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Summary

In this paper, we present an alternative approach to Van den Hout and Kooiman

(2006) for estimating the linear regression model with categorical covariates sub-

ject to randomized response (RR). Specifically, we consider Warner’s (1965) scheme

of randomization. Our approach essentially consists of moment substitution, where

we estimate the latent first, second and cross product moments in the usual least

squares estimator for the centred model with their associated observed unbiased

estimates. For the problem of estimating subgroup means in a dichotomous pop-

ulation, we show that this moment substitution approach is equivalent to Selen’s

(1986) estimator under appropriate distributional assumptions. Assuming inde-

pendent randomizations, this approach is further adapted to the case of multiple

linear regression, when some or all of the covariates are subject to RR. Ultimately,

it is shown that the estimates yielded by this method are asymptotically equiv-

alent to the measurement error model estimates of Fuller (1987) under suitable

transformations.
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Chapter 1

Introduction

1.1 Motivation

Randomized response is an interview technique first introduced by Warner (1965)

to circumvent the problem of evasive answer bias in survey studies when sensitive

questions have to be answered. Examples of such questions can include questions

about income, alcohol consumption or criminal history. In any case, regardless

of what is actually asked, the reluctance to reveal personal details to a stranger

tends to evoke less than truthful responses from an interview respondent.

A typical RR design gets around this by only requiring respondents to answer

questions on a probability basis. One crucial aspect of this design is that the in-

terviewer only has access to the probability that a respondent answers a particular

question, but not the question being answered, thereby safeguarding the identity

of the respondent. In this light, variables subjected to RR can be looked upon as

misclassified variables whose conditional misclassification probabilities are known.

This warrants the development and use of specialized techniques that take into

account this misclassification. For a review of statistical methods associated with
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such data, see Van den Hout and Van der Heijden (2004); for a concise account of

classical RR methodology and techniques, see Chaudhuri and Mukerjee (1988).

However, while there is a substantial interest in RR techniques in the litera-

ture, little attention has been paid to the treatment of linear regression models

with RR covariates. Specifically, consider a scenario where a response character-

istic is believed to depend on a sensitive quality that one cannot easily measure

truthfully in a survey study. In this case, a RR design can be used to extract the

relevant information, but fitting the usual linear regression model based on this

RR covariate will result in erroneous conclusions.

One way of adjusting for the effects of RR covariates in conventional linear

regression models was introduced by Van den Hout and Kooiman (2006). By

building upon the methods used by Spiegelman et al. (2000) in studying logistic

regression models with misclassified covariates and measurement errors, Van den

Hout and Kooiman’s approach consists of deriving the likelihood function of the

regression model with RR covariates, and then maximising this likelihood using

an EM algorithm. Through a simulation study, for low values of misclassification

probabilities (∼ 0.1), they verified that this adjustment results in estimates that

do not show any structural bias.

However, an inherent feature of this approach is that it can become compu-

tationally inefficient when dealing with large sample sizes, which is typical of RR

designs to offset the additional variance introduced due to misclassification. In

this thesis, we attempt to overcome this inefficiency by suggesting an alternative

moment substitution procedure to the maximum likelihood approach of Van den

Hout and Kooiman.

The outline of this thesis is as follows. The following section describes some of

the preliminaries and notation that will be used throughout this paper. In Chapter
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2, we discuss the application of our procedure to the problem of estimating sub-

group means in a dichotomous population. In Chapter 3, we extend this procedure

to the case of multiple linear regression. Also, we discuss the use of measurement

error models (Fuller, 1987) for this purpose, and show the asymptotic equivalence

of our procedure with the measurement error model approach. In Chapter 4, we

document a simulation study to compare our approach with that of Van den Hout

and Kooiman. Chapter 5 concludes.

1.2 Preliminaries

1.2.1 Notation

For convenience, we adhere to Fuller’s (1987) notation whereby we reserve lower-

case letters (xt) for variables that are measured without error, and upper-case

letters (Xt) for observed variables. If these letters are in boldface, they denote

row vectors. In order to write models in the usual regression form

yt = β0 + xtβ1 + εt, t = 1, 2, . . . , n,

we let xt and β1 be r dimensional row and column vectors respectively.

The bold ΣZZ will denote the covariance matrix of the column Z′, while the

lower-case letter m, appropriately subscripted, is used for the sample covariance.

For example,

mZZ = (n− 1)−1

n∑
t=1

(Zt − Z̄)′(Zt − Z̄),

where Zt = (Zt,1, Zt,2, . . . , Zt,r) and Z̄ = n−1
∑n

t=1 Zt. Upper-case M, appro-

priately subscripted, is used for the matrix of centred mean squares and cross
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products. Thus,

MZZ = n−1

n∑
t=1

(Zt − Z̄)′(Zt − Z̄).

In the later part of this thesis, we also adopt the following representation of MZZ ,

which we define below

MZZ = (hi,i∗)r×r, hi,i∗ = ZiZi∗ − Z̄iZ̄i∗ ,

where ZiZi∗ = n−1
∑n

t=1 Zt,iZt,i∗ , Z̄i = n−1
∑n

t=1 Zt,i and i, i∗ ∈ (1, 2, . . . , r).

1.2.2 Warner’s Randomized Response Model

Throughout this thesis, we restrict our discussion to the randomization scheme of

Warner (1965), which we briefly describe as follows. Suppose that every element

in a population belongs to one of two disjoint groups (1 or 0), and we are inter-

ested in estimating π, the proportion of elements belonging to group 1. A simple

random sample of size n is drawn with replacement from the population, and each

respondent is furnished with a spinner that points to the number 1 with proba-

bility p and to the number 0 with probability (1 − p). During the interview, the

respondent is asked to spin the spinner, unobserved by the interviewer, and is re-

quired to report whether he/she belongs to the group indicated by the spinner. In

such a survey, only yes or no responses are recorded by the interviewer. Assuming

that respondents cooperate fully with the design, it is relatively straightforward

to derive maximum likelihood or moment estimates for π.
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Let

xt =

 1 if the tth element belongs to group 1;

0 otherwise,
(1.1)

Xt =

 1 if the tth element says yes;

0 otherwise.
(1.2)

In this setting, note that xt is latent and only Xt is observed. Hence, we have

P (xt = 1) = π,

P (Xt = 1 | xt = 1) = P (Xt = 0 | xt = 0) = p, (1.3)

P (Xt = 1 | xt = 0) = P (Xt = 0 | xt = 1) = 1− p, (1.4)

from which we can derive the probability of a yes response

P (Xt = 1) = πp+ (1− π)(1− p).

