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SUMMARY vi

Summary

High dimensional feature selection frequently appears in many areas of contemporary

statistics. In this thesis, we propose a high dimensional feature selection method in

the context of generalized linear models and apply it in genome-wide association stud-

ies. Moreover, the modified SCAD method is developed and the family of extended

Bayesian information criteria is discussed in generalized linear models.

In the first part of the thesis, we propose penalizing the original smoothly clipped ab-

soulte deviation (SCAD) penalized likelihood function with the Jeffreys prior for pro-

ducing finite estimates in case of separation. The SCAD method is a variable selection

method with many favorable theoretical properties. However, in case of separation, at

least one SCAD estimate tends to infinity and hence the SCAD method cannot work

normally. We show that the modification of adding the Jeffreys penalty to the origi-

nal penalized likelihood function always yields reasonable estimates and maintains the

good performance of the SCAD method.
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In the second part, we study the family of extended Bayesian information criteria

(EBIC) (Chen and Chen, 2008), focusing on its performance of feature selection in

the context of generalized linear models with main effects and interactions. There are a

variety of model selection criteria such as Akaike information criterion (AIC), Bayesian

information criterion (BIC). However, these criteria fail when the dimension of feature

space is high. We extend EBIC to generalized linear models with main effects and in-

teractions by deducing different penalties on the number of main effects and the number

of interactions.

In the third part, we introduce the generalized tournament screening cum EBIC ap-

proach for high dimensional feature selection in the context of generalized linear mod-

els. The generalized tournament approach can tackle both main effects and interaction

effects, and it is computationally feasible even if the dimension of feature space is ultra

high. In addition, one of its characteristics is that the generalized tournament approach

jointly evaluates the significance of features, which could improve the selection accu-

racy.

In the final part, we apply the generalized tournament screening cum EBIC approach

to detect genetic variants associated with some common diseases by assessing main

effects and interactions. Genome-wide association studies is a hot topic in the genetic

study. Empirical evidence suggests that interaction among loci may be responsible for

many diseases. Thus, there is a great demand for statistical approaches to identify the
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causative genes with interaction structures. The performances of the generalized tour-

nament approach and the multiple testing method (Marchini et al., 2005) are compared

by some simulation studies. It is shown that the generalized tournament approach not

only improve the power for detecting genetic variants but also controls the false discov-

ery rate.
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Chapter 1

Introduction

As high dimensional data frequently arise from a variety of areas, feature selection

with high dimensional feature space has become a common and imminent problem in

contemporary statistics. Genome-wide association studies for identification of multiple

loci influenced diseases belong to high dimensional feature selection problem. In this

problem, the dimension of the feature space (P) is much larger than the sample size (n),

which poses severe challenges to feature selection. Feature selection can be considered

as a special case of model selection. However, for such a situation as genome-wide

association studies, where the dimension of the feature space is ultra high, it is im-

possible to implement conventional model selection methods to select causal features.

Dimension reduction is an effective strategy to deal with feature selection with high

dimensional feature space. On the basis of dimension reduction, some studies are ap-

pearing to tackle high dimensional feature selection in the context of linear models.
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Besides linear models, other generalized linear models built in high dimensional data

are also widely applied in many areas. Thus, it is important to investigate high dimen-

sional feature selection in generalized linear models. In addition, it is common that

interaction effects are prominent in explaining the response variable. Hence, it is neces-

sary for high dimensional feature selection methods to consider both main effects and

interaction effects.

In the following sections, background and literatures related to high dimensional fea-

ture selection are reviewed in more details. In Section 1.1, some background of high

dimensional feature selection is introduced. In Section 1.2, a topic related to feature

selection, model selection is introduced. In Section 1.3, a huge number of literatures

about feature selection methods and model selection methods are reviewed. The aim

and organization of this thesis are given in Section 1.4.

1.1 Feature selection with high dimensional feature space

With the development of technologies, the collection of high dimensional data becomes

feasible commercially. High dimensional data frequently appear in areas such as fi-

nance, signal processing, genetics and geology. For example, data from genome-wide

association studies contains hundreds of thousands of genetic markers, e.g., single nu-

cleotide polymorphisms (SNPs), which are screened to provide information for identi-

fication of causal loci. In these high dimensional data, not all but only a small subset of
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features contribute to the response variable, so it is necessary and critical to eliminate

irrelevant and redundant features from data. Feature selection with high dimensional

feature space has received much attention in contemporary statistics. For high dimen-

sional data, one common characteristic is that the number of candidate features P is

much larger than the sample size n, which is the so-called small-n-large-P problem.

It is challenging to detect a few causal features from a huge number of candidates to

explain the response variable, with a relatively small sample size.

In feature selection with high dimensional feature space, one challenge posed by small-

n-large-P problem is that a few casual features mix with a huge number of non-causal

features. Another challenge is that the maximal spurious correlation between casual

features and non-causal features can be high and usually increase with the dimension-

ality of feature space, even if all features in population are stochastically independent.

If a highly spurious correlation between a casual feature and a non-causal feature ex-

ists, this non-causal feature could present a high correlation with the response variable.

Thus, it is hard to select truly causal features when the dimension P is large.

Such a problem has become especially prevalent in genome-wide association studies. A

genome-wide association study (GWAS) is a promising way to detect genetic variants

responsible for some diseases, particularly common complex diseases such as cancer,

diabetes, heart disease and mental illnesses. After a new genetic association is iden-

tified, it can be employed to develop better strategies to treat and prevent the disease.
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In comparison with other approaches for mapping genetic variants, genome-wide asso-

ciation studies need to utilize genotypes of hundreds of thousands of SNPs for human

samples. Fortunately, with the advent of high-throughput biotechnologies, a rapid col-

lection of genotypes of densely spaced SNPs throughout the whole genome is becoming

the norm, which moves genome-wide associate studies from the futuristic to the realis-

tic. In fact, in these tens or hundreds of thousands of SNPs, there are only a few that

contribute to the disease. Thus, the task of genome-wide studies is to detect the genetic

variants of common diseases from a huge number of SNPs with a relatively small num-

ber of human samples. This is an example of the small-n-large-P problem mentioned

above.

In genome-wide association studies, some statistical methods have been developed to

detect a few loci involving tens or hundreds of thousands of loci and comparably few

observations, see, e.g. Efron adn Tibishirani (2002); Sabatti et al. (2003) Storey and

Tibshirani (2003); Lin et al. (2004); Marchini et al. (2005); Lowe, C.E. et al. (2004).

Most of these methods are based on multiple testing. Besides them, some methods in-

corporating feature selection into model selection were proposed and applied to tackle

genome-wide association studies, so we introduce model selection and its developments

in the next section.
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1.2 Model selection

A linear regression model is given as follows:

Y = β01 + β1X1 + . . . + βPXP + ε = Xβ + ε, (1.1)

where Y is an n × 1 vector, X = (1, X1, X2, . . . , XP) is an n × (P + 1) matrix, β =

(β0, β1, . . . , βP)T is a (P + 1) vector of unknown parameters, and ε follows the distribu-

tion with mean 0 and variance matrix σ2I, where I is the identity matrix. In the linear

model (1.1), the design matrix X affects the distribution of Y through the linear function

η(X) = β01 + β1X1 + . . . + βPXP, which is equal to the expectation of Y .

A generalized linear model is a generalization of the linear regression model given

above. Generalized linear models are considered as a way of unifying statistical mod-

els, including linear regression model, logistic regression model and Poisson regression

model. In a generalized linear model, there are three parts: a random part, a determinis-

tic part and a link function. The random part is the assumption that the response variable

Y follows an exponential family distribution. An exponential family is characterized by

a probability density function f given by

f (y, θ, φ) = exp{y θ − b(θ)
a(φ)

+ c(φ, y)}IA(y),

where the set A does not depend on θ (canonical parameter) and φ (dispersion parame-

ter). A large class of probability distributions including normal, binomial and Poisson

distributions belong to the exponential family. The deterministic part is the assumption
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that the covariates affect Y through a linear predictor η(X) = β01 + β1X1 + ... + βPXP.

A generalized linear model relates the random part to the deterministic part through a

function called the link function: g(E(Y |X)) = η = Xβ, where E(Y |X) is the conditional

expectation of Y given X. The link function provides the relationship between the linear

predictor and the mean of the distribution function.

At the beginning of a given modeling problem, a large number of potential covariates

are available, but not all of these contribute to the response variable. Some of these may

have little or no contribution to the response variable. Model selection, a critical issue

in data analysis, is the task of selecting a statistical model from a set of potential models

according to some criterion. A model with redundant covariates may result in a better fit

with less bias, but suffer high variance and lead to poor prediction performance. Thus,

it is necessary to obtain a model which contains as few covariates as possible while still

maintains good prediction property. There are a huge number of literatures about model

selection methods. Model selection methods can be divided into three classes: classical

methods such as forward, backward and stepwise regression, all-subset selection, and

the penalized likelihood methodology, see, e.g. Breiman (1995), Tibshirani (1996), Fan

and Li (2001) and Efron et al. (2004) and Park et al. (2006).

Feature selection can be considered as a special case of model selection. The differ-

ence is that feature selection only focuses on detecting casual features, whereas the task

of model selection focuses on the prediction accuracy of the model. In principle, model
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selection procedures mentioned above can be used to detect causal features, but when

the dimension P is huge, they will fail for one reason or another. Some studies (Chen

and Chen, 2007; Fan and Lv, 2008)have pointed out that dimension reduction is an ef-

fective strategy to deal with high dimensionality. When the dimension is reduced to a

low level, conventional model selection methods can be implemented to detect causal

features. Motivated by this idea, some feature selection procedures have been advocated

in the context of linear model with high dimensional data, see Chen and Chen (2007),

Fan and Lv (2008). When the purpose is to select a model with good prediction proper-

ties, the cross-validation (CV) score, which is an approximation to the prediction error,

is an appropriate criterion. CV does not care whether or not the features in the model

are causal as long as the model has the best prediction accuracy. However, feature se-

lection focuses on detecting causal features and the accuracy of the selection. Other

criteria should be used. Unfortunately, it has been demonstrated in many applications

that, when the dimension of the feature space is high, the conventional model selection

criteria such as AIC, BIC, etc. fail their functionality. To deal with the difficulty caused

by the high dimensionality of the feature space, a family of extended Bayes information

criteria (EBIC) has recently been developed by Chen and Chen (2008).

1.3 Literature review

In this section, some feature selection methods are reviewed. We first review some

feature selection methods confined to genome-wide association studies in Subsection
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1.3.1. Model selection methods and some feature selection methods incorporated into

model selection are reviewed in Subsection 1.3.2.

1.3.1 Feature selection methods in genome-wide association studies

In genome-wide association studies, a large number of statistical studies have been de-

veloped to detect genetic variants associated with a particular disease. From the point of

view of genetics, these approaches can be divided into three categories: single marker

analysis, haplotype analysis and gene-gene interaction analysis.

Single marker analysis is based on multiple testing of all possible individual SNPs.

In genome-wide association studies, the number of hypothesis tests is equal to the num-

ber of SNPs under consideration which can reach hundreds of thousands. An important

issue in multiple tests is how to control the overall type I error. Klein et al. (2005) used

Bonferroni adjustment for the critical value to declare the significance in genome-wide

association studies. Instead of Bonferroni correction, the false discovery rate (FDR)

was presented by Benjamini and Hochberg (1995), and employed by Efron and Tibshi-

rani (2002) and Storey and Tibshirani (2003). The false discovery rate was expected

to be more appropriate than Bonferroni correction, but when too many hypothesis tests

are conducted in genome-wide association studies, it is still unsatisfactory. Some other

studies on multiple tests were developed in the recent past. Helgadottir et al. (2007)

suggested to explore SNPs with the lowest p-values. Hoh and Ott (2003) advocated to
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utilize the sum-statistics to avoid the multiple testing dilemma.

Many studies (Allen and Satten, 2007) support the idea that the analysis based on haplo-

type can be more powerful than single marker analysis. Lin et al. (2004) employed the

multiple testing of haplotype association over all possible windows of segments, using

permutation approach as multiple testing adjustment. Besides, another area on the basis

of haplotypes focuses on testing untyped variants by coupling typed SNPs with exter-

nal information from datasets describing linkage disequilibrium (LD) patterns across

the genome (Abecasis, 2007; Epstein, Allen and Satten, 2007; Marchini et al., 2007;

Servin and Stephens, 2007).

These two kinds of approaches proceed by testing single genetic marker or haplotype

individually, but many empirical evidence suggests that interactions among loci may

affect many common complex diseases (Zerba, K. E., 2000). Marchini et al. (2005)

proposed to utilize the multiple testing of all possible pairwise gene-gene interactions

to detect genetic variations related to a common complex disease. Log-likelihood ra-

tio tests for each full logistic regression model with case-control data were used. The

overall threshold to control overall type I error was suggested to be addressed by Bon-

ferroni correction. One advantage of this method is that it is computationally feasible to

undertake in genome-wide association studies given a large computer cluster. Another

advantage is that it has greater power for identifying genetic variants in comparison

with traditional single marker analyses. However, since Bonferroni correction is so



Chapter1: Introduction 10

conservative that an extremely small p−value is needed to declare the genome-wide

significance, the power to identify genetic variants would be still low. Moreover, some

non-causal variations may be wrongly detected since the multiple testing may declare

some interactions between non-causal and causal variants to be significance.

The interest of these feature selection methods was confined to genome-wide associ-

ation studies. Moreover, methods based on multiple testing have a lot of limitations

such as ignoring multi-feature joint effects. Recently, some studies focused on incor-

porating feature selection into model selection. The next subsection will review con-

ventional model selection methods, as well as feature selection methods in high dimen-

sional space.

1.3.2 Model selection methods

As model selection is an important issue in modern data analysis, a large number of

model selection methods were proposed. They can be classified into three categories:

classical methods such as forward, backward and stepwise selection; all-subset selec-

tion methods, AIC and BIC; the penalized likelihood methods including non-negative

garrote, least absolute shrinkage and selection operator (LASSO) and SCAD.

Forward, backward selection methods select variables by adding or deleting one at a

time based on reducing the sum-square-error. Stepwise selection by Efroymson (1960)
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is a combination of forward and backward selection. The backward selection is not

suitable to the situation where the number of covariates is much larger than the sample

size. Moreover, both forward and stepwise selections suffer a serious drawback from

their greedy property.

All-subset selection examines all possible sub-models and picks the best model by opti-

mizing some selection criteria. Although all-subset selection methods are easy to use in

practice, they have several drawbacks. One main drawback is that all-subset selection

methods are the most unstable procedure (Breiman, 1996). Moreover, all-subsets pro-

cedure is impracticable in terms of computational cost when the number of independent

covariates is large.

In recent years, researchers have proposed a new class of model selection methods.

They include the non-negative garrote by Breiman (1995), the LASSO by Tibshirani

(1996), the least angle regression (LARS) by Efron et al. (2004), Elastic Net by Zou and

Hastie (2005), the adaptive Lasso by Zou (2006) and the SCAD by Fan and Li(2001).

Generally speaking, these methods estimate the unknown parameters by minimizing a

penalized sum of squares of residuals in linear model. They can perform the parameter

estimation and variable selection simultaneously. In the following, we review penalized

likelihood methods in the context of linear model.

Breiman introduced the non-negative garrote method in 1995. The garrote starts with
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the ordinary least squares estimates of the full model and then shrinks them by non-

negative factors whose sum is constrained. The garrote estimates can be obtained by

minimizing

n∑

i=1

(yi − β0 −
P∑

j=1

c j β̂ j xi j)2 subject to c j ≥ 0,
P∑

j=1

c j ≤ t, (1.2)

where β̂ j, j = 1, . . . , P are the ordinary least squares estimates. The non-negative

garrote method enjoys consistently lower prediction error than all-subset selection and

is competitive with ridge regression except when the true model contains many small

non-zero coefficients. However, the garrote estimates depend on both the sign and the

magnitude of the ordinary least squares estimates. Moreover, when there are highly

correlated covariates, the ordinary least squares estimates behave poorly, which may

affect the garrote estimates.

Motivated by the idea of non-negative garrote method, Tibshirani (1996) proposed a

new method via the L1 penalty, called the Lasso, for “least absolute shrinkage and se-

lection operator”. In Lasso, the parameter estimates are obtained by minimizing the

residual sum of squares subject to the sum of the absolute value of the coefficients be-

ing less than a constant. The Lasso penalized estimators are obtained by minimizing

n∑

i=1

(yi − β0 −
P∑

j=1

β jxi j)2 + λ

P∑

j=1

|β j| (1.3)

In (1.3), λ ≥ 0 is a tuning parameter controlling the amount of shrinkage to ordinary

least squares estimates. For a small value of λ, the solution of (1.3) approaches the

ordinary least squares estimates; while for sufficiently large λ, some of the parameter
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estimates will be exactly zero. Efron et al. (2004) proposed a sequential variable selec-

tion algorithm also via the L1 penalty, called Least Angle Regression (LARS) which is

useful and less greedy than forward selection method. The procedure in the LARS algo-

rithm is helpful to understand the mechanism of the Lasso. In the penalized likelihood

method, the tuning parameter λ controls the number of nonzero coefficient estimates,

with larger λ yielding sparser nonzero estimates. As the tuning parameter λ decreased

from ∞ to 0, a series of solutions is called the solution path. The algorithm of LARS

is much simpler and uses less computational time to track the entire solution path, al-

though the LARS method yield nearly the same solution path as the Lasso.

