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Summary 

 

The method of moments (MoM) is a common numerical technique for solving 

integral equations. However, the method generates dense matrix which is 

computationally expensive to solve, and this limits the complexity of problems which 

can be analyzed. To reduce the computational cost of the method of moments, 

iterative solvers are employed to solve the dense matrix. However, iterative solvers 

may lead to convergence difficulties in dealing with large scale objects. In order to 

overcome the convergence issue, segmentation techniques, which can significantly 

reduce the number of unknowns, are used to analyze large structures. The focus of 

this thesis is to develop improved segmentation method for effective simulation of 

large scale problems. This is achieved by combining macro-basis function with 

progressive method coupled with adaptive integral method.  

 

In this thesis, spatial domain MoM is used to analyze planar structures. The spatial 

domain Green’s functions are evaluated by the discrete complex image method. 

Interpolation scheme is required to further reduce the computation time to calculate 

the Green’s function. Different interpolation schemes, namely the radial basis function, 

the Cauchy method and the generalized pencil-of-function method are investigated 

and compared. Of these, the generalized pencil-of-function interpolation scheme 
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provides the best accuracy with the less number of interpolation points.  

 

In the sub-domain multilevel approach, the mutual coupling between different 

portions of the geometry is not directly accounted for during the construction of the 

macro-basis function. In turn, this will affect the accuracy of the sub-domain 

multilevel approach, especially for dense and complex structure. In order to improve 

the accuracy of the solution, a new grouping concept of near-far neigbhour evaluation 

called the macro-basis function with progressive method (MBF-PM) is developed in 

this thesis. For a chebyshev bandpass filter, the relative error of the current computed 

from the macro-basis function with progressive method is 6.4% while the relative 

error of the current computed from the sub-domain multilevel approach is 22.9%. 

Thus, compared to the sub-domain multilevel approach, better accuracy has been 

achieved. 

 

To further improve the accuracy of the solution, a new iterative refinement process, 

which utilizes the concept of the macro-basis function, is introduced. Compared to the 

reported iterative refinement process in [1], the computation complexity of the new 

iterative refinement process is reduced. Compared to the reported iterative refinement 

process in [2], better convergence is achieved. 

 

Even though the macro-basis function with progressive method has drastically 

reduced the memory requirements and the computation time, the calculation of the 
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interactions between the macro-basis functions remains the most time-consuming part 

of the procedure. In order to speed up the matrix filling time, the adaptive integral 

method is integrated into the macro-basis function with progressive method. Some 

numerical examples are conducted to examine the performance of this new hybrid 

scheme, the macro-basis function with progressive and adaptive integral method 

(MBF-PM-AIM). It is demonstrated that for a 1 by 14 antenna array, MBF-PM-AIM 

is 10 times faster than the conventional MoM. For a 20 by 20 antenna array with 

87780 unknowns, MBF-PM-AIM has achieved a reduction of computer time by a 

factor of approximately 60 as compared to the commercial software, IE3D. 

 

After developing the segmentation technique, MBF-PM-AIM is applied to the design 

of broadband probe-fed antennas and arrays. Due to the growing demand of modern 

wireless communication systems, there is a need to enhance the impedance bandwidth 

of the antennas. In this thesis, various wideband semi-circle probe-fed antennas and 

arrays are developed for wireless local area network. These include the semi-circle 

probe-fed stub patch antenna, the semi-circle probe-fed flower-shaped patch antenna 

and the semi-circle probe-fed pentagonal-slot patch antenna. The antennas have been 

fabricated and the simulated results are in good agreement with the measured results. 

Among the three antennas studied, the semi-circle probe-fed stub patch antenna gives 

the best performance with an impedance bandwidth of 68.3%, a 3 dB gain bandwidth 

of 45.5% and a broadside gain of 7.07 dBi at 5.4 GHz. 



 ix 

 

List of Figures 

 

FIG 2.1: AN ARBITRARY SHAPED SCATTERER EMBEDDED IN LAYERED DIELECTRIC 

MEDIUM............................................................................................................. 15 

FIG 2.2: ROTATED SPECTRUM-DOMAIN COORDINATE SYSTEM. .................................... 17 

FIG 2.3: COMPARISON OF THE CALCULATION FOR GQ USING DCIM AND NUMERICAL 

INTEGRATION (METHOD OF AVERAGES) ON SUBSTRATE WITH H=1.0MM, ΕR=12.6 AT 

F=30GHZ. ......................................................................................................... 25 

FIG 2.4: X-DIRECTED ROOFTOP BASIS FUNCTION WITH THE CURRENT AND CHARGE CELLS.

......................................................................................................................... 27 

FIG 2.5: RWG BASIS FUNCTION. ................................................................................ 29 

FIG 2.6: 1 CELL ALONG THE TRANSVERSE DIRECTION OF THE FEEDLINE. ...................... 31 

FIG 2.7: MULTIPLE CELLS ALONG THE TRANSVERSE DIRECTION OF THE FEEDLINE........ 32 

FIG 2.8: ILLUSTRATION OF MATCHED LOAD TERMINATION. ......................................... 34 

FIG 2.10: COMPARISON OF THE CPU TIME USED IN THE DIRECT COMPUTATION OF THE 

CLOSED-FORM GREEN’S FUNCTION AND THE GPOF INTERPOLATION SCHEME WITH 

RESPECT TO THE NUMBER OF GREEN’S FUNCTIONS EVALUATED............................ 44 

FIG 2.11: MICROSTRIP PATCH ANTENNA WITH SUBSTRATE HEIGHT = 31MILS AND ΕR= 2.33 

AT RESONANT FREQUENCY 2.5 GHZ. ................................................................... 45 

FIG 2.12: COMPARISON OF THE MAGNITUDE AND PHASE OF THE RETURN LOSS OF A LONG 

PATCH ANTENNA BETWEEN THE WRITTEN CODE AND IE3D. .................................. 46 

FIG. 3.1: ILLUSTRATION OF SUB-DOMAIN MULTILEVEL APPROACH. (A) NON-IDENTICAL 

PROBLEM (B) IDENTICAL PROBLEM .................................................................... 52 

FIG. 3.2: ILLUSTRATION OF SUB-ENTIRE-DOMAIN BASIS FUNCTION METHOD. ............... 56 

FIG.3.3: ILLUSTRATION OF MACRO-BASIS FUNCTION WITH PROGRESSIVE METHOD. ...... 58 

FIG.3.4: EXTENDED REGION OF THE ROOT DOMAIN. .................................................... 59 

FIG.3.5: ITERATIVE REFINEMENT PROCESS. (A) ITERATIVE PROCESS A. (B) ITERATIVE 

PROCESS B......................................................................................................... 61 

FIG.3.6: TRANSLATION OF ROOFTOP BASIS FUNCTION TO THE HIGHLIGHTED 

RECTANGULAR GRIDS. ........................................................................................ 65 

FIG 3.7: FLOW CHART FOR ANALYZING A LARGE PROBLEM USING THE DEVELOPED 

ALGORITHM (MBF-PM-AIM). ........................................................................... 69 

FIG 3.8: PHOTOGRAPH OF THE FABRICATED CHEBYSHEV BANDPASS FILTER. ................ 71 

FIG.3.9: CHEBYSHEV BANDPASS FILTER. (A) LAYOUT OF THE BANDPASS FILTER. (B) 

SMALL DOMAIN OF THE BANDPASS FILTER. L=22.45, W=1.27, G1=0.254, G2=1.17 

AND G3=1.32. ALL DIMENSIONS ARE GIVEN IN MM. ............................................. 73 

FIG.3.10: COMPARISON OF THE INITIAL CURRENT ON THE BANDPASS FILTER UNDER 

VARIOUS METHODS: MACRO-BASIS FUNCTION WITH PROGRESSIVE METHOD 



 x 

(MBF-PM), SUB-DOMAIN MULTILEVEL APPROACH (SMA), SUB-ENTIRE-DOMAIN 

(SED) AND CONVENTIONAL MOM...................................................................... 74 

FIG.3.11: COMPARISON OF THE CURRENT COEFFICIENTS AMONG THE MACRO-BASIS 

FUNCTION WITH PROGRESSIVE METHOD (MBF-PM), THE SUB-ENTIRE-DOMAIN 

BASIS FUNCTION METHOD (SED), THE SUB-DOMAIN MULTILEVEL APPROACH (SMA) 

AND THE CONVENTIONAL MOM WITH RESPECT TO THE NUMBERING OF THE ROOFTOP 

BASIS FUNCTION ON THE BANDPASS FILTER AFTER 1 ITERATIVE SWEEP. ................. 76 

FIG.3.12: CONVERGENCE OF THE SOLUTION WITH RESPECT TO THE NUMBER OF 

ITERATIVE SWEEPS. ............................................................................................ 77 

FIG.3.13: RELATIVE ERROR OF THE CURRENT WITH RESPECT TO THE NUMBER OF 

ITERATIVE SWEEPS. ............................................................................................ 78 

FIG.3.14: CONDITION NUMBER OF THE BANDPASS FILTER VERSUS THE MATRIX STAGES. 79 

FIG.3.15: SPECTRAL RADIUS OF THE BANDPASS FILTER VERSUS THE MATRIX STAGES. ... 79 

FIG.3.16: REFLECTION COEFFICIENTS OF THE BANDPASS FILTER. ................................. 82 

FIG.3.17: 1 X 5 LINEAR SERIES-FED ANTENNA ARRAYS. (A) 1 X 5 LINEAR SERIES-FED 

ANTENNA ARRAY WITH NO TAPERING (ARRAY A). (B) 1 X 5 LINEAR SERIES-FED 

ANTENNA ARRAY WITH TAPERING (ARRAY B). ALL DIMENSIONS ARE IN MM. ......... 83 

FIG.3.18: MESH OF THE 1 X 5 LINEAR SERIES-FED ANTENNA ARRAYS. (A) 1 X 5 LINEAR 

SERIES-FED ANTENNA ARRAY WITH NO TAPERING (ARRAY A). (B) 1 X 5 LINEAR 

SERIES-FED ANTENNA ARRAY WITH TAPERING (ARRAY B). ................................... 83 

FIG.3.19: CUT POSITION, D FROM THE DISCONTINUITY EDGE....................................... 85 

FIG.3.20: RELATIVE ERROR OF THE CURRENT AS A FUNCTION OF THE CUT POSITION D FOR 

A 1 BY 5 ANTENNA ARRAY. .................................................................................. 85 

FIG.3.21: RELATIVE ERROR OF THE CURRENT VERSUS THE NUMBER OF ITERATIVE SWEEPS.

......................................................................................................................... 87 

FIG.3.22: COMPARISON OF CPU TIME AMONG MBF-PM-AIM, MBF-PM AND THE 

CONVENTIONAL MOM........................................................................................ 90 

FIG.3.23: COMPARISON OF MEMORY USAGE AMONG MBF-PM-AIM, MBF-PM AND THE 

CONVENTIONAL MOM........................................................................................ 90 

FIG.3.24: COMPARISON OF THE CURRENT ALONG THE LINE AA’ FOR ARRAY A AMONG 

MBF-PM-AIM, MBF-PM AND THE CONVENTIONAL MOM WITH THE PROPOSED 

ITERATIVE REFINEMENT PROCESS AFTER 1 ITERATIVE SWEEP. ............................... 91 

FIG.3.25: REFLECTION COEFFICIENTS OF ARRAY A AND ARRAY B.. ............................. 92 

FIG.3.26: RADIATION PATTERNS OF ARRAY A (A) E-PLANE. (B) H-PLANE. ................... 93 

FIG.3.27: RADIATION PATTERNS OF ARRAY B (A) E-PLANE. (B) H-PLANE. ................... 94 

FIG.3.28: BOWTIE DIPOLE ARRAY .............................................................................. 95 

FIG.3.29: COMPARISON OF THE CURRENT COEFFICIENTS AMONG THE MACRO-BASIS 

FUNCTION WITH PROGRESSIVE METHOD (MBF-PM), THE SUB-ENTIRE-DOMAIN 

BASIS FUNCTION METHOD (SED), THE SUB-DOMAIN MULTILEVEL APPROACH (SMA) 

AND THE CONVENTIONAL MOM WITH RESPECT TO THE RWG BASIS FUNCTIONS ON 

ELEMENTS 28 AND 37 OF THE BOWTIE ARRAY. THE NUMBERING OF THE RWG BASIS 

FUNCTIONS IS SHOWN IN THE INSETS. ................................................................ 100 

FIG.3.30: RADIATION PATTERNS OF THE BOWTIE ARRAY AT 150MHZ (WITHOUT 

ITERATIVE PROCESS) (A) XZ PLANE (B) YZ PLANE. ............................................ 101 



 xi 

FIG.3.31: PHOTOGRAPH OF THE 24 GHZ ANTENNA ARRAY. ........................................ 102 

FIG.3.32: EQUIVALENT CIRCUIT OF A SERIES-CONNECTED PATCH ARRAY. ................... 105 

FIG.3.33: LAYOUT OF THE 10 X 14 ANTENNA ARRAY. D1=85.8, D2=9.2, W1=2.57, 

W2=0.8324, W3=0.3, W4=1.52, W5=1.72, W6=2.253, W7=2.987, W8=1.28, 

L1=1.85, L2=4.25, L3=0.67, L4=5.24, L5=4.39, L6=4.2. ALL DIMENSIONS GIVEN 

IN MM. PRINTED ON SUBSTRATE WITH ΕR=2.2 AND H=0.254 MM. THE DASHED BOX 

DEFINES HOW THE SUB-DOMAINS IS SUBDIVIDED. .............................................. 109 

FIG.3.34: MESH OF THE 10 X 14 ANTENNA ARRAY. ................................................... 109 

FIG.3.35: COMPARISON OF CPU TIME USED IN THE PROPOSED METHOD AND THE 

SIMULATION SOFTWARE, IE3D, FOR THE 10 X 14 ARRAY. ....................................111 

FIG.3.36: REFLECTION COEFFICIENT OF THE 10 X 14 ANTENNA ARRAY. ..................... 112 

FIG.3.37: RADIATION PATTERNS OF THE 10 X 14 ANTENNA ARRAY AT F=24 GHZ. (A) 

E-PLANE (B) H-PLANE...................................................................................... 113 

FIG. 4.1: GEOMETRY OF A PROBE FED MICROSTRIP ANTENNA WITH EDGE-COUPLED 

PARASITIC PATCHES. ...................................................................................... 118 

FIG. 4.2: GEOMETRY OF A PROBE FEED STACKED MICROSTRIP ANTENNA. ................... 118 

FIG.4.3: GEOMETRY OF A PROBE FEED ANTENNA WITH A U-SLOT. .............................. 118 

FIG.4.4: GEOMETRY OF PATCH ANTENNAS WITH DIFFERENT PROBE SHAPED (A) L-PROBE 

(B) T-PROBE. ................................................................................................... 119 

FIG.4.5: GEOMETRY OF A SEMI-CIRCLE FED PATCH PROXIMITY COUPLED TO A 

RECTANGULAR PATCH....................................................................................... 120 

FIG.4.6: VARIATION OF THE DIAMETER OF THE SEMI-CIRCLE FED PATCH, D WITHOUT THE 

PARASITIC PATCH (SIMULATED)......................................................................... 121 

FIG.4.7: CAPACITANCE, C WITH RESPECT TO THE DIAMETER OF THE SEMI-CIRCLE AT 6.5 

GHZ. ............................................................................................................... 122 

FIG.4.8: VARIATION OF THE DIAMETER OF THE SEMI-CIRCLE FED PATCH, D WITH 

RECTANGULAR PATCH (SIMULATED).................................................................. 123 

FIG.4.9: GEOMETRY OF THE SEMI-CIRCLE PROBE-FED STUB PATCH ANTENNA. ............ 124 

FIG.4.10: PHOTOGRAPHS OF THE FABRICATED SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA. ....................................................................................................... 124 

FIG.4.11: SIMULATED AND MEASURED RETURN LOSS OF THE SEMI-CIRCLE PROBE-FED 

STUB PATCH ANTENNA. ..................................................................................... 125 

FIG.4.12: (A) MEASURED IMPEDANCE LOCUS OF THE STUB PATCH ANTENNA, 

RECTANGULAR PATCH ANTENNA AND SEMI-CIRCLE FED PATCH. (B) COMPARISON OF 

THE MEASURED RETURN LOSS OF THE STUB PATCH, THE RECTANGULAR PATCH AND 

THE SEMI-CIRCLE FED PATCH. .......................................................................... 127 

FIG.4.13: COMPARISON OF THE BROADSIDE GAIN OF THE SEMI-CIRCLE PROBE-FED STUB 

PATCH ANTENNA BETWEEN THE MEASUREMENT AND THE SIMULATION................ 127 

FIG.4.14: MEASURED RADIATION PATTERNS OF THE SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA AT 4.2 GHZ. BLACK LINES REPRESENT CO-POLARIZED PATTERN. BLUE 

LINES REPRESENT CROSS-POLARIZED PATTERN. ................................................. 129 

FIG.4.15: MEASURED RADIATION PATTERNS OF THE SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA AT 5.4 GHZ. BLACK LINES REPRESENT CO-POLARIZED PATTERN. BLUE 

LINES REPRESENT CROSS-POLARIZED PATTERN. ................................................. 129 



 xii 

FIG.4.16: MEASURED RADIATION PATTERNS OF THE SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA AT 7.0 GHZ. BLACK LINES REPRESENT CO-POLARIZED PATTERN. BLUE 

LINES REPRESENT CROSS-POLARIZED PATTERN. ................................................. 130 

FIG.4.17: SIMULATED CURRENT DISTRIBUTIONS OF THE SEMI-CIRCLE PROBE-FED STUB 

PATCH ANTENNA AT (A) 4.5 GHZ (B) 5.5 GHZ (C) 7 GHZ. ................................... 131 

FIG. 4.18: VARIATION OF THE DIAMETER OF THE SEMI-CIRCLE FED PATCH, D WITH THE 

STUB PATCH (SIMULATED). ............................................................................... 133 

FIG.4.19: VARIATION OF THE GAP, G BETWEEN THE TOP PATCH AND THE FED PATCH 

(SIMULATED). .................................................................................................. 133 

FIG. 4.20: VARIATION OF THE LENGTH, L1 OF THE STUB PATCH (SIMULATED). ............ 134 

FIG.4.21: VARIATION OF THE LENGTH, W1 OF THE STUB PATCH (SIMULATED). ........... 134 

FIG.4.22: RELATIVE LONGITUDINAL TRANSLATION BETWEEN THE FED PATCH AND THE 

STUB PATCH (SIMULATED). ............................................................................... 135 

FIG.4.23: VARIATION OF THE FEED POSITION, F OF THE SEMI-CIRCLE PROBE-FED STUB 

PATCH ANTENNA............................................................................................... 135 

FIG. 4.24: (A) GEOMETRY OF SEMI-CIRCLE PROBE-FED FLOWER-SHAPED PATCH ANTENNA. 

