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v

Summary

Regression spline based on a truncated power basis Ψ(t) has been proved to be a

very useful nonparametric method for fitting a data set generated from the non-

parametric regression model yi = m(ti) + εi, i = 1, 2, . . . , n, where the underlying

function m(t) is unknown. One way to implement this method is to approximate

m(t) as Ψ(t)T β and estimate the coefficient vector β appropriately as done in the

literature. In situations when β is large dimensional and sparse, the smoothly

clipped absolute deviation (SCAD) method of Fan and Li (2001) can be adopted

to select and estimate the non-zero components of β simultaneously. In some other

cases, the coefficients in β may not be sparse, but the pth times derivatives of

the regression function are sparse. If so, directly applying the SCAD method is

less effective. In this thesis, we attempt to re-parameterize the coefficient vector β

as a linear function of certain derivative vector γ, whose last K + 1 components

are the pth times derivatives of the regression spline function. That is, we have

β = A−1γ where A is a known link matrix which we can derive from the basis

functions. Then, we can express m(t) as Ψ(t)T A−1γ which is an approximation
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function of γ. We then apply the SCAD method of Fan and Li (2001) to estimate

the coefficient vector γ. Simultaneously, β can be estimated through β = A−1γ.

Numerical results show that the newly proposed method is much more accurate

than the usual regression spline methods in the literature, especially when the true

curve is piecewise with different orders of polynomials at different segments.

Keywords: Regression Splines, SCAD, Derivatives, Sparse
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Chapter 1

Introduction

1.1 The Problem

Suppose we have a noisy data set (t1, y1), (t2, y2),. . . ,(tn, yn), generated from the

following standard nonparametric regression model:

yi = m(ti) + εi, i = 1, 2, . . . , n, (1.1)

where m(·) denotes the unknown underlying function and εi denotes the ith mea-

surement error. Usually, we assume E(εi) = 0 and V (εi) = σ2, for i = 1, 2, . . . , n.

Methods and theories for estimating the underlying function m(·) in the model

(1.1) have been well established, mainly including the kernel methods (Nadaraya

1964, Watson 1964, Gasser and Mueller 1984), local polynomial kernel methods

(Fan and Gijbels 1996), smoothing splines (Wahba 1990, Green and Silverman

1994), regression splines (Eubank 1988) and penalized splines (Ruppert and Carroll
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Figure 1.1: The motorcycle data.

1997). All these methods work well when we assume that the underlying function

m(·) is smooth, i.e., having derivatives of up to some order p where p is a positive

integer.

In many cases, the underlying function m(·) may be a piecewise polynomial

function but with different polynomial orders at different intervals of the support

of the design time points. Figure 1.1 presents a real data example with such a

feature. This is a classical data set with n = 133 observations, first analyzed by

Silverman (1985). The dependent variable is the time after a stimulated impact

with motorcycles; for simplicity, throughout this thesis, the design times for the

motorcycle data have been scaled to [0, 1]. The response variable is the head

acceleration of a PTMO (post mortem human test object), which captures the

crash effects.
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Figure 1.2: Usual regression spline fit to the motorcycle data.

It is seen that the underlying function may be a piecewise polynomial but

with different orders of the polynomials at different intervals of the support. In

the interval [0, 0.2], the underlying function must be a constant function; in the

interval (0.2, 0.5], the underlying function may be a quadratic function; while in the

interval (0.5, 1], the underlying function seems to be another quadratic function.

To fit such a data set, the major smoothing methods mentioned previously do not

take the advantage of the above-mentioned information directly. As a result, the

resulting fit may not fit the data well.

As an example, we present a usual regression fit to the motorcycle data in

Figure 1.2. The fit was obtained using the cubic truncated power basis with 20

initial knots scattered uniformly in the support of the design time points, but with

the regression spline coefficients estimated by applying the SCAD method (Fan and
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Figure 1.3: New regression spline fit to the motorcycle data.

Li 2001) directly to the regression spline coefficients. The details of the method

on how to obtain such a fit will be reviewed in Chapter 2. It is seen that overall,

the fit looks well to the motorcycle data except in the interval [0, 0.2] where the

underlying function looks flat but the usual regression spline fit with the SCAD

estimator did not use the information that the third times derivatives of the fitted

function would be zero for most design points, and hence can not fit the data well

in this interval. Other popular smoothing methods mentioned previously also have

such a problem.

This problem can be overcome by the new regression spline fit proposed in this

thesis. Figure 1.3 presents the new regression spline fit to the motorcycle data.

Similarly, we used the cubic truncated power basis with 20 initial knots scattered

uniformly in the support of the design time points, but with the regression coef-
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ficients estimated by applying the SCAD method (Fan and Li 2001) to the third

times derivative of the regression spline function. We call the new method as re-

gression spline smoothing via penalizing derivatives. The details of the method will

be presented in Chapter 3. It is seen that the new regression spline fit outperforms

the usual regression spline fit presented in Figure 1.2, especially over the interval

[0, 0.2].

1.2 Main Results of the Thesis

In this thesis, we focus on the regression spline model with a pth order truncated

power basis Ψ(t). In many cases, the underlying function may be a piecewise

polynomial but with different orders of the polynomials at different intervals of

the support. Given p is large enough to capture all the different patterns, the pth

times derivatives of the regression spline function could be sparse. This is because

the pth times derivatives of the function are zero for the intervals with polyno-

mial orders less than p. Therefore, we attempt to transform the original regression

spline coefficient vector β into a new vector γ, whose last K + 1 components are

the pth times derivatives of the regression spline function within different intervals.

We then apply the SCAD method to estimate γ, and β can be obtained by A−1γ,

where A is a link matrix. We call the newly proposed smoothing method as "re-

gression spline smoothing via penalizing derivatives". The study of the asymptotic

properties of the newly proposed estimator shows that the estimator converges to
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the true value with probability tending to 1. Simulations and real data applications

demonstrate the good performance of the newly proposed method and also shows

that the proposed method outperforms the traditional regression spline methods.

1.3 Organization of the Thesis

The layout of this thesis is as follows. In Chapter 2, we first review the usual

regression spline smoothing method. Section 2.2.1 gives the definition of regression

splines, followed by a brief description of two widely used spline bases in Section

2.2.2. Section 2.2.3 focuses on the regression spline modeling with truncated power

basis. Sections 2.2.4 & 2.2.5 discuss issues on locating knots properly and choosing

the number of knots smartly. Section 2.2.6 & 2.2.7 present methods for estimating

the regression spline coefficients, including the ordinary least square (OLS) method,

the best subset method and the penalized least squares method. Finally, in Section

2.3, we review the SCAD method of Fan and Li (2001) for variable selection for

linear models.

The major work of this thesis will be presented in Chapter 3. Section 3.1

introduces the key idea of the new regression spline smoothing method, i.e., re-

gression spline smoothing via penalizing derivatives. We propose a method to

re-parameterize the original regression spline model in terms of the p-th order

derivatives of the regression spline function. Section 3.2 provides the details of our

method and discusses issues for selecting the tuning parameters: the knot locating
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method, the number of knots and the choice of the truncated power basis order, for

the new regression spline method. Asymptotic properties of the newly proposed

estimator are also studied in this section. Simulation studies and real data exam-

ples will be presented in Section 3.3 & 3.4, respectively. Finally, some discussions

are given in Section 3.5.
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Chapter 2

Usual Regression Spline Smoothing

2.1 Introduction

In recent years, nonparametric smoothing methods have received extensive atten-

tion for its robustness in estimation and prediction based on the standard nonpara-

metric regression model (1.1), i.e.,

yi = m(ti) + εi, i = 1, 2, . . . , n, (2.1)

when a parametric regression model is not available or not easy to be found for a

given noisy data set (t1, y1), (t2, y2), . . . , (tn, yn). A simple example is the motorcycle

data set presented in Figure 1.1. For such a data set, it is not easy to find a

proper parametric model. That is why we want to fit it using some nonparametric

techniques. As mentioned in Chapter 1, popular nonparametric techniques include

the kernel methods (Nadaraya 1964, Watson 1964, Gasser and Muller 1990), local
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polynomial kernel smoothing method (Fan and Gijbels 1996), smoothing splines

(Wahba 1990, Green and Silverman 1994), regression splines (Eubank 1988) and

penalized splines (Ruppert and Carroll 1997) among others.

It is well known that a nonparametric estimator of m(t) obtained using any of

the above popular smoothing techniques is a linear smoother of the response vector

y. That is, the smoother only employs the information obtained from the noisy

sample (t1, y1), (t2, y2), . . . , (tn, yn), by averaging responses into a smooth function.