Although the Lasso/LARS algorithm has many advantages, it also has some limita-

tions. First, the L1 penalty shifts the ordinary least squares estimates, which leads to

unnecessary bias even when the true parameters are large. Second, the L1 penalized

likelihood estimators cannot work as well as if the correct submodel were known in

advance. Another drawback is the number of variables selected by the L1 penalty is

bounded by the sample size n.

There are some LARS extensions described in the literature. Zou and Hastie (2005)

proposed the Elastic Net method, whose penalty function is a combination of the L1

penalty and the L2 penalty. The number of variables selected by Elastic Net is not

bounded by the sample size. Furthermore, the Elastic Net considers the group effect, so

highly correlated variables can be selected or removed together. Zou (2006) advocated



Chapter1: Introduction 14

the adaptive Lasso, a new version of the Lasso. Unlike Lasso which applies the same

penalty to all coefficients, the adaptive Lasso utilizes adaptive weights for penalizing

different coefficients in the L1 penalty. The adaptive Lasso enjoys the oracle properties,

whereas the Lasso does not. Park et al. (2006) introduced the GLM path algorithm, a

path-following algorithm to fit generalized linear models with the L1 penalty. The GLM

path uses the predictor-corrector method of convex-optimization to compute solutions

along the entire regularization path.

Fan and Li (2001) pointed out that a good penalty function should result in estimators

with three theoretical properties:

• Unbiasedness: The estimator is unbiased when the true unknown parameter is

large.

• S parsity: The estimator has a threshold structure, which automatically sets small

estimated coefficients to zero.

• Continuity: The estimator is continuous in data.

These properties can make the model selection avoid unnecessary bias, redundant vari-

ables and instability. The Lq penalty function pλ(|θ|) = λ|θ|q does not simultaneously

satisfy these three properties. Fan and Li (2001) proposed a penalty function possessing

all these properties, called the smoothly clipped absolute deviation (SCAD) function.

It is based on the L1 penalty function and the clipped penalty function. Its derivative is
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expressed by

p′n(θ) = λnI(|θ| ≤ λn) +
(aλn − |θ|)+

(a − 1)λn
I(|θ| > λn), a > 2. (1.4)

Assume that the columns of X is orthonormal, the SCAD penalized likelihood estima-

tors are given by

θ̃ =



sgn(θ̂)(|θ̂| − λn)+, |θ̂| ≤ 2λn,

{(a − 1)θ̂ − sgn(θ̂)aλn}/(a − 2), 2λn < |θ̂| < aλn,

θ̂, |θ̂| > aλn,

(1.5)

where λn and a are two tuning parameters, and θ̂ is the ordinary least squares esti-

mate. From (1.5), it is seen that when the ordinary least square estimate of the unknown

parameter is sufficiently large, the SCAD penalty function does not penalize it. Fur-

thermore, the SCAD estimate θ̃ is a continuous function of the ordinary least squares

estimate θ̂. Under some general regularity conditions, the SCAD estimates have oracle

property when the smoothing parameter λn is appropriately chosen. The oracle property

is that the SCAD penalized likelihood estimates perform as well as if the true underly-

ing model is given in advance. Nevertheless, when the separation phenomenon exists

in a logistic model, the SCAD method is infeasible. The problem of separation is non-

negligible and usually observed in a logistic model with a small sample size and a huge

number of possible factors. In case of separation, the log-likelihood function is mono-

tone on at least one unknown parameter. This, combined with the fact that the SCAD

penalty function is bounded, results in at least one infinity SCAD penalized estimate.

An appropriate model selection criterion is needed to identify the optimal model from
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all candidate models. Many model selection criteria have been developed, including

cross-validation (CV) by Stone (1974), generalized cross-validation (GCV) by Craven

and Wahba (1979), Akaike information criterion (AIC) by Akaike (1973), Bayesian

information criterion (BIC) by Schwarz (1978). However, it was observed that all con-

ventional selection criteria tend to select too many spurious variables by Broman and

Speed (2002), Chen and Chen (2007). The extended Bayesian information criterion

(EBIC) proposed by Chen and Chen (2007) provides an appropriate model selection

criterion for high dimensional feature selection since it can effectively control the num-

ber of spurious variables. However, the extended Bayesian information criterion was

only discussed in the linear regression model with main effects.

When the dimensionality P is huge, both traditional model selection methods and the

penalized likelihood methodology are infeasible mainly because of the small-n-large-P

problem. Fortunately, a new series of approaches have been proposed to tackle feature

selection with high dimensional feature space. In general, this kind of approaches first

reduce a high dimensional feature space to a low dimensional one. Then, model selec-

tion method is utilized to find causal features from the reduced feature space. In the

following, two high dimensional feature selection methods are reviewed.

Fan and Lv (2008) proposed the sure independent screening (SIS) procedure to reduce

the dimensionality of feature space from high to a relatively small scale (d) below the

sample size (n) in the context of linear model. SIS procedure applies the componen-



Chapter1: Introduction 17

twise regression to select the features with the largest d componentwise magnitudes.

After the dimension of the original feature space is reduced, the penalized likelihood

methods such as SCAD, LASSO are suggested for estimating unknown parameters or

selecting causal features. The procedure of SIS is identical to selecting features by

comparing correlations between features and the response variable. This feature makes

SIS procedure to be promising because the computation is very simple even if the di-

mension of feature space is ultra high.

Chen and Chen (2007) developed another procedure called the tournament screening

(TS) to reduce the dimension of high dimensional feature space in linear model. In TS

procedure, the dimension of feature space is reduced gradually until it reaches a desir-

able level. At each stage, the features which survived in the previous stage are divided

into some non-overlapping groups randomly. Then, a specified number of features are

selected by some model selection methods in each group and pooled together as candi-

dates in the next stage. This process is repeated until the dimension of the feature space

is reduced to an expected number. After pre-screening, all the features entered the final

stage are jointly assessed by the penalized likelihood methodology and grouped into a

sequence of nested subsets. For each subset, an un-penalized likelihood model is fitted

and then evaluated by some model selection criterion. The tournament screening would

be efficient and feasible for feature selection with high dimensional feature space.
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1.4 Aim and organization of the thesis

Combining model selection with dimension reduction is an effective strategy to deal

with feature selection with high dimensional feature space. Besides linear regression

models, other generalized linear regression models built by high dimensional data also

play an important role in many areas. For instance, logistic regression model is used to

describe the relationship between the phenotype and genotypes in genome-wide associ-

ation studies. Hence, it is an important and urgent task to investigate high dimensional

feature selection in the context of generalized linear models. In this thesis, we provide

the generalized tournament screening cum EBIC approach to achieve this purpose and

apply it in genome-wide association studies for the identification of genetic variations.

The SCAD method proposed by Fan and Li (2001) is an effective variable selection

method with many favorable theoretical properties. Unfortunately, the SCAD method

encounters a problem that at least one parameter estimate diverges to infinity in case of

the separation phenomenon. Furthermore, the separation phenomenon is non-negligible

and primarily occurs in the data with a small sample size and a huge number of possible

factors. We introduce the modified SCAD method, which is applicable in case of the

separation phenomenon.

The Extended Bayesian information criterion (EBIC; Chen and Chen, 2007) is ex-

tremely useful in moderate or high dimensional feature selection, since it can effectively
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control the false discovery rate whereas conventional model selection criteria cannot.

As the idea of incorporating feature selection into model selection is becoming popular,

the EBIC would become more attractive. Its performance was only demonstrated in

linear regression models with main effects. In this thesis, we extend EBIC to the gen-

eralized linear models with both main effects and interaction effects. Meanwhile, EBIC

is a necessary element in the generalized tournament approach.

The thesis is organized as follows:

In Chapter 2, we focus on the problem raised by the separation phenomenon in the

original SCAD method. We propose a modified SCAD method by adding the logarithm

of the Jeffreys penalty to the SCAD penalized log-likelihood function. The properties

and performance of the modified SCAD method are shown by some justifications and

simulation studies.

In Chapter 3, we focus on the extended Bayesian information criterion (EBIC) in the

context of generalized linear models. EBIC can be used in the model with both main

effects and interaction effects. Simulation studies are conducted to demonstrate the

performance of EBIC in the medium or high dimensional generalized linear models in

comparison with the Bayesian information criterion.

In Chapter 4, we focus on the generalized tournament screening cum EBIC in gen-
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eralized linear models. We introduce its whole procedure including the pre-screening

step and the final selection step. In addition, some strategies for two steps are proposed.

In Chapter 5, the generalized tournament screening cum EBIC is applied in genome-

wide association studies. The penalized logistic model with main effects and interaction

effects is introduced. Some numerical studies are conducted to compare the perfor-

mances of the generalized tournament approach and the multiple testing for gene-gene

interactions (Marchini et al., 2005).

In Chapter 6, we give the conclusions on the thesis and discuss some future works

including choosing an appropriate parameter value for the extended Bayesian informa-

tion criterion, combining the group selection methods with the generalized tournament

approach and constraining the order of selecting main effects and interaction effects.
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Chapter 2

The Modified SCAD Method for

Logistic Models

The SCAD method (Fan and Li, 2001) is a variable selection method with some fa-

vorable theoretical properties. It is suitable to several models including generalized

linear regression models. However, the separation phenomenon in logistic regression

model pose a challenge to the SCAD method. Separation frequently occurs when the

binary outcome variable can be perfectly separated by a single covarite or by a linear

combination of the covariates (Albert and Anderson, 1984). In case of separation, the

log-likelihood is monotone on at least one unknown parameter. This, combined with

the fact that the SCAD penalty is bounded by a constant, causes at least one infinite pa-

rameter estimate. It has been shown that the separation phenomenon is non-negligible

and primarily occurs in datasets with a small sample size relative to the number of pos-
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sible risk factors. To solve the problem raised by separation, we propose the modified

SCAD method in this chapter. The modified SCAD method adds the algorithm of the

Jeffreys invariant prior (Jeffreys, 1946) to the original SCAD penalized log-likelihood

function. This modification ensures finite parameter estimate even in case of separation.

We apply the Newton-Raphson algorithm to maximize the modified SCAD penalized

likelihood function. In case of no separation, simulation studies are conducted to com-

pare the modified SCAD method with the original SCAD method. It is shown that when

the sample size is large enough, the performance of modified SCAD method is the same

as that of the original SCAD method with regards to variable selection. Therefore, the

modified SCAD method not only provides a solution to the problem of separation but

also maintains the performance of the SCAD method.

In the following sections, the modified SCAD method is described in more details.

In Section 2.1, we describe the separation phenomenon and review the solution to the

problem of separation in the maximum likelihood method. The modified SCAD method

is explored and discussed in Section 2.2. In Section 2.3, the performance of the modi-

fied SCAD method is illustrated with simulated datasets.

2.1 Introduction to the separation phenomenon

Logistic regression model is used extensively in many areas such as genome-wide as-

sociation studies and medical studies. Examples of a binary response variable (0/1)
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include disease or free of disease, the success of some medicine in treating patients

(yes/no). Let Y denote a binary response variable:

Y =



1 , if the subject falls into a certain category,

0 , otherwise.

The logistic regression model has the form

log
p(Y = 1|X)
p(Y = 0|X)

= XTβ, (2.1)

where β = (β0, β1, . . . , βP), β0 denotes the intercept item and X = (1, X1, . . . , XP). The

likelihood function of β with n observations {(yi, xi), i = 1, .., n} is given by

L(β) = Πn
i=1π

yi
i (1 − πi)(1−yi), (2.2)

where

πi =
exp{xT

i β}
1 + exp{xT

i β}
or log

πi

1 − πi
= xT

i β.

Therefore, the log-likelihood function is expressed by

l(β) =

n∑

i=1

{yi (xT
i β) − log[1 + exp (xT

i β)]}. (2.3)

Either in medical or in genome-wide association studies, datasets are commonly small

or sparse, which tends to cause the separation phenomenon. Separation frequently oc-

curs when the binary outcome variable can be perfectly separated by a single covariate

or by a linear combination of the covariates (Albert and Anderson, 1984). For example,

‘Age’ is one covariate in the logistic model. Consider a situation where every value of

the response variable is 0 if the age is less than 40 and every value is 1 if the is age

is grater than or equal to 40. The value of response can be perfectly separated by the
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covariate ‘Age’. It has been shown that the separation phenomenon is a non-negligible

problem and primarily occurs in the datasets with a small sample size and some highly

predictive risk factors (Heinze and Schemper, 2002). The simplest case of separation is

in the analysis of a 2 × 2 table with one zero cell count. The separation phenomenon

renders some methods relevant to estimation of unknown parameters unable to work

normally. In the remainder of this section, we describe the problem caused by separa-

tion in the maximum likelihood method and review a solution to this problem.

In logistic regression, the maximum likelihood estimate (MLE) of unknown parameters

is obtained by an iteratively weighted least-squares algorithm. In the fitting process, it

is likely that although the likelihood function converges to a finite value, at least one pa-

rameter estimate diverges to infinity. As a result, the corresponding estimated odds ratio

is zero or infinite. It has been recognized that this problem is caused by the separation

phenomenon. In practice, infinite parameter or zero (infinite) odds ratio is usually con-

sidered unrealistic. Therefore, it once seemed that the separation phenomenon posed a

challenge to the maximum likelihood method. However, it was found that in exponen-

tial family, the penalized likelihood function with a penalty function |I(θ)| 12 provides a

solution to this problem. This penalty is the Jeffreys invariant prior (Jeffreys, 1946).

The asymptotic bias of the maximum likelihood estimate θ̂ can be expressed by b(θ) =

b1(θ)/n + b2(θ)/n2 + . . ., where n is the sample size. In a logistic regression model, the
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O(n−1) bias can be written by

b1(θ)/n = (XT WX)−1XT Wξ, (2.4)

where W = diag{πi(1 − πi)}, Wξ has i-th element hi(πi − 1/2) and hi is the diagonal

element of the matrix H = W1/2X(XT WX)−1XT W1/2. Firth (1993) proposed a modified

score procedure to remove O(n−1) bias for MLE. In exponential family, its effect is to

penalize the likelihood function by the Jeffreys invariant prior. Firth illustrated with

one example that this modification produces finite estimate instead of infinite MLE in

case of separation. Heinze and Schemper (2002) pointed out that Firth’s modified score

procedure can solve the problem of separation in the maximum likelihood method. Fur-

thermore, Heinze and Ploner (2003) developed a statistical software package in R, a

comprehensive tool to facilitate the application of Firth’s modified score procedure in

logistic regression.

Let {(yi, xi), i = 1, ..., n} denote a sample of n observations with the response vari-

able Y and the covariate vector X of dimension P. In general, the maximum likelihood

estimate of the unknown parameter β is the solution of the score equation U(β) =

∂ log L(β)/∂β = 0, where L(β) is the likelihood function. However, the maximum like-

lihood estimate may be seriously biased when the sample size is small. In order to

reduce the bias, Firth suggested to use Firth’s modified score equations instead of the

original ones U(βr) = 0. In exponential family, the modified score equations is given

by

U(βr)∗ = U(βr) +
1
2

trace[I(β)−1{∂I(β)
∂βr
}] = 0, r = 1, ..., P, (2.5)
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where I(β) is the Fisher information matrix, i.e. the negative of the expected second

derivative of the log-likelihood function. It was shown that the modified score equa-

tion (2.5) can remove the O(n−1) bias of the maximum likelihood estimate. Moreover,

in exponential family with canonical parameterization, Firth’s modified score proce-

dure is corresponding to the penalized log-likelihood function log L(β)∗ = log L(β) +

log |I(β)|1/2, where the penalty |I(β)|1/2 is named as Jeffreys invariant prior (Jeffreys,

1946).

Since the original purpose of Firth’s modified score procedure is to reduce the bias of

the maximum likelihood estimate, its function relevant to the separation problem was

not fully recognized. Thus, Heinze and Schemper (2002) reviewed Firth’s modified

score procedure and suggested to use it to produce finite estimate in case of separation.

Firth’s modified score function for logistic regression model is

U(βr)∗ =

n∑

i=1

{yi − πi + hi(
1
2
− πi)}xir, (2.6)

where the hi is the i-th diagonal element of the hat matrix H = W1/2X(XT WX)−1XT W1/2

with W = diag{πi(1 − πi)}. Then, the Firth-type estimate can be obtained by a Newton-

Raphson algorithm

β(s+1) = β(s) + I−1(β(s))U(β(s))∗, (2.7)

where β( j ) denotes the estimate in the j-th iteration and U(·)∗ is Firth’s score function

(2.6).
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Firth’s modified score function (2.6) can be rewritten by

U(βr)∗ =

n∑

i=1

{(yi − πi)(1 + hi/2) + (1 − yi − πi)hi/2}xir. (2.8)

Assume that each observation (yi, xi) is splitting into two new observations (yi, xi) and

(1− yi, xi), respectively with iteratively updated weights 1 + hi/2 and hi/2. In this way,

any xi in the new data set is corresponding to one response and one non-response. It

ensures that the separation phenomenon never exists in the new data set. Consequently,

the maximum likelihood estimate based on the new observations is always finite. In

addition, it is seen that the ordinary score function U(βr) = ∂ log L(β)/∂βr for the new

observation {(yi, xi), (1 − yi, xi), i = 1, 2, . . . , n} has the same expression as (2.8). It

shows that the solutions to Firth’s modified score equation are finite. Therefore, Firth’s

modified score function or Jeffreys invariant prior provides a solution to the problem of

separation in the maximum likelihood method.

