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Summary

Embedded systems are increasingly complex due to the large number of internal
components and their interactions. This calls for more effective design methods.
System level design methodologies have been proposed in this context as the means
to cope with complex large scale embedded systems.

The aim of this research is to use UML notations to support system level design of
systems in which control flow is event-triggered or time-triggered. We use SystemC
as an intermediate representation to do design validation.

Our main contributions are:

• The identification of a subset of UML using which the structure, behavior and
requirements for a system can be captured. In addition, we identify the neces-
sary UML extension mechanisms and the level of abstraction to facilitate the
efficient SystemC-based simulation.

• A translation framework in which the UML model can be used to generate
SystemC code automatically. The generated SystemC code has been proven to
offer good simulation speed.

• The first steps towards tool-supported model association in which UML-based
test cases and requirements can be validated at the SystemC level and simula-
tion traces can be displayed at the UML level.

• Case studies to confirm the efficacy of our design approach both in event-
triggered and time-triggered settings.
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Chapter 1

Introduction

1.1 Design of embedded systems

An embedded system-on-a-chip (SoC) is a single integrated circuit consisting of all the

functional and communication components of a computing system. SoCs are being

deployed on a broad range of applications such as multimedia, automotive, home

control applications and consumer electronic devices.

A typical SoC may contain one or more programmable microprocessor(s), memo-

ries, peripherals such as timers, buses, external interfaces such as USART (Universal

Synchronous/Asynchronous Receiver/Transmitter), SPI (serial peripheral interface),

etc. In addition, there is software that runs on the microprocessor(s), operating

systems and middle-wares.

The design of an SoC must fulfill strict requirements, regarding its functionality

and performance but also non-functional requirements such as low cost, low power

consumption, small size, and time-to-market. A good design method should aim to

strike a balance between these design metrics. Most importantly, a design method

should be able to help designers do initial analysis of a system’s functionality and

performance, before moving towards implementation and production.

Embedded systems are becoming increasingly complex due to the large number
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of internal components and their interactions. Moreover, the components in a system

often come from different suppliers, making their integration more difficult. This

creates an enormous challenge for SoC design.

1.1.1 Conventional design methods

The conventional design methods for embedded systems usually have informal speci-

fications. They cannot capture the requirements precisely and completely. Hardware

components are refined from the specification to the implementation. Software com-

ponents are subsequently implemented and integrated with the hardware components

to get a complete system. It is only after this process that the functionality and design

metrics are evaluated, and the design bugs are discovered. Once a bug is discovered,

designers have to identify the design layer and the location of the bug within this

layer and fix it. This usually consumes a large amount of effort.

Moreover, the partitioning of a system into hardware and software components

depends on the intuition and experience of the system architects. Thus, design metrics

often cannot be optimized.

Consequently, designers seek a design method in which specification can be cap-

tured more precisely and completely. In addition, the method should enable hard-

ware/software integration and verification to be performed in the initial design phases

so that design bugs can be discovered and fixed early. Moreover, designers would like

to reuse previous designs to a large extent. This helps to reduce the non-recurring en-

gineering cost of designing a system. Reuse and early hardware/software integration

and verification can also help reduce design costs and shorten the time-to-market.

1.1.2 System level design

System level design is being pursued to meet the aforementioned requirements. The

idea of system level design is to specify - without distinguishing between software and

hardware realizations - the desired functionality with a coherent view of the whole
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system. In this approach, functionality and design metrics can be evaluated at a high

level of abstraction before the hardware/software partitioning occurs.

Designs at high levels of abstraction are simpler and more understandable com-

pared to those at lower levels of abstraction. Thus, one can focus on important

aspects of the design and create a system model quickly. The model will be easier to

modify and maintain. Further, high levels of abstraction offer faster simulation speed

although with some loss of accuracy.

The high level models are usually platform independent. Through refinement steps

platform specific models are generated from higher level models for verification and

implementation. Tools to support the required model transformation automatically

are definitely needed.

Since system level design requires functionality of a whole system to be modeled,

it is a challenge for designers. Graphical models enable designers to have a com-

prehensive visualization of the system under design, especially with the increasing

complexity of embedded systems nowadays. In addition, graphical notations make it

easier for designers to communicate with each other. Hence system specification is

often captured using graphical models.

Often, it is not easy to reuse pre-designed components since their descriptions will

involve many implementation specific details. . High levels of abstraction bring reuse

to another level where the specification of the component being reused is independent

on the detailed implementation. Thus reuse becomes more effective.

Another important aspect of system level design is the separation of computation

and communication. Having different design blocks/modules for communication and

computation components increases reusability and the simultaneous development of

the components. We refer the reader to [86, 87, 62] for more detailed discussions on

system level design.

In summary, system level design methods for embedded systems seem inevitable

given the technological trends and the accompanying economic pressures. Two popu-
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lar approaches for system level design are the Y-chart and its extension - the platform-

based design.

The Y-chart based design

The Y-chart based design is usually used in the evaluation of alternative architec-

tures [76, 124, 75]. It involves constructing the application (behavior) and architecture

(platform) models separately. The behavior model is then mapped to the architec-

ture model to build a performance model which will produce performance numbers.

Based on the performance evaluation, designers can modify the application and/or

architecture models or redo the mapping to improve performance. This procedure is

repeated until satisfactory performance is obtained.

 

Architecture 
Instance 

Applications 

Performance 
Numbers

Performance 
Analysis 

Mapping 

Figure 1-1: The Y-chart approach [76]

The Y-chart approach identifies three key aspects that play important roles in

finding a suitable design, namely the application models, the architecture models

and the mapping strategies. It enables the reuse of application and architecture

models by having libraries of application and architecture components. In addition,

it is a quantitative approach for architecture evaluation and design space exploration.

Therefore, the Y-chart approach is a potential basis for a rigorous design methodology.
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Another design approach which includes consecutive refinement steps, each of which

is the spirit of the Y-chart methodology, is the platform-based design.

Platform-based design

Platform-based design (PBD) is a hierarchical design methodology that starts at the

system level [36]. The top layers are the highest levels of abstraction where unnec-

essary implementation details are hidden. The design is carried out as a sequence of

“refinement” steps that go from the initial specification towards the final implemen-

tation using platforms at various level of abstraction [108].

A platform is defined to be a library of components that can be assembled to

generate a design. The library includes both communication and computation blocks.

These blocks are supposed to have been verified earlier and are ready to be integrated

through interfaces to form a model.

Fig. 1-2 shows the PBD process where the triangles on the left hand side represent

the functionality and the ones on the right hand side represent the platforms. The

functionality is mapped into a platform which consists of components chosen from

the library. The mapped functionality in the middle is then considered the function

in the next refinement step, which subsequently will be mapped to another platform.

The process is repeated until all the components are implemented in their final form.

In order to apply the Y-chart and platform-based approaches, some important

questions need to be answered. First, how to model the applications/functions and

the architectures/platforms. The model must aim to satisfy the system level design’s

purpose, namely high levels of abstraction, design reuse and separation of communi-

cation and computation. Second, how to map the application model to the architec-

ture/platform model, such that the mapped model can be validated and analyzed.

And third how to do validation and performance analysis for the mapped application

executing on the architecture/platform.
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Platform 
mapping 

Platform 
design-space
export 

Mapped 
Function space 

Function instance 

Platform (architectural)
space 

Platform instance

MappedFunction space 

Function instance 

Platform (architectural)
space 

Platform instance

Figure 1-2: The platform-based design process [108]

1.2 Execution paradigms

In order to validate the design by simulation, the models need to be executable. There

are two main execution paradigms for embedded systems: reactive (event-triggered)

and time-triggered [126].

A reactive system is a computer system that interacts with its environment in

an ongoing fashion. Moreover, the reactive systems changes its actions, outputs and

conditions/status in response to external stimuli or trigger events. Thus they are

considered to be event-driven systems. At the same time, the control and communi-

cation of each internal component are also triggered by events from the environment

and other components. The points of time at which these events occur will be usually

unpredictable.

In time-triggered systems, the steps of computation are triggered by the passage of

time. In other words, all actions in a time-triggered system are carried out at certain

predesignated points in time. Thus, time-triggered systems will have predictable

temporal behaviors. Hence they are increasingly used in automotive, aerospace and

railway applications, where failure to issue controlling commands promptly can have
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disastrous consequences. However this requires that nodes in a distributed time-

triggered system must have a common notion of time. This is achieved through

synchronized clocks supported by a time-triggered communication platform which

implements a time-triggered protocol.

Some systems integrate the two execution paradigms, thereby aiming at getting

the best of two worlds: time-triggered dependability and event-triggered flexibil-

ity [126, 96, 114]. The differences in the dynamic behaviors of reactive and time-

triggered systems demand different approaches in modeling and simulation for system

level design.

1.3 Contributions

This thesis aims to explore the usage of existing standard notations and languages,

namely UML and SystemC for system level design of reactive and time-triggered

systems.

First, we identify the UML subset which can be used to capture the design of

reactive and time-triggered systems and equally important, the levels of abstraction

in which a system’s structure and behavior should be captured. We base our choice of

UML notations and diagrams on their ability to capture the aforementioned aspects

of a system and to generate executable code so that validation can be carried out.

We determine the roles and semantics of the chosen notations and diagrams in our

model-driven system level design framework.

Second, we use SystemC as an intermediate representation for validation pur-

pose. The SystemC executable representation can also serve as a high level model

of the design before hardware and software components are implemented. We build

a translator which translates the UML models to executable SystemC programs for

simulation. To the best of our knowledge, ours is the first tool - at the time it was

created [91] - which generates executable SystemC code from the UML model of a
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system which includes both structure and behavior specification.

Third, we explore how to test the design at high levels of abstraction. We model

the test case at UML level, and we generate a SystemC test driver. The test driver

is actually a stimuli generator that triggers the model under test to carry out the

test specified at UML level. In addition, the simulation trace is reflected back at

UML level and compared with the requirement in order to guide the designers in

their testing process. This is a first step towards supporting model association and

model-based testing.

As mentioned earlier, we consider the design of both reactive (event-triggered)

and time-triggered systems. They need to be treated differently in terms of the used

UML notations, code generation and simulations approach. For event-triggered UML

model, our framework synthesizes SystemC communication channels for event ex-

change. For time-triggered system, we support both the modeling of time-triggered

applications and the lifting up of the communication platform to the high level UML

model. A SystemC simulation driver is synthesized from a time-triggered UML model

to speed up the simulation. Since we use UML for modeling and SystemC for interme-

diate representation in both settings, it should be easier to integrate the two execution

paradigms.

Last, we also perform a variety of case studies to examine how our choice of UML

and SystemC helps the design process. Our case studies include modeling a number

of reactive and time-triggered applications and platforms. We also measure SystemC

simulation speed and how our support for model association helps in identifying design

bugs. Our results show that the UML-based design framework proposed here can

significantly improve the design productivity. In addition, SystemC is an attractive

intermediate representation. The translator from UML to SystemC built by us can

serve as a tool in the high level to implementation toolset.

The framework established in this research will offer designers a means to do

system level design by deploying standard notational systems and languages. Overall,
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it should help designers of reactive embedded systems and time-triggered systems to

bring system design to a higher level of abstraction, enhance reusability and thus

improve productivity and decrease cost.

In this thesis, we do not aim to provide a comprehensive toolchain from high level

design to implementation of hardware and software. Neither do we target high level

formal verification, timing analysis and synthesis here. However, our framework will

form a sound basis for adding these features or integrating with the tools that support

them such as [82, 67] and [119].

1.4 Organization

Chapter 2 presents the overall view of our proposed design framework. We discuss

the rationale for choosing UML and SystemC. We then present a UML subset which

is used to capture the structure, behavior, and requirements for both reactive and

time-triggered systems in our framework. Subsequently we sketch how SystemC is

used to do simulation for functional and performance validation. This aspect of our

work was presented in [89] and [90].

Chapter 3 describes how our framework can be applied for reactive embedded

systems. We present how event-triggered computation and communication is modeled

at UML level and represented at SystemC level. Then the generation of SystemC code

from UML hierarchical state machines for effective simulation is discussed. These

results in a preliminary form were presented in [91] and [92].

Chapter 4 shows how our framework can be customized and applied in time-

triggered systems. The time-triggered applications are modeled at UML level. The

communication platforms are also modeled by UML notations at a high level of ab-

straction. Through the case studies we show how the synthesized simulation driver

significantly improves the simulation speed. The results of this work appeared in [93].

Chapter 5 presents how validation and model association can be supported. In
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particular how test case and requirements are modeled at UML level, how a test

driver is generated to facilitate the testing process and how the SystemC simulation

trace is displayed and compared with the requirement at UML level.

Finally the last chapter presents a summary and discussion on directions for future

work.
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Chapter 2

System level design based on UML

and SystemC

In this chapter, we first identify some of the important elements of a system level

design framework. Among these, the crucial one is the high level modeling language

for modeling and design. The second one is the intermediate representation that

is needed for validation before further implementation. We start the chapter by

reviewing system level design methods for embedded systems. Next, we present our

proposed design framework and the suggested levels of abstraction to be used in this

framework. Finally, we discuss our chosen high level design language-UML and the

intermediate representation language-SystemC.

2.1 System level design frameworks

The need for system level design and its important aspects and challenges are dis-

cussed in [74, 108]. Some of the prominent system level design frameworks are

Metropolis [19], Artemis [97], Spade [81], and Ptolemy [7]. Artemis supports the

Y-chart approach and targets the multimedia application domain. Also following the

Y-chart approach, Spade addresses the signal processing systems. On the other hand,
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Metropolis was designed to support platform-based design in a unified framework.

First, we examine the modeling languages and notations. There are two trends of

specification languages: one based on standard notational systems such as UML [48,

104, 124, 85] and its variations [9]; the other one based on new notations, such as

MMM [19, 97], SystemC [10] and SpecC [95], etc. In Metropolis, the function and

architecture are modeled in a representation called Metropolis Meta-Model (MMM)

which like SystemC, separates communication and computation components.

In the Artemis framework, a sequential imperative application specification, writ-

ten in a subset of Matlab, is converted into a Kahn Process Network (KPN). An

architecture model is constructed from generic building blocks provided by a library,

which contains template performance models for processing cores, communication

media (such as busses) and various types of memory.

In Spade [81], the applications are modeled by Kahn Process Networks using which

the computation and communication workload can be analyzed. An architecture

is specified in a textual architecture description language. The mapping between

applications and architectures is specified using textual language. We think that this

approach is still at a low level of abstraction, where implementation-level architecture

aspects such as instructions’ latencies have to be specified.

We now consider simulation methods. The Metropolis framework contains a front

end that parses the input metamodel language and creates an abstract syntax tree.

In addition, it has a back end that translates the metamodel specification into the

executable SystemC language. There is another back end which based on the simula-

tion traces, examines whether the system satisfies some temporal properties defined

in linear temporal logic (LTL) or the Logic of Constraints (LOC).

In Artemis, the simulation for performance analysis is done in Sesame [51] which is

based on Pearl and an extension of SystemC. In Spade [81], the application simulation

is based on Pamela [72] multi-threading environment. The architectural simulation

model is based on TSS (Tool for System Simulation), a Philip’s in-house architecture
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modeling and simulation framework. A trace-driven simulation technique is employed

to co-simulate an application model with an architecture model.

Ptolemy II [7] offers an environment for heterogenous reactive systems where

different models of computation are supported for modeling and simulation. It is

a Java-based framework and is able to generate C code for synchronous dataflow

(SDF), finite state machine (FSM) and heterochronous dataflow (HDF) models.

In summary, many projects use SystemC for simulation [19, 97, 47]. Others use C

and Java for simulation [7, 19]. [45] contains a survey of system level languages. We

think that SystemC is able to support not only simulation but also multiple levels

of abstraction; thus a SystemC intermediate representation can be further refined to

implementation.

We next consider formal verification. The Metropolis framework has another

formal verification back end which uses SPIN to verify LTL and a subset of LOC

properties against a metamodel specification [108]. There have been works on formal

verification of SystemC models at different levels of abstraction, from system level [79],

transaction level [66, 73], to RTL level [63].

At UML level, there also have been research projects that involve formal veri-

fication. These works can be divided into two types, depending on the supported

UML diagrams and what can be verified. First, several projects support UML class

diagrams and Object Constraint Language (OCL). UMLtoCSP [30] translates UML

class diagrams with OCL constraints to a Constraint Satisfaction Problem (CSP).

The properties to be verified are mainly the relationships between the objects in

the model. UML2Alloy [16] transforms UML class diagrams with OCL constraints

to Alloy code. Alloy is a textual modelling language based on first-order relational

logic [16]. It comes with the Alloy Analyzer which allows fully automated analysis.

On the other hand, there are projects that support the verification of UML class

diagrams and state machines [18, 82, 109]. [18] transforms UML model consist-

ing of class diagrams and state machines to a formal representation which can be
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verified using TLPVS, an PVS-based implementation of linear temporal logic and

some of its proof rules. However, orthogonal states and timed systems are not sup-

ported. The UML notations supported by vUML [82] are wider than those of [18].

They include composite states and transitions across composite states. vUML uses

SPIN model checker to perform verification. The UML model is transformed into

a PROMELA program. Also supporting the UML class diagrams and hierarchical

state machines, [109] transforms UML models into a format usable for for VIS model

checker. State space explosion is a common problem for these projects. Moreover,

dynamic object creation, unbounded event queues and unbounded domain variables

are also issues. Several techniques such as the symbolic analysis technique [38] and

the abstraction technique of data-type reduction [39] are applied to eliminate these

limitations.

We now turn to synthesis. The Metropolis framework not only offers simulation

and formal verification tools but also supports refinement from higher levels of ab-

straction to lower levels. This platform refinement process is described in [43]. The

refinement can go as far as “real” architectures such as the Xilinx Virtex II Pro [42]. In

order to assure the refined models conform to the behavior of their abstract counter-

parts, formal refinement verification is provided [41]. The Artemis framework includes

a synthesis path to VHDL code and FPGA implementation. In our framework, we

have not supported synthesis to implementation. However, it is possible to connect

our UML-based framework with others which provide this support.

Several frameworks are based on UML and SystemC. It will be more convenient

to discuss them in a later chapter after presenting the main features of UML and

SystemC.
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2.2 Rationale for the UML-SystemC framework

In the recent past, a broad consensus has emerged regarding the basic principles that

should govern system level design methods. These principles include that the design

should start at a high level of abstraction and should deploy substantial component

reuse. Moreover, they should separate computation and communication. As the com-

plex systems usually have components containing each other and concurrent threads

of execution, the modeling language must support the modeling of both hierarchical

structure and concurrent behavior.

