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Abstract 
. 

In recent years, multimedia applications on mobile devices have become increasing 

popular. However, to design a mobile video application is still challenging due to the 

constraint of energy consumption. According to previous studies, the energy consumption 

of the mobile processor is cubic to its workload. For a mobile video application, it is 

therefore desirable to control decoding workload so that energy consumption by the 

processor may be reduced. 

 

In this thesis, we study the relationship between decoding workload and video quality. 

Based on the analysis of video structure and decoder implementations, we propose a 

decoding workload model. Given a video clip, the model can accurately estimate the 

decoding workload on the target platform with very low computational complexity. 

Experiments are conducted to test the robustness of the model. The experiment results 

show that the model is generic to different decoder implementations and target platforms.  

 

We also propose two relevant video applications: the decoding workload scalable 

transcoder and the decoding workload scalable encoder. Based on the decoding workload 

model, the proposed transcoder / encoder is able to generate a video clip which matches 

the decoding workload of the client while striving to achieve the best video quality. The 

transcoder /encoder can also balance the tradeoff between frame rate and individual 

frame quality, i.e., given a workload constraint, the transcoder / encoder can determine 

the most suitable frame rate /and individual frame quality combination even before the 
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actual transcoding / encoding. We achieve this by proposing two novel compressed 

domain video quality measures. 
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Chapter 1  

Introduction 

 
1.1 Background 
 
After a decade of explosive growth, mobile devices today are increasingly becoming 

important entertainment platforms for video and multimedia content. This application 

scenario is a fast emerging area with huge economic impact. However, supporting 

multimedia applications on mobile devices is more challenging due to constraints and 

heterogeneities such as limited battery power, limited processing power, limited 

bandwidth, random time-varying fading effect, different protocols and standards, and 

stringent quality of service (QoS) requirements.  

 

Energy consumption is a critical constraint for a mobile video application. For years, chip 

makers have focused on making faster processors. Following Moore's Law, the 

processor’s processing power would double every two years. However, the development 

of the battery has not improved as fast as that of the processor. As Figure 1.1 [68], CPU 

speed double per 18 months while battery energy density doubles per 12 years. 
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Figure 1.1 Improvement since 1990 (quoted from [68]) 

 

The battery of a typical mobile device such as a PDA or a mobile phone can only support 

video playback for about four hours. With streaming, battery lifespan will be even shorter 

as receiving data from a network requires substantial power. As a result, a mobile device 

has to minimize its energy consumption to prolong its battery life and attain suitable 

levels of quality of service at the same time. 

 

Energy saving can be done at three levels in the computer system hierarchy: hardware, 

operating system and application. Energy at hardware level saving is out of the scope of 

this thesis. The advantage of saving energy at the operating system level is that the 

operating system has knowledge of the whole machine status, and so it can manage 
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energy consumption efficiently. This is why most energy saving schemes are done at this 

level [46, 47]. However, the operating system functions at a low level in the computer 

system hierarchy, and it therefore does not have knowledge of applications or users’ 

behavior. This renders energy saving schemes at the operating system level incapable of 

adapting to different application scenarios or users’ preferences. On the contrary, energy 

saving schemes at the application level know about the applications and users’ behaviors, 

and are therefore able to make tradeoff between quality of service and energy 

consumption. For example, in a mobile video application, when energy is plentiful, 

application behavior should be biased toward good user experience: displaying video at a 

high frame rate / resolution; when energy is scarce, the behavior should be biased toward 

energy conservation: displaying video at a low frame rate /resolution. The problem is: 

how low should the frame rate / resolution be? On one hand, we know energy can be 

saved by sacrificing quality of service; on the other hand, we do not want to compromise 

too much on quality – the quality should still be acceptable. Ideally, therefore, quality 

should be optimized based on the available resources. From this aspect, a mobile video 

application design can be regarded as an optimization problem under multiple constraints. 

To solve such a problem, mathematical models between video quality and constraints 

should be established. For example, for the constraint of bandwidth, rate-distortion (R-D) 

models have been studied for decades. However, the current state of the energy-distortion 

model is far from satisfactory.  

 

In a mobile device, energy is mainly consumed by three components: wireless network 

interface (WNIC), liquid crystal display (LCD) and processor. For WNIC, energy 
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consumption depends on whether the component is in active mode. Network reshaping 

schemes have been proposed to make WNIC remain in sleeping mode for as long as 

possible [43, 44, 45]. For LCD, it requires two power sources, a DC-AC inverter to 

power the cold cathode fluorescent lamp (CCFL) used as backlight, a DC-DC converter 

to boost and drive the rows and columns of the LCD panel. Energy is also consumed in 

the bus interface, LCD controller circuit, RAM array, etc. [48]. Energy consumption can 

be reduced by variable duty-ratio refresh, dynamic color depth control, and brightness 

and contrast shift with backlight luminance dimming [49, 50, 51, 52, 53]. The processor, 

which is a digital static CMOS circuit, can be calculated by Equation (1.1): 

 

                                        
(1.1) 

 
where  denotes clock rate (processor frequency),  is supply voltage,  denotes 

node capacitance, and  is defined as the average number of times in each clock cycle 

that a node will make a power consumption transition (0 to 1) [29]. The relationship 

between voltage and processor frequency follows Equation (1.2), based on the alpha-

power delay model [30]: 

 

                                           

(1.2) 
 

where  is the threshold voltage of the processor, and  is the velocity saturation index. 

From the above equations, we can calculate the energy consumption of the processor by 
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processor frequency, which can be regarded as the decoding workload for the mobile 

video application. Energy consumption can be reduced by adopting dynamic voltage 

scaling (DVS) schemes [54] or directly reducing workload.  

 

As energy consumption of the processor can be derived from the decoding workload, we 

thus focus on the model between decoding workload and video quality and its relevant 

applications in this thesis. The study of the decoding workload model is important 

because: 1) As we have mentioned previously, a mathematical model can help us save 

energy as much as possible while still provide the quality of service which users prefer. 2) 

The model will still apply even if we adopt some operating system level energy saving 

scheme, for example DVS. The basic idea of DVS is to scale processor frequency as low 

as possible based on workload prediction. Energy can therefore be saved as energy 

consumption can be calculated by the processor frequency. However, workload 

prediction needs to be accurate. If the actual workload is more than the prediction, the 

video cannot be fully decoded, which results in bad quality; if the actual workload is less 

than the prediction, the frequency will be scaled too high, which results in a waste of 

energy. The model studied in this thesis is able to predict decoding workload accurately, 

thereby improving the performance of DVS schemes. 3) Decoding workload itself can 

also be a constraint: most existing mobile devices’ processor frequencies are in the range 

of 200 MHz to 600MHz. It is difficult for them to decode a video clip encoded by 

complex codec technologies such as MPEG-4 and H.264 at a high frame rate (25 – 30fps). 

For such cases, our study can help to generate a video clip which meets the constraint of 

devices’ processing power while still guarantees quality of service. 
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1.2 Challenges 
 
In studying decoding workload and the relevant video applications, we face three major 

challenges: 

 

First, we need to study the relationship between video bitstream and decoding workload. 

This is analogous to rate-distortion studies [56, 57, 58, 59, 60], which have found out that 

bit rate can be controlled by quantization scale. For decoding workload, we should find 

out similar key parameters and establish a mathematical model so that we can control the 

decoding workload by adjusting the parameters. The problem is that most existing video 

codecs are designed for the rate control. We can establish a model based on the current 

video codec’s architecture or propose a new video codec specific to decoding workload 

control. In our opinion, designing a new video codec cannot be a practical solution 

especially when the new codec is not compatible with existing systems. Hence, in the 

thesis, we propose a decoding workload model for existing MPEG video formats and 

codecs. The model should be sufficiently accurate and fast. It should also be flexible 

enough so that it can be easily applied to different kinds of applications. Moreover, the 

model should be generic for adaptability to different video formats, decoder 

implementations and platforms. 

 

Second, even with a decoding workload model, designing an application scheme remains 

difficult, e.g., to design a video encoder which generates a bitstream under the constraint 

of decoding workload. According to previous studies, different frames require different 
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amounts of decoding workload even under the same quality. In some extreme cases, the 

decoding workload of one frame can be 10 times different from that of another. If we 

allocate workload to frames evenly, quality will differ quite a lot. That results in unstable 

user experience. A better approach is to allocate workload based on requirements so that 

different frames may be of the same quality. That is why a sophisticated decoding 

workload control scheme is necessary. However, the scheme is difficult to design since 

the decoding workload requirement is affected by several factors: video content, 

encoding algorithm and video format. Taking all these factors into consideration makes 

the scheme very complex. Moreover, an objective measure for estimating the quality of 

the encoded frames or MBs is not available before the frames or MBs are actually 

encoded. This makes scheme design even more difficult. 

 

Third, we need to consider the tradeoff between individual frame quality and frame rate. 

In traditional video applications, the frame rate is fixed at 25 or 30 frames per second, i.e., 

the decoder decodes a frame every 1/25 or 1/30 second. However, in mobile video 

applications, some mobile devices’ processing power is so low that they cannot decode a 

normal quality frame properly within that time slot. Therefore, to fix the frame rate at 30 

or 25 fps in the mobile application may not be feasible. To overcome the constraint, we 

can either reduce the frame rate or the quality of individual frames. The problem is, we 

may have more than one combination of frame rate and individual frame quality with the 

same decoding workload. To provide the best quality of service, we need to select the one 

with the best quality among them. Therefore, an objective measure is necessary to 

evaluate the quality of all the options.  
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1.3 Structure of Thesis 
 

The rest of the thesis is organized as follows: A reader without knowledge about mobile 

video application design may want to refer to Chapter 2 for some background knowledge 

and related work, including that on MPEG video format, decoding workload model, 

existing energy saving schemes and objective video quality measures. In Chapter 3, we 

present our decoding workload model and evaluate it using different decoders on 

different target platforms. Based on the model, we propose two decoding workload 

related mobile video applications in Chapters 4 and 5. In Chapter 4, we propose a 

workload-scalable transcoder which works in the compression domain. It reduces the 

decoding workload by dropping either Huffman codes or frames. To evaluate the tradeoff 

between Huffman codes and frames, we propose mean compression domain error 

(MCDE), a compression domain video quality measure designed for transcoding 

applications. In Chapter 5, we propose a workload-scalable encoder. It includes two 

schemes: the frame rate selection scheme and the workload control scheme. The frame 

rate selection scheme selects the most suitable target frame rate before actual encoding; 

the workload control scheme controls decoding workload under the constraint. In Chapter 

6, we conclude the thesis and present future directions. 

 

1.4 Main Contributions 
 

The major contributions of the thesis lie in three aspects: 
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First, we analyze the relationship between video quality and decoding workload, based on 

which we establish a mathematical decoding workload model. The experiments show that 

the model is accurate and fast. Moreover, it is generic to different video formats (with 

MPEG video structure), decoder implementations and target platforms.  

 

Second, we study two decoding workload related video applications: transcoder and 

encoder. We study how to make them accurately control the decoding workload of the 

generated video bitstream while the quality of the video bitstream is optimal. We call this 

transcoder/encoder the decoding workload-scalable transcoder/encoder. To our best 

knowledge, this is the first attempt at studying decoding workload applications in such a 

comprehensive manner. 

 

Third, we propose two compression domain objective video quality measures. 

Conventional video quality measures such as peak signal-to-noise ratio (PSNR) or mean 

square error (MSE) assume the frame rate is fixed. They only consider spatial distortion 

but not temporal distortion. The measures we propose in this thesis can take both spatial 

and temporal distortions into account. Furthermore, they can estimate the quality of the 

target video bitstream even before actual encoding or transcoding, with very low 

computational complexity. The measures can also help the transcoder and the encoder 

determine the target frame rate with very low complexity.