As a result, by noting that E(Xt) = P (Xt = 1) and E(xt) = π, for p 6= 1
2
, we have

the unbiased moment estimator for the latent moment E(xt) as follows

X̄ − (1− p)
2p− 1

, (1.5)

where X̄ = n−1
∑n

t=1Xt is the sample proportion of yes responses. For the case

where p = 1
2
, no useful information can be gleaned from an application of Warner’s

procedure as this situation is akin to the respondent giving random yes/no re-

sponses.
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Chapter 2

Estimating Subgroup Means in a

Dichotomous Population

In this chapter, we examine the problem of obtaining estimates for the subgroup

means of a response variable in a dichotomous population. Assuming that the

allocation of elements to the subgroups is subjected to the RR design described in

Section 1.2.2, we consider two estimators that take into account this information.

2.1 Selén’s Estimator

For a population consisting of k disjoint subgroups, where each element belongs

to one and only one subgroup, Selén (1986) proposed a method of adjusting the

subgroup means when there are errors in the classification of elements to their

subgroups. Selén’s estimator is a moment estimate which essentially consists of

obtaining linear combinations of the averages of the recorded subgroups to offset

the bias introduced due to misclassification. In this section, we consider the case of

a dichotomous population, where it is of interest to estimate the subgroup means
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(µ0 and µ1) of a response variable y. It is assumed that the sample is obtained

through simple random sampling, and that the response yt for the tth element is

measured without error.

We denote xt to be the true class of the tth element as defined in (1.1) and xrt

its recorded class. That is,

xrt =

 1 if the tth element is classified to subgroup 1;

0 otherwise.

Also, let ȳr = (ȳr0, ȳ
r
1) be the vector of averages of the recorded subgroups, where

ȳr0 =

∑n
t=1 yt(1− xrt )∑n
t=1(1− xrt )

,

and

ȳr1 =

∑n
t=1 ytx

r
t∑n

t=1 x
r
t

.

The probability that an element is classified to subgroup j given that it belongs

to subgroup i is denoted by P (xrt = j | xt = i) = pij. The matrix of classification

probabilities can then be represented by

P =

p00 p01

p10 p11

 ,

where p01 = 1 − p00 and p10 = 1 − p11. If we denote µ̂S = (µ̂S0 , µ̂
S
1 ), Selén’s

estimator is then given as

µ̂S = ȳr
[
diag(π)P′diag(Pπ′)−1

]−1
, (2.1)

where π = (1 − π, π) and diag is the diagonalization operator. See Selén (1986).
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Here, the matrix [diag(π)P′diag(Pπ′)−1]
−1

can be regarded as an adjustment

term to account for the bias introduced by misclassification. In expanded form,

the adjusted estimates for the subgroup means is a weighted average of the averages

of the recorded subgroups

µ̂S0 = λȳr0 + (1− λ)ȳr1, (2.2)

µ̂S1 = νȳr1 + (1− ν)ȳr0, (2.3)

where λ = p11[p00(1−π)+π(1−p00)]
(1−π)[p00p11−(1−p00)(1−p11)]

, ν = p00[πp11−(1−π)(1−p11)]
π[p00p11−(1−p00)(1−p11)]

and p00 + p11 6= 1.

The problem with these estimators is that P and π are normally unknown.

If the classification device mentioned above is assumed to be the RR design in

Section 1.2.2, we can use (1.5) to estimate π. Furthermore, we can think of the

RR design as a classification device which classifies elements into yes or no groups.

Thus P is also known to us, since we have p00 = p11 = p. As a result, by denoting

ȳ∗1 =

∑n
t=1 ytXt∑n
t=1Xt

,

and

ȳ∗0 =

∑n
t=1 yt(1−Xt)∑n
t=1(1−Xt)

,

to be the averages of the yes and no groups respectively, (2.2) and (2.3) becomes

µ̂S0 = λ̂ȳ∗0 + (1− λ̂)ȳ∗1,

µ̂S1 = ν̂ȳ∗1 + (1− ν̂)ȳ∗0,
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where λ̂ = p[p(1−π̂)+π̂(1−p)]
(1−π̂)(2p−1)

, ν̂ = p[π̂p−(1−π̂)(1−p)]
π̂(2p−1)

and p 6= 1
2
. This reduces to

µ̂S0 =
pȳ − yX
p− X̄

, (2.4)

µ̂S1 =
(1− p)ȳ − yX

1− p− X̄
. (2.5)

In the following section, we consider an alternative approach to the above problem.

2.2 Moment Substitution

In this section, we consider the previous problem from a sampling perspective.