All of the above call for a high level modeling language which can be used as the

starting point of the design process where the requirements as well as the system at

high level are captured. The modeling language should serve as an easily understood

common language among different parties involving in the system development pro-

cess, including system architects, hardware and software engineers. At the system

level, the modeling language must be able to capture different aspects of the system

under design, namely the structure of a system and the behavior of its components,

including how they interact with their environments and with each other. In addition,

in order to support design validation, the modeling language must be able to capture

test cases.

We have chosen UML as the modeling language to capture all the above. It is

now widely accepted in the software engineering community as a common notational

framework. It supports object oriented designs which in turn encourage component

reuse. UML can be used to provide multiple views of the system under design with

the help of a variety of structural and behavioral diagrams.

Though it was originally created to serve the software engineering community,

UML is also becoming an attractive basis for developing system descriptions in the

(real time) embedded systems domain [80]. In fact, many of the enhancements to the

UML 2.0 are geared towards easing the task of specifying complex real time embedded

applications.
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UML allows standard ways of extending the language to meet the demands of

specific application domains. It is a set of notations which is easy to learn and

apply, which shortens the learning curve of hardware designers compared to other

non-standard languages, thus saving time and effort. What UML may have to offer

towards system level design methods for real time embedded systems has been studied

from a number of perspectives as reported in [80].

It is necessary to do validation or simulation in order to validate the design. Due to

the complexity of the systems we would like to validate, we have chosen simulation as

the main approach. However, an UML design cannot be simulated without generating

an executable program from it. In addition, an executable intermediate representation

can serve as a common design document for the software and hardware teams which

can then independently work towards a detailed implementation.

The intermediate representation should have a clean executable semantics, at

which both the application and the platform on which the application is to be realized

can be captured and related. Further, behaviors described at the intermediate level,

should clearly separate the computational aspects from the communication features.

It should also be compatible with the chosen modeling language above, namely UML.

SystemC has been chosen as the intermediate representation in our framework. It

supports different levels of abstraction to capture a system from un-timed functional

model to RTL (register transfer level). It allows both applications and platforms to

be expressed at fairly high levels of abstraction while enabling the linkage to hardware

implementation. Moreover, it separates computation and communication elements.

Hence SystemC has the potential to provide a full fledged description of an execution

platform which can serve as the target of a co-design methodology.

SystemC also supports multiple Models of Computation such as RTL model, Kahn

Process Network, Static and Dynamic Dataflow. In addition, it supports different

kinds of design process: top-down, bottom-up, and iterative. Furthermore, SystemC

— viewed as a programming language — is a collection of class libraries built on
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top of C++ and hence is naturally compatible with the object oriented paradigm

that UML is based on. Moreover, SystemC can be co-simulated with other hardware

description languages [31].

With SystemC being used increasingly popular in system level design, some high

level SystemC models of platforms (including peripheral, bus, memory and processor)

are available [37, 33, 44]. These models can be incorporated into our framework as

elements in the platform library to be used for design space exploration in the Y-chart

scheme (see figure 2-5).

One might wish to consider SystemC itself as the high level system description

language. However, at the application level one would like to have visual notations for

interacting with the end users to capture requirements easily and precisely. It is also

important to be able to use standard models of computation (MOCs) at the initial

design stages. Further, one may not wish to concretely specify the communication

mechanisms and instead leave it to be defined by the underlying operational semantics

of the MOCs being deployed.

We think that for large scale systems, modeling at UML level makes a big differ-

ence. First, the designers can focus on the model, not the program, which free them

from many unnecessary details and allows them to focus on important aspects of the

design. Moreover, the modeling at UML level and the automatic SystemC code gen-

eration makes the design process faster. It also helps to remove human errors when

writing the code, especially with complicated models. In addition, different represen-

tations can be derived from UML models for various purpose, such as SystemC for

simulation and another representation for formal verification.

2.2.1 Overview of the framework

Fig. 2-1 shows our overall design framework. UML is used to capture the design of

a system, including its architecture and behavior, the testcases for the design and

how the system is expected to behave in different scenarios. The UML model is then
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translated into SystemC executable program to do simulation so that the designer

can verify whether the design satisfies the requirements based on the simulation trace.

This simulation trace shows different properties/aspects of the system under test, such

as performance and interaction sequence which can help designers validate the design.

If the simulation traces show that the design is not satisfactory, designers can go back

to UML model to modify it, re-generate SystemC code and check its behavior again.

All of the above are done before implementation is carried out, namely hardware

is realized and software is implemented on the target hardware. Here for our purpose

of modeling event-triggered and time-triggered systems, we selected a subset of UML

and gave the chosen notations the semantics that are suitable for these types of

systems.

Hardware Software

Behavioral/architectural models

Desirable scenarios

Testcases

Executable programs

Simulation

Verification

UML

SystemC

Figure 2-1: The envisioned design framework based on UML and SystemC

Fig. 2-2 shows the different levels of abstraction of a computation or communica-

tion component’s model. An untimed model is an algorithm description. Designers

can annotate timing information into the untimed model to get a timed model. When

the model is more detailed and the timing information contains the approximate num-

bers of clock cycle it takes to execute, it becomes a cycle approximate model. Fur-

thermore, the cycle accurate model can contain the behavior of the components at

each clock cycle. Finally, the register transfer level (RTL) of a hardware component
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describes the operation of a digital circuit with hardware registers and signals. The

RTL model of a software component can be considered the software program running

on the target platform.

 

Untimed 

Timed 

Cycle 
approx. 

RTL 

Computation

Communication
Untimed RTLTimed

Cycle 
approx.

Cycle 
accurate

Cycle 
accurate 

Figure 2-2: The levels of abstraction

For a system level model which consists of computation and communication com-

ponents, we suggest and support the abstraction levels covered inside the highlighted

rectangle in Fig. 2-2. The unnecessary details of implementation platform and tech-

niques must be hidden. More specifically:

• Communication: no pin-level or cycle-accurate level synchronization. Commu-

nication should be done through function calls. The functions are captured in

interfaces and the components are connected through ports. A component’s

port connects to another port with matching interfaces.

• Computation: abstract, high level data-types should be used instead of hard-

ware data-types which operate on bits.

• Timing: clock-level timing should be avoided as this incurs much details and

simulation overhead. There should be no clock synchronization if the system

under design is a distributed system; all the nodes must assume that their clocks
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are well-synchronized already. This ensures that designers focus on crucial char-

acteristics of the system at high level design. Clock synchronization mechanisms

can be added later in the design process.

With the supported levels of abstraction, designers can choose their own methods

or paths to design and refine their system model. Fig. 2-3 and Fig. 2-4 show two of

the possible refinement paths that designers can do within our framework. Note that

the refinement is done manually. We do not support automatic refinement.
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Figure 2-3: A refinement process
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Figure 2-4: Another refinement process
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Fig. 2-5 shows how our design framework fits in a Y-chart scheme. On the left

hand side of the Y-chart, the behavior of the designed system can be captured using

UML. Then SystemC program can be generated from this behavioral UML model to

validate it. On the right hand side of the Y-chart, the potential architecture can also

be captured in an architectural UML model and its corresponding SystemC code can

be generated and simulated too. When both the behavioral and architectural models

are ready, designers can map the behavior onto the architecture. This mapping can

be done manually or with the support of some tools. Here are our suggested mapping

steps which can be done by designers at UML level:

• Block mapping: decide which behavioral block is going to be realized or running

on which architectural component. Then connect each behavioral component

to it architectural component so that the behavioral component can use the

services provided by the architectural component. Note that the components

are categorized into two types: computation and communication.

• Communication interface adapting: insert adapters between interfaces of dif-

ferent behavioral and architectural components. This is necessary when the

communication primitives used by the application model are different than the

communication primitives provided by the platform. In the later steps of a

development process, these adapters can be refined to device drivers and pro-

tocols.

• Operation mapping: make an application’s computation block utilize the oper-

ations of the platform component that it has been mapped to during the block

mapping step. Again, some adapters should be inserted if the interfaces are not

matched.

After mapping, the SystemC code for the system being designed is generated.

Based on the SystemC simulation trace, the correctness of the system is validated

and the performance of the system is analyzed. This is because the trace contains



CHAPTER 2. SYSTEM LEVEL DESIGN BASED ON UML AND SYSTEMC 22

information about the interaction among the components in a system, input and

output to the environment, the point of time at which an event or action occurs

or how much time it takes to finish a function. If the system after mapping is not

satisfactory, the UML behavioral model can be modified, or the UML architecture

can be adjusted or changed, or the mapping can be changed.
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Figure 2-5: The Y-chart framework based on UML and SystemC

The above framework supports reuse. The architectural model can be designed

from scratch or can re-use pre-defined components. Behavioral blocks can also be

reused, e.g. the blocks representing commonly used algorithms.

Similar to the case of the Y-chart approach, our framework may fit in the platform-

based design approach for the higher levels of abstraction in which both functionality

and platform are modeled in UML and the mapped instance is validated by SystemC

simulation before becoming the functionality for the next step.

In this research we focus on the UML modeling of the functionality and generating



CHAPTER 2. SYSTEM LEVEL DESIGN BASED ON UML AND SYSTEMC 23

SystemC code from it. Systematic architecture modeling of architecture components

such as micro-controllers, ASICs, etc. is not targeted here. We also do not study the

details of the mapping between the functionality and the architecture.

2.3 UML modeling

2.3.1 UML essential features

The current version of UML called UML 2.x is a large collection of diagrams and

notations. It has 13 diagrams types. Here we briefly present the essential features of

UML that we use in our framework. These notations and diagrams are chosen such

that they can capture the structure, behavior of a system and its components, the

test cases and system requirements at a high level of abstraction. In addition, they

contribute to the SystemC code generation process.

Class diagrams

Each class in a model represents components of the same type, or having similar

behaviors. More crucially, a class diagram depicts the classes in a model and how they

are related to each other. The relationships include generalization (or inheritance),

aggregation/composition and association. Generalization (or inheritance) is for a

class to inherit attributes, operations and behavior of another class or implement the

operations defined in another class. Aggregation/composition is to capture that an

object of a class may contain one or more objects of the other classes. Association

exists when an object of one class have interaction with another object of another

class. In case the other class is an interface, the association relation indicates that one

class will call operations defined in the interface to interact with its environment. The

number at the other end of an association relation refers to the number of instances

of the other class which is (are) related to an instance of this class. A class may have

many relationships with different other classes.

Fig. 2-6 is an example of a class diagram which is used to capture the relation-
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ships between different types of components. Each of the block is a class. The

connections represent their relationships. In this case, the simple_bus class in-

herits or implements simple_bus_blocking_if, simple_bus_non_blocking_if and

simple_bus_direct_if. The simple_bus class has <<Channel>> stereotype to indi-

cate that this is a communication channel. The simple_bus_blocking_if,

simple_bus_non_blocking_if and simple_bus_direct_if classes have <<Interface>>

to indicate that they are interfaces which include only definitions of operations to be

implemented by the simple_bus class. The association relation between

simple_bus_master_blocking and simple_bus_blocking_if tells that the

simple_bus_master_blocking will call the operations defined in the

simple_bus_blocking_if interface to communicate with its environment.

 

  simple_bus_master_blocking   simple_bus_master_non_blocking simple_bus_master_direct 

simple_bus_blocking_if 
 

<<Interface>> 

simple_bus_non_blocking_if 
 

<<Interface>> 

simple_bus_direct_if 
 

<<Interface>> 

simple_bus 
 

<<Channel>> 

1
1

1
1 1

1

Figure 2-6: A class diagram

Structure diagrams and structured classes

In complex systems, an object of a class may contain objects of other classes and

the relationships between objects may be intricate. UML provides structure diagrams

to model the internal structure of classes more accurately. Moreover, they are used

to capture hierarchical structure. An important concept of UML structure diagrams

is ports, which are the connection points of an object to its environment. Ports come

with provided or required interfaces which define the set of operations that the object

provides or calls through the ports. The parts in a structure diagram represent the



CHAPTER 2. SYSTEM LEVEL DESIGN BASED ON UML AND SYSTEMC 25

internal components. They are connected through ports with interfaces. Fig. 2-7 is

an example of structure diagram which shows the structure of a cluster containing the

components of a brake-by-wire application, including two managers, four actuators at

four wheels and different sensors. The right hand side of the figure shows the internal

structure of the manager.

<<Cluster>>
BBWCluster

<<Node>>
ManagerNode

Buses

<<Node>>
Brake1

<<Node>>
Brake2

<<Node>>
Brake3

<<Node>>
Brake4

<<Node>>
Manager1

<<Node>>
Manager2

PedalP1 PedalP1 PedalP1 PedalP1

ManagerTask

<<CommController>>
ManagerCC

pCC

pTask
IFlexRayCHI

Figure 2-7: A composite structure diagram

Behavioral state machines

In UML, an object-oriented variant of statecharts [68] called behavioral state ma-

chines are used to model the behavior of components in a system. Behavioral state

machines describe the behavior of classes. A state can be a simple state or a com-

posite state. A composite state may consist of concurrent substates; in this case it is

called an orthogonal state. On the other hand, a composite state which consists of

sequential substates is called a simple composite state. Being in an orthogonal state

means being in all of its substates. Being in a simple composite state means being in

exactly one of its substates. Each simple composite state has an initial pseudostate

and an optional final state.

Each state is associated with a set of actions on entry and actions on exit. These

will be executed when the object enters and leaves that state respectively.
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A transition connects a source state and a target state. The label of each transition

includes a trigger event, a guard and a sequence of actions. Trigger events may be

associated with data. A guard is an expression which returns a Boolean value. When

an object is in a state and an event of an outgoing transition of that state occurs,

the corresponding guard is evaluated. If the guard is true, the transition is taken, the

sequence of actions is performed and the object moves into another state. Otherwise,

the object stays in the current state. The order in which the actions of the states

and transition is as follows: action on exit of the source state, then actions of the

transition and finally, action on entry of the target state. In case the transition cross a

state(s)’s border, the actions on exit is executed starting from the substate(s)’s to the

father state(s)’s and actions on entry is executed from father state(s) to substate(s).

An example of an hierarchical state machine and a cross-level transition is shown in

Fig. 2-8.

 

Figure 2-8: A fragment of a hierarchical state machine

Fig. 2-9 shows a hierarchical behavioral state machine of a brake actuator in which

the transitions at the top level are triggered by time-out events while the transition

inside dynamic2 state is triggered by an event from another component.

Use case diagrams

A use case diagram describes the usage requirements for a system. Fig. 2-10 shows
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start
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dynamic2
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waitingforUrgency
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tm(500)

tm(3300)
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Figure 2-9: A behavioral state machine

a simple use case diagram describing the usage of an online store customer. The actor

Customer is the user of the system. The use cases Search for items, Place orders

and Obtain help are the actions that the Customer can perform on the system. In

other words, they are the services that the system offers to its users.

 

Search for items

Place orders 

Obtain help 

Customer 

Figure 2-10: A use case diagram

Activity diagrams

In contrast to behavioral state machines which depict the behavior of objects

of the same class, an activity diagram displays the activities across different objects

which may belong to different classes. Activity modeling emphasizes the sequence and

conditions for coordinating behaviors of different objects [94]. An activity diagram

has multiple activity nodes connected together. In order to determine the order of

actions, a unique token flowing through the diagram determines the activity occurring.
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Get sensor values 

Compute brake force Apply brake force 

Figure 2-11: An activity diagram

The token starts from the initial node and stops at the final node. Fig. 2-11 shows

a simple activity diagram describing a car’s process of getting the values from the

brake pedal sensor, computing the brake force and applying the force on the wheels.

Here which components inside the car carrying out these activities are not specified.

Sequence diagrams

Sequence diagrams depict the messages being exchanged between different objects

with the focus on the order in which the messages occur. Each vertical lifeline repre-

sents an object and each horizontal line represents a message, which can be an event

sending or a function call. Time progresses from the top of a sequence diagram to

the bottom. Sequence diagrams are usually used to describe usage scenarios or the

interactions among the components when the system is doing some service. Fig. 2-12

is a sequence diagram with a life line represents the driver of a car, who sends requests

to the internal components of the system under model.

Extension mechanisms

UML provides some extension mechanisms, namely stereotypes, tagged values,

and constrains that make UML be able to support different types of systems and do-

mains while avoiding language explosion. Stereotypes is a means to classify elements.

For example, designers can introduce stereotypes “communication” or “computation”
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Figure 2-12: A sequence diagram

to classes to distinguish between classes that represent communication or computa-

tion components. Constraints allow some properties to be specified linguistically for

a model element. A tagged value is a (Tag, Value) pair that permits arbitrary infor-

mation to be attached to any model element. A UML profile is a collection of the

stereotypes, constraints and tagged values defined for modeling in different domains.

In our framework, we define a SystemC profile at UML level in case designers want

to lift up SystemC concepts to UML. In addition, there is a profile for time-triggered

communication platform to describe the platform at high level of abstraction and

facilitate the code generation and enhance simulation speed.

2.3.2 UML in our framework

In our framework, we use the above diagrams for modeling and generating SystemC

code. The extension mechanisms are utilized in order to distinguish different com-

ponent types and thus, facilitating the code generation and simulation speed opti-

mization process. The chosen diagrams and extension mechanisms are suitable for
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our purpose of specifying a system level design model of a system and generating

SystemC code.

Table 2.1 is a summary of the UML notations being used in our framework. The

details on how these diagrams are used in the context of event-triggered and time-

triggered systems will be presented in the respective chapters.

To be captured UML elements

Structure Class diagrams, structure diagrams,
ports, interfaces, and stereotypes

Behavior Behavioral state machines
Platform’s service Use case diagrams,

activity diagrams and tagged values
Usage scenario Sequence diagrams
Expected scenario Sequence diagrams

Table 2.1: Summary of UML notations used in our framework

While modeling at high level of abstraction, it is necessary that the model should

produce fairly accurate performance numbers for design validation and design space

exploration. In our framework, designers can annotate delays in behavioral state

machines as time-out events. For the accuracy of performance analysis by simulation,

these delays must be carefully computed/estimated and inserted into the behavioral

state machines. These delays can be obtained by different ways, simulation, analytical

methods or from real execution if the component has been implemented and now it

is being re-used from a library.

In object-oriented paradigm, a behavioral state machine captures the behavior of

different objects of the same class. Although objects of the same class have similar

behavior, the time-out events for different objects may have different values. Our

framework allows designers to have variables in the time-out statements so that the

delays can be adjusted for different situations or objects of the same class.

In summary, UML is a high level modeling language for system level design for

embedded systems. It is used to capture various aspects of a system, such as structure,

behavior, test cases and requirements. At the same time, since a UML model cannot
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be simulated directly, it is necessary to have an executable internal representation to

do simulation and validate the design.