 10 

 

 

 

 

 

Chapter 2  

Background and Related Work 

 

 
2.1 Introduction 
 
In this chapter we introduce the related works of this thesis. As the decoding workload 

model is established based on the video bitstream analysis, we first briefly introduce the 

MPEG video formats in Section 2.2. After that we survey the related works on the 

decoding workload model in Section 2.3. In Section 2.4, we introduce the existing energy 

saving schemes for the mobile video applications, which can be regarded as the 

background of the transcoder and encoder proposed in Chapters 4 and 5. In Section 2.5, 

we present the traditional objective video quality measures and show why they are not 

suitable for the mobile video applications. That is the reason why we propose new 

compression domain video quality measures in this thesis. 

 

2.2 MPEG Video Format  
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In this thesis, our schemes are proposed mainly based on the MPEG video formats 

including MPEG-1 [69], MPEG-2 [70] and MPEG-4 [71]. Although they are different in 

the details, they share the similar bitstream structure and encoding/decoding procedure. 

An MPEG video sequence is made up of frames, which are of three different types: I-

frame, P-frame and B-frame. Each frame consists of several slices, which again consist of 

Macroblocks (MBs). Encoding or decoding a video sequence can be regarded as 

encoding or decoding a sequence of MBs. An un-skipped MB can have three types: I-

Type, P-Type and B-Type. An I-frame can only have I-Type MBs; a P-frame can have I- 

or P- type MBs and a B-frame can have all the three types of MBs.  

 

To encode an I-Type MB, the data are first transformed from the spatial domain data to 

the discrete cosine transform (DCT) domain. The DCT domain data are known as DCT 

coefficients. After that, the DCT coefficients are quantized by the quantization scale, and 

then encoded into Huffman codes, which again encoded by the run-length coding into the 

target bitstream. To encode a P-Type MB, the encoder first finds out a most similar 

reference block in its previous I- or P-frame and calculates the difference, which is 

known as residual error, between the current MB and the reference block. This task is 

called motion estimation (ME). The residual error is then encoded by the same procedure 

as the I-Type MB. Encoding a B-Type MB is the same as with a P-Type MB except that 

the encoder finds two similar blocks from its previous and next I- or P-frame and uses 

their average to calculate the residual error. 
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The decoding procedure is an inverse to the encoding procedure: the decoder reads the 

run-length codes from the bitstream and decodes them to the Huffman codes. The 

Huffman codes are then decoded to the DCT coefficients. We call this task variance 

length decoding (VLD). After VLD, the DCT coefficients are inverse quantized (IQ) and 

then transformed into the spatial domain data by the inverse DCT (IDCT) task. If the MB 

is I-Type, the decoding procedure finishes after IDCT; if the MB is P- or B-Type, the 

spatial domain data get from IDCT task should be added with its reference block to form 

the final output. This task is called motion compensation (MC). Thus, the MBs in P- or 

B- frames are decoded dependent upon their reference block in its previous and next I- or 

P-frame. If its previous or next frame is not decoded correctly, the P- or B- frame cannot 

be decoded, either. In this case, we call the previous and next frames reference frames. A 

reference frame can also have its reference frame. These related frames form a chain, 

which is called dependent chain. 

 

We note that although our research in this thesis is based on the MPEG video format, 

most of algorithms we proposed can also be applied to other video formats, such as 

H.261 [24] and H.263 [25], whose bitstream structures and encoding/decoding 

procedures are very similar with the MPEG video format. For the video formats which 

has extra encoding/decoding tasks, for example, H.264 [23] employs intra prediction sub-

procedure for I-MB, we believe we can also extend our algorithm to adapt them in future 

work. 

 

2.3 Decoding Workload Model  
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The existing decoding workload models can be classified into two categories: models 

based on history (online approach at the client side to predict workload on-the-fly based 

on workload history) and models based on information extracted from the video bitstream 

(offline approach to extract information from the bitstream to obtain the predicted 

workload in the form of metadata).  

 

In the first category, Choi et al [8] have proposed a frame-based Dynamic Voltage 

Scaling (DVS) scheme. The decoding workload of the current frame is predicted by a 

weighted-average of workloads of the previous same-Type frames. Bavier et al. [6] 

proposed a model which can predict not only the decoding workload of a frame, but also 

the decoding workload of a network packet. In that paper, three predictors to predict the 

workload of decoding a frame and another three predictors to predict the workload of 

decoding a packet were proposed and analyzed in terms of performance. Son et al [17] 

proposed a model that predicts the decoding workload in a larger granularity, Group of 

Pictures (GOP), which contains a number of frames. This prediction model makes use of 

previous frames’ workloads, and incoming frames’ types and sizes. The history-based 

models need to fully decode the video bitstream to obtain the historical record. Compared 

to video decoding, the computational complexity of prediction is very low. These models 

are usually adopted at the client side to predict the workload on-the-fly. However, due to 

the unpredictability of video decoding workload (our experiments results shows that the 

maximum workload of decoding a frame or a macroblock (MB) can be larger by more 

than ten times of the minimum workload), the history-based models suffer in terms of 

accuracy. 
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The models in second category (offline bitstream analysis) predict decoding workload 

based on information extracted from the video bitstream. In [12], Mattavelli et al 

proposed a scheme that divides the decoder into several tasks and predicts each task by a 

linear function. The model’s parameters are obtained by simulation to build the model. 

The prediction by using the model does not need full video decoding. Prediction results 

can be inserted into the frame header in any format. However, due to the unpredictability 

of video decoding workload, estimating video decoding workload by mapping to some 

linear function will not achieve good accuracy. Our analysis also shows that tasks such as 

motion compensation (MC) cannot be modeled as a linear function. For the second 

category, Lan et al. [11] also proposed a model that predicts the workload of decoding 

one macroblock by four parameters: macroblock type, motion vector magnitude, motion 

vector count and number of non-zero DCT coefficients. These parameters are multiplied 

with corresponding weights and added with a safety margin to get the prediction result. 

Although this model can predict the decoding workload accurately, it is not designed to 

apply to generic processors, since the model is proposed for a decoder implemented on a 

processor that is designed specifically for multimedia processing. It is also unclear about 

the decisions to select the weights for these parameters. Schaar et al [16] introduced a 

concept of virtual decoding complexity, which can be regarded as a special feature of the 

video bitstream. For different target devices, the virtual decoding complexity is converted 

to the actual workload using different parameters. By adding a layer of virtual decoding 

complexity between the video bitstream and actual workload, this approach can be easily 

extended to a variety of existing and future image and video compression schemes. 



 15 

However, the computation for the virtual decoding complexity needs information derived 

from the decoded pixel value. In other words, if we want to compute the virtual decoding 

complexity of the video, we have to fully decode it first, and this is computationally 

expensive. 

 

The models in [11, 12, 16] were not evaluated for different decoder implementations and 

video formats. To our knowledge, different decoder implementations and video formats 

affect the decoding workload considerably. A model suitable for one decoder 

implementation or video format may not be suitable for others. Therefore, the models in 

[11, 12, 16] may not be generic for different decoder implementations and video formats. 

In the thesis, we propose a new decoding workload model. It estimates the decoding 

workload based on information of the video bitstream. The proposed model has 

advantages of being: 

 

Accurate: Our experiments show that the model can estimate the decoding workload of a 

frame within an error rate of 2%. 

Generic: The model applies to different video formats (with MPEG video structure), 

decoder implementations and target devices. 

Fast: The model only needs the information from the compression domain for predicting, 

i.e. no IDCT or MC is needed during the runtime. 

 
 

2.4 Energy Saving Schemes for Mobile Video Applications 
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For a mobile device, WNIC, LCD and processor are the three major parts consume the 

energy. The existing energy saving schemes may target on any one of them or all of them. 

As we focus on the processor component in this thesis, we only review the processor 

related schemes in the rest of this sub-section. 

 

The schemes to save the processor energy for the mobile video applications work at three 

levels: hardware level, operation system level and application level. Hardware level is out 

of the scope of this thesis. Operation level schemes include two main directions: dynamic 

power manager (DPM) and dynamic voltage scaling (DVS). DPM-based techniques rely 

on switching off parts of a device (processor, memory, display, etc.) at runtime, based on 

their usage. On the other hand, DVS relies on changing the frequency or voltage of the 

processor at runtime to match the workload generated by an application. 

 

DPM schemes have been studied in the works in [32, 33]. In [32], the approach is based 

on renewal theory. The model assumes that the decision to transition to low power state 

can be made in only one state. In [33], the model is developed based the Time-Indexed 

Semi-Markov Decision Process model (TISMDP). This model is complex, but also has 

wide applicability because it assumes that a decision to transition into a lower-power 

state can be made from any number of states.  

 

The DVS approaches can be classified in two categories: feed forward and feed backward. 

Figure 2.1 outlines the general system architecture. 
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Figure 2.1 DVS system architecture 

 

In a feed forward approach [34, 12] the encoder is modified to pass additional 

information about the decoding complexity as part of the frame header. This allows the 

controller at the decoder side to adjust the processor speed at the start of the decoding. In 

[34], the scheme stipulates the processor frequency range for every macroblock. The key 

idea is to make use of the input buffer and the playback buffer to adapt to the requirement 

variation. The frequency ranges at specific points in time are obtained by simulating a set 

of video streams. In [12], the proposed scheme divides the decoder into several parts and 

predicts each part by a linear equation. The parameters used by the linear equation are 

obtained by the simulation. The prediction does not need the actual decoding. The 

prediction results can be inserted into the frame header in any format. 

 

In a feed backward approach the performance of the decoder is observed and 

subsequently adjusted. The most generic approach is to consider the decoder as a black 

box and observe its effect at the system level [31, 36, 37, 38, 39]. If the system 

information indicates that the decoder is running too fast, the processor frequency can be 
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reduced. The system information includes decoding time, the playback buffer and the 

processor utilization. Taking the decoder as an open box yields better results. In [40], the 

instruction latencies are classified as on-chip latencies and off-chip latencies. The on-chip 

latency is caused by events that occur inside the CPU. It may be reduced by increasing 

the processor clock frequency. The off-chip latency is independent of the internal clock 

frequency. The off-chip latency is able to be calculated via the record reported by 

performance-monitoring unit. The on-chip latency is predicted on the fly. The frame type 

is considered when calculating the off-chip latency. In [8], a frame-based DVS scheme is 

proposed. The scheme divides the decoding procedure into frame-dependent and frame-

independent portions. Frame-dependent workload of the current frame is predicted by the 

weighted-average of previous same-Type frame’s workload. The prediction error is 

compensated by scaling the processor frequency of frame-independent part. In [7], the 

scheme changes the processor frequency at the beginning of the GOP, which contains a 

number of frames. Two algorithms are proposed. The first algorithm scales the processor 

frequency according to the previous delay value. The second algorithm scales the 

frequency according to the previous workload as well as type and size of the incoming 

frames. 

  

It is noted that the efficiency of the DVS schemes heavily relied on the workload 

prediction. As we mentioned in the previous sub-section, the existing workload model is 

not yet satisfied. The workload model we proposed in this thesis can be easily adopted in 

the existing DVS schemes and improve the performance. 
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At the application level, various schemes have been proposed: in the paper of [62, 64], 

the authors investigate the trade-offs between processing cost of less compression 

algorithms and networking. They suggest using different compression algorithm for 

different application scenarios. In [65], the authors propose an energy-optimized decoder 

implementation, which can reduce 10~12 percentage of the energy consumption on the 

ARM processor. Han et al proposed a transcoder between the original video source and 

the mobile device [63]. The transcoder reshapes the original video to reduce its decoding 

complexity. Jason et al propose a similar adaption scheme in [66]. However, the 

transcoding and adaptation schemes they propose can only resize the frame to one or two 

fixed sizes. They cannot adapt to the different workload constraints dynamically. That is 

exactly the advantage of the transcoder we propose in Chapter 4. In [67], He et al analyze 

the relationship among the power, rate and distortion for the video encoder applications. 

In Chapter 5, we propose a similar encoding scheme. The difference is He et al focus on 

the energy consumption of the encoder; we, on the other hand, focus on the decoder.  

