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Abstract 

 

The presented research is a pioneering work that applied an expert system into the 

multimedia streaming server and evaluated the server performances. The purpose is to make 

current streaming servers more powerful on streaming, flexible on control, and reliable on 

maintenance. 

In this thesis, we presented the detailed design and theoretical analysis of the expert server. 

The time complexity of inference procedure was analyzed and the real time characteristics of 

the server were discussed. Although the server performances depend largely on the 

effectiveness of the rules, which is a knowledge database that linked to the main body of the 

server, we can make reasonable estimations on the performances by studying parameters like 

inference complexity and request response time. Based on these estimations, server capacity 

was deduced with respect to the maximum number of clients supportable.  

The expert streaming server performance was evaluated with a group of congestion control 

algorithms on a local area network, compared with Apple’s QuickTime Streaming Server 

(QTSS). Results showed that the expert system can perform effective admission control and 

distribute traffic reasonably among servers according to the server load and link parameters. 

It could automatically chops the movie and inserts advertisements based on client profile and 

content provider’s profile. For high-definition movies, it could deliver smoother streams with 

around 60% reduced throughput oscillations when compared with the basic QTSS. The saved 

60% bandwidth could be used for supporting more users. The expert control could also 

switch the playing movie between different devices without interruption. Such an intelligent 

handover is a promising technology when nowadays terminal devices become more various 
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and smart. If congestion happened, the expert system reacts based on the severe of the 

congestion and conducts cooperative steps to response. Afterwards, the congestion related 

information was recorded and referred by future congestion avoidance of the stream. 

Attractively, these enhanced performances were achieved by taking less than 10% of the 

CPU time for the execution of the expert control program.  

To enhance the completeness of the knowledge base in our expert server system, we also 

designed a client oriented rate control scheme by solving the Discrete Linear Quadratic 

(DLQ) regulator problem under disturbances. Our study showed that DLQ was superior to 

conventional rate control schemes especially in maintaining high level and stable client 

buffer utilization. Besides the basic DLQ method, we also investigated the performance of 

DLQ under delay. 

The limitations and the future development directions are given in the conclusion part of this 

thesis. We are expecting that the expert server would become a practical, flexible, and robust 

platform of multimedia streaming transmission. If it is developed as described in the 

conclusion, it could be a valuable model for future integrated multi-function media server. 
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Chapter 1 Introduction 

 

In this chapter, we will concentrate on the background information of the rule based expert 

system and the multimedia streaming. They are two major scopes of the study presented in 

this thesis.  

Being a practical artificial intelligence (AI) approach, expert systems try to imitate the 

intellectual behavior of human beings. Specifically, the expert system intends to emulate the 

problem-solving ability of a human expert. To achieve this, it maintains a knowledge 

database of heuristic and theoretical knowledge for the computer to perform a reasonable 

inference. A rule-based expert system is a significant branch of the expert system family. The 

knowledge database in the rule-based expert system is realized using the rules. Each rule 

represents a piece of expert knowledge to a particular problem and all rules are grouped and 

linked in a logical order to form the rule base.  

Streaming media spares the end-user devices from preparing large buffer space for the whole 

movie and saves the users’ time for downloading the movie before they can watch it. 

Accompanied by the great flexibility, streaming media has its exceptional characteristics and 

requires more for the delivery system on resources and technologies.  

We will explain the inspiration, the rationale, and the design purpose of our work at the end 

of this chapter and the general contents of consequent chapters. 

1.1 Rule-based Expert System 

The first section in the Chapter 1 will provide a quick review of the expert system and rule-

based system.  The characteristics of the rule-based expert system shown in this section will 



  2 

support the rationale in section 1.3 about using such an AI field technology in media 

transmission servers.  

1.1.1 Artificial Intelligence 

The Artificial Intelligence (AI) can be divided roughly into two categories: Conventional AI 

and Computational Intelligence (CI) ( [1]). Conventional AI most concentrates on 

development of algorithms and techniques that allow computers to "learn" and react 

according to its acquired symbolic represented knowledge. The expert system mentioned in 

this thesis belongs to this category. CI involves iterative development or learning based on 

empirical data. The knowledge in it is not explicitly stated but is represented by numbers and 

will be adjusted as the system improves its accuracy. Typical methods included are neural 

network and fuzzy system. Both conventional AI and CI have been used extensively in areas 

like control, planning and scheduling, diagnostic, speech and facial recognition.  

During the 1980s, in a project of performing chemical analysis of the Martian soil  [2], 

researchers at Stanford University initially used rules-of-thumb (heuristics) to exclude 

numerous structures that are unlikely to account for the data. Their work was the first 

program that focused more on domain information about the problem to be solved, rather 

than the complex search techniques. It revealed a truth that the domain knowledge of the 

problem is more powerful than the reasoning methods in achieving intelligent behavior. The 

revelation eventually created the epoch of Knowledge-Based Systems (KBS), which is also 

called Expert System.  

1.1.2 Expert Systems 

An expert system ( [3],  [4]) formalizes some of the subject-specific knowledge of one or more 
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human experts into its database and performs reasoning on it for the solution. The structure 

of an expert system is different from that of a conventional program (figure 1-1). 

Conventional programs take numeric data as input and execute a set of pre-decided 

instructions. The solution is given in the form of exact numbers, a pointer, or a logic 

judgment (True or False). Usually there is no such sequential procedure for an expert system. 

 

Figure 1-1 Comparison of structures of conventional program and of expert system 

In Figure 1-1, the two basic components in an expert system are the knowledge base and the 

inference engine. The inference engine analyzes the problem and refers to the knowledge 

base to deduce a solution. Problem related data are saved in the working memory and severs 

as runtime parameters to record the current state of the system. The knowledge base editor 

and the explanation module are extra frills that make the whole system easier to use.  

The expert system is popular in AI-related research partly due to its flexibility. Since the 

knowledge base is separated from the reasoning procedure, it is very easy to perform 

modifications to keep the knowledge base updated. Additionally, the expert system can solve 

with incomplete data using a large amount of heuristic knowledge. It is a very important 
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property since the accurate and complete information for a given problem is rarely available 

in the real world. Yet it also has some major disadvantages like the solutions may not always 

be correct and its knowledge only limited to a specific domain. Nevertheless, it still gets fast 

development in many areas. In modern applications, designers borrowed latest database or 

web techniques for the knowledge representation. S.J.Jang et al ( [6]) designed an XML-

based expert system that can automatically prescript individual exercises. In their design, the 

parameters in working memory were obtained from tests on users for their cardio endurance, 

muscular endurance, etc, and the knowledge base was configured as information frames and 

saved in an XML file. The inference searches and matches the parameters in working 

memory with the frames in the knowledge base. The matched pattern was organized and 

proposed to users.  

Unlike the frames used in this example, most expert systems use rule for their knowledge 

representation, as introduced in the next sub-section.  

1.1.3 Rule-based Expert Systems 

Rules are used to represent knowledge. It follows the nature of people expressing a piece of 

knowledge. That is, providing the causes, followed by a conclusion. Therefore, the rules 

structure is IF-THEN clause pairs:  

   IF < condition > THEN < assertion/action >  

Rules express the associations between input and output. Thus it is suitable to represent 

procedural knowledge. Using rules, the inference could be performed. When the condition 

part of a rule is satisfied, an action will be carried out or an assertion will be made. This 

progression produces new facts. The newly derived facts may cause the conditions of other 

rules satisfied. Thus one or more rules will be fired consequently. Based on this inference 
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chain, the reasoning can be performed using two methods: forward chaining and backward 

chaining. Forward chaining is a data-driven strategy (figure 1-2), in which rules are applied 

in response to the changes of current working parameters (facts).  

 
Figure 1-2 Flowchart of forward chaining 

 
Backward chaining, on the reverse order, starts from a goal (G1). If G1 is not satisfied based 

on current working parameters, the inference engine goes to check is there a rule whose 

effect part matches it. Upon finding such a rule, its cause part is set to the new goal (G2) and 

the chaining procedure continues repeating until the goal Gn is verified true by working 

parameters. Backward chaining is not used in our study, so the detailed flowchart is omitted 

here. Of course these two types of reasoning can be combined in the real system.  

The structure of rules meets the natural format of heuristic knowledge and thus easy to search 
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and fire. Moreover, the presentation using rules achieves great extendibility on that each 

piece of knowledge is highly modularized. This enables the developers to start from a small 

group of rules and extend it step by step to a complete database. However, rule-based 

systems also have potential problems. We point out the major ones here and make possible 

amendments.  

1) Infinite chaining. If rule A caused the fire of rule B and the rule B, in return, causes 

the re-fire of rule A, there is a potential infinite loop problem. For this problem, a 

patent called Loop Detection in Rule-based Expert Systems ( [7]) was issued by US 

Patent Bureau on 4th October, 2005. The patent detects the existence of overlapping 

rules or inconsistently interacting rules that cause the potential problem of infinite 

loop and prevents those rules to be involved in real execution. In our study, each rule 

is eligible to fire only once in a round of reasoning.  

2) Contradictory among rules. When rule base size becomes larger, it may have two or 

more rules with the same condition parts but contradicting solution parts. For 

example: 

Rule 80: IF < network congested > THEN < decrease sending rate > 

Rule 16: IF < client buffer underflow > THEN < increase sending rate > 

In this example, rule 80 suggests to decrease the sending rate to alleviate congestion 

while rule 16 asks to increase sending rate when client buffer encounters underflow 

during streaming. However, client buffer underflow often happens together with the 

congestion because of the jammed packets in intermediate networks. The expert 

system would encounter a dilemma whether to increase the sending rate or not. 

Possible solutions will be adding more assertions to the condition part of the 
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conflicted rules to differentiate their scope, or adding extra meta-rules to handle the 

conflictions.  

3) Inefficient reasoning. With the increasing size of the rule base, the inference time will 

degrade the performance or even cause the system useless. The efficiency depends on 

many factors like the characteristics of the problem domain, the length of a single rule, 

the binary structure of the rule base, and the complexity of the search algorithms. 

These factors are taken care of throughout the thesis, especially in Chapter 3, 4, and 5. 

Now cite an example where the rule-based expert system is used to diagnose problems in 

circuit simulation. C.W.Lehman and M.J.Willshire implemented an expert system called 

SOAR (Simulation Output Analysis and Recommendations) to assist in failure-tracking from 

gate-level circuits to full chip architectures ( [8]). In this system, a large number of heuristic 

rules were used to direct the inference process to converge and to identify the source of the 

problem. The inference starts from using the failure as a fact, the system performs reasoning 

by matching the fact with the assertion part of rules. If the assertion describes the symptom 

of failure successfully, then the condition part of the rule would be added into the solution set 

as a new indication to be verified. Their experimental results showed that this rule-based 

expert diagnostic system gave 100% accuracy in their test cases. The diagnostic times 

(inference time) was only slightly longer when circuit node expanded by two magnitudes.  

1.1.4 Summary of the rule-based expert system 

At the beginning of this section, we locate the position of our study within the AI area. The 

comparison between the expert system and conventional programs in sub-section 1.1.2 

differentiated their criteria and structures. Then we revealed that most heuristic knowledge is 

suitable to be expressed using rules.  
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In sub-section 1.1.3, we introduce the rule structure and the forward chaining process. The 

major three problems of a rule-based expert system were illustrated with examples and 

possible solutions. Using the natural advantages of rules, the rule-based expert system has 

become a dominate branch in the expert system family nowadays. It is powerful for 

environment dependent problems like planning, task scheduling, decision making, and 

process monitor and control.  

Notice that media streaming is an environment depend application, we were considering 

whether it would perform better if it is controlled with a streaming expert. To answer this 

question, we should first study the characteristics for typical media streaming applications.  

1.2 Multimedia Streaming 

The name of streaming media refers to the delivery method of the medium rather than to the 

medium itself. It is the multimedia that is continuously played by the end-user while being 

delivered from the provider. Applications like web TV, distant learning, and P2P systems are 

all based on media stream delivery technologies. Media streaming plays a more and more 

important role in commercial society and in our daily life.  

1.2.1 Multimedia Streaming System 

In the figure 1-3, we demonstrate a typical media streaming system. The components of the 

server will be introduced in Chapter 2. In the following sub-sections, we discuss the major 

characteristics of media streaming and network specifications. 
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Figure 1-3 Conventional media streaming system 

1.2.2 Multimedia Streaming Characteristics 

To meet different requirements of qualities of transmission, MPEG standards code the video 

into several layers (figure 1-4). The performance of a media streaming server will be greatly 

improved if it can differentiate the frames of each video. In this sub-section, we introduce the 

transmission steps of a media streaming application and the traffic demands for the streamed 

media.  

 

Figure 1-4 Different MPEG2 video layers 

A multimedia streaming session would experience three key phases: setup, transmission, and 

teardown (figure 1-5, left). The online control during transmission is the decisive step for 

streaming performance. The traffic speed of different frames is shown in figure 1-5 right side. 
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In the figure, the transmission speed varies between 32kbps and 600kbps. I frames have the 

largest size, and thus requires the highest transmission rate.  

 

Figure 1-5 Transmission steps and speeds of streaming media  

Compared to other applications, multimedia applications generate a large amount of digital 

information in each second, especially the video part. Streaming applications are very 

demanding with respect to the overall throughput, loss of packets, frame delay, and jitter 

problem which is the variation of delay. Delay and jitter problem will consequently affect the 

synchronization of frames on client side.  

However, multimedia streaming is not an intimidating application despite the above 

mentioned characteristics. It transmits moderately less than FTP applications. It is not so 

sensitive to delay and jitter as VoIP (Voice over IP) applications. For packet loss, with the 

development of modern coding and correction techniques, some movies can tolerate up to a 

40% packet loss with only slight degradation. Actually, streaming media is not primarily 

about quality, it is about access. So the video quality of a streamed file is usually much lower 

than that of an HDTV (High Definition TV). The detailed review of multimedia streaming 
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technologies will be presented in Chapter 2. In the next sub-section, we will discuss the 

issues for the proposal in this thesis. 

1.3 Rule-based expert media streaming server   

After introducing the background information of rule-based expert system, we are now in the 

stage of investigating the possibility of using it into the media streaming server design. In this 

section, we will explicitly answer the following questions in order: 

 What inspired us to the proposal of this study? 

 Is there any related work done with the same scheme? 

 Is it feasible to use rule-based expert system in media streaming servers? 

 Is using rule-based expert system the best way to solve the problems?  

 What are the main goals of such a rule-based expert server system research?  

1.3.1 The Inspiration 

The original inspiration of this proposed work came from the propensity of optimizing 

congestion control algorithms to make them better to support media traffic. We found that the 

algorithms used in current commercial servers, for example Reliable UDP in QTSS, are 

sufficient to perform high-quality streaming media under light load but somewhat simple for 

heavy load or unstable environments. Those complex congestion control algorithms only take 

one or two QoS parameters instantaneously for its decisions. The usually taken parameters 

are network loss rate, packet round trip time (delay), or previous sending rate. These 

parameters can represent the variation of transmission environments but they can not provide 

the whole picture of the situation individually. Moreover, the same change may be caused by 

different reasons. If the algorithms ignore the related information and the historical trends but 
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merely take the result as indications for adjustments, it may easily be overactive or not 

responsive. Even if a congestion control method is designed perfectly, it usually needs the 

cooperation of other mechanisms. For example, a congestion control algorithm needs to 

sample the network condition in 5 milliseconds for best performance but the task scheduler 

always delay the sampling procedure to a period of 500 milliseconds. The information given 

by the sampler is always lacking in consistency and inevitably harms the control process. 

Therefore, only those mechanisms that could cooperate with each other well should be 

selected and work together for the optimization of performance. 

From the above investigation, we realize that the solution for congestion problems does not 

only rely on the control algorithm design itself. It is an overall contribution from every 

element supporting the transmission. The streaming server is like an active entity that makes 

decisions, carries out actions, adjusts its behaviors, and learns from experiences. All 

components inside the server are related. The streaming procedure needs much cleverness to 

handle those components for the problems continuous appears without explicitly predictive 

reasons. The solution turns out to be an intelligent streaming server.    

1.3.2 Related works 

As early as 1988, AI researchers have paid their attention to use the expert system on 

network control. E.J.Zakrzewski and R.Quillin ( [9]) employed the expert system to perform 

network wide control decisions with only local or sector system status information provided. 

The system could support network monitoring, fault isolation and system adaptation in 

degraded modes. Their system could only focus on service assurance in a communication 

network. It is more concerned with the overall topology of the network rather than the 

applications.  
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Later, expert systems were used in network capacity planning. The work in  [10] is similar to 

the study presented in this thesis in that both of them are designed for server resource 

allocations. Yet this paper focused on ISDN network and all possible applications on the 

server. In our study, we do not have any specified network architecture but the application 

must be media streaming. In this paper, applications were classified based on their burstiness 

and time constraints. Rules were employed for the control. The bandwidth capacity was 

partitioned into N channels for N types of applications divided by their QoS requirements. 

The CPU was shared among three categories of tasks: signaling and control, voice and delay-

sensitive traffic, and delay-tolerant bursty traffic. Their priorities were assigned in an 

incremental order. The work realized the upper level server capacity control for multi-service 

system, but the control effort looked too coarse.  

Nowadays, attention is turned from network planning to more specific areas like traffic 

prediction, task distribution, and active queue management. In  [11], M.M.S.Rao et al applied 

a rule-based expert system for short-term traffic prediction in the power supply system. They 

classified the factors that influent the system load into four categories and analyzed their 

behavior through experiments. The analytical results were translated to rules and used for 

future load prediction.  

Other works used the expert system for task distribution after predicting the traffic. Calleja 

and Troost ( [12]) implemented a rule-based expert system model into their naval command 

and control system to handle the workload segments and to deal with uncertainty and 

fuzziness. In the system, traffic prediction was handled by another module. The rule-based 

expert task distribution module took the predicted results for its decision on workload 

balance among operators. The attractive feature of this module was that it may modify or 
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reassign tasks for excessive workload situations to recover an operator. This module 

simulated the behavior of a team leader doing task assignment.  

Active queue management (AQM) is an important research area developed recently to 

support network scheduling and congestion control mechanisms. J.Wu and K.Djemame ( [13]) 

designed a new AQM algorithm that used an expert system for buffer management. In their 

system, related issues like cost at the switch node, congestion avoidance, traffic policing and 

delay price were considered for the control decisions. The results obtained from NS-2 

simulation showed that this expert system based AQM algorithm achieved significant 

performance elevation on queue occupancy and throughput compared to other AQMs 

recommended by IETF (The Internet Engineering Task Force).  

The domains involved in previous works were too broad to be specialized within a single 

expert system. They did not specify a target application. Thus the heuristic rules were hardly 

proved to be effective considering the variety of requirements from different applications. As 

a result, the outcomes of early attempts to control the network applications or task scheduling 

lack domain related significance and seem ambiguous in the problems they attempt to solve. 

Due to this drawback, the inference procedures were not convincing since the rules in those 

systems were designed for multiple applications that may have different or even 

contradicting requirements.  

Theoretically, nothing prevented rule-based expert systems from being used in media 

streaming control areas and there exists no related works done in the literature. In the next 

sub-section, we will investigate this gap and analyze the feasibility of applying rule-based 

expert system for media streaming applications. 
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1.3.3 Rationale of the Proposal 

Historically, most expert systems are designed for business planning, manufacturing process 

control, and disease diagnosis. Although there were works that applied them into the network 

control or task planning, it needs further investigation on whether the rule-based expert 

system is really suitable for media streaming applications or not.  

Firstly, let us recall the characteristics of a rule-based expert system and the kind of problems 

that is suitable to it. An expert system simulates the skills of a human expert to solve a 

problem based on current data, past experience and appropriate reasoning. Unlike 

conventional computer systems that usually repeat the algorithmic routine work, an expert 

systems need to find the solution themselves first before taking any action. The decisions it 

made based on knowledge base, in which large amount of heuristic and theoretical 

knowledge is coded. Rather than giving out a strictly optimal solution, an expert system first 

offers a sub-optimal solution and takes such a solution into consideration for further 

reasoning, getting closer and closer to the final decision. The final solutions are not fixed. 

They are obtained by reasoning the current situation through some inner principles 

represented by rules. They may not be optimal, but must be feasible and correct in most cases. 

In summarize, the performance of an expert system depends largely on the correctness of the 

knowledge base, the precise of working parameters, the efficiency of the inference procedure, 

and also on the system capacity of executing the decisions. Thus expert systems are mostly 

suitable for high level controls that have different patterns of solutions and the decisions are 

made from the overall picture of the problem.  

Examining the multimedia streaming servers, there are two types of work need to be handled 

for a successful transmission. One is the routine work, like receiving and analyzing client 
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requests, sending media data based on standard protocols, and maintaining session states. 

The second type is control work like adjusting session parameters, selecting the schedule 

strategies, or response to congestions. Conventionally, these control works were fixed coded 

like the routine procedures. The same procedure of control is repeated whenever the control 

function is called. Although a single control algorithm has to be realized by sequential 

programs, the decisions of when and how to use it is difficult to formalize in the conventional 

way. Those decisions depend on many issues during a transmission with some kind of 

uncertainty. Therefore, an alternative way to perform these control works is extracting the 

control-related information and control principles from the main body of the server program 

and organizing them in a separate supporting database. The server intellectually selects and 

regroups cooperative methods according to characteristics of problems and adjusts their 

parameters for the best performance. This architecture matches the expert system very well, 

especially for rule-based expert systems that natural in presenting heuristic principles.  

There may be other mechanisms that can fulfill the requirements. For example conditional 

branches in conventional programs can perform similarly. However, they are only similar on 

format but different intrinsically. The conditional branches list all possibilities of a situation 

and the control flow is fixed. No matter which branch is selected, the execution of it is very 

unlikely to influent the later entrance of other branches. On the contrary, the rules in the 

knowledge based are reasonably related to each other. The control flow is set up during 

runtime. That is, a rule will not be fired if it is not selected by the current control flow even 

its condition is satisfied. Additionally, the fire of a rule usually will cause the activation of 

other rules. These consequent results make the progress of inference possible. In summary, 

the conditional branches are independent choices listed in the program without inference 
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procedures for the decisions while a rule-based expert system organizes the problem related 

knowledge logically and performs reasoning based on the knowledge. To decide which form 

is better, we only need to determine whether the server system needs intelligent reasoning or 

merely more choices for selection. The answer is obviously the former one.   

For all these reasons, we believe that the rule-based expert system is the most suitable choice 

to solve the problems encountered in current media streaming servers. We hope the system 

designed from the proposal will achieve the purpose listed in the next sub-section.  