2.4 SystemC intermediate representation

SystemC [62, 10] is a system level language that is suitable to serve as the intermediate

representation in our framework. It is an IEEE standard language built entirely

on C++. The SystemC language is suitable for system level modeling, design and

verification. However, it is not limited to high level design. On the other hand,

SystemC modeling can be done at different levels of abstraction. Since 1999, the

SystemC user community has been growing to a large number of system design and

semiconductor companies and IP providers. Tools supporting SystemC modeling,

simulation, verification and synthesis have been developed by many companies. The

role of SystemC in the system level design context has also been explored in detail in

[86, 62].

2.4.1 SystemC essential features

SystemC separates computation and communication by having modules and processes

for computation; ports, interfaces and channels for communication. Modules are the

basic building blocks for partitioning a design. A module hides its data and algo-

rithms from other modules. Modules communicate through channels. There are two

types of channels: primitive channels and hierarchical channels. Primitive channels

are in some sense, stateless while hierarchical channels can have internal states and

control flow associated with them. As the name suggests, hierarchical channels can

contain other channels, modules or processes. Interfaces specify the signature of the

operations provided by channels. A module accesses a channel through a port whose

type is one of the interfaces implemented by the channel.

A component interacts with its environment through port(s), each port is associ-



CHAPTER 2. SYSTEM LEVEL DESIGN BASED ON UML AND SYSTEMC 32

ated with an interface, a set of operations that are provided or required by this port

depending on whether it is a sc_export or sc_port respectively.

Hierarchical
Channel

Module A Module B

Process(es)
Module A1

Module A2

Process(es)

Figure 2-13: SystemC basics

Both communication and computation components, except primitive channels,

have processes to capture their behavior. It may have one or more processes which

can run concurrently. There are three types of processes: sc_thread, sc_method and

sc_cthread. sc_cthread’s execution is triggered by clock edge, hence suitable for

low level design while sc_thread and sc_method are triggered by SystemC signals or

events. As opposed to sc_method which is sensitive to only one event, sc_thread can

be sensitive to different events at different points of control. This makes sc_thread

suitable for capturing the behavioral state machine model. However, the simulation

speed for sc_thread is slower compared to sc_method as the SystemC simulation

kernel has to keep track of the current state of the thread.

The SystemC simulation kernel [10] which comes with the SystemC library is a

discrete-event simulator. It manages the progression of time and the execution of all

the processes based on the events exchanged among them and the time. The simu-

lation consists of delta cycles. Each delta cycle involves determining which processes

are ready to be executed, executing the processes, updating the primitive channels

and advancing the simulation time [64]. The simulation is deterministic in the sense

that two simulation runs of the same program with the same input will give the same
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results. However, when two processes are triggered at the same time, there is no way

of telling which process runs first.

Currently there are some synthesis tools [35, 118, 117, 14, 61] for SystemC. They

synthesize a SystemC behavioral hardware module into an RTL hardware descrip-

tion language program or a gate level netlist. These tools place restrictions on the

SystemC code that can be synthesized. We refer the reader to [2] for the SystemC

synthesizable subset. Here are some examples of the unsupported features. Sev-

eral object-oriented features such as dynamic object creation and virtual functions

are not supported. Pointers which contain address determinable during compilation

are supported. Otherwise, they are not supported. Certain data types such as lim-

ited precision fixed-point types and arbitrary precision value and the SystemC/C++

methods related to them are not supported.

Celoxica’s Agility compiler [35] supports register transfer level (RTL) and be-

havioral level SystemC models. These models are cycle accurate for communication.

While computation at RTL must be cycle accurate, computation at behavioral level

is timed or cycle approximate. Agility compiler feedbacks useful information such

as area and delay estimation, register usage and hardware optimization informa-

tion. Forte Design Systems’ Cynthesizer brings the SystemC synthesizable model

to a higher level - transaction level model. Cynthesizer is able to produce a report

on area, performance and power. xPilot [14] synthesizes behavioral SystemC model

into configurable processors, multi-cores, and multi-processors or highly customized

devices, such as FPGA and ASIC. Systemcrafter SC [117] synthesizes SystemC into

RTL VHDL or Verilog for Xilinx FPGAs. ESEComp [22] synthesizes ESE SystemC

designs into Verilog RTL.

Other executable system level languages are SpecC [57] and SystemVerilog [60].

SpecC is derived from software programming language C. SystemC and SpecC both

separate computation and communication. While SystemC supports multiple mod-

els of computation, SpecC supports only its own models of computation (parallel,
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pipeline and FSM). Moreover, SystemC is a library built entirely on C++ so any

C++ compiler can be used to compile a SystemC program. Meanwhile, SpecC is

a new language. SystemC has wider support by EDA vendors in many commercial

tools.

SystemVerilog is derived from hardware description language Verilog. SystemVer-

ilog is more suitable for RTL design and verification. On the other hand, SystemC is

better for writing abstract models and it is good for reusability and IP design.

2.4.2 Efficient SystemC simulation

Since system level design aims to deal with the complexity of systems nowadays

and to improve productivity, the validation of the design should be fast. Thus, it is

crucial to have high simulation speed. In order to have efficient simulation speed, it is

important that designers choose the right level of abstraction, for both computation

and communication. For communication, transaction level modeling should be used.

As for computation, high level datatypes should be used and context switching should

be minimized.

A key feature of SystemC is that communication can be modeled at a high level

of abstraction often referred to as transaction level modeling (TLM). It is hard to

pin down this notion precisely. Intuitively, communication between components is

described through method calls. Here, ‘transaction’ stands for the exchange of data

between two components of a system. This level emphasizes what data are trans-

ferred and from which locations but not the details of the specific protocol used by

the communication. Hence, when a component wants to send some data to another

component, the sender will just call a function provided by the receiver to transfer

data. Thus, inter-component interactions are abstracted from the details of the im-

plementation of the communication architecture and this facilitates component reuse.

In addition, simulation at this level can be usually carried out at a much high speed.

For a more detailed description of TLM, see [32]. At this level, the basic communica-
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tion unit consists of a method call and hence the performance numbers reported will

generally not be cycle accurate. However, acceptably accurate performance numbers

can be obtained by inserting fairly accurate delays at the right places. One way to

improve the accuracy is to insert delays obtained from analytical methods or real

execution of component (if it is reused) after every critical section.

The Open SystemC Initiative (OSCI) [10] has announced the TLM 2.0 interface

standard. The standard contains interfaces for loosely-timed modeling, interfaces

for approximately-timed modeling, generic payload for memory-mapped buses, di-

rect memory interface, and debug transaction interface. It enables SystemC model

interoperability and reuse at the transaction level.

SystemC simulation kernel is a discrete-event simulator. It manages the progres-

sion of time and the context switching between the processes based on the events

they are waiting for. Regarding simulation speed, our experience is that the number

of processes doesn’t matter as long as the amount of context switching is not much.

Unnecessary context switching with little or no useful processing is one of the causes

of poor simulation performance. The amount of context switching should be reduced

by reducing the number of sc_threads. In addition, the execution of a thread, when-

ever it is active, should be made as long as possible, because a thread that is triggered

to be active many times but does not do much when it is active will consume much

simulation time. On the other hand, sc_methods are faster than sc_threads. Hence

sc_methods should be used as much as possible, whenever a process is only sensitive

to an event.

Another important factor in context switching is the role played by clocks. A

SystemC model with clocks is slowed down. At high level design, a clocked model

should be modified by changing the sensitivities to clock edges to waiting of time

calculated from clock period. For example, if a SystemC process is sensitive to positive

clock edges and do some processing after every 5 edges, it can be modified to wait for

a time equivalent to 5*clock_period.
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2.5 Summary

In this chapter we have presented our system level design framework based on UML

and SystemC. We have discussed the reasons why UML and SystemC are chosen. In

particular, we have gone into the UML diagrams and notations selected to capture

different aspects of a system which allow designers to model requirements, systems’

structure and behavior as well as testcases. In addition, the model can be used to

generate executable SystemC code automatically. And we have discussed how to have

a system level SystemC model that offers fast simulation as well as fairly accurate

performance numbers.

Existing SystemC models can be reused in our framework. If a designer has a

SystemC model of a component, she/he needs to specify the connection between this

component and other components inside the system at UML level. She/he does not

have to specify the behavior of this component. After generating SystemC code of

the whole system, the designer can just compile the SystemC code for the existing

component with the newly generated code to simulate the whole system.

One might consider Rational Rose Technical Developer (previously known as Ra-

tional Rose RealTime) [8] and Rhapsody [100] as the system level design tool. They

are able to generate C, C++ and Java code from UML models. However, SystemC is

a better candidate for a system level design language than C, C++ and Java thanks

to its features (presented in section 2.4). In addition, there are existing system level

models in SystemC which are ready to be re-used and integrated into a new system.

We have shown how our framework can fit in the Y-chart and platform based

approach, although more research should be done on how to do the architecture

modeling and mapping. While our framework is simulation-based, it is possible to

combine it with analytical frameworks, such as WCET so that the delays inserted

in behavioral state machines are computed based on WCET. The implementation of

our framework makes it easy to integrate with other analytical or formal verification

frameworks. The details of the implementation will be discussed in the later chapters.
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Chapter 3

UML-based design for reactive

systems

In this chapter, our design framework for reactive systems is presented. We focus on

how reactive systems are modeled in UML. We also show the techniques for synthesiz-

ing executable SystemC code from UML hierarchical state machines and the SystemC

communication channels from UML event communication specifications. This work

has appeared as a conference paper [91] and a book chapter [92]. We begin by re-

viewing related work on UML and SystemC and executable code generation from

behavioral state machines.

3.1 Related work

UML-SystemC translation

Closely related to our approach, UML and SystemC have been used together in

[121, 125, 29, 110]. Our use of stereotypes for SystemC components is similar to those

proposed in [121, 103, 29]. [125] proposes an extension of UML based on ROOM

and RoseRT. The extension includes stereotypes for modules, channels, interfaces and

ports. In the design framework proposed in [125], UML is used to model structure
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only. Then SystemC model is developed for functional and performance evaluation.

Similarly, [29, 17, 113] use UML merely to capture the structural aspects of the system

under design. Thus, only SystemC skeleton code is generated. [110] also generates

SystemC skeleton code from UML model. Furthermore, it provides a path to hardware

implementation by taking the generated SystemC code and user input methods to

generate code in hardware description languages such as VHDL and Verilog.

In contrast to the above approaches, our approach provides for the full fledged

use of state machine diagrams — including C++ code associated with the actions —

and hence can capture system behaviors exhibiting concurrency at the UML level.

A UML profile for SystemC [104, 49, 102, 23] brings SystemC concepts for both

structure and behavior up to the UML level. Executable SystemC models are gener-

ated from UML models. However, designers need to know SystemC concepts in order

to use this framework. Moreover, this work does not bring the design to a higher level

of abstraction because the design being done here is actually a SystemC-based design.

Program synthesis from state machines

An important aspect of code generation from UML models is to generate exe-

cutable programs to simulate the behavior of hierarchical state machines. This is not

trivial since hierarchical state machines will include concurrency as in our framework.

There are two ways to achieve this:

• In the first approach, a state machine becomes a set of data structures coupled

to an execution engine, as in [123]. States are stored in a hierarchy tree and

transitions in a hash table. The set of active states in which the object is

residing comprises a configuration. The execution engine based on the event

trigger chooses the transitions to be executed, executes the actions and moves to

another set of active states. This approach avoids the exponential code growth.

The translator only has to generate the data structures corresponding to the

state machine. The engine is the same for different state machines. So in this
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case the translator’s task is simply to generate the data structures from the

state machines.

• In the second approach, a state machine itself is mapped into code, usually

through switch statements or function pointers [100, 15]. The code is executed

to simulate the state machines. There is no execution engine. The state tree

is encoded in a nested switch statement or in a class hierarchy with virtual

methods [123]. The latter is referred to as state pattern [15]. Although the

approach in [15] generates more understandable (readable) code, it is not effec-

tive because there are so many objects created at the beginning and it is not

scalable (since it used state pattern, each state is an object).

The difference between our framework and the above related works is that we

generate executable code which will be running on a SystemC discrete-event simula-

tion kernel which manages the progression of time and supports concurrency. Thus,

we can take advantage of the simulation kernel to reduce our effort. However, we

still have to take care of the synchronization and communication of the concurrent

execution. We use the techniques discussed in section 2.4 to speed up the simulation

of hierarchical state machines.

Research issues

The first problem to be targeted in this chapter is how to have UML capture both

the structure and the event-triggered behavior of a system so that executable SystemC

code can be generated automatically from the UML model. This problem involves

several issues. First, among a number of UML diagrams and notations, which ones are

most suitable for our purpose. Another important issue is the semantics given to UML

notations in order to model event-triggered platforms and applications, especially for

the sending and receiving of events.

Another issue is that from UML event communication specification, how to gener-

ate SystemC communication channels. This synthesis must make sure that the chosen

model of computation at UML level is executed correctly and effectively.
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The generated SystemC code may be simulated many times to test and debug a

design. Hence, it is crucial that the SystemC code generated from UML is effective in

terms of simulation speed. In addition, designers should be able to further refine or

synthesize an abstract design towards implementation. This requires the generated

SystemC code to be readable and understandable.

3.2 The UML design pattern

In this section we discuss the UML notations are for modeling both structure and

behavior and their semantics. We use the Rhapsody tool [100] to capture the UML

specification. However, our approach does not specifically depend on this tool.

To bring out the main aspects of our modeling method, we will use the simple bus

model available in the SystemC package [10] as a running example. In this system,

there are three masters, namely a blocking, a nonblocking and a direct master. In

addition, there is a bus and two memory slaves, one fast and one slow. A master

initiates transactions on the bus to access a memory. Fig. 3-1 shows the block diagram

for this example.

 

Master1 Master2 Master3 

Bus 
Arb

Slave1 Slave2 
port 

interface

clock 

Figure 3-1: The block diagram of the simple bus example [64]
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3.2.1 Structure

The key aspect of modeling structure is to capture the relationships among the com-

ponents in a system. These relationships can be grouped into the following categories:

• Communication relationships between components.

• Containment relationships between the sub-components and the containing

components.

In most systems, usually there are components that have similar behavior. More-

over, for fault tolerance, important components are usually replicated. Hence, in

order to reduce the modeling effort, the common attributes and behavior of the sim-

ilar components are modeled as a ‘virtual’ component. It is considered the abstract

or general component. The ‘real’ components implement this ‘virtual’ component.

Implementation relationships do not exist physically in real system but necessary in

object-oriented modeling to better organize the models and to promote re-use.

We use the class diagrams in the usual way to describe the above relationships.

In the simple bus example, the masters send requests to the bus by function calls.

So does the bus to the slaves. A special type of classes called interface is used to

capture the functions that a class provides for other classes to call. Fig. 3-2 shows a

fragment of the class diagram of the simple bus example, in which we can see that

different masters use different interfaces to access the bus. Thus the bus implements

these three interfaces.

Classes can be related by the following relations:

• Generalization (or inheritance): when a class implements an interface, it inherits

that interface. Moreover, an interface and class can inherit another interface

and class respectively.

• Aggregation/composition: an object of a class contains object(s) of other class(es).
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Figure 3-2: A class diagram

• Association: classes that exchange messages with each other are associated to

one another. We model messages by UML events with or without arguments.

Furthermore, a module may have an association relationship with an interface

when it accesses a channel through this interface.

The aggregation/composition relations are modeled more clearly in structure dia-

grams which describe the internal sub-objects of object(s). Fig. 3-3 shows a structure

diagram of the class which represent the bus system.

 

Figure 3-3: The structure diagram for the simple bus example
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3.2.2 Behavior

In UML, an object-oriented variant of statecharts [68] called behavioral state machines

are used to model the behavior of components in a system. Behavioral state machines

describe the behavior of classes. Two main concepts in behavioral state machines are

states and transitions.

A state can be a simple state or a composite state. A composite state may consist

of concurrent substates; in this case it is called an orthogonal state (AND state). In

contrast, a composite state which consists of sequential substates is called a simple

composite state (OR state). Being in an orthogonal state means being in all of

its substates. Being in a simple composite state means being in exactly one of its

substates. Each simple composite state has an initial pseudostate and an optional

final state.

Each state is associated with a set of actions on entry and actions on exit. These

will be executed when the object enters and leaves that state respectively.

A transition connects a source state and a target state. The label of each transition

includes a trigger event, a guard and a sequence of actions. Trigger events may be

associated with data. A guard is an expression which returns a Boolean value. When

an object is in a state and an event of an outgoing transition of that state occurs,

the corresponding guard is evaluated. If the guard is true, the transition is taken, the

sequence of actions is performed and the object moves into another state. Otherwise,

the object stays in the current state. The actions of the states and transition are

executed in the following order: action on exit of the source state, then actions of the

transition and finally, action on entry of the target state. In case the transition cross a

state(s)’s border, the actions on exit is executed starting from the substate(s)’s to the

parent state(s)’s and actions on entry is executed from parent state(s) to substate(s).

An example of an hierarchical state machine and a cross-level transition is shown in

Fig. 3-5.

Modeling concurrency is an important part of a system specification and this is
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Master

m_direct

to_print/md_to_print();

Master_direct

mnb_to_read

to_wait/mnb_wait_to_read();

mnb_to_write

to_wait/mnb_wait_to_write();

finish_nbr/
mnb_do_write();

finish_nbw/
mnb_do_read();

Master_non_blocking

mb_wait_write

mb_to_write

/mb_do_write();

mb_waiting_read

finish_blocking_read/
mb_after_read();

mb_to_read

finish_blocking_write/
mb_after_write();

/mb_do_read();

Master_blocking Master_direct Master_non_blockingMaster_blocking

StatechartOfSimple_bus_master

Page 1 of 1

Figure 3-4: An orthogonal state

achieved with the help of orthogonal states. Fig. 3-4 shows a state machine diagram

of a master which is a combination of the three masters described above. This is a

derived version of the simple bus model in the SystemC package; we have combined

the three masters into one master state machine diagram. The orthogonal state

(AND state) Master has three substates, each of which is a simple composite state

(OR state) which in turn has a set of simple leaf states that have no internal structure.

The transitions are not necessarily between two states having the same parent.

Instead, transitions can cross a state’s or many states’ border. In this case, the nested

substates will be exited before their composite states and the composite states will be

entered before the nested substates. As an example, in Fig. 3-5, suppose the active

states are (a1, b2, c2) and event e1 arrives. Hence the transition t1 is enabled. As a

result, states b2 and c2 are exited simultaneously (their actions on exit are executed),

followed by action on exit of state a1, then the action of the transition, action on

entry of state a2 and finally action on entry of state d4.