Compared to a traditional parametric regression function, the nonparametric re-

gression function is more flexible, which might be piecewise or wiggly. Among

various nonparametric techniques, regression splines are widely used to estimate

m(t) due to its simplicity and natural generalizations from polynomials. In this

chapter, we shall make a brief review on usual regression spline smoothing. This

is because our new method proposed for estimating m(·) of (1.1) is essentially a

natural generalization of the usual regression spline technique. The revision will

be done in Section 2.2 below. We will also review the SCAD method of Fan and

Li (2001) for variable selection for linear models since we also need this technique

for the proposed new method.
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2.2 Usual Regression Splines

2.2.1 Definition of a Regression Spline

A regression spline is a piecewise polynomial function connected at some pre-

specified locations. These locations are called knots. A group of K knots can

be denoted as

τ1, τ2, . . . , τK , (2.2)

which are distinct points and in an increasing order. These knots divide the support

of the regression function m(t) (without loss of generality, we assume the support

of t is a compact interval [0, 1]) into K + 1 subintervals. These knots are called

inner knots, while in some literatures, τ0 = 0 and τK+1 = 1 are called boundary

knots. It is well known that regression splines are based on the construction of

regression spline bases. For a given regression spline basis vector Ψ(t) : q × 1,

we can always express a regression spline function as Ψ(t)T β where β : q × 1 is

called the regression spline coefficient vector. Two regression spline bases will be

introduced in next subsection.

2.2.2 Regression Spline Bases

There are various kinds of regression spline bases in the literature. Here we intro-

duce two of them, which are most commonly used, including the truncated power

basis and the B-spline basis.
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Truncated Power Basis (TPB): For a given knot sequence (2.2), a pth order

truncated power basis is defined as

1, t, t2, . . . , tp, (t− τ1)
p
+, . . . , (t− τK)p

+, (2.3)

where up
+ = (u+)p is a truncated power function and u+ = max(0, u), denoting a

function truncated at u = 0.

Based on a given truncated power basis (2.3), a regression spline can be ex-

pressed as

f(t) = β0 + β1t + · · ·+ βpt
p + βp+1(t− τ1)

p
+ + · · ·+ βp+K(t− τK)p

+. (2.4)

When p = 1, 2, 3, the associated regression splines are known as linear, quadratic

and cubic regression splines.

It can be seen from (2.4) that, the first p + 1 terms of the regression spline

function are the polynomial functions up to pth order. Therefore, a pth order

regression spline is a natural generalization of a pth order polynomial. This can

be further illustrated by observing f(t) within any two neighboring knots. For

example, with the interval (τk, τk+1), the regression spline f(t) as defined in (2.4)

can be re-expressed as

f(t) = β0 + β1t + · · ·+ βpt
p + βp+1(t− τ1)

p + · · ·+ βp+k(t− τk)
p,

which is obviously a pth order polynomial, and has any times derivatives within the

interval. However, at each knot, there exists only up to (p − 1)-times continuous
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derivatives. Notice that the pth times derivative of the regression spline f(t) is

f (p)(t) = p!(βp + βp+1 + · · ·+ βp+k), t ∈ (τk, τk+1). (2.5)

It follows that

βp+k = {f (p)(τk+)− f (p)(τk−)}/p!. (2.6)

That is, the regression spline coefficient βp+k is proportional to the jump of f (p)(t)

at the kth knot τk. When the jump is 0, the associated regression spline coefficient

βp+k is 0 and should be removed from the expression of f(t). It is equivalent to

removing the k-th knot from the knot sequence (2.2).

B-spline Basis: When K is too large, the TPB may be close to ill-conditioned,

i.e., the associated design matrix may be near degenerated. A B-spline basis is

introduced to overcome this problem. For a given knot sequence (2.2), a pth order

B-spline basis may be defined as

N0,p(t), N1,p(t), · · · , NK−p,p(t),

where Ni,j(t) is calculated in a recursive way as follows:

Ni,j(t) =
t− τi

τi+j − τi

Ni,j−1(t) +
τi+j+1 − t

τi+j+1 − τi+1

Ni+1,j−1(t), j = 1, . . . , p,

where the boundary knots τ0 = 0 and τK+1 = 1 are used. When p = 0, the

associated B-spline are

Ni,0(t) = I[τi,τi+1), i = 0, 1, · · · , K

where I is the indicator function. When p = 1, 2, 3, the associated B-splines are

called linear, quadratic and cubic B-splines respectively, which are widely used.
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In the literature, lower order TPB and B-spline bases (especially the quadratic

and cubic spline bases) are widely used to fit the standard nonparametric regression

model (2.1). TPB is easy to construct and computationally fast. However, as

mentioned previously, the design matrix based on a TPB may be ill-conditioned

when the number of knots K is too large. For a B-spline basis, the associated

design matrix is sparse as Ni,j(t) = 0 when t is not within the interval [τi, τi+j+1).

So the design matrix is sparse and well conditioned. The major drawback of the

B-spline basis is its computational burden. It is far more complicated, comparing

to TPB. Wand (2000) pointed out that the regression spline fit of the unknown

function m(t) of (2.1) should not be very sensitive to the choice of spline bases.

Thus, in this thesis, we only use the TPB due to its simplicity.

2.2.3 Regression Spline Modeling

As mentioned in the last subsection, this thesis focuses on the TPB model only.

For a given TPB vector:

Ψ(t) = (1, t, t2, · · · , tp, (t− τ1)
p
+, · · · , (t− τK)p

+)T , (2.7)

the standard nonparametric regression model (2.1) can be approximated by the

following regression spline model:

yi = Ψ(ti)
T β + εi, i = 1, 2, · · · , n, (2.8)

where β = (β0, β1, . . . , βp+K)T is the associated regression spline coefficient vector.

Denote the response vector by y = (y1, y2, . . . , yn)T and the design matrix by
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X = (Ψ(t1), · · · ,Ψ(tn))T , the above model can be written in the following matrix

form

y = Xβ + ε, (2.9)

where ε = (ε1, · · · , εn)T is the noise vector. The design matrix X can be written in

a more clear way as

1 t1 t21 . . . tp1 (t1 − τ1)
p
+ . . . (t1 − τK)p

+

1 t2 t22 . . . tp2 (t2 − τ1)
p
+ . . . (t2 − τK)p

+

...
...

...
...

... . . . ...
...

1 tn t2n . . . tpn (tn − τ1)
p
+ . . . (tn − τK)p

+


.

When the number of knots K is well chosen, and the knot sequence (2.2) is

well specified, the regression spline model (2.8) can be fitted via the ordinary least

squares (OLS) estimator. That is, the regression spline coefficient vector β can be

estimated as

β̂ = (XTX)−1XTy. (2.10)

Therefore, the least squares fit of m(t) is

m̂(t) = Ψ(t)T (XTX)−1XTy, (2.11)

and the least squares fit of the response vector y is

ŷ = Ay (2.12)

where

A = X(XTX)−1XT , (2.13)
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is the so-called smoother matrix. The advantage of the regression spline smoother

(2.11) is that it provides estimates of m(t) at any given time point t. It can be

seen that the smoother differs when the location of the knots and the knot number

change. Hence, the quality of m̂(t) depends on the location of the knots (2.2) and

the choice of the knot number K. In the next two subsections, we shall discuss

how to locate the knots and how to select the number of knots.

2.2.4 Locating the Knots

To achieve a good regression spline estimator m̂(t), we first need to locate the

knots. There are two simple methods for locating the knots for a regression spline

basis. One way for doing that is to scatter the knots uniformly in the support, say,

[0, 1]. That is, for a given number of knots, K, the knots are specified as

τj = j/(K + 1), j = 1, 2, . . . , K. (2.14)

This way is usually referred to as the uniform knot locating rule. The advantage

of this method is that the knot locating does not depend on the distribution of the

design time points.

The other way is to specify the knots as the equally spaced sample quantiles of

the design time points t1, t2, . . . , tn. That is, the knots are specified as

τj = t([100j/(K+1)]), j = 1, 2, . . . , K, (2.15)

where [x] denotes the integer part of x and t(i) is the ith quantile of t1, t2, . . . , tn.

This method is usually referred to the quantile as knots rule. The advantage of
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this method is that it specifies more knots where the design time points are more

dense. It performs similarly to the first method when the design time points are

uniformly scattered in [0, 1].

Besides the two simple methods mentioned above, other methods are also useful.

For example, one may locate the knots based on some empirical perspective, e.g., to

place the knots at the points, where we believe dramatic changes in the relationship

between the response y and the design time point t are likely to happen. For

example, the motorcycle data presented in Figure 1.1 shows that a dramatic change

may happen somewhere between [0.2, 0.3] and between [0.5, 0.6]. Thus, two knots

must be placed within these two intervals. Of course, this method is subjective

and rough. In practice, we may combine the subjective and objective approaches

to locate the knots.

More sophisticated ways of placing knots are also available in the literature.

For example, Friedman and Silverman (1989) proposed a series of stepwise knot

selection methods to find the best set of knots based on the OLS estimator, where

the selection of knots is restricted to a subset of design time points (t1, t2, . . . , tn).

