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Summary 

The design of chemosensors has attracted many interests in the past few years 

because of their highly specific for the detection of biologically relevant cations, such 

as Na+, K+, Mg2+, and Ca2+. However, how to enhance the selectivity toward the 

specific cation in the present of other ions is still a challenge part for the metal ion 

detector. For example, with the presence of Na+, K+, and Mg2+ ions, Ca2+ ions is 

hardly separated. It is well-known that, when disturbing with alkaline or 

alkaline-earth metal ions, the combination of crown-ether and organic chromophores 

shows distinctive signals variation at its optical properties. This phenomenon makes 

the crown-ether as a good sensor precursor toward series of metal ions. Even though a 

variety of crown-ether and related macrocycle-based chemosensors are well 

developed, the corresponding acyclic- polyether-(podand)-based sensors are rarely 

studied. In most of the acyclic- polyether-(podand)-based sensors systems, the binding 

of the sensor with a metal ion can show an amplified signal through a charge-transfer 

either an electron-transfer or an energy-transfer process. In this thesis we demonstrate 

a novel design of highly specific Ca2+ ion sensor. This new foldamer structure, which 

is in the conformation of a rigid-flexible-rigid bichromophore, is explored by 

introducing metal-ion into the sensor. And the prominent differences of optical 

properties also can be identified by signals shifting or quenching in fluorescence.   

In this thesis, the novel fluorescence chemosensors consisting of alternating 

oligo(p-phenyleneethynylene) chromophores and flexible oligo(ethylene oxide) 
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segments were obtained. Their solvent-induced and cation-induced aggregation 

behavior was established by optical and 1H NMR spectroscopic studies. Selective 

fluorescence quenching by Ca2+ was achieved in a solution of a polymer with a 

backbone of tetra(p-phenyleneethynylene) and penta(ethylene-oxide) in alternation. In 

addition, the conformational preference of a representative polymer in solid state was 

investigated by atomic force microscopy (AFM) images. 
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Synthesis and Application Studies of Fluorescence 
Chemosensor Based on PPE 

Chapter 1  Introduction 

Recently in the field of supramolecular host-guest chemistry and molecular 

recognition, fluorescence chemosensor with properties of molecular device has been 

rapidly developed at the new frontier of science.1-4 Its emergence closely relates to 

development of supramolecular science, such as molecular assemble, host-guest 

chemistry, non covalent bond interaction, as well as structural and luminescent 

properties of intramolecular conjugated electron-transfer compounds. On the other 

hand, its development also closely relates to many practical problems, coming from 

many scientific and technical fields, e.g. chemistry, biology, medicine and 

environmental science. As such many significant and extensive applications, we 

should notice that research in fluorescence chemosensor is a rising field with many 

undiscovered properties..  

1.1. Fluorescence Chemosensor 

As chemosensors exhibit various signal transduction systems (optical, 

electrochemical, etc.), fluorescence has became one of the most useful response 

systems for optical readout. Among the different chemical sensors, 

fluorescence-based sensors present many advantages. For example, their fluorescence 

measurements are usually very sensitive, low cost, easily performed and versatile.6 
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1.1.1. Configuration & Principal Mechanism of Fluorescence Chemosensor 

Chemosensor is usually composed of two basic parts: a receptor unit or an 

ionophore and a signaling unit.7 The function of receptor unit captures specific species, 

while signaling unit releases a signal to indicate that the alien species have been 

captured. The design of fluorescence chemical sensors is based on the mechanism of 

host-guest interaction. Its characteristic is that host units with structure of cavum as 

receptor unit for alien species are able to interact with guest unites to form host-guest 

complex by specificity interaction. Thereby it presents good selectivity towards guest 

molecule. The recognize system of chemosensor connects certain chemical parameter 

(usually concentration) of analytes with signaling unit together. After received signal 

from receptor unit, signal unit transfer the signals to electronic system in the form of 

voltage, electricity or light. Through electrode, fiber or mass-sensitive device to 

amplify or switch output, ultimately, the response signal from recognize system is 

convert to available analytical signal and the quantity of analyte in sample is 

determined. 

In photochemistry sensor research field, the equilibrium constant for a complex 

formation between sensitive carrier and recognized molecule decides the sensitivity 

and reversibility of sensor. When sensitive carriers respond to target molecule and 

produce response signal, the response sensitivity is related to the following chemical 

equilibrium: 

[Host-guest Complex]
[Dissociative Host][Dissociative Guest]eqK =  
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In this equation, Keq is the equilibrium constant for a complex formation. With 

the constant concentration of analyzed target (dissociate guest) in solution, the 

sensitivity of sensor system highly depends on the concentration of host-guest 

complex. Usually Keq is increased to enhance sensitivity of sensor through choosing 

diverse chemical recognize carrier or change effective condition in system. However, 

it may cause the low speed of reversible response, sometimes even unreversible 

response.8, 9 Therefore, how to effectively enhance the sensitivity of sensor and barely 

affect on reversibility become a big challenge to the traditional sensory mode. 

In the 1990’s, professor Timothy M. Swager (head of chemistry department, 

Massachusetts Institute of Technology, USA) proposed a novel principle of 

responding and amplifying signal, called “molecular wires”. His group connected 

single sensitive carrier to a compositive and interactive molecular wires by chemical 

conjugated bond, which can amplify chemosensory signals by many orders of 

magnitude without increment of equilibrium constant for a complex formation.11, 12 

Their sensor principles are now extensively practiced by many research groups around 

the world and become the basis of a number of emerging sensor technologies. None 

the less there are still many basic scientific principles to be determined.  

1.1.2. The Response Amplify System of Conjugated Polymer 

In our knowledge, plastic is a good insulator. Otherwise, we should not use it as 

insulation in electric wires. But now the time has come when we have to change our 

views. Plastic can indeed be made to behave very like a metal under certain 



 

 4

circumstances. In the past two decades, many interests were attracted on conductive 

properties of conjugated polymers. A great effort has been devoted to the design and 

synthesis of diverse conjugated polymer with the structure of π-electron delocalization, 

which possess excellent performance in electrics, magnetics and optics. The Royal 

Swedish Academy of Science has announced the 2000 Noble Prize in chemistry, was 

awarded jointly to  Professor (Emeritus) Hideki Shirakawa (Institute of Materials 

Science, University of Tsukuba, Japan), Professor Alan J. Heeger (University of 

California at Santa Barbara, USA) and Professor Alan G. MacDiarmid (University of 

Pennsylvania, USA)  for their revolutionary discovery and development of 

conductive polymers. 

1.1.2.1. Structure and Bandgap of Conjugated Polymers 

Conjugated polymers are the fundamental materials of molecular wires which can 

act as a conduit to transfer electrons between sites in a truly molecular electronic 

device. The essential structural characteristic of all conjugated polymers is their 

quasi-infinite π-system extending over a large number of recurring monomer units 

(see table 1.1). Although the chemical structures of these materials are represented by 

alternating single and double bonds, in reality, the electrons that constitute the 

-bonds are delocalized over the entire molecule, hence also known as delocalized 

electron polymers or conjugated polymer. 
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Table 1.1 Some common conjugated polymers13 

Polyacetylene (PA) is one of the simplest conjugated polymers and has served as 

the prototypical conjugated polymer. Poly(p-phenylene) (PPP), as well as its 

derivatives, are important materials due to their electrical conductivity after doping， 

whereas pure PPP is a good insulator. On the other hand, PPP is well blue 

Polymer Chemical Name Formula  
Bandgap
（eV） 

Absorb 
wavelength
（nm） 

PA Trans-polyacetylene 
n 

1.5 825 

PPP Poly(p-phenylene) 
n 

3.3 410 

PF Polyfluorene 

R R'

n

 

3.2 390 

PPV Poly(p-phenylenevinylene)
n 

2.5 495 

PPE Poly(p-phenyleneethylene)
n 

2.8 400 

PT Polythiophene 
S

S

n 
2.0 620 

PPy Polypyrrole 
N
H

n 
3.1 400 

PANi Polyaniline H
N

n 
3.2 390 
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light-emitting organic electroluminescent materials for their good thermal stability 

and excellent quantum efficiency in blue light wave band.14 Polythiophene (PT), 

Polypyrrole(PPy) and its derivatives have also been attracted much interest in the field 

of polyconjugated organic polymers. In these molecules, the p orbit offered by atom N 

and S connect individual conjugated section together which makes continuity of 

overlap orbit. Compared with PA, PT and PPy are more stable in the ambience and 

possess diversity of structure. Polyfluorene (PF) has also been studied extensively as a 

new blue light electroluminescent material in recent years. PF polymerized by 

biphenyl joint in site 9 has good thermal stability and high fluorescence efficiency.  

Figure 1.1 Some common compounds with PPE structure 

Among the conjugated polymers, poly(p-phenylenevinylene) (PPV) has been 

studied and applied initially as electroluminescent materials. It has high 

photoluminescent efficiency in both solid and liquid states due to its linear and rigid 
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backbone structure. 2,10,15 However, poly(phenylene-ethynylene) (PPE; see Figure 1.1), 

which shows similar structure to PPV, has attracted much less attention in the 

polymer community in spite of their fascinating properties. Recently the groups of 

Swager,16 Müllen17 and Weder18,19 demonstrated that PPE with their unique property 

profile are fantastic materials in many different areas as explosive detection, 

molecular wires and chemosensors. Figure 1.1 shows the common types of 

poly(aryleneethynylene)s (PAEs).  

1.1.2.2. The Signal Amplification Principle of Conjugated Polymers 

The main feature of the above conjugated polymer is existence of long-range 

conjugated π-bond. The cloudy π-electron has mobility along the whole conjugated 

chain. The long-range conjugated π-electron not only reduces the bandgap between 

bonding orbital and antibonding orbital, but also makes two bands broader. 

Meanwhile, it increases more inner band orbitals. Consequently, the bandgaps among 

the inner band orbitals are also reduced. The bandgap between bonding and 

antibonding in π-conjugated system is quite small, usually 1.5-3eV, which is close to 

the bandgap between conduction band and valence band in inorganic semiconductor 

system (bonding band and antibonding band are also called the conduction band and 

valence band respectively). Therefore, most of conjugated polymers exhibit properties 

of semiconductor. And their conductivity is around 10-12－10 -4S/cm. 
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Figure 1.2 The signal amplification of conjugated polymers 

Through absorption of photon or chemical doping, electron can easily transfer 

from bonding band to antibonding band. The doping can increases the conductivity of 

polymers by many orders of magnitude, which could be very close to the conductivity 

of metal. Due to their unique structures, conjugated polymers exhibit many excellent 

photoelectric properties. Thereby, conjugated polymers can be applied extensively in 

conductive materials,26,27 lighting emitting devices (LEDS),28 chemosensor,29 

photoelectric chemistry, secondary battery30 and other photoelectric devices. 

Muti-fluorophore with same special selectivity can be connected together through 
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π-electron system, which indicates it forms conjugated polymer with special structure 

(see Figure 1.2).31 Each neighboring fluorophore becomes an interactive integrity 

through conjugated π-electron. When one of fluorophore has interaction with analyte, 

the whole joint system will show homologous response. The receptor behavior of 

single fluorophore influences on the photoelectric properties of multiple joint 

fluorophores. Compared with separated fluorophore, the conjugated polymers with 

joint fluorophores structures present amplificatory signals. Taking the fluorescence 

quenching in Figure 1.2 for example, three monomers produce fluorescence in excited 

states. When any one of them bond with quencher, only one third of fluorescence will 

be quenched effectively in whole system. However, when the monomers are linked 

together to form molecular wire polymers by conjugated bond, the polymer chains 

absorb photons (hv) from excited wave to generate exciton or equal carrier which of 

them can transfer along whole conjugated system. In the absence of quencher, exciton 

has a radiative combination and emits photo to generate fluorescence (hv'). However, 

according to the signal amplification chemosensor theory based on new molecular 

wire carrier and its application research, when exciton (or carrier) encounters 

quencher binding with any fluorophore in transportation, the electron excited to 

conductive band and begin to transfer. Electron transfers from polymer to quencher, 

and then opposite electron migrates to polymer. The result shows that transportation 

of exciton or carrier along conjugated chain is blocked and molecular in excited states 

are effectively deactive, finally, which terminates the emitting of photo in the entire 

polymer chain. It presents the fluorescence from all fluorophores are effectively 
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quenched and achieves amplification of responding signal. Conjugated polymers, 

which show collective respond property, create a new prospect for research and 

design of high sensitive and reversible sensor. 