The actions associated with a transition or a state can be C++ statements or

a function call whose body (in the form C++ code) is to be provided by the user.

This code decides the level of abstraction for computation. The action could also
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Figure 3-5: A fragment of a hierarchical state machine

correspond to sending an event to another state machine diagram (describing the

behavior of a different class). In addition, the action could be calling an interface

method through a port. Moreover, in the actions, we support specification of clock

sensitivity or delays in terms of clock cycles or time units through C++ macros.

This gives the designers an option to have timed models. Furthermore, this allows

users to provide annotations of timing information for performance estimation and

architectural exploration. For transaction level modeling (TLM) implementations, we

do not restrict the C++ code associated with the actions in anyway. Although clock

sensitivity is supported, it is not encouraged at this high level of abstraction due to

simulation speed trade off.

A special statement for actions of states and transitions is sending out an event.

This is an asynchronous send, i.e. an object can continue after calling this statement

without waiting for the receiver to receive it.

Fig. 3-4 shows an orthogonal state named Master consisting of three states:

Master_direct, Master_blocking and Master_non_blocking. We describe the be-

havior associated with the Master_blocking state. First, it goes from the initial state

to mb_to_read state. Since there is no trigger event and guard for the transition, the

function mb_do_read is called and the state mb_waiting_read is entered. In state
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mb_waiting_read, when the event finish_blocking_read arrives, mb_after_read

is performed and state mb_to_write is entered. Other states and transitions can be

interpreted similarly.

In UML, events can be used as a mean to trigger a transition in states (of the

same object or another object) or at the same time send some data associated with

it. However UML does not define specifically how the events should be processed.

In our framework, we require events to be sent point-to-point and not broadcast.

An event is sent immediately when the sender issues the command and is consumed

immediately if the receiver is waiting for it. Otherwise it is buffered at the receiver

side. For each object, there are different queues for different types of events so that

the order in which the events of different types are sent does not matter the execution

of the receiver. We chose a queue for each event type instead of a queue for all the

events sent to an object because at high levels of abstraction, it is hard to pin down

exactly the point of time at which an event occurs. Fig. 3-6 shows a simple state

machine of an object which transitions are triggered by event e1 from another object

O1 and e2 from another object O2. At high levels of abstraction, the order in which

e1 and e2 are sent cannot be defined accurately. Suppose we use a unique queue

for all event types of the object and e2 is enqueued first while the object is waiting

for e1, a deadlock occurs. Hence, we separate the queues for different event types.

This allows more behavioral scenarios compared to the case of a unique queue, but

it is good for the early steps in the design process. The later refinement in a design

process will narrow down the behavioral scenarios.

 

S1 S2 S3 
e1 e2

Figure 3-6: A simple behavioral state machine

There is a special type of events called time-out events which are expressed as
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tm(t). After an object enters a state which has a transition with time-out event

tm(t), after t units of time, the object must leave this state and take the transition.

In case where more than one transitions are enabled, one of them will be selected.

In general, if t1 is a transition whose source state is s1, and t2 has source s2, then if

s1 is a direct or transitively nested substate of s2, then t1 has higher priority than t2.

An event occurrence can only be taken from the event queue and dispatched if the

processing of the previous event is fully completed. This is called run-to-completion

processing. Before commencing on a run-to-completion step, a state machine is in a

stable state configuration with all entry/exit/internal activities completed. The same

conditions apply after the run-to-completion step is completed.

In addition to UML models which are independent of SystemC, we also support

designers to lift up high level SystemC design to UML level by providing a simple

SystemC profile at UML level. If designers are used to SystemC and would like to

have UML as a front-end, they can exploit a SystemC profile at UML level that we

provide. Through this, designers can have SystemC structural components speci-

fied at UML level and use behavioral state machines to model their behavior, then

generate SystemC code automatically. Class notations are also used to define and

distinguish between the various features of SystemC lifted up to the UML level us-

ing the stereotype mechanism. This is an extension mechanism of UML that allows

one to define virtual subclasses of UML meta classes with new meta attributes and

additional semantics. Using this, users can define a class as a module, an interface,

a primitive channel or a hierarchical channel. In the case of the simple bus example,

the bus is a hierarchical channel which implements the three interfaces. This simple

SystemC profile provides a convenient way to model architectures. Moreover, if there

is an existing SystemC component, the information about the type of the component

(module, interface or channel) can be specified at UML level.
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3.3 From UML to SystemC

After a system is modeled in UML, its executable SystemC code is generated by a

translator in our framework. The translator is based on the semantics we chose for

the UML notations and it generates executable SystemC code. In this section we

explain this code generation process, including the mapping from UML to SystemC,

how the translator is implemented and simulation speed is optimized.

3.3.1 SystemC code generation

The skeleton of the SystemC modules, interfaces, channels and their relationships are

generated from class diagrams in a straightforward fashion. The instances/objects

are created/initialized based on structure diagrams. We support the initialization

of multiple instances of a type (module, primitive channel or hierarchical channel).

However, they cannot be created dynamically since SystemC does not support dy-

namic instantiation; the structure of a system is determined at elaboration time before

simulation starts. The functionalities corresponding to the modules and channels are

generated from their state machine diagrams.

s1

s2

s3

actionT

eventA/ functionA()

eventB[guardB]/
functionB()

Figure 3-7: A fragment of a behavioral state machine

As mentioned earlier, we support hierarchical state machines including nested

states and cross-level transitions (transitions that connects states of different nested
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levels). Thus the mapping of hierarchical state machines to SystemC code is not

trivial, as the following requirements must be satisfied:

• The orthogonal composite states require the simulation of concurrency.

• For the transitions involving composite states, the execution of the actions on

entry, actions on exit of the states and the actions of the transitions must be in

the correct order as defined in section 3.2.

• The run-to-completion requirement and the event processing order described in

section 3.2 must be complied with.

Our mapping from UML to SystemC takes into account the simulation speed and

the readability of the generated code in order to make it easy for designers to further

synthesize to implementation.

Since SystemC sc_threads can be sensitive to different events at different points

of control, they are most suitable for capturing simple composite states.

We support the concurrency of behavioral state machines by having multiple Sys-

temC threads in a SystemC module. Each OR state in the state machine is mapped

onto a SystemC thread in which switch statement is used to capture the state tran-

sition among the direct children of that OR state. Each direct child is represented

by a case of integer number in the switch statement, which is captured in an integer

variable called state variable. Hence, only the states that are direct children of an

OR state exist in the code of the switch statement.

In SystemC 2.1 which allows dynamic thread creation, the hierarchy of UML be-

havioral state machines can be implemented naturally by forking/joining SystemC

threads when hierarchical states are entered/exited. With this dynamic scheme,

threads are created when it is necessary only. Hence, at every delta cycle, the Sys-

temC simulation kernel has to take care of the active threads only. However, our

experimentations show that the cost of forking threads in SystemC is high compared

to the scheduling cost of statically created threads. Therefore, we use the static
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scheme in our framework, namely all the threads are created before simulation starts

and triggered by events from the environment or events generated by other threads.

By default, a thread is sleeping in its initial state. It is triggered to active mode

when the corresponding OR state is entered and returns to the initial state when the

OR state is exited.

 

P1 P2 P3 

C1 C2 

e1 
e2 

Figure 3-8: A hierarchical state machine with a simple composite state

The behavioral state machine in Fig. 3-8 (some events and actions are omitted for

clarity) is mapped into two SystemC threads. The first thread captures the transitions

between the states P1, P2 and P3; and the second thread C1 and C2. In the SystemC

code, there will be three more states, the final state P4, P0 for the default state which

has a transition leading to P1 and C0 for the default state inside state P2. Suppose

the component is in state P2 and C2. If event e2 comes, the second thread will

execute action on exit of C2, send a trigger to the first thread and move to C0. The

first thread upon receiving the trigger from the second thread will execute the action

of the transition, move from P2 to P3 and execute action on entry of P3. The trigger

among the thread is done through newly created events introduced by the translator.

We call them book-keeping events. All the notification of all the book-keeping events

are immediate notification, so that a transition is done in within a SystemC delta

cycle only, to preserve the run-to-completion semantics.

Although our approach may give rise to a large number of threads in a module, it

is unlikely that at high levels of abstraction, a state machine will have a large number

of nested levels or many hierarchical states.
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We have examined another approach which used sc_method instead of sc_thread

since sc_methods are faster than sc_threads. In this case, instead of generating a

thread for each OR state, the translator generates multiple methods, each correspond-

ing to an active segment of the thread. This results in a large number of methods but

not better simulation speed since once a method is waken up, it has to check whether

it is allowed to execute at this point of time, meaning the control has reached the

point this method represents. If not, it has to go into sleep mode again.

The algorithm used to generate SystemC code for a behavioral state machine

consists of the following: Building the state tree; Processing the states; and Processing

the transitions.

Before going into details of the algorithm, we define some important concepts

which are used to explain the algorithm. For each behavioral state machine, we

introduce a top-most state, which contains all other states, either directly or indirectly.

State tree: for each behavioral state machine, the state tree represents the nested

structure of all the states (including pseudo-states), starting from the top-most state.

Each node in the state tree contains the information about the state, including

whether the state is an AND, OR or simple state, the entry and exit action of the

state. Each node also has an operation to get its parent.

Active state: UML defines that a state becomes active when it is entered as a

result of some transition. When a simple composite state is active, at most one of its

substates is active. When an orthogonal composite state is active, all of its substates

are active.

State configuration: As defined in UML, a state configuration is a set of active

states starting with the top-most states down to individual simple states at the leaves.

Main source and main target of a transition: are the states that have the same

direct father state (the main source and main target may be the same state) and

when the transition is taken, the actions of the transition is actually executed when

there is a move from the main source to the main target. Note that the main source
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and main target of a transition may not be the same as the source and target of that

transition.

Least common ancestor (LCA) of two states : in UML, it is the orthogonal state

that contains both the states and is nearest to them based on the state hierarchy.

Least common ancestors of a transition: LCA of a transition is the LCA of the

main source and main target of the transition.

Source scope: we define source scope of a transition as the set of states which

change their status as the result of the exiting of states involved in this transition.

Target scope: we define target scope of a transition as the set of states which

change their status as the result of the entering of states involved in this transition.

Processing the states

Upon entering a composite state, there are two possible cases:

• Default entry: the transition terminates on the outside edge of the composite

state. In this case, the entry activity of the composite state is executed before

the activity associated with the default transition.

• Explicit entry: the transition terminates on a sub-state of a composite state. In

this case, the entry activity of the composite state is executed before the entry

activity of the sub-state. This rule is applied recursively for nested sub-states

if there are any.

Upon exiting a composite state, all the exit actions of the children states must be

executed before the exit action of the parent state.

For the states that do not exist in the resulting SystemC code, i.e. all the direct

children of AND states, their entry and exit actions are appended to their parents’

entry and exit actions following this principle: entryParent+entryChildren and ex-

itChildren+exitParent.

For each of the OR states, an book-keeping event is added to the transition from

its initial state to the default state.
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Processing the transitions

The simplest type of transitions is the transitions between two leaf states (simple,

initial and final states) having the same parent state; because these transitions will

only change the value of the state variable. For all other types of transitions, which

are called composite transitions, a procedure is used to convert the transitions into

the move of the involved threads.

In order to generate the code of several threads to execute a transition, the fol-

lowing algorithm is used for each composite transition in the transition set of each

state machine.

1. Eliminate this transition from the transition set of this state machine.

2. Look for the main source, the main target and the LCA of the transition.

3. Between the main source and main target, create a transition with the trigger

being an book-keeping event generated from lower level if main source is a

composite state or the real event of the transition if the main source is a simple

state; the guard being all children have been exited if the main source is a

composite state or is the guard of the transition if the main source is a simple

state; the action being the action of the transition.

4. Determine and process the source scope of the transition. For all the states in

the source scope that exist in the generated SystemC code (direct children of

any OR state), create a new transition from this state to the initial state at

the same level in the state tree with the following properties. If this is a simple

state, the guard is the guard of the transition; otherwise the guard is that all

of its children having been exited. The action consists of triggering the next

higher level state to exit (if the next state is within the source scope or the main

source).

5. Determine and process the target scope of the transition. Target scope includes



CHAPTER 3. UML-BASED DESIGN FOR REACTIVE SYSTEMS 54

targetSources and targetTargets. For each pair of targetSource and targetTar-

get, create a new transition from the targetSource to the targetTarget, with

the trigger being the book-keeping event triggering the entry of that level, the

guard being the source state of this transition was active at the beginning of

the delta cycle, and the action being that of sending an book-keeping event to

trigger the entry of the next lower level.

The algorithms to determine the main source, main target, the LCA, the source

scope and the target scope of a transition are straightforward and hence we omit

them.

SystemC code for event communication

As mentioned earlier, to execute the cross-level transition and ensure the action

execution order, it is necessary to synchronize the threads. Some book-keeping events

are inserted by the translator into the model for this purpose. These book-keeping

events have higher priority than other events to maintain the run-to-completion se-

mantics. The priority is implemented by the order in which the events are checked.

When an object is waken up, it will check all the book-keeping event queues first

before checking the normal event queues.

Some of the issues to be faced in implementing events are:

• the ordering of event triggering and receiving so that the actions are executed

and the states are exited/entered in the correct order.

• events together with arguments to an object are queued and processed based

on event types.

• an object may be waiting for several events at the same time, after waking up

the object must be able to detect which event triggered it.

• if multiple composite states (threads) in a module are waiting for an event, all of

them must be able to be triggered by the event and read its arguments correctly.
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It’s only after all the waiting threads have been triggered by the event and read

the arguments that the event is dequeued. The challenge is that at translation

time the translator does not know in advance which threads and how many of

them will be waiting for an event.

The SystemC sc_events do not satisfy the above requirements. First, when

a thread is waiting for several sc_events and waken up, it cannot check which

sc_event(s) has come. And there is no mechanism to queue up the sc_events and

their arguments.

SystemC simulation kernel

Automatically generated SystemC model

Event and argument queues

Figure 3-9: SystemC simulation layers for reactive systems

Thus, we have implemented our own event and argument queues above the Sys-

temC sc_events. We use sc_methods instead of sc_threads of sc_cthreads in com-

munication channels for better simulation speed. We also use the request_update()

and update() functions of the SystemC primitive channel for the updating of the

event and argument queues. This makes sure that all the threads processing an event

and its arguments are able to get the correct event and arguments. The dequeuing

only takes place at the end of the SystemC delta cycle, i.e. after all the threads have

finished their processing.

In section 2.4 we explained transaction level modeling (TLM). In short this is an

abstraction of communication so that the details implementation of the communica-

tion is not taken into account, instead each communication transaction is modeled as

a function call. SystemC code at the TLM level is ideal for simulation as details of
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the low level communication infrastructure are not present. In our design flow, users

do not have to specify any SystemC components at UML level. They can simply

work with classes or objects, state machine diagrams and model communication be-

tween objects by events with or without arguments. Such events will be implemented

through SystemC primitive channels. Each module has a primitive channel to receive

events sent by other modules. This primitive channel essentially acts as a buffer for

incoming events to that module. When a module has an association relationship with

another module, it can send messages to that module. A port is declared in the sender

module to access the other module’s primitive channel. Thus, the primitive channels

implement two interfaces: the interface for sending events and the interface for re-

ceiving events. The SystemC code generated by our translator is at the TLM level

since the senders and receivers just call functions of the primitive channels, regardless

of whether or not the events have arguments associated with them.

Translator implementation As mentioned earlier, Rhapsody [100] is a tool that

is used for designers to model their system using UML notations. Rhapsody saves

the model in some files. These files are transformed to XML by our translator. While

transforming, the hierarchical structure of information is maintained. Hence, the

structure of the XML files are similar to that of the Rhapsody internal representation.

From the model that includes the state machine diagram in Fig. 3-7, an XML

document is generated from the Rhapsody internal representation. Here is a fragment

of the rather verbose XML code that describes the transition from state s1 to state

s2. It is not meant to be readable. We are including it merely to give a flavor of the

XML representation.

<ITransition id="c3d8318a-8dd1-4f49-ab5c-2a0301f5f6db">

<_myState>2048</_myState>

<_name>"transition_3"</_name> -

<_itsLabel id="e5cf97ea-6f81-4fca-9988-ea8b8e3f9dc6">

<_itsTrigger id="e94f5561-cb5f-4009-9e92-027e060c0917">
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<_body>eventA</_body>

<_info>""</_info>

<_itsInterfaceItem id="c3a4c0c9-6897-47c9-8f2d-0b7a63d3a869">

<_m2Class>"IEvent"</_m2Class>

</_itsInterfaceItem>

</_itsTrigger>

<_itsGuard>NULL</_itsGuard> -

<_itsAction id="9fc8a233-4906-420d-aff6-e6a23ed029a9">

<_body>functionA();</_body>

</_itsAction>

</_itsLabel>

<_itsTarget>GUID dcf4515d-77c4-4cd9-805d-a84909da5d21</_itsTarget>

<_staticReaction>0</_staticReaction>

<_itsSource>GUID04e1e2c1-b754-4d93-9304-79f4a7e73ef2</_itsSource>

</ITransition>

XML is a good intermediate representation for our translator because it is easy to

create and extract information from XML documents. However, XML itself is not a

convenient specification language for system-level designs. In particular it is textual,

tedious and error-prone to be used for complex designs.

We then use our XML parser (implemented using JDOM [4]) to gather information

from the XML document to build an abstract tree as an input to a template engine

called Velocity [13] that generates SystemC code from predefined templates. With

the help of this engine, we are able to decouple the parsing of XML document from

the code generation step so that changes in the XML structure, and thus the XML

parser do not affect code generation process. Further, in the later part of the work

flow, we only need to work with the templates to generate code without having to

deal with the verbose code of the parser. Consequently, by merely modifying the

templates for one level of abstraction, we can have the templates for another level of

abstraction and generate code, without touching the XML parser. Fig. 3-10 shows

the work flow of our translator.
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   UML model in Rhapsody

XML generator 

 XML document

XML parser and pre-processor

 Abstract tree

 Templates 

 SystemC code

Velocity engine 

Figure 3-10: Our implementation workflow
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We show here a simplified fragment of a template that is used for the state machine

diagrams.

switch (${orState.getName()}_state->read_temp())

{

#foreach ($state in $orState.getChildrenState())

case $state.getStateId():

$state.getActionOnEntry()

. . . ## wait for both normal and book-keeping events

#foreach ($transition in $state.getOutgoingAdminTransitions())

if (this_uport->get_$transition.getTrigger()_flag() == true)

{

if ($transition.getGuards())

{

$state.getActionOnExit()

$transition.getAction()

state = $transition.getTarget();

break;

}

}

}

#end #foreach ($transition in $state.getOutgoingTransitions())

if (this_uport->get_$transition.getTrigger()_flag() == true)

{

if ($transition.getGuards())

{

$state.getActionOnExit()

$transition.getAction()

state = $transition.getTarget();

break;

}

}

}

#end
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#end

The following is the SystemC code which will be generated for the simple state

machine diagram in Fig. 3-7. For the sake of readability we present this program in

pseudocode form.

current_state = initial_state; while (current_state != final_state)

{

switch(state) {

case initial_state:

wait for trigger from the top module to start behavior

actionT;

current_state = s1;

break;

case s1:

actions on entry of s1

wait for eventA or eventB to come

if eventA comes {

if (true) { // the guard of this transition is true

actions on exit of s1

functionA();

current_state = s2;

break;

}

}

if eventB comes {

if guardB is true {

actions on exit of s1

functionB();

current_state = s3;

break;

}

}

break;
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case s2: . . . break; case s3: . . . break;

}

}

The code of actionT, functionA and functionB are to be provided by the users.

