

RULE-BASED EXPERT SERVER
SYSTEM DESIGN FOR

MULTIMEDIA STREAMING
TRANSMISSION

ZHOU XIAOFEI
B.Eng.(Hons.), HUST

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

RULE-BASED EXPERT SERVER

SYSTEM DESIGN FOR
MULTIMEDIA STREAMING

TRANSMISSION

ZHOU XIAOFEI

NATIONAL UNIVERSITY OF
SINGAPORE

2008

 I

Acknowledgements

I would like to express my deepest gratitude to all those who have directly or indirectly

provided advice and assistance for my research work and study here in the National

University of Singapore. This project would not have been possible without the support of

those people.

Many thanks to my supervisor, A/Prof Ong, who has led me to the proposal of this project,

for his valuable guidance, suggestions and support throughout the research. During times of

difficulties, he always showed much understanding and patience and gave me warm

encouragement. I have learned a lot from him and I am really glad that I have come here and

became one of his students.

Thanks to Mr. Pan Yan for his valuable advice and friendly help. His occasional discussions

around my work and interesting suggestions in operations have been very helpful for this

study.

Thanks to my parents, for their invaluable love.

Finally, thanks to my friends who endured this long process with me. Thanks for their

support and help.

 II

Table of Contents

Acknowledgements...I

Table of Contents .. II

List of Tables and Figures ..VI

Abstract ... X

Chapter 1 Introduction..1

1.1 Rule-based Expert System ...1

1.1.1 Artificial Intelligence .. 2

1.1.2 Expert Systems.. 2

1.1.3 Rule-based Expert Systems... 4

1.1.4 Summary of the rule-based expert system .. 7

1.2 Multimedia Streaming..8

1.2.1 Multimedia Streaming System.. 8

1.2.2 Multimedia Streaming Characteristics .. 9

1.3 Rule-based expert media streaming server .. 11

1.3.1 The Inspiration .. 11

1.3.2 Related works.. 12

1.3.3 Rationale of the Proposal .. 15

1.3.4 Purpose of Research.. 17

1.4 Organization of the thesis ..18

Chapter 2 Review of Media Streaming Technologies...20

2.1 Technologies for Media Transmission ...20

2.1.1 Service Quality and Protocols ... 21

2.2.2 Server Technologies .. 23

2.2 Current Multimedia Streaming Servers ...28

 III

2.3 Summary of the multimedia streaming server technologies ..29

Chapter 3 Rule-Based Expert Server System Design ...31

3.1 Introduction..31

3.1.1 XML.. 31

3.1.2 Search Algorithms... 32

3.1.3 Expert Media Streaming Server Layers .. 34

3.1.4 Topology of Distributed Server Network.. 35

3.2 Server Design...35

3.2.1 Design Options and Tradeoffs... 36

3.2.2 Server modules.. 38

3.2.3 Decision Making Procedure.. 41

3.2.4 Communication among Server Processes ... 45

3.3 Summary..46

Chapter 4 System Performance and Capacity Analysis ..48

4.1 Introduction..48

4.1.1 System Performance Influence Factors... 48

4.1.2 Theories for analysis ... 49

4.1.3 Assumptions .. 53

4.2 System Performance Analysis..53

4.2.1 Complexity and Computation Time .. 53

4.2.2 Real time characteristics ... 56

4.2.3 Service time for tasks / packets ... 57

4.2.4 Queuing delay and response time.. 58

4.2.5 Capacity of a Single Server... 61

4.2.6 Multicast Analysis... 62

4.3 Summary of Performance Analysis..64

Chapter 5 Implementation of Rule-Based Expert Server System...66

 IV

5.1 Introduction..66

5.1.1 Experiment computer configurations .. 66

5.1.2 Rule Base Implementation .. 68

5.1.3 QuickTime Streaming Server.. 73

5.1.4 Experiments and Evaluations.. 75

5.2 Experiments ...77

5.2.1 Experiment Configurations ... 77

5.2.2 Buffer management methods .. 80

5.2.3 Packet scheduling methods ... 81

5.2.4 Rate control algorithms ... 81

5.3 Results and Discussions...84

5.3.1 Effective Admission Control and Load Balance... 84

5.3.2 Playback Scheduling ... 91

5.3.3 HD Streaming Rate Control .. 94

5.3.4 Streaming Handover.. 97

5.3.5 Congestion Control ... 100

Chapter 6 A Novel Rate Scheduler in Expert Server Knowledge-Base: DLQ Rate Control.................. 114

6.1 Introduction.. 114

6.1.1 Optimal Control .. 115

6.1.2 Linear Quadratic Control .. 115

6.1.3 Reason of selecting DLQ .. 117

6.1.4 Relation with Expert Server System ... 117

6.2 Mathematical Design of DLQ.. 118

6.2.1 Network Model ... 118

6.2.2 Mathematical Solutions... 119

6.2.3 Compatibility of DLQ in Expert Server.. 122

6.3 Results and Discussion ..123

 V

6.4 Impact of delay on DLQ rate control ...127

6.4.1 Assumptions .. 127

6.4.2 Results of Delay Impact .. 128

6.4.3 Compensation for Delay Impact ... 129

6.5 Overhead of DLQ Rate Scheduler ...131

Chapter 7 Conclusion ...133

7.1 The Strength of the Expert Server..133

7.2 The Achievements and Limitations of the Expert Server...135

7.3 Future Development...141

Bibliography ..144

Appendices...154

Appendix A: Extended Kalman Filter (EKF) for Kelly’s Rate Control...154

Appendix B: Deduction of DLQ Control Formula (6.5), (6.6), (6.7) ..157

Appendix C: Kalman Filter for DLQ Scheduler ..159

Publications..163

 VI

List of Tables and Figures

List of Tables:

Table 5-1 Device parameters 68

Table 5-2 Parameters of movies 78

Table 5-3 Experiment configurations 78

Table 5-4 Measurement parameters 78

Table 5-5 Comparison of congestion control methods used in expert server system 82

Table 5-6 Server configurations and load distribution 86

Table 5-7 Profiles for playback schedule 91

Table 5-8 Client profile example 91

Table 5-9 Sample statistic file of subscribers 93

Table 5-10 Example of a content profile 93

Table 5-11 Example of an advertiser profile 92

Table 5-12 Sample output playback schedule 93

Table 5-13 Setup parameters of session re-distribution test 108

Table 6-1 Definition of variables in scalar DLQ formula 120

Table 6-2 Key parameters in simulation 123

Table 6-3 Buffer occupancies with different σ of delay 129

Table C-1 Definition of variables in DLQ Kalman filter design 160

 VII

List of Figures:

Figure 1-1 Comparison of structures of conventional program and of expert system 3

Figure 1-2 Flowchart of forward chaining 5

Figure 1-3 Conventional media streaming system 9

Figure 1-4 Different MPEG2 video layers 9

Figure 1-5 Transmission steps and speeds of streaming media 10

Figure 2-1 Components of multimedia streaming system 21

Figure 2-2 Traffic shaping 28

Figure 3-1 Expert media streaming system layers 34

Figure 3-2 Expert server system topology 35

Figure 3-3 Expert system modules structure 39

Figure 3-4 Rule relations for a resource allocation request 42

Figure 3-5 Decision tree for buffer allocation 43

Figure 3-6 Communication among server processes 46

Figure 4-1 Communication delays 50

Figure 4-2 Queueing model 51

Figure 4-3 Markov chain for M/M/1 queueing model 52

Figure 4-4 Worst case searching time for C1 and C2 56

Figure 4-5 Queueing model and state transition diagram for a 2-priority M/M/n queue 59

 VIII

Figure 4-6 Average response time for M/M/10 queueing system 60

 Figure 5-1 Basic structure of test-bed 67

Figure 5-2 Rule buckets in the rule database 69

Figure 5-3 QTSS server structure 74

Figure 5-4 Performance of EMKC_KF 83

Figure 5-5 Test-bed configuration for admission control and load balance 86

Figure 5-6 Load balance of QTSS with / without expert control 87

Figure 5-7 Startup delay during load balancing 89

Figure 5-8 Playback schedule examples 93

Figure 5-9 Client side throughputs with and without expert control 95

Figure 5-10 Client buffer utilization of QTSS with/without expert control 96

Figure 5-11 Test bed configuration of streaming handover experiments 98

Figure 5-12 RTT and Throughput during streaming handover (wireless wire) 99

Figure 5-13 RTT and Throughput during streaming handover (wire wireless) 99

Figure 5-14 CPU-utilization during streaming handover 99

Figure 5-15 Handover signaling from wireless to wire devices 100

Figure 5-16 Test configurations for congestion mitigation 102

Figure 5-17 Basic QTSS streaming video effects without/with Expert System 103

Figure 5-18 Basic QTSS throughputs without/with Expert System 103

Figure 5-19 QTSS streaming effects during congestion without/with Expert System 104

Figure 5-20 QTSS throughput under congestion (with/ without Expert Control) 105

Figure 5-21 Congestion response experimental configurations 106

Figure 5-22 RTT and throughput during client/network congestion 106

 IX

Figure 5-23 Jitter and CPU-utilization during client/network congestion 107

Figure 5-24 Signaling during handover from high to low resolution movies 107

Figure 5-25 Test bed configuration for session re-distribution 108

Figure 5-26 RTT and throughput during server side congestion 109

Figure 5-27 Jitter and CPU-utilization during server side congestion 109

Figure 5-28 Signaling during session re-distribution 110

Figure 6-1 Network model for media stream transmission 118

Figure 6-2 DLQ scheduler mathematical model 119

Figure 6-3 Client buffer occupancy using DLQ 124

Figure 6-4 Rise time with/without BW limitation 125

Figure 6-5 Buffer occupancy under noise with/without KF 125

Figure 6-6 Client buffer occupancy under TFRC and DLQ control 126

Figure 6-7 Buffer occupancy with mean delay of 0ms, 32ms, 128ms 128

Figure 6-8 Buffer occupancy with delay prediction 131

Figure A-1 Kalman filter block diagram for Kelly’s rate control 154

Figure C-1 Histogram of MPEG2 video frame size 159

Figure C-2 DLQ Kalman filter block diagram 160

 X

Abstract

The presented research is a pioneering work that applied an expert system into the

multimedia streaming server and evaluated the server performances. The purpose is to make

current streaming servers more powerful on streaming, flexible on control, and reliable on

maintenance.

In this thesis, we presented the detailed design and theoretical analysis of the expert server.

The time complexity of inference procedure was analyzed and the real time characteristics of

the server were discussed. Although the server performances depend largely on the

effectiveness of the rules, which is a knowledge database that linked to the main body of the

server, we can make reasonable estimations on the performances by studying parameters like

inference complexity and request response time. Based on these estimations, server capacity

was deduced with respect to the maximum number of clients supportable.

The expert streaming server performance was evaluated with a group of congestion control

algorithms on a local area network, compared with Apple’s QuickTime Streaming Server

(QTSS). Results showed that the expert system can perform effective admission control and

distribute traffic reasonably among servers according to the server load and link parameters.

It could automatically chops the movie and inserts advertisements based on client profile and

content provider’s profile. For high-definition movies, it could deliver smoother streams with

around 60% reduced throughput oscillations when compared with the basic QTSS. The saved

60% bandwidth could be used for supporting more users. The expert control could also

switch the playing movie between different devices without interruption. Such an intelligent

handover is a promising technology when nowadays terminal devices become more various

 XI

and smart. If congestion happened, the expert system reacts based on the severe of the

congestion and conducts cooperative steps to response. Afterwards, the congestion related

information was recorded and referred by future congestion avoidance of the stream.

Attractively, these enhanced performances were achieved by taking less than 10% of the

CPU time for the execution of the expert control program.

To enhance the completeness of the knowledge base in our expert server system, we also

designed a client oriented rate control scheme by solving the Discrete Linear Quadratic

(DLQ) regulator problem under disturbances. Our study showed that DLQ was superior to

conventional rate control schemes especially in maintaining high level and stable client

buffer utilization. Besides the basic DLQ method, we also investigated the performance of

DLQ under delay.

The limitations and the future development directions are given in the conclusion part of this

thesis. We are expecting that the expert server would become a practical, flexible, and robust

platform of multimedia streaming transmission. If it is developed as described in the

conclusion, it could be a valuable model for future integrated multi-function media server.

 1

Chapter 1 Introduction

In this chapter, we will concentrate on the background information of the rule based expert

system and the multimedia streaming. They are two major scopes of the study presented in

this thesis.

Being a practical artificial intelligence (AI) approach, expert systems try to imitate the

intellectual behavior of human beings. Specifically, the expert system intends to emulate the

problem-solving ability of a human expert. To achieve this, it maintains a knowledge

database of heuristic and theoretical knowledge for the computer to perform a reasonable

inference. A rule-based expert system is a significant branch of the expert system family. The

knowledge database in the rule-based expert system is realized using the rules. Each rule

represents a piece of expert knowledge to a particular problem and all rules are grouped and

linked in a logical order to form the rule base.

Streaming media spares the end-user devices from preparing large buffer space for the whole

movie and saves the users’ time for downloading the movie before they can watch it.

Accompanied by the great flexibility, streaming media has its exceptional characteristics and

requires more for the delivery system on resources and technologies.

We will explain the inspiration, the rationale, and the design purpose of our work at the end

of this chapter and the general contents of consequent chapters.

1.1 Rule-based Expert System

The first section in the Chapter 1 will provide a quick review of the expert system and rule-

based system. The characteristics of the rule-based expert system shown in this section will

 2

support the rationale in section 1.3 about using such an AI field technology in media

transmission servers.

1.1.1 Artificial Intelligence

The Artificial Intelligence (AI) can be divided roughly into two categories: Conventional AI

and Computational Intelligence (CI) ([1]). Conventional AI most concentrates on

development of algorithms and techniques that allow computers to "learn" and react

according to its acquired symbolic represented knowledge. The expert system mentioned in

this thesis belongs to this category. CI involves iterative development or learning based on

empirical data. The knowledge in it is not explicitly stated but is represented by numbers and

will be adjusted as the system improves its accuracy. Typical methods included are neural

network and fuzzy system. Both conventional AI and CI have been used extensively in areas

like control, planning and scheduling, diagnostic, speech and facial recognition.

During the 1980s, in a project of performing chemical analysis of the Martian soil [2],

researchers at Stanford University initially used rules-of-thumb (heuristics) to exclude

numerous structures that are unlikely to account for the data. Their work was the first

program that focused more on domain information about the problem to be solved, rather

than the complex search techniques. It revealed a truth that the domain knowledge of the

problem is more powerful than the reasoning methods in achieving intelligent behavior. The

revelation eventually created the epoch of Knowledge-Based Systems (KBS), which is also

called Expert System.

1.1.2 Expert Systems

An expert system ([3], [4]) formalizes some of the subject-specific knowledge of one or more

 3

human experts into its database and performs reasoning on it for the solution. The structure

of an expert system is different from that of a conventional program (figure 1-1).

Conventional programs take numeric data as input and execute a set of pre-decided

instructions. The solution is given in the form of exact numbers, a pointer, or a logic

judgment (True or False). Usually there is no such sequential procedure for an expert system.

Figure 1-1 Comparison of structures of conventional program and of expert system

In Figure 1-1, the two basic components in an expert system are the knowledge base and the

inference engine. The inference engine analyzes the problem and refers to the knowledge

base to deduce a solution. Problem related data are saved in the working memory and severs

as runtime parameters to record the current state of the system. The knowledge base editor

and the explanation module are extra frills that make the whole system easier to use.

The expert system is popular in AI-related research partly due to its flexibility. Since the

knowledge base is separated from the reasoning procedure, it is very easy to perform

modifications to keep the knowledge base updated. Additionally, the expert system can solve

with incomplete data using a large amount of heuristic knowledge. It is a very important

 4

property since the accurate and complete information for a given problem is rarely available

in the real world. Yet it also has some major disadvantages like the solutions may not always

be correct and its knowledge only limited to a specific domain. Nevertheless, it still gets fast

development in many areas. In modern applications, designers borrowed latest database or

web techniques for the knowledge representation. S.J.Jang et al ([6]) designed an XML-

based expert system that can automatically prescript individual exercises. In their design, the

parameters in working memory were obtained from tests on users for their cardio endurance,

muscular endurance, etc, and the knowledge base was configured as information frames and

saved in an XML file. The inference searches and matches the parameters in working

memory with the frames in the knowledge base. The matched pattern was organized and

proposed to users.

Unlike the frames used in this example, most expert systems use rule for their knowledge

representation, as introduced in the next sub-section.

1.1.3 Rule-based Expert Systems

Rules are used to represent knowledge. It follows the nature of people expressing a piece of

knowledge. That is, providing the causes, followed by a conclusion. Therefore, the rules

structure is IF-THEN clause pairs:

 IF < condition > THEN < assertion/action >

Rules express the associations between input and output. Thus it is suitable to represent

procedural knowledge. Using rules, the inference could be performed. When the condition

part of a rule is satisfied, an action will be carried out or an assertion will be made. This

progression produces new facts. The newly derived facts may cause the conditions of other

rules satisfied. Thus one or more rules will be fired consequently. Based on this inference

 5

chain, the reasoning can be performed using two methods: forward chaining and backward

chaining. Forward chaining is a data-driven strategy (figure 1-2), in which rules are applied

in response to the changes of current working parameters (facts).

Figure 1-2 Flowchart of forward chaining

Backward chaining, on the reverse order, starts from a goal (G1). If G1 is not satisfied based

on current working parameters, the inference engine goes to check is there a rule whose

effect part matches it. Upon finding such a rule, its cause part is set to the new goal (G2) and

the chaining procedure continues repeating until the goal Gn is verified true by working

parameters. Backward chaining is not used in our study, so the detailed flowchart is omitted

here. Of course these two types of reasoning can be combined in the real system.

The structure of rules meets the natural format of heuristic knowledge and thus easy to search

 6

and fire. Moreover, the presentation using rules achieves great extendibility on that each

piece of knowledge is highly modularized. This enables the developers to start from a small

group of rules and extend it step by step to a complete database. However, rule-based

systems also have potential problems. We point out the major ones here and make possible

amendments.

1) Infinite chaining. If rule A caused the fire of rule B and the rule B, in return, causes

the re-fire of rule A, there is a potential infinite loop problem. For this problem, a

patent called Loop Detection in Rule-based Expert Systems ([7]) was issued by US

Patent Bureau on 4th October, 2005. The patent detects the existence of overlapping

rules or inconsistently interacting rules that cause the potential problem of infinite

loop and prevents those rules to be involved in real execution. In our study, each rule

is eligible to fire only once in a round of reasoning.

2) Contradictory among rules. When rule base size becomes larger, it may have two or

more rules with the same condition parts but contradicting solution parts. For

example:

Rule 80: IF < network congested > THEN < decrease sending rate >

Rule 16: IF < client buffer underflow > THEN < increase sending rate >

In this example, rule 80 suggests to decrease the sending rate to alleviate congestion

while rule 16 asks to increase sending rate when client buffer encounters underflow

during streaming. However, client buffer underflow often happens together with the

congestion because of the jammed packets in intermediate networks. The expert

system would encounter a dilemma whether to increase the sending rate or not.

Possible solutions will be adding more assertions to the condition part of the

 7

conflicted rules to differentiate their scope, or adding extra meta-rules to handle the

conflictions.

3) Inefficient reasoning. With the increasing size of the rule base, the inference time will

degrade the performance or even cause the system useless. The efficiency depends on

many factors like the characteristics of the problem domain, the length of a single rule,

the binary structure of the rule base, and the complexity of the search algorithms.

These factors are taken care of throughout the thesis, especially in Chapter 3, 4, and 5.

Now cite an example where the rule-based expert system is used to diagnose problems in

circuit simulation. C.W.Lehman and M.J.Willshire implemented an expert system called

SOAR (Simulation Output Analysis and Recommendations) to assist in failure-tracking from

gate-level circuits to full chip architectures ([8]). In this system, a large number of heuristic

rules were used to direct the inference process to converge and to identify the source of the

problem. The inference starts from using the failure as a fact, the system performs reasoning

by matching the fact with the assertion part of rules. If the assertion describes the symptom

of failure successfully, then the condition part of the rule would be added into the solution set

as a new indication to be verified. Their experimental results showed that this rule-based

expert diagnostic system gave 100% accuracy in their test cases. The diagnostic times

(inference time) was only slightly longer when circuit node expanded by two magnitudes.

1.1.4 Summary of the rule-based expert system

At the beginning of this section, we locate the position of our study within the AI area. The

comparison between the expert system and conventional programs in sub-section 1.1.2

differentiated their criteria and structures. Then we revealed that most heuristic knowledge is

suitable to be expressed using rules.

 8

In sub-section 1.1.3, we introduce the rule structure and the forward chaining process. The

major three problems of a rule-based expert system were illustrated with examples and

possible solutions. Using the natural advantages of rules, the rule-based expert system has

become a dominate branch in the expert system family nowadays. It is powerful for

environment dependent problems like planning, task scheduling, decision making, and

process monitor and control.

Notice that media streaming is an environment depend application, we were considering

whether it would perform better if it is controlled with a streaming expert. To answer this

question, we should first study the characteristics for typical media streaming applications.

1.2 Multimedia Streaming

The name of streaming media refers to the delivery method of the medium rather than to the

medium itself. It is the multimedia that is continuously played by the end-user while being

delivered from the provider. Applications like web TV, distant learning, and P2P systems are

all based on media stream delivery technologies. Media streaming plays a more and more

important role in commercial society and in our daily life.

1.2.1 Multimedia Streaming System

In the figure 1-3, we demonstrate a typical media streaming system. The components of the

server will be introduced in Chapter 2. In the following sub-sections, we discuss the major

characteristics of media streaming and network specifications.

 9

Figure 1-3 Conventional media streaming system

1.2.2 Multimedia Streaming Characteristics

To meet different requirements of qualities of transmission, MPEG standards code the video

into several layers (figure 1-4). The performance of a media streaming server will be greatly

improved if it can differentiate the frames of each video. In this sub-section, we introduce the

transmission steps of a media streaming application and the traffic demands for the streamed

media.

Figure 1-4 Different MPEG2 video layers

A multimedia streaming session would experience three key phases: setup, transmission, and

teardown (figure 1-5, left). The online control during transmission is the decisive step for

streaming performance. The traffic speed of different frames is shown in figure 1-5 right side.

 10

In the figure, the transmission speed varies between 32kbps and 600kbps. I frames have the

largest size, and thus requires the highest transmission rate.

Figure 1-5 Transmission steps and speeds of streaming media

Compared to other applications, multimedia applications generate a large amount of digital

information in each second, especially the video part. Streaming applications are very

demanding with respect to the overall throughput, loss of packets, frame delay, and jitter

problem which is the variation of delay. Delay and jitter problem will consequently affect the

synchronization of frames on client side.

However, multimedia streaming is not an intimidating application despite the above

mentioned characteristics. It transmits moderately less than FTP applications. It is not so

sensitive to delay and jitter as VoIP (Voice over IP) applications. For packet loss, with the

development of modern coding and correction techniques, some movies can tolerate up to a

40% packet loss with only slight degradation. Actually, streaming media is not primarily

about quality, it is about access. So the video quality of a streamed file is usually much lower

than that of an HDTV (High Definition TV). The detailed review of multimedia streaming

 11

technologies will be presented in Chapter 2. In the next sub-section, we will discuss the

issues for the proposal in this thesis.

1.3 Rule-based expert media streaming server

After introducing the background information of rule-based expert system, we are now in the

stage of investigating the possibility of using it into the media streaming server design. In this

section, we will explicitly answer the following questions in order:

 What inspired us to the proposal of this study?

 Is there any related work done with the same scheme?

 Is it feasible to use rule-based expert system in media streaming servers?

 Is using rule-based expert system the best way to solve the problems?

 What are the main goals of such a rule-based expert server system research?

1.3.1 The Inspiration

The original inspiration of this proposed work came from the propensity of optimizing

congestion control algorithms to make them better to support media traffic. We found that the

algorithms used in current commercial servers, for example Reliable UDP in QTSS, are

sufficient to perform high-quality streaming media under light load but somewhat simple for

heavy load or unstable environments. Those complex congestion control algorithms only take

one or two QoS parameters instantaneously for its decisions. The usually taken parameters

are network loss rate, packet round trip time (delay), or previous sending rate. These

parameters can represent the variation of transmission environments but they can not provide

the whole picture of the situation individually. Moreover, the same change may be caused by

different reasons. If the algorithms ignore the related information and the historical trends but

 12

merely take the result as indications for adjustments, it may easily be overactive or not

responsive. Even if a congestion control method is designed perfectly, it usually needs the

cooperation of other mechanisms. For example, a congestion control algorithm needs to

sample the network condition in 5 milliseconds for best performance but the task scheduler

always delay the sampling procedure to a period of 500 milliseconds. The information given

by the sampler is always lacking in consistency and inevitably harms the control process.

Therefore, only those mechanisms that could cooperate with each other well should be

selected and work together for the optimization of performance.

From the above investigation, we realize that the solution for congestion problems does not

only rely on the control algorithm design itself. It is an overall contribution from every

element supporting the transmission. The streaming server is like an active entity that makes

decisions, carries out actions, adjusts its behaviors, and learns from experiences. All

components inside the server are related. The streaming procedure needs much cleverness to

handle those components for the problems continuous appears without explicitly predictive

reasons. The solution turns out to be an intelligent streaming server.

1.3.2 Related works

As early as 1988, AI researchers have paid their attention to use the expert system on

network control. E.J.Zakrzewski and R.Quillin ([9]) employed the expert system to perform

network wide control decisions with only local or sector system status information provided.

The system could support network monitoring, fault isolation and system adaptation in

degraded modes. Their system could only focus on service assurance in a communication

network. It is more concerned with the overall topology of the network rather than the

applications.

 13

Later, expert systems were used in network capacity planning. The work in [10] is similar to

the study presented in this thesis in that both of them are designed for server resource

allocations. Yet this paper focused on ISDN network and all possible applications on the

server. In our study, we do not have any specified network architecture but the application

must be media streaming. In this paper, applications were classified based on their burstiness

and time constraints. Rules were employed for the control. The bandwidth capacity was

partitioned into N channels for N types of applications divided by their QoS requirements.

The CPU was shared among three categories of tasks: signaling and control, voice and delay-

sensitive traffic, and delay-tolerant bursty traffic. Their priorities were assigned in an

incremental order. The work realized the upper level server capacity control for multi-service

system, but the control effort looked too coarse.

Nowadays, attention is turned from network planning to more specific areas like traffic

prediction, task distribution, and active queue management. In [11], M.M.S.Rao et al applied

a rule-based expert system for short-term traffic prediction in the power supply system. They

classified the factors that influent the system load into four categories and analyzed their

behavior through experiments. The analytical results were translated to rules and used for

future load prediction.

Other works used the expert system for task distribution after predicting the traffic. Calleja

and Troost ([12]) implemented a rule-based expert system model into their naval command

and control system to handle the workload segments and to deal with uncertainty and

fuzziness. In the system, traffic prediction was handled by another module. The rule-based

expert task distribution module took the predicted results for its decision on workload

balance among operators. The attractive feature of this module was that it may modify or

 14

reassign tasks for excessive workload situations to recover an operator. This module

simulated the behavior of a team leader doing task assignment.