For a population of size N , when there are no errors in the classification process

and with equal weights assigned to each xt, the subpopulation means of group 1

and 0 are defined as

µ1 =

∑N
t=1 ytxt∑N
t=1 xt

=
E(ytxt)

E(xt)
(2.6)

and

µ0 =

∑N
t=1 yt(1− xt)∑N
t=1(1− xt)

=
E(yt)− E(ytxt)

1− E(xt)
(2.7)

respectively, where E(w) = N−1
∑N

t=1wt is the population mean of w. For a

simple random sample of size n drawn with replacement, the sampling estimators

are

µ̂1 =

∑n
t=1 ytxt∑n
t=1 xt

=
yx

x̄
, (2.8)
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and

µ̂0 =

∑n
t=1 yt(1− xt)∑n
t=1(1− xt)

=
ȳ − yx
1− x̄

. (2.9)

Alternatively, this problem can be formulated in the form of a simple linear

regression model

yt = β0 + β1xt + εt, t = 1, 2, . . . , n. (2.10)

In addition to the usual assumptions for the simple linear regression model, we

further assume that the mean of errors in each subpopulation is 0, i.e. E(εt | xt =

1) = E(εt | xt = 0) = 0. Hence, the subpopulation means are

µ1 = E(yt | xt = 1) = β0 + β1, (2.11)

µ0 = E(yt | xt = 0) = β0, (2.12)

while the least squares estimators for β1 and β0 are

β̂1 =

∑n
t=1(xt − x̄)(yt − ȳ)∑n

t=1(xt − x̄)2
, (2.13)

β̂0 = ȳ − β̂1x̄. (2.14)

Since xt takes on values 1 and 0, (2.13) reduces to

β̂1 =
yx− ȳx̄
x̄(1− x̄)

,

and the regression estimates for µ1 and µ0 in (2.11) and (2.12) eventually reduce

to the sampling estimates of (2.8) and (2.9) respectively.

However, since xt is latent in an RR design, the estimators in (2.8) and (2.9)
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do not apply as we cannot directly use the observed sample means of Xt and YtXt

to estimate the expectations in (2.6) and (2.7). Therefore, alternative estimators

need to be considered. To this end, as remarked earlier, since E(xt) = π, a moment

estimator for E(xt) is given by (1.5). For E(ytxt), an estimator in terms of Xt is

presented as follows.

Proposition 1 Let Xt be the randomized response of xt according to the process

in Section 1.2.2 for t = 1, 2, . . . , n. If yt and Xt are conditionally independent on

xt, an unbiased moment estimator for E(ytxt) is

yX − (1− p)ȳ
2p− 1

. (2.15)

Proof. See Appendix A.1.

Using the results of (1.5) and Proposition 1, the moment substitution estima-

tors for µ1 and µ0 in (2.6) and (2.7) are

µ̂M1 =
yX − (1− p)ȳ
X̄ − (1− p)

=
(1− p)ȳ − yX

1− p− X̄

and

µ̂M0 =
ȳ − yX−(1−p)ȳ

2p−1

1− X̄−(1−p)
2p−1

=
pȳ − yX
p− X̄

,

which are identical to Selén’s estimators in (2.4) and (2.5). This suggests that the

above moment substitution approach can be adapted to a more general setting.

Hence, in the next chapter, we apply this approach to the fitting of multiple linear

regression models with RR covariates.
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Chapter 3

RR Covariates in Multiple Linear

Regression

In this chapter, we propose an alternative approach to Van den Hout and Kooiman

(2006) for estimating the linear regression model with RR categorical covariates.

In their paper, Van den Hout and Kooiman considered a normal linear regression

model where some or all of the covariates are subjected to RR. Specifically, for

t = 1, 2, . . . , n, the model considered is

yt = β0 + β1xt,1 + · · ·+ βrxt,r + βr+1xt,r+1 + · · ·+ βkxt,k + εt

= β0 + xtβ1 + εt, (3.1)

where xt = (xt◦1,xt◦2) and εt is N(0, σ2). Here, xt◦1 = (xt,1, xt,2, . . . , xt,r) is the row

vector of continuous covariates which are measured without error; on the other

hand, xt◦2 = (xt,r+1, xt,r+2, . . . , xt,k) is the row vector of categorical covariates

subject to RR. To implement this model, Van den Hout and Kooiman derived the

likelihood function of (3.1) and obtained the associated parameter estimates by

maximising this likelihood function with an EM algorithm. However, as an EM
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algorithm can potentially be a computational burden as the sample size gets large,

we extend the moment substitution approach discussed in the previous chapter to

(3.1).

3.1 Moment Substitution continued

Following the previous chapter, we limit our discussion to the case where xt,j, for

j = r + 1, r + 2, . . . , k, are binary categorical variables subject to Warner’s RR

design in Section 1.2.2. In particular, we consider a general scenario where

P (xt,j = 1) = πj,

P (Xt,j = 1 | xt,j = 1) = P (Xt,j = 0 | xt,j = 0) = pj,

P (Xt,j = 1 | xt,j = 0) = P (Xt,j = 0 | xt,j = 1) = 1− pj,

P (Xt,j = 1) = πjpj + (1− πj)(1− pj).

On top of the usual regression assumptions applied to (3.1), we also assume that:

1. RR is independently applied to each xt,j for j = r + 1, r + 2, . . . , k, i.e., for

Xt◦2 = (Xt,r+1, Xt,r+2, . . . , Xt,k) and xt◦2 = (xt,r+1, xt,r+2, . . . , xt,k),

P
(
Xt◦2 = (X∗t,r+1, X

∗
t,r+2, . . . , X

∗
t,k) | xt◦2 = (x∗t,r+1, x

∗
t,r+2, . . . , x

∗
t,k)
)

=

k∏
j=r+1

P (Xt,j = X∗t,j | xt,j = x∗t,j).

2. E(εt | xt) = 0.

3. Xt,j is conditionally independent of yt given xt,j for j ∈ (r+ 1, r+ 2, . . . , k).

4. Xt,j is conditionally independent of xt,i given xt,j for i ∈ (1, 2, . . . , r) and

j ∈ (r + 1, r + 2, . . . , k).

13



Also, we use the centred regression model instead of the model in (3.1), where

given a sample size of n, we have

ȳ = β0 + β1x̄1 + · · ·+ βrx̄r + βr+1x̄r+1 + · · ·+ βkx̄k + ε̄.

Subtracting this from (3.1), we arrive at

yt − ȳ = β1(xt,1 − x̄1) + β2(xt,2 − x̄2) + · · ·+ βk(xt,k − x̄k) + ε∗t , (3.2)

where ε∗t = εt− ε̄ for t = 1, 2, . . . , n. We write these n equations in matrix form as



y1 − ȳ

y2 − ȳ
...

yn − ȳ


=



x1,1 − x̄1 x1,2 − x̄2 · · · x1,k − x̄k

x2,1 − x̄1 x2,2 − x̄2 · · · x2,k − x̄k
...

