimal parameter of the ordering policy are 

obtained. We then extend it to the case with infinite horizon. In the literature there are a 

few papers consider dynamic rationing policies with lost sale. Lee and Hersh (1993) has 

considered a single period model with dynamic rationing policy and lost sales for airline 

seats management. It is in fact a special case of our multiperiod model by assuming there 

is only one period, no holding cost, and no salvage value of remaining stock at the end of 

the period. Melchiors (2003) considers a restricted dynamic inventory rationing in an 
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inventory system with continuous review (s, Q) ordering policy and develops expressions 

for average cost under given rationing policy, while our model is a periodic review 

ordering policy and the optimal dynamic rationing policy is obtained. 
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Chapter 3  

Inventory Rationing for Systems with Poisson 

Demands and Backordering 

 

 

 

3.1  Introduction  

From previous chapters, we have seen that inventory rationing among different demand 

classes has a very wide application in industries and currently there exist two types of 

rationing policies: static critical level policies and dynamic critical level policies. Most 

relevant papers consider inventory rationing with static critical level policies, which is not 

optimal in most cases, and people have made notable progress on it. On the other hand, 

the theory about dynamic rationing policies is very limited.  
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Deshpande et al. (2003) have analyzed inventory rationing for a military logistics 

system with two demand classes, assuming a static critical level rationing policy and a 

continuous review ordering policy. It shows that the unknown optimal dynamic rationing 

policies may significantly reduce the cost, comparing with the static critical level rationing 

policy (in many cases the lower bound on optimal costs is more than 10% less than the 

costs under the static rationing policy). Motivated by the possible significant potential of 

the dynamic rationing policy in cost saving, in this chapter we explore dynamic inventory 

rationing in multiperiod systems assuming Poisson process and backordering. In these 

inventory systems, how to ration inventory and how to replenish inventory are key 

decisions. 

We first consider inventory rationing in a multiperiod system with zero lead time. 

Dynamic programming models are developed to characterize the optimal ordering and 

rationing policies. We show that the optimal dynamic rationing policy in each period is a 

dynamic critical level policy and the optimal ordering policy is a base stock policy. We 

then analyze a multiperiod system with positive lead time. For the structure of optimal 

rationing and ordering policies may be very complex, we develop a near-optimal solution 

to the optimization problem of minimizing average cost by applying the dynamic critical 

level policy of the model with zero lead time and assuming a base stock ordering policy. 

A lower bound on the optimal cost under the optimal rationing and ordering policies is 

also obtained. A numerical study is then conducted to compare the dynamic rationing 

policy with current state-of-art static critical level policies. Results show that the dynamic 

rationing policy can save more than 10% of the cost in many cases, comparing with the 
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static critical level policy. Results also show the costs under the dynamic rationing policy 

are also very close to the optimal costs.  

In the above inventory rationing problem with backordering, we assume such a 

backorder clearing mechanism at the ends of the periods when replenishments arrive: 

fulfill backorders as much as possible according to class priority, i.e., first fulfill 

backorders of the most important class until all backorders of this class are fulfilled or 

there is no remaining on hand inventory, and if there are remaining stock after fulfilling 

all backorders of the most important class, then fulfill backorders of the second most 

important class and so on. We also investigate another backorder clearing mechanism in 

which it is possible to reserve stock for next periods by not fulfilling some backorders. 

The numerical results show this backorder clearing mechanism is better than the previous 

mechanism, but the difference of costs is very small in all studied examples.  

Topkis (1968) has also considered dynamic inventory rationing in both a single 

period system and a multiperiod system with zero lead time. For the single period system, 

he assumes that the period can be divided into many intervals and demands in different 

intervals are independent. Then he develops a general dynamic programming model 

which can deal with very general demand processes. For the backorder case, his model is 

a multi-dimensional dynamic programming one and has the curse of dimensionality of 

dynamic program. He shows that the dynamic critical level rationing policy is optimal, 

and for multiperiod system with zero lead time, the optimal ordering policy is a base stock 

policy. It is the first and very significant result for the dynamic inventory rationing. 

However, his models have some limitations and some important questions remain. For 
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example, for the curse of dimensionality of his dynamic programming model, in general it 

will be difficult to obtain optimal policies in reasonable time or a short time. For the 

backorder case, the state space of dynamic program in general is infinite and it needs to 

truncate, hence incurring some calculation errors. The truncated state space also increases 

exponentially with the number of dimensionality and the calculation time also 

exponentially increases. For the model is so complicated, Topkis does not show how the 

critical levels changes during the period for the backorder case (however, he shows that 

for the case of lost sales, under some strict conditions the critical levels decrease towards 

the end of the period). In addition, from the viewpoint of practitioners and researchers, 

there are some important questions outstanding: for the more practical conditions such as 

positive lead time, how to order and ration stock to minimize cost? If we can not find the 

optimal solution, can we find an effective near optimal solution? How is the near optimal 

solution close to the optimal costs? Our work will answer these questions, besides 

showing some important properties of the dynamic rationing policy, for example, the 

dynamic critical level rationing policy is optimal, the critical levels decrease towards the 

end of the period and so on.  

In the following we summarize some fundamental differences between Topkis and 

our work: 

(a) The single period model with backordering in Topkis (1968) is a multiple 

dimensional dynamic programming one, while our model for dynamic 

inventory rationing during one period is one-dimensional dynamic 

programming one, assuming unmet demands during a period can be 
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fulfilled only at the ends of the periods. This assumption is quite intuitive 

and practical, and brings significant benefit of eliminating the curse of 

dimensionality that Topkis (1968) suffers. So our model can deal with any 

number of demand classes.  

(b) The demand process in Topkis is very general, while the demand process in 

our models is Poisson process. For the demand process is so general, 

Topkis has not shown some important properties of critical levels of the 

rationing policy. While in our models, by assuming Poisson process we 

have shown more structural properties of the optimal dynamic rationing 

policy.  

(c) The third difference is about the penalty cost of backorders. Models in 

Topkis (1968) apply only to the case of penalty cost of delay, i.e., penalty 

cost per unit per unit time, while our models have a general penalty cost for 

backorders which includes both delay and stockout parts, i.e., includes the 

penalty cost per unit and the penalty cost per unit per unit time.  This 

general penalty cost can more precisely represent the practical cases, but it 

is more difficult to trace (note that Deshpande et al. (2003) also consider 

this general penalty cost).  

(d) For the multiperiod systems, the lead time in Topkis is zero, while we 

consider not only the case of zero lead time, but also the case of positive 

lead time. For the positive lead time case, we find a near optimal solution 
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including both the ordering policy and the rationing policy. A lower bound 

on the optimal costs is also developed. 

Our work is also significantly different from other literature. Lee and Hersh (1993) 

considers a single period model with lost sales and Poisson demand and without holding 

cost and without ordering policy, while we consider multiperiod systems with 

backordering, Poisson demand, holding cost and with an ordering policy. The holding cost 

is an important factor during the decision making about inventory rationing and ordering. 

Teunter and Haneveld (2008) consider dyanmic inventory rationing in a single period 

system with backordering, Poisson demand and two demand classes. Assuming the 

dyanmic critical level rationing policy, they have developed a heuristic to find the times 

when the critical level changes. Instead of asssuming a certian type of rationnig policy as 

in their model, we show that the dynamic critical level rationing policy is optimal and 

many important properties of the optimal policy are also found. In addition, our model can 

deal with any number of classes and any large values of critical levels, while their model 

can deal with only two demand classes and small values of critical levels. We also address 

multiple period systems, while they consider a single period problem. 

Deshpande et al. (2003) consider the static rationing policy for a system with 

continuous review ordering policy, while we consider the dynamic rationing policy for a 

system with periodic review ordering policy. Moreover, the model in Deshpande et al. 

(2003) can apply to the cases with only two demand classes, while our models can apply 

to cases with any number of classes. The numerical results show that our dynamic 
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inventory rationing policy can significantly reduce costs comparing with the static policies: 

in many cases, the cost reduction can be more than 10%.  

The remainder of this chapter is organized as follows. In Section 3.2, we consider 

dynamic inventory rationing in a multiperiod system with zero lead time. Section 3.3 

extends the analysis to a multiperiod system with positive lead time and infinite horizon. 

In Section 3.4, a numerical study is conducted to compare the dynamic rationing policy 

with the static rationing policy. We also compare the costs under our dynamic rationing 

policy with the lower bound on optimal costs. Section 3.5 compares two backorder 

clearing mechanisms. In Section 3.6, conclusions are given. Proofs of lemmas and 

theorems of this chapter are provided in Appendix A.  

3.2   Dynamic Rationing for a Multiperiod System with Zero Lead Time 

3.2.1  Model Formulation 

Consider a multiperiod inventory system with M  periods in which K independent 

demand classes request for the same product. Demand classes are characterized by 

different penalty costs of shortage. The periods are numbered as M,...,2,1 . At the 

beginning of period 1 there is some initial on-hand inventory. The inventory is reviewed at 

the beginning of each period and the system manager makes a decision about how much 

to order. Assume the lead time of orders is zero. During each period, demands from K 

classes continuously arrive. When a demand arrives, the system manager needs to make a 
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decision immediately about whether or not to satisfy it, i.e., how to ration stock.  Rejected 

demands are backlogged.  

Assume backorders can be fulfilled only at the ends of periods by remaining on-

hand inventory at the ends of periods or purchased new stock at the beginnings of periods. 

That is, a rejected demand can not be fulfilled at the middle of a period. Such assumption 

is quite practical and reasonable, though in some cases it is better to fulfill some 

outstanding backorders in the middle of a period. For example, if the remaining time 

before the end of the current period is very short and the future demand is small and there 

is a very large on-hand inventory, then it would be better for the system to fulfill some 

outstanding backorders at this time immediately than continuously waiting until the end of 

the period to fulfill backorders. Though there are such cases, they will be rare. More 

importantly, this assumption makes dynamic inventory rationing problems tractable as we 

will see later in this section.  

Assume demands and cost factors are stationary. We are trying to find the optimal 

ordering and rationing policies to minimize expected total cost including ordering cost, 

holding cost and penalty cost of shortage on the whole horizon.  

Assume demand of class i , },...,1{ Ki ∈ , follows a Poisson process with arrival 

rate iλ . If a demand of class i is rejected, then the demand is backordered and the penalty 

cost tii ⋅+ ππ ˆ  is incurred, where iπ  is the penalty cost per unit, iπ̂  is the penalty cost per 

unit per unit time and t  is the length from the time when the demand is rejected to the 

time when the backorder is fulfilled. We assume that if ji ππ ≥ , then ji ππ ˆˆ ≥  as 
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Deshpande et al. (2003) did. In general it is valid. But there may be some opposite cases 

in practice such that ji ππ ≥ , but ji ππ ˆˆ ≤ . In these cases, the order of demand classes is not 

regular, and the problem becomes more complicated and the structure of the optimal 

policy may be different from what we will show in later sections. We assume that if ji < , 

then ji ππ ≥  and ji ππ ˆˆ ≥ , i.e., class 1 has the highest priority and class K  has the lowest 

priority.  

Assume the ordering cost is linear with the price c  per unit. That is, there is no 

fixed setup cost. At the end of a period, the system uses the remaining stock to fulfill 

backorders. The remaining stock may not be enough to fulfill all backorders, so there are 

some remaining backorders unfulfilled at the end of a period. Let mx , }1,...,1{ +∈ Mm , 

denote the net inventory, which is the on-hand inventory minus total backorders, at the 

beginning of period m before ordering (i.e., at the end of period 1−m ) and 

},...,{ 1 Km bb=B  denote the vector of backorders of each demand class at the beginning of 

period m before ordering, where ib  is the backorder of class i. So if there are some 

backorders unfulfilled, then 0
1

<−= ∑ =

K

i im bx . Assume the terminal cost function at the 

end of horizon is 11)( ++ −= MMT cxxC , where c  is the variable ordering cost. So if there is 

some remaining stock after fulfilling all backorders at the end of period M, the remaining 

stock has a salvage value of c per unit, and if there are remaining unfulfilled backorders, 

then the system has a cost of c per unit unfulfilled backorder. 
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At the beginning of period m, the system first observes the net inventory mx  and 

the backorder vector mB , and then makes a decision about how much to order. 

Let my denote the inventory position at the beginning of period m after ordering. Inventory 

position is the on-hand inventory plus outstanding orders minus backorders. For the lead 

time is zero, we have no outstanding orders. We have the following lemma for my  under 

optimal ordering policies. 

Lemma 3.1.  Under optimal ordering policies, there are no outstanding backorders at the 

beginning of period m, },...,1{ Mm ∈ , after ordering, and hence 0≥my .  

 The above lemma shows that all rejected demands in a period will be fulfilled by 

the remaining on-hand inventory at the end of the period and the new purchased stock at 

the beginning of the next period. So the backorders in a period will never be forwarded to 

the next period. For there are no outstanding backorders at the beginning of a period after 

ordering, the inventory position 0≥my , which is the on-hand inventory plus outstanding 

orders minus backorders. For the lead time is zero, there are no outstanding orders and my  

in fact is the on-hand inventory. The above result is quite intuitive. If a rejected demand is 

fulfilled after a longer time, then it will incur a larger penalty cost. On the other hand, the 

cost of purchasing stock to fulfill a backorder is stationary. So it is not economic to delay 

fulfilling backorders.   

Let mD  denote the total demand of all demand classes in period m. For the 

demands are stationary, mD  has the same probability distribution for all index m. We also 
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have mmm Dyx −=+1 . In the following we develop a dynamic programming model for the 

optimization problem of minimizing expected total cost on the whole horizon, in which 

each period is a stage. 

For all possible backorders at the end of a certain period should be fulfilled at the 

beginning of its next period according to Lemma 3.1, we consider net inventory mx  as the 

state variable in the dynamic programming model, ignoring mB . Let ,0),( ≥mmm yyC  

denote the expected holding and penalty cost in period m , given the on-hand inventory 

level my  at the beginning of period m  after ordering. )( mm yC  is dependent on the 

rationing policy in period m. Let },...,{ 1 Mυυυ = denote the dynamic rationing policy on 

the whole horizon, where mυ , },...,1{ Mm ∈ , denote the dynamic rationing policy in period 

m.  

Let )( mm xV  denote the optimal expected cost from period m to the end of the 

horizon, given net inventory mx at the beginning of period m before ordering. The 

optimization problem is to choose the ordering and rationing policies to minimize the total 

cost, i.e.,   

  )]([)()(min)( 1, mmmmmmmxymm DyVEyCxycxV
mmm

−++−= +≥ υ
, },...,1{ Mm ∈ ,   (3.1) 

where 11 )( ++ −= MmM cxxV  and )( mm xyc −  is the ordering cost.  
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In the above expression, mυ  is the dynamic rationing policy in period m. The 

following lemma shows that under the optimal ordering policy, the optimal rationing 

policy in period m is independent on the rationing policies in other periods and parameter 

settings in other periods.  

Lemma 3.2.  Under the optimal ordering policies, the optimal rationing policy in period 

m, },...,1{ Mm ∈ , is determined solely by the parameter setting in period m. 

The above lemma comes from Lemma 3.1. For a given inventory position my  at 

the beginning of period m  after ordering, the rationing policy in period m will affect the 

backorder vector 1+mB , but will not affect the net inventory 1+mx , which is determined by 

my  and the total demand mD of all classes in period m.  After ordering at the beginning of 

period 1+m , all backorders in 1+mB  will be fulfilled, so different rationing policies in 

period m make no difference for the costs of later periods.  Thus the optimal rationing 

policy in period m can be determined solely by the parameter settings in period m.  

The above property is very useful. Based on this property, we can separately 

consider the ordering and rationing policies for problem (3.1). In the following we first 

obtain the optimal dynamic rationing policy in each period and properties of )( mm yC  

under the optimal rationing policy in subsection 3.2.1, and then based on these properties 

of )( mm yC  we obtain the optimal ordering policy by induction in subsection 3.2.2.  For 

the cost factors and demand process are stationary, we drop the subscript m in )( mm yC  

since here.  
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3.2.2  Characterization of the Optimal Dynamic Rationing Policy 

In this section we consider how to dynamically ration stock to minimize expected total 

holding and penalty cost in a certain period, given initial on-hand inventory y at the 

beginning of this period, i.e., )(min yC
υ

, given 0≥y . 

According to previous assumptions, there are K independent demand classes 

requesting for the same product during the period, and demand of each class follows a 

Poisson process with arrival rate iλ , },...,1{ Ki ∈ . During the period, when a demand of 

class i  arrives, the system needs to immediately make a decision about whether to satisfy 

it or reject it. If it is rejected, then the demand is backordered. For we have assumed 

backorders can be fulfilled only at the ends of periods, the penalty cost of shortage 

incurred is tii ⋅+ ππ ˆ , where t  is the remaining time before the end of the period. The 

inventory during the period has a holding cost of h  per unit per unit time. 

We formulate the dynamic inventory rationing problem in this period as a discrete-

time Markov decision problem. Divide the period into N  equal intervals such that the 

intervals are so small that the probability of more than 2 demands arriving in each interval 

is very small and it can be ignored. Let u  denote the length of the period. So the length of 

each interval is Nut /=∆ . Then the probability that a demand of class i  arrives during an 

interval, ip , is )( toti ∆+∆λ , and the probability that no demand of any class arrives during 

an interval, 0p , is )(1 tot ∆+∆− λ , where ∑=
K

i1
λλ . Let the time points separating the 

intervals are indexed as 0,...,1, −NN , i.e., the beginning of the period is time point N  and 
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the end of the period is time point 0. We also index the interval which begins at time 

point n  and ends at time point 1−n  as n . If a demand from class i  arrives during 

interval n , we assume the system delays the decision about whether to satisfy or reject it 

until the end of the interval. If we reject this demand, penalty cost tnii ∆⋅−⋅+ )1(π̂π  

incurs. Hence, these time points are the times when the decisions are made on whether to 

satisfy or reject the demands.  

Let )(nx , Nn ≤<0 , denote the on-hand inventory at the beginning of interval n, 

which is just after the decision at time point n . Let ),( xnH , Nn ≤≤0  , denote the 

optimal expected holding and shortage cost from the beginning of interval n to the end of 

the period, given on-hand inventory )(nx . When 0=n , 0),0( ≡xH  for we consider only 

holding and shortage cost now. In the following development about ),( xnH , if we say 

“cost” and do not explicitly state holding and penalty cost, it means the holding and 

penalty cost.    

Now consider interval n. Assume a demand of class i  has arrived during interval n . 

When 0)( >nx , if we satisfy it, then the total expected cost from the beginning of interval 

n  to the end of the period is )1,1(),( −−+⋅∆⋅= xnHhtxxnCsat . If we reject the demand, 

the demand is backordered and the total expected cost from the beginning of interval n  to 

the end of the period is )1(),1(),( −+−+⋅∆⋅= nexnHhtxxnC irej , 

where tnne iii ∆⋅−⋅+=− )1(ˆ)1( ππ . Let )1,(),(),( −−=∆ xnHxnHxnx . We should 

satisfy the demand if and only if ),(),( xnCxnC satrej ≥ , i.e.,  
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                               .0)1(),1( ≥−+−∆ nexn ix                                                                       

In the case when 0)( =nx , if a demand of class i  arrives during interval n , then it should 

always be rejected and the expected total cost from the beginning of interval n  to the end 

of the period is )0,1()1( −+− nHnei . When 0)( >nx  and there is no demand that arrives 

during interval n , the total expected cost from the beginning of interval n  to the end of the 

period is ),1( xnHhtx −+⋅∆⋅ . When 0)( =nx  and there is no demand during interval n , 

the total expected cost is )0,1( −nH . So, given the on-hand inventory )(nx , the optimal 

expected holding and shortage cost ),( xnH is   


















=≥

>=−+−⋅+−⋅

>>−+−

−−⋅+−⋅+⋅∆⋅

= ∑

∑

=

=

0,0for                                                                            .0

 0,0for     )];0,1()1([)0,1(

0,0for                                         ;)]1(),1(

),1,1(min[),1(

),(
1

0

1
0

nx

nxnHnepnHp

nxnexnH

xnHpxnHphtx

xnH i

K

i
i

i

K

i
i

       (3.2)           

The above model is a one-dimensional dynamic programming one in which the state 

variable is the on-hand inventory x , so it is easy to solve. 

For a given time point n , the optimal cost function ),( xnH is a discrete function 

defined on nonnegative integers, i.e., the on-hand inventory x  is a nonnegative integer. In 

later parts, sometimes we may say “increasing” (for a function) which means 

“nondecreasing”, i.e., we use the weak sense of “increasing”. We have the following 

lemma to show an important property of  ),( xnH . 
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Lemma 3.3. For a given time point Nnn ≤<0  , , the first difference of the function 

),( xnH  is nondecreasing in x , i.e., )1,(),(),( −−=∆ xnHxnHxnx is nondecreasing in x .  

The above lemma shows that the marginal cost (holding and penalty cost) of 

having one more inventory is nondecreasing. It is worth to note that the condition 

0),0( =xH  is not the necessary condition for the above lemma. From the proof of Lemma 

3.3, we can see that we use only the condition that the first difference of ),0( xH is 

nondecreasing in x  (no matter what the exact expression is) to prove the above lemma.   

From Lemma 3.3, we can obtain the optimal rationing policy. The system manager 

determines whether or not to satisfy a demand of class i at time n  by comparing the cost 

of rejecting it with that of satisfying it.  Given the current on-hand inventory x at time n, 

the system should satisfy the demand of class i, if and only if )1,()(),( −≥+ xnHnexnH i , 

i.e., 0)(),( ≥+∆ nexn ix . For )1,(),(),( −−=∆ xnHxnHxnx  is nondecreasing in x , there 

exists a critical on-hand inventory level such that when x is larger than it, then 

0)(),( ≥+∆ nexn ix , hence the demand of class i should be satisfied, and when x is at or 

below this critical level, then 0)(),( <+∆ nexn ix  and the demand should be rejected.  

Hence the optimal rationing policy is a critical level policy, and the critical level for class 

i at time point n can be obtained by  

                      1}0)(),(|min{)(* −≥+∆= nexnxnx ixi .                             (3.3) 
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So the optimal rationing policy is the dynamic critical level policy with critical level 

)(* nxi  . We have the following theorem for the optimal rationing policy. 

Theorem 3.1.   

(a) The optimal rationing policy is a dynamic critical level policy with critical 

levels )(* nxi , },...,1{ Ki ∈ and },...,0{ Nn∈ . 

(b) If ji < , then the dynamic critical level of class i  is below the critical level of 

class j , i.e., )()( ** nxnx ji ≤ .  

(c) The dynamic critical level of class i  is nondecreasing in n  and the critical 

level for class i  at time point 0 is 0, i.e.,  )()1( ** nxnx ii ≥+ and 0)0(* =ix . 

Thus we have obtained the optimal dynamic rationing policy in the period. Part (b) 

of the above theorem comes from the property of the function ),( xnH : the first difference 

of ),( xnH  is nondecreasing in x . It states that if a demand of a certain class should be 

rejected at a certain time, then a demand from less important classes should always be 

rejected at this time. Part (c) states the trend of critical levels. It means: when the 

remaining time is longer, then the system should have more stock reserved for more 

important classes. The critical levels decrease towards the end of the period. At the end of 

the period, the system does not need to reserve any stock for more important classes, for a 

new replenishment will come immediately.  So if there is on-hand inventory at the end of 

the horizon, a demand of any class should be satisfied. Hence the critical level of any 
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demand class at this time is 0, i.e., 0)0(* =ix . The results in parts (b) and (c) are quite 

intuitive.  

It is worth to note that the critical levels are determined by equation (3.3), i.e., they 

are completely determined by parameters of demand process, holding and penalty costs, 

and the length of the period.  In other words, these critical levels are independent on the 

initial on-hand inventory at the beginning of the period. It is a nice property. So the 

dynamic rationing policy is easy to implement in practice.   

The above dynamic critical level rationing policy is the rationing policy in one 

period. For the above inventory rationing model is for any period of the multiperiod 

system, we can see that the optimal rationing policy for the multiperiod system is to apply 

the above dynamic critical level rationing policy in each period. From the above we also 

have obtained ),()(min yNHyC =
υ

 and an important property of the function ),( yNH : 

the first difference of ),( yNH  is nondecreasing in y.   

3.2.3   Characterization of the Optimal Ordering Policy 

Now consider the ordering policy for optimization problem (3.1). For we have found the 

optimal rationing policy and the corresponding cost in the previous section, the 

optimization problem (3.1) now becomes:  

  )]([),()(min)( 1 mmmmmmxymm DyVEyNHxycxV
mm

−++−= +≥
, },...,1{ Mm ∈ ,     (3.4) 
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where )( mm xyc −  is the ordering cost and ),( myNH  is the holding and penalty cost in 

current period (i.e., period m). In other words, the optimization problem (3.1) is: given the 

net inventory mx  at the beginning of period m, determine the optimal ordering amount 

)( mm xy −  to minimize the expected total cost from period m to the end of the horizon.  So 

)( mm xV  is the optimal cost from period m to the end of the horizon, given the inventory 

mx . The above optimization problem (3.4) needs to be solved for any given mx . To 

determine an optimal ordering policy, we must solve problem (3.4) for every value of mx . 

Define  

)]([),()( 1 mmmmmmm DyVEyNHycyW −++⋅= + , },...,1{ Mm ∈                      (3.5)                       

So Equation (3.4) can be rewritten as 

)}|(min{)( mmmmmmm xyyWcxxV ≥+−= .                                                       (3.6) 

Let )(min  arg
0 mmym yWy

m≥
= .  

)( mm xV  is a function of the net inventory mx , that is, for different values of mx , the 

optimal cost from period m to the end of the period may be different. We have the 

following Lemma for the functions )( mm yW  and )( mm xV  .   

Lemma 3.4.  
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(a) The first difference of the function )( mm xV (i.e., )()1( mmmm xVxV −+ ), 

},...,1{ Mm ∈ , is nondecreasing in mx . 

(b) The first difference of the function )( mm yW (i.e., )()1( mmmm yWyW −+ ), 

},...,1{ Mm ∈ , is nondecreasing in my . 

Parts (a) and (b) of the above lemma shows a property of the optimal cost function 

)( mm xV and the function )( mm yW . From Part (b), we can obtain the optimal ordering 

policy.  In many inventory systems, people have shown that a base stock ordering policy 

is optimal. A base stock ordering policy with the base stock level *s  is such a policy:  

when the initial inventory x is less than the base stock level *s , then order )( * xs − so that 

the inventory after ordering reaches the base stock level *s , and if the initial inventory x is 

greater than the base stock level *s , then do not order anything. In the following we show 

that the base stock ordering policy is also optimal in our inventory system. 