Active queue management (AQM) is an important research area developed recently to

support network scheduling and congestion control mechanisms. J.Wu and K.Djemame ([13])

designed a new AQM algorithm that used an expert system for buffer management. In their

system, related issues like cost at the switch node, congestion avoidance, traffic policing and

delay price were considered for the control decisions. The results obtained from NS-2

simulation showed that this expert system based AQM algorithm achieved significant

performance elevation on queue occupancy and throughput compared to other AQMs

recommended by IETF (The Internet Engineering Task Force).

The domains involved in previous works were too broad to be specialized within a single

expert system. They did not specify a target application. Thus the heuristic rules were hardly

proved to be effective considering the variety of requirements from different applications. As

a result, the outcomes of early attempts to control the network applications or task scheduling

lack domain related significance and seem ambiguous in the problems they attempt to solve.

Due to this drawback, the inference procedures were not convincing since the rules in those

systems were designed for multiple applications that may have different or even

contradicting requirements.

Theoretically, nothing prevented rule-based expert systems from being used in media

streaming control areas and there exists no related works done in the literature. In the next

sub-section, we will investigate this gap and analyze the feasibility of applying rule-based

expert system for media streaming applications.

 15

1.3.3 Rationale of the Proposal

Historically, most expert systems are designed for business planning, manufacturing process

control, and disease diagnosis. Although there were works that applied them into the network

control or task planning, it needs further investigation on whether the rule-based expert

system is really suitable for media streaming applications or not.

Firstly, let us recall the characteristics of a rule-based expert system and the kind of problems

that is suitable to it. An expert system simulates the skills of a human expert to solve a

problem based on current data, past experience and appropriate reasoning. Unlike

conventional computer systems that usually repeat the algorithmic routine work, an expert

systems need to find the solution themselves first before taking any action. The decisions it

made based on knowledge base, in which large amount of heuristic and theoretical

knowledge is coded. Rather than giving out a strictly optimal solution, an expert system first

offers a sub-optimal solution and takes such a solution into consideration for further

reasoning, getting closer and closer to the final decision. The final solutions are not fixed.

They are obtained by reasoning the current situation through some inner principles

represented by rules. They may not be optimal, but must be feasible and correct in most cases.

In summarize, the performance of an expert system depends largely on the correctness of the

knowledge base, the precise of working parameters, the efficiency of the inference procedure,

and also on the system capacity of executing the decisions. Thus expert systems are mostly

suitable for high level controls that have different patterns of solutions and the decisions are

made from the overall picture of the problem.

Examining the multimedia streaming servers, there are two types of work need to be handled

for a successful transmission. One is the routine work, like receiving and analyzing client

 16

requests, sending media data based on standard protocols, and maintaining session states.

The second type is control work like adjusting session parameters, selecting the schedule

strategies, or response to congestions. Conventionally, these control works were fixed coded

like the routine procedures. The same procedure of control is repeated whenever the control

function is called. Although a single control algorithm has to be realized by sequential

programs, the decisions of when and how to use it is difficult to formalize in the conventional

way. Those decisions depend on many issues during a transmission with some kind of

uncertainty. Therefore, an alternative way to perform these control works is extracting the

control-related information and control principles from the main body of the server program

and organizing them in a separate supporting database. The server intellectually selects and

regroups cooperative methods according to characteristics of problems and adjusts their

parameters for the best performance. This architecture matches the expert system very well,

especially for rule-based expert systems that natural in presenting heuristic principles.

There may be other mechanisms that can fulfill the requirements. For example conditional

branches in conventional programs can perform similarly. However, they are only similar on

format but different intrinsically. The conditional branches list all possibilities of a situation

and the control flow is fixed. No matter which branch is selected, the execution of it is very

unlikely to influent the later entrance of other branches. On the contrary, the rules in the

knowledge based are reasonably related to each other. The control flow is set up during

runtime. That is, a rule will not be fired if it is not selected by the current control flow even

its condition is satisfied. Additionally, the fire of a rule usually will cause the activation of

other rules. These consequent results make the progress of inference possible. In summary,

the conditional branches are independent choices listed in the program without inference

 17

procedures for the decisions while a rule-based expert system organizes the problem related

knowledge logically and performs reasoning based on the knowledge. To decide which form

is better, we only need to determine whether the server system needs intelligent reasoning or

merely more choices for selection. The answer is obviously the former one.

For all these reasons, we believe that the rule-based expert system is the most suitable choice

to solve the problems encountered in current media streaming servers. We hope the system

designed from the proposal will achieve the purpose listed in the next sub-section.

1.3.4 Purpose of Research

The aim of our research is to investigate whether adding the expert control could make the

traditional server smarter on the whole media transmission. How much will be the system

performance improve? This could be reflected by the incoming session distribution strategy

and optimal route selection ability of the server, the cooperation among the servers during

congestion, and per session evaluation parameters like throughput, delay, jitter, and bursty

rate. We also want to investigate what size of knowledge base is required to achieve such

performance enhancement, and will the overhead brought by the expert control significantly

decrease the number of supportable clients. The new platform aims at fulfilling the following

requirements:

A. Able to perform effective admission control and traffic distribution.

B. Provide user level playback scheduling.

C. Parameters are adjusted dynamically during runtime.

D. Carry out smooth traffic shaping and buffer management.

E. Perform knowledge-based congestion control under various environments.

F. Implement failure detection and recovery mechanisms.

 18

G. Control the overhead within a reasonable range

To accomplish the above mentioned purpose, we change the conventional server structure

and its decision making procedure; we introduce a forward-chaining planning expert system

to perform streaming control; we built a completed rule base to handle the streaming

problems; we also design a client-oriented rate control algorithm to strengthen the knowledge

base. These accomplishments will be illustrated in detail in the following chapters.

1.4 Organization of the thesis

The thesis would be organized as follows. Chapter 2 reviews the common technologies in

media streaming servers. We reviewed the technologies from three perspectives: server,

network, and client. For network and client sides, the streaming related protocols and

parameters are introduced. For server side, detailed classified methods will be explained with

literature review. At the server side, the most relevant technologies to this thesis are

scheduling strategy, congestion control, and buffer management. Chapter 3 gives the detailed

design of the rule-based expert server system. In this chapter, we are going to introduce the

representation of knowledge base, search algorithms, and the expert server layers. We will

also explain the expert server modules and dynamic inference procedures. The final

consideration will be the communication model between modules. After presenting the

design, the server system performance and capacity are analyzed in Chapter 4. In this part,

the server computational complexity is quantified. The average response time of requests and

tasks will be analyzed based on the computational complexity. Other real time characteristics

of the system are also considered, followed by an estimation of the system capacity. A simple

throughput analysis under multicast situation is also mentioned. All implementation

strategies and the corresponding experimental results would be provided in Chapter 5. We

 19

will explain in depth the state of art when the system is realized. The experiments are

conducted on a test bed and public network using QuickTime Streaming Server with and

without the expert system. They are carefully designed to demonstrate the research goals

listed in sub-section 1.3.4. Chapter 6 is a comparatively independent chapter, in which we

will present our efforts on designing a client oriented rate control method used in the expert

server knowledge base: DLQ Rate Control. Finally, Chapter 7 concludes the whole thesis on

the achievements and limitations of the rule-based expert server we designed, and also

indicates the potential future developments.

 20

Chapter 2 Review of Media Streaming Technologies

In section 1.2, we have introduced the general structure of media streaming system and the

streaming characteristics. However, the information is not sufficient to design or even

understand a streaming server. In this chapter, we focus on more specific server-design

related streaming evaluations and support technologies. These technologies are used in

current commercial servers and will be scheduled and handled by the expert control.

QoS is the major evaluation criteria. In this chapter, we are going to introduce the QoS

parameters that will be used in our experiments, like throughput and jitter. For supporting

technologies, we will introduce the most related ones like traffic prediction, admission

control, server buffer management, congestion control, and traffic shaping. At the end of

introduction of each technology, we will introduce its relationship with others and how it is

going to be handled in our expert server. Only through familiarizing these criteria and

technologies, can we understand the underlying mechanism and major improvements of the

expert control.

The key issue for a streaming server would be resource allocation. Streaming application

needs fast CPU response, large network bandwidth, low delay, and low loss rate. All these

qualities obtained from proper allocation of the server and network resources. This chapter

will give the review on major resource distribution technologies, together with some

commonly used commercial servers.

2.1 Technologies for Media Transmission

The technologies will be reviewed with reference to the components in figure 2-1.

 21

Figure 2-1 Components of multimedia streaming system

2.1.1 Service Quality and Protocols

 QoS, the criteria of quality measurement

Quality of Service (QoS) is a magic word that appears frequently in literature but without

an explicit definition. Usually, the QoS for media streaming includes:

a) Guaranteed use of bandwidth.

b) Limits on cell loss / packet loss.

c) Limits on latency (one-way or round-trip).

d) Limits on jitter (delay variation).

Other parameters in multimedia streaming like transmission reliability, synchronization,

and throughput can also be used for QoS measurement. Since QoS represents the

combination of quality factors, it needs the support of overall systems. Thus researches

related to QoS management either put their effort on global control and structural tuning

([14] [15]) or design the whole transmission system with QoS awareness ([16] [17]). Our

expert control, also targets at improving the general QoS, and does a similar global

 22

contro.. It has QoS maintenance modules and rules, implementing the standard or

heuristic QoS adjustment ideas. The QoS criteria we concern are traffic distribution,

throughput, loss, jitter, multi-channel scheduling, and congestion response. These QoS

parameters will be tested in Chapter 5.

 Protocols used in streaming

Most streaming applications nowadays use HTTP for content browsing, RTSP or SIP for

session initialization, RTP and RTCP for real time control, and UDP for data forward. For

some applications with restrictive firewalls, HTTP has to be used to carry the media data.

It is not efficient and only suitable to webpage plug-in streaming. The QuickTime

streaming server has all these protocols, which will be introduced later for our

experiments in Chapter 5.

Among these protocols, the only one that is control related and QoS related is RTCP

protocol. RTCP performs three major functions: feedback on the quality of the data

distribution, persistent transport-level identifier for an RTP source called the canonical

name or CNAME, and rate control of RTCP packets. It is designed for general purpose

and targets at a single flow. Therefore when specific requirements are needed for a stream

or the overall performance is considered by the server, RTCP control seems lack of global

view and cooperative handling ability. This is why we still need to implement the expert

control although we have had this control protocol. The effects of RTCP control will be

shown in our experiments in Chapter 5, together with the results of expert control. Many

innovative protocols for streaming transmission were proposed these years (e.g. [18] [19])

but we prefer to use standard ones.

 23

2.2.2 Server Technologies

 Traffic Analysis and Prediction

For multimedia streaming, traffic analysis completes three kinds of work. One is to

differentiate media streaming from other non real-time applications [20]. The other is

providing movie parameters like peak bit rate, frames dependent ratio, average frame size,

and bandwidth requirement [21]. The third is bandwidth prediction [22]. The analyzed

statistics help the system decide server buffer size and sending speed.

Primarily, there are two methods to conduct traffic prediction: measurement or traffic

model ([23] [24]). Measurements have higher accuracy but higher computational complex.

Using the traffic model does not waste CPU time for measurement but the accuracy

depends largely on the quality of model. Due to the variation of movie characteristics, it

is very difficult to have a uniform model; the distortion brought by the model will more

or less harm the performance of the whole transmission. In the design of our DLQ

scheduler in Chapter 6, we use a measurement method for traffic prediction.

 Admission Control

Admission control ([25]) is usually implemented between network edges and core to

control the traffic entering the network. It is also used in media server to control the user

population ([26]). Precise admission control needs the support of traffic analysis and

prediction, together with proper acceptance criteria, and a proficient control algorithm.

This mechanism must be realized for a server to control the load level. Our expert control

is built up on top of the traffic prediction and admission control. It analyzes the traffic of

servers in the server cluster and refers to heuristic rules to decide the admitting of a new

session and the distribution of this session among all servers.

 24

 Buffer Management

Buffer management techniques offer fundamental support for data manipulation. Besides

conventional buffer management methods (RED [31] FRED [32] XRED [33]) designed

for general traffic, several multimedia transmission oriented methods are proposed these

years. Some of them are end-to-end management method ([34]) that trade off random loss

for controlled loss of visually less important data. Some are user-oriented fair buffer

management ([35]) that focus on user expected video quality. Another possible method

are look-head buffer management ([36]) that set up a virtual buffer to prevent loss.

In our expert server, these buffer management schemes are selected and tuned by the

expert control, working in cooperation with other scheduling and congestion control

methods to enhance the overall server performance.

 Task/Packet Scheduling

Task scheduling performs low level scheduling that manages hardware resources like

CPU time and I/O bandwidth [37]. Our work does not handle OS level scheduling

directly but register the expert control process at top priority in the Linux kernel.

As for packet scheduling, the simplest method would be round robin (RR) that serves

each flow in turn. General purpose scheduling methods used in current networks are

WFQ (proposed by John Nagle in 1987), WF2Q ([38]), BSFQ ([39]), and DiffServ ([40]).

Besides them, many media transmission oriented scheduling schemes are proposed:

 Window based scheduling. Dynamic window-constrained scheduling method ([41])

guarantees no more than x packet deadlines are missed for every y requests by

adjusting the window size according to loss constraint. It bounds the packets delay at

an acceptable level and promises the minimum bandwidth utilization. It is a

 25

developed method based on WFQ, EDF, and conventional IP window scheduling

technique. However, window based scheduling usually performs slower than rate

based scheduling. For fast speed large volume media data transferring, window based

scheduling would be the second consideration.

 Multi-layer transmission. This method divides the media transmission into multiple

layers and applies different strategies at each layer ([42]). Actually this method has

been extensively used in streaming servers, including the server used in this thesis.

 Multi-path scheduling. Some muti-path scheduling methods ([43]) transmit key

frames through reliable networks and less important frames through best effort

service. The expert control will also consider multi-path scheduling but our target is

to choose the most suitable path for the whole stream so that the synchronization

problem at the receiver side is avoided.

 Wireless media transmission. The wireless channel has distinctive characteristics like

low bandwidth, high loss rate, fading problem and an unstable environment.

Therefore, assured transmission is the key consideration for scheduling in wireless

channels ([44]). We use TCP like window control in our research for the wireless

streaming.

 Heuristic scheduling. Unlike previous methods with mathematical formula or exact

algorithms, heuristic scheduling works on experienced knowledge or statistical

information. It is quite powerful in solving problems with unpredictable or vague

input. The method proposed in ([45]) checked the fail ratio of previous packets and

raised the flow priority level if there was a loss. It could prevent continuous loss for a

flow. Our expert server will not use heuristic schedule methods but will embed some

 26

well-defined heuristic rules for meta-level control of these schedule methods.

 Receiver-driven BW sharing. Contrary to conventional BW sharing scheduling

methods that focus on the capacity of network, this kind of scheduling method

allocates bandwidth among TCP flows according to user references ([46]). It offers a

different aspect to providing QoS and boosts the completeness of scheduling strategy

design. We were enlightened by this idea for our client-oriented rate control method.

 Coordinate CPU and BW scheduling. The work [47] combined the two types of

scheduling methods. This could be a future direction of the expert control.

In Chapter 5, our experiments will be conducted on QTSS (Quick Time Streaming

Server), in which Reliable-UDP is adopted. Reliable-UDP is very similar to the window

based TCP control. It requires feedback from the clients, and adjusts the sending rate

based on feedback information. The expert control takes advantage of it and adds rules to

control the window size and the sending rate adjustment policy. The expert control also

considers the multilayer scheduling and the multi-path scheduling. It sends out only the

necessary layer of stream, and it could select the least congested route during congestion.

These heuristic rules are all designed according to the scheduling algorithms introduced

in above paragraphs.

 Congestion Control (Rate Control)

Congestion control can be a separate module or implemented into protocols. Since UDP

does not perform any congestion control itself, people developed some revised versions

of UDP with congestion control ability. For example, the Apple’s QTSS uses reliable-

UDP that accepts feedback from client to support its flow control module. Other non-

protocol congestion control methods collect loss and delay information at the end systems

 27

and determine a TCP-friendly transmission rate during the streaming ([27] [28]).

Another similar issue, rate control, often appears together with the congestion control.

Since both are used to adjust the sending rate, it is easy to mix them up. Actually the aim

of rate control is to control the speed of a flow for certain QoS requirements. It is

necessary even with light traffic. Congestion control, with the aim of avoiding jam,

focuses on the overall load level of the network and regulates the sending speed without

concerning much on the application characteristics. It is turned on only at the time of

congestion. Two types of congestion control are classified here.

 Window based congestion control. In this group, window size is used to determine the

number of packets eligible to be sent. The control effort is performed by adjusting the

window according to the receivers’ acknowledgements. Window based methods have

the advantage of accuracy and effectiveness, especially for wireless channels. But the

control steps are discretely executed and sometimes cause window size oscillations.

Usually it acts slower than rate based methods.

 Rate-based congestion control. This kind of method ([29] [30]) changes the sending

rate by adjusting the interval of consequent packets. It is often used with faster UDP

flows like media streaming.

The expert control will take care of both types of congestion control algorithms. It has

rules designed according to the advantages and disadvantages of them, decide when to

use which one and adjust the parameters of these algorithms. The detailed discussion

about congestion control methods will be carried out in Chapter 5 in the case study of our

rule-based expert server system.

 Traffic Shaping

 28

Traffic shaping is a preliminary method of QoS control to prevent the performance of

streaming degraded by jitter or lost. The sender or the routers modulate outgoing packets

so that they appear to be more periodic at an appropriate speed. Refer to the figure 2-2,

the shaping procedure delays excess traffic using a buffer, or queuing mechanism (a

priority queue (PQ), a custom queue (CQ), or a FIFO queue), to hold packets and shape

the flow when the data rate of the source is higher than expected. Our expert server does

not implement traffic shaping mechanisms separately, coupling the work with rate and

congestion control.

Figure 2-2 Traffic shaping

2.2 Current Multimedia Streaming Servers

Many commercial multimedia streaming servers are currently available in the market. The

popular ones are Microsoft Windows Media server, RealNetworks Realserver and Apple

QuickTime Streaming Server (QTSS).

Microsoft Windows Media Server ([48]) works in conjunction with Windows Media Encoder

and Windows Media Player to deliver audio and video content to clients over the Internet or

an intranet. The clients can be other computers or devices that play back the content using a

player, or they might be other computers running Windows Media servers (proxying, caching,

or redistributing content). Clients can also be customer applications that have been developed

by using the Windows Media Software Development Kit (SDK). It provides some new

features like fast Streaming, real time monitoring, and IPTV support.

 29

RealServer ([49]) is a member of the RealSystem G2 family of software tools. Similar to

Microsoft Windows Media Server, RealSystem G2 makes up of three components:

1) Production tools: like RealProducer Pro or RealProducer Plus that creates media.

2) RealServer: Media streaming server.

3) Client software: for example, RealPlayer.

Similar to the Microsoft Media Server, it streams both pre-recorded and live media over the

networks to real time watching. In the latest version RealPlayer7.0, the view source feature

allows users to view the source code for SMIL presentations or media clips. The user can

also browse the on-demand content available to the RealServer.

Although powerful and popular, the Windows Media Player and the RealPlayer are

commercial streaming servers without source code opened to the public. Thus developers can

not work on them for their own research. In the study, we make use of the open source QTSS

(also called Darwin Streaming Server) and implemented our expert server. The detailed

introduction of QTSS will be provided after the expert system implementation is described.

2.3 Summary of the multimedia streaming server technologies

In this section, we introduce the streaming technologies that developed rapidly in recent

years. In section 2.1 the server components were divided into three groups: server side

components, network components, and client side component. Client side and network side

components are not controllable for a server design, so we only introduce the parameters

associated with them. The server side components include traffic analysis, admission control,

congestion control, buffer management, task/packet scheduling, and traffic shaping. Each of

them carries out a dedicated function. Their cooperation determines the overall streaming

performance, which is mainly gauged by four QoS parameters: throughput, delay, jitter, and

 30

loss rate.

With the increase in network speed and computer capacity, the commercial streaming servers

become more and more powerful. However, many problems still exist. For example, if

delivered at a low cost, the streamed media are often interruptive. Even for premium paid

streaming contents, the video quality is not satisfactory during peak hours. When talking

about the components of a streaming system, we see many innovative methods proposed to

solve the problems of media transmission. Yet they only focused on a special component, for

example traffic analysis or packet scheduling. The methods designed are attractive but

sometimes they need fixed settings as assumptions for the desired performances. When

considering these potential problems, we realize it is necessary to find a flexible way to meet

the requirements of current media streaming applications and to make it extensible with the

fast changing future of streaming applications. The detailed design of such a system will be

given in the next chapter.

 31

Chapter 3 Rule-Based Expert Server System Design

In this chapter, we present the complete design of the rule-based expert server system. The

design related background information is introduced in the first section. The information

includes the representation of the knowledge base, search algorithms used in the server, the

expert server layers, and the general server cluster structure. Then we will explain the server

components comprehensively. With the support of these components, the inference procedure

is illustrated with an example. In the last part of this chapter, we give the communication

model between modules of the server.

3.1 Introduction

The presented rule-based expert server, which targets streaming applications, has its unique

way of representing the knowledge base. Here we will introduce the format of rules, followed

by some search algorithms as background information. The expert server layers are also

presented in the last part of this section.

3.1.1 XML

The Extensible Markup Language (XML) is a general-purpose markup language. An XML

document contains markup and character data. The markup contains the meaning, such as

“variable name”, and is held in tags and other XML elements. The character data is the

content. An example would be:

<variable name>Number of Client </variable name>

In above example, notation ‘<’ and ‘>’ delimits the tags. The character data, which is the

 32

variable name, is put between the starting and end markups. Users can define their own set of

tags suitable for the application. A single tag pair is defined as a root element. All other

elements, also in pairs, are nested within this pair. Sub-elements are nested within their

parent elements, forming a hierarchical data structure. An XML document looks like ([50]):

<variables>

 <variable>

 <name> Number of Clients </name>

 <value> 1000 </value>

 <type> integer </type>

 </variable>

</variables>

The first line is the root tag of the variables element. In the second tier, variable is a child

element of variables. It represents a specific variable. Below it are the child elements of

variable: name, value, and type. All these markups are defined by users as attributes in the

DTD (Document Type Definition) file. A typical DTD in XML1.0 defines like:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE root-element [doctype-declaration...]>

<!ELEMENT element-name content-model>

<!ATTLIST element-name attr-name attr-type attr-default ...>

<!ATTLIST element-name attr-name attr-type attr-default ...>

… …

During the rule base realization in Chapter 5, we will provide the DTD, the binary structure,

the parser, and the linking of the expert server rule base.

3.1.2 Search Algorithms

The decision making procedure is a process of searching the rule base. There are numerous

search algorithms for different kinds of requests and criteria. Now we give a quick review on

those adopted by expert systems.

 33

The Breadth First Search (BFS) and the Depth First Search (DFS) are two basic search

algorithms. Yet these two search methods perform complete search and become less efficient

with the increase of search space. To solve the problem, the heuristic search algorithms

become popular in AI applications. The heuristic search algorithms use heuristics (rules or

functions) to narrow down the search space or branches, directing the search procedure to

final solutions effectively and fast. Solutions vary with different heuristics, and they may not

be optimal. Commonly used methods are hill climbing search, beam search ([51], [52]),

breadth-first heuristic search ([53]) and A* search. The A* search takes global sum of the

cost to arrive at the current point and the cost to reach the final goal to truncate the searching

space. It does not only focus on the goodness of the next step. The intelligence of A* search

actually relies on the evaluation functions, not on the searching strategy itself. In the

consequent paragraphs, we discuss the former two methods since they are used in our work.

Hill climbing (best first search) is a mix of DFS and heuristics. Instead of randomly select a

child under the current parent node to further the depth first search, hill climbing method uses

the heuristic to select the best one from all candidates. The unselected paths usually are

discarded in order to save time. This search procedure has the advantages of being informed

on each step and modeling human reasoning. However, the solution is not guaranteed to be

found. That is, if the search path is not directed properly, the search will reach the local

optimal point and no way to return to the global optimal one. This is the main search

algorithm used in our study.

Beam search is another popular heuristic search algorithm. It is like a mix of BFS and

heuristics. The beam number is used to narrow the solution set size (width) of child nodes to

save time in the next round of search. The survived lucky child nodes are selected by

 34

heuristics. Beam search is also adopted in our study but it only used for fine level adjustment

after the first round of inference.

3.1.3 Expert Media Streaming Server Layers

Before introducing the design comprehensively, it is necessary to clarify the position of the

expert system in a server. In Chapter 2, we have introduced the conventional multimedia

server architecture. Expert system can be treated as an embedded part in these servers like a

control middleware. Figure 3-1 shows the corresponding layers between server and client and

communication protocols at each layer.

Figure 3-1 Expert media streaming system layers

Comparing to Figure 2-1, the inference engine in highest level and the XML parser and

Knowledge base in lowest level are new figures. Although only three parts are added, the

whole control procedure is changed. It is these additional features that enable the expert

system to allocate resources that are more reasonable and flexible. In the following sections,

 35

we will explain the detailed design of the expert server, especially these added features.

3.1.4 Topology of Distributed Server Network

Servers located at a facility are grouped into a server cluster (Figure 3-2). Each server has its

own decision making mechanism. That is, each server is equivalent in functionality. Working

parameters are periodically broadcasted among servers in the same cluster and also among

clusters. A client can send the request to any server station. The server will make a global

decision based on latest working parameters and forward the request to the most suitable

station for processing.

 Internet
Server Cluster 1

Server Cluster N

Client 1

Cluster M

Figure 3-2 Expert server system topology

3.2 Server Design

In this section, the design options and tradeoffs are listed and studied. Then the detailed

server structure is provided and explained. After that, we follow a memory allocation request

to see the decision making procedure. Finally, the communication mechanism among

modules is shown with a diagram.

 36

3.2.1 Design Options and Tradeoffs

Recall the QoS parameters introduced in Chapter 2, the QoS we want to achieve are:

a) Guaranteed use of bandwidth.

b) Limits on cell loss / packet loss.

c) Limits on latency (one-way or round-trip).

d) Limits on jitter (delay variation).

To realize the above performances, we consider many options during the design. We list

some important ones here, followed with the analysis and tradeoffs for our decisions.

Server oriented or client oriented

The first and most important thing to be decided is which part is the focus of optimization. In

other words, what is the target system along the streaming path that going to be optimized,

the server system, the route system or the client system? If server system is targeted, all

designs should concentrate on server parameters, and the ultimate goal is to give the service

providers (who own the server) the most flexibility, the best performance, the most efficient

management cost. If the router system is the concentration, the design will focus on the

selection of shortest path, the choice of most reliable route, or the minimization of network

cost. If client system is the target, providing a user-friendly interface and power-saving

features in the client device are appropriate design topics. In our research, we concentrate on

the server system. That is, we use the current available network and client technologies to

make the streaming server achieve higher reliability and more flexibility for service providers.