...
. . .

...

xn,1 − x̄1 xn,2 − x̄2 · · · xn,k − x̄k





β1

β2

...

βk


+



ε∗1

ε∗2
...

ε∗n


or

ỹ = X̃cβ1 + ε∗. (3.3)

The least squares estimators for β1 and β0 are then

β̂1 = (X̃′cX̃c)
−1X̃′cỹ = M−1

xxMxy,

β̂0 = ȳ − x̄β̂1. (3.4)

However, as before, we do not observe all the entries in Mxx, Mxy and x̄.

Consider a partition of Mxx below

Mxx =

A11 A12

A21 A22

 , (3.5)
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where A11 = (ai,i∗)r×r, ai,i∗ = xixi∗−x̄ix̄i∗ for i, i∗ ∈ (1, 2, . . . , r); A12 = (ai,j)r×(k−r),

ai,j = xixj − x̄ix̄j for i ∈ (1, 2, . . . , r) and j ∈ (r + 1, r + 2, . . . , k); A22 =

(aj,j∗)(k−r)×(k−r), aj,j∗ = xjxj∗− x̄jx̄j∗ for j, j∗ ∈ (r+1, r+2, . . . , k) and A21 = A′12.

Similarly, we also consider partitions of Mxy and x̄ as follows

Mxy =

B1

B2

 , x̄ = (C1,C2), (3.6)

where B1 = (bi)r×1, bi = yxi − ȳx̄i for i ∈ (1, 2, . . . , r); B2 = (bj)(k−r)×1, bj =

yxj − ȳx̄j for j ∈ (r+ 1, r+ 2, . . . , k); C1 = (ci)1×r, ci = x̄i for i ∈ (1, 2, . . . , r) and

C2 = (cj)1×(k−r), cj = x̄j for j ∈ (r + 1, r + 2, . . . , k).

In this problem, only A11, B1 and C1 are observed, while the rest of the

entries in A12, A22, B2 and C2 are latent and need to be estimated. From (1.5)

and Proposition 1, we can readily get estimates of B2 and C2, which we denote

by B̂2 and Ĉ2 respectively, as follows

b̂j =
yXj − ȳX̄j

2pj − 1
,

ĉj =
X̄j − (1− pj)

2pj − 1
.

To estimate A12 and A22, we present the following results.

Proposition 2 Let Xt,j be the randomized response of xt,j according to the process

in Section 1.2.2 for t = 1, 2, . . . , n. If Xt,j and xt,i are conditionally independent

on xt,j for i ∈ (1, 2, . . . , r) and j ∈ (r + 1, r + 2, . . . , k), an unbiased moment

estimator for E(xt,ixt,j) is

xiXj − (1− pj)x̄i
2pj − 1

. (3.7)

Proof. See Appendix A.2.
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Proposition 3 Let Xt,j be the randomized response of xt,j according to the process

in Section 1.2.2 for t = 1, 2, . . . , n. If RR is independently applied to xt,j and xt,j∗

for j, j∗ ∈ (r + 1, r + 2, . . . , k) and j 6= j∗, an unbiased moment estimator for

E(xt,jxt,j∗) is

XjXj∗ − (1− pj)X̄j∗ − (1− pj∗)X̄j + (1− pj)(1− pj∗)
(2pj − 1)(2pj∗ − 1)

. (3.8)

For j = j∗, an unbiased moment estimator is given in (1.5).

Proof. See Appendix A.3.

Hence, from (1.5) and Proposition 2, we have Â12 = (âi,j)r×(k−r), where

âi,j =
xiXj − x̄iX̄j

2pj − 1
.

To estimate A22, from (1.5) and Proposition 3, we have Â22 = (âj,j∗)(k−r)×(k−r),

where

âj,j∗ =


XjXj∗−X̄jX̄j∗

(2pj−1)(2pj∗−1)
if j 6= j∗;

X̄j(1−X̄j)−pj(1−pj)

(2pj−1)2
if j = j∗.

As a result, we have the moment substitution estimators for β1 and β0 as follows

β̂
M

1 = M̂−1
xxM̂xy,

β̂M0 = ȳ − ̂̄xβ̂
M

1 , (3.9)

where

M̂xx =

A11 Â12

Â′12 Â22

 , M̂xy =

B1

B̂2

 , ̂̄x = (C1, Ĉ2). (3.10)
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In the next section, we consider the use of measurement error models to fit the

model in (3.1).

3.2 Measurement Error Models

A measurement error model is a regression model with substantial measurement

errors in the variables. An example of such models is as follows, where

yt = β0 + xtβ1 + εt, Xt = xt + et, (3.11)

for t = 1, 2, . . . , n. The first equation of (3.11) is a classical regression specifica-

tion, but the true explanatory variables xt are not observed directly; instead, the

measurement Xt is observed. In this setting, Fuller (1987) considered maximum

likelihood estimation for the normal multiple linear regression model, where it is

assumed that 
x′t

εt

e′t

 ∼ N




µ′x

0

0

 ,


Σxx 0 0

0 σεε Σεe

0 Σeε Σee




and both Σee and Σeε are known. The maximum likelihood estimators are then

given by

β̂
F

1 = (mXX −Σee)
−1(mXy −Σeε),

β̂F0 = ȳ − X̄β̂
F

1 . (3.12)

For the likelihood function which led to the above estimators, see Fuller (1987).

These estimators were shown by Fuller to be asymptotically unbiased.
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3.2.1 Adaptation for RR covariates

As mentioned earlier, RR covariates can be looked upon as misclassified categorical

variables whose misclassification probabilities are known; in the light of measure-

ment error models, these can also be viewed as variables with measurement errors,

which suggests that Fuller’s afore-mentioned estimators can be adapted to models

with RR covariates. To this end, we write (3.1) in the form of (3.11), where β1

is a k dimensional column vector and et = (01×r, et,r+1, . . . , et,k). To evaluate Σeε,

we present the following result.