Consider Equation 3.6. The optimal solution *
my to the minimization problem 

)}|(min{ mmmm xyyW ≥ depends on the relation between mx  and my . If mm yx ≤ , then the 

optimal solution mm yy =* , so the system should order inventory up to my .  If mm yx > , 

then the optimal solution mm xy =* , because )( mm yW is nondecreasing in my  over the range 

mm yy ≥ (which comes from the fact: )( mm yW arrives at its minimum at my  and the first 

difference of )( mm yW  is nondecreasing in my ). So when mm yx > , then the system should 
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not order to increase inventory, for increasing inventory just incurs more cost. Hence the 

ordering policy at the beginning of period m is precisely a base stock policy with base 

stock level my . So we have the following theorem for the optimal ordering policy. 

Theorem 3.2.  

The optimal ordering policy in period m, },...,1{ Mm ∈ ,  is a base stock policy with 

base stock level my .  

The above theorem shows the optimal ordering policy under the optimal rationing 

policy is a base stock policy. So at the beginning of period m, the system manager first 

observes the inventory mx , if mx is less than the base stock level my , then order up to the 

base stock level my , otherwise, do not order any inventory.  

In this optimal ordering policy, we need to calculate a series of base stock level my , 

},...,1{ Mm ∈ . In the following we show a myopic ordering policy with a constant base 

stock level is also optimal (assuming the above optimal rationing policy is always used). 

In this way, we need to calculate only one base stock level.  

Let )]([),()( mmmmmm DycEyNHycyG −⋅−+⋅= , },,1{ Mm L∈ . For the first 

difference of the function ),( myNH  is nondecreasing in my , we can see the first 

difference of )( mm yG  is also nondecreasing in my . Define mmmmm cxxVxV += )()(' . The 

recursive Equation (3.4) is equal to the following equation:  
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)]},('[)({min              

)](')([),(min)('

1

1

mmmmmxy

mmmmmmmxymm

DyVEyG

DyVDycEyNHcyxV

mm

mm

−+=

−+−−++=

+≥

+≥         (3.7) 

where 1+=− mmm xDy and 0)(' 11 =++ MM xV .   

From the above equation, we can obtain a myopic ordering policy, i.e., to obtain an 

approximate ordering amount by minimizing )( mm yG , ignoring its effect on later periods. 

Let   

      )(minarg
0           

mm
y

yGy
m≥

= .                                                                            (3.8)                                    

We can see that y  is the same for all m, i.e., it is independent on m.  )( mm yG  can be 

regarded as the expected total cost of a single period system in which the terminal cost 

function is xcxCT ⋅−=)( . For the first difference of )( mm yG  is nondecreasing, we obtain a 

myopic base stock ordering policy with base stock level y : at the beginning of period m, if 

the net inventory mx  is less than y , then order up to y , otherwise do not order. The 

following theorem shows this myopic ordering policy is optimal. 

Theorem 3.3.   The myopic ordering policy with base stock level y  is optimal.   

 According to this theorem, we can easily obtain the parameters of the optimal 

ordering policy. We can see that y  is quite easy to calculate. Thus we have found the 

optimal ordering and rationing policies for a multiperiod system with zero lead time. 
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However, in practice, the lead time sometimes can be positive. So in the following we will 

consider dynamic inventory rationing in multiperiod systems with positive lead time. 

3.2.4   A Dynamic Programming Model with Positive Lead Time 

In this subsection we develop a dynamic programming model for the case with positive 

lead time and finite horizon to show the structure of optimal ordering and optimal 

rationing policies may be extremely complex and very difficult to obtain. For these 

reasons in the following section we consider minimizing average cost of a multiperiod 

system with infinite horizon and positive lead time and will develop a near-optimal 

solution.  

Consider a multiperiod system with LM + periods. Assume the lead time is 

positive, which is an integer times L  of the length of a period. The demands and cost 

factors are the same as the previous case with zero lead time. The last ordering 

opportunity is at the beginning of period M, which will arrive at the beginning of 

period LM + , i.e., at the end of period 1−+ LM .  

At the beginning of each period, the system first receives the order which arrives at 

this time and uses the on-hand inventory to fulfill backorders, then decides how much to 

order. For it is possible that the stock after receiving an order is not enough to fulfill all 

backorders, we need an assumption about how to fulfill backorders. Assume such a 

backorder clearing mechanism: fulfill backorders as much as possible from the most 

important class to the least important class. So if there is some remaining on-hand 
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inventory, then no backorders are unfulfilled, and if there are some backorders unfulfilled, 

then there is no remaining on-hand inventory. We call this mechanism as full-priority 

backorder clearing mechanism (denoted as mechanism M in the later numerical study).  

Let mx and },...,{ 1 Km bb=B denote the net inventory and outstanding backorders 

respectively at the beginning of period m just before placing an order, where ib  is the 

number of backorders of class i . Let mz denote the ordering amount at the beginning of 

period m. Note that the last ordering opportunity is at the beginning of period M, so 0=mz , 

},...,1( LMMm ++∈ . Let ],...,,[ 121 −= L
mmmm zzzZ , where l

mz , }1,...,1{ −∈ Ll , is the order 

placed l  periods ago based on the beginning of period m. The system state is the 

vector ],,[ mmmx ZB . Still let mD denote total demands of all classes in period m . So   

              m
L
mmm Dzxx −+= −

+
1

1 ,                                                                 (3.9a) 

and                    ],...,,[ 21
1

−
+ = L

mmmm zzzZ .                                                              (3.9b) 

Let mυ  denote the dynamic inventory rationing policy in period m. Let mD~ denote the 

realization of demands of each class during period m (note that mD is the total demand of 

all classes). 1+mB  is affected by many factors such as mυ , mx , mB ,  and 2−L
mz (the order 

will arrive at the end of period m ) and the demand mD~  in period m, i.e., 

                                )~,,,,( 2
1 m

L
mmmmmm Dzxf −

+ = BB υ .                                            (3.9c)   
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The state of the system changes according to Equation (3.9), which is quite complicated.                           

When a demand is rejected, penalty cost dii t⋅+ ππ ˆ  is incurred, where dt  is the 

time length from the time when the demand is rejected to the time when the backorder is 

fulfilled. dt  may be greater than the length u of a period. Let rt  denote the time from the 

arrival of the demand which is rejected to the end of the current period. So 

.}0,1,...{j  , ∈⋅+= ujtt rd  We adopt such a way to account the penalty cost: account 

rii t⋅+ ππ ˆ as the cost incurred in the period during which the demand is rejected; and if a 

backorder of class i  is outstanding at the beginning of a period, then a penalty cost ui ⋅π̂  

is accounted at this period.  

Let )|,( mm xC υB denote the expected holding and penalty cost incurred in period m 

under the rationing policy mυ , given ),( mmx B . The ordering amount mz and outstanding 

orders mZ will not affect the cost )|,( mm xC υB .  Let ),,( mmmm xV ZB  denote the optimal 

expected cost from period m  to the end of the horizon, starting from period m with 

state ),,( mmmx ZB . Assume the terminal cost function at the end of period LM + is a 

certain function ),,( 111 ++++++ LMLMLMxJ ZB , so   

     )],,([)|,(min),,( 1111,0 ++++≥
++= mmmmmmmmmzmmmm xVExCczxV

mm

ZBBZB υ
υ

,          (3.10) 

where ),,(),,( 1111111 ++++++++++++++ = LMLMLMLMLMLMLM xJxV ZBZB ,  

and 0=mz , },...,1{ LMMm ++∈ . 
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 From the above functional equation, we can see that it is a multiple dimensional 

dynamic programming one, which is extremely difficult to solve. The structure of optimal 

ordering and rationing policies may be very complicated for the following reasons: 

(a) The ordering amount mz  is dependent not only on the inventory position as in the 

general inventory problems, but also on other factors such as backorder vector mB  

and rationing policy mυ , i.e., ),,,( mmmmmm xgz υZB= . By intuition, when the total 

backorders and other conditions are the same, it would be better for the system to 

order more when all backorders are of the most important class than when all 

backorders are of the least important class. In addition, for different rationing 

policies applied in period m, the ordering amount mz may not be the same. So the 

optimal ordering policy may not have such nice property (a base stock policy) as 

that in the case with lead time zero.  

(b)  Optimal rationing policy *
mυ  in any period m is affected by many factors such as 

the outstanding orders mZ  in this period (especially the order that will arrive at the 

end of this period) and mx  and so on. For it is possible that there are remaining 

backorders unfulfilled at the end of period m after an order arrives at the end of 

this period, different rationing policies in period m will affect the distribution of 

backorders of each class in 1+mB  and hence affect the cost incurred in the next 

period. So the rationing policy in one period can not be determined solely by the 

parameters in current period as in the case with zero lead time. Thus for different 
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ordering amount that will arrive at the end of period m, the optimal rationing 

policy in this period may be different.  

(c) The ordering policy interacts with the rationing policy. The optimal rationing 

policy in period m can not be determined solely by the parameters in period m as 

in the case with zero lead time. So we need to consider the inventory rationing and 

ordering policies at the same time. While in the case with zero lead time, we can 

separately obtain optimal ordering and rationing policies (first obtain the rationing 

policy, then the ordering policy). The complex interaction between the ordering 

policy and rationing policy may make the structure of optimal ordering and 

rationing policies very complex and difficult to analyze. So if the optimal rationing 

policy in one period is the critical level policy, such critical levels should be a 

function of many factors such as outstanding orders, backorders and so on.  

For the curse of dimensionality of the dynamic programming model and we can 

not separately optimize the ordering and rationing policies, problem (3.10) is extremely 

difficult to solve. In the following section we consider minimizing average cost for the 

systems with infinite horizon and positive lead time.  

3.3  Dynamic Rationing for a Multiperiod System with Positive Lead 

Time 

In this section we consider dynamic inventory rationing in a multiperiod system with 

infinite horizon and positive lead time.  An optimization model to minimize average cost 
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is developed and a near optimal solution is obtained. A lower bound on the optimal cost 

under optimal ordering and rationing policies is also developed. 

 3.3.1  Model Formulation 

Consider a multiperiod system with infinite horizon and positive lead time L , in which the 

demand process and cost factors are the same as the previous multiperiod system with 

zero lead time. Note that here L  can be any positive value, not necessarily be integer times 

of the period length. We call the time between two successive order opportunities as an 

ordering period and the time between two successive arrivals of orders as a replenishment 

period. The periods are indexed as ,...1,0 , i.e., the first period is period 0. Each period has 

the same length u. Assume the time at the beginning of ordering period 0 is 0. The order 

placed at the beginning of ordering period m, ,...}1,0{∈m , will arrive at time Lmulm += . 

The time from ml  to 1+ml  is the replenishment period m .   

The change of inventory position and inventory level in the system is shown in 

Figure 3.1. In the figure, the solid line represents the inventory level and the dash line 

represents the inventory position.   

During a period, when a demand of class i  arrives, the system needs immediately 

make a decision about whether to satisfy or to reject it. The rejected demands are 

backordered. Again assume backorders can be fulfilled only at the ends of replenishment 

periods. Also assume a full-priority backorder clearing mechanism (also denoted as 

mechanism M for short) to fulfill backorders: to fulfill backorders as much as possible 
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from the most important class to the least important class when a replenishment arrives. 

This mechanism is quite reasonable, for it first fulfills the most important backorders, then 

less important ones and so on. It also makes the problem tractable. This backorder 

clearing mechanism is not optimal in some cases, for example, when the on-hand 

inventory is low at the end of a period and there are many outstanding backorders, it may 

be better for the system not to fulfill a backorder of the least important class to reserve 

stock for the important demands in the next period. We will later consider another 

backorder clearing mechanism and compare it with this full-priority backorder clearing 

mechanism in the section of numerical study.  

 

 

        Figure 3.1    Inventory position and inventory level vs. time 
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When a demand is rejected and backordered, the penalty cost dii t⋅+ ππ ˆ  is 

incurred, where dt  is the time span from the time when the demand is rejected to the time 

when the backorder is fulfilled. Let rt  denote the time from the arrival of the rejected 

demand to the end of the current replenishment period. So .}0,1,...{j  , ∈⋅+= ujtt rd  

Assume the same method to count the penalty cost as in the previous dynamic 

programming model with positive lead time: count rii t⋅+ ππ ˆ  as the cost incurred in the 

replenishment period during which the demand is rejected, and if a demand of class i  is 

outstanding at the beginning of a period, then a penalty cost ui ⋅π̂  is counted at this period.   

  We regard arrivals of replenishment and fulfilling backorders as events happened 

at the ends of replenishment periods. Let my denote the net inventory at the beginning of 

replenishment period m just after the replenishment arrives. Let },...,{ 1 Km bb=B  denote the 

outstanding backorders at the beginning of replenishment period m, where ib  is the 

number of backorders of class i . ),( mmy B describes the state of the system at the 

beginning of replenishment period m. According to the full-priority backorder clearing 

mechanism, if my  is positive, which means all backorders are fulfilled, then my  is the 

remaining stock after fulfilling all backorders; If my  is negative, which means there are 

some backorders unfulfilled, then the sum of unfulfilled backorders equals to y− . So we 

have: if 0≥my , then 0=ib , },...,1{ Ki ∈ , and if  0<my , then ∑ =
−=

K

i im by
1

.  

Let ω  denote the ordering policy applied on the horizon and Ψ∈ω , where Ψ is 

the set of periodic-review ordering policies. Obviously the base stock ordering policy is 



Chapter 3                      Inventory Rationing for Systems with Poisson Demands and Backordering 

 56

one element of Ψ . Let ν denote a rationing policy applied on the horizon and Φ∈ν , 

where Φ is the set of rationing policies which assume that once a demand is rejected, it 

can be fulfilled only at the ends of replenishment periods and the backorder clearing 

mechanism is the full-priority mechanism. Let 0X denote the initial state (on-hand 

inventory, outstanding orders, and outstanding backorders of each demand class) of the 

system at the beginning of replenishment period 0.  

Given an initial state 0X  of the system, an ordering policy ω  and a rationing 

policy ν , for different realizations of the demand process which is a Poisson process for 

each demand class, there are different values of the net inventory my  and backorder vector 

mB at the beginning of period m. That is, ),( mmy B , for a fixed m, is a random variable. Let 

),( ByPm  denote the probability of ),( mmy B . The probability ),( ByPm  is under the given 

ordering policyω , rationing policy ν and initial state 0X  of the system. In other words, 

for different ordering policies, rationing policies and initial states, ),( mmy B  may have 

different probability distributions.  

In the above we have shown: if my  is positive, then there is no outstanding 

backorders, i.e., 0=ib , and if my  is negative, then ∑ =
−=

K

i im by
1

. So if ( B,y ) does not 

satisfy this requirement, then 0),( =ByPm  for all m. We have known that ),( mmy B  is a 

random variable. Let Ω denote the set of possible values of ),( mmy B for all m.  
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For all rejected demands are backordered, the average ordering cost is a constant 

and it is ignored in calculating the average cost. Let ),( ByCm  be the expected holding and 

penalty cost incurred in the replenishment period m, given ),( mmy B . This cost depends on 

),( mmy B  as well as the rationing policy used in replenishment period m . Let 

)|,( 0XνωAC  denote the expected average cost per period over the whole horizon when 

the ordering policy is ω  and the rationing policy is ν and the initial state is 0X .  

The optimization problem is to minimize the expected average cost )|,( 0XνωAC  

by choosing the optimal ordering policy in Ψ and optimal rationing policy in Φ , given the 

initial state 0X , i.e.,  

∑ ∑

∑
−

= Ω
∞→

−

=
∞→Φ∈Ψ∈









=

=

1

0,

1

0,0,

 .),(),( 1lim min                                  

]),(E[1lim min)|,AC( min

M

m
mmM

M

m
mM

yPyC
M

yC
M

BB

BX

νω

νωνω
νω

                (3.11) 

When the above limit is not known to exist for some policies, we may use the 

definition ∑
−

=
∞→

=
1

0
0 ]),(E[1suplim)|,AC(

M

m
mM

yC
M

BXνω . It will not affect our later analysis 

and results, except that we may need to put “sup” into the relevant expressions in the 

proofs of the lemmas and theorems. For general reasonable policies, this limit will exist. 

In the expression (3.11), there is a symbol of limiting. Note that in the later sections we 

will directly address the infinite horizon problem, not in this way: first consider a finite 

horizon M-period problem, then increase M to infinity (in Chapter 5, we use this way).    
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If under a certain ordering policy ω  and a certain rationing policyν , there exists a 

limiting distribution for ),( ByPm , then the expression for the average cost 

)|,AC( 0Xνω under this policy can be simplified. Let ),( ∞∞ By  denote the random 

variable with the limiting distribution and ),( ByP∞ denote the limiting distribution. Let 

),( ByC∞ denote the expected holding and penalty cost in a period under the given 

rationing policy, given the state ),( ∞∞ By  at the beginning of the period. So the average 

cost )|,AC( 0Xνω  can be written as  

∑
Ω

∞∞∞ == ),(),( ]),(E[)|,AC( 0 BBBX yPyCyCνω .  

The above average cost is independent on the initial state 0X , for the existence of the 

limiting distribution ),( ByP∞ . In later sections we will develop a near optimal solution to 

the problem (3.11). Under the policy of the near optimal solution, there exists a limiting 

distribution ),( ByP∞ . In general inventory systems, under reasonable policies, the average 

cost over infinite horizon is independent on the initial state. For simplifying the notation, 

we remove the initial state 0X  from later expressions of the average cost over the infinite 

horizon.  

It is very difficult to find optimal ordering and rationing policies for the above 

optimization problem (3.11). One reason is that we are considering the dynamic inventory 

rationing policies and the number/type of elements in the rationing policy set Φ  is huge 

and under many rationing polices there is no closed-form expression for the expected cost. 
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In addition, the ordering policy interacts with the rationing policies. These make the 

problem very complicated. In the previous section we have already shown that the 

structure of optimal ordering and rationing policies may be very complicated.  

In the following section we develop a near-optimal solution to the optimization 

problem (3.11) and a lower bound on the optimal cost under the optimal ordering policy in 

Ψ and optimal rationing policy in Φ . 

3.3.2   Analysis of a Near-Optimal Solution with a Dynamic Rationing Policy  

In the previous multiperiod model with zero lead time, the backorders can be completely 

fulfilled at the ends of periods so that the inventory rationing in one period does not affect 

the cost after this period. While in the case with positive lead time, if there are remaining 

backorders unfulfilled at the end of period m, the rationing policy in period m will affect 

the distribution of each class in a given total remaining backorders, hence affect the cost 

after period m.  

In the general inventory problems under an appropriate ordering policy, we can see 

that even if the probability of stockout before a replenishment arrives at the end of a 

period is large, for example 15%, the probability that the net inventory at the beginning of 

a period after a replenishment arrives is negative is small, for the penalty cost is larger 

than holding cost and it is not economic for the system to have a notable probability of no 

on-hand inventory at the beginning of a certain period. This should also be true in this 

inventory rationing problem, for the inventory rationing policy will not affect the net 



Chapter 3                      Inventory Rationing for Systems with Poisson Demands and Backordering 

 60

inventory at the beginning of a period. Let )0( <yPm denote the probability of 0<my . So 

under an appropriate ordering policy, )0( <yPm  should be small. 

When )0( <yPm  is small, i.e., in most cases the backorders in one period are 

completely fulfilled at the end of the period, then we may ration stock ignoring its effect 

on the cost after this period as a heuristic. Thus we obtain a myopic dynamic rationing 

policy for the multiperiod system with positive lead time: in each period the system 

rations stock by minimizing the penalty cost and holding cost in current period, given the 

initial inventory at the beginning of the period, ignoring the effect of the rationing policy 

on later costs. According to the model with zero lead time, we can see that such a myopic 

dynamic rationing policy for the case with positive lead time is exactly the dynamic 

rationing policy in the model with zero lead time (more detailed explanation will be 

shown later). Let dy  denote such a dynamic rationing policy. For the base stock policy is 

optimal for the case with zero lead time and the demand process is stationary, we assume 

a stationary base stock ordering policy, denoted as (R, S) policy, for our solution to the 

optimization problem (3.11), where S is the base stock level and R represents periodic-

review. Thus, the problem now is to find the optimal base stock level, assuming a (R, S) 

ordering policy and the rationing policy dy . Before proceeding to develop a method to 

obtain an appropriate base stock level, we describe the relation among this assumed policy 

and other policies.  

Let 0Π denote the set of vector ),( vω of ordering and rationing policies with 

Ψ∈ω and 0Φ∈v , where Ψ is the set of periodic-review ordering policies and 0Φ  is the 
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set of any rationing policies. In previous analysis, we consider the rationing 

policies )( 0Φ⊂Φ∈ν . Φ  has two assumptions: backorders fulfilled only at the ends of 

periods and using the full-priority backorder clearing mechanism. Let 1Π  denote the set of 

),( vω with Ψ∈ω and Φ∈v . The optimization problem (3.11) considers the policies in 

1Π . Let 2Π  denote the set of ),( vω where ω  is a base stock ordering policy with a certain 

value for base stock and v  is the above myopic dynamic rationing policy dy . So 

012 Π⊂Π⊂Π . In the following we consider the policies in 2Π . Let ),( dyS denote the 

policy in 2Π  with base stock S  and ),( dySAC denote the average cost under 

policy ),( dyS . We are trying to find the optimal base stock level to minimize average cost. 

For it is very difficult to find closed-form expression for the average cost ),( dySAC , we 

first develop an upper bound and a lower bound for ),( dySAC , then develop an 

approximate expression for ),( dySAC to find an appropriate base stock level. We will 

also develop a lower bound on the optimal cost under the optimal policies in 1Π .  

Now consider how to calculate ),( dySAC , given base stock level S and rationing 

policy dy  and initial state 0X . Let LD  denote total demands of all demand classes during 

the lead time L, which is independent on the rationing policy, base stock level and the 

index of periods. Let mIP  denote the inventory position just after ordering at ordering 

period m (see Figure 3.1). According to the base stock ordering policy, if the initial 

inventory position (in 0X ) at the first ordering period (i.e. ordering period 0) before 

ordering is below the base stock S, then the system should order to increase inventory 

position to the base stock level at ordering period 0. The inventory position at ordering 
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period 1 before ordering will be less than S and the system should order up to S. Continue 

the process and the inventory position just after ordering at each period will always be 

equal to S, i.e., SIPm =  for all m. If the initial inventory position at the ordering period 0 

before ordering is above the base stock S, then according to the base stock policy, the 

system will not order until at a certain period when the inventory position drops below S. 

Since this period, the system should order and the inventory position just after ordering at 

each period will be equal to S. So no matter the initial state 0X  is, after some transitional 

periods, the inventory position just after ordering will always be equal to S. For the costs 

during these transitional periods will not affect the average cost over infinite horizon, we 

assume that the initial inventory position at the first ordering period before ordering is 

below the base stock S in order to simplify the presentation. Hence, the inventory position 

just after ordering at each ordering period is always equal to S, i.e., SIPm =  for all m.  

The net inventory my  is equal to the inventory position after ordering at the 

ordering period m minus the total demands during the lead time (see Figure 3.1), i.e., 

Lmm DIPy −= .  Under the base stock policy, the inventory position mIP  just after ordering 

at each period is always equal to S, so we have: Lm DSy −=  for all m. So my  is 

completely determined by the base stock S and the total demand in the lead time, and it is 

independent on the rationing policy, index m of periods, the backorder clearing 

mechanism, and the initial state 0X . Let )( myP denote the probability of my . Under the 

assumed backorder clearing mechanism, if 0≥my , then 0=mB , where the bold 0 

represents the K-dimensional vector of zeros. When 0<my , the sum of 
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probabilities ),( ByPm with the same my but different mB , is equal to the probability 

)( myP for the given my . Let )( myΩ  denote the set of values of ),( mmy B  with the same my  

and different mB . So we have:  

                  )()(),( mLmm ySDPyPyP −===B   when 0≥my , and  

                  )()(),(
)(

mLm
y

m ySDPyPyP
m

−===∑
Ω

B  when 0<my .    

Under the assumed counting method about penalty cost, if a demand of class i  is 

rejected in a period, then a penalty cost rii t⋅+ ππ ˆ is incurred in current period, no matter 

whether the demand is fulfilled at the end of current period or it is fulfilled at the end of a 

later period, where rt is the remaining time before the end of current period. So the 

counting of penalty cost and holding cost in a period is the same as that in the model with 

zero lead time, given an on-hand inventory at the beginning of a period. For the dynamic 

critical level rationing policy minimizes expected total holding and penalty cost in a single 

period, we have: when 0≥my ( 0=mB  in this case), the expected holding and penalty cost 

)|,( dyyCm B during period m under the rationing policy dy is ),( yNH , which is also the 

minimum of the expected cost ),( ByCm  for all rationing policies in Φ , i.e., given 

0≥my ( 0=mB  in this case), 

                  ),(min),()|,( BB yCyNHdyyC mvm Φ∈
== .                            (3.12)  
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When 0<my ( 0≠mB  in this case), the outstanding backorder of class i  will incur a 

penalty cost of  ui ⋅π̂  and all demands in replenishment period m are backordered. In this 

case, the expected cost ),( ByCm  in period m is the same under all rationing policies. So, 

given ),( mmy B  with 0<my ,  

                              )|,(ˆ)0,()|,(
1

Φ∈=+= ∑
=

vyCubNHdyyC mi

K

i
im BB π .           (3.13) 

Even under the base stock ordering policy and rationing policy dy , we still can not 

obtain the closed-form expression for ),( dySAC , because it is difficult to obtain the 

closed-form expression for the probability distribution of backorders of each class in the 

outstanding backorders mB . In the following we develop bounds for ),( dySAC , given base 

stock S .    

Under policy ),( dyS , we have known that Lm DSy −=  and the probability 

distribution of my  is independent on the rationing policy, index m of periods and initial 

state 0X . When 0<my , the expected cost )|,( dyyCm B should not be less than the cost 

assuming all backorders in mB  come from the least important class K . Based on this fact, 

we can obtain a lower bound for ),( dySAC . Let ),( dySACLB denote this lower bound 

on ),( dySAC . Note that this lower bound is dependent on the given S. In other words, the 

lower bound ),( dySACLB  is a function of the base stock S. Define 

     ),()( yNHyULB =  when 0≥y , 
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and          uyNHyU KLB ⋅⋅−= π̂)0,()(  when 0<y .                                            (3.14)     

We have the following lemma to show a lower bound on ),( dySAC . 

Lemma 3.5. ),()]([),( dySACDSUEdySAC LBLLB =−≥ .  