1.3.4 Purpose of Research 

The aim of our research is to investigate whether adding the expert control could make the 

traditional server smarter on the whole media transmission. How much will be the system 

performance improve? This could be reflected by the incoming session distribution strategy 

and optimal route selection ability of the server, the cooperation among the servers during 

congestion, and per session evaluation parameters like throughput, delay, jitter, and bursty 

rate. We also want to investigate what size of knowledge base is required to achieve such 

performance enhancement, and will the overhead brought by the expert control significantly 

decrease the number of supportable clients. The new platform aims at fulfilling the following 

requirements: 

A. Able to perform effective admission control and traffic distribution. 

B. Provide user level playback scheduling.  

C. Parameters are adjusted dynamically during runtime. 

D. Carry out smooth traffic shaping and buffer management. 

E. Perform knowledge-based congestion control under various environments. 

F. Implement failure detection and recovery mechanisms. 
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G. Control the overhead within a reasonable range  

To accomplish the above mentioned purpose, we change the conventional server structure 

and its decision making procedure; we introduce a forward-chaining planning expert system 

to perform streaming control; we built a completed rule base to handle the streaming 

problems; we also design a client-oriented rate control algorithm to strengthen the knowledge 

base.  These accomplishments will be illustrated in detail in the following chapters.  

1.4 Organization of the thesis 

The thesis would be organized as follows. Chapter 2 reviews the common technologies in 

media streaming servers. We reviewed the technologies from three perspectives: server, 

network, and client. For network and client sides, the streaming related protocols and 

parameters are introduced. For server side, detailed classified methods will be explained with 

literature review. At the server side, the most relevant technologies to this thesis are 

scheduling strategy, congestion control, and buffer management. Chapter 3 gives the detailed 

design of the rule-based expert server system. In this chapter, we are going to introduce the 

representation of knowledge base, search algorithms, and the expert server layers. We will 

also explain the expert server modules and dynamic inference procedures. The final 

consideration will be the communication model between modules. After presenting the 

design, the server system performance and capacity are analyzed in Chapter 4. In this part, 

the server computational complexity is quantified. The average response time of requests and 

tasks will be analyzed based on the computational complexity. Other real time characteristics 

of the system are also considered, followed by an estimation of the system capacity. A simple 

throughput analysis under multicast situation is also mentioned. All implementation 

strategies and the corresponding experimental results would be provided in Chapter 5. We 
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will explain in depth the state of art when the system is realized. The experiments are 

conducted on a test bed and public network using QuickTime Streaming Server with and 

without the expert system. They are carefully designed to demonstrate the research goals 

listed in sub-section 1.3.4. Chapter 6 is a comparatively independent chapter, in which we 

will present our efforts on designing a client oriented rate control method used in the expert 

server knowledge base: DLQ Rate Control. Finally, Chapter 7 concludes the whole thesis on 

the achievements and limitations of the rule-based expert server we designed, and also 

indicates the potential future developments.  
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Chapter 2 Review of Media Streaming Technologies 

In section 1.2, we have introduced the general structure of media streaming system and the 

streaming characteristics. However, the information is not sufficient to design or even 

understand a streaming server. In this chapter, we focus on more specific server-design 

related streaming evaluations and support technologies. These technologies are used in 

current commercial servers and will be scheduled and handled by the expert control.  

QoS is the major evaluation criteria. In this chapter, we are going to introduce the QoS 

parameters that will be used in our experiments, like throughput and jitter. For supporting 

technologies, we will introduce the most related ones like traffic prediction, admission 

control, server buffer management, congestion control, and traffic shaping. At the end of 

introduction of each technology, we will introduce its relationship with others and how it is 

going to be handled in our expert server. Only through familiarizing these criteria and 

technologies, can we understand the underlying mechanism and major improvements of the 

expert control. 

The key issue for a streaming server would be resource allocation. Streaming application 

needs fast CPU response, large network bandwidth, low delay, and low loss rate. All these 

qualities obtained from proper allocation of the server and network resources. This chapter 

will give the review on major resource distribution technologies, together with some 

commonly used commercial servers.  

2.1 Technologies for Media Transmission 

The technologies will be reviewed with reference to the components in figure 2-1. 
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Figure 2-1 Components of multimedia streaming system 

2.1.1 Service Quality and Protocols  

 QoS, the criteria of quality measurement 

Quality of Service (QoS) is a magic word that appears frequently in literature but without 

an explicit definition. Usually, the QoS for media streaming includes: 

a) Guaranteed use of bandwidth. 

b) Limits on cell loss / packet loss. 

c) Limits on latency (one-way or round-trip). 

d) Limits on jitter (delay variation). 

Other parameters in multimedia streaming like transmission reliability, synchronization, 

and throughput can also be used for QoS measurement. Since QoS represents the 

combination of quality factors, it needs the support of overall systems. Thus researches 

related to QoS management either put their effort on global control and structural tuning 

( [14] [15]) or design the whole transmission system with QoS awareness ( [16] [17]). Our 

expert control, also targets at improving the general QoS, and does a similar global 
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contro.. It has QoS maintenance modules and rules, implementing the standard or 

heuristic QoS adjustment ideas. The QoS criteria we concern are traffic distribution, 

throughput, loss, jitter, multi-channel scheduling, and congestion response. These QoS 

parameters will be tested in Chapter 5.  

 Protocols used in streaming  

Most streaming applications nowadays use HTTP for content browsing, RTSP or SIP for 

session initialization, RTP and RTCP for real time control, and UDP for data forward. For 

some applications with restrictive firewalls, HTTP has to be used to carry the media data.  

It is not efficient and only suitable to webpage plug-in streaming. The QuickTime 

streaming server has all these protocols, which will be introduced later for our 

experiments in Chapter 5.  

Among these protocols, the only one that is control related and QoS related is RTCP 

protocol. RTCP performs three major functions: feedback on the quality of the data 

distribution, persistent transport-level identifier for an RTP source called the canonical 

name or CNAME, and rate control of RTCP packets. It is designed for general purpose 

and targets at a single flow. Therefore when specific requirements are needed for a stream 

or the overall performance is considered by the server, RTCP control seems lack of global 

view and cooperative handling ability. This is why we still need to implement the expert 

control although we have had this control protocol. The effects of RTCP control will be 

shown in our experiments in Chapter 5, together with the results of expert control. Many 

innovative protocols for streaming transmission were proposed these years (e.g.  [18] [19]) 

but we prefer to use standard ones.  
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2.2.2 Server Technologies 

 Traffic Analysis and Prediction 

For multimedia streaming, traffic analysis completes three kinds of work. One is to 

differentiate media streaming from other non real-time applications  [20]. The other is 

providing movie parameters like peak bit rate, frames dependent ratio, average frame size, 

and bandwidth requirement  [21]. The third is bandwidth prediction  [22]. The analyzed 

statistics help the system decide server buffer size and sending speed.  

Primarily, there are two methods to conduct traffic prediction: measurement or traffic 

model ( [23] [24]). Measurements have higher accuracy but higher computational complex. 

Using the traffic model does not waste CPU time for measurement but the accuracy 

depends largely on the quality of model. Due to the variation of movie characteristics, it 

is very difficult to have a uniform model; the distortion brought by the model will more 

or less harm the performance of the whole transmission. In the design of our DLQ 

scheduler in Chapter 6, we use a measurement method for traffic prediction.  

 Admission Control 

Admission control ( [25]) is usually implemented between network edges and core to 

control the traffic entering the network. It is also used in media server to control the user 

population ( [26]). Precise admission control needs the support of traffic analysis and 

prediction, together with proper acceptance criteria, and a proficient control algorithm. 

This mechanism must be realized for a server to control the load level. Our expert control 

is built up on top of the traffic prediction and admission control. It analyzes the traffic of 

servers in the server cluster and refers to heuristic rules to decide the admitting of a new 

session and the distribution of this session among all servers.  
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 Buffer Management 

Buffer management techniques offer fundamental support for data manipulation. Besides 

conventional buffer management methods (RED  [31] FRED  [32] XRED  [33]) designed 

for general traffic, several multimedia transmission oriented methods are proposed these 

years. Some of them are end-to-end management method ( [34]) that trade off random loss 

for controlled loss of visually less important data. Some are user-oriented fair buffer 

management ( [35]) that focus on user expected video quality. Another possible method 

are look-head buffer management ( [36]) that set up a virtual buffer to prevent loss.  

In our expert server, these buffer management schemes are selected and tuned by the 

expert control, working in cooperation with other scheduling and congestion control 

methods to enhance the overall server performance.   

 Task/Packet Scheduling  

Task scheduling performs low level scheduling that manages hardware resources like 

CPU time and I/O bandwidth  [37]. Our work does not handle OS level scheduling 

directly but register the expert control process at top priority in the Linux kernel.  

As for packet scheduling, the simplest method would be round robin (RR) that serves 

each flow in turn. General purpose scheduling methods used in current networks are 

WFQ (proposed by John Nagle in 1987), WF2Q ( [38]), BSFQ ( [39]), and DiffServ ( [40]). 

Besides them, many media transmission oriented scheduling schemes are proposed: 

 Window based scheduling. Dynamic window-constrained scheduling method ( [41]) 

guarantees no more than x packet deadlines are missed for every y requests by 

adjusting the window size according to loss constraint. It bounds the packets delay at 

an acceptable level and promises the minimum bandwidth utilization. It is a 
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developed method based on WFQ, EDF, and conventional IP window scheduling 

technique. However, window based scheduling usually performs slower than rate 

based scheduling. For fast speed large volume media data transferring, window based 

scheduling would be the second consideration.  

 Multi-layer transmission. This method divides the media transmission into multiple 

layers and applies different strategies at each layer ( [42]). Actually this method has 

been extensively used in streaming servers, including the server used in this thesis. 

 Multi-path scheduling. Some muti-path scheduling methods ( [43]) transmit key 

frames through reliable networks and less important frames through best effort 

service. The expert control will also consider multi-path scheduling but our target is 

to choose the most suitable path for the whole stream so that the synchronization 

problem at the receiver side is avoided.  

 Wireless media transmission. The wireless channel has distinctive characteristics like 

low bandwidth, high loss rate, fading problem and an unstable environment. 

Therefore, assured transmission is the key consideration for scheduling in wireless 

channels ( [44]). We use TCP like window control in our research for the wireless 

streaming. 

 Heuristic scheduling. Unlike previous methods with mathematical formula or exact 

algorithms, heuristic scheduling works on experienced knowledge or statistical 

information. It is quite powerful in solving problems with unpredictable or vague 

input. The method proposed in ( [45]) checked the fail ratio of previous packets and 

raised the flow priority level if there was a loss. It could prevent continuous loss for a 

flow. Our expert server will not use heuristic schedule methods but will embed some 
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well-defined heuristic rules for meta-level control of these schedule methods.     

 Receiver-driven BW sharing. Contrary to conventional BW sharing scheduling 

methods that focus on the capacity of network, this kind of scheduling method 

allocates bandwidth among TCP flows according to user references ( [46]). It offers a 

different aspect to providing QoS and boosts the completeness of scheduling strategy 

design. We were enlightened by this idea for our client-oriented rate control method.    

 Coordinate CPU and BW scheduling. The work  [47] combined the two types of 

scheduling methods. This could be a future direction of the expert control.  

In Chapter 5, our experiments will be conducted on QTSS (Quick Time Streaming 

Server), in which Reliable-UDP is adopted. Reliable-UDP is very similar to the window 

based TCP control. It requires feedback from the clients, and adjusts the sending rate 

based on feedback information. The expert control takes advantage of it and adds rules to 

control the window size and the sending rate adjustment policy.  The expert control also 

considers the multilayer scheduling and the multi-path scheduling. It sends out only the 

necessary layer of stream, and it could select the least congested route during congestion. 

These heuristic rules are all designed according to the scheduling algorithms introduced 

in above paragraphs.  

 Congestion Control (Rate Control) 

Congestion control can be a separate module or implemented into protocols. Since UDP 

does not perform any congestion control itself, people developed some revised versions 

of UDP with congestion control ability. For example, the Apple’s QTSS uses reliable-

UDP that accepts feedback from client to support its flow control module. Other non-

protocol congestion control methods collect loss and delay information at the end systems 
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and determine a TCP-friendly transmission rate during the streaming ( [27] [28]).   

Another similar issue, rate control, often appears together with the congestion control. 

Since both are used to adjust the sending rate, it is easy to mix them up. Actually the aim 

of rate control is to control the speed of a flow for certain QoS requirements. It is 

necessary even with light traffic. Congestion control, with the aim of avoiding jam, 

focuses on the overall load level of the network and regulates the sending speed without 

concerning much on the application characteristics. It is turned on only at the time of 

congestion. Two types of congestion control are classified here. 

 Window based congestion control. In this group, window size is used to determine the 

number of packets eligible to be sent. The control effort is performed by adjusting the 

window according to the receivers’ acknowledgements. Window based methods have 

the advantage of accuracy and effectiveness, especially for wireless channels. But the 

control steps are discretely executed and sometimes cause window size oscillations. 

Usually it acts slower than rate based methods.  

 Rate-based congestion control. This kind of method ( [29] [30]) changes the sending 

rate by adjusting the interval of consequent packets. It is often used with faster UDP 

flows like media streaming. 

The expert control will take care of both types of congestion control algorithms. It has 

rules designed according to the advantages and disadvantages of them, decide when to 

use which one and adjust the parameters of these algorithms. The detailed discussion 

about congestion control methods will be carried out in Chapter 5 in the case study of our 

rule-based expert server system. 

 Traffic Shaping 
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Traffic shaping is a preliminary method of QoS control to prevent the performance of 

streaming degraded by jitter or lost. The sender or the routers modulate outgoing packets 

so that they appear to be more periodic at an appropriate speed. Refer to the figure 2-2, 

the shaping procedure delays excess traffic using a buffer, or queuing mechanism (a 

priority queue (PQ), a custom queue (CQ), or a FIFO queue), to hold packets and shape 

the flow when the data rate of the source is higher than expected. Our expert server does 

not implement traffic shaping mechanisms separately, coupling the work with rate and 

congestion control. 

 

Figure 2-2 Traffic shaping 

2.2 Current Multimedia Streaming Servers 

Many commercial multimedia streaming servers are currently available in the market. The 

popular ones are Microsoft Windows Media server, RealNetworks Realserver and Apple 

QuickTime Streaming Server (QTSS).  

Microsoft Windows Media Server ( [48]) works in conjunction with Windows Media Encoder 

and Windows Media Player to deliver audio and video content to clients over the Internet or 

an intranet. The clients can be other computers or devices that play back the content using a 

player, or they might be other computers running Windows Media servers (proxying, caching, 

or redistributing content). Clients can also be customer applications that have been developed 

by using the Windows Media Software Development Kit (SDK). It provides some new 

features like fast Streaming, real time monitoring, and IPTV support. 
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RealServer ( [49]) is a member of the RealSystem G2 family of software tools. Similar to 

Microsoft Windows Media Server, RealSystem G2 makes up of three components: 

1) Production tools: like RealProducer Pro or RealProducer Plus that creates media. 

2) RealServer: Media streaming server. 

3) Client software: for example, RealPlayer.  

Similar to the Microsoft Media Server, it streams both pre-recorded and live media over the 

networks to real time watching. In the latest version RealPlayer7.0, the view source feature 

allows users to view the source code for SMIL presentations or media clips. The user can 

also browse the on-demand content available to the RealServer.  

Although powerful and popular, the Windows Media Player and the RealPlayer are 

commercial streaming servers without source code opened to the public. Thus developers can 

not work on them for their own research. In the study, we make use of the open source QTSS 

(also called Darwin Streaming Server) and implemented our expert server. The detailed 

introduction of QTSS will be provided after the expert system implementation is described.  

2.3 Summary of the multimedia streaming server technologies 

In this section, we introduce the streaming technologies that developed rapidly in recent 

years. In section 2.1 the server components were divided into three groups: server side 

components, network components, and client side component. Client side and network side 

components are not controllable for a server design, so we only introduce the parameters 

associated with them. The server side components include traffic analysis, admission control, 

congestion control, buffer management, task/packet scheduling, and traffic shaping. Each of 

them carries out a dedicated function. Their cooperation determines the overall streaming 

performance, which is mainly gauged by four QoS parameters: throughput, delay, jitter, and 
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loss rate.  

With the increase in network speed and computer capacity, the commercial streaming servers 

become more and more powerful. However, many problems still exist. For example, if 

delivered at a low cost, the streamed media are often interruptive. Even for premium paid 

streaming contents, the video quality is not satisfactory during peak hours. When talking 

about the components of a streaming system, we see many innovative methods proposed to 

solve the problems of media transmission. Yet they only focused on a special component, for 

example traffic analysis or packet scheduling. The methods designed are attractive but 

sometimes they need fixed settings as assumptions for the desired performances. When 

considering these potential problems, we realize it is necessary to find a flexible way to meet 

the requirements of current media streaming applications and to make it extensible with the 

fast changing future of streaming applications. The detailed design of such a system will be 

given in the next chapter.  
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Chapter 3 Rule-Based Expert Server System Design 

 

In this chapter, we present the complete design of the rule-based expert server system. The 

design related background information is introduced in the first section. The information 

includes the representation of the knowledge base, search algorithms used in the server, the 

expert server layers, and the general server cluster structure. Then we will explain the server 

components comprehensively. With the support of these components, the inference procedure 

is illustrated with an example. In the last part of this chapter, we give the communication 

model between modules of the server.  

3.1 Introduction 

The presented rule-based expert server, which targets streaming applications, has its unique 

way of representing the knowledge base. Here we will introduce the format of rules, followed 

by some search algorithms as background information. The expert server layers are also 

presented in the last part of this section.  

3.1.1 XML 

The Extensible Markup Language (XML) is a general-purpose markup language. An XML 

document contains markup and character data. The markup contains the meaning, such as 

“variable name”, and is held in tags and other XML elements. The character data is the 

content. An example would be: 

<variable name>Number of Client </variable name>  

In above example, notation ‘<’ and ‘>’ delimits the tags. The character data, which is the 
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variable name, is put between the starting and end markups. Users can define their own set of 

tags suitable for the application. A single tag pair is defined as a root element. All other 

elements, also in pairs, are nested within this pair. Sub-elements are nested within their 

parent elements, forming a hierarchical data structure. An XML document looks like ( [50]): 

<variables> 

 <variable> 

  <name> Number of Clients </name> 

  <value> 1000 </value> 

  <type> integer </type> 

 </variable> 

</variables> 

The first line is the root tag of the variables element. In the second tier, variable is a child 

element of variables. It represents a specific variable. Below it are the child elements of 

variable: name, value, and type. All these markups are defined by users as attributes in the 

DTD (Document Type Definition) file. A typical DTD in XML1.0 defines like: 

<?xml version="1.0" encoding="UTF-8"?> 

<!DOCTYPE root-element [ doctype-declaration... ]> 

<!ELEMENT element-name content-model> 

<!ATTLIST element-name attr-name attr-type attr-default ...> 

<!ATTLIST element-name attr-name attr-type attr-default ...> 

… … 

During the rule base realization in Chapter 5, we will provide the DTD, the binary structure, 

the parser, and the linking of the expert server rule base.  

3.1.2 Search Algorithms 

The decision making procedure is a process of searching the rule base. There are numerous 

search algorithms for different kinds of requests and criteria. Now we give a quick review on 

those adopted by expert systems.  
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The Breadth First Search (BFS) and the Depth First Search (DFS) are two basic search 

algorithms. Yet these two search methods perform complete search and become less efficient 

with the increase of search space. To solve the problem, the heuristic search algorithms 

become popular in AI applications. The heuristic search algorithms use heuristics (rules or 

functions) to narrow down the search space or branches, directing the search procedure to 

final solutions effectively and fast. Solutions vary with different heuristics, and they may not 

be optimal. Commonly used methods are hill climbing search, beam search ( [51],  [52]), 

breadth-first heuristic search ( [53]) and A* search. The A* search takes global sum of the 

cost to arrive at the current point and the cost to reach the final goal to truncate the searching 

space. It does not only focus on the goodness of the next step. The intelligence of A* search 

actually relies on the evaluation functions, not on the searching strategy itself. In the 

consequent paragraphs, we discuss the former two methods since they are used in our work.  

Hill climbing (best first search) is a mix of DFS and heuristics. Instead of randomly select a 

child under the current parent node to further the depth first search, hill climbing method uses 

the heuristic to select the best one from all candidates. The unselected paths usually are 

discarded in order to save time. This search procedure has the advantages of being informed 

on each step and modeling human reasoning. However, the solution is not guaranteed to be 

found. That is, if the search path is not directed properly, the search will reach the local 

optimal point and no way to return to the global optimal one. This is the main search 

algorithm used in our study.  

Beam search is another popular heuristic search algorithm. It is like a mix of BFS and 

heuristics. The beam number is used to narrow the solution set size (width) of child nodes to 

save time in the next round of search. The survived lucky child nodes are selected by 
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heuristics. Beam search is also adopted in our study but it only used for fine level adjustment 

after the first round of inference.  

3.1.3 Expert Media Streaming Server Layers 

Before introducing the design comprehensively, it is necessary to clarify the position of the 

expert system in a server. In Chapter 2, we have introduced the conventional multimedia 

server architecture. Expert system can be treated as an embedded part in these servers like a 

control middleware. Figure 3-1 shows the corresponding layers between server and client and 

communication protocols at each layer. 

 

Figure 3-1 Expert media streaming system layers 

Comparing to Figure 2-1, the inference engine in highest level and the XML parser and 

Knowledge base in lowest level are new figures. Although only three parts are added, the 

whole control procedure is changed. It is these additional features that enable the expert 

system to allocate resources that are more reasonable and flexible. In the following sections, 
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we will explain the detailed design of the expert server, especially these added features.   

3.1.4 Topology of Distributed Server Network 

Servers located at a facility are grouped into a server cluster (Figure 3-2). Each server has its 

own decision making mechanism. That is, each server is equivalent in functionality. Working 

parameters are periodically broadcasted among servers in the same cluster and also among 

clusters. A client can send the request to any server station. The server will make a global 

decision based on latest working parameters and forward the request to the most suitable 

station for processing.  

    Internet
Server Cluster 1

Server Cluster N

Client 1

Cluster M

 

Figure 3-2 Expert server system topology 

3.2 Server Design 

In this section, the design options and tradeoffs are listed and studied. Then the detailed 

server structure is provided and explained. After that, we follow a memory allocation request 

to see the decision making procedure. Finally, the communication mechanism among 

modules is shown with a diagram. 
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3.2.1 Design Options and Tradeoffs 

Recall the QoS parameters introduced in Chapter 2, the QoS we want to achieve are: 

a) Guaranteed use of bandwidth. 

b) Limits on cell loss / packet loss. 

c) Limits on latency (one-way or round-trip). 

d) Limits on jitter (delay variation). 

To realize the above performances, we consider many options during the design. We list 

some important ones here, followed with the analysis and tradeoffs for our decisions.  