The performance of an expert server would be better with the cooperation of intermediate

routers or client terminals, but will not rely on their cooperation.

Centralized or distributed

At the beginning of design, there are two choices to realize the system, centralized control or

 37

distributed control. Both of them can support the expert system. A centralized system is easy

to establish and maintain, and the messages exchanged among stations are scalable. However,

the centralized control is not reliable. If the central server breaks down, the whole system is

useless. On the contrary, distributed control is difficult to establish and maintain, and the

messages exchanged among stations will be overwhelming as number of stations increase. It

has the advantage of reliability, that is, a single station failure will not impact the

performance of other stations.

To balance the cost and performance of these two types of controls, we finally deployed a

hybrid system. The servers on an area (usually a city size) are organized using centralized

control system, and a most powerful server is selected as the connector to the outside. The

connector servers in different areas are organized with distributed control system, and they

share information periodically. If the connector server in a server cluster is down, another

backup server will take over the work.

Global control or local control

In the literature regarding streaming transmission, most researches focus on a single scenario

or a single algorithm. We also faced the problem of whether to design a local control

mechanism or a global control system. After thorough investigation, we found the global

control to be a big gap in current server research area. Although a lot of algorithms have been

designed for various situations and various traffic, there is no mechanism to integrate these

algorithms into a server and make them cooperate with each other.

Furthermore, with the development of modern protocols, the streaming under RTP and RTCP

control is already good enough for standard movies. Those algorithms designed for marginal

cases are too complex to be used than simple heuristic rules. Thus, we selected some useful

 38

streaming control algorithms into our method base and translate the complex algorithms to

simple heuristic rules to form the expert server. It combines the power of the latest streaming

technologies and reduces their complexity. The implementation of a global control system

will definitely consumes more CPU time and will influence the transmission of movies.

Therefore our work must reduce this overhead to make it acceptable.

Unicast or multicast

Multicast could save intermediate bandwidth, ISP load, and client burden when a large

number of clients in the same area are demanding the same movie. This requirement is not

easy to be satisfied for a VoD application. Even if this requirement is satisfied, multicast

requires efficient algorithm to establish the multicast path. If the path is not well established,

the signaling messages and the inefficient transmission will greatly degrade its performance

to be worse than unicast. Unicast is easy to handle and maintain, but it is not efficient when a

large amount of client behind the same ISP demanding the same movie at the same time.

Since our target is to design a powerful and flexible server, not to design an efficient

multicast path, we choose unicast in our design. This decision is reasonable under the fact

that seldom does a VoD system has great number of clients request the same movie at the

same time. Additionally, the expert system is a global control system that could be extended

to be as multicast-enable platform in future development, as long as the intermediate routers

support the multicast.

3.2.2 Server modules

Figure 3-3 gives the module structure of our expert server. In the left top corner of the figure,

monitor is used to listen to the network notifications or client requests or feedback.

Breakdown or recovery information of other servers is also sent to the monitor. Further more,

 39

monitor records the current resource situation and calculate some statistical parameters to

manage sessions.

Figure 3-3 Expert system modules structure

Master control is an independent event driven routine. It receives requests from the monitor,

which executes periodically every 100ms. Then it differentiates the request type and calls

suitable sub-functions to serve the task. There are mainly three types of tasks: session

establish or termination, media transmission, and session management (QoS). Media

transmissions are controlled by the session handler. If the packet failed to be served, the

master control module records the failure information. If the failure happens too frequently,

the QoS management module will be called.

The session establishment module, one level down from the master control, must be called by

the master control procedure. It is used to perform admission control and establish a new

 40

session. If requested movie does not locate on the current station or the load of the current

station is too high to serve more clients, this module is in charge of transferring the request to

other suitable stations. This kind of job could be pre-coded into server main routine or may

be supported by the rule base with station allocation and resource allocation rules.

The session termination module is used to terminate a session. Terminations may be caused

by four reasons: resource shortage, no response within TIME_OUT, client requested, and

normal finish. For terminations motivated by resource shortage, if there are resources

reserved for the just terminated session and the server load is high, immediate adjustment is

needed. For the other reasons, the server only releases resources without disturbing other

sessions.

Session management is another dependent module called by master control. It performs QoS

adjustment, parameters tuning, schedule table management, session states maintenance and

congestion control.

Following is the detail introduction of the rule base. We divide the rule base into six groups.

Each group is described with a simple example. The program structure of a rule and the

corresponding procedures of condition examination and decision execution will be given in

sub-section 5.1.2 rule base implementation part.

a) Meta rules. These are special rules used to make upper level decision or to decide which

group of rules is the starting point for searching. It may also contain rules to decide the

search method based on time constraints.

Example: IF New Subscription THEN Search Session establishment/termination rule set.

b) Session establish/termination rules. These rules used to accept or reject the requests

from clients, and set QoS level based on client buffer size, network delay, etc.

 41

Example: IF Termination Reason = Resource Shortage THEN Perform Online Monitor AND

Execute Resource Reallocation Procedure

c) Station Allocation rules. The rules are in charge of selecting a proper server station from

distributed server system for the new subscription request.

Example: IF Server Load = High AND Movie cached at Station x THEN Forward Request to

Station x

d) Resource Allocation rules. They are used to allocate and de-allocate the resources like

CPU, memory (for packet queuing), and bandwidth.

Example: IF Current Memory Usage < Low Threshold THEN Check Req. Arrival Rate

e) Real-time Monitor rules. The rules are used to monitor and update parameters of CPU

utilization, memory usage, BW availability, and received notifications from network.

They are also responsible to detect inactive/dumb session.

Example: IF No response from a session for TIME_OUT THEN Report it a DUMB session

f) Real-time QoS management rules. These rules are responsible of process management

and congestion control. They help the server to react on any violation of resources by

adjusting transmission control parameters or changing delivery strategies.

Example: IF Congestion Detected THEN Select Suitable Congestion Control Scheme

With the above group segmentation, the inference engine starts from the meta-rules and

searches only the request-related rule group according to the decision of meta-rules.

3.2.3 Decision Making Procedure

Here we use a potion of memory allocation rules as an example to illustrate the basic forward

chaining decision making procedure in our system. The rule base inference procedure would

be based on the following memory allocation rules in Resource Allocation rule set:

 42

IF Current Memory Usage ∈[Low Threshold, High Threshold] (i.e. Moderate)

THEN Check Requested Movie Bursty Rate

IF Current Memory Usage < Low Threshold THEN Check Req. Arrival Rate

……

IF QoS Level = Premium THEN Buffer = 2*Average Sending Rate

The logical relations of these rules could be illustrated in figure 3-4.

Figure 3-4 Rule relations for a resource allocation request

After searching, the inference tree is built as in Figure 3-5. To make the figure easy to read,

we use full names for each rectangle. In the decision tree, regular rectangles are used for the

rule call or function call, and the decisions are represented using circular rectangles.

Conditions for branches are shown on arcs. When a resource allocation request is issued, the

inference engine performs depth-first search. The searching sequence of branches is decided

by meta-rules.

In the provided example, the search starts from the left-most branch, that is, from deciding

the sending rate. In each branch, the inference engine searches the rule base using hill

 43

climbing algorithm. Heuristics (conditions on arcs) are used to select the best child to trace

further. The sending rate decided would be written into the corresponding session handler;

meanwhile, the session related information in working memory is modified. Then the search

process continues to decide the memory allocation. It checks current memory usage level and

branches to the child nodes. If current buffer usage is moderate, it checks the trend of arrival

rate. If arrival rate of new session establishment requests increases during the past monitored

period, the decision should consider leaving more spaces for the coming users. If the arrival

rate is stable in the monitored history, the resource is allocated merely according to the

required QoS level. This solution is also written into the session handler and working

memory. After that, the search process goes on to perform other resource allocations by

repeating the same search algorithm.

Figure 3-5 Decision tree for buffer allocation

The tree is set up automatically during the search process. The hill climbing search

 44

terminates whenever a solution (circular rectangle) is reached. After all initial parameters for

a session are set, the search process would be repeated to check whether modified parameters

in working memory would cause other rules in related rule groups capable to be fired. This is

a fine-grain adjustment on the final solution and we adopt beam search algorithm for it. For

example, if sending rate is adjusted during the search, the corresponding buffer allocation

would be fine-tuned accordingly immediately. The whole inference procedure ends until no

rules can be fired under current situation.

From this example, we can see that the knowledge base and the inference procedure of an

expert media streaming server are quite different with other recognition or planning expert

systems. Those systems have large amount of loose related parameters and shadow edges on

branch conditions, which need substantive heuristic rules to narrow the searching scope and

direct to the solutions. Media transmission, on the contrary, requires apparent types of

resources and the information of these resources are closely related to each other. In the

example, the buffer allocated depends largely on the disk reading bandwidth and the sending

rate; while the initial sending rate depending on the playback rate of the movie and the QoS

level requested by the client. The inner relations among the rules made the inference

procedure complete much faster with smaller fluctuations comparing to conventional expert

system applications.

It may be argued that since the types of resources in media expert server are clearly defined

and the links among parameters are close, why not pre-coding all IF-THEN clauses into

server programs. Although the comparison of these two types of similar methods has been

preliminary illustrated in the second last paragraph in section 1.3.3, we want to add the

following points to make the explanations clearer.

 45

Firstly, some heuristics are difficult to be mathematically modeled and sequentially coded,

although they are practically helpful under heterogeneous networks. Additionally, the set of

heuristics needed for a decision is not always the same. For these reasons, a more effective

way would be coding heuristics as rules separated from the main program.

Secondly, the performance improvement and the overhead brought by the expert system are

balanced. Compared to pre-coded search, the only additional searching overhead brought

from using knowledge base comes from the online translation of parameter numbers into

their actual values in the working memory. Since the knowledge base is parsed and linked in

binary form beforehand (details are given in Chapter 5), searching it would not require much

more time than searching IF-THEN clauses pre-coded in the server program.

Lastly, the expert system encodes all problem related expertise in data structures only; none

are in programs. This organization enables great flexibility on knowledge base updating and

system maintenance.

3.2.4 Communication among Server Processes

Figure 3-6 shows the relations among processes in the server program. We set up a packet

queue for receiving requests from the network and clients; a task queue for information from

current server station; a session link to manage active sessions on the current station. Five

processes, task processor, packet processor, session handler, monitor, packet receiver, will

work on these three queues as demonstrated in the figure; semaphores are applied to each

queue for mutual exclusion. All global runtime parameters and resource tables are stored in

working memory. The rule base is edited off-line. The line connecting the rule base to the

working memory means that rules can modify the working parameters if necessary. The

searches on the rule base could be initiated by the master control module, the modules called

 46

by the master control, or by the real time monitor module. So we do not specify the source of

the search arrow connected to the rule base in figure 3-6. Consequently, the decisions made

by the rule base would be responses to those modules that initiate the search. Since the

source is not specified in the figure, the returned decision arrow in the figure also does not

have a specific destination.

Figure 3-6 Communication among server processes

3.3 Summary

In this chapter, we first introduced the XML tool and searching techniques useful for our

design. The design options and tradeoffs are explained. Then we indicated the level of our

rule-based expert control system and the expert control components added in a conventional

server. It is these added components that change the whole pattern of control for a

conventional server to form a more powerful and flexible solution. The knowledge base is the

 47

most important part for the intelligence of an expert system. We used explicit examples to

illustrate the division of rule groups. Although search strategy is not the decisive factor for

the intelligence, it is a significant factor for the overall performance. Usually the search

procedure in planning expert system is conducted within a large amount of unrelated

information and rules, and the subsequent searching time is unpredictable. However, the

memory allocation example given in this chapter showed potential logic relations for its

supporting rules. When directed properly, the search process converged very quickly.

The server structure diagram, the rule groups, the decision making procedures, and the

communication model shown in this chapter are fundamentals for the consequent analytical

and the experimental parts of the thesis. In the next chapter, we would first analyze the

performance and estimate the theoretical server capacity before any real implementation.

This will further exam the feasibility and scalability of the expert server system.

 48

Chapter 4 System Performance and Capacity Analysis

In this chapter, we analyze the performance of the expert system. Methods and assumptions

for analysis are introduced first. Then the server computational complexity is quantified. The

average response time of requests and tasks will be analyzed based on the computational

complexity. Other real time characteristics of the system are also considered. Finally the

system capacity is estimated followed by a short discussion regarding the analytical results.

4.1 Introduction

Before analyzing the expert system, we first thoroughly examine factors that would impact

the system performance and discuss their significance. Then the related notation and

mathematical theories are introduced. The assumptions for the performance evaluation are

given in the last part of this section.

4.1.1 System Performance Influence Factors

In general, the following six groups of factors are critical to the system performance:

1) Network parameters (BW, delay, loss rate, etc)

2) Client parameters (client buffer size, client requested QoS, new client arrival rate,

average session duration, etc)

3) Disk bandwidth (Access bandwidth and data block transmission speed)

4) OS level task scheduling (Real time and non-real time tasks sharing the server resources)

5) Packet scheduling (Packet service sequence and session rate control)

6) Movie characteristics (Average playback rate, frame size, movie traffic bursty level, etc)

 49

The former three factors are decided by the intermediate network, the client, or the

supporting database hardware, which are not controlled by the expert system. Although

uncontrollable, they influence the decisions made by the expert server and the overall

transmission performance. We take them as given parameters for the system analysis. The

task and packet scheduling methods are selected by the expert server during execution. They

decide the effectiveness of the transmission, and therefore are factors concentrated in this

chapter. The movie characteristic is negotiable by the server. Movie quality and coding

strategies vary according to the requirement of clients and the available network bandwidth.

Due to the unique character of the expert system that all control decisions are made through

inference on the rule base, the complexity of inference procedure should be analyzed first

before investigating any other procedure. Inference procedure could be divided into five

stages: test, match, activate, act, switch. The Test is to get the runtime parameter value in

accordance with its parameter number and test the IF clause in a rule. The Match is to

evaluate the corresponding THEN clause true or false. The Activate would activate the

decision made by a rule if the condition is satisfied. The Act will perform the action decided

by the rule. In our server, it represents the execution of a selected function. The Switch, as an

equivalent action with the Act, stands for that the inference path branches to another rule.

In summary, this chapter focuses on task and packet scheduling algorithms analysis based on

the given network, database, client and movie parameters. The inference procedure analysis

operates as the key role within the whole analysis.

4.1.2 Theories for analysis

The foremost notation would be O(n) for time complexity analysis ([54]). O(g(n)) gives the

upper bound of change speed for f(n) in the following notation.

 50

Notation: We write f(n) = O(g(n)) if there exist constants c > 0, n0 > 0 such that 0≤f(n)≤

cg(n) for all n≥n0. E.g.: 2n2 = O(n3) (c = 1, n0 = 2)

The second important theory would be the queueing theory for service time analysis. Before

introducing it, we will first take a look at the classification of delays along the media

streaming transmission path.

A. Communication Delays

The delays experienced by packets in a transmission system can be illustrated in figure 4-1:

Figure 4-1 Communication delays

All mentioned delays will influence the transmission performance. The round trip time (RTT),

a measurement of total delay after a packet is sent, is the decisive parameter for many rate

control schemes. For example in QTSS, the RTT is re-estimated whenever an RTPStream

object is called. The revised value is used to decide the timeout for feedback packets and

regulate the sending speed. In most congestion control methods, delays are used together

with the loss rate to decide the level of congestion and the necessary reactions.

For analysis without a measured RTT value, a tiny portion of delays could be ignored.

Transmission delay varies with the packet length. As a usual UDP packet size is only several

KB, the transmission delay of UDP packets are much less than processing and queueing

delays and therefore could be neglected. The propagation delay is even smaller and the

 51

retransmission is rarely happened. Hence only processing delay and queuing delay are

considered in our analysis.

B. Queueing theory

Queuing theory is used to solve the system queuing status based on statistical characters of

clients and servers. Statistical characters of a queueing model are described using following

parameters (figure 4-2).

1) Arrival Process. Probability density distribution (λ) determines the request arrivals.

2) Service Process. Probability density distribution (µ) determines the request service times.

In our server, the service time refers to the decision making time for a request.

3) Number of Servers. This is the number of servers (n) available to service the customers.

Using the short form of Kendall’s notation, the common queuing systems can be represented

as M/M/1, M/G/1, M/G/n, M/D/n, G/G/n, etc.

Figure 4-2 Queueing model

 The fundamental of queueing theory relies on the Little's Theorem, which states that:

The average number of requests (N) in system can be determined from N=λT.

Here λ is the average requests arrival rate and T is the average service time for a request. All

queuing status parameters are calculated using Markov status chain based on this simple rule.

 52

Take the common M/M/1 queue as an example. With reference to Kendall’s notation, M/M/1

means a queueing model with both exponential distribution of customer arrivals and service

times, and there is a single server.

Use P0 denotes the probability that the system is idle. Then the utilization, the system busy

probability is 1−P0. In steady state, the average arrival rate equals to the average departure

rate. That is: 0 0 00 (1) 1 /P P Pλ µ λ µ= + − ⇒ = −

Then the utilization factor ρ would be 1−P0, which is λ/µ.

The ratio ρ = λ/µ is also called the traffic intensity with unit Erlangs. Under the steady-state,

it must be less than 1 for a single server queue. The probabilities of system with N requests in

it can be solved using Markov status chain (figure 4-3).

Figure 4-3 Markov chain for M/M/1 queueing model

In steady state, the probability for the system leaves state i must be the same as the

probability of the system enters state i. That is:

0 1

1 2 0

1 1

()
......

() n n n

P P
P P P

P P P

λ µ
λ µ µ λ

λ µ µ λ+ −

=⎧
⎪ + = +⎪
⎨
⎪
⎪ + = +⎩

Solve the above functions, we have 0
n

nP Pρ= . Thus the following parameters can be deduced.

Average number of requests in the system: 0 10 1 ... /(1)nN P P nP ρ ρ= + + + = − .

According to Little’s theorem, the average in-system-time is: 1/()T µ λ= − .

Consequently, the waiting time 1/ /()wT T µ ρ µ λ= − = −

 53

The results will be used to calculate the capacity of the expert system in section 4.2.

4.1.3 Assumptions

We make the following assumptions for the analysis.

(1) All real time tasks in the server belong to media streaming applications.

(2) Unicast is considered.

(3) Clients follow a Poisson Process.

(4) The server has a sufficient buffer size for incoming requests. The requests can only be

discarded once the deadline is exceeded.

4.2 System Performance Analysis

In this section, the system level performance analysis is conducted based on the theories and

assumptions introduced in section 4.1. The analysis is performed in a progressive manner.

First we analyze the computational complexity of each module and real time characteristics

of an individual expert server, through which the scheduling delay are estimated. Then we

calculate the maximum and the average service time (µ) for a request. Afterwards, queuing

delay (Q) and response time (T) for a task or a packet with respect to different arrival rate (λ)

is analyzed. Finally, we predict the number of clients a server could theoretically support.

4.2.1 Complexity and Computation Time

To balance the computational overhead and system accuracy, the master control program of

expert system is set to execute every 100ms. The execution time of the expert control can be

divided into two parts. One is the sequential request handling process used to respond to

requests and tasks; the other is the rule base searching process used for decision making. In

execution, the rule-base searching process is embedded into the sequential request handling

 54

process. That is, requests are served by searching the rule base. If taking the searching

process as a single statement, the decision making process would run purely in a sequential

manner. The complexity is O(m), where m is the number of sessions. Thus, the main

execution complexity for the expert system program comes from searching the rule base.

Now we focus on calculating the complexity of rule-base searching process.

Basically, the inference procedure uses best first search or beam search. The best first search

selects the best child at each branch for further searching. Thus its complexity depends on the

tree depth. For a rule base contains n rules, the highest depth is n. The complexity of best

first search, as a result, is O(n). The beam search is a truncated width first search. Its

complexity depends on the searching depth and the beam width. The number of searching

node spread geometrically as the tree level goes deeper. Thus the complexity can be written

as O(wh), where w is the beam width and h is the search depth. Limited by the number of

rules, the deepest depth can be reached is 2 31 ... hw w w w n+ + + + + = . We can deduce the

log [1 (1)] 1wh w n= + − + . Substitute it back into ()hO w , the final solution will be

2(()) ()O w w n w O n− + = . Thus we get the conclusion that both two searching algorithms

implemented in our design have the complexity of ()O n .

Now we can further the discussion to inference procedures. In the expert system, the firing of

one rule may cause in chain the firing of other rules. Under this case, several rounds of

searches are needed for an inference on the rule base. Here we present the worst case analysis

for two typical conditions using best first search. The first condition, called C1, is that only

one rule is fired during a search, and this fired rule is always the last rule searched. Another

extreme condition, named C2, is that one rule is fired for every round of searching and finally

all rules are fired in one round of inference. The fired rule in each round, similar to C1, is still

 55

always the last one searched. For example, when we search a rule base with four rules inside,

the sequence is r1 r2 r3 r4 in the first iteration. In the first round, r4 is fired, and it

causes r3 ready to be fired. In the second round, inference engine searches r1->r2->r3 in

sequence and fires r3. As a result of firing r3, r2 is satisfied, and similarly r1 is ready to fire

after firing r2. The final situation is that all rules are fired after n iterations of searching. Of

course, C2 is unlikely to happen during real execution because the conditions of some rules

are contradictive to each other. In a set of these rules, if the condition of one rule is satisfied,

the conditions of other rules inside the set will not be verified true, thus the other rules cannot

be fired together for current inference. Here we use C2 as the worst case bound.

Using a test program, we get the average time ts for searching one rule is approximately

0.01us and the time te for firing one rule is around 0.04 us. If there are n rules in rule base

and the server need to search all rules to make a decision, then the worst case searching time

for C1 and C2 are:

C1: s eT n t t= × +

C2: [] [(1)] ... [1] (1) / 2s e s e s e s eT n t t n t t t t n n t n t= × + + − × + + + × + = × + × + ×

From the Figure 4-4, worst case searching time increases linearly (()O n) for C1, and

bounded below 100 us with less than ten thousand rules. For C2, the worst case searching

time increases exponentially (2()O n) to half a second as rule size goes to ten thousand.

Practically, the searching time should follow the curve of C1 if rule base is properly

organized. We will discuss the influence of complexity to system performance in the next

subsection, considering the real time characteristics.

 56

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

80

90

100

Number of Rules (n)

S
ea

rc
h
 T

im
e

(u
s)

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Number of Rules (n)

S
ea

rc
h
 T

im
e

(u
s)

Figure 4-4 Worst case searching time for C1 and C2

4.2.2 Real time characteristics

In a media server, decisions are made within a specific deadline. For example, a feedback

packet should finish processing within feedback intervals. The server system cannot break

down at any time. These are the real time characteristics. Such a system needs the support of

a real-time operating system. In analysis, we assume that the server computer OS uses a real-

time kernel that can provide timing, preemptive thread scheduling, and fast interrupt response.

Most deadlines in the server are soft deadline, which may be violated lightly without serious

effect. So even without real time OS support, the system is still usable with somewhat

degraded performance.

The key issue in analyzing a real time system is to evaluate the scheduling process. The

efforts in finding workable solutions for real time scheduling problems have been progressed

for many decades yet still no optimal method established. Even if only basic round robin or

EDF scheduling is considered, the mutual exclusion and preemptive constraints make the

analysis difficult or even impossible. Therefore, the thesis merely provides the offline

 57

analysis based on static characteristics of the server code for a general prediction of the

server performance.

4.2.3 Service time for tasks / packets

Based on the complexity analysis in the previous section, we can analyze the service time for

tasks and packets. Tasks and packets are differentiated only because they are generated from

different resources. Tasks come from the server whereas packets come from clients and

networks. They are treated the same in expert control. Here we refer to them uniformly as

requests.

Most services provided for requests need the search of rule base. However the complexity

analyzed in sub-section 4.2.1 is a high level complexity that considers only the stage of test,

match, activate, and switch. It did not count in the complexity of function (the act stage as

introduced in 4.1.1) called by the rule. Besides that, there may have non-streaming traffic in

the server. For non streaming requests, the service time is unpredictable since they are

preemptive by real time tasks. Therefore it is impossible to give a uniform distribution of

service time of streaming requests and background traffic under run-time uncertainties.

However, the service time has an important characteristic that it is memoryless. That means

the service time of current task is not influenced by the service time of previous tasks. With

this feature, the expert control service time could be approximately modeled as an

exponential distribution and the mean value is calculated in the next paragraph.

Taking C1 as the condition and setting the rule size as 2000, the time of each inference takes

20.04 us. If one decision is made from 5 iterations of inferences, it takes 20.04*5 = 100.2 us.

Suppose the server needs to make 20 decisions for each round of control, and every decision

must be made by inference on the rule base. The overall time taken is 2000.4us. Considering

 58

the monitor interval of 100ms, the time portion for making decisions is 2000.4/105 = 2%.

This is the best case mean service time and the calculation does not consider communication

overhead among processes. To guarantee that the expert system takes no more than 10% of

the CPU time to perform global adjustment, the monitor interval could be adjusted using:

Monitor Interval > Avg. time for a decision*Avg. number of decisions for each monitoring / 10%

The rest 90% of CPU capacity is dedicated to the real streaming transmission.

4.2.4 Queuing delay and response time

With a server cluster contains n servers, the incoming requests can be forwarded and served

by any server in this cluster. The expert system will distribute the requests among themselves.

So the requests come from every server node can be combined as a single queue. And the

expert server system can be approximately described as an M/M/n/∞ queue. Consider a

simple case first that all servers are selected equally for the coming requests. The mean

request arrival rate is λ and the mean service time is 1/µ. The coming requests are classified

as real time (class 1) or non real time (class 2) requests. They have different priorities for

services and the system is preemptive. In sub-section 4.1.3, we assumed all real time tasks

belong to streaming applications. The state diagram is shown in figure 4-5.

In the state transition diagram, green arcs represent the arrival and departure of media

requests. The ellipses represent the probability of staying at a state (a,b), where a, b are the

current number of requests of class 1 and class 2 in the system. From the state transition

diagram, the streaming tasks would be served as if the server is dedicated entirely to them.

Whenever they come, they preempt resources for services and this preemption may cause

non-real time tasks suffer from starvation. Therefore, as we mentioned in the assumption part

that the whole server is dedicated to media streaming applications, all requests submitted to

 59

the system would be considered to be real time tasks with different deadlines. The schedule

of tasks according to their deadlines is too complex to be uniformly modeled. We use the

basic FIFO queue as an approximation.

Figure 4-5 Queueing model and state transition diagram for a 2-priority M/M/n queue

Consider the real time tasks only, such an M/M/n queue model has been well investigated in

literature. Here we list the formulas directly. Detailed deductions could be found in related

analytical books ([55]).