 

2.5 Objective Video Quality Measure  
 
Conventionally, the video quality is measured by the sum of squared differences (SSD), 

mean squared error (MSE), peak signal-to-noise ration (PSNR) and the sum of absolute 

difference (SAD) [26], which calculate the distortion of every single frame by  

 

                                                                                                (2.1) 

                                                                         (2.2) 
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                                                               (2.3) 

                                                                        (2.4) 

 

The distortion of the whole video sequence is then calculated as the mean of the 

individual frames, , where D(i) is the distortion of the individual frame. These 

measures assume that the frame rate of the video sequence is fixed, which is exact in the 

case of the traditional video application. However, in the mobile video application, due to 

the limitation of the bandwidth or processing power, we may sacrifice the frame rate to 

improve the individual frame quality. In such a case, the conventional measures are not 

suitable [4]. It is because they only consider the spatial distortion caused by the lossy 

compression algorithm during the encoding. But they do not consider the temporal 

distortion caused by the un-continuous frame sampling.  

 

A number of researchers have studied the perceptual video quality for low frame rate. In 

[18, 19], the authors measure the subjective video quality from the perception of 

physiological. The measured signals include Galvanic Skin Response (GSR), Heart Rate 

(HR) and Blood Volume Pulse (BVP). The results show that the physiological response 

to video degradation from 25fps to 5fps can be detected. Researches in [3] found that 

users do not subjectively detect the difference between 12fps and 10fps when engaged in 

a task. Although these work give out some findings and conclusions based on the 
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subjective testing, none of them can measure the quality of a given video sequence 

objectively. 

 

In [27], the authors propose an objective measurement for low frame rate video by 

considering both spatial distortion and temporal distortion are considered. However, the 

approach is designed for their particular system rather than a generic video quality 

objective measurement. Moreover, their model is based on the generic rate-distortion 

theory, which is not accurate for the low bit rate video compression.  

 

In [7, 28], the authors propose a measure for un-fixed frame rate video sequence using 

the traditional objective video quality measure such as MSE or PSNR. In practice, 

reducing the frame rate is implemented by dropping frames from the original frame 

sequence. At the client, the dropped frame can be considered as replaced by its previous 

frame in display order. The reason is because player maintains the current frame on the 

screen before displaying the next frame. The temporal distortion thus can be calculated as 

the distortion between the original frame and its replaced frame. The whole video 

sequence’s distortion is calculated as the average PSNR/MSE of all the corresponding 

frames. Although this approach is good for measuring the quality of an existing video 

bitstream, it is too computationally expensive for those applications where the video 

bitstream does not exit. In the applications such as transcoder and encoder, we may have 

many candidate frame rates. We want to select out the best one before the actual 

transcoding or encoding. However, to calculate PSNR/MSE, this approach requests the 
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actual transcoding/ encoding and decoding for every candidate frame rate. This is very 

time-consuming and unfeasible to the real-time applications.  

 

In this thesis, we propose two objective video quality measures in Chapter 4 and 5. They 

are designed for transcoding and encoding application, respectively. They can accurately 

estimate the target video quality for the un-fixed frame rate video sequences with very 

low computational complexity. We integrate the two measures into our workload-

scalable transcoder and encoder to help to decide the best target frame rate before the 

actual transcoding and encoding. 
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Chapter 3  

Decoding Workload Model     

 

                                        
 

3.1 Video Decoding Procedure 
 

 

Figure 3.1 The decoding process of MPEG-2 video 
 

In this section we present a new decoding workload prediction model to predict the 

decoding workload for MPEG video bitstream. As shown in Figure 3.1, a typical MPEG 

video bitstream is made up of frames which consist of several slices, which in turn 
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consists of Macroblocks (MBs). Hence, decoding a video bitstream can be considered as 

decoding a sequence of MBs. In our model, the decoding workload is predicted in the 

MB granularity. Decoding a MB involves variable length decoding (VLD), inverse 

quantization (IQ), DC-AC prediction, inverse Discrete Cosine Transform (IDCT), and 

Motion Compensation (MC). For each task, the workload prediction is done separately 

and the prediction workload of the whole MB is the sum of all tasks’ workload.  

 

3.2 Decoding Workload Model and Analysis 
 
In this section, we model the decoding workload corresponding to the tasks VLD, IQ, 

DC-AC prediction, IDCT and MC for each MB. Our analysis is based the reference 

MPEG-2 decoder and reference MPEG-4 decoder. We run the decoders on SimpleScalar 

[5] instruction set simulator (with Sim-Profile configuration) and measure the processor 

cycles as the decoding workload. Since we envisage the decoder running on a general-

purpose processor, we choose our processor to be a RISC processor (similar to a 

MIPS3000) without any MPEG-specific instructions. It is noted that, in practice, a video 

bitstream can be decoded by different decoders on different target platforms. The model 

should be designed to be generic to these decoders and platforms. 

3.2.1 VLD, IQ and DC-AC Prediction Tasks 

3.2.1.1  VLD Task 

In MPEG video codecs, the DCT coefficients are encoded using variable length coding 

(VLC), which involves run length coding, followed by Huffman coding. The workload of 
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Huffman decoding depends on the number of Huffman codes which is equal to the 

number of non-zero DCT coefficients. Therefore, the workload of VLD in decoding one 

MB depends on its number of non-zero DCT coefficients. Experimental results show that 

the relationship between VLD workload and the number of non-zero DCT coefficients is 

linear. 

 

 
Figure 3.2 Workload generated by VLD task of the reference MPEG-2 decoder 
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Figure 3.3 Workload generated by VLD task of the MPEG-4 decoder 

 

Figure 3.2 and Figure 3.3 show typical plots of the number of processor cycles required 

by the reference MPEG-2 decoder and MPEG-4 decoder’s VLD task for different number 

of non-zero DCT coefficients in a MB. It is observed that both the plots form linear bands. 

Thus, we model the VLD task by Wvld = avld×ncoef +bvld, where Wvld is the workload, ncoef 

is the number of non-zero DCT coefficients in the MB, avld and bvld are parameters. The 

values of avld and bvld vary for different MB types. And considering some decoder may 

implement VLD for Intra, Inter and Skipped MB differently for optimization, we get a 

more generic model for the VLD task: 

                     (3.1) 
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3.2.1.2  IQ Task 

There are usually two typical implementations of the IQ task. The first implementation is 

to multiply the quantization coefficients with every DCT coefficient. The second 

implementation, which is more optimized, is to multiply the quantization coefficients 

only with the non-zero DCT coefficient. For the first approach, the workload of the IQ 

task can be modeled as a constant parameter Ciq, because for one MB, the number of 

DCT coefficients is fixed. For the second approach, the workload of IQ can be modeled 

as a linear function of the number of non-zero DCT coefficients, i.e., Wiq = aiq × ncoef , 

where Wiq is the workload of IQ, ncoef is the number of non-zero DCT coefficients in the 

MB and aiq is a parameter. To adapt to different implementations, we model the IQ task 

as: 

 

                                               (3.2) 
  

For the first approach, aiq is 0 and biq is equal to Ciq. For the second approach, aiq is ciq 

and biq is equal to 0. 

 

3.2.1.3  DC-AC Prediction Task 

The DC-AC Prediction task in MPEG-4 decoder is to estimate the DC or AC coefficients 

from the previous decoded DC and AC coefficients.  
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Figure 3.4 Processor cycles distribution of the DC-AC Prediction task of reference 

MPEG-4 decoder 
 

Figure 3.4 shows a typical processor cycle distribution of the DC-AC Prediction task of 

the reference MPEG-4 decoder (MPEG-2 decoder does not have DC-AC Prediction task). 

It is observed that 90% MBs’ DC-AC Prediction tasks cost a similar number of processor 

cycles. Hence, it is reasonable to approximate the DC-AC prediction task as a constant 

value. And again, considering that the decoder may have different DC-AC prediction 

implementations for different types of MBs for optimization, we model the DC-AC 

Prediction task by: 

 

                                  (3.3) 

 

where bdcac_intra, bdcac_inter and bdcac_skip are parameters.  
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For MPEG-2 decoder, which does not have DC-AC Prediction task, this model can adapt 

by setting bdcac_intra, bdcac_inter and bdcac_skip to zero.  

 

3.2.1.4  VLD+IQ+DC-AC Prediction Tasks 

Since VLD, IQ and DC-AC Prediction tasks can be either modeled as a linear function of 

the number non-zero DCT coefficients or a constant function, we can combine the three 

tasks’ models together: 

 

                 (3.4) 

 

 where aintra, ainter, bintra, binter and bskipped are parameters depending on the target platform, 

video format, and decoder implementation. 

 

3.2.2 IDCT Task 

Each MB consists of six blocks: four Y blocks, one U block and one V block with a size 

of 8 × 8 pixels each. The input data to the IDCT task is the same for all MBs, which 

results in the same computational workload being incurred. We confirm this by the 

experimental results shown in Figure 3.5 
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Figure 3.5 Processor cycles distribution of the IDCT task of reference MPEG-2 decoder 

 

Figure 3.5  is the processor cycle distribution of the IDCT task of the reference MPEG-2 

decoder. It is observed that most MBs’ IDCT tasks cost the same number of processor 

cycles. However, some decoder implementation may optimize the IDCT task by 

considering the position of the least important non-zero DCT coefficient to avoid 

redundant computation [15]. For example, for the MB who does not have non-zero DCT 

coefficient, the reference MPEG-4 decoder skips its IDCT procedure, i.e. the processor 

cycles of IDCT procedure is zero. This situation is shown clearly in Figure 3.6. 
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Figure 3.6 Processor cycles distribution of the IDCT task of reference MPEG-4 decoder 

 

For future optimization, some decoders even implement the IDCT tasks in different ways 

for different MB types. To make our model generic to different decoder implementations, 

we separate the IDCT task into six sub tasks, and each task is the IDCT operation on an 8 

× 8 block. Since MB type can be one of the three types: Intra, Inter, or Skipped, and for 

one block there are 64 positions of DCT coefficients, the sub task can be modeled as a 3 

× 64 table. The items (values) in the table are the workload of IDCT task for the block 

with the MB type and the position of the least important non-zero DCT coefficient 

provided. The workload of IDCT task of a MB is then predicted as the sum of the six sub 

IDCT tasks. 
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3.2.3 MC Task 

 
Figure 3.7  Processor cycles distribution of the MC task of the reference MPEG-2 

decoder 
 

 
Figure 3.8 Processor cycles distribution of the MC task of the reference MPEG-4 

decoder 
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For MC task, MBs can be classified into three categories: those that require no MC (I-

type), those that require only forward MC (P-type) and those that require both forward 

and backward MC (B-type). Therefore, the MC task for P-type MBs incur about half the 

computational workload of B-type MBs while I-type MBs do not incur any 

computational workload. This thought is confirmed by Figure 3.7 and Figure 3.8, which 

shows the processor cycle distribution of the MC task of the reference MPEG-2 decoder 

and the reference MPEG-4 decoder, respectively.  

 

As expected, in both figures, the processor cycles are distributed into three distinct 

clusters. The first (around 0 processor cycles) corresponds to I-type MBs, the second 

(between 3000 - 7000 cycles for MPEG-2 decoder; between 10000 - 30000 cycles for 

MPEG-4 decoder) corresponds to P-type MBs, and finally the third (between 9000 - 

17000 cycles for MPEG-2 decoder; between 43000 – 52000 cycles for MPEG-4 decoder) 

corresponds to B-type MBs. However, the processor cycle distribution within each 

cluster is very large. A modeling solely based on MB type will not be accurate. After 

analyzing the source code, we find that the MC task can also be divided into six sub tasks 

with each sub task as a MC operation for an 8×8 block. The workload of the MC task 

depends on the MB type, MC type and motion vectors’ precisions. For one MB, there are 

at most N motion compensation types (N < 10), and its type can be one of the 3 MB types: 

Intra, Inter, or Skipped. And there are 4 possible precisions for both x-dimension and y-

dimension motion vector (one-pixel, half-pixel, quarter-pixel, and eighth-pixel precision). 

Hence, the model for a sub MC task is a table of size 3×N×4×4. The workload of the MC 

task of a MB is then predicted as the sum of the six sub MC tasks. 
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3.2.4 Total Workload 

The total workload of a MB is modeled by summing the workload of VLD, IQ, DC-AC 

Prediction, IDCT, MC tasks plus a safety margin, which is a constant parameter. All the 

parameters of the model depend on the run-time platform and decoder implementation. 