Other than the maximum likelihood method, the SCAD method is also affected by the

separation phenomenon. In the next section, we review the SCAD method and describe

its problem caused by the separation phenomenon. Finally, we propose the modified

SCAD method to tackle the problem caused by separation.
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2.2 The modified SCAD method in logistic regression

model

The SCAD method is an effective variable selection approach via penalized likelihood

(Fan and Li, 2001). Compared with the classical model selection methods such as sub-

set selection, the SCAD method is more stable and still feasible for high dimensional

data. Moreover, the family of smoothly clipped absolute deviation (SCAD) penalty

functions results in its estimate with three properties: unbiasedness, sparsity and con-

tinuity. In contrast, the estimate by Lq penalty does not have these three properties

simultaneously. One more important thing is that the SCAD method enjoys the oracle

property with a proper choice of regularization parameters. It means that the SCAD

method performs as well as the true model is known in advance. It has been shown with

simulation studies that the SCAD method obtains the best performance in identifying

significant covariates in comparison with some other penalty likelihood approaches.

In logistic regression, the penalized log-likelihood with the SCAD penalty function

is given by

lS (β | λ) = log L(β) − n
P∑

j=1

pλ(|β j|)

=

n∑

i=1

{yi(xT
i β) − log[1 + exp(xT

i β)]} − n
P∑

j=1

pλ(|β j|), (2.9)
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where

pλ(θ) =



λ|θ| : |θ| ≤ λ,

−(θ2 − 2aλ|θ| + λ2)/[2(a − 1)] : λ < |θ| ≤ aλ, for some a > 2

(a + 1)λ2/2 : |θ| > aλ.
(2.10)

is the family of SCAD penalty functions. It can be seen that the SCAD penalty function

is bounded by a constant (a + 1)λ2/2 if the regularization parameters λ and a are given.

The first order derivative of the SCAD function (2.10) is expressed by

p
′
λ(θ) = λ{I(|θ| ≤ λ) +

(aλ − θ)+

(a − 1)λ
I(|θ| > λ)}. (2.11)

When the estimate is larger than aλ, the first order derivative of the SCAD penalty is

equal to zero.

Given the values of regularization parameters λ and a, the SCAD method selects vari-

ables and estimates unknown parameters via maximizing the penalized log-likelihood

function (2.9). The penalized log-likelihood function consists of the log-likelihood

function and the SCAD penalty function. When the separation phenomenon exists in

the dataset, responses and non-responses are separated by one variable or a linear com-

bination of some variables. Therefore, the log-likelihood function is monotone on at

least one parameter. This, combined with the fact that the SCAD penalty is bounded,

results in at least one infinite estimate. Therefore, the SCAD method is unable to esti-

mate unknown parameters and select variables when the separation phenomenon exists.
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To produce finite parameter estimates, we propose the modified SCAD method. The

modified SCAD method adds the algorithm of the Jeffreys invariant prior (Jeffreys,

1946) to the original SCAD penalized log-likelihood function. The penalized log-

likelihood function of the modified SCAD method is expressed by

lMS (β | λ) = log L(β) +
1
2

log |I(β)| − n
P∑

j=1

pλ(|β j|). (2.12)

Three items in the right side of (2.12) are the log-likelihood function, the Jeffreys

penalty and the SCAD penalty respectively. The score function based on the penal-

ized likelihood function (2.12) with n observations {(yi, xi), i = 1, . . . , n} is

UMS (βr) =

n∑

i=1

{yi − πi + hi(
1
2
− πi)}xir − np

′
λ(|βr|)

=

n∑

i=1

{(yi − πi)(1 + hi/2) + (1 − yi − πi)hi/2}xir − np
′
λ(|βr|), (2.13)

where hi is the i-th diagonal element of the hat matrix H. The score function of the

original SCAD method is given by

US (βr) =

n∑

i=1

(yi − πi)xir − np
′
λ(|βr|). (2.14)

Assume that {(yi, xi), ((1−yi), xi) i = 1, . . . , n} is a new dataset and (yi, xi) and ((1−yi), xi)

are weighted by 1 + hi/2 and hi/2. Then, the score function is expressed by

US (βr)new =

n∑

i=1

{(yi − πi)(1 + hi/2) + (1 − yi − πi)hi/2}xir − np
′
λ(|βr|). (2.15)

Compared (2.13) with (2.15), it is seen that the score function US (βr) with {(yi, xi), ((1−

yi), xi) i = 1, . . . , n} has the same expression as the modified score function UMS (βr)

with {(yi, xi), i = 1, . . . , n}. The separation phenomenon never occurs in the new data
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set since any xi has one response and one non-response. Therefore, the modified SCAD

method always avoids infinite estimate caused by separation. In the following, the

Newton-Raphson algorithm in the modified SCAD method is described in details.

Assumed that β(s) is the estimate at the s-th iteration with an initial value of β(0). The

estimate at the (s + 1)-th iteration β(s+1) is obtained by

β(s+1) = β(s) − (∇2lMS (β(s)))−1∇lMS (β(s)). (2.16)

This is the Newton-Raphson algorithm. Here, the log-likelihood function and the SCAD

penalty in (2.12) are locally approximated by

l(β(s)) + ∇l(β(s))T (β(s)) +
1
2

(β − β(s))T∇2l(β(s))(β − β(s)) − 1
2

nβT Σλ(β(s))β, (2.17)

where l(β(s)) denotes the log-likelihood function of β(s), ∇(β(s)) denotes the first partial

derivative of the likelihood function ∂l(β(s))/∂(β) , ∇2l(β(s)) denotes the second par-

tial derivative ∂2l(β(s))/∂(β)∂(β)T , and Σλ(β(s)) is the diagonal matrix with diagonal el-

ements (p
′
λ(|β(s)

1 |)/|β1|, . . . , p
′
λ(|β(s)

P |)/|βP|). Since it is difficult to get the second order

derivative of the information matrix, we propose to exclude it in (∇2lMS (β(s)))−1. When

Heinze and Schemper (2002) considered the Firth’s penalized likelihood, they also used

the information matrix to approximate the second order derivative. Thus, (2.16) can be

approximated by

β(s+1) = β(s) + {I(β(s)) + nΣλ(β(s))}−1UMS (β(s)), (2.18)

where I(β(s)) = XT W (s)X with W (s) = diag{π(s)
i (1 − π(s)

i )} is the Fisher information ma-

trix at β(s), UMS (β(s)
r ) =

∑n
i=1{yi − π(s)

i + hi( 1
2 − π(s)

i )}xir − np
′
λ(|β(s)

r |) denotes the modified
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score function at β(s), and the hi is the i-th diagonal element of the hat matrix at the s-th

iteration, H(s) = (W (s))1/2X(XT W (s)X)−1XT (W (s))1/2. Note that UMS (β(s)
r ), H(s) and W (s)

are needed to update in each iteration. Moreover, the maximum absolute difference be-

tween β(s) and β(s+1) is controlled by a given value. It can avoid the numerical problems

during estimation (Heinze and Ploner, 2003). The modified SCAD estimate is obtained

until the algorithm converges, i.e.,
∑P

r=1 |β(s+1)
r − β(s)

r | or maxr=1,...,P |β(s+1)
r − β(s)

r | is less

than a convergence criterion ε.

In Firth’s modified score procedure, it was shown that the Jeffreys invariant prior re-

moves O(n−1) bias from the maximum likelihood estimate. From this conclusion, it can

be seen that the influence of the Jeffreys invariant prior is asymptotically negligible,

i.e., the modified SCAD method only adds one negligible item to the SCAD penalized

likelihood function. Thus, it appears that the modified SCAD method should maintain

the performance of the original SCAD method when the sample size is large. Moreover,

as discussed earlier, the modified SCAD method should produce finite estimate in case

of the separation phenomenon. In next section, we conduct some simulation studies to

evaluate the performance of the modified SCAD method.

2.3 Simulation studies

In the first simulation, we compare the performance of the SCAD method with the

modified SCAD method when no separation phenomenon exists in the data sets. The
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purpose is to examine whether the Jeffreys invariant prior affects the performance of the

modified SCAD method. There are two measures: the positive selection rate (PSR) and

the false discovery rate (FDR). The positive selection rate is defined as the proportion

of the truly associated covariates selected. The false discovery rate is defined as the

proportion of falsely selected covariates among all selected ones. Moreover, the regu-

larization parameter λ in the SCAD penalty function is chosen by Bayesian information

criterion (BIC) in both methods. The value of another parameter a in the SCAD penalty

function is set to 3.7, since this value was shown to be very reasonable (Fan and Li,

2001).

Example 2.1 : In this example, we simulated 200 data sets consisting of 200 obser-

vations from the model Y ∼ Bernoulli{p(β1X1 + . . .+ β8X8)}, where p(µ) = exp(µ)/(1 +

exp(µ)). The true coefficient vector is set to be

(β1, . . . , β8) = (3, 1.5, 0, 0, 2, 0, 0, 0).

The first six components of X follow standard normal distribution. The correlation

between Xi and X j is ρ|i− j| with ρ = 0.5. The last two components of X are independently

identically distributed as a Bernoulli distribution with probability of success 0.5. This

is a model used in Fan and Li (2001). In Table 2.1, the column labeled “Correct”

denotes the average restricted to the true nonzero coefficients, and the column labeled

“Incorrect” presents the average of coefficients erroneously set to nonzero. The PSR

and FDR denote the average positive selection rate and the average false discovery rate

over 200 replications. The standard deviations based on the 200 random samples are
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presented in the parentheses, which provides information on simulation errors.

Table 2.1: Simulation results for logistic regression model in case of no separation

Avg. No of nonzero coefficients
Method

Correct Incorrect
PSR FDR

MSCAD 2.99(0.10) 0.10(0.30) 0.997 0.032
SCAD 2.99(0.10) 0.10(0.30) 0.997 0.032

From Table 2.1, it can be seen that the performance of the modified SCAD method is

the same as that of the SCAD method in these two settings. Same performances of these

two methods could be attributed to the asymptotic negligible effect of Jeffreys invariant

prior. Therefore, simulation results show that the modified SCAD method with Jeffreys

invariant prior does not affect the performance of the SCAD penalty function.

In the second simulation, the number of covariates is increased to 100 from 8. In this

situation, the sample size is small relative to the number of covariates, so the separation

phenomenon likely occurs. The first purpose of this simulation study is to show that

the modified SCAD method is still feasible in case of separation. The second one is to

evaluate the performance of the modified SCAD method in case of separation in com-

parison with the L1 penalty function.

Example 2.2 In this example, we also simulated 200 datasets consisting of 200 ob-

servations from the model Y ∼ Bernoulli{p(β1X1 + . . . + β100X100)}, where p(µ) =

exp(µ)/(1 + exp(µ)). The number of covariates is increased to 100. The true coeffi-
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cient vector is set to be

(β1, . . . , β100) = (3, 1.5, 0, 0, 2, 0, . . . , 0︸  ︷︷  ︸
95

).

Its first 8 components of the true coefficients β is the same as the first setting of Exam-

ple 2.1 and the other components are set to 0. The first 6 components of X are standard

normal. The correlation between Xi and X j is ρ| i− j| with ρ = 0.5. The last 94 com-

ponents of X are independently identically distributed as a Bernoulli distribution with

probability of success 0.5.

Table 2.2: Simulation results for logistic regression model in case of separation

Avg. No of nonzero coefficients
Method

Correct Incorrect
PSR FDR

MSCAD 2.99(0.12) 1.59(1.39) 0.997 0.347
L1 − penalty 2.99(0.10) 2.05(2.16) 0.997 0.407

In Example 2.2, although the separation phenomenon occurs in some replications, the

modified SCAD method still works normally. As shown in Table 2.2, the modified

SCAD method has the same positive selection rate as the L1 penalty method. However,

the modified SCAD method produces a lower false discovery rate in comparison with

the L1 penalty method, i.e., the L1 penalty method selects more spurious covariates. In

terms of the positive selection rate and false discovery rate, the simulation results show

that the modified SCAD method performs better than the L1 penalty method.

Although the false discovery rate of the modified SCAD method is lower than that
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of the L1 penalty method, it is still unsatisfactorily high (In Example 2.2, it reaches

0.347). Nevertheless, when the number of candidate covariates is 8 (Example 2.1), its

false discovery rate is only 0.032. It suggests that the covariates selected by Bayesian

information criterion may have an increasing trend as the number of candidate covari-

ates increases. Moreover, it is likely that Bayesian information criterion is inappropriate

in medium or high dimensional model space.

2.4 Summary

We have proposed the modified SCAD method to solve the problem of infinite SCAD

estimators in case of separation. When the separation phenomenon exists, at least one

SCAD estimate is infinite because the log-likelihood function is monotone in this sit-

uation and the SCAD penalty function is bounded. Adding the Jeffreys invariant prior

guarantees that the modified SCAD method always yield finite estimate. Moreover, the

modified SCAD method performs as well as the original SCAD method when the sam-

ple size is large because the Jeffreys invariant prior is asymptotic negligible.

Separation is a non-negligible phenomenon, especially in the data sets with a small sam-

ple size relative to the number of candidate factors and some highly predictive factors.

These situations are common in genome-wide association studies or medical studies.

Thus, this chapter develops a necessary modification for the original SCAD method.
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Chapter 3

Model Selection Criteria in

Generalized Linear Models

In model selection, optimization of a model selection criterion is one approach to iden-

tify the best model from all candidates. Undoubtedly, it is a critical problem to explore

an appropriate criterion. The extended Bayesian information criteria (EBIC) were pro-

posed by Chen and Chen (2007) as model selection criteria for high dimensional feature

space. However, the EBIC method was only studied in linear model with main effects.

In this chapter, we discuss the extended Bayesian information criteria in generalized

linear models with some justifications and simulations. If the generalized linear model

of interest contains all possible two-covariate interactions as well as main effect terms,

we modify the EBIC method by penalizing main effects and interactions with two dif-

ferent penalty functions. The main reason is that the effect of selecting one interaction
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is to involve two variables in the model. In the context of logistic regression model,

we compare the performance of EBIC with different parameter values in terms of the

positive selection rate and the false discovery rate. Through some simulated datasets,

we demonstrate that the BIC method suffers high false discovery rate while the EBIC

method with the most stringent parameter value effectively controls it. Therefore, the

EBIC method could be more appropriate than the BIC method in generalized linear

models with high dimensional model space. It is consistent with the results in linear

model by Chen and Chen (2007). Simulation studies in this chapter only discuss the

cases when the number of covariates is moderate and less than the sample size. The

performance of the extended Bayesian information criteria in high dimensional gener-

alized linear models will be further evaluated in Chapter 5.

We review several model selection criteria in the context of linear regression model

in Section 3.1. In Section 3.2, we describe the extended Bayesian information criteria

in generalized linear regression models. In Section 3.3, The EBIC method is illustrated

with some simulated datasets. We conclude with a summary in Section 3.4.

3.1 Introduction to model selection criteria

Suppose that Y is the response variable and X = (1, X1, . . . , XP)T is the vector of covari-

ates. The linear model is expressed by

Y = XTβ + ε = β01 + β1X1 + . . . + βPXP + ε, (3.1)
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where β = (β0, β1, . . . , βP)T are unknown parameters, and the random error vector ε

is independently and identically distributed with mean 0 and variance σ2. Model M

denotes any candidate model. Let X(M) and β(M) respectively denote the vector of

covariates and corresponding unknown parameters in model M. If model M includes

all covariates, model M is the full model.

Various model selection criteria have been proposed, e.g., the Cp criterion (Mallows,

1973), the cross-validation (CV) method (Stone, 1974; Allen, 1974) and the generalized

cross-validation (GCV) method (Craven and Wahba, 1979), the Akaike’s information

criterion (AIC) method (Akaike, 1970) and AICc method (Sugiura, 1978; Hurvich and

Tsai, 1989), the Bayesian information criterion (BIC) method (Schwarz, 1978; Hannan

and Quinn, 1979). Again, some literatures also discussed the asymptotic performance

for evaluating these model selection criteria (Nishii, 1984; Rao and Wu, 1989; Stone,

1979; Shibata, 1981; Li, 1987; Shao, 1993). However, the power of any model selec-

tion criterion depends on the underlying circumstance and applied fields. Shao (1997)

classified these model selection criteria on the basis of asymptotic performance. When

the dimension of model space is high, these ordinary model selection criteria are too

liberal since they tend to select too many spurious covariates. Fortunately, on the ba-

sis of the BIC method, the extended family of Bayesian information criteria (EBIC;

Chen and Chen, 2007) were proposed to solve this problem raised by high dimensional

model space. Without loss of generality, various model selection criteria are reviewed in

the context of linear model without the intercept item β0 in the remainder of this section.
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Mallows (1973) proposed the Cp criterion which is based on some form of mean squared

error (MSE) or mean squared prediction error (MSPE). It is well known that MSE is

a common way to measure the performance of a prediction. The MSE of model M is

defined by

MS E(M) =

∑n
i=1 E{xi(M)Tβ(M) − xi(M)T β̂(M)}2

n
, (3.2)

where β̂(M) = (X(M)T X(M))−1X(M)T Y is the least square estimate of the unknown

parameter vector β(M) in model M and X(M) is the design matrix of model M. How-

ever, it can be seen from (3.2) that MS E(M) contains the unknown parameter vector

β(M), so the mean square error cannot be used directly as a model selection criterion.