The selection process is based on the minimization of the GCV score. Denote a

knot sequence as a vector τ = (τ1, τ2, . . . , τK)T . The GCV score is calculated as

GCV(τ) =
||y − ŷ||2

n(1− d(K)/n)2
, (2.16)

where y is the response vector and ŷ is its estimator as defined in (2.12), d(K) is

an increasing function of the number of knots, K. Friedman and Silverman (1989)
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suggested to use d(K) = 3K + 1.

The process of the forward addition method, which is one of the stepwise knot

selection methods is as follows. It starts with a model without any knots. After

fitting the model, we calculate the GCV score, after which a new knot is added

at each time step. Each new knot is chosen if it produces the largest reduction of

GCV at each step. This process is repeated until the total number of knots reaches

a size (usually taken to be n/3) or the GCV score stops decreasing. In this way,

the optimal group of knots is obtained.

Although the more sophisticated ways of locating knots may produce better

fitting results, they are usually computationally expensive. In practice, the uni-

form knot locating rule (2.14) and the quantile as knots rule (2.15) are the most

common ways to locate knots for their simplicity. In this thesis, we mainly em-

ploy the uniform knot locating rule to place knots in our simulations and real data

applications.

2.2.5 Methods for Choosing the Number of Knots

When the knot locating rule is specified, we need to choose the number of knots to

give a good estimate to the underlying function m(t) in the standard nonparametric

regression model (2.1).

It is known that the choice of the number of knots is an even more crucial issue

than locating the knots. This can be illustrated by two extreme situations. One
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Figure 2.1: An example of a usual regression spline fit to the motorcycle data set in which
a too large number of knots is used.

extreme situation is to choose as many knots as the number of distinct design points.

This may produce a fit to m(t), connecting all the data points. However, as we can

see in Figure 2.1, the fit will result in a rapid fluctuation, producing an extremely

complicated model. The increased model complexity will make the estimation and

prediction more difficult as more computation and information would be needed.

On the other hand, if we let the number of knots be too small, it will not fully

reflect the pattern in the data (See Figure 2.2), yielding a high prediction error. In

both cases, the estimation of the underlying function will not be good. Hence, we

should compromise between the model complexity and the goodness of fit, when

determining the number of knots. For this purpose, we introduce three methods

below which are based on a tradeoff between the model complexity and the goodness

of fit of the regression spline model. Other methods will be introduced in the next
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Figure 2.2: An example of a usual regression spline fit to the motorcycle data set in which
a too small number of knots is used.

two subsections. Generalized Cross Validation (GCV): The GCV rule was

described in the last subsection for knot locating. When the knot locating rule

is specified, we can use GCV to choose a good number of knots too. When the

TPB vector (2.7) is given and the order of the TPB, p, is fixed, choosing the knot

number K is equivalent to choosing the parameter ρ = p+K +1 which denotes the

number of basis functions in the TPB vector. To define a model selection rule such

as GCV, we need first define the quantities which measure the model complexity

and the goodness of fit.

Notice that for regression spline modeling, the estimated response vector ŷ can

be expressed as (2.12). Then the model complexity of regression spline modeling

can be measured by the degree of freedom (DF) of regression spline modeling,
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which is defined as, the trace of the smoother matrix A:

DFρ = tr(A) = p + K + 1 = ρ, (2.17)

which increases as K increasing, indicating that the regression spline model is more

complicated if a large number of knots K is used. At the same time, the goodness

of fit of regression spline modeling can be measured by the sum of squared errors

(SSE) defined as

SSEρ = ||y − ŷ||2 =
n∑

i=1

(yi − ŷi)
2, (2.18)

which is small when the regression spline model fit the data closely. In the extreme

case, when the fit passes through all the data points, SSE = 0, indicating a zero-

error fit to the data, but it is obviously not a good fit to the data, as shown in

Figure 2.1.

The Generalized Cross Validation (GCV) rule was first proposed by Craven and

Wahba (1979). Since then, it has been widely used in various settings to select the

optimal tuning parameters in a model. Here, the tuning parameter is ρ. The GCV

score as a function of ρ is defined as

GCVρ =
SSEρ

n(1−DFρ/n)2
, (2.19)

which trades-off the goodness of fit (measured by SSEρ) and the model complexity

(measured by DFρ). The optimal choice of ρ is the one which minimizes (2.19).

Notice that the GCV defined above is slightly different from the GCV defined

in (2.16) where the model complexity d(K) = 3K + 1 is subjectively chosen.
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Akaike Information Criterion(AIC): The AIC rule (Akaike 1973) can be used

to select a good number of knots, which is also constructed to trade off the goodness

of fit and the model complexity. The AIC is defined as follows:

AICρ = log(SSEρ) + 2DFρ/n, (2.20)

since when ρ is large, log(SSEρ) becomes small while DFρ becomes large. The

optimal ρ is chosen to result in the smallest AICρ. It has been shown in the

literature that AIC will lead to a large model which may under-smooth the data. To

overcome this problem, Schwarz (1978) proposed the Bayesian Information criterion

(BIC), which places more penalty on the model complexity. The BIC is defined as,

BICρ = log(SSEρ) + log(n)DFρ/n, (2.21)

which is obtained via replacing the 2 of (2.20) with log(n), which is much larger

than 2 when n is large. As a result, the optimal ρ which minimizes the BICρ is

usually smaller than the optimal ρ which minimizes the AICρ. Compared to the

resulting model by AIC, the model chosen by BIC is simpler.

2.2.6 Knot Choosing via Best Subset Selection

When the knots are well located and the knot number is properly chosen as stated

in the previous subsection, we can fit the regression spline model (2.8) using the

ordinary least squares method as stated in Section 2.2.3. This method has been

discussed by Friedman and Silverman (1989), Kooperberg, Bose and Stone (1997),

and Lee (2000) among others.
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The major limitation of the OLS method is that, to achieve a stable estimator,

only a small number of knots is allowed in the model (usually ≤ 10). However,

under this restriction, the quality of the associated estimator will be very sensitive

to the location of the knots, implying that the method will not perform well if the

location of the knots is inappropriately selected. For example, if there is a large

fluctuation in the underlying curve, introducing a small size of knots will lead to an

over-smoothing estimator, which fails to identify the change in the curve pattern

at important locations. Since, in practice, the underlying curve is unknown, we

intend to choose a large size of knots.

Usually, a large number of initial knots are introduced into the model at the

very beginning. In this case, we can use the best subset method to remove some

knots that are less important for estimating and predicting the underlying curve.

This is actually a variable selection method for the regression spline model (2.8), via

applying the best subset method to the regression spline coefficients. In particular,

if we restrict the variable selection only on the coefficients of the truncated power

basis functions, i.e., βp+k, k = 1, 2, · · · , K, the method works like removing the

knot τk, if the coefficient βp+k is insignificant and removed from the model.

The best subset method works as follow. For a standard linear regression model,

e.g., (2.9) (the regression spline model (2.8) is a standard linear model when the

basis vector Ψ(t) is specified and fixed), it introduces only one covariate into the

model at each step, and tests significance of all the coefficients included in the
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model. If any coefficient is insignificant, it will be removed from the model. The

process stops when no covariate can be added in or removed from the model.

However, it is known that the best subset method is computationally expensive.

Breiman (1995) also shows that, if a single data case (ti, yi) is removed from the

data set, the selected covariates will be different from the original ones when the

same stepwise procedure is applied. This means that, a small perturbation in the

data would lead to a drastic change in the estimated regression function.

2.2.7 Knot Choosing via SCAD Method

When a large number of knots are introduced into the regression spline model (2.8)

at the very beginning (sometimes, the size of the knots K is even larger than n),

the regression spline coefficient vector β may be sparse in the sense that many of

the regression spline coefficients are zero or nearly so. In this case, we can choose

the number of the significant knots, which is smaller than K, and estimate the

regression coefficients β simultaneously via using a penalized least squares method,

such as the SCAD method of Fan and Li (2001). That is, we minimize the following

penalized least squares criterion,

1

2

n∑
i=1

{yi −Ψ(ti)
T β}2 +

ρ−1∑
j=0

pλ(|βj|), (2.22)

where as before ρ = K + p + 1 is the number of basis functions, n is the number of

observations and pλ(|θ|) is some penalized function which is able to truncate those

insignificant coefficients into 0 so that the resulting estimates of the regression
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spline coefficients are sparse. Notice that when we shrink the regression coefficient,

βp+k, of the kth truncated power basis function, (t− τk)
p
+, to 0, it is equivalent to

removing the kth knot τk from the knot sequence (2.2). Sometimes, in the above

criterion, we may make the penalty be applied only to those coefficients of the

truncated power functions, i.e., βp+k, k = 1, 2, · · · , K.

