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Summary

Transcription factors (TF) play critical roles in the system that controls transfer

of genetic information from DNA to RNA. Estrogen Receptor α (ERα), which is

the master transcriptional regulator of breast cancer phenotype, is of particular

interest in understanding carcinogenesis of breast cancer. Some relevant biological

concepts are introduced in Chapter 1.

In the process of transcription, transcription factors bind to DNA and regulate the

gene expression. Various kinds of experiments have been devised to understand

the mechanism of regulation. On one hand, experiments such as ChIP-ChIP and

ChIP-PET analysis could be performed to map ERα binding sites on a whole

genome scale, and consequently a group of high confidence binding regions could

be identified. On the other hand, DNA microarray experiments can measure the

level of expression for thousands of genes at the same time. In Chapter 2, we mainly

describe four datasets studied in this thesis, including two groups of high confidence

binding regions and two microarray gene expression profiles. We introduce the

datasets separately for binding data and gene expression. For binding data, we

explain an important concept that is used to measure binding strength and conduct

v



Summary vi

some preliminary analysis. A further analysis of concentration of the binding data

will be introduced later in Chapter 3. As for gene expression data, besides the data

description, we also introduce methods on gene selection, such as Welch t-test and

Significant Analysis of Microarray (SAM). After that, we obtain a particular group

of differentially expressed genes by SAM for our future analysis. Lastly the use of

the UCSC database is also mentioned in this chapter.

The main concern in this thesis is to explore the association of these high confi-

dence binding regions with gene expression data. In Chapter 3, our objective is to

identify the rules that link transcription factor binding to the regulation of genes.

The preliminary analysis shows the distribution of binding strength. In order to

identify the impact of binding strength on the regulation of genes, we map the

position of binding sites to the 5
′

and 3
′

end of regulated genes. We then obtain

the occurrence of high confidence binding regions in the vicinity of the selected

genes. By comparing the binding strength of binding sites in the neighborhood of

regulated genes with that of all the binding sites, we show there is a positive impact

of binding strength on the gene regulation. After that, we investigate the density

of binding sites along the genome, using various lengths of windows to study the

concentration of binding clusters. Similarly, we analyze the effect of the concentra-

tion on the gene regulation. Finally, we integrate all the possible factors impacted

on gene regulation into a score function. And the accuracy of score function in

separating expressed and control genes is evaluated by the ROC curve analysis.

In the last Chapter, we sum up the important conclusions in this thesis. And

refer to our original question, we point out the limitation in our study and propose

several ways for improvement. Also, a discussion of problems that encountered

during the analysis and possible areas for future study will be highlighted.
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Chapter 1
Biological Background

In this chapter we introduce some concepts of central importance, such as tran-

scription factors, Estrogen Receptor, and relevant experiments for our datasets:

Microarray experiment (for gene expression data) and Chromatin Immunoprecip-

itation (ChIP) (for data of binding sites).

1.1 Transcription Factor

The process of transcription in molecular biology refer to the synthesis of RNA

from a particular segment of DNA through the function of RNA polymerase. A

Transcription Factor (TF) is a protein which is involved in the transcription of

genes. They usually bind to the part of DNA which controls the level of gene

expression. The place on cellular DNA to which transcription factor can bind is

called Binding Sites (BS). Typically, BS might be found in the vicinity of genes,

and would be involved in activating transcription of genes (promoter elements),

in enhancing the transcription of genes (enhancer elements), or in reducing the

transcription of genes (silencers).

1



1.2 Estrogen Receptor α 2

1

Figure 1.1: Mechanism of Nuclear Receptor Action

1.2 Estrogen Receptor α

Estrogen Receptors (ERs) (specifically ERα and ERβ) are ligand-dependent tran-

scription factors that mediate cellular responses to estrogen (such as estradiol)

in vertebrate development, physiological processes, and endocrine-related diseases.

1 The figure depicts the mechanism of a class I nuclear receptor (NR) which, in the absence

of ligand, is located in the cytosol. Hormone binding to the NR triggers dissociation of heat

shock proteins (HSP), dimerization, and translocation to the nucleus where the NR binds to a

specific sequence of DNA known as a hormone response element (HRE). The nuclear receptor

DNA complex in turn recruits other proteins that are responsible for transcription of downstream

DNA into mRNA which is eventually translated into protein which results in a change in cell

function.
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ERα, in particular, has been implicated in the etiology of breast cancer and is a

major prognostic marker and therapeutic target in disease management. In gen-

eral, ER is a kind of nuclear receptor, Figure 1.1 2shows the mechanism of NR

action.

1.3 Microarray Experiment

Microarrays are widely used to measure gene expression differences across sam-

ples. They are able to study the expression patterns of thousands of genes and the

interaction among the genes when they are put under the same experimental envi-

ronment. There are two kinds of gene expression data. It can be either sequencing

or hybridization based. Sequencing-based approaches include sequencing of com-

plementary DNA (cDNA) libraries and serial analysis of gene expression (SAGE).

While hybridization-based methods, such as Southern and Northern blots, colony

hybridization, and dots blots, have long been used to identify and quantify nucleic

acids in biological samples [Lee, 2004].

Analysis tools

Affymetrix analysis software is used to perform the preliminary probe-level quan-

titation of the microarray data. These data are further normalized using the RMA

[Irizarry et al., 2003] normalization method.

Time course data

From the time course microarray expression data, differentially expressed genes are

identified at each time point separately using the three untreated samples at the

time point as controls against the three treated samples. The SAM [Parmigiani et al., 2003]

statistical method is used to select differentially expressed genes. Genes are selected

2http://en.wikipedia.org/wiki/Image:Nuclear receptor action.png on July 9, 2008
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based on a q-value with a specified cutoff.