A natural idea is to replace MS E with its unbiased estimator. Assume that the variance

of the random error σ2 is known. In this situation, the unbiased estimator of MS E(M)

is given by

S S E(M)
n

+
2σ2v(M)

n
− σ2, (3.3)

where S S E(M) =
∑n

i=1(yi − xi(M)T β̂(M))2 is the sum of squares error of model M, and

v(M) denotes the number of covariates contained in model M. In terms of prediction

performance, the best model is the one that minimizes the unbiased estimator of mean

squared error (3.3). Since the last item σ2 is independent of model M, the best model

can be obtained by minimizing the first two items in (3.3). This is the derivation of the

Cp criterion, which is expressed by

Cp(M) =
S S E(M)

n
+

2σ2v(M)
n

. (3.4)
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If the variance of the random error σ2 is an unknown parameter, it is replaced by the

least square estimate σ̂2 based on the full model. The best model is the one that mini-

mizes the Cp criterion (3.4).

Another popular criterion is cross-validation (CV) proposed by Stone (1974). In CV,

the dataset is partitioned into some subsets: training set and testing sets. The idea of CV

is to fit a model on the training set. When the training is done, the testing sets are used

to validate the performance of the model. In K-fold cross-validation, the original data

is divided into K subsets. Each time, one of K subsets is retained as the validation data

for testing the model, and the remaining K − 1 subsets put together to fit a model. The

cross-validation process is then repeated K times (the folds), with each of the K subsets

used exactly once as the validation data. The K results from the folds are averaged as a

single estimation.

Leave-one-out cross validation (LOOCV) can be seen as the extreme of K-fold cross-

validation, with K being equal to the number of observations in the original sam-

ple. As the name suggests, leave-one-out cross-validation (LOOCV) involves using

a single observation from the original sample as the validation data, and the remain-

ing observations as the training data. This is repeated such that each observation in

the sample is used once as the validation data. For model M, let β̂− j(xi, yi) be the

ordinary least square estimate of unknown parameter vector β with the training data
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{(xi, yi), i = 1, . . . , j − 1, j + 1, . . . , n}. The LOOCV criterion is expressed by

LOOCV(M) =

∑n
j=1

∑
i, j{yi − xT

i β̂− j(xi, yi)}2
n

. (3.5)

(3.5) can be written as

LOOCV(M) =
1
n

n∑

i=1

{yi − xT
i β̂(xi, yi)}2

{1 − hi(M)}2 , (3.6)

where hi(M)’s are the diagonal elements of H(M) = X(M) (X(M)T X(M))−1X(M), the

so-called hat matrix. In this way, one only needs to fit the model once with the full data

and compute the diagonal elements of the hat matrix H(M). If the h
′
i s are replaced by

the average of all diagonal elements of the hat matrix, the criterion is the generalized

cross-validation criterion (GCV; Craven and Wahba, 1979)

GCV(M) =
1
n

n∑

i=1

{yi − xT
i β̂(xi, yi)}2

{1 − trace(H(M)/n)}2 , (3.7)

where tr(H(M)/n) denotes the trace of the matrix H(M)/n.

Two other popular and well-studied model selection criteria are the Akaike’s infor-

mation criterion (AIC; Akaike, 1973) and the Bayesian information criterion (BIC;

Schwarz, 1978), both of which are likelihood-based methods. The AIC method is de-

rived on the basis of Kullback-Leibler (K − L) distance between the true model and the

approximating candidate model. The BIC method is derived in a Bayesian context with

the same prior probability on each candidate model.

The Akaike’s information criterion (AIC) is defined as minus twice the maximized log-

likelihood for model M, penalized with twice the number of covariates contained in M.
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It can be expressed by

AIC(M) = −2 log(L(β̂(M)) + 2v(M) (3.8)

In (3.8), L(β̂(M)) is the maximized likelihood function on model M. Specifically, if

the random error vector ε in (3.1) independently and identically follows the normal

distribution with mean 0 and variance σ2, AIC of model M is equivalent to

∑n
i=1(yi − xi(M)T β̂(M))2

nσ2 +
2v(M)

n
,

which is equivalent to the Cp(M) criterion (3.4). Since AIC is an estimate of K −

L distance between the true model and the candidate model, the best model is that

minimizes the quantity of AIC. If the sample size is small relative to the number of

unknown parameters, it was found that the AIC method performs poorly (Sugiura,1978;

Sakamoto et al., 1986). On the basis of the AIC method, a refined criterion AICc was

proposed by Hurvich and Tsai (1989). It can be expressed by

AICc(M) = AIC +
2v(M)(v(M) − 1)

n − v(M) − 1
.

Burnham et al.(1994) suggested that the AICc is more appropriate when the ratio n/P

is small. When the sample size is sufficiently large, the performance of AICc is similar

to that of the AIC method.

The Bayesian information criterion (BIC) of Schwarz (1978) penalizes instead with

the logarithm of the sample size. It is given by

BIC(M) = −2 log(L(β̂(M)) + v(M) log(n). (3.9)
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Let π(β(M)) denote the prior density function of β(M) and p(M) denote the prior prob-

ability of model M. The likelihood function of model M can be expressed by

m(Y |M) =

∫
f (Y;β(M))π(β(M))dβ(M).

The posterior probability of model M is

p(M|Y) =
m(Y |M)p(M)∑
M m(Y |M)p(M)

. (3.10)

Under the Bayesian paradigm, the best model is what maximizes the posterior probabil-

ity (3.10). Since the denominator in (3.10) is a constant, maximization of the posterior

probability is equivalent to maximize the numerator of the posterior probability. Under

some regularity conditions on f (Y;β), −2 log(m(Y |M)) has a Laplace approximation

given by BIC(M) up to an additive constant. Moreover, it is known that the prior prob-

abilities assigned to all candidate models are the same and equal to the reciprocal of the

number of all candidate models. Thus, maximizing the posterior probability is equiva-

lent to minimizing the Bayesian information criterion (3.9).

The penalty functions of both AIC and BIC are non-decreasing to the number of co-

variates involved in the selected model, so they discourage the selection of models with

excessive number of covariates. However, in comparison with the BIC method, the

AIC method tends to select the model with more covariates, since the penalty function

of BIC is larger than AIC. In addition, the BIC method is dimension consistent under

the assumptions that the true model exists and that the true model is in the set of candi-

date models.
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To evaluate various model selection criteria, some studies discussed their asymptotic

performance while their assumptions are different and impact on the results (Nishii,

1984; Rao and Wu, 1989; Stone, 1979; Shibata, 1981; Li, 1987; Shao, 1993). It was

found that the results are different, even contrary to each other. The main factors deter-

mining the asymptotic performance of various model selection criteria are whether the

true models are among the candidate models and whether the dimension of unknown

parameters increases with the sample size n.

Shao (1997) provided a clear picture of the asymptotic performance of various model

selection criteria in terms of consistency and proposed the generalized information cri-

terion (GIC) to summarize these model selection criteria. Under the assumption that

the random error vector independently and identically follows the normal distribution

with mean 0 and variance σ2, the generalized information criterion is given by:

GICλn(M) =

∑n
i=1(yi − xi(M)T β̂(M))2

n
+
λnσ̂

2v(M)
n

, (3.11)

where {λn} is a sequence of non-random number ≥ 2 and satisfies λn/n→ 0, as n→ ∞.

According to the asymptotic behavior, model selection criteria were classified into three

classes:

C1. The GIC2, the Cp, the AIC, the LOOCV and the GCV.

C2. The GICλn with λn → ∞ and the delete-d CV with d/n→ 1.

C3. The GICλ with a fixed λ > 2 and the delete-d with d/n→ η ∈ (0, 1).
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The methods in group 1 are useful in the case where there is no fixed-dimension cor-

rect model. With a suitable choice of λn or d, the methods in group 2 are useful in

the case where there exist fixed-dimension correct models. The methods in group 3

are compromised versions of the methods in group 1 and group 2; but their asymptotic

performances are not as good as those of the methods in group 1 in the case where no

fixed-dimension correct model exists, and not as good as those of the methods in class

2 when there are fixed-dimension correct models.

With the development of modern technologies, high dimensional data frequently ap-

pear in many fields and provide more information; on the other hand, these high di-

mensional data also pose great challenges to model selection. One of the challenges is

that the conventional model selection criteria tend to select models with too many spu-

rious covariates as the best model (Broman and Speed, 2002; Chen and Chen, 2008).

Chen and Chen (2008) re-examined the Bayesian paradigm implemented in the ordinary

Bayesian information criterion and proposed the extended family of Bayesian informa-

tion criteria (EBIC) to solve this problem.

Let Si denote the set of models containing i covariates. As mentioned earlier, the prior

probability of any candidate model is the same in the ordinary Bayesian information

criterion. Consequently, the total probability assigned to the set Si is proportional to

the size of Si. Assume that the number of covariates in the full model is P. The sizes

of S1 and S2 are respectively P and P(P − 1)/2. Thus, the probability assigned to S2 is
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(P − 1)/2 times as that assigned to the set S1. Chen and Chen (2007) pointed out that it

is unreasonable to assign much higher probability to the set of models containing more

covariates. Let τ(S j) denote the size of the set S j. The extended Bayesian information

criteria (EBIC) suggest to replace the proportional probability τ(S j) with the probabil-

ity τ(S j)ξ for some ξ less than 1 and more than or equal to 0. The extended Bayesian

information criteria are based on a set of new prior probabilities proportional to τ(S j)ξ

and expressed by

EBICγ(M) = −2 log L(β̂(M)) + v(M) log(n) + 2γ log[τ(Sv(M))], 0 ≤ γ ≤ 1. (3.12)

In (3.12), when the parameter γ equals to zero, the extended Bayesian information cri-

terion is equivalent to the original Bayesian information criterion. EBIC with γ = 1

is the most stringent criterion in its family. In the context of linear regression, the ex-

tended Bayesian information criteria are consistent if P = O(nk) and γ > 1− (1/2k). As

a result, an appropriate choice of γ is 1 − log(n)/(2 log(P)) since it is the lower bound

of consistency.

In linear regression model only with main effects, the EBIC method suffers slightly

lower positive selection rate (PSR) but effectively controls false discovery rate (FDR)

in comparison with the ordinary Bayesian information criteria. Due to high false dis-

covery rate, the ordinary Bayesian information method may be inappropriate in high di-

mensional model space. Therefore, the EBIC method could be an useful tool in model

selection with high dimensional model space. However, the EBIC method was only

discussed and evaluated in the linear regression model with main effects. In practice,
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generalized linear regression models are more flexible and suitable to describe the re-

lationship between the response and covariates. Moreover, it was found in Example

2.2 (Chapter 2) that the Bayesian information criterion may tend to select more spuri-

ous covariates when the number of candidate covariates increases. In the next section,

the EBIC method is extended to generalized linear models with both main effects and

two-covariate interactions.

3.2 The extended Bayesian information criteria in gen-

eralized linear models

In a generalized linear model(GLM), the response variable Y follows a particular dis-

tribution function in exponential family with mean µ = E(Y) and variance V = Var(Y).

The probability density function of Y is given by

f (y|θ, φ) = exp{y θ − b(θ)
a(φ)

+ c(φ, y)}IA(y), (3.13)

where A does not depend on θ (canonical parameter) and φ (dispersion parameter). If

the model of interest only contains main effects, the link function g(·) is expressed by

g(E(Y)) = η = β0 + β1X1 + ... + βPXP.

Suppose that the dispersion parameter φ in (3.13) is known, the joint probability density

function of (Y1, . . . , Yn) can be expressed by f (n)(y1, . . . , yn;β), where β = (β0, β1, . . . , βP)
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are unknown parameters. The likelihood function of β is given by

L(β) = f (n)(y1, . . . , yn;β) =

n∏

i=1

f (yi|xi,β). (3.14)

Let S j denote the set of all models containing j covariates and τ(S j) denote the size

of set S j. In this way, the model space S is the disjoint union of sets S1, . . . ,SP. The

extended family of Bayesian information criteria (EBIC) in a GLM is given by

EBICγ(M) = −2 log(L(β̂0, β̂(M))) + v(M) log(n) + 2γ log(τ(Sv(M)))

= BIC(M) + 2γ log(τ(Sv(M))), 0 ≤ γ ≤ 1, (3.15)

where (β̂0, β̂(M)) is the maximum likelihood estimates of unknown parameters based

on model M. As demonstrated in (3.15), the EBIC method is equivalent to adding one

term 2γ log(τ(Sv(M))) to the BIC method. The item 2γ log(τ(Sv(M))) can be seen as a

penalty function. It is expected that the EBIC method would discourage the model with

too many spurious covariates.

Besides main effects of single covariates, two-covariate interactions may be also non-

negligible factors related to the response variable. For instance, some studies have

shown that interactions among loci may contribute broadly to common disease, so

gene-gene interactions are suggested to be considered in genome-wide association stud-

ies. More specifically, some significant two-covariate interactions may have little or no

main effects at each single covariate. In these situations, these covariates could not be

detected if we only consider main effects. Hence, it is more powerful to consider the

model with both main effects and two-covariate interactions in terms of identification
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of significant covariates. When two-covariate interactions are included in the models

of interest, the number of unknown parameters increases from P to P(P + 1)/2. In

this situation, the dimension of model space is high even if the number of covariates

is not large. To be specific, when the number of covariates P is 20, the dimension of

model space P(P + 1)/2 has reached 210. In view of high dimensional model space, the

extended Bayesian information criteria are likely more appropriate. In the following,

we modify the extended family of Bayesian information criteria such that it is suitable

to model selection in generalized linear regression models with both main effects and

interactions.

If the generalized linear model of interest contains not only main effects but also two-

covariate interactions, the corresponding link function is expressed by

g(E(Y |X)) = α +

P∑

j=1

β jX j +

P∑

k=1

∑

l,k

ξklXkXl.

Moreover, the likelihood function of (α, β, ξ) is given by

L(α,β, ξ) = f (n)(y1, . . . , yn;α,β, ξ) =

n∏

i=1

f (yi|xi, α,β, ξ),

where f (yi|xi, α,β, ξ) is the probability density function of the response Yi.

In model selection, either main effects or interactions can be considered as possible fac-

tors related with the response variable Y . However, the effects of selecting a main effect

and selecting an interaction are different. Selecting a main effect means the correspond-

ing covariate is included in the model, whereas selecting an interaction is equivalent to
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involve two corresponding covariates in the model. Thus, it would be more appropriate

to give different emphases on main effects and interactions. As mentioned earlier, the

extended family of Bayesian information criteria (3.15) is equivalent to put one more

penalty function on the ordinary Bayesian information criterion. This penalty function

2γ log(τ(Sv(M))) depends on v(M), the number of factors in model M. To emphasize dif-

ferent effects of one main effect and one interaction, we modify the extended family of

Bayesian information criteria by penalizing model M instead with two parts of penalty

functions. One part is the penalty for its main effects and the other is for its interactions.

Let S1
n1

denote the set of models containing n1 main effects but no interaction, and

S 2
n2

denote the set of models containing n2 interactions but no main effect. Suppose the

number of covariates under consideration is P. The size of S1
n1

,τ(S1
n1

) is equal to C n1
P

and the size of S2
n2

, τ(S2
n2

) is equal to C n2
P(P−1)/2. Let v1(M) and v2(M) denote the number

of main effects and the number of interactions in model M. In this way, the elements of

model M is the combination of v1(M) main effects and v2(M) interactions. Instead of

the penalty function 2γ log(τ(Sv(M))) in the expression (3.15), the EBIC method penal-

izes model M with 2γ1 log(τ(S1
v1(M)))+2γ2 log(τ(S2

v2(M))). The item 2γ1 log(τ(S1
v1(M))) is

the penalty function for the part of main effects, while the item 2γ2 log(τ(S2
v2(M))) is the

penalty function for the part of interactions. Hence, in generalized linear models with

both main effects and two-covariate interactions, the extended Bayesian information
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criteria are expressed by

EBIC(M)(γ1,γ2) = −2 log L(α̂, β̂(M), ξ̂(M)) + (v1(M) + v2(M)) log(n)

+ 2γ1 log(τ(S1
v1(M))) + 2γ2 log(τ(S2

v2(M))), 0 ≤ γ1 ≤ 1, 0 ≤ γ2 ≤ 1, (3.16)

where (α̂, β̂(M), ξ̂(M)) is the maximized likelihood estimate of the unknown parameter

vector (α, β(M), ξ(M)).

In this section, we described the extended Bayesian information criteria in the context

of generalized linear models. The expression (3.15) is applicable to generalized linear

models only with main effects, while the expression (3.16) is used in case of considering

both main effects and two-covariates interactions. In the next section, we illustrate the

performances of the extended family of Bayesian information criteria (3.15) and (3.16)

by some simulation studies.

3.3 Simulation studies

In simulation studies, we consider logistic regression models. In logistic regression

model, the response variable Y follows Bernoulli distribution with mean µ and variance

µ(1 − µ). The link function is g(µ) = log(µ/(1 + µ)). Two sets of simulations are con-

ducted to respectively assess EBIC in (3.15) and (3.16). In the first set, the response

variable Y follows the Bernoulli distribution with the parameter exp(β0 + β1X1 + . . . +

βPXP)/(1+exp(β0 +β1X1 + . . .+βPXP)). In this set of simulations, we present the results
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of EBICγ in (3.15) with three γ values 0, 1 − log(n)/2 log(P) and 1. In the second set

of simulations, not only main effects but also two-covariate interactions are considered.

In this way, the responses are generated from Bernoulli{exp(η)/(1 + exp(η))}, where

η = α +
∑P

j=1 X jβ j +
∑P

k=1
∑

l,k XkXlξkl. Similarly, the parameter vector (γ1, γ2) in (3.16)

choose three values: (0, 0), (1 − log(n)/2 log(P), 1 − log(n)/2 log(P(P − 1)/2)) and (1,

1). In these two sets of simulations, the number of covariates P is set to be less than

the sample size n. The simulation studies for the cases that P > n will be conducted in

Chapter 5.