Notice that different penalty functions will result in different estimates of β. For

example, when the so-called L2 penalty is used, i.e., pλ(|θ|) = λθ2, the associated

method is known as the penalized regression spline method (Ruppert and Carroll

1997). When the so-called L1 penalty is applied, pλ(|θ|) = λ|θ|, the associated

method is known as Lasso (the Least Absolute Shrinkage and Selection Operator);

see Tibshirani (1996). In general, a Lq penalty may be used, i.e., pλ(|θ|) = λ|θ|q

(Frank and Friedman 1993 and Fu 1998). Other penalty functions including the

hard thresholding function pλ(|θ|) = λ2 − (|θ| − λ)2I(|θ| < λ) (Antoniadis and

Fan 1997), the entropy penalty function pλ(|θ|) = (λ2/2)I(|θ| 6= 0) and the SCAD

(Smoothly Clipped Absolute Deviation) penalty function (Fan and Li 2001) can

also be applied.

A good penalty function should satisfy several properties. First, the penalty

function should be continuous to provide regularity. Second, it should be non-

decreasing with regard to |θ|, which means coefficients with larger absolute values

receive heavier penalties. Last but not the least, in order to simplify the model, the

penalty function should be singular at the origin to produce sparse estimators, i.e.,
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to truncate those insignificant coefficients to zero. Notice here, singularity means a

discontinuous derivative at zero. Lasso and the hard thresholding penalty, as well

as the SCAD penalty satisfy these properties.

But the SCAD method is shown to perform better than others, and hence we

shall use the SCAD method to select and estimate the regression spline coefficients

simultaneously. For the SCAD method, details are given in the next section.

2.3 SCAD Method for Variable Selection in Linear

Models

2.3.1 SCAD Penalized Function

In this section, we shall review the SCAD method of Fan and Li (2001) for variable

selection for linear models. When the basis vector Ψ(t) is fixed, the regression spline

model (2.8) is a standard linear regression model and hence the SCAD method can

be applied directly to estimate the regression spline coefficient vector.

Consider the following linear regression model

y = Xβ + ε, ε ∼ N(0, σ2In), (2.23)

where y is an n × 1 response vector, X is an n × d design matrix, β is a d × 1

coefficient vector and ε is the n×1 random error. To select covariates and estimate

coefficients simultaneously, Fan and Li (2001) proposed the smoothly clipped abso-

lute deviation (SCAD) method, estimating β by minimizing the following penalized
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least squares function

1

2
||y −Xβ||2 +

d∑
j=1

pλ(|βj|), (2.24)

where ||·|| is the L2-norm of a vector, and pλ(·) is the SCAD penalty in the following

form:

pλ(|θ|) =



λ|θ| when |θ| ≤ λ

−(|θ|2 − 2aλ|θ|+ λ2)/[2(a− 1)] when λ < |θ| ≤ aλ

(a + 1)λ2/2 when |θ| > aλ

for some a > 2 and λ > 0.

The first derivative of pλ(|θ|) can be written in the following equation:

p
′

λ(|θ|) = λ{I(|θ| ≤ λ) +
(aλ− |θ|)+

(a− 1)λ
I(|θ| > λ)}, θ 6= 0. (2.25)

Notice p
′

λ(|θ|) does not exist at θ = 0 and vanishes when |θ| > aλ. This demon-

strates the advantages of using the SCAD method: SCAD produces sparse esti-

mates and meanwhile, may leave large coefficients unbiased. To implement this

method, the tuning parameters λ and a, denoted as η = (λ, a), can be selected by

a data-driven method, which will be discussed later.

2.3.2 Explicit Solution when the Design Matrix is Orthonor-

mal

When the design matrix X is orthonormal, we can give an explicit solution to

the penalized least squares criterion (2.24). In fact, under this condition, the
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componentwise solution to (2.24) can be expressed as

β̂j =



sgn(zj)(|zj| − λ)+, when |zj| ≤ 2λ,

{(a− 1)zj − sgn(zj)aλ}/(a− 2), when 2λ < |zj| ≤ aλ,

zj, when |zj| > aλ,

for j = 1, 2, · · · , d, where z = (z1, · · · , zd)
T = XTy is the ordinary least square

estimator of β.

We can show the above expression as follows. Notice that under the orthonor-

mality assumption, z = (XTX)−1XTy = XTy is the OLS estimator of β since X

is orthonormal so that XTX = I, and ŷ = XXTy.

Proof: First, we examine the penalized least square function,

1

2
||y −Xβ||2 +

d∑
j=1

pλ(|βj|) =
1

2
||y − ŷ + ŷ −Xβ||2 +

d∑
j=1

pλ(|βj|)

=
1

2
||y − ŷ||2 +

1

2
||ŷ −Xβ||2 +

d∑
j=1

pλ(|βj|)

=
1

2
||y − ŷ||2 +

1

2
||z− β||2 +

d∑
j=1

pλ(|βj|),

where we use the fact ||ŷ −Xβ||2 = ||z− β||2 due to the orthonomality of X.

Since 1
2
||y − ŷ||2 is a constant, minimizing the above function is equivalent to

minimizing
d∑

j=1

{
1

2
(zj − βj)

2 + pλ(|βj|)
}

. (2.26)

Taking the partial derivative of (2.26) with respect to βj, we get,

−(zj − βj) + p′λ(|βj|)sgn(βj) = 0.
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Plugging (2.25) into the above expression, we get

−zj + βj + λ{I(|βj| ≤ λ) +
(aλ− |βj|)+

(a− 1)λ
I(|βj| > λ)}sgn(βj) = 0. (2.27)

Notice that when |βj| > aλ, we have |βj| > λ since a > 2. It follows that the third

term of the left hand side of (2.27) is 0 and hence the solution to (2.27) is

β̂j = zj.

On the other hand, when λ < |βj| ≤ aλ, careful derivation leads to that the solution

to (2.27) is,

βj =
(a− 1)zj − aλsgn(zj)

a− 2
.

as desired. The proof is completed.

2.3.3 Iterative Solution when the Design Matrix is not Or-

thonormal

When the design matrix X is not orthonormal, an explicit solution to (2.24) is hard

to obtain. However, we may obtain an iterative solution which will be described in

this subsection.

Notice when the sample size n grows larger, the first part of (2.24), i.e, 1
2
||y −

Xβ||2 will have more weight in the penalty function, which makes the penalty

inconsistent. To overcome this problem, we incorporate n into the second part of

(2.24). Therefore, the penalty function is redefined as

1

2
||y −Xβ||2 + n

d∑
j=1

pλ(|βj|), (2.28)



29

The iterative algorithm for solving (2.28) is as follows. Given an initial value

β0, which is assumed to be close to the true value of β. When the jth component

βj0 is very close to 0, we set β̂j0 = 0. Otherwise, we set β̂j0 = βj0 and approximate

[pλ(|βj|)]
′ as

[pλ(|βj|)]
′
= p

′

λ(|βj|)sgn(βj) =
p

′

λ(|βj|)
|βj|

βj ≈
p

′

λ(|βj0|)
|βj0|

βj. (2.29)

It is equivalent to approximating pλ(|βj|) by its Taylor expansion, because, when

βj ≈ βj0,

pλ(|βj|) ≈ pλ(|βj0|) + p
′

λ(|βj0|)(|βj| − |βj0|)

= pλ(|βj0|) + p
′

λ(|βj0|)
β2

j − β2
j0

|βj|+ |βj0|

≈ pλ(|βj0|) +
1

2
p

′

λ(|βj0|)
β2

j − β2
j0

|βj0|
.

Taking the first derivative of both sides of the equation with respect to βj, we get,

[pλ(|βj|)]
′
= {p′

λ(|βj0|)/|βj0|}βj,

which is the same as (2.29). Once β̂0 is obtained, we denote β̃0 as the non-zero

components of β̂0. This is actually a variable selection procedure: the important

coefficients, .i.e., the components in β̃0, are selected and estimated simultaneously,

and the unimportant coefficients are shrunken to zero. Solving the penalized least

squares problem in (2.28) produces an iterative solution:

β̂k+1 = {XT
k Xk + nΣλ(β̃k)}−1XT

k y, for k = 0, 1, 2, . . . , (2.30)

where

Σλ(β̃k) = diag{p′

λ(|β̃1k|)/|β̃1k|, . . . , p
′

λ(|β̃hk|)/|β̃hk|}.



30

Notice h is the dimension of β̃k, and Xk is the corresponding sub design matrix

related to β̃k. For β̂k+1, its dimension is the same as β̃k. Again, we need to select

important covariates in β̃k+1 and shrink insignificant coefficients to zero. This is

done by resetting β̂j(k+1) = 0, if the jth component β̂j(k+1) is close to zero. Then,

by eliminating the zero components of β̂k+1, we get β̃k+1. Repeating (2.30) until

||β̂l+1− β̃l|| < δ, where δ is a pre-specified number of precision, usually taken to be

10−4.