(1) Probability that a customer has to wait: 0 ()
!(1)

n

Q
P nP
n

ρ
ρ

=
−

 ---(Erlang C Formula)

Where
n
λρ
µ

= and

()
0 1

0

1
() ()

! ! 1

k nn

k

P
n n
k n
ρ ρ

ρ

−

=

=
+

−∑

(2) Average time waiting in the queue:
(1)

Q
w

P
T

ρ
λ ρ

=
−

 60

(3) Average time spends in system: 1
wT T

µ
= +

(4) Average queue length:
1

Q
Q

P
N

ρ
ρ

=
−

(5) Average number of requests in system:
1

QP
N n

ρ
ρ

ρ
= +

−

Suppose there are ten servers with utilization factor ranges from 0.01 to 0.99, and the average

service time for the requests ranges from 1 to 40ms, the average response time could be

plotted according to the results provided above. Figure 4-6 shows that service time increases

when utilization factor and average service time goes up. The curve rises sharply under high

load especially when the service time is large. This means the service time influences the

average response time more than that of the utilization factor. When the average service time

is 40ms and utilization factor approaches 0.99, a request needs to wait ten times (400ms) in

average before being served.

Figure 4-6 Average response time for M/M/10 queueing system

Now we take one server as a case study for some numerical results. Assume the buffer in

 61

system is infinite. In real cases, the requests that were not served within a given deadline are

discarded, although they were received. To guarantee all requests in server are valid to be

served, each request should have a limited response time. Here we restrict the average in-

system-time T within a certain time bound TThreshold; then the following inequality function

should be satisfied: 1 ThresholdT T≤

Substitute by the results of M/M/1 queue in subsection 4.1.2:

1 1
1

s s
Threshold Threshold

Threshold

T TT T
T

ρ
µ λ ρ

≤ ⇒ ≤ ⇒ ≤ −
− −

 where 1
sT

µ
=

The arrival rate would be limited by

If each client generates m request in average, the supportable client is:

Suppose each session generates ten requests a second and a decision must be made before

next frame of this session sent out, the maximum deadline for the current request would be

equal to the frame interval, that is 1/25 = 0.04s. Hence the supportable number of client is:

Nc <= 0.1/(10*100.2*10-6) - 0.1/(10*0.04) <= 99.55.

4.2.5 Capacity of a Single Server

There are two factors limiting the traffic that a transmission system can support: the server

processing speed and the network bandwidth. For a normal CPU, the maximum number of

clients derived in sub-section 4.2.4 is around 99. Of course this number is reasonable only

when monitor interval is properly set, real-time tasks are scheduled preemptively, and the

server buffer is large enough. Yet these 99 users will consume 99x1.25 Mbps bandwidth =

123.75Mbps (normal VCD quality). From the comparison, the capacity bottleneck of the

server would be the outgoing bandwidth. Since there is traffic for protocol, feedbacks, and

 62

other applications, we cannot grant total bandwidth to the streaming. Usually only around

70% of bandwidth could be used for streaming data for the system stability. Therefore, we

estimate the capacity by:

Server capacity =70%* Outgoing BW/ Average Sending Rate.

According to the above formula, the server capacity depends on the average sending rate of a

single stream given a specific outgoing bandwidth. Thus in the following section of case

study, we take sending rate (bandwidth usage) as the main criteria to illustrate the rule-based

system performance.

4.2.6 Multicast Analysis

Multicast groups users within the same sub-network and deliver a single steam to their ISP.

ISP is responsible to forward the stream to all users through prescribed tunnels. Using such a

transmission topology, server needs to maintain a multicast tree or group list. For each

request, which may be handled by the expert control, the server processes it the same way as

in unicast. So multicast will not impact the average service time for a request, only brings

overhead on multicast group maintenance and impact the bandwidth utilization. It saves a lot

of backbone network bandwidth on data transmission, meanwhile it requires well-designed

protocols to protect the network from overwhelmed by those acknowledgements returned by

all multicast clients.

There are many types of multicast protocols, like sender-initialized, receiver-initialized, and

tree-based protocols. Sender-initialized protocol needs positive acknowledgements (ACKs)

to be sent back to the server for every packet correctly received. While a receiver-initialized

protocol needs negative acknowledgements (NCKs) that sent back to the server only for lost

or corrupted packets. Tree-based protocol collects ACKs/NCKs hierarchically to decrease the

 63

bandwidth waste of acknowledgements. In the bandwidth analysis presented in this sub-

section, we consider the most basic and commonly used protocol, which is sender-initialized

multicast protocol, and use the method that introduced in [56].

W = BW for initial transmission + BW for retransmissions + BW for receiving ACKs

)()()()()()()()1(
12

ad

L

i
a

M

m
dd WELEWEMEWEiWmWWW +=⇒++= ∑∑

==

Where W is the bandwidth required for a multicast session. E(W) is the expected bandwidth

consumption. E(M) and E(L) are the expected number of retransmissions and

acknowledgements. Wd is the bandwidth required for a data packet. Wa is the bandwidth

required for an ACK packet. E(L) depends on the value of E(M).

)1)(1)((*)(ad ppMENLE −−=

N is the total number of clients in the multicast group. pd and pa are loss probabilities for data

and acknowledgements respectively. So that (1 - pd) is the probability of a data is not lost and

(1 - pa) is the probability of an ACK is not lost. We have:

Probability of number of retransmission is less than m times = 1- probability of number of

consecutive retransmission is m

That is:

m
repmMP −=≤ 1)(

addre pppp)1(−+=

That means either a data packet loss or an ACK packet loss will cause a retransmission. As

the client receive procedures are independent from each other, we have,

∑∏
==

−=−=≤=≤
N

i

im
re

ii
N

Nm
re

N

r
r pCpmMPmMP

01

)1()1()()(

 64

∑
=

− −−=−≤−≤==
N

i

i
re

mi
re

ii
N ppCmMPmMPmMP

0

)1()1()1()1()()(

∑ ∑∑∑
∞

= =

+

=

−
∞

= −
−=−−===

1 1

1

0

)1(

1 1
1)1()1()1()()(

m

N

i
i
re

ii
N

N

i

i
re

mi
re

ii
N

m p
CppCmmMmPME

Multicast needs to cache data until all clients receive it correctly.

Average server side buffer size = current data + Σ(size of sent data waiting for ACK)

 = E(M) ×RTT×Sr

∑
=

+

−
−××=××=

N

i
i
re

ii
Nrr p

CSRTTMESRTTBE
1

1

1
1)1()()(

The multicast analytical results could be used to estimate the bandwidth usage of current

streams, or to predict the potential server ability of admitting new streams. If multicast is

supported by the server, our expert control could use these analytical results to design

effective admission control rules.

4.3 Summary of Performance Analysis

In this chapter, we generally analyzed the rule-based expert system and estimated its

performance. The server computational complexity is quantified to be within the range of

O(n) and O(n2), where n is the size of the rule base. Considering the configuration of the rule

base where rules are written for different questions and some of them can never be fired

together, it is very unlikely that only one rule is fired in a round of search but consequently

all rules are fired separately during n times of search in a reference. If this situation could not

happen, then the exponential bound will seldom be reached. Hence we expect that using the

linear bound for future estimation to be reasonable.

Based on this assumption, we gave a formula to calculate the monitor interval. The decision

 65

of monitor interval is influenced by average service time, requests arrival rate,

communication overhead, and CPU portion for the monitor. In our design, we suggest to

allocate less than 10% of the CPU time for the control procedures to maintain satisfactory

time for transmissions. The formula can be applied to set the control interval as long as we

know the average service time of requests.

We employed the M/M/n queueing theory for the estimation of average response time,

average queue length and blocking probability. Within the two classes of requests in the

system, the media transmission requests have the superior priority to other non real time

tasks. The analysis of streaming tasks, as a result, could ignore the influence of other

disturbing tasks. Thus the system meets the results of M/M/n queue provided in sub-section

4.2.4. The numerical results with one server showed that a server can support around 99

customers simultaneously, if each customer generates ten requests in average. From this

number, the bottleneck of the server capacity is revealed to be the outgoing network

bandwidth, not the CPU power. So in the last subsection, the overall system capacity was

estimated by consuming approximately 70% bandwidth of the outgoing link. Bandwidth

requirement under multicast situation and corresponding server buffer usage are also

analyzed at the last sub-section.

From the complexity and capacity analysis in this chapter, the added expert control does not

decrease the number of client potentially supportable by a normal media streaming server.

The expert system structure provides us enough flexibility to adjust the monitor interval, the

service time, and the priority level to limit the control overhead within a reasonable range.

We will implement the expert server system in the next chapter and conduct a case study to

test its performance.

 66

Chapter 5 Implementation of Rule-Based Expert Server

System

In the chapter, the detailed implementation of the rule-based expert server system is

introduced. All experiments are performed on a test-bed using the parameters obtained from

real Internet. We investigate several aspects of the expert control performance with around

1000 rules in the knowledge base. The experimental results are given to show the

comparisons between basic Apple’s QuickTime Streaming Server (QTSS) and QTSS with

expert control.

This chapter is organized as follows. Section 5.1 introduces the test-bed configurations,

classification of rules, and basic modules of Darwin Streaming Server. Section5.2 gives a

thorough study of the methods and algorithms used in expert control, followed by a test

scenarios map and their evaluations in real Internet. The experiments and discussions are

shown in Section 5.3, followed by a short summary.

5.1 Introduction

This section introduces the computer specifications in our test-bed and network topology of

the experiments, the file format of the rule base and its binary structure after parsing and

linking, the details of rules in the rule base, and the background information of basic

QuickTime Streaming Server. They are the fundamental configurations of experiments that

are going to be presented in the sections afterwards.

5.1.1 Experiment computer configurations

The general structure of designed test-bed is shown in Figure 5-1. There are three DELL

 67

Precision T5400 PCs; each has 19 virtual machines (VMWare) installed. In the figure, it is

illustrated as 20 small computers reside on a physical machine. Similarly, two DELL

Optiplex 755 PCs are selected with 9 virtual machines installed. All virtual computers have

QuickTime Player, and all physical machines have QTSS. Table 5-1 lists the parameters of

these PCs. These PCs will be selected and re-configured according to the purpose and

requirements of each experiment. We will introduce the detailed experimental configurations

separately in the section of Experiments and Discussions.

Figure 5-1 Basic structure of test-bed

 Processor Memory Network Operation System
DELL Precision T5400 Intel Xeon 7.8GB 1G Fedora 7.0

 68

4 CPU@2.83GHz
DELL Optiplex 755 Intel Quo’2 Quad

Q7600@2.66GHz
7.8GB 1G Fedora 7.0

Shuttle-XPC-SG33G5M Intel Core2 Quad
Q6600@2.4GHz

2*2GB 1G Fedora 7.0

IBM T61p Intel Core2
Duo@2.4GHz

2GB 100M Windows XP

Table 5-1 Device parameters

5.1.2 Rule Base Implementation

This sub-section illustrates the real implementation of rules. The rule base consists of around

1000 rules. Around 40% of them are QoS and congestion control rules. Nearly 10% are

advertisement playback schedule rules. Around 25% are session management and monitor

rules. The other 25% are meta-rules, admission control rules, traffic distribution rules,

resource allocation rules, and buffer management rules. Figure 5-2 shows the rule buckets in

our rule base. Meta rules are not shown in a bucket because they only have a single function

to direct the search to one or several proper rule buckets.

 69

Figure 5-2 Rule buckets in the rule database
The rule base was constructed in XML language. As introduced in sub-section 3.1.1, the

DTD file for rule base is defined as:

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT rule_base (rule)*>

<!ELEMENT rule (condition, (rule_call|func_call)*)>

<!-- Attributes of a rule rule_no: a unique rule number -->

<!ATTLIST rule rule_no CDATA #REQUIRED>

<!ATTLIST rule type

(Meta|StAlloc|ResAlloc|Sched|QoSMana|Monitor) #REQUIRED>

<!- - - - - - -Definition for Condition - - - - - - - ->

<!ELEMENT condition (#PCDATA | var | number | func_chk)*>

 70

<!ELEMENT var EMPTY>

<!ATTLIST var name CDATA #REQUIRED>

<!ELEMENT number EMPTY>

<!ATTLIST number value CDATA #REQUIRED>

<!ELEMENT func_chk (para*)>

<!ATTLIST func_chk fc_name CDATA #REQUIRED>

<!-- - - - - - - Definition for Actions - - - - - - - ->

<!ELEMENT rule_call EMPTY>

<!ATTLIST rule_call rc_no CDATA #REQUIRED >

<!ELEMENT func_call (para*)>

<!ATTLIST func_call fc_name CDATA #REQUIRED >

<!ELEMENT para EMPTY>

<!ATTLIST para type (num|var|str) #REQUIRED >

<!ATTLIST para value CDATA #REQUIRED >

According to the DTD, rules are written with the following format.

<rule rule_no="78" type="Monitor">

<condition>

 <func_chk fc_name="GetSePara">

 <para value="SeUnderConsi" type="var" />

 <para value="Status" type="str" />

 </func_chk>

 EQ

 <number value="0" />

 </condition>

 <func_call fc_name="TaskGenerator">

 <para value="0" type="num" />

 <para value="ENDSESSION" type="str" />

 </func_call>

</rule>

This rule is used to detect a dumb session. It checks the status of a session. If the status

equals to 0, that is, no reply from client within TIME_OUT, a session-terminate task is

generated.

 71

The XML rule base is parsed by Expat2.0 and the returned characters are handled by our

explanation program attached on the expert server. This explanation program combines the

characters obtained from Expat and parses them into the rule structure defined as follows:

struct rule_t {

 int type; /* The validity of this rule item */

 struct cond_t * condition; /* root of the condition tree */

 struct act_t * action; /* link list of actions to take */

};

In the binary structure, each rule contains a rule type, a condition root pointer and an action

root pointer. The type indicates which group the rule belongs to. The condition part is a

binary tree, where operators are parents and operands are leaves. The action part is a link list.

The structure of conditions and actions are shown below:

/* Node structure for the condition tree */

struct cond_t {

 int type; /*Type of Node, operator/number/variable/function*/

 int op_id; /* ID of the operator */

 int var_id; /* variable id */

 double value; /* number value */

 int func_no; /* Function call no */

 struct para_t * para; /* parameters for the function */

 struct cond_t * left;

 struct cond_t * right;

};

/* Node structure for the action list */

struct act_t{

 int func_no; /* function call number*/

 struct para_t * para; /* parameters for the function */

 int rule_no; /* rule call number */

 int type; /* type of the action, function/rule */

 struct act_t * next; /* next action */

};

 72

Conditions are evaluated by walking from leaf to root when the online value of variables are

available during run-time. Actions consist of function call and rule call. All parameters

referenced by rules and functions called by rules have their unique identity number. For

consistency, we use functions to modify or check the real-time value of server parameters,

although these parameters are accessible directly by rules. If a rule needs to be called, the

corresponding rule number is given; while if a function is called, the function number and the

parameter link head are passed to the function. The parameter link gives the parameters

needed by the expected function. Each node in the parameter link is a structure, which

contains not only the value of the parameter but also the type of it. Refer to the previous

dumb session detection rule example, the rule number 78 and the rule type ‘Monitor’ is given

to activate this rule. At the first line of condition part, a function named GetSePara is called

to check a session’s status value. The two parameters, session number and attribute name, are

passed to GetSePara function through the ‘para’ link. If the condition is satisfied, the function

TaskGenerator is called to generate a task to end the unresponsive session. In our

implementation, we allow nested function calls in passed parameters.

To make the inference procedure faster, the translated rules are put into a rule table at a fixed

position decided by its unique rule number given in the XML file. Another look-up table

maintains the rule numbers belong to each group. All these works finish at the startup of the

expert server. The rule numbers in a group will be sorted by their reference sequence during

the first inference. The sorted order is considered to be the most likely sequence pattern for

future inferences.

Until now, we have introduced the setup and knowledge-base information for our first type of

experiment, which is conducted on the local area network. In the next sub-section, we will

 73

introduce the platform for the experiments, that is, the QuickTime Streaming Server.

5.1.3 QuickTime Streaming Server

Apple's QuickTime Streaming Server (QTSS), also called Darwin Streaming Server, is an

open source version of the media server technology that allows user to send streaming media

across the Internet using the standard RTP and RTSP protocols. Streamed media can be

viewed by both Macintosh and Windows users using QuickTime Player or any other

application that supports QuickTime or standard MPEG-4 files. The server can be used to

delivery live media or videos on demand, or broadcast. In the following paragraphs, the

server structure is illustrated using figure 5-3, which is provided in Apple’s QTSS Modules

Programming Guide document [58]. From the figure, QTSS server consists of four parts.

1) The server’s own Main thread. The Main thread checks to see if the server needs to shut

down, log status information, or print statistics.

2) The Idle Task thread. The Idle Task thread manages a queue of tasks that occur

periodically. There are two types of task queues: timeout tasks and socket tasks.

3) The Event thread. The Event thread listens for socket events such as a received RTSP

request or RTP packet and forwards them to a Task thread.

4) One or more Task threads. Tasks threads receive RTSP and RTP requests from the Event

thread. Tasks threads forward requests to the appropriate server module for processing

and send packets to the client. By default, the core server creates one Task thread per

processor.

 74

Figure 5-3 QTSS server structure

The Streaming Server consists of one parent process that forks a child process, which is the

core server. The whole server runs by event triggered tasks. Each Task object has two major

methods: Signal and Run. Signal is called by the server to send an event to a Task object.

Run is called to give time to the Task for processing the event. As an asynchronous server,

the communication mechanism for events is performed by generalizing Task objects.

QTSS uses a shared buffer for all flows. Video data is moved to the buffer when required and

sent out immediately. The scheduling method it uses is basic round robin, which serves each

session in a fair and sequential way. The QTSS uses Reliable-UDP and flow control together

to perform the function of the congestion control. The so called Reliable-UDP is a modified

protocol that imitates TCP to quantify client satisfactory by asking clients to send back

acknowledges periodically. Flow control increases or decreases BW allocation by the

information obtained from RTCP packets.

Now we compare the QTSS with our expert server on main modules. Obviously, both QTSS

and the expert server designed in this thesis are event driven. QTSS Event Thread module is

 75

equivalent to the Packet Receiver module in the expert server. QTSS Task Thread module

performs similar functions as Master Control and Session Handler modules in the expert

server. Besides these similarities, there are differences between the two servers. QTSS is a

single thread server while the expert server we designed is a multi-task server that contains

four major threads: Monitor, Master Control, Packet Receiver, and Session Handler. However,

the major and most important difference is the procedure of making decision. The QTSS is

traditionally programmed while the expert server refers to the rule base for solutions.

In the following case study, we will introduce the selected buffer management methods,

scheduling methods, and congestion control methods used in the experiments.

5.1.4 Experiments and Evaluations

We designed five experiments to demonstrate the smart behavior of our expert server in the

real Internet.

A. Effective admission control and load balance

With the heterogeneous capacity of servers, there is an optimal distribution of

sessions among these servers. However, the incoming requests are randomly issued to

a server in the server cluster. It will greatly enhance the whole system capacity if

requests could be distributed reasonably among servers. Thus, we design four types of

initial request distributions to compare the load balance function of our expert control

with the basic QTSS. Admission control is also added to cooperate with QoS

management and congestion control.

B. Playback scheduling

Several videos could be displayed in a scheduled sequence and advertisements could

be inserted according to content provider’s demand and client profile. This function is

 76

enlightened from a project that needs to automatically update the VoD content and

advertisement playback schedule to their subscribers. The function could be extended

to a large amount of usages. For example, it may be used to automatically control the

playback when client device is under different environment and status.

C. High Definition (HD) streaming rate control

High definition videos require much larger network resources compare to normal

videos. They are killer applications on current IP network. However, more and more

applications such as Cisco Telepresence products ([83]) require the scenery from each

party to be as clear as possible, like everybody is in the same conference room. For

these cases, rate control is crucial to guarantee video quality and avoid congestion.

We use rate control methods that will be introduced in sub-section 5.2.4 to realize the

rate control.

D. Streaming handover

In our expert server, we consider a challenge scenario that the terminal devices are

changed during playback and the expert control could perform online streaming

handover. Cases we consider are the client device switches from a handphone with

slower IP network to plasma TV display with a fast IP network, or vice versa.

E. Congestion control

Congestion control is always the most important issue as long as network resources

are shared. In our approach, the congestion control is divided into four steps,

congestion avoidance, congestion mitigation, congestion response, and traffic

redistribution. The four steps are deployed in sequence as the severe of congestion

increases.

 77

5.2 Experiments

The performance of the expert server system depends largely on the efficiency of rules and

methods. Therefore it is difficult to give out uniform experimental results without a standard

knowledge base. Here we demonstrate the performance of expert control compare with basic

QTSS server for above designed scenarios. First we introduce the configurations of our test

bed, the movies, the target performance parameters, and the critical methods and rules used

for the expert control.

5.2.1 Experiment Configurations

Table 5-2 and Table 5-3 list the movie parameters and experimental configurations used in

our experiments. Stream-1 to stream-3 in Table 5-2 are the same movie tailored to different

resolutions, in which stream-3 (movie 720p) could be classified as a high definition movie.

The configurations will be slightly tuned in experiments, which will be future explained in

the corresponding sub-section. Performance parameters that we plan to measure are shown

and evaluated in Table 5-4.

 320 (Stream-1) 480p(Stream-2)
 Audio Video Audio Video

Codec MPEG-4 AAC
LC

H264
Main@1.2

MPEG-4 AAC
LC

H264
Main@3

Average Rate (kbps) 98 200 205 1925
Duration 131.2 131.2 131.2 131.2

Frequency (Hz) 44100 - 44100 -
resolution - 320 x 172 - 848 x 448

Target Frame Rate
(Frames/sec) - 24 - 24

Size (KB) 4851 34181

 720p(Stream-3) iPhone Keynotes (Stream-4)
 Audio Video Audio Video

Codec MPEG-4 AAC
LC

H264
Main@3.1

MPEG-4 AAC
LC

H264
Baseline@3

Average Rate (kbps) 457 6026 128 1504
Duration 131.2 131.2 6325.208 6325.198

 78

Frequency (Hz) 48000 - 44100 -
resolution - 1280 x 688 - 640 x 352

Target Frame Rate
(Frames/sec) - 24 - 30

Size (KB) 103896 4851

Table 5-2 Parameters of movies

Metrics Value Evaluation
Protocols Session setup: RTSP

(RTP & RTCP)/UDP
Used in commercial servers

Router 0~2 Use computers to emulate parallel routes with
various settings

Concurrent
connections

70~72 Number of nodes in test-bed

Playback rate 300kbps~6Mbps Standard definition movie
Loss rate LAN/ WAN/ Wireless

(802.11g)
Test on real Internet/ Wireless network

Delay LAN(0ms~10ms)/
WAN(100ms~300ms)

Test on real Internet/ Wireless network

Table 5-3 Experiment configurations

Measure
parameters

Explanation Evaluation

Connection
success rate

(CSR)

The ratio of active video
streams / the total

attempted video streams

To testify the effective admission control and
traffic distribution

Join latency Time to start a session Startup delay
Throughput Bps It reflects the streaming characteristics, the

smoothness of the flow, and the bit-rate.
Client buffer
occupancy

MB It reflects the problem of underflow / overflow

Inter-arrival
Jitter

(us) Smoothness of the streaming

CPU taken by
expert system

% Overhead test (run time QoS management
overhead, measured every 100ms)

Video
presentation

quality

Resolution, corrupt
frames, frame rate

User side quality measurement

Table 5-4 Measurement parameters

The measurements in Table 5-4 are analyzed using captured packets from WireShark network

packet analyzer. In Table 5-3, the loss rate and delay is extracted from RTCP reports. The

detailed calculation could be found in RFC 3550. Here we only explain the loss rate

 79

calculation because there are different ways to compute it in the literature.

First, the number of packets expected can be computed by the receiver as the difference

between the highest sequence number received (s->max_seq) and the first sequence number

received (s->base_seq). Since the sequence number is only 16 bits and will wrap around, it is

necessary to extend the highest sequence number with the (shifted) count of sequence

number wraparounds (s->cycles). That is:

 extended_max = s->cycles + s->max_seq;

 expected = extended_max - s->base_seq + 1;

 The number of packets lost is defined to be the number of packets expected less the number

of packets actually received:

 lost = expected - s->received;

Since this signed number is carried in 24 bits, it should be clamped at 0x7fffff for positive

loss or 0x800000 for negative loss rather than wrapping around. The fraction of packets lost

during the last reporting interval (since the previous SR or RR packet was sent) is calculated

from differences in the expected and received packet counts across the interval, where

expected_prior and received_prior are the values saved when the previous reception report

was generated:

 expected_interval = expected - s->expected_prior;

 s->expected_prior = expected;

 received_interval = s->received - s->received_prior;

 s->received_prior = s->received;

 lost_interval = expected_interval - received_interval;

 if (expected_interval==0 || lost_interval<=0) fraction = 0;

 else fraction = (lost_interval << 8) / expected_interval;

The expected interval is calculated in the following way.

1. If the number of senders is less than or equal to 25% of the membership (members), the

 80

interval depends on whether the participant is a sender or not (based on the value of we_sent).

If the participant is a sender (we_sent true), the constant C is set to the average RTCP packet

size (avg_rtcp_size) divided by 25% of the RTCP bandwidth (rtcp_bw), and the constant n is

set to the number of senders. If we_sent is not true, the constant C is set to the average RTCP

packet size divided by 75% of the RTCP bandwidth. The constant n is set to the number of

receivers (members - senders). If the number of senders is greater than 25%, senders and

receivers are treated together. The constant C is set to the average RTCP packet size divided

by the total RTCP bandwidth and n is set to the total number of members.

2. If the participant has not yet sent an RTCP packet (the variable initial is true), the constant

Tmin is set to 2.5 seconds; otherwise it is set to 5 seconds.

3. The deterministic calculated interval Td is set to max{Tmin, n*C}.

4. The calculated interval T is set to a number uniformly distributed between 0.5 and 1.5

times the deterministic calculated interval.

5. The resulting value of T is divided by e-3/2=1.21828 to compensate for the fact that the

timer reconsideration algorithm converges to a value of the RTCP bandwidth below the

intended average.

This procedure results in an interval which is random, but which, on average, gives at least

25% of the RTCP bandwidth to senders and the rest to receivers. If the senders constitute

more than one quarter of the membership, this procedure splits the bandwidth equally among

all participants, on average.

5.2.2 Buffer management methods

We choose prioritized-RED and layered drop as the buffer management method. RED, as

introduced in Chapter 2, is an efficient algorithm on managing routers buffers in public

 81

network. However, it is not suitable for multimedia data transmission because it drops

packets randomly without differentiating the importance of frames. In our implementation,

we mark packets of different frames as different priority and discard the low priority packets

first when necessary. The threshold for starting dropping and the dropping probability is

adjusted by congestion control rules.

5.2.3 Packet scheduling methods

Three scheduling methods are implemented in the expert server. They are round robin (RR),

weighted round robin (WRR) ([59]), and priority queuing. In the expert system, the weight

for WRR scheduler is set during session setup stage and maintained on-the-fly by the QoS

management rules and congestion control rules. The priority queuing method divides

sessions into a premier and a normal group. A certain amount of bandwidth is reserved for

sessions in the premier group while normal sessions receive only a best effort service.