1.4 ChIP Experiment

Chromatin Immunoprecipitation (ChIP) is a method for isolating and character-

izing the specific pieces of DNA out of an entire genome, to which a protein of

interest is bound. There are two common ways to characterize the DNA isolated:

ChIP-ChIP and ChIP-Sequencing.

Figure 1.2: Summary of the ChIP-ChIP Procedure[Buck and Lieb, 2004]

1.4.1 ChIP-ChIP

In this variant, the DNA isolated from a ChIP experiment is characterized by

labeling it with a fluorescent dye, then hybridizing it to a DNA array. Array



1.4 ChIP Experiment 5

spots that “light up” are taken as evidence that their specific sequence is present

in the ChIP product. Figure 1.2 shows the procedure of ChIP-ChIP experiment.

We notice that enriched DNA from IP with protein-specific antibodies and DNA

fragments direct from IP input are labeled by two different colors of fluorescent

molecules (Cy5 and Cy3), after that they are combined and hybridized into a single

DNA microarray chip. To design these arrays requires that one need to have some

idea of what to expect in the ChIP isolated DNA.

Figure 1.3: The Maximum Overlap PET [Lin et al., 2007]

1.4.2 ChIP-Sequencing

Under this variant, one can simply sequence every DNA fragments that immuno-

precipitated with the antibody. An related sophisticated technology known as

ChIP Pair End-Tagging (ChIP-PET) [Wei et al., 2006], characterizes unique DNA

fragments and establish overlapping PET clusters to select high confidence bind-

ing sites clusters. Our datasets for ER binding sites (in Chapter 2) are obtained

by ChIP-PET technology, which is targeted to map ERα binding sites in MCF-7
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human breast cancer cells. An important concept of the experimental result is

maximum overlap PET number (MoPET). The ChIP-PET experiment identifies

groups of potential binding sites, which are in the unit of binding cluster. In each

unit, the potential sites are overlapped with each other, the maximum overlapped

region of all the sites define the start and termination position of this cluster. (for

instance in Figure 1.3, the number of MoPET is 4.)



Chapter 2
Data Description

2.1 Binding Sites Data

Binding sites are places on the DNA to which a protein (such as transcription

factor) can bind. ChIP-PET Analysis has been applied to map ER binding sites

across the whole genome. Hormone-deprived MCF-7 cells were treated with 10nM

estradiol for 45 minutes, and then DNA-bound receptor complexes were isolated

through ChIP using anti-ERα antibodies [Lin et al., 2007].

After the quality of ChIP DNA fragments has been verified, the PET library was

generated. The distinct PET Clusters were selected and a group of high confidence

binding sites clusters were identified. All the ERα binding regions are located in

every chromosome in the human genome, except for the Y chromosome, which is

not present in MCF-7 cells from a female breast cancer patient.

2.1.1 ChIP-PET Data

There are two datasets for binding sites, both obtained by the ChIP-PET ex-

periment. The first dataset of ER binding sites (Data I for short) was obtained

7
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from [Lin et al., 2007]. It contains 1234 high confidence binding sites clusters,

each binding cluster has a start, middle, end position and a maximum overlap

PET (MoPET, definition refers to Chapter 1) size. The high confidence binding

sites clusters have a high degree of overlapping, and for each cluster the MoPET

ranges from 3 to 107.

Compared to the first dataset, the second one (unpublished) (Data II for short)

is more precisely sequenced and is fixed with a cluster length of 200bp. It contains

as many as 21,047 binding clusters. The data has the form:

Cluster ID Chromo Start End Middle Mo-PET

714871 chr1 715036 715236 715136 11

5649376 chr1 5650153 5650053 5650253 11

... ... ... ... ... ...

where each Binding Cluster contains a group of Binding Sites identified by ChIP-

PET experiment. “Start” is the start position of the overlapped region, and “End”

stands for the termination position for the overlapped region. MoPET value in this

dataset ranges from 8 to 228. Table 2.1 summaries the basic information of the

two binding data, including cluster length and between clusters distance.

Distance between clusters

Min. 1st Qu. Median Mean 3rd Qu. Max.

Data I 530 206400 965600 2292000 2828000 37710000

Data II 513 3616 13320 138700 76700 28620000

Table 2.1: Five number summary for Between Cluster Distance
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2.1.2 Preliminary Analysis of Binding Sites Data

Tables 2.2 and 2.3 show the distribution of Maximum Overlap number in each

PET cluster(MoPET) for Data I and II respectively.

MoPET No. Counts Percentage MoPET No. Counts Percentage

3 552 0.447 12 11 0.009

4 245 0.199 13 8 0.006

5 134 0.109 14 5 0.004

6 95 0.077 15 6 0.005

7 66 0.053 16 1 0.001

8 38 0.031 17 4 0.003

9 24 0.019 18 2 0.002

10 26 0.021 >18 9 0.007

11 8 0.006 Total 1234 1.00

Table 2.2: MoPET Distribution for Data I

From the tables, we can see both of the low MoPETs in the two datasets

constitute the majority of all the binding clusters. Because of the large number

of binding sites with low MoPET values- which may mean less significant binding

sties, we would like to start with higher quality and stronger binding sites for our

further analysis. And since the Data I contains only 1234 binding clusters (even

less after removing low MoPET), we will later use only Data II to analyze the

association between binding strength and gene regulation in Chapter 3. Thus, by

choosing a cutoff of ≥ 11 for data II, we obtain 4870 binding clusters.
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MoPET No. Counts Percentage MoPET No. Counts Percentage