Server oriented or client oriented 

The first and most important thing to be decided is which part is the focus of optimization. In 

other words, what is the target system along the streaming path that going to be optimized, 

the server system, the route system or the client system? If server system is targeted, all 

designs should concentrate on server parameters, and the ultimate goal is to give the service 

providers (who own the server) the most flexibility, the best performance, the most efficient 

management cost. If the router system is the concentration, the design will focus on the 

selection of shortest path, the choice of most reliable route, or the minimization of network 

cost. If client system is the target, providing a user-friendly interface and power-saving 

features in the client device are appropriate design topics. In our research, we concentrate on 

the server system. That is, we use the current available network and client technologies to 

make the streaming server achieve higher reliability and more flexibility for service providers. 

The performance of an expert server would be better with the cooperation of intermediate 

routers or client terminals, but will not rely on their cooperation.  

Centralized or distributed 

At the beginning of design, there are two choices to realize the system, centralized control or 
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distributed control. Both of them can support the expert system. A centralized system is easy 

to establish and maintain, and the messages exchanged among stations are scalable. However, 

the centralized control is not reliable. If the central server breaks down, the whole system is 

useless. On the contrary, distributed control is difficult to establish and maintain, and the 

messages exchanged among stations will be overwhelming as number of stations increase. It 

has the advantage of reliability, that is, a single station failure will not impact the 

performance of other stations.  

To balance the cost and performance of these two types of controls, we finally deployed a 

hybrid system. The servers on an area (usually a city size) are organized using centralized 

control system, and a most powerful server is selected as the connector to the outside. The 

connector servers in different areas are organized with distributed control system, and they 

share information periodically. If the connector server in a server cluster is down, another 

backup server will take over the work.   

Global control or local control 

In the literature regarding streaming transmission, most researches focus on a single scenario 

or a single algorithm. We also faced the problem of whether to design a local control 

mechanism or a global control system. After thorough investigation, we found the global 

control to be a big gap in current server research area. Although a lot of algorithms have been 

designed for various situations and various traffic, there is no mechanism to integrate these 

algorithms into a server and make them cooperate with each other.  

Furthermore, with the development of modern protocols, the streaming under RTP and RTCP 

control is already good enough for standard movies. Those algorithms designed for marginal 

cases are too complex to be used than simple heuristic rules. Thus, we selected some useful 
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streaming control algorithms into our method base and translate the complex algorithms to 

simple heuristic rules to form the expert server. It combines the power of the latest streaming 

technologies and reduces their complexity. The implementation of a global control system 

will definitely consumes more CPU time and will influence the transmission of movies. 

Therefore our work must reduce this overhead to make it acceptable.  

Unicast or multicast 

Multicast could save intermediate bandwidth, ISP load, and client burden when a large 

number of clients in the same area are demanding the same movie. This requirement is not 

easy to be satisfied for a VoD application. Even if this requirement is satisfied, multicast 

requires efficient algorithm to establish the multicast path. If the path is not well established, 

the signaling messages and the inefficient transmission will greatly degrade its performance 

to be worse than unicast. Unicast is easy to handle and maintain, but it is not efficient when a 

large amount of client behind the same ISP demanding the same movie at the same time. 

Since our target is to design a powerful and flexible server, not to design an efficient 

multicast path, we choose unicast in our design. This decision is reasonable under the fact 

that seldom does a VoD system has great number of clients request the same movie at the 

same time. Additionally, the expert system is a global control system that could be extended 

to be as multicast-enable platform in future development, as long as the intermediate routers 

support the multicast.  

3.2.2 Server modules 

Figure 3-3 gives the module structure of our expert server. In the left top corner of the figure, 

monitor is used to listen to the network notifications or client requests or feedback. 

Breakdown or recovery information of other servers is also sent to the monitor. Further more, 
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monitor records the current resource situation and calculate some statistical parameters to 

manage sessions.  

 

Figure 3-3 Expert system modules structure 

Master control is an independent event driven routine. It receives requests from the monitor, 

which executes periodically every 100ms. Then it differentiates the request type and calls 

suitable sub-functions to serve the task. There are mainly three types of tasks: session 

establish or termination, media transmission, and session management (QoS). Media 

transmissions are controlled by the session handler. If the packet failed to be served, the 

master control module records the failure information. If the failure happens too frequently, 

the QoS management module will be called. 

The session establishment module, one level down from the master control, must be called by 

the master control procedure. It is used to perform admission control and establish a new 
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session. If requested movie does not locate on the current station or the load of the current 

station is too high to serve more clients, this module is in charge of transferring the request to 

other suitable stations. This kind of job could be pre-coded into server main routine or may 

be supported by the rule base with station allocation and resource allocation rules.  

The session termination module is used to terminate a session. Terminations may be caused 

by four reasons: resource shortage, no response within TIME_OUT, client requested, and 

normal finish. For terminations motivated by resource shortage, if there are resources 

reserved for the just terminated session and the server load is high, immediate adjustment is 

needed. For the other reasons, the server only releases resources without disturbing other 

sessions. 

Session management is another dependent module called by master control. It performs QoS 

adjustment, parameters tuning, schedule table management, session states maintenance and 

congestion control. 

Following is the detail introduction of the rule base. We divide the rule base into six groups. 

Each group is described with a simple example. The program structure of a rule and the 

corresponding procedures of condition examination and decision execution will be given in 

sub-section 5.1.2 rule base implementation part.  

a) Meta rules. These are special rules used to make upper level decision or to decide which 

group of rules is the starting point for searching. It may also contain rules to decide the 

search method based on time constraints.  

Example: IF New Subscription THEN Search Session establishment/termination rule set. 

b) Session establish/termination rules. These rules used to accept or reject the requests 

from clients, and set QoS level based on client buffer size, network delay, etc.  



  41 

Example: IF Termination Reason = Resource Shortage THEN Perform Online Monitor AND 

Execute Resource Reallocation Procedure  

c) Station Allocation rules. The rules are in charge of selecting a proper server station from 

distributed server system for the new subscription request. 

Example: IF Server Load = High AND Movie cached at Station x THEN Forward Request to 

Station x 

d) Resource Allocation rules. They are used to allocate and de-allocate the resources like 

CPU, memory (for packet queuing), and bandwidth. 

Example: IF Current Memory Usage < Low Threshold THEN Check Req. Arrival Rate 

e) Real-time Monitor rules. The rules are used to monitor and update parameters of CPU 

utilization, memory usage, BW availability, and received notifications from network. 

They are also responsible to detect inactive/dumb session. 

Example: IF No response from a session for TIME_OUT THEN Report it a DUMB session 

f) Real-time QoS management rules. These rules are responsible of process management 

and congestion control. They help the server to react on any violation of resources by 

adjusting transmission control parameters or changing delivery strategies.  

Example: IF Congestion Detected THEN Select Suitable Congestion Control Scheme 

With the above group segmentation, the inference engine starts from the meta-rules and 

searches only the request-related rule group according to the decision of meta-rules. 

3.2.3 Decision Making Procedure 

Here we use a potion of memory allocation rules as an example to illustrate the basic forward 

chaining decision making procedure in our system. The rule base inference procedure would 

be based on the following memory allocation rules in Resource Allocation rule set: 
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IF Current Memory Usage ∈[Low Threshold, High Threshold] (i.e. Moderate) 

THEN Check Requested Movie Bursty Rate 

IF Current Memory Usage < Low Threshold THEN Check Req. Arrival Rate 

…… 

IF QoS Level = Premium THEN Buffer = 2*Average Sending Rate 

The logical relations of these rules could be illustrated in figure 3-4.  

 

Figure 3-4 Rule relations for a resource allocation request 

After searching, the inference tree is built as in Figure 3-5. To make the figure easy to read, 

we use full names for each rectangle. In the decision tree, regular rectangles are used for the 

rule call or function call, and the decisions are represented using circular rectangles. 

Conditions for branches are shown on arcs. When a resource allocation request is issued, the 

inference engine performs depth-first search. The searching sequence of branches is decided 

by meta-rules. 

In the provided example, the search starts from the left-most branch, that is, from deciding 

the sending rate. In each branch, the inference engine searches the rule base using hill 
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climbing algorithm. Heuristics (conditions on arcs) are used to select the best child to trace 

further. The sending rate decided would be written into the corresponding session handler; 

meanwhile, the session related information in working memory is modified. Then the search 

process continues to decide the memory allocation. It checks current memory usage level and 

branches to the child nodes. If current buffer usage is moderate, it checks the trend of arrival 

rate. If arrival rate of new session establishment requests increases during the past monitored 

period, the decision should consider leaving more spaces for the coming users. If the arrival 

rate is stable in the monitored history, the resource is allocated merely according to the 

required QoS level. This solution is also written into the session handler and working 

memory. After that, the search process goes on to perform other resource allocations by 

repeating the same search algorithm.  

 

Figure 3-5 Decision tree for buffer allocation 

The tree is set up automatically during the search process. The hill climbing search 
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terminates whenever a solution (circular rectangle) is reached. After all initial parameters for 

a session are set, the search process would be repeated to check whether modified parameters 

in working memory would cause other rules in related rule groups capable to be fired. This is 

a fine-grain adjustment on the final solution and we adopt beam search algorithm for it. For 

example, if sending rate is adjusted during the search, the corresponding buffer allocation 

would be fine-tuned accordingly immediately. The whole inference procedure ends until no 

rules can be fired under current situation.   

From this example, we can see that the knowledge base and the inference procedure of an 

expert media streaming server are quite different with other recognition or planning expert 

systems. Those systems have large amount of loose related parameters and shadow edges on 

branch conditions, which need substantive heuristic rules to narrow the searching scope and 

direct to the solutions. Media transmission, on the contrary, requires apparent types of 

resources and the information of these resources are closely related to each other. In the 

example, the buffer allocated depends largely on the disk reading bandwidth and the sending 

rate; while the initial sending rate depending on the playback rate of the movie and the QoS 

level requested by the client. The inner relations among the rules made the inference 

procedure complete much faster with smaller fluctuations comparing to conventional expert 

system applications. 

It may be argued that since the types of resources in media expert server are clearly defined 

and the links among parameters are close, why not pre-coding all IF-THEN clauses into 

server programs. Although the comparison of these two types of similar methods has been 

preliminary illustrated in the second last paragraph in section 1.3.3, we want to add the 

following points to make the explanations clearer.  
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Firstly, some heuristics are difficult to be mathematically modeled and sequentially coded, 

although they are practically helpful under heterogeneous networks. Additionally, the set of 

heuristics needed for a decision is not always the same. For these reasons, a more effective 

way would be coding heuristics as rules separated from the main program. 

Secondly, the performance improvement and the overhead brought by the expert system are 

balanced. Compared to pre-coded search, the only additional searching overhead brought 

from using knowledge base comes from the online translation of parameter numbers into 

their actual values in the working memory. Since the knowledge base is parsed and linked in 

binary form beforehand (details are given in Chapter 5), searching it would not require much 

more time than searching IF-THEN clauses pre-coded in the server program.  

Lastly, the expert system encodes all problem related expertise in data structures only; none 

are in programs. This organization enables great flexibility on knowledge base updating and 

system maintenance. 

3.2.4 Communication among Server Processes 

Figure 3-6 shows the relations among processes in the server program. We set up a packet 

queue for receiving requests from the network and clients; a task queue for information from 

current server station; a session link to manage active sessions on the current station. Five 

processes, task processor, packet processor, session handler, monitor, packet receiver, will 

work on these three queues as demonstrated in the figure; semaphores are applied to each 

queue for mutual exclusion. All global runtime parameters and resource tables are stored in 

working memory. The rule base is edited off-line. The line connecting the rule base to the 

working memory means that rules can modify the working parameters if necessary. The 

searches on the rule base could be initiated by the master control module, the modules called 
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by the master control, or by the real time monitor module. So we do not specify the source of 

the search arrow connected to the rule base in figure 3-6. Consequently, the decisions made 

by the rule base would be responses to those modules that initiate the search. Since the 

source is not specified in the figure, the returned decision arrow in the figure also does not 

have a specific destination. 

 

Figure 3-6 Communication among server processes 

3.3 Summary  

In this chapter, we first introduced the XML tool and searching techniques useful for our 

design. The design options and tradeoffs are explained. Then we indicated the level of our 

rule-based expert control system and the expert control components added in a conventional 

server. It is these added components that change the whole pattern of control for a 

conventional server to form a more powerful and flexible solution. The knowledge base is the 
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most important part for the intelligence of an expert system. We used explicit examples to 

illustrate the division of rule groups. Although search strategy is not the decisive factor for 

the intelligence, it is a significant factor for the overall performance. Usually the search 

procedure in planning expert system is conducted within a large amount of unrelated 

information and rules, and the subsequent searching time is unpredictable. However, the 

memory allocation example given in this chapter showed potential logic relations for its 

supporting rules. When directed properly, the search process converged very quickly.  

The server structure diagram, the rule groups, the decision making procedures, and the 

communication model shown in this chapter are fundamentals for the consequent analytical 

and the experimental parts of the thesis. In the next chapter, we would first analyze the 

performance and estimate the theoretical server capacity before any real implementation. 

This will further exam the feasibility and scalability of the expert server system.  
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Chapter 4 System Performance and Capacity Analysis 

 

In this chapter, we analyze the performance of the expert system. Methods and assumptions 

for analysis are introduced first. Then the server computational complexity is quantified. The 

average response time of requests and tasks will be analyzed based on the computational 

complexity. Other real time characteristics of the system are also considered. Finally the 

system capacity is estimated followed by a short discussion regarding the analytical results.   

4.1 Introduction 

Before analyzing the expert system, we first thoroughly examine factors that would impact 

the system performance and discuss their significance. Then the related notation and 

mathematical theories are introduced. The assumptions for the performance evaluation are 

given in the last part of this section. 

4.1.1 System Performance Influence Factors  

In general, the following six groups of factors are critical to the system performance:  

1) Network parameters (BW, delay, loss rate, etc)  

2) Client parameters (client buffer size, client requested QoS, new client arrival rate, 

average session duration, etc) 

3) Disk bandwidth (Access bandwidth and data block transmission speed) 

4) OS level task scheduling (Real time and non-real time tasks sharing the server resources) 

5) Packet scheduling (Packet service sequence and session rate control) 

6) Movie characteristics (Average playback rate, frame size, movie traffic bursty level, etc)  
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The former three factors are decided by the intermediate network, the client, or the 

supporting database hardware, which are not controlled by the expert system. Although 

uncontrollable, they influence the decisions made by the expert server and the overall 

transmission performance. We take them as given parameters for the system analysis. The 

task and packet scheduling methods are selected by the expert server during execution. They 

decide the effectiveness of the transmission, and therefore are factors concentrated in this 

chapter. The movie characteristic is negotiable by the server. Movie quality and coding 

strategies vary according to the requirement of clients and the available network bandwidth.  

Due to the unique character of the expert system that all control decisions are made through 

inference on the rule base, the complexity of inference procedure should be analyzed first 

before investigating any other procedure. Inference procedure could be divided into five 

stages: test, match, activate, act, switch. The Test is to get the runtime parameter value in 

accordance with its parameter number and test the IF clause in a rule. The Match is to 

evaluate the corresponding THEN clause true or false. The Activate would activate the 

decision made by a rule if the condition is satisfied. The Act will perform the action decided 

by the rule. In our server, it represents the execution of a selected function. The Switch, as an 

equivalent action with the Act, stands for that the inference path branches to another rule.  

In summary, this chapter focuses on task and packet scheduling algorithms analysis based on 

the given network, database, client and movie parameters. The inference procedure analysis 

operates as the key role within the whole analysis.  

4.1.2 Theories for analysis 

The foremost notation would be O(n) for time complexity analysis ( [54]). O(g(n)) gives the 

upper bound of change speed for f(n) in the following notation.  
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Notation: We write f(n) = O(g(n)) if there exist constants c > 0, n0 > 0 such that 0≤f(n)≤

cg(n) for all n≥n0. E.g.: 2n2 = O(n3) (c = 1, n0 = 2) 

The second important theory would be the queueing theory for service time analysis. Before 

introducing it, we will first take a look at the classification of delays along the media 

streaming transmission path. 

A. Communication Delays 

The delays experienced by packets in a transmission system can be illustrated in figure 4-1: 

 

Figure 4-1 Communication delays 

All mentioned delays will influence the transmission performance. The round trip time (RTT), 

a measurement of total delay after a packet is sent, is the decisive parameter for many rate 

control schemes. For example in QTSS, the RTT is re-estimated whenever an RTPStream 

object is called. The revised value is used to decide the timeout for feedback packets and 

regulate the sending speed. In most congestion control methods, delays are used together 

with the loss rate to decide the level of congestion and the necessary reactions.  

For analysis without a measured RTT value, a tiny portion of delays could be ignored. 

Transmission delay varies with the packet length. As a usual UDP packet size is only several 

KB, the transmission delay of UDP packets are much less than processing and queueing 

delays and therefore could be neglected. The propagation delay is even smaller and the 
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retransmission is rarely happened. Hence only processing delay and queuing delay are 

considered in our analysis.  

B. Queueing theory  

Queuing theory is used to solve the system queuing status based on statistical characters of 

clients and servers. Statistical characters of a queueing model are described using following 

parameters (figure 4-2). 

1) Arrival Process. Probability density distribution (λ) determines the request arrivals.  

2) Service Process. Probability density distribution (µ) determines the request service times. 

In our server, the service time refers to the decision making time for a request. 

3) Number of Servers. This is the number of servers (n) available to service the customers. 

Using the short form of Kendall’s notation, the common queuing systems can be represented 

as M/M/1, M/G/1, M/G/n, M/D/n, G/G/n, etc. 

 

Figure 4-2 Queueing model 

 The fundamental of queueing theory relies on the Little's Theorem, which states that: 

The average number of requests (N) in system can be determined from N=λT. 

Here λ is the average requests arrival rate and T is the average service time for a request. All 

queuing status parameters are calculated using Markov status chain based on this simple rule.  



  52 

Take the common M/M/1 queue as an example. With reference to Kendall’s notation, M/M/1 

means a queueing model with both exponential distribution of customer arrivals and service 

times, and there is a single server.  

Use P0 denotes the probability that the system is idle. Then the utilization, the system busy 

probability is 1−P0. In steady state, the average arrival rate equals to the average departure 

rate. That is: 0 0 00 (1 ) 1 /P P Pλ µ λ µ= + − ⇒ = −  

Then the utilization factor ρ would be 1−P0, which is λ/µ. 

The ratio ρ = λ/µ is also called the traffic intensity with unit Erlangs. Under the steady-state, 

it must be less than 1 for a single server queue. The probabilities of system with N requests in 

it can be solved using Markov status chain (figure 4-3). 

 

Figure 4-3 Markov chain for M/M/1 queueing model 

In steady state, the probability for the system leaves state i must be the same as the 

probability of the system enters state i. That is: 
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Solve the above functions, we have 0
n

nP Pρ= . Thus the following parameters can be deduced. 

Average number of requests in the system: 0 10 1 ... /(1 )nN P P nP ρ ρ= + + + = − . 

According to Little’s theorem, the average in-system-time is: 1/( )T µ λ= − . 

Consequently, the waiting time 1/ /( )wT T µ ρ µ λ= − = −  
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The results will be used to calculate the capacity of the expert system in section 4.2.  

4.1.3 Assumptions 

We make the following assumptions for the analysis. 

(1) All real time tasks in the server belong to media streaming applications. 

(2) Unicast is considered.  

(3) Clients follow a Poisson Process. 

(4) The server has a sufficient buffer size for incoming requests. The requests can only be 

discarded once the deadline is exceeded.  

4.2 System Performance Analysis 

In this section, the system level performance analysis is conducted based on the theories and 

assumptions introduced in section 4.1. The analysis is performed in a progressive manner. 

First we analyze the computational complexity of each module and real time characteristics 

of an individual expert server, through which the scheduling delay are estimated. Then we 

calculate the maximum and the average service time (µ) for a request. Afterwards, queuing 

delay (Q) and response time (T) for a task or a packet with respect to different arrival rate (λ) 

is analyzed. Finally, we predict the number of clients a server could theoretically support. 

4.2.1 Complexity and Computation Time 

To balance the computational overhead and system accuracy, the master control program of 

expert system is set to execute every 100ms. The execution time of the expert control can be 

divided into two parts. One is the sequential request handling process used to respond to 

requests and tasks; the other is the rule base searching process used for decision making. In 

execution, the rule-base searching process is embedded into the sequential request handling 
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process. That is, requests are served by searching the rule base. If taking the searching 

process as a single statement, the decision making process would run purely in a sequential 

manner. The complexity is O(m), where m is the number of sessions. Thus, the main 

execution complexity for the expert system program comes from searching the rule base. 

Now we focus on calculating the complexity of rule-base searching process. 

Basically, the inference procedure uses best first search or beam search. The best first search 

selects the best child at each branch for further searching. Thus its complexity depends on the 

tree depth. For a rule base contains n rules, the highest depth is n. The complexity of best 

first search, as a result, is O(n). The beam search is a truncated width first search. Its 

complexity depends on the searching depth and the beam width. The number of searching 

node spread geometrically as the tree level goes deeper. Thus the complexity can be written 

as O(wh), where w is the beam width and h is the search depth. Limited by the number of 

rules, the deepest depth can be reached is 2 31 ... hw w w w n+ + + + + = . We can deduce the 

log [1 ( 1) ] 1wh w n= + − + . Substitute it back into ( )hO w , the final solution will be 

2(( ) ) ( )O w w n w O n− + = . Thus we get the conclusion that both two searching algorithms 

implemented in our design have the complexity of ( )O n . 

Now we can further the discussion to inference procedures. In the expert system, the firing of 

one rule may cause in chain the firing of other rules. Under this case, several rounds of 

searches are needed for an inference on the rule base. Here we present the worst case analysis 

for two typical conditions using best first search. The first condition, called C1, is that only 

one rule is fired during a search, and this fired rule is always the last rule searched. Another 

extreme condition, named C2, is that one rule is fired for every round of searching and finally 

all rules are fired in one round of inference. The fired rule in each round, similar to C1, is still 
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always the last one searched. For example, when we search a rule base with four rules inside, 

the sequence is r1 r2 r3 r4 in the first iteration. In the first round, r4 is fired, and it 

causes r3 ready to be fired. In the second round, inference engine searches r1->r2->r3 in 

sequence and fires r3. As a result of firing r3, r2 is satisfied, and similarly r1 is ready to fire 

after firing r2. The final situation is that all rules are fired after n iterations of searching. Of 

course, C2 is unlikely to happen during real execution because the conditions of some rules 

are contradictive to each other. In a set of these rules, if the condition of one rule is satisfied, 

the conditions of other rules inside the set will not be verified true, thus the other rules cannot 

be fired together for current inference. Here we use C2 as the worst case bound.  