(B) PHOTOGRAPHS OF THE FABRICATED SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA. ....................................................................................................... 137 

FIG.4.25: SIMULATED AND MEASURED RETURN LOSS OF SEMI-CIRCLE PROBE-FED 

FLOWER-SHAPED PATCH ANTENNA. ................................................................... 139 

FIG.4.26: COMPARISON OF MEASURED RETURN LOSS OF FLOWER-SHAPED PATCH, 

DIAMOND-SHAPED PATCH AND RECTANGULAR-SHAPED PATCH............................ 139 

FIG.4.27: MEASURED IMPEDANCE LOCUS OF THE RECTANGULAR PATCH, DIAMOND PATCH 

AND FLOWER-SHAPED PATCH. ........................................................................... 140 

FIG.4.28: VARIATION OF THE LENGTH L2 OF THE FLOWER-SHAPED PATCH (SIMULATED).

....................................................................................................................... 140 

FIG.4.29: VARIATION OF THE LENGTH S1 OF THE FLOWER-SHAPED PATCH (SIMULATED).

....................................................................................................................... 141 

FIG.4.30: COMPARISON OF THE BROADSIDE GAIN OF THE SEMI-CIRCLE PROBE-FED 

FLOWER-SHAPED PATCH ANTENNA BETWEEN MEASUREMENT AND SIMULATION... 141 

FIG.4.31: MEASURED RADIATION PATTERNS FOR FLOWER-SHAPED PATCH ANTENNA AT 4.2 

GHZ. BLACK LINES REPRESENT CO-POLARIZED PATTERN. BLUE LINES REPRESENT 

CROSS-POLARIZED PATTERN.............................................................................. 143 

FIG.4.32: MEASURED RADIATION PATTERNS FOR FLOWER-SHAPED PATCH ANTENNA AT 5.4 

GHZ. BLACK LINES REPRESENT CO-POLARIZED PATTERN. BLUE LINES REPRESENT 

CROSS-POLARIZED PATTERN.............................................................................. 143 

FIG.4.33: MEASURED RADIATION PATTERNS FOR FLOWER-SHAPED PATCH ANTENNA AT 7.0 

GHZ. BLACK LINES REPRESENT CO-POLARIZED PATTERN. BLUE LINES REPRESENT 

CROSS-POLARIZED PATTERN.............................................................................. 144 

FIG.4.34: SIMULATED CURRENT DISTRIBUTION OF THE SEMI-CIRCLE PROBE-FED 

FLOWER-SHAPED PATCH ANTENNA AT (A) 4.5 GHZ (B) 5.5 GHZ (C) 7.0 GHZ....... 145 

FIG.4.35: (A) GEOMETRY OF THE SEMI-CIRCLE PROBE-FED PENTAGON-SLOT PATCH 

ANTENNA. (B) PHOTOGRAPHS OF THE FABRICATED SEMI-CIRCLE PROBE-FED 

PENTAGON-SLOT PATCH ANTENNA. .................................................................... 146 



 xiii 

FIG.4.36: SIMULATED AND MEASURED RETURN LOSS OF THE PENTAGON-SLOT ANTENNA.

....................................................................................................................... 147 

FIG.4.37: COMPARISON OF THE MEASURED RETURN LOSS OF THE PENTAGON SLOT PATCH, 

THE RECTANGULAR PATCH AND THE SEMI-CIRCLE FED PATCH. ............................ 148 

FIG.4.38: MEASURED INPUT IMPEDANCE PLOT OF THE PENTAGON SLOT PATCH (SOLID 

LINE) AND THE RECTANGULAR PATCH (DASHED LINE)......................................... 148 

FIG.4.39: VARIATION OF LENGTH, S2 OF THE PENTAGON-SLOT PATCH (SIMULATED). .. 149 

FIG.4.40: VARIATION OF LENGTH, S1 OF THE PENTAGON-SLOT PATCH (SIMULATED). .. 149 

FIG.4.41: COMPARISON OF BROADSIDE GAIN OF THE SEMI-CIRCLE PROBE-FED 

PENTAGON-SLOT PATCH ANTENNA BETWEEN THE MEASUREMENT AND SIMULATION.

....................................................................................................................... 150 

FIG.4.42: MEASURED RADIATION PATTERNS OF THE SEMI-CIRCLE PROBE-FED 

PENTAGON-SLOT ANTENNA AT 4.6 GHZ. BLACK LINES REPRESENT CO-POLARIZED 

PATTERN. BLUE LINES REPRESENT CROSS-POLARIZED PATTERN. ......................... 150 

FIG.4.43: MEASURED RADIATION PATTERNS OF THE SEMI-CIRCLE PROBE-FED 

PENTAGON-SLOT ANTENNA AT 6.1 GHZ. BLACK LINES REPRESENT CO-POLARIZED 

PATTERN. BLUE LINES REPRESENT CROSS-POLARIZED PATTERN. ......................... 151 

FIG.4.44: MEASURED RADIATION PATTERNS OF THE SEMI-CIRCLE PROBE-FED 

PENTAGON-SLOT ANTENNA AT 7.3 GHZ. BLACK LINES REPRESENT CO-POLARIZED 

PATTERN. BLUE LINES REPRESENT CROSS-POLARIZED PATTERN. ......................... 151 

FIG.4.45: SIMULATED CURRENT DISTRIBUTIONS OF THE SEMI-CIRCLE PROBE-FED 

PENTAGON-SLOT PATCH ANTENNA AT (A) 4.5 GHZ (B) 5.5 GHZ (C) 7.0 GHZ. ...... 152 

FIG.4.46: 4 BY 4 SEMI-CIRCLE PROBE-FED MICROSTRIP STUB PATCH ANTENNA ARRAY. 155 

FIG.4.47: CIRCUIT SCHEMATIC OF A POWER DIVIDER................................................ 156 

FIG.4.48: MEASURED S-PARAMETERS OF A POWER DIVIDER. ..................................... 157 

FIG.4.49: 4 X 4 SEMI-CIRCLE PROBE-FED MICROSTRIP STUB PATCH ANTENNA ARRAY. (A) 

FEED NETWORK A (B) FEED NETWORK B ......................................................... 158 

FIG.4.50: AVERAGE CURRENT DENSITY OF THE FEED NETWORK AT 5.4 GHZ. THE ARROWS 

INDICATE THE DIRECTION OF THE CURRENT (A) FEED NETWORK A (B) FEED 

NETWORK B..................................................................................................... 159 

FIG.4.51: SIMULATED S-PARAMETERS OF FEED NETWORK A AND FEED NETWORK B. (A) 

S11 (B) S21. .................................................................................................... 160 

FIG.4.52: PHOTOGRAPH OF THE 4 X 4 SEMI-CIRCLE PROBE-FED STUB PATCH ANTENNA 

ARRAY WITH FEED NETWORK A......................................................................... 160 

FIG.4.53: FAR FIELD MEASUREMENT FOR THE 4 X 4 SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA ARRAY IN THE ANECHOIC CHAMBER. .................................................. 161 

FIG.4.54: MEASURED RETURN LOSS OF THE 4 X 4 SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA ARRAY WITH (A) FEED NETWORK A AND (B) FEED NETWORK B.......... 162 

FIG.4.55: RADIATION PATTERNS OF THE 4 X 4 SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA ARRAY AT 4.2 GHZ. (A) CO-POLARIZED PATTERN IN E-PLANE (B) 

CO-POLARIZED PATTERN IN H-PLANE (C) CROSS-POLARIZED PATTERN IN H-PLANE

....................................................................................................................... 165 

FIG.4.56: RADIATION PATTERNS OF THE 4 X 4 SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA ARRAY AT 5.4 GHZ. (A) CO-POLARIZED PATTERN IN THE E-PLANE (B) 



 xiv 

CO-POLARIZED PATTERN IN THE H-PLANE (C) CROSS-POLARIZED PATTERN IN 

H-PLANE ......................................................................................................... 166 

FIG.4.57: RADIATION PATTERNS OF THE 4 X 4 SEMI-CIRCLE PROBE-FED STUB PATCH 

ANTENNA ARRAY AT 7 GHZ. (A) CO-POLARIZED PATTERN IN THE E-PLANE (B) 

CO-POLARIZED PATTERN IN THE H-PLANE (C) CROSS-POLARIZED PATTERN IN THE 

H-PLANE ......................................................................................................... 168 

FIG.4.58: 2 X 1 LINEARLY POLARIZED ARRAY. .......................................................... 168 

FIG.4.59: CIRCUIT SCHEMATIC OF THE PLANAR BALUN. ............................................ 170 

FIG.4.60: MEASURED OUTPUT PORTS S-PARAMETERS OF THE PLANAR BALUN............ 170 

FIG.4.61: MEASURED PHASE DIFFERENCE BETWEEN THE OUTPUT PORTS OF THE PLANAR 

BALUN............................................................................................................. 170 

FIG.4.62: MEASURED RETURN LOSS OF THE 2 X 1 LINEARLY POLARIZED ARRAY. ........ 171 

FIG.4.63: RADIATION PATTERNS OF THE 2 X 1 LINEARLY POLARIZED ANTENNA ARRAY AT 

5.4 GHZ. (A) E-PLANE (B) H-PLANE.................................................................. 172 

FIG.4.64: 4 X 4 LINEAR POLARIZED ANTENNA ARRAY. ............................................... 173 

FIG.4.65: RADIATION PATTERNS OF THE 4 X 4 LINEAR POLARIZED ANTENNA ARRAY AT 5.4 

GHZ. (A) E-PLANE (B) H-PLANE ....................................................................... 174 



 xv 

 

List of Tables 

 

TABLE 2.1: COMPARISON OF THE AVERAGE INTERPOLATION RELATIVE ERROR BETWEEN 

THE THREE INTERPOLATION SCHEMES. (K: NUMBER OF INTERPOLATION POINTS; N: 

NUMBER OF COEFFICIENTS REQUIRED BY THE INTERPOLATION SCHEMES; D: r r′−
� �

.

......................................................................................................................... 43 

Table 3.1: Specifications of the Chebyshev bandpass filter.      71 

TABLE 3.2: COMPARISON OF THE RELATIVE ERRORS IN THE CURRENT DISTRIBUTION, 

TIME REDUCTION WITH RESPECT TO THE CONVENTIONAL MOM WITHOUT ANY 

ITERATIVE SWEEP. .............................................................................................. 75 

TABLE 3.3: COMPARISON OF THE TIME REDUCTION WITH RESPECT TO CONVENTIONAL 

MOM AND NUMBER OF ITERATIVE SWEEPS SUBJECT TO ξ  < 0.2% AND THE 

RELATIVE ERROR IN CURRENT, e∆  IS 0.09%....................................................... 78 

TABLE 3.4: DEFINITION OF THE MATRIX STAGES. ........................................................ 80 

TABLE 3.5: COMPARISON BETWEEN THE SPECIFICATIONS AND THE MEASUREMENTS OF 

THE BANDPASS FILTER. ....................................................................................... 82 

TABLE 3.6: SPECIFICATIONS OF THE SERIES-FED ARRAY. ............................................. 84 

TABLE 3.7: COMPARISON OF THE RELATIVE ERROR AND THE CPU TIME BETWEEN SMALL 

DOMAINS A AND B WHEN APPLIED TO MBF-PM-AIM. ........................................ 86 

TABLE 3.8: COMPARISON OF THE RELATIVE ERROR IN THE CURRENT UNDER VARIOUS 

METHODS WITHOUT ITERATIVE REFINEMENT PROCESS. ........................................ 86 

TABLE 3.9: COMPARISON OF THE REDUCTION IN TIME AND MEMORY USAGE UNDER 

VARIOUS METHODS WITH ITERATIVE REFINEMENT PROCESS SUBJECT TO e 1.5%∆ ≤ .

......................................................................................................................... 88 

TABLE 3.10: COMPARISON OF THE CPU TIME, THE NUMBER OF MBFS GENERATED AND 

THE RELATIVE ERRORS BETWEEN MBF-PM, MBF-PM-AIM AND CHARACTERISTICS 

BASIS FUNCTION (CBF). ..................................................................................... 89 

TABLE 3.11: COMPARISON OF THE RELATIVE ERROR OF THE INPUT IMPEDANCE BETWEEN 

MBF-PM AND MBF-PM-AIM........................................................................... 91 

TABLE 3.12: SPECIFICATIONS OF THE BOWTIE DIPOLE ARRAY. ..................................... 95 

TABLE 3.13: COMPARISON OF THE RELATIVE ERRORS IN CURRENT AND TIME REDUCTION 

WITH RESPECT TO THE CONVENTIONAL MOM FOR THE BOWTIE ARRAY WITHOUT 

ITERATIVE REFINEMENT PROCESS........................................................................ 97 

TABLE 3.14: SUMMARY OF THE RADIATION PATTERNS OF THE BOWTIE ARRAY. ............. 97 

TABLE 3.15: ROOT MEAN SQUARE DEVIATION AND MAXIMUM DEVIATION FROM THE 

CONVENTIONAL MOM AFTER ONE ITERATIVE SWEEP............................................ 97 

TABLE 3.16: SPECIFICATIONS OF THE 24 GHZ ANTENNA ARRAY................................. 103 



 xvi 

TABLE 3.17: COMPARISON OF THE PERFORMANCES AMONG MBF-PM-AIM, THE 

SUB-DOMAIN MULTILEVEL APPROACH AND THE COMMERCIAL SOFTWARE, IE3D. 110 

Table 4.1: Specifications of the antenna.          120 

TABLE 4.2: SUMMARY OF THE RADIATION CHARACTERISTICS OF STUB PATCH ANTENNA.

....................................................................................................................... 128 

TABLE 4.3: SUMMARY OF THE CHARACTERISTICS OF FLOWER-SHAPED PATCH ANTENNA.

