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Abstract

Dynamic Resource Allocation for Energy-Constrained Wireless Networks over

Time-Varying Channels

by

Zhang Xiaolu

in Department of Electrical and Computer Engineering

National University of Singapore

The focus of this thesis is on the establishment of a theoretical framework on dy-

namic resource allocation for energy-constrained wireless networks over time-varying

channels. This framework chooses the end-user application needs as the optimization

objective, establishes the theoretically optimal performance benchmark under system

constraints, and designs solution that is easy to be integrated in practice systems

using mathematical tools, such as gradient algorithm and dual decomposition. This

framework is applied to different network situations including infrastructure-based

wireless network, wireless sensor network (WSN) and orthogonal frequency division

multiplexing (OFDM)-based multi-hop network. We attempt to address the follow-

ing three questions: 1) How to jointly optimize average rate and rate oscillation in

wireless networks supporting variable rate transmission; 2) How to jointly design

quantization and transmission for lifetime maximization in WSNs; 3) how to mini-

mize end-to-end outage and maximize average rate in OFDM-based relay networks.

All above problems are investigated using convex optimization-based approaches.

For the first problem, we demonstrate that a proposed utility function can be used
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to facilitate the choice of the combinations of average rate and rate oscillation, both of

which are important performance metrics. A gradient based scheduling algorithm is

developed to maximize the proposed utility function. The dynamics of transmission

rate under this algorithm is analyzed using ordinary differential equation. In addi-

tion, the condition under which generalized gradient scheduling algorithm (GGSA) is

asymptotically optimal is addressed.

Unlike the infrastructure-based network, a WSN cannot centrally allocate re-

sources due to limited computing capacity and energy. We demonstrate how the

network lifetime can be maximized by integrated design of quantization and transmis-

sion in a partially distributed way, where each node is aware of the local information

and little common information. The behavior of the algorithm’s convergence is also

explored. Numerical examples show significant lifetime gain and the gain is more

significant when sensing environment becomes more heterogeneous.

Finally, we study subcarrier, power and time allocation to minimize the end-to-

end outage probability and maximize the end-to-end average rate, respectively, in a

one-dimensional multi-hop network under an average transmission power constraint.

We derive the optimal resource allocation schemes which determine the system perfor-

mance limits. However, they incur high computational complexity and high signaling

overhead. Several suboptimal algorithms with low complexity and reduced overhead

are proposed. The tradeoff between performance of these algorithms and their com-

plexity and overhead is also discussed.
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Chapter 1

Introduction

Mobile and wireless communications have experienced impressive growth in qual-

ity of services and diversity of services. The popularity of wireless cellular networks,

wireless sensor networks (WSNs), broadband wireless metropolitan area networks

(WMANs) and wireless local area networks (WLANs) demonstrate a high demand

for reliable multimedia service, situation awareness application and high-speed data

transmission. From the start of this century, various convergence in these networks

are taking place for providing an ubiquitous wireless experience.

Three aspects of wireless communication environment [33] present a fundamen-

tal technical challenge for wireless system design. Limited radio resources must be

shared between many geographically separated users. Due to the broadcast nature

of wireless channel, the data transmission to one user may become interference to

others. Moreover, wireless channel suffers from time-varying large-scale, small-scale

fading and noise, which makes it a problem to keep communication as reliable as that

available on wireline networks. In addition, most portable communication devices

have limited battery power supply and small size. It is clearly desirable to prolong

the recharging interval while supporting the desired quality of service for devices with
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rechargeable batteries, e.g., mobile phone. Energy efficient design plays an even more

important role in WSNs since if one or more nodes fail due to lack of energy, the

WSN may not sustain normal functionality.

One potential approach for addressing these issues is the dynamic wireless resource

allocation. The basic idea of resource allocation is to adapt the link transmission

scheme to improve the system performance. This is achieved by power control, data

rate adaptation and subcarrier allocation, based on the channel state information

(CSI), system state information and service characteristics that are available at the

transmitter. Goldsmith et al. [26] show that adaptation can obtain up to 20 dB power

saving over non-adaptive transmission for a single communication link. In multi-

user systems, significant system performance gain can also be achieved by optimal

transmission scheduling and power control. For instance, in a multi-access channel,

Knopp et al. [38] proposed a water-filling based power control algorithm to maximize

the sum-of-rate capacity subject to the average transmission power constraint of each

user.

In the rest of this chapter, a more complete literature review of resource allocation

strategies for infrastructure-based wireless networks, wireless sensor networks, and

multi-hop wireless networks is given. New resource allocation methods are proposed

and compared with others that currently exist or are suggested in thesis chapters,

respectively.
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1.1 Resource Allocation in Wireless Networks

1.1.1 Infrastructure-based Wireless Networks

All communication in an infrastructure-based wireless network is via a central-

ized controller (e.g., base station or access point) through single-hop routing. The

centralized controller takes charge of channel estimation and resource allocation.

The most prevalent infrastructure-based wireless networks today are cellular sys-

tems. A cellular network is a radio network consisting of a number of radio cells.

Each cell is served by a base station that directly communicates with mobiles.

Traditional investigations on wireless resource allocation pay much attention to

hard real-time services. Therein, the goal is to smooth out channel variation and

build “bit pipes” that deliver data at a fixed rate, e.g., [19] and [74].

The rapid growth of the Internet has led to an increasing demand for support-

ing transmissions of best-effort service in wireless systems. These applications al-

low variable-rate transmission and are tolerant of high rate oscillations. Therefore,

opportunistic communications [67] have been introduced to achieve higher system

throughput. The concept of opportunistic communications is essentially to transmit

more information in good channel states and less in poor ones. Hard real-time service

and best-effort service may be viewed as two extremes of rate-oscillation sensitivity.

However, services such as audio and video applications generally expect a balance be-

tween average rate and rate oscillation. If constant-rate transmission algorithms are

used, the transmission efficiency would be very low. On the other hand, opportunistic

scheduling schemes, such as [32] and [62], whose objective is to maximize a utility

based on average rates, can improve efficiency in terms of average rate but result in

high oscillation in instantaneous transmission rates.
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1.1.2 Wireless Sensor Networks (WSNs)

Nowadays, wireless sensor networks have enormous potential for situation aware-

ness applications. A WSN usually consists of a set of sensor nodes deployed in a cer-

tain region and performs distributed detection or estimation of application-specific

information. In the context of distributed data collection, each node monitors its

surrounding area, collects the data, and transmits it to a fusion center (FC). The FC

then makes the final estimation using the collected data. A typical low cost sensor

node has only limited processing capacity and often powered by small batteries. In

many situations, battery recharging is impossible. If one or more nodes fail due to

lack of energy, the sensor network may not sustain normal functionality. The lifetime

of the network thus often refers to the time it takes for the first node in the network

to die. Prolonging the network lifetime while maintaining a reasonably low computa-

tional cost has become the major challenge in designing compression strategies and

communication protocols for WSNs.

The classical best linear unbiased estimator (BLUE) is designed to enhance the

estimation accuracy by linearly combining the real-valued sensor observations [36].

However, it cannot be directly used in bandwidth-limited wireless network where

real-valued message transmission is unavailable. Therefore, several local message

functions which depend on the underlying sensor observation quality are designed to

reduce communication from sensor nodes to FC, e.g, [12; 71; 70]. These compression

schemes are proposed from the point of view of signal processing and do not take the

channel condition variation into consideration.

Energy efficient transmission strategies for single-hop sensor data collection have

recently attracted attention. The concept of most of transmission strategies has

been to adapt the transmission parameters, such as transmission power, time and

bandwidth, to the underlying channel gain, interference, and system preferences. In
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fundamental communication theory, the transmission rate is an increasing and con-

cave function of the transmission power, and the total amount of energy required for

transmitting a given amount of data bits can be reduced by lowering the transmission

power. This energy saving is achieved at the expense of increased transmission de-

lay. Making use of this delay-energy tradeoff, Yao et al. proposed an energy-efficient

transmission scheduling scheme in [73]. Given that each sensor node has a fixed num-

ber of bits to transmit, the total energy consumption is minimized by varying the

transmission times assigned to different sensors.

The integration of signal processing and transmission is shown to lead to a more

efficient and fair use of limited energy in [76]. An optimal power control policy for

such integrated design is proposed by Xiao et al. in [69]. This policy minimizes the

energy consumption by varying the transmission power and quantization level. It

is suggested that the sensors with better channel condition and/or good observation

quality should increase their quantization resolution. It is however important to point

out that maximizing energy efficiency does not necessarily lead to network lifetime

maximization. In both [73] and [69], minimizing the total energy consumption or

some variants of it may result in some nodes running out of energy quickly.

1.1.3 OFDM-Based Multi-hop Relay Networks

Relay networks in the form of point-to-multipoint based tree-type or multipoint-

to-multipoint mesh-type architectures are a promising network topology in future

wireless systems. The basic concept of relaying is to allow a source node to commu-

nicate with a destination node under the help of a single or multiple relay nodes. It

has been shown that relaying can bring a wireless network various benefits including

coverage extension, throughput and system capacity enhancement. Recently, multi-

hop relaying has been widely adopted in wireless networks such as next generation
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cellular networks, broadband wireless metropolitan area networks and wireless lo-

cal area networks. On the other hand, orthogonal frequency division multiplexing

(OFDM) is an efficient physical layer modulation technique for broadband wireless

transmission. It divides the broadband wireless channel into a set of orthogonal nar-

rowband subcarriers and hence eliminates the inter-symbol interference. OFDM is

one of the dominating transmission techniques in many wireless systems, e.g., IEEE

802.16 (WiMax), EV-DO Revision C and the Long-Term-Evolution (LTE) of UMTS.

The combination of OFDM and multi-hop relaying has received a lot of attention

recently. For example, this OFDM-based relay architecture has been proposed by

the current wireless standard IEEE 802.16j [52]. The complexity of relay station is

expected to be much less than the one of legacy IEEE 802.16 base stations, thereby re-

ducing infrastructure deployment cost and improving the economic viability of IEEE

802.16 systems [1].

Recently, a large amount of effort has been directed towards ad hoc networks,

which can be viewed as generalized relay networks, with each node in the network

being able to communicate with any other node. Gupta et al. studied the bound of

transmission rates in an asymptotic sense with a large number of hops under various

network topologies and node capabilities in [30] and [31]. However, the asymptotic

results on ad hoc networks do not apply in a network with a small number of relays.

Previous works on resource allocation for relay networks are found in [61; 50; 55; 41;

15]. Authors in [61] and [55] studied efficient scheduling and routing schemes in one-

dimensional multi-hop wireless networks, where it is assumed that the point-to-point

links are frequency-flat fading channels. In [50], Oyman et al. introduced two different

transmission strategies over multiple hops, and showed merits of multi-hop relaying in

cellular mesh networks. Two-dimensional multi-hop networks are investigated in [41]

and [15]. In [15], selective orthogonal frequency division multiple access (OFDMA)

relaying is proposed in a network where multiple relay nodes are available at each
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hop. The optimal source/relay/subcarrier allocation for OFDMA relay networks with

fairness constraints is studied in [41], where cooperative transmission among source

nodes and relay nodes is assumed. However, both selective OFDMA relaying and

cooperative relaying require precise timing and phase synchronization among different

nodes, and hence are difficult to be integrated in practical systems.

1.2 Design Approaches: Optimization for Wireless

Networks

Optimization methods have been used widely in the design and analysis of wireless

networks since last two decades. The most straight-forward understanding of opti-

mization for wireless networks is that the design and analysis of wireless networks can

be formulated as a mathematical optimization problem. The optimization problem

could be maximizing a utility function, or minimizing a cost over a set of variables

under a set of constraints.

1.2.1 Layered Design

Traditional mathematical optimization in wireless networks typically follows lay-

ered or modularized approach. In this approach, a networking system is divided into

layers. Each layer makes autonomous decisions for achieving its own objective. The

layered design approach hides the complexity of one layer from the others and is in-

tuitively considered enabling a scalable and implementable network design. A classic

paradigm is OSI seven layer model [77].
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1.2.2 Cross-Layer Design

Recently, there has been increased interest in cross-layer design [60] in an effort

to improve efficiency and/or fairness in allocation of network resource. The idea of

cross-layer design is mainly motivated by the time-varying characteristics of wireless

channel, network conditions and the emergence of differential applications. Rate,

power and other resources at the physical layer can be dynamically adjusted to meet

the quality of service (QoS) of these applications given the current channel and net-

work conditions. To implement it, information must be shared between layers to

obtain the highest possible adaptivity [5]. The gains of cross-layer design are par-

ticularly shown for Transmission Control Protocol (TCP) traffic over wireless links

[38; 65; 64; 4; 62].

Although cross-layer design approach brings great enhancement to the network

performance, it may lead to various negative consequences as pointed out in [35].

For instance, cross-layer design can create loops, thus, stability and robustness be-

come paramount issues. In addition, unbridled cross-layer design can also lead to a

“spaghetti design”.

1.2.3 Layering as Optimization Decomposition

It is illustrated in [14] “layering as optimization decomposition” provides a more

unified framework for network design. Chiang et at. in Page 255 of [14] point out

“the overall communication network is modelled by a generalized network utility

maximization problem, each layer corresponds to a decomposed subproblem, and the

interfaces among layers are quantified as functions of the optimization variables co-

ordinating the subproblems.”

“Network as an optimizer” and “layering as decomposition” are two key concepts
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behind “layering as optimization decomposition”. The former emphasizes viewing

protocols as a distributed solution to some global optimization problem. The latter

indicates the problem itself does not have any predetermined layering architecture,

but the optimal solution automatically established the benchmark for all layering

schemes through problem decomposition.

Most of the work inspired by “layering as optimization decomposition” focuses on

media access control (MAC) layer (e.g.,[10; 44]) , network layer (e.g., [29]), and TCP

layer (e.g.,[34; 37; 46]).

Although most of the work in this thesis had been done or started before [14] was

published, the idea of “layering as optimization decomposition”, putting the end-user

application needs as the optimization objective, establishing the globally optimal

performance benchmark and design modularized and/or distributed solution through

decomposition, runs through the whole thesis.

1.2.4 Convex Optimization

Difference among resource allocation schemes for the networks with different ar-

chitectures, namely, infrastructure-based wireless networks, wireless sensor networks,

and multi-hop wireless networks, arises from different types of traffic that they sup-

port and different system preferences. Due to the different limitations of their network

architectures, the centralized or partially distributed algorithm is needed. However,

these resource allocation schemes are common in the sense that most of them could

be cast as or converted into convex optimization problems [7]. Convex optimization

solves the problem of minimization of a convex objective function subject to convex

constraints. It plays an important role in engineering application because a local op-

timum is also a global optimum in a convex problem and this optimal solution often
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reveals design insights [47]. More detail in convex optimization will be introduced in

Chapter 2.

1.3 Objectives and Contributions

The primary objective of this thesis is to provide a generalized optimization frame-

work with different approaches for dynamic resource allocation for energy-constrained

wireless networks and provide solutions to some specific networks. The proposed re-

search can be viewed as a combination of multiple disciplines, including signal process-

ing, information theory, optimization, wireless communication theory and networking

to address the questions stated in Section 1.3.1, 1.3.2 and 1.3.3, where we have also

discussed motivations and contributions.

1.3.1 Problem 1: Joint Optimization of Average Rate and

Rate Oscillation in Variable-Rate Wireless Networks

As demonstrated in Section 1.1.1, constant-rate transmission and opportunistic

scheduling schemes may be viewed as two extremes in terms of rate-oscillation sen-

sitivity: constant-rate transmission algorithms result in low transmission efficiency,

while opportunistic scheduling schemes can improve efficiency in terms of average rate

but result in high oscillation in transmission rates (throughout this thesis, we will use

the term “transmission rate” to refer to the instantaneous transmission rate in a time

frame). As is known, many services such as wireless audio and video transmission

generally expect a balance between average rate and rate oscillation, both of which

are important performance metrics for these applications. This motivates the search

for transmission schemes that can joint optimize average rate and rate oscillation by

dynamically adapting transmission rate.
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The contributions of the work for this problem can be summarized as follows.

• We find a new criterion for multi-user scheduling by modifying the utility func-

tion in a way that penalizes rate oscillation and rewards average rate. Rate

oscillation here is measured using a statistical rate variance.

• We demonstrate later that a utility function that increases with average rate

but decreases with rate variance can be used to facilitate the choice of the

combinations of average rate and rate oscillation.

• A gradient based scheduling algorithm is developed to maximize the proposed

utility function. The proposed algorithm reduces to the traditional gradient

algorithm in [2] and [62] when we omit the rate variance term in the new utility

function so that the utility is a function of the average rate only.

• The dynamics of transmission rate is analyzed using ordinary differential equa-

tion. In addition, the condition under which the proposed algorithm is asymp-

totically optimal is addressed in Chapter 3.

• As a practical example, the proposed gradient based scheduling algorithm ap-

plied in time-sharing wireless networks are studied for two cases: (a) perfect

CSI and (b) limited channel feedback. Numerical results show how the average

rate and rate variance are balanced and the convergence performance of the

algorithm.

The above results will be discussed in detail in Chapter 3.
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1.3.2 Problem 2: Integrated Designs of Quantization and

Transmission for Lifetime Maximization in Wireless

Sensor Networks

Signal processing and transmission scheme in wireless sensor network were sep-

arately designed in most of existing works. For example, Xiao et. al. in [70] and

Yao et. al. in [73] consider signal processing and transmission scheme in energy ef-

ficient wireless sensor network, respectively. How to maximize the network lifetime

by varying both transmission parameters and quantization resolution for a single-hop

sensor network is still an open issue. Rate-power curve can be viewed as the interface

between quantization design and transmission design. Several fundamental features

of sensor networks are taken into account in the formulation.

• First, for a sensor network deployed for decentralized estimation, it empha-

sizes estimation accuracy achieved at the FC more than the total or individual

transmission rate and, thus, is taken as one of our optimization constraints.

• Secondly, besides observation quality and channel condition, initial energy is

also critical to lifetime maximization design because the information of initial

energy helps to balance the energy consumption by giving high priority to the

nodes with high initial energy level. Thus our lifetime maximization strategy

also considers the available energy left in each sensor.

• Lastly, since centralized algorithms often require large computational cost and

significant control signaling overhead, the proposed algorithm is designed to

be of partially distributed nature and can be implemented easily in practical

systems. Each node only needs to know its local information resulting in very

little common information broadcast by the FC. The convergence behavior of

the algorithm is also explored.
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The above result under two typical scenarios, (a) uncorrelated source observation and

(b) common source observation, will be discussed in Chapter 4.

1.3.3 Problem 3: End-to-End Outage Minimization and Av-

erage Rate Maximization in Linear OFDM Based Re-

lay Networks

We move to the context of relay networks after addressing the resource alloca-

tion in single-hop networks. Relay networks have the potential to expand coverage

and enhance throughput. Similarly as in single-hop network, for many real-time ser-

vices, one has to consider keeping the target transmission rate and avoiding outage in

most fading scenarios through dynamic resource allocation. Whereas, non-real-time

services expect high average rate transmission. How to minimize end-to-end outage

probability and maximize end-to-end average rate in an OFDM-based multi-hop wire-

less network is yet under-explored. In a linear relay network where no data is allowed

to accumulate at any relay nodes, an end-to-end outage is the event that there exists

a hop on which transmission rate is lower than the target rate. In this thesis, we study

the subcarrier, power and time allocation to minimize the end-to-end outage proba-

bility and maximize the end-to-end average rate, respectively, in a one-dimensional

multi-hop network under an average transmission power constraint.

The novelty and contributions of the work done for this problem can be summa-

rized as follows:

• The first problem (minimization of end-to-end outage probability) is solved by

decomposing into two subproblems; (a) Derive the minimum short-term power

required to meet a target transmission rate for any given channel realization.

The resulting power and time allocation is obtained through a Two-nested Bi-
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nary Search (TBS) which is conducted in a central controller with the knowledge

of channel state information (CSI) on all subcarriers and over all hops; (b) De-

termine the transmission on-off by comparing the required minimum total power

with a threshold.

• The second problem (maximization the end-to-end average rate) is first for-

mulated as a max-min problem. Then it is solved by decomposing it into two

subproblems: (a) Determine the power and time allocation to maximize the end-

to-end instantaneous transmission rate under a given total power constraint for

each channel realization; and (b) Determine the instantaneous total power con-

straint for each channel state so that the end-to-end average transmission rate

is maximized under a long-term total power constraint.

• These optimal allocation schemes determine the performance limitation, but

also incur high computational complexity and high signaling overhead. Sev-

eral suboptimal algorithms with low complexity and reduced overhead are pro-

posed. The tradeoff between performance and complexity and overhead is also

discussed.

The above results will be discussed in detail in Chapter 4 and 6.

1.4 Organization of Thesis

This thesis consists of 7 chapters including the present Introduction chapter.

Chapter 2 presents basic system models, fundamental concepts such as performance

metrics and constraints, and design approaches that will be used throughout the

thesis.

We first study the dynamic resource allocation in the context of single-hop wire-
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less network. In Chapter 3, we consider jointly optimization of average rate and rate

oscillation in a multi-user system over a time-varying wireless fading channel. A gener-

alized gradient algorithm is developed to maximize a proposed utility function from a

myopic view of the optimization problem. Chapter 4 considers the lifetime maximiza-

tion for a cluster-based WSN. Integrated designs of quantization and transmission are

investigated, where the decision of transmission power, time and quantization reso-

lution may depend on the information of observation quality, channel condition and

initial energy. It is also demonstrated that the optimal decision can be implemented

in a partially distributed way.

We then turn to end-to-end resource allocation in a multi-hop relaying network.

In Chapter 5, our goal is to maximize the end-to-end average transmission rate in an

OFDM based multi-hop linear network. We derive the optimal transmission power

on each subcarrier over each hop and the transmission time used by each hop in

every time frame under a long-term total power constraint. Minimizing end-to-end

outage probability is examined in Chapter 6. In the first step, we derive the minimum

short-term power required to meet a target transmission rate for any given channel re-

alization. In the second step, the transmission on-off is determined by comparing the

required minimum total power with a threshold. We also propose suboptimal algo-

rithms with low complexity and reduced overhead. The tradeoff between performance

of these algorithms, and their complexity and overhead is discussed. Conclusions and

future work are discussed in Chapter 7.
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Chapter 2

Preliminaries

This chapter presents the basic background of wireless systems and mathematical

optimization methods to provide a big picture on performance optimization for wire-

less network. In Section 2.1, wireless channel model, single-hop multiuser wireless

system and multi-hop wireless system are introduced, respectively. In Section 2.2,

we define performance measures in wireless networks, including bit error rate, trans-

mission rate, outage probability, utility. Finally, introduction to convex optimization

theory and optimization of functionals with integral constraints is given in Section

2.4 and 2.5.

2.1 System Models

2.1.1 Wireless Channel Model

The fundamental difference of a wireless channel from wireline lies in its time-

varying characteristics. The radio signal transmitted through a wireless channel suf-

fers from attenuation mainly arising from path loss, shadowing and fading.
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The instantaneous channel gain between transmitter and receiver is modelled using

[56]

g = d−α100.1ςX2 (2.1)

where d is the distance between transmitter and receiver, α is the path loss exponent,

ς is a zero-mean Gaussian distributed random variable (in dB), 100.1ς is the log-normal

shadowing, and X represents small-scale fading envelope.

Path Loss

Path loss is the reduction in power density (attenuation) of an electromagnetic

wave as it propagates through space. The attenuation depends on the distance be-

tween the transmitter and receiver. In wireless systems, path loss can be represented

by the path loss exponent, whose value is normally in the range of 2 to 4 (where 2 is

for propagation in free space, 4 is for relatively lossy environments and for the case

of full specular reflection from the earth surface).

Shadowing

Other than path loss effect, the average received signal may experience random

shadowing effects due to different levels of clutter, e.g., tree and building, on the

propagation path between transmitter and receiver. The measured signal levels (in

dB) at a specific transmitter and receiver pair follows Gaussian distribution.