An important issue associated with the above iterative algorithm is when to set

β̂j(k+1) = 0. This problem is equivalent to identifying the insignificant coefficients

in β̂k+1. Actually, it can be solved by t-test. From (2.30), the estimated covariance

matrix for β̂k+1 can be derived as follows,

Σ = ĉov(β̂k+1) = {XT
k Xk + Σλ(β̃k)}−1XT

k Xk{XT
k Xk + nΣλ(β̃k)}−1σ̂2,

where

σ̂2 =
||y −Xk(X

T
k Xk)

−1XT
k y||2

n− h
,

and h is the dimension of β̃k. Suppose the jth diagonal element of the estimated

covariance matrix is Σjj, which is the estimated variance of β̂j(k+1), then the t-

statistic for the jth coefficient in β̂k+1 is Tj = |β̂j(k+1)|/
√

Σjj. If the jth coefficient

appears to be insignificant, we reset β̂j(k+1) = 0. Otherwise, it remains unchanged.

In practice, the tuning parameter η = (λ, a) is usually selected by minimizing

the GCV score (Breiman, 1995). As mentioned earlier, the GCV rule in different

settings may have different meanings. Here, it comes from the idea of a leaving-
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out-one operation. Given y and X, the above algorithm implies that β̂ can be

determined by the choice of η. To test the performance of a η at a given data point

(ti, yi), we leave out this point, fitting the model and predict yi, denoted as ŷ
(−i)
i .

Applying this procedure on every single data point, we can compute the following

cross validation criterion:

CVη = n−1

n∑
i=1

(yi − ŷ
(−i)
i )2 (2.31)

for each η. The best η is the one which minimizes (2.31). Computing (2.31) would

be time-consuming, because for each data point yi, we need to fit a new model and

estimate ŷ
(−i)
i . By formalizing and generalizing (2.31), the GCV score, which is a

function of η can be defined as follows,

GCVη =
||y −Xβ̂η||2

n(1−DFη/n)2
,

where

DFη = tr{X(XTX + nΣλ(β̂η))
−1XT}.

For each step of the iteration in (2.30), we will select the best η, which can min-

imize GCVη, Then, we use the best η to estimate the coefficients. Since η is

two-dimensional, searching the best η can be computationally expensive. Fan and

Li (2001) showed that SCAD is not very sensitive to the values of a. And from a

perspective of Bayes risk, a = 3.7 is the best choice as it leads to the minimum

Bayes risk.

Fixing a = 3.7, the GCV score is only a function of λ. If we denote SSEλ =
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||y −Xβ̂λ||2 as done in Subsection 2.2.5,

log(GCVλ) = log(SSEλ)− 2log(1−DFλ/n)− log(n)

≈ log(SSEλ) + 2DFλ/n− log(n).

In fact, log(GCVλ) is similar to the traditional model selection criterion AIC,

which is log(SSEλ)+2DFλ/n. In the literature, AIC has been proven not consistent

in the sense that it does not select the correct model with probability approaching

1 in large samples when the true model is of finite dimension (Wang 2007). Instead,

Wang (2007) proposed the BIC criterion to select λ:

BICλ = log(SSEλ) + DFλlog(n)/n− log(n).

Theoretical results show that the BIC criterion is a consistent criterion to produce λ

which can identify the true model with probability approaching 1 when the sample

size grows larger.

According to Fan and Li (2001), SCAD estimates coefficients as well as if the

true submodel is known. This is called an oracle property. The drawback of this

method is that once a coefficient is shrunken to zero, it will stay at zero in the

following iterations. However, this method significantly reduces the computational

burden.
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Chapter 3

Regression Spline Smoothing via

Penalizing Derivatives

3.1 Introduction

In the previous chapters, we review the usual regression spline smoothing method.

This method aims to fit the nonparametric regression model (2.1) which can be

rewritten as follows:

yi = m(ti) + εi, i = 1, 2, . . . , n, t ∈ [0, 1]. (3.1)

Given a noisy data set (t1, y1), (t2, y2), . . . , (tn, yn) and the truncated power basis

Ψ(t) = (1, t, t2, . . . , tp, (t− τ1)
p
+, . . . , (t− τK)p

+)T , (3.2)
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with a sequence of K given knots τ1, τ2, · · · , τK , the nonparametric regression model

(3.1) can be approximated by the regression spline model (2.8), i.e.,

yi = f(ti) + εi, i = 1, 2, · · · , n, (3.3)

where the regression spline function is

f(ti) = Ψ(ti)
T β =

p∑
r=0

βrt
r
i +

K∑
k=1

βp+k(ti − τk)
p
+, t ∈ [0, 1]. (3.4)

In situations when the regression spline coefficients βr, r = 0, 1, · · · , p + K are

sparse, we can employ the SCAD method of Fan and Li (2001) directly to the

above model (3.3) as described previously. However, in many cases, the regression

spline coefficients may be not very sparse but the derivatives of the regression spline

function are sparse. Take Simulation 2 in Section 3.3.2 for example: the coefficients

of the truncated power functions are (2,−2, 2, 2,−4, 2,−2)T and the first derivatives

of the regression spline function within different intervals are (2, 0, 2, 4, 0, 2, 0)T .

Obviously, the former vector is not sparse, while the latter one is sparse. Therefore,

directly applying the SCAD method to the original coefficient vector is less effective.

Another example is the motorcycle data which will be discussed in Section 3.4.1.

Figure 3.1 shows that, for fitting the motorcycle data, the SCAD estimator of the

regression spline coefficients of the cubic truncated power basis model are not very

sparse, but the re-parameterized coefficients via penalizing derivatives are sparse.

In the above-mentioned cases, we can re-parameterize the regression spline

model (3.3) in terms of its pth times derivatives. There are two reasons for using the
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pth times derivative in our proposed method. First, it is much easier to establish a

direct relationship between the regression spline coefficients βr, r = 0, 1, · · · , p + K

and the pth times derivatives of the regression spline function than other lower

order derivatives. Second, it is known that the regression spline model results in a

piecewise polynomial. Given p is large enough to capture all the different patterns

in the underlying function, the pth times derivatives of the function are zero for

the intervals with polynomial orders less than p.

After re-parameterizing the coefficient vector into a new vector which is sparser,

we arrive at a new regression spline model. We then apply the SCAD method to

the new model. This chapter is organized as follows. In section 3.2, we present the

regression spline smoothing method via penalizing derivatives. In Subsection 3.2.1,

we show how to re-parameterize the regression spline model (3.3). In Subsection

3.2.2, we shall discuss how to determine the tuning parameters. Subsection 3.3.3

presents some asymptotic properties of the newly proposed estimator. Section 3.3

is devoted to present two simulation studies. Two real data examples are given in

Section 3.4. We conclude this chapter by some discussions in Section 3.5.
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Figure 3.1: The transformed coefficients are sparser than the original coefficients of the
cubic truncated power basis model for the motorcycle data.
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3.2 Re-parameterizing the Regression Spline Model

3.2.1 Model Representation

Notice that the regression spline function (3.4), has only up to (p − 1) times con-

tinuous derivatives at knots, but its pth times derivatives exist at all the non-knot

points. In fact, as presented in (2.5) of Chapter 2, we have

f (p)(t) = p! {βp + βp+1 + · · ·+ βp+k} , t ∈ (τk, τk+1), (3.5)

for k = 0, 1, · · · , K where τ0 = 0 and τK+1 = 1 are two boundary knots. That is,

within any two neighboring knots, the pth order derivatives are constants. This is

an important observation since we only need at most K + 1 constants to represent

all the pth order derivatives of the regression spline f(t). To re-parameterize the

regression spline model (3.3), set

γ0 = β0,

γ1 = β1,

· · · · · · · · · ,

γp−1 = βp−1,

γp = p!βp,

γp+1 = p!(βp + βp+1),

· · · · · · · · · ,

γp+K = p!(βp + βp+1 + · · ·+ βp+K).
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Notice that here γr = βr, r = 0, 1, · · · , p−1 are not directly related to the pth order

derivatives but are related to the first p terms of the polynomial function (2.4),

and only γp+k, k = 0, 1, · · · , K are directly related to or represent the pth order

derivative. For convenience, we rewrite the above relationship in terms of matrix

and vector:

γ = Aβ, (3.6)

where γ = (γ0, γ1, . . . , γp+K)T and

A =

 Ip 0

0 B


where Ip denotes an p × p identity matrix and B is a (K + 1) × (K + 1) matrix

defined as

B = p!



1 0 . . . 0

1 1 . . . 0

...
... . . .

...

1 1 . . . 1


.

We refer the matrix A as the “link matrix”, as it connects the original regression

spline coefficient vector β with the γ. It is seen that the link matrix is invertible

since both Ip and B are invertible. In fact,

A−1 =

 Ip 0

0 B−1

 , (3.7)
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where

B−1 = p!−1



1 0 0 . . . 0

−1 1 0 . . . 0

...
... . . . ...