It should be noted that the expert system decides more than merely selecting a scheduling

algorithm for sessions. It creates smart combinations of those algorithms to make the

transmission efficient. For example we can serve the premier sessions in an RR way for

fairness while the normal sessions are served in a WRR way. Furthermore, the weight of each

session could be changed depending on the availability of bandwidth and the historical

performance of the session.

5.2.4 Rate control algorithms

We select four rate control methods for our case study. They are DLQ ([60]), TFRC

([61], [62]), EMKC ([63], [64], [65], [66]), basic AIMD ([67]). The brief comparison of these

methods is given in Table 5-5. The notations are listed below the table.

 82

TFRC and AIMD are window based congestion control while DLQ and EMKC are rate

based. TFRC performs satisfactorily under most situations. AIMD is suitable for a network

that occasionally encounters sudden parameter change. It is too slow for wired high

throughput media streaming. DLQ is a client oriented rate control method we designed

(Chapter 6) that can maintain high client buffer occupancy and reduce the jitter problem, but

it does not consider the intermediate network conditions. EMKC obtains the overall system

optimality by maximizing individual resource utility. The drawback is that it is delay

sensitive and not always stable under heterogeneous environments.

 Response Function Advantages Disadvantages

TFRC

)321(8/333/2 2pppRTOpRTT
s

++

Satisfactory
performance for
most
conditions

Slow start after
congestion

DLQ
isi

is

is
i

is

is
i bTl

pT
pT

x
pT

pT
u −

+
+

+
−= −

+

+
−

+

+
1

1
2

1
2

1
1

2
1*

)1(21

Client oriented.
Avoid jitter.
Easy
implementation

Not consider
intermediate
network
conditions.

EMKC
iiii RpRR βα −+=+1

Maximize
individual
resource utility

Delay sensitive.
Not always
stable.

AIMD

)(:
)(

:

1

1

nnnn

n

n
nn

WgWWWD
Wf

W
WWI

−=

+=

+

+

Suitable for N/W
with frequently
changed
parameters.

Too slow for
Wired
high-throughput
media
applications.

Table 5-5 Comparison of congestion control methods used in expert server system

p: loss rate S or s: packet size

C: bandwidth capacity R: sending rate

W: window size RTT: round trip time

RTO: request timed out Subscript n or i: discrete sample points

Notice that most provided congestion control methods in Table 5-5 take loss rate p as the

 83

input, especially for EMKC, who take p as the only parameter of the environment. Actually,

loss rate p is the most important parameter that describes the congestion situation. Higher

loss rate is usually caused by increasing congestions in the intermediate networks. However,

the loss rate carried by feedback packets sometimes are not precisely calculated due to

measurement noise and are often delayed by intermediate network. Therefore we add the

Kalman Filter ([69]) in the expert system to predict the p value. We move the design of

Kalman Filter into appendix A and only give out the simulation result for EMKC in Figure 5-

4 since the main purpose of our work is not improve a specific congestion control algorithm.

The EMKC with Kalman Filter is called EMKC_KF. From the Figure 5-4, EMKC_KF is

more stable than EMKC under violated noise and delay. In the implementation, we use

EMKC_KF instead of EMKC.

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9
x 10

7

Control Steps

S
en

d
in

g
 R

at
e

(b
p

s)

EMKC

EMKC with Kalman Filter

Delay = 3;
Noise = 0;
alpha = 5×106 bps;
beta = 0.5;
Server bandwidth = 100Mbps;
Network Capacity =1G;
Number of competitive streams = 16

Figure 5-4 Performance of EMKC_KF

These algorithms are used for congestion avoidance. To take the advantage of them and to

avoid their shortcomings, the expert system selects them according to the network condition

 84

it encountered and the client information availability. Under the usual wired network

conditions, TFRC achieves satisfactory performance. When p increases to a higher value,

TFRC generates a very small sending rate which may cause the interrupt of media streaming.

Now the EMKC_KF could be switch on and takes over the control. If client buffer

occupancy could be provided during streaming, DLQ is turned on for an optimal sending

procedure. In the case of wireless application where loss problem is seriously, AIMD with

retransmission mechanism is a suitable method to guarantee the quality of transmission. In

our implementation, only I frame packets need ACKs and will be retransmitted. Finally, we

should note that the selection and switching among these algorithms are decided from the

statistics for a certain time, not by any instant value. Furthermore, these algorithms are

applied to only streaming sessions for congestion avoidance. If congestion happened due to

background traffic or network/ client jam, expert control has to turn on other mechanisms to

handle it. The detail congestion control steps and implementations will be introduced in sub-

section 5.3.5.

5.3 Results and Discussions

For streaming applications, the main criteria of performance are high CSR (Connection

Success Rate), fast session setup, smooth throughput, small delay, low jitter, and acceptable

control overhead. We compare these parameters for QTSS with and without expert control in

front of different problems in this section.

5.3.1 Effective Admission Control and Load Balance

Usually, admission control is implemented in QoS-enabled networks and it requires the

cooperation of routers and servers. Our target is to enhance the performance of streaming

 85

server, not to improve the routers, so the experiment in this sub-section is to test the expert

system can distribute traffic reasonably among servers and to test the startup time when

system load increases. Admission criteria are set based on the analysis of available system

capability and prediction of the new session traffic requirements. The test-bed configuration

is shown in Figure 5-5. Four computers (IBM T40, DELL Precision T5400, two Shuttle

XPCs) serve as the streaming server, denoted as S1 to S4. Two DELL Optiplex755 with 9

virtual machines in each and three DELL PrecisionT5400 with 19 virtual machines in each

serve as clients. All together there are 80 clients. Four servers are connected to each other

through a LAN, and they are allocated with different parameters using Linux TC network

simulator (Table 5-6). Eighty nodes send movie requests to the target server with predefined

distribution in Table 5-6, one session added every 10 seconds. The delay between S1 and S2,

S2 and S3, S3 and S4, are 100ms, 20ms, 50ms respectively.

When a joining new session exceeds the capacity of the server, QTSS still admits the session

and degrades all current sessions. In this experiment, we tried four scenarios. For example in

the first scenario, 100% requests are sent to server 1. In the second scenario, 50% clients

send request to server 1 and the rest 50% send to server 2. We conducted these four scenarios

with basic QTSS and QTSS with expert control, the sessions on each server are recorded

after stabilization.

Figure 5-6 shows the stable traffic distributions of QTSS with and without expert control for

four scenarios. Note that the total number of sessions on all servers may be smaller than the

total number of clients requested. For example in the left upper picture in Figure 5-6,

altogether only 35 sessions were recorded at server 1 with the basic QTSS (blue column),

although all 80 clients issued the request. This is because the adding of the 36th session

 86

caused the previous streams to be discontinuous and thus unable to be watched. So we take

the maximum number of sessions supportable by basic QTSS under this scenario to be 35.

Figure 5-5 Test-bed configuration for admission control and load balance

Servers Bandwidth RTT Loss Rate Scenarios S1 S2 S3 S4
S1 100M 200ms 0.1 Scenario1 100% 0 0 0
S2 100M 40ms 0.01 Scenario2 50% 50% 0 0
S3 50M 100ms 0.1 Scenario3 40% 20% 40% 0
S4 50M 20ms 0.001 Scenario4 25% 25% 25% 25%

Table 5-6 Server configurations and load distribution

 87

Figure 5-6 Load balance of QTSS with / without expert control

The requests reaching the QTSS server are processed locally and served in a best effort

manner. The basic QTSS has no information about other servers in the same cluster, so the

four servers are independent of each other, although they are connected. In Scenario 1, all 80

requests are issued to S1 and QTSS can only support around 35 sessions. Its CSR is 43.75%.

In Scenario 2, requests are divided into half-half and issued separately to S1 and S2. Because

S1 and S2 have the same bandwidth capacity, they accepted nearly the same number of

requests. As a result, totally 70 requests are successful, CSR is 87.5%. In the third scenario,

32 requests went to S1, 16 requests went to S2, and 32 requests went to S3. S1 and S2 have

enough capacity to accept all coming requests, but S3 could only support around 16 sessions,

making the altogether CSR to be 80%. The rest 16 sessions have to wait until current

sessions finished, although S1 and S2 have spare capacity to support them. Even in Scenario

4 where requests are evenly distributed, the CSR of QTSS reaches up to 90%, still 8 requests

sent to S3 and S4 can not get the service.

On the contrary, no matter which server the requests were initially sent, QTSS with expert

control will reasonably distribute them among server according to the server and the

 88

intermediate link parameters. The under-layer execution is like this. Servers, S1 to S4,

exchange messages about their available bandwidth, load level, etc. The RTT between two

servers are tested with the monitor procedure, which runs every 100ms. Loss rate is initially

set to zero and updated with RTCP client report after session established. In our rule base, the

traffic distribution rules will first estimate the available bandwidth of all servers from their

current load level. For those servers that have enough capacity to support the new request, it

calculates a weighted sum for the link delay and loss rate. The lower the value is; the higher

chance the corresponding server is selected. After deciding the server, new request will be

forward to that server, until an accept ACK message is received. If a Reject message is

received other than ACK, it means the target server is busy and cannot accept the new request.

For example the server has other background FTP traffic running. In such a case, the expert

control will select the second choice and try again. Meanwhile it updates the patient user with

messages. If a new request is rejected four times by remote servers and the local server that

the request initially sent cannot support it, a reject decision will be made and sent to the user.

From the experimental results in Figure 5-6, QTSS with expert control has approximately

identical load distribution for four scenarios, and their CSR are all 100%.

Another important parameter to scale the server performance is startup delay. Strictly, the

startup delay is defined as the time between pressing the START button and the beginning of

the movie play. Our startup time is calculated by capturing the first RTSP request packet out

and the first RTP data packet returned on each client. It is shorter than the real startup delay

because it does not count the buffering time at client device before playing. The startup

delays of these scenarios are shown in figure 5-7. We want to use it to investigate the

overhead brought by expert server when performing admission control and load balance.

 89

Figure 5-7 Startup delay during load balancing

As we illustrated in previous paragraphs, basic QTSS processes requests locally. When the

new coming request exceeds the capacity of the server, it will not be forwarded to the other

server that has enough capacity to handle it. Therefore in the four figures in Figure 5-7, the

startup delay under basic QTSS control (blue line) is quite stable at 145ms, and most time it

is lower than or overlap the one (red line) with expert control. The blue lines are not

continuous to the end of the x-axis because we only show the startup time for accepted

sessions. Those requests that cannot be supported by the server are not counted into

calculation.

For QTSS with expert control, a new request may be transferred to another server when the

current server capacity is not the best choice. When such a transfer happens, the join

procedure of a new session is lengthened, and the startup time becomes longer. That is the

reason for the curves shooting up at certain times in four pictures with expert server control.

The more hops required to transfer the request, the longer time it takes before starting the

 90

streaming. In our experiments, the requests are issued from S1 to S4 sequentially. If a request

needs to be transferred to S2, S1 forwards the request to S2 and wait for ACK or Reject

message. If S2 cannot handle the request, S1 has to ask S3 or S4 as a second choice. In these

cases more time is taken by such kind of re-forward processes. Reflected from results, the

startup time may rise to several different levels.

Before we explain the curve of each picture, we should notice that the average delay between

S1 S2, S2 S3, S3 S4 is 100ms, 20ms, 50ms respectively (Table 5-6). In scenario 1, the S1

accepted 15 requests. From request 16, S2 is found to be a better choice to serve the session,

so it forwarded the following requests to S2 until S2 saturated at 35 sessions on it. Then the

S1 forward the request to the farer S3 for another 13 requests and the most far away S4 17

sessions. In the second scenario, S1 accepted 15 sessions, and then forwarded the rest 25

requests to S2. S2 accepted these requests. After this, S2 has 40 new requests coming but it

can only support 10 more on itself. Therefore it forwarded 13 requests to S3 and 17 requests

to S4. Because the delay between S2 S3 and S2 S4 is much lower than those for S1, the

startup delays for these forwards took less than half the time as previous forwards from S1 to

S3 and S4. Similarly in scenario 3, S1 forwarded from request 16 to 32 to S2; S2 accepted

the following 16 requests issued to it; S3 accepted 13 requests on its own and forwarded 2

requests to S2 and 17 requests to S4. In scenario 4, S1 forwarded 5 requests to S2; S2

accepted these forwarded requests and all 20 requests issued to it. S3 accepted 13 requests

originally issued to it and forwarded 7 to S2. Similarly S4 accepted 17 requests and

forwarded 3 to S2. Since each expert server knows the capacity of others and it runs the same

rule base as others, they should make the same decision for traffic distribution and load

balance. The maximum delay brought by expert control in the experiments is 582ms, which

 91

is acceptable as the tradeoff for the performance enhancement.

5.3.2 Playback Scheduling

Most commercial VoD systems need to insert advertisements to make money. These Ads

could be inserted randomly in between the movie. However, some advertisements are only

suitable to a specific group of people, and they may need to compete with other content

providers for limited time slots. In this case, the expert control is a good solution to

automatically solve the schedule problem without interference of maintenance engineers,

especially for close system VoD. For example, JCDecaux company did a market search ([70]),

finding that advertisement should be presented according to the clients’ nationalities, genders

and ages. We use their research results and add the race and occupation as optional input

parameters to decide the advertisement selection, sequence and frequency. We did not

provide the streaming results for advertisement schedule because it is difficult to present the

results in a static way. Here are the example profiles provided to the expert server and an

example schedule finally generated.

Available Information Representation

Client Profile Client Demographics File

Content Profile Content Description Files

Advertiser Profile Ad Description Files

Table 5-7 Profiles for playback schedule

Name Gender Age Nationality Race Occupancy
HIEW KAR HON Male 45 Singapore Chinese Manager
YEO LEE HUA Female 28 Singapore Chinese Accountant

RUSMA IBRAHIM Male 32 India India Engineer
… … … … … …

Table 5-8 Client profile example

The expert server will analyze the client profile and generate a summary file like:

 92

Table 5-9 Sample statistic file of subscribers

Movie/ Ad. Language Length Preferred Ages Gender Occupation
M_Spiderman English 90 mins 12 ~ 45 All All
M_Enchanted English 75 mins 12 ~ 45 Female All
M_TheMyth Chinese 100 mins 18 ~ 60 All All

A_ToughBook English 30 sec Above 18 All Management
A_MacDonald English/Chinese 10 sec All All All

… … … … …

Table 5-10 Example of a content profile

 Reach Frequency
Adults 19.9 64%
Age 15-24 20.9 63%
Age 25-34 19.9 64%
Age 35-44 22.4 62%
Age 45-54 26.2 63%
Age 55+ 10.9 66%
Men 20.3 66%
Women 19.3 61%

Table 5-11 Example of an advertiser profile

The advertiser profile is provided by advertisement companies, specifying the percentage of

age group they want to reach and the frequency these Ads are expected to show. Our rules are

designed to set the weight for each advertisement according to above profiles. Finally the

server will calculate the sum weight. The top ones will be selected and inserted into the

 93

demanded movie in sequence. Here is a sample output playback schedule table and several

snapshots of different schedules.

Playback Schedule (Sample)

1 Welcome Video 30 secs

2 ToughBook-2008-June 30 secs

3 McDonald-2008-June 10 secs

4 Spiderman3 Part 1/5 20 mins

5 Ad12-2008-June 10 secs

6 Ad14-2008-June 30 secs

7 Spiderman3 Part 2/5 20 mins

8 Cosmetic Ads. 20 secs

9 MariFrance Bodyline Ads. 40 secs

10 Spiderman3 Part 3/5 20 mins

… …… …

Table 5-12 Sample output playback schedule

Figure 5-8 Playback schedule examples

The playback schedule could also be applied in another way that scheduled based on

parameters like device screen size, the signal strength, the device battery life, etc. This

method has been used in some commercial streaming servers. They ask users to select the

 94

link speed, whether they are using ADSL, modem or LAN. Then the server chooses the size

of movie file to be transmitted. The proposed expert server extended the scope of such

scheduling to broader areas, and realized the schedule in a completely automatic way.

5.3.3 HD Streaming Rate Control

These HD streams, required high sending rate, will greatly impact the network traffic load, so

it is important to perform effective rate control for these HD streaming. In basic QTSS, they

have a rate control mechanism called reliable-UDP. It starts sending from a very low bit rate;

then adjusts the subsequent rates based on a service-feedback byte from RTCP receiver report.

It is sufficient for low bit-rate streams like stream-1(movie 320) and stream-2 (movie 480p),

but simple for HD streams like stream-3 (movie 720p), which has high throughput

fluctuations. Thus, we added the algorithms in Table 5-5 to avoid congestion for these

streams. The major congestion avoidance rules are written like this. If the router could

provide feedback regarding the previous loss, EMKC is applied to share and maximize

bandwidth utilization among all streams based on the subscription fee paid by the client. For

client who can send its information to the server, TFRC is used to compete with other TCP

traffic fairly but friendly on routers along the route. DLQ is also turned on to cooperate with

TFRC for smooth throughput and to guarantee to overflow or underflow of client buffer. If

unstable wireless network is the physical layer, the AIMD is used, and only I frames will be

scheduled for retransmission if loss happened. Here, DLQ is turned on only when client

buffer occupancy could be provided. It is also used as a reference to avoid client buffer

overflow and underflow. Figure 5-9 compares the throughput with and without expert rate

control for stream-3 (movie 720p).

 95

0

1000

2000

3000

4000

5000

6000

7000

8000

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126

QTSS
EMKC

0

1000

2000

3000

4000

5000

6000

7000

8000

1 1205 2409 3613 4817 6021 7225 8429 9633 10837

TFRC + DLQ

QTSS

TFRC

Figure 5-9 Client side throughputs with and without expert control

The left picture of Figure 5-9 shows the throughput under basic QTSS control (purple) or

with EMKC control. The throughput with basic QTSS control fluctuates within a range of

2Mbps (5.2Mbps to 7.2Mbps) while the throughput with EMKC changes within 0.7Mbps

(6Mbps to 6.7Mbps), which is much smaller. The time consumed before stabilization with

EMKC control (around 2s) is only a quarter as that with QTSS control (around 8s). The right

picture in this figure compares the throughput under basic QTSS or pure or TFRC and DLQ

control. It illustrates that the smoothness of stream increases from QTSS control, TFRC

control, and combined control of TFRC and DLQ, and the raising time before stabilization

increases reversely. The phenomenon happened because the basic QTSS and our expert

control have different abilities to adapt their sending rate under a fluctuating environment.

Basic QTSS calculates sending rate only according to satisfactory byte in RTCP receiver

report, while the expert system takes into consideration the traffic demand, the available

network bandwidth, the previous sending rate, and the client situation. When loss rate or RTT

changes and influent the QuickTime playback quality, QTSS hurriedly changes its sending

rate to compensate the changes. The expert system, on the other hand, updates the new p

value and the demand data size of client and calculates whether the current sending rate can

still meet the requirement of client under new environment settings. If the requirement can be

 96

met, the current sending rate is carried on. If necessary, the expert system will switch on the

QoS mechanism to change the TOS simultaneously, in stead of changing the sending rate, in

response to the changes of loss rate. In this way, the client can receive a smoother media flow

with less buffer overflow or underflow problems. Since the client side player is not open

source software, we use Wireshark to capture the incoming data size and estimate the buffer

occupancy by

⎪⎩

⎪
⎨
⎧

−−= ∫
=

0
)(

0

T

t
pbhd dtrSStS

S(t) is the client buffer occupancy at a certain time t

Sd is the total size of data received until time T

Sh is the total size of packet header received until time T

rpb is the playback rate at time t

Using Stream-1 (movie 320), the network delay is set to 20ms with 5ms variation, and the

loss rate is 0.1%. The total client side playback-buffer size is set to 30MB. Using DLQ

method, the client buffer utilization with and without expert control is shown in Figure 5-10.

0

5000

10000

15000

20000

25000

0 7 14 21 28 35 43 50 57 64 71 78 85 92 99 106 113 120 128

QTSS
ES

Figure 5-10 Client buffer utilization of QTSS with/without expert control

 97

To prevent overflow, the expert server used only around 60% of the maximum client buffer

allocated for media receiving. During the transmission, it traced the usage of client buffer

from client feedback packets. It is obvious that the client buffer occupancy fluctuated

randomly with the playback rate under basic QTSS control, but it became quite smooth when

expert control was added. This is because the basic QTSS does not consider the client buffer

status when deciding the sending rate. It only refers to one RTCP byte about client

satisfaction. As long as the playback is continuous, it will not adjust its sending rate. On the

other hand, expert system can detect client buffer overflow or underflow problems from low

level client feedback. At the same time, it checks the movie characteristics and predicts the

data consumption at client side. Within the bandwidth limitation that the network could

provide, an optimal sending rate is decided to guarantee the stability of client buffer

occupancy without overflow. In this test, the expert control used 60% allocated buffer to

calculate its optimal sending rate. Actually, if underflow happens frequently, the expert

system may increase the client buffer size parameter to 70% or 80% of total allocated size. If

overflow happens frequently, the client buffer parameter is decrease to a percentage less than

60%. Such a kind of dynamic adjustment performed the same way as an expert controlling

the server with its empirical knowledge. It guarantees the server’s efficiency given any client

device. The small ripple of client buffer may seem to be not a crucial performance

enhancement, but it will provide enough space for sudden bandwidth changes, especially

during streaming handover that will be shown in sub-section 5.3.4.

5.3.4 Streaming Handover

In literature, researchers are investigating seamless handover when the client switches among

different networks during transmission (e.g. between WLAN and Cellular network [71]). In

 98

our expert server, we will consider a more challenge scenario that the terminal devices are

changed during playback and the expert control could perform online streaming handover.

Consider the cases that the client device switches from the slower hand phone streaming to a

faster network with plasma TV display, or vice versa. These kinds of handover require the

server support for signaling and movie transfer. In our test, we use the IBM laptop as the

original terminal user to simulate the hand phone streaming. When a handover signaling is

issued to the server, the playing movie will be automatically transferred to another terminal

with a large plasma TV. An appropriate resolution of movie will be selected for the new

terminal. The test bed is set as in figure 5-11. We use a shuttle XPC as the switch. The delay

and loss rate are on-the-spot tested value.

Figure 5-11 Test bed configuration of streaming handover experiments

Because the handover from hand phone to plasma TV or handover from plasma TV to hand

phone are invertible process, we only illustrate one case and provide the results for both cases.

The results of experiments are shown from Figure 5-12 to Figure 5-14.

 99

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140

Time (Sec)

R
TT

 (m
s)

stream 1
Stream 2

0

1000

2000

3000

4000

5000

6000

6 12 19 25 31 37 44 50 56 62 68 74 81 87 93 99 105 112 118 124 130

Time (Sec)

Th
ro

ug
hp

ut
 (k

bp
s)

Throughput

Figure 5-12 RTT and Throughput during streaming handover (wireless wire)

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140

Time (Sec)

RT
T

(u
s)

Stream 2
Stream 1

0

1000

2000

3000

4000

5000

6000

6 12 17 23 29 35 40 46 52 58 63 69 75 81 86 101 117 132

Time (Sec)

Th
ro

ug
hp

ut
 (k

bp
s)

Throughput

Figure 5-13 RTT and Throughput during streaming handover (wire wireless)

0

5

10

15

20

25

30

4 9 13 18 23 27 31 36 40 45 49 54 58 63 67 72 76 80 85 89 94 98 103 107 112 116 121 125 130

Time (Sec)

C
PU

 C
on

su
m

m
in

g

CPU Utilization

0

5

10

15

20

25

30

5 11 16 22 27 33 38 44 49 55 60 66 71 77 82 89 103 118 133

Time (Sec)

C
PU

 U
til

iz
at

io
n

CPU Utilization

Figure 5-14 CPU-utilization during streaming handover

(Left: wireless wire; Right: wire wireless)

In Figure 5-12 left picture, the server received an RTSP-like handover request at 21s

indicating the target device IP, frame number, and desired resolution for handover. Then the

server started handshaking with the new device and test its RTT value. The overall handover

took about 5 seconds to finish, including the new startup buffer time. The sequence of three

 100

party handshaking is shown below.

Figure 5-15 Handover signaling from wireless to wire devices

From Figure 5-12 right picture, when the handover happened at 21s, the server continued the

original streaming to the wireless device; meanwhile it started to handshake and to buffer the

required data at plasma TV. When the buffer procedure completed at 26s, the original session

is shut down and the new high-resolution session began to play. The throughput is changed

from stream-1 (movie 320) to stream-2 (movie 480p). During the handover, the server CPU

utilization increased twice as usual. The overhead is temporarily increased to 25%.

There are other ways to accomplish the handover, for example trans-coding introduced in

 [71]. From this paper, the handover handled by trans-coding will take 50 seconds to finish. It

is too long to wait, so we did not deploy it in our implementation. Our approach is to store

several files with different resolution. If handover is needed, a new resolution file is selected

and the file pointer is relocated at the same frame as in the original file.

5.3.5 Congestion Control

The congestion control in expert server could be divided into several steps: congestion

avoidance, congestion mitigation, congestion response, and session re-distribution.

 101

Congestion avoidance couples admission control and RTCP rate control mechanism to

cautiously avoid congestion. However, if the streaming do becomes congested, the expert

server congestion control needs to start prioritize-RED to alleviate it. If the severe situation

continues, the expert control will react according to the congested location. That is, if it is

client side or intermediate network congested, servers could only dramatically reduce the

traffic demand to cooperate on mitigating the problem, but it cannot solve the congestion

problem in itself. On the contrary, if congestion happens at server side, the server could take

full responsibility and get itself out from it by re-distribute the session. Thus in this section,

we are going to conduct our experiments for these congestion control steps.

 Step 1: Congestion Avoidance

The first step is to use congestion control algorithms to avoid transmission jam under normal

situation. We have introduced the reliable-UDP in basic QTSS to control the sending rate

according to RTCP feedback. This mechanism is not needed when network load is light, so

QTSS provides the choice to start this function or not with a byte specified in RTSP requests.

This simple congestion control is good enough for small movie streams, for example stream-

1 (movie320) or stream-2 (movie480), but as we introduced in sub-section 5.3.3, it has

problems like long start up time and large throughput fluctuations for high definition movies.

To make the control procedure smarter and more flexible, our congestion avoidance rules are

implemented like this. When the loss rate is less than 1%, reliable-UDP is disabled. The rules

will enable it only when the loss rate increases above 1%. For HD content, reliable-UDP is

always disabled, regardless the loss rate. Instead, the HD streaming rate control mechanism

introduced in sub-section 5.3.3 is applied.

 102

Step 2: Congestion Mitigation

When transmission encounters a loss rate that is larger than 5% and the mean RTT is 1.5

times as before, it is very likely that the congestion is forming. To mitigate the network load,

the expert server starts prioritized-RED to drop some unimportant frame packets. Meanwhile,

the packet for I frame is marked to be the highest-priority TOS as QoS reference for

intermediate network. Figure 5-16 illustrated the real network test for this case. This test is

done between Singapore and Chicago. The client at Chicago sent requests to the server at

Singapore. The intermediate network is public Internet. All tests were done with real network,

where un-congested test was done at morning and congested test done at 8pm in Singapore.