1.1.2.3. The Common Synthetic Methods of Poly(p-phenyleneethylene) (PPE) 

The synthesis of cycles and linear polymers with PAE structure refers to forming 

C-C single bond between phenyl and alkyne as well as alkyne and alkyne. The 

coupling reaction between phenyl and alkyne usually occur in Pd/Cu-catalyzed 

Sonogashira coupling reaction,25 Mortreux-Mori alkyne bond exchange reaction26 and 

Pd/Cu-catalyzed Stephens-Castro coupling reaction.27 Next, the generally accepted 

mechanism and application of Sonogashirac coupling reaction will be discussed. 

The Pd-catalyzed coupling of terminal alkynes to aromatic bromides or iodides in 

amine solvents has been known since 1975. It is called Heck-Cassar- 

Sonogashira-Hagihara coupling reaction25 which is probably one of the most 

frequently used C-C bonds forming process in organic chemistry. This kind of 

coupling reaction forms C-C single bonds between sp- and sp2-hybridized carbon 

centers. The generally accepted mechanism of this reaction is depicted in Figure 1.3. 
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Figure 1.324 The mechanism of Sonogashira coupling reaction 

In most cases, the commercially available (Ph3P)2PdCl2 is the catalytic source of 
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Pd. This catalyst in its oxidized form is inactive. In the first step (scheme I) two 

molecular of a cuprated alkyne, A, transmetalate the Pd catalyst precursor and form B. 

B is not stable under the reaction condition but reductively eliminates a symmetrical 

butadiyne and creates the active catalyst C. In an oxidative addition the aromatic 

bromide or iodine forms the intermediate D, which after transmetalation with A leads 

to the diorgano-Pd species E. This species undergoes reductive elimination to the 

product and re-forms the active catalyst C. 

1.1.2.4. Characterization of Fluorescence 

Among the different chemosensors, fluorescence-based ones present many 

advantages: high sensitivity on fluorescence measurements (even single molecule 

detection is possible, although only under special conditions), low cost, easy 

implementation, versatile, offering subnanometer spatial resolution with submicron 

visualisation and submillisecond temporal resolution. The versatility of 

fluorescence-based sensors originates from the wide number of parameters that can be 

tuned in order to optimize the convenient signal. In most cases, the change of 

luminescence intensity represents the most directly detectable response to target 

recognition. However, other properties such as excited state lifetime and fluorescence 

anisotropy have also been preferred as diagnostic parameters, since they are less 

affected by the environmental and experimental conditions.6 

1.1.2.5. Application of Conjugated Polymer in Fluorescence Chemosensor 

The utility of conjugated polymers for fluorescence-based sensing was first 
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demonstrated by Zhou and Swager.11,12 They found that the act of “wiring receptors in 

series” creates superior sensitivity over a small molecule indicator. An obvious 

amplification singal could be observed, because the delocalized electronic structure of 

conjugated polymer (i.e., energy bands) facilitated efficient energy migration over 

large distances. Many studies have been done to demonstrate this principle. For 

example, the monomer and polymer were chosen as receptor to bind with paraquat 

and related compounds. Both of them displayed effectively fluorescence quenching. 

Compared with monomer, however, polymer exhibited a greatly enhanced sensitivity 

in the binding of the paraquat by the cyclophane to form a rotaxane complex. 

analyte cyclophane receptor

conjugated
PPE chainNOCl2

O

Cl2ON
O

O
O

O
O

O

O

O
O

n

Figure 1.4 Application of PPE as sensor 

The original proposal of this effect is facile energy migration along the polymer 

backbone to the occupied receptor sites (Figure 1.4). In this figure, the signal is 

amplified due to the fact that the polymer need only have a small fraction of receptor 

sites occupied to affect complete quenching.  
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Figure 1.5 Electric bandgap structure of PPE 

The exciton produced by radiation can be delocalized extensively along the whole 

polymer chain. When binding analytes happened, these excitons transfer from HUMO 

(Highest Occupied Molecular Orbital) of polymer to LUMO (Lowest Unoccupied 

Molecular Orbital) of paraquat, while simultaneity the opposite electrons transfer to 

polymer. As a result, the polymer’s fluorescence is quenching effectively (Figure 

1.5).In contrast with a monomeric indicator, every receptor must be occupied for 

complete quenching. Swager12 demonstrated that the effect was molecular weight 

dependent and at low to intermediate degrees of polymerization, the signal 

amplification increased with molecular weight. Once the molecular weight exceeded 

the average diffusion length of the excitation (ca. Mn =100 000), the effect was 

independent of molecular weight. 

Subsequent studies,34 on thin films of PPE with cyclophane structure prepared by 

Langmuir-Blodgett deposition, revealed a very high rate of energy transport between 

polymer layers (k=1011 s-1) and an average exciton diffusion length that is greater than 

100 Å. 
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The signal amplification resulting from energy migration in conjugated polymers 

was applied in 1998 by Yang and Swager for the detection of explosives, specifically 

2, 4, 6-trinitrotoluene (TNT) and 2, 4-dinitrotoluene (DNT)16, 35. The impetus for 

developing such a system is the fact that there are roughly 120 million unexploded 

land mines worldwide and current methods of detection are limited. The challenge is 

to detect minute amounts of explosives leached from the land mines. These studies 

extended the methods reported by Zhou and Swager11 on isolated molecules in 

solution to thin film structures. The energy migration-based amplification is much 

greater in thin films, which display two- or three-dimensional structures, as compared 

with what is found in one-dimensional systems (i.e., isolated polymers in solution). 

This effect is due to that in one dimension a random walk of excitations necessarily 

revisits the same receptor sites multiple times. The amplification is increased by the 

excitation sampling the greatest number of potential analyte binding sites. Hence, a 

three-dimensional topology, wherein it is improbable that an exciton will visit the 

same site multiple times, is superior. 

To facilitate binding of TNT and DNT, as well as create a stable emissive thin 

film of a poly- (phenyleneethynylene), Yang and Swager16, 35 developed a series of 

porous polymers utilizing a rigid shapepersistent iptycene scaffold (Figure 1.6). The 

porous structure served to prevent direct interactions between the polymer backbones 

(chromophores), which generally lead to quenching, and to create a structure that 

behaves as a “sponge” for electron-poor π-electron accepting analytes. 
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Figure 1.6 Porous conjugated polymers 

1.1.3. The Signal Recognition System of Fluorescence Chemosensor  

Based on host-guest interaction, the preparation of signal recognition system of 

sensor is quite important in research on chemosensor. The characterization of these 

fluorescence chemsonsor is that host molecular with cavum as receptor recognizes 

alien species. It is the specific binding of a guest molecule to a complementary host 

molecule. The molecules are able to identify each other using noncovalent 

interactions, such as hydrogen bonding, metal coordination, hydrophobic forces, van 
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der Waals forces, π-π interactions, and/or electrostatic effects. One of the key 

applications of this field is the construction of molecular sensors. 

In 1967, C.J.Pederson described the methods of synthesizing crown ethers (cyclic 

polyethers).36 The donut-shaped molecules were the first in a series of extraordinary 

compounds that form stable structures with alkali metal ions. Cram expanded upon 

Charles Pedersen's ground-breaking synthesis of crown ethers, basically 

two-dimensional organic compounds that are able to recognize and selectively 

combine with the ions of certain metal elements. Cram synthesized molecules that 

took this chemistry into three dimensions, creating an array of differently shaped 

molecules that could interact selectively with other chemicals because of their 

complementary three-dimensional structures.37 His work represented a large step 

toward the synthesis of functional laboratory-made mimics of enzymes and other 

natural molecules whose special chemical behavior is due to their characteristic 

structure. Later Jean-Marie Lehn achieved the synthesis of cage-like molecules, 

comprising a cavity inside which another molecule could be lodged. Organic 

chemistry enabled him to engineer cages with the desired shape, thus only allowing a 

certain type of molecule to lodge itself in the cage. This was the premise for an entire 

new field in chemistry, sensors. Such mechanisms also play a great role in molecular 

biology. 

The importance of supramolecular chemistry was recognized by the 1987 Nobel 

Prize for Chemistry which was awarded to Donald J. Cram, Jean-Marie Lehn, Charles 
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J. Pedersen in recognition of their work in this area. The development of selective 

"host-guest" complexes in particular, in which a host molecule recognizes and 

selectively binds a certain guest, was cited as an important contribution. 

In host-guest chemistry, typical of the host compounds are crown ether, 

cyclodextrin and calixarene. These compounds have macrocycle structure. The 

different compound has different space in the host lattice. Hence, design of 

chemosensor could base on that these molecules with different hosts which exhibit 

different selectivity towards other guest molecules. It is important role of choosing 

proper host molecule and fluorophore according to structure character of determining 

matter to design fluorescence chemosensor with excellent performance. 

Since 1967 Pedersen36 first reported unique selectivity ability of crown ethers for 

alkaline metal and alkaline earth metal ion, macrocycles crown ethers have been made 

distinctive progress in its theory, synthesis and application. Their research area 

involves chemistry, biology, atomic energy, agriculture and other related disciplines. 

However, crown ethers may be bioavailable and can cause adverse effects in living 

organisms. Furthermore, the synthesis of classical crown ethers involves many steps, 

therefore these compounds are often quite expensive. All of these reasons limit its 

research and application. In the 1970s, after developed on amide and ether based 

pseudocrown ether sequent, Simon and Vogelt54, 55 innovated a new research filed in 

organic chemistry, pseudocrown ether. Past over thirty yeas the great progress have 

been made in this field and more than increasing one hundred of pseudocrown ethers 
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have been synthesized  

Pseudocrown ethers are cheap because the starting materials are common, 

inexpensive. And the synthesis is relatively simple, requiring only a few steps. 

Pseudocrown ethers are nontoxic because these systems are polymeric and therefore 

nonbioavailable.53 Thus, pseudocrown ethers are promising sensors instead of 

traditional crown ethers. Pseudocrown ethers are chain compound with repeat units, 

poly (ethylene oxide) (-CH2CH2O-). The binding characteristics of classical and 

pseudocrown ethers to metal ions are similar because the basic structure of the crown 

is nearly the same. End-group concept proposed by Vogetle56 is significant in 

guidance of molecular design. Owing to they are flexible ligand, pseudocrown ethers 

can effectively change their coordinate reactivity and coordinate selectivity through 

altering their end-group’s structures and species, so called “end-group effect”. 

Pseudocrown ethers possess well coordinate selectivity for metal ion, because their 

self present different extent of flexibility responding to different metal ions. Their 

flexible extent not only depends on the structures and species of end group, but also 

depends on amount of repeat units ethylene oxide and the combinative mode between 

end group and poly (ethylene oxide) chain. 