...

0 . . . . . . −1 1


.

Thus, we can express β in terms of γ:

β = A−1γ. (3.8)

That is,

βr = γr, r = 0, 1, 2, · · · , p− 1,

βp = γp/p!,

βp+k = (γp+k+1 − γp+k)/p!, k = 1, 2, · · · , K.

From the above expressions, it is easy to obtain an estimate of β, provided we have

an estimate of γ.

In terms of vector and matrix, we can rewrite the regression spline model (3.3)

as

y = Xβ + ε, (3.9)

where y = (y1, y2, . . . , yn)T denotes the response vector, β = (β0, β1, . . . , βp+K)T

denotes the coefficient vector, ε ∼ N(0, σ2In) denotes the noise vector, and X is
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the associated design matrix based on the truncated power basis vector, i.e.,

1 t1 t21 . . . tp1 (t1 − τ1)
p
+ . . . (t1 − τK)p

+

1 t2 t22 . . . tp2 (t2 − τ1)
p
+ . . . (t2 − τK)p

+

...
...

...
...

... . . . ...
...

1 tn t2n . . . tpn (tn − τ1)
p
+ . . . (tn − τK)p

+


.

Plugging (3.6) into (3.9), we arrive at the transformed model

y = Vγ + ε, (3.10)

where V = XA−1 with A−1 computed using (3.7). Thus, the regression model

(3.10) is the re-parameterization of the regression spline model (3.3) in terms of γ.

When β is not very sparse, while γ is sparse, applying the SCAD method of

Fan and Li (2001) to the transformed model (3.10) is more efficient than to the

original regression spline model (3.3). In this case, once γ̂ is obtained, β̂ can be

obtained using the relationship (3.8), i.e.,

β̂ = A−1γ̂.

We call this newly proposed method as "regression spline smoothing via penalizing

derivatives". The performance of this method will be demonstrated in the sections

of simulations and real data analysis.

3.2.2 Choice of the Tuning Parameters

In the re-parameterized regression spline model (3.10), there are three tuning pa-

rameters which we need to deal with: the order p of the truncated power basis
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(3.2), the locations of the knots and the number of the knots. The later two tuning

parameters can be selected using the methods described in Chapter 2 since the

re-parameterized regression spline model (3.10) is also a linear regression model

when the basis vector Ψ(t) is specified. Here we just consider how to select p.

A naive method is to select p based on the scatter plot of the data. We select p

based on whether the pth times derivatives of the function are sparse. The scatter

plot of the data may hint what kind of p is able to make the pth times derivatives

sparse. For example, the scatter plot of the motorcycle data in Figure 1.1 implies

that a cubic (p = 3) truncated power basis may be proper since at different ranges,

the linear, quadratic or cubic polynomial models can fit the data at the ranges

respectively. Therefore, when a cubic truncated power basis is applied, the third

times derivatives will be 0 at most of the design time points and hence these

derivatives are sparse.

Another method is to select p using the GCV rule. This method is slightly more

objective and automatically. It selects p via minimizing the associated GCV score.

For each given p, we can compute the best GCV score (2.19) via finding the best

number of knots, K. Then comparing all the associated best GCV scores for all

the p considered. Select the p such that the associated GCV score is the smallest.

Usually, the total number of p’s considered is small. For the motorcycle data, we

only need consider p = 1, 2, 3, 4 since we know that the larger p is not necessary.

We will demonstrate how to select the optimal p and K via simulation studies.
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3.2.3 Asymptotic Properties

The asymptotic properties of the newly proposed estimator are studied under the

general assumption that, as the sample size n → ∞, the dimension of β, i.e.,

p + K + 1, goes to infinity. Since, p is usually taken to be 1, 2, or3, we may regard

p as pre-determined. Therefore, the above assumption also means that as n →∞,

K →∞.

First, let us focus on the transformed model (3.10):

y = Vγ + ε.

The coefficient vector γ is estimated by SCAD with the penalized least squares

function (2.24) and is assumed sparse. We denote the estimator of γ as γ̂n. We

use the subscript n to show that γ̂ may change with n. We write the nonzero

components of γ as γ1 and zero components as γ2. For simplicity, γ can be written

as

γ = (γ
′

1, γ
′

2)
′
,

where γ
′
1 = (γ1, . . . , γhn) and γ

′
2 = (0, . . . , 0). Here, let kn = p + K + 1 be the

dimension of γ, and hn is the number of nonzero components of γ; mn = kn−hn is

the number of zero components of γ. Similar to the partition of γ, V can be divided

into two parts: V = (V1, V2) where V1 and V2 are n× hn and n×mn matrices.

Huang and Xie (2007) studied the asymptotic properties of the least squares

SCAD estimator. We can employ their conclusions on γ̂n. Let ρn,1 be the smallest

eigenvalue of n−1V
′
V. πn,hn and ωn,mn are the largest eigenvalues of n−1V

′
1V1
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and n−1V
′
2V2 respectively. The following conditions on the design matrix V are

necessary for the conclusions (see Huang and Xie 2007):

A0 (a) The design matrix V is fixed, and only y is random; (b) For any

j ∈ {1, . . . , kn}, ||V.j||2 = n; (c) εi’s are i.i.d with mean 0 and variance σ2.

A1 (a) limn→∞
√

hnλn/
√

ρn,1 = 0; (b) limn→∞
√

kn/
√

nρn,1 = 0.

A2 (a) limn→∞
√

hnλn/(
√

ρn,1 min1≤j≤hn |γj|) = 0;

(b)limn→∞
√

kn/(
√

nρn,1 min1≤j≤hn |γj|) = 0; (c) limn→∞
√

pn/n/ρn,1 = 0.

A3 limn→∞
√

max(πn,hn , ωn,mn)kn/(
√

nρn,1λn) = 0.

A4 limn→∞max1≤i≤n V
′
i1(

∑n
i=1 Vi1V

′
i1)
−1Vi1 = 0

Under A0− A4, the asymptotic properties of γ̂n are as follows.

Property 1:

||γ̂n − γ|| P→ 0 as n →∞

Property 2:

||γ̂n − γ|| = Op(
√

kn/n/ρn,1)

Property 3:

γ̂2n = 0mn

with probability tending to 1.

Property 4:

√
nΣ−1/2

n Dn(γ̂1n − γ1)
D→ N(0d, Id),

where Dn, n = 1, 2, . . . are a sequence of matrices of dimension d×hn with full row

rank and
∑

n = σ2Dn(
∑n

i=1 Vi1V
′
i1/n)−1Dn

′.



44

Property 1 shows that the least squares SCAD estimator is a consistent estima-

tor: as n grows larger, the estimator converges to the true value with probability

tending to 1. In particular, property 2 gives the convergence rate of the estima-

tor. Property 3 and Property 4 together demonstrate the oracle properties of the

SCAD estimator, that is, when the true coefficients have some zero components,

they are estimated as 0 with probability tending to 1, and the nonzero components

are estimated as well as when the correct submodel is known.

Based on Property 1-4 of γ̂n, some properties of β̂n can be derived.

Theorem 1:

||β̂n − β|| P→ 0 as n →∞

Proof: Let β̂n be the estimator of β, and An be the link matrix described in

Subsection 3.2.1. In Property 1, we have

||γ̂n − γ|| P→ 0 as n →∞.

Since, β̂n = A−1
n γ̂n and β = A−1

n γ, we have,

||β̂n − β|| = ||A−1
n (γ̂n − γ)||.

Here,

A−1
n =

 Ip 0

0 B−1

 ,
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where

B−1 = p!−1



1 0 0 . . . 0

−1 1 0 . . . 0

...
... . . . ...

...

0 . . . . . . −1 1


.

In fact, γ can be divided into two parts: the first part is related to the first p

terms of the polynomial function (2.4) and the second part is related to the p-th

order derivatives of the regression spline function. Therefore, we can rewrite γ

as (γ∗
′

1 , γ∗
′

2 )
′ , where γ∗

′
1 = (γ0, γ1, . . . , γp−1) and γ∗

′
2 = (γp, γp+1, . . . , γp+K). Corre-

spondingly, γ̂n, β and β̂n can be divided as (γ̂∗
′

1n, γ̂
∗′
2n)

′ , (β∗
′

1 , β∗
′

2 )
′ , and (β̂∗

′
1n, β̂

∗′
2n)

′ ,

respectively.

So,

||β̂n − β|| =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 β̂∗1n − β∗1

β̂∗2n − β∗2


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
 γ̂∗1n − γ∗1

B−1(γ̂∗2n − γ∗2)


∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ . (3.11)

As

||β̂∗1n − β∗1 || = ||γ̂∗1n − γ∗1 ||, (3.12)

and

||β̂∗2n − β∗2 || = p!−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1 0 0 . . . 0

−1 1 0 . . . 0

...
... . . . ...

...

0 . . . . . . −1 1




γ̂p − γp

...