 Now we develop an upper bound on ),( dySAC . Consider the distribution of 

backorders of each class in a given total backorder y−  at the beginning of a certain 

period. Assume there is no inventory rationing during periods and the backorders are 

fulfilled at the ends of periods based on a first-come-first-served rule. In this case, for a 

given amount –y of total backorders at the beginning of a certain period, the expected 

proportion of backorders of class i in the total backorders –y equals to the proportion of 

the arrival rate of this class in the total arrival rate, i.e., λλ /)/(]|[ ii yybE =−− . This 

proportion is independent on the value of –y. Let λλ /iipr = .  Given –y, the proportion 

)/(]|[ yybE i −−  under policy ),( dyS will be different from the above value in the case 

without inventory rationing. Let ),( ySpr dy
i − denote the expected proportion of backorders 

of class i in the given total backorder –y under policy ),( dyS . Under policy ),( dyS , there 

exist two factors to increase the proportion of more important classes and decrease the 

proportion of less important classes to reduce cost. The first factor is the dynamic critical 

level rationing policy dy  which makes the system to reject demands of less important 

classes to reserve stock for more important classes. The other factor is the full-priority 

backorder clearing mechanism. Under this mechanism, the system first fulfills backorders 

of the most important class, then less important classes. Thus given the total backorder –y, 
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the expected penalty cost resulting from the outstanding backorders at the beginning of the 

period under policy ),( dyS is not greater than that under the policy without inventory 

rationing during the period and fulfilling backorders based on first-come-first-served rule, 

i.e.,  

                 upryuySpry i

K

i
ii

K

i

dy
i ⋅⋅⋅−≤⋅⋅−⋅− ∑∑

==

ππ ˆˆ),(
11

.                                    (3.15)  

According to the above relation, we can obtain an upper bound on ),( dySAC . Let 

),( dySACUB denote this upper bound. Define  

        ),()( yNHyUUB =  when 0≥y ,  

and             ∑ =
⋅⋅−=

K

i iiUB upryNHyU
1

ˆ)0,()( π  when 0<y .                          (3.16) 

According to (3.15), we have the following lemma about an upper bound on 

),( dySAC (for detailed proof, see Appendix A).  

Lemma 3.6. ),()]([),( dySACDSUEdySAC UBLUB =−≤ .                  

Under policy ),( dyS , there exists a limiting distribution for ),( mmy B , for the 

system is stationary: demand process is stationary, the base stock S is a constant, and the 

critical levels of the rationing policy do not change from one period to another period. Let 

),( ∞∞ By denote the variable with such limiting distribution and )0( <∞yP  denote the 
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probability of 0<∞y . When S increases, then )0( <∞yP  will decrease. Hence from the 

definitions of )( LUB DSU −  and )( LLB DSU −  we can see that the gap between the upper 

and lower bounds of  ),( dySAC  will decrease and will infinitely approach to 0 

when ∞→S . Based on the upper and lower bounds for ),( dySAC , we may develop 

approximate expressions for ),( dySAC to find an appropriate base stock level. For 

simplicity, we use the lower bound ),( dySACLB of ),( dySAC to approximate ),( dySAC  

to find an appropriate base stock. Let 

              )]([minarg*
LLB DSUES −= .                                                     (3.17) 

Thus we have found a solution to optimization problem (3.11): the dynamic rationing 

policy dy  and the base stock ordering policy with base stock *S .  

In the following we develop a lower bound on the optimal cost under the optimal 

policies in 1Π  so that we can measure how the cost of our solution is close to the optimal 

costs. Let ),( oo νω denote the optimal policy in 1Π  and the corresponding optimal cost is 

),( ooAC νω . Let ),( ooLBAC νω denote the lower bound on the optimal cost ),( ooAC νω . We 

have the following lemma for a lower bound on the optimal cost.  

Lemma 3.7.  Under the optimal policies in 1Π , the optimal cost  

 ),()]([),( *
ooLBLLBoo ACDSUEAC νωνω =−≥ . 
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In the above analysis, we have found a solution to the optimization problem (3.11): 

the rationing policy dy and a base stock ordering policy with base stock *S . We can not 

calculate the exact value of the average cost under such a policy, but its upper and lower 

bounds. Now we define a percentage to measure how the cost ),( * dySAC  of our solution 

is close to the lower bound on the optimal cost under polices in 1Π . Note that 

),( * dySACUB  is the upper bound of ),( * dySAC , and ),( ooLBAC νω is the lower bound on 

the optimal cost under the optimal policies in 1Π . Define    

                    
.

)]([
)]([)]([         

),(
),(),(

*

**

*

LLB

LLBLUB

ooLB

ooLBUB
LB

DSUE
DSUEDSUE

AC
ACdySACCR

−
−−−

=

−
=

νω
νω

     (3.18) 

We can see that the relative difference between the cost under policy ),( * dyS  and the 

optimal cost under the optimal policy ),( oo νω  should not be greater than LBCR , i.e., 

                     LB
oo

oo CR
AC

ACdySAC
≤

−
),(

),(),( *

νω
νω .                                              (3.19) 

So LBCR  can measure how the cost ),( * dySAC of our solution is close to the optimal cost.  

3.4   Comparing Performance of Rationing Policies 

In the previous sections we have developed dynamic rationing policies. In practice, people 

often use the static critical level rationing policy for they can not find appropriate dynamic 
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rationing policies for typical problem settings. In this section we conduct a numerical 

study to compare the dynamic rationing policy with the static rationing policy in 

multiperiod systems with infinite horizon under the full-priority backorder clearing 

mechanism (denote it as mechanism M for short). We also compare the cost under our 

solution with the lower bound on the optimal costs. In the next section we will compare 

the backorder clearing mechanism M with another mechanism called mechanism T.  

We first investigate the cases with two demand classes under different operating 

conditions, and then look at those with three demand classes. 

3.4.1  Numerical Study for Systems with Two Demand Classes  

3.4.1.1  The Numerical Study 

In some later symbols there are subscripts dyM  and cnM , where dy  means the dynamic 

critical level rationing policy and cn means the static critical level policy and M means 

backorder clearing mechanism M .   

We use simulation to obtain the average costs under both dynamic and static 

rationing policies in different cases. Let )( *
dyMdyM SAC denote the average cost under the 

dynamic rationing policy dy  and the base stock level *
dyMS , where *

dyMS  is the base stock 

*S  obtained in the previous section using the lower bound of ),( dySAC  to approximate it. 
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The average cost under the static critical level policy is a function of the base stock 

S and the vector ),...,( 1 Krr=R  of critical levels, where ir  is the static critical level of class 

i. We run simulation for a wide range of ),( RS  parameters and the values of parameters 

which have the least average cost are identified as optimal. As there are only two demand 

classes and the critical level of class 1 is 0, we only need to perform an exhaustive search 

via simulation for the critical level of class 2, given a base stock level.  Let 

),( **
cnMcnMcnM SAC R  denote the optimal average cost under the static critical level policy, 

where *
cnMS  is the optimal base stock, *

cnMR  is the vector of optimal critical levels.  

Define the following percentage to measure the benefit of implementing the 

dynamic critical level rationing policy comparing with the static critical level policy: 

                  %100
)(

)(),(
*

***

⋅
−

=−
dyMdyM

dyMdyMcnMcnMcnM
dyMcnM SAC

SACSAC
CR

R
.                       (3.20) 

In the above definition, we use the cost under the dynamic rationing policy as the 

benchmark, so dyMcnMCR −  is the percentage of cost that will increase if the system changes 

rationing policy from the dynamic rationing policy to the static rationing policy. Besides 

dyMcnMCR −  we use LBCR , which is defined in (3.18), to measure how the cost of our 

solution is close to the optimal costs.  It is worth to note that dyMcnMCR −  is obtained using 

the costs by simulation, while LBCR  does not need simulation and is obtained by direct 

calculation. 
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During the calculation of dynamic critical levels of the dynamic rationing policy, 

we divide one period into many small intervals such that the probability that more than 

one demand arrive in one interval is less than 4.9e-5. In order to ensure the value reaches 

the steady state in simulation, we run 10,000 replenishment periods for each scenario.  

In the numerical study, the parameter settings are as follows. Set 1.0=u , 1=h , 

021 == ππ , and vary λ, λ1, λ2, 1π̂ , 2π̂  and L. We create two problem sets to vary these 

parameters. In the first problem set, we have 1/ 21 =λλ , while in the other set, we vary the 

ratio 21 / λλ . In the first set, we have: 21 λλ = , }900 ,600 ,300{∈λ , 1000} 100, ,3{ˆ/ˆ 21 ∈ππ , 

10}  5,  ,5.1{ˆ2 ∈π , 4} 3, 2, 1, ,0{/ ∈uL . So in the first problem set, there are 135 different 

combinations. In the second set, 600=λ , 5ˆ2 =π , 100ˆ/ˆ 21 =ππ , 1.5}  1,  0.5,{/ ∈uL , 

5/1} 3/1, 2/1, 1/1, 1/2, 1/3, ,5/1{/ 21 ∈λλ . So there are 21 combinations in the second set. 

For each problem we obtain percentages dyMcnMCR −  and LBCR . Part of the results is shown 

in Tables 3.1 and 3.2, and Figures 3.2 and 3.3, and the other results are shown in 

Appendix B. 

3.4.1.2  Interpretation of Results 

Table 3.1 shows a subset of the runs for the first problem set. We observe that the gap 

LBCR  is extremely small in all cases. So the costs under our solution with dynamic 

rationing policy dy  are very close to the optimal costs. Moreover, we can see that the 

dynamic rationing policy performs significantly better than the static critical level policy, 

especially when ratio 21 ˆ/ˆ ππ  is large. This result is intuitive. When the penalty costs of 
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two demand classes differ more, a wrong decision in rationing inventory can incur a larger 

cost increasing. So the dynamic critical level policy can reduce more cost when 21 ˆ/ˆ ππ  is 

large. Figure 3.2 shows an example of the critical levels of class 2 in one period under 

both rationing policies. The critical levels of class 1 under both policies are always 0 and 

are not shown in the figure. The critical levels are the same for different periods. The 

period is divided into 6000 intervals and interval 1 is at the end of the period. From the 

figure we can see that the critical level under the dynamic rationing policy decreases 

towards the end of the period and reaches 0 at the end of the period. Under the static 

rationing policy, the critical level is a constant regardless of the system state. The dynamic 

rationing policy reduces the cost by dynamically adjusting the critical level according to 

the remaining time before a new replenishment arrives. Other results also show the same 

trend. Moreover, the results show that when 21 ˆ/ˆ ππ  becomes larger (while other settings 

are the same), then the dynamic critical level of class 2 becomes steeper, i.e., the critical 

level at the beginning of the period becomes larger and the critical level decreases more 

rapidly toward the end of the period. It is quite intuitive. When 21 ˆ/ˆ ππ  becomes larger, the 

system needs to reserve more stock for class 1 at a certain time, for a shortage of class 1 

will incur a larger penalty cost.  

Table 3.1  Comparison of rationing policies when 5ˆ ,300 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

0 0 0.91% 

1 1.47E-11 1.21% 
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3 2 1.82E-07 1.41% 

3 5.58E-06 1.49% 

4 4.53E-05 1.58% 

 

 

100 

0 0 6.29% 

1 2.53E-12 7.95% 

2 1.41E-07 9.88% 

3 5.84E-06 9.95% 

4 4.04E-05 8.92% 

 

 

1000 

0 0 8.18% 

1 8.15E-12 10.04% 

2 7.38E-08 11.71% 

3 4.09E-06 11.17% 

4 2.31E-05 7.54% 
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Figure 3.2    Critical levels under both rationing policies 
( 5ˆ ,300 221 === πλλ , 100ˆ/ˆ 21 =ππ , 1/ =uL ) 

From Table 3.1, it is interesting to note that the relative cost difference dyMcnMCR − , 

which measures the benefit of implementing the dynamic rationing policy, does not 

necessarily monotonically increase with uL / . When uL /  increases from 0, the cost 

difference dyMcnMCR −  increases. When uL /  arrives at a certain value and continues to 

increase, dyMcnMCR −  decreases. The other results in the first problem set, which are not 

shown here (please see Appendix B), also show a similar trend.  

The dynamic rationing policy can reduce cost comparing with the static rationing 

policy is because the critical levels in the dynamic policy decrease when the remaining 

time decreases. Consider a certain period, if the on-hand inventory at the beginning of the 

period is very high, the benefit of the dynamic critical level policy will be small, for there 

are almost enough stock to satisfy demands of all classes, hence rationing is not important. 

When the on-hand inventory at the beginning of the period is very small, the system under 
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the static critical level policy will immediately reject demands of all less important classes 

and the benefit of the dynamic critical level policy is also small. When the on-hand 

inventory is some middle value, dynamic critical level policy can bring significant benefit.  

In the multiple period system, when uL / increases, the distribution of ∞y , which is a 

random variable with the limiting distribution of my  under the rationing policy dy and a 

given base stock, will have larger variance, the probability mass function will be more flat, 

and the expected value of ∞y  will also shift. So when uL /  increases from 0, there are 

more probability that the initial on-hand inventory of a certain period is in the region that 

the dynamic critical level policy can bring significant cost saving, thus the gap dyMcnMCR −  

increases. When uL /  increases to a certain value and continues to increase, the 

probability mass function of ∞y  is very flat and the probability that the initial on-hand 

inventory of a certain period is in the significant benefit region will decrease, so the gap 

dyMcnMCR −  decreases when  uL /  is larger than a certain value.  

Now consider Table 3.2 which shows results when 1/ =uL , 21 λλ =  and we 

change penalty costs and arrival rates. We can see that changing values of λ  and 2π̂  

while keeping 21 ˆ/ˆ ππ  fixed will not significantly affect the performance of the dynamic 

critical level policy. The most important factor that affects the performance of dynamic 

critical level policy is still the ratio 21 ˆ/ˆ ππ .  

Table 3.2   Comparison of rationing policies when 21 ,1/ λλ ==uL  

21 ˆ/ˆ ππ  2π̂  λ  LBCR  dyMcnMCR −  
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3 

1.5 300 2.19E-05 1.31% 

1.5 600 2.29E-08 1.14% 

1.5 900 3.19E-11 0.93% 

5 300 4.57E-07 1.08% 

5 600 1.47E-11 1.21% 

5 900 4.35E-14 1.11% 

 

 

 

100 

1.5 300 3.10E-06 8.51% 

1.5 600 8.60E-10 9.90% 

1.5 900 3.92E-13 10.02% 

5 300 7.43E-08 7.44% 

5 600 2.53E-12 7.95% 

5 900 1.97E-12 8.68% 

       

Finally, consider Figure 3.3 which shows the performance of the dynamic critical 

level rationing policy over the static critical level policy when the ratio of demand rates, 

21 / λλ , changes. From this graph, dyMcnMCR − is not monotonic with respect to 21 / λλ . 

When 21 / λλ  diverges from 1, one demand class dominates the other in arrivals. When the 

ratio gets very large or very small, arrivals of one class become rare as compared to those 

of the other class, thus the benefit of inventory rationing decreases.  
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Figure 3.3   Relative cost difference dyMcnMCR −  vs. 21 / λλ  

 

In summary, the gap between the cost of our solution with a dynamic critical level 

policy and the optimal cost is extremely small in a wide range of parameter settings. 

Whether the dynamic critical level rationing policy can bring significant benefit relative to 

the static rationing policy depends on the operational conditions. In many cases the 

relative cost difference can be more than 10%, especially when the penalty costs differ 

very much and the demand rates of class 1 and class 2 are similar.    

3.4.2  Numerical Study for Systems with Three Demand Classes  

In this section we examine the performance of the dynamic rationing policies in systems 

with three demand classes and other very poor service level situations. We want to check 

whether the previous method is robust. We will compare the cost under the dynamic 
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rationing policy with the lower bound on optimal costs, and will not compare the cost 

under the dynamic rationing policy with that under the static policy since the searching 

time for the optimal parameters of the static rationing policy is prohibitive when there are 

three demand classes. The numerical results are shown in Tables 3.3 and 3.4.  

Table 3.3 shows the results when the number of demand classes is changed from 2 

to 3. Let case A denote the case with two demand classes, and case B denotes the case 

with three classes. The parameters in this table are set according to the values in previous 

2-class systems, making sure that the total arrival rates and weighted penalty costs in two 

cases are equal, i.e., ∑∑
==

=
3

1

2

1 i

B
i

i

A
i λλ  and ∑∑

==

⋅=⋅
3

1

2

1

ˆˆ
i

B
i

B
i

i

A
i

A
i πλπλ . From Table 3.3 we can see 

that when the system changes from 2 demand classes to 3 demand classes, the gap LBCR  

does not change notably.  

Table 3.3  LBCR  for systems with two and three demand classes 

 

L/u 

Case A Case B 

AA
21 ˆ/ˆ ππ  AA

21 ,λλ  LBCR  BBB
321 ˆ,ˆ,ˆ πππ  BBB

321 ,, λλλ  LBCR  

1 3 300,300 1.47E-11 200,200,200 17,8,5 1.46E-11 

1 3 300,300 1.47E-11 100,200,300 25,10,5 2.92E-11 

1 3 300,300 1.47E-11 300,200,100 13,8,5 7.16E-12 

2 3 300,300 1.82E-07 200,200,200 17,8,5 1.19E-07 

3 3 300,300 5.58E-06 200,200,200 17,8,5 5.54E-06 
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1 100 300,300 2.53E-12 200,200,200 600,152,5 8.18E-14 

1 100 300,300 2.53E-12 100,200,300 900,300,5 1.74E-12 

1 100 300,300 2.53E-12 300,200,100 400,155,5 2.25E-13 

2 100 300,300 1.41E-07 200,200,200 600,152,5 1.98E-08 

3 100 300,300 5.84E-06 200,200,200 600,152,5 1.29E-06 

  

The parameters in Table 3.4 are chosen to check whether our method is robust 

under poor-service conditions. In the previous parameter settings, )0( <∞ yP , which is the 

probability 0<∞y , is not large (typically less than 1.0e-3) under the appropriate base stock 

*S .  This is practical in most settings, since the system should have on-hand inventory at 

the beginning of a period at most of time because of the effect of penalty cost of shortage.  

In this study, we purposely choose the parameters such that )0( <∞ yP  can be as high as 

0.11, which means that the probability that the on-hand inventory at the beginning of a 

period after a replenishment arrives is 0 is as high as 11%. In this case the service level for 

the least important class is very poor, for the stock-out probability at the end of a period is 

much higher than 11%.  

Table 3.4  LBCR  in some extreme cases 

L/u BBB
321 ˆ,ˆ,ˆ πππ  BBB

321 ,, λλλ  )0( <∞ yP  LBCR  

1 1.5, 1.3, 1.1 100,100,100 0.00148 6.96E-5 
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2 1.5, 1.3, 1.1 100,100,100 0.01457 0.00092 

3 1.5, 1.3, 1.1 100,100,100 0.03543 0.00263 

4 1.5, 1.3, 1.1 100,100,100 0.05754 0.00478 

5 1.5, 1.3, 1.1 100,100,100 0.07842 0.00706 

6 1.5, 1.3, 1.1 100,100,100 0.09743 0.00932 

7 1.5, 1.3, 1.1 100,100,100 0.11453 0.01151 

 

From Table 3.4 we can see that the gap between the cost of our solution and the 

optimal cost remains very small. Even for the worst case when 11.0)0( ≈<∞ yP  (case L/u 

= 7), the gap is still only 1.15%. Hence the results do indicate that the proposed method is 

robust in the quality of solution for larger )0( <∞ yP  and the quality of solution does not 

suffer from rapid deterioration when the number of demand classes increases.  

3.5   Comparing Backorder Clearing Mechanisms 

In the previous sections we have obtained near-optimal solutions to the optimization 

problem of minimizing average cost, assuming the full-priority backorder clearing 

mechanism, i.e., mechanism M, and found that the dynamic rationing policy indeed can 

significantly reduce cost comparing the static rationing policies. In this section we explore 

further opportunities to reduce cost, in particular, considering another backorder clearing 
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mechanism denoted as mechanism T and investigating its effect on the average cost by 

comparing the costs under mechanisms T and M.  

Backorder clearing mechanism T comes from an observation: under mechanism M, 

the system fulfills backorders at the ends of periods as much as possible from the most 

important class to the least important class. Sometimes all on-hand inventory is used to 

fulfill these backorders and even the most important demands in the next period can not be 

satisfied. So it would be better for the system not to fulfill some least important 

backorders (hence forward them to the next period) to reserve some stock for demands of 

important classes in the next period. Hence, we propose another backorder clearing 

mechanism denoted as T, which works in this way: the system fulfills backorders also 

according to class priority as mechanism M, but there is a backorder clearing threshold for 

each demand class such that when the on-hand inventory decreases to the clearing 

threshold of a certain class, then the system forwards the remaining outstanding 

backorders of this class to the next period. We use )(* Nxi  as the backorder clearing 

threshold of class i, where )(* Nxi  is the critical level of class i of the dynamic critical 

level rationing policy at the beginning of a period where the period is divided into N 

intervals.  

We compare the costs of the two cases by simulation:  case dyM  and case dyT , 

where case dyM is the system applies the dynamic rationing policy dy and backorder 

clearing mechanism M, and case dyT  is the system applies the dynamic rationing policy 

dy and mechanism T  . The base stock policy and dynamic rationing policy in case dyT  
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are the same as those in case dyM . Let )( *
dyMdyT SAC denote the average cost in case dyT . 

Define the following percentage to measure the relative cost difference under two 

mechanisms:  

                            %100
)(

)()(
*

**

⋅
−

=−
dyMdyM

dyMdyMdyMdyT
dyMdyT SAC

SACSAC
CR . 

A negative value of dyMdyTCR − means mechanism T can reduce cost comparing with 

mechanism M. We use the same problem sets as when comparing rationing policies to 

compare mechanisms M and T .  The results are shown in Tables 3.5 and 3.6.  

From Table 3.5 we can see that in these typical problem settings (lead time equals 

one period) mechanism T  is better than mechanism M , but the relative cost difference is 

very small. Other tables for other settings with 21 ,1/ λλ ==uL , which are not shown here, 

also show similar results. The minimum of dyMdyTCR −  in these cases is -3.35%. In all these 

examples, results show that mechanism T is better than mechanism M , under the same 

rationing policy dy  and the same base stock level.  

We conjecture mechanism T is always better than mechanism M  for all cases. We 

can not provide a rigorous proof for it. In the following we provide some insights for it, so 

that we believe that it is reasonable to expect that mechanism T is always better than 

mechanism M . Assume at the beginning of period m just before the arrival of the 

replenishment, there is a vector of backorders −
mB  and a remaining on-hand inventory (i.e., 

the remaining on-hand inventory at the end of period 1−m ). When the replenishment 
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arrives, it will be added to the remaining on-hand inventory. Let −
mx  denote the total on-

hand inventory. Then the system will use the total on-hand inventory −
mx to fulfill −

mB  

according to a backorder clearing mechanism M or T, and the resulting remaining 

backorder vector is mB . 

(a) Given −
mB  and −

mx , the cost incurred in period m under mechanism T  is less than 

that under mechanism M . 

Now we focus on only period m. We may regard the outstanding backorders −
mB  as 

the demands arrived at the beginning of period m, and if we reject a demand of class i, 

then a penalty cost ui ⋅π̂  will incur. According to the previous model, when the on-hand 

inventory at the beginning of the period is below the critical level of class i, then the total 

cost in the period m of satisfying a demand class i is larger than the cost of rejecting it, 

and the system should reject it. Under the mechanism T, when the on-hand inventory has 

dropped to or below the critical level of class i , then the demand of class i will be rejected, 

i.e., not to fulfill the backorder of class i  in −
mB  . However, under mechanism M, the 

demands (i.e., the backorders) will be fulfilled if there is on-hand inventory. So from the 

single-period point of view, mechanism T is better than mechanism M .  

(b) Under mechanism T , there are less backorders of more important classes 

forwarded to next periods than under mechanism M .  

These two mechanisms have different effect on later periods, besides the above 

different effect on period m. Mechanism T  has reserved more on-hand inventory at the 
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beginning of period m for period m than mechanism M , so under mechanism T less 

demands of more important classes will be rejected in period m than under mechanism M , 

i.e., less backorders of more important classes in −
+1mB  than under mechanism M . Note 

that the total backorders under both mechanisms are the same, for it is independent on the 

rationing policy and backorder clearing mechanism. So mechanism T decreases the 

proportion of the backorders of more important classes in the total backorders of −
+1mB , 

which will decrease cost over later periods.  

So based on the above (a) and (b), it is reasonable to believe that mechanism T  is 

always better than mechanism M .  

Mechanism T  fulfills backorders by looking forward and considering its effect on 

later periods, while mechanism M  considers only the previous period, trying to fulfill 

backorders from the previous period as much as possible. So mechanism T  can reduce 

some cost, comparing with mechanism M . When the base stock level is near or above the 

optimal value, the initial on-hand inventory at the beginning of a period in general is 

positive under mechanism M , i.e., there is very small probability to forward backorders to 

the next period. So if we use mechanismT  instead of M, the cost difference will be small.  

Table 3.5  Comparison of mechanisms when 21 ,1/ λλ ==uL  

2π̂  λ  

dyMdyTCR −  

3ˆ/ˆ 21 =ππ  100ˆ/ˆ 21 =ππ  1000ˆ/ˆ 21 =ππ  

1.5 300 -0.04% -1.98% -0.61% 
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1.5 600 -0.01% -0.26% -0.76% 

1.5 900 0.00% -0.02% 0.00% 

5 300 0.00% -0.20% -0.61% 

5 600 0.00% 0.00% 0.00% 

5 900 0.00% 0.00% 0.00% 

 

Now consider Table 3.6 which shows the effect of lead time on the cost difference. 

We can see that relative cost difference dyMdyTCR −  is still very small when lead time is 

significantly larger than the length of a period, for example 4/ =uL . We can also see that 

dyMdyTCR −  is not monotonic with uL / . Other results also show this trend. When 

uL / increases, the variance of total demands in lead time increases and the probability of 

forwarding some backorders to the next period in dyM  increases, and mechanism T  has 

more chance to reserve stock for later periods by unfulfilling some backorders of less 

important classes to reduce cost. So when uL / increases from 0 to a certain small value, 

dyMdyTCR − decreases. When uL /  arrives at a certain value and continuously increases, for 

the randomness of lead time demands the average cost of case dyM notably increases, 

then the ratio of reduced cost by mechanism T  to the average cost may decrease. Thus 

dyMdyTCR −  is not monotonic with uL / .  

Table 3.6  Comparison of mechanisms when 5ˆ ,300 221 === πλλ  
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uL /  

dyMdyTCR −  

3ˆ/ˆ 21 =ππ  100ˆ/ˆ 21 =ππ  1000ˆ/ˆ 21 =ππ  

0 0.00% 0.00% 0.00% 

1 0.00% 0.00% 0.00% 

2 0.00% -0.36% -0.62% 

3 -0.02% -1.13% -2.36% 

4 -0.07% -1.79% -2.24% 

 

In summary, mechanism T can reduce cost, comparing with mechanism M , when 

the system is under the same dynamic rationing policy dy  and the same appropriate base 

stock level, but the relative cost difference is very small in typical problem settings.  