In recent years, either various function groups have been subtly induced to 

configuration of pseudocrown ethers through different chemical reaction or the 

location of poly (ethylene oxide) has been changed, by which a lot of novel 

psedudocrown ethers have been synthesized (Figure 1.7). In term of combinative 
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mode between end group and poly (ethylene oxide) chain, pseudocrown ethers are 

divided into the several following types, amide type(1), ether type(2), ester type(3), 

ether ketone type(4), dihydroxy-benzene type(5), biphenol type (6), quinine ether 

type(7), schiff base type(8), squaric acid type(9), pheno-ether type(10) and 

tetrathiafulvalene type(11).  
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Figure 1.7 Various kinds of pseudocrown ethers 
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Compared with crown ethers, pseudocrown ethers not only retain excellent 

coordinate selectivity abilty for metal ion, and also have simple synthesis, high yield, 

low cost, low toxic or nontoxic and other advantages. Pseudocrown ethers present the 

promising prospect of application, because they display outstanding performance in 

metal enrichment, extraction separation, chemosensor, organic chemistry, analytical 

chemistry, biochemistry and agriculture. 

1.2. Study on Self-assembly Behavior of Well Organized π-Conjugated Polymer 

As organic functional materials, the π-conjugated polymer can apply in organic 

electrooptical devices, such as solar cells,57 light emitting diodes (LEDs),58 field effect 

transistors (FETs)59,60 and chemosensors.61 The research on their nanoscopic and 

mesoscopic also show a growing interest because the micro-structure of well 

organized π-conjugated polymer is important in above fields. Their precise chemical 

structure and conjugation length make that their self-assembly behavior can be easily 

controlled, consequently, they presents special functional properties.62   

1.2.1. Current Status and Prospects of Studies  

Block copolymers reveal a wide variety of phases. Therefore, they appear to be 

ideal candidates for the development of new functional materials. Recently block 

copolymers consisting of flexible and rodlike blocks have attracted much attention. 

Rod chain and soft chain in the same system show distinctive properties and typical 

self unique self-assembly behavior. First, the property of rod parts tending to regular 

arrangement makes their phase separation behavior complex. Second, the rigid parts 



 

 22

formed by aggregation of rod chain are also in favor of their self-assembly behavior. 

Third, compared with soft-soft block polymers, rod-soft block polymers give rise to 

Flory-Huggins χ-parameters larger. Hence, rod-soft oligomers with low molecular 

weight also show certain phase separation property to accomplish self-assembly.   

Molecular self-assembly is a key concept in supramolecular chemistry since 

assembly of the molecules is directed through noncovalent interactions, such as 

hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π-π 

interactions, and/or electrostatic effects.63 Using polymer chain to construct 

self-assembly nanostructured materials has become current one of the utmost 

importance topic. The novel functional nanomaterials by self-assembly has developed 

in many fields.64 In self-assembly polymer, it is focused on their behavior in dilute 

solution. 

The polymer’s conformation has great influence on their luminescence properties, 

especially for concentration quenching and aggregation. The primary measure to solve 

these problems is the impactful control of their microstructure. One of solutions is 

adding flexible chain to form rod-coil block polymer. Organized one, two or 

three-dimensional conformation by self-assembly can effectively adjust conjugated 

polymer’s luminescence properties. Many groups have reported extraordinary work in 

self-assembly of rod-coil block polymers. 
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Figure 1.8 The structure of alternating Perylene Bisimide–PolyTHF 

Edda65 investigated the absorption and fluorescent properties of three alternating 

copolymers, which is consisting of polyTHF segments of different length (3, 14, 33 

repeat units respectively) and perylene bisimides. In o-dichlorobenzene, the 

chromophores self organize to form H-like aggregates (see Figure 1.8). These 

polymers self organize in solution via π-π stacking of the chromophores. UV-vis 

absorption and fluorescence studies revealed that the extent of π-π stacking in 

o-dichlorobenzene (ODCB) decreased with increasing temperature and increasing 

length of the polyTHF segment. Originated mainly from nonaggregated monomeric 

perylene bisimides, the fluorescence quantum yield of the self-organized phase was 

also strongly decreased quenched  
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Figure 1.9 Hetero-duplex structures 

Iverson group66 explored this aromatic-aromatic interaction in an intermolecular 

format to create a first-generation hetero-duplex system that self-assembles in water.  

Oligomers of alternating electron-rich 1,5-dialkoxy-naphthalene (Dan) and 

electron-deficient 1,4,5,8-naphthalene-tetracarboxylic diimide (Ndi) units (see Figure 

1.9), termed aedamers, were among the first foldamers to demonstrate folding in 

aqueous solution. For stacking of aromatic units in aqueous solution, desolvation of 

stacked structures (i.e., the hydrophobic effect) is important. Electrostatic interactions 

make significant contributions as well. For this system, desolvation of the aromatic 

surfaces provides the dominant driving force for complexation. However, the strength 

of the interaction seems to be modulated by the geometry of the stacked structure 

which, in turn, is dictated by electrostatic complementarity. Simply put, the complex 

between the relatively electron-deficient Ndi and relatively electron-rich Dan units 

exhibits stacking in an electrostatically preferred face-centered geometry allowing for 

maximum desolvation of the aromatic surfaces in water. 
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Suhrit Ghosh67 reported synthesized polymers containing alternating electron-rich 

and electron-deficient aromatic units above mentioned in single polymer chain. He 

demonstrated that by proper design, flexible synthetic macromolecules can be made to 

fold under the influence of relatively weak intrachain intersegment interactions, such 

as charge-transfer complex formation, assistance in tandem by solvophobic effects 

and metal-ion complexation. The formation of intrachain charge-transfer complex 

between the adjacent donor and acceptor units not only provides the driving force for 

the formation of the anticipated folded structure but also serves as a spectroscopic 

probe to examine the formation of such a structure. 

1.2.2. The Research Significance of Self-assembly Behavior  

Until recently research in this field has been focused mainly on methodologies for 

the synthesis and characterization of π-conjugated oligomers with long axis 

dimensions up to 10 nm.68-70 Another major issue, which attracts increasing attention, 

is the control of the spatial orientation and packing of oligomers through the design of 

molecular and supramolecular architectures. The control of molecular assembly to 

give well-defined structures on the nanoscale can be carried out via different 

complementary approaches: (i) Self-assembly can take place in solution; the details of 

the aggregation behavior are governed by parameters such as the substitution on the 

conjugated backbone, the nature of the solvent, or the temperature. (ii) Because 

conjugated oligomers can be sublimed, it is also possible to follow their assembly as 

they form thin deposits on surfaces from individual molecules in the vapor phase; in 
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that case, interactions with a solvent are absent and the driving forces controlling the 

aggregation are the intermolecular interactions between the conjugated species and 

the substrate surface. (iii) Another possibility is to generate thin deposits from 

conjugated compounds molecularly dispersed in a solution; aggregation takes place 

during the deposition and then depends on the interplay among the conjugated 

molecules, the solvent, and the substrate surface. 

Studies of the organization in solution of chirally β-substituted polythiophenes 

provided profound insights into the solid-state organization of solution cast films71. 

The formation of supramolecular interactions via hydrogen-bonding arrays in 

combination with π－π stacking has also been used to self-assemble oligothiophenes 

into one-dimensional arrays on surfaces, generating a material with remarkable high 

charge carrier mobility.72 In other examples, the Langmuir-Blodgett or the 

layer-by-layer technique have been used for the self-assembly of monolayers of oligo- 

or polythiophenes.73 

1.3. Project Objective  

In conclusion, based on conjugated polymers, fluorescence chemosensors are one 

of the most widely investigated frontiers. Herein, it is necessary to complement and 

develop its related theory further. According to literatures and applications in 

conjugated polymer and pseudocrown ether, we will design and synthesize a series of 

conjugated polymer with pseudocrown ether to improve existing sensor’s deficiency 

in low selectivity and single recognition mode. We focus on three aspects which are 
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shown below. 

 Design and synthesis of conjugated luminescence chemosensors with the 

pseudocrown ethers structure. A series of alternating PPE-ethylene oxide 

copolymers will be synthesized by using Sonogashira coupling reaction and 

characterized by optical and NMR spectroscopy. 

 Research on selectivity and sensitivity of fluorescence chemosensors. It has 

been studied that alkaline metal and alkaline earth metal ion can quench the 

fluorescence of PPE derivates in organic solvent. We also propose the 

principle of selective recognition. Induced by coordination between metal ion 

and ethylene oxide chain, the aggregation of polymer would cause quenching 

of fluorescence intensity to complete amplification sensor function. We will 

try to confirm this principle by UV-vis, fluorescence and NMR spectroscopy. 

 Research on self-assembly behavior of well organized π-conjugated polymer. 

Polymers will be controlled in solid and solution status to form specific 

structures by imposing solvophobic property of flexible chain, coordinate 

effect of metal ion and aggregation of conjugated polymer to exploit more 

widely application prospect in the future. 
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Chapter 2 Synthesis and Characterization of PPE-Based 

Fluorescence Chemosensor 

2.1. Introduction 

Well-defined π-conjugated alternating copolymers play an important role in the 

field of fluorescent chemical sensors due to their tailor-made conjugated structures 

designed to give high sensitivities to analytes.1-9 Many of these examples possess 

distinctive functional moieties such as crown ether in 110 and sugars in 29 attached to 

the polymer backbone. On the other hand, control of spatial orientation and packing of 

copolymers through molecular assembly and aggregation of the polymer chains has 

also been reported to enhance their electrochemical and/or optical properties. Such 

examples include alternating segments of oligothiophenes and oligoethylene oxide 

moieties,11 perylene bisimide chromophores and polytetrahydrofuran,12,13 diamine 

(which contains the appropriate naphthalene and oligoethylene oxide moieties) and 

pyromellitic dianhydride,14 and 1,5-dialkoxynaphthalene and 1,4,5,8-naphthalenetetra 

carboxylic diimide.15 

Poly(para-phenyleneethynylene)s (PPEs) are known to exhibit good thermal, 

oxidative stability and superior photophysical properties in solution. PPEs also show 

collective optical and conducting properties that are sensitive to minor external 

structural perturbations or to electron density changes within the polymer backbone in 

the presence of analytes.16 Polymer 39 and related systems17,18 with externally attached 
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oligo-(ethylene oxide) moieties were reported to show effective metal-responsive 

properties. Relatively smaller molecules of the type 4 were also studied for selective 

metal ion sensing.19,20 

 

Figure 2.1 Some typical fluorescence chemosensors 

In this thesis, we will explore directed folding in the polymer backbone itself in 

polymers with alternating segments of oligo(para-phenyleneethynylene) and 

oligo(ethylene oxide). The rod-coil structure of these polymers is expected to induce 

folding in tandem under appropriate conditions. The π-conjugated oligo-PPEs could 

form an excimer while the soft segments of oligo(ethylene oxide) could impart 

solvophobic effect and metal ion complexation ability. These driving forces are 

expected to induce aggregation formation in solution albeit dependent on the 

conformational mobility of the polymers. 
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2.2. Experimental details  

2.2.1. Synthesis and Characterization of Oligo(p-phenyleneethynylene) (OPE) 

 

Reagents and conditions: (i) Bromohexane, KOH/EtOH, reflux, 24 h; (ii) KIO3, I2, 
AcOH/H2SO4/H2O, 80 °C, 24 h; (iii)Pd(PPh3)2Cl2 (5 mol %), CuI (5 mol %), iPr2NH, 
trimethylsilylacetylene, reflux, 1h; (iv) MeOH/THF, 5 N NaOH, rt, 2 h; (v)1a, 
Pd(PPh3)2Cl2 (5mol %), CuI (5 mol %), iPr2NH/THF, rt, 15 h. 