There are two popular methods in the penalized likelihood methodology: the SCAD

method and the Lasso method. It has been shown that the SCAD method outperforms

the Lasso method in terms of selecting features (Fan and Li, 2001). In the first set of

simulations, the modified SCAD method in Chapter 2 is used to select models. The

favorable property of the modified SCAD method is that it not only maintains the per-

formance of the original SCAD method but also always produces finite parameter es-

timates even in case of separation. The penalized likelihood function of the modified

SCAD method is given by

lMS (β) = log(L(β)) +
1
2

log |I(β)| − n
P∑

j=1

pλ(|β j|),

where L(β) is the likelihood function, I(β) is the Fisher information matrix, pλ(|β j|) is

the SCAD penalty function of β j, and λ is the tuning parameter. In the second setting,

the number of total factors is up to P(P+1)/2 since both main effects and two-covariate

interactions are considered. Although the number of covariates P is less than the sample
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size n, the number P(P + 1)/2 is more than n when P is large enough. The maximum

likelihood estimate is a good initial value for the SCAD method but cannot be obtained

when the number of unknown parameters is more than the sample size. Moreover, it is

known that the performance of the SCAD method depends on the initial value. Thus, in

the second setting, the L1 penalized likelihood method is used to select variables. It is

expressed by

lλ1(α,β, ξ) = log(L(α,β, ξ)) − n
∑

j=1

λ1|β j| − n
∑

k=1

∑

l,k

λ1|ξkl|.

In these two settings, the tuning parameter λ or λ1 is increased gradually from 0 such

that only a covariate is deleted at one time. Thus, a sequence of nested models is ob-

tained. Then, the un-penalized parameter estimates are obtained by maximizing the

log-likelihood function. On the basis of the un-penalized parameter estimates, the ex-

tended Bayesian information criteria are calculated for each model. The best model is

the one which minimizes the extended Bayesian information criteria.

Example 3.1 : In this example, 200 replicates consisting of 200 observations with

100 cases and 100 controls are simulated. In each simulation replicate, four covari-

ates X1, . . . , X4 are set to nonzero coefficients, while others are assigned to 0. The

intercept item β0 is set to −5. The significant covariates X1, . . . , X4 independently fol-

lows Bernoulli distributions with success probabilities (0.13, 0.15, 0.16, 0.20). For each

i from 1 to 4, Xi+4 is correlated with Xi and generated from the conditional probabilities

p(Xi+4 = 1|Xi = 1) = 0.93 and p(Xi+4 = 1|Xi = 0) = 0.07. The other (P − 8) covari-

ates X9, . . . , XP are independently distributed as Bernoulli distributions. Their success
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probabilities are randomly selected from the uniform distribution U(0.20, 0.50). In this

example, there are two settings with different true coefficient vectors, one is

(1.70, 1.60, 1.50, 1.40︸                    ︷︷                    ︸
4

, 0, . . . , 0︸  ︷︷  ︸
(P−4)

),

and the other one is

(0.90, 0.85, 0.80, 0.95︸                    ︷︷                    ︸
4

, 0, . . . , 0︸  ︷︷  ︸
(P−4)

).

The results of these two settings with the number of candidate covariates P = 50, 100

are respectively reported in Tables 3.1 and 3.2. The column labeled ”Correct” denotes

the average restricted to the true nonzero coefficients, and the column labeled ”Incor-

rect” presents the average of coefficients erroneously set to nonzero. The standard de-

viations for ”Correct” and ”Incorrect” based on the 200 simulation replicates are pre-

sented in the parentheses. The columns PSR and FDR denote the positive selection rate

and false discovery rate. Note that methods MSCAD0, MSCAD∗, MSCAD1 are the

modified SCAD method cum EBIC (3.15) with γ being 0, 1 − log(n)/(2 log(P)), 1.

Table 3.1: Simulation results for logistic model only with main effects-1

Avg. No of nonzero coefficients
Method

Correct Incorrect
PSR FDR

P=50
MSCAD0 3.72(0.55) 1.53(1.51) 0.930 0.291
MSCAD∗ 3.67(0.59) 0.85(1.16) 0.918 0.188
MSCAD1 3.57(0.63) 0.35(0.64) 0.893 0.078

P=100
MSCAD0 3.55(0.64) 2.59(2.54) 0.888 0.422
MSCAD∗ 3.53(0.63) 0.91(1.20) 0.883 0.205
MSCAD1 3.37(0.73) 0.39(0.67) 0.843 0.104

Note: the number in the parentheses denotes the standard deviation based on 200 replications
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Table 3.2: Simulation results for logistic model only with main effects-2

Avg. No of nonzero coefficients
Method

Correct Incorrect
PSR FDR

P=50
MSCAD0 2.68(0.92) 1.49(1.49) 0.670 0.357
MSCAD∗ 2.42(0.93) 0.85(1.04) 0.605 0.260
MSCAD1 1.67(0.93) 0.26(0.51) 0.448 0.131

P=100
MSCAD0 2.65(0.89) 2.73(2.27) 0.663 0.507
MSCAD∗ 2.38(0.96) 1.01(1.78) 0.595 0.298
MSCAD1 1.54(0.88) 0.23(0.49) 0.385 0.130

From Tables 3.1 and 3.2, it can be seen that both the positive selection rate (PSR) and

the false discovery rate (FDR) decrease as the parameter γ in (3.15) increases. This

is our expected result. The main reason for PSR and FDR decreasing is that the large

penalty function discourages to select the model with too many variables. Since the

size of the set Sv(M), τ(Sv(M)) is a constant when model M is given, the penalty function

of EBIC in (3.15) is an increasing function in the parameter γ. Moreover, the meth-

ods MSCAD0, MSCAD∗ and MSCAD0 correspond to the values of the parameter γ in

EBIC being 0, 0 < 1 − log(n)/(2 log(P)) < 1 and 1 respectively. Therefore, the penalty

function in these three methods have a declining trend.

It is known that EBIC with γ = 0 is equivalent to the ordinary BIC method. As shown

in Tables 3.1 and 3.2, the false discovery rates (FDRs) of the modified SCAD method

cum BIC are high in all cases considered. This phenomenon is more prominent when

the number of candidate covariates (P) increases to 100. In the second setting, the FDR
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of the modified SCAD method cum BIC in case of P = 100 has reached to 0.507,

which means more than one half features selected by MSCAD0 are spurious. In con-

trast, the false discovery rate is effectively controlled around 0.10 by MSCAD1 even

when P increases to 100. In general, the positive selection rate (PSR) of the modified

SCAD method cum BIC (MSCAD0) is higher than those of the SCAD method cum

EBIC (MSCAD∗ and MSCAD1). However, in the first setting, the PSR of MSCAD1 is

only slightly lower than that of MSCAD0.

Example 3.2 : In this example, 200 datasets consisting of 400 observations with 200

cases and 200 controls are generated from the model Y ∼ Bernoulli{p(β0 +
∑P

j=1 x jβ j +

∑P
k=1

∑
l,k xkxlξkl)}, where p(µ) = exp(µ)/(1 + exp(µ)), the intercept β0 is set to −5.

The structure of covariates is similar to that in Example 3.1 whereas the number of

significant covariates is increased to 6. The last two covariate (X5, X6) are significant

in main effects, while the first four (X1, . . . , X4) are significant in their two-covariate

interactions X12 and X34. The success probabilities of six significant covariates are

(0.140, 0.145, 0.150, 0.155, 0.160, 0.165). The conditional distribution of correlated

covariates is same as that in Example 3.1. In this example, there are also two settings,

one with nonzero coefficients

β5 = 1.2, β6 = 1.1, ξ12 = 1.6, ξ34 = 1.4,

the other with

β5 = 0.3, β6 = 1.2, ξ12 = 0.5, ξ34 = 1.4.
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The results of these two settings with the number of candidate covariates P = 50, 100

are reports in Table 3.3 and 3.4. Note that methods L1 − penalty0, L1 − penalty∗, L1 −

penalty1 are the L1 penalized likelihood method with (γ1, γ2) in EBIC (2.16) being

(0, 0), (1 − log(n)/(2 log(P)), 1 − log(n)/(2 log(P(P − 1)/2))) and (1, 1).

Table 3.3: Simulation results for logistic model with main effects and interactions-1

Avg. No of nonzero coefficients
Method

Correct Incorrect
PSR FDR

P=50
L1 − penalty0 5.72(0.52) 3.58(3.20) 0.953 0.385
L1 − penalty∗ 5.31(0.91) 1.45(1.09) 0.885 0.214
L1 − penalty1 4.68(1.22) 0.90(0.81) 0.780 0.161

P=100
L1 − penalty0 5.52(0.84) 6.92(5.70) 0.920 0.556
L1 − penalty∗ 4.74(1.21) 1.20(1.10) 0.790 0.202
L1 − penalty1 4.16(1.48) 0.72(0.73) 0.693 0.148

Table 3.4: Simulation results for logistic model with main effects and interactions-2

Avg. No of nonzero coefficients
Method

Correct Incorrect
PSR FDR

P=50
L1 − penalty0 3.37(0.81) 5.19(5.34) 0.562 0.606
L1 − penalty∗ 2.88(0.56) 0.61(0.80) 0.480 0.175
L1 − penalty1 2.69(0.67) 0.41(0.63) 0.448 0.132

P=100
L1 − penalty0 3.54(0.91) 11.15(7.43) 0.590 0.759
L1 − penalty∗ 2.78(0.64) 0.68(0.91) 0.463 0.197
L1 − penalty1 2.50(0.82) 0.42(0.66) 0.417 0.144

Tables 3.3 and 3.4 also show that either the positive selection rate (PSR) or the false

discovery rate (FDR) have a decreasing tendency as γ1 and γ2) in EBIC (3.16) are in-
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creased from 0 to 1. The FDRs of L1−penalty0 are intolerably high in both two settings.

However, the FDR of L1 − penalty1 does not exceed 0.17 even in the worst case. The

performance of L1−penalty∗ is between those of L1−penalty0 and L1−penalty1 in both

the positive selection rate and the false discovery rate.

Simulation results described in Table 3.1-3.4 suggest that the ordinary Bayesian infor-

mation criterion (Schwarz, 1978) may not be appropriate in a generalized linear model

with mediate-size model space. The main reason is that it tends to select too many

spurious covariates. Moreover, the performance of the extended Bayesian information

criteria in generalized linear regression models is consistent with the earlier finding sug-

gesting that the EBIC method performs better than the ordinary BIC method in linear

regression model with medium dimensional model space (Chen and Chen, 2007).

3.4 Summary

We have discussed the extended Bayesian information criteria in the context of gen-

eralized linear regression models. If both main effects and two-covariates interaction

are considered as possible factors, we suggest that the extended Bayesian information

criteria impose different penalties on main effects and interactions. This modification

allows the main effect item to enter the model more easily in comparison with the inter-

action item. It supports the fact that the effect of selecting one interaction is to involve

two corresponding covariates in the model.
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Although the extended Bayesian information criteria were originally proposed by Chen

and Chen (2007), the model of interest was limited to linear regression model only with

main effects. This chapter has provided clear evidence that the EBIC method is more

appropriate than BIC in generalized linear models when the dimension of the model

space is high. Moreover, this work would make the EBIC method more popular as an

appropriate criterion in high dimensional model selection.
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Chapter 4

The Generalized Tournament

Screening Cum EBIC Approach

In this chapter, we introduce the generalized tournament screening cum EBIC approach

for high dimensional feature selection in generalized linear models. Its basic idea is to

combine the dimension reduction with model selection. The generalized tournament

approach can deal with feature space consisting of main effects and interaction effects.

One characteristic of the generalized tournament approach is that it transfers a high

dimensional feature selection problem to some low dimensional feature selection prob-

lems. This characteristic ensures that it is applicable whatever the dimension of feature

space is. In addition, the generalized tournament approach is computationally feasible

since it selects features not individually but in groups. We suggest using the penalized

likelihood methodology for selecting features in the whole procedure and using the ex-
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tended Bayesian information criteria (EBIC; Chapter 3) as model selection criterion to

determine the best model, i.e., the significant variables.

In the following sections, the generalized tournament screening cum EBIC approach

is described in more details. In Section 4.1, we briefly introduce the generalized tour-

nament approach and propose two strategies for tackling interaction effects. The first

step, pre-screening, is described in Section 4.2. The second step, final selection, is in-

troduced in Section 4.3. We give a summary for the generalized tournament screening

cum EBIC approach in Section 4.4.

4.1 Introduction to the generalized tournament screen-

ing cum EBIC approach

Chen and Chen (2007) developed the tournament screening cum EBIC approach for

high dimensional feature selection. They only discussed the approach in the context of

linear models with main effects. However, high dimensional generalized linear models

are widely used in many fields such as medical and genome-wide association studies.

Moreover, besides main effects, interaction effects are likely to play an important role in

explaining the response variable. Thus, we propose the generalized tournament screen-

ing cum EBIC approach to provide a solution to high dimensional feature selection in

the context of generalized linear models. The method effectively copes with both main
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effects and interaction effects.

The generalized tournament screening cum EBIC approach combines the dimension

reduction with model selection and has two corresponding steps. The first step is called

pre-screening. The aim is to reduce a high dimensional feature space to a low dimen-

sional feature space, i.e., dimension reduction. The second step is called final selection.

Its aim is to select significant variables by identifying the best model. Compared to

the number of main effects, the number of interaction effects is much larger. This is

more prominent when the number of variables under consideration increases. Hence,

we propose two strategies to deal with interaction effects.

In the pre-screening step, we consider two strategies for interaction effects: the two-

stage strategy and the full strategy. For the two-stage strategy, we only consider main

effects in the first stage and select a pre-specified number of them. In the second stage,

only main effects and interactions involving the variables selected in the first stage are

considered. The two-stage strategy should work well if interactions between variables

are such that the marginal effects of the variables are still sizable though the interaction

effects dominate. However, it will miss the variables that have significant interaction

effects but no or little marginal effects. The full strategy is to consider all possible main

effects and interaction effects at the beginning of screening. Compared with the two-

stage strategy, the full strategy will take more computational time in the pre-screening

step. However, the full strategy should be able to pick up the variables with significant
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interaction effects but no or little marginal effects. In the following part, we will only

describe the procedure for the full strategy. For the two-stage strategy, the only differ-

ence is that only main effects are considered in the first stage.

The basic idea of the generalized tournament approach is as follows. In the full strat-

egy, main effects and interactions are selected separately in the pre-matches. Both main

effects and interaction effects are screened by using a penalized likelihood method in

a sequence of stages. Main effects are randomly divided into groups and the screen-

ing procedure is carried out from group to group. The procedure is repeated until the

number of main effects is reduced to a desirable level. And then, interaction effects are

selected in the same way. All variables corresponding to either the selected main ef-

fects or the selected interaction effects in the pre-matches are tentatively selected for the

semi-final stage. In the semi-final, only a part of them survive and enter the final stage.

At the final stage, a sequence of nested models are generated by a penalized likelihood

method and the best model is determined by optimizing a model selection criterion.

4.2 The procedure of the pre-screening step

Pre-matches for main effects
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• Round 1: Let X1 be the variables that represent all main effects. Partition X1 at

random into subsets of nearly equal size M to yield

X1 = X1
1 ∪ ... ∪ X1

J,

where J is the integer such that [JM] equals to the total number of main effects.

For each subset X1
j , let x j denote the vector of main effects in X1

j and β j denote

unknown parameters corresponding to x j. Carry out a main effect selection step

as follows. With a properly tuned value λ∗j, maximize

lp(β j, 0 | x j, 0) = l(β j, 0 | x j, 0) − n
∑

k

pλ∗j (|βk|)

to yield m1 nonzero fitted components of β j. A variable is tentatively selected and

entered the next round of the matches, if its corresponding parameter estimate is

nonzero.

• Round r1: Repeat the same procedure as in the round 1 with the setXr1 generated

from the previous round until the number of variables representing main effects

reaches a desirable level. Assume that after the round r1, m variables of main

effects are selected and formed the set X∗ = {X∗1, . . . , X∗m}.

The previous r1 rounds is the pre-matches for the variables representing main effects.

Similarly, we do the pre-matches for interaction effects in the following rounds. The

difference is that variables in the set X∗ will be included in each step.
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Pre-matches for interaction effects

• Round r1 + 1: Let V1 be the set of variables representing interaction effects

between any two variables in the data set. PartitionV1 at random into subsets of

nearly equal size H to yield

V1 = V1
1 ∪ ... ∪V1

K ,

where K is the integer such that [KH] is the total number of interactions. For

each subsetV1
j , let v j denote the vector of interaction effects inV1 and ξ j denote

unknown parameters corresponding to v j. Carry out an interaction effect selection

step as follows. With a properly tuned value τ∗j, maximize

lp(β∗, ξ j | x∗, v j) = l(β∗, ξ j | x∗, v j) − n
∑

k

pτ∗j (|β∗k|) − n
∑

l

pτ∗j (|ξl|)

to yield h1 nonzero fitted components of ξ j.

• Round r2: Repeat the same procedure as in the round r1 + 1 with the set Vr2

generated from the previous round until the number of interaction effects reaches

a desired level. Assume that after the round r2, h interaction effects are selected

and formed the setV∗ = {V∗1 , . . . ,V∗h }.

After the round r2, there are m main effects and h interaction effects selected from the

feature space. One variable is tentatively selected, if either its main effect or its inter-

action effect with any other variable is selected in the pre-matches. All the tentatively
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selected variables are collected in a set entering the semi-final stage.