3.6   Conclusions 

This chapter considered dynamic inventory rationing in multiperiod systems with Poisson 

demands, backordering and multiple demand classes. A multiperiod system with zero lead 

time was first analyzed and dynamic programming models were developed.  We showed 

that the optimal rationing policy is the dynamic critical level policy and the optimal 

ordering policy is a base stock policy. Important properties of the optimal rationing policy, 

for example, the critical levels decrease towards the end of the period, and properties of 

optimal cost functions were also shown. In general, dynamic inventory rationing models 
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with backordering are multi-dimensional dynamic programming ones. Hence, they suffer 

the curse of dimensionality of multi-dimensional dynamic programming, while we used 

the assumption that backorders can be fulfilled only at the ends of periods, which is quite 

reasonable, to develop a one-dimensional dynamic programming one to eliminate the 

curse of dimensionality.  

We then considered a multiperiod system with positive lead time. An optimization 

model of minimizing expected average cost was developed, assuming the full-priority 

backorder clearing mechanism (i.e., mechanism M). In the case with positive lead time, 

the structure of optimal rationing and ordering policies may be extremely complicated, for 

the decision about whether or not to satisfy a demand is affected by not only on-hand 

inventory and the remaining time before the end of the period, but also by outstanding 

orders and so on. We developed a near-optimal solution for it: using the dynamic critical 

level rationing policy and the base stock ordering policy. Some important properties of 

such a policy were obtained. A lower bound on the optimal cost under optimal rationing 

and ordering policies was also developed. We also analyzed another backorder clearing 

mechanism, mechanism T.  

Besides the above analytical results, the research also provides the following 

important managerial insights: 

(a)    An evaluation of the potential cost savings if we change the rationing policy from 

the static critical level policy to the dynamic critical level policy. The results 

show that the dynamic rationing policy can significantly reduce cost in many 

cases, comparing the state-of-art static rationing policy. In many cases with 
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typical problem settings, the cost difference can be more than 10%. So our 

analysis provides very important information to the managers: changing from the 

static rationing policy to the dynamic rationing policy is well justified. It is worth 

for the system manager to pay more effort to obtain a dynamic rationing policy. 

(b)   An understanding of the situations where the dynamic rationing policy is most 

useful. The results show that the more the penalty costs of different classes differ, 

the larger the cost saving of the dynamic rationing policy is. The benefit of 

implementing the dynamic rationing policy will become smaller when the 

demands of one class dominate those of the other class, for in these cases the 

system is similar to a system with only one demand class. The benefit of 

dynamic rationing policy is also non-monotone with the lead time.  

(c)    A bound on the how well our solution with a dynamic rationing policy performs 

relative to the unknown, optimal policies. The results show that the cost of our 

policy is very close to the optimal costs for a practical range of parameter setting 

and for poor service level conditions. In most cases, the cost difference is less 

than 1%.  

(d)   An understanding of the effect of the backorder clearing mechanisms on the 

average cost.  We have considered two backorder clearing mechanisms: 

mechanisms M and T. Mechanism M is easier to understand and implement. The 

results show that mechanism T is better than mechanism M in terms of average 

cost, but the relative cost difference is very small for a wide range of parameter 

setting. So it is justified to use mechanism M in practice.  
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(e)   An understanding on how the dynamic critical levels change and the difference 

between the dynamic critical level policy and the static critical level policy. We 

have shown that the dynamic critical level of a certain class decreases toward the 

end of a period and will reach 0 at the end of the period, while under the static 

critical level policy, the critical level is a constant.  The numerical results also 

show the critical level of a certain class under the dynamic rationing policy will 

become steeper when the penalty costs of different classes differ more. That 

means the system needs to reserve more stock at a certain time for the more 

important classes in these cases.   

The dynamic inventory rationing models can apply to the cases with any number 

of demand classes, though in the numerical study we consider only 2 or 3 demand classes 

for searching for the optimal parameters of the static rationing policies are time-

consuming. As our models consider typical problem settings such as positive lead time, 

and the dynamic rationing policy can significantly reduce cost in many cases comparing 

with current state-of-art static rationing policies, and the dynamic rationing policy is easy 

to calculate (one-dimensional dynamic programming) and implement, it is reasonable to 

believe that our dynamic rationing policy can have a wide application in practice.  

Deshpande et al. have shown that the unknown optimal dynamic rationing policies 

may significantly reduce cost, comparing with the static rationing policy. Here we have 

found such a particular dynamic rationing policy which indeed can significantly reduce 

cost in many cases and the cost of this policy is very close to the optimal costs. These 
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results show dynamic rationing policies in other problem settings are worth to explore, 

though dynamic rationing problems are very complicated and difficult to analyze.   

The above multiperiod models can be easily extended to the case with a setup cost 

in the ordering policy. In this case the system may use (R, s, S) ordering policy as in the 

general inventory problems without inventory rationing and we can develop a method to 

find s and S, based on our expressions for the average cost. In the next chapter we extend 

the work of this chapter to the cases with general demand processes.   
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Chapter 4  

Inventory Rationing for Systems with General 

Demand Processes and Backordering  

 

 

4.1  Introduction 

In the previous chapter we have studied dynamic inventory rationing in systems with 

Poisson demands and backordering. In this chapter we extend it by changing the demands 

from Poisson process to general demand processes in which the arrivals of customers may 

follow a Non-Poisson process and one customer may require more than one unit of the 

product.  In practice such general demand processes are not unusual. For example, the 

demand of spare parts may be dependent on the life of the spare parts on the machines, 

and sometimes one machine has installed multiple units of the same kind of spare part. 
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In the relevant literature most people consider inventory rationing assuming a 

certain demand process such as Poisson process. When demand process is very general 

ones, the rationing problems become much more difficult to solve, and little is known in 

the literature about the structure of optimal dynamic rationing policies, which is especially 

true when having a positive lead time. Chapter 3 and Deshpande et al. (2003) have shown 

that the dynamic rationing policy can significantly reduce cost in many cases, comparing 

with the static critical level policy, so in this chapter we assume the systems adopt a 

dynamic critical level rationing policy to develop optimization models, trying to obtain 

optimal or near-optimal parameters for the dynamic critical level rationing policy and 

ordering policy.  

We first consider a single period system and develop a method to obtain near-

optimal parameter values of the dynamic critical level policy and approximate expressions 

for the expected total cost. Then we develop an optimization model for a multiperiod 

system with positive lead time and obtain parameter values of dynamic rationing and 

ordering policies using a similar method as in Chapter 3.  

Topkis (1968) has considered dynamic inventory rationing for systems with 

general demand processes, though in the literature most people consider Poisson demands. 

There are some notable differences between our work and Topkis (1968). First, Topkis 

assumes the demand process in a period can be divided into independent demands in some 

small intervals, while we have no such assumption, so the demand process in this chapter 

is more general. Second, for the multiperiod systems, the lead time in Topkis is zero, 

while in our model it is positive and the positive lead time makes problems more difficult 
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to analyze. Third, Topkis develops a dynamic programming model to get the optimal 

dynamic rationing policy, while in this chapter we assume the system adopts a dynamic 

critical level rationing policy (structure of the optimal rationing policy may be extremely 

complicated and we have shown it in Chapter 3 for the case with Poisson demands) and 

develop methods to find appropriate parameters for the rationing and ordering policies. 

Finally, the penalty cost in our models is a general one which includes penalty cost per 

unit and penalty cost per unit per unit time, while the penalty cost in Topkis is penalty cost 

per unit per unit time. So our model can more accurately count for costs.  

Other papers in relevant literature assume a particular demand process such as 

Poisson process, while in this chapter we consider general demand processes. For example, 

Teunter and Haneveld (2008) consider dyanmic inventory rationing in a single period 

system with Poisson demand, backordering and two demand classes. Assuming the 

dyanmic critical level rationing policy, they have developed a heuristic to find the times 

when the critical levels change. As stated previously, the inventory rationing problems 

with general demand processes are much more complicated than those with Piosson 

demands. The model in Teunter and Haneveld (2008) is a single period one and there is 

only 2 demand classes, while in this chapter we consider both single period and 

mutiperiod systems and there are multiple demand classses. In the literature many other 

papers consider the static rationing policies, while here we develop dynamic rationing 

policies.  

The remainder of this chapter is organized as follows. Section 4.2 considers 

inventory rationing in a single period system, assuming a dynamic critical level rationing 
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policy. Section 4.3 analyzes dynamic inventory rationing in a multiperiod system with a 

periodic review base stock (R, S) ordering policy with positive lead time. Near-optimal 

parameters for rationing and ordering policies are obtained. In Section 4.4, a numerical 

study is conducted to examine the performance of the proposed solution for the 

multiperiod systems. Section 4.5 summarizes the results. Proofs of lemmas and theorems 

of this chapter are given in Appendix C. 

4.2   Inventory Rationing for a Single Period System  

In this section we consider inventory rationing in a single period system, assuming a 

dynamic critical level rationing policy. A method is developed to obtain near-optimal 

parameters for the rationing policy and approximate expressions for the expected cost. 

Some important properties of the rationing policy are also obtained. The single period 

model is the building block for multiperiod systems and these results will be used in a 

later multiperiod model in this chapter. 

We have studied in Chapter 3 dynamic inventory rationing in a multiperiod system 

with zero lead time and Poisson demands. We found that the rationing policy in each 

period is determined solely by parameters in each period, for lead time is zero and the 

system can purchase enough stock at the beginning of a period to fulfill all backorders so 

that backorders in a period will never be forwarded to its next period. When the demand 

process is changed to general processes and other situations (such as zero lead time, 

stationary cost factors and so on) remain unchanged, it is still true that backorders in a 

period will never be forwarded to the next period, so the dynamic rationing policy in a 
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period can also be determined solely by parameters in this period as in the case with 

Poisson demand. The obtained dynamic rationing policy in the case with zero lead time 

can also be used in the development of a heuristic for the multiperiod systems with 

positive lead time. So in this section we consider how to dynamically ration stock in a 

single period to minimize expected total holding and penalty cost when the demand 

processes are general ones.  

4.2.1   Model Formulation 

In the following we brief the problem setting. Consider a single period inventory system 

that carries a product to satisfy demands from K demand classes. Let u  denote the length 

of the period. At the beginning of the period, the system has some initial stock. Assume 

the system adopts a dynamic critical level rationing policy. During the period, when a 

demand arrives, it is either satisfied or rejected according to the rationing policy. The 

rejected demand is backlogged and a penalty cost is incurred. Assume the backorders can 

be fulfilled only at the end of the period, which is the same as that in the case with Poisson 

demand and zero lead time.  

Demands of each customer class follow a certain general demand process. In the 

case of compound demand process in which a customer may require a random amount of 

product, we assume that the system can partially satisfy the demand, and the remaining 

part is backordered. Assume the demand of each customer is discrete and demands of 

different classes are independent.  
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Let ct  denote the remaining time to the end of the period. In the remaining part of 

this section we simply say time ct  to mean the time point when remaining time is ct . 

Let )( ci ts , ],0[ utc ∈ , denote the dynamic critical level of class i  at time ct  . If a demand 

of class i  is rejected at time ct , then a penalty cost cii t⋅+ ππ ˆ  incurs. As in Chapter 3, we 

assume that if ji < , then ji ππ ≥  and ji ππ ˆˆ ≥ , i.e., class 1 has the highest priority. The 

holding cost is h  per unit per unit time.  

Let ν denote a dynamic critical level rationing policy in the period and Φ denote 

the set of dynamic critical level policies. Let ),( suHdy  denote the expected holding and 

penalty cost over the whole period under the rationing policyν , given initial inventory s at 

the beginning of the period. The rationing policy ν is completely determined by its critical 

levels )( ci ts , ],0[ utc ∈ , },...,1{ Ki ∈ . We are trying to find the optimal rationing policy 

Φ∈ν  to minimize the expected cost ),( suHdy . Let *ν denote the optimal critical level 

rationing policy with the critical levels )(*
ci ts , and ),(* suHdy denote the optimal expected 

total cost. So the optimization problem is:  

                ),( min),(* suHsuH dyvdy Φ∈
= .                                                                (4.1) 

As class 1 is the most important one, we can see that if there is any on-hand inventory, 

then the system should satisfy the demand of this class. So the optimal critical level of 

class 1 is always 0, i.e., 0)(*
1 =cts , ],0[ utc ∈ . In the following we develop a method to 

obtain near-optimal critical levels of class i , Ki ≤<1 .  We first consider a system with 
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only two demand classes, and then extend the method to the case with )2( >KK  demand 

classes. 

4.2.2   Calculation of Dynamic Critical Levels in Case of Two Demand Classes 

In this subsection we consider a system with only two classes and develop a method to 

obtain near-optimal dynamic critical levels for class 2 (the optimal critical level of class 1 

is already known).  

Let )( ctX , ],0[ utc ∈ , denote the on-hand inventory at time ct . Suppose a customer 

of class 2 demanding one unit of the product arrives at a certain time −
ct , where time −

ct  is 

just before time ct , and the system needs to make a decision about whether or not to 

satisfy it at time ct . Assume stX c =− )( .  

According to the definition of critical levels, if the inventory s  is larger the 

optimal critical level )(*
ci ts , then satisfy it, otherwise reject it. Under the optimal critical 

level rationing policy, if a demand of class i  is rejected at time ct , it is possible that a later 

demand of this class may be satisfied at some later time 'ct  (for example, there is no 

demand since time ct  and the on-hand inventory at time 'ct  is above the critical level of 

this class at this time for the critical levels decrease towards the end of the period). But 

such events will be rare. Thus if a demand of a certain class is rejected at time ct , then the 

demands of this class will almost always be rejected later. Based on this observation, we 

develop a method to obtain near-optimal critical levels.  
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Let ),(* stH cdy denote the optimal expected holding and penalty cost from time ct to 

the end of the period, given stX c =)( and under the optimal critical levels. Let ),(2 stJ c  

denote the expected holding and penalty cost from time ct to the end of the period, given 

stX c =)( and assuming the system rejects all demands of class 2 since time ct , where the 

superscript 2 means always rejecting demands of class 2. So when )(*
2 ctss ≤ , ),(2 stJ c can 

be used to approximate ),(* stH cdy .  

If the demand of class 2 that arrives at time −
ct  is satisfied, then total expected cost 

from time ct  to the end of the period is )1,(* −= stHC cdysat . If it is rejected, then the total 

expected cost is )(),( 2
*

ccdyrej testHC += , where cc tte ⋅+= 222 ˆ)( ππ  is the penalty cost. 

When satrej CC ≥ , we should satisfy the demand. For ),(2 stJ c can be used to approximate 

),(* stH cdy  when )(*
2 ctss ≤ , we obtain a near-optimal critical level )(2 c

a ts of class 2 in this 

way:  

                
{ }
{ } ,10)(),(|min

1)1,()(),(|min)(

2
2

2
2

2
2

−≥+∆=

−−≥+=

ccX

cccc
a

testJs
stJtestJsts

                                        (4.2)   

where )1,(),(),( 222 −−=∆ stJstJstJ cccX . ),(2 stJ cX∆ is the marginal cost, given stX c =)(  

and assuming the system rejects all demands of class 2 since time ct .   

Now consider the calculation of ),(2 stJ cX∆ . Figure 4.1 shows the change of 

inventory with the remaining time for a realization of demands in two cases: case A with 
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stX c =)(  represented by solid line and case B with 1)( −= stX c  represented by the 

dashed line. As all demands of class 2 are rejected, the inventory decreases only whenever 

a demand of class 1 arrives. When the lines are above the horizontal axis, they represent 

the on-hand inventory and when they are below the axis, they represent the backorders of 

class 1.  

                 

Figure 4.1    Inventory vs. remaining time with 2 classes 

 

Let ctD1  denote the total demand of class 1 from time ct  to the end of the period, 

and )( 1 sDP ct < denote the probability of sD ct <1 . Let 1
st  denote the time when the s-th 

demand of class 1 arrives and sτ denote the time difference between ct  and 1
st . If the 

demand process is a compound process in which one customer may require more than 1 

unit of product, the demand at time 1
st  may be partially satisfied according to the 

assumption.  

ct  
0    time  

sτ  

Inventory 

1−s
s

 

end of period 
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From Figure 4.1 we can see that case A has more holding cost than case B. Given 

a demand realization, if sD ct <1 , then the difference of holding costs of the two cases 

is cth ⋅ . If sD ct ≥1 , then the difference of holding cost is hs ⋅τ . On the other hand, case A 

has less penalty cost than case B. If sD ct ≥1 , the s-th demand of class 1 can be satisfied in 

case A, while in case B it will be rejected, incurring a penalty cost )(ˆ11 sct τππ −+ . 

If sD ct <1 , the difference of penalty costs is zero. Hence, 

         

).(]|[)ˆ(                    

)(])ˆ([                 

)(]}|)[(ˆ{                    

)()|()(),(

111

111

1111

111
2

sDPsDEh

sDPhtth

sDPsDtE

sDPsDEhsDPhtstJ

cc

c

cc

ccc

tt
s

t
cc

tt
sc

tt
s

t
ccX

≥⋅≥⋅++

≥⋅++⋅−⋅=

≥⋅≥−⋅+−

≥⋅≥⋅+<⋅⋅=∆

τπ

ππ

τππ

τ

             (4.3)        

We have the following lemma for the marginal cost ),(2 stJ cX∆ .   

Lemma 4.1. For a given remaining time ct , the first difference of the discrete function 

0  ),,(2 ≥sstJ c , is nondecreasing in s , i.e., ),(2 stJ cX∆  is nondecreasing in s .  

From Lemma 4.1, we immediate have the following theorem about a property of 

the critical level )(2 c
a ts of class 2. 

Theorem 4.1. For a given remaining time ct , there exists a unique on-hand inventory 

)(2 c
a ts  for class 2 such that if the on-hand inventory )(2 c

a tss > , then 0)(),( 2
2 ≥+∆ ccX testJ , 

otherwise 0)(),( 2
2 <+∆ ccX testJ .  
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For the property of )(2 c
a ts and ),(2 stJ cX∆ shown in Lemma 4.1 and Theorem 4.1, 

we can easily search for )(2 c
a ts using equations (4.2) and (4.3). sτ  is the time difference 

between ct  and the epoch when the s-th demand of class 1 arrives and it is a continuous 

random variable. Assuming under the demand process of class 1 there is a continuous 

probability density function for sτ , we have the following theorem which shows how the 

dynamic critical level )(2 c
a ts  changes with the remaining time.   

Theorem 4.2.    

(a)    0)(2 =c
a ts when 0=ct . 

(b)  When 021 == ππ , )(2 c
a ts  is non-decreasing in remaining time ct , i.e., if the 

remaining time 21 tt ≥ , then )()( 2212 tsts aa ≥ .  

Part (a) shows that if there is on-hand inventory at the end of the period, then the 

system should satisfy the demand of class 2. It is quite intuitive. At the end of the period 

the system does not need to reserve stock for class 1, for the new replenishment of next 

period (in the multiperiod system) will come immediately. Part (b) shows that when the 

penalty cost is per unit per unit time, then the dynamic critical level of class 2 decreases 

towards the end of the period. This result is also intuitive, since the system may need to 

reserve more stock for class 1 when the remaining time becomes longer. When 1π  and 

2π are positive, we cannot prove the above property, but the critical level also decreases 

towards the end of the period in the numerical examples which are not shown here.    
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4.2.3   Calculation of Dynamic Critical Levels in Case of )2(>K Demand Classes  

Now we extend the previous method to the case with more than 2 demand classes to 

obtain near-optimal dynamic critical levels. We sequentially determine the critical levels 

of class ,m },...,2{ Km∈ , i.e., first calculating the critical level of class 2, then that of class 

3 and so on.  

Let ),( stJ c
m  denote the expected cost from any given time ct  to the end of the 

period, given stX c =)(  and the critical levels )(tsi , ],0[ ut ∈ , of class i, }1,...,1{ −∈ mi , 

and assuming all demands of class j , },...,{ Kmj ∈ , are rejected from time ct .   Let 

)1,(),(),( −−=∆ stJstJstJ c
m

c
m

c
m
X . Similar to equation (4.2) we obtain a near-optimal 

dynamic critical level of class m ,  },...,2{ Km∈ , by    

                { } 1)(  ,0)(),(|min)( 1 −≥≥+∆= − c
a
mcmc

m
Xc

a
m tsstestJsts ,                           (4.4)  

where cmmcm tte ⋅+= ππ ˆ)(  and 0)()( *
11 == cc

a tsts . In reasonable critical level rationing 

policies, the critical level of a certain classes is lower than that of less important classes so 

that if a demand of a certain class should be rejected at time ct , then the less important 

classes should always be rejected at this time, i.e., if  ji < , then )()( cjci tsts ≤ . So when 

searching for )( c
a
m ts , we can increase s starting from )(1 c

a
m ts − .   

),( stJ c
m  is the cost under the assumption that all demands of class },...,{ , Kmii ∈ , 

will be rejected since time ct . We can ignore the demands of these classes during 
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calculating ),( stJ c
m
X∆ . ),( stJ c

m  is dependent on the dynamic critical levels of class i , 

}1,...,2{ −∈ mi . We have known that the optimal dynamic critical level of class 1 

is 0)(* =ci ts .  We can obtain near-optimal dynamic critical levels of all classes in the 

following procedure:   

(a) First consider the demand process of class 1, ignoring demands of class 

j , },...,2{ Kj ∈ , and use the method in the previous section to obtain the critical level of 

class 2, i.e., )(2 c
a ts , ],0[ utc ∈ .  

(b) Assume we have obtained near-optimal dynamic critical levels of class i  (i.e., 

)( c
a
i ts ), }1,...,2{ −∈ mi , where Km <−≤ 12 . Consider the demand processes of 

classes ,...,2 ,1 and 1−m , ignoring demands of class j , Kjm ≤≤ , and calculate )( c
a
m ts , 

],0[ utc ∈ , using equation (4.4).  

(c) Repeat Step b until the near-optimal dynamic critical level of class K  is 

obtained.  

In the following we show Step b of the above procedure, i.e., consider how to 

calculate ),( stJ c
m
X∆  to obtain critical level )( c

a
m ts of class m, assuming the critical levels 

)( c
a
i ts , ],0[ utc ∈ , }1,...,2{ −∈ mi , are already obtained.  

Figure 4.2 shows the change of inventory with remaining time for both case A 

with stX c =)( and case B with 1)( −= stX c .  Case A is represented by the solid line and 
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case B by the dashed line. The demands of class j , },,{ Kmj L∈ , have no effect on the 

change of the on-hand inventory. For we are developing dynamic critical level of class m  

and the critical level of class m  is not below that of class 1−m , we assume the on-hand 

inventory s  at time ct  is above )(1 c
a
m ts − . So in case A or B, the inventory system first 

satisfies demands of class i , }1,...,1{ −∈ mi , since time ct , and the inventory decreases. At 

a certain time after satisfying a demand or part of a demand, the on-hand inventory may 

be equal to the dynamic critical level of class 1−m at this time. We call this time touch 

time on the critical level of class 1−m . Let 1
1
−

−
m
st  denote the touch time on the dynamic 

critical level of class 1−m  in case B where 1)( −= stX c . In case A, the touch time is 1−m
st . 

It is possible that the inventory in case A or B does not reach the critical level of class 

1−m  until the end of the period. In this case we define the touch time is less than 0. The 

change of on-hand inventory after time 1
1
−

−
m
st  is not shown in Figure 4.2. 

 

Figure 4.2    Inventory vs. remaining time with K (>2) classes 
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s  
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1
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Now consider the difference of costs in cases A and B, i.e., ),( stJ c
m
X∆  . First 

consider the situation when 01
1 >−

−
m
st . For a given realization of demand process 

with 01
1 >−

−
m
st , the cost difference of cases A and B consists of two parts. The first part is 

the cost difference from time ct to time 1
1
−

−
m
st  and the other part is from 1

1
−

−
m
st  to the end of 

period.  

(i)  Cost difference from ct to time 1
1
−

−
m
st  

The cost difference between cases A and B from ct  to 1
1
−

−
m
st  is the holding cost 

)( 1
1
−

−−⋅ m
sc tth .  

(ii)  Cost difference from time 1
1
−

−
m
st to the end of the period 

In case B the inventory hits the critical level of class 1−m at time 1
1
−

−
m
st , so the 

inventory at time 1
1
−

−
m
st  is equal to )( 1

11
−

−−
m
s

a
m ts . The inventory at this time in case A 

is 1)( 1
11 +−

−−
m
s

a
m ts . According to the definition of critical level of class 1−m , the cost 

difference of both cases from 1
1
−

−
m
st  to the end of period can be approximated 

by ))(,( 1
11

1
1

1 −
−−

−
−

−∆ m
s

a
m

m
s

m tstJ , which is already obtained during calculation of critical level of 

class 1−m . In fact, ))(,( 1
11

1
1

1 −
−−

−
−

−∆ m
s

a
m

m
s

m tstJ can be further approximated by )( 1
11
−

−−− m
sm te , for 

according to the definition of critical level, )())(,( 1
11

1
11

1
1

1 −
−−

−
−−

−
−

− +∆ m
sm

m
s

a
m

m
s

m tetstJ is close to 

zero.   
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So when 01
1 >−

−
m
st , the total cost difference between two cases from ct  to the end of 

the period is approximated by )()( 1
11

1
1

−
−−

−
− −−⋅ m

sm
m
sc tetth . When 01

1 ≤−
−

m
st , the cost difference 

between cases A and B is the holding cost htc ⋅ . Let )( 1
1
−

−
m
stp  denote the probability density 

function for random variable 1
1
−

−
m
st , and )0( 1

1
1

0 ≤= −
−

− m
s

m tPP denote the probability of 01
1 ≤−

−
m
st . 

The probability density function )( 1−m
stp  depends on inventory s , critical levels )(1 c

a
m ts − , 

],0[ utc ∈ , and the demand process. We have 

                         1)( 1
00

1
1

1
1 =+ −−

−
−

−∫ mt m
s

m
s Pdttpc . 

So  

                 
c

m
s

m
s

m
s

t m
sm

m
sc

c
m

c
m

c
m
X

thtPdttptetth

stJstJstJ
c

⋅⋅≤+⋅−−⋅≈

−−=∆
−

−
−

−
−

−
−

−−
−

−∫ )0()()]()([

)1,(),(),(
1

1
1

1
1

10

1
11

1
1

            (4.5) 

Thus based on equations (4.4) and (4.5), we can obtain a near-optimal dynamic 

critical level )( c
a
m ts of class m , given )( c

a
i ts , }1,,2{ −∈ mi L , ],0[ utc ∈ . Continue this 

procedure and we can obtain dynamic critical levels for all K  classes.  