Scheme 2.1 synthetic rout to conjugated OPE 

1,4-dihexyloxybenzene (11) 

A suspension of powdered KOH (50.0 g, 0.9 mol) and anhydrous ethanol (400 

mL) stirred and degassed at room temperature for 30 minutes. Hydroquinone (38.5 g, 

0.35 mol) in anhydrous ethanol (150 mL) was added dropwise. To the stirred mixture, 

bromohexane (148.0 g, 0.9 mol) in anhydrous ethanol (50 mL) was added. After 

stirring for 24 h with heating at reflux, the ethanol was evaporated at reduced pressure. 

The brownish residue was poured into water (500 mL) and extracted with ethyl 

acetate twice. The combined ethyl acetate layer was washed with water, brine, and 
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dried over anhydrous magnesium sulfate. The white product (74.0 g, 76%) was 

obtained by recrystallization from ethanol after ethyl acetate was removed under 

reduced pressure. 1H NMR (400 MHz, CDCl3): δ 6.82 (s, 4H), 3.90 (t, 4H), 1.80-1.70 

(m, 4H), 1.46-1.30 (m, 12H), 0.90 (t, 6H). 13C NMR (100 MHz, CDCl3): δ153.2, 

115.4, 68.7, 31.6, 29.4, 25.8, 22.6, 14.0. 

1,4-dihexyloxy-2,5diiodobenzene (12) 

To a solution of 1,4- dihexyloxybenzene (11.1 g, 0.04 mol), 90 mL of acetic acid, 

7 mL of water, and 3 mL of concentrated H2SO4 were added KIO3 (10.3 g, 0.048 mol) 

and I2 (13.1 g, 0.048 mol). The reaction mixture was stirred at 80 °C for 24 h and then 

cooled to room temperature. After most of the acetic acid was evaporated under 

reduced pressure, aqueous Na2SO3 (20%) was added until the brown color of iodine 

had disappeared. The mixture was poured into ice water with Na2CO3 (500 mL) and 

extracted with hexane (3×200 mL). The combined organic layer was washed with 

water and brine and dried over MgSO4. The solvent was evaporated under reduced 

pressure to give a yellow solid. The white crystals (12.7 g, 60%) were obtained by 

recrystallization from ethanol. 1H NMR (400 MHz, CDCl3): δ 7.17 (s, 2H), 3.92 (t, 

4H), 1.84-1.75 (m, 4H), 1.55-1.34 (m, 12H), 0.91 (t, 6H). 13C NMR (100 MHz, 

CDCl3): δ 152.9, 122.8, 86.3, 70.3, 31.4, 29.1, 25.7, 22.6, 14.0. 

2,5-Dihexyloxy-4-[(trimethylsilyl)ethynyl]iodobenzene (13) 

To a solution of 1,4-dihexyloxy-2, 5-diiodobenzene (7.95 g, 0.015 mol), CuI 

(0.14 g, 0.75 mmol), and Pd(PPh3)2Cl2 (0.53 g, 0.75 mmol) in 100 mL of 
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diisopropylamine was added (trimethylsilyl) acetylene (1.47 g, 0.015 mol). The 

mixture was stirred at room temperature for 15 h. After removal of the solvent under 

reduced pressure, light yellow oil (1a; 3.30 g, 44%) was purified using silica gel with 

hexane/CH2Cl2 (20:1) as eluent. 1H NMR (400 MHz, CDCl3): δ 7.23 (s, 1H), 6.81 (s, 

1H), 3.96-3.91 (m, 4H), 1.84-1.72 (m, 4H), 1.56-1.33 (m, 12H), 0.88 (t, 6H), 0.22 (s, 

9H). 13C NMR (100 MHz, CDCl3): δ154.9, 151.7, 123.9, 116.3, 113.4, 100.8, 99.4, 

87.9, 70.1, 69.8, 31.6, 29.3, 25.7, 22.6, 14.0. 

1,4-Bis[(trimethylsilyl)ethynyl]- 2,5-bis(hexyloxy)benzene (14) 

To a solution of 1,4-dihexyloxy-2, 5-diiodobenzene (7.95 g, 0.015 mol), CuI 

(0.14 g, 0.75 mmol), and Pd(PPh3)2Cl2 (0.53 g, 0.75 mmol) in 100 mL of 

diisopropylamine was added (trimethylsilyl)acetylene (2.94 g, 0.03 mol). The mixture 

was stirred at reflux for 1 h. After cooling, dichloromethane (100 mL) was added, and 

the white ammonium iodide precipitate was filtered off. The solution was passed 

through a short silica gel column using toluene as eluent. After the solvent was 

evaporated under reduced pressure, the white crystals 1b (6.3 g, 89%) were obtained 

by recrystallization from ethanol. 1H NMR (400 MHz, CDCl3): δ 6.88 (s, 2H), 3.93 (t, 

4H), 1.81-1.76 (m, 4H), 1.53- 1.33 (m, 12H), 0.88 (t, 6H), 0.25 (s, 18H). 13C NMR 

(100 MHz, CDCl3): δ154.5, 117.8, 114.5, 101.5, 100.4, 69.9, 32.0, 29.7, 26.1, 23.0, 

14.3. 

General Procedure for the Preparation of 15, 17: Methanol and NaOH (5 N) 

were added at room temperature to a stirred THF solution of 1b and 3b, the reaction 
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mixture was stirred for 2 h. After removal of the solvent under reduced pressure, 15, 

and 17 were separated by column chromatography, respectively. 

1,4-Bis(ethynyl)-2,5-bis(hexyloxy)benzene (15) 

The above general procedure was applied on methanol (30 mL) and NaOH (2 mL, 

5 N) in a stirred solution of 1b (2.82 g, 0.006 mol) in THF (20 mL). The solvent was 

evaporated, and the residue was poured into 100 mL of water and extracted with 

hexane twice. The combined hexane layer was washed with water and brine and dried 

over anhydrous MgSO4. The pale yellow solid 1c (1.82 g, 93%) was obtained after the 

solvent was removed. 1H NMR (400 MHz, CDCl3): δ 6.95 (s, 2H), 3.97 (t, 4H), 3.33 

(s, 2H), 1.84-1.75 (m, 4H), 1.50-1.26 (m, 12H), 0.90 (t, 6H). 13C NMR (100 MHz, 

CDCl3): δ154.4, 118.3, 113.8, 82.8, 80.2, 70.1, 31.9, 29.5, 26.0, 23.0, 14.4. 

TMS-Terminated Trimer (16) 

A mixture of 1,4-Bis(ethynyl)-2,5-bis(hexyloxy) benzene 1c (1.63 g, 5mmol), 

2,5-dihexyloxy-4-[(trimethylsilyl)ethynyl]iodobenzene (1a) (6.25 g, 12.5 mmol), CuI 

(0.095 g, 0.5 mmol), and Pd(PPh3)2Cl2 (0.351 g, 0.5 mmol) in 60 mL of 

diisopropylamine and 30 mL of THF. The bright yellow solid 3b (4.82 g, 90%) was 

obtained after chromatography using silica gel with hexane/ CH2Cl2 (4:1) as eluent. 

1H NMR (400 MHz, CDCl3): δ 7.01 (s, 2H), 6.98 (s, 2H), 6.96 (s, 2H), 4.05-3.97 (m, 

12H), 1.87-1.84 (m, 12H), 1.59 - 1.53 (m, 12H), 1.36-1.28 (m, 24H), 0.93-0.88 (m, 

18H), 0.28 (s, 18H). 13C  NMR (100 MHz, CDCl3): δ 154.6, 153.9, 153.8, 117.9, 

117.7, 117.5, 115.0, 114.7, 114.2, 101.6, 100.5, 91.9, 91.8, 70.1, 69.9, 32.0, 29.7, 26.1, 
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23.0, 14.4, 0.4.  

Deprotected Trimer (17) 

The above general procedure was applied on methanol (45 mL) and NaOH (2 mL, 

5 N) in a stirred solution of 3b (2.64 g, 2.47mmol) in THF (100 mL). The bright 

yellow solid 17 (2.02 g, 87%) was obtained after chromatography using gel with 

hexane/ CH2Cl2 (4:1) as eluent. 1H NMR (400 MHz, CDCl3): δ 7.00 (s, 2H), 6.98 (s, 

2H), 6.97 (s, 2H), 4.09-4.02 (m, 12H ), 3.34 (s, 2H), 1.94-1.84 (m, 12H), 1.54-1.28 (m, 

36H), 0.97- 0.89 (m, 18H). 13C NMR (100 MHz, CDCl3): δ154.6, 154.0, 153.8, 118.5, 

117.8, 117.6, 115.5, 114.8, 113.1, 92.0, 91.6, 82.6, 80.5, 70.2, 70.2,70.1, 32.3, 

32.0,30.1, 29.7, 29.7,26.1, 23.0, 14.4. 

2.2.2. Synthesis and Characterization of Flexible Oligo(ethylene oxide) 

Tri(ethylene oxide)-di(p-toluenesulfonate) (18a) 

A 42 g (0.22mol) of toluenesulfonyl chloride was added dropwise to a THF 

solution of 15.0 g (0.1 mol) of tri(ethylene glycol) monoethyl ether and 20.2 g (0.2 

mol ) of triethylamine at 0 . After stirring for 12 h, the reaction mixture was filtered ℃

and the filtrate was evaporated. The residue was then extracted with CH2Cl2/10%HCl 

and the organic layer was concentrated under reduced pressure. The crude extract was 

purified by silica gel column chromatography using hexane/ethyl acetate (1:1) as 

eluent to give the desired product as a viscous oil (43 g, yield 94%). 1H NMR (400 

MHz, CDCl3): δ7.80 (d, 4H), 7.35 (d, 4H), 4.15 (t, 4H), 3.67(t, 4H), 3.53(t, 4H), 

2.42(s, 6H). 13C NMR (100 MHz, CDCl3): δ144.8, 132.9, 129.8, 127.9, 70.6, 69.2, 
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68.6, 21.6. 
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TsCl=toluenesulfonyl chloride 
Reagents and conditions: (i) THF/Triethylamine, 0℃, 12h; (ii) K2CO3, Acetone/DMF, 
reflux, 3days. 

Scheme 2.2 Synthetic rout to flexible oligo-(ethylene oxide) 

Tri(ethylene oxide)-di(4-iodobenzene)-ether (19a) 

A 13.8 g (0.030 mol) sample of compound 3d was added to a solution (60 ml of 

acetone/2 ml of DMF) of 13.2 g of 4-iodophenol (0.06 mol) and 6.2 g of potassium 

carbonate (0.045 mol), and the mixture was allowed to reflux for 3 days. The reaction 

mixture was filtered and the filtrate was evaporated and then the residue was extracted 

with CH2Cl2/H2O and the organic layer was dried over MgSO4 and concentrated 
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under reduced pressure. The crude extract was purified by silica gel column 

chromatography using hexane/ethyl acetate(1:2) as eluent to give the desired product 

as white crystals(15.8 g, yield 95%).1H NMR (400 MHz, CDCl3):δ 7.53 (d, 4H), 6.68 

(d, 4H), 4.07 (t, 4H), 3.84(t, 4H), 3.73(S, 4H). 13C NMR (100 MHz, CDCl3): δ158.7, 

138.2, 117.1, 83.0, 70.9, 69.7, 67.6. 

Tetra(ethylene oxide)- di(p-toluenesulfonate ) (18b) 

A 42 g (0.22 mol) of toluenesulfonyl chloride was added dropwise to a THF 

solution of 19.4 g (0.1 mol) of Tetra (ethylene glycol) monoethyl ether and 20.2 g (0.2 

mol) of triethylamine at 0 . After stirring for 12℃  h, the reaction mixture was filtered 

and the filtrate was evaporated. The residue was then extracted with CH2Cl2/10%HCl 

and the organic layer was concentrated under reduced pressure. The crude extract was 

purified by silica gel column chromatography using hexane/ethyl acetate (1:1) as 

eluent to give the desired product as a viscous oil (47.2 g, yield 94%). 1H NMR (400 

MHz, CDCl3): δ7.80 (d, 4H), 7.35 (d, 4H), 4.15 (t, 4H), 3.67(t, 4H), 3.53(m, 8H), 

2.42(s, 6H). 13C NMR (100 MHz, CDCl3): δ144.8, 132.9, 129.8, 127.9, 70.6, 70.5, 

69.2, 68.6, 21.6. 