8 10049 0.477 18 159 0.008

9 4026 0.191 19 128 0.006

10 1922 0.091 20 117 0.006

11 1076 0.051 21 102 0.005

12 655 0.031 22 111 0.005

13 477 0.023 23 81 0.004

14 364 0.017 24 60 0.003

15 258 0.012 25 81 0.004

16 266 0.013 > 25 748 0.036

17 187 0.009 Total 21047 1.00

Table 2.3: MoPET Distribution for Data II

2.2 Identification of ER regulated genes

2.2.1 Introduction

Microarray can measure the expression of thousands of genes to identify changes

in expression between different biological states. Methods are needed to determine

the significance of these changes. In this chapter we will apply Welch t-test and

Significance Analysis of Microarray (SAM) [Parmigiani et al., 2003] to select dif-

ferentially expressed genes. To select the differentially expressed genes is important

because only through those genes can we identify the mechanism of transcription.

In order to explore more in-depth information of the expression data, normaliza-

tion of the data is necessary to remove the “noise”. There are several ways to

normalize the data, and our data is normalized by the Robust Multiarray Average

(RMA) [Irizarry et al., 2003] method. Using the normalized data, we apply the
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SAM method and select differentially expressed by choosing a cutoff for False Dis-

covery Rate (FDR). The genes selected will be used as potential regulated genes for

further analysis. The discussion of association of binding sites with these potential

regulated genes will be introduced in the next chapter.

2.2.2 Gene Expression Data

We include two gene expression datasets in our analysis. The first human gene ex-

pression data were obtained from the collection of ER in the whole human genome

(BrownLabDatasets)1.

It contains 23,597 gene expression profiles by microarray analyses, which are

performed in triplicate over an estrogen stimulation time course (0, 3, 6 and 12h),

with 3h representing immediate transcription targets and both 6 and 12 represent-

ing delayed targets. Figure 2.1 shows the distribution of early expression data at

3h point. The expression data are analyzed using the RMA algorithm with the

newest probe mapping, and the Welch t statistic is used to calculate the level of

differential expression at each time point relative to 0 h [Carroll et al., 2006].

The second gene expression is from Genome Institute of Singapore [Lin et al., 2007]

with a number of 54,675 probesets. This time course experiment contains three

replications for both treated and untreated samples at 12h, 24h, 48h time points

(details of the data in .CEL file is available) 2. It is also normalized by RMA

method (with background correction, quantile normalization, and log transforma-

tion). Figure 2.1 shows the distribution of early expression data (3h for Carroll’s

and 12h for Lin’s ) of both datasets.

1http : //research.dfci.harvard.edu/brownlab/datasets/index.php?dir = ER whole human genome/
2http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE11352
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Figure 2.1: Early Expression Data

2.2.3 Significance Analysis of Microarray (SAM)

Methods based on conventional t tests provide the probability that a difference in

gene expression occurred by chance. Although p = 0.01 is significant in the context

of experiments designed to evaluate small number of genes, a microarray experi-

ment for 10,000 genes would identify 100 genes by chance. This problem signals

to a necessity to find some method specially designed for microarray analysis.

SAM identifies genes with statistically significant changes in expression by assim-

ilating a set of gene-specific t tests. Each gene is assigned a score on the basis of

its change in gene expression relative to the standard deviation of repeated mea-

surements for that gene. Genes with score greater than a threshold are deemed

potentially significant. The percentage of such genes identified by chance is the

FDR, which is defined as:
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Definition 1. FDR = E[V/R|R > 0]Pr(R > 0)

where V is the number of Type I error (false positives), S is the number of true

positives, R = V + S is the total number of significant hypotheses (total positives).

2.2.4 Modified T-Test

Suppose that there are J genes measured on I arrays under two different experi-

mental conditions. Let x̄j1 and x̄j2 be the average gene expression for gene j under

condition 1 and 2, and let sj be the pooled standard deviation for gene j :

sj =

√

(
1

I1
+

1

I2
) ·

∑
1(xji − x̄j1)2 +

∑
2(xji − x̄j2)2

I − 2

Here, Ik is the number of arrays in condition k, and each summation is taken

over its respective group. Then, a reasonable test statistic for assessing differential

gene expression is the standard (unpaired) t-statistic:

tj =
x̄j2 − x̄j1

sj

.

However, at low expression levels, the test statistic can be high because of

small values of sj, and consequently raises the false positive rate. We introduce a

modified statistic to solve this problem:

dj :=
x̄j2 − x̄j1

sj + s0
.

the coefficient of variation of dj was computed as a function of s0 across the data

and s0 is chosen to minimize the coefficient of variation [Tusher et al., 2001]. The

modified t-test would ensure that variance of dj is independent of gene expression

and also it would dampen large values of dj that arise from low gene expression

levels.
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The SAM Procedure

1. Compute the ordered statistics

d(1) ≤ d(2) · ·· ≤ d(J).

2. Take B permutations of the group labels. For each permutation b (1 ≤ b ≤ B)

compute statistics dj
∗b and the corresponding order statistics

d(1)
∗b ≤ d(2)

∗b · ·· ≤ d(J)
∗b.

From the set of B permutations, estimate the expected order statistics by

d̄∗
(j) =

1

B

B∑

b=1

dj
∗b

for j = 1, 2, ...J .

3. Plot the d(j) values versus the d̄∗
(j). For a fixed threshold ∆, starting at the

origin, and moving up to the right, find the first j = j2 such that

d(j) − d̄(j) ≥ ∆.

All genes past j2 are called “significant positives”. Similarly, start at the

origin, move down to the left and find the first j = j1 such that

d(j) − d̄(j) ≤ ∆.