Using a test program, we get the average time ts for searching one rule is approximately 

0.01us and the time te for firing one rule is around 0.04 us. If there are n rules in rule base 

and the server need to search all rules to make a decision, then the worst case searching time 

for C1 and C2 are: 

C1: s eT n t t= × +  

C2: [ ] [( 1) ] ... [1 ] ( 1) / 2s e s e s e s eT n t t n t t t t n n t n t= × + + − × + + + × + = × + × + ×  

From the Figure 4-4, worst case searching time increases linearly ( ( )O n ) for C1, and 

bounded below 100 us with less than ten thousand rules. For C2, the worst case searching 

time increases exponentially ( 2( )O n ) to half a second as rule size goes to ten thousand. 

Practically, the searching time should follow the curve of C1 if rule base is properly 

organized. We will discuss the influence of complexity to system performance in the next 

subsection, considering the real time characteristics.  
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Figure 4-4 Worst case searching time for C1 and C2 

4.2.2 Real time characteristics 

In a media server, decisions are made within a specific deadline. For example, a feedback 

packet should finish processing within feedback intervals. The server system cannot break 

down at any time. These are the real time characteristics. Such a system needs the support of 

a real-time operating system. In analysis, we assume that the server computer OS uses a real-

time kernel that can provide timing, preemptive thread scheduling, and fast interrupt response. 

Most deadlines in the server are soft deadline, which may be violated lightly without serious 

effect. So even without real time OS support, the system is still usable with somewhat 

degraded performance.  

The key issue in analyzing a real time system is to evaluate the scheduling process. The 

efforts in finding workable solutions for real time scheduling problems have been progressed 

for many decades yet still no optimal method established. Even if only basic round robin or 

EDF scheduling is considered, the mutual exclusion and preemptive constraints make the 

analysis difficult or even impossible. Therefore, the thesis merely provides the offline 



  57 

analysis based on static characteristics of the server code for a general prediction of the 

server performance.  

4.2.3 Service time for tasks / packets 

Based on the complexity analysis in the previous section, we can analyze the service time for 

tasks and packets. Tasks and packets are differentiated only because they are generated from 

different resources. Tasks come from the server whereas packets come from clients and 

networks. They are treated the same in expert control. Here we refer to them uniformly as 

requests.  

Most services provided for requests need the search of rule base. However the complexity 

analyzed in sub-section 4.2.1 is a high level complexity that considers only the stage of test, 

match, activate, and switch. It did not count in the complexity of function (the act stage as 

introduced in 4.1.1) called by the rule. Besides that, there may have non-streaming traffic in 

the server. For non streaming requests, the service time is unpredictable since they are 

preemptive by real time tasks. Therefore it is impossible to give a uniform distribution of 

service time of streaming requests and background traffic under run-time uncertainties. 

However, the service time has an important characteristic that it is memoryless. That means 

the service time of current task is not influenced by the service time of previous tasks. With 

this feature, the expert control service time could be approximately modeled as an 

exponential distribution and the mean value is calculated in the next paragraph.  

Taking C1 as the condition and setting the rule size as 2000, the time of each inference takes 

20.04 us. If one decision is made from 5 iterations of inferences, it takes 20.04*5 = 100.2 us. 

Suppose the server needs to make 20 decisions for each round of control, and every decision 

must be made by inference on the rule base. The overall time taken is 2000.4us. Considering 
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the monitor interval of 100ms, the time portion for making decisions is 2000.4/105 = 2%. 

This is the best case mean service time and the calculation does not consider communication 

overhead among processes. To guarantee that the expert system takes no more than 10% of 

the CPU time to perform global adjustment, the monitor interval could be adjusted using:  

Monitor Interval > Avg. time for a decision*Avg. number of decisions for each monitoring / 10% 

The rest 90% of CPU capacity is dedicated to the real streaming transmission.  

4.2.4 Queuing delay and response time 

With a server cluster contains n servers, the incoming requests can be forwarded and served 

by any server in this cluster. The expert system will distribute the requests among themselves. 

So the requests come from every server node can be combined as a single queue. And the 

expert server system can be approximately described as an M/M/n/∞ queue. Consider a 

simple case first that all servers are selected equally for the coming requests. The mean 

request arrival rate is λ and the mean service time is 1/µ. The coming requests are classified 

as real time (class 1) or non real time (class 2) requests. They have different priorities for 

services and the system is preemptive. In sub-section 4.1.3, we assumed all real time tasks 

belong to streaming applications. The state diagram is shown in figure 4-5. 

In the state transition diagram, green arcs represent the arrival and departure of media 

requests. The ellipses represent the probability of staying at a state (a,b), where a, b are the 

current number of requests of class 1 and class 2 in the system. From the state transition 

diagram, the streaming tasks would be served as if the server is dedicated entirely to them. 

Whenever they come, they preempt resources for services and this preemption may cause 

non-real time tasks suffer from starvation. Therefore, as we mentioned in the assumption part 

that the whole server is dedicated to media streaming applications, all requests submitted to 
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the system would be considered to be real time tasks with different deadlines. The schedule 

of tasks according to their deadlines is too complex to be uniformly modeled. We use the 

basic FIFO queue as an approximation. 

 

Figure 4-5 Queueing model and state transition diagram for a 2-priority M/M/n queue 

Consider the real time tasks only, such an M/M/n queue model has been well investigated in 

literature. Here we list the formulas directly. Detailed deductions could be found in related 

analytical books ( [55]). 
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(3) Average time spends in system: 1
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Suppose there are ten servers with utilization factor ranges from 0.01 to 0.99, and the average 

service time for the requests ranges from 1 to 40ms, the average response time could be 

plotted according to the results provided above. Figure 4-6 shows that service time increases 

when utilization factor and average service time goes up. The curve rises sharply under high 

load especially when the service time is large. This means the service time influences the 

average response time more than that of the utilization factor. When the average service time 

is 40ms and utilization factor approaches 0.99, a request needs to wait ten times (400ms) in 

average before being served.  

 

Figure 4-6 Average response time for M/M/10 queueing system 

Now we take one server as a case study for some numerical results. Assume the buffer in 



  61 

system is infinite. In real cases, the requests that were not served within a given deadline are 

discarded, although they were received. To guarantee all requests in server are valid to be 

served, each request should have a limited response time. Here we restrict the average in-

system-time T within a certain time bound TThreshold; then the following inequality function 

should be satisfied: 1 ThresholdT T≤   

Substitute by the results of M/M/1 queue in subsection 4.1.2:  

1 1
1

s s
Threshold Threshold

Threshold

T TT T
T
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≤ ⇒ ≤ ⇒ ≤ −
− −
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µ
=  

The arrival rate would be limited by 

If each client generates m request in average, the supportable client is: 

 

Suppose each session generates ten requests a second and a decision must be made before 

next frame of this session sent out, the maximum deadline for the current request would be 

equal to the frame interval, that is 1/25 = 0.04s. Hence the supportable number of client is:  

Nc <= 0.1/(10*100.2*10-6) - 0.1/(10*0.04) <= 99.55.  

4.2.5 Capacity of a Single Server 

There are two factors limiting the traffic that a transmission system can support: the server 

processing speed and the network bandwidth. For a normal CPU, the maximum number of 

clients derived in sub-section 4.2.4 is around 99. Of course this number is reasonable only 

when monitor interval is properly set, real-time tasks are scheduled preemptively, and the 

server buffer is large enough. Yet these 99 users will consume 99x1.25 Mbps bandwidth = 

123.75Mbps (normal VCD quality). From the comparison, the capacity bottleneck of the 

server would be the outgoing bandwidth. Since there is traffic for protocol, feedbacks, and 
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other applications, we cannot grant total bandwidth to the streaming. Usually only around 

70% of bandwidth could be used for streaming data for the system stability. Therefore, we 

estimate the capacity by: 

Server capacity =70%* Outgoing BW/ Average Sending Rate. 

According to the above formula, the server capacity depends on the average sending rate of a 

single stream given a specific outgoing bandwidth. Thus in the following section of case 

study, we take sending rate (bandwidth usage) as the main criteria to illustrate the rule-based 

system performance. 

4.2.6 Multicast Analysis 

Multicast groups users within the same sub-network and deliver a single steam to their ISP. 

ISP is responsible to forward the stream to all users through prescribed tunnels. Using such a 

transmission topology, server needs to maintain a multicast tree or group list. For each 

request, which may be handled by the expert control, the server processes it the same way as 

in unicast. So multicast will not impact the average service time for a request, only brings 

overhead on multicast group maintenance and impact the bandwidth utilization. It saves a lot 

of backbone network bandwidth on data transmission, meanwhile it requires well-designed 

protocols to protect the network from overwhelmed by those acknowledgements returned by 

all multicast clients.  

There are many types of multicast protocols, like sender-initialized, receiver-initialized, and 

tree-based protocols. Sender-initialized protocol needs positive acknowledgements (ACKs) 

to be sent back to the server for every packet correctly received. While a receiver-initialized 

protocol needs negative acknowledgements (NCKs) that sent back to the server only for lost 

or corrupted packets. Tree-based protocol collects ACKs/NCKs hierarchically to decrease the 
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bandwidth waste of acknowledgements. In the bandwidth analysis presented in this sub-

section, we consider the most basic and commonly used protocol, which is sender-initialized 

multicast protocol, and use the method that introduced in  [56].  

W = BW for initial transmission + BW for retransmissions + BW for receiving ACKs 
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Where W is the bandwidth required for a multicast session. E(W) is the expected bandwidth 

consumption. E(M) and E(L) are the expected number of retransmissions and 

acknowledgements. Wd is the bandwidth required for a data packet. Wa is the bandwidth 

required for an ACK packet. E(L) depends on the value of E(M).  

)1)(1)((*)( ad ppMENLE −−=  
 
N is the total number of clients in the multicast group. pd and pa are loss probabilities for data 

and acknowledgements respectively. So that (1 - pd) is the probability of a data is not lost and 

(1 - pa) is the probability of an ACK is not lost. We have: 

Probability of number of retransmission is less than m times = 1- probability of number of 

consecutive retransmission is m 

That is: 
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That means either a data packet loss or an ACK packet loss will cause a retransmission. As 

the client receive procedures are independent from each other, we have, 

∑∏
==

−=−=≤=≤
N

i

im
re

ii
N

Nm
re

N

r
r pCpmMPmMP

01

)1()1()()(  

 



  64 

∑
=

− −−=−≤−≤==
N

i

i
re

mi
re

ii
N ppCmMPmMPmMP

0

)1( )1()1()1()()(  

 

∑ ∑∑∑
∞

= =

+

=

−
∞

= −
−=−−===

1 1

1

0

)1(

1 1
1)1()1()1()()(

m

N

i
i
re

ii
N

N

i

i
re

mi
re

ii
N

m p
CppCmmMmPME  

 
Multicast needs to cache data until all clients receive it correctly.  

Average server side buffer size = current data + Σ(size of sent data waiting for ACK) 
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The multicast analytical results could be used to estimate the bandwidth usage of current 

streams, or to predict the potential server ability of admitting new streams. If multicast is 

supported by the server, our expert control could use these analytical results to design 

effective admission control rules.  

4.3 Summary of Performance Analysis 

In this chapter, we generally analyzed the rule-based expert system and estimated its 

performance. The server computational complexity is quantified to be within the range of 

O(n) and O(n2), where n is the size of the rule base. Considering the configuration of the rule 

base where rules are written for different questions and some of them can never be fired 

together, it is very unlikely that only one rule is fired in a round of search but consequently 

all rules are fired separately during n times of search in a reference. If this situation could not 

happen, then the exponential bound will seldom be reached. Hence we expect that using the 

linear bound for future estimation to be reasonable.  

Based on this assumption, we gave a formula to calculate the monitor interval. The decision 
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of monitor interval is influenced by average service time, requests arrival rate, 

communication overhead, and CPU portion for the monitor. In our design, we suggest to 

allocate less than 10% of the CPU time for the control procedures to maintain satisfactory 

time for transmissions. The formula can be applied to set the control interval as long as we 

know the average service time of requests.  

We employed the M/M/n queueing theory for the estimation of average response time, 

average queue length and blocking probability. Within the two classes of requests in the 

system, the media transmission requests have the superior priority to other non real time 

tasks. The analysis of streaming tasks, as a result, could ignore the influence of other 

disturbing tasks. Thus the system meets the results of M/M/n queue provided in sub-section 

4.2.4. The numerical results with one server showed that a server can support around 99 

customers simultaneously, if each customer generates ten requests in average. From this 

number, the bottleneck of the server capacity is revealed to be the outgoing network 

bandwidth, not the CPU power. So in the last subsection, the overall system capacity was 

estimated by consuming approximately 70% bandwidth of the outgoing link. Bandwidth 

requirement under multicast situation and corresponding server buffer usage are also 

analyzed at the last sub-section.  

From the complexity and capacity analysis in this chapter, the added expert control does not 

decrease the number of client potentially supportable by a normal media streaming server. 

The expert system structure provides us enough flexibility to adjust the monitor interval, the 

service time, and the priority level to limit the control overhead within a reasonable range. 

We will implement the expert server system in the next chapter and conduct a case study to 

test its performance. 
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Chapter 5 Implementation of Rule-Based Expert Server 

System 

In the chapter, the detailed implementation of the rule-based expert server system is 

introduced. All experiments are performed on a test-bed using the parameters obtained from 

real Internet. We investigate several aspects of the expert control performance with around 

1000 rules in the knowledge base. The experimental results are given to show the 

comparisons between basic Apple’s QuickTime Streaming Server (QTSS) and QTSS with 

expert control.   

This chapter is organized as follows. Section 5.1 introduces the test-bed configurations, 

classification of rules, and basic modules of Darwin Streaming Server. Section5.2 gives a 

thorough study of the methods and algorithms used in expert control, followed by a test 

scenarios map and their evaluations in real Internet. The experiments and discussions are 

shown in Section 5.3, followed by a short summary.  

5.1 Introduction 

This section introduces the computer specifications in our test-bed and network topology of 

the experiments, the file format of the rule base and its binary structure after parsing and 

linking, the details of rules in the rule base, and the background information of basic 

QuickTime Streaming Server. They are the fundamental configurations of experiments that 

are going to be presented in the sections afterwards.  

5.1.1 Experiment computer configurations 

The general structure of designed test-bed is shown in Figure 5-1. There are three DELL 
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Precision T5400 PCs; each has 19 virtual machines (VMWare) installed. In the figure, it is 

illustrated as 20 small computers reside on a physical machine. Similarly, two DELL 

Optiplex 755 PCs are selected with 9 virtual machines installed. All virtual computers have 

QuickTime Player, and all physical machines have QTSS. Table 5-1 lists the parameters of 

these PCs. These PCs will be selected and re-configured according to the purpose and 

requirements of each experiment. We will introduce the detailed experimental configurations 

separately in the section of Experiments and Discussions. 

Figure 5-1 Basic structure of test-bed  

 Processor Memory Network Operation System 
DELL Precision T5400 Intel Xeon 7.8GB 1G Fedora 7.0 
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4 CPU@2.83GHz 
DELL Optiplex 755 Intel Quo’2 Quad 

Q7600@2.66GHz 
7.8GB 1G Fedora 7.0 

Shuttle-XPC-SG33G5M Intel Core2 Quad 
Q6600@2.4GHz 

2*2GB 1G Fedora 7.0 

IBM T61p Intel Core2 
Duo@2.4GHz 

2GB 100M Windows XP 

Table 5-1 Device parameters 

5.1.2 Rule Base Implementation 

This sub-section illustrates the real implementation of rules. The rule base consists of around 

1000 rules. Around 40% of them are QoS and congestion control rules. Nearly 10% are 

advertisement playback schedule rules. Around 25% are session management and monitor 

rules. The other 25% are meta-rules, admission control rules, traffic distribution rules, 

resource allocation rules, and buffer management rules. Figure 5-2 shows the rule buckets in 

our rule base. Meta rules are not shown in a bucket because they only have a single function 

to direct the search to one or several proper rule buckets.  
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Figure 5-2 Rule buckets in the rule database 
The rule base was constructed in XML language. As introduced in sub-section 3.1.1, the 

DTD file for rule base is defined as: 

<?xml version="1.0" encoding="UTF-8"?> 

<!ELEMENT rule_base (rule)*> 

<!ELEMENT rule (condition, (rule_call|func_call)*)> 

<!-- Attributes of a rule rule_no: a unique rule number --> 

<!ATTLIST rule rule_no CDATA #REQUIRED> 

<!ATTLIST rule type 

(Meta|StAlloc|ResAlloc|Sched|QoSMana|Monitor) #REQUIRED>   

<!- - - - - - -Definition for Condition - - - - - - - -> 

<!ELEMENT condition (#PCDATA | var | number | func_chk)*> 
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<!ELEMENT var EMPTY> 

<!ATTLIST var name CDATA #REQUIRED> 

<!ELEMENT number EMPTY> 

<!ATTLIST  number value CDATA #REQUIRED> 

<!ELEMENT func_chk (para*)> 

<!ATTLIST func_chk fc_name CDATA #REQUIRED> 

<!-- - - - - - - Definition for Actions - - - - - - - -> 

<!ELEMENT rule_call EMPTY> 

<!ATTLIST rule_call rc_no CDATA #REQUIRED > 

<!ELEMENT func_call (para*)> 

<!ATTLIST func_call fc_name CDATA #REQUIRED > 

<!ELEMENT para EMPTY> 

<!ATTLIST para type (num|var|str) #REQUIRED > 

<!ATTLIST para value CDATA #REQUIRED > 

According to the DTD, rules are written with the following format.   

<rule rule_no="78" type="Monitor"> 

<condition> 

    <func_chk fc_name="GetSePara"> 

     <para value="SeUnderConsi" type="var" />  

     <para value="Status" type="str" />  

    </func_chk> 

    EQ  

    <number value="0" />  

   </condition> 

   <func_call fc_name="TaskGenerator"> 

    <para value="0" type="num" />  

    <para value="ENDSESSION" type="str" />  

   </func_call> 

</rule> 

This rule is used to detect a dumb session. It checks the status of a session. If the status 

equals to 0, that is, no reply from client within TIME_OUT, a session-terminate task is 

generated.  
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The XML rule base is parsed by Expat2.0 and the returned characters are handled by our 

explanation program attached on the expert server. This explanation program combines the 

characters obtained from Expat and parses them into the rule structure defined as follows: 

struct rule_t { 

 int type;   /* The validity of this rule item */ 

 struct cond_t * condition;  /* root of the condition tree */ 

 struct act_t  * action;  /* link list of actions to take */ 

}; 

In the binary structure, each rule contains a rule type, a condition root pointer and an action 

root pointer. The type indicates which group the rule belongs to. The condition part is a 

binary tree, where operators are parents and operands are leaves. The action part is a link list. 

The structure of conditions and actions are shown below: 

/* Node structure for the condition tree */ 

struct cond_t { 

 int type; /*Type of Node, operator/number/variable/function*/  

 int op_id;     /* ID of the operator */ 

 int var_id;    /* variable id */ 

 double value;    /* number value */ 

 int func_no;   /* Function call no */ 

 struct para_t * para; /* parameters for the function */ 

 struct cond_t * left;  

 struct cond_t * right; 

}; 

/* Node structure for the action list */ 

struct act_t{ 

 int func_no;  /* function call number*/ 

 struct para_t * para; /* parameters for the function */ 

 int rule_no;  /* rule call number */ 

 int  type;   /* type of the action, function/rule */ 

 struct act_t * next; /* next action */ 

}; 
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Conditions are evaluated by walking from leaf to root when the online value of variables are 

available during run-time. Actions consist of function call and rule call. All parameters 

referenced by rules and functions called by rules have their unique identity number. For 

consistency, we use functions to modify or check the real-time value of server parameters, 

although these parameters are accessible directly by rules. If a rule needs to be called, the 

corresponding rule number is given; while if a function is called, the function number and the 

parameter link head are passed to the function. The parameter link gives the parameters 

needed by the expected function. Each node in the parameter link is a structure, which 

contains not only the value of the parameter but also the type of it. Refer to the previous 

dumb session detection rule example, the rule number 78 and the rule type ‘Monitor’ is given 

to activate this rule. At the first line of condition part, a function named GetSePara is called 

to check a session’s status value. The two parameters, session number and attribute name, are 

passed to GetSePara function through the ‘para’ link. If the condition is satisfied, the function 

TaskGenerator is called to generate a task to end the unresponsive session. In our 

implementation, we allow nested function calls in passed parameters. 

To make the inference procedure faster, the translated rules are put into a rule table at a fixed 

position decided by its unique rule number given in the XML file. Another look-up table 

maintains the rule numbers belong to each group. All these works finish at the startup of the 

expert server. The rule numbers in a group will be sorted by their reference sequence during 

the first inference. The sorted order is considered to be the most likely sequence pattern for 

future inferences. 

Until now, we have introduced the setup and knowledge-base information for our first type of 

experiment, which is conducted on the local area network. In the next sub-section, we will 
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introduce the platform for the experiments, that is, the QuickTime Streaming Server. 

5.1.3 QuickTime Streaming Server 

Apple's QuickTime Streaming Server (QTSS), also called Darwin Streaming Server, is an 

open source version of the media server technology that allows user to send streaming media 

across the Internet using the standard RTP and RTSP protocols. Streamed media can be 

viewed by both Macintosh and Windows users using QuickTime Player or any other 

application that supports QuickTime or standard MPEG-4 files. The server can be used to 

delivery live media or videos on demand, or broadcast. In the following paragraphs, the 

server structure is illustrated using figure 5-3, which is provided in Apple’s QTSS Modules 

Programming Guide document  [58]. From the figure, QTSS server consists of four parts.  

1) The server’s own Main thread. The Main thread checks to see if the server needs to shut 

down, log status information, or print statistics. 

2) The Idle Task thread. The Idle Task thread manages a queue of tasks that occur 

periodically. There are two types of task queues: timeout tasks and socket tasks. 

3) The Event thread. The Event thread listens for socket events such as a received RTSP 

request or RTP packet and forwards them to a Task thread. 

4) One or more Task threads. Tasks threads receive RTSP and RTP requests from the Event 

thread. Tasks threads forward requests to the appropriate server module for processing 

and send packets to the client. By default, the core server creates one Task thread per 

processor. 
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Figure 5-3 QTSS server structure 

The Streaming Server consists of one parent process that forks a child process, which is the 

core server. The whole server runs by event triggered tasks. Each Task object has two major 

methods: Signal and Run. Signal is called by the server to send an event to a Task object. 

Run is called to give time to the Task for processing the event. As an asynchronous server, 

the communication mechanism for events is performed by generalizing Task objects.  

QTSS uses a shared buffer for all flows. Video data is moved to the buffer when required and 

sent out immediately. The scheduling method it uses is basic round robin, which serves each 

session in a fair and sequential way. The QTSS uses Reliable-UDP and flow control together 

to perform the function of the congestion control. The so called Reliable-UDP is a modified 

protocol that imitates TCP to quantify client satisfactory by asking clients to send back 

acknowledges periodically. Flow control increases or decreases BW allocation by the 

information obtained from RTCP packets.  