....................................................................................................................... 142 

TABLE 4.4: SUMMARY OF THE RADIATION CHARACTERISTICS OF PENTAGON-SLOT PATCH 

ANTENNA. ....................................................................................................... 148 

TABLE 4.5: SUMMARY OF THE PERFORMANCE OF THE THREE PROPOSED PROBE FED 

PATCH ANTENNAS. ............................................................................................ 153 

TABLE 4.6: COMPARISON OF THE SIMULATED AND THE MEASURED GAINS OF THE 4 X 4 

SEMI-CIRCLE PROBE-FED STUB PATCH ANTENNA ARRAY. ..................................... 163 

TABLE 4.7: SUMMARY OF THE RADIATION CHARACTERISTICS OF THE 4 X 4 SEMI-CIRCLE 

PROBE-FED STUB PATCH ANTENNA ARRAY WITH FEED NETWORK B. .................... 163 

 

 



 xvii 

 

List of Symbols 

 

0ε   permittivity of free space (8.854 X 10
-12

 F/m) 

0µ   permeability of free space (4 π  X 10
-7

 F/m) 

rε   relative permittivity of substrate  

rµ   relative permeability of substrate 

ω   radian frequency 

η   intrinsic impedance of the medium 

E  electric field intensity 

H  magnetic field intensity 

J  electric surface current density 

M  magnetic surface current density 

q  surface charge density 



 xviii 

 

List of Acronyms 

 

AIM   Adaptive Integral Method 

CBF   Characteristic Basis Function 

DCIM   Discrete Complex Image Method  

FFT    Fast Fourier Transform 

GPOF   Generalized Pencil-of-function Method 

MBF   Macro-basis Function 

MBF-PM  Macro-basis Function with Progressive Method 

MBF-PM-AIM Macro-basis Function with Progressive and Adaptive Integral 

Method 

MoM   Method of Moments 

RBF   Radial Basis Function 

SED   Sub-entire-domain Basis Function Method 

SMA   Sub-domain Multilevel Approach 

SVD   Singular Value Decomposition 

 

 



 1 

 

 

CHAPTER 1   Introduction 

 

1.1  Literature Review and Motivation 

During recent years, there has been an enormous growth in the wireless 

communication industry such as cellular communications, wireless local area network 

and Bluetooth systems. As antennas serve as the transition between the RF front-end 

circuitry and the radiation and propagation of electromagnetic waves in the free space, 

they play a critical role in the wireless technology. As such, it is necessary to use 

antennas that have good impedance match and radiation pattern over the required 

frequency range. Moreover, if the impedance bandwidth of an antenna is wide enough 

to cover several operating bands, then a single antenna can be used in operating 

different wireless applications and this could save a lot of space in product design [3].  

 

Antennas should be relatively cheap and easy to manufacture. They should be 

lightweight, low-profile and robust. One type of antenna that fulfils these 

requirements very well is the microstrip antenna [4]-[6]. There are four fundamental 

techniques to feed or excite the patch. These include the probe feed, the microstrip 

line feed, the aperture-coupled feed and the proximity coupled feed. The feeding 



 2 

techniques have their own advantages and disadvantages. However, the probe feed 

has a number of characteristics that make it very suitable for application in the 

wireless communications field. As the feed network is separated from the patch, there 

is less spurious radiation from the feed network as compared to that of the 

microstrip-line feed and the proximity-coupled feed. In this thesis, the probe feed is 

used to excite the proposed antennas. 

 

Regardless of the feeding techniques, the main drawback associated with microstrip 

patch antennas is that they inherently have a very narrow impedance bandwidth. This 

is due to the fact that the region under the patch is a cavity with a high quality factor. 

In most cases, the impedance bandwidth is not wide enough for the requirements of 

wireless communication systems. As a result, a lot of broadband techniques using 

probe feed have been investigated [7]-[26]. These techniques include the use of 

parasitic elements [7]-[14], slotted patches [15]-[22] and different probes shape 

[23]-[26]. Although researchers have already proposed several impedance bandwidth 

enhancement techniques, the bandwidth normally cannot exceed 60%. As such, the 

research into wideband probe-fed microstrip patch antennas is still a relevant topic.  

 

As antennas become more complex, the use of simple analytical modeling techniques 

is not sufficient anymore. The use of more sophistical numerical methods, such as 

full-wave modeling techniques, has therefore become inevitable. A variety of 

full-wave electromagnetic methods has been developed and these methods can be 
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divided into the partial differential equation [27]-[31] and the integral equation 

method [32]-[34]. The partial differential equation approach includes finite difference 

time domain [27]-[28] and finite element method [29]-[30]. The partial differential 

equation solver requires the entire computation domain to be discretized while in the 

integral equation method, which is solved using the method of moments, allows one 

to apply Green’s theorem to reduce volume integrals to surface integrals, thus 

reducing the matrix dimension significantly. Among the existing methods, the method 

of moments (MoM) is one of the most popular choices to solve multilayer medium 

problems.  

 

The MoM analysis can be carried out either in the spectral domain [35]-[36] or the 

spatial domain [37]-[38]. To generate the impedance matrix in the spectral domain 

formulation, the time-consuming evaluation of the double infinite integration is 

required. Although acceleration techniques and approximations can improve the 

computational efficiency of the spectral domain MoM, they impose some restrictions 

on the type of basis functions to be used. In contrast, for the spatial domain MoM, the 

adopted basis functions can be arbitrary. However, the efficiency of this approach 

depends on the evaluation of the spatial domain Green’s function, which is expressed 

in terms of the Sommerfeld integral. The numerical integration of the Sommerfeld 

integral is time-consuming since the integrand is both highly oscillating and slowly 

decaying. To solve this problem, the Sommerfeld integral can be expressed in 

closed-form using the discrete complex image method (DCIM) [39]. Even though 



 4 

DCIM provides an efficient way to evaluate the Green’s function, the number of 

Green’s functions to be evaluated is still very large. The number of Green’s functions 

to be evaluated is proportional to O(N
2
), where N is the number of unknowns. In 

addition, it is expensive to evaluate the Hankel function in the closed-form expression. 

To circumvent these problems, interpolation scheme is employed. In this thesis, three 

interpolation techniques, namely the radial basis function, the Cauchy method and the 

generalized pencil-of-function method are studied. Among the three interpolation 

techniques, the generalized pencil-of-function interpolation scheme provides the best 

accuracy with the less number of interpolation points. 

 

The memory requirements and computation complexity for the method of moments 

using direct solver is O(N
2
) and O(N

3
) respectively. Hence as N increases, there will 

be a tremendous increase in time usage and memory, rendering the method 

computationally expensive to solve for large structures. When an iterative solver such 

as the conjugate gradient method is employed for solving the MoM matrix equation, 

the operation count is reduced from O(N
3
) to O(N

2
) per iteration. However, this 

operation count is still too high for an efficient simulation. 

 

To make the iterative method more efficient, it is necessary to speed up the 

matrix-vector multiplication. By exploiting the translational invariance of the Green’s 

function, the matrix-vector product can be computed using the fast Fourier transform. 

The conjugate gradient fast Fourier transform [40]-[41] combines the conjugate 
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gradient method with the fast Fourier transform. The use of fast Fourier transform 

reduces the operation count to O(N log N) per iteration. However, the method works 

only when the structure is discretized into uniform rectangular grids, which 

necessitates a staircase approximation in the modeling of an arbitrary geometry. This 

is often considered as the most serious drawback of the conjugate gradient fast 

Fourier transform method. To model an arbitrary geometry accurately, one has to use 

triangular elements. However, the triangular discretization does not allow the 

application of the fast Fourier transform to speed up the matrix-vector multiplication. 

The method to alleviate the problem is to use the fast multipole method [42]-[45]. The 

fast multipole method improves the time performance by accelerating the 

matrix-vector multiplications needed in the iterative solvers in a highly efficient 

manner using a spherical harmonic expansion technique. Another method is to project 

the triangular elements onto uniform grids using the adaptive integral method 

[46]-[49]. The resulting algorithm has the memory requirement proportional to O(N) 

and the operation count for the matrix-vector multiplication proportional to O(N log 

N).  

 

Although the methods discussed above have reduced the computation burden, the 

iterative solver employs in these methods may lead to convergence difficulties when 

dealing with very large scale objects. As such, the search for techniques to overcome 

convergence issue for large structure is a very important research area. One emerging 

approach is based on the segmentation technique. The use of high-level basis 
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functions, defined over electrically large geometrical domains, can significantly 

reduce the number of unknowns. Recently, the sub-domain multilevel approach 

[50]-[54] has been proposed to handle large planar antenna arrays. However, the 

method does not directly account for the mutual coupling effect between different 

portions of the geometry during the construction of the macro-basis function. If each 

portion of the geometry is a strong radiator, the sub-domain multilevel approach may 

not be able to solve the problem accurately. The sub-entire-domain basis function 

method reported in [55] improves the accuracy of the solution by relying on the 

hypothesis that the fields on a given sub-domain in the large finite structure can be 

precisely described by solutions obtained for very small problems. Even though the 

method gives good accuracy, it is used for periodic structure. To overcome this 

limitation, a new grouping concept of near-far neighbour evaluation is developed. 

This new concept called the macro-basis function with progressive method is 

investigated in this thesis. The basic idea of the method is to partition a given complex 

geometry into several sub-domains. A small problem that is made up of a few 

sub-domains is first solved using the conventional method of moments. The solved 

solution on the subsectional basis functions of each sub-domain is merged into 

macro-basis function. The remaining sub-domains are then inserted into the smaller 

problem progressively, taking into account the mutual coupling effect of the solved 

currents. The macro-basis function with progressive method is tested on some 

numerical examples. The numerical results show that the proposed method gives a 

much better accuracy as compared to the sub-domain multilevel approach.  



 7 

Although the macro-basis function with progressive method has improved the 

accuracy of the solution, iterative refinement process is still required for dense and 

complex structures with strong or important parasitic couplings. In [1], a block 

Gauss-Seidel process is applied to each macro-basis function. During the process, the 

macro-basis function extends over the whole structure. Thus, complete matrix-vector 

products must be performed for each block Gauss-Seidel process. Although the 

method converges very fast, its computational complexity is high. The computational 

complexity of the iterative refinement process can be reduced by adopting the method 

in [2]. However, the approach may not converge for all cases. As a solution to this 

problem, an improved iterative refinement process, which utilizes the concept of 

macro-basis function, is developed in this thesis.  

 

In a large electromagnetic problem, where the memory occupation and the 

computational time have already been significantly reduced using the macro-basis 

function with progressive method, the interaction between different macro-basis 

functions remains the most time-consuming part of the procedure. This thesis 

introduces an efficient way of computing the interactions between different 

macro-basis functions. The strategy for improving the macro-basis function in terms 

of computational time is based on the adaptive integral method. The macro-basis 

functions are projected onto regular auxiliary grids. In this way, the reaction integrals 

take a two-dimensional convolution form and can be efficiently evaluated by means 

of fast Fourier transform. When the adaptive integral method is combined with the 
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macro-basis function with progressive method, the resulting algorithm is called the 

macro-basis function with progressive and adaptive integral method. The macro-basis 

function with progressive and adaptive integral method is tested on some numerical 

examples. For a 1 by 14 antenna array, the numerical result shows that the method is 

10 times faster than the conventional method of moments. The macro-basis function 

with progressive and adaptive integral method is subsequently used for the design of 

three broadband probe-fed antennas and arrays in the thesis. 

 

1.2  Scope of Work 

This chapter presents some background information on the computational 

electromagnetics and microstrip patch antennas. A variety of electromagnetic methods 

has been investigated to solve the radiation and scattering problems. Among the 

methods, the method of moments is a powerful technique to analyze multilayer 

structure. However, the method becomes inefficient when dealing with large 

structures. In the present work, the objective is to develop improved segmentation 

method, which is called the macro-basis function with progressive and adaptive 

integral method, for effective simulation of large scale problems. Various wideband 

probe-fed microstrip antennas and arrays are then designed with the macro-basis 

function with progressive and adaptive integral method. The remaining chapters are 

organized in the following way: 
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Chapter 2 reviews the formulation of multilayer Green’s function and magnetic field 

integral equation. The method of moments and the computation of antenna parameters 

such as scattering parameters and far-fields are discussed in detail. Three interpolation 

schemes are investigated to speed up the evaluation of the Green’s function for large 

structures. They are the radial basis function [58]-[59], the Cauchy method [60]-[61] 

and the generalized pencil-of-function method [56]-[57]. 

 

Chapter 3 presents a hybrid macro-basis function combined with progressive and 

adaptive integral method to efficiently solve microstrip problems. This chapter first 

outlines the concept of macro-basis function. A grouping concept, which utilizes both 

the macro-basis function and the progressive method, to analyze microstrip structures 

is next introduced. An iterative refinement process that accelerates the convergence of 

the solution is presented. This will be followed by developing an efficient way to 

compute the interactions between the macro-basis functions. Finally, this chapter 

demonstrates the accuracy and efficiency of the macro-basis function with progressive 

and adaptive integral method by investigating some examples in which the proposed 

method is compared with the conventional MoM. 

 

Various wideband probe-fed microstrip patch antennas are investigated in Chapter 4. 

This chapter rolls off by presenting an overview of various techniques that have been 

used thus far for the bandwidth-enhancement of probe-fed microstrip patch antennas. 

This is followed by the presentation of three novel semi-circle probe-fed patch 
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antennas in which one of the antennas is used in array configurations. 

 

Chapter 5 contains general conclusions regarding the research findings and concludes 

the thesis with some recommendations for the future work. 

 

1.3  List of Original Contributions 

As a result of the research work, the following contributions have been achieved: 

1. A comparison of different interpolation techniques, namely the radial basis 

function, the Cauchy method and the generalized pencil-of-function method to 

evaluate multilayer Green’s function for large-scale structure is given. Among the 

interpolation techniques, the generalized pencil-of-function method provides the 

best accuracy with the less number of interpolation points. 

2. A new grouping concept, which utilizes the macro-basis function with progressive 

method, is developed to analyze microstrip structures. The method reduces the 

matrix size and in turn, leads to considerable savings in computer memory 

requirements and speed when compared to the conventional method of moments. 

3. A new iterative refinement method has been developed to accelerate the 

convergence of the iterative procedure.  

4. An efficient way of filling the MoM matrix through adaptive integral method is 

proposed. The interaction between the macro-basis functions and the testing 

function is carried out using compressed representation and the computation is 
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speeded up using the fast Fourier transform. 

5. A feeding mechanism, semi-circle probe, has been developed for probe-fed 

microstrip patch antennas on thick substrates, which can be used with any shape 

of radiating elements. Three novel semi-circle probe-fed microstrip patch antennas 

are then proposed to achieve wideband operation in multipath environments. 

 

1.4  Publications 

The research and study in this thesis are reported in the following papers: 
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1. Irene Ang and B.L. Ooi, “A Broadband Semi-circle-Fed Microstrip Patch 

Antenna,” IET Microwaves, Antennas and Propagation, Vol.1, No.3, pp. 770-775, 

June 2007. 

2. Irene Ang and B.L. Ooi, "An Ultra-wideband Stacked Microstrip Patch Antenna," 

Microwave and Optical Technology Letters, Vol 49, No.7, pp. 1659-1665, July 

2007. 

3. Irene Ang and B.L. Ooi, “A Broadband Semi-circle fed Pentagon-Slot Microstrip 

Patch Antenna,” Microwave and Optical Technology Letters, Vol 47, No. 5, pp. 

500-505, Dec 2005 
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Equation Chapter 2 Section 1 

CHAPTER 2   Numerical Modelling of Planar 

Multilayered Structures 

 

2.1  Introduction 

The analysis of microstrip structures requires efficient electromagnetic simulation 

[34]. Typically, the analysis can be performed using either the partial differential 

equation solvers [27]-[31] or the integral equation solvers [32]-[33]. The partial 

differential equation method requires the whole computational domain to be meshed 

and appropriate terminating boundary conditions to be specified which leads to a large 

number of unknowns to be solved. The integral equation solver uses the method of 

moments to solve for the unknown surface currents. Thus, only the surface of the 

circuit needs to be discretized, leading to a significant reduction in the number of 

unknowns. The method of moments (MoM) has received intense attention to tackle 

the multilayer medium problems. In this method, the evaluation of the Green’s 

functions [63]-[77] and the choice of basis functions are crucial to obtaining accurate 

and efficient solutions. 

 

In this chapter, the discrete complex image method (DCIM) [39] is presented to 
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evaluate the Green’s functions. The basic idea of the DCIM is to approximate the 

spectral kernel of a Green’s function by a sum of complex exponentials extracted 

using the generalized pencil-of-function method [56]-[57]. Then the Sommerfeld 

integral is evaluated in closed-forms via the Sommerfeld identity. Even though DCIM 

provides an efficient way to evaluate the Green’s functions, a heavy computation is 

still required to analyse a large structure. The number of Green’s functions to be 

evaluated is proportional to O(N
2
) in the MoM analysis, where N is the total number 

of unknowns. To circumvent these problems, interpolation methods have been 

introduced to speed up the evaluation of the Green’s function. In this thesis, three 

interpolation schemes, namely the radial basis function [58]-[59], the Cauchy method 

[60]-[61] and the generalized pencil-of-function method [56]-[57] are studied and 

compared. 

 

This chapter is organized as follows. First the Green’s function for the multilayered 

planar medium is reviewed. This will be followed by a discussion on the MoM 

method, the interpolation scheme for the Green’s function for fast evaluation of the 

MoM matrix elements and the computation of the radiation patterns. Finally, a patch 

antenna is analyzed to demonstrate the accuracy of the algorithm. 
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2.2  Spectral Domain Green’s Functions [63] 

It is often more convenient to work in the spectral domain rather than in the spatial 

domain. This is due to the fact that in the spectral domain, the original vector problem 

can be reduced to the scalar transmission line problem and the dyadic Green’s 

function for a grounded multilayered medium can be derived in closed-form. 