All genes past j1 are called “significant negatives”. For each ∆, define the

upper cut point t2(∆) as the smallest dj among the significant positive genes,

and similarly define the lower cut point t1(∆).

The figure shows an example of SAM selection by Stanford Tools 3. The green

points on the left below the cutoff and red points above the cutoff on the right

stands for negative and positive regulated genes respectively.

3http://www-stat.stanford.edu/∼tibs/SAM/
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Figure 2.2: Significance Analysis of Microarray: an example plot from stanford SAM

tools

2.2.5 Estimation of FDR and the q-value

Estimation of FDR

For a fixed rejection (fixed ∆), the FDR and pFDR are

FDR(∆) = E[
V (∆)

R(∆)
| R(∆) > 0]Pr(R(∆) > 0)

pFDR(∆) = E[
V (∆)

R(∆)
| R(∆) > 0]

where

V (∆) = ♯{dj : gene j unchanged and dj ≤ t1(∆) or dj ≥ t2(∆)},

R(∆) = ♯{dj : dj ≤ t1(∆) or dj ≥ t2(∆)}.

[Storey, 2002] develops the following estimates of the FDR and pFDR for a given

∆:
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F̂DR∆′ (∆) = π̂0(∆
′

) ·
R0(∆)

R(∆) ∨ 1
,

pF̂DR∆′ (∆) = π̂0(∆
′

) ·
R0(∆)

Pr(R0(∆) > 0) · [R(∆) ∨ 1]
,

where

R0(∆) =

∑B

b=1 ♯{db
j : db

j ≤ t1(∆)ordb
j ≥ t2(∆)}

B
,

Pr(R0(∆) > 0) =
♯{b : ♯{db

j : db
j ≤ t1(∆)ordb

j ≥ t2(∆)} > 0}

B
.

And π̂0(∆
′

) is an estimate of the overall proportion of true null hypotheses

(unchanged genes). This estimate depends on our choosing another ∆
′

. In SAM

it takes ∆
′

such that R0(∆
′

) = J/2 (i.e., half the null statistics fall in the rejection

region defined by ∆
′

). The estimate is defined as

π̂0(∆
′

) =
J − R(∆

′

)

J − R0(∆′)
.

Estimation of the q-value

q̂-value(genej) = min{∆:gene j significant}pF̂DR∆′ (∆).

The q-value of a particular gene can be estimated by taking the minimum

pF̂DR∆′ (∆) over all ∆ for which the gene is found to be significant. The q-

value estimate is conservatively consistent under the condition that is assumed in

[Storey, 2002]. In testing for differential gene expression, we estimate q-value for

each gene and it gives us a measure of strength of evidence for differential gene

expression in terms of pFDR. This is an individual measure for each gene that

simultaneously takes into account the multiple comparison. Note that by using the
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q-value, the delta is chose to reach the minimum value for pF̂DR∆′ (∆) (among all

∆ that make the gene identified as significant). Therefore, it is not necessary to pick

the rejection region or the desired error rate beforehand [Parmigiani et al., 2003].

Selected Regulated Gene Data

From the original gene expression data stated in Chapter 2, different expressed

genes were selected by SAM based on a q-value of 2% [Lin et al., 2007]. After re-

moving redundancy, we got 649 unique up-regulated genes and 624 down-regulated

genes. These genes are of high importance and will later be associated with the

binding sites data.

2.3 UCSC KGs Database

The University of California Santa Cruz(UCSC) Known Gene (KG) database is

used to find the transcription start sites and end sites of genes in the profile, as

well as other useful information like geneID, strand, chromosome number, etc. To

obtain relevant information on the interested genes, we can upload a list of gene

identifiers to the genome browser4 and choose the relevant fields which we need to

use.

In our data analysis, we use the probe identifiers from Expression data to locate

the corresponding genes in the UCSC KG database. When comparing the property

of selected genes with background, we use KG database hg17 (May 2004), which

contains 37,859 genes, as the background for simulation.

4http://genome.ucsc.edu/
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Conversion of Regulated Genes

It should be noted that both Data I and the regulated gene data are stored under

hg17 (May 2004), but Data II is stored under hg18 (March 2006). Thus, we need

to convert the gene data to hg18 when associating Data II with regulated genes,

by using the liftover tool under utilities in UCSC Genome Browser.



Chapter 3
Association of Binding Data with Gene

Expression Data

3.1 Introduction

In this chapter, we aim to identify the rules that link TF binding sites to gene reg-

ulation. The association is explored by distance (distance to transcription starting

sites (TSS)), binding strength (the MoPET value) and concentration of binding

sites. To begin with, we map the position of binding clusters to the vicinity of

regulated genes and analyze the distribution of their distances to TSS. Then we

compare our result with [Lin et al., 2007] and give our observations. Moreover, we

analyze the binding strength of those binding sites which are in the neighborhood

of regulated genes’ TSS. And we conclude that the binding clusters with a higher

MoPET value are more prone to be associated with regulated genes. Finally, we

come up with a scoring function for genes, which includes all the potential fac-

tors we identified in previous study. Simulation is conducted in the UCSC KGs

database (hg17) to verify the scoring function: we score a random set of genes (of

the same number as our potential regulated genes) and compare their scores with

19



3.2 Association of Binding Sites with Gene Expression Data 20

potential regulated genes.

3.2 Association of Binding Sites with Gene Ex-

pression Data

3.2.1 Mapping to Regulated Genes

In order to associate the Binding Sites data with Gene Expression data, we mapped

the location of the binding sites relative to the start and termination sites of E2

up- and down-regulated genes1.

Figure 3.1: Position Relative to Transcription Starting Sites (1234 B.C.)