For a particular platform and decoder implementation, the parameters can be obtained 

offline. Using our model, the processing time required for workload prediction is 30 

times faster than real time. Experimental results show that processing a thirty-second 

MPEG-4 video takes less than 1 second, on a PC with Pentium-4, 2.0GHz processor and 

1 GB memory. The overhead involved is negligible, so this workload prediction model 

can be applied to real-time applications. 

 

3.3 Evaluation  
 
In this section, we evaluate the workload model proposed before. In the experiments, we 

separate the video bitstream into two sets: the training set and testing set. We measured 

the actual workload of the video bitstreams in the training set. Based on the actual 

workload and information extracted from the video bitstreams, we obtain the parameters 

of the workload model. Then, using the same parameters, we use the model to predict the 

workload of the video bitstreams in the testing set.  
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3.3.1 Experiment configuration 

We run the experiments on three different target platforms with three different decoders. 

The three target platforms are IBM X-31 laptop (600MHZ Pentium M processor, 256MB 

RAM, with Windows XP OS installed), SimpleScalar emulator (sim-safe profile) and HP 

iPAQ hx4700 series PDA (624 MHZ Intel PXA270 processor, 64MB RAM, 128MB 

ROM, with Windows Mobile 2003 OS installed). The three decoders are the reference 

MPEG-2 decoder (TMN5) [2], the reference MPEG-4 decoder (MOMUSYS) [10] and an 

optimized MPEG-4 in TCPMP project [1].  

 

No Video Name Description 
1 akiyo Still background and a foreground object with very low 

movements. 
2 bridgeclose Still background and some small objects with random movements. 
3 bridgefar Almost a still image. 
4 coastguard Still background and two foreground objects with contrary 

movements. 
5 container Still background and two foreground objects with same 

movements. 
6 foreman Background and foreground have moderate movements. 
7 hall Still background and two objects with moderate movements. 
8 highway Background with very fast movements. 
9 mother-

daughter 
Still Background and two objects with very slow movements. 

10 news Still background, an object with fast movements and two objects 
with very low movements. 

11 silent Still background and an object with moderate movements 
12 walk Both background and two foreground objects are with very fast 

movements 
Table 3.1 12 CIF raw videos 

 

On SimpleScalar, we measure the number of processor cycles as the decoding workload. 

On the IBM laptop and PDA, we measure execution time as the decoding workload. In 

the experiments, we have 12 CIF raw videos with different contents shown in Table 3.1. 
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Each of the video content is encoded in MPEG-2 and MPEG-4 format with four bit rates: 

256 KBps, 512 KBps, 768 KBps and 1024 KBps. In total, we have 4 × 12 = 48 videos 

encoded for MPEG-2 and MPEG-4 format, respectively. The frame rate is set as 25 fps, 

and GOP size is set as 10. One or two B frames are inserted between the I- and P- frames. 

In the experiment, we divide the 48 encoded video bitstreams into 4 equal sets randomly: 

set A, B, C and D. We re-run each experiment 4 times. In each round, one set is picked as 

the testing set, and we build our workload model from the remaining 3 sets. Then the 

built model is used to predict the decoding workload of the 12 video bitstreams in testing 

set. 

3.3.2 Results and Analysis 

Figure 3.9 – Figure 3.14 show the experimental results of the workload prediction model. 

X-axis represents the prediction error rate, which is calculated by: 

 

                    (3.5) 

 The Y-axis represents the percentage of MBs that were predicted below an error rate in 

X-axis. The three curves in each graph indicate the prediction result for the reference 

MPEG-2 decoder, reference MPEG-4 decoder and TCPMP MPEG-4 decoder. Figure 3.9 

and Figure 3.10 show the results on the IBM laptop in the first and the third run. Figure 

3.11 and Figure 3.12 show the results on the SimpleSalar; and Figure 3.13 and Figure 

3.14 show the results on the PDA. We do not show the result of the second and the forth 

run, due to limited space, but the results of the other two runs are very similar. This 

implies that the model is not biased towards any particular video bitstream. 
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Figure 3.9  Cumulative prediction error rate of the decoding workload model, on Laptop 

(1st run) 
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Figure 3.10 Cumulative prediction error rate of the decoding workload model, on Laptop 

(3rd run) 
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Figure 3.11 Cumulative prediction error rate of the decoding workload model, on 

SimpleScalar (1st run) 
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Figure 3.12 Cumulative prediction error rate of the decoding workload model, on 

SimpleScalar(3rd run) 
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Figure 3.13 Cumulative prediction error rate of the decoding workload model, on PDA 

(1st run) 
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Figure 3.14 Cumulative prediction error rate of the decoding workload model, on PDA 

(3rd run) 
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The results show that on laptop and SimpleScalar, for both MPEG-2 and MPEG-4 

reference decoder, more than 90% of MBs are predicted below an error rate of 10% and 

98% of MBs are predicted below an error rate of 20%. But on the PDA, only 40% of 

MBs are predicted below an error rate of 10% and 90% of MBs are below an error rate of 

20%. Compared to the results on the laptop and SimpleScalar, the prediction on PDA is 

much less accurate. Our analysis show that the error mainly comes from the MC task. It 

was because the MC task has to perform many memory access operations and execution 

time for one memory access on PDA varies significantly in cases of cache hits and cache 

misses. On PDA, the cache size is small, which causes many cache misses. This in turn 

makes the execution time less predictable. Since the PDA does not provide any 

mechanism for us to obtain the number of instructions, we can only use the execution 

time as the measurement for workload. This is why our model did not perform well on 

the PDA. On the laptop, the cache size is large, cache misses does not happen frequently. 

The execution time is not affected by the cache very much, so the model performed better. 

On SimpleScalar, we directly measure the number of instructions, which is not affected 

by the cache misses at all. That is why the prediction on SimpleScalar is the most 

accurate one. The results also show that the prediction on the TCPMP MPEG-4 decoder 

was worse than on the other two decoders. For TCPMP MPEG-4 decoder, the percentage 

of MBs that are predicted below an error rate of 10% is about 20% less than the 

percentage for the other two decoders. It is because the TCPMP MPEG-4 decoder has a 

very optimized design. Its implementation has many branches that are not related to the 

bitstream content. The information of the bitstream content is not enough to predict these 

branches.  
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Figure 3.15 the comparison between our model and the history-based model 

 

Figure 3.15 shows the comparison between our model and the history-based model 

proposed in [8]. The experiments were run on the laptop using TCPMP MPEG-4 decoder. 

The history-based model predicts the workload of the current frame by the weighted-

average of previous same-type frames’ workload. In the experiments, we set the size of 

the history window to 5 and the weight of each frame in the window to 0.2. The three 

curves show the prediction result of our model, the history-based model and the actual 

workload in frame sequence. It is observed that the curve of the proposed model matches 

the curve of the actual workload much better than the history-based model. The 

correlation coefficient between the history-based model and the actual workload is 0.54 

and the average error rate is larger than 20%. However, the correlation coefficient 

between our model and actual workload was 0.91 and the average error rate is less than 

2%. This shows the advantage of our model. 

 



 42 

3.4 Summary 

In this chapter, we have presented a general decoding workload model. We verify the 

predictive power of this model by comparing it to the existing methods and actual 

workload measured on the device. We find that in the frame granularity, the average 

prediction error between the model and the actual workload was less than 2% with 

different video formats and decoder implementations. We believe the value of our model 

is in providing a basis for guiding low power embedded system design and many other 

relevant tasks. 
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Chapter 4  

Workload-Scalable Transcoder  

                                          
 

4.1 Introduction 
 
In this chapter, we present the workload-scalable transcoder application. We assume such 

a scenario: mobile devices request video bitstreams from a server. Due to the limited 

processing power, mobile devices are not capable of decoding the original video 

bitstream in real-time. For such a case, we propose a scheme to transcode the original 

video bitstream to meet the decoding workload constraint of the target device. Figure 4.1 

shows the architecture of our proposed scheme, where a transcoding proxy employed in 

our scheme is setup between the video file server and mobile devices. The proxy receives 

the architecture-specific information from the mobile devices along with their streaming 

or downloading requests. According to the provided information, the proxy transcodes 

the original video bitstream to satisfy the constraint. 
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Figure 4.1 System architecture for the transcoding scheme 

 

As mentioned in Chapter 3, the decoding workload depends on MB types, the number of 

non-zero DCT coefficients, the position the last DCT coefficient, motion compensation 

modes and motion vectors. Any of these values can be modified to decrease the decoding 

workload in order to satisfy the workload constraint. Modifying MB type, motion 

compensation modes or motion vectors requires the transcoder to transcode the original 

video bitstream in the cascaded way, i.e., the transcoder fully decodes the video and then 

re-encoders it. This is very time consuming [13]. Our transcoding scheme is designed to 

operate in the compression domain, i.e., the transcoder reduces the decoding workload by 

discarding the Huffman codes or drop frames. The advantages of such a design are two-

fold. Firstly, the transcoder’s computational complexity is relatively low and no frame 

buffer is needed. Secondly, we do not modify the MB type, motion compensation mode 

and motion vectors during transcoding; therefore this known information can be used to 

control the target workload. 
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 The challenges are: 1) to decide how many frames or Huffman codes should be dropped 

so that the reduced workload is kept just below the constraint. 2) To devise an algorithm 

that selects the best quality video bitstream among all possible candidates with the same 

workload. The first problem can be addressed by using the decoding workload model 

proposed in Chapter 3. Using the model, we can predict the decoding workload based on 

information extracted from the video bitstream. To solve the second problem, we propose 

a measure, called mean compression domain error (MCDE), to estimate the video quality 

for all the candidates quickly.  

 

The proposed transcoding scheme，as shown in Figure 4.2 is done in the following three 

steps: 

 
Figure 4.2 Transcoding Scheme 

 

Workload Control: Given the constraint, the decoding workload is reduced by decreasing 

the frame rate and dropping the Huffman codes. This step may generate more than one 

candidates having the workload below the workload constraint. It is noted that we do not 
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do any actual transcoding in this step. The output of this step is the candidates’ metadata, 

which is the file indicating which frames and Huffman codes should be dropped. The 

details of this step will be presented in Section 4.2. 

 

Candidate Selection: In this step, we use MCDE to estimate the video quality of all the 

candidates. We select the candidate with minimal distortion from the original video 

bistream as the final result, whose metadata is then feed into step 3. The details of MCDE 

will be presented in Section 4.3 

 

Actual Transcoding: the transcoder reads the metadata and performs the actual 

transcoding of the original video bitstream to the target video bitstream. This step is quite 

straightforward and we will not explain it more. 

 

The contributions of this chapter are two-fold: 

We propose a measure called mean compression domain error (MCDE), which can 

estimate the quality of the transcoded video with very low computational complexity. 

Based on the decoding workload model proposed in Chapter 3 and MCDE, we propose a 

three-step compression domain transcoding scheme, which can accurately control the 

decoding workload of the target video bitstream and keep the distortion between the 

target and original video bitstream minimal. 
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The rest of this chapter is organized as follows. In Section 4.2, we present the transcoding 

scheme. We introduce MCDE in Section 4.3. In the evaluation is presented in Section 4.4. 

We summarize the work in Section 4.5. 

 

4.2 Workload Control Scheme 
 
In the step of Workload Control, we reduce the decoding workload of the video bitstream 

by decreasing the frame rate and dropping the Huffman codes. The challenge is that the 

target frame rate is unknown and it is also not known how many Huffman codes should 

be dropped so that the target workload can be exactly below the device’s constraint. 

Since the target frame rate must be below the original frame rate (which is normally 25 or 

30 fps), the number of the possible frame rates is limited. Therefore, all possible frame 

rates can be enumerated. For each frame rate, frames from the original video bitstream 

are dropped according to the frame rate. After that, using the proposed workload 

prediction model in Chapter 3, decisions are made as to which Huffman codes should be 

discarded for the remaining frames. The details are shown in Algorithm 4.1. 
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Algorithm 4.1: Workload Control 

 
 

 

DropFrame(fr): 

This procedure will specify which frame to be dropped to fit the frame rate. To ensure the 

remaining frames decodable, we first drop B-frames, then P-frames from the tail of every 

GOP and then I-frames. The frames are dropped evenly to avoid jittering. 