Now we compare the QTSS with our expert server on main modules. Obviously, both QTSS 

and the expert server designed in this thesis are event driven. QTSS Event Thread module is 
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equivalent to the Packet Receiver module in the expert server. QTSS Task Thread module 

performs similar functions as Master Control and Session Handler modules in the expert 

server. Besides these similarities, there are differences between the two servers. QTSS is a 

single thread server while the expert server we designed is a multi-task server that contains 

four major threads: Monitor, Master Control, Packet Receiver, and Session Handler. However, 

the major and most important difference is the procedure of making decision. The QTSS is 

traditionally programmed while the expert server refers to the rule base for solutions.  

In the following case study, we will introduce the selected buffer management methods, 

scheduling methods, and congestion control methods used in the experiments.  

5.1.4 Experiments and Evaluations 

We designed five experiments to demonstrate the smart behavior of our expert server in the 

real Internet.  

A. Effective admission control and load balance 

With the heterogeneous capacity of servers, there is an optimal distribution of 

sessions among these servers. However, the incoming requests are randomly issued to 

a server in the server cluster.  It will greatly enhance the whole system capacity if 

requests could be distributed reasonably among servers. Thus, we design four types of 

initial request distributions to compare the load balance function of our expert control 

with the basic QTSS. Admission control is also added to cooperate with QoS 

management and congestion control.  

B. Playback scheduling 

Several videos could be displayed in a scheduled sequence and advertisements could 

be inserted according to content provider’s demand and client profile. This function is 
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enlightened from a project that needs to automatically update the VoD content and 

advertisement playback schedule to their subscribers. The function could be extended 

to a large amount of usages. For example, it may be used to automatically control the 

playback when client device is under different environment and status.   

C. High Definition (HD) streaming rate control 

High definition videos require much larger network resources compare to normal 

videos. They are killer applications on current IP network. However, more and more 

applications such as Cisco Telepresence products ( [83]) require the scenery from each 

party to be as clear as possible, like everybody is in the same conference room. For 

these cases, rate control is crucial to guarantee video quality and avoid congestion. 

We use rate control methods that will be introduced in sub-section 5.2.4 to realize the 

rate control.  

D. Streaming handover 

In our expert server, we consider a challenge scenario that the terminal devices are 

changed during playback and the expert control could perform online streaming 

handover. Cases we consider are the client device switches from a handphone with 

slower IP network to plasma TV display with a fast IP network, or vice versa. 

E. Congestion control 

Congestion control is always the most important issue as long as network resources 

are shared. In our approach, the congestion control is divided into four steps, 

congestion avoidance, congestion mitigation, congestion response, and traffic 

redistribution. The four steps are deployed in sequence as the severe of congestion 

increases.  
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5.2 Experiments 

The performance of the expert server system depends largely on the efficiency of rules and 

methods. Therefore it is difficult to give out uniform experimental results without a standard 

knowledge base. Here we demonstrate the performance of expert control compare with basic 

QTSS server for above designed scenarios. First we introduce the configurations of our test 

bed, the movies, the target performance parameters, and the critical methods and rules used 

for the expert control.  

5.2.1 Experiment Configurations 

Table 5-2 and Table 5-3 list the movie parameters and experimental configurations used in 

our experiments. Stream-1 to stream-3 in Table 5-2 are the same movie tailored to different 

resolutions, in which stream-3 (movie 720p) could be classified as a high definition movie. 

The configurations will be slightly tuned in experiments, which will be future explained in 

the corresponding sub-section. Performance parameters that we plan to measure are shown 

and evaluated in Table 5-4. 

 320 (Stream-1) 480p(Stream-2) 
 Audio Video Audio Video 

Codec MPEG-4 AAC 
LC 

H264 
Main@1.2 

MPEG-4 AAC 
LC 

H264 
Main@3 

Average Rate (kbps) 98 200 205 1925 
Duration 131.2 131.2 131.2 131.2 

Frequency (Hz) 44100 - 44100 - 
resolution - 320 x 172 - 848 x 448 

Target Frame Rate 
(Frames/sec) - 24 - 24 

Size (KB) 4851 34181 
 

 720p(Stream-3) iPhone Keynotes (Stream-4) 
 Audio Video Audio Video 

Codec MPEG-4 AAC 
LC 

H264 
Main@3.1 

MPEG-4 AAC 
LC 

H264 
Baseline@3 

Average Rate (kbps) 457 6026 128 1504 
Duration 131.2 131.2 6325.208 6325.198 
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Frequency (Hz) 48000 - 44100 - 
resolution - 1280 x 688 - 640 x 352 

Target Frame Rate 
(Frames/sec) - 24 - 30 

Size (KB) 103896 4851 
 

Table 5-2 Parameters of movies 

Metrics Value Evaluation 
Protocols Session setup: RTSP 

(RTP & RTCP)/UDP 
Used in commercial servers 

Router 0~2 Use computers to emulate parallel routes with 
various settings 

Concurrent 
connections 

70~72 Number of nodes in test-bed 

Playback rate 300kbps~6Mbps Standard definition movie 
Loss rate LAN/ WAN/ Wireless 

(802.11g) 
Test on real Internet/ Wireless network 

Delay LAN(0ms~10ms)/ 
WAN(100ms~300ms) 

Test on real Internet/ Wireless network 

 
Table 5-3 Experiment configurations 

Measure 
parameters 

Explanation Evaluation 

Connection 
success rate 

(CSR) 

The ratio of active video 
streams / the total 

attempted video streams 

To testify the effective admission control and 
traffic distribution 

Join latency Time to start a session Startup delay 
Throughput Bps It reflects the streaming characteristics, the 

smoothness of the flow, and the bit-rate. 
Client buffer 
occupancy 

MB It reflects the problem of underflow / overflow 

Inter-arrival 
Jitter 

(us) Smoothness of the streaming 

CPU taken by 
expert system 

% Overhead test (run time QoS management 
overhead, measured every 100ms) 

Video 
presentation 

quality 

Resolution, corrupt 
frames, frame rate 

User side quality measurement 

Table 5-4 Measurement parameters 

The measurements in Table 5-4 are analyzed using captured packets from WireShark network 

packet analyzer. In Table 5-3, the loss rate and delay is extracted from RTCP reports. The 

detailed calculation could be found in RFC 3550. Here we only explain the loss rate 
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calculation because there are different ways to compute it in the literature.  

First, the number of packets expected can be computed by the receiver as the difference 

between the highest sequence number received (s->max_seq) and the first sequence number 

received (s->base_seq).  Since the sequence number is only 16 bits and will wrap around, it is 

necessary to extend the highest sequence number with the (shifted) count of sequence 

number wraparounds (s->cycles). That is: 

      extended_max = s->cycles + s->max_seq; 

      expected = extended_max - s->base_seq + 1; 

   The number of packets lost is defined to be the number of packets expected less the number 

of packets actually received: 

      lost = expected - s->received; 

Since this signed number is carried in 24 bits, it should be clamped at 0x7fffff for positive 

loss or 0x800000 for negative loss rather than wrapping around. The fraction of packets lost 

during the last reporting interval (since the previous SR or RR packet was sent) is calculated 

from differences in the expected and received packet counts across the interval, where 

expected_prior and received_prior are the values saved when the previous reception report 

was generated: 

      expected_interval = expected - s->expected_prior; 

      s->expected_prior = expected; 

      received_interval = s->received - s->received_prior; 

      s->received_prior = s->received; 

      lost_interval = expected_interval - received_interval; 

      if (expected_interval==0 || lost_interval<=0) fraction = 0; 

      else fraction = (lost_interval << 8) / expected_interval; 

The expected interval is calculated in the following way. 

1. If the number of senders is less than or equal to 25% of the membership (members), the 
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interval depends on whether the participant is a sender or not (based on the value of we_sent). 

If the participant is a sender (we_sent true), the constant C is set to the average RTCP packet 

size (avg_rtcp_size) divided by 25% of the RTCP bandwidth (rtcp_bw), and the constant n is 

set to the number of senders.  If we_sent is not true, the constant C is set to the average RTCP 

packet size divided by 75% of the RTCP bandwidth.  The constant n is set to the number of 

receivers (members - senders).  If the number of senders is greater than 25%, senders and 

receivers are treated together. The constant C is set to the average RTCP packet size divided 

by the total RTCP bandwidth and n is set to the total number of members.   

2. If the participant has not yet sent an RTCP packet (the variable initial is true), the constant 

Tmin is set to 2.5 seconds; otherwise it is set to 5 seconds. 

3. The deterministic calculated interval Td is set to max{Tmin, n*C}. 

4. The calculated interval T is set to a number uniformly distributed between 0.5 and 1.5 

times the deterministic calculated interval. 

5. The resulting value of T is divided by e-3/2=1.21828 to compensate for the fact that the 

timer reconsideration algorithm converges to a value of the RTCP bandwidth below the 

intended average. 

This procedure results in an interval which is random, but which, on average, gives at least 

25% of the RTCP bandwidth to senders and the rest to receivers. If the senders constitute 

more than one quarter of the membership, this procedure splits the bandwidth equally among 

all participants, on average. 

5.2.2 Buffer management methods 

We choose prioritized-RED and layered drop as the buffer management method. RED, as 

introduced in Chapter 2, is an efficient algorithm on managing routers buffers in public 
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network. However, it is not suitable for multimedia data transmission because it drops 

packets randomly without differentiating the importance of frames. In our implementation, 

we mark packets of different frames as different priority and discard the low priority packets 

first when necessary. The threshold for starting dropping and the dropping probability is 

adjusted by congestion control rules.  

5.2.3 Packet scheduling methods 

Three scheduling methods are implemented in the expert server. They are round robin (RR), 

weighted round robin (WRR) ( [59]), and priority queuing. In the expert system, the weight 

for WRR scheduler is set during session setup stage and maintained on-the-fly by the QoS 

management rules and congestion control rules. The priority queuing method divides 

sessions into a premier and a normal group. A certain amount of bandwidth is reserved for 

sessions in the premier group while normal sessions receive only a best effort service.  

It should be noted that the expert system decides more than merely selecting a scheduling 

algorithm for sessions. It creates smart combinations of those algorithms to make the 

transmission efficient. For example we can serve the premier sessions in an RR way for 

fairness while the normal sessions are served in a WRR way. Furthermore, the weight of each 

session could be changed depending on the availability of bandwidth and the historical 

performance of the session.  

5.2.4 Rate control algorithms 

We select four rate control methods for our case study. They are DLQ ( [60]), TFRC 

( [61], [62]), EMKC ( [63], [64], [65], [66]), basic AIMD ( [67]). The brief comparison of these 

methods is given in Table 5-5. The notations are listed below the table. 
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TFRC and AIMD are window based congestion control while DLQ and EMKC are rate 

based. TFRC performs satisfactorily under most situations. AIMD is suitable for a network 

that occasionally encounters sudden parameter change. It is too slow for wired high 

throughput media streaming. DLQ is a client oriented rate control method we designed 

(Chapter 6) that can maintain high client buffer occupancy and reduce the jitter problem, but 

it does not consider the intermediate network conditions. EMKC obtains the overall system 

optimality by maximizing individual resource utility. The drawback is that it is delay 

sensitive and not always stable under heterogeneous environments. 

                   Response Function Advantages Disadvantages 
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Table 5-5 Comparison of congestion control methods used in expert server system 

p: loss rate   S or s: packet size 

C: bandwidth capacity   R: sending rate 

W: window size   RTT: round trip time 

RTO: request timed out  Subscript n or i: discrete sample points 

Notice that most provided congestion control methods in Table 5-5 take loss rate p as the 
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input, especially for EMKC, who take p as the only parameter of the environment. Actually, 

loss rate p is the most important parameter that describes the congestion situation. Higher 

loss rate is usually caused by increasing congestions in the intermediate networks. However, 

the loss rate carried by feedback packets sometimes are not precisely calculated due to 

measurement noise and are often delayed by intermediate network. Therefore we add the 

Kalman Filter ( [69]) in the expert system to predict the p value. We move the design of 

Kalman Filter into appendix A and only give out the simulation result for EMKC in Figure 5-

4 since the main purpose of our work is not improve a specific congestion control algorithm. 

The EMKC with Kalman Filter is called EMKC_KF. From the Figure 5-4, EMKC_KF is 

more stable than EMKC under violated noise and delay. In the implementation, we use 

EMKC_KF instead of EMKC.  
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Number of competitive streams = 16 

 

Figure 5-4 Performance of EMKC_KF 

These algorithms are used for congestion avoidance. To take the advantage of them and to 

avoid their shortcomings, the expert system selects them according to the network condition 
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it encountered and the client information availability. Under the usual wired network 

conditions, TFRC achieves satisfactory performance. When p increases to a higher value, 

TFRC generates a very small sending rate which may cause the interrupt of media streaming. 

Now the EMKC_KF could be switch on and takes over the control. If client buffer 

occupancy could be provided during streaming, DLQ is turned on for an optimal sending 

procedure. In the case of wireless application where loss problem is seriously, AIMD with 

retransmission mechanism is a suitable method to guarantee the quality of transmission. In 

our implementation, only I frame packets need ACKs and will be retransmitted. Finally, we 

should note that the selection and switching among these algorithms are decided from the 

statistics for a certain time, not by any instant value. Furthermore, these algorithms are 

applied to only streaming sessions for congestion avoidance. If congestion happened due to 

background traffic or network/ client jam, expert control has to turn on other mechanisms to 

handle it. The detail congestion control steps and implementations will be introduced in sub-

section 5.3.5. 

5.3 Results and Discussions 

For streaming applications, the main criteria of performance are high CSR (Connection 

Success Rate), fast session setup, smooth throughput, small delay, low jitter, and acceptable 

control overhead. We compare these parameters for QTSS with and without expert control in 

front of different problems in this section.  

5.3.1 Effective Admission Control and Load Balance 

Usually, admission control is implemented in QoS-enabled networks and it requires the 

cooperation of routers and servers. Our target is to enhance the performance of streaming 
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server, not to improve the routers, so the experiment in this sub-section is to test the expert 

system can distribute traffic reasonably among servers and to test the startup time when 

system load increases. Admission criteria are set based on the analysis of available system 

capability and prediction of the new session traffic requirements. The test-bed configuration 

is shown in Figure 5-5. Four computers (IBM T40, DELL Precision T5400, two Shuttle 

XPCs) serve as the streaming server, denoted as S1 to S4. Two DELL Optiplex755 with 9 

virtual machines in each and three DELL PrecisionT5400 with 19 virtual machines in each 

serve as clients. All together there are 80 clients. Four servers are connected to each other 

through a LAN, and they are allocated with different parameters using Linux TC network 

simulator (Table 5-6). Eighty nodes send movie requests to the target server with predefined 

distribution in Table 5-6, one session added every 10 seconds. The delay between S1 and S2, 

S2 and S3, S3 and S4, are 100ms, 20ms, 50ms respectively.  

When a joining new session exceeds the capacity of the server, QTSS still admits the session 

and degrades all current sessions. In this experiment, we tried four scenarios. For example in 

the first scenario, 100% requests are sent to server 1. In the second scenario, 50% clients 

send request to server 1 and the rest 50% send to server 2. We conducted these four scenarios 

with basic QTSS and QTSS with expert control, the sessions on each server are recorded 

after stabilization.  

Figure 5-6 shows the stable traffic distributions of QTSS with and without expert control for 

four scenarios. Note that the total number of sessions on all servers may be smaller than the 

total number of clients requested. For example in the left upper picture in Figure 5-6, 

altogether only 35 sessions were recorded at server 1 with the basic QTSS (blue column), 

although all 80 clients issued the request. This is because the adding of the 36th session 
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caused the previous streams to be discontinuous and thus unable to be watched. So we take 

the maximum number of sessions supportable by basic QTSS under this scenario to be 35. 

 

Figure 5-5 Test-bed configuration for admission control and load balance 

Servers Bandwidth RTT Loss Rate Scenarios S1 S2 S3 S4 
S1 100M 200ms 0.1 Scenario1 100% 0 0 0 
S2 100M 40ms 0.01 Scenario2 50% 50% 0 0 
S3 50M 100ms 0.1 Scenario3 40% 20% 40% 0 
S4 50M 20ms 0.001 Scenario4 25% 25% 25% 25% 

Table 5-6 Server configurations and load distribution 
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Figure 5-6 Load balance of QTSS with / without expert control 

The requests reaching the QTSS server are processed locally and served in a best effort 

manner. The basic QTSS has no information about other servers in the same cluster, so the 

four servers are independent of each other, although they are connected. In Scenario 1, all 80 

requests are issued to S1 and QTSS can only support around 35 sessions. Its CSR is 43.75%. 

In Scenario 2, requests are divided into half-half and issued separately to S1 and S2. Because 

S1 and S2 have the same bandwidth capacity, they accepted nearly the same number of 

requests. As a result, totally 70 requests are successful, CSR is 87.5%. In the third scenario, 

32 requests went to S1, 16 requests went to S2, and 32 requests went to S3. S1 and S2 have 

enough capacity to accept all coming requests, but S3 could only support around 16 sessions, 

making the altogether CSR to be 80%. The rest 16 sessions have to wait until current 

sessions finished, although S1 and S2 have spare capacity to support them. Even in Scenario 

4 where requests are evenly distributed, the CSR of QTSS reaches up to 90%, still 8 requests 

sent to S3 and S4 can not get the service.  

On the contrary, no matter which server the requests were initially sent, QTSS with expert 

control will reasonably distribute them among server according to the server and the 
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intermediate link parameters. The under-layer execution is like this. Servers, S1 to S4, 

exchange messages about their available bandwidth, load level, etc. The RTT between two 

servers are tested with the monitor procedure, which runs every 100ms. Loss rate is initially 

set to zero and updated with RTCP client report after session established. In our rule base, the 

traffic distribution rules will first estimate the available bandwidth of all servers from their 

current load level. For those servers that have enough capacity to support the new request, it 

calculates a weighted sum for the link delay and loss rate. The lower the value is; the higher 

chance the corresponding server is selected. After deciding the server, new request will be 

forward to that server, until an accept ACK message is received. If a Reject message is 

received other than ACK, it means the target server is busy and cannot accept the new request. 

For example the server has other background FTP traffic running. In such a case, the expert 

control will select the second choice and try again. Meanwhile it updates the patient user with 

messages. If a new request is rejected four times by remote servers and the local server that 

the request initially sent cannot support it, a reject decision will be made and sent to the user. 

From the experimental results in Figure 5-6, QTSS with expert control has approximately 

identical load distribution for four scenarios, and their CSR are all 100%.   

Another important parameter to scale the server performance is startup delay. Strictly, the 

startup delay is defined as the time between pressing the START button and the beginning of 

the movie play. Our startup time is calculated by capturing the first RTSP request packet out 

and the first RTP data packet returned on each client. It is shorter than the real startup delay 

because it does not count the buffering time at client device before playing. The startup 

delays of these scenarios are shown in figure 5-7. We want to use it to investigate the 

overhead brought by expert server when performing admission control and load balance.  
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Figure 5-7 Startup delay during load balancing 

As we illustrated in previous paragraphs, basic QTSS processes requests locally. When the 

new coming request exceeds the capacity of the server, it will not be forwarded to the other 

server that has enough capacity to handle it. Therefore in the four figures in Figure 5-7, the 

startup delay under basic QTSS control (blue line) is quite stable at 145ms, and most time it 

is lower than or overlap the one (red line) with expert control. The blue lines are not 

continuous to the end of the x-axis because we only show the startup time for accepted 

sessions. Those requests that cannot be supported by the server are not counted into 

calculation.  

For QTSS with expert control, a new request may be transferred to another server when the 

current server capacity is not the best choice. When such a transfer happens, the join 

procedure of a new session is lengthened, and the startup time becomes longer. That is the 

reason for the curves shooting up at certain times in four pictures with expert server control. 

The more hops required to transfer the request, the longer time it takes before starting the 
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streaming. In our experiments, the requests are issued from S1 to S4 sequentially. If a request 

needs to be transferred to S2, S1 forwards the request to S2 and wait for ACK or Reject 

message. If S2 cannot handle the request, S1 has to ask S3 or S4 as a second choice. In these 

cases more time is taken by such kind of re-forward processes. Reflected from results, the 

startup time may rise to several different levels.  

Before we explain the curve of each picture, we should notice that the average delay between 

S1 S2, S2 S3, S3 S4 is 100ms, 20ms, 50ms respectively (Table 5-6). In scenario 1, the S1 

accepted 15 requests. From request 16, S2 is found to be a better choice to serve the session, 

so it forwarded the following requests to S2 until S2 saturated at 35 sessions on it. Then the 

S1 forward the request to the farer S3 for another 13 requests and the most far away S4 17 

sessions. In the second scenario, S1 accepted 15 sessions, and then forwarded the rest 25 

requests to S2. S2 accepted these requests. After this, S2 has 40 new requests coming but it 

can only support 10 more on itself. Therefore it forwarded 13 requests to S3 and 17 requests 

to S4. Because the delay between S2 S3 and S2 S4 is much lower than those for S1, the 

startup delays for these forwards took less than half the time as previous forwards from S1 to 

S3 and S4. Similarly in scenario 3, S1 forwarded from request 16 to 32 to S2; S2 accepted 

the following 16 requests issued to it; S3 accepted 13 requests on its own and forwarded 2 

requests to S2 and 17 requests to S4. In scenario 4, S1 forwarded 5 requests to S2; S2 

accepted these forwarded requests and all 20 requests issued to it. S3 accepted 13 requests 

originally issued to it and forwarded 7 to S2. Similarly S4 accepted 17 requests and 

forwarded 3 to S2. Since each expert server knows the capacity of others and it runs the same 

rule base as others, they should make the same decision for traffic distribution and load 

balance. The maximum delay brought by expert control in the experiments is 582ms, which 
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is acceptable as the tradeoff for the performance enhancement.  

5.3.2 Playback Scheduling  

Most commercial VoD systems need to insert advertisements to make money. These Ads 

could be inserted randomly in between the movie. However, some advertisements are only 

suitable to a specific group of people, and they may need to compete with other content 

providers for limited time slots. In this case, the expert control is a good solution to 

automatically solve the schedule problem without interference of maintenance engineers, 

especially for close system VoD. For example, JCDecaux company did a market search ( [70]), 

finding that advertisement should be presented according to the clients’ nationalities, genders 

and ages. We use their research results and add the race and occupation as optional input 

parameters to decide the advertisement selection, sequence and frequency. We did not 

provide the streaming results for advertisement schedule because it is difficult to present the 

results in a static way. Here are the example profiles provided to the expert server and an 

example schedule finally generated. 