We mapped two binding sites data (Data I and Data II) to the 5’ and 3’ position

of regulated genes respectively. The distances are measured in 20kb interval in

1The Gene Expression Data is from [Lin et al., 2007]
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the region of 100kb upstream to 100kb downstream. Figure 3.1 is for Data I and

Figure 3.2 is for Data II. As shown in Figure 3.1, approximately 45 ER binding

clusters were found within 20kb of the transcriptional starting sites of up-regulated

genes, while only 10 ER binding clusters were found for the down-regulated genes.

The background was simulated for 700 randomly selected genes from UCSC KGs

database, which used as a reference.

Figure 3.2: Position Relative to Transcription Starting Sites (4870 B.C.)

In Figure 3.2, the same trend of enrichment in the neighborhood of the start

and end sites is observed for Data II. But the difference between up- and down-

regulated genes is not as significant as in Data I, and their difference can only be

observed in the region: -60kb upstream to 40kb intragenic and 0-60kb downstream.

One possible reason for this would be the different number of binding clusters in

each dataset. Because Data II contained much more binding sites than Data I, the

probability is higher for the binding sites in Data II to occur in the vicinity of gene
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transcription start and termination sites, even if the genes are not their targets.

To sum up for these two plots, a total of 471 genes were identified by Data II

(in the sense that the region of -100kb upstream to 100kb downstream of these

genes contains at least one binding sites), while 281 genes was identified by Data

I. Interestingly, a high proportion of 187 genes (66.5% of 281 and 39.7% of 471

respectively) were identified by both of these two binding data. This shows a good

conservation between these two binding data and raises particular interests for

further analysis of these 187 genes.

As a conclusion, the binding sites are highly likely to be mapped to the neigh-

borhood of both transcription start and termination sites. We can include these

factors to construct the scoring function.

Besides calculating the number of binding sites in the vicinity of regulated genes,

another way to see their association is to count the number of times that the same

gene was identified by different binding sites.

3.2.2 Mapping to Binding Clusters

We sort the counts of binding clusters by genes (Data II) in this part. And given

that most of the genes has only 1 to 2 binding clusters in their proximal region,

there are 22 genes associated with more than 10 binding clusters (refer to Table

3.1). (totally 1786 genes,268 shows binding in the upstream 100kb distance region)

The extremely high frequencies of binding sites adjacent to genes in the Table

3.1 shows that these particular genes are strongly associated with transcription

factor ER. Actually these regions are of particular biological interest (for example,

NM 017679 has an alias BCAS3, which stands for breast carcinoma amplified se-

quence 3), and they are in the amplified region. This offers a good explanation for

high number of binding sites around these genes.
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Probe Chromo Strand Start End Class Counts

AB044555 20 + 48781730 48800432 U 16

AK093740 1 - 114239208 114248973 U 19

NM 006594 1 - 114239200 114249215 U 20

NM 015906 1 - 114741765 114855304 D 22

AF233453 20 - 45271566 45324479 D 22

NM 006526 20 - 51617018 51633043 D 22

NM 020190 1 + 114323552 114326398 U 23

AK092766 1 + 114323585 114326394 U 23

NM 014906 17 + 54188230 54417314 U 27

NM 017679 17 + 56110014 56824973 D 30

AK025510 17 + 56110037 56824980 D 30

AF010227 20 + 45645346 45715724 D 31

NM 006380 17 - 55875301 55958362 D 32

NM 183047 20 - 45271787 45418881 D 38

BX641005 20 - 45272480 45418974 D 38

AB032951 20 - 45272480 45417808 D 38

AF454056 20 - 45272511 45418850 D 38

AK000275 20 - 45272754 45418857 D 38

BC092432 20 - 45360295 45418879 D 38

BC092516 20 + 45564052 45715866 D 44

NM 006534 20 + 45564063 45719019 D 44

AF036892 20 + 45564091 45717893 D 44

Table 3.1: List of Genes which associated with more than 10 binding sites
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3.2.3 Binding Associated with MoPET

Proposition: Binding Clusters with a larger MoPET value are more prone to be

associated with regulated genes.

According to our previous study, the number of binding clusters which are in the

proximal region of regulated genes is 484 (we take the upstream region for analysis).

In order to verify our hypothesis, we compare the distribution of MoPET value

in the 484 binding clusters to the counterpart in the whole 4870 Clusters (with

a cutoff of 11 for MoPET). Table 3.2 shows the distribution of MoPET values

between Reg-Gene Associated BS and All 4870 BS.

In this table, V is the number of binding clusters which are associated with

regulated genes. And E is a proportional vector of MoPET value in the whole

4870 binding clusters.

A χ2 test can be applied to test the difference between two vectors, i.e.

n∑

i=1

(E − V )2/E ∼ χ2(n − 1).

Thus the test statistic has a value of 75.7, corresponding to a p-value of 4.23×10−10,

which is quite significant. This show there is a shift between the two distributions

vectors with an obvious accruement of percentage in the high MoPET binding

clusters.

Moreover, from the Figure 4.3 we can see: when the MoPET value is less than 16,

the estimated values are relatively higher; while for MoPET value over 21, the real

values of associated binding clusters are comparatively larger; in between, both of

the values are almost equal. Therefore, Binding Clusters with high MoPET value

are more likely to be associated with regulated genes. This is in accordance with

the experimental hypothesis.
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MoPET No. 11 12 13 14 15 16 17 18

484 B.C (V) 85 47 29 25 19 26 19 21

Estimated Vector (E) 107 65 47 36 26 26 19 16

4870 B.C. 1076 655 477 364 258 266 187 159

MoPET No. 19 20 21 22 23 24 25 > 25

484 B.C (V) 15 10 20 12 15 13 16 112

Estimated Vector (E) 13 12 10 11 8 6 8 74

4870 B.C. 128 117 102 111 81 60 81 748

Table 3.2: MoPET Distribution in Reg-Gene Associated BS and All 4870 BS.