 

MinReqWL(fr): 

The minimum decoding workload request for the frame rate fr. It is calculated as the sum 

of the MC task’s workload of the rest frames plus the safe margin. 

 

 

AllocFrameWL(fcurr): 

For the current frame rate fr, we denote the N frames which are kept after DropFrame(fr) 

as f0, f1, ..., fN−1. Let fcurr be the current frame. The decoding tasks of each MB are divided 

Input: Target Workload (InputTarWL) 
Output: Metadata for candidate video bitstreams 
GetOrigInfo(); /*to get necessary information from the original video bitstream */ 
foreach FrameRate fr do 
 DropFrame(fr); 
 if (MinReqWL(fr) >= InputTarWL) then 
  Iterate for the next possible frame rate. 
 end 
 TotalTarWL = InputTarWL 
 foreach remaining frame fcurr do 
  AllocFrameWL (fcurr) 
  DiscardHuffman(fcurr) 
  Update(TotalTarWL) 
 end 
end 
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into two parts: Huff Comp includes the tasks whose workload depends on the number of 

Huffman codes; NonHuff Comp includes the rest of the tasks, with workloads unchanged 

after transcoding. We denote the original workload of Huff Comp of the remaining 

frames as OriHuffWL[fcurr], OriHuffWL[fcurr+1], ..., OriHuffWL[fN−1]. The workloads of 

Non-Huff Comp of the remaining frames are denoted as OriNonHuffWL[fcurr], 

OriNonHuffWL[fcurr+1], ..., OriNonHuffWL[fN−1]. The workload of these components 

were estimated in the function GetOrigInfo() of Algorithm 4.1. We denote 

TotalTarHuffWL the total target workload of the Huff Comp. It is calculated as: 

 

             (4.1) 

 

The target workload of Huff Comp for the current frame, TarHuffWL[fcurr] can be 

calculated as: 

 

       (4.2) 

 

DiscardHuffman(fcurr): 

The details of this function is shown in Algorithm 4.2. In Algorithm 4.2, function 

Discard(DCT_Pos), “the Huffman codes after DCT_Pos” are the Huffman codes whose 

position is after DCT_Pos, in zig-zag sequence. DCT_Pos is iterated from the 63 to 0 so 

that the less important Huffman codes are dropped first. 
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Algorithm 4.2 DiscardHuffman 

 
 

 

Update(TotalTarWL): 

After discarding the Huffman codes, TotalTarWL is updated. Since the workload of Non-

Huff Comp does not change, the TotalTarWL for the remaining frames is updated by: 

 

     (4.3) 
 

4.3 Mean Compression Domain Error 
 
MCDE is proposed for those compression domain transcoder application. Generally 

speaking, there are two popular methods for a compression domain transcoder to reduce 

the video bit rate and decoding workload, namely reducing the bit per frame (bpf) and 

frame per second (fps). Reducing bpf increases spatial distortion while reducing fps 

increases temporal distortion. For a given constraint, there could be multiple candidates 

Input: TarHuffWL[fcurr] 
Output: Metadata, assigned workload 
if (TarHuffWL[fcurr]>= OriHuffWL[fcurr]) then 
 return OriHuffWL[fcurr]; 
end 
for DCT_Pos = 63…0 do 
 Discard(DCT_Pos); /*drop the Huffman codes after DCT_Pos of all the 
blocks in the current frame */ 
 Calc(Huff_WL); /*workload of the Huff Comp after discarding the Huffman 
codes */ 
 if (Huff_WL <= TarHuffWL[fcurr]) then 
  return Huff_WL 
 end 
end 
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with different combinations of spatial quality (bpf) and temporal quality (fps). Thus, an 

objective video quality measure which can predict the overall video quality considering 

both spatial and temporal distortions becomes a critical component. 

 

Conventional measures such as PSNR and MSE operate in the pixel-domain, which 

require full decoding of both original and candidate video bitstreams and are 

computationally too expensive for real-time transcoding applications. 

 

Fortunately, the work in [7, 14] provides a solution. They replace the dropped frames by 

copying the previous frames in the display order. The rationale is that a player can 

maintain the current frame on the screen before displaying the next frame. However, they 

still use PNSR or MSE to estimate the distortion between individual frames. This 

demanded that the system actually generate all the transcoded bitstream and decode them 

to the spatial domain, which is too expensive especially when the transcoder itself works 

in the compression domain. In the proposed MCDE, we use a similar approach. However, 

the distortion between two frames is calculated in the compression domain. Then the 

MCDE is calculated as the average distortion between the original and transcoded frames. 

 

It is noted that the distortion of the remaining frames (after frame dropping) can be 

regarded as the spatial distortion and the distortion of the replaced frames can be regarded 

as the temporal distortion. To simplify the problem, we analyze the two types of 

distortion separately and then combine them to produce the overall distortion. Before we 

go to the details of the algorithm, we first introduce some notations: 
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D(FA, FB) is the estimated distortion between frames FA and FB. 

DS(FA, FB) is the estimated spatial distortion between frames FA and FB. 

DT(FA, FB) is the estimated temporal distortion between frames FA and FB. 

H(F) is the number of non-zero DCT coefficients of the frame F. 

 

4.3.1 Spatial Distortion 

Spatial distortion happens when Huffman codes are dropped during transcoding. 

Therefore spatial distortion is related to the number of Huffman codes dropped. For I-

frames, the number of Huffman codes can be used directly to measure the spatial 

distortion. However, for P- and B-frames, error propagation has to be considered as well. 

It is because the frames that P- and B-frame depend on could also be distorted. In our 

measure, the spatial distortions caused by dropping Huffman codes for different types of 

frames are estimated by the following equations: 

 

For I-frame 
 

      (4.4) 
 

where I and I′ are the original and transcoded frames.  

For P-frame 
 

               (4.5) 
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where P and P’ are the original and transcoded frames; F and F’ are the frames P and P’ 

depend on, respectively; is a parameter presenting the effect of error propagation.  

 

For B-frame 
 

   (4.6) 
                                                                         

where B and B′ are the original and transcoded frames; F1, F2 and F1’, F’2 are the frames B 

and B’ depend on, respectively;  is the same parameter as in Equation 4.5. 

 

4.3.2 Temporal Distortion 

In addition to dropping Huffman codes, frames are also dropped during transcoding, 

resulting in temporal distortion. As mentioned before, the temporal distortion is estimated 

by replacing the dropped frame by its previous un-dropped frame. We calculate the 

distortion for every individual frame and sum the result up as the distortion of the whole 

video. We present how to estimate temporal distortion for different types of frames in the 

following paragraph. To simplify the problem, we assume the transcoder does not drop 

any Huffman coefficient. 

 
For P-frame 
 
Assume P1 and P2 are two P-frames in the original video and P2 depends on P1. After 

transcoding, P1 is transcoded into P1’. P2 is dropped and is replaced by P1’. Now we want 

to estimate the distortion between P2 and P1’. By our assumption, since the transcoder 

does not drop any Huffman coefficient from P1, P1 and P1’ are identical. The distortion 
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between P1’ and P2 should be equal to the difference between P1 and P2. Since P2 depends 

on P1, the difference between P1 and P2 can be estimated by the residual error after 

motion compensation. The residual error again can be estimated by the number of 

Huffman codes of P2: 

 
     (4.7) 

 

It is noted that a dropped P-frame may not be replaced by the frame it depends on. But it 

must be replaced by a frame in its dependency chain. So a more generic equation for 

estimating the distortion between a dropped P-frame and the replacing frame is: 

 

   (4.8) 
 

where P is the dropped P-frame, P0 is the frame replacing P and P1 is the frame P depends 

on. It is noted that P0 and P1 can be the same frame and they can be either P- or I-frame. 

 (the same parameter in Equation 4.5) is the parameter representing the effect for error 

propagation. 

 

For B-frame 
 
Estimating the distortion for a B-frame is more complex because B-frame depends on 

two frames and a dropped B-frame can be replaced by a frame that is not in its 

dependency chain. If a dropped B-frame is replaced by a frame that is in its dependency 

chain, we estimate the distortion by: 

 

  (4.9) 
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where B is the dropped B-frame, P1 and P2 are the frames B depends on. P0 is the frame 

to replace B; and P0, P1 and P2 can be the same frame and they can be either P- or I-frame. 

 (the same parameter in Eq 4.2) is the parameter representing the attenuation effect for 

error propagation. If a dropped B-frame is replaced by a frame that is not in its 

dependency chain, the frame replacing it must be another B-frame having the same 

dependent frames as the dropped B-frame. We estimate the distortion by: 

 

      (4.10) 
where B is the dropped B-frame and B0 is the frame replacing B. 

 
For I-frame 
 
In our scheme, we drop I-frame only after all the P- and B-frames are dropped. So the 

dropped I-frame must be replaced by another I-frame. We estimate the distortion by: 

 

       (4.11) 
 

where I is the dropped I-frame and I0 is the frame replacing I. 

 

4.3.3 Total Distortion 

Now we combine spatial distortion and temporal distortion together. Assume F is the 

original frame. It is dropped during the transcoding. F0’ is the frame replacing F and F0 is 

the original frame of F0’. We estimate the distortion between F and F0’ by: 
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   (4.12) 
 

where w is the weight between spatial distortion and temporal distortion. The average of 

the distortion of all the original and their transcoded frames is calculated as the final 

MCDE. 

 

MCDE can be summarized as 1) we use difference of the number of the Huffman codes 

to estimate the spatial error. 2) We use the number of Huffman codes of P/B frame to 

estimate the temporal error. 3) We consider the error propagation and 4) we linearly 

combine the temporal and spatial distortion to estimate the distortion between the original 

frame and the dropped frame. 

 

 
Figure 4.3 The correlation between MCDE and subjective result with different  values 

 

 

There are two parameters in MCDE, w and . It is difficult to select an optimal value for 

w, because the optimal value can be different for different video content. For example, 
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when the movement of the video is low, the spatial distortion is more important, thus w 

should be small, and vice versa. In our scheme, considering the balance for all the cases, 

w is set to 0.5. 

 

To choose the value for in Equation 4.5, 4.6, 4.8 and 4.9, we conduct the experiments 

varying  from 0.1 to 2.0 (with w is fixed as 0.5). For each value of , we compare the 

MCDE and the subjective results, which will detailed introduced in the next section. The 

comparison is shown in Figure 4.3. And we can see that when  is set to 1.0, the 

correlation between MCDE and subjective result is the largest. 

 

It is also noted that when estimating the spatial distortion, we assume that all Huffman 

codes, i.e. all DCT coefficients, are equally important. The reason is that MCDE is only 

designed to select the best candidate rather than as a generic video quality measure. Our 

experiments have shown that the proposed MCDE already performs well (without 

considering the different significance of different Huffman codes. 

 

4.4 Evaluation 

4.4.1 Mean Compression Domain Error Evaluation 

In this subsection, we evaluate the MCDE’s performance.To evaluate its accuracy, we 

compare the MCDE with MSE and stimulus continuous quality scale (DSCQS) [35] in 

Section 4.4.1.1; to evaluate its speed, we compare the computational complexity between 

MCDE and MSE in Section 4.4.1.2. 
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4.4.1.1  Comparison among MCDE, MSE and DSCQS 

In our experiments, we have three original CIF-size MPEG-4 video clips, which are 

shown in Table 4.1: 

 
 
 
 
 
 
 

Table 4.1 Video sequence used to compare MCDE, MSE and DSCQS 
Name Bit rate Descriptions 
Hall_768 768 KBps Still background and 

two objects with 
moderate movements 

Highway_1024 1024 KBps Moving background 
Walk_512 512 KBps Both background and 

two foreground objects 
are with very fast 
movements 

 
 

Each of them is transcoded using different configurations. First, we fix the target frame 

rate as 8fps and 15fps and vary the number of Huffman coefficients as one of 10%, 20%, 

40%, 60%, 80% and 100% of that of the original video clip. Then we fix the number of 

Huffman coefficient as 30% and 50% of the original video clip and vary the target frame 

rate as one of 5fps, 8fps, 12fps, 15fps, 20fps and 25fps. Thus, totally we have 

 transcoded video clips for testing.  