Path loss and shadowing belong to large-scale propagation models since they pre-

dict the mean signal level over large distance. The values of α and the variance of ς

can be computed from measured data, using linear regression. For example, in Stan-

ford University Interim (SUI)-3 channel model with a central frequency at around

1.9 GHz to simulate the fixed broadband wireless access channel environments [17],

intermediate path loss condition ([16, Category B]) is modelled by

PL = A + α lg

(
d

dn

)
,
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where A = 20 lg(4πd0/λ) (λ being the wavelength in m), α is the path-loss exponent

with α = (a− bhb + c/hb). Here hb = 30m is chosen as the height of the base station,

d0 = 100m and a, b, c are 4, 0.0065 and 17.1, respectively, given in [16]. This model

will be used in Chapter 5 and 6.

Fading

Fading (or small-scale) model is used to characterize the rapid fluctuations of the

received signal level over short travel distances or short time durations. Small-scale

fading mainly arises from the combination of multiple replicas of the transmitted

signals having different amplitudes, phases and angles of arrival. In the present of a

specular (line-of-sight) component, small-scale fading is commonly modelled by the

Ricean probability density function (pdf) [57]

pdf(x) =





x
σ2 e

−x2+A2

2σ2 I0

(
Ax
σ2

)
A ≥ 0, x ≥ 0

0 x < 0
, (2.2)

where σ2 is the time-average power of the received signal, A represent the peak ampli-

tude of the dominant signal and I0(·) is the zeroth-order modified Bessel function of

the first kind. The Ricean distribution is characterized in parameter K := A2/(2σ2).

When K goes to 0, that is, the specular component diminishes to zero, the Ricean

distribution degenerates to a Rayleigh distribution with pdf

pdf(x) =





x
σ2 e

− x2

2σ2 x ≥ 0

0 x < 0
. (2.3)

Small-scale fading can be classified based on multipath time delay spread into

flat fading and frequency selective fading. The received signal is said to experience

flat fading if the wireless channel has a constant gain and linear phase response over

a bandwidth which is greater than the signal bandwidth. On the other hand, the

channel is under frequency selective fading if the channel possesses a constant-gain
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and linear phase response over a bandwidth that is smaller than the bandwidth of

transmitted signal.

Orthogonal frequency division multiplexing (OFDM) is one of the most popu-

lar schemes for broadband wireless networks to overcome inter-symbol-interferences

caused by multipath propagations in a frequency selective channel. The broadband

channel is divided into a number of equally spaced frequency bands, each carrying a

portion of the user information.

2.1.2 Single-Hop Multiuser Wireless Systems

Single-hop multiuser wireless system is a simple network model consisting of N

users communicating with a common centralized controller through a same channel

(Fig. 2.1-a). This model can be used to describe the signal-cell wireless system,

satellite system and WLAN. The corresponding centralized controller corresponds

to base station, satellite and access point, respectively. The users share the same

channel by different multiple access techniques, such as time division multiple access

(TDMA), frequency division multiple access (FDMA) and code division multiple ac-

cess (CDMA). The broadcast and multiple access channels are used to model two-way

transmission.

In multiuser systems, the received signals from (or to) different users may expe-

rience different attenuation. By adaptively scheduling the users, and/or dynamically

assigning resources such as transmission power, subcarriers, we can take advantage

of this channel diversity, which is called multiuser diversity. The theory of multiuser

diversity has been applied in practice. Take Qualcomm’s HDR (High Data Rate)

system (1xEV-DO) downlink case for example. HDR downlink transmission operates

on a time-division basis, and scheduler decides which user to be served in each time
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a. b.

c. d.

Figure 2.1. Network architecture a. single hop network b. linear multiple hop network
c. PMP network d. mesh network

slot. The diversity gain is exploited by scheduling the user with best instantaneous

channel condition [32].

2.1.3 Multi-hop Wireless Systems

Deployments of multi-hop relays have the potential to exploit various benefits,

such as expanding coverage and enhancing throughput and system capacity since

they may shorten the transmission distance and provide the opportunity of frequency

reuse.

Point-to-multi-point (PMP) tree and mesh networks are two of the most promising
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topologies for future multi-hop wireless networks. For example, these two topologies

has been proposed by current wireless standard IEEE 802.16j [52]. Under these two

architectures, a source is allowed to communicate with a destination with the help of

multiple relaying nodes. PMP network typically has a carrier-owned infrastructure.

One end of the path in PMP networks is the base station. Linear multiple hop

network (Fig. 2.1-b) is one specific case of PMP networks (Fig. 2.1-c), consisting of a

one-dimensional chain of nodes including a source, a destination, and multiple relays.

The complexity of relay station is expected to be much less than that of legacy IEEE

802.16 base stations, thereby reducing infrastructure deployment cost and improving

the economic viability of IEEE 802.16 systems [1].

In mesh networks, routing is controlled by subscriber equipment and there may be

multiple connections between two users. Fig. 2.1-d gives an mesh network layout. A

wireless mesh network example is a mini wireless mesh router launched by US-based

firm Meraki in early 2007 [49].

2.2 Performance Measures

2.2.1 Bit Error Rate (BER)

Bit error rate is the percentage of bits that have error relative to the total transmit-

ted bits. It measures the reliability of point-to-point communication. The derivation

of a closed-form expression of BER is generally difficult except for some specific cases.

It has been shown in [18] that, for uncoded M-QAM, the relation between BER and

the received signal-to-noise ratio (SNR) and the number of M-QAM is approximately

given by

BER ≈ 2exp

(−1.5γ

M − 1

)
, (2.4)
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where M is the number of M-QAM constellation points and γ is the average received

SNR. Since the number of data bits per symbol is log2 M , and the bandwidth is

equal to the inverse of the duration of each M-QAM symbol, the transmission rate,

or say, spectral efficiency is also log2 M . Equation 2.4 can be used to derive SNR gap

expression in the next subsection.

2.2.2 Transmission Rate

Innovations in the physical layer, such as better modulation and coding schemes

does not only help to reduce in BERs for a fixed spectral efficiency and SNR, which

the users do not directly observe, but also improve transmission rate, for a fixed BER

requirement, which the user can more directly observe.

The instantaneous transmission rate in the absence of other users’ interference

depends on the allowable BER, and can be expressed as [54]

r = log2

(
1 +

p(g)g

ΓN0

)
, (2.5)

where N0 is the noise power, p(g) is power allocation scheme according to channel state

information g and Γ is the SNR gap [54]. Equation (2.5) gives a generalized rate-power

curve. When instantaneous mutual information is used to characterize the achievable

transmission rate, we have Γ = 1 (0dB). In this case, r is the maximum possible

information transfer rate per unit bandwidth (in bit/s/Hz) with reliable transmission

over a channel, subject to specified constraints. If practical signal constellations are

used, Γ is a constant related to a given BER constraint. For example, when uncoded

M-QAM constellation is used, we have Γ = − ln(5 · BER)/1.5, which can be derived

from (2.4).

For best effort traffics, users expect a high average rate and allow a long delay.

When channel statistics are assumed to be fixed, and the codeword length can be
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chosen arbitrarily long to average over the fading of the channel, the long-term rates,

averaged over the fading process

r̄ = E(r) (2.6)

can be achieved, where E(·) represents the expectation over the distribution of channel

realization. The definition of average rate is relevant for situations when the delay

requirement of the users is much longer than the time scale of the channel fading.

2.2.3 Outage Probability

When the delay requirement is shorter than the time scale of channel variations,

which occurs in many real-time services, one has to consider maintaining the target

transmission rate and avoiding outage in most of fading conditions through dynamic

resource allocation. An outage is an event that the actual transmission rate is below

a prescribed transmission rate ([11] and [43]). Outage probability can be viewed as

the fraction of time that a codeword is decoded wrongly. For a given finite average

power constraint, it may not be possible to achieve the target rate all the time. Thus,

transmission outage is inevitable under severe fading condition. Mathematically, the

outage probability is given by

P out , Prob(r < R). (2.7)

where R is the target transmission rate.

The minimum outage probability problem can be generally solved in two steps

as proposed in [11]. First, for each channel state, the short-term minimum resource,

e.g., power, required to guarantee the target end-to-end transmission rate R is to be

determined. The second step then determines a threshold to control the transmission

on-off subject to certain constraints, e.g., average power constraint.
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2.2.4 Utility

Utility is used to indicate the level of satisfaction of the decision maker as a result

of its actions and is always used in the area of economics. The formal definition of

utility function is given by [21],

Definition 1: A function that assigns a numerical value to the elements of the

action set A (u : A → R) is a utility function, if for all x, y ∈ A, x is at least as

preferred compared to y if and only if u(x) ≥ u(y).

The utility function used to guarantee quality of service (QoS) can be understood

from two points of view, reverse-engineering and foward-engineering [14]. In reverse-

engineering, the given protocols implicitly determine the form of utility function. For

example, the improvement in the version of TCP in the FAST Project is enlightened

by insights from reverse-engineering TCP. In forward-engineering, utility function

typically provide a metric to define optimality of resource allocation. For instance, in

the wireless data scheduling context, the proportionally fair (PF)1 scheduling algo-

rithm is optimal when utility function is defined as
∑

i log(r̄i), where r̄i is the average

rate of user i. The objective function in network protocol design could be sum of

utility functions of rate, delay, power, etc., of end users. It also could be coupled

across the users, e.g., network lifetime defined in Chapter 4, and end-to-end outage

probability defined in Chapter 6).

2.3 Constraints

While utility, as defined above, helps to construct objective function, one still

needs to find reasonable constraints for problem formulation.

1In PF algorithm, at each time slot t, the scheduler serves the user n for which rn(t)/r̄n(t)
is maximal, where rn(t) is instantaneous rate of user n at time slot t and r̄n(t) is exponentially
smoothed average service rates (defined in Chapter 3.
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2.3.1 Physical Constraints

Time constraint

In most of literatures, time frames are used to denote the shortest time periods

within which the channel conditions remain unchanged. This assumption is valid

under the condition that the actions in the network take place according to a common

timer. We will use this assumption in this thesis. If it is assumed that each time

frame can be accessed by all the N users in an adaptive time-sharing fashion, the

time constraint is given by
N∑

i=1

ρi = 1. (2.8)

where ρ = [ρ1, ρ2, . . . , ρN ] denotes the time-sharing adaptation policy, and ρi repre-

sents the fraction of the frame duration allocated to user i.

Power constraint

Two types of power constraint, peak power constraint and average power con-

straint, are common in wireless system. Peak power must be contained within fixed

bounds in every time slot regardless of previous transmissions. Such a constraint is

realistic in cases when the electronics driving wireless transmitters must be operated

within a certain power range. In infrastructure-based wireless network, uplink and

downlink transmission have different peak power constraints. For the uplink scenario,

the terminal of each user is power limited, while the total power provided by the

base station is limited for the downlink. In a wireless sensor network where nodes are

deployed with a fixed amount of energy Ei, the network is guaranteed to last for Ei/pi

units of time, where pi is the transmission power of node i used in each time unit.

Many literatures also consider the average power constraint, which allows energy to

be stored and used later to either extend network lifetime or enable more powerful

future transmissions. The assumption of average power constraint can be found in

[11; 42; 43; 20; 66].
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2.3.2 Hard QoS Constraints

In contrast to elastic QoS measure which may be treated as objective functions,

some hard, inelastic QoS measures must be treated as inflexible constraints. Two

specific hard QoS constraints are the following:

Target rate

In transmission of hard real time traffic, a constant transmission rate must be kept

with probability one regardless of channel condition. when the real transmission rate

is lower than the target rate, an outage occurs. When we face the resource allocation

problem in a heterogeneous multiuser system supporting both best effort traffic and

hard real time traffic, maintaining target rates for hard real time traffic is necessary.

An example can be found in [63].

Estimation accuracy

For a sensor network deployed for decentralized estimation, the estimation ac-

curacy achieved at the FC is usually more important than the total or individual

transmission rate from the perspective of WSN design and, thus, is taken as one of

the optimization constraints when network lifetime is chosen as the objective function.

2.4 Convex Optimization

In the last two decades, the gradient descent and the least square algorithms were

two typical algorithms used in solving optimization problem. Nevertheless, they suffer

from slow convergence and sensitivity to initial point and step size. One powerful way

to avoid these problems is to derive a convex reformulation or a convex relaxation of

the original non-convex formulation. Optimization based approaches have been ubiq-

uitously used in communications and signal processing [47; 45; 53]. Many resource
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allocation problems can be investigated using convex optimization approaches. This

section introduces the basic convex optimization concepts.

2.4.1 Convex Optimization Problems

A generic optimization problem can be expressed as follows

min f0(x) (2.9)

s.t. fi(x) ≤ 0, i = 1, . . . , m,

hi(x) = 0, i = 1, . . . , r

x ∈ S

where f0 is called objective function and x is called optimization variable. The op-

timization problem is said to be convex when the functions f1, . . . , fm are convex in

x ∈ RN , h1, . . . , hm are affine function and the set S is convex. If we change “min”

to “max” and the inequalities from “fi ≤ 0” to “fi ≥ 0”, then it is still a convex

optimization problem if and only if all fi are concave.

Convexity is important in optimization problems because a local optimum is also

a global optimum in a convex problem. Consequently, when a design problem is

converted to a convex form, the same optimal solution is achieved. Furthermore,

many powerful numerical algorithms exist to solve for the optimal solution of convex

problem efficiently.
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2.4.2 Lagrangian Duality and Karush-Kuhn-Tucker Condi-

tion

Consider problem (2.9), and call it primal optimization problem, and x the primal

vector. We define the Lagrangian function as

L(x, λ, ν) := f0(x) +
m∑

i=1

λifi(x) +
r∑

j=1

νjhj(x).

The vectors λ and µ are called the dual variables associated with problem (2.9). The

dual function is defined as

g(λ, ν) := min
x∈S

L(x, λ, ν).

The corresponding dual optimization problem is

max g(λ, ν)

s.t. λ ≥ 0, ν ∈ Rr.

If the global minimum value of primal problem (2.9) is f∗ and the one of dual problem

(2.10) is g∗, then we have f∗ ≥ g∗. Usually, we have strong duality in the sense that

f∗ = g∗. When the primal problem is convex, the Karush-Kuhn-Tucker (KKT)

conditions are necessary and sufficient for the primal and dual optimization.

When the primal problem has a coupling constraint such that, when relaxed,

the optimization problem decouples into several subproblems, which independently

decide the amount of resource to be allocated according to a given resource price.

This method is called dual decomposition, which will be used in Chapter 4.
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2.5 Optimization of Functionals with Integral

Constraints

This section examines a mathematical optimization problem—that of optimizing

a function of an unknown function [28]. It is a useful tool to derive the relation

between optimal resource allocation and channel condition and/or system preference

under time-average type of constraints, e.g., time-average power constraint.

Suppose that we seek some function u(t) which will cause the integral of a known

function Φ{u(t), t} to be optimized. This integral, which is a function of an indepen-

dent variable t and the unknown dependent variable u(t), is known as a functional.

The problem of optimizing a functional is often referred to as a variational problem.

Considering the optimization of an integral involving only one unknown function,

let

I = max(min)

tf∫

t0

Φ(u, t)dt, (2.10)

Subject to an integral constraint of the form

G =

tf∫

t0

Ψ(u, t)dt = 0. (2.11)

where u is an unknown function of t, which we shall assume to be continuous and to

have a continuous second derivative with respect to t. Let us assert that the boundary

conditions are known; i.e., u(t0) = u0, u(tf ) = uf . We seek the particular function

u(t) that satisfies the boundary conditions and optimizes the above integral. Through

the introduction of a Lagrange multiplier, we form the augmented integral

L = I + G (2.12)

=

∫ tf

t0

[Φ(u, t) + λΨ(u, t)] dg, (2.13)
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where λ , the Lagrange multiplier, is an undetermined constant. Application of the

Euler-Lagrange equation results in the necessary condition for an optimum to exist,

∂Φ

∂u
+ λ

∂Ψ

∂u
= 0, (2.14)

where λ can be determined by (2.11).
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Chapter 3

Joint Optimization of Average

Rate and Rate Oscillation for

Variable-Rate Wireless Networks

In this chapter, we consider joint optimization of average rate and rate oscillation

in a multi-user system over a time-varying wireless fading channel. Multiple users

are served by a common base station. In each time frame a scheduler determines the

current transmission parameters of all users, such as power and rate, according to

current channel state information and long-term system preferences.

Many existing scheduling and resource allocation schemes are formulated as a

utility-based throughput allocation problem, such as [38; 32; 2; 62]. In [38], the

scheme is in essence restricted to a linear utility function. It is shown that the

sum capacity of a wireless system is maximized when only the user with the maxi-

mum achievable rate is chosen for transmission. However, this scheme could result

in significant unfairness among users with asymmetric channels. In order to address

the fairness concerns, the proportionally fair (PF) scheduling algorithm is proposed

31



in [32] and [68] by using a log-form utility function of average transmission rate. The

PF scheduling is then generalized by Agrawal et al. in [2] to a gradient scheduling

algorithm, which applies to any increasing and concave utility function of average

transmission rate. The gradient scheduling algorithm suggests that at any time in-

stant, the best scheduler should maximize the sum of weighted transmission rates

and the weight depends on system preferences and channel conditions. Although the

gradient scheduling algorithm is developed from a myopic view of the optimization

problem (maximizing the utility function of average transmission rate), Stolyar in [62]

proves its asymptotic optimality for a general model, which allows for simultaneous

transmission of multiple users and the set of scheduling decisions to be discrete (as

in [32]).

The gradient algorithms in [32; 3; 62] can improve efficiency in terms of average

transmission rate but result in high rate oscillation. This phenomenon motivates us

to find the answer to the following question: how to joint optimize average trans-

mission rate and rate oscillation? We note that if the utility function increases with

average rate but decreases with rate variance, it can be used to facilitate the choice

of the combinations of average rate and rate oscillation. A gradient based scheduling

algorithm is developed to maximize the proposed utility function from a myopic view

(in the sense that the difference between utilities in two consecutive time frames is

maximized). The proposed algorithm degenerates to the traditional gradient schedul-

ing algorithm (TGSA) in [2] and [62] when we omit the rate variance term in the new

utility function so that the utility is a function of the average rate only. Thus, we refer

to our algorithm as the generalized gradient scheduling algorithm (GGSA). It can be

shown that at each time frame, the best scheduler of GGSA is not to maximize the

sum of weighted transmission rates (as in [2] and [62]), but the sum of concave func-

tions of transmission rates. This coincides with our idea in [75] that maximizing the

sum of concave functions of transmission rates can obtain a balance between average
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transmission rate and rate oscillation. Next, we analyze the dynamics of transmission

rate using ordinary differential equation and show that GGSA is asymptotically opti-

mal under the condition that the transmission rate vector, with appropriate scaling,

converges to a fixed vector as time goes into infinity.

The rest of this chapter is organized as follows. In Section 3.1, the system and

channel model are presented. Section 3.2 presents the TGSA. Section 3.3 derives the

GGSA for variable rate transmission. We study the dynamics of average transmission

rates and rate variances under GGSA in Section 3.4 and give an example in time-

sharing wireless network in Section 3.5 . Numerical results are given in Section 3.6.

Finally, Section 3.7 concludes the chapter.

3.1 System Model

Consider a wireless system with a base station (BS) and a finite set of users,

denoted by N = {1, 2, . . . , N}. The communication link between each user and the

base station is modelled as a time-varying fading channel. And the transmission is

centrally coordinated by BS on a time frame basis. In time frame k, the channel

state between BS and user i is denoted as gi(k) ∈ G, where G is the channel state

space. Here we assume that {gi(k), k = 1, 2, . . .} is ergodic and stationary with the

distribution γ.

We consider the situation where each user always has data for transmission, and

are interested in optimizing the pair of the average rates and the rate variances

(m, σ2) := (m1, . . . , mN , σ2
1, . . . , σ

2
N) so as to maximize a utility function U(m, σ2).

Here, rate variance is chosen to quantify the rate oscillation. The utility function U

represents the system preferences. Since the system expects a high average transmis-

sion rate and a low rate oscillation, the utility is assumed to be increasing in m but
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decreasing in σ2. Mathematically, the problem can be expressed as

max U(m, σ2) (3.1)

s.t. (m, σ2) ∈ V ,

where we further assume that U is continuously differentiable in m and σ2 but not

necessarily concave. The steady-state average rate and rate variance (ARRV) region

V is defined as

V :=
{
(m, σ2) ∈ R2N

+ : ∃r(g) ∈ R(g) ∀g ∈ G

such that m =

∫

G
r(g)γ(dg), and

σ2 =

∫

G
[r(g)× r(g)−m×m] γ(dg)

}
,

where r is the transmission rate vector, and R(g) is the achievable rate region when

the network channel state is g.

Let Xi(k) and Yi(k) denote the average rate and rate variance, respectively, for

user i up to the k-th time frame. If ri(k) is the selected transmission rate of user i at

time frame k, then Xi(k) and Yi(k) can be updated as:

Xi(k + 1) =
1

k

k∑

l=1

ri(l)

= Xi(k) +
1

k
[ri(k)−Xi(k)];

Yi(k + 1) =
1

k

k∑

l=1

[ri(l)−Xi(l)]
2

= Yi(k) +
1

k

{
[ri(k)−Xi(k)]2 − Yi(k)

}
.

If we use a small fixed step size µ to replace 1/k, then the recursive forms can be

rewritten as

Xi(k + 1) = Xi(k) + µ[ri(k)−Xi(k)]; (3.2)

Yi(k + 1) = Yi(k) + µ
{
[ri(k)−Xi(k)]2 − Yi(k)

}
. (3.3)
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3.2 Traditional Gradient Scheduling Algorithm

Before moving to the proposed generalized gradient scheduling algorithm, let us

review the traditional gradient scheduling algorithm. Considering a myopic view

of the optimization problem, we chose r(k) to maximize U(X(k + 1)) given that

r(0), · · · , r(k − 1) have already been chosen, where U(·) is an increasing, strictly

concave, and continuously differentiable utility function on R+ (this restriction is

only valid in this section). Thus, it is key to find the next step action given whatever

action was taken in the past. Since we have

U
(
X(k + 1)

)− U
(
X(k)

)

= U
(
X(k) + µ[r(k)−X(k)]

)− U
(
X(k)

)

≈ µ∇U(X(k))T · [r(k)−X(k)].

The last approximation is true since µ is sufficiently small. Thus, the best choice

given the past actions is to select a current instantaneous rate that satisfies

r(k) = arg max
v(k)∈R(g)

∇mU(X(k))T · v(k). (3.4)

Note that the utility function U(·) defined in this section is only a function of

average rate. When all the users have the same derivative of U with respect to

average rate, the best scheduler in TGSA reduces to maximum rate rule. Formally,

we schedule at time k, the user

j = arg max
i

ri(k). (3.5)

When the utility has a specific form as follows

U(m) =
N∑
i

log(mi), (3.6)

TGSA degenerates to PF algorithm, given by

j = arg max
i

ri(k)

Xi(k)
. (3.7)
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3.3 Generalized Gradient Scheduling Algorithm

In this section we develop a generalized gradient scheduling algorithm to solve the

problem in (3.1).

Adopting the method in Section 3.2, instead of finding the optimal solution to

the problem in (3.1) directly, we consider a simple gradient based scheduling policy

which attempts to adapt the current rates such that we have the largest first order

change in the utility, namely

U
(
X(k + 1),Y(k + 1)

)− U
(
X(k),Y(k)

)

= U
(
X(k) + µ[r(k)−X(k)],Y(k) + µ {[r(k)−X(k)]×

[r(k)−X(k)]−Y(k)} )− U
(
X(k),Y(k)

)

= µ∇mU(X(k),Y(k))T · [r(k)−X(k)] + (3.8)

µ∇σ2U(X(k),Y(k))T · {[r(k)−X(k)]×

[r(k)−X(k)]−Y(k)} .