The SystemC implementation of actions for events depends on the levels of abstraction

which will be discussed in the following subsections.

3.3.2 Translation to behavioral level

We have also experimented with the generation of behavioral level SystemC code

using the CoCentric tool of Synopsys [1]. We were able to access this tool at the

point of time of this work. However, this tool is no longer available and supported by

Synopsys. The currently available synthesis tools are presented in section 2.4. Similar

to the CoCentric tool, they support only a subset of SystemC.

The Synopsys tool places rather severe restrictions at the Rhapsody level on the

C++ code fragments supplied by the user. Further, one has to declare a class called

Top to initialize all the instances since the method new() used to create instances is

not synthesizable. One may however initialize multiple instances of the same class.

The translator will create the corresponding modules and connect them according to

their specified relationships.

The code synthesized at this level has to comply with the coding convention of the

Synopsys tool. Restrictions are placed on the data types, constructs, instructions and

SystemC classes [1]. Due to these restrictions, a simple composite state is translated

to an sc_cthread which is only sensitive to an active clock edge. Further, communi-

cation is achieved only through signals. UML events are implemented as sc_signals

which can have boolean values representing the existence of the events. We show an

example of the behavioral level code in the next section.
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3.4 Case studies

3.4.1 A simple bus

This is a benchmark example of SystemC at the TLM level which has been described

partially in the previous section. Here we use it to demonstrate how one might model

a fragment of a platform at UML level and translate it into SystemC. This model

uses all the four stereotypes mentioned in section 3.2, namely modules, interfaces,

primitive channels and hierarchical channels. In particular, the three masters are

modules that access the bus through three ports using three different interfaces. The

bus is a hierarchical channel which implements the methods of the three interfaces.

For faster simulation speed, the arbiter and the fast memory are modeled as

primitive channels to decrease the number of threads and thus, decrease the context

switching time. The bus accesses these primitive channels through the arbiter in-

terface and the slave interface, respectively. Fig. 3-11 and Fig. 3-3 show the class

diagram and structure diagram of this example.

 

  simple_bus_master_blocking   simple_bus_master_non_blocking simple_bus_master_direct 

simple_bus_blocking_if 
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<<Channel>> 

Top 
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Figure 3-11: The class diagram of the simple bus example
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We first captured this UML level model using the Rhapsody tool and then trans-

lated it into TLM SystemC code using our translator. We then simulated the resulting

SystemC code using the standard SystemC simulation kernel. When measuring per-

formance, we did not initialize the direct master, because it is only used for debugging.

The experiments were performed on Linux Red Hat 9.0 running on CPU Intel Xeon

2.8GHz. We measured the number of CPU clock cycles for 1,000 bus transactions us-

ing the Pentium’s rdtsc instruction. With the original code provided in the SystemC

public distribution, we obtained a speed of 81K transactions per second. In compar-

ison, with our automatically generated code from the UML model, we obtained a

speed of 41K transactions per second. One reason for the slower simulation speed

of our generated code is the use of sc_thread for all processes. The original model

has the bus and the slow memory implemented as sc_methods. Due to the need for

context switching, sc_threads run slower than sc_methods.

3.4.2 A micro polymerase chain reaction controller

This is a simple realtime controller. Polymerase Chain Reaction (PCR) is a thermal

cycle reaction used for the rapid in vitro multiplication of DNA samples [83]. The

µ-PCR chip realizes a miniaturized version of this process where a small quantity

of the DNA sample is placed in each chamber of the chip and the PCR reaction is

achieved by controlling the thermal power supplied to the chambers according to an

input temperature profile. A schematic diagram is shown in Fig. 3-12.

We will not describe here the PCR biochemical process in detail but instead focus

on the functional model of the controller. This unit is driven by the temperature

profile, which specifies the control objective, and feedback received from the chip re-

garding the current temperatures of the chambers. In the present version of the plant

model, the effects of inter-chamber influences are ignored as a simplification. Hence

there is one independent controller for each chamber. This controller periodically

reads the temperature, converted into a voltage value via an analog-to-digital con-
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Heating block

D/A A/DController PlantProtocol
Generator

Figure 3-12: The µ-PCR block diagram

verter, of the chamber. With the help of the estimator — the control law — it then

computes the output voltage required for that chamber to maintain the temperature

according to the temperature profile of the current PCR thermal cycle. This voltage

is then converted back into an analog value via a digital-to-analog converter, which

is subsequently used to control the heating element of that chamber.
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Figure 3-13: The µ-PCR class diagram

Fig. 3-13 shows the class diagram of this example. The profiler that keeps the

temperature profile and the estimator that keeps the control laws were modeled sep-

arately from the controller so that we can reconfigure the temperature profile and

control law easily. They were modeled as primitive channels in order to get better
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simulation speed at the TLM level. The communication among the modules are cycle

accurate, in the sense the status of a module’s input and output are specified at each

clock cycle. Yet another real time aspect is the timing diagram associated with the

A/D converter. The state machine diagram of the controller is shown in Fig. 3-14.

 

ReadTemp 

Wait 

GetProfile 

Estimate 
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Compute 

/timer = 0; 
CLOCK_DELAY(3); 
GEN_EVENT(itsADC, 
readtemp()); 

currenttemp/ 
Yk = GET_PARAM(currenttemp, temp); 

/setPoint = IMC(pro_port, 
mapping(timer)); /Rk = IMC(est_port, 
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/Uk = K1*setPoint + Rk;

/GEN_EVENT(itsPlant;toadjust(
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CLOCK_DELAY(3); 
GEN_EVENT(itsADC, 
readtemp()); 

Figure 3-14: The state machine diagram of the µ-PCR controller

For this example, we have synthesized, using the CoCentric compiler tool of Synop-

sys, the behavioral level SystemC code generated via our translator. This application

has been simulated at both TLM and behavior levels.

Following is a fragment of the code for the sc_cthread of the controller at behavior

level. For brevity we have eliminated some wait() statements.

while (true) {

switch (state) {

case 106: // Read_Temp state

//wait for ack signal from ADC

wait_ack();

if ( read_ack() == true ) {
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//the guard of this transition is true

if (true) {

state = 118;

write_ack(false);

break;

}

else

write_ack(false);

}

break;

case 110: //GetProfile state

// no event trigger for this transition

if (true) {

//IMC is a macro for an interface method call

//to the port pro_port to the profiler

//the method mapping has an argument timer

//the returned value of this method

//is assigned to variable setPoint

setPoint = IMC(pro_port, mapping(timer));

state = 115;

}

break;

// the initial state

case 119:

//wait for signal to start the execution

//of this process

wait_initController();

timer = 0;

GEN_EVENT(itsADC, readtemp());

CLOCK_DELAY(3);

state = 106;

break;

}

}
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The implementation of the functions like mapping() and estimate() is provided

by users; they can only use the synthesizable subset of SystemC defined by Synop-

sys. Note that although SystemC interfaces and channels are not synthesizable by

CoCentric Synopsys, we can still generate behavioral level SystemC code from the

models that have interfaces and channels like the one in this example. In this case,

the model’s channels are declared as sc_modules at SystemC level. The interfaces in

the UML models are not generated, instead each channel/module that implements

an interface has a thread that receives triggers for method calls from other modules,

locally calls the methods and returns values by sending signals to the caller modules.

Fig. 3-15 shows the simulation speed — in terms of transactions per second — of

the µ-PCR example on the same platform as the one used in the previous example.

By a transaction we mean the period of time in which the controller senses the current

voltage, computes and outputs to the plant.
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Figure 3-15: Simulation speed of the µ-PCR example

Our simulation results show, as expected, that simulation speed at the TLM level

is higher than that at the behavior level. The most important reason is that at TLM

level, communication is done through function calls only and the timing information is

captured as units of time, not clock edges. While at behavioral level, communication

is done through signals and the behavior is aligned with clock edges.
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The experiments also give evidence that the code we generate scales fairly well in

terms of performance.

3.4.3 A digital down converter

For our third example, we implemented a digital down converter (DDC) for the global

system for mobile communications (GSM) - a wireless communication protocol. Digi-

tal radio receivers often have fast analog to digital converters delivering vast amounts

of data. However, in many cases, the signal of interest represents a small proportion

of that bandwidth. A DDC is a filter that extracts the signal of interest from the

incoming data stream. Our implementation closely follows the MATLAB example in

Xilinx’s system generator (see Fig. 3-16).
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Figure 3-16: The block diagram of the digital down converter for GSM

The desired channel is translated to baseband using the digital mixer comprised

of multipliers and a direct digital synthesizer (DDS). The sample rate of the signal is

then adjusted by a multistage, multirate filter consisting of a cascade integrator-comb

(CIC) filter and two polyphase finite impulse response (FIR) filters with a decimation

factor of 2. The functions performed in the system are complex multiplication and

multirate filtering. The overall down sampling rate of the converter is 192:1.

Each of the components is mapped to a module, and data is sent through the

chain by events (see Fig. 3-17). The model has been translated into both TLM and

behavioral levels. We could not find the source code for a similar DDC in UML or

SystemC for comparison. Hence we could only compare the FIR module of our design

with an FIR example provided by Synopsys. The only modification we did to the
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Figure 3-17: The class diagram of the digital down converter for GSM

Synopsys code was to ensure that the coefficients and the bit widths of the ports

are the same as those of our FIR model. The codes were compiled into gate level

netlist using Synopsys tc6a_cbacore library, which targets cell based array architec-

tures [116]. The same timing constraints were used on the synthesis runs of both.

The following table shows the comparisons of the final synthesized hardware. From

the result we can see that our generated code uses about 33.25% more resources than

the hand coded version. This is a preliminary result and further study is necessary

in order to reduce this difference.
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FIR from Synopsys(S) FIR from DDC(D) Ratio((D-S)/S)

Number of ports 260 261 0.39%

Number of nets 18393 27942 51.92%

Number of cells 18010 27547 55.15%

Number of references 93 99 6.45%

Combinational area 30181.2 50583.7 67.60%

Noncombinational area 34560.0 36844.2 6.61%

Net interconnect area 244806.2 325033.1 32.77%

Total cell area 64741.1 87430.3 35.05%

Total area 309547.6 412461.1 33.25%

Table: Area statistics for FIR component implemented on cell based array architecture

3.5 Summary

Our main contributions in this chapter are:

• A method to synthesize SystemC code from arbitrary nested behavioral state

machines.

• The ability of our framework to model both platforms and applications at a

high level of abstraction.

• In addition, there exists a good deal of potential to further refine the generated

SystemC code to hardware implementation, although more research, tools and

techniques are necessary.

Although our translator generates code from Rhapsody internal representation,

our translator is not restricted to the Rhapsody tool because we decoupled the part
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that depends on the structure of the Rhapsody internal representation to other parts

of the translator. Hence if there is any change in the internal representation, we only

need to modify the file defining the structure of the XML file.



CHAPTER 4. UML-BASED DESIGN FOR TIME-TRIGGERED SYSTEMS 72

Chapter 4

UML-based design for

time-triggered systems

Today, many new innovative functions in cars are enabled and driven by software,

such as energy management and the current step into hybrid solutions [27]. More

than 2000 individual functions are realized or controlled by software in premium

cars. However, software engineering in cars is still in the preliminary state, although

software appeared in cars 30 years ago [27].

In the recent years, several functionalities in cars have been implemented on time-

triggered architectures (TTAs). In these systems, all actions are carried out at pre-

defined points of time. Thanks to this time predictability, TTAs has become strong

candidate platforms for safety-critical real-time applications. Their application do-

mains not only include automotive but also aerospace, and railway applications.

Designing applications to run on TTAs is a challenging task. System-level design is

an attractive approach for the design of time-triggered applications. The application

of system level design in the domain of TTAs involves the choice of suitable models

for time-triggered software tasks and platforms, effective intermediate representation

and last but not least, fast simulation techniques. In this chapter we discuss our

UML-based framework for the design of time-triggered applications to be executed
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Figure 4-1: A time-triggered architecture

on TTAs.

4.1 Time-triggered architectures

A typical time-triggered architecture is constituted by one or more clusters. Each

cluster consists of nodes, usually called engine control units (ECUs) communicating

with one another via a time-triggered communication protocol. Two different phys-

ical interconnection topologies within a cluster are bus and star. In a TTA bus, the

connection consists of replicated buses as shown in Fig. 4-1. ECUs can also be con-

nected in a star configuration [77]. There are several time-triggered protocols such

as FlexRay [55], TTP [78] and TT-CAN [52]. Among them, FlexRay has backing

from many major automotive companies. We think that it is becoming the de-facto

standard for automotive communication systems soon.

All the ECUs in a time-triggered cluster must have the same notion of time. Thus,

the clocks on the ECUs must be synchronized. In addition, all the ECUs must have

a consistent view on the “health” of every ECU. This is important for the efficiency

and correctness of the applications. The clock synchronization service is usually

implemented at the communication protocol layer. The membership service may be

implemented at either the protocol or the application layer.
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An ECU consists of a processor, a memory management unit and a communication

interface to which a bus controller is attached. Often, an ECU will also have sensors

and actuators associated with it. The bus controller mediates between the ECU and

the communication channels and implements the key communication-related func-

tionalities of the ECU. These functionalities include the scheduling of message trans-

mission, assembling/deassembling messages, coding/decoding, performing physical

access to the busses and clock synchronization.

In developing distributed applications that have hard real-time constraints, the

time-triggered paradigm advocates a number of design principles [50] to be followed:

• Temporal firewall: This design principle requires sender tasks to push data

onto the time-triggered communication platform and receiver tasks to pull data

from this platform. A sender does not send any control signal directly to a

receiver.

• Global time: All the local clocks in a TTA cluster must be synchronized

sufficiently often to establish the global time of the cluster. The granularity

of the global time g must be greater than the precision achieved via the clock

synchronization mechanism.

• Composability: This principle covers several aspects. First, it requires that

nodes can be designed independently of each other assuming that the architec-

ture and service have been specified precisely. Secondly, independently devel-

oped components can be integrated with minimal integration effort.

Applications targeted to run on TTAs must comply with the timing requirements

imposed by the underlying time-triggered communication protocol. Further, the ap-

plications developer must be aware of architectural support that may be available

to support the time-triggered communication fabric. Finally, basic design principles

such as temporal firewalls (no control signals shall flow across communication inter-

faces) may need to be enforced in the process of developing applications. Thus one
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needs a design framework specifically geared towards TTAs. Such a tool must satisfy

the following requirements:

• Designers can add more functionality to the existing architecture easily by

– re-scheduling the communication among the ECUs.

– re-scheduling the tasks to be executed inside an ECU.

• Designers can integrate components from different suppliers quickly, since it is

very common for automotive, aerospace and railway device producers to buy

and use sub-components from other suppliers.

• Components can be replicated at different nodes in a distributed system to

support fault tolerance.

• Pre-designed components can be re-used to improve design productivity.

• The system being designed can be verified through simulation or formal ver-

ification to make sure that it functions correctly in both the value and time

domains.

4.2 Our contributions

At the top layer we propose a menu of UML-based notations using which applications

can be rigorously specified and key parameters of the underlying TTA and commu-

nication protocol exposed.

There are a variety of TTAs and associated protocols [106]. Here we have based

our ideas on the FlexRay standard. Due to strong backing from the automotive indus-

try [55], it is likely to emerge as the industry standard for a time-triggered in-vehicle

communication system. Until recently, work on FlexRay has focused on defining and

validating the standard and developing appropriate communication hardware. With

this the stage close to completion, one can begin to develop actual applications. In
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this context, a UML-based backbone such as the one we advocate here can provide

necessary levels of abstraction and standardization to support reuse.

We expose the key aspects of the FlexRay at the UML level by introducing ap-

propriate stereotypes, tagged values and more importantly, using an activity diagram

to specify the static schedule defined by the protocol. Through a disciplined use of

ports and interfaces we also enforce the temporal firewall principle required by time-

triggered protocols [50]. This principle demands that only data values but no control

signals should flow across communiction/component interfaces of TTA architectures.

We also provide preliminary evidence suggesting the composability quality enjoyed

by the TTA approach can be reflected at the UML-level. We do so by adding a cruise

control application to an initial design that consists of a brake-by-wire application.

Finally, we demonstrate a translation to SystemC for initial validation. A key

advantage of our translator is that it automatically synthesizes – using information

gathered at the UML layer – a simulation driver. This driver mediates between the

kernel simulator of SystemC and the generated SystemC code in order to achieve fast

simulations.

It is worth pointing out that we do not address the issue of how/whether the

generated SystemC code can be used in the software development process. The

worst case scenario is that the SystemC code is used only for prototyping and initial

validation. Even in this case, it can serve as a valuable design specification for starting

the code generation process.

Though we have carried out our work in the specific setting of FlexRay, our

approach can be adapted to handle other time-triggered protocols since the design

of the application is separated from the communication platform layer by ports and

interfaces. In fact, the design of the applications depends only on the fact that there

is a communication layer that makes sure that messages are transferred to the bus in

a time-triggered manner.
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4.3 Related work

UML has been proposed to be used in the design process of automotive software

applications in different settings. For instance, it has been used for system specifi-

cation [101, 84] but without mechanisms for validation and synthesis. On the other

hand, AnyLogic [53] supports specifications via UML-RT [111] based modeling, gen-

erates Java code and executes animated models. Our approach differs from this in

that we use standard UML notations with a few extensions. Secondly, we support

simulations by automatically generating SystemC code which provides a standard ex-

ecutable intermediate representation. Next we note that AML (Automotive Modeling

Language) [26, 25] is also a related UML-based modeling framework that supports

multiple abstraction levels. The key difference is that we have a path to an executable

intermediate representation that allows functional validation. In addition, our code

generation process takes advantages of the special features of TTAs so as to achieve

good simulation speeds.