 

For each transcoded video clip, we calculate its MCDE and MSE. We also evaluate them 

using subjective testing. The 72 video clips are divided into three groups, and the video 

clips in each group have the same content. Thirty normal-eyesight viewers are invited to 
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our test. Each of them evaluates one group of video clips. We select double stimulus 

continuous quality scale (DSCQS) as our subjective video quality methodology [35]. In 

DSCQS, the viewers are shown pairs of video clips (the original clip and the transcoded 

clip) in a randomized order. Each pair is displayed twice. After the second display, 

viewers are asked to rate the quality of each clip in the pair. The difference between these 

two scores is then used to quantify changes in quality. [35] 

 

 
Figure 4.4 comparison among MCDE, MSE and DSCQS for Hall_768 with 15fps 

 

Figure 4.4 shows the comparison among MCDE, MSE and DSCQS for different 

percentages of the number of Huffman codes with the same target frame rate (15fps). The 

y-axis represents the quality distortion after normalization. The x-axis represents the 

percentages Huffman codes of the original video clips. It is observed that all MCDE, 

MSE and DSCQS decrease as the number of Huffman codes increases. The three curves 

follow the same trend. 
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Figure 4.5 comparison among MCDE, MSE and DSCQS for Highway_1024 with 50% 

Huffman codes 
 

Figure 4.5 shows the comparison among MCDE, MSE and DSCQS for different frame 

rates with the same number of Huffman codes (50% of original). The y-axis represents 

the quality distortion after normalization. The x-axis represents the frame rate. It is 

observed that the curves of MCDE and MSE follow the same trends. Both of them 

decrease as the frame rate increases. However DSCQS increases as the frame rate 

increases from 15fps to 20fps. The similar results are also found in other subjective 

testing groups. It might be because that it is hard for people for to distinguish the 

temporal difference when the frame rate is larger than 15fps. This exactly matches the 

results obtained in [3]. 
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Figure 4.6  Comparison among MCDE, MSE and DSCQS for Walk_512 with 8fps 

 

Figure 4.6 shows the comparison among MCDE, MSE and DSCQS for different number 

of Huffman codes with the same target frame rate (8fps). In this figure, only MCDE 

decreases as the number of Huffman codes increases. DSCQS almost has the same trend 

with MCDE except it increases as the number of Huffman codes increases from 80% to 

100%. It is probably because for this video clip, the spatial distortion between 80% and 

100% are very close. It is hard for people to distinguish them. MSE increases as the 

Huffman codes increases. It may be because ‘Walk_512’ has very fast motion, when the 

frame rate is low, MSE cannot measure the distortion correctly. In such a case, MCDE is 

even more accurate than MSE.  

4.4.1.2  Computational Cost between MCDE and MSE 

We also measure the computational complexity for both MSE and MCDE. Given the 

information of how to drop frames and Huffman codes, to calculate MSE we need to 1) 

actually transcode the video clip, 2) decode both original and transcoded video clips, and 
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3) calculate MSE. On average, that costs about 5 seconds for a 10-second video clip, on a 

Pentium 4, 3GHz, 1G RAM PC. On the other hand, the calculation of MCDE only takes 

around 0.5 seconds on the same PC. It is noted that we implement MSE using C++ while 

MCDE using Python. Although Python is much slower than C++, the calculation of 

MCDE is still 10 times faster than MSE. 

 

4.4.2 Transcoding Scheme Evaluation 

In this subsection, we evaluate the transcoding scheme. We transcode the existing video 

bitstreams under the different decoding workload constraints. The transcoding scheme is 

evaluated with the following two aspects: 1) whether Workload Control scheme can 

accurately control the target decoding workload, which should be just below the given 

constraint; 2) whether MCDE can actual select the best candidate. This can be proven by 

whether the estimation result matches that of the traditional PSNR result. 

 

To evaluate the first aspect, we measure the actual decoding workload of the target video 

bitstream and compared it to the original workload constraint. To evaluate the second 

aspect, we decode all the candidates generated by Workload Control model and calculate 

the actual PSNR between the candidates with the original video bitstream. We then check 

if the result we select using MCDE had a highest PSNR (the higher the average PSNR is, 

the less distorted the transcoded video bitstream is compared to the original video 

bitstream). 
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4.4.3 Experiment configuration 

The same 12 raw video described in Table 3.1 (and each encoded by 4 bit rates) are used 

in this evaluation. We run experiments for 8 different workload constraints corresponding 

to the processor frequencies of 100, 150, 200, 250, 300, 350, 400 and 500 MHz. 

Assuming the original frame rate to be 25 fps, the possible target frame rates are set to be 

5, 8, 10, 15, 18, 20, 22 or 25 fps. The actual workload is measured on SimpleScalar. 

 

4.4.4  Workload Control Evaluation 

Figure 4.7 shows the comparison between the actual decoding workload of our 

transcoded bitstream and the constraint. The X-axis represents the processor frequencies 

and the Y-axis represents the workload. Figure 4.7 shows how accurately our transcoding 

scheme could control the workload of the transcoded video bitstreams. The curve labeled 

Workload Constraint represents the constraints. The curves labeled 256KBps Actual, 512-

KBps Actual, 768KBps Actual, and 1024KBps Actual represent the average of the actual 

workload of the video bitstreams with original bit rate of 256 KBps, 512 KBps, 768 

KBps and 1024 KBps, respectively. It is observed that all the 4 curves are all below and 

close to Workload Constraint curve showing that the workloads of all transcoded video 

bitstreams are kept under the workload constraint. Another observation is that the 

difference between the actual workload and the constraint was large when the processor 

frequency was 500 MHz. This was because that processor frequency of 500 MHz is more 

than enough to decode the original video bitstreams. 
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Figure 4.7 The comparison for the actual decoding workload and workload constraint 

 

4.4.5 Candidate Selection Evaluation 
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Figure 4.8 Comparison between the MCDE and 1/Actual PSNR 
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Figure 4.9 Accuracy of the candidate selection  

 

After the Workload Control step, we had the metadata of all possible candidates. In this 

experiment, we perform the transcoding of all these video bitstreams and calculate the 

actual PSNR from the original video bitstream. Using MCDE, we estimate the distortion 

of these transcoded video bitstreams from the original, and then we compare the 

estimated distortion values with the (1/Actual PSNR) values. Figure 4.8 shows a 

comparison between the MCDE value and the corresponding (1/Actual PSNR) value for 

video “news” with bit rate of 512 KBps and processor frequency of 500 MHz. The 

matching of the 2 curves implies a high correlation between the MCDE and actual PSNR. 

Figure 4.8 shows that MCDE correctly estimated the distortion for this test run of video 

“news” with bit rate of 512 KBps and processor frequency of 500 MHz. In total, we have 

conducted 192 such test runs. For one test run, if our algorithm selects the candidate with 

lowest (1/Actual PSNR) value, the selection is correct; otherwise, the selection was 

wrong. Figure 4.9 shows the accuracy of the candidate selection for different processor 
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frequencies. On average, in more than 92% out of 192 experiments, our estimation 

algorithm selects the best quality video bitstreams, and in the rest 8%, the second best 

quality video bitstreams are selected. 

 

4.5 Summary 
 
In this chapter, we design a workload-scalable transcoder to provide an optimal match 

between the transcoded bitstream and a mobile device’s processing power. The scheme 

takes advantage of MCDE and the decoding workload model proposed in Chapter 3: 

MCDE is used to find the best candidate; the decoding workload model is used to control 

the workload of the transcoded bitstream. Both components have been evaluated with 

experiments and were shown to be effective. The main advantage of our compression 

domain transcoding scheme is its speed. Unfortunately, this is accompanied by an 

inherent disadvantage of inflexibility such as the inability of spatial scalability. This 

problem will be addressed in our future work. 

 

MCDE is a new objective video quality measure for the transcoding applications. Our 

experiments show that MCDE can be used to accurately predict the subjective quality of 

the transcoded video with negligible computational complexity in comparison with the 

conventional MSE. It is noted that although MCDE is proposed to solve the problem of 

our transcoder, it can also be applied to other compression domain transcoding 

applications. 
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Chapter 5  

Workload Scalable Encoder 

 
5.1 Introduction 
 
In this chapter, we present workload-scalable encoder. The workload-scalable encoder is 

analog to the workload-scalable transcoder presented in the last chapter: both of them 

generate the target bitstream according the decoding workload constraints of the mobile 

device; both of them need to consider the tradeoff between frame rate and individual 

frame quality. The difference is the transcoder constructs the bitstream from the existing 

bitstream while the encoder constructs the bitstream from the raw video data. This 

difference makes the mechanism of the encoder completely different from that of the 

transcoder: 

 
 In the transcoder, the decoding workloads are allocated to the frames/MBs according 

to their original decoding workload. In the encoder, we do not have the ‘original 

decoding workload’. 
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 In the transcoder, the distortion of the different frame rate candidates are estimated 

by the difference of the original and target bitstream’s Huffman codes numbers. In 

the encoder, original video is raw data, which does not have the Huffman codes.  

 

Therefore, for the workload-scalable encoder, we have to re-consider both problems: 

decoding workload control and frame rate selection. For the decoding workload control, 

we can still take advantage of the decoding workload model to control decoding 

workload by adjusting the parameters of the bitstream during the encoding. However, 

how to allocate decoding workload to different frames/MBs is a problem. As mentioned 

in Chapter 1, even with the same quality, different frames/MBs require different decoding 

workloads. The encoder should smartly allocate a decoding workload so that different 

frames/MBs have the same quality. For the frame rate selection, the encoder requires an 

objective measure to estimate the video distortion for different frame rate candidates. A 

conventional approach is to encode all the possible candidates, then use the approach in 

[7, 28] to calculate the average MSE/PSNR for them. However, this approach is very 

expensive. In this chapter, we propose a new frame rate selection scheme, which can 

estimate the video distortion before the actual encoding. Our experiment shows that the 

scheme can get a similar or even better result than the conventional approach mentioned 

above but with much lower computational complexity. 

 

The architecture of the encoder is shown in Figure 5.1. 
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Figure 5.1 The encoder architecture 

 

The encoding procedure includes two phases. In the first phase, the raw video data and 

client decoding workload constraint together with all possible frame rates are fed into the 

Frame Rate Selection Scheme which selects the most suitable frame rate for the actual 

encoding. In the second phase, the encoder uses the selected frame rate and client 

decoding workload constraint to compress the raw video into the target video bitstream 

using the Workload Control Scheme. We also assume that the GOP format is fixed. 

 

The contributions of this chapter are two-fold: 

We propose Frame Rate Selection scheme which can select the most suitable frame rate 

before the actual encoding with very low computational complexity. It is noted that 

although this scheme is proposed for the workload-scalable encoder, its concept can also 

be used to other encoder applications. 

We propose Workload Control scheme which can accurate control the decoding 

workload of the encoded bitstream. It employs smart strategies to allocate the workload 
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so that under the same decoding workload, it can generate a bitstream with better video 

quality (compare to the encoder does not employ the strategies). 

 
The rest of the chapter is organized as the follows: In Section 5.2, we introduce the frame 

rate selection scheme. The workload control scheme is presented in Section 5.3. We 

evaluate the schemes in Section 5.4 and summarize this chapter in Section 5.5. 

 

5.2 Frame Rate Selection Scheme 
 

This section presents our fast frame rate selection scheme: it enumerates all the frame rate 

candidates; for each candidate, the distortion of the target video bitstream is estimated. 

The candidate with the smallest distortion is selected. The problem is how to perform a 

fast distortion estimation of all target video bitstreams with all possible frame rates before 

actual encoding. 

 

Before going to the detail of the algorithm, we introduce some notations first. Assume we 

have a raw video sequence containing N frames:  P(0), P(1), P(2)…P(N-1) (see Figure 2). 