Available Information Representation 

Client Profile Client Demographics File 

Content Profile Content Description Files 

Advertiser Profile Ad Description Files 

Table 5-7 Profiles for playback schedule 

Name Gender Age Nationality Race Occupancy 
HIEW KAR HON Male 45 Singapore Chinese Manager 
YEO LEE HUA Female 28 Singapore Chinese Accountant 

RUSMA IBRAHIM Male 32 India India Engineer 
… … … … … … 

Table 5-8 Client profile example 

The expert server will analyze the client profile and generate a summary file like: 
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Table 5-9 Sample statistic file of subscribers 

Movie/ Ad. Language Length Preferred Ages Gender Occupation 
M_Spiderman English 90 mins 12 ~ 45 All All 
M_Enchanted English 75 mins 12 ~ 45 Female All 
M_TheMyth Chinese 100 mins 18 ~ 60 All All 

A_ToughBook English 30 sec Above 18 All Management
A_MacDonald English/Chinese 10 sec All All All 

… …  … … … 

Table 5-10 Example of a content profile 

  Reach Frequency
Adults 19.9 64% 
Age 15-24  20.9  63% 
Age 25-34  19.9 64% 
Age 35-44  22.4  62% 
Age 45-54  26.2  63% 
Age 55+  10.9  66% 
Men  20.3  66% 
Women  19.3  61% 

Table 5-11 Example of an advertiser profile 

The advertiser profile is provided by advertisement companies, specifying the percentage of 

age group they want to reach and the frequency these Ads are expected to show. Our rules are 

designed to set the weight for each advertisement according to above profiles. Finally the 

server will calculate the sum weight. The top ones will be selected and inserted into the 
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demanded movie in sequence. Here is a sample output playback schedule table and several 

snapshots of different schedules.  

Playback Schedule (Sample) 

1 Welcome Video 30 secs 

2 ToughBook-2008-June 30 secs 

3 McDonald-2008-June 10 secs 

4 Spiderman3 Part 1/5 20 mins 

5 Ad12-2008-June 10 secs 

6 Ad14-2008-June 30 secs 

7 Spiderman3 Part 2/5 20 mins 

8 Cosmetic Ads. 20 secs 

9 MariFrance Bodyline Ads. 40 secs 

10 Spiderman3 Part 3/5 20 mins 

… …… … 

Table 5-12 Sample output playback schedule 

 
Figure 5-8 Playback schedule examples 

The playback schedule could also be applied in another way that scheduled based on 

parameters like device screen size, the signal strength, the device battery life, etc. This 

method has been used in some commercial streaming servers. They ask users to select the 
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link speed, whether they are using ADSL, modem or LAN. Then the server chooses the size 

of movie file to be transmitted. The proposed expert server extended the scope of such 

scheduling to broader areas, and realized the schedule in a completely automatic way.  

5.3.3 HD Streaming Rate Control 

These HD streams, required high sending rate, will greatly impact the network traffic load, so 

it is important to perform effective rate control for these HD streaming. In basic QTSS, they 

have a rate control mechanism called reliable-UDP. It starts sending from a very low bit rate; 

then adjusts the subsequent rates based on a service-feedback byte from RTCP receiver report. 

It is sufficient for low bit-rate streams like stream-1(movie 320) and stream-2 (movie 480p), 

but simple for HD streams like stream-3 (movie 720p), which has high throughput 

fluctuations. Thus, we added the algorithms in Table 5-5 to avoid congestion for these 

streams. The major congestion avoidance rules are written like this. If the router could 

provide feedback regarding the previous loss, EMKC is applied to share and maximize 

bandwidth utilization among all streams based on the subscription fee paid by the client. For 

client who can send its information to the server, TFRC is used to compete with other TCP 

traffic fairly but friendly on routers along the route. DLQ is also turned on to cooperate with 

TFRC for smooth throughput and to guarantee to overflow or underflow of client buffer. If 

unstable wireless network is the physical layer, the AIMD is used, and only I frames will be 

scheduled for retransmission if loss happened. Here, DLQ is turned on only when client 

buffer occupancy could be provided. It is also used as a reference to avoid client buffer 

overflow and underflow. Figure 5-9 compares the throughput with and without expert rate 

control for stream-3 (movie 720p). 
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Figure 5-9 Client side throughputs with and without expert control 

The left picture of Figure 5-9 shows the throughput under basic QTSS control (purple) or 

with EMKC control. The throughput with basic QTSS control fluctuates within a range of 

2Mbps (5.2Mbps to 7.2Mbps) while the throughput with EMKC changes within 0.7Mbps 

(6Mbps to 6.7Mbps), which is much smaller. The time consumed before stabilization with 

EMKC control (around 2s) is only a quarter as that with QTSS control (around 8s). The right 

picture in this figure compares the throughput under basic QTSS or pure or TFRC and DLQ 

control. It illustrates that the smoothness of stream increases from QTSS control, TFRC 

control, and combined control of TFRC and DLQ, and the raising time before stabilization 

increases reversely. The phenomenon happened because the basic QTSS and our expert 

control have different abilities to adapt their sending rate under a fluctuating environment. 

Basic QTSS calculates sending rate only according to satisfactory byte in RTCP receiver 

report, while the expert system takes into consideration the traffic demand, the available 

network bandwidth, the previous sending rate, and the client situation. When loss rate or RTT 

changes and influent the QuickTime playback quality, QTSS hurriedly changes its sending 

rate to compensate the changes. The expert system, on the other hand, updates the new p 

value and the demand data size of client and calculates whether the current sending rate can 

still meet the requirement of client under new environment settings. If the requirement can be 
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met, the current sending rate is carried on. If necessary, the expert system will switch on the 

QoS mechanism to change the TOS simultaneously, in stead of changing the sending rate, in 

response to the changes of loss rate. In this way, the client can receive a smoother media flow 

with less buffer overflow or underflow problems. Since the client side player is not open 

source software, we use Wireshark to capture the incoming data size and estimate the buffer 

occupancy by  
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S(t) is the client buffer occupancy at a certain time t 

Sd is the total size of data received until time T 

Sh is the total size of packet header received until time T 

rpb is the playback rate at time t 

Using Stream-1 (movie 320), the network delay is set to 20ms with 5ms variation, and the 

loss rate is 0.1%. The total client side playback-buffer size is set to 30MB. Using DLQ 

method, the client buffer utilization with and without expert control is shown in Figure 5-10.  
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Figure 5-10 Client buffer utilization of QTSS with/without expert control 
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To prevent overflow, the expert server used only around 60% of the maximum client buffer 

allocated for media receiving. During the transmission, it traced the usage of client buffer 

from client feedback packets. It is obvious that the client buffer occupancy fluctuated 

randomly with the playback rate under basic QTSS control, but it became quite smooth when 

expert control was added. This is because the basic QTSS does not consider the client buffer 

status when deciding the sending rate. It only refers to one RTCP byte about client 

satisfaction. As long as the playback is continuous, it will not adjust its sending rate. On the 

other hand, expert system can detect client buffer overflow or underflow problems from low 

level client feedback. At the same time, it checks the movie characteristics and predicts the 

data consumption at client side. Within the bandwidth limitation that the network could 

provide, an optimal sending rate is decided to guarantee the stability of client buffer 

occupancy without overflow. In this test, the expert control used 60% allocated buffer to 

calculate its optimal sending rate. Actually, if underflow happens frequently, the expert 

system may increase the client buffer size parameter to 70% or 80% of total allocated size. If 

overflow happens frequently, the client buffer parameter is decrease to a percentage less than 

60%. Such a kind of dynamic adjustment performed the same way as an expert controlling 

the server with its empirical knowledge. It guarantees the server’s efficiency given any client 

device. The small ripple of client buffer may seem to be not a crucial performance 

enhancement, but it will provide enough space for sudden bandwidth changes, especially 

during streaming handover that will be shown in sub-section 5.3.4. 

5.3.4 Streaming Handover 

In literature, researchers are investigating seamless handover when the client switches among 

different networks during transmission (e.g. between WLAN and Cellular network  [71]). In 
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our expert server, we will consider a more challenge scenario that the terminal devices are 

changed during playback and the expert control could perform online streaming handover. 

Consider the cases that the client device switches from the slower hand phone streaming to a 

faster network with plasma TV display, or vice versa. These kinds of handover require the 

server support for signaling and movie transfer. In our test, we use the IBM laptop as the 

original terminal user to simulate the hand phone streaming. When a handover signaling is 

issued to the server, the playing movie will be automatically transferred to another terminal 

with a large plasma TV. An appropriate resolution of movie will be selected for the new 

terminal. The test bed is set as in figure 5-11. We use a shuttle XPC as the switch. The delay 

and loss rate are on-the-spot tested value.  

 
Figure 5-11 Test bed configuration of streaming handover experiments 

Because the handover from hand phone to plasma TV or handover from plasma TV to hand 

phone are invertible process, we only illustrate one case and provide the results for both cases. 

The results of experiments are shown from Figure 5-12 to Figure 5-14. 
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Figure 5-12 RTT and Throughput during streaming handover (wireless  wire) 
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Figure 5-13 RTT and Throughput during streaming handover (wire  wireless) 
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Figure 5-14 CPU-utilization during streaming handover 

(Left: wireless  wire; Right: wire wireless) 

In Figure 5-12 left picture, the server received an RTSP-like handover request at 21s 

indicating the target device IP, frame number, and desired resolution for handover. Then the 

server started handshaking with the new device and test its RTT value. The overall handover 

took about 5 seconds to finish, including the new startup buffer time. The sequence of three 
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party handshaking is shown below. 

 
Figure 5-15 Handover signaling from wireless to wire devices 

From Figure 5-12 right picture, when the handover happened at 21s, the server continued the 

original streaming to the wireless device; meanwhile it started to handshake and to buffer the 

required data at plasma TV. When the buffer procedure completed at 26s, the original session 

is shut down and the new high-resolution session began to play. The throughput is changed 

from stream-1 (movie 320) to stream-2 (movie 480p). During the handover, the server CPU 

utilization increased twice as usual. The overhead is temporarily increased to 25%.  

There are other ways to accomplish the handover, for example trans-coding introduced in 

 [71]. From this paper, the handover handled by trans-coding will take 50 seconds to finish. It 

is too long to wait, so we did not deploy it in our implementation. Our approach is to store 

several files with different resolution. If handover is needed, a new resolution file is selected 

and the file pointer is relocated at the same frame as in the original file.  

5.3.5 Congestion Control 

The congestion control in expert server could be divided into several steps: congestion 

avoidance, congestion mitigation, congestion response, and session re-distribution. 
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Congestion avoidance couples admission control and RTCP rate control mechanism to 

cautiously avoid congestion. However, if the streaming do becomes congested, the expert 

server congestion control needs to start prioritize-RED to alleviate it. If the severe situation 

continues, the expert control will react according to the congested location. That is, if it is 

client side or intermediate network congested, servers could only dramatically reduce the 

traffic demand to cooperate on mitigating the problem, but it cannot solve the congestion 

problem in itself. On the contrary, if congestion happens at server side, the server could take 

full responsibility and get itself out from it by re-distribute the session. Thus in this section, 

we are going to conduct our experiments for these congestion control steps. 

 Step 1: Congestion Avoidance  

The first step is to use congestion control algorithms to avoid transmission jam under normal 

situation. We have introduced the reliable-UDP in basic QTSS to control the sending rate 

according to RTCP feedback. This mechanism is not needed when network load is light, so 

QTSS provides the choice to start this function or not with a byte specified in RTSP requests. 

This simple congestion control is good enough for small movie streams, for example stream-

1 (movie320) or stream-2 (movie480), but as we introduced in sub-section 5.3.3, it has 

problems like long start up time and large throughput fluctuations for high definition movies. 

To make the control procedure smarter and more flexible, our congestion avoidance rules are 

implemented like this. When the loss rate is less than 1%, reliable-UDP is disabled. The rules 

will enable it only when the loss rate increases above 1%. For HD content, reliable-UDP is 

always disabled, regardless the loss rate. Instead, the HD streaming rate control mechanism 

introduced in sub-section 5.3.3 is applied. 
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Step 2: Congestion Mitigation 

When transmission encounters a loss rate that is larger than 5% and the mean RTT is 1.5 

times as before, it is very likely that the congestion is forming. To mitigate the network load, 

the expert server starts prioritized-RED to drop some unimportant frame packets. Meanwhile, 

the packet for I frame is marked to be the highest-priority TOS as QoS reference for 

intermediate network. Figure 5-16 illustrated the real network test for this case. This test is 

done between Singapore and Chicago. The client at Chicago sent requests to the server at 

Singapore. The intermediate network is public Internet. All tests were done with real network, 

where un-congested test was done at morning and congested test done at 8pm in Singapore. 

In the morning, the public Internet at server side is not congested while at 8 pm, the Internet 

is terribly congested. We provide this test to verify the real congestion mitigation ability of 

the expert server. 

 

Figure 5-16 Test configurations for congestion mitigation 

We chose the movie of Apple CEO Steve Jobs’ keynote (Stream-4) for testing. This keynote 

was addressed for iPhone in Macworld Conference & Expo 2007. The traffic under different 

network conditions was analyzed using the WireShark Packet Analyzer. Figure 5-17 shows 

the video effects and throughputs under light-load network. In the figure, the left side picture 

is the snapshot of the movie with basic QTSS control and the right side picture with the 

expert system control. The two pictures have nearly identical resolution and playback speed. 

Both of them are clear and smooth.  
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Figure 5-17 Basic QTSS streaming video effects without/with Expert System 

 

Figure 5-18 Basic QTSS throughputs without/with Expert System 

If we examine their throughputs, as shown in figure 5-18, we will see that their traffic is also 

similar. The upper picture in figure 5-18 is the throughput using basic QTSS server while the 

lower picture is the one with expert system control.  Both of them have an average 
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throughput of around 70 packets per second, which is approximately 0.85Mbps. 

We now change to a slower network and add heavy background traffic to compete for the 

bandwidth.  This traffic was other randomly generated streaming applications. The video 

effects and the throughputs of the two systems are shown in figure 5-19 and figure 5-20 

respectively. Using basic QTSS, the streamed video under insufficient bandwidth suffered 

seriously from jitters. The movie is discontinuous with occasionally corrupted pictures, like 

the left side picture in figure 5-19. It is impossible to recognize what is really on the screen 

when Mr. Jobs introducing the iPhone. However, the video effect with expert control is more 

acceptable. It lowered the transmission speed and discarded some unimportant frames to save 

bandwidth. Although the playback is also slower than normal situation, it indeed provided a 

continuous stream with recognizable pictures.  

 

Figure 5-19 QTSS streaming effects during congestion without/with Expert System 

Throughput analysis is shown in figure 5-20. The upper picture is the throughput of QTSS 

with expert control and the lower picture is the one under basic QTSS. As introduced at the 

beginning of this section, the QTSS uses reliable-UDP as its congestion control mechanism. 

The reliable-UDP imitates the behavior of TCP streams and relies on feedback information to 

adjust the sending rate. Therefore the basic QTSS behaved like TCP flows when network 
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bandwidth is not sufficient. In figure 5-20 (lower picture), the reliable-UDP control always 

tries to raise its sending rate until receiving bad-performance feedback from the client. Then 

it suddenly resets its delivery speed to alleviate the congestion. Such kind of rate fluctuations 

happened along the transmission, which made the playback process discontinuous.  

 

 

Figure 5-20 QTSS throughput under congestion (with/ without Expert Control) 

The expert control detected the insufficiency of available bandwidth and lowered its sending 

rate at the beginning of transmission. It switched on movie quality filters for outgoing media 

packets, sending only the base layer. This will cause the reconstructed picture blurred (right 

picture in figure 5-19), yet it is more acceptable compared to have periodically corrupted 

pictures during the playback. The drop threshold and drop percentage were decided by some 

heuristic rules, which shall be written and adjusted by experienced media expert.  
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Step 3: Congestion Response 

If congestion happened, and the expert server load is moderate, it means the congestion 

happened at intermediate network or client side. In this case, only drop frames are not 

enough to help. The expert server would intensively decrease its traffic demand by delivering 

a lower resolution file of the same movie. The client side congestion control test could be 

illustrated with Figure 5-21. 

 

Figure 5-21 Congestion response experimental configurations 

Figure 5-21 shows a case when congestion happened when a large amount of FTP traffic 

started through the same router. In this case, the streaming session may encounter lager jitter 

and losses although streaming server does not have a high load level. If such kind of 

congestion is detected, the expert control will handle the QTSS to perform a resolution 

adjustment. Initially stream-2 (movie 480p) is used. The related results are shown in Figure 

5-22 and Figure 5-23. 

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140

Time (Sec)

R
TT

 (m
s)

Stream 2 (Congestion)
Stream 1 (Congestion)
Stream 1
Stream 2

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5 10 15 20 25 30 36 45 55 64 74 83 93 102 112 118 121 125 128

Time (Sec)

Th
ro

ug
hp

ut
 (k

bp
s)

Throughput

 

Figure 5-22 RTT and throughput during client/network congestion 
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Figure 5-23 Jitter and CPU-utilization during client/network congestion 

We started the expert control at around 28s. Before the expert control is switched on, the 

system has been congested for a while. In Figure 5-22 right picture, the throughput before 

32s did not reach the required level for stream-2, and the loss rate at that time period is up to 

50%. After the expert control was turned on, it detected that the congestion was already 

severe and was not due to the server side jam. It rescheduled a lower resolution movie 

(stream-1) to help alleviating the network or client side congestion. The throughput and jitter 

from 32s to 112s clearly shown such a movie change. When congestion past at 105s, 

represented by sharply decreased RTT and loss rate, the expert control schedule a recover 

procedure to change the resolution of stream back to the original one (stream-2). The CPU 

utilization during movie switches shot up to 25% temporarily for less than 100ms. 

 

Figure 5-24 Signaling during handover from high to low resolution movies 
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Step 4: Session Re-distribution 

If congestion at the server side local network is detected, the expert server could transfer the 

session to another server. In Figure 5-25, red dotted line is congested due to a large amount of 

background traffic from server 1 out. The expert control selects and contacts another server 2 

to take over the current session(s). Movie-320 is used in this experiment. The background 

traffic and the server outgoing parameters are listed in Table 5-13. 

 

Figure 5-25 Test bed configuration for session re-distribution  

Parameter \ Server S1 S2 S3 
Available Bandwidth 10M 100M 50M 
Delay 120ms 40ms 100ms 
Background traffic 8Mbps FTP 2Mbps FTP 4Mbps FTP 

Table 5-13 Setup parameters of session re-distribution test 

The results are obtained at client side and shown in Figure 5-26 and Figure 5-27. Throughput 

and jitter are obtained at client side. CPU utilization is captured from two servers. The data 

before session transfer (around 22s) describes the CPU utilization on S1 and the rest bars 

represents the CPU usage on S3. All background traffic start together at the beginning of 

streaming.  
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Figure 5-26 RTT and throughput during server side congestion 
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Figure 5-27 Jitter and CPU-utilization during server side congestion 

We turned on the expert control at around 18s. After 5 seconds detection, the expert control 

confirmed the congestion happened at server side, so it selects the most uncongested server 

for help. After negotiation, the current session is taken over by S2, which has largest capacity 

and is least congested among the three servers. Then the session is totally transferred to S2 at 

around 24s, and the throughput at client side suddenly increased. During this transfer, the 

client side jitter became four times as before and the streaming is not continuous for 2 

seconds. Here we just use the plain client player. If a modified client device could feedback 

its buffer and playback information, our rate control methods could provide a much higher 

and stable client buffer occupancy, and the buffered data would support the playback during 

session transfer. The handshake signaling for such session re-distribution is shown in Figure 

5-28.  
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Figure 5-28 Signaling during session re-distribution 

Now we only realized the transfer of sessions during congestion. Ideally, the other server 

should be able to provide P2P support to the congested sessions. That is, servers would drop 

the movie file into pieces and each one delivers a part of pieces separately to the client. This 

implementation needs the support of client software because client must know how to 

concatenate these pieces from different sources together. Since our design targets at server, 

we skipped such kind of implementation.  

5.4 Summary of Experimental Results 

In this chapter, we presented the detail implementation of the rule-based expert system in 

streaming media servers. At the beginning, we introduced the test bed configurations, the 

movie characteristics, the parameters intent to measure, and the QTSS platform. Then we 

gave the DTD of our rule base, followed by the explanations of parsing and linking process. 

We choose cooperative mechanisms of buffer management, packet scheduling, and 

congestion control to form the method base in the expert server. A complete rule base was 

built. In the results and discussion part, we provided the detail configuration for each 

experiment. The measured parameters are listed and evaluated. Then we presented five 
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carefully designed experiments using QTSS server, comparing the results with and without 

our expert control. The experiments investigate the ability of expert control on balancing the 

servers load, scheduling the playback sequence, realizing smoother rate control for high 

definition movies and meanwhile maintaining high stable client buffer occupancy. It could 

also perform streaming handover between different devices and accomplish effective 

congestion control in four consecutive steps.  

From the results, the requests reached QTSS server are processed locally and served in a best 

effort manner. The excessive requests cause the previous sessions discontinuous. When we 

distribute the requests to four QTSS servers with different percentage, the CSR is 43.75%, 

87.5%, 80%, and 90% respectively, depending on the capacity of servers and the number of 

requests initiated to each. On the contrary, no matter which server the requests were initially 

sent, QTSS with expert control will judge the capacity of server cluster and perform effective 

admission control, then the requests are reasonably distribute among servers according to the 

server and the intermediate link parameters. Results have shown that QTSS with expert 

control could achieve approximately identical load distribution for despite the request 

distribution strategy, and the CSR is 100%.  To achieve load balance ability, the expert server 

lengthened the startup delay to maximum 4 times as basic QTSS (582ms/145ms). Since the 

lengthened startup delay is only half a second, it is still acceptable as the tradeoff for the 

performance enhancement.  

In sub-section 5.3.2, our expert server extended the current link speed scheduling to a 

broader area, which automatically schedule the playback sequence of mixed contents 

according to client profile, content profile, and advertiser profile. This function is most 

suitable to closed network ISPs and subscribers. 
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The rate control for high definition movie is effective in two ways. It decreased the 

fluctuation of throughput and speed up the stabilization time. Furthermore, the client buffer 

occupancy with expert control is significantly better than basic QTSS control. The QTSS 

method does not consider any client side parameter. Although the overflow at client buffer 

causes higher loss rate, which will consequently inform the QTSS for rate control, the 

influence is comparatively trivial. The expert system always considers client side parameters 

for its decision. Therefore it maintained the client buffer usage at a very stable level with no 

overflow and underflow. Similarly, the expert system controlled the server buffer efficiently. 

Due to the high and stable of buffer usage, the client could achieve seamless continuous 

stream during congestion response with movie resolution changes or session transferring to 

another server. Because the control parameters are calculated with a dedicated function, the 

CPU consumed on rate control could be neglected. In summary, for the purpose of 

maintaining smoother stream and efficient client buffer usage for high definition movies, the 

expert system has demonstrated itself as a good choice.  