Tetra(ethylene oxide)- di (4-iodobenzene) –ether (19b) 

A 18.0 g (0.030 mol) sample of compound 4d was added to a solution (60 ml of 

acetone/2 ml of DMF) of 13.2 g of 4-iodophenol (0.06 mol) and 6.2 g of potassium 

carbonate (0.045 mol), and the mixture was allowed to reflux for 3 days. The reaction 

mixture was filtered and the filtrate was evaporated and then the residue was extracted 
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with CH2Cl2/H2O and the organic layer was dried over MgSO4 and concentrated 

under reduced pressure. The crude extract was purified by silica gel column 

chromatogramphy using hexane/ethyl acetate(1:2) as eluent to give the desired 

product as white crystals (17.0 g, yield 95%).1H NMR (400 MHz, CDCl3): δ7.54 (d, 

4H), 6.70 (d, 4H), 4.07 (t, 4H), 3.84(t, 4H), 3.73(m, 8H). 13C NMR (100 MHz, 

CDCl3): δ158.7, 138.2, 117.1, 83.0, 70.8, 70.7, 69.6, 67.5. 

Penta(ethylene oxide)-di(p-ditoluenesulfonate) (18c) 

A 42g (0.22mol) of toluenesulfonyl chloride was added dropwise to a THF 

solution of 23.8 g (0.1 mol) of Penta (ethylene glycol) monoethyl ether and 20.2 g 

(0.2 mol) of triethylamine at 0 . After stirring for 12 h, the reactio℃ n mixture was 

filtered and the filtrate was evaporated. The residue was then extracted with 

CH2Cl2/10%HCl and the organic layer was concentrated under reduced pressure. The 

crude extract was purified by silica gel column chromatography using hexane/ethyl 

acetate (1:1) as eluent to give the desired product as a viscous oil (51.2g, yield 94%). 

1H NMR (400 MHz, CDCl3): δ7.80 (d, 4H), 7.35 (d, 4H), 4.15 (t, 4H), 3.67(t, 4H), 

3.53(m, 12H), 2.42(s, 6H). 13C NMR (100 MHz, CDCl3): δ144.8, 133.0, 129.8, 127.9, 

70.7, 70.5, 69.2, 68.6, 21.6. 

Penta(ethylene oxide)- di (4-iodobenzene) –ether (19c) 

A 19.3 g (0.030mol) sample of compound 3d was added to a solution (60 ml of 

acetone/2 ml of DMF) of 13.2 g of 4-iodophenol (0.06 mol) and 6.2 g of potassium 

carbonate (0.045 mol), and the mixture was allowed to reflux for 3 days. The reaction 
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mixture was filtered and the filtrate was evaporated and then the residue was extracted 

with CH2Cl2/H2O and the organic layer was dried over MgSO4 and concentrated under 

reduced pressure. The crude extract was purified by silica gel column chromatography 

using hexane/ethyl acetate(1:2) as eluent to give the desired product as white crystals 

(18.3g,yield 95%).1H NMR (400 MHz, CDCl3): δ7.54 (d, 4H), 6.70 (d, 4H), 4.07 (t, 

4H), 3.82(t, 4H), 3.67(m, 12H). 13C NMR (100 MHz, CDCl3): δ158.7, 138.2, 117.1, 

83.0, 70.8, 70.6, 69.6, 67.5. 

2.2.3. Synthesis of Polymers  

Reagents and conditions: (i) Pd(PPh3)4 (5 mol %), CuI (5 mol %), i-Pr2NH/toluene 

(1:2), 60 °C, 1day. 

Scheme 2.3 Preparation of (p-phenyleneethylene)(ethylene oxide) polymer 20 and 
20a-c (R=n-C6H13) 
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General Procedure for the Preparation of 20 and 20a-c: A mixture of 1.1 mole 

ratio of diethynyl compound (15 and 17), 1.0 mole ratio of diiodo compound (19a-c) 

were polymerized for polymer by using the Sonogashira coupling reaction in the 

presence of 5% (PPh3)4Pd, 5% CuI in toluene and diisopropylamine at 60 °C for 1 day. 

The iodobenzene (0.3 equiv) was added to the mixture, which reacted for another 3 h. 

The polymer was precipitated in ethanol, filtered, washed and dried under vacuum at 

room temperature: 

 

Poly(phenyleneethynylene) (20)  

1,4-Bis(ethynyl)-2,5-bis(hexyloxy)benzene (0.200g, 0.22mmol), 1,4-dihexyloxy- 

2,5diiodobenzene (0.106g, 0.20mmol), and iodobenzene as polymer end groups (0.1 

equiv) were polymerized for polymer 20 by using the Sonogashira crosscoupling 

reaction in the presence of 5% (PPh3)4Pd and 5% CuI in 24ml solution of 

diisopropylamine/toluene(1:2) at 60 °C for 1day. The iodobenzene (0.3 equiv) was 

added to the mixture, which reacted for another 3 h. The polymer was precipitated in 

methanol twice, filtered, and dried under vacuum at room temperature: 1H NMR (400 

MHz, CDCl3): 7.01 (s, 2H), 6.99 (s, 2H), 6.96 (s, 2H), 4.06-3.96 (m, 12H), 1.85-1.82 

(m, 12H), 1.51-1.34 (m, 36H), 0.91- 0.87 (m, 18H). 13C NMR (100 MHz, CDCl3): 

154.6, 154.0, 153.8, 118.5, 114.8, 113.1, 92.0, 91.6, 82.6, 80.5, 70.2, 70.2, 70.1, 32.3, 

32.0, 30.1, 29.7, 29.7, 26.1, 23.0, 14.4. Calcd. For (C20H28O2)n: C, 79.96%; H, 

9.39%. Found: C, 77.48%; H, 8.13%. Gel permeation chromatography analysis 

(mobile phase: THF, polystyrene standards) indicates that Mw of the polymer is 24 
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560, and its polydispersity is 2.31.  

Polymer (20a)  

1,4-Bis(ethynyl)-2,5-bis(hexyloxy)benzene (0.200g, 0.22mmol), monomer 

3d(0.110g, 0.20mmol), and iodobenzene as polymer end groups (0.1 equiv) were 

polymerized for polymer 20a by using the Sonogashira coupling reaction in the 

presence of 5% (PPh3)4Pd and 5% CuI in 24ml solution of 

diisopropylamine/toluene(1:2) at 60 °C for 1day. The iodobenzene (0.3 equiv) was 

added to the mixture, which reacted for another 3 h. The polymer was precipitated in 

methanol twice, filtered, and dried under vacuum at room temperature: 1H NMR (400 

MHz, CDCl3): 7.46 (d, 4H), 7.00 (s, 6H), 6.88 (d, 4H) , 4.17 (t, 4H), 4.03-3.93 (m, 

12H ), 3.89 (t, 4H), 3.77 (S, 4H), 1.85-1.82 (m, 12H), 1.54-1.28 (m, 36H), 0.97- 0.89 

(m, 18H). 13C NMR (100 MHz, CDCl3): 153.8, 138.4, 133.2, 131.8, 128.5, 118.3, 

114.8, 71.1, 70.9, 69.9, 67.7, 31.9, 29.5, 25.9, 22.9, 14.3. Calcd. For (C80H104O6)n: 

C, 78.39%; H, 8.55%. Found: C, 75.56%; H, 8.73%. Gel permeation chromatography 

analysis (mobile phase: THF, polystyrene standards) indicates that Mw of the polymer 

is 102 052, and its polydispersity is 1.17. 

Polymer (20b) 

1,4-Bis(ethynyl)-2,5-bis(hexyloxy)benzene (0.200g, 0.22mmol), monomer 

4d(0.110g, 0.20mmol), and iodobenzene as polymer end groups (0.1 equiv) were 

polymerized for polymer 20b by using the Sonogashira coupling reaction in the 

presence of 5% (PPh3)4Pd and 5% CuI in 24ml solution of 
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diisopropylamine/toluene(1:2) at 60 °C for 1day. The iodobenzene (0.3 equiv) was 

added to the mixture, which reacted for another 3 h. The polymer was precipitated in 

methanol twice, filtered, and dried under vacuum at room temperature: 1H NMR (400 

MHz, CDCl3): 7.46 (d, 4H), 7.00 (s, 6H), 6.88 (d, 4H) , 4.17 (t, 4H), 4.03-3.93 (m, 

12H ), 3.89(t, 4H), 3.77(S, 8H), 1.85-1.82 (m, 12H), 1.54-1.28 (m, 36H), 0.97- 0.89 

(m, 18H). 13C NMR (100 MHz, CDCl3): 153.8, 138.4, 133.2, 131.8, 128.5, 118.3, 

114.8, 71.1, 70.9, 69.9, 67.7, 31.9, 29.5, 25.9, 22.9, 14.3. Calcd. For (C82H108O11)n: 

C, 77.57%; H, 8.57%. Found: C, 76.12%; H, 9.25%. Gel permeation chromatography 

analysis (mobile phase: THF, polystyrene standards) indicates that Mw of the polymer 

is 136 655, and its polydispersity is 1.27. 

Polymer (20c) 

1,4-Bis(ethynyl)-2,5-bis(hexyloxy)benzene (0.200g, 0.22mmol), monomer 

5d(0.110g, 0.20mmol), and iodobenzene as polymer end groups (0.1 equiv) were 

polymerized for polymer 20c by using the Sonogashira coupling reaction in the 

presence of 5% (PPh3)4Pd and 5% CuI in 24ml solution of 

diisopropylamine/toluene(1:2) at 60 °C for 1day. The iodobenzene (0.3 equiv) was 

added to the mixture, which reacted for another 3 h. The polymer was precipitated in 

methanol twice, filtered, and dried under vacuum at room temperature: 1H NMR (400 

MHz, CDCl3): 7.46 (d, 4H), 7.00 (s, 6H), 6.88 (d, 4H) , 4.17 (t, 4H), 4.03-3.93 (m, 

12H ), 3.89(t, 4H), 3.77(S, 4H), 1.85-1.82 (m, 12H), 1.54-1.28 (m, 36H), 0.97- 0.89 

(m, 18H). 13C NMR (100 MHz, CDCl3): 153.8, 138.4, 133.2, 131.8, 128.5, 118.3, 

114.8, 71.1, 70.9, 69.9, 67.7, 31.9, 29.5, 25.9, 22.9, 14.3. Calcd. For (C84H112O12)n: 
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C, 76.79%; H, 8.59%. Found: C, 73.96%; H, 8.51%. Gel permeation chromatography 

analysis (mobile phase: THF, polystyrene standards) indicates that Mw of the polymer 

is 133 027, and its polydispersity is 1.67. 

2.3. Results and Discussion 

2.3.1. Synthesis and Characterization of Polymers 

 

Figure 2.2 The 1H NMR spectra of deprotected trimer (17) (CDCl3) 

In our synthetic rout to polymer, there were separate synthesis of conjugated rod 

chain for signal amplification and flexible chain for metal ion detecting. After that, 

both parts were connected together by polymerization. 