For each frame rate candidate f, we evenly select M=N*f/fmax frames from the original 

sequence for actual encoding, where fmax is the maximum frame rate. In our 

implementation, fmax is set as 25fps. We denote P’(0),P’(1),P’(2),…,P’(M-1) are the 

frames decoded at the client end. In Figure 2, f is equal to 12 fps. Replacing a dropped 

frame by its previous frame, we get the frame sequence P’(0,0),P’(0,1)..P’(0,fmax/f-

1),P’(1,0),P’(1,1)…P’(1,fmax/f-1)…P’(M-1,0),P’(M-1,1)…P’(M-1, fmax/f-1), where P’(i,j) 



 71 

is exactly the same as P’(i,0). And P’(i,j) is corresponding to the frame P(i*fmax/f+j) in 

the original video sequence.  

  
 

Figure 5.2 An example case for frame rate selection scheme 
 

 

The distortion of the video sequence with frame rate f is calculated by the distortion of 

the video sequence after frame replacement, which is then calculated by the average 

distortion of the corresponding frames. Here are the basic ideas to calculate the distortion 

between two corresponding frames: 

 

For the frames P’(i,0) 

 

According to the frame rate and GOP structure, we know the frame type of P’(i,0). Using 

a simple version of workload control scheme in Section 2, we can also estimate the 

number of Huffman codes in this frame. 

 

if P’(i,0 )is an I-frame 
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The variance of the frame describes its image complexity. The distortion between P’(i,0) 

and P(i* fmax/f) is estimated as the image complexity lost when being encoded into the 

target bitstream due to workload constraint, i.e., a MB will be coded using just a part of 

the total 64 Huffman codes: 

 

 

      (5.1) 

 

where N is the number of Huffman codes, Whuff(N) is the weight of the first N Huffman 

codes, Var(i) is the variance of the original frame, which can be calculated before the 

actual encoding. 

 

if P’(i,0) is an P-frame 

A P-frame is dependent on its reference frame. Assuming the reference frame is P’(k), its 

distortions have two parts: the distortion propagated from its reference frame and the 

residual error lost due to the workload constraint: 

 

                    (5.2) 

 
where Wprop is the weight representing the error propagation effect, D(k, 0) is the 

distortion of P’(k) which can be calculated by Eq. 5.1, if P’(k) is an I-frame; or by 5.2, if 

P’(k) is a P-frame. Res’(k,i) is the residual error between P’(k) and P’(i). The residual 

error is calculated in the motion compensation procedure. Since running the motion 
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compensation for all frame rate candidates is computationally expensive, we estimate 

Res’(k,i) by  

 

       (5.3) 
 

where p=k* fmax/f, q=i* fmax/f, Wres is a parameter. Thus, we can estimate the residual 

error between any two frames by a linear combination of the residual error between two 

adjacent original frames, which needs to be calculated only once before the actual 

encoding. 

 

if P’(i,0) is an B-frame 

It depends on two frames P’(k) and P’(t). Similar to the P-frame, its distortion can be 

calculated as: 

 

        (5.4) 

 

For the frames P’(i,j), where j>0 
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Figure 5.3 the distortion calculation for P’(i,j) 

 

The distortion between P’(i,j) and its corresponding frame P(i* fmax/f+j) equals to the 

distortion between P’(i,0) and P(i*fmax/f+j), since P’(i,j) is a direct copy of P’(i,0). Using 

the frame P(i*fmax/f) as a bridge (see Figure 3), the distortion can be estimated as a 

weighted sum of the spatial distortion between P’(i,0) and P(i* fmax /f), and the temporal 

distortion between P(i* fmax/f+j) and P(i* fmax /f).  

 

              (5.5) 
 

where Wtemp is the weight of the temporal distortion and MSE(i*fmax/f, i*fmax/f+j) is the 

MSE between P’(i*fmax/f) and P(i*fmax/f+j), which is used to represent the temporal 

distortion caused by the frame replacement in the display sequence. Again, we do not 

want to calculate MSE for all the possible candidates. Let p=i*fmax/f and q=i*fmax/f+j, we 

estimate MSE(p,q) by 

 

                    (5.6) 
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Thus, we estimate the MSE between any two frames by a linear combination of the MSE 

between two adjacent original frames, which needs to be calculated only once before the 

actual encoding. 

The detail of the distortion estimation for each frame rate candidate is shown as 

Algorithm 5.1. 

 
Algorithm 5.1. Frame Rate Selection Scheme 

 
 

The details are as follows: 

In Line 3, frames with different type are allocated using different ratio. We keep the ratio 

the same as that in Algorithm 1: 2:2:1 for I-, P- and B-frame. 

 

1) Select the frames, P’(i,0),i=1…M, from original sequence based 
on the frame rate. 
2) For all the selected frames: 
3) Allocate the workload to the current frame according to the 
frame type. 
4) Estimate the sum of the workload of MC, WMC of all the MBs 
of the current frame 
5) Estimate the sum of the workload of IDCT+VLD, 
WVLD_IDCT=W- WVLD_IDCT, where W is the  
workload of the frame. 
6) Estimate the average number of Huffman coefficients of MB 
in the frame. 
7) Estimate the distortion D(i,0) between P’(i,0) and P(i* fmax/f). 
8)Replace the dropped frame by its previous frame. For all the 
replacing frames, P’(i, j),i=1…M,  estimate the distortion D(i,j) 
between P’(i,j)  and  P(i* fmax/f+j), j=1.. fmax/f.  
9)Calculate Avg(D(i,j)) as the quality of the distortion of the target 
video sequence. 
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In Line 4, we assume all MBs in I-frame are I-MBs and 1/3 MBs in P-frame are I-MBs 

and another 2/3 MBs are P-MBs. We also assume 1/2 MBs in B-frame are P-MB and 

another 1/2 MBs are B-MBs. Based on this ratio, we estimate the sum of the workload of 

MC of the MBs in the current frame. It should be noted that above approach is not the 

most accurate one. A more accurate approach can employ the residual error to estimate 

the number of I-, P- and B-MBs of the frame. However, our simple scheme is designed to 

select the best frame rate. Experimental results show that this simple approach works 

sufficiently well. For I-, P- and B-MB, we use a constant value to estimate the MC 

workload. The constant value is obtained from statistical analysis. Again, this is not the 

most accurate approach, but is sufficient for our purpose. 

 

In Line 6, the number of Huffman codes is estimated using the decoding workload model 

proposed in Chapter 3 

 

In Line 7, the distortion D(i,0) is calculated as Equation 5.1, 5.2 and 5.4 

 

In Line 8, the distortion D(i,j) is calculated as Equation 5.5.. 

 

In the proposed scheme we have many parameters such as Whuff(N), Wtemp, Wprop, Wmse 

and Wres. They are all obtained from the statistical analysis: Whuff(N) is obtained from the 

experiment where we select a 8*8 block from a raw picture, performing the DCT 

operation, setting the coefficients after position N as zero and finally calculating the 

difference between the original block and the block after IDCT. For Wtemp, Wprop, Wmse 
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and Wres, we use a set of video as the training set (the same video clips we used in the 

experiments of Section 3.3). We enumerate the four parameters from 0~10 with a step of 

0.1 and select the values with best estimation result. 

 

 

5.3 Workload Control Scheme 
 
According to the decoding workload model proposed in Chapter 3: an MPEG video is 

made up of a sequence of Macroblocks (MBs), and modeling the video decoding 

workload is decomposed to modeling three major tasks of decoding one MB: Variable 

Length Decoding (VLD), Inversed Discrete Cosine Transform (IDCT) and Motion 

Compensation (MC). The decoding workload of VLD is modeled as a linear function of 

the number of Huffman codes. The decoding workload of IDCT is modeled as a lookup 

table indexed by the last position of Huffman codes. The workload of MC is modeled as 

a lookup table indexed by motion vectors’ precisions. And for different types of MB, the 

parameters of the models can be different. Thus, we can control the decoding workload 

by adjusting the number of Huffman codes, MB type and motion vector precision.  

 

The workload control can work at three levels: frame level, MB level or task level (Slice 

level is to provide the ability of robustness, so we do not take it into consideration). For 

an encoder, workload control in frame and MB level is similar to the conventional bit rate 

control. However, in task level, rate control and workload control are significantly 

different. Rate control scheme only considers the quantization level of DCT coefficients, 

which is proportional to the bit rate. Workload control needs to consider multiple factors 
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and their tradeoff. For example, if we allocate more workload to the VLD or IDCT task, 

we can have more Huffman codes. This increases the video quality. However, allocating 

more workload to the VLD or IDCT task will result in allocating less workload to the MC 

task. This may limit the motion vectors’ precision and thus decreasing the video quality. 

This problem becomes even harder if we also consider the MB type. In this section, as the 

first step of our research on the decoding-workload-aware encoder, we do not consider 

the task level workload control: we simply fix the workload of the MC task by fixing the 

MB type and motion vectors from the conventional motion estimation procedure. We 

only control the decoding workload of IDCT and VLD tasks by adjusting the number of 

Huffman codes.  

 

We design two strategies for the frame level and MB level workload control, respectively. 

The strategies allocate the workload so that the encoded bitstream can have a better video 

quality within the constraint of decoding workload. The two strategies can be 

summarized as follows: 

 

 In frame level, the workload is allocated based on statistical ratio of different frame 

types and the ratio is adjusted according to the recent history. 

 In MB level, the workload is allocated based on the image complexity which can be 

estimated by the variance or MSE.  

 

The experiment results in Section 4 show that these two strategies can improve the video 

quality. Algorithm 5. 2 describes how the workload control scheme works. 
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Algorithm 5.2. Workload Control Scheme 

 
 

 

The details are as follows: 

In line 3, the decoding workload for current frame (Wi, Wp and Wb for I-frame, P-frame 

and B-frame) is allocated as: 

 

        (5.7) 

               (5.8) 

1) Allocate the workload for the current GOP according to the 
constraint, GOP size and frame rate on an average basis. 
2) For all the frames in the GOP: 
3) Allocate the workload to the current frame according to the 
frame type and history record. 
4) Run motion estimation for all the MBs of the current frame, 
decide their MB types, record their MSEs (or VAR for I-MB) and 
motion vectors. 
5) Estimate the workload of MC for all the MBs based on the 
results from 4) using the workload model. 
6) For all the MBs in the current frame: 
7) Allocate the workload of current MB by its MSE/VAR and MB 
type. 
8) From the motion vectors get in the line 4, estimate the 
workload of VLD+IDCT for all possible number of quantization scales 
using workload model. Select out the number of quantization scale 
having the workload closest to WVLD_IDCT =Wmb-WMC, where Wmb is the 
workload allocated for the MB, and WMC is the workload of MC get in 
line 5. 
9) Encode the MB. 
10) Update the status. 
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        (5.9) 

 
where Kp and Kb are the parameters representing the ratio between I-, P- and B-frame. In 

our implementation, Kp=1.0 and Kb=2.0, which are obtained empirically. It means we 

allocate the workload to I-, P- and B-frame according to the ratio of 2:2:1. Xi, Xp and Xb 

are the decoding workload for the previous I-, P- and B-frames. These three parameters 

are to adjust the ratio of I- P- and B-frame by the history record. W is the remaining 

workload of the GOP, which is updated after encoding a frame. Np, Nb are the number of 

P-and B-frames in a GOP. 

 

In line 4, we use conventional motion estimation, with which the MB type is decided by 

comparing the MSE or VAR of the MB with a constant threshold. 

 

In line 6, workload of the current MB, Wmb(i) is allocated as 

 

 (5.10) 

 

where Wframe is the remaining workload of the current frame; MSE(i) is the MSE of the ith 

MB (or VAR(i), if the ith MB is an I-MB); N is the number of MBs of the frame. WMC(i) is 

the workload of MC of the ith MB. The rationales behind this equation are: 1) as 

mentioned earlier, we do not change motion vectors’ precision or MB type after motion 

estimation, the workload of MC can be regarded as fixed; 2) we allocate more workload 

to VLD and IDCT tasks of the MB which has larger MSE/VAR. A MB with larger 

MSE/VAR implies more residual error. Therefore, it requires more Huffman codes for 
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the encoding. And to decode a MB with more Huffman codes, more decoding workload 

is required in VLD and IDCT tasks. 