4.2.4   Expected Total Cost 

Now we develop expressions for the expected total cost ),( suH dy  over the whole period 

under the above dynamic rationing policy, given initial on-hand inventory suX =)( . 
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These expressions will be used in later sections for the multiperiod systems with positive 

lead time.   

When 0=s , all demands of any class will be rejected. Let )(uiΠ denote the 

expected penalty cost of class i  in this period. So  

 0     when           ,)(),(
1

=Π= ∑
=

susuH
K

i
idy .                                                              (4.6a) 

In the previous section we have obtained the marginal costs ),( suJ m
X∆ , },,2{ Km L∈ . 

From these marginal costs and )0,(uH dy , we can obtain the following approximate 

expressions for ),( suH dy , )](,0[ uss a
K∈ :  

 )](,0(               ),,()0,(),( 2
1

2 ussjuJuHsuH a
s

j
Xdydy ∈∆+≈ ∑

=

,  and                            (4.6b) 

KmusussjuJusuHsuH a
m

a
m

s

usj

m
X

a
mdydy

a
m

<≤∈∆+≈ +
+=

+∑ 2  )],(),((  ),,())(,(),( 1
1)(

1 .         (4.6c)  

 Now consider the case when )(uss a
K> . For the convenience of denotation, let 

)1,(),(),(1 −−=∆ + stHstHstJ cdycdyc
K
X , where )),(( ∞∈ c

a
K tss . When )( c

a
K tss > , demands of 

all classes are satisfied at time ct . We can use the same method as that of obtaining 

),( stJ c
K
X∆  to obtain ),(1 stJ c

K
X

+∆ . Once we obtain ),( stJ c
K
X∆ , we have  



Chapter 4        Inventory Rationing for Systems with General Demand Process and Backordering 

 108

 )),((   ),,())(,(),(
1)(

1 ∞∈∆+≈ ∑
+=

+ ussjuJusuHsuH a
K

s

usj

K
X

a
Kdydy

a
K

.                                (4.6d) 

  Now consider calculating ),(1 stJ c
K
X

+∆ . Assume we have obtained the dynamic 

critical levels )( c
a
i ts , ],0[ utc ∈ , },,2{ Ki L∈ . Consider a certain time ct . Assume the on-

hand inventory )( ctX at a given time ct  is greater than )( c
a
K ts . The system first satisfies 

demands of all classes until the inventory reaches the critical curve of class K  at a certain 

time (touch time) and since this time the system starts to reject demands of class K . Let 

K
st 1−  denote the touch time on the critical level of class K , given 1)( −= stX c . So, similar 

to calculating ),( stJ c
K
X∆ , the marginal cost ),(1 stJ c

K
X

+∆ is  

       
c

K
s

K
s

K
s

t K
sK

K
sc

cdycdyc
K
X

thtPdttptetth

stHstHstJ
c ⋅⋅≤+⋅−−⋅≈

−−=∆

−−−−−

+

∫ )0()()]()([

)1,(),(),(

1110 11

1

              (4.7)  

Thus we have obtained approximate expressions (equation 4.6) for the expected holding 

and penalty cost ),( suHdy  under the above dynamic critical level policy.  

After having obtained the dynamic critical level rationing policy in the single 

period system and the expressions for the expected cost, we can use these results to 

consider multiperiod systems. In the following section we consider dynamic inventory 

rationing in a multiperiod system with positive lead time and infinite horizon using a 

similar method to Chapter 3.  
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4.3  Inventory Rationing for a Multiperiod System with Positive Lead 

Time 

This section considers dynamic inventory rationing in a multiperiod system with positive 

lead time, general demand processes and backordering. We develop an optimization 

model of minimizing average cost and obtain a near-optimal solution.   

4.3.1   Model Formulation 

Consider a multiperiod inventory system with infinite horizon that carries one product to 

satisfy the demands of K  demand classes. The demand process and cost factors are the 

same as the previous single period model. The rejected demands are backordered. Assume 

the system adopts a periodic-review, base stock (R, S) ordering policy. The orders have a 

deterministic replenishment lead time L, 0≥L . Under the (R, S) ordering policy, the 

ordering opportunities occur at fixed intervals of time. We call the time between two 

successive order opportunities as an ordering period and the time between two successive 

arrivals of orders as a replenishment period. The periods are indexed as ,...1,0 , i.e., the 

first period is period 0. Each period has the same length u. Assume the time at the 

beginning of ordering period 0 is 0. The order placed at the beginning of ordering period 

m, ,...}1,0{∈m , will arrive at time Lmulm += . The time from ml  to 1+ml  is the 

replenishment period m .   

Assume the system adopts a dynamic critical level rationing policy v . Let Φ  

denote the set of these dynamic critical level rationing policies. Again assume the 
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backorders can be fulfilled only at the ends of replenishment periods and use the full-

priority backorder clearing mechanism (i.e., mechanism M): at the end of a replenishment 

period the system first adds the arrived replenishment to stock, then fulfills outstanding 

backorders as much as possible from the most important class to the least important class.  

The above problem setting is similar to the multiperiod system in Chapter 3. The 

difference is that the demand process in Chapter 3 is Poisson process, while here we 

consider very general demand processes. We follow similar procedure to deal with this 

problem.  

Let my denote the net inventory at the beginning of replenishment period m just 

after the replenishment arrives. For net inventory is the on-hand inventory minus 

backorders, my can be negative. Let },...,{ 1 Km bb=B  denote the outstanding backorders at 

the beginning of replenishment period m, where ib  is the number of backorders of class i . 

),( mmy B describes the state of the system at the beginning of replenishment period m. 

According to the full-priority backorder clearing mechanism, we have: if my  is positive, 

then there is no outstanding backorders, i.e., 0=ib , and if my  is negative, then 

∑ =
−=

K

i im by
1

.  

Let 0X denote the initial state (on-hand inventory, outstanding orders, and 

outstanding backorders of each demand class) of the system at the beginning of 

replenishment period 0. We can see that ),( mmy B , for a fixed m, is a random variable and 

let ),( ByPm  denote the probability of ),( mmy B . The probability ),( ByPm  is under the 
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given base stock (R, S) ordering policy, rationing policy ν and initial state 0X of the 

system. In other words, for different base stock level of the ordering policy, rationing 

policy and initial state, ),( ByPm  may have different probability distributions. Under the 

given ordering and rationing policies and the initial state 0X , when the system has arrived 

at the stable situations from the initial state 0X  after the transitional stages, then ),( ByPm  

may be independent on the initial state 0X . So when m is very large, ),( ByPm  may be 

independent on the initial state. In the above we have shown that: if my  is positive, then 

there is no outstanding backorders, i.e., 0=ib , and if my  is negative, then ∑ =
−=

K

i im by
1

. 

So when ( B,y ) does not satisfy this requirement, then 0),( =ByPm  for all m. We have 

known that ),( mmy B  is a random variable. Let Ω denote the set of possible values of 

),( mmy B for all m.  

Assume the system adopts the same cost counting method as in Chapter 3. So if a 

demand is rejected, then the penalty cost rii t⋅+ ππ ˆ  (where rt  is the remaining time from 

the time when it is rejected to the end of current period) is counted in the period during 

which the demand is rejected, which is the same as that in the previous single period 

model. If this backorder is still outstanding at the beginning of a later period, then penalty 

cost ui ⋅π̂ is incurred in this period. As all rejected demands are backlogged, we do not 

consider the average ordering cost, for it is a constant.  

Let ),( ByCm  be the expected cost (penalty and holding cost) incurred in the 

replenishment period m, given ),( mmy B . This cost depends on ),( mmy B  as well as the 
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rationing policy ν used in replenishment period m . Let )|,( 0XSAC ν  denote the expected 

average cost per period when the base stock level is S  and the system uses a dynamic 

critical level rationing policy ν  in Φ , given the initial state 0X . Again, for the initial state 

in general does not affect the average cost over the infinite horizon, we remove the initial 

state 0X  from later expressions of the average cost. Then the optimization problem is to 

find an appropriate base stock level and a dynamic critical level rationing policy to 

minimize expected average cost, i.e.,   

                 

∑ ∑

∑
−

= Ω
∞→

−

=
∞→
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                (4.8) 

The expected average cost in equation (4.8) consists of holding and penalty cost. If the 

above limit is not known to exist for some policies, we may use supremum for the item in 

right-hand side of (4.8) as in Chapter 3 and it will not affect our analysis. Under the base 

stock ordering policy and the dynamic critical level rationing policy, the limit in general 

exists.   

4.3.2   A Solution to the Optimization Problem  

One main difficulty in solving problem (4.8) is that probability of backorder vector mB  

depends on the rationing policy ν and base stock S, and it is very difficult to find explicit 

expressions for the probability of mB . Another difficulty is that, given a rationing policyv  
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and the state ),( mmy B , in general there is no closed-form expression for the expected cost 

)|,( vyCm B .  

Based on the dynamic critical levels in the single period model, we obtain a 

myopic dynamic rationing policy for the multiperiod system: ration stock in each period 

using the dynamic critical levels of the single period model. Let dy denote this rationing 

policy for the multiperiod system and the corresponding expected average cost 

be ),( dySAC . This rationing policy is trying to locally minimize the cost in each period, 

not considering its effect on later periods.  

In the following we develop an approximate expression for the cost 

),( dySAC under the above dynamic rationing policy dy and a given base stock S, and 

then use this approximate expression to obtain appropriate base stock level by minimizing 

the average cost, thus we obtain a solution to the optimization problem (4.8). 

Let )( myP denote the probability of my . If 0≥my , then 0=mB . When 0<my , the 

sum of probabilities ),( ByPm with the same my but different mB , is equal to the probability 

)( myP for the given my . Let )( myΩ  denote the set of values of ),( mmy B  with the same my  

and different mB . So when rationing policy dy  is used and the base stock level is S, we 

have:  

                     )()(),( mLmm ySDPyPyP −===B   when 0≥my , and  
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               )()(),(
)(

mLm
y

m ySDPyPyP
m

−===∑
Ω

B  when 0<my .     (4.9)  

where LD is the total demand of all classes that occurs during lead time L. Note that the 

distribution of demand LD  is independent on the index m, rationing policy v  and base 

stock level S.  

)|,( dyyCm B  is the expected cost incurred in the replenishment period m under the 

rationing policy dy and this cost depends on the state variable ( my , mB ) . When 0≥my , 

we can see that )|,( dyyCm B is equal to the cost ),( yuH dy  of the single period model, i.e., 

        .0  when  ),()|,( ≥= yyuHdyyC dym B                                           (4.10) 

When the net inventory after the replenishment arrives is negative, i.e., 0<my , the 

inventory cost in the period consists of the penalty cost of the outstanding backorders at 

the beginning of the period, if any, and the backorder cost for any new shortages that may 

occur in this period. Hence  

           ( ) ∑ <+=
i

iidym yubuHdyByC 0   when , ˆ0,)|,( π .                          (4.11) 

As in the multiperiod model in Chapter 3, two factors will increase the expected 

proportion of backorders of less important classes in a given total backorders: the system 

reserves stock for important classes by rejecting demands of less important classes during 

each period, and the system uses the backorder clearing mechanism M under which the 
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system fulfills backorders according to class priority. So there are more backorders of less 

important classes in a given total backorders. Moreover, the probability of 0<y  in 

general is not large in inventory systems. So when 0<y , we can approximate 

)|,( dyyCm B  by assuming all backorders in mB  are from the least important class K, i.e.,  

           ( ) 0   when ,ˆ0,)|,( <−≈ yuyuHdyyC Kdym πB .                           (4.12) 

Based on equations (4.9), (4.10) and (4.12), we can obtain the following 

approximate expression for the average cost ),( dySAC : 

( ) ( ) ( )∑∑
−

−∞==

−=−+−=≈
1

0

)(ˆ)0,(,),(
y

LKdy

S

y
dyL ySDPuyuHyuHySDPdySAC π . 

Once having obtained the expression of average cost under a given base stock S and the 

rationing policy dy, the remaining task is to find an appropriate base stock level to 

minimize average cost. So the problem of finding the appropriate base stock level is 

   ( ) ( ) ( )∑∑
−

−∞==

−=⋅⋅−+−=
1

0

)(ˆ)0,(,min
y

LKdy

S

y
dyLS

ySDPuyuHyuHySDP π .     (4.13) 

Thus we have found a solution to the optimization problem (4.8): using the dynamic 

critical level rationing policy of the single period model to ration stock in each period of 

the multiperiod system, and an appropriate base stock is obtained by the above (4.13). 
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4.4   Numerical Study  

4.4.1  The Numerical Study 

In previous sections we have developed methods to obtain near-optimal parameters for the 

dynamic critical level rationing policy and ordering policy. Now we conduct a numerical 

study to investigate the effectiveness of the proposed method. Currently there is no 

method to obtain optimal solutions and/or tight lower bound on the optimal costs when the 

demands follow general non-Poisson processes. However, Chapter 3 has developed a 

method to obtain the optimal dynamic rationing policy for inventory rationing in each 

period of a multiperiod system with Poisson demands and zero lead time, and a tight 

lower bound on optimal costs for multiperiod systems with positive lead time, so we here 

assume Poisson demands to examine the above method, by comparing the results of the 

method in this chapter with those of the method in Chapter 3.  

In this numerical study we mainly consider the single period systems to compare the 

near-optimal dynamic critical levels with the optimal critical levels, and to compare the 

costs under the near-optimal dynamic rationing policy with the optimal costs in different 

operational conditions. The model framework of the multiperiod systems with infinite 

horizon in this chapter is almost the same as that in Chapter 3 and the information about 

cost difference of these policies in the multiperiod systems can be obtained from the 

results of comparison in single period systems.  

Let dya  denote the near-optimal dynamic critical level policy obtained by the 

method in this chapter and *dy  denote the optimal dynamic critical level policy obtained 
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by the method in Chapter 3. Let ),(* xuH dy denote the expected holding and penalty cost in 

the single period under the optimal policy *dy , given the initial inventory x  at the 

beginning of the period, where u  is the length of period. Let ),( xuH a
dy  denote the 

expected holding and penalty cost in the period under policy dya . Define the following 

percentage to measure the cost difference under the above two policies:  

                         %100
),(

),(),(
)( *

*
* ⋅

−
=∆

xuH
xuHxuH

xH
dy

dy
a
dya . 

The relative difference )(* xH a∆  is a function of initial on-hand inventory x . We will 

check )(* xH a∆ under different operational conditions and different x . Let 

)(maxarg *

0

* xHx a

x

a ∆=
≥

.  

In the numerical study there are 3 demand classes. We choose a parameter setting 

as a base case, and then change one factor at a time that can affect the relative difference 

of costs. We fix hold cost 1=h  and the penalty cost per unit 0=iπ . So the penalty cost is 

per unit per unit time. The input data for the base case is: 300321 === λλλ , 

5.1:5:20ˆ:ˆ:ˆ 321 =πππ , 5.1ˆ3 =π  and 1.0=u . Then we change one of these factors at a 

time: ratio of arrival rates, ratio of penalty costs, and length of the period.  When changing 

ratio of penalty costs, we fix penalty cost 5.1ˆ3 =π . When varying the ratio of arrival rates, 

we remain the total arrival rate unchanged.  
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In the numerical study, for each parameter setting we first obtain optimal and near-

optimal dynamic critical levels, and then use simulation to obtain the expected costs under 

both rationing policies. For we obtained only the approximate expressions for the cost 

under policy dya , we use simulation to obtain the expected costs under both policies. In 

order to ensure enough accuracy in simulation, we repeat 10,000 times for the stochastic 

demand process in the single period systems for each scenario. The results are shown in 

Figures 4.3 and 4.4 and Table 4.1.  

4.4.2   Interpretation of Results 

First consider the base case. Figure 4.3 shows the optimal and near-optimal dynamic 

critical levels of class 2 and 3 in base case. We have known that the optimal dynamic 

critical level of class 1 is always 0. Curves dy*_2 and dy*_3 are the optimal dynamic 

critical levels of class 2 and 3 respectively. Curves dya_2 and dya_3 are the approximate 

optimal dynamic critical levels of class 2 and 3, respectively. The period is divided into 

900 intervals. From Figure 4.3 we can see that the near-optimal critical levels are very 

close to the optimal critical levels respectively.  

The relative cost difference )(* xH a∆  under two policies is a function of initial on-

hand inventory x . From Figure 4.4 we can see that )(* xH a∆  is very small and is not 

monotonic with x . When x  is some intermediate value, )(* xH a∆ is larger than those when 

x is very large or very small. When x  is very large or near 0, the cost difference is very 

close to 0. When x  is some intermediate value, the system needs to ration stock and the 

difference of critical levels in two policies can bring some notable difference of costs. 
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When x  increases from these intermediate values and becomes very large, the system has 

almost enough stock to satisfy demands of all classes, so the difference of costs under two 

policies is very small. When initial on-hand inventory decreases from these intermediate 

values to near 0, most demands can not be satisfied and the total cost is large, so the 

relative cost difference is very small.  

0
5

10
15
20
25
30
35
40
45
50

0 200 400 600 800 1000

Time (index of intervals)

O
n-

ha
nd

 in
ve

nt
or

y dya_2
dya_3
dy*_2
dy*_3

 

Figure 4.3    Optimal and approximate optimal dynamic critical levels in base case 
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Figure 4.4    Relative cost difference )(* xH a∆ vs. initial inventory in base case 

Now consider Table 4.1 which includes results for cases when changing a factor at 

a time. )( ** aa xH∆  is the maximal cost difference for different initial on-hand inventory in 

a parameter setting. From this table we can see that )( ** aa xH∆  is small in all these cases. 

The factor that has notable effect on cost difference is the ratio of penalty costs. When we 

increase the penalty costs of class 1 and 2 while remaining penalty cost of class 3 

unchanged, the relative difference )( ** aa xH∆ increases. The near-optimal dynamic critical 

levels are obtained by assuming all demands of some less important classes are rejected 

since a certain time. While under the optimal dynamic critical level policy, when a 

demand of less important classes is rejected at a certain time, it is possible that very small 

amount of demands from these less important classes are satisfied later. When we increase 

the penalty costs of important classes, the optimal dynamic critical levels at a certain time 

will increase, for the system should reserve more stock for them. In this case, under the 

optimal dynamic critical level policy the chance of satisfying later demands from less 
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important classes will increase, hence the relative cost difference of two policies will 

increase. Other factors do not have significant effect on cost difference for they do not 

affect very much the above chance of satisfying later demands from less important classes.  

From the above we can see that the critical levels obtained by the method in this 

chapter are very close to the optimal critical levels and the cost differences are also very 

small, so the above near-optimal dynamic critical level policy is a very good 

approximation to the optimal dynamic critical level policy. The above numerical study 

assumes there are 3 demand classes. When the number of demand classes increases, the 

relative difference )( ** aa xH∆  may increase. In the model we use approximate expressions 

to obtain dynamic critical level of class i , based on dynamic critical level of class 1−i  

and so on. When the number of demand classes increases, the cumulative error will 

increase.  

Table 4.1   Relative cost difference )( ** aa xH∆  under different conditions 

Factors 
Parameters 

)( ** aa xH∆ , *ax  
u  321 :: λλλ  321 ˆ:ˆ:ˆ πππ  

Base case 0.1 1:1:1 20:5:1.5 0.16%,  60 

Ratio of penalty 
costs 

 

0.1 

 

1:1:1 

 

  5:2:1.5 0.03%,  63 

10:3:1.5 0.08%,  45 

40:8:1.5 0.50%,  53 

 100:10:1.5 1.31%,  55 
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Ratio of arrival 
rates 

 

0.1 

1:2:3  

20:5:1.5 

0.24%,  45 

1:3:6 0.24%,  38 

3:2:1 0.10%,  58 

6:3:1 0.08%,  58 

Length of Period 

0.05  

1:1:1 

 

20:5:1.5 

0.85%,  32 

0.15 0.13%,  80 

0.2  0.10%,  118 

0.3 0.06%,  160 

 

The above comparison is for dynamic inventory rationing in single period systems 

(i.e., rationing in each period of a multiperiod system). For the infinite horizon systems 

with the base stock (R, S) ordering policy and positive lead time, we can also compare the 

difference of average costs under the two dynamic critical level rationing policies: policy 

dya  developed by the method in this chapter and policy *dy  developed in Chapter 3. Let 

)(SACdya  and )(* SACdy denote the average cost under policies dya  and *dy , respectively, 

where S  is the base stock. Define 

                             
)(

)()(
)( *

SAC
SACSAC

SAC
dya

dydya −
=∆ , 

which can be used to measure the cost difference under both policies. 
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Under the base stock ordering policy, the net inventory at the beginning of a 

certain period is a random variable. We can see that under an appropriate base stock level, 

the probability that the net inventory at the beginning of a period is negative is very small, 

which is also shown in Chapter 3.  So )(SAC∆  is the weighted sum of cost differences 

)(* xH a∆  for different initial on-hand inventory x  in the above single period systems, 

ignoring the probability that the net inventory at the beginning of a period is negative. So 

)(SAC∆ is less than the maximal cost difference )( ** aa xH∆  in the above single period 

systems. The cost difference )(SAC∆ under the appropriate base stock S is shown in Table 

4.2. 

Table 4.2   Relative difference of average costs for infinite horizon systems 

Factors 

Parameters 

AC∆  
u  321 :: λλλ  321 ˆ:ˆ:ˆ πππ  

Base case 0.1 1:1:1 20:5:1.5 < 0.16%  

Ratio of penalty 
costs 

 

0.1 

 

1:1:1 

 

  5:2:1.5 < 0.03%  

10:3:1.5 < 0.08%  

40:8:1.5 < 0.50%  

 100:10:1.5 < 1.31%  

Ratio of arrival  1:2:3  < 0.24%  
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rates 
0.1 1:3:6 20:5:1.5 < 0.24%  

3:2:1 < 0.10%  

6:3:1 < 0.08%  

Length of period 

0.05  

1:1:1 

 

20:5:1.5 

< 0.85%  

0.15 < 0.13%  

0.2          < 0.10%  

0.3 < 0.06%  

 

From the above table we can see that the cost difference under both policies for 

infinite horizon case is also very small. For the above parameter settings, we can also 

calculate the lower bound on the optimal cost and the gap BCR between the lower bound 

and the average cost )(* SACdy  under optimal policy *dy  using the method in Chapter 3. 

The results show that the gap BCR is very small, less than 1.0e-6 for cases when the ratio 

of lead time to the length of a period is 1 and 2. For the average cost under policy dya 

developed in this chapter is very close to the optimal cost under policy dy* in Chapter 3, 

the cost of policy dya is also very close to the lower bound.  
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4.5   Conclusions 

In this chapter we considered dynamic inventory rationing in systems with general 

demand processes and backordering. We first investigated dynamic inventory rationing in 

single period systems. Assuming a dynamic critical level rationing policy, a method was 

developed to obtain near-optimal parameters for the rationing policy and approximate 

expressions for the expected cost under this rationing policy. Some important properties of 

the rationing policy were also obtained. Then we studied dynamic rationing in a 

multiperiod system with a (R, S) ordering policy and positive lead time. An optimization 

model was developed and a solution was provided: embedding the dynamic critical level 

rationing policy of the single period model into each period of the multiperiod system to 

ration stock and a method was developed to obtain an appropriate base stock for the 

ordering policy.  

A numerical study was conducted to investigate the effectiveness of the proposed 

method. For we can obtain the optimal dynamic critical level rationing policy and the 

optimal expected cost in the single period systems when demands follow Poisson 

processes, we assumed Poisson demands to compare the results from the proposed method 

in this chapter with the optimal results. The results show the critical levels obtained by the 

proposed method are close to the optimal ones. The cost difference under both rationing 

policies is small for a wide range of parameter values.  

The proposed method has a few noticeable characteristics. One is that the dynamic 

critical levels of different demand classes are obtained sequentially, so it avoids the curse 
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of dimensionality in dynamic programming models which existed in most dynamic 

inventory rationing problems with backorders. Another advantage of the proposed method 

is that the demand process can be very general. Third, from this method people may 

obtain a new rationing policy: whenever inventory drops to the critical level of a certain 

class, then reject all demands of this class until the end of the period. Under the dynamic 

critical level policy, it is possible that a customer of a certain class is rejected and a later 

customer of this class is satisfied. This may be unfair to the customers. The new rationing 

policy can avoid this problem. This new policy is also easy to understand and implement. 

Moreover, for the assumption (once a demand of a certain class is rejected, then all 

demands of this class will be rejected until the end of the period) is a good approximation 

to the practical cases, the cost penalty of implementing this new rationing policy will be 

small, comparing with the dynamic critical level policy, and this is justified in the 

numerical results.  

For inventory rationing problems with very general demand processes and positive 

lead time, in the literature little is known about the optimal rationing policy. The dynamic 

critical level rationing policy in this chapter provides a benchmark for these cases. So one 

of possible future research directions is to investigate the structure of the optimal rationing 

policy for systems with such general demand processes, or develop other methods to 

obtain better rationing policies. In the next chapter, we study dynamic inventory rationing 

for systems with lost sales and Poisson demand. 
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Chapter 5  

Inventory Rationing for Systems with Poisson 

Demands and Lost Sales 

 

 

5.1  Introduction  

Previous chapters have analyzed dynamic inventory rationing for systems with 

backordering, assuming Poisson demands or other general demand processes. In this 

chapter we consider dynamic inventory rationing in multiperiod systems with lost sale, 

assuming Poisson demand.  

In the multiperiod systems under typical settings such as positive lead time, the 

rationing policy will interact with the ordering policy and it is very difficult to obtain both 

optimal rationing and ordering policies simultaneously. People often consider inventory
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rationing assuming a given ordering policy. Here we consider a multiperiod system with 

positive lead time, assuming a periodic review ordering policy with fixed ordering amount 

per period in which the system orders a fixed amount Q of stock at each ordering 

opportunity. Let’s denote it as (R, Q) policy, where R represents periodic-review and Q is 

the fixed ordering amount per period. This kind of ordering policy often appears as a 

supply contract. In some supply contracts, the customers may have some limited 

flexibility in adjusting their ordering amount, beside the fixed amount stock per period. 

For example, besides this fixed amount stock, the customer may place other orders with 

variable amount of the product. Of course, the price of these temporary orders may be 

different (often higher) from that of the fixed amount per period. We consider this fixed 

amount ordering policy as a starting point for the more complex problems.  