A number of toolsets that support time-triggered protocols are currently avail-

able. Typical examples are: TTTech’s [11] toolset for the TTP protocol, TTAutomo-

tive’s [119], Decomsys’ [40] and dSPACE’s [115] toolsets for FlexRay. In general, these

toolsets deal with the design of TTAs at a more concrete and platform-specific level.

These tools support the modeling and simulation of applications in Matlab/Simulink.

Code running on target platform is generated. An important future challenge will be

to bridge the gap between this lower level and the UML-level abstraction we propose.

Model-driven development environments based on SCADE and built on top of

TTPPlan and TTPBuild have been proposed [46, 34]. The idea is to model time-

triggered software tasks using the GUI of the SCADE tool. The SCADE Code Gener-

ator will then generate code that can be run as time-triggered OS tasks. We feel that

UML 2.0 notations are an attractive alternative since they are more generic, offer a

variety of diagram types to deal with both the structural and behavioral aspects of

applications. Further, UML, unlike SCADE, is not strongly tied to the synchronous
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programming paradigm.

STEP-X [88] uses UML notations and targets general automotive applications.

It does not cater to the specific needs of TTA-based applications. A UML profile

for TTAs is defined in [85] with a proposed mapping from designs developed using

this profile to the tools TTPPlan and TTPBuild. Our work shows that the standard

notations of UML 2.0 – with a mild dose of stereotypes and tagged values – suffice

for high levels of abstraction.

More generally, Giotto [71, 58] offers a software layer for specifying and com-

posing time-triggered tasks. This level of abstraction uses logical time rather than

physical time. In contrast, at the UML-level, we use physical time as dictated by the

static schedule of the FlexRay protocol. Consequently, in our framework, it will be

much easier to relate timing behaviors at the implementation and specification lay-

ers. Finally, the AUTOSAR [3] consortium has been working actively on proposing

an overall software architecture standard for automotive applications. Our modeling

framework is more specific in that it is targeted towards time-triggered platforms.

4.4 UML-level modeling

A key issue we must address is how to expose the platform’s architecture and services

at UML level. In our framework we focus on the choice of diagrams, their intended

role and the required usage pattern so that rigorous specifications that adhere to the

above principles can be developed. Moreover, the key features of the architecture

and the communication protocol are blended into the specifications. This is done in

order to facilitate the automatic generation of SystemC code that can be efficiently

simulated. As mentioned earlier, we will focus here on a specific embodiment of the

TTA principles, namely, the FlexRay standard [54].
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Figure 4-2: FlexRay basics

4.4.1 The FlexRay communication platform

FlexRay [55] is a communication protocol for real-time distributed systems. It is

implemented on time-triggered architectures in which several ECUs are connected to

one or two communication channels as shown in Fig. 4-1.

The ECUs transmit data to each other mainly in a time-multiplexed fashion as

dictated by the FlexRay protocol. The protocol executes in recurrent periodic cycles

called communication cycles. The protocol is implemented using a four level timing

hierarchy. Each cycle at the top level consists of a static segment, an optional dynamic

segment, an optional symbol window and a network idle time (see Fig. 4-2).

• Data generated by tasks running on the ECUs are sent and received in the

static segment in a time-triggered fashion. More precisely, write access to the

bus by the ECUs is scheduled according to a fixed time division multiple access

(TDMA) scheme during the static phase. Consequently, an ECU is granted

exclusive write access to the bus at exactly specified time intervals called the

static communication slots. All slots have the same time duration and exactly

one frame is to be transmitted per slot. Further, the order of allocation of slots

to ECUs in the static phase is identical for all cycles.

• The dynamic segment is in some sense an event-triggered phase where, using

a priority scheme, the ECUs can be scheduled to transmit messages of varying

time duration measured in terms of mini slots in a time-deterministic fashion

(see [54]).

• The symbol window is used to transmit special messages such as “cluster-wake-
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up”.

• The network idle time phase is used to calculate and apply clock correction

terms in order to achieve clock synchronization.

At the lower levels of the FlexRay timing hierarchy, static and dynamic slots

consist of a fixed number of macro ticks. Each macro tick consists of a fixed number

of micro ticks generated by a local clock.

Exposing communication features at UML level

For the purpose of application development, macro and micro ticks are not ex-

posed at the UML level. We also do not consider the symbol window and network

idle time segments since they do not directly influence the functionalities of the appli-

cation tasks. In effect, the applications are modeled with the assumption that clock

synchronization is assured by the underlying communication platform.

The features of the protocol that we expose at the UML level include:

• The length of each segment. Although we do not consider the activities hap-

pening at the communication layer during the symbol window and network idle

time segments, their length exposed at UML level can be larger than 0.

• The number of slots in the static and dynamic segments and their lengths.

• The owner of each static slot (which is also the order in which the ECUs’

messages are scheduled in the static segment).

• The ECUs that may send or receive in the dynamic segment (in order to optimize

simulation speed at SystemC level).

The above information is captured in a UML activity diagram associated with a

usecase (the bus communication usecase in Fig. 4-3) depicting how the communication

platform is used by the software applications. Such an activity diagram is shown in

Fig. 4-4. Activity modeling emphasizes the sequence and conditions for coordinating
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Figure 4-3: The usecase diagram describing the services provided by the communica-
tion platform
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Figure 4-4: The activity diagram describing the communication cycle

behaviors of different objects. In Fig. 4-4, a token which determines the activity to

be executed starts at the initial activity. Thus, Manager1 occupies the bus for 500

micro-seconds before Manager2 is granted access to the bus. Similarly, Manager2 is

given a 500 micro-seconds slot on the bus, etc. In this example, the dynamic, symbol

window and network idle time segments of the FlexRay protocol have been assigned

200, 0, and 0 micro-seconds, respectively. The activity node Dynamic has a tagged

value for the length of each mini-slot inside the dynamic segment and another tagged

value which is a boolean expression on ids of nodes, describing all the nodes that may

send or receive during a dynamic segment. All the above information is required at
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the application layer to ensure that the tasks are designed to communicate on time.

(Due to separation of concerns, we do not consider here how this is achieved). This

information is also used by our translator to automatically configure and initialize

the communication controller of each node at the SystemC level. We will say more

about the communication controllers later in this section.

4.4.2 Modeling technique

Structure modeling In order to model the software task(s) at each ECU, the

structure of the entire time-triggered cluster must be made available. This is because

in order to describe tasks and their relationships to the cluster’s communication

schedule, the application developers need to know on which node a task is located

and which nodes the task communicates with are located.

We use class diagrams and (composite) structure diagrams to capture the architec-

ture of the computing and communication infrastructure of the system. As mentioned

in section 2.3, a class is an abstraction for those components of a system that have

the same behavior and class diagrams are used in the standard way to describe the

relationship among the classes. Structure diagrams are used to capture the nested

structure of components.
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Figure 4-5: The composite structure diagram of a BBW cluster
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Fig. 4-5 is a structure diagram depicting the layout and interconnections of a

cluster consisting of six ECUs for a Brake-By-Wire (BBW) application. Each object in

a structured class is instantiated from other classes. These objects may be connected

through association links. The links connecting them show the possible ways they

may interact with each other.

An important feature of structured diagrams are the ports with provided and

required interfaces. This allows for a natural description for the provision and use

of services by the components of a system. In Fig. 4-5 the socket notation refers to

the required interface IFlexRayCHI of port pCC while the circle notation refers to the

provided interface IFlexRayCHI of port pTask in the link between object ManagerTask

and object ManagerCC. The IFlexRayCHI interface consists of functions for the task

ManagerTask to call when it wants to send/receive data from the communication

controller ManagerCC. The required and provided interfaces of two ports connecting

to each other must match. In addition, only data-flow can take place across these

interfaces and the interfaces include functions to push data to the communication

controller to send and pull data from the communication controller to receive. These

basic restrictions are imposed in order to satisfy the temporal firewall design principle

of TTAs.

Structure diagrams allow hierarchical structures to be captured. For example, one

of the classes (instantiated twice in the left half of Fig. 4-5), namely the ManagerNode,

has an internal structure shown in the right half of Fig. 4-5, which is actually the

structure diagram of the ManagerNode.

Behavior modeling In the present context, application tasks are triggered at spe-

cific time instances. Hence, the transitions of our behavioral state machines will be

time-outs that denote the amount of time an object has stayed in the source state

during which it would have executed the code associated with that state. The time

here is the global time which is assumed to be common knowledge to all the nodes.
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Guided by these considerations, the behavior of a task assigned to a node will be

modeled as a behavioral state machine which at the top level will consist of a single

loop of states and transitions. According to our observation, the sum of all time-out

expressions in this loop must be a multiple of the FlexRay cycle. Thanks to the infor-

mation on the communication protocol provided by the activity diagram, the designer

is able to make sure that the application sends data to the lower communication layer

before the node’s allocated slot and reads incoming data at the correct slots.

The time-out expressions associated with the transitions can be constants or arith-

metic expressions whose variables must be initiated in the object’s constructor. Fig. 4-

6(a) shows an example of the top level of a behavioral state machine. The notations

at the top right hand side of the states indicate that the states have actions to be

performed on entry. This action can be any C++ (or SystemC) statements which

include function calls through ports to transmit or receive data from the commu-

nication platform. This state machine models the fact that when a brake actuator

object enters the state start, it will execute the state’s action on entry. It will stay

in this state for 4,000 micro-seconds after which it will take a transition and enter

the dynamic1 state in which it may want to communicate with other nodes in an

event-triggered manner.

start

dynamic1

actuate1

actuate2

dynamic2

dynamic2

waitingforUrgency

dReceive/applyDynamicBrakeForce();

tm(4000)

tm(400)

tm(500)

tm(3300)

tm(200)

(a) (b)

Figure 4-6: The behavioral state machine of the brake actuator

Compared with our approach of modeling time-triggered behavior, another ap-
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proach [112] which models the clock module explicitly and this module has to gen-

erate clock ticks events to other components in the systems. In addition, there is

an interface for other components to query about the time. We think that this fine

grain timing modeling is not suitable for modeling at high level of abstraction and

simulation at this level of granularity is extremely slow and not good for system level

modeling. In fact, we have modeled the BBW application running on FlexRay at this

level of granularity and found that it took huge effort to model and debug the system

and the simulation speed was unacceptably slow.

Time-triggered transitions in behavioral state machines alone are not enough due

to the event-triggered nature of the behaviors allowed in the dynamic segment. To

cope with this, we allow the top-level states corresponding to the dynamic segment

to have internal states that will capture the event-triggered reactions restricted to

the dynamic segment. Fig. 4-6(b) shows the internal sub-states of state dynamic2.

When the system is in the dynamic segment, the brake actuator objects wait for an

event coming from the communication platform that signals that the car needs to

brake immediately. This event can be sent and received only in the dynamic segment

and that too only if emergency braking is necessary. If such an event is received, the

function applyDynamicBrakeForce() is called. Strictly speaking, this is a violation

of the temporal firewall design principle as control signals (events) are passed across

communication/component interfaces. However, FlexRay violates this principle only

within the dynamic segment. Further, even within this segment, the event-triggered

signals are generated according to a fixed static priority scheme and users must fix

the signals’ lengths. Hence temporal determinacy is largely preserved and temporal

non-determinacy is confined strictly to the dynamic segments.

In order to eliminate any additional violations of the temporal firewall principle,

non-urgent requests or conditions from the environment are not modeled as events

in our framework. Instead, they are sent from an object’s environment to the object

through ports and they are handled in a time-triggered manner, i.e., they take effect
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only at times specified by the users. Whether these requests or conditions are buffered

or overwritten is defined by users in the functions implementing the interfaces of the

corresponding ports.
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Figure 4-7: The UML-based design flow for TTAs

The Design Framework Fig. 4-7 summarizes our proposed design flow of a time-

triggered application using UML 2.0 notations.

For convenience, we add some simple notational extensions – as is allowed by

the UML 2.0 standard – through stereotypes and tagged values. The stereotypes of

clusters, nodes, and communication controllers are applied to classes as well as to

instances of these classes. In addition, tagged values in the activity diagram capture

timing details of the physical communication platform. These extensions not only aid

the modeling effort, they also contribute to the process of generating SystemC code.

They can also be exploited during the implementation stage.

The communication schedule is determined before each task on the nodes are mod-

eled, so the nodes can be developed independently. Our design framework supports

composability in the sense that a new application can be smoothly added to an ex-

isting model. When a designer wants to extend a cluster with a new application, the

following steps must be performed. First we remark that if the new application is to

be run on an existing node, then this will basically boil down to a fresh local schedule

for that node followed by suitable modifications to the (hierarchical) behavioral state

machine describing the execution of tasks on this node. Hence below, we outline the
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steps needed to add a new node on which the new application will run.

• modify the structure diagram of the cluster class to include a new ECU;

• modify the activity diagram which describes the bus communication schedule;

• model the new node as well as the tasks running on this node for the new

application using structure diagrams and a behavioral state machine;

• if necessary, modify the behavioral state machines of the tasks of the existing ap-

plications if their schedules are affected by the new changes. This modification

is restricted only to the time parameter of the time-out transitions. However,

timing constraints must be checked by the designer to make sure that there is

enough time for a task to complete the actions that it is supposed to execute

when in a particular state. This can be done through worst case execution time

analysis. However, we do not focus on this in the thesis.

The above modifications are well localized and users can easily identify the places in

the model which have to be changed.

Finally, a SystemC model of the communication controllers (CCs) is needed to

simulate the system model translated from the UML layer. Users can choose to sup-

ply this SystemC model and compose it with the application’s generated SystemC

code. Alternatively, they can model the communication controllers at UML level

using structure diagrams and behavioral state machines (as in Fig. 4-8) and then

use our tool to generate SystemC code for the communication controller automati-

cally. The later approach is faster and easier. In fact we have taken this approach

to derive an abstract model of the FlexRay communication controllers at the UML

level. This model can be included in a library of UML-level communication con-

trollers for application developers who want to develop various applications running

on time-triggered protocols. The library can include the communication controllers

for different protocols such as FlexRay, TTP [78] and TT-CAN [52]. Each compo-
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nent in the library should be validated before being put into the library. Fig. 4-8

summarize the alternatives presented here.

 

UML App. 

UML CC 

SystemC App. 

SystemC CC 

UML CC lib. SystemC CC lib. 

: The application is modeled in UML and its SystemC code is 
generated automatically and combined with SystemC CC from  
the library. 

: UML CC module taken from a library and together with UML 
application model are translated into a whole SystemC model. 

Figure 4-8: The communication controller library

4.5 SystemC code generation

We have constructed a translator that automatically converts the UML model of a

system into executable SystemC code. The translation process is not routine and we

outline here the main steps as well as the implementation choices we have made in

order to obtain fast simulation.

A UML class is translated into a SystemC module. The objects inside a structure

diagram of a class will become sub-modules. Initialization codes that create modules

and connect them together are generated automatically from the structure diagrams

of the structured classes. The initialization codes are then inserted into the respective

structured classes’ constructors.

Communication through ports defined by interfaces in the UML model is sup-
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Figure 4-9: The state machine of the message transmitting component in the FlexRay
communication controller
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Figure 4-10: The simulation layers for time-triggered applications

ported naturally in SystemC by the concepts of sc_port for ports with required

interfaces, and sc_export for ports with provided interfaces.

The number of ECUs per cluster in a TTA can be large. Our translator automat-

ically configures the SystemC communication controllers by extracting the relevant

information from the activity diagram we highlighted in the previous section (see

Fig. 4-4). This process utilizes our UML stereotypes to identify and pass arguments

to the nodes, and subsequently to the communication controllers.

The key to fast simulation is how the code for execution of behavioral state ma-

chines is executed. The OSCI SystemC simulation kernel is a generic discrete event

simulator. It does not take advantage of the crucial property of TTAs, namely, the

communication schedule is pre-defined. Thus, if we generate SystemC in the usual

way by mapping the behavioral state machine of each class to a SystemC thread,

we will get poor simulation speeds. Instead, our translator consolidates a schedule

table for a whole cluster. A module called simulation driver will execute the model

according to this schedule table. Since each time-triggered composite state in the

state machines has the form of a cycle, the schedule table’s length is finite and can

be determined by our translator. In effect, we will have just one SystemC thread

residing in the simulation driver to execute all time-triggered actions. To repeat, the

simulation driver is generated automatically by our translator. Fig. 4-11 shows the

block diagram of the generated SystemC code from the model in Fig. 4-5 in which
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Figure 4-11: The block diagram for the SystemC generated code

we have eliminated Manager2 and the three Brakes to improve the clarity of the fig-

ure. The simulation driver is connected to each node (and the task on each node) to

drive the simulation. The driver is not connected to the two pedal sensors since they

are passive modules (there are no state machines associated with them); They just

provide functions that the Managers can call.

Following is a segment of the code for the simulation driver:

while(true){

schedule_0();

wait(200, SC_MS);

schedule_200();

wait(300, SC_MS);

schedule_500();

. . .

}

Each function schedule_x() includes calls through ports which execute the ac-

tions supposed to be run at time x.

void BBWCluster_SimulationController::schedule_200(){

pSC_manager_Manager1_car->Activate(11);

pSC_manager_Manager2_car->Activate(11);
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pSC_manager_Manager1_car->Activate(10);

pSC_theCruiseController_MyCruiseController_car->Activate(47);

}

The parameter of the Activate() function represents the state from which the

object being called should leave, take action of the transition to leave this state and

move to another state. Following is a sample of code for BrakeManager class which

has 2 objects called above (manager_Manager1_car and manager_Manager2_car)

void BrakeManager::Activate(int state){

switch(state){

case 9: // BrakeManager_TOPSTATE_initial

brakeStatus[0] = 1;

brakeStatus[1] = 1;

brakeStatus[2] = 1;

brakeStatus[3] = 1;

Sensing();

OUT_PORT(pCC)->transmitChannelA(pedalPosition);

break;

case 10: // S1

otherPedalPosition = OUT_PORT(pCC)->receiveChannelA();

break;

case 11: // state_14

. . .

}

}

Although all the time-triggered actions are executed by only one thread in the

simulation driver, additional SystemC threads are unavoidable due to the states cor-

responding to dynamic segments. Interestingly, we can switch off these threads for
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the ECUs that don’t send or receive during dynamic segment. This information is

available via the tagged values of the Dynamic activity in the activity diagram.

Our translator can insert codes to print out traces, including state transitions,

event notifications and their occurring time.