3.2.4 Binding Associated with Concentration

Concentration of Binding Clusters

We use windows of various length to identify those regions with high densities of

binding clusters. To compare with our previous study, we map all the binding

sites in the identified region to start sites of regulated genes. The results show

that binding sites in the dense region obtain a relatively higher percentage in the

vicinity of regulated genes.

As shown in Table 3.3, per1 measures the percentage of the number of associated

binding clusters in the “windows” to the total number of binding clusters associated

with regulated genes, and per2 (= 9.94%) is simply the percentage of the number

of binding clusters contained in the windows out of the total 4870 binding clusters

in our analysis. Per1 is slightly higher than per2 in long “windows”, but the

difference is more significant when the window length decreases . This suggests

the concentration of binding sites may be useful for us to identify real regulation

between binding sites and genes. And we can include this part to compose our

scoring function.
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Window Length No. Windows No. BS No. BS 100kb to TSS Per1

1kb 125 257 37 14.4%

2kb 481 1134 165 14.6%

3kb 635 1699 216 12.7%

4kb 655 2061 248 12.0%

5kb 656 2307 267 11.6%

10kb 507 2850 308 10.8%

15kb 407 3009 323 10.7%

20kb 367 3111 327 10.5%

25kb 352 3196 330 10.3%

30kb 345 3267 337 10.3%

35kb 343 3316 340 10.3%

40kb 342 3360 345 10.3%

45kb 348 3399 346 10.2%

50kb 354 3437 355 10.3%

100kb 363 3650 372 10.2%

Table 3.3: Concentration of Binding Sites.
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3.3 Prediction of regulated genes using a score

function

3.3.1 Score Function

Presence of a ChIP-PET binding cluster in the proximal region of a gene is not yet

an evidence of transcription regulation because transcription factor binding may be

related to other cellular functions or the gene to which it binds may not be really

expressed [Sharov et al., 2008]. To evaluate the potential possibility of a regulated

gene, we develop a score function for genes. As discussed above, we include the

data of binding clusters, the distance of binding cluster to gene transcriptional

starting and termination sites, MoPET and concentration of binding clusters to

construct the score function. The score function is estimated as follows:

Score(gi) = [
∑

b′js 10kb neighborhood

MoPET ]a ∗ [max(min(D5′ , D3′ ), 1000)/10000]−b

where D5′ and D3′ are the distances of the binding cluster to 5
′

and 3
′

respectively.

In this score function, we make the distances to binding sites have a negative

impact on the score and the summation of MoPET values have a positive impact

on the score. The higher the score is, the more likely this gene is regulated. In this

case, a gene will have a high score if it has very short distance to bindings sites and

the MoPET values of the binding sites in its neighborhood region is high. These

are in concordance with our previous findings.

We are only interested in the region of 100kb upstream to 100kb downstream,

the score is set to 0 if binding cluster is out of the region. bj is the nearest binding

cluster to gi (with the smallest min(D5′ , D3′ )), MoPET is the maximum overlap

ChIP-PET ditags and a and b are adjustable parameters. The score function is

optimized to best separate between the training set of genes that were differentially
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expressed in the microarray and control set of genes that were randomly selected.

We use an expressed gene dataset that contains 659 up-regulated genes and 624

down-regulated genes. Adjustable parameters are changed to maximize the area

of ROC (Receiver Operating characteristic) for control and expressed gene groups

and the ROC curves are compared between up and down regulated genes.

3.3.2 Receiver Operating Characteristic (ROC) Curve

ROC Basics

We use the ROC curve to analyze the goodness of fit of the score function to

separate genes between the control group and expressed group. After every gene

is scored by our score function, we choose a cutoff to discriminate between the two

groups. For those genes with score higher than the cutoff, they are classified as

positive (regulated), and negative (non-regulated) otherwise. There are four cases

in constructing the ROC curve (TP, FP, FN, TN):

Genes

Test Expressed n Control n Total

Positive True Positive (TP) a False Positive (FP) c a + c

Negative False Negative (FN) b True Negative (TN) d b + d

Total a + b c + d

then sensitivity and specificity are defined as

sensitivity :=
a

a + b
; specificity :=

d

c + d
;

In a ROC curve the true positive rate (Sensitivity) is plotted vs. the false positive

rate (1 - Specificity) for different cut-offs [Deonier et al., 2005].
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We compare the area under the ROC curve for various choices of parameters. A

precise meaning of the area under an ROC curve in terms of the result of a signal

detection experiment employing the two-alternative forced choice has been known

for some time. [Green and Swets, 1966] showed that the area under the curve and

the probability of correct classification are equal, if we assume for the moment that

we have an infinite sample of observations (refers to genes in our question) that

we could use the entire x continuum rather than only a finite number of category

ratings. Suppose xr and xn stands for the score of a regulated and non-regulated

gene respectively, the above conclusion can be stated as

"True" area under ROC curve = θ = Prob(xr > xn)

And more importantly, it makes no assumptions about the form of the xr and

xn’s distributions.