This fixed ordering amount ordering policy and its many variations are widely 

used in practice and have been researched by many people. See, for example, Rosenshine 

and Obee (1976), Urban (2000), Anupindi and Bassok (1999), Bassok et al. (1997) and 

Johansen et al. (2000). Note that the above papers consider only one demand classes, i.e., 

no inventory rationing. Recently, Frank et al. (2003) consider a system with two demand 

classes: customers with deterministic, fixed ordering amount per period and customers 

with stochastic ordering. This fixed ordering amount policy from the customers appears as 

a supply contract.  This type of ordering policy has some advantages. For the supplier has 

known the exact information about the future demands, it can have a better schedule of 

production and transportation so that the supplier can reduce cost and provide customers 

with a higher discount for the price. It can also reduce the lead time and make 
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replenishments on time. In a supply chain environment, this ordering policy can also 

reduce the bullwhip effect. Lee et al. (1997) provide a quite complete analysis for the 

causes of bullwhip effect. Caplin (1985) and Blinder (1982, 1986) have shown that the use 

of (s, S) type of ordering policy results in the variance of replenishment orders exceeding 

the variance of demands, which is in fact the bullwhip effect. Note that the above papers 

consider general inventory problems without inventory rationing among demand classes. 

For these advantages of this type of ordering policy, we assume this type of ordering 

policy for the multiperiod system with multiple demand classes.  

We first consider dynamic inventory rationing in a finite horizon M-period system. 

A dynamic programming model is developed for it. Important characteristics of the 

optimal rationing policy and optimal ordering amount Q are obtained. The optimal 

rationing policy is shown to be the dynamic critical level policy in each period. We then 

extend the M-period model to the case with infinite horizon. The optimal rationing policy 

is still a dynamic critical level rationing. We also provide a range for the optimal ordering 

amount so that we can search for the optimal ordering amount effectively.  

Melchiors (2003) and Lee and Hersh (1993) have considered dynamic inventory 

rationing for systems with lost sales and Poisson demand. There are some notable 

differences from them. First, the ordering policy in this chapter is periodic review, while 

the ordering policy in Melchiors (2003) is continuous review. Second, Melchiors (2003) 

first assumes a particular dynamic critical level policy, then develop expressions for the 

average cost, while we develop a dynamic programming model to find the characteristics 

of the optimal rationing policy and so on. Third, Lee and Hersh (1993) is a single period 
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model without holding cost, while we consider multiperiod systems with ordering policy 

and holding cost. Lee and Hersh (1993) is a special case of our model when there is only 

one period and no holding cost.  

Topkis (1968) has developed a general dynamic programming model which can 

deal with both backordering and lost sales cases. For the lost sales case, his model is also a 

one-dimensional dynamic programming one. He considers both single period systems and 

multiperiod systems with zero lead time. There are some differences between our work 

and Topkis. First, the demand process is different. Topkis assumes a period is divided into 

some intervals and the demands in different intervals are independent and the demand is 

continuous, while we assume the demands follow a Poisson process. For the state variable 

is discrete, the analysis is difficult. Second, Topkis has shown the critical levels of the 

rationing policy decrease towards the end of the period under some conditions. We also 

show such a trend for the dynamic critical levels, but under more loose conditions. Third, 

for the multiperiod systems, the ordering policy is different. He assumes a zero lead time 

and finds the optimal ordering policy, while our model assumes a certain ordering policy 

which may appear as a supply contract.  

The work in this chapter also has notable differences from the work in previous 

chapters. First, Chapters 3 and 4 consider the backordering case, while this chapter is for 

the lost sales case. Second, the ordering policy is different. In Chapters 3 and 4, we 

characterize the optimal ordering policies for some problems and in other cases we 

assume a periodic review, base stock (R, S) policy, while in this chapter we assume a 
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periodic review, fixed ordering amount ordering policy to analyze the dynamic inventory 

rationing problems. 

The remainder of this chapter is organized as follows. Section 5.2 develops a 

model for dynamic inventory rationing in an M-period system with finite horizon. In 

Section 5.3, the optimal rationing policy and optimal cost function of the M-period system 

are characterized. In Section 5.4, the M-period model is extended to infinite horizon. In 

Section 5.5, a numerical study is conducted to obtain some managerial insights. Finally, in 

Section 5.6, conclusions are provided and possible extensions are discussed. Proofs of 

lemmas and theorems in this chapter are presented in Appendix D.  

5.2   Model Formulation for an M-period System with Finite Horizon 

In this section we study dynamic inventory rationing in a multiperiod system with finite 

horizon, lost sale and Poisson demands, and a dynamic programming model is developed.   

Consider an M-period inventory system, where M is a positive integer, in which a 

single product is stored to satisfy demands from K  demand classes. Each period has the 

same length of u  time unit. The periods are indexed as 1,,LM , i.e., the first period is 

period M.   

At the beginning of period M the system has some initial inventory. Assume the 

system uses a supply contract to replenish stock under which an amount of Q units will 

arrive at the end of each period except the last period, in other words, Q units will arrive at 

the beginning of each period except the first period. For the system does not need stock 
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any more at the end of the horizon, there is no replenishment to arrive at the end of the last 

period. Denote such a supply contract as (R, Q) ordering policy, where R presents periodic 

review. Let c  denote the variable ordering cost per unit. We ignore the fixed ordering cost, 

for it is a constant under this kind of ordering policy and will not affect any decision of 

ordering and rationing policies.  

Let },...,1{ , Mkxk ∈ , denote the on-hand inventory at the beginning of period k. So 

the initial inventory at the beginning of the horizon is Mx . For the convenience, let 0x  

denote the remaining stock at the end of period 1. The remaining stock at the end of the 

horizon has a salvage value. The salvage value )(0 xS is a function of remaining stock x. 

Assume )(0 xS  is nondecreasing with x , 0)0(0 =S , and the first difference of )(0 xS is 

nonincreasing in x .  

Demands from class i  follow a Poisson process with rate iλ  and the demands of 

different classes are independent. The system adopts a dynamic rationing policy. Any 

rejected demand is lost and the penalty cost of rejecting a demand of class i  is iπ . Without 

loss of generality, assume class 1 has the highest priority, so if ji < , then ji ππ ≥ .  

The inventory has a holding cost of h  per unit per unit time. Assume cost is 

accumulated in each period without discount and the cost in one period is discounted into 

its previous period by a discount factor 10  , << αα .  
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Let },...,{ 1υυυ M= , where iu  is the rationing policy in period i. So υ  is an 

inventory rationing policy for the system on the whole horizon, M-period. Let Φ denote 

the set of all admissible rationing policiesυ .  

Given ordering amount Q of the ordering policy, the total discounted variable 

ordering cost 
α

α
−

−
⋅=

1
1

,

M

MQ cQOC , which is a constant under a given Q and independent 

on rationing policy υ .  

Let kg  denote the penalty and holding cost occurred in period k, which is 

dependent on the realization of demands in this period, initial on-hand inventory kx  at the 

beginning of this period, and the rationing policy kυ  on this period. Let )(, MMQ xJ υ  denote 

the expected discounted holding and penalty cost over the whole horizon, given initial 

inventory Mx  at the beginning of the horizon, the ordering amount Q, and the inventory 

rationing policyυ . i.e.,  

                   







−= ∑

=

−
M

k

M
k

kM
MMQ xSgExJ

1
00, )()( ααυ  .                              (5.1)          

Let ),,( QxTC MM υ denote the expected total discounted cost which is equal to the 

ordering cost MQOC ,  plus the holding and penalty cost )(, MMQ xJ υ , given Mx , υ  and Q  .  

The optimization problem is to find an inventory rationing policy υ  and ordering amount 

Q to minimize the expected total discounted cost, i.e.,  
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                  )(min),,(min ,,,, MMQMQQMMQ
xJOCQxTC υ

υυ
υ += .                           (5.2)  

For the above optimization problem is very complicated, in the following we first consider 

the dynamic inventory rationing under a given Q, then change Q to find global optimal 

solution.  Now we fix Q.  

Under a given Q, minimizing the total cost ),,( QxTC MM υ  is equal to 

minimizing )(, MMQ xJ υ , for the total discounted ordering cost MQOC ,  is a constant and will 

not affect the rationing policy. So in the following we consider minimizing the holding 

and penalty cost )(, MMQ xJ υ . The optimal cost function )(*
, MMQ xJ  under a given Q  is 

defined as 

                     )(min)( ,
*

, MMQMMQ xJxJ υ

υ Φ∈
= .                                                  (5.3)  

The optimal cost function )(*
, MMQ xJ  represents the optimal costs for different initial on-

hand inventory Mx , given ordering amount Q .  

Chapter 3 has considered the dynamic inventory rationing in a single period in 

which the unmet demands are backordered, while here we assume unmet demands are lost.  

We use a similar procedure to that in Chapter 3 to model the problem as a discrete-time 

Markov decision problem to obtain characteristics of the optimal rationing policy and 

optimal cost function.   
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Divide each period into N  equal intervals. The intervals are so small that the 

probability that more than 2 demands arrive in an interval is very small and it can be 

ignored. So the length of each interval is Nut /=∆ , where u is the length of a period. The 

time points separating the intervals from the beginning of the period to the end are 

indexed as 0,...,1, −NN , i.e. the beginning of the period is indexed as time point N  and 

the end of the period is 0. The interval which begins at time point n , and ends at time 

point 1−n  is given the index n . Let (k,n), },...,1{ Mk ∈ and },...,1,0{ Nn∈ , denote the 

time point n in period k. So the time point (k,0) represents the end of period k and the time 

point (k-1,N) represents the beginning of period k-1. Time points (k,0) and ),1( Nk −  

approach to each other infinitely, but they are two different time points (for there is a 

discount factor α ) and belong to different periods.  

Let ∑ =
=

K

i i1
λλ . Since the demand process is a Poisson process and the intervals 

are so small, the probability ip  that a demand of class i  arrives during an interval 

is )( toti ∆+∆λ , the probability 0p  that no demand of any class arrives during an interval is 

)(1 tot ∆+∆− λ , and the probability that more than 1 demand from all classes arrive 

during an interval is ignored. If a demand from class i  arrives during an interval of a 

certain period, we assume the system delays the decision about whether to satisfy or reject 

it until the end of the interval. We regard the decision at time point ),( nk  is the behavior 

during interval 1+n  which is from time point )1,( +nk  to ),( nk .  

At the ends of periods except period 1, there is an order of Q to arrive, i.e., arriving 

at time points (k,0), }2,...,{Mk ∈ . Assume the events happen as follows: at time point 



Chapter 5                           Inventory Rationing for Systems with Poisson Demands and Lost Sales 

 136

)0,(k , }2,...,{Mk ∈ , the system first makes a decision about whether to satisfy the 

demand arriving during interval 1 of period k, then an order of Q arrives and is added to 

stock. The total remaining stock becomes the initial on-hand inventory of next period.     

Let ),( nkx , }1,...,0{ −∈ Nn , denote the on-hand inventory at the time point 

),( nk just after the decision about whether or not to satisfy the arrived demand in interval 

1+n . Time point ),( Nk  is just after the arrival of an order of Q at time point )0,1( +k  

and it is not a decision point. Let ),( Nkx denote the initial on-hand inventory of period k. 

Thus QkxNkx ++= )0,1(),( , }1,...,1{ −∈ Mk . ),( nkx , },...,1{ Nn∈ , is the on-hand 

inventory at the beginning of interval n  which starts from time point ),( nk .  

Let ),,( xnkHT denote the optimal expected total discounted cost (not including 

ordering cost, for Q is fixed we account it outsides) from the beginning of interval n of 

period k to the end of the horizon, i.e., from time point ),( nk  to the end of horizon, given 

inventory ),( nkx . In the following we consider how to obtain ),,( xnkHT for different 

cases when nk,  and x  have different values. The following four cases are considered:  

Case a: 0,1 == nk  and 0),( ≥nkx . 

This case is about the cost at the end of period 1, i.e., at the end of the horizon. 

According to our assumption, the remaining stock has a salvage value and )(0 xS is the 

salvage value function. For there is a discount factor from one period to its previous 

period, we have: ),0,1( xHT = )(0 xS⋅−α . For the first difference of )(0 xS is assumed to be 
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nonincreasing in the remaining stock x, we can see the first difference of ),0,1( xHT is 

nondecreasing in x.  

Case b: 0},,...,2{ =∈ nMk  and 0),( ≥nkx . 

This case is about the cost since the end of period k , },...,2{ Mk ∈ , to the end of 

the horizon. For an order of Q will arrive at time point )0,(k , the on-hand 

inventory QkxNkx +=− )0,(),1( . The cost ),,1( xNkHT − will be discounted to period k, 

so we have: ),,1(),0,( QxNkHxkH TT +−⋅= α . 

Case c: 0},,...,1{ >∈ nMk  and 0),( =nkx . 

In this case, there is no on-hand inventory at the beginning of interval n, 

},,1{ Nn L∈ , of period k. If a demand of class i arrives during interval n, then the system 

needs to make a decision at the end of the interval, i.e., time point )1,( −nk , about whether 

to satisfy or reject it. For 0),( =nkx , it is obvious that the system should reject the demand 

for there is no on-hand inventory, so we have: 

∑ =
−+⋅+−⋅=

K

i TiiTT nkHpnkHpnkH
10 )]0,1,([)0,1,()0,,( π  , where the holding cost in 

interval n is 0.  

Case d:  0},,...,1{ >∈ nMk  and 0),( >nkx . 

In this case there are some on-hand inventory at the beginning of interval n, 

},...,1{ Nn∈ , of period k. Again if there is a demand of class i arriving during interval n, 
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then the system need to make a decision at time point )1,( −nk  about whether or not to 

satisfy it. If satisfy the demand, then the total discounted cost from time point ),( nk to the 

end of the horizon is htx ⋅∆⋅ + )1,1,( −− xnkHT , where htx ⋅∆⋅  is the holding cost in the 

interval n. If reject the demand, then the total discounted cost from time point ),( nk to the 

end of the horizon is htx ⋅∆⋅ + ),1,( xnkHT − + iπ . So the demand of class i should be 

satisfied if and only if the total cost of rejecting the demand is larger than or equal to the 

cost of satisfying it, i.e.,  

        )1,1,(),1,( −−≥+− xnkHxnkH TiT π .                                               (5.4) 

When there is no demand in an interval which has a probability 0p , then the 

system does not need to make a decision about whether to satisfy a demand. Given the on-

hand inventory ),( nkx , the holding cost in the interval n  is htx ⋅∆⋅ . So in this case we 

have: 

          
].),1,(),1,1,(min[                    

)],1,([),,(

1

0

iTT

K

i
i

TT

xnkHxnkHp

xnkHphtxxnkH

π+−−−⋅+

−+⋅∆⋅=

∑
=

 

In summary, we have the following formula (after some adjustment) for the 

optimal expected total discounted cost ),,( xnkHT from the beginning of interval n of 

period k to the end of the period, given ),( nkx :   
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where 

     
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From the above equation, we can see that ),,( xnkHT  can be regarded as the total 

cost from the beginning of interval n to the end of the current period, given the on-hand 

inventory ),( nkx and the terminal cost function )(xRk  at the end of the period. So the 

formula is similar to the dynamic rationing model in a single period in Chapter 3. 

5.3   Characterization of Optimal Cost Function and Optimal Rationing 

Policy  

The above formula (5.5) is similar to the single period model in Chapter 3. In both models 

one interval (a period is divided into many small intervals) is a stage of the dynamic 

programming models. But there are a few notable differences. One main difference is that 

unmet demand is backordered in Chapter 3, while in this paper unmet demand is lost. The 
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item iπ  in the above model is corresponding to the item )1( −nei  in Chapter 3 where 

)1( −nei  is dependent on the decision time point, while iπ  in the above model is 

independent on the decision time point 1−n . Another difference is that there is only one 

period in Chapter 3. While this model is a multiple period one in which the costs 

accumulate during each period without discount and the cost of a period is discounted into 

its previous period. In the multiperiod model, we also need to consider the ordering policy 

and ordering cost.  

Now consider the properties of optimal cost functions ),,( xnkHT . 

Define )1,,(),,(),,( −−=∆ xnkHxnkHxnk TTx . We first consider the last period, i.e., 

when 1=k . We have the following lemma for the optimal cost function ),,( xnkHT  

when 1=k . 

Lemma 5.1.  When 1=k , for a given n, Nn ≤≤0 , the first difference of the discrete 

function ),,( xnkHT  is nondecreasing in x, i.e., )1,,(),,(),,( −−=∆ xnkHxnkHxnk TTx  is 

nondecreasing in x . 

When k=1, the above ),,( xnkHT is the optimal cost functions of a single period 

model. In the proof of the above lemma, we have shown that: given that the first 

difference of the terminal cost function )(- 0 xS⋅α  is nondecreasing in x, the optimal cost 

functions ),,( xnkHT  when k=1, },...,1{ Nn ∈ , remain such a property for each n: the first 

difference of the function is nondecreasing in x.  Now consider the optimal cost functions 
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),,( xnkHT when 1>k . The following lemma shows such a property remains for the case 

when 1>k .   

Lemma 5.2. For a given k and n, Mk ≤≤1 , Nn ≤≤0 , the first difference of the optimal 

cost function ),,( xnkHT  is nondecreasing in x.  

The above lemma shows the important property (the first difference of a function is 

nondecreasing in its variable) of the optimal cost function remains for any k and n. We 

can see that the optimal total discounted cost )(*
, MMQ xJ of the M-period system is equal 

to ),,( xNMHT  and the first difference of )(*
, MMQ xJ  is nondecreasing in the initial on-

hand inventory Mx  at the beginning of the horizon. From the above lemma, we can obtain 

the structure of the optimal rationing policy. Let  

                   1}1  ,0),,(|min{),(* −≥≥+∆= xxnkxnkx ixi π .                                     (5.6) 

We have the following theorem for the optimal rationing policy. 

Theorem 5.1. The optimal rationing in each period of the whole horizon is a dynamic 

critical level policy with critical levels ),(* nkxi .  

The above theorem comes from the important property of ),,( xnkHT : its first 

difference (under fixed k and n) is nondecreasing in x. The optimal dynamic critical levels 

in a certain period may change with remaining time before the end of period. It is worth to 
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note that these dynamic critical levels are independent on the initial on-hand inventory at 

the beginning of each period. It is a nice property. So no matter how much the initial on-

hand inventory of a certain period is, the system uses the same dynamic critical levels to 

ration stock in the period.  

 Let },...,{ *
1

**
, υυυ MMQ =  denote the optimal rationing policy on the whole horizon, 

under a given Q, where *
iυ  is the optimal rationing policy in period i and it is determined 

by how to ration stock at each time point in this period. For the M-period system, it is 

worth to note that policy *
iυ   may be different from *

jυ  when ji ≠ . In the M-period 

system, M is a finite number. We may consider only finite state space, for the initial on-

hand inventory is a finite number in practice and the state space at the end of the horizon 

is also finite. So it is easy to solve the above finite horizon dynamic programming model.  

From the above analysis we can see that the optimal cost function under a given Q 

is )(*
, MMQ xJ = ),,( xNMHT . According to Lemma 5.1, we can see that the first difference 

of the optimal cost function )(*
, MMQ xJ is nondecreasing in the initial inventory Mx at the 

beginning of the horizon. The optimal rationing policy is the dynamic critical level policy. 

Thus we have solved the optimization (5.3) under a given Q. Then we can change Q and 

repeat the above procedure to get optimal cost functions under different Q and choose the 

optimal ordering amount Q.  It is worth to note that optimal Q may depend on the initial 

on-hand inventory. Let )(* xQ  denote the optimal ordering amount that minimizes the total 

cost ),,( *
, QxTC MQMM υ , given the initial inventory Mx .  
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We can see that the ordering cost QOC  is linear with the ordering amount Q, but it 

is difficult to find exact expressions about how holding and penalty cost )(*
, MMQ xJ  

changes with Q for a fixed initial inventory. It is reasonable to believe that when Q 

increases, the holding cost and ordering cost will increase, but the penalty cost of shortage 

will decrease. We are trying to find a balance of the effects of increasing Q to minimize 

total cost. So we may expect that when Q increases from 0 and until a certain value the 

total cost will decrease, and if we continue to increase Q, the cost will continuously 

increase.  The later numerical examples show that it is indeed true.  

In fact we can see that the optimal Q can not be infinitely large. When Q becomes 

very large, then the stock may be almost enough to satisfy all demands. If the system 

increases Q by one more unit, the reduced penalty cost of shortage will be less than the 

increased ordering cost and holding cost. So we should not increase Q infinitely. Hence, 

given an initial inventory, we may search for optimal Q from 0 until ),,( *
, QxTC MQυ  

continuously increases for a few values of Q to stop the searching.  

5.4   Extension of the M-period Model to Infinite Horizon 

In the above we have analyzed dynamic inventory rationing in an M-period system with 

finite horizon. It is quite natural to extend it to infinite horizon case. Now we consider 

extending it to the case with infinite horizon. It is just some mathematical operations, and 

the solving method is the same.  
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When the horizon becomes infinite, i.e., there are infinite number of periods, the 

optimization problem is still to find the optimal ordering amount Q and dynamic rationing 

policy to minimize total discounted cost. We still first consider the case under a fixed Q, 

and then we change Q to find optimal holding and penalty cost under other Qs. Again, we 

do not consider the ordering cost when considering optimal holding and penalty cost 

under a fixed Q, for it is a constant under a fixed Q.  

For the infinite horizon problem, we can see that when Q is greater than uλ , where 

uλ  is the expected demand in a period, the total discount cost under any rationing policy 

will become infinite (consider the policy without inventory rationing). So in the following 

we consider only Qs in the range ],0[ uλ . When we do not explicitly say ranges for Q, we 

are referring to the range ],0[ uλ .  

Let )(* xJQ  denote the optimal expected discounted holding and penalty cost over 

the infinite horizon, given the ordering amount Q. Let )(lim)( *
,

*
, xJxJ MQMQ ∞→∞ = , with the 

assumption that the terminal cost function for the M-period system is 0)( =xR , for all 

,...}1,0{∈x . We can see that the limit )(lim *
, xJ MQM ∞→

 exists when ],0[ uQ λ∈ , for )(*
, xJ MQ  

increases with M and it is easy to find an upper bound for it, for example, the cost under a 

first-come-first-served policy. We have the following theorem for the optimal cost )(* xJQ  

over the infinite horizon.  

Theorem 5.2.   When ],0[ uQ λ∈ , )()( *
,

* xJxJ QQ ∞= .  
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 The above theorem states that the optimal expected discounted holding and penalty 

cost over the infinite horizon is equal to the limit of the optimal cost of the M-period 

problem. It is a very important property. Form this, we can infer properties of the 

unknown function )(* xJQ  from the properties of the M-period optimal cost 

function )(*
, xJ MQ . We can increase M and infinitely approach to ∞+ to obtain the 

properties of the optimal cost function )(* xJQ  and optimal rationing policy for the infinite 

horizon problem.  

Let ,...},{ *
2

*
1

*
, υυυ =∞Q denote the optimal rationing policy over the infinite horizon, 

given the ordering amount Q, where *
iυ  is the optimal rationing policy in period i (note 

that here we use period 1 to denote the first period of the horizon). Let ,...},{ υυ  denote a 

stationary rationing policy, i.e., the rationing policy in a period does not change from 

period to period. We have the following theorem for the optimal rationing policy and 

optimal cost function over the infinite horizon. 

Theorem 5.3.    

(a)  The first difference of the optimal cost function )(*
, xJQ ∞  under a given 

],0[ uQ λ∈  is nondecreasing in the initial inventory x.  

(b)  The optimal rationing policy under a given Q in each period is the dynamic 

critical level rationing policy.  
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(c)  There exists an optimal stationary rationing policy.   

  The properties (Parts (a) and (b) in the above theorem) of the optimal cost 

function and the optimal rationing policy over infinite horizon is inferred from those of 

the M-period systems. Part (c) states that these exists an optimal rationing policy in which 

the dynamic critical levels are independent on the index of periods. So the dynamic 

critical levels change with the remaining time before the end of the period, but do not 

change from one period to another period. Note that in the finite horizon M-period model, 

the dynamic critical levels in period i may be different from those in period j when ji ≠ .  

Now consider the calculation of the optimal cost function )(*
, xJQ ∞ . When M 

increases to infinite, it is impossible to obtain the exact value of the optimal cost function 

)(*
, xJQ ∞  by value iteration, for the state space is infinite for this infinite horizon problem 

and the memory of computers is finite. From Theorem 5.2, we have known that the 

optimal cost function )(*
, xJQ ∞ over infinite horizon is equal to the limit of the optimal cost 

function of the M-period problem, so we can use a finite horizon M-period problem with 

enough large M to approximate the infinite horizon problem. For the finite horizon M-

period problem, we can obtain exact values of the optimal cost function )(*
, xJ MQ .  
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5.5   Numerical Study 

5.5.1  The Numerical Study 

In this section a numerical study is conducted for the dynamic inventory rationing on the 

infinite horizon to obtain some managerial insights, in particular, to examine how ordering 

amount Q and initial on-hand inventory x affect the total discounted cost and how the 

dynamic critical levels change with other factors.  

The optimal cost over the infinite horizon ),,( * QxTC Qυ∞ consists of the total 

ordering cost ∞OC and the holding and penalty costs )(*
, xJQ ∞ . We can see that when M 

approaches to infinite, then the ordering cost MOC  and )(*
, xJ MQ of the M-period system 

approaches to ∞OC  and )(*
, xJQ ∞ , respectively. So given Q and initial inventory x, when 

δ<− − )(/)]()([ *
,

*
1,

*
, xJxJxJ MQMQMQ  , where δ is a certain very small value, then we can 

regard )(*
, xJ MQ  is enough close to the cost )(*

, xJQ ∞ over infinite horizon. For we are 

considering the costs under different Q and different initial on-hand inventory and will 

compare these costs, we set a common value of M for different cases. Let maxM denote 

such a value. Set 1max /)( s.t.,min arg eOCOCOCMM MM
≤−= ∞∞ , where 1e is a very small 

value. In the numerical study, we set 40.11 −= ee  and get 926max =M .  
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We also set a range for the initial on-hand inventory. Let maxx  denote the largest 

initial on-hand inventory. Set ux ⋅⋅= λ100max , i.e., 100 times of the expected demand per 

period, which is enough large for an initial on-hand inventory. Define Jd as follows:  

                
)(min

||)()(||
*

,],0[

*
1,

*
,

max

xJ
xJxJ

d
MQxx

MQMQ
J

∈

−−
= .  

Jd is a measure of the convergence of the sequence of )(*
, xJ MQ for different M. In the 

numerical study we also check Jd and find it is always less than 50.1 −e .  