Semi-final

• The semi-final stage begins with the variables left from the pre-matches. Denote

the sets of main-effect variables and interaction-effect variables respectively by x∗

and v∗. Denote their corresponding unknown parameters by β∗ and ξ∗. Maximize

lp(β∗, ξ∗ | x∗, v∗) = l(β∗, ξ∗ | x∗, v∗) − n
∑

k

pλ(|β∗k|) − n
∑

l

pλ(|ξ∗l |)

respectively with respect β∗ and ξ∗ with a properly tuned value of λ to produce a

pre-specified number K(< n) of variables. Note that the same tuning parameter is

used for both main effects and interaction effects in the semi-final stage.

In each stage of pre-screening, the penalized likelihood methodology is applied to se-

lect main effects and interaction effects. There are many existing penalized likelihood

methods such as the SCAD method, the L1 penalized method. The performances of

these methods in feature selection are different due to different properties of penalty

functions. In the pre-screening step, a huge number of variables representing both main

effects and interaction effects needed to consider. Thus, we suggest to use the L1 penal-

ized method due to its high computational efficiency. The GLM path algorithm (Park

et al., 2007) is based on the L1 penalty function and effectively computes solutions

among the entire regularization path for generalized linear models. Thus, it is efficient

for the GLM path algorithm to select a specified number of variables.
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4.3 The procedure of the final selection step

After the pre-screening step, the generalized tournament screening has already reduced

the dimension of feature space from P(P + 1)/2 to K(< n). It is known that when the

dimension of feature space is smaller than the sample size, conventional penalized like-

lihood methods can be directly used to select variables. Unlike the pre-screening step,

the number of variables in the final selection is small, so the computational burden is

not a challenge in this step. In contrast, the selection performance is more important

than the computational efficiency. It has been shown that the SCAD method enjoys

many favorable theoretical properties and a good performance on model selection (Fan

and Li, 2001). Hence, the SCAD method is suggested to use in the final selection.

When the generalized tournament approach is applied in a logistic regression model,

the SCAD method will be replaced by the modified SCAD method in Chapter 2. The

modified SCAD method always produces the finite parameter estimate even in case of

complete separation. The SCAD method/the modified SCAD method is used to gener-

ate a sequence of models by tuning parameter value and some model selection criterion

is used to determine the best model. Finally, all variables entered into the best model

are considered to be significant whether they appear in the form of main effects or inter-

action effects. Although the dimension of feature space has been reduced to a number

less than the sample size, the best model is selected from the all candidate models from

the feature space with P main effects and the total P(P − 1)/2 interaction effects. We

have discussed the extended Bayesian information criteria (Chapter 3) could be more
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appropriate in high dimensional feature selection for generalized linear models. Thus,

the extended Bayesian information criteria are suggested to be model selection criterion

in the final selection step. In the remainder of this section, we describe the procedures

of generating a sequence of nested models and identifying the best model in details.

A sequence of nested models

• Let the full model be the first model in the sequence. It consists of all the main

effects and interactions selected from the semi-final stage. Use the same penalty

parameter for both the main effects and interactions in the SCAD penalized log-

likelihood function. The tuning parameter λ is increased to λ1 which is the small-

est value to make one component of the parameter estimate obtained by minimiz-

ing to be zero. The corresponding model is the second model in the sequence.

In the following, by increasing the penalty parameter λ, delete the effects one

at a time sequentially until that the last model only contains the intercept term.

The effect of yielding a sequence of nested models is to rank all effects from the

semi-final stage.

Model fitting and selection

• Refit all models by maximizing un-penalized log-likelihood function. Compute

for each model the model selection criterion EBIC and choose the best model.

The best model is the one which optimizes the extended Bayesian information
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criterion. Finally, one variable is declared to be associated with the response

variable, if its main effects or its interaction with any other variable is contained

in the best model.

The modified SCAD method and the extended Bayesian information criteria have been

introduced in Chapter 2 and 3 respectively, so we omit the details here.

4.4 Summary

In this chapter, we have introduced the generalized tournament screening cum EBIC ap-

proach for high dimensional feature selection in generalized linear models. Compared

with feature selection methods based on multiple testing, it not only avoids dilemma

of choosing the overall threshold but also considers multiple joint effects. Therefore, it

is expected that the generalized tournament screening cum EBIC is a more appropriate

approach than multiple testing for genome-wide association studies.

We need to tackle a huge number of variables representing main effects and interaction

effects in high dimensional feature selection. These variables are evaluated in groups,

not individually, in the generalized tournament approach. Moreover, the GLM path

algorithm computes the entire regularization path sequentially, thereby avoiding inde-

pendent optimization at different values of the tuning parameter λ.
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In the final selection step, we suggest to utilize the SCAD penalty function to yield

the sequence of nested models due to its favorable theoretical properties and good se-

lection performance. If the model of interest is a logistic model, the original SCAD

method will be replaced by the modified SCAD method (Chapter 2) since it always

produces finite parameter estimates even in case of separation. In addition, the number

of spurious variables contained in the best model would be effectively controlled by

using the extended information criteria (EBIC) (Chapter 3).
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Chapter 5

The Application of the Generalized

Tournament Approach in

Genome-wide Association Studies

In this chapter, we apply the generalized tournament screening cum EBIC (Chapter 4)

in genome-wide association studies for detecting genetic variants. Empirical evidence

suggests that interactions among loci may play an important role in explaining many

common diseases. The generalized tournament approach not only identifies gene-gene

interactions but also is beneficial to the data consisting of high dimensional genotypes

and a binary disease status. We compare the performance of the generalized tourna-

ment approach with that of the multiple testing of all possible pairwise gene-gene inter-

actions. Through simulated datasets, we demonstrate that the generalized tournament
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approach outperforms the multiple testing in terms of the positive selection rate as well

as the false discovery rate. In addition, our method enjoys high computational efficiency

in comparison with the multiple testing.

We review the multiple testing of all possible pairwise gene-gene interactions in Section

5.1. We explore the use of the generalized tournament approach in genome-wide asso-

ciation studies in Section 5.2. Some aspects of genetics related to numerical studies are

introduced in Section 5.3. Our method are illustrated with simulated datasets in Section

5.4. We conclude with a summary in Section 5.5.

5.1 Introduction to the multiple testing for genome-wide

association studies

More and more studies demonstrate possible importance of interactions among loci in

genome-wide association studies, but most traditional analytical methods only consider

each genetic marker or haplotype individually. The multiple testing of all possible pair-

wise gene-gene interactions proposed by Marchini, et al. (2005) is a recent technique

for detecting gene-gene interactions associated with many common complex diseases.

The log-likelihood ratio test is used to evaluate interactions (Balding, et al., 2001) and

Bonferroni correction is used to declare the genome-wide significance. The multiple

testing assesses all possible interactions by using the following three strategies.
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Strategy I: Single locus. Fit a logistic model at each locus. For example, for locus

A, define δ1 =



1 if AA

0 otherwise

and δ2 =



1 if Aa

0 otherwise

. The linear predictor in the

logistic model is η = β0 + β1δ1 + β2δ2. Use a Bonferroni correction to set the signifi-

cance level to be α/L to nominally control the overall type I error at level α. Evaluate

this strategy by two criteria: (i) requiring that at least one of the two loci meet the sig-

nificance threshold, irrespective of the other locus, or (ii) requiring that both loci are

significant.

Strategy II: Full interaction. Fit a logistic regression model at each pair of loci. Use

a Bonferroni correction to set the significance level at α/C2
L.

Strategy III: Two-stage. Identify all loci that are significant in single-locus tests (as

strategy I) at a liberal level α1 in the first stage. Call this set of loci I1 ⊆ {1, . . . , L}.

Let d1 be the degree of freedom of the single-locus model fitted at stage one for locus

l (maximum 2 degrees of freedom if all three genotypes are present) and define kl such

that P(χ2
di
> kl) = α1 for l ⊆ I1. In the second stage, for each pair of loci l and m identi-

fied in stage one, calculate the log-likelihood ratio statistic R(l,m) for the full interaction

model. Use a new statistic R
′
(l,m) = R(l,m) − (kl + km) to assess the significance of this

statistic against a χ2
d′

distribution in which d
′
is the degrees of freedom of the full model

fitted at the two loci. Set the level of significance using a Bonferroni correction based
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on the expected number of tests to be done (α/C2
α1×L).

The multiple testing of all possible pairwise gene-gene interactions is a simple ana-

lytical method and is more powerful to detect disease gene than single locus method

when interactions exist. However, it requires an extremely small p-value to claim the

genome-wide significance, so the power of detecting the influenced loci is likely to be

low. In the multiple testing, only the last two strategies are based on gene-gene inter-

actions and have been shown to outperform the first strategy, so we only compare our

method with these two strategies in numerical studies.

5.2 The generalized tournament screening cum EBIC

approach for genome-wide association studies

The data from genome-wide association studies consist of genotype measurements and

a binary disease status indicating whether a subject is the affected or unaffected. In

this situation, logistic regression model is a natural tool for describing the relationship

between the disease status and the locus genotypes. Let the binary response variable Y
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be defined as,

Y =



1 if diseased, i.e., case

0 otherwise, i.e., control

Let X denote the vector of variables representing the genotypes of all considered SNPs.

Let V denote the vector of variables representing the product terms of the variables in

X. Assume that there are n independent samples with n/2 cases and n/2 controls. The

logistic model formulates that the probability density function of the joint distribution

of {Yi, i = 1, .., n} is given by

f (y1, . . . , yn) = Πn
i=1π

yi
i (1 − πi)(1−yi),

where

πi =
exp{α + xT

i β + vT
i ξ}

1 + exp{α + xT
i β + vT

i ξ}
,

or

log
πi

1 − πi
= α + xT

i β + vT
i ξ. (5.1)

In the following, we propose a penalized logistic model imposed on both main effects

and interaction effects. Let l(β, ξ|X,V) = log L(β, ξ|X,V). Explicitly,

l(β, ξ|X,V) =

n∑

i=1

[yi(α + xT
i β + vT

i ξ) − log(1 + exp{α + xT
i β + vT

i ξ)]. (5.2)

The penalized log-likelihood function is given by

lp(β, ξ|X,V) = l(β, ξ|X,V) − n
∑

k

pλ(|βk|) − n
∑

l

∑

m

pτ(|ξlm|), (5.3)

where pλ(.) is the penalty function of main affects and pτ(.) is the penalty function of

interaction effects, βk are components of β and ξlm are the component of ξ.
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The goal of genome-wide association studies is to identify genetic variants associated

with a particular disease. However, one challenge is that only a few out of a huge num-

ber of considered SNPs contributed to the disease. It is equivalent to select significant

features from all features contained in model (5.1). The generalized tournament screen-

ing cum EBIC approach (Chapter 4) can effectively select features from high dimen-

sional feature space. In genome-wide association studies, the separation phenomenon

always occurs in the data. The Jeffreys prior penalty can be incorporated into the penal-

ized likelihood function to handle this phenomenon. Therefore, the generalized tourna-

ment screening cum EBIC approach is appropriate in genome-wide association studies.

In the remainder of this section, we briefly describe its basic procedure in the context

of genome-wide association studies.

First, all the variables representing the genotype of all the SNPs and their products

screened by the generalized tournament procedure with L1-penalized likelihood func-

tion until that the number of variables is reduced to a desired level. Then, these selected

variables are ranked by the modified SCAD method, and a sequence of nested models

are generated. Finally, the extended Bayesian information criteria are used to identify

the best model. If either its main effect or any interaction with an other SNP is in the

best model, this SNP is considered to be significant. The details of the generalized

tournament screening cum EBIC has been introduced in Chapter 4.
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5.3 Some genetical aspects

In this section, we introduce some aspects of genetics: the marginal effect, the preva-

lence of a disease, the linkage disequilibrium and the statistical models representing

gene-gene interactions. These definitions and models will be used in numerical studies.

Assume that the two causal loci (A and B) are under linkage equilibrium and the dis-

ease allele frequencies at loci A and B are πA and πB. The prevalence of a disease is the

probability of a disease in the population. Let p denote the prevalence of a disease and

be expressed by

p = p(D) =
∑

gA,gB

p(D|gA, gB)p(gA, gB), (5.4)

where gA and gB denote the genotype at locus A and B, p(D|gA, gB) is the conditional

probability that an individual has the disease given that they have genotype gA at locus

A and genotype gB at locus B, p(gA, gB) denotes the joint probability of genotypes gA

and gB and is equal to the product of p(gA) and p(gB) if loci A and B are under linkage

equilibrium.

The marginal odds ratio at locus A is given by

p(D|gA)
p(D̄|gA)

=

∑
gB

p(D|gA, gB)p(gB)
∑

gB
p(D̄|gA, gB)p(gB)

, (5.5)

where p(D|gA) is the conditional probability that an individual has the disease given

that they have genotype gA at locus A, p(D̄|gA) is the conditional probability that an

individual does not have the disease given that they have genotype gA at locus A. The
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parameter λA represents the marginal effect of locus A. It is given by

λA =
p(D|1A)
p(D̄|1A)

/
p(D|0A)
p(D̄|0A)

− 1, (5.6)

where 0A and 1A respectively denote the genotypes aa and Aa in the locus A. From

(5.5), it can be seen that the parameter λA depends on the disease allele frequency of

locus B, the conditional probabilities of disease and non-disease given the genotypes.

Linkage disequilibrium (LD) is a measure of association between alleles of two dif-

ferent genes. For a general discussion, suppose a disease locus A has alleles A, a and a

marker locus X has two alleles X and x. The linkage disequilibrium can be reflected by

the conditional haplotype probability. The allele frequencies of A and X are πA and πX.

There are three different constraints for the conditional probabilities p(X|A) and p(X|a):

(Constraint 1) p(X|A) = q, p(X|a) = 1 − q

(Constraint 2) p(X|A) = 1, p(X|a) = q

(Constraint 3) p(X|A) = q, p(X|a) = 0

The square correlation coefficients r2 (Pritchard and Przeworski, 2001) is a parameter

to measure the magnitude of LD. It is expressed by

r2
AX = [p(X|A) − p(X|a)]2 πA(1 − πA)

πX(1 − πX)
(5.7)

Given the value of the square correlation coefficients r2, the conditional probabilities

p(X|A), p(X|a) can be calculated by (5.7). In the following, we introduce four statisti-

cal models for two-locus interactions and then calculate the expression of the marginal

effect parameter λA for each model.
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There are a variety of general two-locus models mimicking simple biological mech-

anisms. In numerical studies, we choose four models for the comparison of the gener-

alized tournament approach with the multiple testing. These four models range from

situation in which both marginal effects and interaction effect of the two loci exist to

those in which only interaction effect exists without marginal effects presenting. The

first three models are demonstrated by the conditional odds given the genotypes of two

disease loci under the epistatic scenarios considered by Marchini, et al. (2005). The last

interaction model that have no or little marginal effects at each locus has been studied

by some recent work (Hoh and Ott, 2003; Culverhouse, et al., 2002; Moore and Ritchie,

2004).