 

Fig 2.1: An arbitrary shaped scatterer embedded in layered dielectric medium. 

 

Consider a general multilayer medium as shown in Fig 2.1. The medium is assumed 

to be homogeneous and laterally infinite. The fields (E, H) due to a specified current 

(J, M) are governed by Maxwell’s equations: 

 0 rjE H M∇× = − ωµ µ − , (2.1) 

 0 rjH E J∇× = ωε ε + . (2.2) 

The problem is formulated in the transformed spectral domain, in which the 
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transverse and longitudinal components are decomposed with the transverse 

coordinate x yˆ ˆx yρ = +ρ = +ρ = +ρ = +  replaced by the spectral counterpart 
x y

ˆ ˆk kρk x y= += += += +  through 

the Fourier transform, 

 
j .

f ( ) f ( ; z) f ( )e dxdyρ
+∞ +∞

ρ
−∞ −∞

ℑ ≡ = ∫ ∫
k ρ

r k r� , (2.3) 

 
j .1

x y2

1
f ( ; z) f ( ) f ( ; z)e dk dk

(2 )

k ρ
k r k ρ

+∞ +∞
−−

ρ ρ
−∞ −∞

ℑ ≡ = ∫ ∫
π

� � . (2.4) 

The inverse Fourier integral equation (2.4) can be expressed as the Fourier-Bessel 

transform pair by introducing the Bessel function,  

 ρjk ρcos( - ) j(k cos( ) sin( ) k sin( ) sin( ))2 2

0 ρ 0 0

1
J (k ) e d e d

2

ρ ρ− α ς − α ρ ς + α ρ ςπ π
ρ = α = α∫ ∫

π
. (2.5) 

 

Given xk k cosρ= α , yk k sinρ= α , x-x'= cosρ ς , y-y'= sinρ ς , 2 2

x y
k k kρ = + , 

y

x

k
arctan

k

 
α =  

 
, 2 2(x x ') (y y ')ρ = − + − , 

y y '
arctan

x x '

− 
ς =  

− 
 and 

x ydk dk k d dkρ ρ= α , the inverse Fourier integral also referred to as Sommerfeld 

integral is expressed as 

 
1

ρ0

1
f ( ) f ( z) f ( ; z)J (k )k dk

2

∞−
ρ ρ ρ ρℑ ≡ = ρ∫

π
0k ρ, k� � . (2.6) 

 

We can rewrite Maxwell’s equations [63] as follows: 

 
z2

0 r r

0 r 0 r

J1
ˆ ˆ(k )( z) z

z j

ρ

ρ ρ ρ ρ ρ

∂
= µ ε − ⋅ × + − ×

∂ ωε ε ωε ε

k
E k k H M

�
� � � , (2.7) 

 
z2

0 r r

0 r 0 z

M1
ˆ ˆ(k )(z ) z J

z j

ρ

ρ ρ ρ ρ ρ

∂
= µ ε − ⋅ × + − ×

∂ ωµ µ ωµ µ

k
H k k E

�
� � � , (2.8) 

 0 Z z z
ˆj E j ( z) Jρ ρ− ωε ε ⋅ == ⋅ × +k H� � � � , (2.9) 

 0 Z z z
ˆj H j (z ) Mρ ρ− ωµ µ ⋅ == ⋅ × +k E� � � . (2.10) 
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Fig 2.2: Rotated spectrum-domain coordinate system. 

 

If the spectral domain transverse components in the (x, y) coordinate are rotated by an 

angle ξ  to the new coordinate (u, v), as shown in Fig 2.2. We obtain 

 
ˆ ˆu cos sin x

ˆ ˆv sin cos y

ξ ξ     
=     − ξ ξ     

, (2.11) 

where 

 
yx

kk
cos , sin

k kρ ρ

ξ = ξ = . (2.12) 

The transverse magnetic and electric fields are expressed as 

 
e h e hˆ ˆ ˆ ˆ ˆV V , z I Iρ ρ= + × = +E u v H u v� � . (2.13) 

By projecting equations (2.7) and (2.8) on û  and v̂ , we obtain two decoupled sets 

of transmission line equations of the form, 

 

p
p p p

z

p
p p p

z

dV
jk Z I v ,

dz

dI
jk Y V i ,

dz

= − +

= − +

 (2.14) 

where the superscript p assumes the values of e or h. The component of ρE�  and ρH�  

in the (u, v) plane may be interpreted as voltages and currents on a transmission-line 
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analog of the medium along the z axis. The propagation wavenumbers, the 

characteristic impedances of the transmission line, the voltage and current sources in 

equation (2.14) are given as follows: 

 
2 2

z 0 r r
k k kρ= ε µ − , (2.15) 

 
e h 0 rz

e h

0 r z

k1 1
Z , Z

Y Y k

ωµ µ
= = = =

ωε ε
, (2.16) 

 
e e

z v u

0 r

k
v J M , i J

ρ
= − = −

ωε ε
� � � , (2.17) 

 
h h

z v u

0 r

k
i M J , v M

ρ
= − − =

ωµ µ
� � � . (2.18) 

The spectral fields may now be expressed as 

 ( )e h e

z

0 r

1
ˆ ˆ ˆV V z jk I J

j
E u v ρ= + − +

ωε ε
� � , (2.19) 

 ( )h e e

z

0 r

1
ˆ ˆ ˆI I z jk V M

j
H u v ρ= − + + +

ωµ µ
� � . (2.20) 

Let p

iV (z | z ')  and p

iI (z | z ')  denote the voltage and current, respectively at z due to 

a 1A shunt current source at z’. Let  p

vV (z | z ')  and p

vI (z | z ')  denote the voltage and 

current, respectively at z due to a 1V series voltages source at z’. Then it follows from 

equation (2.14) that these transmission-line Green’s Functions satisfy the following: 

 

P
P P Pi
z i

P
P P Pi
z i

dV
jk Z I ,

dz

dI
jk Y V (z z '),

dz

= −

= − + δ −

 (2.21) 

 

P
P P Pv
z v

P
P P Pv
z v

dV
jk Z I (z z '),

dz

dI
jk Y V ,

dz

= − + δ −

= −

 (2.22) 

where δ is the Dirac delta, and they possess the reciprocity properties as follows: 
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P P

i i

P P

v v

P P

v i

P P

i v

V (z | z ') V (z ' | z),

I (z | z ') I (z ' | z),

V (z | z ') I (z ' | z),

I (z | z ') V (z ' | z).

=

=

= −

= −

 (2.23) 

The linearity of the transmission line equations allows one to obtain ( )p pV , I  at any 

point z via the superposition integrals: 

 

p p p p p

i v

p p p p p

i v

V V ,i V , v ,

I I , i I , v ,

= +

= +
 (2.24) 

Upon substituting these equations into equation (2.19) and equation (2.20) and using 

equation (2.18), one obtains the spectrum-domain counterparts of 

 

EJ EM

HJ HM

; ; ,

; ; ,

= +

= +

� �� � �

� �� � �

E G J G M

H G J G M
 (2.25) 

where the spectral domain dyadic Green’s function can be written in the (u, v, z) 

coordinate system as 

 

e e

i v

0 r

EJ h

i

2

e e

i v

0 r 0 r 0 r

k
V 0 V

'

( , z z ') 0 V 0

k k k
I 0 I (z z ')

j ' j

ρ

ρ

ρ ρ ρ

 
 −

ωε ε 
 = − 
  
 − δ − 
ωε ε ωε ε ωε ε    

G k� , (2.26) 

 

h

i

HJ e e

i v

0 r

h

i

0 r

0 I 0

k
( , z z ') I 0 I

'

k
0 V 0

ρ

ρ

ρ

 
 
 
 

= − 
ωε ε 

 
 −

ωµ µ  

G k� , (2.27) 
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e

v

EM h h

v i

0 r

e

v

0 r

0 V 0

k
( , z z ') V 0 I

'

k
0 I 0

ρ

ρ

ρ

 
 

− 
 

= − 
ωµ µ 

 
 

ωε ε  

G k� , (2.28) 

 

h h

v i

0 r

HM e

v

2

h h

v i

0 r 0 r 0 r

k
I 0 I

'

( , z z ') 0 I 0

k k k
V 0 V (z z ')

' j

ρ

ρ

ρ ρ ρ

 
 −

ωµ µ 
 = − 
  
 − δ − 
ωµ µ ωµ µ ωµ µ    

G k� . (2.29) 

To solve the integral equation in the spatial domain, the spectral domain Green’s 

functions have to be transformed to the spatial domain. 

 

2.3  Mixed Potential Integral Equation [64]  

The fields can be expressed in terms of vector and scalar potential by the following 

equations: 

 jE A= − ω − ∇φ , (2.30) 

 

0 r

1
H A= ∇×

µ µ
. (2.31) 

Using Green’s function, we have the following equations: 

 
HJ ;=H G J , (2.32) 

 A

0
;= µA G J , (2.33) 

where the notation ;  is used for integrals of products of two functions separated by 

a comma over their common spatial support, with a dot over the comma indicating 
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vector dot product. Hence, the Green’s function for vector potential is associated with 

the magnetic field by 

 HJ A

r

1
= ∇×

µ
G G . (2.34) 

AG  is not uniquely defined in layered medium problems as discussed in [64]. Here, 

the traditional form of AG�  is chosen as 

 

A

xx

A A

xx

yA A Ax
zx zx zz

G 0 0

0 G 0

kk
G G G

k kρ ρ

 
 
 
 =
 
 
 
 

G

�

� �

� � �

. (2.35) 

In the spectral domain, the nabla operation is 
ρ

jk +zd/dzˆ ˆu∇ = −∇ = −∇ = −∇ = −���� . 
HJG�  can be derived 

from equation (2.27). Thus, the components of AG�  can be expressed as 

 
A h

o xx ij G Vωµ =� , (2.36) 

 
A er
zz v

o z

j G I
'

µ
ω =

ε ε
� , (2.37) 

 
A h er
zx i ijG (I I )

kρ

µ
= −� . (2.38) 

The Lorentz gauge is taken as  

 r 0 r 0jA∇ ⋅ = − ωµ µ ε ε φ . (2.39) 

To arrive at the mixed-potential form of E, we have 

 
A

r r

1
ˆ'G C zφ φ∇ ⋅ = −∇ +

ε µ
G , (2.40) 

where Gφ is the scalar potential kernel and Cφ is the correction factor, which arises in 

general when both horizontal and vertical current components are present. From this 

relation, we can find Gφ  and Cφ  by substituting equation (2.35) in the 
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spectrum-domain counterpart of equation (2.40), obtaining 

 
h e

i i2

o

G 1
(V V )

j k

φ

ρ

− = −
ωε

�
, (2.41) 

 
h eo r
v v2

o

j 'C
(V V )

j k

φ

ρ

ωµ µ
− = −

ωε

�
. (2.42) 

The space domain counterparts of the spectral kernels derived above can be expressed 

in terms of the Sommerfeld integrals. By substituting equations (2.39) and (2.40) into 

equation (2.30), the electric field can be expressed as 

 ( )A

o

o

1
ˆj ; G , ' C z;

j

φ φ= − ωµ + ∇ ∇ ⋅ +
ωε

E G J J J . (2.43) 

The formulations for A

xxG� , A

zxG� , A

zzG�  and Gφ� depend on p

iV , p

vV , p

iI and p

vI  and 

the derivation can be found in Appendix A. 

 

2.4  Numerical Evaluation of the Sommerfeld Integrals [68]-[71] 

From the inverse Fourier-Bessel transform, we can write the spatial domain Green’s 

function as 

 0
0

1
G( , z | z ') G( , z | z ')J (k )k dk

2

∞

ρ ρ ρ ρ= ρ∫
π

ρ k . (2.44) 

That is a well-known Sommerfeld integral. Therefore, A

xxG� , A

zxG� , A

zzG�  and Gφ� can 

be written in the form of Sommerfeld Integral. Evaluation of Sommerfeld Integral [71] 

is essential for the spatial domain approach. The integration interval is divided into 

three subsections, [0 0k ], [ 0k  0 rk ε ] and [ 0 rk ε  ∞ ]. In the region [0 0k ], the 

infinite derivative in 0k  is eliminated with a change of variables 0k k cos tρ = . The 
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resulting smooth function is integrated numerically. In the interval [
0k  

0 r
k ε ], the 

singularity is first extracted. There is still an infinite derivative at 
0k kρ = . With a 

change of variable 0k k cosh tρ = , a smooth function is obtained. For the first two 

intervals which are bounded, Simpson rule is used for the integration. Finally, in the 

region [ 0 rk ε  ∞ ] the integral is a slowly convergent oscillating function. A special 

procedure known as the method of averages [68]-[70] has been developed to combat 

the oscillation. The method of averages is discussed in Appendix B. 

 

2.5  Discrete Complex Image Method [39] 

Numerical integration of the Sommerfeld Integral is very time consuming because of 

the highly oscillating and slowly decaying behavior of the integrand. The discrete 

complex image method (DCIM) alleviates the numerical evaluation of the 

Sommerfeld integral and represents the Sommerfeld integral in a closed-form. In 

DCIM, the quasi-static and surface-wave contributions are first extracted from the 

spectral domain kernel, so the remaining kernel is approximated by a sum of complex 

exponentials by the generalized pencil of function method (GPOF). The spatial 

domain Green’s function can then be obtained analytically using the Sommerfeld 

identity.  We obtain 

 (qd) (sw ) ci

a ,q a ,q a,q a ,qG G G G= + + , (2.45) 

where (qd)G  represents the contribution from the quasi-dynamic images dominating 

in the near-field region. The quasi dynamic image is extracted from the Green’s 
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function by using the approximation kz0 ≈ kz1 when the frequency is very low. (sw )G  

represents the contribution from the surface waves dominating in the far-field region. 

(ci)G  represents the contribution from the complex images which dominates in the 

intermediate region and is approximated by the summation of exponential functions 

using GPOF method. The specific forms of 
aG  and qG  for a single-layer 

microstrip problem can be written as 

 (qd) (sw ) ci

a a a aG G G G= + + , (2.46) 

where 

 
0 0 0 1jk r jk r

qd 0
a

0 1

e e
G

4 r r

− − µ
= − 

π  
, (2.47) 

 

 ( )
TEN

sw 20
a (n) 0 (n) (n)

n 1

G j2 Res H (k )k
4

ρρ ρρ
=
∑

µ
= − π ⋅ ρ

π
, (2.48) 

 

 
0 ijk r

N
(ci) 0
a i

i 1
i

e
G a

4 r

−

=
∑

µ
=

π
, (2.49) 

 

 
(qd) (sw ) ci

q q q qG G G G= + + , (2.50) 

 

 ( )
0 0 0 0 0 njk r jk r" jk r

(qd) n 1 2

q
n 1

0 0 0 n

1 e e e
G K K K 1

4 r r" r

− − −
∞

−

=
∑

 
= + + − 

πε  
, (2.51) 

and 

 ( )
TE TMN N

(sw ) 2

q (n) 0 (n) (n )
n 1

1
G j2 Res H (k )k

4

+

ρρ ρρ
=
∑= − π ⋅ ρ

πε
, (2.52) 
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0 ijk r '

N
(ci)

q i
i 1

0 i

1 e
G a '

4 r '

−

=
∑=

πε
. (2.53) 

In the above, 2 2

nr (2nh)= ρ +  with h being the thickness of the substrate, 

2 2

i ir b= ρ −  and 2 2

i ir ' b '= ρ −  where ib , ib ' , ia  and ia '  by GPOF method, 

and r

r

1
K

1

− ε
=

+ ε
 with rε  being the relative permittivity of the substrate. kρρ  is the 

surface wave pole located on the real axis of the complex kρ  plane, and the symbol 

Res denotes the residues of the integrand at the pole k kρ ρρ= . For the single-layer 

Green’s function expressions, one can refer to Appendix A.2 for detail derivation. 

 

A single-layer microstrip substrate with r 12.6ε =  and h=1 mm is examined at two 

different frequencies (f=10 GHz, 30 GHz). The closed-form Green’s function is then 

compared with the numerical integration as shown in Fig 2.3.  
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Fig 2.3: Comparison of the calculation for Gq using DCIM and numerical integration 

(Method of Averages) on substrate with h=1.0mm, εr=12.6 at f=30GHz. 
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For log10 (k0ρ) > 1, the closed-form Green’s function gives an error that is less than 

1% as compared with the numerical integration of the Sommerfeld integrals. It can be 

seen that the difference between the closed-form Green’s function and the numerical 

integration is nearly unobservable. Hence, instead of using numerical integration, 

which is often time consuming, the closed-form equations can be used to evaluate the 

spatial Green’s function.  