In section 5.4.4, we tested the smartness of our system on changing terminal devices during 

playback. Basic QTSS has no such function, and such kind of system is rare in current server 

market. Consider the cases that the client device switches from slower hand phone streaming 

to a faster network with plasma TV display, or vice versa, the expert server could embed SIP-

like protocol as signaling to support the movie transfer. 

When congestion happened, the expert reacted smartly in steps. Instead of fluctuating with 

changes of network environment aimlessly, it verified the severe of congestion by checking 

related parameters like server load level, network RTT and loss, and client side loss and 

buffer occupancy. It takes cooperative regulations for the whole transmission to cope with the 



  113 

congestion, rather than only decreasing the sending rate blindly. The reactions in sequence 

could be summarized as starting congestion rate control for HD content, turning on 

prioritized-RED, changing to lower resolution movie file, and finally transferring the session 

to an un-congested server. If a lower resolution movie is chosen in response to the congestion, 

the expert system recorded it in its historical statistics and automatically recovered to the 

high resolution movie after the congestion.  

Attractively, the enhanced performances summarized until now can be achieved by spending 

only a small portion of CPU time for the expert control. In all experiments, the expert control 

took only 10% to 15% the CPU time periodically. Even when intensive reaction like 

handover is required to be taken, the CPU utilization increased to maximum 25% for a short 

time as 100ms before return to the normal level. However, we should note that CPU results 

may not exactly describe the time consumed by the expert control because the inference 

process embedded in QTSS is not protected by semaphores and therefore may be preempted 

by transmission tasks. Nevertheless, the overhead brought by the expert control has been 

tested to be acceptable. Thus the expert system is feasible for practical use.   

The performance obtained in the experiments depends largely on the effective of rules that 

written by us. Hopefully, if these rules could be modified by a group of experts on media 

streaming techniques and be adjusted in commercial environment, the expert server system 

could perform much better than in our experiments. 
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Chapter 6 A Novel Rate Scheduler in Expert Server 

Knowledge-Base: DLQ Rate Control  

 

The knowledge base is a major component that gives intelligence to the expert system. We 

hope it covers major types of rate control methods. Unfortunately, there were a lot of server-

oriented or network-oriented schemes but no suitable client-oriented method in literature. 

Therefore we have to design a new client-oriented rate control method for the completeness 

of the knowledge base. The designed method, named DLQ (Discrete Linear Quadratic) rate 

control, was used for congestion avoidance.  

In this chapter, we propose our design of this client oriented rate scheduling method. Our 

study shows that DLQ is superior to conventional rate control schemes especially on client 

buffer utilization. In the following paragraphs, it will be also called DLQ schedule system 

because it is a system that schedules sending speed for packets.  

6.1 Introduction 

Linear Quadratic (LQ) control is a well developed theory in automatic control area but its 

implementation in media packet scheduling started only from this century. In this section, we 

are going to provide the background of optimal control and introduce the DLQ we used for 

media transmission, and then the reason of choosing DLQ. Finally we will restate the relation 

between DLQ and the rule-based expert server system design.  
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6.1.1 Optimal Control 

Optimal control ( [73],  [74]) is a mathematical field that is concerned with control policies 

that can be deduced using optimization algorithms. It deals with a close loop system and tries 

to find a control law for it such that a certain optimality criterion is achieved. Usually, the 

optimality criterion is either a measure of performance to be maximized or a cost function to 

be minimized. Given a dynamic system with input u(t), output y(t) and state x(t), the control 

law can be derived by solving the Hamilton-Jacobi-Bellman equation. The Jacobi function 

usually takes the form of an integral over time of a certain function, plus a final cost that 

depends on the state in which the system ends up: 

 

In the formula, l is the system description function. Parameters x, u, t, T are the state variable, 

the control variable, the time variable, and the terminal time respectively. And xT is the final 

state. The control law u=f(x) would be derived by minimize or maximize the left hand side J. 

For a dynamic system, the control scheme should not only control the system, it also needs to 

estimate the system states in order to provide the best feedback information for a better 

performance of the control scheme. This work is often done by the filters, which are designed 

to extract useful information from the background noise or predict possible changes under 

various environments.  

6.1.2 Linear Quadratic Control 

Linear quadratic control is a typical problem in the optimal control area. It is also called 

mean-square control in its early stage. The term ‘linear’ means the systems considered were 

assumed linear. And the term ‘quadratic’ comes from the evaluation function that contains the 
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square of an error signal. In general, the problem considers minimizing a quadratic 

performance measure: 

 

Subject to the linear dynamical constraint: 

 

 

where the matrices Q and R are positive semi-definite and positive definite, respectively. The 

optimal control problem defined with the previous functional is usually called the state 

regulator problem and its solution is a feedback matrix gain of the form: 

 

where K is a solution of the continuous time dynamic Riccati equation. This problem was 

elegantly solved by Rudolf Kalman (1960). The DLQ we used in our design is the discrete 

form of linear quadratic regulator problem. It is to find a state-feedback control law of the 

form ui = -kixi that minimizes a quadratic performance measurement function for a linear 

system. The aim is to maximize the client buffer usage with minimum control efforts. If there 

were no disturbances, the system could stabilize with a minimum index function value. With 

disturbance, the solution formula includes an additional factor to trace the disturbance as 

shown in next section. Thus we considered the scheduling problem as a DLQR problem 

under disturbance in our design. The disturbance here comes from the decoding procedure. 

Media data in the client buffer is fetched by the decoder for playback. We refer to this fetch 

rate as the client buffer vacancy rate, which is a random variable.  
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6.1.3 Reason of selecting DLQ 

Recall the categories classified in Chapter 2, researchers either use priority schemes to isolate 

timing sensitive flows from bursty ones or enable reservations to guarantee QoS. Packet 

scheduling schemes like separate priorities for different frames ( [75]), multi-channel data 

scheduling ( [76]), multi-thread distributed delivery ( [77]), and real media-rate control ( [78]) 

are widely used. All these mentioned schemes are network oriented open loop control. Here 

we consider the DLQ as an end-to-end close-loop control for its following merits.  

 It is cost-effective. If the received data were not consumed by the decoder, DLQ 

could result in strictly optimal speeds to gradually fill the buffer.  

 It is fairly accurate. The precise mathematical calculations supporting the method 

allow it to trace and control the system accurately and effectively.  

 It is easy to implement. DLQ is an end-to-end control method that neglects the 

complexity of intermediate networks.  

Previous works  [79] and  [80] used the similar method but they are incomplete. First, all 

previous approaches use continuous system model, which is not proper for network 

transmission system. Although multimedia can be delivered in a streamed way, it is handled 

discretely on the rate control layer. Second, they did not consider network delay and noise. 

Last, no detail mathematical deductions are provided. Therefore, we try to mend these gaps 

and gives out a systematic design of DLQ rate scheduler.  

6.1.4 Relation with Expert Server System 

The DLQ, together with other rate control and congestion avoidance methods, were 

implemented into the knowledge base of the rule-based expert server. It will be selected by 

the inference module in competition with other methods according to the runtime parameters.  
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6.2 Mathematical Design of DLQ 

In this section, we are going to introduce the detail design of DLQ scheduler. The network 

model is set up first and the control procedure is introduced. Following them, we provide the 

mathematic model and solution for DLQ schedule problem. The Kalman filter is introduced 

to minimize the influence of noise. For the consistency of this section, we put the design of 

DLQ Kalman filter into appendix C. 

6.2.1 Network Model 

The network model is described in the Figure 6-1. For clarity, we do not draw the other 

supporting mechanisms but only the DLQ-scheduler-related parts. On the server side, the 

scheduler calculates the transmission parameters according to the client buffer setup and the 

video information; then saves them into the control parameter table in server memory. During 

the transmission, the scheduler looks up the table for parameters of this video. The optimal 

sending rate is calculated during runtime using these parameters and feedback information 

from the client.  

 

Figure 6-1 Network model for media stream transmission 
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On the client’s side, media streams are received into the client buffer. The buffer monitor 

records the current buffer occupancy and the buffer vacancy rate. Then it sends this 

information back to the server periodically at a certain sampling rate. 

6.2.2 Mathematical Solutions 

The mathematic model is shown in Figure 6-2. The client gives the feedback of buffer 

vacancy xi and buffer vacancy rate vi. Buffer vacancy rate is the rate on which media data in 

client buffer are fetched for decoding. It is a Gaussian variable randomly distributed between 

the maximum and minimum playback rate of the transmitted movie. Qr is the allocated client 

buffer size. Qi is the instant client buffer usage. The difference between Qr and Qi gives the 

buffer vacancy xi and it is feedback to server. The server calculates the optimal transmission 

rate ui_pre according to the feedback xi and control gain ki, then considers the decoding rate vi 

with feedback gain ki_fb. Finally the optimal sending rate ui is decided.  

 

Figure 6-2 DLQ scheduler mathematical model 

A Kalman filter is added to handle the noise along the transmission path. In figure 6-2, we 

use dash-line rectangle for Kalman Filter module because of two reasons. Firstly, this filter is 

not a must for all situations. In wired network where noise is negligible, this filter could be 

omitted for the simplicity of system. While in unstable wireless networks, it is highly 
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recommended to get a more accurate state variable estimation. Secondly, the design of this 

module is comparatively independent. It does not influence the DLQ system design. We omit 

it in the following mathematical deduction and provide its design in the appendix C. Here we 

did not consider the transmission delay between the client and server. The delay problem will 

be discussed in a separate section.  

With reference of the mathematical system model (Figure 6-2), the state function and the 

index function are: 

v(i)tu(i)tx(i))x(i ss −+=+1         0≥i   ---(6.1) 
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The sum of quadratic term of buffer vacancy x(i) and sending rate u(i) is the measurement 

criteria. The following deduction focuses on finding a u* = - kx that minimize the J. 

Definitions of parameters are listed in table 6-1. Here we use (-client buffer vacancy) as the 

state variable to make its coefficient and the coefficients of control variable (u) to be positive.  

Variables Signification Explanation 

x -Client Buffer vacancy State Variable (Bytes) 

u Optimal Sending Rate Control Effort (Bytes/s) 

v Client Buffer Vacancy Rate Disturbance (Bytes/s) 

ts Sample Interval Sample Rate: min. twice/frame 

Table 6-1 Definition of variables in scalar DLQ formula 

Let J*(xi, i) denote the minimal value of performance measure starting at time t=i×ts and 

state x(i×ts)=xi. Then the optimality principle states that any input that is optimal over the 

interval (i, N) must necessarily be optimal over the interval (i+1, N). So that the following 

recursive relation must hold true: 
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Because J* has the quadratic form, Let iiiiii
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Rewrite (6.3) as: 
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Substitute (6.4) into this function, we have the following three functions (See Appendix B). 

Quadratic terms in x: 
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Substitute (6.6) back into (6.4), we get the final formula of u*: 
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Given the terminal values of pn and bn, (6.5) and (6.6) will decide all p and b values 
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recursively. In equation (6.8), the coefficient before xi-1, that is tspi+1/(1+ts
2pi+1), is the ki in 

figure 6-2 and the coefficient before vi-1, that is ts
2pi+1/2(1+ts

2pi+1), is the ki_fb. The aim of this 

DLQ tracker rate control scheduler is to minimize the client buffer vacancy (represented by x) 

while at the same time saving as much network bandwidth (represented by u) as possible. 

6.2.3 Compatibility of DLQ in Expert Server 

DLQ is merely a rate control method designed for taking care of client buffer usage and 

avoid congestion. During transmission, it may be selected with other QoS management 

methods. Thus it is necessary to discuss here the compatibility of DLQ with other 

mechanisms the server may use.  

The main supporting mechanisms that a server adopts to enhance its performance and 

capacity are the video caches and frame filters. Caches are used to store frequently 

referenced contents for quick browsing and frame filters are used to decide which contents to 

send according to network capacity. DLQ is compatible with these mechanisms because it 

does not differentiate types of frames to decide the sending rate. Therefore, the server can 

drop one or two layer(s) according to the calculated transmission rate. 

In fact, the whole system performs better if we combine DLQ with buffer management 

mechanisms together. Large u* (optimal sending rate) means the client needs more data. Or 

in other words, data is consumed more quickly on the client side. Take ts equals to one 

second as an example, more GOPs will be transmitted if only the basic layer is sent out 

within this second. More GOPs take longer time to playback. Thus it reduces the buffer 

vacancy rate. But if u* is not too high, we can send all levels. The combination of DLQ with 

other support mechanisms is realized in expert system. 
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6.3 Results and Discussion 

The assumptions for implementations are listed as follows. In fact, if outgoing bandwidth is 

enough for transmission, these assumptions will not influence the solutions we get.  

1) No transmission delay between client and server is considered. 

2) No other services (http, ftp, etc.) except media streaming are provided by the server. 

3) Only one media stream is established between the server and a client.  

There is another problem for implementation. As we mentioned, all parameters should be 

calculated and stored in a parameter table to minimize the runtime overhead. But from (6.6), 

vi (online value) is also necessary to get bi (offline value). There are two ways to obtain vi 

without a real transmission. First, a long-dependent MPEG video model ( [81]) can be used. 

Second, analyze the video in each frame and give out the estimated value. We choose the 

second method based on two considerations. One is that the stored movie is available to 

analyze for accurate vi. The other is that the MPEG2 long dependent model is complex for 

implementation and not so accurate for various types of videos. Thus, we use MPEG-analysis 

software to analyze the frames for the size and the playback time of each frame. The actual 

buffer vacancy rate in experiment is a little bit different from the vi we used to calculate bi. 

The simulations were conducted using an (18,3) m2v video clip. The notation (18,3) is a 

MPEG encoding format that has 18 frames on a Group of Picture (GOP) with two B frames 

between a pair of I or P frames. The parameters of the video are listed in the table below.  

Total Frames 8760 Video Length (Seconds) 292 

Minimum Frame Size (Bytes) 2324  Playback time for each frame (s) 0.033

Maximum Frame Size (Bytes) 81340 Allocated Buffer Size (MB) 1 

Playback Rate (Frames/s) 30 Sample Rate (Times/s) 62.5 

Table 6-2 Key parameters in simulation 
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The client buffer we allocate (1MB) can accommodate nearly 5 GOPs. Sample interval is 

0.016s (Nyquist theory: minimum twice per frame). Then we attained the performance of 

client buffer occupancy in Figures 6-3. 
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Figure 6-3 Client buffer occupancy using DLQ 

The statistics show that the client buffer is, on average, around 79.86% full. At the beginning 

of transmission, the server sends data more than the client can consume. As a result, the 

client buffer occupancy becomes higher and higher until stabilization is reached. In our 

simulation, the maximum sending rate at very early beginning is 1.2MB/s. After the system 

reaches its steady state, the buffer occupancy stays between 0.7 MB and 0.86 MB with small 

fluctuations. Such high client buffer occupancy with small fluctuation enables the client 

having much less jitters because there is always enough data to be decoded.  

If a maximum BW is set, for example 0.6 MB/s, the curve will climb up slower and take a 

longer time to reach the steady point. As shown in Figure 6-4, the system without maximum 

BW limitation rises faster than the system with maximum BW limitation at the beginning of 
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transmission. After all, these two lines emerge eventually after stabilization and give out the 

same buffer occupancy performance. This means the limitation of maximum sending rate has 

no influence on the steady state performance but only slow down the stabilization time.  
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Figure 6-4 Rise time with/without BW limitation 
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Figure 6-5 Buffer occupancy under noise with/without KF 
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If network noise is considered, the optimal rate with and without Kalman filter will be quite 

different (figure 6-5). In figure 6-5, the average deviation of state variable x due to network 

noise is set to 1.0×105 Bytes. Such noise degrades the performance of transmission by 

pulling down the client buffer occupancy and enlarging its fluctuation. Kalman filter lightens 

the problem and offers a stable delivery. To make the Kalman filter work more efficiently, it 

is important that the covariance of noise is properly probed. Techniques for online noise 

measurement could be used here together with the filter. 
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Figure 6-6 Client buffer occupancy under TFRC and DLQ control 

Figure 6-6 compares the buffer occupancy under commonly used rate control method TFRC 

(TCP Friendly Rate Control) with DLQ rate control. It is obvious that the client buffer 

occupancy is quite smooth with DLQ control while the client buffer frequently encountered 

underflow under TFRC control. This is because the TFRC method targets at the intermediate 

network environment. It takes loss rate and delay as the input parameters to predict the 

network situation. The original sending rate is strictly held as long as the intermediate 
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network does not change. On the other hand, DLQ can detect client buffer overflow or 

underflow problems, collect the real-time playback rate, associate this information with the 

movie characteristics, determining the most suitable transmission bit-rate.  

6.4 Impact of delay on DLQ rate control 

Delay is an important factor for the streaming performance. The delay we discussed here is 

produced primarily by queueing delays in intermediate networks. We did not model the delay 

into function (6.1) and (6.2) because that will violate the linear property of the system. Since 

the DLQ performs control at discrete time points, the delayed feedback has to wait until the 

next control point to be considered. With this manner, the current x(i) is decided by x(i-n), 

where n depends on the instant value of the delay. As a result, the state function is no longer a 

first order difference equation and the whole system is no longer a linear system that can be 

optimized by the DLQ method. Thus in this section, we investigate the delay impacts through 

testing and provide a practical one-step amendment strategy. 

6.4.1 Assumptions 

Assume the delay follow a normal distribution with mean value µ and variance σ2. The 

following rules are used to simulate the behavior of basic DLQ under delayed feedbacks.  

1) Round trip and process delays are represented by feedback delay only. 

2) Feedback packets between two adjacent sampling points will be retained for a decision 

later on. 

3) If no new feedback comes within a sample interval, the scheduler maintains the previous 

sending rate. 
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4) If several feedback packets come together during an interval, the scheduler takes the 

latest one for calculation and discards all the others. 

6.4.2 Results of Delay Impact 

We first fix the σ2 to 144ms and investigate situations with mean values (µ) of delay to be 

0ms, 32ms, and 128ms ( [82]) respectively, which are 0, 2, and 8 times the sampling interval 

(16ms). Choosing basic DLQ for simulation, the client buffer occupancy with and without 

delay is shown below. 
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Figure 6-7 Buffer occupancy with mean delay of 0ms, 32ms, 128ms 

Figure 6-7 is an enlarged picture to show the differences more clearly. From the figure, delay 

brings larger fluctuations to the buffer occupancy and the changes are not significant. For 

example, the buffer usage with no delay rises after 5600 points from 0.77 MB to 0.8 MB and 

then decreases (solid line), but for the delayed situation, the curve rises from 0.765 MB to 

0.85 MB before decreasing (dotted and solid with circle line). Thus the delayed situation is 
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more likely to encounter overflow. Moreover, the buffer occupancy with larger delay (solid 

with circle line) swings away from no-delay situation (solid line) more seriously than the one 

with smaller delay (dotted line). 

Now we fixed µ to 96 ms and investigated the variance (σ) of 144 ms and 1024 ms. 

Comparing it with no delay situation, we get the statistics in the following table. 

Table 6-3 Buffer occupancies with different σ of delay 

From the table, delay variance also has small influence on buffer occupancy. Far from what 

is expected, delay does not bring hazardous disruption to the DLQ system. Reasons lie on the 

characteristics of MPEG2 video and the DLQ system itself. Delay affects two feedback 

variables: the current client buffer occupancy and the current buffer vacancy rate. However, 

MPEG2 video contains IBBP frames in repetition, and the sizes of the same type of frames 

are close. If the feedback packet for a frame is delayed to the sampling point for a following 

frame of the same type, the information of buffer vacancy rate it contains is near to the real 

value. On the other hand, since the DLQ adjustments are at a fine-grain level, the high 

sampling rate ensures the outdated feedback will not mislead the schedule decision to a long 

time. In other words, DLQ system reacts fast enough to correct its deflection. 

6.4.3 Compensation for Delay Impact 

The trouble in sub-section 6.4.2 was caused by two types of problems brought by the delay. 

1) Time reverse problem 

Delay\Client buffer occupancy Max (MB) Mean(MB) Median(MB) Std(KB) 

No delay 0.8395 0.7949 0.8008 64.69 

σ2=144ms 0.8370 0.7943 0.8013 64.69 

σ2=1024ms 0.8443 0.7948 0.8019 64.71 



  130 

If several feedbacks came within a sample period in sequence, DLQ takes the one that 

arrived latest as the reference for decision. A feedback sent at time slot 10 may reach the 

server earlier than the feedback sent at slot 9. Suppose these two feedbacks come within the 

same sample interval, DLQ will discard the former one (sent at slot 10) but take the later one 

(sent at slot 9). This problem can be solved using a time stamp mechanism introduced later. 

2) Outdated information problem 

Cases where no feedback came within a sample period or feedback coming late are 

considered as the outdated problem. This problem can be solved by enhancing the network 

transmission speed which is not the scope of our design. 

Within the two parameters influenced by the delay, buffer occupancy and buffer vacancy rate, 

making prediction on buffer vacancy rate during run-time will increase the system’s 

complexity greatly without significant performance improvement. So the simple one-step 

prediction mechanism proposed here makes prediction only on actual buffer occupancy. We 

propose to give each feedback packet a time stamp when sent out. Receiving a new feedback, 

the DLQ scheduler compares it with the current time and predicts the current buffer 

occupancy using: 

Buffer occupancy = Buffer occupancy in current feedback packet + Sent data during ([(Time 

stamp-Current time)/Ts]+1) steps – Playback data during this period. 

Here, [(Time stamp-Current time)/Ts] means selecting the integer part of (Time stamp – 

Current time)/Ts and Ts is the sample interval. The playback data is calculated using the 

buffer vacancy rate in the current feedback packet. Of course if the system receives several 

feedbacks in a sample period, it compares their time stamps and trusts the latest one. 

Adopting µ =128ms and σ2 =1024, we redo the previous delay-influence simulation and add 

the curve with prediction mechanism. From figure 6-8, the simple prediction mechanism 
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(dotted line with cross marker) helps the buffer occupancy perform nearly as good as the no 

delay situation (solid line), much better than the no prediction situation (solid line with 

diamond marker). The mean square error between delayed and no-delay situations is 8.94×

107, but only 5.98×106 between the delayed with prediction and no-delay situations. 
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Figure 6-8 Buffer occupancy with delay prediction 

6.5 Overhead of DLQ Rate Scheduler 

The overhead brought by DLQ control are estimated here. From our test, the 3.0G CPU of 

SUN Fire 880 takes approximately 0.54 µs to depacketize the data, 0.04 µs to fetch the pi and 

bi from table, and 2.16 µs to do the calculation using formula (6.6). Switches between users 

consume around 2 µs. Then the total time is depacketize time + fetching parameters + 

calculation for optimal transmission rate + switch time between users consumes 4.74 

microseconds. For the feedback interval of 16 ms, such a CPU can serve 16/(4.74×10-3) = 
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3375 users. Suppose the transmission is conducted on a 1G network bandwidth with 70% of 

its full capacity used for streaming, DLQ can support 70% * 1G / 0.4M = 1750 streams in the 

normal situation. The 0.4M in denominator is the steady state transmission rate obtained 

from the simulation. This result is much more than the number of client supportable by the 

expert server derived in Chapter 4. Thus DLQ scheduler will not decline the capacity of the 

expert server. 
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Chapter 7 Conclusion 
 

 
At the end of the journey, we will take a global review on what has been presented in this 

thesis and conclude its importance, achievement, limitation and future trends. We hope that 

this chapter would further clarify the purpose of the research and our contributions. Most 

limitations mentioned in this chapter can be solved or at least improved by future research. 