Model 1: two-locus interaction multiplicative effects

aa Aa AA

bb α α α

Bb α α(1 + θ) α(1 + θ)2

BB α α(1 + θ)2 α(1 + θ)4

The entries in the table are conditional odds given the genotypes of both loci, e.g.,

p(D|aa, bb)/p(D̄|aa, bb) = α etc. In model 1, the conditional odds have a baseline value

(α) unless both loci have at least one disease allele. From the conditional odds, it can

be seen that loci A and B affect disease in their interaction and they have the same

marginal effects. The log conditional odds of the interaction effect can be expressed
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by η(gA, gB) = log(α) + log(1 + θ)NANB, where NA denote the number of allele A in

genotype gA and NB denote the number of allele B in genotype gB. On the basis of the

definition (5.5), we calculate the marginal odds ratio of locus A.

p(D|0A)
p(D̄|0A)

=
p(D|0A, 0B)p(0B) + p(D|0A, 1B)p(1B) + p(D|0A, 2B)p(2B)
p(D̄|0A, 0B)p(0B) + p(D̄|0A, 1B)p(1B) + p(D̄|0A, 2B)p(2B)

=

α
1+α

(1 − πB)2 + α
1+α

2πB(1 − πB) + α
1+α

π2
B

1
1+α

(1 − πB)2 + 1
1+α

2πB(1 − πB) + 1
1+α

π2
B

= α

p(D|1A)
p(D̄|1A)

=
p(D|1A, 0B)p(0B) + p(D|1A, 1B)p(1B) + p(D|1A, 2B)p(2B)
p(D̄|1A, 0B)p(0B) + p(D̄|1A, 1B)p(1B) + p(D̄|1A, 2B)p(2B)

=

α
1+α

(1 − πB)2 +
α(1+θ)

1+α(1+θ)2πB(1 − πB) +
α(1+θ)2

1+α(1+θ)2π
2
B

1
1+α

(1 − πB)2 + 1
1+α(1+θ)2πB(1 − πB) + 1

1+α(1+θ)2π
2
B

= α(1 +

2θπB(1−πB)
1+α(1+θ) +

θ(2+θ)π2
B

1+α(1+θ)2

(1−πB)2

1+α
+

2πB(1−πB)
1+α(1+θ) +

π2
B

1+α(1+θ)2

)

= α(1 + λ1)

p(D|2A)
p(D̄|2A)

=
p(D|2A, 0B)p(0B) + p(D|2A, 1B)p(1B) + p(D|2A, 2B)p(2B)
p(D̄|2A, 0B)p(0B) + p(D̄|2A, 1B)p(1B) + p(D̄|2A, 2B)p(2B)

=

α
1+α

(1 − πB)2 +
α(1+θ)2

1+α(1+θ)2 2πB(1 − πB) +
α(1+θ)4

1+α(1+θ)4π
2
B

1
1+α

(1 − πB)2 + 1
1+α(1+θ)2 2πB(1 − πB) + 1

1+α(1+θ)4π
2
B

= α(1 +

2θ(θ+2)πB(1−πB)
1+α(1+θ)2 +

((1+θ)4−1)π2
B

1+α(1+θ)2

(1−πB)2

1+α
+

2πB(1−πB)
1+α(1+θ)2 +

π2
B

1+α(1+θ)4

)

= α(1 + λ2)

The parameter λA is expressed by

λA = λ1 =

2θπB(1−πB)
1+α(1+θ) +

θ(2+θ)π2
B

1+α(1+θ)2

(1−πB)2

1+α
+

2πB(1−πB)
1+α(1+θ) +

π2
B

1+α(1+θ)2

(5.8)

The parameter λB for locus B can be given by the symmetric formula of (5.8).
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Model 2: two-locus interaction threshold effects

aa Aa AA

bb α α α

Bb α α(1 + θ) α(1 + θ)

BB α α(1 + θ) α(1 + θ)

In this model, at least one disease alleles is required to have a effect beyond α. How-

ever, unlike model 1, this model does not increase the risk as the number of disease

alleles increases. Hence, this model specifies a threshold of disease effects rather than

multiplicative gene action. The log conditional odds can be expressed by η(gA, gB) =

log(α) + log(1 + θ)IAIB, where IA is the indicator whether the genotype gA involves the

allele A and IB is the indicator whether the genotype gB involves the allele B.

p(D|0A)
p(D̄|0A)

=
p(D|0A, 0B)p(0B) + p(D|0A, 1B)p(1B) + p(D|0A, 2B)p(2B)
p(D̄|0A, 0B)p(0B) + p(D̄|0A, 1B)p(1B) + p(D̄|0A, 2B)p(2B)

=

α
1+α

(1 − πB)2 + α
1+α

2πB(1 − πB) + α
1+α

π2
B

1
1+α

(1 − πB)2 + 1
1+α

2πB(1 − πB) + 1
1+α

π2
B

= α

p(D|1A)
p(D̄|1A)

=
p(D|1A, 0B)p(0B) + p(D|1A, 1B)p(1B) + p(D|1A, 2B)p(2B)
p(D̄|1A, 0B)p(0B) + p(D̄|1A, 1B)p(1B) + p(D̄|1A, 2B)p(2B)

=

α
1+α

(1 − πB)2 +
α(1+θ)

1+α(1+θ)πB(2 − πB) +
α(1+θ)2

1+α(1+θ)2π
2
B

1
1+α

(1 − πB)2 + 1
1+α(1+θ)πB(2 − πB)

= α(1 +

θπB(2−πB)
1+α(1+θ)

(1−πB)2

1+α
+

πB(2−πB)
1+α(1+θ)

)

= α(1 + λ1)
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p(D|2A)
p(D̄|2A)

=
p(D|2A, 0B)p(0B) + p(D|2A, 1B)p(1B) + p(D|2A, 2B)p(2B)
p(D̄|2A, 0B)p(0B) + p(D̄|2A, 1B)p(1B) + p(D̄|2A, 2B)p(2B)

=

α
1+α

(1 − πB)2 +
α(1+θ)

1+α(1+θ)πB(2 − πB) +
α(1+θ)2

1+α(1+θ)2π
2
B

1
1+α

(1 − πB)2 + 1
1+α(1+θ)πB(2 − πB)

= α(1 +

θπB(2−πB)
1+α(1+θ)

(1−πB)2

1+α
+

πB(2−πB)
1+α(1+θ)

)

= α(1 + λ2)

The parameter λA can be expressed by

λA = λ1 =

θπB(2−πB)
1+α(1+θ)

(1−πB)2

1+α
+

πB(2−πB)
1+α(1+θ)

. (5.9)

Model 3: multiplicative within and between loci model

aa Aa AA

bb α α(1 + θA) α(1 + θA)2

Bb α(1 + θB) α(1 + θA)(1 + θB) α(1 + θA)2(1 + θB)

BB α(1 + θB)2 α(1 + θA)(1 + θB)2 α(1 + θA)2(1 + θB)2

In this model, the odds increase multiplicatively with the number of disease alleles both

within and between loci. From the odds of disease, it can be seen that two loci A and B

affect disease independently. The log conditional odds of the interaction effect can be

expressed by η(gA, gB) = log(α) + log(1 + θA)NA + log(1 + θB)NB, where NA denote the

number of allele A in genotype gA and NB denote the number of allele B in genotype gB.

p(D|0A)
p(D̄|0A)

=
p(D|0A, 0B)p(0B) + p(D|0A, 1B)p(1B) + p(D|0A, 2B)p(2B)
p(D̄|0A, 0B)p(0B) + p(D̄|0A, 1B)p(1B) + p(D̄|0A, 2B)p(2B)

=

α
1+α

(1 − πB)2 +
α(1+θB)

1+α(1+θB)2πB(1 − πB) +
α(1+θB)2

1+α(1+θB)2π
2
B

1
1+α

(1 − πB)2 + 1
1+α(1+θB)2πB(1 − πB) + 1

1+α(1+θB)2π
2
B

= α(1 +

2θBπB(1−πB)
1+α(1+θB) +

θB(2+θB)π2
B

1+α(1+θB)2

(1−πB)2

1+α
+

2πB(1−πB)
1+α(1+θB) +

π2
B

1+α(1+θB)2

)

= α(1 + µ1)
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p(D|1A)
p(D̄|1A)

=
p(D|1A, 0B)p(0B) + p(D|1A, 1B)p(1B) + p(D|1A, 2B)p(2B)
p(D̄|1A, 0B)p(0B) + p(D̄|1A, 1B)p(1B) + p(D̄|1A, 2B)p(2B)

=

α(1+θA)
1+α(1+θA) (1 − πB)2 +

α(1+θA)(1+θB)
1+α(1+θA)(1+θB)2πB(1 − πB) +

α(1+θA)(1+θB)2

1+α(1+θA)(1+θB)2π
2
B

1
1+α(1+θA) (1 − πB)2 + 1

1+α(1+θA)(1+θB)2πB(1 − πB) + 1
1+α(1+θA)(1+θB)2π

2
B

= α(1 +

2θBπB(1−πB)
1+α(1+θA)(1+θB) +

θB(2+θB)π2
B

1+α(1+θA)(1+θB)2

(1−πB)2

1+(1+θA)α +
2πB(1−πB)

1+α(1+θA)(1+θB) +
π2

B
1+α(1+θA)(1+θB)2

)

= α(1 + θA)(1 + µ2)

p(D|2A)
p(D̄|2A)

=
p(D|2A, 0B)p(0B) + p(D|2A, 1B)p(1B) + p(D|2A, 2B)p(2B)
p(D̄|2A, 0B)p(0B) + p(D̄|2A, 1B)p(1B) + p(D̄|2A, 2B)p(2B)

=

α(1+θA)2

1+α(1+θA)2 (1 − πB)2 +
α(1+θA)2(1+θB)

1+α(1+θA)2(1+θB)2πB(1 − πB) +
α(1+θA)2(1+θB)2

1+α(1+θA)2(1+θB)2π
2
B

1
1+α(1+θA)2 (1 − πB)2 + 1

1+α(1+θA)2(1+θB)2πB(1 − πB) + 1
1+α(1+θA)2(1+θB)2π

2
B

= α(1 +

2θBπB(1−πB)
1+α(1+θA)2(1+θB) +

θB(2+θB)π2
B

1+α(1+θA)2(1+θB)2

(1−πB)2

1+(1+θA)2α
+

2πB(1−πB)
1+α(1+θA)2(1+θB) +

π2
B

1+α(1+θA)2(1+θB)2

)

= α(1 + θA)2(1 + µ3)

The parameter λA can be expressed by

λA =
(1 + µ2)(1 + θA)

(1 + µ1)
− 1 (5.10)

Model 4: significant interaction effect with negligible marginal effects

In this model, the log conditional odds of the interaction effect can be expressed by

η(gA, gB) = β0 + β1NA + β2NB + ξ12NANB (5.11)

subject to

∑

gB

η(AA, gB)p(gB) =
∑

gB

η(Aa, gB)p(gB) =
∑

gB

η(aa, gB)p(gB) (5.12)

and
∑

gA

η(gA, BB)p(gA) =
∑

gA

η(gA, Bb)p(gA) =
∑

gA

η(gA, bb)p(gA). (5.13)
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Given the value of ξ12, the parameters β1 and β2 can be calculated by (5.11)-(5.13). The

marginal effect of locus A being zero is equivalent to that the marginal odds at different

genotype gA is a constant.

In the numerical studies, we will generate the simulated datasets on the basis of these

four models. For the first three models, given disease allele frequencies πA and πB, the

prevalence of a disease p and the marginal effect parameter λA and λB, we can calculate

the value of α and θ (θA, θB) contained in the condition odds. However, the expected

marginal effect of the last model is equal to zero. Hence, for the last model, we give the

unknown parameter ξ12 and the prevalence of a disease, and calculate the other unknown

parameters β0, β1, β2 by (5.11)-(5.13).

5.4 Numerical Studies

In this section, the results of two sets of numerical studies are presented. In the first set,

the generalized tournament screening cum EBIC approach with different penalties are

compared with each other, and they are also compared with the multiple testing on their

performances of identifying causal loci. In the second set, we report the performance

of the generalized tournament approach in simulated datasets with some more complex

structures of SNPs.
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5.4.1 Numerical study 1

The first goal of this numerical study is to compare the performances of the extended

Bayesian information criteria with three different parameter values, i.e., (γ1, γ2) =

(0, 0), (1−log(n)/(2∗log(P)), 1−log(n)/(2∗log(P(P−1)/2))) and (1, 1). The value (0,0)

corresponding to the Bayesian information criterion. The value (1,1) is the most strin-

gent value for EBIC. The value (1−log(n)/(2∗log(P)), 1−log(n)/(2∗log(P(P−1)/2))) is

another choice suggested by Chen and Chen (2007). The second goal is to compare the

performances of the generalized tournament screening cum EBIC and the multiple test-

ing for gene-gene interactions. We select four gene-gene interaction models introduced

in Section 5.2 for our comparison. The first three models were used by Marchini et al.

(2005) to compare the multiple testing for gene-gene interactions with other traditional

single marker analyses. In these three gene-gene interaction models, the significant in-

teractions between genetic loci have non-negligible marginal effects in two individual

loci. The last gene-gene interaction model has no or little marginal effects at each locus.

Each dataset contains n = 800 samples (400 cases and 400 controls). In this set of

numerical studies, P = 1000 and P = 5000 SNPs are considered. In all SNPs under

consideration, there is only one pair of SNPs that contribute to the disease status. As-

sume that two causal loci have same effects on the disease. For the first three models,

the effect of each causal loci is specified by the marginal effect parameter λ in (5.6).

Since the marginal effect is zero in the last model, the effect of each causal loci is spec-
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ified by the parameter ξ12 in (5.11). The susceptibility allele at each causal locus is

in linkage disequilibrium (LD) with a particular single marker allele. The remaining

SNPs are assumed to be independent and in Hardy-Weinberg equilibrium. When we

generate the genotypes of two causal loci and two linked markers, linkage disequilib-

rium between a disease allele and one marker allele is implemented by specifying the

square correlation coefficients r2 = 0.5. For all data sets, the overall proportion of the

disease population, i.e., the prevalence is set to be 0.01. We compare the performances

of different methods by using two measures: the positive selection rate (PSR) and the

false discovery rate (FDR) (Banjamini and Hochberg, 1995). The positive selection rate

is defined as the proportion of the truly associated covariates selected. The false dis-

covery rate is defined as the proportion of falsely selected covariates among all selected

ones. In genome-wide associated studies, the positive selection rate is defined as the

proportion of the truly associated SNPs selected. It is similar to the power in hypothesis

testing. The false discovery rate is defined as the proportion of falsely selected SNPs

among all selected ones, which is an alterative measure to the probability of type I error

in the hypothesis testing. All simulations are conducted by using R package.

The average positive selection rate (PSR) and the average false discovery rate (FDR)

based on 100 replications for four models are respectively summarized in the follow-

ing tables. Let GT1 denote the generalized tournament screening cum EBIC with

(γ1, γ2) = (0, 0), GT2 denote the generalized tournament screening cum EBIC with

(γ1, γ2) = (1 − log(n)/(2 ∗ log(P)), 1 − log(n)/(2 ∗ log(P(P − 1)/2))), GT3 denote the
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generalized tournament screening cum EBIC with (γ1, γ2) = (1, 1) and MT denote the

multiple testing method.

Table 5.1: The average PSR for “Two-locus interaction multiplicative effects” model

disease allele PSR
(n, P) λ

frequency GT1 GT2 GT3 MT

(800,1000) 0.5 0.1 0.735 0.450 0.265 0.175
0.5 0.2 0.890 0.805 0.650 0.550
0.7 0.1 0.905 0.860 0.790 0.710
0.7 0.2 0.980 0.950 0.950 1.000

(800,5000) 0.5 0.1 0.665 0.335 0.175 0.085
0.5 0.2 0.880 0.695 0.610 0.405
0.7 0.1 0.915 0.815 0.720 0.480
0.7 0.2 0.965 0.940 0.940 0.930

Table 5.2: The average FDR for “Two-locus interaction multiplicative effects” model

disease allele FDR
(n, P) λ

frequency GT1 GT2 GT3 MT

(800,1000) 0.5 0.1 0.958 0.286 0.086 0.352
0.5 0.2 0.939 0.134 0.071 0.763
0.7 0.1 0.941 0.149 0.048 0.758
0.7 0.2 0.927 0.095 0.050 0.954

(800,5000) 0.5 0.1 0.977 0.221 0.079 0.595
0.5 0.2 0.967 0.151 0.077 0.928
0.7 0.1 0.968 0.163 0.062 0.776
0.7 0.2 0.963 0.121 0.051 0.980

Table 5.1 and 5.2 describe the average positive selection rate (PSR) and false discovery

rate (FDR) of two-locus interaction multiplicative effects model. It can be seen that

both the positive selection rate (PSR) and the false discovery rate (FDR) decrease as
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the parameter γ in EBIC increases. The reason is that the large penalty function dis-

courages to select the model with too many variables. Table 5.2 shows that the false

discovery rates (FDRs) of the generalized tournament screening cum BIC (GT1) are

intolerably high in all cases considered. The lowest one has already reached to 0.941,

which means 94.1 percentage of SNPs selected by GT1 are spurious. Thus, it is likely

that the Bayesian information criterion is not appropriate in high dimensional model

space mainly because it tends to select too many spurious variables. However, the false

discovery rate is effectively controlled around 0.20 by GT2. Furthermore, the false dis-

covery rate of GT3 does not exceed 0.10 even in the worst case. As shown in Table 5.1,

the positive selection rate of the generalized tournament screening cum BIC (GT1) is

higher than those of the generalized tournament screening cum EBIC (GT2 and GT3)

in general. However, the positive selection rate (PSR) of GT2 is slightly lower than that

of GT1 in some cases. Especially, in the sixth case, the PSR of GT2 is 0.940, which

is very close to that of GT1, 0.965. Thus, the extended Bayesian information crite-

ria could be more reasonable than the original Bayesian information (Schward, 1978)

in high dimensional generalized linear models with main effects and interactions. It

is consistent with the earlier finding suggesting that the EBIC method performs better

than the ordinary BIC method in linear model with main effects (Chen and Chen, 2007).

Table 5.1 and 5.2 also demonstrate that the generalized tournament screening cum EBIC

(GT2 and GT3) enjoys high positive selection rate (PSR) and low false discovery rate

(FDR) in comparison with the multiple testing method (MT). Bonferroni correction is
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very conservative when the number of hypothesis tests is huge. It accounts for the low

positive selection rate of the multiple testing. The low false discovery rate of the gener-

alized tournament approach could be attributed to the penalized likelihood methodology

and the extended Bayesian information criteria. One causal SNP may make its inter-

actions with many non-causal SNPs highly correlated with the response variable. The

penalized likelihood methodology assesses interaction effects in groups, so the joint

effects among interactions are considered. However, the multiple testing evaluates in-

teraction effects individually, which likely incurs too many spurious SNPs. The results

of lower PSR and higher FDR of the multiple tests approach show that the generalized

tournament method cum EBIC may perform better than the multiple testing method

(Marchini et al., 2005) in genome-wide association studies. Consequently, the general-

ized tournament screening cum EBIC could become a promising way to detect genetic

variants associated with many diseases.

As shown in Table 5.1, the total number of candidate SNPs (P) impacts on the pos-

itive selection rates (PSRs) of all methods. The larger number of candidate SNPs is

corresponding to the lower positive selection rate (PSR). The possible reason is that it

is more difficult to select the causal SNPs from more candidate SNPs. This result is

most prominent in the multiple testing method. For instance, the PSR of the multiple

testing method in the second case is 0.710, while its PSR has declined to 0.480 in the

fifth case where the number of candidate SNPs (P) increases to 5000. It would be a

result of the Bonferroni adjustment. For instance, if the number of SNPs is 1000, any
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interaction whose P-value is less than 0.05/(500 × 999) is declared to be significant. If

the number of SNPs increases to 5000, only interactions whose P-value are less than

0.05/(2500 × 4999) are declared the significance. From Table 5.1, it can be seen that

the average positive selection rate is also affected by the allele frequency. Generally

speaking, the small allele frequency corresponds to the low positive selection rate. In

the following simulations, we fix the value 0.1 for the allele frequency.