In the morning, the public Internet at server side is not congested while at 8 pm, the Internet

is terribly congested. We provide this test to verify the real congestion mitigation ability of

the expert server.

Figure 5-16 Test configurations for congestion mitigation

We chose the movie of Apple CEO Steve Jobs’ keynote (Stream-4) for testing. This keynote

was addressed for iPhone in Macworld Conference & Expo 2007. The traffic under different

network conditions was analyzed using the WireShark Packet Analyzer. Figure 5-17 shows

the video effects and throughputs under light-load network. In the figure, the left side picture

is the snapshot of the movie with basic QTSS control and the right side picture with the

expert system control. The two pictures have nearly identical resolution and playback speed.

Both of them are clear and smooth.

 103

Figure 5-17 Basic QTSS streaming video effects without/with Expert System

Figure 5-18 Basic QTSS throughputs without/with Expert System

If we examine their throughputs, as shown in figure 5-18, we will see that their traffic is also

similar. The upper picture in figure 5-18 is the throughput using basic QTSS server while the

lower picture is the one with expert system control. Both of them have an average

 104

throughput of around 70 packets per second, which is approximately 0.85Mbps.

We now change to a slower network and add heavy background traffic to compete for the

bandwidth. This traffic was other randomly generated streaming applications. The video

effects and the throughputs of the two systems are shown in figure 5-19 and figure 5-20

respectively. Using basic QTSS, the streamed video under insufficient bandwidth suffered

seriously from jitters. The movie is discontinuous with occasionally corrupted pictures, like

the left side picture in figure 5-19. It is impossible to recognize what is really on the screen

when Mr. Jobs introducing the iPhone. However, the video effect with expert control is more

acceptable. It lowered the transmission speed and discarded some unimportant frames to save

bandwidth. Although the playback is also slower than normal situation, it indeed provided a

continuous stream with recognizable pictures.

Figure 5-19 QTSS streaming effects during congestion without/with Expert System

Throughput analysis is shown in figure 5-20. The upper picture is the throughput of QTSS

with expert control and the lower picture is the one under basic QTSS. As introduced at the

beginning of this section, the QTSS uses reliable-UDP as its congestion control mechanism.

The reliable-UDP imitates the behavior of TCP streams and relies on feedback information to

adjust the sending rate. Therefore the basic QTSS behaved like TCP flows when network

 105

bandwidth is not sufficient. In figure 5-20 (lower picture), the reliable-UDP control always

tries to raise its sending rate until receiving bad-performance feedback from the client. Then

it suddenly resets its delivery speed to alleviate the congestion. Such kind of rate fluctuations

happened along the transmission, which made the playback process discontinuous.

Figure 5-20 QTSS throughput under congestion (with/ without Expert Control)

The expert control detected the insufficiency of available bandwidth and lowered its sending

rate at the beginning of transmission. It switched on movie quality filters for outgoing media

packets, sending only the base layer. This will cause the reconstructed picture blurred (right

picture in figure 5-19), yet it is more acceptable compared to have periodically corrupted

pictures during the playback. The drop threshold and drop percentage were decided by some

heuristic rules, which shall be written and adjusted by experienced media expert.

 106

Step 3: Congestion Response

If congestion happened, and the expert server load is moderate, it means the congestion

happened at intermediate network or client side. In this case, only drop frames are not

enough to help. The expert server would intensively decrease its traffic demand by delivering

a lower resolution file of the same movie. The client side congestion control test could be

illustrated with Figure 5-21.

Figure 5-21 Congestion response experimental configurations

Figure 5-21 shows a case when congestion happened when a large amount of FTP traffic

started through the same router. In this case, the streaming session may encounter lager jitter

and losses although streaming server does not have a high load level. If such kind of

congestion is detected, the expert control will handle the QTSS to perform a resolution

adjustment. Initially stream-2 (movie 480p) is used. The related results are shown in Figure

5-22 and Figure 5-23.

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140

Time (Sec)

R
TT

 (m
s)

Stream 2 (Congestion)
Stream 1 (Congestion)
Stream 1
Stream 2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5 10 15 20 25 30 36 45 55 64 74 83 93 102 112 118 121 125 128

Time (Sec)

Th
ro

ug
hp

ut
 (k

bp
s)

Throughput

Figure 5-22 RTT and throughput during client/network congestion

 107

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 4 7 6 14 18 21 25 28 32 37 44 51 58 65 71 78 85 92 99 106 112 117 120 122 125 127 130

Time (Sec)

Ji
tte

r (
us

)

Jitter

0

5

10

15

20

25

30

0 4 7 6 15 18 22 26 29 33 40 47 54 61 68 75 82 89 96 103 110 116 119 122 124 127 130

Time (Sec)

CP
U

Ut
ili

za
tio

n

CPU Utilization

Figure 5-23 Jitter and CPU-utilization during client/network congestion

We started the expert control at around 28s. Before the expert control is switched on, the

system has been congested for a while. In Figure 5-22 right picture, the throughput before

32s did not reach the required level for stream-2, and the loss rate at that time period is up to

50%. After the expert control was turned on, it detected that the congestion was already

severe and was not due to the server side jam. It rescheduled a lower resolution movie

(stream-1) to help alleviating the network or client side congestion. The throughput and jitter

from 32s to 112s clearly shown such a movie change. When congestion past at 105s,

represented by sharply decreased RTT and loss rate, the expert control schedule a recover

procedure to change the resolution of stream back to the original one (stream-2). The CPU

utilization during movie switches shot up to 25% temporarily for less than 100ms.

Figure 5-24 Signaling during handover from high to low resolution movies

 108

Step 4: Session Re-distribution

If congestion at the server side local network is detected, the expert server could transfer the

session to another server. In Figure 5-25, red dotted line is congested due to a large amount of

background traffic from server 1 out. The expert control selects and contacts another server 2

to take over the current session(s). Movie-320 is used in this experiment. The background

traffic and the server outgoing parameters are listed in Table 5-13.

Figure 5-25 Test bed configuration for session re-distribution

Parameter \ Server S1 S2 S3
Available Bandwidth 10M 100M 50M
Delay 120ms 40ms 100ms
Background traffic 8Mbps FTP 2Mbps FTP 4Mbps FTP

Table 5-13 Setup parameters of session re-distribution test

The results are obtained at client side and shown in Figure 5-26 and Figure 5-27. Throughput

and jitter are obtained at client side. CPU utilization is captured from two servers. The data

before session transfer (around 22s) describes the CPU utilization on S1 and the rest bars

represents the CPU usage on S3. All background traffic start together at the beginning of

streaming.

 109

0

100

200

300

400

500

600

700

0 20 40 60 80 100 120 140

Time (Sec)

RT
T

(m
s)

S1 Stream
S2 Stream

0
100
200
300
400
500
600
700
800
900

7 15 22 30 37 45 52 59 67 74 82 89 97 104 112 119 126

Time (Sec)

Th
ro

ug
hp

ut
 (k

bp
s)

Throughput

Figure 5-26 RTT and throughput during server side congestion

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

11 22 33 44 54 65 76 87 98 109 120 131
Time (Sec)

In
te

ra
rri

va
l J

itt
er

Jitter (µs)

0

5

10

15

20

25

8 15 23 30 38 46 53 61 69 76 84 92 99 107 114 122 130

Time (Sec)

C
PU

 U
til

iz
at

io
n

CPU Utilization

Figure 5-27 Jitter and CPU-utilization during server side congestion

We turned on the expert control at around 18s. After 5 seconds detection, the expert control

confirmed the congestion happened at server side, so it selects the most uncongested server

for help. After negotiation, the current session is taken over by S2, which has largest capacity

and is least congested among the three servers. Then the session is totally transferred to S2 at

around 24s, and the throughput at client side suddenly increased. During this transfer, the

client side jitter became four times as before and the streaming is not continuous for 2

seconds. Here we just use the plain client player. If a modified client device could feedback

its buffer and playback information, our rate control methods could provide a much higher

and stable client buffer occupancy, and the buffered data would support the playback during

session transfer. The handshake signaling for such session re-distribution is shown in Figure

5-28.

 110

Figure 5-28 Signaling during session re-distribution

Now we only realized the transfer of sessions during congestion. Ideally, the other server

should be able to provide P2P support to the congested sessions. That is, servers would drop

the movie file into pieces and each one delivers a part of pieces separately to the client. This

implementation needs the support of client software because client must know how to

concatenate these pieces from different sources together. Since our design targets at server,

we skipped such kind of implementation.

5.4 Summary of Experimental Results

In this chapter, we presented the detail implementation of the rule-based expert system in

streaming media servers. At the beginning, we introduced the test bed configurations, the

movie characteristics, the parameters intent to measure, and the QTSS platform. Then we

gave the DTD of our rule base, followed by the explanations of parsing and linking process.

We choose cooperative mechanisms of buffer management, packet scheduling, and

congestion control to form the method base in the expert server. A complete rule base was

built. In the results and discussion part, we provided the detail configuration for each

experiment. The measured parameters are listed and evaluated. Then we presented five

 111

carefully designed experiments using QTSS server, comparing the results with and without

our expert control. The experiments investigate the ability of expert control on balancing the

servers load, scheduling the playback sequence, realizing smoother rate control for high

definition movies and meanwhile maintaining high stable client buffer occupancy. It could

also perform streaming handover between different devices and accomplish effective

congestion control in four consecutive steps.

From the results, the requests reached QTSS server are processed locally and served in a best

effort manner. The excessive requests cause the previous sessions discontinuous. When we

distribute the requests to four QTSS servers with different percentage, the CSR is 43.75%,

87.5%, 80%, and 90% respectively, depending on the capacity of servers and the number of

requests initiated to each. On the contrary, no matter which server the requests were initially

sent, QTSS with expert control will judge the capacity of server cluster and perform effective

admission control, then the requests are reasonably distribute among servers according to the

server and the intermediate link parameters. Results have shown that QTSS with expert

control could achieve approximately identical load distribution for despite the request

distribution strategy, and the CSR is 100%. To achieve load balance ability, the expert server

lengthened the startup delay to maximum 4 times as basic QTSS (582ms/145ms). Since the

lengthened startup delay is only half a second, it is still acceptable as the tradeoff for the

performance enhancement.

In sub-section 5.3.2, our expert server extended the current link speed scheduling to a

broader area, which automatically schedule the playback sequence of mixed contents

according to client profile, content profile, and advertiser profile. This function is most

suitable to closed network ISPs and subscribers.

 112

The rate control for high definition movie is effective in two ways. It decreased the

fluctuation of throughput and speed up the stabilization time. Furthermore, the client buffer

occupancy with expert control is significantly better than basic QTSS control. The QTSS

method does not consider any client side parameter. Although the overflow at client buffer

causes higher loss rate, which will consequently inform the QTSS for rate control, the

influence is comparatively trivial. The expert system always considers client side parameters

for its decision. Therefore it maintained the client buffer usage at a very stable level with no

overflow and underflow. Similarly, the expert system controlled the server buffer efficiently.

Due to the high and stable of buffer usage, the client could achieve seamless continuous

stream during congestion response with movie resolution changes or session transferring to

another server. Because the control parameters are calculated with a dedicated function, the

CPU consumed on rate control could be neglected. In summary, for the purpose of

maintaining smoother stream and efficient client buffer usage for high definition movies, the

expert system has demonstrated itself as a good choice.

In section 5.4.4, we tested the smartness of our system on changing terminal devices during

playback. Basic QTSS has no such function, and such kind of system is rare in current server

market. Consider the cases that the client device switches from slower hand phone streaming

to a faster network with plasma TV display, or vice versa, the expert server could embed SIP-

like protocol as signaling to support the movie transfer.

When congestion happened, the expert reacted smartly in steps. Instead of fluctuating with

changes of network environment aimlessly, it verified the severe of congestion by checking

related parameters like server load level, network RTT and loss, and client side loss and

buffer occupancy. It takes cooperative regulations for the whole transmission to cope with the

 113

congestion, rather than only decreasing the sending rate blindly. The reactions in sequence

could be summarized as starting congestion rate control for HD content, turning on

prioritized-RED, changing to lower resolution movie file, and finally transferring the session

to an un-congested server. If a lower resolution movie is chosen in response to the congestion,

the expert system recorded it in its historical statistics and automatically recovered to the

high resolution movie after the congestion.

Attractively, the enhanced performances summarized until now can be achieved by spending

only a small portion of CPU time for the expert control. In all experiments, the expert control

took only 10% to 15% the CPU time periodically. Even when intensive reaction like

handover is required to be taken, the CPU utilization increased to maximum 25% for a short

time as 100ms before return to the normal level. However, we should note that CPU results

may not exactly describe the time consumed by the expert control because the inference

process embedded in QTSS is not protected by semaphores and therefore may be preempted

by transmission tasks. Nevertheless, the overhead brought by the expert control has been

tested to be acceptable. Thus the expert system is feasible for practical use.

The performance obtained in the experiments depends largely on the effective of rules that

written by us. Hopefully, if these rules could be modified by a group of experts on media

streaming techniques and be adjusted in commercial environment, the expert server system

could perform much better than in our experiments.

 114

Chapter 6 A Novel Rate Scheduler in Expert Server

Knowledge-Base: DLQ Rate Control

The knowledge base is a major component that gives intelligence to the expert system. We

hope it covers major types of rate control methods. Unfortunately, there were a lot of server-

oriented or network-oriented schemes but no suitable client-oriented method in literature.

Therefore we have to design a new client-oriented rate control method for the completeness

of the knowledge base. The designed method, named DLQ (Discrete Linear Quadratic) rate

control, was used for congestion avoidance.

In this chapter, we propose our design of this client oriented rate scheduling method. Our

study shows that DLQ is superior to conventional rate control schemes especially on client

buffer utilization. In the following paragraphs, it will be also called DLQ schedule system

because it is a system that schedules sending speed for packets.

6.1 Introduction

Linear Quadratic (LQ) control is a well developed theory in automatic control area but its

implementation in media packet scheduling started only from this century. In this section, we

are going to provide the background of optimal control and introduce the DLQ we used for

media transmission, and then the reason of choosing DLQ. Finally we will restate the relation

between DLQ and the rule-based expert server system design.

 115

6.1.1 Optimal Control

Optimal control ([73], [74]) is a mathematical field that is concerned with control policies

that can be deduced using optimization algorithms. It deals with a close loop system and tries

to find a control law for it such that a certain optimality criterion is achieved. Usually, the

optimality criterion is either a measure of performance to be maximized or a cost function to

be minimized. Given a dynamic system with input u(t), output y(t) and state x(t), the control

law can be derived by solving the Hamilton-Jacobi-Bellman equation. The Jacobi function

usually takes the form of an integral over time of a certain function, plus a final cost that

depends on the state in which the system ends up:

In the formula, l is the system description function. Parameters x, u, t, T are the state variable,

the control variable, the time variable, and the terminal time respectively. And xT is the final

state. The control law u=f(x) would be derived by minimize or maximize the left hand side J.

For a dynamic system, the control scheme should not only control the system, it also needs to

estimate the system states in order to provide the best feedback information for a better

performance of the control scheme. This work is often done by the filters, which are designed

to extract useful information from the background noise or predict possible changes under

various environments.

6.1.2 Linear Quadratic Control

Linear quadratic control is a typical problem in the optimal control area. It is also called

mean-square control in its early stage. The term ‘linear’ means the systems considered were

assumed linear. And the term ‘quadratic’ comes from the evaluation function that contains the

 116

square of an error signal. In general, the problem considers minimizing a quadratic

performance measure:

Subject to the linear dynamical constraint:

where the matrices Q and R are positive semi-definite and positive definite, respectively. The

optimal control problem defined with the previous functional is usually called the state

regulator problem and its solution is a feedback matrix gain of the form:

where K is a solution of the continuous time dynamic Riccati equation. This problem was

elegantly solved by Rudolf Kalman (1960). The DLQ we used in our design is the discrete

form of linear quadratic regulator problem. It is to find a state-feedback control law of the

form ui = -kixi that minimizes a quadratic performance measurement function for a linear

system. The aim is to maximize the client buffer usage with minimum control efforts. If there

were no disturbances, the system could stabilize with a minimum index function value. With

disturbance, the solution formula includes an additional factor to trace the disturbance as

shown in next section. Thus we considered the scheduling problem as a DLQR problem

under disturbance in our design. The disturbance here comes from the decoding procedure.

Media data in the client buffer is fetched by the decoder for playback. We refer to this fetch

rate as the client buffer vacancy rate, which is a random variable.

 117

6.1.3 Reason of selecting DLQ

Recall the categories classified in Chapter 2, researchers either use priority schemes to isolate

timing sensitive flows from bursty ones or enable reservations to guarantee QoS. Packet

scheduling schemes like separate priorities for different frames ([75]), multi-channel data

scheduling ([76]), multi-thread distributed delivery ([77]), and real media-rate control ([78])

are widely used. All these mentioned schemes are network oriented open loop control. Here

we consider the DLQ as an end-to-end close-loop control for its following merits.

 It is cost-effective. If the received data were not consumed by the decoder, DLQ

could result in strictly optimal speeds to gradually fill the buffer.

 It is fairly accurate. The precise mathematical calculations supporting the method

allow it to trace and control the system accurately and effectively.

 It is easy to implement. DLQ is an end-to-end control method that neglects the

complexity of intermediate networks.

Previous works [79] and [80] used the similar method but they are incomplete. First, all

previous approaches use continuous system model, which is not proper for network

transmission system. Although multimedia can be delivered in a streamed way, it is handled

discretely on the rate control layer. Second, they did not consider network delay and noise.

Last, no detail mathematical deductions are provided. Therefore, we try to mend these gaps

and gives out a systematic design of DLQ rate scheduler.

6.1.4 Relation with Expert Server System

The DLQ, together with other rate control and congestion avoidance methods, were

implemented into the knowledge base of the rule-based expert server. It will be selected by

the inference module in competition with other methods according to the runtime parameters.

 118

6.2 Mathematical Design of DLQ

In this section, we are going to introduce the detail design of DLQ scheduler. The network

model is set up first and the control procedure is introduced. Following them, we provide the

mathematic model and solution for DLQ schedule problem. The Kalman filter is introduced

to minimize the influence of noise. For the consistency of this section, we put the design of

DLQ Kalman filter into appendix C.

6.2.1 Network Model

The network model is described in the Figure 6-1. For clarity, we do not draw the other

supporting mechanisms but only the DLQ-scheduler-related parts. On the server side, the

scheduler calculates the transmission parameters according to the client buffer setup and the

video information; then saves them into the control parameter table in server memory. During

the transmission, the scheduler looks up the table for parameters of this video. The optimal

sending rate is calculated during runtime using these parameters and feedback information

from the client.

Figure 6-1 Network model for media stream transmission

 119

On the client’s side, media streams are received into the client buffer. The buffer monitor

records the current buffer occupancy and the buffer vacancy rate. Then it sends this

information back to the server periodically at a certain sampling rate.

6.2.2 Mathematical Solutions

The mathematic model is shown in Figure 6-2. The client gives the feedback of buffer

vacancy xi and buffer vacancy rate vi. Buffer vacancy rate is the rate on which media data in

client buffer are fetched for decoding. It is a Gaussian variable randomly distributed between

the maximum and minimum playback rate of the transmitted movie. Qr is the allocated client

buffer size. Qi is the instant client buffer usage. The difference between Qr and Qi gives the

buffer vacancy xi and it is feedback to server. The server calculates the optimal transmission

rate ui_pre according to the feedback xi and control gain ki, then considers the decoding rate vi

with feedback gain ki_fb. Finally the optimal sending rate ui is decided.

Figure 6-2 DLQ scheduler mathematical model

A Kalman filter is added to handle the noise along the transmission path. In figure 6-2, we

use dash-line rectangle for Kalman Filter module because of two reasons. Firstly, this filter is

not a must for all situations. In wired network where noise is negligible, this filter could be

omitted for the simplicity of system. While in unstable wireless networks, it is highly

 120

recommended to get a more accurate state variable estimation. Secondly, the design of this

module is comparatively independent. It does not influence the DLQ system design. We omit

it in the following mathematical deduction and provide its design in the appendix C. Here we

did not consider the transmission delay between the client and server. The delay problem will

be discussed in a separate section.

With reference of the mathematical system model (Figure 6-2), the state function and the

index function are:

v(i)tu(i)tx(i))x(i ss −+=+1 0≥i ---(6.1)

∑
=

+=
N

i
(i)]u(i)[xJ

0

22 ---(6.2)

The sum of quadratic term of buffer vacancy x(i) and sending rate u(i) is the measurement

criteria. The following deduction focuses on finding a u* = - kx that minimize the J.

Definitions of parameters are listed in table 6-1. Here we use (-client buffer vacancy) as the

state variable to make its coefficient and the coefficients of control variable (u) to be positive.

Variables Signification Explanation

x -Client Buffer vacancy State Variable (Bytes)

u Optimal Sending Rate Control Effort (Bytes/s)

v Client Buffer Vacancy Rate Disturbance (Bytes/s)

ts Sample Interval Sample Rate: min. twice/frame

Table 6-1 Definition of variables in scalar DLQ formula

Let J*(xi, i) denote the minimal value of performance measure starting at time t=i×ts and

state x(i×ts)=xi. Then the optimality principle states that any input that is optimal over the

interval (i, N) must necessarily be optimal over the interval (i+1, N). So that the following

recursive relation must hold true:

)},i(xJu{x,i)(xJ i
*

iiui
*

i

1min 1
22 +++= +

 121

Because J* has the quadratic form, Let iiiiii
* cxbxp,i)(xJ ++= 22 , so that:

}cxbxpu{x,i)(xJ iiiiiiiuii
*

111
2

11
22 2min +++++ ++++= ---(6.3)

To find the ui that minimize J*, we let:

0=
∂

∂

i

i
*

u
,i)(xJ

That is: 0222 11 =+−++ ++ isis
*
isiis

*
i bt)vtut(xptu

1
2

11
2

1

1 +

+++

+
−+−

=
is

isiisiis*
i pt

btvptxptu ---(6.4)

Rewrite (6.3) as:

111
2

11
222 22 +++++ ++++=++ iiiii

*
iiiiiii cxbxpuxcxbxp

Substitute (6.4) into this function, we have the following three functions (See Appendix B).

Quadratic terms in x:

1
2

1

1
1

+

+

+
+=

is

i
i pt

pp ---(6.5)

Linear terms in x:

1
2

11

1
22

+

++

+
−

=
is

iisi
i pt

vptbb ---(6.6)

Terms independent of x:

1
1

2

2
1

2
1

2
12

1
2

1
2

+
+

+++
+ +

+
++

−= i
is

isisiis
iisi c

pt
bt)pt(vbtvptc ---(6.7)

Substitute (6.6) back into (6.4), we get the final formula of u*:

isi
is

is
i

is

is*
i btv

)pt(
ptx

pt
ptu −

+
+

+
−= −

+

+
−

+

+
1

1
2

1
2

1
1

2
1

121
 ---(6.8)

Given the terminal values of pn and bn, (6.5) and (6.6) will decide all p and b values

 122

recursively. In equation (6.8), the coefficient before xi-1, that is tspi+1/(1+ts
2pi+1), is the ki in

figure 6-2 and the coefficient before vi-1, that is ts
2pi+1/2(1+ts

2pi+1), is the ki_fb. The aim of this

DLQ tracker rate control scheduler is to minimize the client buffer vacancy (represented by x)

while at the same time saving as much network bandwidth (represented by u) as possible.

6.2.3 Compatibility of DLQ in Expert Server

DLQ is merely a rate control method designed for taking care of client buffer usage and

avoid congestion. During transmission, it may be selected with other QoS management

methods. Thus it is necessary to discuss here the compatibility of DLQ with other

mechanisms the server may use.

The main supporting mechanisms that a server adopts to enhance its performance and

capacity are the video caches and frame filters. Caches are used to store frequently

referenced contents for quick browsing and frame filters are used to decide which contents to

send according to network capacity. DLQ is compatible with these mechanisms because it

does not differentiate types of frames to decide the sending rate. Therefore, the server can

drop one or two layer(s) according to the calculated transmission rate.

In fact, the whole system performs better if we combine DLQ with buffer management

mechanisms together. Large u* (optimal sending rate) means the client needs more data. Or

in other words, data is consumed more quickly on the client side. Take ts equals to one

second as an example, more GOPs will be transmitted if only the basic layer is sent out

within this second. More GOPs take longer time to playback. Thus it reduces the buffer

vacancy rate. But if u* is not too high, we can send all levels. The combination of DLQ with

other support mechanisms is realized in expert system.

 123

6.3 Results and Discussion

The assumptions for implementations are listed as follows. In fact, if outgoing bandwidth is

enough for transmission, these assumptions will not influence the solutions we get.

1) No transmission delay between client and server is considered.

2) No other services (http, ftp, etc.) except media streaming are provided by the server.

3) Only one media stream is established between the server and a client.

There is another problem for implementation. As we mentioned, all parameters should be

calculated and stored in a parameter table to minimize the runtime overhead. But from (6.6),

vi (online value) is also necessary to get bi (offline value). There are two ways to obtain vi

without a real transmission. First, a long-dependent MPEG video model ([81]) can be used.

Second, analyze the video in each frame and give out the estimated value. We choose the

second method based on two considerations. One is that the stored movie is available to

analyze for accurate vi. The other is that the MPEG2 long dependent model is complex for

implementation and not so accurate for various types of videos. Thus, we use MPEG-analysis

software to analyze the frames for the size and the playback time of each frame. The actual

buffer vacancy rate in experiment is a little bit different from the vi we used to calculate bi.

The simulations were conducted using an (18,3) m2v video clip. The notation (18,3) is a

MPEG encoding format that has 18 frames on a Group of Picture (GOP) with two B frames

between a pair of I or P frames. The parameters of the video are listed in the table below.

Total Frames 8760 Video Length (Seconds) 292

Minimum Frame Size (Bytes) 2324 Playback time for each frame (s) 0.033

Maximum Frame Size (Bytes) 81340 Allocated Buffer Size (MB) 1

Playback Rate (Frames/s) 30 Sample Rate (Times/s) 62.5

Table 6-2 Key parameters in simulation

 124

The client buffer we allocate (1MB) can accommodate nearly 5 GOPs. Sample interval is

0.016s (Nyquist theory: minimum twice per frame). Then we attained the performance of

client buffer occupancy in Figures 6-3.

0 2000 4000 6000 8000 10000 12000 14000 16000
0

1

2

3

4

5

6

7

8

9
x 10

5

Time (1.6s between adjacent poins)

C
lie

n
t

B
u

ff
er

 O
cc

u
p

an
cy

 (
B

yt
es

)

Figure 6-3 Client buffer occupancy using DLQ

The statistics show that the client buffer is, on average, around 79.86% full. At the beginning

of transmission, the server sends data more than the client can consume. As a result, the

client buffer occupancy becomes higher and higher until stabilization is reached. In our

simulation, the maximum sending rate at very early beginning is 1.2MB/s. After the system

reaches its steady state, the buffer occupancy stays between 0.7 MB and 0.86 MB with small

fluctuations. Such high client buffer occupancy with small fluctuation enables the client

having much less jitters because there is always enough data to be decoded.