An example is considered in the numerical study. In this example there are 2 

demand classes. The parameter setting is as follows: == 21 λλ 100/year, period length 

1.0=u year, the variable ordering cost unit/5$=c , penalty cost unit/8$1 =π  

and unit/5.6$2 =π , holding cost year/unit/1$=h , and discount factor 99.0=α .  

Given the above parameter setting, we find the optimal cost functions )(*
, xJQ ∞ , 

],0[ maxxx ∈ , under different Qs using the formula (5.5), i.e., following the general DP 

algorithm. We change Q in the whole range ],0[ uλ  to investigate how Q affects the total 

cost.  

In the numerical study, we also investigate how the initial on-hand inventory 

affects the total cost. Let )(minarg)( *
,

* xJQx Qx ∞= , i.e., )(* Qx  is the initial on-hand 
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inventory with minimal cost under a given Q. In addition, we also look into the dynamic 

critical level rationing policy. The results are shown in Figures 5.1, 5.2, 5.3 and 5.4.  

5.5.2   Results and Discussion 

Figure 5.1 shows the costs under different Qs for a fixed initial inventory x=18. From the 

figure we can see that when Q increases from 0, the sum of holding and penalty cost 

decreases, while the ordering cost increases. The total cost obtains its minimum when 

Q=19. When Q increases from 0, the total cost decreases fast, then decreases slow. When 

Q continues to increase, the total cost arrives at its minimum and then increases. It is quite 

fit to our intuition. When Q = 0, there are many demands lost and the penalty cost is very 

large. When we increase Q from 0, the increased stock can significantly decrease the 

penalty cost. When Q is near u⋅λ , the expected penalty cost of shortage is far less than 

those when Q is very small. If we increase Q by one unit from a large Q, then the 

increased stock can decrease the penalty cost, but the effect is not as much as in the cases 

with very small Qs where many demands are lost. From the figure, the ordering amount Q 

has a significantly effect on the total cost. The minimal cost when Q=19 is 72.3% of the 

cost when Q=0 where the cost is maximal. For other initial on-hand inventory, the costs 

also have the same trend as shown in Figure 5.2.  
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Figure 5.1    Costs vs. Q when initial inventory x=18 

 

8000

9000

10000

11000

12000

13000

14000

15000

0 5 10 15 20 25

Q

Co
st

s

x=6
x=18
x=40

 

Figure 5.2    Costs vs. Q for other initial inventory 
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Now consider Figure 5.3 which shows the costs under different initial on-hand 

inventory. From the figure, the first difference of the cost function under a given Q is 

indeed nondecreasing in the initial inventory. So there is a value of initial inventory with 

the minimal cost, i.e., )(minarg)( *
,

* xJQx Qx ∞= . When Q=20, 34)(* =Qx , when Q=19, 

73)(* =Qx , and when Q=18, 120)(* =Qx . When Q decreases from 20, then the optimal 

initial on-hand inventory decreases. It is also quite intuitive.  

From the graph, we can see that the optimal Q is dependent on the initial on-hand 

inventory. When the initial inventory 73≤x , the cost under Q=19 is less than those under 

two other Qs. When 71>x , the cost under Q=18 is less than those under two other Qs. In 

fact the results under all Qs show: when 730 ≤≤ x , 19)(* =xQ  and when 16073 ≤< x , 

18)(* =xQ  . So though the optimal ordering amount is a function of initial inventory, it is 

insensitive to it. From the graph we observe that the initial on-hand inventory has some 

effect, but not very much on the total discount cost. When the initial inventory changes 

from 20 (the expected demand in one period) to 40 or 0, the cost change is less than 2%. 
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Figure 5.3    Costs vs. initial inventory 

 During calculating the optimal cost functions under different Qs, we 

simultaneously obtain the optimal dynamic rationing policy for a given Q. Given an M-

period problem with a fixed Q, the numerical study shows that there exists an integer QN  

such that when QNji ≥, , the dynamic critical levels in period i are the same as those in 

period j , i.e., the dynamic critical levels become stationary. When M is enough large, we 

can use the dynamic critical levels in period M to approximate the stationary rationing 

policy of the infinite horizon problem. Figure 5.4 shows the stationary dynamic critical 

level of class 2 (more accurately, the dynamic critical levels in period 926) for different 

Qs.  For there are only two classes and the critical level of class 1 is always 0, the figure 

shows only critical level of class 2.   

From the figure we can see that for a given Q, the critical level decreases towards 

the end of the period (in this example, a period is divided into 400 intervals and interval 1 
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is at the end of the period). It is quite intuitive. When there is less remaining time, the 

system needs less stock reserved for more important demands. We can also see that when 

Q increases, then the critical level decreases. When there are more units of the product to 

arrive at each period, then the system needs less stock reserved for more important 

demands.    
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Figure 5.4    Dynamic critical levels  
 
 

5.6   Conclusions 

We analyzed dynamic inventory rationing in multiperiod systems with Poisson demands, 

lost sales and multiple demand classes. We first considered a multiperiod system with 

finite horizon, and then extended to infinite horizon.  A dynamic programming model was 

developed for the finite horizon M-period system. Important characteristics of the optimal 
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rationing policy, optimal cost function and optimal ordering amount were obtained. We 

showed that the optimal rationing policy is the dynamic critical level policy. We then 

extended the M-period model to the case with infinite horizon. The optimal rationing 

policy is still a dynamic critical level rationing policy. We also provided a range for the 

optimal ordering amount so that we can search for the optimal ordering amount effectively.  

A numerical study was conducted to obtain some important managerial insights. 

The ordering amount Q is the most important factor affecting the total discounted 

expected cost. The initial on-hand inventory affects the total discounted cost, but the cost 

is not very sensitive to it. We also observed that when Q increases, then the critical level 

at a certain time decreases, i.e., when there are more stock to arrive at the end of each 

period, then the system needs to reserve less stock for more important classes in current 

period. 

The above work can be extended in some directions. Note that the assumed 

ordering policy with fixed ordering amount per period is not an optimal ordering policy, 

especially in the case with zero lead time. This ordering policy is suitable to the cases with 

positive lead time. Of course, for the cases with positive lead time we may assume other 

ordering policies to analyze dynamic inventory rationing. In this chapter we have 

developed the dynamic inventory rationing in single period systems (a special case of M-

period model) and it can be used as building blocks in developing heuristics under other 

ordering policies.  
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Chapter 6  

Conclusion 

 

 

Inventory rationing among demand classes is popular and critical in many industries. The 

competitive pressure and thin profit in many industries make it a necessary competitive 

strategy rather than a competitive advantage. How to ration inventory and how to 

replenish inventory are key management decisions. Currently most literature considers the 

static rationing policies and researchers have made notable progresses in this area, but the 

theory about dynamic inventory rationing is quite limited for such problems are extremely 

difficult to solve. Motivated by the possible significant potential in cost saving of dynamic 

inventory rationing policies shown in Deshpande et al. (2003), this dissertation studies the 

dynamic inventory rationing in different circumstances: Poisson demand process or 

general demand processes, backordering or lost sales. The objective is to develop 

analytical models to derive qualitative and managerial insights into the dynamic rationing
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policies and ordering policies, and to develop methods to obtain optimal or near-optimal 

parameters of dynamic rationing and ordering policies.  

The first part of our research considered dynamic inventory rationing in systems 

with Poisson demand and backordering. For the multiperiod system with zero lead time, 

dynamic programming models were developed. The optimal dynamic rationing policy was 

shown to be the dynamic critical level policy in each period and the optimal ordering 

policy is a base stock policy. Important properties of the optimal rationing policy and 

optimal cost function were also obtained. The dynamic rationing in each period was 

modeled as a one-dimensional dynamic programming model by dividing the period into 

many small intervals and assuming rejected demands can be fulfilled only at the ends of 

periods. So our model eliminated the curse of dimensionality that general dynamic 

inventory rationing models with backordering suffer.   

We next considered a multiperiod system with positive deterministic lead time. An 

optimization model of minimizing expected average cost was developed, assuming the 

full-priority backorder clearing mechanism. In the case with positive lead time, the 

structure of optimal dynamic rationing policies may be very complicated and there is no 

closed-form expression for the average cost under many rationing policies, so we 

developed a near-optimal solution for it: applying the dynamic critical level rationing 

policy of the multiperiod model with zero lead time to ration stock and adopting a base 

stock ordering policy. Some important properties of such a policy were obtained and a 

method was developed to obtain an appropriate base stock level. A lower bound on the 

optimal cost under optimal rationing and ordering policies was also established. The 
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numerical results show the cost under our policy is very close to the optimal costs for a 

practical range of parameters and also for poor service level conditions. Moreover, the 

results also show that our dynamic rationing policy can significantly reduce cost 

comparing with current state-of-art static rationing policies: in many cases the cost saving 

can be more than 10%.  

For the above models consider typical problem settings such as positive lead time, 

periodic review ordering policy and so on, the dynamic rationing policy can significantly 

reduce cost and this policy is easy to understand and implement, our dynamic rationing 

policy can have a wide application in practice. Deshpande et al. (2003) developed a lower 

bound on the optimal costs and showed that the gap between the cost under their static 

rationing policy and the lower bound is very large (in many cases the gap is more than 

10%), here we have developed a particular dynamic rationing policy which indeed 

significantly reduces cost and the cost under our policy is very close to the optimal costs 

and it is easy to implement.  

The second part of the research extended the work in the first part by changing the 

demand process from Poisson demand to general demand processes. Unmet demands are 

also backordered. In practice some demand processes are non-Poisson ones, but they are 

seldom analyzed in the literature about inventory rationing for its complexity and little is 

known about the structure of optimal rationing and ordering policies under typical 

conditions such as positive lead time. We considered dynamic inventory rationing in both 

single period and multiperiod systems, assuming the systems adopt a dynamic critical 

level rationing policy. For the single period system, a method was developed to obtain 
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near-optimal parameters for the dynamic critical level policy. Approximate expressions 

for the expected total cost under this dynamic rationing policy were also obtained. These 

results were used to develop a later multiperiod model.  

We then considered dynamic rationing in a multiperiod system with positive lead 

time and a base stock ordering policy. An optimization model was developed. Using a 

similar procedure to the previous multiperiod model with Poisson demand, a near-optimal 

solution to the optimization problem was obtained.   A numerical study was conducted 

and the results show that the cost under the near-optimal rationing policy is quite close to 

the optimal cost in the examples. As for dynamic inventory rationing under very general 

demand processes and positive lead time, little is known in the literature about the 

structure of the optimal rationing policy or how to obtain optimal or near-optimal 

parameters of a certain dynamic rationing policy. Our models assuming dynamic critical 

level rationing policies provided a benchmark for future effective policies. 

Finally, in the third part, we studied dynamic inventory rationing in multiperiod 

systems with Poisson demands and lost sales, assuming a supply contract with fixed 

ordering amount per period. For a finite horizon M-period system, we developed a 

dynamic programming model of minimizing total discounted cost by dividing each period 

into many intervals. Important characteristics of the optimal rationing policy, optimal cost 

function and optimal ordering amount were obtained. The optimal rationing policy was 

shown to be the dynamic critical level policy. We then extended the finite horizon model 

to the infinite horizon case. Important characteristics of the optimal cost function, 
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rationing policy and ordering amount were also obtained. A numerical study was also 

conducted and some important managerial insights were obtained. 

6.1   Directions for Future Research 

The numerical results have shown that the dynamic inventory rationing policy can indeed 

significantly reduce cost in many cases, comparing with the static rationing policies. One 

main reason that the dynamic rationing policy can reduce cost is that it uses such 

information as the arrival times of next replenishments to dynamically adjust the critical 

levels to ration stock, while the critical levels in the static rationing policy are constants. 

So such information as the arrival times of next replenishments is valuable and can not be 

ignored simply during inventory rationing. We also showed that when the penalty costs of 

shortage of different demand classes differ more, then the benefit of implementing the 

dynamic rationing policy will be larger. It is quite intuitive. So when the penalty costs of 

different classes differ very much, the system manager needs to pay more attention to the 

dynamic rationing policies and should be very careful if they are using the static rationing 

policies. The above results were obtained assuming Poisson demand. We conjecture that 

the above insights can be carried over to problem settings with other demand processes 

and other ordering policies. For the large potential of dynamic rationing policies in cost 

saving shown in this dissertation, we think it is very valuable and interesting to explore 

the dynamic inventory rationing in other problem settings and develop effective policies 

for them. For in the literature most people consider the static rationing policies and little 

progress is made for the dynamic inventory rationing, there are many possible directions 
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for future research about the dynamic inventory rationing. In the following we present 

some of them. 

In the models in this dissertation, the demand processes of different classes are 

independent. In some practical cases, the demand processes of different classes may be 

correlated. Thus, one direction for future research is to consider the correlated demand 

processes in the modeling. In this case, we do not know whether the optimal rationing 

policy is still a dynamic critical level policy or it has a recognizable structure. However, 

we think it is possible to develop some effective heuristic policies for it.  

The dynamic inventory rationing policy can reduce cost, comparing with the static 

rationing policy, for it uses such information as the arrival times of next replenishments. 

The information about the times of next replenishments is based on the assumption of 

deterministic lead time. In practice, sometimes the lead time may be stochastic. So it will 

be useful to consider inventory rationing with stochastic lead times, even explicitly 

modeling the supply of products as a production facility. Ha (1997a) has shown that the 

static rationing policy is optimal for a make-to-stock system with Poisson demand and 

exponential production times. It is intuitive, for the system is memoryless. This system is 

equal to an inventory system with exponential lead time for orders. When the lead time is 

stochastic and has other distribution, we conjecture that the optimal rationing policy will 

not be the static rationing policy, for the system is not memoryless again. We also think 

that in these cases the benefit of dynamic rationing policy will be between that with 

exponential lead times and that with deterministic lead times. Nevertheless, we feel that it 
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would be useful to explore the dynamic rationing for the cases with stochastic lead times 

and evaluate its benefit.  

We have considered the dynamic inventory rationing for a multiperiod system with 

lost sales and Poisson demand in Chapter 5, in which the ordering policy is a supply 

contract such that a fixed amount of replenishment will arrive at each period. In some 

supply contracts, there is some flexibility, besides this fixed amount of replenishment per 

period. For example, the system may place an additional order (or an emergency order) 

each period, except receiving this fixed amount of products each period. Of course, the 

price of these addition orders may be different from those of the fixed amount of products. 

There are other types of supply contracts. This additional flexibility of ordering policies 

provides a further opportunity to reduce cost or increase profit. Hence, one direction for 

future research is to consider the inventory rationing under these more flexible ordering 

policies. In these cases, the problems will become more complex and are very difficult to 

analyze. However, effective heuristics may be possible to develop. It is also interesting to 

evaluate the benefit of these more flexible ordering policies.  

Another possible direction for future research is to consider inventory rationing for 

systems with continuous review ordering policies. Under the continuous review ordering 

policies, the dynamic rationing policy may be more complex and difficult to implement, 

for the dynamic rationing policy is dependent on the arrival times of next replenishments 

and these times are not as regular as in the systems with periodic review ordering policies. 

Nevertheless, it will be quite useful to consider inventory rationing in continuous review 

systems. Moreover, if the system has an option to choose between a periodic review and 
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continuous review ordering policy, then it is very interesting to compare costs of dynamic 

inventory rationing in these two types of systems.  

Inventory rationing in multi-echelon systems is also an interesting area for future 

research. For example, consider a retailer that sells a product to different demand classes 

and purchases stock from a distribution center using two types of orders: emergency 

orders and ordinary orders. These two types of orders can be regarded as two demand 

classes from the distribution center point of view. Both the retailer and the distribution 

center hold inventory. So it is a two-echelon inventory system with multiple demand 

classes. How to replenish inventory and ration inventory is very important in these 

systems.  There are many interesting problems in this area. Again, the problems become 

more complex.  

Finally, dynamic inventory rationing with dynamic pricing is another very rich 

area for future research. In our models, the penalty cost of rejecting a demand of a certain 

class is known and determined, i.e., it is not a variable. Currently the dynamic pricing has 

attracted intense attention of researchers and practitioners. People can dynamically change 

price to ration stock among classes, i.e., using price to adjust the demands to ration 

inventory. So it will be useful to develop dynamic inventory rationing models with 

dynamic pricing.  
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Appendix A  

Proofs in Chapter 3  

 

 

Proof of Lemma 3.1   

Now assume there are outstanding backorders at the beginning of period m before 

ordering, i.e., 0≠mB , and the system manager is making decision about how much to 

order.  For the cost factors are stationary and lead time is zero, the cost of buying one unit 

stock at the beginning of period m to fulfill one unit backorder in mB  is the same as that of 

buying one unit at the beginning of any later period or consuming one unit of remaining 

stock at the end of the horizon to fulfill one unit in mB .  But purchasing stock to fulfill one 

unit backorder in mB  at the beginning of period m will have less penalty cost than 

fulfilling one unit backorder in mB  at later periods, because the penalty cost is dependent 

on the lasting time of backorders.  So it is obvious that the system should purchase enough 

stock to fulfill all backorders in mB  at the beginning of period m, if there are some 

outstanding backorders in mB . So after ordering at the beginning of period m and using the 

new purchased stock to fulfill backorders, there are no remaining backorders unfilled, i.e., 
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after ordering there are no outstanding backorders. For lead time is zero and there is no 

backorder after ordering, the inventory position 0≥my .                                                 □  

 

Proof of Lemma 3.2  

Given inventory position my  at the beginning of period m  after ordering, if the 

total demand mD  in this period is larger than my , then there exist outstanding backorders 

at the beginning of period 1+m before ordering, i.e., 01 <+mx . The rationing policy mυ in 

period m  will not affect the value of 1+mx , but will affect the distribution of backorders of 

each class in the total backorders 1+− mx , i.e., will affect 1+mB . For any backorder in 1+mB  

will be fulfilled at the beginning of period 1+m  according to Lemma 3.1, how the 

backorders of each demand class distribute in the total backorder 1+− mx  does not affect 

the costs incurred in period 1+m  and later periods. Thus the rationing policy mυ in period 

m does not affect the cost after period m. So the optimal rationing policy in period m is 

determined solely by the parameter settings in period m.                                                 □ 

 

Proof of Lemma 3.3  
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We prove it by induction. When 0=n , we have: 0),( =xnH . So the first 

difference of ),( xnH  is nondecreasing in x . Now assume the first difference of 

1),,1( ≥− nxnH , is nondecreasing in x , i.e., ),1( xnx −∆ is nondecreasing in x .   

For a given on-hand inventory x  at time point n , there exists a critical class 1−n
xk  

at time point 1−n  such that when 1−≥ n
xki , 0)1(),1( <−+−∆ nexn ix  (reject the demand 

from class i ), and when 1−< n
xki , 0)1(),1( ≥−+−∆ nexn ix  (accept the demand from 

class i ).  Since ),1( xnx −∆ is non-decreasing in x , and ji ππ ≥  and ji ππ ˆˆ ≥ , ji <  , we 

have 1
2

1
1

1 −
−

−
−

− ≥≥ n
x

n
x

n
x kkk .  

From equation (3.2) in Chapter 3, we can know that when 1≥x ,   
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                             (A1)             

and when 0=x ,   

)0,1()1()0,(
1

−+−⋅= ∑
=

nHnepnH
K

i
ii ,                                                                 (A2)              

so the first difference of (A1) with respect to x when 2≥x  is 
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and when 1=x , 
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We now look at the second difference of (A3) with respect to x. When 3≥x ,  
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According to that the first difference of ),1( xnH −  is nondecreasing in x and the 

definition of 1
2

1
1

1 ,, −
−

−
−

− n
x

n
x

n
x kkk , each of the four items in the above express is nonnegative, so 

when 3≥x ,   0)1,(),( ≥−∆−∆ xnxn xx . 
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Now consider the case when 31 <≤ x . From (A3) and (A4) we have: 
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According to that the first difference of ),1( xnH − is nondecreasing and the definition 

of 1
2

1
1

1 ,, −
−

−
−

− n
x

n
x

n
x kkk , each of the three items in the above express is also nonnegative, 

hence 0)1,(),( ≥−∆−∆ xnxn xx . So given that the first difference of 0),,1( ≥− xxnH  is 

nondecreasing in x , we have: the first difference of ),( xnH is also nondecreasing in x . 

Thus by induction, the result follows.                                                                             □ 

 

Proof of Theorem 3.1  

(a)   By Lemma 3.3 which states the first difference of ),( xnH is nondecreasing in x for 

every n, we have part a.  

(b)   By Lemma 3.3 and given that )()( nene ji ≥ , i < j. we have part b. 
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(c)   At the time point 0=n , it is obvious that we should satisfy the demand of class i  if 

the on-hand inventory is above 0. So 0)0(* =ix . For a fixed on-hand inventory 0>x , 

when n  increases from 0, we may still satisfy the demand of class i . When n arrives at a 

certain value, it may be better to reject the demand of class i . Define   

}0)1(),1(  and  ,0)(),( ,0 when  |{ <+++∆≥+∆≤≤= yexynexnynyn ixix
x
i . For a 

fixed on-hand inventory 0>x , when x
inn ≤≤0 , the demand of class i should be satisfied 

and when 1+= x
inn  the demand of class i should be rejected. According to that the first 

difference of ),( xnH is nondecreasing in x and the definition of x
in , we have 1+≤ x

i
x
i nn .  If 

we can show: for any given i  and 0>x , if 1+≥ x
inn , then 0)(),( <+∆ nexn ix , then the 

proposition is proved. When 1+= x
inn , we have known that 0)(),( <+∆ nexn ix . So if we 

can show the following statement is true, then the proposition is proved: 

     For any given i  and 0>x , if 1+≥ x
inn , then   

0ˆ),1(),()1(),1()(),( ≤∆⋅+−∆−∆=−−−∆−+∆ txnxnnexnnexn ixxixix π .      

Define n
xk , n

xk 1−  1−n
xk  and 1

1
−
−

n
xk  as in proof of Lemma 3.3. We will attempt to show 

the above statement is true by induction and the outline of the procedure is given as 

follows: 

Step 1:   

First we show by induction that when 1=x , the following statement is true:  



Appendix A                                                                                                          Proofs in Chapter 3 

 180

for 1+≥ x
inn , then  0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π  and 1−≤ n

x
n
x kk . 

Step 2:  

Given that the relation 0ˆ)1,1()1,( ≤∆⋅+−−∆−−∆ txnxn ixx π  and 1
11

−
−− ≤ n

x
n
x kk .  

Holds for 11 +≥ −x
inn , i.e., given the statement is true for inventory at 2  ,1 ≥− xx , we 

show by induction that the statement is true for inventory x , i.e., for 1+≥ x
inn , it holds 

that 0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π  and 1−≤ n
x

n
x kk .  

Step 3:  By using the induction from step 1 and step 2 the proposition is proved.  

By definition of x
in , we know that when 1+= x

inn ,   

0ˆ),1(),()1(),1()(),( <∆⋅+−∆−∆=−−−∆−+∆ txnxnnexnnexn ixxixix π . This is a 

strict inequality.  The following two statements are true when 1+= x
inn  for any i 

and 0>x : 

1)   0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π .                                                            

2)   1−≤ n
x

n
x kk .  

Step 1:  
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Now consider the case when 1=x . From the above we have known that when 

11 += inn , the following two statements are true.  

1)   0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π                                                             

2)   1−≤ n
x

n
x kk   

Following is to show these two statements are true at time point 1+n  if the two 

statements are true at time point n .  

Now given the two statements are true at a certain time point 11 +≥ inn . From 

equation (A4), we have 
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According to the definition of n
xk , we know that for n

xki ≥ , then 0)(),( <+∆ nexn ix , so 

tnn ixx ∆⋅−≤∆−+∆ π̂)1,()1,1( ,  i.e.,  0ˆ)1,()1,1( ≤∆⋅+∆−+∆ tnn ixx π . Hence 

)(),()1(),1( nexnnexn ixix +∆≤+++∆ , so a demand of class i should be rejected at n+1 
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if it should be rejected at time point n , so we have n
x

n
x kk ≤+1 . Thus the two statements are 

true at time point 1+n  if they are true at time point n . According to the induction, we 

have:  

when 1=x , for 1+≥ x
inn , then  0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π  and 1−≤ n

x
n
x kk . 

Step 2: 

We want to show if the inventory is 2  ,1 ≥− xx , the following  relation holds:  

for 11 +≥ −x
inn , then  0ˆ)1,1()1,( ≤∆⋅+−−∆−−∆ txnxn ixx π  and 1

11
−
−− ≤ n

x
n
x kk , 

then when the inventory is x, the following relation also holds  true: 

for 1+≥ x
inn , then  0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π  and 1−≤ n

x
n
x kk .                         

Given the inventory is 2≥x , from (A3), we have  
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    (A5) 

Since given at time point is n , 0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π , the first two terms in 

(A5) is bounded by 

tnenepxnxnpp i

k

i
iiixx
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∆⋅−≤−−⋅−−∆−∆⋅+ ∑∑
−

==

−

−

π̂])1()([)],1(),([)(
1

1
0

1

1

.   

By definition of 1
1, −

−
n
x

n
x kk , the third and fourth terms in (A5) are non-positive. Moreover, 

when inventory is 1−x  , if 11 +≥ −x
inn , then  0ˆ)1,1()1,( ≤∆⋅+−−∆−−∆ txnxn ixx π , 

and the fact that x
i

x
i nn ≤−1  we have that the last term in (A5) is non-positive. Hence from 

(A5), we have txnxn ixx ∆⋅−≤∆−+∆ π̂),(),1( .  This implies that a demand of class i  

should be rejected at 1+n  if it should be rejected at time point n , and we have n
x

n
x kk ≤+1 . 

By induction, the following statement is true: 

     If 1+≥ x
inn , then  0ˆ),1(),( ≤∆⋅+−∆−∆ txnxn ixx π  and 1−≤ n

x
n
x kk .   
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Step 3:   

From Steps 1 and 2, the result follows.                                                                □  

 

Proof of Lemma 3.4 

(a)    We prove it by induction. During the proof we need to show the first difference of 

)( mm yW  is nondecreasing in my . In particular, we will show: the first difference of 

)( 11 ++ mm xV  is nondecreasing in 1+mx →  the first difference of )( mm yW  is nondecreasing in 

my →  the first difference of )( mm xV is nondecreasing in mx  and so on.  

Before proceed to the proof, we first copy two equations (3.5 and 3.6) to the 

following lines to bring some convenience:  

)]([),()( 1 mmmmmmm DyVEyNHycyW −++⋅= + , },...,1{ Mm ∈ ,       (Equation 3.5, copied)   

)}|(min{)( mmmmmmm xyyWcxxV ≥+−= .                                                (Equation 3.6, copied) 

 Step 1:   We show: when m=M, the first difference of )( mm xV is nondecreasing in mx . 