 

2.6  The Method of Moments [78]-[80] 

In order to apply the mixed potential integral equation (MPIE) to irregular microstrip 

shapes, the method of moments (MoM) has been selected. This numerical technique, 

which is among the most widely used numerical techniques in electromagnetics, 

transforms the integral equation into a matrix algebraic equation that can be easily 

solved on a computer. 

 

For subsectional basis functions approach in the method of moments, the structure is 

decomposed into smaller elementary cells and each defines simple approximations for 

the surface current on each cell. The most commonly adopted shapes for the 

elementary cells are mainly the triangle and the rectangular. Even though the 

triangular shape is more flexible, rectangular cells involve simpler calculations and 

are sufficient for many microstrip problems. Depending on the structure, either RWG 

basis functions [78]-[79] or Rooftop basis functions [80] are used for the analysis in 
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this thesis. 

 

2.6.1 Rooftop Basis Functions 

 

Let us define 
nf  as the vector rooftop function associated with two adjacent cells 

nT+  and 
nT− . The union of these two cells will be simply denoted by 

nT . In general, 

we need to consider 
xN x-directed functions and 

yN  y-directed functions. The total 

number of basis functions is x yN N N= + . nf  and s n∇ ⋅f  are given as 

 

nx x

n

ny x

x
ˆ ˆf 1 , n 1,..., N ,

a

y
ˆ ˆf 1 , n N 1,..., N,

b

  
= − =  

 


= 


  = − = +   

x x

f

y y

 (2.54) 

 

 
 

Fig 2.4: X-directed rooftop basis function with the current and charge cells. 
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x

s n

x

x
, n 1,..., N ,

a

y
, n N 1,..., N.

a


− =


∇ ⋅ = 

− = +


f  (2.55) 

The current shown in Fig 2.4 is expanded as  

 
N

n n

n 1

I
=

=∑J f , (2.56) 

where nI  are the unknown coefficients and the surface charge density is related to 

the surface divergence of J through the equation of continuity: 

 nq / j= −∇ ⋅ ωf . (2.57) 

After applying the Galerkin’s procedure to equation (2.43), we achieve the matrix 

equation 

 ZI V= , (2.58) 

with the elements of the matrix given by 

 nm nm nmz A= + φ , (2.59) 

where the contribution of vector potential A and scalar potential φ  are respectively 

 
n m

A

nm 0 n m
S S

A j ( ) ( ) ( )dS'dS∫ ∫= ωµ ⋅ ⋅f r G r|r' f r' , (2.60) 

 
n m

nm n m
S S

0

1
( ) G ( ) (r )dS'dS

j

φ
∫ ∫φ = ∇ ⋅ ∇ ⋅

ωε
f r r|r' f ' . (2.61) 

The element Vn of the vector is 

 
n

e

n n
S

V ( ) ( )dS∫= ⋅f r E r . (2.62) 

 

 

2.6.2 RWG Basis Function  

 



 29 

 

Fig 2.5: RWG basis function. 

 

Let define n ( )f r as the vector basis function defined on the adjacent triangles 

associated with the nth edge as shown in Fig 2.5, and is expanded as 

 

 

n
n n n

n

n
n n n n

n

l
f , in T ,

2A

l
( ) f , in T ,

2A

0, otherwise,

+ + +

+

− − −

−


= ρ




= = ρ





r 

f r r  (2.63) 

where nl is the length of the edge, nA±  is the area of triangle nT±  and n

±ρ  is the 

position vector. The surface charge divergence 
n ( )f r , which is proportional to the 

surface charge density n n / jΠ = −∇ ⋅ ωf  is given by 

 

n
n

n

n
s n n

n

l
, in T ,

A

l
, in T ,

A

0, otherwise.

+

+

−

−






∇ ⋅ = −





r 

f r  (2.64) 

The currents are expanded as in equation (2.56). After applying the Galerkin’s 

procedure, we will get the matrix equations.  
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2.7  De-Embedding of Network Parameters [82] 

The current induced on the structure can be solved by an excitation such as a voltage 

source. The delta-gap generator is used. In this model, the port is assumed to be 

excited by a voltage source of magnitude V, applied within an infinitesimal small gap. 

We have assumed a break as a voltage source to induce the current. With the current 

distribution, one can obtain the network parameters such as the admittance or 

scattering matrices. However, the admittance obtained in this manner contains a 

capacitance of unknown nature, due to the physical nature of a gap. Their contribution 

to the calculated input impedance must be removed. One way to avoid this problem is 

to characterize a microstrip discontinuity by the reflection and transmission waves, of 

the scattering parameters on the microstrip. 

 

Numerical results [81] reveal that the evaluated current distribution along the feedline 

of a typical microstrip circuit or antenna is very close to a sinusoidal function along 

the feed-line just 0.1-0.2 wavelength away from junctions and other discontinuities. 

Therefore, we can assume the current distribution along the feed-line as  

 I(z) a exp( z) b exp( z)= −γ − γ , (2.65) 

where a and b are the amplitudes of the incident wave and reflected wave in a port. 

jγ = α + β is the complex propagation constant. 
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Fig 2.6: 1 cell along the transverse direction of the feedline. 

 

The process of solving a, b and γ  leading to the S-parameters is called de-embedding. 

Fig 2.6 shows the typical configuration of the one port device. The current 

distribution at three uniformly-spaced points is detected with the center point 

coincident with the reference plane at z=0 to provide three equations [82]: 

 0 0 0I(z z ) a exp( z ) b exp( z )= − = γ − −γ , (2.66) 

 I(z 0) a b= = − , (2.67) 

 0 0 0I(z z ) a exp( z ) b exp( z )= = −γ − γ . (2.68) 

Summating equations (2.66) and (2.68) yields 

 0 0 02(a b) cosh( z ) I(z z ) I(z z )− γ = = − + = . (2.69) 

Substituting equation (2.67) into equation (2.69) yields 

 0 0
0

I(z z ) I(z z )
cosh( z )

2I(z 0)

= − + =
γ =

=
. (2.70) 

A unique γ  can be solved as long as 
0z

2

π
β < . Then the incident and reflected 

waves can be obtained from either two of equations (2.66), (2.67) and (2.68) provided. 
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We avoid the situation where 0 0I(z 0) I(z z ) and I(z z ) .= << = − =  The 

S-parameter at the reference plane is computed from i
ij

j

b
S

a
= . 

 

 

Fig 2.7: Multiple cells along the transverse direction of the feedline. 

 

Sometimes the feedline is divided into a number of cells in the transverse direction as 

shown in Fig 2.7. The width of the cells in the transverse direction are 1w , 2w  

and 3w . The longitudinal currents 
1w 0I (z z )= − , 

1wI (z 0)= , 
1w 0I (z z )= , 

2w 0I (z z )= − , 
2wI (z 0)= , 

2w 0I (z z )= , 
3w 0I (z z )= − , 

3wI (z 0)= and 
3w 0I (z z )= are 

sampled along the microstrip feedline. The sampled longitudinal currents are related 

to 0I(z z )= − , I(z 0)=  and 0I(z z )=  by 

 1 2 31 w 0 2 w 0 3 w 0

0

1 2 3

w I (z z ) w I (z z ) w I (z z )
I(z z )

w w w

= − + = − + = −
= − =

+ +
, (2.71) 

 1 2 31 w 2 w 3 w

1 2 3

w I (z 0) w I (z 0) w I (z 0)
I(z 0)

w w w

= + = + =
= =

+ +
, (2.72) 

 1 2 31 w 0 2 w 0 3 w 0

0

1 2 3

w I (z z ) w I (z z ) w I (z z )
I(z z )

w w w

= + = + =
= =

+ +
. (2.73) 
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The 11S  can be de-embedded using the same method in the case where the feedline 

has only a single cell in the transverse direction. 

 

The process described above can only be used to de-embed the reflection coefficient 

of a one-port network. For N-port network, N different excitation states have to be 

provided to solve for a, b and γ  for each port in each state in order to extract the 

S-matrix.  

 

2.8  Matched Load Simulation [83]  

As mentioned in Section 2.7, for N-port network, N linearly independent excitations 

are required using open load simulation. However, if matched load termination is 

adopted, only one port needs to be excited as shown in Fig 2.8. Thus, the time taken 

to solve the problem is reduced. The matched load termination [83] can be achieved 

by enforcing in the spatial domain a unidirectional current travelling wave 

propagating along each of the output lines in the direction away from the 

discontinuities. The simulation is based on a simple manipulation of the matrix 

equation (2.58).  
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Fig 2.8: Illustration of matched load termination. 

 

The mutual relationship of the current coefficients along the various output lines is 

enforced by introducing new linear equations into the matrix equation 

 gj z

m 1 mI I e 0
− β ∆

+ − = , (2.74) 

where gβ  is the pre-computed propagation constant for the output line and z∆  is 

the distance between the locations of the centers of successive rooftop basis functions. 

This equation enforces a uniform magnitude and a uniform progressive phase lag 

constraint on the coefficients mI  and m 1I +  on any particular output line. A typical 

m
th

 row in 
ijZ  can now be expressed as 

 gj z
[0 0 e 1 0 0]

− β ∆
−� � . (2.75) 

The shaded triangle face shown in Fig 2.8 is added to the end of the terminating line 

in order to make boundary edge, m+5 into internal edges. However, we do not take 

the shaded triangle into account when evaluating the Z matrix, the end result being 

that unknown charges accumulate on the triangle. A simple physical explanation of 

the match-termination is that the forward-travelling current wave on the terminating 

line carries all the charges onto the shaded face. This, however, has no effect on the 

current distribution in the microstrip circuit.  
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It is noted that constant-amplitude, constant phase-lag current conditions should only 

be enforced for coefficients associated with current cells that are physically located 

far from the discontinuity at the junction between the output line and the device. This 

ensures that all effects due to the discontinuity will have become negligible and that 

the enforcement of a simple outgoing quasi-TEM mode is then justified. 

 

Once the current distribution of a matched multi-port structure has been obtained, the 

extraction of S-parameters involves can be obtained by using the three-point 

curve-fitting de-embedding techniques discuss earlier. 

 

2.9  Interpolation Schemes for the Green’s function 

For a large structure, the evaluation of the matrix in (2.58) requires a large amount of 

computation even though DCIM is used to evaluate the Green’s function. For a 

rectangular patch divided into 10 by 10 rectangular cells, the order of the matrix is 

180, hence the number of elements in it is 180
2
=32400. Even when a simple 4 X 4 

Gaussian quadrature method is used in equations (2.60) and (2.61), the number of 

Green’s functions to be evaluated would exceed half a million. 

For a given structure, the Green’s function only depends upon the distance from 

source to observer. Thus, it is possible to use interpolation schemes to evaluate the 

Green’s function. Since the Green’s function at the source point has a singularity, the 
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observation points in the vicinity of the source point are needed to be calculated 

accurately with the region classified as the near field. However, as the distance 

between the source and the observation point increases, the Green’s function becomes 

a smooth function of distance which enables the possibility of developing 

interpolation approach. The Green’s function can be evaluated over a finite set of N 

points located between two bounds, namely, min maxd r r d′≤ − ≤
� �

. The upper bound is 

the largest linear dimension of the antenna, whereas the lower bound depends on the 

numerical method used for the integration. The Green’s function in the near field 

region, between 0 to dmin, is evaluated using the direct computation. As it is 

mentioned in [85], the dominating term of the Green’s function in the near-field of the 

source is the quasi-static term. For both the vector and the scalar potential Green’s 

functions, the quasi-static terms attenuate as 1/ ρ  in the near field and as 31/ ρ  in 

the far field of the source. However, the quasi-static part of the scalar Green’s 

function may be obscured by the leaky wave and surface wave contributions at high 

frequencies, since the region that these two terms contribute move close to the source 

with the increasing frequency, resulting in a rapid drop of the quasi-static contribution 

from 1/ ρ  to 31/ ρ . Thus, the field in the near field of the source changes abruptly 

and needs to be evaluated using direct approach.  

 

Between min maxd r r d′≤ − ≤
� �

, the phase terms of the Green’s function vary rapidly 

with distance between the source and field points. To ensure interpolation accuracy, 

one should divide the region into two parts, namely the intermediate and the far field 
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regions. The near field region is determined by the distance min 0d 0.1< λ  where 0λ  

is the free-space wavelength, the immediate region 
0 00.1 r r 2′λ ≤ − < λ
� �

 and the far 

field region 0 max2 r r d′λ ≤ − <
� �

. These regions are obtained after carrying out 

extensive numerical experiments. Three interpolation techniques, namely, the radial 

basis function using inverse multiquadric basis function [59], the Cauchy method 

[60]-[61] and the generalized pencil-of-function method [56]-[57] are adopted for the 

investigation of the Green’s function interpolation within the intermediate and far 

field regions. The three interpolation techniques are briefly discussed in the following 

sections.  

 

2.9.1 Radial Basis Function [59] 

 

The conventional radial basis function (RBF) interpolation is expressed as 

 
P

i i

i 1

Y(k) (k)
=

= β ϕ∑ , (2.76) 

where { }
P

i i 1=
ϕ a set of radial basis functions, { }

P

i i 1=
β  is their corresponding unknown 

coefficients and P is the number of interpolation points. Given a function Y(k)  and 

a set of radial basis functions { }
P

i i 1=
ϕ , one can solve equation (2.76) using the 

collocation method to obtain the coefficient set { }
P

i i 1=
β . Inverse multiquadric basis 

function is chosen and is expressed as 

 
i

2 2

i

1
(k)

k k c

ϕ =
− +

, (2.77) 

where •  denotes the distance norm, ik  is the interpolation point and c is the 

shape parameter. One drawback of the method is that no analytical expression for c is 
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available. Optimized c can be determined by performing some numerical experiments. 

After conducting numerous numerical experiments, it is found that the optimal c is 

closed to the distance between interpolation points. 

 

2.9.2 Cauchy Method [60]-[61] 

 

Y(k) is approximated by a ratio of two polynomials A(k) and B(k) where k=0,1, …, 

N-1. The Cauchy method is used to evaluate the order of the polynomials and their 

coefficients, a0,…,aP and b1, …,bQ. Y(k) is expressed as  

 

P
n

2 0 n

0 1 2 n 1

Q2
n0 1 2

0 n

n 1

a a k
a a k a kA(k)

Y(k)
B(k) b b k b k

b b k

=

=

+
+ + +

= =
+ + +

+

∑

∑
=

�

�
. (2.78) 

The unknowns an and bn in equation (2.78) can be put in the following form: 

 [ ]
a a

0,
b b

   
− = =   

   
A B M  (2.79) 

 T

0 1 2 p[a] [a ,a ,a ,...a ] ,=  (2.80) 

 
T

0 1 2 p[b] [b ,b ,b ,...b ] .=  (2.81) 

M is of order N X (P+Q+2). A singular value decomposition (SVD) of the matrix M 

will give us a gauge of the required values of P and Q. A SVD results in the equation 

 [ ][ ][ ]
H a

0
b

U V
 

∑ = 
 

. (2.82) 

The matrices U and V are unitary matrices and ∑  is a diagonal matrix with the 

singular values of M in descending order as its entries. The columns of U are the left 

singular vectors of M or the eigenvectors of MM
H
. The columns of V are the right 



 39 

singular vectors of M or the eigenvectors of M
H
M. The singular values are the square 

roots of the eigenvalues of the matrix M
H
M. Therefore the singular values of any 

matrix are real and positive. The number of nonzero singular values is the rank of the 

matrix in equation (2.79) and so gives one an idea of the information in this system of 

simultaneous equations. If R is the number of nonzero singular values, the dimension 

of the right null space of M is P+Q+2-R. The solution vector belongs to the null space. 

Therefore, to make this solution unique, one needs to make the dimension of this null 

space 1 so that only one vector defines this space. Hence, P and Q must satisfy the 

relation 

 R 1 P Q 2+ = + + . (2.83) 

To estimate R, P and Q must be chosen to be much higher than the expected system. 

Using equation (2.83) better estimates for P and Q are obtained. Letting P and Q stand 

for these new estimates of the polynomial orders, one can recalculate the matrices A 

and B. Therefore one comes back to the relation equation (2.79). 