In (3.8), the last equality holds when the step size µ is sufficiently small. The best

scheduler of the system in state g is to choose a transmission rate vector r(k) that

satisfies

r(k) = arg max
v(k)∈R(g)

∇mU(X(k),Y(k))T · v(k) +

∇σ2U(X(k),Y(k))T ·

[(v(k)−X(k))× (v(k)−X(k))]

= arg max
v∈R(g)

N∑
i=1

[
ai(k)v2

i (k) + bi(k)vi(k)
]

(3.9)

where

ai(k) =
∂U(X(k),Y(k))

∂σ2
i

,

and

bi(k) =
∂U(X(k),Y(k))

∂mi

− 2Xi(t)
∂U(X(k),Y(k))

∂σ2
i

.
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Remark : Let us observe the best scheduler in (3.9). When U strictly increases

in mi and decreases in σ2
i for all i (it is a natural assumption in prac-

tice), we have ai(k) < 0 and bi(k) > 0 for all i and k. Hence, unlike

the gradient scheduling algorithms in [2] and [62] which maximize

the sum of weighted transmission rates at each time frame, the best

scheduler of GGSA is to maximize the sum of concave functions of

transmission rate

ui(ri) := air
2
i + biri. (3.10)

The advantage of GGSA is that it can jointly optimize the average rates and rate

oscillations. Consider a simple case of GGSA corresponding to a utility function

U(m, σ) =
N∑

i=1

[
log(mi)− α log(σ2

i )
]
, (3.11)

where α ≥ 0 is a parameter that reflects the sensitivity of the communication service

to rate oscillation. It is easy to see that when α = 0, it is just the same as the

utility in the PF algorithm. Thus, we refer to it as PF-GGSA. The best choice of the

PF-GGSA is to select a rate vector that satisfies

r = arg max
v∈R(g)

N∑
i=1

ui(vi) (3.12)

where

ui(x) = − α

Yi

[
x2 − 2

(
Xi +

Yi

2αXi

)
x

]
.

It is noted that the function ui increases in the region [0, Xi+Yi/(2αXi)] but decreases

in the region [Xi + Yi/(2αXi), +∞). This provides the key mechanism that the

maximum transmission rate of user i chosen by the best scheduler is always bounded

by Xi + Yi/(2αXi). Therefore, the shared resource (e.g., time or frequency) can be

allocated to other users with lower transmission rate. A larger value of α means

more sensitivity to rate oscillation. Correspondingly, the selected transmission rate

is restricted within a smaller region.

37



3.4 Asymptotic Analysis of GGSA

We study the dynamics of average rates and rate variances under the GGSA

algorithm when the step size µ approaches zero. For this purpose we define a fluid

sample path (FSP) under GGSA. For a fixed step size µ, let Xµ(k) and Yµ(k) be the

realizations of an average rate and rate variance vector process. For a given channel

state realization gµ = (gµ(k), k = 0, 1, 2, . . .) and a fixed initial state Xµ(0) and

Yµ(0), Xµ(k) and Yµ(k) are uniquely determined. Consider the following continuous

time process
(
xµ(t),yµ(t)

)
,

xµ(t) := Xµ(bt/µc), t ≥ 0

yµ(t) := Yµ(bt/µc), t ≥ 0,

where bxc := sup{i ∈ Z : i ≤ x}.

A pair of vector-functions
(
x = (x(t), t ≥ 0),y = (y(t), t ≥ 0)

)
is called a fluid

sample path (FSP) [62], if there exist a sequence of positive values of µ such that as

µ → 0, a sequence of sample path (xµ(t),yµ(t)) satisfy

(xµ(t),yµ(t)) → (x(t),y(t)) u. o. c.

Here, u. o. c. means uniform on compact sets convergence of function.

Some properties of FSPs are described in the following lemmas based on which

we establish Theorem 1.

Lemma 1: For any FSP, x and y are Lipschitz continuous in [0,∞).

Proof: Recall the update equations (3.2) and (3.3) in Section 3.3. Applying
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these equations iteratively, we have

Xµ
i (k) =

k−1∑
j=1

µ(1− µ)jrµ
i (k − j) + (1− µ)kXµ

i (0)

≤ max{r̄, Xµ
i (0)}, ∀k ≥ 0

Y µ
i (k) =

k−1∑
j=1

µ(1− µ)j[rµ
i (k − j)−Xµ

i (k − j)]2

+(1− µ)kY µ
i (0)

≤ max{max{r̄2, [xµ
i (0)]2}+ r̄2Y µ

i (0)}, ∀k ≥ 0,

where r̄ is the upper bound on the rate rµ
i (k), ∀i, k, µ > 0. Then, we have

|Xµ
i (k)−Xµ

i (k − 1)| = |µrµ
i (k)− µXµ

i (k − 1)|

≤ µ[rµ
i + Xµ

i (k − 1)]

≤ µ[2r̄ + Xµ
i (0)]. (3.13)

Similarly, we can prove

|Y µ
i (k)− Y µ

i (k − 1)|

≤ µ
[
2 max{r̄2, [xµ

i (0)]2}+ 2r̄2 + Y µ
i (0)

]
. (3.14)

The inequalities (3.13) and (3.14) imply that (x,y) is Lipschitz continuous in [0,∞).

Under the assumption that the chosen rate vector r(k) = F
(
X(k),Y(k),g(k)

)
is

continuous for almost all
(
X(k),Y(k),g(k)

)
, we have the Lemma 2.

Lemma 2: The family of FSPs (x,y) satisfies the ordinary differential equations

(ODE),

ẋ = F̄(x,y)− x (3.15)

ẏ = F2(x,y)− 2x× F̄(x,y)− x× x− y (3.16)
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where

F̄(x,y) =

∫

G
F

(
x(s),x(s),g

)
γ(dg) (3.17)

F2(x,y) =

∫

G
F

(
x(s),x(s),g

)
(3.18)

×F
(
x(s),x(s),g

)
γ(dg).

Proof: Based on Lemma 1 of [9], we can obtain

x(t) = x(0) +

∫

G×[0,t]

[
F

(
x(s),x(s),g

)− x(s)
]
γ(dg)ds

= x(0) +

∫ t

0

[
F̄

(
x(s),y(s)

)− x(s)
]
ds

y(t) = y(0) +

∫

G×[0,t]

{[
F

(
x(s),x(s),g

)− x(s)
]×

[
F

(
x(s),x(s),g

)− x(s)
]− y

}
γ(dg)ds

= y(0) +

∫ t

0

[
F2

(
x(s),y(s)

)− 2x(s)×

F̄
(
x(s),y(s)

)
+ x(s)× x(s)− y(s)

]
ds

Since (x,y) of an FSP is Lipschitz continuous, its derivatives exist at almost all

points and, therefore, for every regular point t ≥ 0, (x,y) satisfies the ODEs (3.15)

and (3.16).

Lemma 3: Suppose (x,y) is a stationary FSP, namely

x(t) ≡ x∗, y(t) ≡ y∗, ∀t ≥ 0. (3.19)

Then (x,y) is a solution to the problem in (3.1).

Proof: For simplicity, we define

H̄(x,y) := F2(x,y)− 2x× F̄(x,y)− x× x.

When x(t) ≡ x∗, we have F̄(x,y) = x from (3.15). It follows that

H̄(x,y) = F2(x,y)− [
F̄(x,y)

]× [
F̄(x,y)

]
,
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By (3.9), (3.17) and (3.18), we have

(
F̄(x,y), H̄(x,y)

)

= arg max
(v,u)∈V

∇mU(x,y)T · v +∇σ2U(x,y)T · u.

When (3.19) holds, we have

(
F̄(x,y), H̄(x,y)

)
= (x∗,y∗),

This implies that (x∗,y∗) is a solution to the following problem

max
(v,u)∈V

∇mU(x∗,y∗)T · v +∇σ2U(x∗,y∗)T · u,

which means that (x∗,y∗) is a maximal point of the set V . In addition,
(∇mU(x∗,y∗),

∇σ2U(x∗,y∗)
)

is normal to the set V . Therefore, (x,y) is a solution to the problem

in (3.1).

From Lemma 1, 2 and 3, we have Theorem 1.

Theorem 1: Suppose FSP, (x,y) satisfies
(
x(t),y(t)

) → (x∗,y∗) as t → ∞, then

(x∗,y∗) is a solution to the problem in (3.1).

Proof: The proof is analogous to [3, Proof of Theorem 1].

Theorem 1 reveals that GGSA is asymptotically optimal under the condition that

the transmission rate vector converges to a fixed vector as time goes into infinity.

Whether the average rate and rate variance vectors will converge is, however, not

known. We shall study the convergence properties using numerical results in the next

section.

3.5 GGSA in Time-Sharing Wireless Networks

In this section, We concentrate on GGSA in a time division multiplexing (TDM)

system where each time frame can be accessed by all the N users in an adaptive
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time-sharing fashion. The channels of different users are statistically independent

and follows the exponential distribution, denoted by

pdfi (g) =





1
ḡi

exp
(
− g

ḡi

)
g ≥ 0

0 otherwise
, (3.20)

where ḡi is the average channel gain of user i. Let pi denote the transmit power

allocated to or from user i. The achievable transmission rate of user i in the absence

of other users can be expressed as

ci = log2

(
1 +

pigi

ΓN0

)
, (3.21)

where N0 is the noise power, and Γ is the SNR gap as defined in Chapter 2. Let

ρ(g) = (ρ1, ρ2, . . . , ρN) denote the time-sharing adaptation policy with respect to

the network channel gain g, where ρi represents the fraction of the frame duration

allocated to user i. The actual transmission rate of user i in each time frame, ri, can

therefore be written as

ri = ρici = ρi log2

(
1 +

pigi

ΓN0

)
. (3.22)

3.5.1 Continuous Time Sharing (TS) with Perfect CSI

We assume that the transmission powers between BS and mobiles are constant

and identical for different users, i.e., pi(t) = p, ∀i, t, and that the wireless network is

fully loaded. We choose
∑

i ui(ri) given in (3.12) as the objective function in each

time frame. The goal is to find the optimal time-sharing adaptation policy ρ∗(g)

relative to the instantaneous network channel condition g, so as to maximize the

objective function. The optimization problem can be expressed mathematically as

max
ρ

ITS ,
N∑

i=1

ui(ri) (3.23)

s.t.
N∑

i=1

ρi = 1. (3.24)
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Since the utility ui(·) is a concave function of ri by assumption, ui(·) is also concave in

ρi. Therefore, taking the derivative of the Lagrangian
∑N

i=1 Ui(ρi, gi)+λ(1−∑N
i=1 ρi),

and equating it to zero, we obtain ρ∗i as

ρ∗i (g) =

[(
∂Ui(ρi, gi)

∂ρi

)−1

(λ)

]+

, i = 1, 2, . . . , N. (3.25)

In (3.25), (∂Ui/∂ρi)
−1 (·) is the inverse function of (∂Ui/∂ρi)(·)1, and [x]+ ,

max(0, x).

If we allow both the transmission time and power to change with respect to channel

conditions in each time frame, the optimization problem of time sharing is extended to

finding the joint optimal time-sharing and power control policy (JTPC). Uplink and

downlink transmission are considered separately due to different power constraints.

For the uplink, the power source is, generally, rechargeable batteries attached to

the mobile devices. Thus, the optimization is subject to each user’s average power

constraint.

The closed-form solution to the joint optimization is generally difficult to obtain

due to nonlinearity of the utility function U in ρ and p. The nonlinear Gauss-Seidel

algorithm [6] can be used to search for the optimal time-sharing vector ρ∗ and vector

s∗ = [s∗1, s
∗
2, . . . , s

∗
N ] (si := ρipi). In Gauss-Seidel algorithm, the optimization of ρ

and s is carried out successively at each iteration, and the iteration stops when the

difference of objective function between two last iterations is sufficiently small. The

condition that U is continuously differentiable and concave in (ρ, s) guarantees the

convergence of the nonlinear Gauss-Seidel algorithm. The proof can be seen in [6,

Prop 3.9 in Section 3.3].

While JTPC utilizes two degrees of freedom in resource allocation and has much

higher computational complexity, its performance is not expected much higher than

1When the utility function is strictly concave, (∂Ui/∂ρi)(·) is a monotonically decreasing function
of ρ and, hence, its inverse exists.
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that of TS in the high SNR region. This is attributed to the fact that the transmission

rate is linear in time, but concave in transmission power. That is, at high SNR, the

gain from power control is smaller than from time sharing adaptation. This is also

verified by the simulation results in [75], where we compare the objective function

obtained by the proposed TS and JTPC schemes. It is observed that at high SNR

the performance gain of JTPC over TS is not noticeable. Hence, in the remaining

parts, we assume the absence of power control.

3.5.2 Quantized Time Sharing With Limited Channel Feed-

back

In scheduling the downlink transmission, the BS needs to know each user’s channel

state information (CSI). This could be gained by sending the CSI from each user to

the base station through a feedback channel upon channel estimation at each user

terminal. In practice, perfect channel feedback is not feasible due to limited capacity

of the feedback links. We assume in this subsection that the channel estimate of each

user is quantized into K = 2M regions using M bits. Let G = {G1, G2, . . . , GK+1} be

the set of channel gain thresholds in increasing order with G1 = 0 and GK+1 = ∞.

If the channel gain of user i falls into range [Gk, Gk+1), we say user i is in channel

state k, and denote it as Si = k. Suppose we apply the equal-probability method to

do the channel partitioning and the channel gains follow exponential distribution, the

threshold set G is simply the channel partitioning boundaries.

Furthermore, time sharing fractions in practice cannot be an arbitrary number,

but are restricted to a finite set of values due to switching latency and difficulties in

rigid synchronization. Therefore, we assume that a time frame is partitioned into L

slots with equal length. Correspondingly, the number of users which can transmit

in the same frame is limited by L. At the beginning of each frame, the base station
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computes the optimal time-sharing vector ρ∗ defined in

ρ∗(S) = arg max
ρ(S)

∫ GS1+1

GS1

∫ GS2+1

GS2

. . .

∫ GSN +1

GSN

[
N∑

i=1

ui(ρi(g), gi)

]
dg (3.26)

s.t. ρi ∈
{

0,
1

L
,
2

L
, . . . , 1

}
, ∀i ∈ {1, . . . , N} and

N∑
i=1

ρi = 1.

upon obtaining the network channel states S = [S1, S2, . . . , SN ].

The time sharing policy considered here maps the current channel states S ∈ RN
+

to a time-sharing vector. To avoid the exponential complexity in exhaustive search,

an online greedy algorithm with complexity of O(LN) is proposed. Beginning with

an initial solution ρ = [0, 0, . . . , 0], each time slot is assigned at one iteration to the

most favorable user that maximizes the increment of the current objective till the

total L slots are traversed. The greedy algorithm is outlined below:

1. Initialization

Let v = 0 (the index of the time slot), ρ
(0)
i = 0 and u

(0)
i = 0 (∀i ∈ {1, . . . , N}).

2. Allocate the (v + 1)th time slot to the user indexed by i∗

i∗ = arg max
i∈{1,...,N}

∫ GSi+1

GSi

[
ui(ρ

(v)
i + 1/L)− ui(ρ

(v)
i )

]
dgi. (3.27)

Let ρ
(v+1)
i∗ = ρ

(v)
i∗ + 1/L and ρ

(v+1)
i = ρ

(v)
i for i 6= i∗.

3. Let v = v + 1, and return to Step 2) until v = L

It is shown in the Appendix I that this greedy algorithm leads to the optimal

solution to Problem (3.26).

3.6 Numerical Results

In the numerical study, a time-sharing wireless network with symmetric users is

considered. The target BER is set to be 10−5, which results in a SNR gap of 8.2dB.
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Figure 3.1. Average rate and rate variance of user one versus average received SNR

The average received SNR is varied from 0 dB to 35 dB. We assume that the feedback

channel is error free and has no delay. Each run comprises 50000 time frames. The

PF-GGSA scheduler defined in (3.12) is used for simplicity.

Fig. 3.1 compares the average rates and the rate variances by varying the pa-

rameter α in the set {0, 0.05, 0.1, 0.2} using optimal time sharing policy when the

network has 4 users. It is observed that the GGSA has a flexible balance between

the average rate and the rate oscillation through adjusting the parameter α. When

α = 0, the GGSA is equivalent to the PF algorithm in [32], and it can obtain the

maximum average transmission rate (in the symmetric case) while it suffers a high

rate oscillation.

Figs. 3.2 and 3.3 present the trajectories of the GGSA with different starting

points and step sizes, µ, using optimal time sharing policy. When the step size is

sufficiently small, the trajectories with different starting points and different step
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Figure 3.2. Trajectories of the average rate of user one with different starting points
and step sizes

sizes always converge to the same optimal point. The speed of convergence depends

on the step size. A small step size corresponds to a slow speed of convergence. When

the step size is not small enough, the trajectories oscillate around the optimal points.

Next, we compare the performance of the quantized time sharing with limited

channel feedback (QTSL) with optimal time sharing.

Fig. 3.4 shows the performance of the quantized time sharing with limited channel

feedback (QTSL) policy. The CSI is quantized at 3-bit resolution, and the number

of time slots is the same as the number of users in the network. It is seen that the

performance of QTSL is very close to that obtained by the optimal TS policy.

In Fig. 3.5, we illustrate the performance of the QTSL policy when the number of

time slots in a time frame is half of the number of users in the network. This time we

also vary the number of channel feedback bits from 2 to 3. There is a performance
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Figure 3.3. Trajectories of the rate variance of user one with different starting points
and step sizes
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gap between QTSL and TS. In addition, increasing the CSI quantization resolution

to beyond two bits does not lead to noticeable performance gain.

3.7 Conclusions

We proposed a GGSA for wireless networks supporting variable rate transmis-

sion. This algorithm can maximize a utility function that increases with average

transmission rate but decreases with rate variance. The utility function is capable of

facilitating the resource allocation with flexible combinations of average rate and rate

oscillation, which are both important performance metrics for variable rate trans-

mission. The GGSA suggests that the best scheduler should maximize the sum of

concave functions of instantaneous transmission rate at each time frame. We studied

the asymptotic performance of the algorithm, and showed that if the transmission
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rates converge, then the convergence point maximizes the desired utility function.

Numerical results show a good convergence performance of the algorithm in time

division multiplexing systems when the step size is small enough.
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Chapter 4

Lifetime Maximization for Wireless

Sensor Networks

The problem of dynamic resource allocation studied in Chapter 3 mainly focuses

on joint optimization of average rate and rate oscillation by exploring the channel

variance over time. That study is expected to be beneficial to the multiuser transmis-

sion for soft delay-constrained traffic in the context of infrastructure-based wireless

network. In this chapter, we will demonstrate that dynamic resource allocation is still

highly beneficial in energy efficient transmission design by exploring the heterogeneity

of sensor environment in wireless sensor networks (WSN) , even when there are no

channel variation over time.

Energy limitation is one of the greatest distinctions between a wireless sensor net-

work (WSN) and other wireless data networks such as cellular networks and wireless

local area networks (WLAN). A natural problem in this area is the maximization

of network lifetime, i.e., the time that it takes for the first node to die. The power

in WSN is consumed by transmission and reception, data processing, sensing, and

switching between active mode and sleeping mode. For simplicity, we consider only
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the power required for transmission which is dominant in total power consumption

as in [48] and [69].

Adaptive resource allocation design is a potent technique for improving wireless

data network performance under application-specific constraints [27]. The concept

is to adapt the transmission parameters, such as transmission power, transmission

time and channel bandwidth, to the underlying channel, interference, and system

preferences. The work [26] shows that adaptation can obtain up to 20 dB power

saving over non-adaptive transmission for a single communication link. In multi-

user systems, significant system performance gain can also be achieved by optimal

transmission scheduling and power control. For instance, in a multi-access channel,

the authors in [38] proposed a water-filling based power control algorithm to maximize

the sum-of-rate capacity subject to the average transmission power constraint of each

user.

The benefit to wireless data networks from adaptive resource allocation motivates

us to apply the adaptation in wireless sensor networks. The optimal power control

problem for the decentralized estimation of a noise-corrupted deterministic signal in

an inhomogeneous sensor network is studied in [69]. The proposed power control

scheme suggests that the sensors with bad channel should decrease quantization res-

olutions for total energy saving. Yao and Giannakis in [73] propose to minimize the

total energy consumption by varying the transmission times assigned to different sen-

sor nodes under the individual rate constraint for each node. However, minimizing

the total power consumption does not guarantee maximum lifetime for a network

since the objective, total power minimization, always results in some nodes with

non-rechargeable batteries running out of energy quickly [13]. In addition, existing

adaptation schemes relying on centralized algorithms in wireless data networks can-

not be applied directly in a WSN. This is because the fusion center only has limited

computation capacity and the network cannot afford large control signalling overhead.
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We consider the lifetime maximization for a cluster-based WSN. Sensor nodes

are organized into clusters. Each cluster consists of multiple sensor nodes and one

common fusion center (FC), and is responsible for monitoring a certain geographical

area. The focus of this chapter is on single-hop data collection from sensor nodes

to the FC in a particular cluster. The responsibility of sensor nodes is to sense the

surrounding environment, quantize the observation and report to the FC. We assume

that FC is less energy-constrained than sensor nodes.

In this chapter, integrated designs of quantization and transmission are inves-

tigated to maximize the network lifetime. The decision of a sensor node to select

transmission power, time and quantization resolution may depend on the informa-

tion of observation quality, channel condition and initial energy. We characterize the

optimal decision under two typical scenarios:

1. Uncorrelated source observation: Each sensor nodes are distributed sparsely

and observe uncorrelated signals.

2. Common source observation: All sensor nodes are located densely and observe

only one common physical phenomenon.

In the former scenario, the optimal solution indicates that the “weak” sensor nodes,

the ones with small product of channel gain and initial energy and/or low quality of

observation, should take longer time for transmission with a low received power. The

aim is to give these “weak” nodes priority to take advantage of “lazy scheduling” for

energy saving in order to avoid becoming the bottleneck of the whole WSN. In the

latter scenario, the optimal solution not only takes advantage of “lazy scheduling”,

but also “opportunistic quantization”, that is, the sensor nodes with high observation

qualities should increase their quantization resolution. We also demonstrate that the

optimal decision can be implemented in a partially distributed way. Simulation results
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show a significant lifetime gain over existing schemes, especially when the sensing

environment becomes more heterogeneous and the number of nodes increases.

The rest of the chapter is organized as follows. Section 4.1 describes the system

model. In Section 4.2 and 4.3, we obtain some properties of the optimal solutions and

develop partially distributed adaptive optimization algorithms for the two scenarios.

Section 4.4 presents and evaluates the simulation results and, finally, Section 4.5

concludes the chapter.

4.1 System Model

Consider a distributed estimation problem in a single-hop WSN depicted in Fig

4.1 with a FC and a set of K sensor nodes, denoted by K.

Source signal and observation noise: Each sensor, say the kth one, observes

a scalar xk, which are described by

xk = φk(θ) + ωk, k ∈ K, (4.1)

where vector θ is a p × 1 random signal of interest and ωk is additive observation

noise in which ωk (k ∈ K) are independent zero-mean random variable with variance

σ2
k. Generally, φk: Rp → R is a nonlinear function. However, in this chapter, we

particularly focus on two representative scenarios:

1. Uncorrelated source observation: p = K and φk(θ) = θk. It corresponds to the

networks where the K sensor nodes observe K uncorrelated signals.

2. Common source observation: p = 1 and φk(θ) = θ. In this case, vector θ is

reduced to a scalar. All sensors observe only one common physical phenomenon

θ.
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Figure 4.1. Data fusion procedure in a WSN

While it is hard to characterize the probability density function (pdf) of xk, it is

often possible to measure the observation noise variance σ2
k at the receiver without

the presence of the signal of interest. The value of σ2
k can directly be used to measure

the observation quality of sensor node k. Difference of observation qualities among

sensor nodes arises from different distances from the signals of interest and different

sensing resolutions.

Quantization: Due to the bandwidth and power constraints, it may be preferable

to let each node transmit a quantized version of xk instead of the analog-amplitude

xk to the FC to enable the final estimation. Suppose sensor observations, xk’s, have

a bounded range in the interval [−W,W ] for all k, where W is a known parameter

determined by the sensor’s observation range. When the pdf of xk is unavailable, xk

can be quantized into Lk bits by uniformly dividing the region [−W,W ] into 2L−1

intervals of length ∆, and mapping xk to a discrete message mk(xk, Lk) following the

same way as in [69]

mk(xk, Lk) = φk(θ) + ωk + vk(xk, Lk),
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where vk(xk, Lk) denotes the quantization noise which is independent of ωk. It is

shown in [70] that mk(xk, Lk) is an unbiased estimator of θ, namely, E(mk) = E(xk).

Moreover, the variance of mk approaches σ2
k at an exponential rate as L increases

E[|mk(xk, Lk)− φk(θ)|2] ≤ W 2

(2Lk − 1)2
+ σ2

k, ∀L ≥ 1, k ∈ K, (4.2)

where E denotes expectation taken over both the sensor observation noise and quan-

tization noise. The inequality in (4.2) comes from the fact that r(1− r) ≤ 1/4, where

r is a random variable and satisfies 0 ≤ r ≤ 1.