γ̂p+K − γp+K



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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we get

||β̂∗2n − β∗2 || ≤
2

p!
||γ̂∗2n − γ∗2 ||. (3.13)

Combining (3.12) and (3.13), we arrive at the following inequality:

||β̂n − β|| ≤


2||γ̂n − γ||, if p = 1,

||γ̂n − γ||, if p > 1.

(3.14)

Since

||γ̂n − γ|| P→ 0 as n →∞,

we have

||β̂n − β|| P→ 0 as n →∞.

The proof is complete.

Based on (3.14), we arrive at the following theorem, which is obvious from

Property 2.

Theorem 2:

||β̂n − β|| = Op(
√

pn/n/ρn,1)

3.3 Simulation Studies

In this section, we shall present two simulation studies to demonstrate the proposed

method and compare different estimators. First of all, we state two basic concepts

which are useful for simulation studies.
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Signal-to-noise ratio (SNR): This concept is used to measure how strong

the signal is, compared to the noise. It indicates how difficult the estimation will

be. Usually, the smaller the SNR is, the more difficult the estimation is. For the

standard nonparametric regression model (3.1), the SNR is defined as std(m)/σ,

where std(m) denotes the standard deviation of m(t) when t is regarded as a random

variable and σ is the standard deviation of the noise variable ε. For computation

convenience, we can roughly approximate std(m) by√√√√ 1

n− 1

n∑
i=1

(m(ti)−m(ti))2.

In a simulation study, a SNR of 3 ∼ 6 is often used.

Mean of the Squared Errors (MSE): MSE is used to measure how accurate

an estimator is. For the standard nonparametric regression model (3.1), the MSE

of an estimator m̂(·) may be defined as

1

n

n∑
i=1

(m̂(ti)−m(ti))
2. (3.15)

To compare different estimators, we compare their MSEs. The best is the one with

the smallest MSE value.

3.3.1 Simulation 1

In this simulation study, we shall use the famous block test function which was

first mentioned in Donoho and Johnstone (1994). It is defined as follows.

m(t) =
∑

hjg(t− τj),
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where g(t) is the kernel function, g(t) = {1 + sgn(t)}/2. The knots here are

(τj) = (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81);

and the coefficients are

(hj) = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2).

The observed data are then generated by

yi = m(ti) + εi, εi ∼ N(0, σ2), i = 1, · · · , n, (3.16)

where σ is chosen such that the associated SNR is the given one and ti, i =

1, 2, . . . , n are randomly drawn from the standard uniform distribution.

This block test function has been employed extensively in the field of wavelet

analysis, e.g., in Donoho and Johnstone (1994) and Antoniadis and Fan (2001).

However, as Antoniadis and Fan (2001) pointed out that most wavelet applications

to statistics are restricted to the models whose design points are evenly spaced and

the sample size is a power of 2. In this simulation study, we attempt to use our

proposed method,that is, regression spline smoothing via penalizing derivatives, to

deal with the data generated from the simulation model (3.16). Figure 3.2 shows

the block test function (upper panel) and a noisy sample generated from it (lower

panel). It is seen that the block test function is discontinuous at the knots τ and

is constant within each block. Therefore, the block test function is a piecewise

constant function, i.e., a constant spline. As a result, the first order derivatives
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Figure 3.2: The block test function (upper panel) and a noisy sample (lower panel)
generated from the simulation model (3.16) with SNR = 6.
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Table 3.1: The optimal number of knots for different SNRs.

SNR Optimal Number of Knots GCV

3 25 2.4964

4 18 2.4655

5 17 2.1899

6 20 1.9828

will be sparse and hence a linear truncated power basis (p = 1) should be used for

this simulation study.

Since we set p = 1 from an empirical perspective and for simplicity, we choose

the uniform knot locating rule (see Subsection 2.2.4) to locate knots, the next step

is to determine the number of knots K. In our method, we use the GCV rule to

select the optimal number of knots from a reasonable range of K, say, K ∈ [15, 50].

Since different SNR values are considered in our later simulations, we shall select

the optimal number of knots for each SNR. This is done by the following procedure:

for each SNR, we generate N = 30 samples with a sample size of n = 100 for each

K ∈ [15, 50] and compute the average values of GCVs for each K. The optimal

number of knots is the one leads to the smallest average GCV value. Table 1 shows

the results.

As the three tuning parameters which we need to deal with: the order p of

the truncated power basis (3.2), the locations of the knots and the number of the

knots have been well fixed, we apply our proposed method to the data. Figure 3.3
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Figure 3.3: The fit by our proposed method with p = 1 and K = 20.

displays the fit by applying our proposed method to a noisy sample of size n = 100

generated from the simulation model (3.16) with SNR = 6. As can be seen from

the figure, most blocks are fitted well by our proposed method, except for some

small intervals, probably due to the limited data in these small intervals.

Next, we shall compare our proposed method with other methods. We consider

four different SNRs: 3, 4, 5, and 6. For each SNR, we generate N = 150 samples

(tj, yj), j = 1, 2, · · · , n from the simulation model (3.16) for n = 100. For con-

venience, the design time points tj, j = 1, 2, · · · , n are randomly drawn from the

standard uniform distribution.

For each sample, three smoothing methods are applied: (a) the forward selection

method without penalizing derivatives; (b) the SCAD method without penalizing

derivatives; (c) regression spline smoothing via penalizing derivatives (our proposed
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Figure 3.4: Boxplots of the MSEs for different methods. From left to right: (a) the
forward selection method without penalizing derivatives; (b) the SCAD method without
penalizing derivatives; (c) regression spline smoothing via penalizing derivatives (our pro-
posed method). Different SNRs were considered for different panels.
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method). We calculate and record the associated MSE for each of the methods.

The box plots of MSEs are displayed in Figure 3.4.

By the boxplots, it is seen that among the three methods, our proposed method

appears to be the best. This is possibly because it utilizes the information that the

first derivatives of the block test function are sparse.

3.3.2 Simulation 2

In the previous simulation study, the underlying function is a constant spline. We

now consider a new case where the underlying function is defined by a linear spline:

m(t) = Ψ(t)T β, (3.17)

where Ψ(t) is a linear spline basis vector defined as

Ψ(t) = (1, t, (t− τ1)+), (t− τ2)+, · · · , (t− τ7)+)T ,

with the inner knots τ1, τ2, . . . , τ7 evenly scattered in [0,1]. We carefully chose the

corresponding coefficient vector as

β = (2, 0, 2,−2, 2, 2,−4, 2,−2)T ,

so that the coefficients of the truncated power basis functions are (2,−2, 2, 2,−4, 2,−2)T ,

which are not sparse. However, a careful observation of the underlying function

m(t) in Figure 3.5 shows that the function has many constant intervals, which

means the first derivatives are sparse. In fact, the first derivatives within the dif-
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ferent intervals are

2, 0, 2, 4, 0, 2, 0

respectively. Therefore, if we re-parameterize the underlying function (3.17) in

terms of its first derivatives, the associated coefficients are sparse while the original

ones are not. A simulated sample can be generated using the simulated model (3.16)

with the new underlying function defined in (3.17). The upper panel in Figure 3.5

displays the true underlying function and a noisy sample generated from it with

SNR = 5. The lower panel is the new regression spline fit by our proposed method

with p = 1 and K = 7. As can be seen, although there exists noise in the data,

by penalizing the first derivatives of the regression spline function, we are able to

produce a fit which is almost the same as the true underlying function.

Next, we shall compare our proposed method with other estimation methods.

The data generation process for the comparison in different methods is the same

as in simulation 1. Since we fix K = 7 and p = 1 in our model, the number of

the coefficients to be estimated is only 9, which is quite small. Therefore, we can

apply the ordinary least square method directly to the original model (3.9) or the

transformed model (3.10) to estimate. Actually, applying OLS to (3.9) and (3.10)

will get the same estimation results of β.

Figure 3.6 displays the boxplots of MSEs for the OLS method and our proposed

method with varying SNRs. It is seen that, in terms of the mean values of MSEs,

our method outperforms the OLS method, probably because our proposed method
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Figure 3.5: The underlying function (The upper panel) and the regression spline fit by
our proposed method with p = 1 and K = 7 (The lower panel).
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Figure 3.6: Boxplots of MSEs for the OLS method (left) and our proposed method (right).

smoothes the noisy data by penalizing the first derivative of the regression spline

function. However, it is seen that the OLS method leads to a smaller variance of

MSEs. It is because the OLS method is more stable than other methods when the

dimension of the estimator is small.

3.4 Real Data Analysis

In this section, two real data applications are presented to illustrate our proposed

method. The first data set investigated is the motorcycle data set. It has been

introduced briefly in Chapter 1 which motivates the methodology of this thesis.

The second data set is the fuel consumption data. Both data sets are widely used
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Figure 3.7: The motorcycle data.

to illustrate different methods in statistics.