 

The Total Least Squares method is used to solve equation (2.79). A QR decomposition 

of the matrix results in  

 
11 12

22

22

a
0 b 0

0 b

   
= ⇒ =   

  

R R
R

R
. (2.84) 

A SVD of R22 is needed to solve b. R22b can be expressed as 

 H

22b [ ][ ][ ] b 0= ∑ =R U V . (2.85) 

The solution of b is proportional to the last column of the matrix V. The numerator 

coefficients an can be solved from equation (2.84). 
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2.9.3 Generalized Pencil-of-Function Method [56]  

 

Using the generalized pencil-of-function method (GPOF), yk can also be expressed as 

 
k i i

i 1,M

y b exp(s tk)
=

= δ∑ , (2.86) 

where k=0,1, …, N-1, bi are the complex residues, si are the complex poles, and δt is 

the sampling interval. We can let i iz exp(s t)= δ . The purpose of utilizing 

pencil-of-function method [56] is to find a set of poles si that can represent the sample 

points in equation (2.86). We consider the following set of information vectors: 

0 1 Ly ,y , ,y�  where 

 T

i i i 1 i N L 1[y , y , , y ]y + + − −= � . (2.87) 

Based on these vectors, we define the matrices Y1 and Y2 as 

 
1 0 1 L-1[ ]=Y y ,y , ,y� , (2.88) 

 2 1 2 L[ ]=Y y ,y , ,y� . (2.89) 

Denoting 1

+Y  as the (Moore-Penrose) pseudo-inverse of 1Y , zi can be easily derived 

as follows:  

 

1

2

1 2

M

z

z
eig

z

 
 
   =   
 
 

+
Y Y

�
. (2.90) 

From zi, one can obtain the poles si. To compute the pseudo-inverse 1

+Y , one can use 

the singular value decomposition of Y1 as follows: 

 H H

1 i i i

i 1,M

UDV ,
=

= σ =∑Y u v  (2.91) 

 1 H

1 VD U+ −=Y , (2.92) 
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where [ ]1 MU , ,= u u� , [ ]1 MV , ,= v v� , and [ ]1 MD diag , ,= σ σ� . The superscript 

H denotes the conjugate transpose of a matrix. The residues bi can be obtained by 

using the least square method to best-fit the sampled points. The residues bi and zi can 

be put in the following form: 

 

01

11 2 M 2

N 1 N 1 N 1

N 11 2 M M

y1 1 1 b

yz z z b

yz z z b− − −
−

    
    
     =
    
    

     

�

�

�� � � � �

�

. (2.93) 

 

2.9.4 Numerical Study of the interpolation techniques 

 

To test the accuracy of these interpolation techniques, a 1-dimensional simulation on 

the Green function conducted on a substrate of rε =2.2 and height=1.59 mm at 9.4 

GHz, and varying between o o0.1 r r 15′λ ≤ − ≤ λ
� �

are performed. Table 2.1 lists the 

average interpolation errors for the different regions and the different numbers of 

interpolation points. The errors in the shadowed region of this table are greater than 

0.02. The constant shape parameter for the radial basis function within the interval 

o o0.1 r r 2′λ ≤ − ≤ λ
� �

 and o o2 r r 15′λ ≤ − ≤ λ
� �

 are taken to be at 0.0058 and 0.01 

respectively. The constant shape parameter is determined by performing numerical 

experiments. For the same distance, when the number of interpolation points is small, 

GPOF interpolation scheme is noted to be more accurate than both the radial basis 

function and the Cauchy method. However, the simulation results show that the 

accuracy of GPOF deteriorates when the number of interpolation points increases. As 

the number of interpolation points increases, the condition number in equation (2.93) 

increases accordingly and consequently causes a lower accuracy in matrix inversion. 
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On the other hand, the Cauchy method and the radial basis function give better 

accuracy as the number of interpolation points gets larger. However, this comes at the 

expense of slower simulation time. To improve the accuracy of GPOF interpolation 

scheme, two distinct regions, namely, o o2 r r 7′λ ≤ − ≤ λ
� �

and o o7 r r 15′λ ≤ − ≤ λ
� �

 are 

adopted. Smaller errors are observed in the two regions. Thus, one can conclude that 

GPOF interpolation scheme achieves a higher accuracy with the less number of 

interpolation points as compared to the Cauchy method and the radial basis function.  

 

Fig 2.9 shows the CPU time consumption for the evaluation of the Green’s functions. 

The simulation was performed on a PC with Pentium 4 of 3.2 GHz and 2 GB RAM. 

We observed that GPOF interpolation scheme is much faster than the direct 

computation of the closed-form Green’s function. To evaluate 500000 number of 

Green’s functions, GPOF interpolation scheme takes approximately 3.3 seconds while 

the direct computation of the closed-form Green’s function takes about 3000 seconds.  
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Table 2.1: Comparison of the average interpolation relative error between the three interpolation schemes. (K: Number of Interpolation Points; 

N: Number of coefficients required by the interpolation schemes; d: r r′−
� �

. 

 

Interp. 

method 

K N o o0.1 d 2λ ≤ ≤ λ

 

K N o o2 d 15λ ≤ ≤ λ

 

K N o o2 d 7λ ≤ ≤ λ  K N o o7 d 15λ ≤ ≤ λ

 

40 41 9.64E-9 140 141 1.49E-6 60 61 3.94E-11 80 81 1.8E-7 

20 21 1.72E-7 70 71 4.2E-5 30 31 1.56E-7 40 41 1.85E-5 

Cauchy 

10 11 0.0033 28 29 0.258 12 13 0.16 20 21 0.0339 

40 40 0.0111 140 140 1.10E-4 60 60 1.70E-04 80 80 2.1E-4 

20 20 0.0404 70 70 0.0025 30 30 0.0035 40 40 0.0044 

RBF 

10 10 0.2722 28 28 0.529 12 12 0.37 20 20 0.31 

40 12 0.0072 140 12 0.42 60 10 0.0025 80 8 3.03E-4 

20 12 1.6E-4 70 12 0.0757 30 10 3.78E-4 40 8 1.55E-4 

GPOF 

10 10 0.0024 28 12 6E-4 12 10 4.32E-7 20 8 3.43E-5 
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Fig 2.9: Comparison of the CPU time used in the direct computation of the 

closed-form Green’s function and the GPOF interpolation scheme with respect to the 

number of Green’s functions evaluated. 

 

2.10  Far-field Radiation Pattern [86] 

The radiation pattern can be computed using the reciprocity theorem [86]. In 

accordance with the reciprocity theorem, the electric field radE  radiated by J in the 

presence of multilayer media is related to J by 

 rad

2 2
V S

(r, , ) (r, , )dv (r ', ', ') (r ')ds '∫∫∫ ∫∫θ φ ⋅ θ φ = θ φ ⋅E J E J , (2.94) 

2J  denotes an arbitrary current and 2E  is the field radiated by 2J . Choosing an 

infinitesimal electric current dipole with either the φ  or θ  orientation and placing 

it at the observation point in the far zone, we can compute the electric field 

2 (r ', ', ')θ φE  in the presence of multilayer media without the microstrip antenna. We 

can obtain  

 
rad

s 2(r, , ) (r ', ', ') (r ')ds '∫∫θ φ = θ φ ⋅E E J . (2.95) 
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2.11   Numerical Result 

 

 

 

Fig 2.10: Microstrip patch antenna with substrate height = 31mils and εr= 2.33 at 

resonant frequency 2.5 GHz. 

 

We consider a long rectangular patch antenna as shown in Fig 2.10. As the input 

impedance of a long patch is low, a quarter-wave transmission line section is used in 

order to match the antenna with a 50 ohm cable. The width and length of the 

transmission line are 37.5 mm and 275 mm respectively. The patch antenna is excited 

at one end by a SMA connector. Fig 2.11 shows the comparison of the magnitude and 

phase of the return loss of a long patch antenna. The measured result can be found in 

the literature report [87]. The simulated result shows good agreement with those 

obtained from commercial software IE3D [62]. The norm-2 error of the input 

impedance between the written code and the IE3D is 3.2%. 
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Fig 2.11: Comparison of the magnitude and phase of the return loss of a long patch 

antenna between the written code and IE3D. 
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2.12   Conclusion 

This chapter presents a detailed exposition of the theoretical formulation that is 

implemented for the analysis of microstrip structure. It starts off with an overview of 

the spectral domain Green’s functions for a structure that is embedded within a 

grounded multilayered medium. The spatial domain Green’s functions in the form of 

Sommerfeld Integrals are then evaluated by DCIM, which obviates the 

time-consuming numerical integration. GPOF interpolation scheme is employed to 

further reduce the computation time to evaluate the Green’s function of a large 

structure. For example, to evaluate 500000 number of Green’s functions, GPOF 

interpolation scheme takes approximately 3.3 seconds while the direct computation of 

the closed-form Green’s function takes about 3000 seconds. The chapter also includes 

how S-parameters and far fields can be calculated. 
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Equation Chapter 3 Section 1 

 

CHAPTER 3   Macro-basis Function 

 

3.1   Introduction 

The MoM analysis in the previous chapter requires O(N
3
) computation complexity, 

where N is the number of unknowns and O(N
2
) memory to solve a structure. As the 

number of unknowns becomes very large, there will be a tremendous increase in the 

computation time usage and memory requirements, giving rise to dense matrices that 

are expensive to store and evaluate. To manage large problems, iterative solvers are 

usually employed in the fast methods such as the adaptive integral method [46]-[49] 

and the fast multipole method [42]-[45]. However, iterative solvers may lead to 

convergence difficulties when dealing with very large scale objects. Another emerging 

approach for solving large problems is based on the segmentation techniques, which 

can significantly reduce the number of unknowns. Various segmentation techniques 

for solving microstrip problems are given in the next paragraph. 

 

Allen Taflove [2] presents a spatial decomposition technique whereby the method of 

moments is sequentially implemented on each sub-domain of the original target. The 

spatial decomposition technique is useful for the solution of scatterer problems, but 
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has not yet been extended to large radiation problems. S. Ooms and D. De Zutter [1] 

introduce an iterative Diakoptics-based multilevel moment method to analyze large 

planar microwave structures. Even though the method converges very fast, its 

computational complexity is high. A recursive technique called sub-domain multilevel 

approach [50]-[54], where the macro-basis function is constructed from the solution 

of the sub-domain in isolation has been developed by J. R. Mosig to handle large 

antenna arrays. The main drawback of the method is that it does not directly consider 

the mutual coupling effect between different portions of the geometry. This will affect 

the accuracy of the solution especially for dense and complex structure. In order to 

account for the mutual coupling effect of the neighboring sub-domains, the 

sub-entire-domain basis function method reported in [55] introduces dummy 

sub-domains to an observation sub-domain. Even though the method gives good 

accuracy, it is more efficient for periodic structures.  

 

The above methods attempt to correct the mutual coupling terms through iterative 

refinement process. R. Mittra [96]-[99] proposed a method called the characteristic 

basis function that does not require iterative refinement process. This technique 

includes the mutual coupling effects directly by using a new type of high-level basis 

function, referred to as primary and secondary characteristic basis functions. Even 

though the characteristic basis function does not require iterative process, the number 

of characteristic basis functions generated will depend on the order of the coupling 

instead of the number of sub-domains as in the case of the above methods. If one only 
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considers the primary and the second-order coupling, there will be bN  characteristic 

basis functions for each single sub-domain where bN  is the number of sub-domains. 

This will lead to 2
bN  characteristic basis functions for the entire problem. The 

number of characteristic basis functions generated will increase with the order of the 

coupling, resulting in a larger matrix size as compared to the above methods. 

 

In this chapter, we present a grouping concept, which utilizes the macro-basis 

function with the progressive method, to analyze microstrip structures. This new 

concept of near-far neighbour evaluation gives a better accuracy as compared to the 

sub-domain multilevel approach and the sub-entire-domain basis function method. 

Besides, the number of macro-basis functions generated will be lesser than those 

generated from the characteristic basis function. A new iterative refinement process is 

then developed to further improve the accuracy of the solution, especially for dense 

and complex structures. In addition, we employ the fast matrix-vector properties of 

the adaptive integral method to accelerate the matrix filling time.  

 

This chapter is organized as follows. We will first discuss the macro-basis function. 

Two reported methods, namely the sub-domain multilevel approach [50]-[54] and the 

sub-entire-domain basis function method [55] to determine the macro-basis function 

(MBF) will be illustrated. This will be followed by the introduction of the macro-basis 

functions with progressive method. A new iterative method is then described. The 

strategy to accelerate the matrix filling time is presented to further reduce the 
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computation time. Finally, some examples are analyzed to demonstrate the accuracy 

and efficiency of the developed algorithm. 

 

3.2  Macro-basis Function 

In the segmentation technique, the MoM impedance matrix is made up of blocks 

named Zmn, standing for basis and testing functions on sub-domains n and m, 

respectively. The unknown current coefficients, as well as the right-hand side of the 

system of equations, can be segmented into vectors, named Im and vm, respectively, 

associated with the successive sub-domains that can be put in the following form: 

 

11 1M 1 1

M1 MM M M

Z Z I v

.

Z Z I v

     
     =     
          

�

� � �

�

 (3.1) 

If Galerkin testing functions are applied, macro-testing functions and macro-basis 

functions applied are the same. Thus, a reduced system of equations can be written 

with the help of the following primed quantities: 

 T

mn mnZ Z′ = β β , (3.2) 

 n nI I '= β , (3.3) 

 T

n nv v′ = β . (3.4) 

With an adequate choice of macro-basis functions (MBF) (which are taken identical 

to the macro testing functions), relatively fast and accurate solutions can be obtained 

for the problem.  
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3.3  Sub-domain Multilevel Approach [50] 

Patch 1

Patch 2

Patch 3

Patch 4

Patch 5

Rooftop Basis

function

Patch 1

Patch 2

Patch 3

Patch 4

Patch 5

MBF7

MBF1, MBF2

MBF3, MBF4

MBF5, MBF6

Patch 2

Excitation

Source

MBF1, MBF2

MBF3, MBF4

MBF5, MBF6

Patch 4

MBF7

Patch 5

Bridge Rooftop

 

(a) 

 

 

(b) 

 

Fig. 3.1: Illustration of sub-domain multilevel approach. (a) Non-identical problem (b) 

Identical problem 

 

We will illustrate the sub-domain multilevel approach (SMA) using linear 1 by 5 
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series-fed arrays. Fig. 3.1 (a) describes the procedure for non-identical patches while 

Fig. 3.1 (b) describes the procedure for identical patches. In sub-domain multilevel 

approach, large computation is broken down into several smaller sub-problems. The 

series-fed array is divided into five sub-domains where Patch 1, Patch 2, …, Patch 5, 

serve to distinctly label each sub-domain. A basis function called the bridge rooftop is 

connected between each sub-domain. Since Patches 2, 3 and 4 have two cutting point, 

they are analyzed as a two-port device, alternately exciting one port with the voltage 

generator and leaving the other port open circuit. Thus, two MBFs are required to 

describe the sub-domain. Since Patch 5 has only one cut point, a voltage generator is 

introduced at the cut position while the end is an open stub. For non-identical 

problems (Fig. 3.1(a)), each isolated sub-domain is solved using the conventional 

MoM, resulting in 7 MBFs for a 1 by 5 non-identical linear array. On the other hand, 

for identical problem (Fig. 3.1(b)), only two sub-domains, Patch 3 and Patch 5, need 

to be computed as one can take the advantage of patches that are replicas of already 

computed sub-domains. However, the sub-domains must have exactly the same mesh 

and the same basis function numbering scheme. The MBFs for Patch 3 can be used 

for Patch 2 and Patch 4, resulting in 3 MBFs for a 1 by 5 identical linear array. 

Substituting the solved coefficients p

k
ˆ α   into (2.56), the individual rooftops on the 

isolated domains are merged into macro-basis function that is defined as [10] 

 p p

p k k

k

ˆ( ) ( ),m r f r= α∑  (3.5) 

where p

kf is the basis function associated with the k
th

 interior edge of the mesh on the 

sub-domain pS . 
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The MBF 
pm  is in turn grouped into the global MoM system, taking into account 

the symmetries and mutual coupling. The global current is expanded using the 

remaining individual basis functions, k[ ]α  on the root domain and the MBFs p[ ]β  

defined over the sub-domains. The root domain is defined as the sub-domain that is 

represented by the original basis function and where no MBFs will be formed. The 

global current is defined as 

 k k p p

k p

J f m= α + β∑ ∑ . (3.6) 

Appling the Galerkin testing functions, a compressed MoM system of equations for 

the global problem with a significantly reduced number of unknowns is obtained. For 

the case of four MBFs, the MoM equation is expressed as 

     

1 1 1 1 1 2 1 3 1 4
1

1 1 1 1 1 2 1 3 1 4 1

22 1 2 1 2 2 2 3 2 4

3
3 1 3 1 3 2 3 3 3 4

4
4 1 4 1 4 2 4 3 4 4
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 −
 
 
 
 −
 =
 −
 
 −
 
 − 

�

. (3.7) 

The interaction integrals between two MBFs mp and mq can be done using 

vector-matrix-vector multiplication as follows: 
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The interaction integrals between the testing function on the root domain, fp and the 

MBF mq can be done using matrix-vector multiplication as follows: 
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 (3.9) 

The mutual coupling between different sub-domains is accounted for through these 

MoM elements. The final MoM matrix is reduced in size, but is still fully populated. 

Finally, the solution for each MBF is recovered by a simple expansion from the 

compressed solution.  