Communication: Except for quality of the information, timeliness of the infor-

mation is another important issue. It is in each time frame that the resulting discrete

message mk(xk, Lk) should be transmitted consecutively from each sensor node to

FC in an adaptive time sharing fashion through an additive white Gaussian noise

(AWGN) channel. Without loss of generality, the time-frame duration is assumed

to be normalized. The channel gain between FC and sensor nodes is modelled as

gk. We assume that gk remains approximately constant during the network lifetime.

This assumption is reasonable in case where the network condition change slowly in

a quasi-static manner. Let ρ = [ρ1, ρ2, . . . , ρK ] denote the time-sharing policy, where

ρk represents the fraction of the frame duration allocated to node k. It is assumed

that the transmission is error-free and the information rate is given by the mutual

information. Thus we have:

Lk =

⌊
ρk log2

(
1 +

gkpk

N0

)⌋
, ∀k ∈ K, (4.3)

where bxc represents the largest integer that is not greater than x. When x À 1,

bxc ≈ x. p = [p1, p2, . . . , pK ] is the transmission power vector. Hence the energy

consumed by node k in a time frame is ρkpk. Without loss of generality, the noise

power, N0, is assumed to be one throughout this chapter.

Estimation: After collecting the data from all sensor nodes, the FC combines
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them to produce a final estimation of θ

θ̄ = Γ
(
m1(x1, L1), . . . , mK(xK , LK)

)
. (4.4)

If we adopt the mean square error (MSE) criterion to measure the estimation accuracy,

a linear estimator of θ based on BLUE [36] can be used in the two scenarios to

minimize MSE,

1. Uncorrelated source observation:

θ̄k = mk,

and the MSE, Dk, satisfies

Dk , E(|mk(xk, Lk)− θk|2) ≤ W 2

(2Lk − 1)2
+ σ2

k, ∀k ∈ K. (4.5)

2. Common source observation:

θ̄ =

(∑

k∈K

1

σ2
k + δ2

k

)−1 ∑

k∈K

mk

σ2
k + δ2

k

, ∀k ∈ K

where δ2
k is the upper bound of quantization noise variance at sensor node k,

given by

δ2
k =

W 2

(2Lk − 1)2
. (4.6)

In addition, WSN has a MSE, D, upper-bounded by

D ≤
(

K∑

k=1

1

σ2
k + δ2

k

)−1

. (4.7)

Problem formulation: Network lifetime is an important performance metric for

WSNs where energy-constrained sensor nodes collaborate on a certain task. If one or

more nodes fail due to a lack of energy, the sensor network may not sustain normal

functionality. Thus, the lifetime of the network often refers to the time it takes for

the first node in the network to die. Apart from the observation quality measured
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by {σ2
k, ∀k ∈ K} and CSI by {gk, ∀k ∈ K}, initial energy information also plays a

crucial role in the network lifetime by prioritizing nodes with more initial energy for

transmission. As is aforementioned, the quantization resolution and the transmission

parameters in physical layer are linked by (4.3). Estimation accuracy is dependent

on the quantization resolution and observation quality of each nodes following the

relationship (4.5) or (4.7). In addition, the time by which the sensor node runs out

of energy is determined by initial energy and transmission power and time sharing

fraction. Therefore, exploiting dependencies between quantization and transmission

is crucial to offer improvement in overall system performances. In this chapter, the

goal is to jointly optimize the quantization and transmission schemes by exploiting

CSI, observation quality and initial energy to maximize the network lifetime. For

both scenarios, the objective and the constraints are given as follows.

The objective: The objective is to maximize the minimum of times by which the

sensor nodes die, T , which is also defined as network lifetime,

max T , min
k

Tk.

Estimation accuracy constraint: We choose the MSE to quantify the estimation

accuracy. For uncorrelated source observation, the estimation of signal θk is assumed

to have a target MSE constraint, D̄k,

Dk ≤ D̄k, ∀k ∈ K. (4.8)

For a common source observation, the overall estimation accuracy constraint is given

by

D ≤ D̄.

Energy constraint: Tk and Ek are used to denote the lifetime and initial energy of

sensor node k, respectively, with ρkpk being the energy consumed in each time frame.

Then,

Tkρkpk = Ek, ∀k ∈ K. (4.9)
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Time constraint: Under the assumption that the time sharing fraction can take

arbitrary value between 0 and 1, we have

K∑

k=1

ρk = 1

ρk ≥ 0, ∀k ∈ K.

Note that the upper bounds of D and Dk (∀k ∈ K) can be directly denoted by

{ρ,p} using (4.3) and (4.5)-(4.7). Hence, we can release other variables and focus on

joint optimal transmission scheduling and power control (JTPC) scheme, {ρ∗,p∗}.

4.2 Uncorrelated Source Observation

Substituting (4.3) into (4.5), we can express the upper bound of Dk as {gk, ρk}

Dk ≤ W 2 [(1 + gkpk)
ρk − 1]−2 + σ2

k. (4.10)

Substituting (4.10) into estimation accuracy constraint (4.8) results in

pk ≥ 1

gk




(
W√

D̄k − σ2
k

) 1
ρk

− 1


 , (4.11)

Substituting the minimum required pk in (4.11) into the energy constraint in (4.9),

we obtain the inverse of node k’s lifetime as

uk(ρk) :=
1

Tk

=
ρk

Ekgk




(
W√

D̄k − σ2
k

) 1
ρk

− 1


 . (4.12)

The quantity uk(ρk) can also be interpreted as the energy consumption of sensor node

k in one time frame normalized by its initial energy. Thus far, the power optimization

variables {pk} and the estimation accuracy constraint (4.8) and energy constraint (4.9)

are all absorbed. The maximum network lifetime problem formulated in Section 4.1
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is now equivalent to minimizing the maximum of uk(ρk) subject to time constraints,

which can be rewritten as

P4-1 : min
ρ

max
k

uk(ρk)

s.t.
∑

k∈K
ρk = 1,

0 ≤ ρk ≤ 1, ∀k ∈ K. (4.13)

4.2.1 Some Properties of Optimal Solution

Property 1: The optimal solution to P4-1 satisfies that

ui(ρi) = uj(ρj), ∀i, j ∈ K. (4.14)

In other words, the optimal solution forces all node lifetimes to be equal.

Proof: See Appendix II.

Property 2: When D̄k = D̄0, σ2
k = σ2

0 (∀k ∈ K) , where D̄0, σ2
0 are constants,

the optimal time sharing fraction only relates to the product of available energy and

channel gain. More time sharing fraction and less received power will be given to the

node with smaller product. Mathematically,





(
ρi

ρj
− 1

)(
Eigi

Ekgj
− 1

)
≤ 0

(
gipi

gjpj
− 1

)(
Eigi

Ejgj
− 1

)
≥ 0

∀i, j ∈ K (4.15)

Proof: See Appendix III.

This result is in agreement with the idea of “lazy scheduling” [23], which achieves

energy saving for the “weak” nodes, the ones with small product of channel gain and

initial energy, by lowering the transmission power and hence taking longer transmis-

sion time.
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Property 3: When D̄k = D̄0, Ekgk = E0g0 (∀k ∈ K) where D̄0 and E0g0 are

two constants, the optimal time sharing fraction relates to the observation quality.

More time sharing fraction and less received power will be given to the node with low

observation quality. Mathematically,





(
ρi

ρj
− 1

)(
σ2

i

σ2
j
− 1

)
≥ 0

(
gipi

gjpj
− 1

)(
σ2

i

σ2
j
− 1

)
≤ 0

∀i, j ∈ K (4.16)

Proof: See Appendix IV.

Remark: Channel realizations are typically independent of the initial energy.

Here, the product of channel gain and initial energy provide us with

an integrated measurement of them. Further more, Property 2 and

Property 3 indicate that the “weak” sensor nodes, the ones with

small product of channel gain and initial energy and/or low quality

of observation, should take long time for transmission with a low

received power. The aim is to give these “weak” nodes priority to

take advantage of “lazy scheduling” for energy saving in order to

avoid them becoming the bottleneck of the whole WSN.

4.2.2 Partially Distributed Adaptation

We can now transform P4-1 into a new problem, P4-2, which includes the time-

sharing variable vector ρ only,

P4-2: min
ρ

K∑

k=1

(ū(ρ)− uk(ρk))
2

s.t.
K∑

k=1

ρk = 1

0 ≤ ρk ≤ 1, ∀k ∈ K,
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where ū(ρ) := (1/K)
∑

k uk(ρk). The optimal solution to P4-2 obviously achieves

the maximum network lifetime.

To implement it in a distributed way, instead of solving the problem P4-2 at the

FC, we add a penalty function to relax the constraint. The equivalent problem can

then be expressed as:

P4-3: min
ρ

f(ρ) =
K∑

k=1

[ū(ρ)− uk(ρk)]
2 + µ

(
1−

K∑

k=1

ρk

)2

s.t. 0 ≤ ρk ≤ 1, ∀k ∈ K

where µ is a penalty factor and can take any arbitrary positive value.

Theorem 2: Problems P4-2 and P4-3 have the same and unique optimal solution.

The unique optimal solution is ρ∗ if and only if ∇f(ρ∗) = 0.

Proof: See Appendix V.

Using gradient projection, the time sharing fractions are adjusted in the opposite

direction to the gradient ∇f(ρ), i.e.,

ρ(t + 1) = [ρ(t)− γ∇f(ρ(t))]10, (4.17)

where γ is a stepsize, and [y]ba := min{max{y, a}, b}. As seen in (4.17), the time shar-

ing adaptation can be implemented at each sensor node individually in a distributed

manner, and the only common information required is ū(ρ) and
∑

k ρk. Thus, it has

a good scalability.

Theorem 3: There exists a constant γ0 > 0 such that if 0 < γ < γ0, then

limt→∞∇f(ρ(t)) = 0. That is, given an arbitrary initial point, 0 < ρ(0) < 1,

the time sharing policy ρ generated by the iterative function (4.17) converges to the

unique optimal solution ρ∗.

The proof of this theorem uses the following Lemmas.
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Lemma 4 (Lipschitz Continuity of ∇f(ρ)): The function f is continually differ-

entiable and there exists a constant B such that ‖ ∇f(ρ)−∇f(ρ′) ‖2≤ B ‖ ρ−ρ′ ‖2.

Proof: See Appendix VI.

Lemma 5 (Descent Lemma in [6]): If ∇f(ρ) is Liqschitz continuous then f(ρ +

ρ′) ≤ f(ρ) + (ρ′)T∇f(ρ) + 0.5B ‖ ρ′ ‖2
2 .

Define the error term sk(t) := [ρk(t+1)− ρk(t)]/γ. Using Lemma 4 and 5, we can

obtain

f(ρ(t + 1)) ≤ f(ρ(t)) + γsT (t)∇f(ρ(t)) + γ2B

2
‖ s(t) ‖2

2

≤ f(ρ(t))− γ

(
1− Bγ

2

)
‖ s(t) ‖2

2 .

Summing the above inequalities from t = 0 yields

f(ρ(t + 1)) ≤ f(ρ(0))− γ

(
1− Bγ

2

) t∑
t=0

‖ s(t) ‖2
2

= f(ρ(0))− γ

(
1− γ

γ0

) t∑
t=0

‖ s(t) ‖2
2,

where γ0 = 2/B. Since f(ρ(t + 1)) ≥ 0,∀t, we obtain

∞∑
t=0

‖ s(t) ‖2
2≤

1

γ
(
1− γ

γ0

)f(ρ(0)) < ∞.

This implies that limt→∞ s(t) = 0. Combining it with Theorem 2, we can achieve the

convergence of ρ(t) generated by (4.17) to the unique optimal point.

4.2.3 Discrete Time Sharing Fraction Assignment

Here, we discuss the implementation issue in a more realistic situation. In the

previous analysis, we assume that the time sharing fraction can take arbitrary value

between 0 and 1. However, in practical systems, the partition of a time frame is

finite. Therefore, the optimization problem turns from continuous to a discrete one.
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We assume that a time frame can only be partitioned into M time slots with equal

length.

Discrete time sharing fraction assignment falls into the scope of nonlinear combi-

natorial optimization problems, which insofar do not have a general solution. For this

combinatorial optimization problem, there are KM choices to assign the time slots.

An exhaustive search would be a formidable task. Here, we propose a Low-complexity

Algorithm of optimal discrete Time-Sharing fraction assignment (LATS). The algo-

rithm only needs M iterations, and each iteration only performs K comparisons.

The basic idea of the algorithm arises from (4.14). That is, each user’s normalized

energy consumption tends to be identical. Since the node lifetime, Tk = 1/uk(·), is

a monotonically increasing function of ρk, each time slot in a time frame can be

allocated one by one to the current node with the minimum value of 1/uk(ρk). The

LATS is described as in detail in Appendix VII.

Fig. 4.2 illustrates the procedure of LATS. Consider a case where a total of 12

time slots in a frame is to be allocated to 4 sensor nodes in a WSN. At the beginning

of allocation, the initial value of Tk’s are zero, so we randomly allocate the first 4

slots into 4 nodes. As in shown in the first chart in Fig. 4.2, the 4th node has the

minimum Tk at this time. Thus, the 5th slot is allocated to node 4. Until all slots

are allocated, the network lifetime is the same as the minimum node lifetime, that is,

T10. The optimality of this greedy algorithm can be simply proven by the principle

of mathematical induction.
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Figure 4.2. Illustrations of LATS

4.3 Common Source Observation

In common source observation, all sensor nodes contribute to a single signal esti-

mation. If we define function Uk(·) as

Uk(Lk) :=
1

W 2 (2Lk − 1)−2 + σ2
k

, (4.18)

then, we have D(L) ≤ 1
/
(
∑K

k=1 Uk(Lk)) from (4.7). It can be shown that Uk is

an increasing and concave function of Lk in the WSN with large observation noise

variances. According to the property of convexity preservation1 [7], the upper bound

of D is convex in Lk since the bound is a decreasing and convex function of Uk.

Definition: An average MSE target D̄ is said to be a feasible MSE requirement if

there exists {p, ρ} such that D̄ can be achieved. Any feasible MSE requirement D̄

must satisfy

D̄ > Dmin = 1

/ (
K∑

k=1

1

σ2
k

)
, (4.19)

where Dmin is the smallest MSE in the absence of quantization error. When σ2
k = σ2

(∀k ∈ K), we have Dmin = σ2/K, which describes how the number of sensor nodes

enhances the estimation accuracy.

1For f(x) = h(g(x)), f is convex if h is convex and non-increasing, and g is concave.
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4.3.1 Some Properties of Optimal Solution

Property 4: The optimal solution {p∗, ρ∗} to the problem formulated in Section

4.1 for common source observation, denoted as P4-4

P4-4 : max
{p,ρ}

min
k

Ek

ρkpk

s.t. D(L) ≤ D̄

∑

k∈K
ρk = 1

ρk ≥ 0

satisfies ρ∗kp
∗
k/Ek = x∗ (∀k ∈ K), where x∗ = maxk ρ∗kp

∗
k/Ek. In other words, the

normalized energy consumptions in one time frame for all users are identical.

Proof: See Appendix VIII.

Since the normalized energy consumption in a time frame is equivalent to the

inverse of the lifetime of sensor node, Property 4 indicates that all sensor nodes in

the network should run out of energy simultaneously. This result is consistent with

the one for uncorrelated source observation.

According to Property 4, we have x = 1/Tk (∀k ∈ K). After substituting

pk = Ekx/ρk into (4.9), P4-4 can be transformed into a new problem, P4-5, with

optimization variables ρ and x.

P4-5 : min
{ρ, x}

x (4.20)

s.t.
K∑

k=1

Uk(ρk, x) ≥ 1

D̄
(4.21)

K∑

k=1

ρk = 1 (4.22)

Here, Uk(Lk) in (4.18) is re-expressed as Uk(ρk, x) since Lk is a function of ρk and x.

Although it is difficult to obtain a closed-form solution, some properties are pre-
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sented to describe the relation between the optimal resource allocation and channel

condition, initial power and observation quality.

Property 5: For a network with K users, the following equation

∂Ui(ρ
∗
i , x

∗)
∂ρi

=
∂Uj(ρ

∗
j , x

∗)

∂ρj

, ∀i, j ∈ K (4.23)

is a necessary condition under which ρ∗ and x∗ are optimal.

Proof: See Appendix IX.

Property 6: When all the nodes have an identical observation quality, i.e., σ2
k = σ2

0

(∀k ∈ K), the optimal time sharing fraction only relates to the product of initial

energy and channel condition. More time sharing fraction should be given to the user

with smaller product of initial energy and channel gain. Mathematically,





(
ρi

ρj
− 1

)(
Eigi

Ejgj
− 1

)
≤ 0

(
gipi

gjpj
− 1

)(
Eigi

Ejgj
− 1

)
≥ 0

, ∀i, j ∈ K. (4.24)

Proof: See Appendix X.

Property 7: When all the nodes have an identical product of Ek and gk, the op-

timal time sharing fraction only relates to the observation noise variation σ2
k. More

time sharing fraction and low received power should be given to the sensor node with

better observation quality. Correspondingly, the sensor node with better observation

quality should use higher quantization resolution. Mathematically,





(
ρi

ρj
− 1

)(
σ2

i

σ2
j
− 1

)
≤ 0

(
gipi

gjpj
− 1

)(
σ2

i

σ2
j
− 1

)
≤ 0

(
Li

Lj
− 1

)(
σ2

i

σ2
j
− 1

)
≤ 0

∀i, j ∈ K (4.25)

Proof: See Appendix XI.
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Property 7 indicates that for prolonging the network lifetime, the optimal solution

takes advantage of “opportunistic quantization”, that is, the sensor nodes with high

observation qualities should increase their quantization resolution.

From Properties 4-7, we conclude that in JTPC, more time sharing fraction and

lower received power are given to the user with smaller product of initial energy and

channel gain and/or to the one with better observation quality. Moreover, the power

is adjusted so that all sensor nodes run out of energy at the same time.

4.3.2 Partially Distributed Adaptation

It is observed from the problem P4-5 that if the optimal x∗ is given, the optimal

time sharing policy ρ∗ obviously satisfies

ρ∗ = arg max∑
k ρk=1,

0≤ρk≤1

K∑

k=1

Uk(ρk, x
∗). (4.26)

Therefore, we propose to decompose P4-5 into two subproblems: (a) binary search for

x∗; (b) partially distributed implementation of time-sharing adaptation using gradient

projection method. Subproblem (b) is addressed in detail as follows.

For a given x∗, define the Lagrangian

L(ρ, λ) =
K∑

k=1

Uk(ρk, x
∗)− λ

(
K∑

k=1

ρk − 1

)

=
K∑

k=1

[Uk(ρk, x
∗)− λρk] + λ.

The dual function of (4.26) is

F (λ) = max
ρ

L(ρ, λ) =
K∑

k=1

Bk(λ) + λ, (4.27)

where

Bk(λ) = max
0≤ρk≤1

Uk(ρk, x
∗)− λρk. (4.28)
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If we interpret λ as the price of time sharing fraction, Bk(λ) represents the maximum

benefit of node k at the given price λ. The K independent subproblems in (4.28) can

be solved at each node individually, and the resulting optimal ρk(λ) is obtained as

ρk(λ) =
[
(U ′

k)
−1 (λ, x∗)

]1

0
, (4.29)

Here (U ′
k)
−1(·, x∗) is the inverse of ∂Uk/∂ρk with respect to ρk which exists since Uk

is twice differentiable and strictly concave.

Minimizing dual function in (4.27) can now be readily solved by adjusting the

price λ using gradient projection. That is,

λ(t + 1) =

[
λ(t)− γ

(
K∑

k=1

ρk − 1

)]+

. (4.30)

Here, γ > 0 is a step size, and [y]+ := max{y, 0}.

The time sharing adaptation and price adjustment have the decentralized nature.

It is observed that to implement the update, the FC needs to know the sum of ρk’s,

whereas each node k only needs to know its own function Uk and the price λ. In the

partially distributed algorithm, we assume that sensors are numbered and sensor k

can reliably monitor the transmission of sensor k − 1. When sensor k − 1 finishes

transmission, sensor k starts transmission immediately. The FC can obtain the sum of

ρk’s by recording the end time of the transmission of the last node K. The benefit of

the partially distributed algorithm is that it dramatically reduces the computational

complexity at FC and, moreover, avoids local information report to the FC since FC

does not need to know the information {Ek, gk, σ
2
k}.

Theorem 4: There exists a constant γ0 such that for any stepsize γ satisfying

0 < γ < γ0, and any initial time sharing fractions 0 ≤ ρ(0) ≤ 1 and price λ(0),

the sequence {ρ(t), λ(t)} generated by (4.30) and ρk(t + 1) = ρk(λ(t)) (see (4.29))

converges to the unique optimal point (ρ∗, λ∗).
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Theorem 4 holds since the dual objective function F is convex, lower bounded

and Lipschitz continuous (see [6, Prop. 3.4]).

Combining the binary search for x∗ and partially distributed implementation of

time sharing adaptation, the implementation of partially distributed adaptation is

described in Appendix XII.

The implementation of binary search can also be realized at the node side only

using 1-bit control signal from fusion center since each node only needs to know

whether
∑

k Uk(ρk, x) > 1/D̄ or not.

4.4 Numerical Results

In numerical studies, we compare the network lifetime obtained by our proposed

JTPC with the one by several benchmark schemes for uncorrelated source observation

and common source observation, respectively.

The simulation is carried out under various network and channel configurations by

varying path losses, available energies, and observation noise variances. The channel

gain is modelled as g = αd−n, where d−n is the effect of path loss, and α is an

attenuation constant. Here, the distance between sensor node k and the FC, dk, is

randomly generated following a uniform distribution over the region [1,10]. Similar

to [72], observation noise variances σ2
k (∀k ∈ K) are generated according to the

distribution 0.05(1+aY 2), where Y 2 follows the exponential distribution. In addition,

we set the available energies Ek = Emin(1+bY 2), where Emin is the minimum energy

of all nodes. Through adjusting the parameters n, a, and b, we generate gk, Ek and

σ2
k for all k ∈ K to model different sensing environments. In the simulation, we set

the target MSE, D̄k = 2σ2
k ∀k ∈ K. We use the normalized deviation

√
V(t)/E(t)
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defined in [72] to measure the heterogeneity of a variable t, where V(t) denotes the

variance of t and E(t) the mean of t.

4.4.1 Uncorrelated source observation

First we consider uncorrelated source observation. We compare the network life-

time of our proposed scheme with the following two transmission schemes:

• Uniform TDMA with power control (UTP): It can be viewed as a suboptimal

solution to P4-1 by fixing ρk = 1/K, ∀k ∈ K. The optimal transmission power

pk under the constraint (4.5) can be obtained from (4.11).

• Inverse-log scheduling (ILS) [73]: The total energy in a sensor network is mini-

mized by varying the transmission times assigned to different sensor nodes. The

time-sharing fraction in the ILS scheme has an inverse-log form,

ρ′k =
Rk

log(λgk)
, ∀k ∈ K, (4.31)

where λ is determined by the constraint
∑

k ρ′k = 1, and it can be obtained by

numerical search.

Fig. 4.3 compares the network lifetime (in time frames) of JTPC, UTP and ILS

by choosing the simulation parameters n = 3, a = 1, and b = 0, and varying the

number of sensor nodes from 10 to 50. It is shown that the network lifetimes decrease

exponentially with the number of sensor nodes. This is because the increase of the

number of sensor nodes reduces the average transmission times of each node when

the duration of a time frame is fixed. Correspondingly, the energy consumption in-

creases dramatically. This observation suggests that partitioning a WSN into several

subnetworks could prolong the network lifetime at the expense of increasing the num-

ber of FC. The performance of ILS is a little worse than that of UTP. It is because
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Figure 4.3. The network Lifetimes of JTPC, UTP and ILS vs. the number of sensor
nodes

minimizing the total energy consumption in ILS leads to some nodes running out of

energy quickly. It is also observed that the lifetime gains of JTPC over UTP and

ILS increase exponentially with the number of nodes. Here, we define the lifetime

gain of one scheme over another as the ratio of network lifetimes obtained by the two

schemes. The following figures illustrate the lifetime gains obtained by the proposed

scheme under different sensing environments.