For the synthesis of conjugated chain, first alkyl chains were introduced to the 



 

 48

side chain of backbone to increase solvability of conjugated molecule. The oligomers, 

1,4-bis[(trimethylsilyl)ethynyl]-2,5-bis(hexyloxy)benzene (14) and TMS 

((trimethylsilyl)acetylene)-terminated trimer (16), were synthesized by Sonogashira 

coupling reaction. Removal of the protection group TMS of 14 and 16 generated the 

desilylated 2,5-dihexyloxy-1,4-bis (ethynyl) benzene (15) and deprotected trimer (17) 

(detail in scheme 2.1). As the Figure 2.2 shown, the aromatic protons peaks (6H) 

appeared at near δ7.00 and the alkyne protons peaks (2H) appeared at near δ3.34. In 

additon, the peaks (12H) at δ4.00 and the peaks (multiple H) at below δ2.00 belonged 

to alkyl chain linked with aromatic ring. 

 The monomers, tri(ethylene oxide)-di(4-iodobenzene)-ether (19a), tetra(ethylene 

oxide) -di (4-iodobenzene) –ether (19b) and penta(ethylene oxide) - di(4-iodobenzene) 

–ether (19c) were synthesized referring to literature procedures22 (detail in scheme 

2.2). The aromatic protons peaks (8H) appeared at near δ7.51 and δ6.67 (Figure 2.3 & 

Figure 2.4). In addition, the peaks (multiple H) at δ4.00 belonged to ethylene oxide 

chain. The only difference of their NMR spectra was different integral area at δ3.76 

(Figure 2.4). The longer ethylene oxide chain showed a larger integral area.  
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Figure 2.3 The 1H NMR spectrum of tri(ethylene oxide)-di(4-iodobenzene)– ether 

(19a) (CDCl3) 

 

Figure 2.4 The comparison of 1H NMR spectra of ethylene oxide (CDCl3) 
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Pd(0)-catalyzed Sonogashira coupling reaction was employed to synthesize the 

polymers 20 and 20a-c (see scheme 2.3). It has been established that the reaction has a 

tendency to produce insoluble cross-linked polymers in the stepwise polymerization 

process.21 Reaction conditions for the polymerization process in our work such as 

temperature, time, concentration, solvent and catalyst were carefully considered and 

optimized. The Sonogashira coupling reaction was favorably carried out in a dilute 

solution and relatively low temperature to reduce the possibility of cross-linking 

between branches; thus, the poor solubility of the polymer could be avoided.  

The trimer (17) reacted respectively with ethylene oxide chains 19a, 19b and 19c 

which have different lengths of soft segment and also iodine as terminated functional 

group, in molar ratios 1.1:1. The polymers were obtained in solvent 

(diisopropylamine/toluene, 1:2) with Pd(PPh3)4 (5 mol %) and CuI (5 mol %) as 

catalyst. After 24 hours polymerization, iodobenzene was added to the system and 

reacted for another 3 hours to cap the polymer. Slightly yellow amorphous materials 

were obtained through precipitation from methanol. The low concentration of solution 

and lower temperature were found to be key factors in determining the solubility of 

the products. The solubility of polymers was good in common organic solvents such 

as toluene, THF, chloroform, and methylene chloride. The molecular structures of the 

polymers were characterized by 1H NMR and 13C NMR spectroscopy. Characteristic 

signals of the phenyleneethynylene units and ethylene oxide units were observed in 

1H-NMR. 
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Figure 2.5 The 1H NMR spectrum of 20a (CDCl3) 

The aromatic rings show different chemical shifts in OPE chain (δ7.01) and 

ethylene oxide chain (δ6.70 toδ7.52) (Figure 2.5). The ratio of the phenylene 

ethynylene units to ethylene oxide units can be calculated by the integral areas of the 

phenyl proton peaks in their 1H NMR spectra. Compared with the phenyl signal of 

these two units, the calculated ratio was 6:9, which consisted with theoretic value of 

6:8. In addition, the alkyl protons peaks in OPE appeared at δ4.03 and below δ2.00, 

while the other peaks from δ4.14 to δ3.75 indicated the alkyle of ethylene oxide chain. 

The chemical shift of polymer 20a approximated to the corresponding monomers’ 

chemical shift. The difference of these three polymers was different lengths of flexible 

chain. The different integral areas at δ3.76 (Figure 2.6) can be observed on their 1H 
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NMR spectra. The one with longer ethylene oxide chain displayed the larger integral 

area. 

 

Figure 2.6 The 1H NMR spectra of polymers (CDCl3) 

2.3.2. Molecular Weight Distribution and Optical Properties of Polymers 

The average molecular weight for the polymers 20 and 20a-c and their 

polydispersity index (PDI) were determined by gel permeation chromatography (GPC) 

against polystyrene standard (Table 2.1). In general the polymers 20a-c have 

significantly higher molecular weights and more desirable polydispersity than 20. As 

the length of the ethylene oxide chain increasing, the polydispersity of the polymer 

became less satisfactory in going from 20a to 20b to 20c. 
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Polymer 
Molecular Weight Distribution Optical Properties 

Mw Polydispersity λmax(UV nm) λmax(PL nm) 

20 24,560 2.31 414 466 

20a 102,052 1.17 428 474 

20b 136,655 1.27 428 474 

20c 133,027 1.67 428 474 

Table 2.1 Molecular weight distribution and optical properties of copolymers 

20 and 20a-c 

The absorption and emission maxima of PPE 20 were 414 nm and 466 nm, 

respectively (Table 2.1; Figure 2.7&2.8). These polymers 20a-c were essentially 

identical (Figure 2.10) at 428 nm and 474 nm, respectively, independent of the 

number of ethylene oxide repeating units. The observed red-shift going from 20 to 

20a-c was somewhat unexpected as the conjugation in repeating phenyleneethynylene 

units were disrupted by the oligo(ethylene oxide) segments in going from 20 to 20a-c. 

This however could be a positive indication that with greater flexibility in the polymer 

backbone, polymers 20a-c would be able to coil and the red-shift was a result of 

transannular π-π interaction between intramolecular oligo(phenyleneethynylene) 

segments. 
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Figure 2.7 Absorption spectrum of polymers 20, 20a-c (CHCl3) 

 

Figure 2.8 Emission spectrum of polymers 20, 20a-c (CHCl3) 
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2.4. Conclusion  

In conclusion, the polymers 20a-c with alternating segments of oligo 

(para-phenyleneethynylene) and oligo(ethylene oxide) as well as the model compound 

20 have been synthesized by Sonogashira coupling reaction. The introduction of 

flexible chain, ethylene oxide, in the polymer backbone significantly changed the 

conformation of polymers as well as their optical properties, as compared with their 

corresponding analogous 20 which was lack of flexible chain. The transannular π-π 

interaction between intramolecular oligo(phenyleneethynylene) segments envisioned 

a potential application of polymers 20a-c in the fluorescence chemosensor. The 

intermediate products and final products were characterized by 1H NMR, 13C NMR, 

GPC, UV-vis and FL spectroscopy, and their structures were also identified. 
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Chapter 3 The Application of Fluorescence Chemosensors in Ion 

Detection 

3.1. Introduction 

As these noncyclic crown ethers and their derivatives show strong complexation 

ability, the conformation of these compounds changes drastically from a linear 

structure to a pseudocyclic one upon the complex formation with metal ions. From the 

topology point of view, these neutral coordination compounds of organic ether are 

divided into three types (see Figure 3.1):1 acyclic compounds as podand; mono-Cyclic 

compounds as coronand; poly-cyclic compounds as cryptand. They are called podate, 

coronate and cryptate respectively upon formation of coordination compounds with 

metal ion. 

The C-C bonds in podand and coronand both can distort and rotate freely. This 

specific property makes them more elastic on coordination with metal ions. 

Furthermore, they would have different coordination ability when different donor 

atom were introduced. For example, 18-crown-6 with donor atom O has strong 

affinity to alkaline earth metal and alkaline metal, while S or N as donor atom it has 

strong affinity to transition metal.2 For their extensive solvency and coordination 

ability with metal cation, organic ethers have been applied in photochemical 

responsive, thermally responsive, selective ion transport, chemosensor and 

phase-transfer catalysis.3-7 
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Figure 3.1  Types of the neutral coordination compounds of organic ether1 

Vögtle et al studied artificial noncyclic crown ether derivatives decades before.8,9 

It demonstrated that oligo-oxyethylene compounds, appending quinoline units at their 

terminals, can bind K+ strongly via electrostatic interaction between the ion and 

oxygen atoms with the aid of π-π interaction between end-capped quinolines. 

Nakahama et al.10-13 demonstrated that a series of synthetic carboxylic ionophores 

exhibit high selectivity for K+ over Na+ in the ion transport experiment across the 

dichloromethane liquid membrane. This excellent selectivity for K+ could be 

explained by the high lipophilicity of helical K+ complex. 

When the conformational change of noncyclic crown ether is converted into 
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physical signals, such as UV absorption and fluorescence, etc, the metal ion sensors 

could be more sensitive than crown ethers. On the basis of this idea, Nakamur’s 

group14,15 synthesized novel fluorescent reagents that have two fluorescent 

chromophores (anthracene, pyrene, fluorene, etc.) symmetrically or asymmetrically 

placed at both terminals of 1,3-diamino-4,7,10-trioxatridecane. Furthermore, their 

complexations with alkali and alkaline earth cations were examined. The 

complexation brought a shift of the emission maximum from 400 to 490 nm. This 

indicated that the two anthracenes adopted in stack conformation upon ion 

complexation. A fluorescent regent containing two asymmetric fluorescent 

chromophores (one side was anthracene (electron donor) and the other was 

anthraquinone (electron acceptor)) gave emission quenching of the anthracene 

monomer upon the addition of alkaline earth cations. When anthracene approaches 

anthraquinone upon complexation, a rapid electron-transfer quench of the anthracene 

excited state occurs. The large fluorescence maximum shift and the quenching of 

anthracene fluorescence indicate a clear binding event. Moreover, it is expected that if 

the chain length at the oxyethylene moiety becomes longer, a conformational change 

would be significantly increased upon the formation of a complex. This large 

conformational change is favorable for making ion and molecular sensing 

systems.16-20 

In chapter 2, a series of novel polymers consisting of alternating oligo-(p- 

phenylene ethynylene)s chromophores and flexible oligo-(ethylene oxide) segments 

of different lengths have been synthesized. In this chapter, we will investigate the 
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polymers’ recognition ability for alkaline earth metal and alkaline metal by UV-vis, 

FL and 1H NMR spectra; study the influence of lengths of ethylene oxide on the 

recognition selectivity to metal; and also explore the influence of change of 

conjugated polymer’s conformation on their physical and optical properties. 

3.2. Experimental Detail 

3.2.1. UV-vis and FL Measurements  

UV-Vis spectra were recorded in a Shimadzu UV-3150 spectrometer. Dilute 

polymer solution in spectra-grade acetonitrile (10-5-10-6 mol/ml, based on monomer 

molecular weight) were used for analysis. FL spectra were recorded in a Shimadzu 

RF-5300PC spectrometer. The sample condition was the same as UV-Vis’s. 

Metal perchlorate solutions were prepared in acetonitrile (spectroscopic grade). 

Solution of a polymer was prepared by dissolving the polymer in acetonitrile, aided 

by sonication and slight warming in a water bath if necessary. Metal ion titrations 

were carried out by adding small volumes of the metal solutions in a quartz cuvette. 

After the addition of metal salt solution to the 4-ml cuvette, the solution was shaken 

well and kept for 5 min before recording the absorption and emission spectra. 

3.2.2. 1H NMR Measurement 

The 1H NMR spectra were determined using CDCl3 (unless other stated) as 

solvent at room temperature on a Varian Mercury Plus400 (400 MHz) Fourier 

transform nuclear magnetic resonance spectrometer. The concentration of samples 
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was 2mg/ml. Scan times of small molecule were 32. All chemical shifts are reported 

in ppm downfield from tetramethylsilane (TMS) as an internal standard. The volume 

of all samples was about 0.8ml. 