 

Sub-domain multilevel approach can be applied to the non-radiating component or the 

weak coupling of the current in any structure. One example is the printed antenna 

array. The antenna’s structure includes beamforming networks of complex shape, 

which contribute heavily to the final MoM matrix size, but very weakly to the overall 

antenna radiation.  
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3.4  Sub-entire-domain Basis Function Method [55] 
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Patch 1
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Patch 3
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Patch 5

Rooftop Basis

function

MBF5

MBF4

MBF4

MBF4

 
 

Fig. 3.2: Illustration of sub-entire-domain basis function method. 

 

In order to obtain an accurate macro-basis function with a small computational load, 

sub-entire-domain basis function method introduces dummy cells to an observation 

cell to capture the most important mutual coupling. Sub-entire-domain (SED) basis 

function method is applied to periodic structure. An identical 1 by 5 series-fed array is 

used here to illustrate the sub-entire-domain basis function method and the procedure 

is shown in Fig. 3.2. A smaller domain is required for the sub-entire-domain basis 

function method. In this example, it is made up of Patch 1, Patch 4 and Patch 5 

depicted in Fig. 3.2. The solved currents on Patch 4 are then used on Patch 2 and 

Patch 3 in the original problem. The currents on Patch 2 to Patch 5 are merged into 
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MBFs. The overall coupling of the patches is then considered in equation (3.7). The 

technique is more efficient for a periodic structure. 

 

3.5  Macro-basis Function with Progressive Method 

In this section, we present a new grouping concept of near-far neighbour evaluation, 

which utilizes both the macro-basis function and progressive method (MBF-PM), to 

analyze microstrip structures. We start with a smaller problem that is made up of the 

first few and the last few sub-domains. The purpose of having the first few 

sub-domains is to create an incident wave and the purpose of having the last few 

sub-domains is to create an artifical reflection from the end of the structure for the 

next sub-domain to be added to the problem. The remaining sub-domains are then 

inserted into the smaller problem progressively. In this way, the newly inserted 

sub-domain will take into account the mutual coupling effect of the solved current 

which aid in improving the accuracy of the MBFs. The proposed method emulates the 

transmission and reflection phenomenon of a wave travelling on the structure through 

the successive near-far neighbour coupling simulations. 

 

We will illustrate our approach by using a linear series-fed microstrip antenna array as 

shown in Fig. 3.3. The procedure can be summarized in the following steps: 

1. The array is divided into smaller patches where the sub-domains are distinctly 

labeled from Patches 1 to 5. 
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2. A smaller domain consisting of Patches 1, 4 and 5 is first solved using the 

conventional MoM.  

3. Patch 3 is next inserted between Patches 1 and 4. The currents on Patches 4 and 5 

are merged into MBFs using equation (3.5) while the current on Patch 1 serves as 

the new excitation source for the remaining sub-domain. By solving the new 

problem through MoM, it leads to a compressed matrix. The interaction between 

the MBFs on Patches 4 and 5 can be obtained from the previous matrix formed in 

Step 2. The computed current on Patch 3 is merged into MBF and the MBF of 

Patches 4 and 5 are updated. The interaction, V between the MBFs of Patches 3, 4 

and 5 can be evaluated as 

Patch 1

Patch 2

Patch 3

Patch 4

Patch 5

Patch 1

Patch 4

Patch 5

MBF4

MBF5

Rooftop Basis

function

Patch 1
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Patch 4
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New excitation source
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Patch 3

Patch 4

Patch 5

Rooftop Basis

function MBF5

MBF4
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∆∆∆∆
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Fig.3.3: Illustration of macro-basis function with progressive method. 
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4. The process continues until the initial currents on Patches 2 to 5 are solved and 

merged into MBFs. The first sub-domain is now the root domain (refer to page 56 

for the definition of root domain). The overall coupling of the patches is then 

considered in equation (3.7) 

 

∆∆∆∆

 
 

Fig.3.4: Extended region of the root domain. 

 

In the above process (refer to Fig.3.3), the root domain is extended by a distance of 

∆  on the side of the excitation source to improve the accuracy of the solution as 

illustrated in Fig.3.4. The extended root domain (Patch 2) shares some of the 

unknowns with the excitation source (Patch 1). We identify and eliminate these source 

locations. Once the currents on the root domain are found, we discard the currents on 
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the extended region and retain the rest, merging them into MBFs. 

 

3.6    Iterative Refinement Process 

Through our numerical simulations, it is found that for strong coupling of the current 

on the structure, the computed error in the current distribution using the sub-domain 

multilevel approach, the sub-entire-domain basis function method and the macro-basis 

function with progressive method can amount to more than 10 percent as compared to 

the rigorous solution of the conventional MoM (refer to Table 3.8). Thus we have to 

apply a further iterative refinement process. If the number of iterative sweeps is large, 

the computation time increases.  

 

The strong coupling perturbation can be explicitly included as a source term in the 

first iteration solution as reported in [1]. During the first stage of the MoM simulation, 

only the sub-domain connected to the considered artificial port is taken into account 

while leaving the rest of the port open. The current on the sub-domain will excite 

currents on the rest of the sub-domains by (first-order) field coupling. During the first 

iteration, these first-order coupling currents are calculated. These currents will, in turn, 

excite (second-order) coupling currents on all the other sub-domains. These are 

calculated in the second iteration. These currents will again excite currents on all the 

other sub-domains. The actual current is the sum of the first stage MoM current 

(zeroth-order coupling current) and the currents from the different iterations (the nth 
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order coupling currents). During this process, all the sub-domains are considered 

which leads to the entire domain basis function. Although this method converges very 

fast, it exhibits several disadvantages [92]. Since the entire domain basis function 

extends over the whole structure, complete matrix vector products must be performed 

during the iterative refinement process as well as in the global problem. This has to be 

done for each sub-domain which increases the computational complexity  

 

In this thesis, two simpler iterative process A and iterative process B (the proposed 

method) are studied. The iterative process A, resembles the iterative steps proposed in 

∆∆∆∆

 

 

Fig.3.5: Iterative Refinement Process. (a) Iterative process A. (b) Iterative process B 
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Spatial Decomposition Technique [2]. The problem is divided into a number of 

sub-domains. The excitation of the first sub-domain consists of the original excitation 

source and additional excitation due to currents residing on the surfaces on the 

remaining sub-domains. The initial currents on the sub-domains can be computed 

with the sub-domain multilevel approach, the sub-entire-domain basis function or the 

macro-basis function with progressive method. The MoM is then applied to calculate 

each sub-domain. Fig.3.5 (a) illustrates the iterative process A. The analysis starts 

with Patch 5. The excitation for Patch 5 is given by the excitation due to Patches 1 to 

4. The analysis is now shifted to the next adjacent sub-domain, Patch 4. The excitation 

for this sub-domain consists of the excitation due to Patches 1, 2, 3 and 5. In this 

manner, the procedures can be implemented for each sub-domain from one end of the 

structure to the other end, always using the surface currents as the excitation for the 

sub-domain of interest. This iterative process continues until the desired tolerance 

level in equation (3.11) is met.  

 

Under our numerical experimentation, we find that iterative process A does not 

converge for all cases. Thus, we propose an improved iterative process B that would 

result in a better convergence of the solution. Instead of using the latest surface 

currents as the excitation for the sub-domain of interest, we merged the latest surface 

currents into MBF.  

 

The proposed method is summarized in the following steps using the same example: 



 63 

1. The initial currents on Patches 1 to 4 excite coupling currents on Patch 5, which 

currently becomes the root domain (refer to page 56 for the definition of root 

domain). The new current on Patch 5 is solved and merged into MBF. 

2. The initial current on Patch 4 is removed and new unknown basis functions are 

inserted. Patches 1 to 3 become the new excitation source for the MoM (See 

Fig.3.5 (b)). 

3. Update the MBF on Patch 5 and merged the solved current on Patch 4 into MBF. 

4. The process is repeated until Patch 1 is solved. The completed process is 

considered as the first iterative sweep. 

 

The iterative process is stopped when the number of iterative sweeps exceeds a 

specified maximum or if the iterative error becomes smaller than a tolerance (e.g. 

0.1%). We can define the iterative error ξ as 

 
n n-1

n-1

I I
ξ

I

2

2

−−−−
==== , (3.11) 

where n-1 2
I  is the norm 2 of the previous current I. Another condition for the 

iterative process to stop is  

 n n n 1 n 1 2
Z I Z I 0− −ψ = − ≈ , (3.12) 

where n 1Z −  is the previous MoM impedance matrix. 
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3.7 Efficient evaluation of Macro-basis Function Reaction Term using 

Adaptive Integral Method 

In order to speed up the MoM matrix filling in the macro-basis function with 

progressive method, we present an efficient hybrid macro-basis function with 

progressive and adaptive integral method (MBF-PM-AIM). The interactions between 

the testing functions on the root domain (refer to page 56 for the definition of root 

domain) and MBFs within the near field are computed in the customary MoM manner. 

In the far field region, the interactions are carried out by using its compressed 

representation through the AIM method. 
n p

f , mL  in equation (3.7) can be split into 

two part, 

 near far

n p np
f , m Z Z= +L , (3.13) 

where nearZ  denotes the interaction among the nearby elements within a threshold 

distance, the subscript n stand for the testing functions on the root domain and p
th

 

macro-basis function. The MBFs are projected onto the regular auxiliary grid. The 

projection of the MBF is done by first finding the smallest 2D rectangular boxes of 

grid nodes that totally encloses each of the basis functions that form the MBF. The 

projection of the basis functions onto the grid nodes are accomplished by means of 

multipole moment matching in equation (3.15). For example, in Fig.3.6 (a) the 

highlighted rooftop basis function is approximated by (M+1)
2
=9 rectangular grids 

(highlighted grids nodes) where M is the order of translation. In Fig.3.6 (b), the 

highlighted rooftop basis function is approximated by (M+1)
2
=16 rectangular grids. 

Once the translation matrix has been found, it is multiplied by the coefficient, 
p

jα̂  so 
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as to project the MBF onto the grids. In this way, one does not need to compute the 

MoM matrix. The memory requirement will be reduced.  

 

The MBF-PM-AIM procedures can be summarized as follows: 

1. All the sub-domains are enclosed in identical rectangular grids.  

2. The MBF and the testing functions on the root domain are projected to the 

surrounding grids. 

3. The grid potential (interactions between the testing functions on the root domain 

and MBFs) is then computed with the aid of fast Fourier transform. 

4. The computed potential is interpolated back to the basis functions on the root 

domain. The same multipole coefficient used to project the basis functions to the 

grid nodes can be used as the interpolating functions. 

5. Compute the correct near-field interaction. 

 

  

(a) (b) 

Fig.3.6: Translation of rooftop basis function to the highlighted rectangular grids. 
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Let n ( )ϕ r  denote either n ( )f r  or n ( )f r∇ ⋅ which can be approximated as a 

combination of the Dirac delta functions on the rectangular grids, namely: 

 
2

(M 1)

n n nu nu
u 1

ˆ( ) ( ) ( )r r r r
+

=

ϕ = ϕ = Λ δ −∑ , (3.14) 

where nuΛ is the translation coefficient for the basis function n ( )rϕ , M is the order 

of the translation and 
nu nu nu(x , y )r =  is the coordinate of the grid. The subscript n 

denotes the n
th

 basis function. The translation coefficient can be found based on the 

criterion that the translated basis function produces the same multipole moments as 

the original basis function i.e. 
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+

=

− − Λ = ϕ − −∑ ∫∫ r  (3.15) 

for 1 20 q ,q M≤ ≤ , 

where the reference point )y,x( 000 =r  is chosen as the center of the basis function. 

By adopting different combination values of q1 and q2, we can form M equations to 

solve for the M unknowns nuΛ . Thus if M=1, we have the following equations: 

 

2

n

(M 1)

nu n
u 1 T

( )ds
+

=

Λ = ϕ∑ ∫∫ r  for q1=0 and q2=0, (3.16) 

2

n

(M 1)

nu 0 nu n 0
u 1 T

(x x ) ( )(x x )ds
+

=

− Λ = ϕ −∑ ∫∫ r for q1=1 and q2=0,   (3.17) 

2

n

(M 1)

nu 0 nu n 0
u 1 T

(y y ) ( )(y y )ds
+

=

− Λ = ϕ −∑ ∫∫ r  for q1=0 and q2=1, (3.18) 

2

n

(M 1)

nu 0 nu 0 nu n 0 0
u 1 T

(x x )(y y ) ( )(x x )(y y )ds
+

=

− − Λ = ϕ − −∑ ∫∫ r for q1=1 and q2=1. (3.19) 

 

To compute nuΛ , it is possible to form a system of equations as shown: 
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With the translation formulation, far

npZ  can be approximated as 

 
x x y y d d

far p(T) p p(T) p p(T) p

np 0 n a j j n a j j n q j j2

0

1
ˆ ˆ ˆZ j G G G

k

 
= ωµ Λ Λ α + Λ Λ α − Λ Λ α 

 
, (3.21) 

where xΛ , yΛ , and dΛ  denote the translation coefficients for the x-component, 

y-component, and the divergence of the basis function, respectively. The subscript, j 

and the superscript, p refer to the j
th

 subsectional basis function on the p
th

 MBF. The 

superscript T stands for the transpose operation. The translation coefficients are sparse 

matrices with each row containing only (M+1)
2
 nonzero elements.  

 

Similarly, the interaction between two MBFs can be expressed as 

 
x x y y

d d

q(T) q p(T) p q(T) q p(T) p

i i a j j i i a j j

near

q p 0 q(T) q p(T) p

i i q j j2
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m , m Z j 1
ˆ ˆG

k

 α Λ Λ α + α Λ Λ α
 

= + ωµ  
− α Λ Λ α 
 

L . (3.22) 

The translational invariance of Ga and Gq enables the use of FFT to accelerate the 

computation of the product of G (either Ga or Gq) with the vector grid sources, 

p(T) p

j j
ˆΛ α . Due to the circular convolution nature of FFT, the number of grid nodes has 

to be approximately twice the original size, (2N-1) where N is the number of nodes in 
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one direction. For the grid sources, the extended grid nodes are zero padded. For the 

case of 3 by 3 grid nodes, the extended grid sources, p(T) p

j j e
ˆ Λ α   in equation (3.25) 

can be expressed in the following matrix form: 
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where p(T) p

j j
ˆ( )(u)Λ α  corresponds to the grid source associated with the u

th
 grid node 

on the p
th

 MBF. If the 1
st
 grid node on the root domain is at a distance of x from the 1

st
 

grid node on the MBF of interest, the extended Ge in equation (3.25) is expressed as 
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(3.24) 

where x∆  and y∆  are the distance between the AIM grid nodes in the x and y 

directions respectively as shown in Fig.3.6 (a). The computed potential, 

[ ]1 p(T) p

j je e
ˆG

−   ℑ ℑ ⋅ℑ Λ α  
, is then interpolated back to the testing function. 

 

With FFT, 
far

npZ  in equation (3.21) can be evaluated as 
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where [ ]ℑ • , [ ]1−ℑ • , 
x

p(T) p

j j
e

ˆ Λ α  , [ ]a e
G  and 

q e
G    stand for FFT, inverse FFT, 
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the extended grid sources, the extended vector Green’s function and scalar Green’s 

function.  

 

Fig 3.7: Flow chart for analyzing a large problem using the developed algorithm 

(MBF-PM-AIM). 
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When the distance between the sub-domains is greater than ς, the macro-basis 

function will be constructed from the solution of the sub-domain in isolation. The 

effect of the distance, ς on the shape of the current on the isolated sub-domain and the 

actual current varies for different structures. Since there is no unique way to 

determine ς for a given structure, simple numerical experiments can be performed. We 

can vary the distance between two sub-domains to observe the currents on both the 

sub-domains and compared with the currents obtained under isolated case. In general, 

we can take ς to be 0.5λ0. Fig. 3.7 shows the simple flow chart for analyzing a 

radiation problem using the developed algorithm (MBF-PM-AIM). The methods were 

coded in MATLAB 6.5 and were performed on a PC with Pentium 4 of 3.2 GHz and 2 

GB RAM.  

 

3.8 Numerical Applications to Filter and Antenna Arrays 

In this section, several examples will be tested to verify the accuracy of the 

macro-basis function with progressive method and the proposed iterative refinement 

process. In addition, the computational gain obtained by combining the macro-basis 

function and the adaptive integral method is described. 

 

In some examples, the relative error of the input impedance and the current of the 

various methods will be computed with respect to the conventional MoM. As the 

measure of the relative error e∆  in the computed input impedance, Zin, we take the 
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ratio 

 

MoM

in in
2

e MoM

in
2

Z Z

Z

−
∆ = . (3.26) 

To find the relative error in the current, we just need to replace Z with I.  

 

The reduction in time taken for the simulation with respect to the conventional MoM, 

dented in here as t∆  will also be studied and is given as  

 

MoM

t MoM

T T

T

−
∆ = , (3.27) 

where MoMT  is the time taken to compute a problem using conventional MoM. 