Fig. 4.4 plots the lifetime gain of JTPC over the UTP and ILS schemes versus

normalized deviation of channel path losses by varying the path loss exponent n.

Both σ2
k and Ek are fixed by letting a = b = 0. Fig. 4.5 is plotted by fixing

dk = 5.5, ∀k ∈ K, b = 0 and varying a. It is observed that the lifetime gains

increase when observation noise variances become more heterogeneous. In addition,

for fixed normalized deviation of noise variances, the lifetime gain rises as the number

of sensors increases. The relationship between the lifetime gains and the normalized
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Figure 4.4. Lifetime gains of JTPC over UTP and ILS vs. normalized deviation of
channel path losses

deviation of initial energies is shown in Fig. 4.6. A trend similar to that of Figs. 4.4

and 4.5 is observed.

4.4.2 Common source observation

To compare with JTPC under common source observation, We consider two

schemes:

1. Uniform TDMA with power control (UTP): It is a suboptimal solution of the

proposed JTPC by letting ρk = 1/K,∀k ∈ K. The best power allocation p∗ can

be obtained from Property 4. By letting Tk = T, ∀k ∈ K, p can be expressed

a function of T . Thus the inequality in (4.21) only has one variable T , the

minimum value of which can be obtained by numerical search.

2. Power scheduling (PS) [69]: All nodes also have a same time sharing fraction,

but the power is adjusted to minimize the L2-norm of transmission power vector.
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Figure 4.6. Lifetime gains of JTPC over UTP and ILS vs. normalized deviation of
initial energies
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Figure 4.7. The network Lifetimes of JTPC, UTP and PS vs. the number of sensor
nodes

Fig. 4.7 compares the network lifetimes (in time frames) of JTPC, UTP and PS

schemes by letting n = 3, a = 1, and b = 0, and varying the number of sensor nodes

from 10 to 30. The MSE requirement D̄ is fixed to be 0.01. It is observed that the

network lifetimes of JTPC increases exponentially with the number of sensor nodes.

Since transmission time of each user, ρ = 1/K, in UTP and PS, deceases linearly with

the number of sensor nodes, the increment of number of sensor nodes can not prolong

the lifetime of the WSN. The performance of PS is worse than that of UTP since

PS suggests that the nodes with good channels and/or observation qualities should

increase their quantization resolutions which may lead them to run out of energy

quickly.

In the remaining simulations, we study the lifetime gains (defined as the ratio of

lifetime obtained by JTPC and that by UTP or PS) of JTPC over UTP and PS under

different sensing environments. The MSE requirement D̄ is fixed to be 2Dmin, where

Dmin is the MSE of estimation without quantization noise, and is given in (4.19).

75



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

5

10

15

20

25

30

Normalized deviation of channel path losses

N
et

w
or

k 
lif

et
im

e 
ga

in

T
JTPC

/T
PS

T
JTPC

/T
UTP

K=30

K=20

K=10

Figure 4.8. Lifetime gains of JTPC over UTP and PS vs. normalized deviation of
channel path losses

In Fig. 4.8, we fix σ2
k and Ek by choosing a = b = 0. The normalized deviation

of channel path losses can be changed by adjusting n (2 ≤ n ≤ 4). Fig. 4.8 plots the

lifetime gain of JTPC over UTP and PS versus normalized deviation of channel path

losses. Fig. 4.9 is plotted by fixing dk = 5.5, ∀k ∈ K, b = 0 and varying a. In Fig.

4.9, the lifetime gain of JTPC over UTP and PS increases when observation noise

variances become more heterogeneous. In addition, for fixed normalized deviation

noise variances, the lifetime gain increases as the number of users increases. The

relation between the lifetime gain and the normalized deviation of initial energies is

shown in Fig. 4.10.

From the numerical results, we conclude that JTPC brings significant lifetime gain

over UTP and PS scheme in a heterogeneous WSN environment, and the performance

gain increases with the number of sensor nodes.
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Figure 4.9. Lifetime gains of JTPC over UTP and PS vs. normalized deviation of
observation noise variances
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4.5 Conclusions

We have considered a joint quantization and transmission design to prolong the

lifetime for cluster-based WSNs under the average estimation accuracy constraints.

We focused on single-hop data collection from sensor nodes to a common FC in

a particular cluster where sensor nodes observe spatially uncorrelated signals or a

common signal. After studying the properties of optimal solutions, it is observed

that:

1. For uncorrelated source observation, the product of channel gain and initial

energy provide us with an integrated measurement of them. Further more, it is

suggested that the “weak” sensor nodes, the ones with small product of channel

gain and initial energy and/or low quality of observation, should take long time

for transmission with a low received power. The aim is to give these nodes

priority to take advantage of “lazy scheduling” for energy saving in order to

avoid becoming the bottleneck of the whole WSN.

2. For common source observation, more time sharing fraction and lower received

power are given to the user with smaller product of initial energy and channel

gain and/or to the one with better observation quality. Moreover, the power

is adjusted so that all sensor nodes run out of energy at the same time. The

optimal solution not only takes advantage of “lazy scheduling” but also “oppor-

tunistic quantization”, that is, the sensor nodes with high observation qualities

should increase their quantization resolution.

3. For both scenarios, numerical examples show that significant lifetime gain can

be achieved when compared with three existing schemes, and the gain becomes

more significant when sensing environment becomes more heterogeneous and

the number of nodes increases.
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Optimal resource allocation in WSNs, while being efficient in prolonging network

lifetime, can come with high complexity in design and analysis. The statement can

also be generalized to most of wireless systems. Therefore, beside studying the op-

timal resource allocation solution, the main objective of this chapter is to develop a

partially distributed algorithm where the JTPC policy can be calculated at each node

with the local information of the path loss, available energy and observation quality,

considering the limited initial energy and computational capacity of FC in practice.

A challenge of the future work would be to extend JTPC policies to a more generic

distributed estimation framework discussed in [72] where the observed signals could

be partially correlated. Also the definition of network lifetime considered in this

chapter is very simple. In a real WSN, the death of some nodes may not affect the

functioning of the whole network. More generalized definitions of network lifetime,

for example, the time when the Lth (L < K) node dies, are needed.
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Chapter 5

End-to-End Average Rate

Maximization in Linear OFDM

Based Relay Networks

In Chapter 3 and 4, dynamic resource allocation is studied in a single-hop wire-

less system over a common channel. Our focus in this chapter is in the context of

an OFDM based multi-hop network consisting of a one-dimensional chain of nodes

including a source, a destination, and multiple relays. The problem is to maximize

the end-to-end average transmission rate under a long-term total power constraint

by adapting the transmission power on each subcarrier over each hop and the trans-

mission time used by each hop in every time frame. The solution to the problem is

derived by decomposing it into two subproblems: short-term time and power alloca-

tion given an arbitrary total power constraint for each channel realization, and total

power distribution over all channel realizations. We show that the optimal solution

has the following features: the power allocation on subcarriers over each hop has

the water-filling structure and a higher water level is given to the hop with relatively
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poor channel condition; meanwhile, the fraction of transmission time allocated to each

hop is adjusted to keep the instantaneous rates over all hops equal. To reduce com-

putational complexity and signalling overhead, three suboptimal resource allocation

algorithms are also proposed. Numerical results are presented for different network

settings and channel environments.

Future wireless systems expect a coverage enhancement and a throughput growth

at a low cost. This leads to increasing attentions to the concept of relaying in wireless

networks such as next generation cellular networks, broadband wireless metropolitan

area networks (WMANs) and wireless local area networks (WLANs) [8; 52]. For

example, the mesh network architecture is proposed in IEEE 802.11 networks [8],

and the multihop relay scheme is to be developed for IEEE 802.16 standard [52]. In

recent years, much academic work focuses on ad hoc networks, which can be viewed

as generalized relay networks, where each network node may help in relaying each

other’s data packets. Gupta et al. study the asymptotic bounds of transmission rates

with a large number of hops under various network topologies and node capabilities

in [30] and [31]. These results, however, do not reveal the actual capacity of a network

with a given number of nodes, especially when the number is small. More recently,

cooperative communications among the source node and relay nodes in a two-hop

scenario are proposed to increase network capacity [40; 59]. The basic idea of coop-

erative relaying is to achieve diversity through independent channels by controlling

how the transmitted signals add up at the receiver. Note that cooperative relaying

requires precise timing (and possibly phase) synchronization among different nodes

which makes it difficult to be integrated in many practical systems. As such, a relay

network with a finite number of hops and without synchronous cooperation is of most

practical interest.

Relay networks have two possible architectures: a tree of point to multiple points

(PMP) architecture and a mesh one. When only a single route is active at any
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particular time duration, a two-dimensional network can be viewed as multiple one-

dimensional chains of nodes. Such a one-dimensional chain of nodes, a so-called

linear network as in [61], consists of one pair of source and destination nodes and

several intermediate relay nodes that are aligned on the straight line between the

source and the destination. Transmissions can only occur between two neighboring

nodes. In [50], Oyman et al. introduce two different transmission strategies over

multiple hops: fixed-rate relaying and rate-adaptive relaying, and showed merits of

multi-hop relaying over frequency-flat fading channels. In this work, we consider

orthogonal frequency division multiplexing (OFDM) based linear multi-hop networks

over broadband wireless channels. OFDM is an underlying transmission technology to

overcome the inter-symbol interference imposed by multipath. In fact, the OFDM-

based relaying architecture has been accepted by current wireless standards, e.g.

IEEE 802.16j. Moreover we adopt time division (TD) for transmissions over different

hops so that there is no interference between nodes. Further, time is divided into

frames of multiple time slots and the transmission parameters are determined at

the beginning of each frame. The transmission parameters include the transmission

power on each subcarrier over each hop and the transmission time over each hop,

as shown in Fig. 5.1 (For example, 8, 2 and 6 time slots are allocated to hop 1,

2 and 3, respectively, in time frame 1. pk,n is used to indicate transmission power

on subcarrier k over hop n). When the scheduler knows the global channel state

information (CSI), it can perform adaptive relaying. This global information gives a

potential for enhancing performance through dynamic resource allocation.

In this chapter, we aim to derive the end-to-end maximum average transmission

rate in the OFDM-based linear multi-hop network with adaptive relaying. The prob-

lem is first formulated as a max-min problem. We then decompose it into two sub-

problems: (a) Determine the power and time allocation to maximize the end-to-end

instantaneous transmission rate under a given short-term total power constraint for
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Figure 5.1. Illustration of the transmission scheme for an OFDM-based relaying
system with 4 subcarriers and 3 hops

each channel realization; (b) Determine the short-term total power constraint for each

channel realization so that the end-to-end average transmission rate is maximized un-

der a long-term total power constraint. Through theoretical analysis, we show that

the optimal resource allocation strategy has the following features: the power alloca-

tion on the subcarriers at each hop follows the water-filling structure, and the water

level varies over time and among different hops. Meanwhile, the fraction of transmis-

sion time allocated to each hop is adaptive so that the actual transmission volumes

over all hops are equal. The analytical expression for the optimal resource allocation

also suggests that the hops with bad channel condition should be given a high water

level, and if the channel of any one hop is in deep fade during a certain time frame,

the system may be turned off in order to save power. The proposed optimal alloca-

tion scheme determines the upper bound of the end-to-end average transmission rate,

but also incurs high computational complexity and high signaling overhead. We also

propose three suboptimal algorithms with low complexity and reduced overhead. The

tradeoff between performance, complexity and overhead is discussed.

The remainder of this chapter is organized as follows. The system model is pre-

sented in Section 5.1, followed by the problem formulation in Section 5.2. The optimal

time sharing fractions and power allocation are derived in Section 5.3. In Section 5.4,

three suboptimal resource allocation algorithms are introduced. Numerical results

are given in Section 5.5. Finally, we conclude this chapter in Section 5.6.
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5.1 System Model

We consider a linear multi-hop wireless network consisting of a source node R0,

and a destination node RN and N−1 relay nodes Rn with n = 1, . . . , N−1. As shown

in Fig. 5.2, the relays are uniformly spaced along a straight line from the source to

destination. The hop between node Rn−1 and Rn is indexed by n, and the set of hops

is denoted by N . The transmission time is divided into frames of multiple time slots

as shown in Fig. 5.1. In general, multiple nodes can transmit in a same time slot.

However, it will result in interference to each other and increase decoding complexity.

In addition, it is not easy for a relay to transmit and receive simultaneously. Thus, we

forbid multiple nodes transmitting simultaneously over a same time slot. In each time

frame, the message from the source is sequentially relayed at each hop using decode-

and-forward scheme [40]. That is, each relay decodes the message transmitted by the

previous node, re-encodes it, and then forwards it to the next relay. Over each hop,

OFDM with K subcarriers is used as the physical layer transmission technology so

that the channel on each subcarrier can be treated as a flat fading channel. The set

of subcarriers is denoted by K. We assume that the channel between two nodes is

a block fading Gaussian channel, and the channel gain on subcarrier k over hop n,

denoted by gk,n, remains constant during the entire time frame but changes randomly

from one frame to another.

Let the transmission power on subcarrier k over hop n be denoted as pk,n and

the average total transmission power be constrained by P . Let Tn represent the

number of OFDM symbols that hop n is scheduled to transmit a total of T OFDM

symbols in a time frame and define time-sharing fraction ρn , Tn

T
1. The instantaneous

transmission rate (Nat/OFDM symbol) in a time frame achieved by subcarrier k over

1We assume the number of time slots in a time frame is large enough so that ρn can take arbitrary
value between 0 and 1
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Figure 5.2. Illustration of linear multi-hop networks

hop n is expressed as

rk,n = ρn ln

(
1 +

gk,npk,n

ΓN0

)
, (5.1)

where N0 is the noise power, and Γ is the signal-to-noise ratio (SNR) gap for char-

acterizing the difference between the SNR needed to achieve a certain data rate for

a practical system and the theoretical limit. For notation brevity, in the remaining

part of this chapter, we redefine gk,n as the normalized channel gain gk,n := gk,n/ΓN0,

and let g = {gk,n, k ∈ K, k ∈ N} ∈ G, where G is the set of all possible normal-

ized channel states. The total instantaneous transmission rate over hop n is denoted

by rn =
∑

k∈K rk,n. Under the assumption that no data is allowed to accumulate

at any of relay nodes, the end-to-end instantaneous transmission rate is equivalent

to the minimum of instantaneous transmission rates over N hops [50; 51]. That is,

r = minn∈N rn.

5.2 Problem Formulation

In this chapter, we consider the scenario where the delay requirement of the ap-

plication is much longer than the coherence time of the fading channel and, hence,

the channel codeword can span multiple time frames. The end-to-end average trans-
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mission rate is used to capture the system performance for such delay-tolerant appli-

cations. Under the assumption that the channel processes are ergodic, time-average

rate is equal to rate averaged over all channel states. In the remainder of this chapter,

we will use the term average rate for short to distinguish it from the instantaneous

rate defined in a particular time frame. We focus on the situations where the current

state of the channels over every hop is available at all the transmitters and receivers.

Dynamic time and power allocation in response to the channel variations is considered

in the maximization of the end-to-end average rate. More specifically, for a given av-

erage power constraint P , the problem is to determine the optimal transmission power

set, p(g) = {pk,n, k ∈ K, n ∈ N}, and time-sharing fraction set, ρ(g) = {ρn, n ∈ N},
as functions of global CSI, g = {gk,n, k ∈ K, n ∈ N}. This functional optimization

problem is formulated as

P5-1 :

max
p(g), ρ(g)

R
(
ρ(g),p(g)

)

, E
[
min
n∈N

rn

]

=

∫

g

[
min
n∈N

ρn(g)
∑

k∈K
ck,n

(
pk,n(g)

)
]

pdf(g)dg,

s.t. E

(∑

k∈K

∑
n∈N

ρn(g)pk,n(g)

)
≤ P (5.2)

∑
n∈N

ρn(g) = 1

where

ck,n(x) , ln (1 + gk,nx) (5.3)

and pdf(g) is the joint probability density function (pdf) of the global CSI g.

When N = 1 and K = 1, the above problem reduces to characterizing transmission

schemes consisting of the direct transmission from source to destination with a single
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subcarrier. The optimal R∗ would be the maximum average rate for the single hop

transmission in a flat fading channel, and the solution is given by the classic water-

filling scheme [25].

5.3 Optimal Resource Allocation

In this section, we derive an optimum time and power allocation for P5-1. The

difficulty in solving the problem arises from the max-min nature of the objective and

the co-existence of both long-term and short-term constraints. The long-term power

constraint makes it possible to adapt the power not only over hops within one frame

but also over frames in the time domain. To make this problem more tractable, we

decompose the original problem P5-1 into two subproblems.

1. Short-term time and power allocation given an arbitrary total power constraint

for each channel realization

Consider any given channel state realization g ∈ G. Assume that the total power

over all N hops assigned to this channel state realization is p. The objective is

to maximize the end-to-end instantaneous transmission rate. Mathematically,

it can be expressed as

P5-2 : r
(
g, p

)

, max
ρ, p

min
n∈N

[
ρn

∑

k∈K
ck,n

(
pk,n

)
]

s.t.
∑
n∈N

ρn

∑

k∈K
pk,n = p (5.4)

∑
n∈N

ρn = 1. (5.5)

2. Total power distribution p(g) over all channel realizations

The second problem is to determine the instantaneous total power constraint
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function p(g) over all N hops for each channel realization g such that the end-

to-end transmission rate averaged over all channel states is maximized. That

is,

P5-3 : max
p(g)

E
[
r
(
g, p(g)

)]
(5.6)

s.t. E[p(g)] ≤ P. (5.7)

where r
(
g, p(g)

)
is defined in P5-2.

Proposition 1: The problem P5-1 is equivalent to P5-2 when p in (5.4) is given

by the solution p∗(g) to P5-3.

Proof: See Appendix XIII.

We solve subproblem P5-2 and P5-3, separately, in the following two subsection.

5.3.1 Short-Term Time and Power Allocation

Problem P5-2 is a max-min problem with inseparable variables, but it can be

transformed into a equivalent convex optimization problem given by

P5-4 max
{r, ρ, s}

r

s.t. ρn

∑

k∈K
ln

(
1 +

gk,nsk,n

ρn

)
≥ r, ∀n (5.8)

∑
n∈N

∑

k∈K
sk,n = p (5.9)

∑
n∈N

ρn = 1 (5.10)

where r is a new variable and sk,n , ρnpk,n. It can be shown that ρn ln(1+gk,nsk,n/ρn)

is concave in both ρn and sk,n. Thus, P5-4 is a convex optimization problem. The
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Lagrangian of this problem is given by

J(r, ρ, s, µ, λ0, ν)

= r +
∑
n∈N

µn

[
ρn

∑

k∈K
ln

(
1 +

gk,nsk,n

ρn

)
− r

]
+

λ0

(
p−

∑
n∈N

∑

k∈K
sk,n

)
+ ν

(
1−

∑
n∈N

ρn

)
, (5.11)

where µ, λ0 and ν are all positive and represent the Lagrange multipliers associated

with the constraints (5.8), (5.9) and (5.10), respectively.

Since this problem is convex, the following KKT conditions are necessary and also

sufficient for the optimal solution,

∂J(. . .)

∂r
= 1−

∑
n∈N

µn

= 0, ∀k ∈ K, n ∈ N (5.12)

∂J(. . .)

∂sk,n

=
µngk,n

1 + gk,nsk,n/ρn

− λ0

= 0, ∀k ∈ K, n ∈ N (5.13)

∂J(. . .)

∂ρn

= µn

{∑

k∈K

[
ln

(
1 +

gk,nsk,n

ρn

)
−

gk,nsk,n

ρn + gk,nsk,n

]}
− ν = 0, ∀n. (5.14)

From (5.13), we obtain the optimal power allocation as

p∗k,n =
sk,n

ρn

=

(
µn

λ0

− 1

gk,n

)+

, (5.15)

where (·)+ = max(0, ·).

Substituting (5.15) into (5.14), we obtain the condition for the Lagrange multi-

pliers,

ν , hn(µn, λ0,g)

= µn ·
∑

k∈K

{[
ln

(
µngk,n

λ0

)]+

−
(

1− λ0

µngk,n

)+
}

(5.16)
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for all n ∈ N . From (5.16), for a fixed λ0 and ν, finding the optimal µ are N

independent problems. It can be shown easily that the derivative of the function

hn(µn, λ0,g) with respect to µn is positive when µn ≥ mink{λ0/gk,n} and, thus,

hn(µn, λ0,g) is monotonically increasing in µn. The inverse function h−1
n (ν, λ0,g) thus

exists and is an increasing function of ν. As a result, the exact value of µn for a given

ν can be obtained numerically using binary search. Substituting µn = h−1
n (ν, λ0,g)

into (5.12), we have
∑
n∈N

h−1
n (ν, λ0,g) = 1. (5.17)

The left side of (5.17) is monotonically increasing in ν, thus the optimal ν can also

be obtained via binary search from (5.17). In other words, for a given λ0, the optimal

power allocation can be obtained through two-nested binary search. The outer loop

varies the Lagrange multiplier ν to meet (5.17). The inner loop searches µn at a given

value of ν to satisfy (5.16). There exists a unique λ0 such that a positive total power

constraint is satisfied.

Proposition 2: The optimal solution to P5-2 forces the instantaneous rates over

all hops, rn’s, at each time frame to be equal, i.e.,

ρn

∑

k∈K
ln

(
1 +

gk,nsk,n

ρn

)
= ρi

∑

k∈K
ln

(
1 +

gk,isk,i

ρi

)
,

for all n 6= i.

Proof: This proposition can be easily obtained by using the KKT conditions in

the convex problem P5-4. An alternative proof is given in Appendix XIV.

Based on Proposition 2 and the time-sharing constraint (5.10), each ρn can be

expressed as

ρ∗n =

∏
i6=n

∑
k∈K

[
ln

(
µigk,i

λ0

)]+

∑
i∈N

∏
j 6=i

∑
k∈K

[
ln

(
µjgk,j

λ0

)]+ , ∀n ∈ N . (5.18)
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From (5.18), a more meaningful expression of ρ∗n is obtained as

ρ∗n =
1

N
· c̄

cn

, ∀n ∈ N . (5.19)

Here, cn =
∑

k∈K [ln (µngk,n/λ0)]
+ represents the achievable rate of hop n given the

power allocation in (5.15) without time sharing, and c̄ = N/
∑

n∈N
1
cn

is the harmonic

mean of {cn} over all the N hops. Now it is clear that the optimal time fraction allo-

cated to each hop is equal to the fraction 1/N scaled by the inverse of the normalized

achievable rate on this hop with respect to the harmonic mean of the achievable rates

on all hops.

Next, we find out the relation between the maximum end-to-end instantaneous

transmission rate r and the short-term total transmission power consumption p. We

assume that {r∗, ρ∗, s∗} is the solution to P5-4. Define Kn as the set of active

subcarriers (pk,n > 0) over hop n, and kn as the size of the set Kn. According (5.15)

and (5.9), the short-term total transmission power can be expressed as

p =
∑
n∈N

ρn

∑
n∈Kn

(
µn

λ0

− 1

gk,n

)
. (5.20)

From the above equation, we have

1

λ0

=

(
p +

∑
n∈N

ρn

∑

k∈Kn

1

gk,n

)
1∑

n∈N knµnρn

. (5.21)

We now write the rate r∗ as a function of p given by

r∗(p) =
∑
n∈N

µn

[∑

k∈K
rk,n(ρ∗n, s

∗
k,n)

]

=
∑
n∈N

µnρ
∗
n

[∑

k∈K
ln

[
µngk,n

λ0

)]

=
∑
n∈N

µnρ
∗
n

{∑

k∈K
ln

[(
p +

∑
i∈N

ρi

∑

k∈Ki

1

gk,i

)
·

µngk,n∑
i∈N kiµiρi

]}
. (5.22)
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The first equation in (5.22) arises from Proposition 2. By taking the derivative of

(5.22), and comparing it with (5.21), it is easy to find that

dr∗(p)

dp
= λ0. (5.23)

5.3.2 Total Power Distribution

With the expression of r∗(p) in (5.22), we now solve P5-3 in this subsection. The

Lagrangian of Problem (5.6) is given by

L
(
p(g), µ(g), λ0(g), λ

)
=

∫

g

l
(
p(g), µ(g), λ0(g), λ

)
pdf(g)dg,

where

l
(
p(g), µ(g), λ0(g), λ

)
= r∗(p)− λp(g). (5.24)

According to the generalized KKT necessary condition theorem for variational opti-

mization [28] and using (5.23), the optimal solution to P5-3 satisfies

∂l(. . .)