ROC Curves Analysis

There are three groups of factors that can affect the plot of the ROC curve:

• parameter a and b

• different groups of binding sites : all MoPET(21047); stringent MoPET (≥

11, 4870); very stringent MoPET (≥ 20, 1300)

• different choices of MoPET for score funtion :

1. Single MoPET : only take the MoPET of the nearest binding sites to

the gene of interested

2. SiteMoPET : take all summation of MoPET for all binding sites in a

particular neighborhood of the nearest binding sites

3. GeneMoPET : take the summation of MoPET for all binding sites as-

sociated with interested gene
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Analysis of ROC curve for high MoPET

After trying different combination of parameters, we could locate that the optimal

choices of a and b (Table 3.4) are within the region R : {(a, b) : 0.5 ≤ a ≤ 1.5, 0.5 ≤

b ≤ 1.5}. Since a has a positive effect on the score and b has a negative effect on

the score, too high of a “a” value or too low of a “b” value will highly increase the

score and consequently will lead to a high false positive rate (FPR). Similarly, too

low of a “a” value or too high of a “b” value will decrease the score and will lead

to a high false negative rate (FNR). Both of these cases will sacrifice the accuracy

of classification and reduce the area under the ROC curve.

Table 3.4 lists the values of area under ROC curve for association of high MoPET

binding sites with all expressed genes versus the control genes in the region R.

As shown in the table, the area under the curve does not vary too much in this

region, mostly give us a high value around 0.65 ∼ 0.66. More interestingly, if we

separate the expressed genes group into up-regulated and down-regulated genes and

calculate their ROC curve area respectively (listed in table 3.5 and table 3.6), up-

regulated genes (0.70 ∼ 0.71) behave much better in sense of correct identification

than down-regulated genes (0.54 ∼ 0.55), which basically is not informative.

Figure 3.4 (at a = 0.9, b = 0.7) clearly shows the difference between the ROC

curve for up-regulated genes, down-regulated genes and all the genes together. This

suggests that the up-regulated genes are more directly associated with binding sites,

either they are much nearer to binding sites or the binding sites they associated

with are of high strength.

Table 3.7 lists the area of ROC between Regulated Genes versus more Control

Gene groups. From the mean value of the area, up-regulated genes are quite higher

than down-regulated genes. This difference implies that ERα doesn’t directly

regulate down-regulated genes.

Analysis of ROC curve for SingleMoPET, SiteMoPET and GeneMoPET
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We expect to see different patterns of ROC curves in the various choices of Sin-

gleMoPET, SiteMoPET and GeneMoPET. Figure 3.5 shows that the ROC curves

based on SingleMoPET and SiteMoPET are quite alike (both in the shape and

area). While the ROC curve based on GeneMoPET gives a lower area compared

to the other two. According to our analysis in §3.2.2, some of the genes contain

more than 10 binding sites in the 100kb distance. This would cause the Gen-

eMoPET values for these genes to be extremely high and reduce the classification

accuracy. In other words, due to the amplification of some of the particular regions

in the ChIP-PET experiment, it is biased to take all the binding sites in 100kb to

the gene to evaluate the regulation, more specifically, it may increase the FPR.

To verify, we remove all those association of binding sites with regulated genes

in the amplified regions (chr1, chr3, chr8, chr17, chr20) and Figure 3.6 shows the

ROC curve among various choices of MoPET after removing the amplified regions.

Now all the plots clearly show that the difference between up-regulated and down-

regulated genes.

3.4 Summary

We associated the gene expression data and binding data in the analysis and found

that the binding strength can also help to identify the existence of regulation.

Specifically, we have shown that binding clusters with higher MoPET values are

more likely to be associated with regulated genes and the binding clusters enriched-

region also showed a stronger association with regulated genes. To integrate of all

these findings, we defined a score function for genes which included these important

factors. Under these metric, potential regulated genes should score higher than

non-regulated genes. The score function can help us identify regulated genes in

separating expressed and control gene groups. Also, it may help to assess different
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groups of expressed genes. Accuracy of the score function to separate expressed

and control genes was evaluated by ROC curve analysis. A number of parameters

choices have been tested for the ROC curve and the numerical results showed the

preference of regulation to those genes which are associated with high MoPET,

but only for up-regulated genes.
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a/b 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.5 0.663 0.660 0.656 0.654 0.652 0.650 0.649 0.645 0.647 0.645 0.643

0.6 0.665 0.663 0.659 0.658 0.654 0.652 0.651 0.653 0.649 0.647 0.642

0.7 0.667 0.664 0.663 0.661 0.659 0.656 0.654 0.652 0.650 0.648 0.646

0.8 0.668 0.667 0.664 0.663 0.661 0.659 0.656 0.654 0.651 0.650 0.649

0.9 0.668 0.668 0.666 0.664 0.663 0.661 0.657 0.656 0.654 0.652 0.650

1 0.668 0.668 0.667 0.665 0.661 0.660 0.659 0.657 0.654 0.652 0.651

1.1 0.670 0.667 0.667 0.665 0.662 0.659 0.659 0.658 0.656 0.653 0.649

1.2 0.666 0.666 0.663 0.663 0.659 0.658 0.656 0.654 0.653 0.652 0.651

1.3 0.656 0.659 0.659 0.660 0.658 0.657 0.655 0.654 0.654 0.654 0.652

1.4 0.649 0.649 0.647 0.651 0.649 0.647 0.652 0.650 0.649 0.649 0.648

1.5 0.619 0.630 0.633 0.631 0.631 0.633 0.637 0.636 0.634 0.636 0.636

Table 3.4: Table of Area under ROC curve of All Regulated Genes vs. Control

Genes by Parameter a&b(high MoPET ≥20)
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a/b 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.5 0.707 0.705 0.702 0.700 0.697 0.697 0.695 0.692 0.693 0.691 0.689