Table 5.3: The average PSR for “Two-locus interaction threshold effects” model

disease allele PSR
(n, P) λ

frequency GT1 GT2 GT3 MT

(800,1000) 0.8 0.1 0.840 0.655 0.530 0.455
0.9 0.1 0.920 0.835 0.730 0.695
1.0 0.1 0.930 0.895 0.810 0.840

(800,5000) 0.8 0.1 0.865 0.530 0.350 0.270
0.9 0.1 0.910 0.720 0.620 0.490
1.0 0.1 0.960 0.813 0.712 0.657

Table 5.4: The average FDR for “Two-locus interaction threshold effects” model

disease allele FDR
(n, P) λ

frequency GT1 GT2 GT3 MT

(800,1000) 0.8 0.1 0.954 0.229 0.086 0.884
0.9 0.1 0.954 0.204 0.052 0.965
1.0 0.1 0.951 0.179 0.047 0.970

(800,5000) 0.8 0.1 0.961 0.159 0.028 0.800
0.9 0.1 0.971 0.459 0.101 0.999
1.0 0.1 0.955 0.195 0.060 0.982

Table 5.3 and 5.4 describe the average positive selection rate (PSR) and false discovery

rate (FDR) of two-locus interaction threshold effects model. The result is similar to
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that of two-locus interactions multiplicative effects model. The generalized tournament

screening cum EBIC enjoys high positive selection rate (PSR) and low false discovery

rate (FDR) in comparison with the multiple testing method (MT). The difference is that

the positive selection rate in two-locus interaction multiplicative effects model is higher

than that in two-locus interaction threshold effects model. It is account for different

odds in these two models.

Table 5.5: The average PSR for “Multiplicative within and between loci” model

disease allele PSR
(n, P) λ

frequency GT1 GT2 GT3 MT

(800,1000) 0.8 0.1 0.980 0.860 0.610 0.780
0.9 0.1 0.990 0.940 0.850 0.900
1.0 0.1 0.990 0.980 0.960 1.000

(800,5000) 0.8 0.1 0.960 0.740 0.470 0.660
0.9 0.1 0.980 0.890 0.750 0.870
1.0 0.1 0.960 0.940 0.890 0.930

Table 5.6: The average FDR for “Multiplicative within and between loci” model

disease allele FDR
(n, P) λ

frequency GT1 GT2 GT3 MT

(800,1000) 0.8 0.1 0.964 0.423 0.358 0.996
0.9 0.1 0.959 0.343 0.320 0.998
1.0 0.1 0.953 0.242 0.219 0.999

(800,5000) 0.8 0.1 0.923 0.460 0.405 0.999
0.9 0.1 0.922 0.414 0.380 0.999
1.0 0.1 0.922 0.273 0.233 0.999

Table 5.5 and 5.6 summarize the average positive selection rate (PSR) and false dis-

covery rate (FDR) of multiplicative within and between loci model. As shown in Table
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5.6, the false discovery rate of the multiple testing is intolerably high. The lowest has

already reached 0.996 and the highest is 0.999. The high false discovery rate makes

the multiple testing inappropriate. Although the false discovery rate of GT3 is not con-

trolled below 0.1 like in model 1 and 2, its false discovery rate is much lower than that

of the multiple testing. The main reason for higher false discovery rate in this model

is that the causal loci can be detectable independent of other loci and cause many in-

teractions highly correlated with the response variable. From Table 5.5, it can be seen

that the positive selection rate of GT3 is lower than that of the multiple testing. It is

likely that some gene-gene interactions between causal loci and other non-causal loci

sometimes enter the model before the main effect. However, if we fix a specific false

discovery rate, the positive selection rate of the generalized tournament approach must

be higher than that of the multiple testing.

Table 5.7: The average PSR for “Interactions with negligible marginal effects” model

disease allele PSR
(n, P) ξ12 frequency GT1 GT2 GT3 MT

(800,1000) 1.9 0.1 0.990 0.955 0.828 0.702
2.0 0.1 1.000 0.985 0.945 0.860
2.1 0.1 0.995 0.975 0.965 0.915

(800,5000) 1.9 0.1 0.990 0.810 0.555 0.460
2.0 0.1 0.995 0.930 0.730 0.710
2.1 0.1 0.995 0.970 0.885 0.795

Table 5.7 and 5.8 summarize the average positive selection rate and the average false

discovery rate for significant interaction effect with negligible marginal effects model.
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Table 5.8: The average FDR for “Interactions with negligible marginal effects” model

disease allele FDR
(n, P) ξ12 frequency GT1 GT2 GT3 MT

(800,1000) 1.9 0.1 0.789 0.031 0.012 ≥0.550
2.0 0.1 0.791 0.034 0.026 ≥0.641
2.1 0.1 0.795 0.025 0.015 ≥0.915

(800,5000) 1.9 0.1 0.792 0.024 0.009 ≥0.406
2.0 0.1 0.783 0.026 0.014 ≥0.427
2.1 0.1 0.775 0.015 0.006 ≥0.562

For the multiple testing, we only test all interactions involving causal SNPs, which

guarantees the same positive selection rate but produces a less or equal false discovery

rate. Hence, we use “ ≥ ” in the column representing the FDR of the multiple testing.

Table 5.7 and 5.8 shows that positive selection rate of GT3 is higher than that of the

multiple testing, and the false discovery rate is lower than that of the multiple testing.

This is a similar result with model 1 and 2. However, it can be seen that the false

discovery rates for these four methods are lower than corresponding FDRs in the first

three models. This may be accounted by no or little marginal effects in this model.

5.4.2 Numerical study 2

In the second set of numerical studies, we present the performance of the generalized

tournament screening cum EBIC in some simulated datasets with more complex struc-

tures. The datasets also contains 800 samples with 400 cases and 400 controls, but

the number of SNPs under consideration is increased to 10000. Moreover, the number

of causal SNPs is set to be 10. The allele at each causal locus is in LD with a par-
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ticular single marker allele. The remaining SNPs are assumed to be independent and

in Hardy-Weinberg equilibrium. When we generate the genotypes of causal loci and

linked markers, linkage disequilibrium between a disease allele and one marker allele

is specified by the square correlation coefficients r2 = 0.5. The disease allele frequen-

cies for the ten causal loci are fixed at:

π = (0.15, 0.21, 0.09, 0.12, 0.13, 0.18, 0.10, 0.14, 0.08, 0.16).

There are two structures for interaction effects in the datasets.

In the first structure, the ten causal SNPs affect the disease by five independent interac-

tions: 1 multiplicative within and between loci effect (Model 3), 2 two-locus interaction

multiplicative effects (Model 1) and 2 two-locus interaction threshold effects (Model 2).

The marginal effect parameters of the ten causal loci are specified as

λ = (1.02, 0.88, 1.02, 0.76, 0.93, 0.77, 1.17, 0.80, 1.52, 0.69)

and

λ = (0.82, 0.72, 0.86, 0.66, 0.84, 0.69, 1.04, 0.71, 1.26, 0.58)

in two settings. The prevalence p is set to be 0.01. Let gi, i = 1, . . . , 10 denote the

genotypes of the ten disease loci. Let Ni, i = 1, . . . , 10 be the variables representing the

number of disease alleles in the genotype of the i-th locus. Let I j, j = 1, . . . , 10 denote

the variables indicating whether the genotype of the j-th locus involves the disease

allele. The log conditional odds given the genotypes of ten disease loci can be expressed
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by

log(η(g1, . . . , g10)) = log(α) + log(θ1)N1 + log(θ2)N2 + log(θ3)N3N4 + log(θ4)N5N6

+ log(θ5)I7I8 + log(θ6)I9I10

Given the value of the marginal effect parameter vector λ, the disease allele frequency

vector π and the prevalence p, we can calculate the value of the parameters (α, θ1, . . . , θ6)

in the conditional odds. These two simulation results are summarized in Table 5.9 and

5.10 respectively. The column labeled “Correct” presents the average restricted to the

truly associated SNPs, and the column “Incorrect” depicts the average of wrongly se-

lected associated SNPs.

Table 5.9: Simulation results for the first structure

Method Correct(SD) Incorrect(SD) PSR FDR

S etting 1 − 1

GT1 9.53(0.67) 27.66(6.57) 0.953 0.744

GT2 7.52(1.16) 1.28(1.82) 0.752 0.145

GT3 7.09(1.18) 0.46(0.77) 0.709 0.061

S etting 1 − 2

GT1 9.06(0.93) 31.94(8.55) 0.906 0.779

GT2 6.26(1.25) 1.09(1.71) 0.626 0.148

GT3 5.97(1.28) 0.38(0.83) 0.597 0.060

In the second structure, the ten causal SNPs affect the disease by five independent in-

teractions: 1 multiplicative within and between loci effect (Model 1) and 4 significant
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interactions with no or little marginal effects (Model 4). In this structure, there are 4

interactions with no or little marginal effects. Thus, instead of the marginal effect pa-

rameters, the coefficients in the logistic regression model are used to specify the effects

of disease loci. The response variable follows the Bernoulli distribution with parameter

η(g1, . . . , g10)/(1 + η(g1, . . . , g10)), where the log conditional odds is given by

log(η(g1, . . . , g10)) = α + β1N1 + . . . + β10N10 + ξ12N1N2 + . . . + ξ9,10N9N10.

In this two settings, the corresponding coefficients for main effects and interaction ef-

fects are respectively specified as:

β = (0.78, 0.69,−0.40,−0.54,−0.58,−0.80,−0.45,−0.62,−0.71,−0.36),

ξ = (0.00, 2.23, 1.93, 2.06, 2.37).

and

β = (0.53, 0.45,−0.31,−0.42,−0.45,−0.62,−0.35,−0.48,−0.55,−0.28),

ξ = (0.00, 1.73, 1.45, 1.76, 1.67)

The intercept α is set to be -5.30 in both two settings.

From Table 5.9 and 5.10, it can be seen that the positive selection rate of major SNPs

(Setting 1-1 and Setting 2-1) is higher than that of minor SNPs (Setting 1-2 and Setting

2-2). In summary, the numerical study 2 demonstrates that the generalized tournament

screening cum EBIC has a good performance in the situation where the structure of

interaction effects is complex. In addtion, the generalized tournament approach has



Chapter 5: Application in genome-wide association studies 98

Table 5.10: Simulation results for the second structure

Method Correct(SD) Incorrect(SD) PSR FDR

S etting 2 − 1

GT1 9.91(0.38) 15.54(3.93) 0.991 0.601

GT2 8.99(0.92) 1.27(0.87) 0.899 0.124

GT3 8.65(0.98) 0.92(0.86) 0.865 0.096

S etting 2 − 2

GT1 9.28(0.94) 18.77(3.76) 0.928 0.669

GT2 5.55(2.11) 0.54(0.72) 0.555 0.089

GT3 4.03(2.19) 0.21(0.48) 0.403 0.050

high power and low false discovery rate in detecting major SNPs. Even in the case

of minor SNPs, the generalized tournament approach has reasonable positive selection

rate and false discovery rate.

5.5 Summary

We have applied the generalized tournament screening cum EBIC in genome-wide as-

sociation studies for detecting SNPs associated with some common diseases. Not only

main effects but also gene-gene interactions were considered as possible factors in lo-

gistic regression model. When one SNP has a significant marginal effect, it is likely

that its interactions with other SNPs are highly correlated with the disease. In this sit-

uation, the multiple testing may declare the significance for many interactions, which
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causes a high false discovery rate. In contrast, the generalized tournament approach

selects dummy variables jointly not individually. This, combining with the extended

Bayesian information criterion, effectively controls the false discovery rate. In addition,

the generalized tournament approach is never affected by the separation phenomenon.

However, the log-likelihood ratio test in the multiple testing cannot work normally in

case of separation.

The generalized tournament screening cum EBIC approach enjoys high positive se-

lection rate and low false discovery rate in comparison with the multiple testing of all

possible pairwise gene-gene interactions. Hence, the generalized tournament approach

may be a promising way to detect genetic variants responsible for many common dis-

eases.
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Chapter 6

Conclusion and Further Research

In this chapter, we summarized the results of the thesis and discuss some further re-

search directions related to the thesis. The main purpose of this thesis is to develop

a high dimensional feature selection method for generalized linear models with main

effects and interaction effects and then apply it in genome-wide association studies to

detect multiple loci associated with diseases.

6.1 Conclusion

The separation phenomenon in a logistic regression model makes the original SCAD

method (Fan and Li, 2001) unable to work normally. The reason is that separation

results in at least one infinite estimates when maximizing the SCAD penalized log-

likelihood function. In Chapter 2, the modified SCAD method is proposed to solve
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the problem raised by the separation phenomenon. Compared to the original SCAD

method, the modified SCAD function adds the logarithm of the Jeffreys penalty func-

tion (Jeffreys, 1948) in the SCAD penalized log-likelihood function. The simulation re-

sults show that the modified SCAD method maintains the selection performance of the

original SCAD method in case of no separation. It could be explained by the influence

of the Jeffreys penalty function is asymptotically negligible. Moreover, the modified

SCAD method always guarantees finite parameter estimates in case of separation un-

like the SCAD method. The main reason is that the effect of Jeffreys penalty function

is equivalent to split each original observation of the response variable into a response

and a non-response. Although the original SCAD method was proposed in seven years

ago, it has not provided a solution to the problem raised by separation. Hence, this work

develops a necessary and reasonable modification for the original SCAD method since

separation is a non-negligible problem for logistic regression model.

In Chapter 3, the extended Bayesian information criteria (EBIC; Chen and Chen, 2007)

are discussed in generalized linear regression models with both main effects and two-

covariate interactions. When both main effects and interaction effects are considered

as possible factors in a generalized linear model, the extended Bayesian information

criteria put different emphases on main effects and interactions. In addition, the per-

formance of EBIC in generalized linear models is evaluated in comparison with the

ordinary Baysian information criterion (BIC). The results in Chapter 3 and 5 demon-

strate that the EBIC method has much lower false discovery rate (FDR) than the BIC
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method in generalized linear models when the dimension of model space is high. The

intolerantly high FDR of BIC would explained by the unreasonable prior probabilities

assigned to candidate models. In contrast, the EBIC method uses a possibly more ap-

propriate prior probability, which would account for the low FDR in EBIC. This work

has provided clear evidence that the EBIC method is more appropriate in generalized

linear models when the dimension of model space is high. Moreover, this work would

make the EBIC method more popular.

The generalized tournament screening cum EBIC is proposed in Chapter 4 to deal with

high dimensional feature selection in the context of generalized linear models. The gen-

eralized tournament approach is suitable to the generalized linear models with not only

main effects but also interaction effects. In addition, this method is computationally

feasible however high the dimension of feature space is. It is attributed to the prin-

ciple of the generalized tournament approach that it can transfer a high dimensional

model selection problem to some relatively low dimensional model selection problems.

Hence, one key advantage of the generalized tournament method is that the dimension

of feature space is no longer considered as a great challenge.

In Chapter 5, the generalized tournament screening cum EBIC is applied in genome-

wide association studies to detect SNPs associated with some common diseases. The

performances of the multiple testing method (Marchini, 2005) and the generalized tour-

nament approach are compared by some simulation studies. As shown in Chapter 5, the
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multiple testing method suffers much higher false discovery rate (FDR) than the gener-

alized tournament method cum EBIC. The possible reason is that the multiple testing

method assesses gene-gene interactions individually, which may ignore joint effects

among interactions. In addition, one significant SNP may cause that some other non-

causative SNPs are wrongly detected. At the same time, although the multiple testing

selects too many spurious SNPs, it does not enjoy high positive selection rate (PSR).

It would explained by the Bonferroni adjustment, which is very conservative when the

number of possible gene-gene interactions is huge. Hence, the generalized tournament

method cum EBIC could be more appropriate than the multiple testing method since it

enjoys higher PSR and lower FDR. Some studies suggest that interactions among loci

contribute broadly to complex diseases. Thus, the generalized tournament method cum

EBIC would be a promising way to detect SNPs associated with common diseases.

6.2 Topics for further research

There are several interesting directions for future work in the areas of research presented

in this thesis. Some future works related to this thesis are as follows:

1. In Chapter 3 and 5, when we compare the performances of the extended Baysian

information criteria and the ordinary Bayesian information criterion, the value of the

parameter (γ1, γ2) was set to be some specific constants. However, it has been shown

that the performance of the extended Bayesian information criteria depends on the value
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of parameter (γ1, γ2). As the parameter is imposed with an increased value, the false

discovery rate decreases, but the positive selection rate also decreases in the meantime.

As a result, a larger value of (γ1, γ2) would cause the power of detecting the significant

variables to be low. Therefore, we should develop a method for choosing an appropriate

parameter value in a real dataset.

2. The penalized likelihood methodology was used to select features in the generalized

tournament approach. However, many features may be highly correlated and should be

put into clusters. Hence, if we combine the generalized tournament approach with the

group selection methodology (Yuan and Lin, 2006) instead of the penalized likelihood,

the power of identifying the significant variables is expected to be improved.

3. In the generalized tournament approach, we put the same penalty on the main ef-

fects and interaction effects in the semi-final stage and final stage. It is likely more

appropriate that the main effects of two variables are contained in the model before the

interaction between two variables. Hence, it is necessary to consider different penalties

for main effects and interaction effects.
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