∂p(g)
= λ0(g)− λ = 0. (5.25)

Remarks : One can interpret the Lagrange multiplier λ0 in (5.11) as short-

term power price for a given channel realization g, and interpret the

Lagrange multiplier λ in (5.24) as long-term power price. Equation

(5.25) indicates that the short-term power price is independent of

channel condition and equal to the long-term power price.

Combining the results in Sections 5.3.1 and 5.3.2 yields the optimal solution to

the original problem P5-1 that satisfies

p∗k,n(g) =

[
µn(g)

λ
− 1

gk,n

]+

, ∀k ∈ K, n ∈ N , (5.26)

ρ∗n(g) =

∏
i6=n

∑
k∈K

[
ln

(
µn(g)gk,n

λ

)]+

∑
i∈N

∏
j 6=i

∑
k∈K

[
ln

(
µj(g)gk,j

λ

)]+ , ∀i ∈ N . (5.27)
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Thus, in each frame, under the current power price λ, one can first obtain the op-

timal transmission power using (5.26) after two-nested binary search for µ as de-

scribed in Section 5.3.1, and then determine the time-sharing fractions using (5.27)

which ensures that the transmission rates rn over all hops are equal. At a larger

time scale, we adjust the power price to meet the average power constraint. The

adjustment can be implemented using binary search since it can be shown that

E
[∑

n∈N
∑

k∈K ρn(g)pk,n(g)
]

is monotonically decreasing in the power price.

5.3.3 Properties of Optimal Power and Time Allocation

It is observed from (5.26) that the best power allocation has the water-filling

structure, where µn(g)/λ can be viewed as the water level.

Proposition 3: If
∑

k∈Kn

1
gk,n

>
∑

k∈Ki

1
gk,i

, then we have µnkn > µiki.

Proof: See Appendix XV.

We treat the total transmission power over hop n as a whole,

pn =
µnkn

λ0

−
∑

k∈Kn

1

gk,n

.

where µnkn/λ is viewed as the water level and
∑

k∈Kn

1
gk,n

is inversely proportional to

the harmonic mean of channel gains on the active subcarriers over hop n. Proposition

3 suggests that a high water level is given to the hop with small harmonic mean

of channel gains to avoid the bottleneck of the whole network it brings. Note that

when one of the hops n suffers from a severe fading (the water level is less than

mink 1/gk,n) at a particular time frame, equation (5.27) results in that ρn = 1 and

ρi = 0, i(6= n) ∈ N , which means the transmission over the whole time frame should

be turned off in order to save power for further transmission.

The water-filling power allocation scheme for linear multi-hop networks is different

from the one for multi-user fading broadcast channels in [42] and multi-user uplink
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channels in [38], where a user uses the same water level over time while different

users may have different water levels. This is because the optimal solution for linear

multi-hop networks requires that each instantaneous transmission rate over all hops

to be equal.

5.4 Suboptimal Solutions

In the previous section, we derived the optimal power and time allocation for

OFDM based linear multi-hop networks, and refer to it as alg-opt for short. This

scheme determines the maximum achievable end-to-end average transmission rate.

However, it incurs high computational complexity and large signaling overhead, hence

may be infeasible in practice. It is desirable to have suboptimal solutions by imposing

some constraints on the network operation. In this section, we develop three subop-

timal algorithms, alg1, alg2 and alg3, and discuss their respective computational

complexity and signaling overhead.

5.4.1 A Solution With A Constant Water Level

Unlike the optimal scheme, the water level used for power allocation in this sub-

optimal solution, alg1, is set to a constant. We express this solution as

pk,n(g) =

[
1

λN
− 1

gk,n

]+

, ∀k ∈ K, n ∈ N , (5.28)

ρn(g) =

∏
i6=n

∑
k∈K

[
ln

(gk,i

λN

)]+

∑
i∈N

∏
j 6=i

∑
k∈K

[
ln

(gk,j

λN

)]+ , ∀n ∈ N , (5.29)

where λ satisfies average power constraint.

We can comprehend alg1 as follows: first we relax the requirement that trans-

mission rates over all hops equal and maximize the weighted sum of the transmission
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rates over all hops with weights given by {µn}. By letting µn = 1/N, ∀n ∈ N in

(5.26), we can have the expression of pk,n in (5.28). Then we adjust the time-sharing

fractions so that the transmission rates over all hops remain equal. By Proposition 3,

alg1 approaches to alg-opt when the harmonic mean of the channel gains over active

subcarriers, i.e., kn

/
(
∑

k=∈Kn

1
gk,n

)
of each hop is nearly the same at every time frame.

Since the same water level is shared by all subcarriers over all hops and is invariant in

the time domain, the computational complexity and signal exchanging overhead can

be significantly reduced. However, a central controller is still needed. The difference

from the optimal allocation scheme is that there is no need to compute the weight

vector µ at each time frame.

5.4.2 Partially Distributed Power and Time Allocation

The suboptimal time and power allocation, alg2, is denoted as

ρn =

∏
i6=n

∑
k∈K E

[
ck,i(P/K)

]
∑

i∈N
∏

j 6=i

∑
k∈K E

[
ck,j(P/K)

] , ∀n ∈ N . (5.30)

pk,n(gn) =

[
1

λn

− 1

gk,n

]+

, ∀k ∈ K, n ∈ N , (5.31)

where ck,n(·) is given by (5.3), gn , {gk,n, k ∈ K} and λn satisfies

ρnEgn

[∑

k∈K
pk,n(gn)

]
=

P

N
.

alg2 is a partially distributed algorithm. To avoid centralized management, we

require that the average total transmission power is to be allocated equally to each

hop. Since only statistical information is needed to compute the time-sharing fractions

and water levels, the signaling overhead can be significantly reduced. Upon receiving

the time-sharing fractions, this algorithm performs power allocation across subcarriers

in its locality by binary search for λn, separately.

95



5.4.3 Equal Resource Allocation

The equal time and power allocation scheme, alg3, is denoted as

pk,n =
P

K
, ∀k ∈ K, n ∈ N

ρn =
1

N
, ∀n ∈ N .

Transmission power and time are equally distributed among all subcarriers and hops.

It corresponds to the scenario that the transmitters have no channel information. The

disadvantage is that any one of hops which suffers from bad channel condition may

become the bottleneck of the whole link. This scheme needs no signal exchange and

computation.

We have listed three suboptimal algorithms above in the decreasing order of com-

putational complexity and signaling overhead. Both alg-opt and alg1 need a central

controller while alg2 can perform resource allocation at each node side using local

information. All of the three suboptimal algorithms are not required to do binary

search in each time frame.

According to practical requirements and restrictions, we can choose one of these

schemes by finding the optimal tradeoff between performance of the algorithms, and

their complexity and signal exchanging overhead. In the next section, we compare

the performance of these algorithms.

5.5 Numerical Results

In this section, we present numerical results of end-to-end average rates under

different algorithms. Consider a linear network with N hops. We fix the bandwidth

to be 1MHz and the distance between the source and destination to be 1km. The

relays are equally spaced. In all simulations, the channel over each hop is modelled
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by Stanford University Interim (SUI)-3 channel model with a central frequency at

around 1.9 GHz to simulate the fixed broadband wireless access channel environments

[17]. The SUI-3 channel is a 3-tap channel. The received signal fading on the first

tap is characterized by a Ricean distribution with K-factor equal to 1. The fading

on the other two taps follows a Rayleigh distribution. The root-mean-square (rms)

delay spread is 0.305µs. Then the coherence bandwidth is approximately 65KHz.

Hence, the number of subcarriers K should be greater than 15.2 so that the subcarrier

bandwidth is small enough to experience the flat fading. Throughout the numerical

analysis in this section, we choose K = 16. The maximal Doppler frequency is set

to 0.4 Hz. The path loss model is given by the intermediate path loss condition [16,

Category B]:

PL = A + α lg

(
d

d0

)
,

where d0 is a reference distance and set to 100m, A = 20 lg(4πd0/λ) with λ being the

wavelength, and α is the path-loss exponent. The SNR gap in (5.1) is set to 8.2dB

(which corresponds to a BER requirement of 10−5 if adaptive QAM modulation is

used).

Fig. 5.3 and Fig. 5.4 show the end-to-end average transmission rates achieved

by using different algorithms with and without shadowing (4dB standard deviation),

respectively. From Fig. 5.3 we observe that the performance gaps between alg2 and

alg3 are very small, especially in high power region. Since the relays are equally spaced

and there is no shadowing, for alg2, the average rate over each hop is the same. Thus,

same as alg3, alg2 has uniform time allocation ρn = 1/N, ∀n ∈ N . Although alg2 can

vary the transmission power over subcarriers, the impact of power control is limited

since the rate is a concave function of the transmission power, especially when the

water level is far higher than the inverse of the normalized channel gains. This result

in the single-hop case was also demonstrated in [25]. The improvement of Alg-opt and

alg1 over alg2 is obvious because they adapt the time-sharing fractions according to
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Figure 5.3. End-to-end average rate vs. average total transmission power with path
loss exponent α = 3.5, no shadowing and N = 5
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Figure 5.4. End-to-end average rate vs. average total transmission power with path
loss exponent α = 3.5, shadowing and N = 5
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Figure 5.5. End-to-end average rate vs. average total transmission power with path
loss exponent α = 3 and no shadowing for alg-opt

instantaneous CSI at each time frame and the rate is linear in time-sharing fraction.

The similarity in performance of alg1 and alg-opt at the high SNR region indicates

that varying water level over time yields a negligible performance gain. Therefore,

alg1 and alg3 are recommended due to their relatively low computational complexity

and small signaling overhead. Since different hops suffer independent shadowing, it is

more likely for one of the hops to experience bad channel condition and becomes the

bottleneck of the whole link. Thus, the shadowing deteriorates the performance of

the algorithm with multiple hops. For instance, at 35 dB average power, end-to-end

average rate for no shadowing case are 0.5-1 higher than that for shadowing case. It

also highlights the performance gaps between alg2 and alg3 since alg2 can reduce the

impact of the bottleneck by adapting time-sharing fractions according to the channel

statistics. On the other hand, alg-opt also does not exhibit a significant rate increase

over alg1.

99



10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

45

50

Average power (dB)

E
nd

−
to

−
en

d 
av

er
ag

e 
ra

te

N=1
N=3
N=5

Figure 5.6. End-to-end average rate vs. average total transmission power with path
loss exponent α = 3.5 and no shadowing for alg-opt

Fig. 5.5 and Fig. 5.6 show the impact of the number of hops at α = 3 and α = 3.5,

respectively. The optimal algorithm alg-opt is used. It is seen that the optimal number

of hops deceases as the average total transmission power increases for a fixed path

loss exponent. The optimal number of hops are 5, 3, and 1, respectively for the region

[10, 34.2), [34.2, 42.4) and [42.4, +∞) in Fig. 5.5. In addition, the intersections of

performance curves with different N shift to the left side as the path loss exponent

increases.

5.6 Conclusions

We have obtained the maximum end-to-end average transmission rate for OFDM

based linear multi-hop networks and its corresponding optimal power and time allo-

cation. The optimization problem to maximize end-to-end average transmission rate
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is solved by decomposing it into two subproblems which are equivalent to the original

one. The optimal strategy indicates that the transmission power has the water-filling

structure and the hops with relatively bad channel condition are given higher wa-

ter levels. Further, time-sharing fractions are adaptive so that the hops have equal

transmission rates. We also compare the optimal strategy with three suboptimal

ones that require lower computational complexity and lower signaling overhead. The

numerical findings are that the optimal strategy has a better performance than the

equal resource allocation but it does not exhibit a significant rate increase over the

suboptimal algorithm with a constant water level. However, the study in this chapter

cannot be applied in networks supporting delay-constrained services where a constant

target rate is desired. For this reasion, in the next chapter, the end-to-end resource

allocation for minimizing the service outage will be addressed with the same network

architecture as used in this chapter.
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Chapter 6

End-to-End Outage Minimization

in Linear OFDM Based Relay

Networks

In this chapter, we continue studying the end-to-end resource allocation in an

OFDM based wireless relay network. Unlike the previous chapter, our goal here is to

find an optimal power and time adaptation to minimize end-to-end outage probability

under a long-term total power constraint.

For many real-time services, one has to consider keeping the target transmission

rate and avoiding outage in most fading conditions through dynamic resource alloca-

tion. An outage is an event that the actual transmission rate is below a prescribed

transmission rate ([11] and [43]). Outage probability can be viewed as the fraction of

time that a codeword is decoded wrongly. For a given finite average power constraint,

the network may not be able to support the target rate all the time. Thus, trans-

mission outage is inevitable under severe fading conditions. In [11], the information

outage probability is minimized with an optimal power controller in a single-user,
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single-hop and single channel setting. How to minimize outage probability in an

OFDM-based multi-hop wireless network is currently under-explored. In a linear

relay network where no data is allowed to accumulate at any of relay nodes, an end-

to-end outage is the event that there exists a hop on which transmission rate is lower

than the target rate.

In this chapter, we study the transmission power and time allocation to minimize

the end-to-end outage probability in a one-dimensional multi-hop network under an

average transmission power constraint. In the first step, we derive the minimum

short-term power required to meet a target transmission rate for any given chan-

nel realization. The resulting power and time allocation can be obtained through a

Two-nested Binary Search (TBS) which is conducted in a central controller with the

knowledge of channel state information (CSI) of all subcarriers and over all hops.

Such scheme gives a theoretical performance limit over multi-hop networks, but typ-

ically rely on highly complex computation and involve significant signalling between

nodes and central controller, making it difficult to implement. For this reason, a

low computation cost Iterative Algorithm of Sub-optimal power and time allocation

(IAS) is proposed to approximate the aforementioned scheme based on TBS. The

required information for signalling exchange only involve the geometric mean and

harmonic mean of channel gains averaged over active subcarriers and the number of

active subcarriers on each hop. This sub-optimal allocation scheme suggests prolong-

ing the transmission time for the hop with low geometric mean of channel gains while

lowering the transmission power for the hop with low harmonic mean. In the second

step, the transmission on-off is determined by comparing the required minimum total

power with a threshold. Specifically, the transmission will be shut off if the required

minimum total power for a given channel realization exceeds the threshold. The value

of the threshold is chosen so that the long-term total power constraint is satisfied.

Numerical results show that a significant power saving can be achieved by the
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proposed optimal power and time allocation compared with the uniform power and

time allocation under the same end-to-end outage probability. In addition, the pro-

posed sub-optimal power and time allocation serves as a good approximation to the

optimal solution when the target rate is sufficiently high. The relation between the

optimal number of relays in the sense of the minimum required power for a given

target rate is also shown numerically.

The remainder of this chapter is organized as follows. In Section 6.1, end-to-end

rate and outage probability are introduced. The optimal and sub-optimal resource

allocation schemes to minimize the end-to-end outage probability under an average

total power constraint are proposed in Section 6.2. Numerical results are given in

Section 6.3. Finally we conclude this chapter in Section 6.4.

6.1 End-to-End Rate and Outage Probability

Consider a same linear relay wireless network as in Chapter 5. To keep this

chapter integrated, we repeat the system setting. We denote the transmission power

on subcarrier k over hop n by pk,n and let the long-term total transmission power be

limited by P . As given by Chapter 5, the transmission rate (in Nat/OFDM symbol)

in a time frame achieved over hop n is given by

rn =
∑

k∈K
ρn ln

(
1 +

gk,npk,n

ΓN0

)
, ∀n ∈ N , (6.1)

where N0 is the noise power, and Γ is the signal-to-noise ratio (SNR) gap [54]. For

notation brevity, we also redefine gk,n as gk,n := gk,n/(ΓN0). Under the assumption

that no data is allowed to accumulate at any relay nodes (also called “information-

continuous relaying in [50]), the total number of bits received at the destination node

at the end of time frame, B, is the minimum of the number of bits transmitted over

each hop, Bn, where Bn = rnTn. If the end-to-end transmission rate r is defined as
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the number of bits per OFDM symbol received at the destination node, then it can

be expressed as

r = min
n∈N

rn. (6.2)

Uniform power and time allocation (UPTA): When the receivers can perfectly

track the CSI but the transmitters have no such information, or transmitters do not

exploit CSI due to high signalling overhead, the end-to-end transmission rate has the

form

rUPTA =
1

N
min
n∈N

∑

k∈K
ln

(
1 +

gk,nP

K

)
.

If the actual end-to-end transmission rate in a certain time frame is less than a target

transmission rate R, then an outage is said to have occurred. The corresponding

end-to-end outage probability at target rate R is given by

P out
UPTA , Prob(rUPTA < R) = Prob

(∑

k∈K
ln(1 + gk,nP/K) < NR, ∀n ∈ N

)
.

In this case, the transmission scheme is independent of CSI and follows uniform power

and time allocation.

Fixed power and adaptive time allocation (FPAT): When the transmitters have

CSI to some extend (not necessarily global CSI), each node can perform rate adap-

tation to avoid the situation where the bad conditioned hop becomes the bottleneck

of the whole link. We assume that the transmission power on each subcarrier over

each hop to be unchanged in the time domain, and rate-adaptation can be performed

by adjusting time-sharing fraction such that rn = ri,∀i, n ∈ N . In this scenario, the

maximum end-to-end transmission rate under reliable communication guarantee is

given by

rFPAT =

(∑
n∈N

1∑
k∈K ln(1 + gk,nP/K)

)−1

.

This rate is achieved by assigning the time sharing fraction to be

ρi(g) =

∏
n6=i

∑
k∈K [ln (1 + gk,nP/K)]+∑

n∈N
∏

n6=i

∑
k∈K [ln (1 + gk,nP/K)]+

, (6.3)

105



The corresponding end-to-end outage probability at target rate R is given by

P out
FPAT , Prob(rFPAT < R).

To implement FPTA, the only information needed at each transmit node is the value

of
∑

k∈K ln(1+gk,nP/K), and rFPAT , while the knowledge of global CSI is not required

at each transmit node. This reduces signalling exchange load greatly. This case can

be viewed as a simple generalization of rate-adaptive relaying in flat fading channels

discussed in [50].

Adaptive power and fixed time allocation (APFT): In the case that time-sharing

fractions are required to be allocated uniformly while transmission power on each

subcarrier over each hop is adjusted to minimize the end-to-end outage probability,

the minimum end-to-end outage probability can be expressed as follows,

P out
APFT = min

p
Prob

(
1

N

∑

k∈K
ln(1 + gk,npk,n) < R | 1

N
E

[∑
n∈N

∑

k∈K
pk,n

]
≤ P

)
.

APFT can be viewed as a special case of APTA that will be presented next by forcing

by fixing ρn = 1/N , and as will be demonstrated, it can also be solved using the

following two steps: short-term power minimization and long-term power threshold

determination. Whereas, unlike APTA, the first step can be performed locally, i.e.,

each transmitter only need to know the local CSI over the associated hop to solve the

problem

min
p

∑

k∈K
pk,n

s.t.
1

N

∑

k∈K
ln(1 + gk,npk,n) ≥ R,

for all n ∈ N .

Adaptive power and time allocation (APTA): we shall now focus on the scenario of

interest, where both transmission power over each subcarrier over each hop and time

over each hop are allowed to be dynamically allocated. We assume that at the start
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of each time frame, the CSI on all subcarriers and over all hops is fully available at a

central controller, which could be embedded in the source node. Given the global CSI,

our goal is to find an optimal power and time allocation to minimize the end-to-end

outage probability for a given target transmission rate subject to a long-term total

power constraint. Namely,

P6-1: min
{ρ, p}

E{IF [r(g, ρ,p) < R]} (6.4)

s.t. E

[∑
n∈N

ρn(g)

(∑

k∈K
pk,n(g)

)]
≤ P

∑
n∈N

ρn(g) = 1, (6.5)

where g = {gk,n , k ∈ K, n ∈ N}, ρ = {ρn , n ∈ N}, p = {pk,n , k ∈ K, n ∈ N}, IF is

an indicator function and E(x) denotes the expectation of x over the joint distribution

of g.

6.2 Adaptive Power and Time Allocation

The minimum outage probability problem P6-1 defined in the previous section

can in general be solved in two steps as proposed in [11]. First, for each global channel

state g, the short-term minimum total power Pmin(g, R) required to guarantee the

target end-to-end transmission rate R is to be determined. The second step then

determines a threshold to control the transmission on-off subject to a long-term power

constraint.

6.2.1 Short-Term Power Minimization

In this subsection, we shall find the optimal time sharing fraction ρ∗n (∀n ∈ N )

and the optimal power allocation p∗k,n (∀n ∈ N , k ∈ K) to minimize the short-term
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total power needed to achieve a target end-to-end transmission rate R. Then a sub-

optimal solution with reduced complexity is developed. The sub-optimal solution has

a closed-form expression from which a few attractive properties regarding time and

power allocation can be observed. Comparisons of average powers and computational

complexity between the optimal and the sub-optimal solution are also given.

Optimal power and time allocation

The optimal power and time allocation problem to minimize short-term total

power can be formulated as

P6-2: pmin(g) = min
{ρ, p}

∑
n∈N

ρn(g)

(∑

k∈K
pk,n(g)

)
(6.6)

s.t. r(g, ρ,p) ≥ R (6.7)

∑
n∈N

ρn = 1.

Unfortunately, the term r(g, ρ,p) in constraint (6.7) is not concave in ρ and p. To

make the problem P6-2 more tractable, we introduce a new variable sk,n defined

as sk,n := ρnpk,n. This new variable can be viewed as the actual amount of energy

consumed by hop n on subcarrier k in a time frame interval. In addition, it follows

from (6.2) that constraint (6.7) can be rewritten as N sub-constraints. By doing these,

problem P6-2 can be transformed into a new problem with optimization variables

ρn (∀n ∈ N ) and sk,n (∀n ∈ N , k ∈ K):

P6-3: min
{ρ, s}

∑
n∈N

∑

k∈K
sk,n (6.8)

s.t. ρn

∑

k∈K
ln

(
1 +

gk,nsk,n

ρn

)
≥ R, ∀n ∈ N (6.9)

∑
n∈N

ρn = 1. (6.10)

Since its Hessian matrix is negative semidefinite, the function ρn ln(1 + gk,nsk,n/ρn)

is concave in ρn and sk,n. Therefore, problem P6-3 is a convex optimization problem
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and there exists a unique optimal solution. To observe the structure of the optimal

solution, we write the Lagrangian of Problem P6-3 as follows:

J({ρn}, {sk,n}, {λn}, β) =
∑
n∈N

∑

k∈K
sk,n + β

(∑
n∈N

ρn − 1

)
+

∑
n∈N

λn

[
R− ρn

∑

k∈K
ln

(
1 +

gk,nsk,n

ρn

)]
(6.11)

where λn ≥ 0 (n ∈ N ) and β ≥ 0 are the Lagrange multipliers for the constraints (6.9)

and (6.10), respectively. If {ρ∗n} and {s∗k,n} are the optimal solution of P6-3, they

should satisfy the Karush-Kuhn-Tucker (KKT) conditions [7], which are necessary

and sufficient for the optimality. The KKT conditions are listed as follows:

∂J(. . .)

∂sk,n





= 0 if s∗k,n > 0

> 0 if s∗k,n = 0
, ∀n ∈ N , k ∈ K (6.12)

∂J(. . .)

∂ρn





> 0 if ρ∗n = 0

= 0 if 0 < ρ∗n < 1

< 0 if ρ∗n = 1

,∀n ∈ N (6.13)

λn

[
ρ∗n

∑

k∈K
ln

(
1 +

gk,ns∗k,n

ρ∗n

)
−R

]
= 0, ∀n ∈ N . (6.14)

It can be obtained from the KKT condition (6.12) that the optimal power distri-

bution {p∗k,n} has a water-filling structure, and is given by

p∗k,n =
s∗k,n

ρ∗n
=

(
λn − 1

gk,n

)+

, ∀k ∈ K, n ∈ N , (6.15)

where (x)+ , max(0, x), and λn can be regarded as the water level on hop n. Different

hops may have different water levels, and for each hop, more power is allocated to

the subcarrier with higher channel gain and vice versa.