0.6 0.708 0.706 0.704 0.704 0.701 0.698 0.698 0.698 0.694 0.692 0.687

0.7 0.710 0.708 0.707 0.706 0.704 0.702 0.700 0.697 0.696 0.693 0.691

0.8 0.710 0.710 0.708 0.706 0.706 0.704 0.702 0.699 0.697 0.696 0.696

0.9 0.709 0.711 0.710 0.708 0.706 0.705 0.701 0.701 0.700 0.698 0.696

1 0.710 0.710 0.709 0.709 0.704 0.703 0.703 0.701 0.700 0.698 0.697

1.1 0.711 0.709 0.708 0.707 0.705 0.702 0.702 0.702 0.700 0.698 0.694

1.2 0.706 0.706 0.703 0.705 0.701 0.700 0.699 0.696 0.696 0.695 0.695

1.3 0.692 0.697 0.700 0.701 0.699 0.699 0.698 0.696 0.696 0.697 0.696

1.4 0.683 0.685 0.685 0.690 0.687 0.688 0.693 0.692 0.691 0.691 0.691

1.5 0.647 0.662 0.668 0.668 0.668 0.671 0.678 0.677 0.675 0.678 0.678

Table 3.5: Table of Area under ROC curve of Up-regulated Genes vs. Control

Genes by Parameter a&b(high MoPET ≥20)
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Figure 3.3: Comparison of MoPET in Reg-Gene Associated BS and All 4870 BS
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a/b 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.5 0.570 0.564 0.560 0.557 0.556 0.553 0.554 0.548 0.550 0.548 0.547

0.6 0.573 0.572 0.564 0.562 0.557 0.555 0.553 0.558 0.554 0.553 0.546

0.7 0.577 0.570 0.571 0.568 0.563 0.558 0.558 0.556 0.553 0.552 0.550

0.8 0.581 0.577 0.571 0.571 0.567 0.564 0.559 0.559 0.554 0.552 0.552

0.9 0.580 0.579 0.575 0.570 0.570 0.567 0.563 0.561 0.556 0.557 0.552

1 0.581 0.581 0.577 0.574 0.569 0.569 0.566 0.563 0.559 0.556 0.555

1.1 0.584 0.579 0.581 0.576 0.571 0.568 0.568 0.565 0.563 0.559 0.553

1.2 0.584 0.580 0.578 0.577 0.571 0.569 0.565 0.564 0.562 0.560 0.558

1.3 0.581 0.579 0.574 0.575 0.572 0.569 0.566 0.564 0.565 0.564 0.561

1.4 0.578 0.572 0.568 0.570 0.567 0.562 0.565 0.561 0.560 0.560 0.558

1.5 0.558 0.562 0.561 0.554 0.553 0.552 0.553 0.549 0.548 0.549 0.549

Table 3.6: Table of Area under ROC of Down-regulated Genes vs. Control Genes

by Parameter a&b(high MoPET ≥20)

R1 R2 R3 R4 R5 R6

All 0.667 0.631 0.652 0.666 0.621 0.646

Up-reg 0.711 0.677 0.692 0.714 0.664 0.691

Down-reg 0.576 0.534 0.566 0.566 0.527 0.55

R7 R8 R9 R10 mean variance

All 0.673 0.655 0.687 0.625 0.6523 0.0218

Up-reg 0.721 0.702 0.729 0.667 0.6968 0.0225

Down-reg 0.573 0.557 0.6 0.535 0.5584 0.0225

Table 3.7: Area under ROC Curve for Expressed vs. 10 Control Groups (MoPET

≥ 20)
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Figure 3.4: ROC curve for high MoPET(≥ 20) at a = 0.9, b = 0.7 with Single-

MoPET
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Figure 3.5: Comparison of ROC curve for Stringent MoPET(≥ 11) with Single-

MoPET, SiteMoPET, GeneMoPET
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Figure 3.6: Comparison of ROC curve for Stringent MoPET(≥ 11)

with SingleMoPET, SiteMoPET, GeneMoPET after removing amplified re-

gions(Chr1,3,8,17,20)



Chapter 4
Discussion

The identification of targets of a transcriptional factor such as the estrogen receptor

across the whole genome provides an important new source for the study of gene

regulation. The classic paradigm of estrogen receptor function involves binding

to promoter-proximal regions and subsequent gene regulation. However, it now

seems that the promoter-proximal region, although important for some genes, do

not constitute the majority of estrogen receptor target sites [Lin et al., 2007].

Our proposal was to integrate various datasets and explore the gene expression

data. Our data-driven analysis allows us to test various mechanistic hypotheses

about what the rules for gene regulation might be. We have already tested the dis-

tance, binding strength and concentration of binding regions, and have shown that

these factors were important in different degrees. Tentatively we proposed a score

function for genes to measure their potential to be directly regulated by including

these factors. The numerical results between control gene group and expressed

gene group were shown and compared by the Receiver Operating Characteristic

(ROC) curve analysis.

However, because the exact differentially expressed genes are unknown, we cannot
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verify our results in the biological sense. And with limited information, the score

function can only be used to differentiate two groups of genes, not individual genes.

In the thesis we have only considered to divide regulated gene groups into up and

down regulated groups. Generally, we observed that generally the up-regulated

genes scored higher than down-regulated genes. Rather than simply divide the

genes into a binary up and down classification, in future we could explore ways for

the grouping to identify more refined groups of genes that behave in a consistent

way after the ER binding.

Another aspect for future work is that we can extend our work to other kinds of

TFs. Different TFs will have different mechanisms of gene regulation. For instance,

apart from activator proteins such as ERα, we might look at insulator proteins (e.g.

CTCF) which are thought to create regulatory boundaries [Bell et al., 1999]. In

addition, it would be interesting to study models combining multiple TF datasets.

For example, two ES proteins, Oct4 and Sox2, act together in Embryonic Stem

Cells [Chen et al., 2008].
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