The conclusion suggests a promising future of the expert server system for streaming control. 

The following paragraphs will answer the questions through three aspects: the strength of the 

expert system on streaming control; our achievements and limitations; and last, the possible 

research directions that may lead the expert server to be a practical and successful technique.  

7.1 The Strength of the Expert Server 

The research presented is inspired by the intention of making current streaming servers more 

powerful on streaming, flexible on control, and reliable on maintenance. Analyzing the 

current streaming servers, their performances have room for improvement given certain 

hardware and network configurations. The idea of using an interdisciplinary work by 

applying the expert system into conventional server design came up with the discovery that 

most expected improvements can be accomplished by the expert control. Now we first list 

the possible improvements from conventional servers and the solutions provided by the 

expert server system. 

 The transmission quality would be better if the server could see a global picture of the 

transmission, and not only using some unrelated parameters of the stream. In the expert 

server, operation parameters are monitored and their relations are handled by heuristic 
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rules written by human experts. This makes the expert server perform like a real human 

expert who has insight into the problems and react intelligently to different cases, even 

when these cases have similar phenomena. 

 The server may provide a customized service instead of a uniform delivery. This is the 

way most commercial servers are used. The expert system analyzes the client parameter, 

allocates proper resources and performs per flow rate control along the transmission. This 

client aware control could save resources and provide the same video quality. 

 Instead of comparing which technique is better nowadays, the server could adopt all of 

them and take good use of them. The expert system refers to the rule base to select the 

most suitable lower level management strategies depending on the criteria of 

performance optimization. Even the search schemes and the selection criteria themselves 

can be coded as rules and adjusted online.  

 The server should be easier to extend with the development of future techniques. 

Compared with conventional servers that fix their service strategy to unchangeable code, 

the expert system can be modified by simply adding or deleting rules and functions in the 

knowledge base. The maintenance is done without the influence of the main server 

program. 

It can be concluded that the expert server system is an upgraded server with extended 

capacity and flexibility on control and maintenance. The expert server is a good combination 

of the integrated service and the differentiated service. It offers a differentiated service to 

each stream and integrates optimal delivery methods along the transmission steps. In the 

world without a one-for-all solution, the design of such an expert server system is an 

enlightening endeavor to find a powerful way for the problems under heterogeneous 
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environments. 

7.2 The Achievements and Limitations of the Expert Server 

Our research is a pioneering work for that it is the first time a multimedia streaming expert 

server system is designed, evaluated, and tested. The rule-based expert system design shown 

in Chapter 3 follows the conventional steps of designing an intelligence system. It considered 

the special characteristics of media streaming and applied this domain-related knowledge for 

the transmission as an expert. The position of such a rule-based expert system would be at the 

middleware level. It does not run all the time, but only performs periodic global control. Thus 

the overhead brought by it is controllable. The demands for better control and less overhead 

are balanced by selecting a proper monitor interval. The rule-based expert server system was 

theoretically evaluated in Chapter 4. Although it is difficult to analyze the transmitted video 

quality offline, we approximately analyzed the system from request response time varying 

with different rule base size. Using traditional forward chaining inference method, the 

computational time was bounded within a linear line and an exponential curve. The 

computation time gave the average service time and further decided the response time given 

certain client density. Due to the real-time characteristic of streaming requests, the maximum 

number of clients supportable by a single server was limited by the average requests response 

time. From theoretical analysis, the computational overhead (< 10%) brought by the expert 

control did not influence the server capacity, which has been proven to be settled by the 

network bandwidth. However the smoother streaming achieved by the expert control could 

greatly alleviate the network burden and consequently extend the system capability.  

Practically, the expert server designed in this thesis realizes the following key features:  

A. Perform effective admission control and traffic distribution. These two features are used 
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to limit the incoming requests. Accepted traffic would be distributed as illustrated in 

section 3.1.4, where the server will make a global decision based on latest working 

parameters and forward the request to the most suitable station for processing. Results 

have proved this function in sub-section 5.3.1 

B. Adjust parameters dynamically and maintain QoS during runtime. It provides primary 

support for any intelligence pursuing by the expert server. The accuracy of on-the-fly 

parameters in working memory directly influences the correctness of the decision and 

consequent transmission quality. For the distributed server system, these working 

parameters are periodically broadcasted to update other servers. 

C. Provide playback scheduling and streaming handover. Sub-section 5.3.2 and 5.3.3 

described these two novel functions of the expert server. It gathered and classified the 

profiles from movie and advertisement provider, scheduling the playback sequence based 

on statistics of subscribers to maximize the entertainment effect. When the client device 

changes, it provides SIP-like signaling procedure to realize movie handover within 

different devices. This is a very useful function in modern families with multi-terminal 

receivers. Both the ISP and the users would be benefit from these two functions.  

D. Carry out smooth rate control and buffer management for high definition movies. High 

definition movie requires high bandwidth. Even with fast development of physical 

network media material, it is still a killer application. To make the transmission of it 

smoother and more stable so that other traffic on Internet is not severely impacted, the 

expert control carried out efficient rate control. Test results in sub-section 5.3.4 shown the 

apparent effects on small throughput fluctuation and shorter stabilization time.  

E. Perform knowledge based congestion control under diverse environments. We carefully 
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selected several typical congestion control methods and implemented them into our rule 

base, as shown in sub-section 5.2.4. The following results in section 5.3.5 demonstrated 

that the expert system could response to different level of congestions step by step 

intelligently. When it predicts a possible congestion, only rate control algorithms are start 

up. When light congestion happened, it locates and differentiates the jam. For server side 

jam, admission control becomes stricter. If the jam is at the network or at the client, 

prioritized RED is switched on to reduce the traffic of the stream and QoS management 

increases the packet importance. The experiment from Singapore to Chicago (sub-section 

5.4.5) proved that expert control handles congestions more reasonably than a traditional 

server. 

F. Implement failure detection and recovery mechanisms. The server system should not 

break down at any time. According to our design, if rule collision happens and no meta-

rules aim at solving it, the expert server will output an error message and take the default 

value that has been set offline. If the collision is critical, the server will terminate itself 

after transferring current serving sessions to other stations. 

G. The computational overhead is managed within an acceptable scope. The control 

overhead is a significant issue in the expert system design. In this thesis, we put much 

effort on handling this problem: the rule base is classified into functional groups; the 

parsing and linking process is done offline; the translated rules have concise structures; 

the binary rules are stored in fixed locations in the rule table; the monitor interval is set to 

occupy less than 10% CPU time; the inference is directed by effective heuristics. All 

these efforts performed effectively to reduce the overhead of the expert control. The 

analytical results (sub-section 4.2.1) and experimental results with each experiment 
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showed that the computational time was bounded within an acceptable range. 

H. For the completeness of our rate control method base, we also designed a discrete DLQ 

rate control scheme with the Kalman filter. The DLQ, together with its modifications on 

delay impact, has been demonstrated to be effective on detecting the client buffer 

occupancy and dynamically adjust consequent sending rate. It is particularly suitable for 

the transmission with stable network conditions. Although the Kalman filter can deal with 

Gaussian noise on the transmission line, the DLQ will lost its strength if network 

bandwidth or loss rate changes greatly, for that it does not take the network parameter 

into calculation. To compensate this weakness, we use it together with other network 

sensitive rate control schemes. As the results shown in Chapter 5, the DLQ takes care of 

the client requirements while the other rate-control methods are aware of the network 

conditions. They make their own decisions and compromised to a more reasonable 

solution. 

Besides all achievements listed above, the expert server system also has its limitations. We 

classify them into two groups and explain respectively in subsequent paragraphs.  

 Inherent limitations  

The expert server is inherited from expert systems family. Therefore it encounters the 

problems that appear in most expert systems.  

1) When the rule size increases, the corresponding searching time may go up exponentially.  

This is a fundamental question for expert system design. The situation that is suitable for 

using the expert system often has its limitations on using conventional computer control 

algorithms. That is, the problem can not be solved easily by going through hundreds of 

lines of code. Problems with this attribute usually needs abundant of heuristic knowledge 
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to progressively approach the optimal solution. Thus it may be concluded that problems 

fit for using expert systems are usually attached with a huge rule base. Unfortunately, 

those problems commonly have a deadline for the solution. So how to balance the rule 

size so that decisions could be given within the deadline is perplexing for the designers. 

Unlike them, media streaming problem has special characteristics. It is not a must to use 

expert system for multimedia transmission. Obviously the streaming can be performed 

successfully without the expert control, as realized by those commercial streaming 

servers. Our purpose is to enhance the server’s performance by adding the global expert 

control to enhance its intelligence on reacting to various situations. Hence the expert 

server is different with typical expert systems on the target problems. As a result, the 

expert server does not necessary need a super huge rule base. In fact, the rule base size 

could be restricted according to the decision deadlines since the basic function of the 

server has been completed by a fixed algorithm.   

2) Control vibration  

Recall that the function of an expert system is to perform global control. It decides the 

appropriate combination of delivery strategies based on working parameters. This 

technique makes the control more flexible and effective, yet it also brings problems if the 

strategies change too frequently. Consider a situation when network or server parameters 

vibrate, the expert system may switch on and off some strategies to trace the trend of 

changes. As we know, most rate control or congestion control strategies need some time 

to reach their stable points. As a result, switching it on and off without waiting for its 

stabilization is not good except to cause the system to fluctuate and become unstable.  

To solve this problem, we created many statistical global variables to describe the long-
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term behavior tendency. For example, the Historical Request Arrival Rate and the Variety 

of Arrival Rate appeared in section 3.3 (Figure 3-4) are two parameters used to record the 

statistical characteristics of the arrival rate. With them, heuristic rules can be written like 

an expert is monitoring the whole system and making judgments based on his 

experiences. Decisions on changing transmission strategies are not so simple as merely 

check the current working parameters. It also relies on the historical trends of the changes 

and the stabilization time of a strategy.  

This solution brings along another question that whether the hesitation of changing 

strategies prevents the expert server from quick responsive to the changes of environment. 

The answer to this question is: it depends on the rules. The rules, or the intelligence from 

the experts, are responsible to adjust the balance point between the problem of control 

fluctuation and the server responsiveness. 

 Design limitations  

In addition to the inherent limitations that come along with most expert systems, the expert 

server described in this thesis has its design limitations due to some uncontrollable reasons. 

We point them out here to make the whole picture of the expert server design more 

comprehensible. 

1) The provided expert server system does not carry out OS level scheduling.  

In sub-section 4.2.2, the streaming server is categorized to be a real time system that 

supports real time streaming applications. With real time requirements, the system needs 

the support of operation system for timely interrupt response and preemptive scheduling. 

For example, the packet receiver is an independent event driven thread; the monitor and 

the session handler are periodic task whose timely execution rely entirely on the 
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scheduling of OS. At the beginning of this research, we planned to tackle the OS level 

scheduling. However, this kind of work was not completed due to time limitation. 

Nonetheless, the server would definitely perform better if supported by a real time OS, 

from which the modules designed for the expert control could get guaranteed service.  

2) The performances tested are not standardized due to lack of rule base benchmark.  

From the laborious description of expert server in this thesis, we have come to an 

understanding that the transmission quality depends largely on the effective of rules. On 

the other hand, there is no standard rule base as a benchmark for us to test the server 

performance. The case study given in this thesis only tests the congestion avoidance 

performance of the expert control. The rule base we built is not completed and has much 

more space for extension. Thus the results presented in the thesis are far less than the 

highest performance achievable by the expert server system.  

3) Failure detection inference procedure is not implemented.  

Due to time limitation, the only failure detection mechanism implemented in our work is 

output an error message when collision happening and take the default value for safety. 

Actually, backward chaining techniques could be used to detect potential errors or 

diagnose the failure like the example given in sub-section 1.1.3, the SOAR system to 

diagnose the failure in circuit simulations. Consequent recover methods could be carried 

based on the detection results. This will enhance the expert server’s reliability through 

preventing the server to accumulate errors that finally cause undesirable break down.  

7.3 Future Development 

There are many potential improvements that could be developed in the future. We suggest 

some directions that may be inspiring.  
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 Adopt advanced network topologies 

When client-server topology is used, the maximum overall system capacity is fixed. No 

matter how well the scheduling scheme is, the utilization factor can not exceed 1. This 

bound limits the growth of the population of clients. Since the expert system provides 

high level control and not relies on the hardware and network infrastructures, it could be 

implemented into modern networks, for example peer-to-peer (P2P) network.  

In the year 2001, P2P networks appeared and grew up very quickly and now it has been a 

practical technology for broadcasting or VOD streaming applications. The P2P network is 

a fully distributed system that each node in the network is both a server and a client. 

When a client device requires services from the network, its bandwidth and processing 

capacity is also added into the network. Thus the P2P network capacity grows together 

with the increase of clients. Such a characteristic enables P2P network providing 

unlimited file sharing services among clients. Using it, the service capacity of the whole 

system will not be bounded by the number of servers like in client-server architecture.  

The main problem for a P2P network is how to find the optimal group of peers for data 

exchange, regarding the reliability and distances. For such kind of selection, the human 

performs much better than computer if they are provided a local area traffic distribution 

graph and the character of each peer. It is hopeful that an expert system could bring such 

information-handle ability into P2P network. The marriage of these two technologies 

would greatly enhance the performance of multimedia streaming services. 

 Self-training of rules  

Until now, the rule base is set up offline by experts who write heuristic rules according to 

their experience and knowledge of the streaming delivery. The rules may be outdated and 
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need frequent maintenance under different hardware configurations. Therefore we 

suggest creating some rules to record and evaluate the reliability of decisions and the 

performance of selected strategies. These rules are in charge of adjusting parameters of 

other rules during run time and enhancing the probability of making correct decisions in 

the future. 

 Rule base auto-evolution 

If previous self-training ability could be obtained, a more intelligent feature would be 

make the execution of the server a parallel procedure with the rule base evolutionary 

process. That is, the rule base will update itself concurrently when server providing 

services. It may modify existing rules; discard outdated rules; or even creating new rules 

to fit for the changing circumstance. Considering the fast development of generic 

algorithms, we believe it is possible to realize this feature in the future. 
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Appendices 

     

Appendix A: Extended Kalman Filter (EKF) for Kelly’s Rate Control 

This appendix gives the Kalman filter diagram, the loss rate state function, and the 

implementation algorithm for Kelly’s rate control. 

  

Figure A-1 Kalman filter block diagram for Kelly’s rate control 

The aim of Kalman Filter (with reference to figure A-1) in Kelly’s rate control is to get the 

best estimation of loss rate p(k) given previous predicted value of p(k-1|k-1) p(k-2|k-2) … 

x(0|0) and the observed current state variable value y(k). It tries to get a filter gain G(k) so 

that the prediction 1)]|())[y(G(1)|()|( −−+−= kkpkkkkpkkp  minimizes the predict 

error covariance ]))|()())(|()([()|( TkkpkpkkpkpEkk −=Φ . Compared with conventional 

Kalman filter applications, the problem of Kelly’s control system is its non-linear character, 

which is going to be shown in following paragraphs.  

In  [63], the discrete Kelly’s rate control function is: 

)()()()1( kpkrkrkr βα −+=+   (k = 0, 1, 2, …)   ---(A.1) 

In (A.1), r(k) is the sending rate for a media stream. α and β are constant coefficients, and p(k) 

is the loss rate at time step k. If the following assumptions hold true:  

 Fairness among traffic is achieved in intermediate network routers.  
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 Loss rate is calculated by the amount of traffic exceed router’s capacity / total traffic. 

For any time instance k, we have: 

Nr(k)
CNr(k)p(k) −

=   ---(A.2) 

)Nr(k
C)Nr(k)p(k

1
11
+
−+

=+   ---(A.3) 

N is the number of client. C is the system capacity.  

Combining (A.2) and (A.3), canceling the C and N, we get the relation of p(k+1) and p(k) is: 

)r(k
p(k))r(k)()p(k
1

111
+
−

−=+  

Replace r(k+1) in the above function using (A.1): 

βr(k)p(k)αr(k)
p(k))r(k)()p(k

−+
−

−=+
111  

So the state and measurement functions for Kalman filter are: 

βr(k)p(k)αr(k)
p(k))r(k)()p(k

−+
−

−=+
111  ---(A.4) 

n(k)p(k)y(k) +=     ---(A.5) 

From (A.4), state function for loss rate is non-linear. It can be solved by the extended Kalman 

filter or unscented Kalman filter (UKF). Since (A.4) is not too complex to be linearized, we 

choose the simpler EKF for the solution. The main drawback of stability problem of EKF is 

omitted here because the rate control performs at small enough time interval, usually once 

every packet or at most once several packets. We use f to represent the function (A.4). The 

n(k) is the Gaussian white network noise with zero mean and covariance R(k). 

The (A.4) is linearized as:  

)|(|))|(()(|)1( )|()|( kkpfkkpfkpfkp kkpkkp ∇−+∇=+  
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Where 2

2

)|(
)|( ))()()((

)()()1(
)(

)1(
kpkrkr
krkr

kp
kpf

kkp
kkp βα

αβ
−+

+−
=

∂
+∂

=∇  

Now the problem is changed to design a Kalman filter for a linear system. The detailed 

deduction of Kalman gain is shown in Appendix C and therefore omitted here. The 

implementation algorithm is given below. 
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Appendix B: Deduction of DLQ Control Formula (6.5), (6.6), (6.7) 

Function (6.3) is rewritten as: 

111
2

11
222 22 +++++ ++++=++ iiiii

*
iiiiiii cxbxpuxcxbxp  

Substitute state function v(i)tu(i)tx(i))x(i ss −+=+1  into it: 

11
2

1
222 22 +++ +−++−+++=++ iis

*
isiiis

*
isii

*
iiiiiii c)vtut(xb)vtut(xpuxcxbxp  

After manipulation: 
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Now we need to replace the ui
* with: 
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To make things clearer, we first neglect the terms without ui
* in right hand side of (B*) and 

substitute ui
* into *
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Substitute (B.1), (B.2), (B.3) back into function (B*) and equalize the coefficients of x2, x, 

and constant on both side of the equation (B*): 

Quadratic terms in x: 
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Linear terms in x: 
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Terms independent of x: 
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Appendix C: Kalman Filter for DLQ Scheduler 

In the design of Kalman filter, we analyze the frame size distribution of a typical 766s 

MPEG2 video (shown in the figure C-1) and model the playback rate as a Gaussian 

distribution variable according to the result. In literature, MPEG2 video is commonly 

modeled using finite Markov chain for the short-term correlation and long-term dependency 

among frames. Considering the simplicity and efficiency, we approximately model the 

playback rate by normal distribution. 

 

Figure C-1 Histogram of MPEG2 video frame size 

A. Filter Problem Definition 

w(i)mu(i)tx(i))x(i s +++=+1      0≥i   ---(C.1) 

n(i)x(i)y(i) +=       ---(C.2) 

In state function (C.1), we divide the playback disturbance tsv(i) into average playback rate m 

plus a zero mean random variable w(i). The accumulate effect of m+w(i) performs the same 

as tsv(i) in initial state function (1). In observation function (C.2), y(i) is the observed state 
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variable under network noise n(i). Where {n(i)}, similar to{w(i)}, is a sequences of white 

Gaussian noise with zero mean comes from network. Their joint covariance matrix is: 

( ) ⎥
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nw
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0

0
 ---(C.3) 

Like EKF in Appendix A, the aim of Kalman Filter (figure C-2) in DLQ rate control system 

is to get the best estimation of state variable x(i) given previous predicted value of x(i-1|i-1) 

x(i-2|i-2)…x(0|0) and the observed current state variable value y(i). The difference is that the 

Kalman Filter in DLQ system uses mu(i)tx(i) s ++  as the a priori state estimate. Parameters 

for filter design and their meaning are listed in table C-1. 

Variable Name Meaning 

i Time step 

y(i) Measured value of state variable x at time step i 

x(i) Accurate value of state variable x at time step i 

x(i|i-1) A priori prediction of x before giving y(i) 

x(i|i) A posterior estimation of x given y(i) 

G(i) Filter gain at time step i 

Φ(i|i) Covariance of a priori prediction error 

Φ(i|i-1) Covariance of a posterior estimation error 

Table C-1 Definition of variables in DLQ Kalman filter design 

 

Figure C-2 DLQ Kalman filter block diagram 
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(2) The deduction of filter gain G 

According to the filter problem definition, we have: 

)]x(i|iG(i)[y(i))x(i|ix(i|i) 11 −−+−=   ---(C.4) 

]x(i|i))i)x(i|i))(x(E[(x(i)Φ(i|i) T−−=   ---(C.5) 

]))x(i|i))(x(i)x(i|iE[(x(i))Φ(i|i T111 −−−−=−  ---(C.6) 

Now we are going to find G(i) that minimize Φ(i|i).  

Substitute (C.4) into (C.5) 

])))x(i|iG(i)(y(i))x(i|iE[(x(i)Φ(i|i) 211 −−−−−=  

)(i|iG(i)x))x(i|i(i)(y(i)G))x(i|iE[(x(i) 1211 2222 −−−−+−−=  

)]i|iG(i)x(i)x(x(i)))(i|iG(i)y(i)(x 1212 −+−−+     ---(C.7) 

Substitute (C.2) into (C.7) and let the derivative of Φ(i|i) with respect to G(i) equals to 0: 

x(i)))n(i)(x(i|i))x(i|i(x(i)E[
G(i)
Φ(i|i)

−−+−−−=
∂
∂ 1212 2  

012 2 =−−++ ]))x(i|in(i)G(i)(x(i)   ---(C.8) 

Because ]))x(i|iE[(x(i)]))x(i|i))(x(i)x(i|iE[(x(i))Φ(i|i T 21111 −−=−−−−=−  

Substitute it into (C.8): 
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Q R(i)(i)]E[n(i)nT =  and the noise n(i) is independent with prediction error (x(i)-x(i|i-1)), 
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From the solution (C.9), G(i) only depends on the covariance of prediction error and the 

network noise, not the state function. Thus G(i) is ubiquitous suitable for linear system 

Kalman filters, together with those linearized system like the case in appendix A. Thus the 

following implementation algorithm is also similar to what has been given in appendix A. 
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