Proposition 4 Let Xt,j be the randomized response of xt,j according to the process

in Section 1.2.2 for t = 1, 2, . . . , n. If Xt,j is conditionally independent of yt given

xt,j for j ∈ (r + 1, r + 2, . . . , k), then

cov(εt, et,j) = 0.

Proof. See Appendix A.4.

Using this result, we can easily verify that Σeε = 0k×1. The remaining task is to

find Σee.

However, before evaluating Σee, we observe that when Xt,j is a RR variable

for j = r + 1, r + 2, . . . , k, we have in general,

E(et,j) = E(Xt,j − xt,j)

= pjπj + (1− pj)(1− πj)− πj

= (1− pj)(1− 2πj)

6= 0.
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To circumvent this problem, we introduce the following transformation on Xt,j,

where we define

Wt,j =
Xt,j − (1− pj)

2pj − 1
= xt,j + ut,j.

Under this transformation, (3.11) becomes

yt = β0 + xtβ1 + εt, Wt = xt + ut, (3.13)

where ut = (01×r, ut,r+1, . . . , ut,k) and we have E(ut,j) = E(ut,j | xt,j) = 0 as

required. Hence, when RR covariates are included in the model, Fuller’s estimators

for β1 and β0 are

β̂
F

1 = (mWW −Σuu)
−1mWy,

β̂F0 = ȳ − W̄β̂
F

1 . (3.14)

Furthermore, we note that since xt,i is measured without error for i = 1, 2, . . . , r,

Σuu is of the following form

Σuu =

0 0

0 Σ∗

 ,

where Σ∗ is the covariance matrix of the vector (ut,r+1, ut,r+2, . . . , ut,k). Hence, to

evaluate Σ∗, we have the following result.

Proposition 5 For j, j∗ ∈ (r + 1, r + 2, . . . , k),

1. var(ut,j) =
pj(1− pj)
(2pj − 1)2

.
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2. For j 6= j∗, if RR is independently applied to xt,j and xt,j∗,

cov(ut,j, ut,j∗) = 0.

Proof. See Appendix A.5.

From Proposition 5, we thus have

Σ∗ = diag

(
pr+1(1− pr+1)

(2pr+1 − 1)2
,
pr+2(1− pr+2)

(2pr+2 − 1)2
, . . . ,

pk(1− pk)
(2pk − 1)2

)

as required. In the next section, we show that Fuller’s measurement error model

estimates for linear regression models with RR covariates are asymptotically equiv-

alent to that of the moment substitution approach mentioned in the preceding

section.

3.2.2 Asymptotic Equivalence with Moment Substitution

To show the asymptotic equivalence of Fuller’s estimates with that of our proposed

moment substitution approach, consider the following modification of Fuller’s es-

timators in (3.14), where

β̂
F∗
1 = (MWW −Σuu)

−1MWy,

β̂F∗0 = ȳ − W̄β̂
F∗
1 . (3.15)

To show the desired result, let us consider a partition of the matrix MWW −Σuu

below

MWW −Σuu =

A11 A∗12

A∗21 A∗22

 , (3.16)
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where A11 is as defined in (3.5). Note that for Wt,j =
Xt,j−(1−pj)

2pj−1
, we have W̄j =

X̄j−(1−pj)

2pj−1
and Wt,j − W̄j =

Xt,j−X̄j

2pj−1
. Thus, we have A∗12 = (a∗i,j)r×(k−r), where

a∗i,j =
xiXj − x̄iX̄j

2pj − 1
= âi,j,

for i ∈ (1, 2, . . . , r) and j ∈ (r + 1, r + 2, . . . , k); A∗22 = (a∗j,j∗)(k−r)×(k−r), where

a∗j,j∗ =


XjXj∗−X̄jX̄j∗

(2pj−1)(2pj∗−1)
for j 6= j∗,

X̄j(1−X̄j)−pj(1−pj)

(2pj−1)2
for j = j∗,

 = âj,j∗

for j, j∗ ∈ (r + 1, r + 2, . . . , k). Also, A∗21 = A∗12
′. Thus, from the above, we can

easily see that A∗12 = Â12 and A∗22 = Â22 .

Similarly, we also consider partitions of MWy and W̄ as follows

MWy =

B1

B∗2

 , W̄ = (C1,C
∗
2), (3.17)

where B1 is as defined in (3.6); B∗2 = (b∗j)(k−r)×1, where

b∗j =
yXj − ȳX̄j

2pj − 1
= b̂j,

for j ∈ (r + 1, r + 2, . . . , k); C1 is as defined in (3.6) and C∗2 = (c∗j)1×(k−r), where

c∗j =
X̄j − (1− pj)

2pj − 1
= ĉj,

for j ∈ (r + 1, r + 2, . . . , k). Once again, we can easily see that B∗2 = B̂2 and

C∗2 = Ĉ2. As a result, recalling the results from (3.9) and (3.10), we note that
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MWW −Σuu = M̂xx, MWy = M̂xy and W̄ = ̂̄x. Hence, we have

β̂
F∗
1 = β̂

M

1 ,

β̂F∗0 = β̂M0 .

Furthermore, note that

MWW =
n− 1

n
mWW .

Consequently, we can express

β̂
M

1 = β̂
F∗
1

= (MWW −Σuu)
−1MWy

=

(
n− 1

n
mWW −Σuu

)−1

· n− 1

n
mWy

→ (mWW −Σuu)
−1mWy

= β̂
F

1 as n→∞.

We can therefore conclude that the moment substitution approach is asymptoti-

cally equivalent to the measurement error model approach in (3.14). Furthermore,

since measurement error model estimates are asymptotically unbiased, it follows

that estimates obtained via moment substitution are also asymptotically unbiased.