If a maximum BW is set, for example 0.6 MB/s, the curve will climb up slower and take a

longer time to reach the steady point. As shown in Figure 6-4, the system without maximum

BW limitation rises faster than the system with maximum BW limitation at the beginning of

 125

transmission. After all, these two lines emerge eventually after stabilization and give out the

same buffer occupancy performance. This means the limitation of maximum sending rate has

no influence on the steady state performance but only slow down the stabilization time.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9
x 10

5

Time Step (0.016s between two adjacent points)

C
lie

n
t

B
u

ff
er

 O
cc

u
p

an
cy

 (
B

yt
es

)

 No Max.BW limitation

 Max.BW limitation=0.6MB/s

Figure 6-4 Rise time with/without BW limitation

.
0 2000 4000 6000 8000 10000 12000 14000 16000

0

1

2

3

4

5

6

7

8

9
x 10

5

C
lie

n
t

B
u

ff
er

 O
cc

u
p

an
cy

 (
B

yt
es

)

Time (1.6s between adjacent points)

Without Kalman Filter

With Kalman Filter

Figure 6-5 Buffer occupancy under noise with/without KF

 126

If network noise is considered, the optimal rate with and without Kalman filter will be quite

different (figure 6-5). In figure 6-5, the average deviation of state variable x due to network

noise is set to 1.0×105 Bytes. Such noise degrades the performance of transmission by

pulling down the client buffer occupancy and enlarging its fluctuation. Kalman filter lightens

the problem and offers a stable delivery. To make the Kalman filter work more efficiently, it

is important that the covariance of noise is properly probed. Techniques for online noise

measurement could be used here together with the filter.

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7
x 10

5

Time

C
lie

n
t

B
u

ff
er

 O
cc

u
p

an
cy

 (
B

yt
es

)

Expert System Control

TFRC Control

.

Figure 6-6 Client buffer occupancy under TFRC and DLQ control

Figure 6-6 compares the buffer occupancy under commonly used rate control method TFRC

(TCP Friendly Rate Control) with DLQ rate control. It is obvious that the client buffer

occupancy is quite smooth with DLQ control while the client buffer frequently encountered

underflow under TFRC control. This is because the TFRC method targets at the intermediate

network environment. It takes loss rate and delay as the input parameters to predict the

network situation. The original sending rate is strictly held as long as the intermediate

 127

network does not change. On the other hand, DLQ can detect client buffer overflow or

underflow problems, collect the real-time playback rate, associate this information with the

movie characteristics, determining the most suitable transmission bit-rate.

6.4 Impact of delay on DLQ rate control

Delay is an important factor for the streaming performance. The delay we discussed here is

produced primarily by queueing delays in intermediate networks. We did not model the delay

into function (6.1) and (6.2) because that will violate the linear property of the system. Since

the DLQ performs control at discrete time points, the delayed feedback has to wait until the

next control point to be considered. With this manner, the current x(i) is decided by x(i-n),

where n depends on the instant value of the delay. As a result, the state function is no longer a

first order difference equation and the whole system is no longer a linear system that can be

optimized by the DLQ method. Thus in this section, we investigate the delay impacts through

testing and provide a practical one-step amendment strategy.

6.4.1 Assumptions

Assume the delay follow a normal distribution with mean value µ and variance σ2. The

following rules are used to simulate the behavior of basic DLQ under delayed feedbacks.

1) Round trip and process delays are represented by feedback delay only.

2) Feedback packets between two adjacent sampling points will be retained for a decision

later on.

3) If no new feedback comes within a sample interval, the scheduler maintains the previous

sending rate.

 128

4) If several feedback packets come together during an interval, the scheduler takes the

latest one for calculation and discards all the others.

6.4.2 Results of Delay Impact

We first fix the σ2 to 144ms and investigate situations with mean values (µ) of delay to be

0ms, 32ms, and 128ms ([82]) respectively, which are 0, 2, and 8 times the sampling interval

(16ms). Choosing basic DLQ for simulation, the client buffer occupancy with and without

delay is shown below.

4800 5000 5200 5400 5600 5800 6000 6200 6400 6600 6800

7.4

7.6

7.8

8

8.2

8.4

x 10
5

Time (0.016s between two adjacent points)

C
lie

n
t

B
u

ff
er

 O
cc

u
p

an
cy

 (
B

yt
es

)

No delay
Avg.Delay=32ms
Avg.Delay=128ms

Figure 6-7 Buffer occupancy with mean delay of 0ms, 32ms, 128ms

Figure 6-7 is an enlarged picture to show the differences more clearly. From the figure, delay

brings larger fluctuations to the buffer occupancy and the changes are not significant. For

example, the buffer usage with no delay rises after 5600 points from 0.77 MB to 0.8 MB and

then decreases (solid line), but for the delayed situation, the curve rises from 0.765 MB to

0.85 MB before decreasing (dotted and solid with circle line). Thus the delayed situation is

 129

more likely to encounter overflow. Moreover, the buffer occupancy with larger delay (solid

with circle line) swings away from no-delay situation (solid line) more seriously than the one

with smaller delay (dotted line).

Now we fixed µ to 96 ms and investigated the variance (σ) of 144 ms and 1024 ms.

Comparing it with no delay situation, we get the statistics in the following table.

Table 6-3 Buffer occupancies with different σ of delay

From the table, delay variance also has small influence on buffer occupancy. Far from what

is expected, delay does not bring hazardous disruption to the DLQ system. Reasons lie on the

characteristics of MPEG2 video and the DLQ system itself. Delay affects two feedback

variables: the current client buffer occupancy and the current buffer vacancy rate. However,

MPEG2 video contains IBBP frames in repetition, and the sizes of the same type of frames

are close. If the feedback packet for a frame is delayed to the sampling point for a following

frame of the same type, the information of buffer vacancy rate it contains is near to the real

value. On the other hand, since the DLQ adjustments are at a fine-grain level, the high

sampling rate ensures the outdated feedback will not mislead the schedule decision to a long

time. In other words, DLQ system reacts fast enough to correct its deflection.

6.4.3 Compensation for Delay Impact

The trouble in sub-section 6.4.2 was caused by two types of problems brought by the delay.

1) Time reverse problem

Delay\Client buffer occupancy Max (MB) Mean(MB) Median(MB) Std(KB)

No delay 0.8395 0.7949 0.8008 64.69

σ2=144ms 0.8370 0.7943 0.8013 64.69

σ2=1024ms 0.8443 0.7948 0.8019 64.71

 130

If several feedbacks came within a sample period in sequence, DLQ takes the one that

arrived latest as the reference for decision. A feedback sent at time slot 10 may reach the

server earlier than the feedback sent at slot 9. Suppose these two feedbacks come within the

same sample interval, DLQ will discard the former one (sent at slot 10) but take the later one

(sent at slot 9). This problem can be solved using a time stamp mechanism introduced later.

2) Outdated information problem

Cases where no feedback came within a sample period or feedback coming late are

considered as the outdated problem. This problem can be solved by enhancing the network

transmission speed which is not the scope of our design.

Within the two parameters influenced by the delay, buffer occupancy and buffer vacancy rate,

making prediction on buffer vacancy rate during run-time will increase the system’s

complexity greatly without significant performance improvement. So the simple one-step

prediction mechanism proposed here makes prediction only on actual buffer occupancy. We

propose to give each feedback packet a time stamp when sent out. Receiving a new feedback,

the DLQ scheduler compares it with the current time and predicts the current buffer

occupancy using:

Buffer occupancy = Buffer occupancy in current feedback packet + Sent data during ([(Time

stamp-Current time)/Ts]+1) steps – Playback data during this period.

Here, [(Time stamp-Current time)/Ts] means selecting the integer part of (Time stamp –

Current time)/Ts and Ts is the sample interval. The playback data is calculated using the

buffer vacancy rate in the current feedback packet. Of course if the system receives several

feedbacks in a sample period, it compares their time stamps and trusts the latest one.

Adopting µ =128ms and σ2 =1024, we redo the previous delay-influence simulation and add

the curve with prediction mechanism. From figure 6-8, the simple prediction mechanism

 131

(dotted line with cross marker) helps the buffer occupancy perform nearly as good as the no

delay situation (solid line), much better than the no prediction situation (solid line with

diamond marker). The mean square error between delayed and no-delay situations is 8.94×

107, but only 5.98×106 between the delayed with prediction and no-delay situations.

4800 5000 5200 5400 5600 5800 6000 6200 6400 6600 6800

7.6

7.7

7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

x 10
5

Time (0.016s between two adjacent points)

C
lie

n
t

B
u

ff
er

 O
cc

u
p

an
cy

 (
B

yt
es

)

No delay
Avg.delay=128ms
Avg.delay=128ms with prediction

Figure 6-8 Buffer occupancy with delay prediction

6.5 Overhead of DLQ Rate Scheduler

The overhead brought by DLQ control are estimated here. From our test, the 3.0G CPU of

SUN Fire 880 takes approximately 0.54 µs to depacketize the data, 0.04 µs to fetch the pi and

bi from table, and 2.16 µs to do the calculation using formula (6.6). Switches between users

consume around 2 µs. Then the total time is depacketize time + fetching parameters +

calculation for optimal transmission rate + switch time between users consumes 4.74

microseconds. For the feedback interval of 16 ms, such a CPU can serve 16/(4.74×10-3) =

 132

3375 users. Suppose the transmission is conducted on a 1G network bandwidth with 70% of

its full capacity used for streaming, DLQ can support 70% * 1G / 0.4M = 1750 streams in the

normal situation. The 0.4M in denominator is the steady state transmission rate obtained

from the simulation. This result is much more than the number of client supportable by the

expert server derived in Chapter 4. Thus DLQ scheduler will not decline the capacity of the

expert server.

 133

Chapter 7 Conclusion

At the end of the journey, we will take a global review on what has been presented in this

thesis and conclude its importance, achievement, limitation and future trends. We hope that

this chapter would further clarify the purpose of the research and our contributions. Most

limitations mentioned in this chapter can be solved or at least improved by future research.

The conclusion suggests a promising future of the expert server system for streaming control.

The following paragraphs will answer the questions through three aspects: the strength of the

expert system on streaming control; our achievements and limitations; and last, the possible

research directions that may lead the expert server to be a practical and successful technique.

7.1 The Strength of the Expert Server

The research presented is inspired by the intention of making current streaming servers more

powerful on streaming, flexible on control, and reliable on maintenance. Analyzing the

current streaming servers, their performances have room for improvement given certain

hardware and network configurations. The idea of using an interdisciplinary work by

applying the expert system into conventional server design came up with the discovery that

most expected improvements can be accomplished by the expert control. Now we first list

the possible improvements from conventional servers and the solutions provided by the

expert server system.

 The transmission quality would be better if the server could see a global picture of the

transmission, and not only using some unrelated parameters of the stream. In the expert

server, operation parameters are monitored and their relations are handled by heuristic

 134

rules written by human experts. This makes the expert server perform like a real human

expert who has insight into the problems and react intelligently to different cases, even

when these cases have similar phenomena.

 The server may provide a customized service instead of a uniform delivery. This is the

way most commercial servers are used. The expert system analyzes the client parameter,

allocates proper resources and performs per flow rate control along the transmission. This

client aware control could save resources and provide the same video quality.

 Instead of comparing which technique is better nowadays, the server could adopt all of

them and take good use of them. The expert system refers to the rule base to select the

most suitable lower level management strategies depending on the criteria of

performance optimization. Even the search schemes and the selection criteria themselves

can be coded as rules and adjusted online.

 The server should be easier to extend with the development of future techniques.

Compared with conventional servers that fix their service strategy to unchangeable code,

the expert system can be modified by simply adding or deleting rules and functions in the

knowledge base. The maintenance is done without the influence of the main server

program.

It can be concluded that the expert server system is an upgraded server with extended

capacity and flexibility on control and maintenance. The expert server is a good combination

of the integrated service and the differentiated service. It offers a differentiated service to

each stream and integrates optimal delivery methods along the transmission steps. In the

world without a one-for-all solution, the design of such an expert server system is an

enlightening endeavor to find a powerful way for the problems under heterogeneous

 135

environments.

7.2 The Achievements and Limitations of the Expert Server

Our research is a pioneering work for that it is the first time a multimedia streaming expert

server system is designed, evaluated, and tested. The rule-based expert system design shown

in Chapter 3 follows the conventional steps of designing an intelligence system. It considered

the special characteristics of media streaming and applied this domain-related knowledge for

the transmission as an expert. The position of such a rule-based expert system would be at the

middleware level. It does not run all the time, but only performs periodic global control. Thus

the overhead brought by it is controllable. The demands for better control and less overhead

are balanced by selecting a proper monitor interval. The rule-based expert server system was

theoretically evaluated in Chapter 4. Although it is difficult to analyze the transmitted video

quality offline, we approximately analyzed the system from request response time varying

with different rule base size. Using traditional forward chaining inference method, the

computational time was bounded within a linear line and an exponential curve. The

computation time gave the average service time and further decided the response time given

certain client density. Due to the real-time characteristic of streaming requests, the maximum

number of clients supportable by a single server was limited by the average requests response

time. From theoretical analysis, the computational overhead (< 10%) brought by the expert

control did not influence the server capacity, which has been proven to be settled by the

network bandwidth. However the smoother streaming achieved by the expert control could

greatly alleviate the network burden and consequently extend the system capability.

Practically, the expert server designed in this thesis realizes the following key features:

A. Perform effective admission control and traffic distribution. These two features are used

 136

to limit the incoming requests. Accepted traffic would be distributed as illustrated in

section 3.1.4, where the server will make a global decision based on latest working

parameters and forward the request to the most suitable station for processing. Results

have proved this function in sub-section 5.3.1

B. Adjust parameters dynamically and maintain QoS during runtime. It provides primary

support for any intelligence pursuing by the expert server. The accuracy of on-the-fly

parameters in working memory directly influences the correctness of the decision and

consequent transmission quality. For the distributed server system, these working

parameters are periodically broadcasted to update other servers.

C. Provide playback scheduling and streaming handover. Sub-section 5.3.2 and 5.3.3

described these two novel functions of the expert server. It gathered and classified the

profiles from movie and advertisement provider, scheduling the playback sequence based

on statistics of subscribers to maximize the entertainment effect. When the client device

changes, it provides SIP-like signaling procedure to realize movie handover within

different devices. This is a very useful function in modern families with multi-terminal

receivers. Both the ISP and the users would be benefit from these two functions.

D. Carry out smooth rate control and buffer management for high definition movies. High

definition movie requires high bandwidth. Even with fast development of physical

network media material, it is still a killer application. To make the transmission of it

smoother and more stable so that other traffic on Internet is not severely impacted, the

expert control carried out efficient rate control. Test results in sub-section 5.3.4 shown the

apparent effects on small throughput fluctuation and shorter stabilization time.

E. Perform knowledge based congestion control under diverse environments. We carefully

 137

selected several typical congestion control methods and implemented them into our rule

base, as shown in sub-section 5.2.4. The following results in section 5.3.5 demonstrated

that the expert system could response to different level of congestions step by step

intelligently. When it predicts a possible congestion, only rate control algorithms are start

up. When light congestion happened, it locates and differentiates the jam. For server side

jam, admission control becomes stricter. If the jam is at the network or at the client,

prioritized RED is switched on to reduce the traffic of the stream and QoS management

increases the packet importance. The experiment from Singapore to Chicago (sub-section

5.4.5) proved that expert control handles congestions more reasonably than a traditional

server.

F. Implement failure detection and recovery mechanisms. The server system should not

break down at any time. According to our design, if rule collision happens and no meta-

rules aim at solving it, the expert server will output an error message and take the default

value that has been set offline. If the collision is critical, the server will terminate itself

after transferring current serving sessions to other stations.

G. The computational overhead is managed within an acceptable scope. The control

overhead is a significant issue in the expert system design. In this thesis, we put much

effort on handling this problem: the rule base is classified into functional groups; the

parsing and linking process is done offline; the translated rules have concise structures;

the binary rules are stored in fixed locations in the rule table; the monitor interval is set to

occupy less than 10% CPU time; the inference is directed by effective heuristics. All

these efforts performed effectively to reduce the overhead of the expert control. The

analytical results (sub-section 4.2.1) and experimental results with each experiment

 138

showed that the computational time was bounded within an acceptable range.

H. For the completeness of our rate control method base, we also designed a discrete DLQ

rate control scheme with the Kalman filter. The DLQ, together with its modifications on

delay impact, has been demonstrated to be effective on detecting the client buffer

occupancy and dynamically adjust consequent sending rate. It is particularly suitable for

the transmission with stable network conditions. Although the Kalman filter can deal with

Gaussian noise on the transmission line, the DLQ will lost its strength if network

bandwidth or loss rate changes greatly, for that it does not take the network parameter

into calculation. To compensate this weakness, we use it together with other network

sensitive rate control schemes. As the results shown in Chapter 5, the DLQ takes care of

the client requirements while the other rate-control methods are aware of the network

conditions. They make their own decisions and compromised to a more reasonable

solution.

Besides all achievements listed above, the expert server system also has its limitations. We

classify them into two groups and explain respectively in subsequent paragraphs.

 Inherent limitations

The expert server is inherited from expert systems family. Therefore it encounters the

problems that appear in most expert systems.

1) When the rule size increases, the corresponding searching time may go up exponentially.

This is a fundamental question for expert system design. The situation that is suitable for

using the expert system often has its limitations on using conventional computer control

algorithms. That is, the problem can not be solved easily by going through hundreds of

lines of code. Problems with this attribute usually needs abundant of heuristic knowledge

 139

to progressively approach the optimal solution. Thus it may be concluded that problems

fit for using expert systems are usually attached with a huge rule base. Unfortunately,

those problems commonly have a deadline for the solution. So how to balance the rule

size so that decisions could be given within the deadline is perplexing for the designers.

Unlike them, media streaming problem has special characteristics. It is not a must to use

expert system for multimedia transmission. Obviously the streaming can be performed

successfully without the expert control, as realized by those commercial streaming

servers. Our purpose is to enhance the server’s performance by adding the global expert

control to enhance its intelligence on reacting to various situations. Hence the expert

server is different with typical expert systems on the target problems. As a result, the

expert server does not necessary need a super huge rule base. In fact, the rule base size

could be restricted according to the decision deadlines since the basic function of the

server has been completed by a fixed algorithm.

2) Control vibration

Recall that the function of an expert system is to perform global control. It decides the

appropriate combination of delivery strategies based on working parameters. This

technique makes the control more flexible and effective, yet it also brings problems if the

strategies change too frequently. Consider a situation when network or server parameters

vibrate, the expert system may switch on and off some strategies to trace the trend of

changes. As we know, most rate control or congestion control strategies need some time

to reach their stable points. As a result, switching it on and off without waiting for its

stabilization is not good except to cause the system to fluctuate and become unstable.

To solve this problem, we created many statistical global variables to describe the long-

 140

term behavior tendency. For example, the Historical Request Arrival Rate and the Variety

of Arrival Rate appeared in section 3.3 (Figure 3-4) are two parameters used to record the

statistical characteristics of the arrival rate. With them, heuristic rules can be written like

an expert is monitoring the whole system and making judgments based on his

experiences. Decisions on changing transmission strategies are not so simple as merely

check the current working parameters. It also relies on the historical trends of the changes

and the stabilization time of a strategy.

This solution brings along another question that whether the hesitation of changing

strategies prevents the expert server from quick responsive to the changes of environment.

The answer to this question is: it depends on the rules. The rules, or the intelligence from

the experts, are responsible to adjust the balance point between the problem of control

fluctuation and the server responsiveness.

 Design limitations

In addition to the inherent limitations that come along with most expert systems, the expert

server described in this thesis has its design limitations due to some uncontrollable reasons.

We point them out here to make the whole picture of the expert server design more

comprehensible.

1) The provided expert server system does not carry out OS level scheduling.

In sub-section 4.2.2, the streaming server is categorized to be a real time system that

supports real time streaming applications. With real time requirements, the system needs

the support of operation system for timely interrupt response and preemptive scheduling.

For example, the packet receiver is an independent event driven thread; the monitor and

the session handler are periodic task whose timely execution rely entirely on the

 141

scheduling of OS. At the beginning of this research, we planned to tackle the OS level

scheduling. However, this kind of work was not completed due to time limitation.

Nonetheless, the server would definitely perform better if supported by a real time OS,

from which the modules designed for the expert control could get guaranteed service.

2) The performances tested are not standardized due to lack of rule base benchmark.

From the laborious description of expert server in this thesis, we have come to an

understanding that the transmission quality depends largely on the effective of rules. On

the other hand, there is no standard rule base as a benchmark for us to test the server

performance. The case study given in this thesis only tests the congestion avoidance

performance of the expert control. The rule base we built is not completed and has much

more space for extension. Thus the results presented in the thesis are far less than the

highest performance achievable by the expert server system.

3) Failure detection inference procedure is not implemented.

Due to time limitation, the only failure detection mechanism implemented in our work is

output an error message when collision happening and take the default value for safety.

Actually, backward chaining techniques could be used to detect potential errors or

diagnose the failure like the example given in sub-section 1.1.3, the SOAR system to

diagnose the failure in circuit simulations. Consequent recover methods could be carried

based on the detection results. This will enhance the expert server’s reliability through

preventing the server to accumulate errors that finally cause undesirable break down.

7.3 Future Development

There are many potential improvements that could be developed in the future. We suggest

some directions that may be inspiring.

 142

 Adopt advanced network topologies

When client-server topology is used, the maximum overall system capacity is fixed. No

matter how well the scheduling scheme is, the utilization factor can not exceed 1. This

bound limits the growth of the population of clients. Since the expert system provides

high level control and not relies on the hardware and network infrastructures, it could be

implemented into modern networks, for example peer-to-peer (P2P) network.

In the year 2001, P2P networks appeared and grew up very quickly and now it has been a

practical technology for broadcasting or VOD streaming applications. The P2P network is

a fully distributed system that each node in the network is both a server and a client.

When a client device requires services from the network, its bandwidth and processing

capacity is also added into the network. Thus the P2P network capacity grows together

with the increase of clients. Such a characteristic enables P2P network providing

unlimited file sharing services among clients. Using it, the service capacity of the whole

system will not be bounded by the number of servers like in client-server architecture.

The main problem for a P2P network is how to find the optimal group of peers for data

exchange, regarding the reliability and distances. For such kind of selection, the human

performs much better than computer if they are provided a local area traffic distribution

graph and the character of each peer. It is hopeful that an expert system could bring such

information-handle ability into P2P network. The marriage of these two technologies

would greatly enhance the performance of multimedia streaming services.

 Self-training of rules

Until now, the rule base is set up offline by experts who write heuristic rules according to

their experience and knowledge of the streaming delivery. The rules may be outdated and

 143

need frequent maintenance under different hardware configurations. Therefore we

suggest creating some rules to record and evaluate the reliability of decisions and the

performance of selected strategies. These rules are in charge of adjusting parameters of

other rules during run time and enhancing the probability of making correct decisions in

the future.

 Rule base auto-evolution

If previous self-training ability could be obtained, a more intelligent feature would be

make the execution of the server a parallel procedure with the rule base evolutionary

process. That is, the rule base will update itself concurrently when server providing

services. It may modify existing rules; discard outdated rules; or even creating new rules

to fit for the changing circumstance. Considering the fast development of generic

algorithms, we believe it is possible to realize this feature in the future.

 144

Bibliography

[1] Tanimoto, S.L. “The Elements of Artificial Intelligence”, New York, NY: Computer

Science Press, 1987.

[2] Buchanan, B. and E. Feigenbaum, “DENDRAL and Meta-DENDRAL: Their

Applications Dimension”, Artificial Intelligence, vol. 11, 1978.

[3] Avelino J. Gonzalez, Douglas D. Dankel, “The Engineering of Knowledge-based

Systems: Theory and practice”, NJ: Prentice Hall, 1993, ISBN: 0132769409

[4] Durkin John, “Expert systems: design and development”, New York: Maxwell Macmillan

International, 1994. ISBN: 0023309709

[5]Suzanne Smith, Abraham Kandel, “Verification and validation of rule-based expert

systems”, CRC Press, c1993, ISBN: 084938902X

[6] S.J.Jang et al., “Automated Individual Prescription of Exercise with an XML-based

Expert System”, 27th Annual Conference on Engineering in Medicine and Biology, 2005

[7] Thomas Lumpp, Juergen Schneider, Wolfgang Kuechlin, Carsten Sinz “Loop detection in

rule-based expert systems”, Patent No.: 6952690

[8] Christopher W.Lehman in IBM Colorado Springs, Mary Jane Willshire in Dept. of

Computer Science of Colorado Technical University, “A Rule-Based Expert System for the

Diagnosis of Convergence Problems in Circuit Simulation”, 2006

[9]Zakrzewski, E.J.; Quillin, R., “Applications of expert systems to network control”, IEEE

International Conference on Communications, 1988. ICC 88. Digital Technology - Spanning

the Universe. Conference Record. 12-15 June 1988 Page(s):1734 - 1739 vol.3

 145

[10] Erfani, S.; Malek, M.; Sacher, H.; “An expert system-based approach to capacity

allocation in a multiservice application environment”, IEEE Network, Volume 5, Issue 3,

May 1991 Page(s):7 – 12

[11] Rao, M.S.S.; Soman, S.A.; Menezes, B.L.; Pradeep Chawande; Dipti, P.; Ghanshyam, T.;

“An expert system approach to short-term load forecasting for Reliance Energy Limited,

Mumbai”, IEEE Power India Conference, 2006, 10-12 April 2006 Page(s):6 pp.