Let Kn denote the set of subcarriers over hop n that satisfies gk,n ≥ 1/λn (∀k ∈
Kn), and let kn be the size of the set. The subcarriers in the set are said to be active.
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The value of λn in (6.14) is non-zero, otherwise p∗k,n = 0 (∀k, n). Hence, we can obtain

the closed-form expression for ρ∗n by substituting (6.15) into (6.14):

ρ∗n , hn(g, λn) =
R∑

k∈Kn
ln gk,n + kn ln λn

, ∀n ∈ N . (6.16)

From (6.16), it can be shown that ρ∗n is monotonically decreasing in λn (note that kn

in (6.16) is treated as a function of λn).

In the following, we derive the relation between λn and β. Taking the derivative

of Lagrangian of P6-3 in (6.11) with respect to ρn, we have

∂J(. . .)

∂ρn

= λn

[∑

k∈K
ln

(
1 +

gk,nsk,n

ρn

)
−

∑

k∈K

gk,nsk,n

ρn + gk,nsk,n

]
− β. (6.17)

Suppose that there existed a n ∈ N such that ρ∗n = 0 or 1, then the constraint (6.14)

would be violated. Thus, we have 0 < ρ∗n < 1 (∀n ∈ N ). Substituting (6.15) into

(6.17) and using (6.13), we can express β as a function of λn given by

β , fn(g, λn) = λn

( ∑

k∈Kn

ln gk,n + kn ln λn − kn

)
(6.18)

+
∑

k∈Kn

1

gk,n

, ∀n ∈ N .

It is seen from (6.18) that finding the optimal water levels {λn} for a given β are N

independent problems. It can be proven that fn(g, λn) is a monotonically increas-

ing function of λn in the region
[
mink

(
1

gk,n

)
, +∞

]
by evaluating its deviation with

respect to λn. Hence, the inverse function, f−1
n (g, β), exists and is an increasing func-

tion of β. Therefore, the exact value of λn for a given β can be obtained numerically

using binary search when the upper bound is known.

Substituting λn = f−1
n (g, β) into (6.16), we can express ρ∗n as ρ∗n = hn(f−1

n (g, β)).

Since ρ∗n is decreasing in λn and λn is increasing in β, it follows that ρ∗n is decreasing

in β. Therefore, the optimal β can also be obtained via binary search from the

constraint (6.10). Hence, the optimal solution {ρ∗n, s∗k,n} of P6-3 and the resulting

pmin can be obtained through two-nested binary search. The outer loop varies the
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Lagrange multiplier β to meet the total transmission time constraint. The inner loop

searches the water level for each hop at a given value of β to satisfy (6.18). The

algorithm is outlined as follows.

Two-nested binary search for minimum short-term power (TBS)

Binary search for β

1. Find the upper bound and lower bound of β

(a) For all n ∈ N , let λ̄n = λn = mink{1/gk,n}

(b) Compute ρ̄n = hn(g, λ̄n) using (6.16)

(c) If ρ̄n > 1/N , update λ̄n = 2λ̄n and repeat Step 1)-b) and c)

else, go to Step 1)-d)

(d) Set βmin = maxn∈N fn(g, λn), and βmax = maxn∈N fn(g, λ̄n)

2. Set high = βmax, low = βmin

3. Let center = (low+high)/2 and binary search for λn (∀n ∈ N ) at β = center

(a) Find the upper bound and lower bound of λn, λmax
n and λmin

n , respectively

i. Let λmin
n = λmax

n = mink{1/gk,n}

ii. Compute β′ = fn(g, λmax
n ) using (6.18)

iii. If β′ < β, update λmin
n = λmax

n and λmax
n = 2λmax

n and repeat Step

3)-a)-ii) and iii)

else, let highn = λmax
n , lown = λmin

n , and go to Step 3)-b)

(b) Set centern = (lown+highn)/2. If fn(g, centern) > β, let highn = centern;

otherwise, let lown = centern

(c) Repeat Step 3)-b) until highn − lown < ε′ and let λn = centern
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4. If
∑

n∈N hn(g, λn) > 1, let low = center; otherwise, let high = center

5. Repeat Step 3) and Step 4) until high− low < ε

6. Using the found {λn} and β, obtain ρ∗n and p∗k,n based on (6.16) and (6.15),

respectively.

7. Compute pmin =
∑

n∈N ρ∗n(
∑

k∈K p∗k,n)

In Step 1), the boundaries of β are determined in order to proceed with the

binary search in the outer loop. From (6.18), a common Lagrange multiplier β is

shared by all hops and it is a monotonically increasing function of λn in the region

of
[
mink∈K

(
1

gk,n

)
, +∞

]
for all n. We use λn = mink∈K

(
1

gk,n

)
to represent the lower

bound of λn
1, then the lower bound of β is the maximum of fn(g, λn) among N hops.

The same lower bound of λn will also be used in Step 3) for the inner loop. The

upper bound of β is obtained from the fact that there exists at least an n∗ such that

ρn∗ ≥ 1
N

. Correspondingly, we find a water level λ̄n = h−1
n (g, 1

N
) for all n, where

h−1
n (g, ·) is the inverse function of hn(g, ·). Then for hop n∗, we have λn∗ ≤ λ̄n∗ since

h−1
n (g, ·) is a decreasing function. Therefore, due to the monotonicity of fn(g, ·), the

upper bound of β can be obtained from

β = fn∗(g, λn∗) ≤ fn∗(g, λ̄n∗) ≤ max
n∈N

fn(g, λ̄n). (6.19)

The algorithm then updates β using binary chop until the sum of the corresponding

time-sharing fraction converges to 1. The convergence of the outer loop is guaran-

teed by the fact that the actual sum of time-sharing fractions is also monotonically

decreasing in β.

The aim of the inner loop in Step 3) is to find λn (∀n ∈ N ) for a given β. We first

initialize the upper bound of λn, λmax
n = mink

{
1

gk,n

}
and then keep increasing it until

1λn ≥ mink∈K
(

1
gk,n

)
so that there exists at least one subcarrier on each hop is allocated non-zero

power.
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the corresponding β′ goes beyond the given β. In each iteration, the binary search

guess an halfway λn between the new high and low values and repeats it until the

actual β′ approach the given β. The iteration converges because of the monotonicity

of β in λn.

The outer loop involves log2

(
βmax−βmin

ε

)
iterations where ε represents outer loop

accuracy. The inner loop has N binary searches, and each involves log2

(
λmax

n −λmin
n

ε′

)

iterations, where ε′ is the inner loop accuracy. It is observed from (6.16) and (6.18)

that βmax = O (
NReNR/K

)
and λmax

n = O (
eNR/K

)
when the target rate is so high

that all subcarriers are active. Therefore, the average computational complexity

of this algorithm is upper bounded by the magnitude of N3R2

K2 ln(NR
ε

) ln( 1
ε′ ) in the

asymptotical sense with a high target rate.

Sub-optimal time and power allocation

In the optimal time and power allocation, it is infeasible to obtain an closed-form

expression for the solution. In this part, we will observe that when the target rate is

sufficiently large, the optimal transmission time can be approximated by an explicit

function of the geometric mean of channel gains averaged over the active subcarriers

and the number of active subcarriers

ρ′n =
R

knRµ + knan

, (6.20)

where kn is the size of the set Kn = {k | gk,n ≥ 1/λn}, and an is a function of geometric

mean of gk,n of the active subcarrers at hop n and the number of active subcarrers,

which will be expressed in (6.23). In addition, the product of water level and the

number of active subcarriers for each hop tends to be the same. In the following, we

shall investigate this sub-optimal solution and show that it has a low computational

complexity and little signalling exchange.

Let {ρn, n ∈ N} be any given time allocation that satisfies
∑

n∈N ρn = 1 and 0 ≤
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ρn ≤ 1. The optimal power distribution for the given time allocation, {ρn, n ∈ N},
is expressed by (6.15). Substituting (6.15) into (6.1) and letting pn =

∑
k∈K pk,n, the

close-form expression of λn can be obtained as [63]

λn =

(
e

R
ρn∏

k∈Kn
gk,n

)1/kn

, (6.21)

where kn is the size of the set Kn = {k | gk,n ≥ 1/λn} Moreover, substituting (6.21)

back into (6.15), we have

p∗n(ρn) = e
R
kn

1
ρn
−an − bn, (6.22)

where, for notation brevity, we define

an , 1

kn

( ∑

k∈Kn

ln gk,n

)
− ln kn = ln g̃n − ln kn, (6.23)

and

bn ,
∑

k∈Kn

1

gk,n

=
kn

ḡn

. (6.24)

In (6.23) and (6.24), g̃n and ḡn represent the geometric mean and harmonic mean of

gk,n on active subcarriers at hop n, respectively.

For the moment, let us assume that kn’s are fixed and then both an and bn are

constants. Then, the problem of minimizing total power for supporting the target

end-to-end transmission rate can be reformulated as P6-4 only with optimization

variables {ρn, n ∈ N}

P6-4 : pmin(g) = min
{ρn}

∑
n∈N

ρnp
∗
n (6.25)

= min
{ρn}

∑
n∈N

ρn

(
e

R
kn

1
ρn
−an − bn

)

s.t.
∑
n∈N

ρn = 1. (6.26)

Problem P6-4 can be also solved using Lagrange multiplier method since it is convex.

The Lagrangian of this problem is given by

L(ρ, ν) =
∑
n∈N

(
ρne

R
kn

1
ρn
−an − bn

)
+ ν

(
1−

∑
n∈N

ρn

)
,
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where the Lagrange multiplier ν satisfies constraint (6.26). Applying KKT condition,

the optimal time-sharing fraction ρn should satisfy

∂L(ρ, ν)

∂ρn

= e
R
kn

1
ρn
−an − R

kn

1

ρn

e
R
kn

1
ρn
−an − ν = 0. (6.27)

The closed-form solution to (6.27) is difficult to obtain.

It is known that when the target transmission rate is sufficiently small, the power

saving through time adaptation is insignificant [73]. This result motivates us to focus

on the high target transmission rate with R À K. We consider two particular hops,

n1 and n2. Under the assumption of a high target transmission rate, the equation

(6.27) can be approximated by

e−an1
R

kn1ρn1

e
R

kn1ρn1 ≈ e−an2
R

kn2ρn2

e
R

kn2ρn2 .

From the above approximation, we can obtain a ratio

kn1ρn1

kn2ρn2

≈ 1 +
kn1ρn1

R
(an2 − an1)−

kn1ρn1

R
ln

(
kn1ρn1

kn2ρn2

)
. (6.28)

Without loss of generality, we assume an2 ≥ an1 , then we have (kn1ρn1)/(kn2ρn2) ≥ 1

from (6.28). Thus, (6.28) leads to

1 ≤ kn1ρn1

kn2ρn2

≤ 1 +
kn1ρn1

R
(an2 − an1). (6.29)

Using the inequality ln(x) ≤ x − 1 and (6.28), we obtain a lower bound of

(kn1ρn1)/(kn2ρn2) after some manipulations,

kn1ρn1

kn2ρn2

≥ 1 +
kn1ρn1(an2 − an1)

R
(
1 +

kn1ρn1

R

) . (6.30)

Since R À K, inequalities (6.29) and (6.30) lead to

kn1ρn1

kn2ρn2

≈ 1 +
kn1ρn1

R
(an2 − an1).

After manipulation, we have

1

kn2ρn2

− an2

R
≈ 1

kn1ρn1

− an1

R
, ∀n1, n2 ∈ N .
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Let

1

knρn

− an

R
= µ, ∀n ∈ N .

We can obtain the approximated but close-form solution to (6.27) as follows

ρ′n =
R

knRµ + knan

,∀n ∈ N , (6.31)

where µ is determined by constraint (6.26), and can be obtained through binary

search. Substituting (6.31) into (6.22), the corresponding transmission power allo-

cated to hop n is given by

p′n = eRµ − bn, (6.32)

Furthermore, substituting (6.31) into (6.21) yields the sub-optimal water level for hop

n as

λn =
eRµ

kn

. (6.33)

From (6.15), (6.32) and (6.33), we can regard the sub-optimal power allocation as a

two-level water filling scheme. First, the power is poured among all the hop according

to (6.32) using the water level eRµ and the hop with small bn will be given more power.

In each hop, the power obtained from the previous level is then poured among different

subcarriers following (6.15), and the water level is equal to eRµ/kn.

Consider a special case where eRµ is sufficiently large so that all subcarriers are ac-

tive, i.e., kn = K. It follows immediately from (6.31) that the hops with low geometric

mean of channel gains over the subcarriers should be assigned with longer transmis-

sion time. Also, it follows from (6.32) one should lower the transmission power for

the hops with low harmonic mean of channel gains. An intuitive understanding of

this result is that a high priority is given to the hop with poor channel condition to

take advantage of “Lazy Scheduling” [23] to prevent this hop in becoming the bottle-

neck of the whole link. The idea behind “Lazy Scheduling” is that energy required

to transmit a certain amount of information decease when prolonging transmission

time.
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We now relax the assumption made earlier that kn’s fixed and propose an it-

erative procedure to find the best kn’s for this sub-optimal short-term total power

minimization.

Iterative Algorithm of Sub-Optimal Power and Time Allocation (IAS)

1. Initialization of kn

Set kn = K, ∀n ∈ N

2. Binary search for µ for a given {kn, ∀n}

(a) Set high = µmax, low = µmin

(b) Let center = (low + high)/2, and calculate {ρ′n, ∀n} when µ = center

according to (6.31)

(c) If
∑

n∈N ρ′n > 1, let low = center; otherwise, let high = center

(d) Repeat Step 2)-b) and c) until high− low < ε′′

3. Find kn (∀n) in the set {1, . . . , K} for a given ρ′n to meet the target rate R

based on (6.34)

4. Repeat Step 2) and 3) until kn’s are unchanged

5. Compute p′k,n through substituting (6.21) into (6.15)

6. Obtain the required total power p′min =
∑

n ρ′n(
∑

k p′k,n)

In Step 2)-a) µmax and µmin represent the upper bound and lower bound of µ,

respectively. The exact value µmin = maxn∈N
(

1
kn
− an

R

)
can be obtained from the

time constraint 0 ≤ ρ′n ≤ 1. Its upper bound µmax could be minn∈N
(

NR−knan

knR

)
, since

if µ > minn∈N
(

NR−knan

knR

)
, ρ′n < 1/N (∀n) from (6.31), which violates the constraint

∑
n ρ′n = 1.
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The implementation of the above algorithm can be done as follows. At the begin-

ning of each time frame, we first assume that the transmission is on for all subcarriers.

The central controller searches for µ and broadcast it to all relays. The relays and

source node then compute their own transmission time {ρ′n, ∀n ∈ N} using (6.31)

locally. The required power allocation for hop n to meet the target rate should satisfy

∑

k∈K
ln(1 + gk,npk,n) =

∑

k∈Kn

ln(gk,nλn)
(a)
=

R

ρ′n
, ∀n ∈ N . (6.34)

The left side of the above equation (a) can be shown to be a monotonically increasing

function of λn, and is denoted as zn(λn). Without loss of the generality, we assume

g1,n ≥ g2,n ≥ . . . ≥ gK,n (∀n ∈ K). A λn maps to a unique kn which satisfies that

1
gkn,n

≤ λn ≤ 1
gkn+1,n

. Thus, we have

zn

(
1

gkn,n

)
≤ R

ρ′n
≤ zn

(
1

gkn+1,n

)
.

Therefore, the desired kn in Step 3) can be obtain through binary search in the set of

{1, . . . , K} by comparing zn(1/gkn,n) with R/ρ′n. The found kn and the geometric and

harmonic mean of channel gains on these kn subcarriers are returned to the input of

(6.31) in the central controller. This procedure repeats until the kn’s are unchanged.

Although the convergence of this algorithm cannot be guaranteed theoretically, diver-

gent behaviors were never observed in the simulation. In the following, we shall use

simulation to examine the average number of iterations for the algorithm to converge

and the average required short-term total transmission power.

In the simulation, SUI channel model for the fixed broadband wireless access chan-

nel environments [17] is used and the channel parameters will be detailed in Section

6.3. The simulation is run for 103 time frames to evaluate the average performance.

The number of subcarriers is set to 16.

Fig. 6.1 shows the average iterations in the outer loop over 103 independent

channel realizations required for the search of {kn} to converge. It is shown that the
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Figure 6.1. Average number of iterations in the outer loop required for the search of
{kn}

average iteration numbers, denoted as M , is decreasing in R and approaches 1 when

the target rate is sufficiently large. It can be explained by the fact that kn = K when

R goes infinity.

Since the binary search for µ in the inner loop involves log2

(
µmax−µmin

ε′′
)

iterations

and finding kn for a given R/ρn involves log2(K) ones, the total number of iterations

required for the IAS can be express as

CIAS = M



log2


minn∈N

(
NR−knan

knR

)
−maxn∈N

(
1
kn
− an

R

)

ε′′


 + N log2(K)




(6.35)

Since M is decreasing in R, CIAS is also decreasing in R and upper bounded by a

linear function of N . Fig. 6.2 compares average total complexities between TBS and

IAS for different R and different N .

Fig. 6.3 compares the average power required to meet the target rate between

119



5 10 15 20
1000

2000

3000

4000

5000

6000

7000

Target rate, R (Nat/OFDM symbol)

A
ve

ra
ge

 to
ta

l n
um

be
r 

of
 it

er
at

io
ns

 fo
r 

T
B

S

N=1
N=3
N=5

5 10 15 20
0

20

40

60

80

100

120

140

Target rate, R (Nat/OFDM symbol)

A
ve

ra
ge

 to
ta

l n
um

be
r 

of
 it

er
at

io
ns

  f
or

 IA
S

N=1
N=3
N=5

Figure 6.2. Average total number of iterations using TBS and IAS

TBS developed in Section 6.2.1 and its sub-optimal algorithm, IAS. It is shown that

IAS serves as a good approximation of TBS, especially for a high target rate.

As we discuss previously, the required controlling signals from the feedback chan-

nel are only geometric mean, harmonic mean of gk,n and the number of active subcar-

riers over each hop instead of {gk,n ,∀k ∈ K, n ∈ N} as in TBS. Thus the signalling

exchange is greatly reduced when the number of subcarriers is large and/or the tar-

get rate is high. Furthermore, since IAS has low complexity and near-optimal power

consumption performance, it is a good candidate for a sufficiently high target rate in

a real system.

6.2.2 Long-Term Power Threshold Determination

We have discussed the short-term total transmission power minimization. If the

transmission is on for every possible channel realization, the long term power con-
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Figure 6.3. Average short-term power required to meet the target rate, R

straint may be violated. Similar to the single user case [11], the optimal power allo-

cated to all hops for P6-1 with a long term power constraint must have the following

structure,

p(g) =





pmin(g) with probability w(g)

0 with probability 1− w(g)
. (6.36)

Thus, the outage probability is E{IF [r(g, ρ,p) < R]} = E[1 − w(g)]. Then solving

P6-1 is equivalent to finding the optimal weighting function w(g) to the following

problem,

min
w(g)

E[1− w(g)]

s.t. 0 ≤ w(g) ≤ 1

E[pmin(g)w(g)] = P.
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According to the result of [11, Lemma 3], the optimal weighting function has the form

w∗(g) =





1 for pmin(g) < s∗

w0 for pmin(g) = s∗

0 for pmin(g) > s∗

. (6.37)

The power threshold s∗ is given by

s∗ = sup{s : P(s) < P},

and w0 is given by

w0 =
P − P(s∗)

P̄(s∗)− P(s∗)
,

where the region R(s) and R̄(s) are defined as

R(s) = {g : pmin(g) < s}, R̄(s) = {g : pmin(g) ≤ s},

and the corresponding average power over the two sets are:

P(s) = Eg∈R(s)[pmin(g)], P̄(s) = Eg∈R̄(s)[pmin(g)]

The resulting minimum outage probability is denoted as

Pout = 1− Prob{g ∈ R(s∗)} − w0Prob{pmin(g) = s}.

From (6.36) and (6.37), we see that when the minimum total power for all hops re-

quired to support the target transmission rate is beyond the threshold s∗, transmission

is turned off. When the required power is less than the threshold, the transmission

follows the minimum transmission power strategy derived from Section 6.2.1.

The value of s∗ can be computed a priori if the fading statistics are known. Oth-

erwise, the threshold can be estimated using fading samples. During the estimation

of the threshold, since the channel is assumed to be ergodic, the ensemble average

transmission power is equal to the time average

Eg∈R(s)[pmin(g)] = lim
t→∞

1

t

t∑
i=1

p̂(i),
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where p̂(i) represents the actual transmission power at time frame i. Thus, the thresh-

old is always adjusted in the opposite direction of P − 1
t

∑t
i=1 p̂(i) as

s∗(t + 1) = s∗(t)

[
1 + ε

(
P − 1

t

t∑
i=1

p̂(i)

)]
. (6.38)

where t is the time frame index.

Combining the short-term power minimization and long-term power threshold

determination, the full algorithm for APTA is outlined as follows.

APTA

1. Set t = 1 and s∗(t) = P

2. Search for minimum short-term power (developed in Section 6.2.1)

3. On-off decision

If pmin > s∗(t), turn off the transmission and let p̂(t) = 0; otherwise, turn on the

transmission and let p̂(t) = pmin.

4. Update the threshold s∗

s∗(t + 1) = s∗(t)

[
1 + ε

(
P − 1

t

t∑
i=1

p̂(i)

)]
. (6.39)

5. Let t = t + 1 and return to Step 1).

If TBS in Section 6.2.1 is used in Step 2), we name the optimal APTA as APTA-

opt for short. If IAS in Section 6.2.1 is used, we denote it as APTA-sub.

6.3 Numerical results

In this section, we present numerical results to illustrate the performance of the

proposed adaptive power and time allocation for OFDM based linear relay networks.
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The proposed algorithms, APTA-opt and APTA-sub, are compared with UPTA,

FPAT and APFT mentioned in Section 6.1.

We consider an N -hop linear wireless network. The acceptable BER is chosen to

be 10−5, which corresponds to 8.2dB SNR gap. We fix the bandwidth to be 1MHz and

the end-to-end distance to be 1km. The relays are equally spaced. In all simulations,

the channel over each hop is modelled by Stanford University Interim (SUI)-3 channel

model with a central frequency at around 1.9 GHz to simulate the fixed broadband

wireless access channel environments [17]. The SUI-3 channel is a 3-tap channel. The

received signal fading on the first tap is characterized by a Ricean distribution with

K-factor equal to 1. The fading on the other two taps follows a Rayleigh distribution.

The root-mean-square (rms) delay spread is 0.305µs. Then the coherence bandwidth

is approximately 65KHz. Hence, the number of subcarrier K should be greater than

15.2 so that the subcarrier bandwidth is small enough to experience the flat fading.

Here we choose K = 16. Doppler maximal frequency is set to 0.4 Hz. Intermediate

path loss condition ([16, Category B]) is chosen as the path loss model, which is given

by

PL = A + α lg

(
d

dn

)
,

where A = 20 lg(4πd0/λ) (λ being the wavelength in m), α is the path-loss exponent

with α = (a− bhb + c/hb). Here hb = 30m is chosen as the height of the base station

, d0 = 100m and a, b, c are 4, 0.0065 and 17.1, respectively, as given in [16]. The

corresponding α will be used in all simulations except the one in Fig Fig. 6.5. In

each simulation, 104 time frames are used to estimate the outage probability.

Fig. 6.4 shows the end-to-end outage probabilities versus average total transmis-

sion power for R = 1, 20 and 40 Nat/OFDM symbol using APTA-opt when N varies

in the set of {1, 3, 5}. From the figure, it is shown that multi-hop transmission can

help to save total power consumption when the target transmission rate is low (e.g.,
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Figure 6.4. End-to-end outage probability vs. average total transmission power under
APTA when K = 16

R = 1) whereas it is better to send data directly to a destination if the target trans-

mission rate is high (e.g., R = 40). That can be explained by the following fact. As

the number of hops increases, the path loss attenuation on each hop reduces. But

the transmission time spent at each hop also reduces since the total frame length is

fixed. It is observed from (6.1) that the transmission rate is linear in transmission

time and concave in channel gain. Hence, when target transmission rate increases,

the loss due to the reduction of transmission time goes beyond the benefit derived

from the reduction of path loss attenuation.