Polymers were prepared in CDCl3 (2 mg/ml) according to repeat units. The 

sample volume was about 0.8 ml in NMR tube. Metal perchlorate solutions were 

prepared in spectroscopic grade acetonitrile (1.0×10 -2M). Add 0.1 ml metal solution 

to NMR tube per time. The solution was shaken well and kept for 5 min before 

recording the 1H NMR data. 

3.3. Results and Discussion  

3.3.1. Emission Spectrum Study on Metal Ion Detection   

To find out whether metal ions could be detected by the synthesized polymers, a 

series of experiments were conducted in the presence of different metal salts under 

various conditions. Unexpectedly, the polymers 20a and 20b showed no appreciable 

response in their emission spectra in the presence of the series of alkaline and  

alkaline earth metal ions Li+, Na+, K+, Mg2+ and Ca2+. The partial loop in the 

oligo(ethylene oxide) segment does not resemble closely the corresponding crown 

ethers and thus the optimum binding ability to the metal ions would differ. It is clear 

that both the size of folded partial loop in the polymer chain and the charge density of 

the metal ions do not match well for coordination in polymers 20a and 20b and the 

metal ions studied. 
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Figure 3.2 Emission spectra of 20c (1 µM) in acetonitrile with separate 

addition of Li+, Na+, K+ and Mg2+ (50 mmol). 

Addition of salts (50 mmol) of Li+, Na+, K+, and Mg2+ to a solution of polymer 

20c (1 µM) showed slight changes in its emission spectra (Figure 3.2). Spectrum with 

Na+ indicated a relatively more obvious decrease in emission at about 451 nm and a 

small increase in a new emission at about 410 nm. However, this phenomenon was 

observed with significant changes in the emission spectra of 20c with the addition of 

Ca(ClO4)2 as shown in Figure 3.3. Upon gradual addition of Ca(ClO4)2,  the  

intensity of fluorescence emission maximum of 20c at 451 nm decreased with a 

concomitant increase in intensity of the peak at 410nm. The polymer 20c was 

completely quenched with addition of a large amount of quantum of Ca2+. The 
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observed changes in the emission behavior of 20c in the presence of Ca2+ ions can be 

rationalized on the basis of significant metal ion-induced folding of the oligo(ethylene 

oxide) segment to form  a stacked foldamer with two or more face-to-face 

oligo(phenyleneethynylene) segments (see Figure 3.4). The fluorescence intensity of 

20c became weaker gradually with the addition of Ca(ClO4)2. It may be caused by the 

internal conversion from upper excited state into a lower one occurs immediately, and 

the emission from a lower excited state is theoretically forbidden.21 

 

Figure 3.3 Emission spectrum of 20c (1 µM) in acetonitrile with progressive 

addition of Ca(ClO4)2 (0 to 100 mmol at 10 mmol increment). 

The response sensitivity for Ca2+ in our study of 20c was much lower than values 

reported for oligomers such as 4.22 Quenching of the intense fluorescence emission of 



 

 65

20c was however specific toward Ca2+ under the same conditions, whereas addition of 

Li+, Na+, K+, or Mg2+ did not show any appreciable changes. This illustrates a unique 

ability of 20c to selectively bind Ca2+ in the presence of other alkali and alkali earth 

metal ions. The difference in the binding ability of 20a-c with various cations under 

investigation can be attributed to several factors. The number of coordinating oxygen 

atoms, the size of the pseudo crown cavity, the charge density and the coordination 

behavior of the cation all play a significant role in the binding interactions.23 In 

addition, the flexibility of the polymer backbone which allows the oligo(ethylene 

oxide)segment to fold should also be an important factor in such polymer’s binding 

properties. Additionally, 20c with five oxygen atoms is found to selectively bind to 

Ca2+, which is similar to such polyether chains in reported oligomeric examples.24,25 
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Figure 3.4 The Ca2+ induced foldamer of H-type and the corresponding allowed 

transition and forbidden transition in their two conformations. 
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However, the polymer 20c only showed significant changes towards Ca2+ upon 

the addition of excessive Ca2+. The small molecular pseudocrown ether can form 

coordination compounds with metal ions in the ratio of one to one, however, the 

polymeric pesudocrown ether based chemosensor had quite lower sensitivity in 

detecting metal ions. One of the reasons was that the molecular chain of polymer was 

too long to change their conformation easily, even though there was strong 

coordination effect between metal ion and polymer. Compared with small molecule, 

the longer polymer chain especially needed much more drive force to form that 

folding structure, which finally resulted in low sensitivity. 

3.3.2. Binding Studies by 1H NMR 

 

Figure 3.5 Aromatic region of 1H NMR spectra of 20c in increasing Ca2+: 

polymer ratios (see Experimental). 

UV and FL spectra clearly indicate structural changes of polymer 20c upon 
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complex formation. To further coordination of metal ion to the oligo(ethylene oxide) 

segment of 20c, 1H NMR spectra of 20c were monitored before and after the addition 

of Ca2+ ions in different polymer:Ca2+ ratios (Figure 3.5), which further support the 

proposed formation of coordination compound. 

 

Figure 3.6 Aromatic region of 1H NMR spectra of 20c in the presence of Na+, 

K+, Li+, Mg2+. 

The 1H NMR study was carried out in the absence and presence of metal cations 

in CDCl3/CH3CN (1:1 v/v) at 30℃. The changes in chemical shift of the 1H NMR 

spectra of 20c with increment of Ca2+ are shown in Figure 3.5. With addition and 

progressive increments of Ca2+, aromatic signals of phenyleneethynylene broadened 

and showed continual upfield shifts from δ 7.01 to δ 6.82 (⊿δ＝0.19). Moreover, in 

Figure 3.6 the addition of Li+, Na+, K+, and Mg2+ ions did not cause any significant 
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change in the 1H NMR spectrum of 20c, which further supported selectivity of 20c 

toward Ca2+. In spite of that, there was still interactive coordination effect between 

metal ion and flexible chain of polymer. As the size of the metal ion didn’t match with 

the size of the pseudo crown cavity, however, they just incompletely matched each 

other. So their chemical shift didn’t change, whereas the induced metal ion had effect 

on chemical environment of polymer, which finally made peak broad (see Figure 3.6).  

This result consists with the conclusion drawn from UV-vis and FL spectra. 

 

Figure 3.7 Oxyethylene region of 1H NMR spectra of 20c in increasing Ca2+: 

polymer ratios (see Experimental). 

Furthermore, methylene signals of phenyleneethynylene also changed (see Figure 

3.7), which shifted to high magnetic field from δ 4.03 to δ 3.85 (⊿δ＝0.18) and 
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became broad as well. This result could be explained by deshielding effect due to 

conjugated π-π stacking of the benzene. Methylene signals of ethylene oxide also 

changed (see Figure 3.7), which shifted to high magnetic field from δ3.84 to δ 3.65 

(⊿δ＝0.19) and became weak and broad as well. These significant shifts observed for 

the methylene protons are consistent with deshielding effect resulting from metal ion 

coordination to the oligo(ethylene oxide) segment. With the foldamer formed due to 

the coordination process, appreciable transannular deshielding of aromatic protons 

would be observed from π-π stacking of the conjugated oligo(phenyleneethynylene) 

segment. 

From the above NMR results, it was because that the coordination effect made 

polymer and metal ions form coordination compounds which caused changes in the 

chemical shift of polymer. This result is consistent with the conclusion drawn from 

UV-vis and FL spectra. In addition, the addition of these metal ions did not cause any 

significant change in the 1H NMR spectrum of polymer 20a and 20b. 

3.4. Conclusion 

In this chapter, our work focused on utilization of coordination effect between 

polymer and metal ion, assisted with flexible chain solvophobic effect and conjugated 

polymer’s tendency to π－π aggregation to achieve aim of recognition and detecting 

metal ion. Changes in absorbance and emission spectra were used to recognize the 

signal of metal ion, and changes in NMR were used to further identify the formed 

coordination compounds. With the addition of Ca(ClO4)2 in acetonitrile, polymer 20c 
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formed the H-type complex with Ca2+, consequently, which caused fluorescence 

quenching. While it didn’t cause any changes in the emission and absorption spectra 

of polymer 20a and 20b, because it didn’t form that folding structure with the addition 

of the other metal ions in acetonitrile. The binding properties in such cases mainly 

depended on the number of oxygen atoms, the size of the pseudo crown cavity, the 

charge density, and the coordination number of the cation. These factors were the 

reasons for the specific binding of Ca2+ ions with 20c. In the end, we investigated the 

changes in 1H NMR of polymer after addition of metal ion to further confirm the 

combination of polymer and metal ion.  
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Chapter 4 Study on Self-Assembly Behavior of Organized 

π-Conjugated Polymer  

4.1. Introduction 

Despite conjugated polymers exhibit excellent conductivity, there still remains 

many important questions about the nature of the electronic states in conjugated 

polymers. In particular, the influence of interactions among chains on the electronic 

properties in the solid state is a matter of major current interest.1-5 Interchain 

interactions can have a major impact on the operation of devices, since they not only 

determine the charge transport properties, but also determine the efficiency of 

emission in LEDs, or the charge separation process in photodiodes. More generally, 

energy and charge transport in a molecular solid are critically dependent on the 

intermolecular interactions, which in turn are dependent on the molecular packing. 

Therefore, it is of utmost importance to investigate and control the effects of ordering 

and structure in conjugated polymers, from the nanometer scale through the 

mesoscale (100–1000 nm) to the optical scale (>1000 nm). In the nanometer regime, 

the aim is to synthesize stable materials with high luminescence efficiencies by 

control of the intra- and intermolecular structures.4, 6 In the mesoscale regime, the goal 

is to use polymer mixtures (polymer blends) or block copolymers to explore phase 

separation processes and generate well defined structures (in terms of properties and 

dimensions). Block copolymers, which are the main research subject in materials 
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science, could be incorporated into a large range of devices, such as photodiodes, 

where charge separation occurs at the interface between the phases.7 

In the past few years, intensive research has been dedicated to the control of the 

solid-state organization of conjugated polymers and oligomers.8, 9 The goal is to 

control the π-aggregation of the conjugated polymers, which can lead to aggregate 

(even in solution) or excimer formation that can impact the LED operation.10 

Approaches to avoid undesired aggregation of rigid polymer chains, include the use of 

bulky side chains,11 endgroups,12  or cross-linkable groups.13,14 The aggregation can 

also be controlled via hydrogen bonding between side groups attached to the 

conjugated backbone.15-18 

Block copolymers, in general, can generate a variety of morphologies16,17 due to 

the selective solvation in solution and the microscopic phase separation in the solid 

state. Therefore, they provide a novel, nonlithographic, alternative route to 

nanostructures. Among the different types of block copolymer architectures, coil–coil 

diblock copolymers have been studied most intensively, and their phase diagram is 

now reasonably well understood.18 Replacing one blocks of a coil–coil block 

copolymer by rigid crystallizable segment has a number of consequences. In the field 

of conjugated polymers, controlling their morphology via the synthesis of block 

copolymers including at least one conjugated sequence and one non-conjugated 

sequence is also attracting much interest. The self-assembly of macromolecules, 

including a π-conjugated sequence, constitutes a promising strategy for the 
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construction of well-defined and stable nanometer-sized structures with chemical 

functionalities and physical properties, which could be exploited in optoelectronic 

devices. 

4.2. Experimental Detail  

4.2.1. Solvent-induced Aggregation 

Precise concentration (10-6–10-7 M) of the polymer was prepared in CHCl3 

(spectroscopic grade). A sample of the polymer solution (0.4 mL) was transferred to a 

4 mL cuvette. Additional volume of CHCl3 and CH3OH in a specific ratio was then 

added. The solution was mixed well and kept for 5 min before recording the 

absorption and emission spectra of the sample. 