Consider Equation (3.5). When m=M,    

][)]([)]([ 1 mmmmmmm DEccyDycEDyVE ⋅+−=−⋅−=−+ . We can see that the first 

difference of  )]([ 1 mmm DyVE −+  (i.e., )]1([)]([ 11 mmmmmm DyVEDyVE −−−− ++ ) is 
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nondecreasing in my . We have already known that the first difference of ),( myNH  is 

nondecreasing in my . So from Equation (3.5) we can see that the first difference of 

)( mm yW  is nondecreasing in my .  

Now consider Equation (3.6). To simplify the notations, let 

)}|(min{)( mmmmmm xyyWxf ≥= . So from Equation (3.6), we have: 

)()( mmmmm xfcxxV +−= . In the following we will show: the first difference of )( mm xf  is 

nondecreasing in mx , i.e., )1()()()1( −−≥−+ mmmmmmmm xfxfxfxf . Once it is done, then 

from Equation (3.6) we can see that when m=M, the first difference of )( mm xV is 

nondecreasing in mx , hence Step 1 of the proof is finished. In the following we show: 

)1()()()1( −−≥−+ mmmmmmmm xfxfxfxf .  

Let )(min  arg
0 mmym yWy

m≥
= . For )}|(min{)( mmmmmm xyyWxf ≥=  and the property 

that the first difference of )( mm yW  is nondecreasing in my , which has been shown in the 

previous paragraphs, we have: 





≤
≥

=
.   ),(

   ),(
)(

mmmm

mmmm
mm yxyW

yxxW
xf  

In the following we consider different cases to show 

)1()()()1( −−≥−+ mmmmmmmm xfxfxfxf . 

(i) when mm yx ≤+ )1( . 
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In this case, 0)1()()()1( =−−=−+ mmmmmmmm xfxfxfxf . So the first difference 

of )( mm xf is nondecreasing in mx .   

(ii) when mm yx = . 

In this case, 0)1()( =−− mmmm xfxf . For )(min  arg
0 mmym yWy

m≥
= , we have: 

0)()1()()1( ≥−+=−+ mmmmmmmm yfyfxfxf . So the first difference of )( mm xf is 

nondecreasing in mx .    

(iii) when mm yx ≥−1 . 

In this case, )1()()1()( −−=−− mmmmmmmm xWxWxfxf  and 

)()1()()1( mmmmmmmm xWxWxfxf −+=−+ . For the first difference of )( mm xW  is 

nondecreasing in mx , we have: the first difference of )( mm xf is nondecreasing in 

mx . 

So from the above we can see that first difference of )( mm xf is nondecreasing in 

mx . For )()( mmmmm xfcxxV +−= , we can see that: when m=M, the first difference of 

)( mm xV  is nondecreasing in mx . Hence the first step is finished. 

Step 2:   Now assume that the first difference of )( 11 ++ mm xV  is nondecreasing in 1+mx . In 

the following we prove: the first difference of )( mm xV  is nondecreasing in mx .  
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Consider Equation (3.5): )]([),()( 1 mmmmmmm DyVEyNHycyW −++⋅= + .  For the 

first difference of )(1 mm xV + is nondecreasing in mx , we can see that the first difference of 

the function )]([ 1 mmm DyVE −+  is nondecreasing in my . We have known that the first 

difference of the function ),( myNH (for the fixed N) is nondecreasing in my . The first 

difference of myc ⋅  is also nondecreasing in my . So from Equation (3.5), we can see the 

first difference of )( mm yW is nondecreasing in my .  

Now consider Equation 3.6: )}|(min{)( mmmmmmm xyyWcxxV ≥+−= , which is also 

written as )()( mmmmm xfcxxV +−= . For the first difference of )( mm yW  is nondecreasing in 

my , the first difference of )( mm xf  is nondecreasing in mx .  So from Equation 3.6, we have: 

the first difference of )( mm xV  is nondecreasing in mx .  

Step 3:    From Steps 1 and 2, the result of Part (a) follows.                                                                                                                                                          

(b)     Consider Equation 3.5:  )]([),()( 1 mmmmmmm DyVEyNHycyW −++⋅= + .  In Part (a) 

we have shown: when the first difference of )( 11 ++ mm xV  is nondecreasing in 1+mx , then 

from Equation 3.5 we can see that the first difference of )( mm yW  is nondecreasing in my . 

So from Part (a), Part (b) immediately follows.                                                              □   

 

Proof of Theorem 3.2 
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Consider Equation 3.6:  

)}|(min{)( mmmmmmm xyyWcxxV ≥+−= .  

The optimal solution *
my  to the minimization problem )}|(min{ mmmm xyyW ≥  

depends on the relation between mx  and my , where )(min  arg
0 mmym yWy

m≥
=  . If mm yx ≤ , 

then the optimal solution mm yy =* , so the system should order inventory up to my .  If 

mm yx > , then the optimal solution mm xy =* , because )( mm yW is nondecreasing in my  over 

the range mm yy ≥ (which comes from the fact: )( mm yW arrives at its minimum at my  and 

the first difference of )( mm yW  is nondecreasing in my ). So when mm yx > , then the system 

should not order to increase inventory, for increasing inventory just incurs more cost. 

Hence the optimal ordering policy at the beginning of period m is precisely a base stock 

policy with base stock level my .   So the result follows.                                          □   

 

Proof of Theorem 3.3  

Let )|( 1 yxV denote the expected total cost on the whole horizon under the myopic 

ordering policy with base stock y , given initial inventory 1x . In the following we show 

that the optimal cost )( 11 xV has a lower bound which is equal to )|( 1 yxV , and then the 

theorem is proved.  

From Equations (3.7) and (3.8) we have  
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For 0)(' 11 =++ MM xV , we obtain ∑
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≥
M

m
m yGxV

1
11 )( )(' ,  so  

∑
=

+−≥+−=
M

m
m yGcxxVcxxV

1
111111 )()(')( ,                                                 

hence, a lower bound on the optimal cost )( 11 xV is obtained.  

Now consider the cost )|( 1 yxV  under the myopic ordering policy. Under this 

policy, if the initial inventory 1x  is less than y , then the system places an order to rise the 

inventory position up to y  at the beginning of period 1, i.e., yy =1 . The net inventory 2x  

at the beginning of period 2 before ordering should not be greater than y  and the system 

should order up to y , i.e., yy =2 . Based on the same reason, we have: the inventory 

position after ordering at any period should be equal to y , i.e., yym = , },...,1{ Mm ∈ . 

According to the fact mm Dyx −=+1  and the definition of )( mm yG , the expected total cost 

)|( 1 yxV  is  

,)(              

)]([}),()]([{)|(

1
1

1
1

∑

∑

=

=

+−=

−−+−=

M

m
m

M

M

m
m

yGcx

DycEyNHxycEyxV
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which is exactly the lower bound on optimal cost )( 11 xV . So the myopic ordering policy is 

optimal.                                                                                                                                □ 

 

Proof of Lemma 3.5  

Under policy ),( dyS , there exists a limiting distribution for ),( mmy B . ),( ∞∞ By  is 

the random variable with such limiting distribution and Ω is the set of all possible values 

for ),( mmy B . So 

 )]|,([),()|,( 1lim),(
1

0
dyyCEyPdyyC

M
dySAC

M

m
mmM

BBB ∞

−

= Ω
→∞

== ∑ ∑ .                   (A6) 

Substitute (3.12) and (3.13) into the above equation and according to the fact that 

when 0<my , )|,( dyyCm B is not less than the cost assuming all backorders in B  come 

from the least important class K , we immediately have the lower bound )]([ LLB DSUE − .                                                

□  

 

Proof of Lemma 3.6    

According to (A6) and (3.15), we have:  

)]([)]([)]|,([),( LUBUB DSUEyUEdyyCEdySAC −=≤= ∞ B .                                       □  
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Proof of Lemma 3.7   

Let Z denote the set of integers. We can see that the net inventory Zym ∈ .The 

optimal cost ),AC( oo νω is 

.),|()( 1lim                 

),|,(),|,( 1lim),AC(

1

0

1

0

∑ ∑

∑ ∑
−

= ∈
→∞

−

= Ω
→∞

≥

=

M

m Zy
oomLBM

M

m
oomoomMoo

yPyU
M

yPyC
M

νω

νωνωνω BB
                             

In the above expression, Lmm DSy −= , where mS  is the inventory position just 

after ordering at the beginning of ordering period m, and mS is determined by the ordering 

policy. For we are considering any ordering polices in Ψ , mS may be different from nS , 

when nm ≠ , and they may have some relation with each other. So the distribution of my  

is determined by ordering policy, and is independent on the rationing policy. For 

)]([minarg*
LLB DSUES −= , we have: 

)]([),|()( 1lim),AC( *
1

0
LLB

M

m Zy
oomLBMoo DSUEyPyU

M
−≥≥ ∑ ∑

−

= ∈
→∞

νωνω .                              □ 
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Appendix B 

Complementary Results in Chapter 3 

 

Part of the results of this numerical study in Chapter 3 is shown in Chapter 3. Other results 

in the numerical study are shown in the following tables.  

Table B1    Comparison of policies when 5.1ˆ ,450 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.46% 

1 3.19E-11 0.93% 

2 3.55E-07 1.19% 

3 1.07E-05 1.40% 

4 8.28E-05 1.49% 

 0 0 5.94% 
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100 

1 -3.92E-13 10.02% 

2 2.85E-08 11.43% 

3 1.88E-06 11.10% 

4 2.15E-05 10.38% 

 

 

1000 

0 0 8.60% 

1 -7.24E-12 14.38% 

2 9.96E-09 15.38% 

3 7.75E-07 12.04% 

4 7.10E-06 10.38% 



Appendix B                                                                              Complementary Results in Chapter 3 

 194

Table B2    Comparison of policies when 5ˆ ,450 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.74% 

1 -4.35E-14 1.11% 

2 8.38E-10 1.28% 

3 1.24E-07 1.47% 

4 1.83E-06 1.59% 

 

 

100 

0 0 5.93% 

1 -1.97E-12 8.68% 

2 3.46E-10 10.74% 

3 1.27E-07 10.71% 

4 2.28E-06 10.94% 

 

 

1000 

0 0 8.45% 

1 -1.87E-11 11.23% 

2 3.02E-10 15.05% 

3 1.14E-07 13.17% 

4 1.78E-06 12.09% 
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Table B3    Comparison of policies when 10ˆ ,450 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.71% 

1 -9.07E-14 1.04% 

2 3.48E-11 1.16% 

3 1.01E-08 1.35% 

4 2.72E-07 1.36% 

 

 

100 

0 0 5.49% 

1 -4.89E-12 7.81% 

2 1.69E-11 9.47% 

3 1.58E-08 9.69% 

4 6.21E-07 9.42% 

 

 

1000 

0 0 8.42% 

1 -3.90E-11 10.24% 

2 -6.21E-11 13.95% 

3 2.59E-08 14.09% 

4 5.89E-07 12.94% 
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Table B4    Comparison of policies when 5.1ˆ ,300 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.62% 

1 2.29E-08 1.14% 

2 1.57E-05 1.34% 

3 0.000163 1.40% 

4 0.000712 1.42% 

 

 

100 

0 0 6.65% 

1 8.60E-10 9.90% 

2 1.78E-06 9.90% 

3 4.31E-05 8.54% 

4 0.000176 7.18% 

 

 

1000 

0 0 10.31% 

1 1.21E-10 12.03% 

2 7.13E-07 11.33% 

3 1.26E-05 8.47% 

4 6.69E-05 6.71% 
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Table B5    Comparison of policies when 10ˆ ,300 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.70% 

1 7.88E-13 0.95% 

2 1.51E-08 1.25% 

3 1.00E-06 1.36% 

4 9.65E-06 1.36% 

 

 

100 

0 0 4.81% 

1 1.27E-12 6.71% 

2 1.45E-08 9.28% 

3 1.74E-06 9.82% 

4 1.66E-05 9.31% 

 

 

1000 

0 0 7.18% 

1 2.10E-11 9.84% 

2 1.83E-08 12.80% 

3 1.63E-06 12.11% 

4 1.19E-05 7.23% 
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Table B6    Comparison of policies when 5.1ˆ ,150 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.80% 

1 2.19E-05 1.31% 

2 0.000878 1.17% 

3 0.002968 1.15% 

4 0.005732 1.07% 

 

 

100 

0 0 6.73% 

1 3.10E-06 8.51% 

2 0.000149 5.96% 

3 0.000811 4.40% 

4 0.001858 3.23% 

 

 

1000 

0 0 8.73% 

1 5.33E-07 9.26% 

2 5.35E-05 6.09% 

3 0.000372 2.32% 

4 0.000921 2.03% 
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Table B7    Comparison of policies when 5ˆ ,150 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.83% 

1 4.57E-07 1.08% 

2 4.60E-05 1.35% 

3 0.000391 1.29% 

4 0.001254 1.19% 

 

 

100 

0 0 4.98% 

1 7.43E-08 7.44% 

2 3.10E-05 7.32% 

3 0.000303 4.61% 

4 0.00096 4.06% 

 

 

1000 

0 0 5.20% 

1 5.21E-08 8.91% 

2 1.62E-05 6.53% 

3 0.000116 3.27% 

4 0.000405 3.17% 

 



Appendix B                                                                              Complementary Results in Chapter 3 

 200

 

Table B8    Comparison of policies when 10ˆ ,150 221 === πλλ  

21 ˆ/ˆ ππ  uL /  LBCR  dyMcnMCR −  

 

 

3 

0 0 0.65% 

1 3.79E-08 0.98% 

2 1.14E-05 1.15% 

3 0.000106 1.14% 

4 0.000476 1.13% 

 

 

100 

0 0 3.96% 

1 2.48E-08 6.19% 

2 1.07E-05 7.42% 

3 0.000153 4.95% 

4 0.000411 4.17% 

 

 

1000 

0 0 4.23% 

1 1.63E-08 7.66% 

2 9.21E-06 9.59% 

3 8.47E-05 6.12% 

4 0.000343 3.05% 
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Appendix C  

Proofs in Chapter 4 

 

 

Proof of Lemma 4.1 

Prove it by showing the first difference ),(2 stJ cX∆  is non-decreasing in s . 

From equation (4.3) we have 

)1(]1|[)ˆ(

)1(])ˆ([

),()1,()1,(

1111

111

222

+≥⋅+≥⋅++

+≥⋅++⋅−⋅=

−+=+∆

+ sDPsDEh

sDPhtth

stJstJstJ

cc

c

tt
s

t
cc

cccX

τπ

ππ                                                     (C.1) 

and  

).(]|[)ˆ(

)(])ˆ([

)1,(),(),(

111

111

222

sDPsDEh

sDPhtth

stJstJstJ

cc

c

tt
s

t
cc

cccX

≥⋅≥⋅++

≥⋅++⋅−⋅=

−−=∆

τπ

ππ                                                     (C.2)
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From (C.1) and (C.2) we have 

)}.(]|[)1(]1|[{)ˆ(

)(])ˆ([

),()1,(

111111

111

22

sDPsDEsDPsDEh

sDPht

stJstJ

cccc

c

tt
s

tt
s

t
c

cXcX

≥⋅≥−+≥⋅+≥⋅++

=⋅++⋅=

∆−+∆

+ ττπ

ππ  (C.3) 

For  

),(]|[)1(]1|[

)(]|[

)(]|[

1111
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sDPsDEsDPsDE

iDPiDE

sDPsDE

cccc
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s
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s
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                       (C.4)     

we obtain by substituting (C.4) into (C.3) 

)}.1(]1|[)1(]1|[{

)ˆ()(]}|[)ˆ(])ˆ({[

)(]|[)ˆ(
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         (C.5) 

Given sD ct =1 , we can see that sτ will be always less than or equal to ct , so 

c
t

s tsDE c ≤= ]|[ 1τ , hence 

.0]}|[{)ˆ(

]|[)ˆ(])ˆ([

111

1111

≥+=−⋅+=

=⋅+−++⋅

πτπ

τπππ

sDEth
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t
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t
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We can also see that ss ττ ≥+1 , for 1+sτ is the time of demanding for )1( +s th unit of the 

product, while 1+sτ is the time of demanding for s th unit. So we have 

)1(]1|[)1(]1|[ 11111 +≥⋅+≥>+≥⋅+≥+ sDPsDEsDPsDE cccc tt
s

tt
s ττ . 

So from (C.5) we have 0),()1,( 22 >∆−+∆ stJstJ cXcX ,  thus the result follows.               □ 

 

Proof of Theorem 4.1 

According to Lemma 4.1, we immediately have it.                                                             □ 

 

Proof of Theorem 4.2  

a)    When 0=ct ,  for any given 0>s ,  0),(2 =∆ stJ cX ,  so 0)(),( 22
2 ≥=+∆ πccX testJ . 

According to equation (4.2) we have 0)(2 =c
a ts . 

b)  For a given 0>s , ),(2 stJ c  is continuous in ct , so )(),( 2
2

ccX testJ +∆ is also 

continuous in ct . When 0=ct , 0),(2 =∆ stJ cX . For 02 ≥π , we have 

0)(),( 22
2 ≥=+∆ πccX testJ . For a given 0>s , when ct  increases from 0 and arrives at a 

certain value, we may had better reject all demands of class 2 from the time ct  to the end 

of period, i.e., 0)(),( 2
2 >+∆ ccX testJ  when ct is a certain large value. According to the 
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continuity of )(),( 2
2

ccX testJ +∆ , there exists at least one value of ct where 

0)(),( 2
2 =+∆ ccX testJ . Let { }0)(),(|min 2

2
2 =+∆= ccXc
s testJtt . So when 02 ≥> c

s tt , 

0)(),( 2
2 >+∆ ccX testJ and when += )( 2

s
c tt , 0)(),( 2

2 <+∆ ccX testJ , where +)( 2
st  is the 

time when the remaining time is infinitesimally longer than st2 .  

According to the definition of critical levels, if we can show: given inventory s ,  

for any s
cc tt > , 0)(),( 2

2 <+∆ ccX testJ , then the proposition is proved.  According to the 

definition of st2 , we know that when s
c tt 2= , 0)(),( 2

2 =+∆ ccX testJ . So if we can show:  

for any s
c tt 2> ,  0ˆ)],([)](),([

2

2
2

2
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∂

∆∂
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∂
+∆∂

π
c

cX

c

ccX

t
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t
testJ , then we have shown: for 

any s
cc tt > , 0)(),( 2

2 <+∆ ccX testJ . Following is to show: for any s
cc tt > ,  then  

0ˆ)],([
2

2

≤+
∂
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π

c

cX

t
stJ . 

From equation (C2) we have  
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We have known sτ  is a continuous random variable. Let )( sp τ be its probability density 

function. So  

           )(
)( 1

cs
c

t

tp
t

sDP c

==
∂

≥∂
τ .  
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For s

t

ss
tt

s dpsDPsDE c
cc ττττ ⋅⋅=≥⋅≥ ∫011 )()(]|[ , we have 

           )()}(]|[{ 11
csc

c
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s tpt

t
sDPsDE cc

=⋅=
∂

≥⋅≥∂
τ

τ . 

Substitute the above equations to equation (C6) and we have  

    ).()()ˆ()],([
111
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cX tpsDPhh
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∂
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τππ                                    (C7) 

According to the condition in proposition we have 021 == ππ , hence   

   )()ˆ(ˆˆ)],([
1122

2

sDPhh
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stJ
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∂

∆∂
πππ .                                           (C8) 

According to the definition of st2 , we can know that when s
c tt 2= ,  

 0ˆ)],([
2

2

<+
∂

∆∂
π

c

cX

t
stJ

. 

So, from equation (C8), we know when s
c tt 2= ,  0)()ˆ(ˆ 112 <≥⋅+−+ sDPhh ctππ . 

When ct increases from st2 , )( 1 sDP ct ≥ also increases, so for any s
c tt 2> ,  

          0ˆ)],([
2
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<+
∂
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π

c

cX

t
stJ

,  

hence the result follows.                                                                                                   □ 
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Appendix D  

Proofs in Chapter 5 

 

 

Proof of Lemma 5.1  

We prove it by induction.  As k is fixed as 1, for the simplicity of symbols we in 

the following equations use ),( xnHT and ),( xnx∆  and to replace ),,( xnkHT  and 

),,( xnkx∆ , respectively. 

When 0=n , )(-),( 0 xSxnHT ⋅= α . According to the assumption that the first 

difference of the salvage value function )(0 xS  is nonincreasing in x, we have: the first 

difference of ),( xnHT when n=0 is nondecreasing in x. Now assume that the first 

difference of 1),,1( ≥− nxnH , is nondecreasing in x , i.e. ),1( xnx −∆ is nondecreasing 

in x .  For a given on-hand inventory x  at the beginning of interval  n, i.e.,  at time point n , 

there exists a critical class 1−n
xk  at time point 1−n  such that when 1−≥ n

xki , 

0),1( <+−∆ ix xn π  (reject the demand from class i ), and when 1−< n
xki , 
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0),1( ≥+−∆ ix xn π  (accept the demand from class i ).  Since ),1( xnx −∆ is non-

decreasing in x , and ji ππ ≥ , ji <  , we have 1
2

1
1

1 −
−

−
−

− ≥≥ n
x

n
x

n
x kkk .  

From (5.6) in Section 5.2, we can know that when 1≥x ,  
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and when 0=x ,   
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iiT π                                                                     (D2)              

So the first difference of (D1) with respect to x when 2≥x  is 
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and when 1=x , 
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We now look at the second difference of (D3) with respect to x, when 3≥x ,  
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According to that the first difference of ),1( xnHT − is nondecreasing in x and the 

definition of 1
2

1
1

1 ,, −
−

−
−

− n
x

n
x

n
x kkk , each of the four items in the above express is nonnegative, so 

we have:  When 3≥x ,  0)1,(),( ≥−∆−∆ xnxn xx . 

Now consider when 31 <≤ x . From (D3) and (D4) we have 
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According to that the first difference of ),1( xnH −  is nondecreasing in x and the 

definition of 1
2

1
1

1 ,, −
−

−
−

− n
x

n
x

n
x kkk , each of the three items in the above expression is also 

nonnegative, hence 0)1,(),( ≥−∆−∆ xnxn xx .  

So given that the first difference of 0),,1( ≥− xxnH , is nondecreasing in x , we 

have: the first difference of ),( xnH is also nondecreasing in x . Thus by induction, the 

result follows.   □ 

 

Proof of Lemma 5.2  

We prove it by induction. In Lemma 5.1 we have shown: when k=1, for a given n,  

the first difference of ),,( xnkHT  is nondecreasing in x. Now assume when ik = , 

Mi <≤1 , for a given n, 1≥≥ nN , the first difference of ),,( xnkHT  is nondecreasing in x. 



Appendix D                                                                                                          Proofs in Chapter 5 

 210

In the following we show: when 1+= ik , for a given n, the first difference of ),,( xnkHT  

is nondecreasing in x.   

From equation (5.5) we can see that ),,1( xniHT + , which is the total cost from the 

beginning of interval n of the period 1+i to the end of the horizon, can be regarded as the 

cost from the beginning of interval n of period 1+i  (i.e., time point ),1( ni + ) to the end of 

period 1+i with terminal cost function )(xRk . So ),,1( xniHT + can be regarded as a 

single-period model. The difference between formula of ),,1( xniHT +  and that of 

),,1( xnHT  is the different terminal cost functions.  

Based on the assumption, we know that the first difference of ),,( xNiHT is 

nondecreasing in x. Thus the first difference of the function   ),,()( QxNiHxR Tk +⋅= α is 

also nondecreasing in x. From Lemma 5.1 we can see that when the first difference of the 

terminal cost function is nondecreasing in x, the first difference of the optimal cost 

function ),,1( xnHT of the single-period model is also nondecreasing in x for a given n. So 

we have: for a given n, the first difference of ),,1( xniHT + is nondecreasing in x. Thus by 

induction the result follows.                                                                                                □   

 

Proof of Theorem 5.1  

According to Lemma 5.2, from the property that the first difference of 

),,( xnkHT is nondecreasing in x, we have: there is a unique ),(* nkxi  such that when the 
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on-hand inventory ),(* nkxx i> , then 0),,( ≥+∆ ix xnk π  and the system should satisfy the 

demand of class i at time point n, and when the on-hand inventory is equal to or 

below ),(* nkxi , then 0),,( <+∆ iTx xnkH π  and the system should reject the demand of 

class i at time point n.  Thus the result follows.                                                                  □ 

 

Proof of Theorem 5.2  

Proposition 1.6 of Chapter 3 in Bertsekas (1995) (page 146) has shown that: for 

dynamic programming problems with discount factor 10  , << αα , infinite horizon and 

unbound cost per period, when the decision space for each state at any stage is finite, then 

the optimal cost function of infinite horizon can be obtained by limiting the cost of m-

stage dynamic programming problem.  

In the previous dynamic programming model where each period is divided into 

many small intervals, one interval is one stage. We may reformulate the dynamic 

inventory rationing problem in another way: one period is one stage. In this case, the state 

variable is the on-hand inventory at the beginning of a period, and the decision is to 

choose a rationing policy for the current period, i.e., how to ration stock at each time point 

in the current period. Let C denote the set of single-period rationing policies. In this new 

formulation, for each state kx , the system needs to choose a policy from C. We can see 

that set C is infinite. In the following we show that it is enough to consider a finite subset 

of  C, hence the theorem is proved.  
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It is obvious that when the on-hand inventory is very large, then the system does 

not need to reject demands of some classes to reserve stock for more important classes, i.e. 

should satisfy demands of all classes. So there exists such an extremely large value of on-

hand inventory such that when the on-hand inventory is larger than it, then the system 

should satisfy demands of all classes during the period. Let 'C denote the set of single-

period rationing policies that satisfy this requirement. We can see that the optimal policies 

should be located in 'C . So it is enough to consider only policies in 'C , i.e., we consider 

only elements in 'C  as admissible single-period rationing policies. We can see that 'C  is 

finite. So, for each state, the decision space is finite. Thus, according to the Proposition 

1.6 of Chapter 3 in Bertsekas (1995), the result follows.                                                    □ 

 

Proof of Theorem 5.3 

Part (a) 

From Lemma 5.2 and Theorem 5.2 (infer the property of the optimal cost function 

over infinite horizon from that of the M-period system), we immediately have Part (a). 

 Part (b) 

From Theorem 5.1 and Theorem 5.2, we immediately have Part (b). 

Part (c)   
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In the proof of Theorem 5.2, we have shown that the previous dynamic 

programming model with one interval as one stage can be reformulated as a new one with 

one period as one stage, and it is enough to consider the finite control space for each state. 

Hence, according to Proposition 1.3 of Chapter 3 in Bertsekas (1995) (page 143), we have: 

there exists an optimal stationary rationing policy.                                                             □                                                                                                                                                

 

 