 

In line 9, we use the quantization scale obtained from line 8 for the actual encoding 

(generating the bitstream). If the encoder also employs a rate control scheme, we will get 

another quantization scale for the rate control. In this case, both the decoding workload 

constraint and bit rate constraint can be satisfied by selecting the larger quantization scale. 

 

In line 10, we estimate the decoding workload using the parameters extracted from the 

encoded MB and update status of the scheme. 

 

To summarize, in the frame level, we allocate the workload based on statistical ratio 

between different components which is updated with a moving average of recent history; 

in the MB level, we allocate the workload based on the image complexity. The 

experiment results in Section 4 show that these two strategies improve the video quality 

considerably. 

 

5.4 Evaluation 
 

5.4.1 Workload Control Scheme Evaluation 
 

Experiment Setup 

For proving of concept of the proposed decoding-workload-aware video encoding, we 

employ the MPEG-2 as the video format. We modify MPEG-2 reference encoder to a 
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decoding-workload-aware encoder. In our experiments, we select 12 raw video sequences 

which are shown in Table 1. Each of them is encoded under 11 workload constraints: 20 

MHz, 30 MHz, 40 MHz, 50 MHz, 60 MHz, 80 MHz, 100 MHz, 120 MHz, 150 MHz and 

200 MHz. We use MPEG-2 decoder of TCPMP project [4] as the target decoder. We use 

SimpleScalar [5] to simulate the decoding procedure and record the actual decoding 

workload, which is then compared with the workload constraints. 

 

Experiment Results 

 
Figure 5.4 The Comparison between the constraint and actual decoding workload for 

sequence ‘akiyo’. 
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Figure 5.5 The Comparison between the constraint and actual decoding workload for 

sequence ‘hall’. 

 
Figure 5.6 The Comparison between the constraint and actual decoding workload for 

sequence ‘coastguard’. 
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Figure 5.4~Figure 5.6  show the comparison between the constraint and the actual 

decoding workload for the sequences akiyo, hall and coastguard. The results of the other 

sequences also show the similar matching. Two curves in the figures are the constraint 

and the actual decoding workload, respectively. It can be observed that, in most cases, the 

actual workload is very close to the constraint. However, when the constraint is very low, 

the actual decoding workload is beyond the constraint. It is because each sequence has a 

minimum decoding workload requirement which is dependent on the video content. 

When the motion of the video is large, the residual error in P- and B-frame is large, 

which demand more decoding workload. For example, akiyo’s motion is smaller than 

hall’s, which again smaller than coastguard’s. Thus, in the figures, we can observer the 

minimum decoding workload requirement of akiyo is around 32 MHz, which is smaller 

than hall’s 34 MHz, which again smaller than coastguard’s 47 MHz. Thus the minimum 

decoding workload requirement will be large, and vice visa. The average difference 

between the constraint and actual decoding workload is less than 1.8 %. That indicates 

the workload control scheme controls the decoding workload very well. 
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Figure 5.7 The Comparison between the video distortions between different workload 

control schemes for the sequence ‘hall. 
 
 

Next, we evaluate the strategies we employ in the workload control scheme. In Figure 

5.7 we compare the video quality between the bitstream generated by our scheme and the 

bitstreams generated by the scheme without the strategies for the video sequence hall. 

The x-axis represents the workload constraint and the y-axis represents the MSE of the 

encoded video bitstream. The results of the other sequences are similar. In the figure, the 

curve his_mse represents MSE of the bitstream generated by the scheme using two 

strategies. The curve his_fix represents the MSE of the bitstream generated by the scheme 

only using the strategy in frame level. In the MB level, we allocate workload according to 

a fixed ratio. And the curve fix_fix represents the MSE of the bitstream generated by the 

scheme using no strategy. We allocate workload based on fixed ratios in both frame and 

MB level. It is observed that, under the same constraint, the bitstream generated by using 
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two strategies has better quality than the bitstream generated by using only one strategy, 

which again better than the bitstream generated by using no strategy. It implies that both 

two strategies: 1) allocating workload in frame level based on history record and, 2) 

allocating workload in MB level based on MSE efficiently work in the workload control 

scheme. 

 

5.4.2 Frame Rate Selector Scheme Evaluation 
 
Experiment Setup 

In the experiment, given a picture sequence and the workload constraint, we select the 

best frame rate from the candidates using the frame rate selection scheme. To evaluate 

the result, we encode and decode the sequence under the same workload constraint for all 

the frame rate candidates. After that, the dropped frames are replaced with the previous 

un-dropped frames and the average MSE is calculated. We check if the frame rate 

selected by our scheme has the smallest MSE. In the experiment, we use 12 different 

picture sequences and 14 workload constraints: 10, 20, 30, 40, 50, 60, 80, 100, 120, 150, 

180, 200, 250 and 300 MHz; and frame rate candidates are 5, 10, 15, 20 and 25 fps. 

 

Experiment Results 
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Figure 5.8 The Comparison between our scheme and MSE for the sequence ‘bridgeclose’ 

 

 
Figure 5.9 The Comparison between our scheme and MSE for the sequence ‘coastguard 



 88 

 
Figure 5.10 The Comparison between our scheme and MSE for the sequence ‘container 

 

Figure 5.8~Figure 5.10 show the comparison between our scheme and MSE for the 

sequence ‘bridgeclose’, ‘coastguard’ and ‘container’. The results for the other sequences 

are similar. It is observed that our scheme and MSE matches well in most cases. The 

percentage that the frame rate selected by our scheme has the smallest MSE value is 

74.4%. The percentage that the frame rate selected by our scheme has the smallest or 

second smallest MSE value is 90.4%. Furthermore, the cases our scheme does not match 

the MSE, are possibly because MSE does not reflect the video quality accurately. For 

example in Figure 5.8, when the workload constraint is 100 and 120 MHz, MSE selects 

the best frame as 25fps. However, when the workload constraint increases to 150, it 

selects the best frame as 15fps. That does not make sense. Intuitively, as the decoding 

workload increase, the best frame rate should increase, at least not decrease. And in 
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Figure 5.10, we can also observe the similar case. In these cases, our scheme is more 

reasonable than MSE. 

 

 

Figure 5.11 The complexity comparison between the two schemes 

 

Compared to the conventional approach, such as MSE, our scheme has a much lower 

computational complexity. If we use the conventional approach, we have to encode, 

decode and calculate MSE for n times, where n is the number of the frame rate candidates; 

while in our scheme, we run the motion estimation (a part of the encoding process), 

calculate MSE and variance only once. A comparison of time complexity of the two 

schemes is shown in Figure 7. The test was run on a desktop with Pentium 4 CPU and 1G 

RAM running Windows XP. As shown in Figure 5.11, the execution time increases with 

the number of frame rate candidates for the conventional approach, while the execution 
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time for the proposed scheme is almost constant. When the number of frame rate 

candidates is 8, our scheme is about 25 times faster than the conventional approach. 

 

5.5 Summary 
 
In this chapter, we have presented a novel decoding-workload-aware video encoding 

scheme with two main contributions: a decoding workload control scheme and a fast 

frame rate selection scheme. The workload control scheme can control the decoding 

workload accurately when the generated video bitstream using the proposed scheme is 

decoded in a target client. The fast frame rate selection scheme can select out the most 

suitable target frame rate, balancing the spatial and temporal distortions, before the actual 

encoding. 

 

We believe that the proposed fast frame rate selection scheme is not only useful for 

workload control but also for rate control. On the other hand, our workload control 

scheme still has a lot of room for improvement. For example, the workload allocation in 

the task level is an important and interesting problem to study in the future.  
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Chapter 6  

Discussion and Future Works 

 
The purpose of this thesis is to propose a scalable solution that can provide acceptable 

quality of service in mobile video applications yet matches the decoding workload 

constraints of end devices. In the thesis, we have first established a decoding workload 

model based on the analysis of the MPEG bitstream. Next, we have proposed a decoding 

workload scalable transcoder and encoder, which can produce the target video clip 

according to the workload constraint of the mobile device. To our best knowledge, this is 

the first attempt at studying the decoding workload of the mobile video application in 

such a comprehensive manner. 

 

The decoding workload model is the core of the thesis. How well the transcoder and 

encoder can control the target decoding workload completely relies on the model’s 
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accuracy. In this thesis, we have established the model based on detailed analysis of the 

MPEG video structure and different decoder implementations, which makes the model 

very accurate. On the same time, this approach also renders the model highly dependent 

on video structure and decoder’s architecture. If the video structure or the decoder’s 

architecture is not considered in the model, the model does not work anymore. That is 

why our model does not work on the H.264 format and performs badly when the cache is 

not hit. On the other hand, if we establish a model in a more abstract way, such as with 

the virtual decoding complexity in [16], we cannot simultaneously guarantee its accuracy 

and efficiency. Furthermore, it is difficult to abstract all video formats, for example, DCT 

based video formats and wavelet based video formats into one single model. Our further 

work on the decoding workload model will be: 1) we will continue improving the current 

model. The experimental results in Chapter 3 show that the cache mechanism has a 

significant impact on the model’s accuracy especially when the cache miss ratio is high. 

We will take it into consideration. 2) We will extend the model to other video formats 

such as H.264 and scalable video coding [57, 72]. In fact, although current scalable video 

coding is designed mainly for bit rate scalability, it can also be applied for controlling 

decoding workload if the model can accurately predict 1) the decoding workload for both 

base layer and enhancement layer bitstreams; 2) the overhead for combining multiple 

layers. 

 

Besides the decoding workload model, the compression domain objective quality 

measure is another major contribution in the thesis. The proposed measures are designed 

to judge the tradeoff between temporal distortion and spatial distortion. Although they are 
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fast and accurate, they are not yet satisfactory enough. For example, the measure 

proposed for the transcoder is not able to compare the quality of video clips of different 

frame sizes. As a result, the proposed transcoder is incapable of spatial scalability. Also, 

the reason why allocating decoding workload at the MB level is so difficult is because the 

proposed objective measure for the encoder is not able to judge the tradeoff between the 

number of DCT coefficients, MB type and motion compensation type. In our future work, 

we will study the measure more thoroughly to solve the problems mentioned above. We 

note that the compression domain video quality measure also highly depends on video 

format. For speed, the measure has to know how the video is encoded from the spatial 

domain data to the compression domain bits so that the video quality can be estimated in 

the compression domain. If we use generic video measures, such as MSE and PSNR, we 

have to decode the video into spatial domain, which is relatively slow. This tradeoff 

should be realized when we design the system. 

 

As we have mentioned in the Introduction section, the study of decoding workload 

scalability of relevance to the study of energy scalability. Although we do not study 

energy directly in this thesis, we can still take advantage of the decoding workload model 

to save the client energy. In our paper [55], we have combined the decoding workload 

model with the idea of the dynamic voltage scaling (DVS) approach to reduce energy 

consumption of the processor. According to a previous study [29], energy consumption of 

the processor can be computed from decoding workload, which can be easily estimated 

via bitstream analysis using the proposed decoding workload model. Therefore, given a 

video clip, we can predict its energy consumption without actual decoding it. Based on 
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this, we have proposed a scheme: When video clips are being downloaded onto a portable 

device, a lightweight bitstream analysis scheme runs on the desktop computer and 

annotates the video clip with energy consumption information. The annotated video clips 

are then stored in the portable device. At runtime, energy consumption information is 

read out and used for dynamic voltage scaling. This scheme has two main advantages: 1) 

analysis and computations are done at the server side, so very little overhead will be 

occurred at the client device. 2) We know the energy consumption distribution of the 

whole video file before we make our frequency scaling decision, and we can make use of 

the information to efficiently reduce energy consumption without any quality degradation. 

In this scheme, we do not consider memory energy consumption. Although memory 

energy consumption is not major compared to processor energy consumption [47], it 

should not be ignored especially when the cache is small. In our future work, we will 

study this topic and extend the current decoding workload model to the decoding energy 

model. 
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