In the next chapter, we examine the effectiveness of this approach in fitting linear

regression models with RR covariates through a simulation study.
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Chapter 4

Simulation Study

In the previous chapter, we proposed a method of fitting linear regression models

with RR covariates using moment substitution; also, we considered an adaptation

of the measurement error model of Fuller (1987) to fit such models, and have sub-

sequently shown that these two approaches are asymptotically equivalent. Here,

we compare the afore-mentioned methods with the maximum likelihood approach

of Van den Hout and Kooiman (2005) using a simulation study. Specifically, data

is simulated in the programming environment R and the estimation of a linear

regression model is discussed.

4.1 Simulation Setup

For this exercise, we follow the simulation scheme originally set up in Van den

Hout and Kooiman (2006), where the plan was to assess the following regression

model

E(yt | xt) = β0 + β1xt,1 + β2xt,2 + β3xt,3 = xtβ, (4.1)
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for t = 1, 2, . . . , n. Here, xt,1 and xt,2 are (1, 0) explanatory variables and are

expected to be subject to RR. On the other hand, xt,3 is a continuous variable and

is assumed to be measured without error. The values of these covariates are chosen

as follows: 0.2n units of (xt,1, xt,2) = (0, 0), 0.3n units of (xt,1, xt,2) = (0, 1), 0.3n

units of (xt,1, xt,2) = (1, 0) and 0.2n units of (xt,1, xt,2) = (1, 1). This distribution

of xt,1 and xt,2 values implicitly assume that

P (xt,j = 1) = πj = 0.5,

for j = 1, 2; in addition, xt,3 is sampled from a normal distribution with mean 20

and σ2 = 4. For this study, we fix β = (8, 4, 15, 8)′. Given xt, we then sample yt

from a normal distribution with mean xtβ and σ2 = 9 for t = 1, 2, . . . , n.

Next, we define the independent RR processes for xt,1 and xt,2 as follows

P (Xt,j = 1 | xt,j = 1) = P (Xt,j = 0 | xt,j = 0) = p,

P (Xt,j = 1 | xt,j = 0) = P (Xt,j = 0 | xt,j = 1) = 1− p, (4.2)

for j = 1, 2. Using this setup, we compare the regression coefficients of β1, β2 and

β3 using average point estimates and root mean square errors (RMSE) when they

are fitted under the moment substitution, measurement error model and maximum

likelihood EM approaches. At this point, we point out that when p = 1, all three

methods reduce to the usual least squares estimate for the linear regression model.

Table 4.1 shows the results for various choices of n and p.
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4.2 Simulation Results

Table 4.1 is obtained as follows. Given a particular choice of sample size, one

simulation consists of generating a sample y1, y2, . . . , yn from xt as described pre-

viously and simulating the RR values of xt,1 and xt,2 according to the process in

(4.2). Keeping xt fixed, this is then repeated 5000 times to obtain the average

point estimates and root mean square errors of β1, β2 and β3.

From Table 4.1, the MLEM estimates perform better in terms of consistency

and RMSE when compared to the MS and MEM estimates for all choices of

n and p. Specifically, when both n and p are small, the MLEM estimates are

much more reliable as the MS and MEM estimates show unusually large values of

RMSE. For the estimates obtained by moment substitution, this may be due to

the factor (2p − 1)−2 present in the variance of the individual estimates in (1.5)

and Propositions 2, 3 and 5. As p approaches 0.5, the variance of these terms

increases exponentially.

For the measurement error model estimates, one possible reason that may

account for the inflated values of RMSE is that the RR covariates do not satisfy

the normality assumption required for the application of the measurement error

model technique. Fortunately, for both cases, this effect becomes less pronounced

as the sample size increases. In general, we begin to lose consistency as the value

of p decreases. However, for larger values of n and p, the MS and MEM estimates

perform reasonably well.

Nevertheless, the results in Table 4.1 are for the case when π1 = π2 = 0.5.

As RR is typically employed when the values of π1 and π2 are small, we repeat

the simulations in Table 4.1 but for alternative values of π1 and π2. For these

simulations, the sample size used is 1000 and the results are shown in Table 4.2.
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From Table 4.2, it can be seen that the effect of reducing a particular πj value for

j ∈ (1, 2) increases the RMSE of its corresponding regression coefficient. Further-

more, if this were to be coupled with a low p value, the reliability of the MS and

MEM regression estimates is reduced. In such scenarios, the sample size will need

to be larger to ensure better quality estimates.
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Table 4.1: Comparison of moment substitution (MS), measurement error model
(MEM) and maximum likelihood EM (MLEM) estimates for π1 = π2 = 0.5. Aver-
age point estimates for 5000 replications are given. RMSE is shown in parentheses.

n p Parameter MS MEM MLEM

60 1 β1 4.00 (0.79) 4.00 (0.79) 4.00 (0.79)

β2 15.01 (0.79) 15.01 (0.79) 15.01 (0.79)

β3 8.00 (0.20) 8.00 (0.20) 8.00 (0.20)

0.9 β1 4.33 (2.53) 4.25 (2.46) 4.07 (1.07)

β2 15.63 (2.22) 15.45 (2.13) 15.03 (0.92)

β3 8.00 (0.41) 8.00 (0.40) 8.01 (0.20)

0.8 β1 5.04 (79.86) 5.00 (75.25) 3.94 (1.61)

β2 17.25 (81.48) 17.35 (75.28) 15.04 (1.17)

β3 8.02 (7.39) 8.00 (3.89) 7.86 (0.30)

100 1 β1 3.99 (0.62) 3.99 (0.62) 3.99 (0.62)

β2 15.00 (0.62) 15.00 (0.62) 15.00 (0.62)

β3 8.00 (0.14) 8.00 (0.14) 8.00 (0.14)

0.9 β1 4.23 (1.88) 4.18 (1.85) 4.04 (0.81)

β2 15.41 (1.68) 15.32 (1.64) 15.04 (0.70)

β3 8.00 (0.31) 8.00 (0.30) 7.99 (0.16)

0.8 β1 5.84 (21.34) 4.43 (62.84) 4.08 (1.09)

β2 17.70 (20.96) 16.11 (62.40) 15.02 (0.87)

β3 8.12 (1.75) 8.02 (3.71) 7.93 (0.21)