4.2.2. AFM Studies 

Polymers were prepared in CH3CN (0.1 mg/ml) according to repeat unites. After 

dropped to surface of mica, the sample was kept slowly evaporation for 48h. Atom 

force microscopy images were recorded on a SPM-9500 J3 of Shimadzu. And 

operation of AFM was in tapping mode. 

4.3. Result and Discussion  

4.3.1. Solvent-Induced Aggregation Behavior of 20a-c 
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Figure 4.1 Variation in (a) UV/Vis and (b) FL spectra of polymer 20b in 

CHCl3 with increasing percentage (%) of methanol 
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To examine whether the solvophobic effect in the oligo(ethylene oxide)  

segment can be utilized to induce folding structure, a solvent titration experiment was 

carried out in chloroform/methanol. Appreciable and similar changes in the absorption 

band intensity with increasing methanol composition were evident in the polymer 20b 

as illustrated in Figure 4.1a. In this case, a progressive albeit small red-shift was 

observed for absorption at about 426 nm with increasing the percentage of methanol. 

In addition, the intensity of the 426 nm peak decreased with a concomitant increase in 

the intensity of a shoulder peak at 482 nm. The above phenomena were attributed to 

aggregation between oligo(ethylene oxide) segment and polar methanol molecules, 

resulting in folding of the oligo(ethylene oxide) unit and  stacking of the 

oligo(phenyleneethynylene) segments at the two ends. The through-space π−π 

interactions will be reflected in the appreciable red-shift observed. When the 

concentration of methanol was lower than 50%, there was no obvious change in the 

absorption band indicating that the polymer chain could still be fully stretched in the 

solution. Once the concentration of methanol was higher than 50%, the polymer chain 

began to wrap gradually to form a partial loop. Not only an appreciable red-shift was 

observed for absorption at about 426 nm but a new shoulder peak at 482 nm due to the 

aggregation and change in molecular framework was clearly detectable. The 

aggregation phenomenon was apparently saturated at methanol concentrations of 

higher than 80% as reflected by no further change in the absorption spectra (Figure 

4.1a). 

The above aggregation phenomenon not only affected the absorption, but also the 
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emission spectra. As the percentage of methanol in chloroform increased, polymer 

20b showed a significant decrease in the intensity of emission peak at about 474 nm 

accompanied by an even more significant increase in the intensity of a new peak at  

426 nm as shown in Figure 4.1b. The observed changes in the emission spectroscopy 

with increased methanol composition could also be rationalized on the basis of the 

solvent-induced folding of the chromophores to form face-to-face stacked foldamers 

as discussed earlier. When the intensity of emission peak decreases, fluorescence of 

folded polymers is expected to be weaker compared with unfolded polymers because 

the internal conversion from an upper excited state into a lower one occurs 

immediately, and the emission from a lower excited state is theoretically forbidden.21 

 



 

 79

 

Figure 4.2  Variation in (a) UV/Vis and (b) FL spectra of polymer 20c in 

CHCl3 with increasing percentage (%) of methanol 
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Figure 4.3  Variation in (a) UV/Vis and (b) FL spectra of polymer 20a in 

CHCl3 with increasing percentage (%) of methanol 

In addition, appreciable and similar changes in the absorption and emission band 

intensity with increasing methanol composition were evident in other two polymers 

20a and 20b as illustrated in Figure 4.2 and Figure4.3. These two polymers can form 

π－π folding structure by solvent-induced aggregation as well as 20c. Although they 

couldn’t strongly change their conformation in solution by metal ion-induced 

coordination effect, which further confirmed that the number of oxygen atoms and the 

size of the pseudo crown cavity were extremely important for the binding ability of 

chemosensor. 

4.3.2. Morphology Studies by AFM 

It is evident that polymers 20a-c showed aggregation behavior in polar solvents 
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such as methanol and acetonitrile. The shape and size of these aggregates could be 

further investigated by AFM measurements on deposits prepared from their solutions. 

Polymer 20b was used as a representative model in this study. From a thermodynamic 

stand point, assembly in solution is governed by a balance between interactions of 

conjugated molecules and solvent molecules while the morphology of deposits 

depends on molecular-surface interactions. Solid-state deposits of monolayer 

thickness were generated from a very dilute solution (0.1 mg/ml) of 20b dispersed in 

acetonitrile. Upon slow evaporation, all three types of interactions 

(molecule-molecule, molecule-solvent and molecule-surface) played an important role, 

which provided additional tenability for the controlled formation of conjugated 

nanostructures. 
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Figure 4.4 AFM (a) height image and (b) 3D image of thin-layer deposits of 

20b from acetonitrile on mica 

The deposits of polymer 20b on a mica surface showed a microscopic 

morphology of small rods standing on the substrate (Figure 4.3a). The diameter of 

those aggregates (obtained from an analysis of 30 objects) was in the range of 1.7-6.2 

nm. The maximum height observed was about 3.2-3.3 nm that is very close to the 

length of a conjugated unit (about 3.1 nm) ignoring the length of ethylene oxide at 

terminals. That suggests that the polymer formed folded structure in solution and the 

folded conjugated segment was perpendicular to the substrate plane after deposition.  

These structures are likely to be related to the aggregates whose formation is deduced 

from solution spectroscopic studies.  

The stages of growth involved aggregation and formation of islands. The polymer 
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formed aggregation resembling folded rods. With slow evaporation of solvent, the 

rods stood upright on the substrate through the interaction between hydrophilic mica 

and ethylene oxide units. Thus it is evident that the polymer already forms 

aggregation in polar solvent before deposition. After that, its conjugated segments 

orientates perpendicularly to the substrate plane while its ethylene oxide segments 

interacts with the mica surface. 

4.4. Conclusion  

We investigated the aggregation conformation of block polymers. The flexible 

ethylene oxide chain was indtrouced into rigid backbone to form rod-coil block 

polymer. Because of the distinctive properties of rigid chains and soft chains, these 

type of polymers present unique self-assembly behavior in system. Therefore, we 

could control their microstructure in solution through change of the polarity of 

solution. As the percentage of methanol in chloroform was more than 50%, it showed 

an obviously decreased intensity of maximum emission and maximum absorption 

with the concomitant emergence of a new shoulder peak. The observed changes can 

be rationalized on the basis of the solvent-induced folding of the chromophore to form 

a face-to-face stacked foldamer. For this type of face-to-face stacked structure, 

fluorescence of polymers became weaker compared with unfolded polymers, because 

the internal conversion from an upper excited state into a lower one occurs 

immediately, and the emission from a lower excited state is theoretically forbidden.21 

We also deposited polymer solutions on mica surface and used scanning probe 
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microscopy to study their nano-scale structure in solid. It was interestingly found that 

the polymer molecule could stand up on the substrate surface. The stages of formation 

involved aggregation in solution and growth in solid. The polymer formed 

aggregation of folding structure, for the corporation of π-π stacking and solvophobic 

effect together in solution. The shape of these aggregations was analogous to stick. 

With slow evaporation of solvent, the “stick” was standing upright on the substrate 

through the interaction between hydrophilic mica and ethylene oxide unites. The 

intra-molecular and inter-molecular interactions can play a key role in molecule 

self-assembly as well as have a major impact on the polymer’s performances in 

manufacturing photoelectric devices. 
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Chapter 5   Conclusion and Future Work 

In the thesis, ethylene oxide with ability to recognize metal ion were introduced 

into conjugated backbone to form alternating oligo-(p-phenylene ethynylene) and 

flexible oligo-(ethylene oxide) structure. The fluorescence chemosensor with special 

selectivity towards Ca2+ were synthesized successfully and their aggregation behavior 

in solution was investigated. Our work focused mainly on the following three aspects: 

First of all, the PPE-based fluorescence chemosensors were synthesized and 

characterized. For the chemosensor’s signal amplify unit oligo-(p-phenylene 

ethynylene) and signal recognition unit oligo-(ethylene oxide), we synthesized them 

via Sonogashira coupling reaction and toluenesulfonyl chloride reaction respectively. 

After that, polymers were synthesized successfully by Sonogashira polymerization. 

Their basic chemical structure and properties were characterized by NMR, UV-vis, 

FL and GPC. By analyzed 1H NMR and 13C NMR spectroscopy, it was also 

confirmed that the formation of alternating oligo-(p-phenylene ethynylene) and 

flexible oligo-(ethylene oxide) in ratio 1:1 structure. According to GPC analysis, their 

molecular weights were controlled below 140 000 and the polydispersity was below 

1.7. So the preconceived polymers were acquired successfully. 

Secondly，we employed the synthesized polymers to detect alkaline metal ions 

and alkaline earth metal ions in solution. We added different metal ions into dilute 

solutions of synthesized polymers. Since the coordination effect between metal ion 
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and ethylene oxide, metal ion was embedded into flexible chain in order to restrict 

polymers loose conformation. Moreover, polymers in solution were able to form 

layer-by-layer folding structure by the solvophobic effect of ethylene oxide and the 

aggregation speciality of phenylene ethynylene. Accordingly, this π-π folding 

structure caused polymer’s fluorescence quenching and the aim of detecting metal ion 

was achieved. From our titration experiments, we found that the polymer 20c 

specially responded towards Ca2+, while it showed weak or no response towards other 

metal ions. The responding properties in such cases depended mainly on the number 

of oxygen atoms, the size of the pseudo crown cavity, the charge density, and the 

coordination number of the cation, which might be the reasons for the specific 

recognition of Ca2+ ions with 20c.  We also investigated the changes in 1H NMR of 

polymers with addition of metal ions to further confirm the coordination effect 

between polymer and metal ion. In the 1H NMR spectrum, all the chemical shifts of 

proton in benzene, side chain of benzene and ethylene oxide chain shifted from low 

magnetic field to high magnetic field to some extent. This result can be explained by 

deshielding effect due to conjugated π-π stacking of the benzene after metal ion 

coordinated with atom O. The interaction between polymer and metal ion and the π-π 

aggregation structure formed by conjugated OPE were identified as well. Though the 

above investigation, a novel fluorescence chemosensor 20c specially responding 

towards Ca2+ was acquired. 

Finally，we studied the self-assemble behavior of well defined π-conjugated 

polymer. We have investigated on the conformation of polymers in solution through 
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solvent-induced methods which could change the polarity of solution. Changes in 

absorbance and emission spectra indicated the changes of polymer conformation with 

increased methanol in chloroform solution. This increased methanol caused π-π 

aggregation of conjugated unit. This result proved that using change of the polarity of 

solution to control self-assembly behavior of polymer in solution was an effective 

method. AFM studies also revealed self-assembly behavior of polymers in solution 

and in solid status. These polymers could stand upright on the mica surface as a result 

of the interaction among polymer, solvent and surface. 

 

Figure 5.1 Proposed new chemosensor molecule 

In conclusion, a novel fluorescence chemosensor 20c specially responding 

towards Ca2+ was acquired, and its self-assembly behavior was studied as well. Based 

on current studies, we can design different recognition units with stronger 

transannular π-π interaction to further improve our chemosensor’s sensitivity in the 

future. These anthraquinone cyclic analogues show a larger and two-dimensional 

conjugated structure. We proposed this new chemosensor molecule with two 

anthraquinone cyclic analogues chromophore and one penta(ethylene oxide) linkers 

(Figure 5.1). This compound might have promising applications in detecting Ca2+ 

with high selectivity and sensitivity. Moreover, interesting of this larger conjugated 
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structure is not only from a structural aspect but also from aspects of electronic 

spectra and aggregation properties. 