[12] Calleja, J.A.B.; Troost, J.; “Dealing with high workload in future naval command and

control systems”, IEEE International Conference on Systems, Man and Cybernetics, 2005,

Volume 1, 10-12 Oct. 2005 Page(s):733 - 739 Vol. 1

[13] Jin Wu; Djemame, K.; “An expert-system-based structure for active queue management”,

International Conference on Machine Learning and Cybernetics, Volume 2, 2-5 Nov. 2003

Page(s):824 - 829 Vol.2

[14]Cai, L.; Shen, X.S.; Mark, J.W.; Pan, J., “QoS support in Wireless/Wired networks using

the TCP-Friendly AIMD protocol”, IEEE Transactions on Wireless Communications,

Volume 5, Issue 2, Feb. 2006 Page(s):469 – 480

[15] Layaida, O.; Atallah, S.B.; Hagimont, D., “Reconfiguration-based QoS management in

multimedia streaming applications”, 30th Euromicro Conference, 2004, Page(s):248 – 255

[16] Xiaohui Gu; Nahrstedt, K., “Distributed multimedia service composition with statistical

QoS assurances”, IEEE Transactions on Multimedia, Volume 8, Issue 1, Feb. 2006

Page(s):141 – 151

[17] Peng Zhu; Wenjun Zeng; Chunwen Li, “Joint Design of Source Rate Control and QoS-

Aware Congestion Control for Video Streaming Over the Internet”, IEEE Transactions on

Multimedia, Volume 9, Issue 2, Feb. 2007 Page(s):366 – 376

 146

[18] Fitzek, F.H.P.; Reisslein, M., “A prefetching protocol for continuous media streaming in

wireless environments”, IEEE Journal on Selected Areas in Communications, Volume 19,

Issue 10, Oct. 2001, Page(s):2015 – 2028

[19] Argyriou, A.; Madisetti, V., “A media streaming protocol for heterogeneous wireless

networks”, IEEE 18th Annual Workshop on Computer Communications, 20-21 Oct. 2003

Page(s):30 – 33

[20] Yasukawa, K.; Baba, K.-I.; Yamaoka, K., “Classification of nonstream flows to reduce

negative interactions between stream and nonstream flows”, IEEE Pacific Rim Conference

on Communications, Computers and signal Processing, 2003, Volume 2, 28-30 Aug. 2003

Page(s):772 - 775 vol.2

[21] Lombaedo, A.; Schembra, G.; Morabito, G., “Traffic specifications for the transmission

of stored MPEG video on the Internet”, IEEE Transactions on Multimedia, Volume 3, Issue

1, March 2001, Page(s):5 – 17

[22] Liu Yin; Liu Wenyin; Wei-Jia Jia; Jiang Changjun, “Link bandwidth detection for

multimedia streaming in a distributed server environment”, Joint Conference of the 4th

International Conference on Information, Communications and Signal Processing, and the 4th

Pacific Rim Conference on Multimedia. 2003, Volume 1, 15-18 Dec. 2003 Page(s):438 - 442

Vol.1

[23] Lombardo, A.; Morabito, G.; Palazzo, S.; Schembra, G., “A Markov-based model of

MPEG-2 audio/video traffic”, GLOBECOM '99, Volume 2, Page(s):1189 - 1193 vol.2

[24] Chandra, K.; Reibman, A.R., “Modeling one- and two-layer variable bit rate video”,

IEEE/ACM Transactions on Networking, Volume 7, Issue 3, June 1999 Page(s):398 – 413

 147

[25] Nelson Tang, Sonia Tsui, and Lan Wang, “A Survey of Admission Control Algorithms,”

Computer Science Department, UCLA, December 16, 1998

[26] In-Hwan Kim; Jeong-Won Kim; Seung-Won Lee; Ki-Dong Chung, “Measurement-based

adaptive statistical admission control scheme for video-on-demand servers”, 15th

International Conference on Information Networking, 31 Jan.-2 Feb. 2001 Page(s):471 – 478

[27] Vieron, J.; Guillemot, C., “Real-time constrained TCP-compatible rate control for video

over the Internet,” IEEE Transactions on Multimedia, Volume 6, Issue 4, Aug. 2004

Page(s):634 – 646

[28] Jiang, M.; Ling, N., “Low-Delay Rate Control for Real-time H.264/AVC Video Coding,”

IEEE Transactions on Multimedia, Volume 8, Issue 3, June 2006 Page(s):467 – 477

[29] Yuko Onoe et al, “Network information based Rate Controls on Multimedia Streaming

Servers,” 23rd International Conference on Distributed Computing Systems, 2003,

pp.543~548

[30] Peng Zhu; Wenjun Zeng; Chunwen Li, “Joint Design of Source Rate Control and QoS-

Aware Congestion Control for Video Streaming Over the Internet”, IEEE Transactions on

Multimedia, Volume 9, Issue 2, Feb. 2007 Page(s):366 - 376

[31] Floyd, S.; Jacobson, V., “Random early detection gateways for congestion avoidance”,

IEEE/ACM Transactions on Networking, Volume 1, Issue 4, Aug. 1993 Page(s):397 – 413

[32] Dong Lin and Robert Morris, “Dynamics of Random Early Detection”, SIGCOMM’97

[33] Hutschenreuther, T.; Schill, A., “Content based discarding in IP-routers”, 9th International

Conf. on Computer Communications and Networks, 16-18 Oct. 2000 Page(s):122 – 126

[34] Bajic, I.V.; Tickoo, O.; Balan, A.; Kalyanaraman, S.; Woods, J.W., “Integrated end-to-

end buffer management and congestion control for scalable video communications”,

 148

International Conference on Image Processing, Volume 3, 14-17 Sept. 2003 Page(s):III -

257-60 vol.2

[35] Bai, Y.; Ito, M.R., “User-oriented fair buffer management for MPEG video streams”, 17th

International Conference on Advanced Information Networking and Applications, 27-29

March 2003 Page(s):241 – 246

[36] Awad, A.; Sivakumar, R.; McKinnon, M.W., “MPFD: a look-ahead based buffer

management scheme for MPEG-2 video traffic”, 8th IEEE International Symposium on

Computers and Communication, 2003 Page(s):893 - 898 vol.2

[37] Jane W.S. Liu, “Real-Time systems”, NJ : Prentice Hall, 2000, ISBN: 0130996513

[38] Bennett, J.C.R.; Hui Zhang, “WF2Q: worst-case fair weighted fair queueing”, 15th

Annual Joint Conference of the IEEE Computer Societies, INFOCOM '96, Volume 1, 24-28

March 1996 Page(s):120-128 vol.1, Digital Object Identifier 10.1109/ INFCOM.

1996.497885

[39] Cheung, S.Y.; Pencea, C.S., “BSFQ: bin sort fair queueing”, the 21th Annual Joint

Conference of the IEEE Computer and Communications Societies, INFOCOM 2002,

Volume 3, 23-27 June 2002 Page(s):1640 - 1649 vol.3

[40] IETF DiffServ Working Group page: http://www.ietf.org/html.charters/OLD/diffserv-

charter.html

[41] West, R.; Zhang, Y.; Schwan, K.; Poellabauer, C., “Dynamic window-constrained

scheduling of real-time streams in media servers”, IEEE Transactions on Computers, Volume

53, Issue 6, June 2004 Page(s):744 – 759

 149

[42] Xiaofei Liao; Hai Jin; Hao Chen, “Double-layer stream scheduling scheme with QoS

control for cluster video servers”, International Conference on Computer Networks and

Mobile Computing, 2003, 20-23 Oct. 2003 Page(s):86 - 91

[43] Nguyen, T.; Mehra, P.; Zakhor, A., “Path diversity and bandwidth allocation for

multimedia streaming”, ICME '03, Volume 1, 6-9 July 2003 Page(s): I - 1-4 vol.1

[44] Prabhakaran, B., “Scheduling multimedia information delivery over unicast wireless

channels”, 3rd IEEE Symposium on Application-Specific Systems and Software Engineering

Technology, March 2000, Page(s):33 – 37

[45] Jinsung Cho; Heonshik Shin, “Heuristic scheduling for multimedia streams with firm

deadlines”, IEEE 4th International Workshop on Real-Time Computing Systems and

Applications, Page(s):67-72, 27-29 Oct. 1997

[46] Mehra, P.; De Vleeschouwer, C.; Zakhor, A., “Receiver-driven bandwidth sharing for

TCP and its application to video streaming”, IEEE Transactions on Multimedia, Volume 7,

Issue 4, Aug. 2005 Page(s):740 – 752

[47] Christian Poellabauer, Karsten Schwan, Richard West, “Coordinated CPU and Event

Scheduling for Distributed Multimedia Applications”, ACM Multimedia, Ottawa, Ontario,

Canada, October 2001

[48] http://www.microsoft.com/windows/windowsmedia/forpros/server/server.aspx

[49] http://service.real.com/help/library/guides/g270/realsrvr.htm

[50] Charles F. Goldfarb, Paul Prescod, “Charles F. Goldfarb's : XML handbook”, N.J. :

Prentice Hall PTR, c2002, ISBN: 0130651982

[51]Presern, S.; Brajak, P.; Vogel, L.; Zeleznikar, A.P., “An adaptable parallel search of

knowledge bases with beam search”, Proceedings of the 22th Annual Hawaii International

 150

Conference on System Sciences, 1989. Vol.III: Decision Support and Knowledge Based

Systems Track, Volume 3, 3-6 Jan. 1989 Page(s):262 - 270 vol.3

[52] S. Ortmanns, A. Eiden, H. Ney, N. Coenen, "Look-Ahead Techniques for Fast Beam

Search," icassp, p. 1783, 1997 IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP'97) - Volume 3, 1997

[53] Rong Zhou and Eric A. Hansen, “Breadth-First Heuristic Search”, 14th International

Conference on Automated Planning and Scheduling (ICAPS-04), Whistler, British Columbia,

Canada, June 3 - 7, 2004

[54]Thomas H. Cormen et al, “Introduction to algorithms”, Cambridge, Mass. : MIT Press,

c2001, 2nd edition, ISBN: 0262032937

[55] Thomas G. Robertazzi, “Computer networks and systems: queueing theory and

performance evaluation”, 3rd edition, New York : Springer-Verlag, 2000, ISBN: 0387950370

[56]Christian Maihofer, “A Bandwidth Analysis of Reliable Multicast Transport Protocols”,

University of Stuttgart, Institute of Parallel and Distributed High Performance, Systems

(IPVR), Breitwiesenstr. 2022, D70565, Stuttgart, Germany

[57]Jain, Raj. “The art of computer systems performance analysis : techniques for

experimental design, measurement, simulation, and modeling”, New York : Wiley , c1991,

ISBN: 0471503363

[58] http://developer.apple.com/documentation/QuickTime/QTSS/QTSS.pdf

[59] Liang Ji; Arvanitis, T.N.; Woolley, S.I., “Fair weighted round robin scheduling scheme for

DiffServ networks”, Electronics Letters, Volume 39, Issue 3, Page(s):333 – 335, 6 Feb. 2003.

 151

[60] X.Zhou and K.Ong, “Discrete LQ rate control schedule system for multimedia

transmission,” International Conference on Advanced Information Networking and

Applications, Vol. 1, Page(s):6,18-20 April 2006.

[61] Jinyao Yan; Katrinis, K., May, M.; Plattner, B., “Media- and TCP-friendly congestion

control for scalable video streams”, IEEE Transactions on Multimedia, Volume 8, Issue 2,

April 2006.

[62] Lisong Xu, “Extending Equation-Based Congestion Control to High-Speed Long-

Distance Networks: Smoothness Analysis”, IEEE Globecom, 2005.

[63]F.P.Kelly, A.Maulloo, and D.Tan, “Rate Control in Communication Networks: Shadow

Prices, Proportional Fairness and Stability”, Journal of the Operational Research Society, 49,

1998.

[64] M. Dai and D. Loguinov, “Analysis of Rate-Distortion Functions and Congestion Control

in Scalable Internet Video Streaming”, ACM NOSSDAV, June 2003.

[65] Y.P.Zhang, S.R.Kang, and D.Loguinov, “Delayed Stability and Performance of

Distributed Congestion Control”, ACM SIGCOMM, August, 2004.

[66] S.R.Kang, Y.P.Zhang, M.Dai, and D.Loguinov, “Multi-layer Active Queue Management

and Congestion Control for Scalable Video Streaming”, IEEE Distributed Computing

Systems, 2004.

[67] Cai, L.; Xuemin Shen; Jianping Pan; Mark, J.W., “Performance analysis of TCP-friendly

AIMD algorithms for multimedia applications”, IEEE Transactions on Multimedia, Volume7,

Issue 2, April 2005.

[68] Y.P.Zhang; D.Loguinov, “Oscillations and Buffer Overflows in Video Streaming under

Non-Negligible Queuing Delay”, ACM NOSSDAV, June 2004.

 152

[69] M. S. Grewal and A. P. Andrews, “Kalman filtering: Theory and practice using MATLAB,

2nd Edition”, John Wiley & Sons, 2001.

[70] JCDecaux Market Reach, http://www.jcdecaux.com.sg/content/research/reach.htm

[71] Massimo Bernaschi et al, “Adaptive Streaming on Heterogeneous Networks”,

WMuNeP’05, October 13, 2005, Montreal, Quebec, Canada.

[72] Zhou, X.F; Ong, K., “A Rule-Based Expert Server System for Multimedia Transmission”,

IEEE 21st International Conference on Advanced Networking and Applications, 2007. AINA

'07, 21-23 May 2007 Page(s):305 - 310

[73] PeterDorato, Chaouki Abdallah, and Vito Cerone, “Linear-Quadratic Control, An

Introduction,” Prentice Hall, 0-02-329962-2

[74] Desineni Subbaram Naidu, “Optimal control systems,” Boca Raton, FL: CRC Press,

c2003.

[75] Markus Fidler, “Real-Time Multimedia Streams in a Differentiated Services Network,”

Dept. of Computer Science, Informatik IV, Aachen Univ. of Tech., Proc. 10th international

conference on computer and communications and Networks, 2001, pp.308~385.

[76] Randy Chow at al, “Traffic Dispersion Strategies for Multimedia Streaming,”

Proceedings of the 8th IEEE Workshop on Future Trends of Distributed Computing Systems

(FTDCS’01), 2001, pp.18~24.

[77] Gwang S.Jung,Kyung W.Kang, and Qutaibah Malluhi, “Multithreaded Distributed

MPEG1-Video Delivery in the Internet Environment,”

[78] Kang Li at al, “A Rate-Matching Packet Scheduler for Real-Rate Applications,” Dept. of

Computer Science and Engineering, Oregon Graduate Institute

 153

[79] Mei-Ling Shyu1 et al, “Optimal Resource Utilization in Multimedia Transmission,” IEEE

international conference on Multimedia and Expo, 2001. pp.673~676.

[80] N.Uchida, K.Takahata and Y.Shibata, “Optimal video stream transmission control over

wireless network,” IEEE international Conference on Multimedia and Expo, Vol.3, pp.1791-

1794, 27-30 June 2004

[81] O.Rose, “Simple and Efficient Models for Variable Bit Rate MPEG Video Traffic,”

Performance Evaluation, vol.30, pp.69~85, 1997.

[82] http://ipnetwork.bgtmo.ip.att.net/pws/network_delay.html

[83]http://www.cisco.com/en/US/netsol/ns669/networking_solutions_solution_segment_home

.html

 154

Appendices

Appendix A: Extended Kalman Filter (EKF) for Kelly’s Rate Control

This appendix gives the Kalman filter diagram, the loss rate state function, and the

implementation algorithm for Kelly’s rate control.

Figure A-1 Kalman filter block diagram for Kelly’s rate control

The aim of Kalman Filter (with reference to figure A-1) in Kelly’s rate control is to get the

best estimation of loss rate p(k) given previous predicted value of p(k-1|k-1) p(k-2|k-2) …

x(0|0) and the observed current state variable value y(k). It tries to get a filter gain G(k) so

that the prediction 1)]|())[y(G(1)|()|(−−+−= kkpkkkkpkkp minimizes the predict

error covariance]))|()())(|()([()|(TkkpkpkkpkpEkk −=Φ . Compared with conventional

Kalman filter applications, the problem of Kelly’s control system is its non-linear character,

which is going to be shown in following paragraphs.

In [63], the discrete Kelly’s rate control function is:

)()()()1(kpkrkrkr βα −+=+ (k = 0, 1, 2, …) ---(A.1)

In (A.1), r(k) is the sending rate for a media stream. α and β are constant coefficients, and p(k)

is the loss rate at time step k. If the following assumptions hold true:

 Fairness among traffic is achieved in intermediate network routers.

 155

 Loss rate is calculated by the amount of traffic exceed router’s capacity / total traffic.

For any time instance k, we have:

Nr(k)
CNr(k)p(k) −

= ---(A.2)

)Nr(k
C)Nr(k)p(k

1
11
+
−+

=+ ---(A.3)

N is the number of client. C is the system capacity.

Combining (A.2) and (A.3), canceling the C and N, we get the relation of p(k+1) and p(k) is:

)r(k
p(k))r(k)()p(k
1

111
+
−

−=+

Replace r(k+1) in the above function using (A.1):

βr(k)p(k)αr(k)
p(k))r(k)()p(k

−+
−

−=+
111

So the state and measurement functions for Kalman filter are:

βr(k)p(k)αr(k)
p(k))r(k)()p(k

−+
−

−=+
111 ---(A.4)

n(k)p(k)y(k) += ---(A.5)

From (A.4), state function for loss rate is non-linear. It can be solved by the extended Kalman

filter or unscented Kalman filter (UKF). Since (A.4) is not too complex to be linearized, we

choose the simpler EKF for the solution. The main drawback of stability problem of EKF is

omitted here because the rate control performs at small enough time interval, usually once

every packet or at most once several packets. We use f to represent the function (A.4). The

n(k) is the Gaussian white network noise with zero mean and covariance R(k).

The (A.4) is linearized as:

)|(|))|(()(|)1()|()|(kkpfkkpfkpfkp kkpkkp ∇−+∇=+

 156

Where 2

2

)|(
)|())()()((

)()()1(
)(

)1(
kpkrkr
krkr

kp
kpf

kkp
kkp βα

αβ
−+

+−
=

∂
+∂

=∇

Now the problem is changed to design a Kalman filter for a linear system. The detailed

deduction of Kalman gain is shown in Appendix C and therefore omitted here. The

implementation algorithm is given below.

 157

Appendix B: Deduction of DLQ Control Formula (6.5), (6.6), (6.7)

Function (6.3) is rewritten as:

111
2

11
222 22 +++++ ++++=++ iiiii

*
iiiiiii cxbxpuxcxbxp

Substitute state function v(i)tu(i)tx(i))x(i ss −+=+1 into it:

11
2

1
222 22 +++ +−++−+++=++ iis

*
isiiis

*
isii

*
iiiiiii c)vtut(xb)vtut(xpuxcxbxp

After manipulation:

2
1

2
1

2
1

2 1212 *
iis

*
iiisiiiiiii)upt(uxpt)xp(cxbxp +++ ++++=++

 *
iiisisiiisi)uvptbt()xvptb(1

2
111 22 ++++ −+−+

11
2

1
2 2 +++ +−+ iiisiis cvbtvpt ---(B*)

Now we need to replace the ui
* with:

1
2

11
2

1

1 +

+++

+
−+−

=
is

isiisiis*
i pt

btvptxptu

To make things clearer, we first neglect the terms without ui
* in right hand side of (B*) and

substitute ui
* into *

iiis uxpt 12 + , 2
1

21 *
iis)upt(++ , and *

iiisis)uvptbt(1
2

12 ++ − respectively.

*
iiis uxpt 12 +

=
1

2
11

2
1

1 1
2

+

+++
+ +

−+−

is

isiisiis
iis pt

btvptxptxpt

i
is

iisiis
i

is

is x
pt

bptvptx
pt

)pt(

1
2

11
22

1
3

2

1
2

2
1

2

1
22

1
2

+

+++

+

+

+
−

+
+

−= ---(B.1)

2
1

21 *
iis)upt(++

2
1

2

2
11

2
1

1
2

1
1

)pt(
)btvptxpt()pt(

is

isiisiis
is

+

+++
+ +

−+−
+=

 158

1
2

11
32

1
222

1
4

1
2

111
2

2

1
2

2
1

2

1
2

1
2

1 +

++++

+

+++

+

+

+
−+

+
+

−
+

+
=

is

iiisisiis
i

is

iisiis
i

is

is

pt
vbptbtvptx

pt
)vpt(bptx

pt
pt

 ---(B.2)

*
iiisis)uvptbt(1

2
12 ++ −

1
2

11
2

1
1

2
1 1

2
+

+++
++ +

−+−
−=

is

isiisiis
iisis pt

btvptxpt)vptbt(

1
2

11
2

1
2

1

1
2

11
2

1

1
2

1
2

+

++++

+

+++

+
−−

+
+
−−

=
is

isiisiisis
i

is

isiisis

pt
)btvp)(tvptbt(x

pt
p)tvptbt(

 ---(B.3)

Substitute (B.1), (B.2), (B.3) back into function (B*) and equalize the coefficients of x2, x,

and constant on both side of the equation (B*):

Quadratic terms in x:

1
2

2
1

2

1 1
1

+

+
+ +
−+=

is

is
ii pt

ptpp
1

2
1

1
1

+

+

+
+=⇒

is

i
i pt

pp ---(6.5)

Linear terms in x:

1
2

11
22

1
3

11 1
2222

+

+++
++ +

−
+−=

is

iisiis
iisii pt

bptvptvptbb

1
2

11
2

1

1
2

111
2

1
2

1
2

+

+++

+

+++

+
−

−
+

−
+

is

isiisis

is

iisiis

pt
p)tvptbt(

pt
)vpt(bpt

1
2

11

1
22

+

++

+
−

=⇒
is

iisi
i pt

vptbb ---(6.6)

Terms independent of x:

1
2

11
2

1
2

1

1
2

11
32

1
222

1
4

1
2

1
2

+

++++

+

++++

+
−−

+
+

−+
=

is

isiisiisis

is

iiisisiis
i pt

)btvp)(tvptbt(
pt

vbptbtvptc

11
2

1
2 2 +++ +−+ iiisiis cvbtvpt

1
1

2

2
1

2
1

2
12

1
2

1
2

+
+

+++
+ +

+
++

−=⇒ i
is

isisiis
iisi c

pt
bt)pt(vbtvptc ---(6.7)

 159

Appendix C: Kalman Filter for DLQ Scheduler

In the design of Kalman filter, we analyze the frame size distribution of a typical 766s

MPEG2 video (shown in the figure C-1) and model the playback rate as a Gaussian

distribution variable according to the result. In literature, MPEG2 video is commonly

modeled using finite Markov chain for the short-term correlation and long-term dependency

among frames. Considering the simplicity and efficiency, we approximately model the

playback rate by normal distribution.

Figure C-1 Histogram of MPEG2 video frame size

A. Filter Problem Definition

w(i)mu(i)tx(i))x(i s +++=+1 0≥i ---(C.1)

n(i)x(i)y(i) += ---(C.2)

In state function (C.1), we divide the playback disturbance tsv(i) into average playback rate m

plus a zero mean random variable w(i). The accumulate effect of m+w(i) performs the same

as tsv(i) in initial state function (1). In observation function (C.2), y(i) is the observed state

 160

variable under network noise n(i). Where {n(i)}, similar to{w(i)}, is a sequences of white

Gaussian noise with zero mean comes from network. Their joint covariance matrix is:

() ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

i

iT
i

T
i

i

i

R
Q

nw
n
w

E
0

0
 ---(C.3)

Like EKF in Appendix A, the aim of Kalman Filter (figure C-2) in DLQ rate control system

is to get the best estimation of state variable x(i) given previous predicted value of x(i-1|i-1)

x(i-2|i-2)…x(0|0) and the observed current state variable value y(i). The difference is that the

Kalman Filter in DLQ system uses mu(i)tx(i) s ++ as the a priori state estimate. Parameters

for filter design and their meaning are listed in table C-1.

Variable Name Meaning

i Time step

y(i) Measured value of state variable x at time step i

x(i) Accurate value of state variable x at time step i

x(i|i-1) A priori prediction of x before giving y(i)

x(i|i) A posterior estimation of x given y(i)

G(i) Filter gain at time step i

Φ(i|i) Covariance of a priori prediction error

Φ(i|i-1) Covariance of a posterior estimation error

Table C-1 Definition of variables in DLQ Kalman filter design

Figure C-2 DLQ Kalman filter block diagram

 161

(2) The deduction of filter gain G

According to the filter problem definition, we have:

)]x(i|iG(i)[y(i))x(i|ix(i|i) 11 −−+−= ---(C.4)

]x(i|i))i)x(i|i))(x(E[(x(i)Φ(i|i) T−−= ---(C.5)

]))x(i|i))(x(i)x(i|iE[(x(i))Φ(i|i T111 −−−−=− ---(C.6)

Now we are going to find G(i) that minimize Φ(i|i).

Substitute (C.4) into (C.5)

])))x(i|iG(i)(y(i))x(i|iE[(x(i)Φ(i|i) 211 −−−−−=

)(i|iG(i)x))x(i|i(i)(y(i)G))x(i|iE[(x(i) 1211 2222 −−−−+−−=

)]i|iG(i)x(i)x(x(i)))(i|iG(i)y(i)(x 1212 −+−−+ ---(C.7)

Substitute (C.2) into (C.7) and let the derivative of Φ(i|i) with respect to G(i) equals to 0:

x(i)))n(i)(x(i|i))x(i|i(x(i)E[
G(i)
Φ(i|i)

−−+−−−=
∂
∂ 1212 2

012 2 =−−++]))x(i|in(i)G(i)(x(i) ---(C.8)

Because]))x(i|iE[(x(i)]))x(i|i))(x(i)x(i|iE[(x(i))Φ(i|i T 21111 −−=−−−−=−

Substitute it into (C.8):

0121212 2 =−−++−−+−−=
∂
∂]))x(i|in(i)G(i)(x(i)x(i)))n(i)(x(i|i)Φ(i|iE[

G(i)
Φ(i|i)

]
))x(i|in(i)(x(i)(i)n)Φ(i|i

))x(i|in(i)(x(i))Φ(i|iE[G(i)
121

11
2 −−++−

−−+−
=⇒

Q R(i)(i)]E[n(i)nT = and the noise n(i) is independent with prediction error (x(i)-x(i|i-1)),

that is: 01 =−−))]x(i|i)E[n(i)(x(i

R(i))Φ(i|i
)Φ(i|i]

(i)n)Φ(i|i
)Φ(i|iE[G(i)

+−
−

=
+−
−

=∴
1

1
1

1
2 ---(C.9)

 162

From the solution (C.9), G(i) only depends on the covariance of prediction error and the

network noise, not the state function. Thus G(i) is ubiquitous suitable for linear system

Kalman filters, together with those linearized system like the case in appendix A. Thus the

following implementation algorithm is also similar to what has been given in appendix A.

 163

Publications

Xiaofei.Zhou and Kenneth.Ong, “A Rule-based Intelligent Multimedia Streaming Server

System,” Journal of Mobile Multimedia (JMM) Special Issue on Multimedia Modeling and

Applications, Vol.4 No.1 pp 019-041

Xiaofei.Zhou and Kenneth.Ong, “Discrete LQ Rate Control Scheduler for MPEG2 Video

Transmission System,” Journal of Multimedia, issue 2, 2008.

Xiaofei.Zhou and Kenneth.Ong, “A Rule-Based Expert Server System for Multimedia

Transmission,” International Conf. on Advanced Information Networking and Applications,

May'07.

Xiaofei.Zhou and Kenneth.Ong, “Discrete LQ rate control schedule system for multimedia

transmission,” International Conf. on Advanced Information Networking and Applications,

Vol. 1, Page(s):6,18-20 April 2006.

Xiaofei.Zhou and Kenneth.Ong, “Problems on Implementation of LQ Rate Control Schedule

System for Multimedia Transmission,” Fourth International Conference on Intelligent

Multimedia Computing and Networking, Salt Lake City, Utah, USA, July 21-26, 2005.