1000 1 β1 4.00 (0.19) 4.00 (0.19) 4.00 (0.19)

β2 15.00 (0.19) 15.00 (0.19) 15.00 (0.19)

β3 8.00 (0.05) 8.00 (0.05) 8.00 (0.05)

0.9 β1 4.02 (0.56) 4.01 (0.56) 4.00 (0.25)

β2 15.04 (0.49) 15.03 (0.49) 14.99 (0.22)

β3 8.00 (0.10) 8.00 (0.10) 8.01 (0.05)

0.8 β1 4.05 (1.24) 4.03 (1.23) 4.00 (0.32)

β2 15.14 (0.92) 15.11 (0.91) 14.99 (0.26)

β3 8.00 (0.18) 8.00 (0.17) 8.02 (0.06)
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Table 4.2: Comparison of moment substitution (MS), measurement error model
(MEM) and maximum likelihood EM (MLEM) estimates for alternative values of
π1 and π2. Sample size is 1000 for each of the 5000 simulations.

π1 π2 p Parameter MS MEM MLEM

0.5 0.1 1 β1 4.00 (0.19) 4.00 (0.19) 4.00 (0.19)

β2 15.00 (0.30) 15.00 (0.30) 15.00 (0.30)

β3 8.00 (0.05) 8.00 (0.05) 8.00 (0.05)

0.9 β1 4.00 (0.53) 4.00 (0.53) 3.99 (0.24)

β2 15.22 (1.73) 15.20 (1.72) 15.01 (0.35)

β3 8.00 (0.10) 8.00 (0.10) 8.01 (0.05)

0.8 β1 4.02 (1.26) 4.01 (1.25) 3.99 (0.31)

β2 15.87 (3.64) 15.79 (3.59) 15.01 (0.42)

β3 8.00 (0.18) 8.00 (0.18) 8.02 (0.05)

0.1 0.1 1 β1 3.99 (0.30) 3.99 (0.30) 3.99 (0.30)

β2 15.00 (0.32) 15.00 (0.32) 15.00 (0.32)

β3 8.00 (0.05) 8.00 (0.05) 8.00 (0.05)

0.9 β1 4.01 (1.11) 4.01 (1.11) 3.99 (0.46)

β2 15.28 (1.92) 15.25 (1.91) 15.00 (0.36)

β3 8.00 (0.11) 8.00 (0.11) 8.00 (0.05)

0.8 β1 4.02 (3.16) 4.01 (3.13) 3.99 (0.62)

β2 16.30 (4.50) 16.21 (4.42) 15.00 (0.41)

β3 8.00 (0.20) 8.00 (0.20) 8.00 (0.05)
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Chapter 5

Conclusion and Suggestions for

Further Study

In this thesis, we attempted to provide a more efficient method for estimating

linear regression models with RR covariates. A moment substitution approach is

suggested as an alternative to the maximum likelihood EM approach of Van den

Hout and Kooiman. In its entirety, the method of Van den Hout and Kooiman is

an effective, stable but somewhat slow procedure of estimating such models, and

this problem is only exacerbated when sample sizes become large. Specifically, it

was observed that computation times for the maximum likelihood method were

at least three times as long as the moment substitution approach. Under such

circumstances, the efficiency of the moment substitution approach is an advantage,

though a trade-off in terms of the accuracy of the regression coefficients is required.

For sufficiently large samples, the measurement error models of Fuller provide

a useful and convenient generalization of the moment substitution method. The

asymptotic equivalence of these two methods imply that any large sample results

associated with measurement error models extend to the moment substitution
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method as well (Fuller, 1987). Examples include expressions for the asymptotic

variance of the moment substitution estimates, of which similar expressions are

not readily available from the numerical method of Van den Hout and Kooiman.

In retrospect, the results in this thesis were established under the premise of

Warner’s RR design. However, the question of whether or not these results extend

to other RR designs remains to be answered. As the variability of the moment

substitution regression estimates are largely dependent on the type of RR design,

it will be interesting to investigate the use of other RR designs to derive alternative

moment substitution estimates in future studies. Possible candidates include the

unrelated question RR model by Greenberg et al. (1969), a variation of this model

by Huang (2005) and the mixture distribution technique by Kuk (1990).

30



Appendix A

Some Results for Chapter 2 and 3

A.1 Proof of Proposition 1

Before embarking on the proof of Proposition 1, we first work out E(yt) and

E(ytxt). From (2.11) and (2.12),

E(yt | xt) = µ1xt + µ0(1− xt).

Hence,

E(yt) = µ1π + µ0(1− π). (A.1)
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Also,

E(ytxt) = E(E(ytxt | xt))

= E(xtE(yt | xt))

= E(xt(µ1xt + µ0(1− xt)))

= E(µ1xt)

= µ1π. (A.2)

Using (1.3) and (1.4), we have

E(Xt | xt = 1) = p,

E(Xt | xt = 0) = 1− p.

It follows that

E(Xt | xt) = pxt + (1− p)(1− xt)

= (2p− 1)xt + 1− p.

Given that yt and Xt are conditionally independent on xt for t = 1, 2, . . . , n,

E(ytXt | xt) = E(yt | xt)E(Xt | xt)

= [(2p− 1)xt + 1− p]E(yt | xt)

= (2p− 1)xtE(yt | xt) + (1− p)E(yt | xt)

= (2p− 1)E(ytxt | xt) + (1− p)E(yt | xt).

Taking expectation on both sides,

E(ytXt) = (2p− 1)E(ytxt) + (1− p)E(yt), (A.3)
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and finally, we arrive at

E(ytxt) =
E(ytXt)− (1− p)E(yt)

2p− 1
.