Fig. 6.5 shows the relationship between the optimal number of hops in the sense

of the minimum required power consumption and the target transmission rate, when

the outage probability is fixed to 1%, and the path loss exponent α =2.5 and 4,

respectively. It is observed that the optimal number of hops is roughly proportional
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Figure 6.5. The optimal number of hops vs. target rate under APTA when α = 2.5
and 4

to the inverse of R. In our simulation, we also find that the optimal number of hops

is independent of the end-to-end distance.

Fig. 6.6 and Fig. 6.7 compares the end-to-end outage probabilities of APTA-opt,

APTA-sub, FPAT, APFT and UPTA when R =1 and 20 Nat/OFDM symbol. There

is a tremendous loss in performance by performing UPTA and FPAT compared with

the other three algorithms for both two cases, especially when the the required outage

probability is low. UPTA and FPAT have a fixed short-term total power consumption

while APTA-opt, APTA-sub and APFT use a long-term power constraint, which yield

a significant gain by turning off the transmission when the channels suffer from deep

fade. The performance of APTA-sub is even worse than that of APFT when the

target rate is low (e.g. R=1). But when the target rate is medium (e.g. R=20) and

at the outage probability of 10−2, APTA-sub performs almost the same as APTA-opt

and outperforms APFT by 1 to 2dB for N=3 and N=5 .
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The numerical results suggest that multi-hop transmission is favorable at a low

or medium target rate, whereas a direct transmission from source to destination is

preferred if the target rate is high. APFT is a good choice in practice for a low target

rate since it has similar performance with APTA-opt and yet is much less complex.

For the similar reason, APTA-sub is recommended at a medium target rate.

6.4 Conclusions

In this chapter, we consider adaptive power and time allocations for OFDM based

linear relay networks for end-to-end outage probability minimization. First, we derive

the minimum short-term total power to meet the target transmission rate. Second,

the transmission on-off is determined by comparing the required minimum total power

with a threshold, which is selected to satisfy the long-term total power constraint.

To avoid high computational complexity and signalling exchange, a sub-optimal so-

lution, APTA-sub, is proposed to approximate APTA-opt when the target rate is

sufficiently high. The information needed by the controller are only geometric mean

and harmonic mean of channel gains averaged over active subcarriers and the number

of active subcarriers. It suggests prolonging the transmission time for the hop with

low geometric mean of channel gains averaged over subcarriers while lowering the

transmission power for the hop with low harmonic mean. Numerical results demon-

strate the relation between the optimal number of hops and the target rate and path

loss exponent, and compare the outage probability of APTA-opt and APTA-sub with

APFT, FPAT and UPTA. It is shown that APTA-opt, APTA-sub and APFT has a

significant performance gain over the other two. It is noted that the resource alloca-

tion studied in this chapter is particularly developed for linear relay networks.
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Chapter 7

Conclusions and Future Work

This thesis investigates dynamic resource allocation for energy-constrained wire-

less networks over time-varying channels. For different network architectures and

different user’s traffic types, resource allocation problems have been formulated in

a generalized optimization framework. The possible solutions were developed using

different mathematical tools. The results have shown the advantage of adaptive re-

source allocation over non-adaptive one by exploiting multi-user diversity, channel

time diversity, frequency diversity and heterogeneous QoS requirements.

The thesis started with joint optimization of average rate and rate oscillation in a

multi-user system over a time-varying wireless fading channel. It has been shown that

a utility function that increases with average rate but decreases with rate variance, can

be used to facilitate the choice of the combinations of average rate and rate oscillation.

A generalized gradient based scheduling algorithm was developed to maximize the

proposed utility function from a myopic view (in the sense that the difference of

utilities between two consecutive time frames is maximized). This proposed algorithm

degenerates to the traditional gradient algorithm when the utility is a function of

average rate only. It has also been shown that GGSA is asymptotically optimal when
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the transmission rate vector, under an appropriate scaling, converges to a fixed vector

as time goes into infinity. However, the conditions of convergence cannot be elucidated

theoretically from current research. Further work would be needed to identify the

convergence conditions and study the effect of GGSA on other performance metrics,

such as, average delay and delay jitter. The numerical results in this study also

suggest that GGSA plays a significant role in balancing average rate and rate variance

and has a good convergence performance in a time-sharing wireless network. This

finding shows that an additional benefit of GGSA might be also obtained in a more

generalized network architecture, i.e., resource-shared time-varying wireless network,

though more theoretical analysis and verification are still needed at the current stage.

In chapter 4, we looked at the integrated design of quantization and transmission

in wireless sensor networks. The optimal solution suggests that the network lifetime

can be prolonged by taking advantage of “lazy scheduling” and/or “opportunistic

quantization”. It can be attributed to the fact that “lazy scheduling” helps to avoid

the weak nodes becoming the bottleneck of the whole network, and that “opportunis-

tic quantization” allows the WSN to exploit the limited energy most efficiently. The

developed algorithms were shown to contribute the partially distributed property.

Finally, this integrated design of quantization and transmission was shown to provide

a significant lifetime increase over conventional techniques, and this increase is pro-

nounced in heterogenous sensing environment. A challenge in future work would be

to extend the proposed policies to a more general distributed estimation framework

as discussed in [72] where the observed signals may be partially correlated. Also the

definition of network lifetime considered in this thesis is simple. In a real WSN, the

death of some nodes may not affect the functioning of the whole network. More gen-

eralized definitions of network lifetime, for example, the time when the Lth (L < K)

node dies, would be an interesting subject of investigation.

Chapter 5 and Chapter 6 studied the end-to-end resource allocation in an OFDM-
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based multi-hop relaying network. The research investigated how to optimize the

transmission power on each subcarrier over each hop and the transmission time used

by each hop in every time frame so that the end-to-end average transmission rate

(outage) is maximized (minimized) under a long-term total power constraint. We

have shown that for average rate maximization, the optimal resource allocation strat-

egy has the following features: the power allocation on the subcarriers at each hop

follows the water-filling structure, and the water level varies over time and among

different hops. Meanwhile, the fraction of transmission time allocated to each hop

is adaptive so that the actual transmission volumes over all hops are equal. The

analytical expression for optimal resource allocation also suggests that the hops with

bad channel condition should be given a high water level, and if the channel of any

one hop is in deep fade during a certain time frame, the system may be turned off

in order to save power. For outage minimization, the proposed scheme suggests pro-

longing the transmission time for the hop with low geometric mean of channel gains

while lowering the transmission power for the hop with low harmonic mean. Such

schemes give a theoretical performance limit over multi-hop networks, but typically

involve highly complex computation and involve significant signalling between nodes

and central controller, making it difficult to implement. Interestingly, the proposed

suboptimal schemes with less computation and signalling can be used to approxi-

mate the aforementioned optimal scheme. Thus, a suboptimal scheme may becomes

a good candidate in practical systems. However, the study in these two chapters are

restricted to linear network, a one-dimensional chain of nodes, under the assumption

that no data is allowed to accumulate in each relay. It will be interesting to study the

more complex situation where the network has PMP or mesh architecture. More per-

formance analysis, e.g., delay and stability, may be needed when data accumulation

is allowed.
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Appendix I

Optimality Proof of The Greedy Algorithm

Consider one realization of S and ρi ∈ {0, 1/L, 2/L, . . . , 1}. For simplicity, we

define ũi(ρi) :=
∫ GSi+1

GSi
ui(ρi(g), gi)dgi and di(ρ) = ũi(ρ)−ũi (ρ− 1/L). Let DL denote

the set of L largest elements in D = {di(ρ)|i = 1, 2, . . . , N, ρ = 0, 1/L, 2/L, . . . 1}.
Then, the Lagrangian can be written as:

N∑
i=1

(ũi(ρi)− λρi) =
N∑

i=1

[Ũi(0) + (di(1/L)− λ) + . . . + (di(ρi)− λ)]. (7.1)

Let λ be the smallest di(ρ) in DL, then

di(ρ)− λ




≥ 0 if di(ρ) ∈ DL

< 0 otherwise
. (7.2)

Therefore the Lagrangian (7.1) is maximized by

ρ∗i =





0 if di(1/L) /∈ DL

1 if di(1) ∈ DL

ρ if di(ρ) ∈ DL and di(ρ + 1/L) /∈ DL.

. (7.3)

Due to the concavity of the utility function, we have di(1/L) > di(2/L) > . . . >

di(Ni/L) > di((Ni + 1)/L) > . . . > di(1). Here suppose that di(Ni/L) ∈ DL and

di((Ni + 1)/L) /∈ DL, then
∑

i Ni = |DL|. Since ρ∗i = Ni/L from (7.3),
∑

i ρ
∗
i =

|DL|/L = 1 holds for the chosen λ. ρ∗i is an optimal solution of Problem (3.26).

Since Step 2) computes the L largest di(ρ) in the decreasing order of their values,

the greedy algorithm obtains the optimal solution.
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Appendix II

Proof of Property 1

Proof: The equivalent problem of P4-1 is expressed as

min
ρ

a

s.t. uk(ρk) ≤ a (7.4)

∑

k∈K
ρk = 1, (7.5)

The optimal solution satisfies the following Karush-Kuhn-Tucker (KKT) conditions,

λku
′
k(ρk) + µ = 0, ∀k ∈ K

∑
k∈K λk = 1

∑
k∈K ρk = 1

ui(ρi) = uj(ρj), ∀i, j ∈ K

(7.6)

where λk, ∀k ∈ K and µ are Lagrange multipliers corresponding to the constraints

(7.4) and (7.4). The last condition shows that the optimal solution forces all node

lifetime equal.

Appendix III

Proof of Property 2

Proof: We define a new generalized function for all k, û(·), satisfying

û(ρk, Ekgk, σ
2
k) := uk(ρk), where the product of Ek and gk is treated as a variable. It

can be shown that û is a monotonically decreasing function of ρk and Ekgk. Therefore,

to maintain the equality in (4.14), the first inequality in (4.16) must hold. Conse-

quentially, the second inequality in (4.16) can be obtained through (4.3).
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Appendix IV

Proof of Property 3

Proof: Suppose that σ2
i > σ2

j (i, j ∈ K). It results in Li > Lj under the

assumption D̄k = D̄0 (∀k ∈ K). When Ekgk (∀k ∈ K) are the same, û is monotonically

increasing in Lk but decreasing in ρk. Therefore, we have ρi > ρj to maintain this

equality in (4.14). From the assumption Ekgk = Ejgj and the energy constraint in

(4.9), we have gipiρiTk = gjpjρjTj. Since it was said that Ti = Tj in (4.14), it is true

that gipi < gjpj.

Appendix V

Proof of Theorem 2

Proof: According to the discussion above, if ρ∗ is an optimal solution of Problem

P4-2, it must satisfy the following condition:





ui(ρ
∗
i ) = uj(ρ

∗
j), ∀i, j ∈ K

∑K
k=1 ρ∗k = 1

. (7.7)

We now prove the existence and uniqueness of the above solution ρ∗.

Existence and uniqueness : when x → 0,
∑

k u−1
k (x) → +∞ (here, u−1

k (·) is the in-

verse function of uk(·)), and when x → +∞,
∑

k u−1
k (x) → 0. Meanwhile,

∑
k u−1

k (x)

is a continuous and strictly decreasing function of x. Thus there exists the unique

x∗ satisfying
∑

k u−1
k (x∗) = 1. It is easy to see that a unique solution ρ∗k = u−1

k (x∗)

satisfies (7.7), and condition (7.7) results in the minimum of the objective function

of Problem P4-2 and P4-3.

The following shows that condition (7.7) holds if and only if∇f(ρ∗) = 0. When K
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is sufficiently large and/or the step size (it will be mentioned in latter half of Section

4.2.2) is sufficiently small, ū(ρ) can be viewed as a constant at each updating ρk.

Hence, we have

∇kf(ρ∗) = −2

{
u′k(ρk) [ū(ρ)− uk(ρk)] + µ

(
1−

K∑

k=1

ρk

)}
,

for all k ∈ K. When ∇f(ρ∗) = 0, if we assume that 1 − ∑
k ρk > 0, then it holds

that ū(ρ) − uk(ρk) < 0, ∀k ∈ K. However, it contradicts with the definition of

ū(ρ) := 1
K

∑
k uk(ρk). Similarly, it can be proven that 1 − ∑

k ρk < 0 does not

hold when ∇f(ρ∗) = 0. When condition (7.7) is satisfied, obviously ∇f(ρ∗) = 0.

Therefore, ρ∗ is the unique optimal solution if and only if ∇f(ρ∗) = 0.

Appendix VI

Proof of Lemma 4

First, we will show that ‖ ∇2f(ρ) ‖2≤ B, where B is a constant. Then Lemma 4

follows from [58, Theorem 9.19].

Because ‖ ∇2f(ρ) ‖2
2≤‖ ∇2f(ρ) ‖∞ · ‖ ∇2f(ρ) ‖1 (see [6, page 635]) and ‖

∇2f(ρ) ‖∞=‖ ∇2f(ρ) ‖1 (∇2f(ρ) is symmetric), we have

‖ ∇2f(ρ) ‖2 ≤ ‖ ∇2f(ρ) ‖1

= max
i

K∑
j=1

[∇2f(ρ)
]
ij

≤ 2 max
i

{|u′′i (ρi)| · |ū(ρ)− ui(ρi)|+

|u′i(ρi)|2 +
1

K
|u′i(ρi)|

K∑
j=1

|uj(ρi)|+ µK
}

≤ B. (7.8)

The inequality (7.8) results from the fact that |ui(ρi)|, |u′i(ρi)| and |u′′i (ρi)| are bounded

over the feasible region of ρ. Hence, ∇f(ρ) is Liqschitz continuous as desired.
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Appendix VII

Algorithm Description

Low-Complexity Algorithm of
Optimal Discrete Time-Sharing Fraction Assignment

1. Initialization

Let v = 0 (v is the index of the time slot to be allocated in a time frame),

and ρ
(0)
k = 0, ∀k ∈ K.

2. Allocate the (v + 1)th time slot to the user indexed by i∗

If arg mink 1/u(ρk) is unique, let

i∗ = arg min
k

1/u(ρk).

Otherwise, we randomly choose one of them as i∗.

Let ρ
(v+1)
i∗ = ρ

(v)
i∗ + 1/M and ρ

(v+1)
i = ρ

(v)
i for i 6= i∗.

3. Let v = v + 1, and return to Step 2) until v = M

4. The optimal time sharing policy ρ∗ is obtained as

ρ∗ = ρ(M).

Appendix VIII

Proof of Property 4

Proof: We assume that {ρ∗,p∗} is the optimal solution to P4-4. We let ∆k =

x∗−ρ∗kp
∗
k/Ek (∀k ∈ K). All the nodes are arranged in the non-decreasing order of ∆k.
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Suppose that 0 = ∆1 = . . . = ∆i < ∆i+1 ≤ . . . ≤ ∆K . We define a new transmission

scheme {ρ′,p′}. Let ρ′ = ρ∗ and

p′k =





p∗k − ε for k = 1, 2, . . . , i,

p∗k + δpk for k = i + 1, . . . , K.
(7.9)

where δpk satisfies

0 < δpk < Ek/ρ
∗
k∆k, ∀k ∈ K. (7.10)

It can be shown that for any δpk, there always exists a positive value of ε such that

constraint (4.9) is guaranteed. Hence, if we use the transmission scheme {ρ′,p′}, it

will result in x′ < x∗. In other words, the new policy {ρ′,p′} can obtain a longer

network lifetime than {ρ∗,p∗}, which contradicts the assumption that {ρ∗,p∗} is

optimal.

Appendix IX

Proof of Property 5

Proof: Since the inequality constraint function in (4.21) can be shown to be

concave in ρk and the equality constraint in (4.22) is affine, one of Karush-Kuhn-

Tucker conditions in (4.23) becomes the necessary condition for the optimality [39].
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Appendix X

Proof of Property 6

Proof: When σ2
k = σ2 (∀k ∈ K), substituting pk = Ekx/ρk into Lk in (4.3), and

substituting Lk into Uk(Lk) in (4.18), we have

Uk(Lk) =
1

W 2
[(

1 + gkEkx
ρkN0

)ρk − 1
]2

+ σ2

.

Thus, Uk(Lk) can be treated as a function of ρk, Ekgk and x. Here, the product of

Ek and gk is viewed as a variable. Then, we can define a function U(ρ,Eg, x) such

that U(ρk, Ekgk, x) := Uk(Lk). Let the derivative of U(ρ,Eg, x) with respect to ρ be

denoted by f(ρ,Eg, x) = ∂U(ρ,Eg, x)/∂ρ. It can be shown easily that the function

f(ρ,Eg, x) is monotonically decreasing in both ρ and Eg. According to Property 5,

we have f(ρ∗i , Eigi, x
∗) = f(ρ∗k, Ekgk, x

∗), for all i, k. Therefore, to maintain this

equality, one must have ρi > ρj (ρi < ρj) if Eigi < Ejgj (Eigi > Ejgj). The second

inequality in (4.24) can be derived from Property 4.

Appendix XI

Proof of Property 7

Proof: When Ekgk = Eigi (∀i, k ∈ K), Uk(Lk) can be viewed as a function of

ρk and σ2
k. Then, a similar approach used in the proof of Property 6 also applies to

the proof of the first inequality of (4.25). Since gkpk = Ekxgk

ρk
, the second inequality in

(4.25) holds. According to “lazy scheduling” theory, for a fixed amount of energy for

transmission, more data can be delivered using longer transmission time and lower

transmission power. Thus we have third inequality in (4.25).
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Appendix XII

Algorithm Description

Partially Distributed Adaptation in Common Source Observation

1. Set low = 0, high = xmax

2. Update x at each node

Let center ← b(low + high)/2c and x ← center.

3. Assign time sharing fraction

(a) Set λ(t) = 0, ρk(t) = 1/K,∀k ∈ K

(b) Compute a new price according to (4.30) at the FC

(c) Compute a new time sharing fraction according to (4.29)

(d) Compute the increment of the update at the FC

Let t = t + 1 and I(t) =
∑

k[Uk(ρk(t), x)− λ(t)ρk] + λ(t),

if I(t)− I(t− 1) < ∆I, go to 4), otherwise return to (b).

4. Compare with the target value at FC

If
∑

k Uk(ρk, x) > 1/D0, set high ← center at each node.

Otherwise, low ← center.

5. Return to Step 2), until high− low < 4.

In practice, the transmission power usually has a peak value constraint pmax. In

that case the maximum possible value of x, xmax = maxk pmax
k /Ek and the constraint

of time sharing fraction, 0 ≤ ρk ≤ 1, should be changed to xEk/p
max ≤ ρk ≤ 1 if x is

given.
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Appendix XIII

Proof of Proposition 1

Proof: The equivalence can be proven by contradiction. We assume that
(
ρ′(g),p′(g)

)
is an optimal solution to P5-1. Let p′(g) =

∑
n∈N ρ′n(g)

∑
k∈K p′k,n(g)

denote the corresponding total power consumption function. Suppose that
(
ρ′(g),p′(g)

)
is not the optimal solution to P5-2 for some channel realization

g ∈ G ′ when the short-term power constraint in (5.4) is given by p = p′(g), and G ′ is

the subset of G. We also assume that
(
ρ′′(g),p′′(g)

)
is the solution to P5-2 when

∑
n∈N ρ′′n(g)

∑
k∈K p′′k,n(g) = p′(g) for all g ∈ G. From the above assumptions, we

have

min
n∈N

[
ρ′′n(g)

∑

k∈K
ck,n

(
p′′k,n(g)

)
]

>

min
n∈N

[
ρ′n(g)

∑

k∈K
ck,n

(
p′k,n(g)

)
]

, (7.11)

for g ∈ G ′. Taking expectation over all g ∈ G for both sides of (7.11), we have

R
(
ρ′′(g),p′′(g)

)
> R

(
ρ′(g),p′(g)

)
while

(
ρ′′(g),p′′(g)

)
satisfies all constraints in

P5-1. This result contradicts with the assumption that
(
ρ′(g),p′(g)

)
is an optimal

solution to P5-1. Therefore,
(
ρ′(g),p′(g)

)
must be the optimal solution to P5-2

when the short-term total power constraint is given by p′(g). This result also indicates

that the end-to-end instantaneous transmission rate can be expressed in terms of the

short-term total power as r
(
g, p′(g)

)
. Further, if p′(g) is not the optimal solution to

P5-3, there always exists a p∗(g)
( 6= p′(g)

)
such that E

(
r
(
p∗(g)

))
> E

(
r
(
p′(g)

))
.

To sum up, the optimal solution to P5-1 is the same as the one to P5-2 where the

total power constraint in P5-2 is the optimal solution to P5-3.
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Appendix XIV

Proof of Proposition 2

Proof: Let (p∗, ρ∗) be the optimal power allocation and time-sharing fraction

at time frame t. The corresponding instantaneous transmission rate over hop n is

denoted as r∗n (∀n ∈ N ). Suppose that for a certain hop i, r∗i > r∗n (∀n 6= i).

Since ri is a continuous and increasing function of pk,i (∀k ∈ K), we can always

find a power allocation p′k,i < p∗k,i (∀k ∈ K) such that the corresponding r′i satisfies

r∗i > r′i > r∗n (∀n 6= i), while keeping all time-sharing fraction the same (p′ = p∗).

That is, we can use a less transmission power to obtain the same instantaneous

end-to-end transmission rate at time frame t. If we increase the transmission power

in time slot t + 1 by equally allocating the extra power
∑

k∈K(p∗k,i − p′k,i) at time

slot t, the corresponding end-to-end transmission rates at time slot t + 1 satisfy

r′(t + 1) > r∗(t + 1). Thus, E(r′) > E(r∗). This contradicts the assumption that (p∗,

ρ∗) is optimal. Therefore, we have Proposition 2, i.e., r∗i = r∗n, ∀i, n ∈ N .

Appendix XV

Proof of Proposition 3

Proof: We consider two-hop case, the results of which can be generalized to

N -hop case. Define

fn(pn) , max
{pk,n,k∈K}

µn

∑

k∈K
ln(1 + gk,npk,n) (7.12)

s.t.
∑

k∈K
pk,n = pn.

Here, fn(·) denotes the weighted total achievable transmission rate on all subcarriers

over hop n, which is a function of total power on all subcarriers over hop n, pn.
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We let pn = x. According to the basic water-filling theorem [22], the optimal pk,n

is denoted as

pk,n =

(
µn

λn

− 1

gk,n

)+

∀k ∈ K, (7.13)

where λn is selected to meet
∑

k∈K pk,n = x. Substituting (7.13) into the above

equation, we have

µn

λn

=
1

kn

(
x +

∑

k∈Kn

1

gk,n

)
(7.14)

By combining (7.12), (7.13) and (7.14), fn(x) can be denoted as

fn(x) = µn

∑

k∈Kn

ln

[
gk,n

kn

(
x +

∑

k∈Kn

1

gk,n

)]
,

Therefore,

f ′n(x) =
µnkn

x +
∑

k∈Kn

1
gk,n

Define

f0(p) = f2(p)− f1(p),

then we have

f ′0(p) =
µ2k2

p +
∑

k∈K2

1
gk,2

− µ1k1

p +
∑

k∈K1

1
gk,1

=
(µ2k2 − µ1k1)p +

(
µ2k2

∑
k∈K1

1
gk,1

− µ1k1

∑
k∈K2

1
gk,2

)
(
p +

∑
k∈K1

1
gk,1

)(
p +

∑
k∈K2

1
gk,2

) . (7.15)

If
∑

k∈K1

1
gk,1

>
∑

k∈K2

1
gk,2

, then we have µ1k1 > µ2k2. Suppose that µ1k1 ≤ µ2k2,

the numerator of (7.15) is non-negative for any p > 0. Thus, ∀p > 0, f ′0(p) > 0.

Therefore, f2(p) > f1(p). For p1 ≥ 0, p2 ≥ 0 and ρ1p1 + (1− ρ1)p2 = p, we have

ρ1f1(p1) + (1− ρ1)f2(p2) ≤ ρ1f2(p1) + (1− ρ1)f2(p2)

≤ f2(p).

The last inequality is due to the concavity of f2(p2). This assumption means that all

the resource is allocated to hop 2 only. This contradicts the condition that each has

the same transmission rate. Therefore, µ1k1 > µ2k2.
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