3.4.1 The Motorcycle Data

The motorcycle data set was first studied by Silverman (1985). The data set has

133 observations showing the effects of motorcycle crashes on victims’ heads. The

dependant variable is the time after a simulated impact with motorcycles and the

response variable is the head acceleration of a PTMO (post mortem human test

object), which captures the crash effects. The data set is displayed in Figure 3.7.

For easy presentation, we re-scaled the design points t
′
is to [0, 1].

From Figure 3.7, it is seen that different polynomials may be fit to the data

within different intervals. In fact, within the interval, [0, 0.2], a constant line may

fit the data well; within the interval (0.2, 0.5], another quadratic polynomial may
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fit the data well; within the interval (0.5, 1], the data are more scattered, thus the

underlying pattern is not clear.

Thus, a simple polynomial model is insufficient to fit the data. In the liter-

ature, several nonparametric methods have been applied to the motorcycle data.

For example, Silverman (1995) adopted the spline smoothing techniques. Hall and

Turlach (1997) used the classical wavelet thresholding method. Kovac and Silver-

man (1999) improved the wavelet thresholding method by filtering the outliers,

etc. One major problem of these methods is that, the data in the left range of the

support cannot be fitted sufficiently well.

Notice that the second derivative of a quadratic polynomial is constant , while

the second derivative of a linear or constant polynomial equals zero. Therefore, if

we use a quadratic truncated power basis to fit the data, the second derivatives of

the fitted regression spline should be sparse. Meanwhile, due to the feature of the

motorcycle data, if we use a cubic truncated power basis, the third derivatives of

the constant, linear and quadratic parts of the fitted regression spline are all zero.

Therefore, we shall try the quadratic and the cubic truncated power basis to fit the

data using our proposed method respectively, and examine which one is better.

We employ the method discussed in Subsection 3.3.2 to choose the two tuning

parameters: p and K. First, we compute the best GCV (BIC) scores via finding

the best number of knots for p = 2 and p = 3, respectively. Then, we compare

the two associated GCV (BIC) scores and choose the optimal p which leads to the
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Figure 3.8: GCV and BIC curves against various number of initial knots for the proposed
method using a quadratic truncated power basis.

smaller GCV (BIC).

Figure 3.8 and 3.9 show the plots of GCV and BIC values when p = 2 and 3,

respectively. Notice the number of the initial knots are chosen as 5, 10, . . . , 100.

It is seen that, when p = 2, the optimal number of knots is 30, with the

associated GCV = 525.1421 and BIC = 6.3709. When p = 3, the optimal number

of knots is 45, with the associated GCV = 538.8862 and BIC = 6.4388. A simple

comparison indicates that a quadratic truncated power basis with 30 knots is the

best choice. Figure 3.10 displays the fit by our proposed method using a quadratic

truncated power basis and a group of K = 30 knots which are equally spaced in

[0, 1]. It is seen that the data are well fit, even within the left end of the support.

Notice that different methods may be applied to fit the transformed model (3.10)

for the motorcycle data, including (a) the OLS method, (b) the forward selection
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Figure 3.9: GCV and BIC curves against various number of initial knots for the proposed
method using a cubic truncated power basis.

Figure 3.10: The new regression spline fit to the motorcycle data by the proposed method
using a quadratic truncated power basis with the number of knots, K = 30.



61

Figure 3.11: Various fits to the motorcycle data by applying different estimation methods
to the transformed model (3.10). A quadratic truncated power basis with K = 35 initial
knots is used for all the methods. The knots are evenly spaced in [0,1].

based method, and (c) the SCAD method. The resulting fits are displayed in

Figure 3.11 (a)− (c). As we can see, the OLS fit has too many wiggles in the right

region; the forward selection shows a small wiggle at the left end; while the SCAD

fit seems to perform well. This shows the advantage of SCAD method over the

OLS and forward selection based methods.

What would happen if we apply the estimation methods to the original model
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Figure 3.12: Various fits to the motorcycle data by applying different estimation methods
to the original model (3.9).
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(3.9) directly? The associated fits are presented in Figure 3.11 (a) − (c), all of

which are not satisfactory enough: the OLS fit is too wiggly in the right region;

the forward selection fit performs poorly on the left end region with a decreasing

curve; the SCAD fit improves the forward selection fit, but still does not fit the left

region well. Therefore, we may conclude that by penalizing the derivative of m(t),

we improve the fit to the motorcycle data.

3.4.2 The Fuel Consumption Data

In this subsection, we shall apply our proposed method to the fuel consumption

data. The data set records the fuel usage for vehicles of different weights. The

response variable is the measurement of fuel usage (in miles per gallon) and the

predictor variable is the weight (in pounds) of the vehicle. The data are displayed

in Figure 3.13 as dots.

From the scatter plot, one may guess that a single quadratic or cubic polyno-

mial model may fit the data well. However, we employ the truncated power basis

model to fit the data here. It makes sense as the regression spline is a natural

generalization of polynomial functions. Since the second or third derivatives of the

underlying regression function may be sparse, and the third derivatives of the un-

derlying regression spline function may be more sparse. Thus, we here use a cubic

truncated power basis to fit the data.

To select the tuning parameter of K, i.e., the number of knots, we compute
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Figure 3.13: The fuel consumption data (dots) and the new regression spline fit by the
proposed method using a cubic truncated power basis with K = 35 knots.

the GCV scores against the number of knots. Similar to the motorcycle data, we

only consider K as 5, 10, . . . , 100. Figure 3.14 shows the GCV curve against the

number of initial knots. It seems that the size of knots has little influence on the

GCV scores, which lie between 19.14 and 19.26. But we can still conclude from the

figure that a group of 35 initial knots is the optimal choice to fit the model.

Figure 3.13 displays the new regression spline fit by the proposed method using

a cubic truncated power basis with K = 35 knots. It is seen that the data are well

fitted.

Similar to the motorcycle data, we can fit the fuel consumption data by the

forward selection method or the SCAD method directly applied to the original

model (3.9). We found that the fits are similar to the fit produced by the SCAD

method applied to the transformed model (3.10) (See Figure 3.15). The result is
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Figure 3.14: GCV curve against the number of initial knots when the proposed method
using a cubic truncated power basis is applied to fit the fuel consumption data.

Figure 3.15: The new regression spline fit by our proposed method (solid curve) and the
usual regression spline fit (dashed curve).
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Figure 3.16: The SCAD estimator of the original coefficient vector which is sparse
enough.

not surprise and it can be explained as follows. As we mentioned previously based

on Figure 3.13, the fuel consumption data can be fitted well by a single quadratic or

cubic polynomial without any knots. Therefore, when we use a cubic TPB model,

the original coefficient vector is sparse enough even without considering the second

or third derivatives of the regression spline function. Figure 3.16 displays the

SCAD estimator of the original coefficients without penalizing the derivatives. It

can be seen that only 4 out of 39 coefficients are non-zero components. Therefore,

the original coefficients are very sparse and thus our proposed method performs

similarly as the traditional methods.
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3.5 Conclusion and Discussion

In this thesis, we proposed a new regression spline smoothing method to fit the

standard regression model (3.3), which we call "regression spline smoothing via pe-

nalizing derivatives". The method is based on the classical regression spline model

with a pth order truncated power basis. When the regression spline coefficients

may not be sparse but the pth times derivatives of the regression spline function

are sparse, our proposed method performs better than the usual regression spline

smoothing methods. The key idea is to re-parameterize the original coefficient vec-

tor into a new vector, whose last K + 1 terms are the pth times derivatives of the

regression spline function. Under the assumption that the pth times derivatives

of the function are zero for most design time points, we then apply the SCAD

method of Fan and Li (2001) to fit the transformed model. It is equivalent to at-

taching a smoothly clipped absolute deviation penalty to the pth times derivatives

of the regression spline function. Methods for selecting proper tuning parameters

are presented in this thesis. Simulation studies are conducted to demonstrate the

good performance of the proposed method. Two real data applications are used

to illustrate the proposed method and compare with other estimation methods for

regression spline models. It has been shown that the newly proposed method is

more accurate than the usual regression spline methods when the true curve is

piecewise with different orders of polynomials at different segments.

Further work needs to be done to extend the proposed method to other non-
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parametric models, as well as semiparametric models (Cox 1972, Bickel 1982) and

varying coefficients models (Hastie and Tibshirani 1993). Moreover, theories should

be developed to investigate more asymptotic properties of the proposed method.

Some previous work in this area includes Tibshirani (2005), attaching a L1 Lasso

type penalty to both the coefficients and the first times derivatives; James and Zhu

(2007) imposes sparsity on the dth times derivatives of the coefficient function of

the functional linear regression models, and develops a new model called FLiRTI

model. Our regression spline smoothing method via penalizing derivatives is similar

to them, but attaches a SCAD penalty to the pth times derivatives of the regression

spline function.
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