Let θ = E(ytxt). We thus have

θ̂ =
yX − (1− p)ȳ

2p− 1
,

as required. Furthermore, from (A.1), (A.2) and (A.3), we have

E(θ̂) = E

(
yX − (1− p)ȳ

2p− 1

)
=

E(ytXt)− (1− p)E(yt)

2p− 1

= µ1π,

which shows that θ̂ is an unbiased estimator of E(ytxt). The proof is therefore

complete. �

A.2 Proof of Proposition 2

The proof of Proposition 2 is similar to that of Proposition 1, and will therefore

not be presented. �
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A.3 Proof of Proposition 3

Given that RR is independently applied to xt,j and xt,j∗ , for j 6= j∗, we have

E(Xt,jXt,j∗ | xt,j, xt,j∗)

= E(Xt,j | xt,j)E(Xt,j∗ | xt,j∗)

=
[
pjxt,j + (1− pj)(1− xt,j)

][
pj∗xt,j∗ + (1− pj∗)(1− xt,j∗)

]
= (2pj − 1)(2pj∗ − 1)xt,jxt,j∗ + (1− pj)(2pj∗ − 1)xt,j∗

+ (1− pj∗)(2pj − 1)xt,j + (1− pj)(1− pj∗).

Taking expectation on both sides, we arrive at

E(Xt,jXt,j∗) = (2pj − 1)(2pj∗ − 1)E(xt,jxt,j∗) + (1− pj)(2pj∗ − 1)E(xt,j∗)

+ (1− pj∗)(2pj − 1)E(xt,j) + (1− pj)(1− pj∗), (A.4)

which implies that

E(xt,jxt,j∗) =

(
E(Xt,jXt,j∗)− (1− pj)(2pj∗ − 1)E(xt,j∗)

− (1− pj∗)(2pj − 1)E(xt,j)

− (1− pj)(1− pj∗)
)/

(2pj − 1)(2pj∗ − 1).

However, since E(xt,j) and E(xt,j∗) are also not observed, we make use of their

estimators given in (1.5). Let γ = E(xt,jxt,j∗). Hence, an estimator for E(xt,jxt,j∗)
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is given by

γ̂ =

(
XjXj∗ − (1− pj)

[
X̄j∗ − (1− pj∗)

]
− (1− pj∗)

[
X̄j − (1− pj)

]
− (1− pj)(1− pj∗)

)/
(2pj − 1)(2pj∗ − 1)

=
XjXj∗ − (1− pj)X̄j∗ − (1− pj∗)X̄j + (1− pj)(1− pj∗)

(2pj − 1)(2pj∗ − 1)

as required. For j = j∗, since E(x2
t,j) = E(xt,j), the result in (1.5) follows. Fur-

thermore, from (A.4) and

E(Xt,j) = P (Xt,j = 1) = πjpj + (1− πj)(1− pj),

we can easily verify that E(γ̂) = γ. The proof is therefore complete. �

A.4 Proof of Proposition 4

If Xt,j is the randomized response of xt,j, for j ∈ (r + 1, r + 2, . . . , k),

cov(εt, et,j) = cov(εt, Xt,j − xt,j)

= cov(εt, Xt,j)− cov(εt, xt,j)

= E(εtXt,j)− E(εt)E(Xt,j)− cov(εt, xt,j).

From the normality assumption of model (3.11), we have E(εt) = cov(εt, xt,j) = 0.

Hence,

cov(εt, et,j) = E(εtXt,j).
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To evaluate E(εtXt,j), we compute its conditional expectation with respect to

xt = (xt,1, . . . , xt,r, xt,r+1, . . . , xt,k) as follows

E(εtXt,j | xt) = E
[
(yt − β0 − xtβ1)Xt,j | xt

]
= E(ytXt,j | xt)− (β0 + xtβ1)E(Xt,j | xt). (A.5)

Since Xt,j is conditionally independent of yt given xt,j and E(yt | xt) = β0 + xtβ1,

(A.5) becomes

E(εtXt,j | xt) = E(yt | xt)E(Xt,j | xt)− E(yt | xt)E(Xt,j | xt)

= 0.

Hence, we have E(εtXt,j) = 0 as required. The proof is therefore complete. �

A.5 Proof of Proposition 5

For j, j∗ ∈ (r + 1, r + 2, . . . , k), recall that

E(Xt,j | xt,j = 1) = pj,

E(Xt,j | xt,j = 0) = 1− pj.

As a result,

var(Xt,j | xt,j = 1) = E(X2
t,j | xt,j = 1)− E(Xt,j | xt,j = 1)2

= E(Xt,j | xt,j = 1)− E(Xt,j | xt,j = 1)2

= pj(1− pj)

= var(Xt,j | xt,j = 0).
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Consequently, in general, var(Xt,j | xt,j) = pj(1− pj). We can thus evaluate

var(ut,j | xt,j) = var(Wt,j − xt,j | xt,j)

= var

(
Xt,j − (1− pj)

2pj − 1
| xt,j

)
=

pj(1− pj)
(2pj − 1)2

= var(ut,j)

as required. Furthermore, if RR is independently applied to xt,j and xt,j∗ , for

j 6= j∗,

cov(ut,j, ut,j∗ | xt,j, xt,j∗)

= cov

(
Xt,j − (1− pj)

2pj − 1
,
Xt,j∗ − (1− pj∗)

2pj∗ − 1
| xt,j, xt,j∗

)
=

cov(Xt,j, Xt,j∗ | xt,j, xt,j∗)
(2pj − 1)(2pj∗ − 1)

=
E(Xt,jXt,j∗ | xt,j, xt,j∗)− E(Xt,j | xt,j, xt,j∗)E(Xt,j∗ | xt,j, xt,j∗)

(2pj − 1)(2pj∗ − 1)

=
E(Xt,j | xt,j)E(Xt,j∗ | xt,j∗)− E(Xt,j | xt,j)E(Xt,j∗ | xt,j∗)

(2pj − 1)(2pj∗ − 1)

= 0.

Also, since E(ut,j | xt,j, xt,j∗) = E(ut,j | xt,j) = 0, we then have

cov(ut,j, ut,j∗) = E
[
cov(ut,j, ut,j∗ | xt,j, xt,j∗)

]
+ cov

[
E(ut,j | xt,j, xt,j∗), E(ut,j | xt,j, xt,j∗)

]
= 0,

as required. The proof is therefore complete. �
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