Implementation

The implementation for the translation from UML to SystemC is as the same

as described in section 3.3. The differences are in the pre-processing procedure and

Velocity templates. The pre-processor does the followings:

• From the activity diagram, determine the parameters needed to be passed to

all the nodes in order to configure theirs communication controllers;

• Compose the whole model’s schedule table based on all the state machines.

This includes determining the values of all the variables mentioned in the time-

out statement of the transitions. These variables must be initiated before the

simulation starts, meaning in the constructor of the modules or passed through

the constructor’s parameter from the father module;

• Add a simulation driver to the model;

• Connect the simulation driver to its controlled modules.

The XML parsing and pre-processing procedures described above can detect some

modeling errors such as:

• There are not enough information (tagged values) in the activity diagram.

• Some state machine doesn’t have a cycle form, or its cycle’s length in term of

time is not a multiple of the length of a FlexRay cycle.

• Some variable mentioned in a time-out statement in some state machine doesn’t

have any value initialized (which means the time at which an action of this

object is triggered is not determined).
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4.6 Experimental results

We have experimented our approach with a number of metrics in mind. The most

important one is simulation speeds as a function of the number of FlexRay cycles.

We also compare our simulation speeds with the simpler thread-based approach in

which the simulation driver is not synthesized and instead one SystemC thread per

behavioral state machine is created as implemented for event-triggered applications

(in section 3.3). We also observe the amount of time it took to add new ECUs of a

new application to an existing cluster and the number of lines of code generated by

our translator as a (very) rough estimate of the effort saved to create an executable

SystemC model.

4.6.1 A Brake-by-Wire (BBW) application

We have created at the UML level an automotive brake-by-wire (BBW) application

running on FlexRay. The communication components were taken from our frame-

work’s library (see Fig. 4-8). The BBW application was developed based on the

material in [70] and [28].

Fig. 4-5 shows the structure diagram for a cluster. There are six nodes in the

system, one for each wheel (brake node) and two manager nodes. Each brake node

controls a brake. The manager nodes obtain the force and position applied to the

brake pedal from sensors, calculate the brake force that each brake node should apply

and send it via the bus to the brake nodes. In turn, the brake nodes send their current

status to the managers also via the bus. All these communications are done in the

static segment. The dynamic segment is not used here. The FlexRay communication

subsystem at each node places data on the bus at the scheduled slots and reads data

from the bus when the application needs to.

1,333 lines of SystemC code were generated. At the UML level, we could not gain

access to the code corresponding to the algorithms for computing the brake force etc.
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Figure 4-12: Simulation speed of the BBW application

Instead, we inserted our own simplified code to mimic the functionalities. (This is the

also the case for the adaptive cruise controller to be described later.) We simulated

the generated SystemC code for varying numbers of FlexRay communication cycles

on a PC with a 3 GHz Pentium 4 CPU and 1 Gbytes of RAM. The simulation times,

in terms of milliseconds, are shown in Fig. 4-12. The figure shows the simulation times

for the code generated using the thread-based approach. As can be seen and expected,

there is a significant gain in simulation speeds when we synthesize a simulation driver

which can leverage on the time-triggered nature of the static segments.

We also determined that simulation times obtained via the simulation driver ap-

proach are almost the same as the times obtained by hand-creating a SystemC model

for the application. Since this is an ad hoc approach, we have not shown this com-

parison here.

4.6.2 An adaptive cruise control (ACC) application

To check the extent to which composability is supported, we added an adaptive cruise

control application to the BBW cluster.

In this application, once a driver presses the Set button, the cruise controller will
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Figure 4-13: Simulation speed of the BBW and ACC applications

maintain the car’s speed at a setting provided by the driver. It will also maintain a

safe distance from the vehicle ahead by adjusting the throttle using the car’s current

position, speed and its distance from the vehicle ahead. The cruise control will be

disengaged whenever the driver steps on the brake pedal or presses the Off button.

In addition, there is a Resume button that allows the car to resume cruise control if

it has been disengaged. The Set, Off and Resume buttons (i.e. the corresponding

sensors) reside on the same node as the cruise controller.

In our experiment, to implement this new application, two more nodes were added

to the BBW cluster; one for the cruise controller and the other for the throttle. This

resulted in two more static slots in the static segment of the communication round.

One slot is used by the throttle to send the current position of the throttle and the

second slot is used by the cruise controller to send a new position that the throttle is

instructed to attain. The ACC uses the dynamic segment to handle the emergency

situation when there is a vehicle in front of the car at an unsafe distance.

It took the author around three hours to have the cruise controller application

added to the existing BBW cluster, generate the SystemC code for the extended

model and debug the new model to get the new application to work properly. The
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Figure 4-14: Simulation speed of the simulation driver approach

new application could be added quickly because our modeling method, as detailed in

the previous section, makes it easy to identify the places where changes have to be

made. Further, the SystemC configuration of communication controller is generated

automatically. This saves a significant amount of time especially in a system with

many nodes. The generated SystemC code is 4,314 lines in total.

Fig. 4-13 shows the simulation speeds of the combined application in milliseconds

for varying numbers of communication cycles. The dynamic segment is used in this

application. Hence the OR states corresponding to dynamic segment are mapped onto

SystemC threads. So not only are we simulating more nodes compared to the BBW

cluster running alone, there are 13 additional SystemC threads due to the use of

the dynamic segment (as opposed to only 1 thread in the first case). Thus there

is a noticeable increase in the simulation times. Admittedly, the new threads are

not computationally intensive but as is often the case with SystemC simulations, the

speed penalty incurred is due to the context switching that is required in the presence

of multiple threads (see in Fig. 4-14).

There are also some slight differences between the simulation speeds of our sim-

ulation driver approach and the hand-written code. The simulation driver approach
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however still gains over the thread-based approach.

Apart from composability and simulation speed aspects, this experimentation

showed the re-usability in our framework. Components designed in the previous

experimentation (BBW) were re-used conveniently in this experimentation.

4.7 Summary

We have described the design of time-triggered applications by constructing a UML-

based design framework. We expose the relevant features of the underlying archi-

tecture and time-triggered protocol at the UML-level through a suitable choice UML

diagram types and fixing their roles. In particular, structure diagrams are used to dis-

play the underlying TTA architecture, restricted behavioral state machines to capture

the control flow of application tasks guided by the communication cycles of FlexRay,

and an annotated activity diagram to display the main features of the static communi-

cation schedule. In addition, our framework enables fast prototyping of time-triggered

applications and early design validation. We allow applications to be developed at a

more abstract level before full implementation.

To support preliminary functional validation, we have constructed a translator

by which SystemC code can be automatically generated from UML designs. In this

aspect, our contributions include the novel use of a simulation driver which uses a

single thread to drive the simulation at the SystemC level to significantly improve

simulation speeds and its automatic synthesis by our translator. We believe this

technique will be applicable in other settings as well; in particular, when there is a

system-level static schedule involved.

Our framework also supports key design principles of TTAs, such as temporal

firewalls through the restrictions imposed on the usage of ports with proper interfaces

and composability by localizing the changes to be made at the UML-level in order to

incorporate a new application.
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We have experimented with two different configurations (static segment only, and

static followed by dynamic segment)using two standard applications. Due to the

XML-based intermediate representation, the current framework can be easily con-

nected to other tools for formal verification [105, 107] and low level design tools such

as schedulability analysis [99] and synthesis [98]. Comparison/combination with an-

alytical frameworks such as one described in [67] is also a potential future work. In

addition, worst case execution time (WCET) analysis is necessary for schedulability

analysis and timing annotation in our framework.

Today, premium cars feature not less than 70 ECUs connected by more than five

different bus systems [27]. These systems may be running on different protocols,

namely time-triggered protocols such as FlexRay, TTP and TT-CAN and event-

triggered protocols such as CAN [24], LIN [5] and MOST [6]. Thus, our future work

includes exploring other time-triggered protocols such as TTP [78] and TT-CAN [52]

and include their models in the library of communication platforms for application

developers. Exposing some services provided by the communication platforms such as

the startup and membership service provided by TT-CAN and TTP is also desirable.

Here, we have focused on systems consisting of a single cluster. However it will not

be difficult to extend our framework to handle multiple clusters connected through

gateways. The clusters may be based on different communication protocols which

include both event-triggered and time-triggered ones. Moreover, it will be important

to investigate issues such as the case when more than one task are allocated to an

ECU; and modeling of time-triggered operating systems which comply to the standard

for time-triggered operating systems OSEKtime [65].

In a larger context, one needs backward association mechanisms through which

faulty runs (including application’s communication’s error) obtained at the SystemC

level can be traced back to the ill-behaved parts of the UML-level model. The con-

struction of such a mechanism will enable the creation of test benches at the UML

level and their verification in SystemC. We will target this issue in the next chapter.
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Chapter 5

Design validation

As described in the previous chapters, our proposed framework can model reactive and

time-triggered embedded systems at UML level, generate SystemC code automatically

and perform simulations for validation. However, because the systems being modeled

can be complicated especially in terms of the interactions among the components, it

is difficult for designers to discover failures during simulation. This chapter sketches

how our design framework can be augmented to facilitate designers to test their design

and to increase the amount of confidence in the correctness of the designed systems.

In particular, we show how to model test cases at UML level and generate the test

driver automatically for SystemC simulation. In addition, the means for establishing

model association is done by which the simulation trace can be reflected back to the

model level. The validation framework proposed here is meant for both reactive and

time-triggered systems. However, our initial effort is oriented towards time-triggered

applications because of the strong demand for high level validation tools for this kind

of applications. Further, we expect that the test cases to be generated and modeled

manually.

We shall first review the related works. Next we will show how usage and expected

behavioral scenarios can be modeled in UML. Then the details of how SystemC Test

Driver is generated for simulation and model association will be presented. Finally,
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the case studies will show the usage of our framework to validate the functionality,

robustness and performance of a system.

5.1 Background

A failure [120] is an undesired behavior. Failures are typically observed during the

execution of the system being tested. A fault is the cause of the failure. Once we

have observed a failure, we can try to find the fault that caused it and correct that

fault. So testing is the activity of executing a system in order to detect faults.

The tests may be categorized by the kind of information we use to design them. In

Black-box testing we do not use the information about a system’s internal structure

to create the test. In other words, the system under test is treated as a black-box.

On the other hand, in white-box testing the implementation code is used as the basis

for designing tests.

Model-based testing is the automation of black-box test design, in which tests are

generated automatically from models that describe the behavior of the system [69].

A model-based testing tool uses various test generation algorithms and strategies to

generate tests from a behavioral model of the system-under-test (SUT) [120].

In our framework, the model is created at the UML level and the simulation is

carried out at the SystemC level. Model association is the process by which the

simulated SystemC trace is translated back to the UML level and displayed in terms

of the model.

The traces displayed at modeling level can help designers to validate both func-

tionality and performance. More importantly, they will help designers identify bugs

in the models and thus, fix them early in the design process. With the increasing

complexity of embedded systems, tools that support the above activities would be of

much help in the high level design process and they will make our design framework

more substantial.



CHAPTER 5. DESIGN VALIDATION 102

The LEIRIOS LTG/UML [120] is a model-based testing tool in which use case

diagrams are used to capture possible usage of the SUT. The abstract model of the

system consists of class diagrams and behavioral state machines. Details unrelated to

the functionalities under test are ignored. For example, some classes in the model for

design are replaced by simple enumerations of test values. The LEIRIOS LTG/UML

tool generates a test suite in terms of test scripts.

There are also a number of similar tools [20] which take the UML diagrams as

input to generate test suite. CowSuit also uses use cases, sequence diagrams for

describing possible usage of the system. The use cases and sequence diagrams are

weighted such that the tool can generate tests differently for different functionalities

based on their levels of importance.

Apart from CowSuite, [122] uses activity diagram to model an operation to be

tested, from which test cases are generated.

Although there are a number of tools generating test suite automatically, they do

not support the execution of the generated test cases and the means for using the test

results. In our opinion, designers need more support in terms of test suite execution

and the displaying of the test results at the model level. In particular, one must

be able to highlight the differences between the simulation trace and the expected

behavior at the model level.

5.2 UML pattern for validation purpose

As mentioned above, it is necessary to capture test cases and display simulation

traces at the model level to facilitate the design validation. We have chosen UML

sequence diagrams (section 2.3) for this purpose. They show the interaction among

the components in a way that easy for designers to comprehend the message exchanges

and the ordering of messages as well as the data being exchanged. Communication

and sequence diagrams are semantically equivalent. On the other hand, it is more



CHAPTER 5. DESIGN VALIDATION 103

difficult to visualize message ordering in communication diagrams.

We separate the sequence diagrams for the usage scenarios and the ones for the

expected scenarios. A usage scenario shows how the system’s environment or user will

interact with the system. It shows how the system’s user sends requests or data to

the system’s components. An expected scenario shows how the internal components

of a system are expected to behave after receiving the requests or data from the user.

It can also show the output or response of the components to the environment. The

reason for this separation is that the usage and expected scenarios serve different

purposes in our framework. The usage scenario is used to facilitate the execution of

the test. On the other hand, the expected scenario is used to check the behavior of

the designed system. Another reason is that often the objects (components) involved

in these two types of diagrams are different and if we combine them together, there

would be many life lines and the diagram would be very difficult to read.

5.2.1 UML modeling for usage scenarios

Our UML model of the system under design includes the components at the boundary

of the system such as sensors from which inputs are to be received. The system

under test can receive input data to be processed by the system or requests from the

environment. It can also take note the time at which the data/request is sent to the

system.

The components at the boundary of the system provide input either passively

or actively to other internal components. They do so passively when the internal

component(s) retrieves input from the boundary components. In this case, the in-

ternal components decide at which points of time they retrieve the input, hence the

environment only supplies data to the internal component. This case usually occurs

in time-triggered applications when data are processed in a time-triggered manner.

They do so actively when the environment itself decides at which point of time to

send data to or to trigger the functions of the internal component(s). In this case,
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the point at which this happens is important to the system and may be taken as data

to be processed as well.

We recall that in chapter 4, an automotive system consisting of brake-by-wire and

adaptive cruise controller applications was used as a case study. An example of usage

scenarios for such a system would show how the driver of the car will drive or interact

with that system, e.g. the force that the driver applies on the brake which is sensed

by the brake’s sensor or when she/he sets/stops the automatic cruise by pressing the

corresponding buttons. We call the objects such as the brake sensors and the buttons

boundary objects. They interact with the environment and relay the inputs to other

internal objects.

 

Figure 5-1: A BBW usage scenario in Rhapsody

Fig. 5-1 shows the usage scenario for the BBW application, which is modeled as

a sequence diagram in the Rhapsody software [100]. The vertical lines (called life

lines in UML) represent the objects (components) in the system, while the horizontal

arrows represent the messages being sent from the object at the tail of the arrow to

the other end. There is a special life line called Test Driver in the sequence diagram,
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which represents the car driver in this case study. In general, the Test Driver is the

environment in which the system is operating. It can be some outside components

or the system’s users. The Test Driver does not exist in the system’s UML model

discussed in the previous chapters. It only appears in the sequence diagram for usage

scenarios. The other life lines in the sequence diagram represent the boundary objects.

There are two types of messages from the Test Driver. The first type corresponds

to the case when the boundary objects provide data to other internal components

passively. It consists of messages that set the input data for the system. In our

example, it consists of the values that the brake or cruise controller will read from

the sensors. The data is retrieved from the boundary objects and processed by the

controllers in a time-triggered manner. Hence they can be set in advance, before

the simulation starts. For example, the first message setTestData(0,20,40,60) is a

message or function call from the Test Driver to PedalP1 sensor.The sensor provides

this function for the Test Driver to call in order to set its sensor data. The second type

of messages represent the triggers or requests from the environment (the car driver in

this case) to the system. The point of time at which they occur are important, hence

these messages have a tag for each, which tells the point of time the trigger/command

occurs. For example, the message triggerSetting represents the action of the driver

pushing the Set button to set the car to automatic cruise mode.

The above usage scenario modeling is expected to be done manually by designers.

At present, our framework will take it as an input to generate a SystemC Test Driver

module.

5.2.2 UML modeling for expected scenarios

The sequence diagrams for expected scenarios specify how the components in the

system should behave or interact with each other or with the environment when the

corresponding test (described in the sequence diagram for usage scenario) is carried

out. They are similar to those for usage scenarios, except that the diagrams for
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expected behaviors do not have the messages which appear before simulation starts.

Fig. 5-2 shows such a diagram. The specified behavior will be compared with the trace

generated while doing simulation in order to help designers identify design faults.

 

Figure 5-2: An expected BBW scenario in Rhapsody

5.3 SystemC Test Driver generation

As mentioned above, the Test Driver represents a system’s environment. Hence,

the Test Driver is not a part of the UML model of the system. At UML level, it

only presents in the sequence diagram(s) displaying the usage scenario(s). However,

it must exist as a component in the SystemC simulation so that it can drive the

boundary objects according to the specified usage scenario(s).

In our framework the SystemC module for the Test Driver is generated and con-

nected to the SystemC modules of the boundary objects. The code generation process

is similar to that for the model, namely the Rhapsody internal representation for each

sequence diagram is converted into an XML file which is then parsed by the trans-

lator to get information about the behavior of the Test Driver and its connections

with other objects. These connections, as mentioned above are not specified in any

structure or class diagrams. Instead they are realized in SystemC by adding ports and
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links into the abstract syntax tree. The Test Driver will become a SystemC module

which sets the input data before the simulation starts and then triggers the connected

modules by calling their functions through the newly created ports according to the

specified sequence diagram.

The advantage of the Test Driver approach is that designers can change their

test easily by creating a new sequence diagram and generating a new SystemC Test

Driver, without having to generate code from the system’s model again.

5.4 Model association

While simulating a complex design, the SystemC run involves many objects exe-

cuting concurrently. Debugging such a big model is difficult at the SystemC level.

Moreover, designers would like to analyze simulation results so that they can answer

some questions about the design at the model level. For example, in the context of

time-triggered applications, typical questions are:

• Does the chosen schedule meet the required deadline?

• Does the number of static slots in static segment and minislots in dynamic

segment suffice?

• Is an event-triggered message never sent because it has low priority or the

dynamic segment is too short?

• Does the system produce correct results or display an expected behavior within

a specified period of time?

The following actions/events occurring during a simulation run of a system are

important in answering the above questions. Firstly, the messages passed among com-

ponents in a system or from the system to its environment and their order. Secondly,

the point of time at which the messages occur. Finally, the data being sent along

with the messages.
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Manager1 Brake1 Brake2

4200_transmit(3500)

Manager2 Bus 

4700_transmit(5500)
6700_transmit(1)

7200_transmit(1)

Brake3 Brake4

7700_transmit(1)

8200_transmit(1)

Figure 5-3: A trace sequence diagram

Our translator inserts code to record the above information. In addition, the

designers can insert their own code to print out the information they want. This

information is then reflected back at UML level as sequence diagrams. This way of

displaying a SystemC run back at UML level can help designers validate and debug

their design.

The sequence diagram resulting from the simulation trace is filtered so that only

the objects specified in the sequence diagram of the expected scenario are depicted.

Fig. 5-3 shows an example of the trace sequence diagram. It is displayed by the tool

UMLGraph [12]. The information about the messages are displayed explicitly as the

messages’ labels.

Our framework includes a program that reads the SystemC simulation trace and

builds an abstract sequence diagram. Subsequently, a UMLGraph textual description

of the filter diagram is generated so that an image of the sequence diagram is built

by UMLGraph.

Sequence diagram comparator Although the trace sequence diagram is filtered

as mentioned above, the sequence diagram may still be large for designers to check
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Sequence diagram for expected 
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SystemC trace Trace sequence diagram

 
Sequence 
diagram 
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Highlighted sequence diagram 
(UMLGraph) 

Figure 5-4: The sequence diagram comparator

and compare with the requirements. Our framework includes a sequence diagram

comparator. The trace sequence diagram is compared with the sequence diagram for

expected scenario so that the differences are highlighted. Fig. 5-6 shows an example of

the highlighted sequence diagram displayed by UMLGraph [12]. In order for designers

to easily analyze the results, the test scenario specified by the designer in Rhapsody is

also converted to UMLGraph format. The highlighted diagram can give the designers

some hints to go back to the model and modify the fault(s) if there is any failure.

Fig. 5-5 summarizes our validation approach.
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Trace 
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Figure 5-5: The validation framework

5.5 Experimental results

5.5.1 Brake-by-Wire (BBW)

The BBW model was presented in section 3.4. In this application, the BBW managers

compute the brake force to be applied at each wheel and send this data to the bus.
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Suppose there is a problem in the computation of one of the managers, our tool

will highlight the first occurrence of the error (message 4700 transmit(5500) ??? in

Fig. 5-6). In this case, the datum being sent at time 4700 is not as expected. Since

usually the data being sent on the bus are computed just before the node’s assigned

slot, the designer can go back to the UML model and check the computation at that

point of time.

 

Manager1 Brake1 Brake2

4200_transmit(3500)

Manager2 Bus 

4700_transmit(5500)_???

6700_transmit(1)

7200_transmit(1)

Brake3 Brake4

7700_transmit(1)

8200_transmit(1)

Figure 5-6: The highlighted trace for BBW application in case there is some compu-
tational error

5.5.2 Soft state protocol

This case illustrates the use of our method to detect errors such as deadlock, thus

realizing the missing features in their communication protocol. Soft state protocols

are used in packet-switching networks to manage the nodes’s information called states

which are refreshed by periodical messages. Otherwise these state will expire. Here

we can consider states to be variables that we want to have replicated and up-to-

date version maintained on other nodes in the network. We used a typical state

management protocol [56] as a case study.

This protocol involves three entities: the Initiator, the Forwarder and the Tar-
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get. The Initiator installs, refreshes and removes the state on the Target by sending

messages over a lossy channel through the Forwarder, which may be a router in a

packet-switching network where the Initiator and the Target reside. This protocol

needed some adjustment when implemented on a time-triggered platform. Due to the

bus architecture, the Forwarders are not necessary. Instead, the Initiator is allocated

a slot for it to send the request (either setup, refreshing or removing) and each of the

Targets is assigned one slot for it to send the acknowledgement back. Without loss of

generality, we modeled the soft state protocol with one Initiator and one Target. We

modeled the protocol on the FlexRay communication platform provided as a library

in our framework. The library has significantly eased and accelerated the task of

modeling the protocol.

A typical execution of the protocol includes 3 phases:

• Setup phase: when the Initiator receives an ASetup request with state informa-

tion data from its environment, it installs the state locally and sends a trigger

message to the bus. The Target issues a notify message back to the Initiator

through the bus to indicate that the setup has been done successfully. If the

Initiator does not receive the notify message after a pre-defined period of time,

it will transmit the trigger message again.

• State maintenance phase: after a refreshing period of time, the Initiator peri-

odically sends a refresh message. If no Refresh is received by the Target after a

state expiration period of time, the state will be removed.

• Teardown phase: when the Initiator receives an ATeardown request from its

environment, it sends a remove message toward the Target to remove the state.

The Target upon receiving this message will remove its state and send a notify

back to the Initiator. If no notify is received within a given period of time, the

Initiator will retransmit the remove message .

Possible problems in a state management protocol include failures to install or
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Initiator Bus Target 

1200_transmit(902) 

2400_transmit(902) 

3600_transmit(902) 

4800_transmit(902) 

Figure 5-7: The trace for the case of no re-trial counter

remove a state correctly. Moreover, the defined periods for retransmission, refreshing

and state expiration must be taken into account.

In order to check how our framework can help in detecting design faults, we pur-

posely eliminated the messages from the Initiator to the Target, simulating the case

when the Initiator’s outgoing link or the Target’s incoming link is broken. The Initia-

tor does not receive the desired notify message after sending out a trigger message.

Hence it sends the trigger message again. At first when the maxRetransmission vari-

able which determined the maximum number of times the Initiator could try to send

the trigger message was not defined, the Initiator kept sending the trigger message

indefinitely (as shown in Fig. 5-7). Meanwhile the Target was still waiting for a mes-

sage from the Forwarder. This should prompt the designer to add a retrial counter

to limit the number of retransmission for the trigger message. The same should be

applied for the remove message in the teardown phase.

5.5.3 Membership service

We modeled a membership service running on FlexRay [21]. The membership service

is to ensure that nodes in a cluster have a consistent view of the status of the nodes in

a system. All the nodes will start with their local opinion that all the nodes are OK.

The steps of the membership service in each FlexRay communication cycle consists of
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each node sends its status to the bus in its assigned slot during the static segment. All

the nodes observe the status information sent (OK or silence). During the dynamic

segment, if a node detects that the observed status of any node is different from its

current local opinion about that node, it will broadcast its observation to all other

nodes. The dynamic segment is configured to be long enough for all the nodes to

broadcast. During the network idle time segment, each node will run the decision

function locally to decide its view of the system. The decision function used in this

protocol is “strict majority”, meaning at least 50% of the nodes must agree on the

status (alive or dead) of a node. If the final decision is different than the local opinion

of a node or does not contain the node as a member, the node will halt. In other

words, a node is removed from the membership set if its local opinion is different from

the final decision.

A requirement for the membership protocol is that it must be able to detect and

exclude any faulty node within two FlexRay cycles. There are three possible failures.

A node failure occurs when the node is unable to send out its status information during

the static segment or its local opinion during the dynamic segment. An outgoing link

failure (OLF) occurs when the outgoing link of a node fails. In this case it may be able

to receive messages but it is unable to send messages to the network. An incoming

link failure (ILF) on the contrary of the above.

On a node, the above failures may occur before a static segment (the assigned slot

of the node in concern) and after the dynamic segment of the previous cycle; or after

the static segment (the assigned slot of the node in concern) and before the dynamic

segment. Different possible failures, faulty nodes and occurring times result in many

possible scenarios in the test suite. Automatic test suite generators such as the one

proposed in [59] are specially useful in this case.

We have done experimentation with different faulty situations for 4 nodes.

• A node fails before sending its status during the static segment. However it

can still receive messages and send its own local opinion during the dynamic
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Figure 5-8: The trace for the incoming link failure case

segment. The simulation trace in Fig. 5-9 shows that all other members were

able to come to a consensus within one FlexRay cycle.

• A node’s incoming link fails before all nodes sending their status. Hence the

faulty node did not receive any status messages, so in the dynamic segment it

sent out its local opinion which is different than all others. Hence it is halted

in the current cycle (Fig. 5-8).

• A node’s outgoing link fails before it sends it status during the static segment.

Like above, the consensus was able to be reached within one FlexRay cycle.

• One node fails and another node’s outgoing link fails. The consensus was

reached within one cycle.

These failures are simulated by having the Test Driver setting the faulty nodes’

status to 0 for the first three cases and modifying the values of the messages received

by the faulty node in the last case.
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Figure 5-9: The trace for the node failure case

5.6 Summary

We have presented here how testing is supported in our framework. We use UML

sequence diagrams for the modeling of usage and expected scenarios. From the UML

sequence diagram for the usage scenario our framework produces at SystemC level

a Test Driver, which drives the simulation as specified in order to carry out the

test. This automatic generation saves designers much effort and time because the

generator does all the connection between the Test Driver and the components that

have interaction with the system’s environment and fills in the triggering code of the

Test Driver. In addition, the SystemC simulation results and traces are reflected back

also as UML sequence diagrams to facilitate designers to find faults in their design if

there is a failure. The resulting sequence diagram and the specified expected scenario’s

sequence diagram are compared and the differences are shown by a comparator.

Through the case studies we have illustrated the applicability of our framework to

validate different aspects of a design. In particular, the functionality of an application
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can be validated to make sure that its output is correct. In addition, the robustness

and performance of an application under different conditions such as network failures

can be tested.

Future work Although our framework does not include an automatic test suite

generator, integration with ones like [59] will be of much help for designers because

there are many possible failures which may occur at different points of time and on

different nodes.

For complicated interactions between a system and its environment and among

the components in a system, the ability to model these interactions is desirable.

It may be worthwhile to exploit the decomposition of sequence diagrams, namely

vertically decomposing of lifelines and horizontally decomposing a sequence diagram

into interaction fragments such as sequencing, choice and iteration.

If there is any mismatch (failure) between the requirements and the simulation

traces, designers need support to identify the design fault(s). One important point

here is that when there is a mismatch, the problem may either be in the design to be

tested or the requirement itself. In the later case, there may be some conflicts in the

requirement. Thus, support to detect inconsistencies in the requirement is necessary.

In summary, what we offer here is an initial step to model association and model-

based testing. Although we have oriented this initial effort towards time-triggered

applications, we believe that the framework proposed here can also be applied for

event-triggered systems.
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Chapter 6

Conclusion

In this thesis, we have constructed two crucial components of a system level design

approach, namely the high level modeling and its intermediate representation. The

chosen modeling and intermediate representation languages satisfy the requirement

for system level languages, namely supporting high levels of abstraction, and separa-

tion of computation and communication.

System level models

Class, structure diagrams
State machines

Usecase, activity diagrams

Usage and 
expected scenarios

Sequence diagrams

Expected scenario and 
trace differences

Sequence diagrams

Executable
SystemC 
program

Augmented
SystemC

code

SystemC 
simulation

TracesPerformance
numbers

Comparator

.h,.cpp .h,.cpp

UML

SystemC

Figure 6-1: Summary of the UML and SystemC-based design framework

Fig. 6-1 summarizes our framework. First, we have proposed a modeling language
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for initial specification of requirements, high level test cases, structure and behavior

of a system. We have chosen a subset of UML together with some extension mech-

anisms. UML has a wide range of notations and diagrams for modeling different

aspects of a system. Further, UML is a standard which is popular in software en-

gineering community and is likely - with suitable augmentations - to get accepted

by the embedded system community as a notational standard. The selection of the

UML subset to be used in our framework, from among the numerous UML notations

and diagrams, was based on their ability to capture the above high level aspects of a

system and to generate code for validation and further refinement. As we have shown,

class diagrams, structured classes, behavioral state machines, usecases, activity dia-

grams and sequence diagrams of UML together constitute a powerful conceptual and

notational base for developing system level designs.

We have also proposed an executable intermediate representation in which valida-

tion through simulation can be carried out before further refinement and implemen-

tation. In our framework, SystemC is the intermediate representation. It supports

modeling of complex systems through hierarchy, concurrency, separation of compu-

tation and communication. In addition, SystemC supports multiple levels of abstrac-

tion. Thus a system model after being validated at high levels of abstraction can be

refined to lower levels, towards implementation. Recently, SystemC has become an

IEEE electronic design language standard. This paves the way for SystemC to be

used more widely in the embedded system design community. This could also help

SystemC to get better support from commercial design tool providers, especially for

hardware synthesis.

We have automated the model transformation process whereby the high level

model is converted to the executable representation for validation through simula-

tion. UML and SystemC, the key elements of the framework, are good basis for a

model-driven system level design process. The key to realizing this potential is to

automatically generate executable code from specifications developed using the cho-
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sen diagram types so that one can carry out simulation, performance estimation and

verification. We feel that the UML-SystemC bridge that we are advocating here can,

with continued effort, help achieve this purpose.

The linkage between the UML layer and SystemC layer we have constructed serves

a dual purpose. On the one hand, we use it for transforming applications described

at the UML layer to SystemC code for initial simulation. On the other hand, our

translation mechanism also enables us to pull up the platform description mechanisms

to the UML layer. In this latter usage, we could consider both the executable platform

description and the application models to be available at the UML layer where one can

hope to do formal verification. Further one can also begin to tackle a more abstract

version of the problem of mapping an application to a platform. Using our translator,

a designer can then translate these two descriptions down to the SystemC level for

more detailed simulation and move towards a hardware/software implementation.

Finally, we have also initiated the process of model association. Once a system

model has been used to generate code to do simulation, one would like to be able to

test and debug the design at modeling level. Thus, model association is crucial. But

it is an area that has not been explored well in the context of system level design. In

our framework, simulation results constructed at SystemC level are reflected back at

UML modeling level to help designers fix design errors. In addition, usage scenarios

of a system are also be captured at UML level so that a SystemC Test Driver is

generated automatically in order to drive the simulation. This automatic generation

saves designers much effort because the generator establishes all the connections be-

tween the Test Driver and the internal components that interact with the system’s

environment and fills in the triggering code of the Test Driver.

A key aspect of our framework is that it is able to handle both conventional re-

active (event-triggered) and time-triggered platforms and applications. The system’s

structure is modeled similarly for both types of systems. In particular, class diagrams

and structured diagrams are used for the complex nested structure. For reactive sys-



CHAPTER 6. CONCLUSION 120

tems, complicated behaviors can be specified in terms of hierarchical state machines.

SystemC communication channels are synthesized from the UML events. We are able

to generate SystemC code from arbitrary nested structures of UML behavioral state

machines.

For time-triggered applications, the behavioral state machines are of a restricted

type. The transitions at the top level are triggered by time while the states corre-

sponding to the event-triggered (dynamic) phase can contain event-triggered tran-

sitions. To take advantage of the static schedule of time-triggered applications, a

SystemC simulation driver is constructed by the UML-SystemC translator to speed

up simulation. Furthermore, the service provided by the time-triggered communica-

tion platform is lifted up to UML level, where the communication schedule is specified.

This enables the system simulation. And this also provides enough information about

the communication platform for the application developers.

We have exercised our framework using a number of event-triggered and time-

triggered applications and platforms. What we have done here can also serve as

design patterns for event-triggered and time-triggered system level modeling. For

reactive systems, we have done three case studies with a benchmark example of a

transaction level model, a case study to check the simulation performance for dif-

ferent sizes of systems and another case study to test out the behavioral synthesis

path (with a very old and now defunct tool). The results show that our approach

offers acceptable simulation speed considering we are catering for hierarchical state

machines. In addition, the simulation scales well for different sizes of systems. The

behavioral synthesis example indicates that integration with further refinement to

implementation is possible with our framework, although synthesis is not the main

focus in this work.

We have also targeted time-triggered applications. We satisfy the requirements

for designing time-triggered applications, namely temporal firewall, global time and

composability. We have experimented in our framework with two automotive appli-
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cations, a brake-by-wire and an adaptive cruise controller system. Our results show

that for time-triggered applications, simulation speed can be substantially optimized

since the schedule is known in advance. Indeed our results show that even for re-

active systems if we have some knowledge about the schedule of a system (which is

usually the case because designers often need to come up with a good scheduling pol-

icy first), we can optimize the simulation speed. Apart from that, other simulation

speed optimization techniques that we have applied based on our survey and experi-

ences have also helped us speed up a good deal for both reactive and time-triggered

systems. Our proposed design framework can be used in the early design process of

automotive software. This could be especially valuable since the design of embedded

automotive software is still in its infancy.

Our initial steps in model association and model-based testing show encouraging

results. The usage scenario specified at UML level and its corresponding SystemC

Test Driver (generated from the UML diagram) facilitate the testing process. Our

simple case studies show that the simulation traces displayed at UML level help

designers identify functional bugs in a system. In addition, errors such as deadlock

in a communication protocol can also be revealed and to some extend, the traces can

guide the designers to fix the bugs. Moreover, the behavior of a system under certain

invalid conditions such as network failures can also be observed.

6.1 Future work

Currently we use UML behavioral state machines to capture the behavior of com-

ponents in a system. We think that it will be important to support heterogeneous

modeling which involves different models of computation. In particular, some ver-

sion of dataflow graphs should be supported. UML activity diagrams can be used to

capture dataflow graphs. Moreover, the modeling of systems which consist of both

event-triggered and time-triggered sub-systems needs to be explored as this is the
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trend in many types of applications, especially in the automotive domain.

Another important issue is how the SystemC program generated from a UML

model of a system can be used in the later steps in a design process. This involves

hardware synthesis and generating software to execute on the target platform. There

is an emerging family of tools that support the design for both event-triggered and

time-triggered systems at low levels of abstraction. Integration of our tool with such

tools to support a seamless development process is desirable.

Another important set of tools to be integrated are the ones for formal verification:

There are two possibilities, namely verification of UML models and SystemC program.

Some projects [82, 109] on verification of UML models take in the similar UML subset.

There also have been works on verification of SystemC model [79, 66, 73]. On the

other hand, timing analysis frameworks such as [67] are also helpful in a system level

development process. With additional effort, it should be possible to integrate our

design framework with these verification tools.

As discussed, our framework helps in the modeling and validating the functionality

and architecture model of a system. This can fit nicely into the Y-chart and platform

based approaches of system level design. However, how to do the mapping between

the functionality and the architecture has not been fully investigated in this work.

Our support for model association can be extended further by allowing designers

to specify more complicated scenarios. This can be done based on the ability of UML

2.0 sequence diagrams to express interaction fragments such as sequencing, choice

and iteration. Furthermore, model-based testing is also desirable. This includes gen-

erating test cases from the UML specification of a system. On this front, integrating

with the works such as [59] is worth exploring.

In summary, our proposed framework is a good basis for system level design to

tackle the complexity problem of embedded systems. The framework is based on the

UML and SystemC languages. The automatic translation from UML to SystemC

enables design validation through simulation. This framework can be applied for
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both reactive and time-triggered systems. And its implementation is amenable for

integration with other tools to support a full development process.
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