 

3.8.1 Bandpass Filter 

 

 

Fig 3.8: Photograph of the fabricated Chebyshev bandpass filter. 

 

Table 3.1: Specifications of the Chebyshev bandpass filter. 

 

Center frequency 2.4 GHz 

3 dB bandwidth  240 MHz 

Maximum ripple < 0.1 dB 

S21 at center frequency As high as possible 

 

In order to verify the accuracy of the macro-basis function with progressive method 
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and show that the proposed iterative refinement process converges to the correct 

solution, we first consider a Chebyshev bandpass filter where the smallest gap 

between the coupled lines is 10 mil. The specifications of the microstrip Chebyshev 

Bandpass filter are given in Table 3.1: 

 

The photograph of the fabricated Chebyshev bandpass filter is shown in Fig 3.8. The 

dimensions of the filter are given in Fig.3.9. The substrate has permittivity rε =2.31 

with a loss tangent of 0.001 and a thickness of 31.5 mil. Rooftop basis function is 

used to discretize the bandpass filter with 850 unknowns. For 2 port circuit problems, 

2 linearly independent excitations are required for 2 port network if the filters are 

analyzed with open load simulation. However if matched load termination is adopted, 

only one port needs to be excited. Thus the time taken to solve the problem is 

reduced. 

 

The dash lines in Fig.3.9 (a) show one possible way of dividing the filter into seven 

elements. For the bandpass filter, the strongest coupling is between the coupled lines. 

In order to verify that the macro-basis function with progressive method can calculate 

the coupling accurately, the elements are purposely chosen to separate the strongest 

coupling. A small domain consists of S1, S6 and S7 is depicted in Fig.3.9 (b). The 

interactions among the sub-domains are first computed and stored in a matrix which is 

then used repeatedly during the computation process. 
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Fig.3.9: Chebyshev Bandpass Filter. (a) Layout of the bandpass filter. (b) Small 

domain of the bandpass filter. L=22.45, W=1.27, G1=0.254, G2=1.17 and G3=1.32. All 

dimensions are given in mm. 
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(a) Initial current on the sub-domains computed from MBF-PM. 
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(b) Initial current on the sub-domains computed from SED. 
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(c) Initial current on the sub-domains computed from SMA. 

 

Fig.3.10: Comparison of the initial current on the bandpass filter under various 

methods: macro-basis function with progressive method (MBF-PM), sub-domain 

multilevel approach (SMA), sub-entire-domain (SED) and conventional MoM. 

 

Fig.3.10 (a) compares the initial currents computed from the macro-basis function 

with progressive method (MBF-PM) and the conventional MoM at 2.4 GHz. It is 

observed that the shape of the initial currents on the sub-domains resembles the 

correct current (computed from the conventional MoM) except at the sharp variations 

as depicted in the inset of Fig.3.10 (a) which can be corrected in the iterative 

refinement process. As the initial currents are already very close to the correct current 

with a relative error of 10.1%, less iterative sweeps are expected to yield the needed 

accuracy. For SED method, the current on S6 (computed from the small domain in 

Fig.3.9 (b)) will be used for S2 to S5 as depicted in Fig.3.10 (b). In SMA method, the 

initial current on the isolated sub-domain S1 is first computed and the current on the 

rest of the sub-domains are generated from this solved current. The initial current 

obtained from SMA method is shown in Fig.3.10 (c). It is noted in Fig.3.10 that 

among the three methods, MBF-PM gives the best accuracy for the initial current 
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which is attributed to the new grouping concept of near-far neighbour evaluation. 

 

Table 3.2: Comparison of the relative errors in the current distribution, time reduction 

with respect to the conventional MoM without any iterative sweep. 

 

 MBF-PM SED [55] SMA [50] 

MoM

2
e MoM

2

I I

I

−
∆ =  6.4% 12.8% 22.9% 

MoM

t MoM

T T

T

−
∆ =  56.2% 56.4% 56.9% 

 

Table 3.2 summarizes the relative errors in the currents, e∆  and the time reduction 

t∆  computed from MBF-PM, SED and SMA without iterative refinement process. 

Even though MBF-PM has the slowest computational time, it gives the best accuracy 

with a relative error of 6.4%. For SED and SMA, the relative errors are larger than 

10%. Thus, iterative refinement process is required to improve the accuracy.  

 

Iterative process A and iterative process B discussed in Section 3.7 are investigated in 

this example. In order to demonstrate the effectiveness of the iterative processes, they 

are applied directly to the initial current (refer to Fig.3.10). Fig.3.11 shows the current 

coefficients with respect to the numbering of the basis functions on the bandpass filter 

after one iterative sweep using iterative process A and iterative process B. For the 

proposed iterative process B, the curves computed from MBF-PM, SED and SMA 

converge to the correct current (conventional MoM) after one iterative sweep. 

However, for iterative process A, the deviation between SMA and the correct current 

is approximately 99%. The accuracy of the proposed iterative process B is better than 
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iterative process A.  

 

  

(a) Iterative Process A 

  

(b) Iterative Process B 

 

Fig.3.11: Comparison of the current coefficients among the macro-basis function with 

progressive method (MBF-PM), the sub-entire-domain basis function method (SED), 

the sub-domain multilevel approach (SMA) and the conventional MoM with respect 

to the numbering of the rooftop basis function on the bandpass filter after 1 iterative 

sweep. 

 

The performances of the two iterative processes are further studied on MBF-PM and 

SMA. Fig.3.12 shows how the iterative error in (3.11) diminishes with increasing 

number of iterative sweeps for iterative process A and iterative proces B on MBF-PM 

and SMA. Iterative process A seems to work better when the initial current is closer to 
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the actual value. For a 1 by 5 linear series-fed array investigated in Section 3.8.2, we 

find that iterative process A does not converge even after 30 iterative sweeps.  

 

Fig.3.13 shows the accuracy of the current during iterative process A and iterative 

process B. Generally MBF-PM only requires one iterative sweep from iterative process 

B to give a relative error of about 0.1%. Table 3.3 summarizes the performance of 

iterative process A and iterative process B. Since more iterative sweeps are required for 

iterative process A, its computational time will be slower than iterative process B. 

Hence, iterative process B is chosen to perform the iterative refinement process.  

 

 

Fig.3.12: Convergence of the solution with respect to the number of iterative sweeps. 
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Fig.3.13: Relative error of the current with respect to the number of iterative sweeps. 

 

Table 3.3: Comparison of the time reduction with respect to conventional MoM and 

number of iterative sweeps subject to ξ  < 0.2% and the relative error in current, 
e∆  

is 0.09%  

 

Iterative Process A 
Iterative Process B 

(Proposed)  

MBF-PM SMA [50] MBF-PM SMA [50] 

No. of iterative sweep 

subject to ξ  < 0.2% 
3 7 2 3 

MoM

t MoM

T T

T

−
∆ =  53.4% 50.4% 54.4% 54.1% 

 

Figs 3.14 and 3.15 show the condition number and the spectral radius of the matrix 

stages respectively. The definition of the matrix stages are depicted in Table 3.4. When 

no iterative refinement process is carried out, the condition number for SMA is 

approximately 1e8 with spectral radius of 0.37 while the condition number for 

MBF-PM is around 1e5 with spectral radius of 0.029. At the start of each iterative 

sweep, large condition number of approximately 3.69e7 and spectral radius of 1 are 
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observed for both SMA and MBF-PM. This is because matched load termination (refer 

to equation (2.75)) is employed to analyze the bandpass filter. For SMA, the initial 

current on S3 to S5 (refer to Fig.3.10 (c)) is closed to zero. Thus, it does not have 

significant effect on the matrix. As a result, the condition number for matrix stages 3 

and 4 are small. It is observed that the condition number and the spectral radius of 

MBF-PM converge after one iterative sweep as indicated by the repetition of the curve 

in iterative sweeps 2 and 3. Thus, one can conclude that MBF-PM gives a better 

convergence. 

 

Fig.3.14: Condition number of the bandpass filter versus the matrix stages. 

 

Fig.3.15: Spectral radius of the bandpass filter versus the matrix stages. 
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Table 3.4: Definition of the matrix stages. 
 

Matrix Stages  

 
Iterative Process B 

(Refer to Fig for the procedure) 

No Iteration 
Iterative 

sweep 1 

Iterative 

sweep 2 

Iterative 

sweep 3 

Matrixes Diagrams 

1 9 17 25 

11 1 2 1 3 1 4 1 5 1 6 1 7

2 1 22 23 24 25 26 27

3 1 32 33 34 35 36 37

4 1 42 43 44 45 46 47

5 1 52 53 54 55 56 57

6 1 62 63 64 65 66 67

7 1 72 73 74 75 76 77

Z Z M Z M Z M Z M Z M Z M

M Z M M M M M M

M Z M M M M M M

M Z M M M M M M

M Z M M M M M M

M Z M M M M M M

M Z M M M M M M

 
 
 
 
 
 
 
 
 
 
 

 

 

 2 10 18 77Z    

 

 3 11 19 
66 6 7

7 6 77

Z Z M

M Z M

 
 
 

 

 

 4 12 20 
55 5 6 5 7

6 5 66 67

7 5 76 77

Z Z M Z M

M Z M M

M Z M M

 
 
 
  

 

 

 5 13 21 

44 4 5 4 6 4 7

5 4 55 56 57

6 4 65 66 67

7 4 75 76 77

Z Z M Z M Z M

M Z M M M

M Z M M M

M Z M M M
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 6 14 22 

33 3 4 3 5 3 6 3 7

4 3 44 45 46 47

5 3 54 55 56 57

6 3 64 65 66 67

7 3 74 75 76 77

Z Z M Z M Z M Z M

M Z M M M M

M Z M M M M

M Z M M M M

M Z M M M M

 
 
 
 
 
 
 
 

 

 

 7 15 23 

22 2 3 2 4 2 5 2 6 2 7

3 2 33 34 35 36 37

4 2 43 44 45 46 47

5 2 53 54 55 56 57

6 2 63 64 65 66 67

7 2 73 74 75 76 77

Z Z M Z M Z M Z M Z M

M Z M M M M M

M Z M M M M M

M Z M M M M M

M Z M M M M M

M Z M M M M M

 
 
 
 
 
 
 
 
  

 

 

 

Zij refers to the sub-matrix that is associated with the subsectional basis functions on sub-domains Si and Sj. 

 

ZiMj refers to the sub-matrix that is associated with the subsectional basis functions on sub-domain Si and the macro-basis function on 

sub-domain Sj 

 

Mij refers to the sub-matrix that is associated with macro-basis function on sub-domain Si and the macro-basis function on sub-domain Sj 

 

 

 

Shaded sub-domain indicates that the current on the sub-domain is merged into MBF. 
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Fig.3.16: Reflection coefficients of the bandpass filter. 

 

The structure has been analyzed using the commercial software, IE3D [62], the 

conventional MoM and MBF-PM. The S-parameters obtained are shown in Fig.3.16. 

The results computed from the conventional MoM agree very well with those 

computed from MBF-PM. The slight discrepancy between the results obtained from 

MBF-PM and the measured results is mainly attributed to the number of quadrature 

points used in the evaluation of the MoM matrix. Overall, the trend of the results is in 

good agreement with the measured results. A summary table comparing the 

specifications and the measurements of the bandpass filter is given below in Table 3.5. 

 

Table 3.5: Comparison between the specifications and the measurements of the 

bandpass filter. 
 

 Unit Specifications Measurements 

BW % % 10 10 

Center Freq GHz 2.4 2.4 

S21 at 2.4 GHz dB As high -1.96 

Ripple dB <0.1dB 0.005 
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3.8.2 Linear Series-fed Array 
 

             

(a) 

 

(b) 

Fig.3.17: 1 X 5 linear series-fed antenna arrays. (a) 1 X 5 linear series-fed 

antenna array with no tapering (Array A). (b) 1 X 5 linear series-fed antenna array 

with tapering (Array B). All dimensions are in mm. 

 

 

(a) 

 

(b) 

Fig.3.18: Mesh of the 1 X 5 linear series-fed antenna arrays. (a) 1 X 5 linear series-fed 

antenna array with no tapering (Array A). (b) 1 X 5 linear series-fed antenna array 

with tapering (Array B). 

 

We will next investigate a 1 by 5 linear series-fed array with uniform excitation 

(Array A) and a 1 by 5 linear series-fed array with non-uniform excitation (Array B) 

as shown in Fig.3.17 (a) and (b) respectively. The arrays are implemented on substrate 

with permittivity rε =2.2 and a thickness of 1.59 mm. The arrays are densely meshed 

as depicted in Fig.3.18. The number of unknowns for Arrays A and B are 1334 and 
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1025 respectively. The design of the linear series-fed array is discussed in Section 

3.8.4. The specifications of the arrays are in Table 3.6. 

 

Table 3.6: Specifications of the series-fed array. 

 

Center frequency 9.25 GHz (Radiolocation System) 

Impedance Bandwidth for VSWR < 2 5% 

Gain at the center frequency 13 dBi 

Side-lobes < -13 dB 

3 dB Beamwidth < 20
0
 

 

In this example, we integrate the adaptive integral method described in Section 3.8 

into the macro-basis function with progressive method. The new hybrid method is 

called the macro-basis function with progressive and adaptive integral method 

(MBF-PM-AIM). The AIM grid spacing is λ/10.  

 

The first step in employing segmentation methods is to partition a problem into 

several sub-domains. The macro-basis function with progressive and adaptive integral 

method is carried out for 7 different cut positions along the feed line at a distance, d, 

from the discontinuity edge, where d= 0.16 λ, 0.18 λ, 0.21 λ, 0.24 λ, 0.26 λ, 0.29 λ 

and 0.32 λ as shown in Fig.3.19. In Fig.3.20, the relative errors of the current at 

different cut positions are shown. The current is computed from MBF-PM-AIM with 

one iterative sweep. The minimum error of 1.5% occurs at 0.21λ. The error increases 

as the cut position approaches the discontinuity edges. Thus, one should avoid cutting 

the problem near discontinuity junction.  
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Fig.3.19: Cut Position, d from the discontinuity edge. 

 

 

Fig.3.20: Relative error of the current as a function of the cut position d for a 1 by 5 

antenna array. 

 

When implementing MBF-PM-AIM, one has to consider how many sub-domains to 

use for the construction of the small domain. Two small domains, A and B, for Array 

A are studied. Small domain A consists of Patches 1 and 2 while small domain B is 

made up of Patches 1, 4 and 5. The rest of the sub-domains are then inserted into the 

small domain progressively as described in Section 3.5. Table 3.7 shows the 

comparison of the relative errors and the CPU time for the two small domains when 

implemented in MBF-PM-AIM. Even though small domain B gives a better accuracy 
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than small domain A, its computation time is faster than small domain A by 7.2 

seconds. After one iterative sweep, the deviation in the relative error between small 

domains, A and B is only 0.08%. Hence, it is more efficient to carry out 

MBF-PM-AIM with small domain A. 

 

Table 3.7: Comparison of the relative error and the CPU time between small domains 

A and B when applied to MBF-PM-AIM. 

 

MBF-PM-AIM 
 Small Domain A 

(Patches 1, 5) 

Small Domain B  

(Patches 1, 4, 5) 

Array A (without iterative refinement process) 

MoM

2
e MoM

2

I I

I

−
∆ =  12.81% 10.1% 

CPU Time 109.1 sec 116.3 sec 

Array A (with 1 iterative sweep) 
MoM

2
e MoM

2

I I

I

−
∆ =  1.5% 1.42% 

CPU Time 114.6 sec 121.8 sec 

 

 

Table 3.8: Comparison of the relative error in the current under various methods 

without iterative refinement process. 

 

Relative error,

MoM

2
e MoM

2

I I

I

−
∆ =  Arrays 

 

MBF-PM MBF-PM-AIM SED [55] SMA [50] 

Linear Series-fed array with uniform excitation 

1314 

(1 X 5) 
11.9% 12.8% 28.1% 71.2% 

3737 

(1 X 14) 
17.6% 18.4% 40.1% 80% 

Linear Series-fed array with non-uniform excitation 

1080 

(1 X 5) 
14.69% 15.4% - 71.1% 

(* For linear series-fed array with non-uniform excitation, SED method is not 

applicable.) 
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Tables 3.8 shows the relative error among MBF-PM, MBF-PM-AIM, SED and SMA 

respectively. There is a tremendous improvement in the accuracy of MBF-PM as 

compared to SED and SMA. By inspecting the tables, we observe that SMA has the 

largest relative errors of 71.2% and 80% for a 1 by 5 antenna array with uniform 

excitation and a 1 by 14 antenna array with uniform excitation respectively. MBF-PM 

gives a slightly better accuracy than MBF-PM-AIM by approximately 1%. Even 

though the proposed methods give better accuracy, the relative errors are still larger 

than 10%.  

 

 

Fig.3.21: Relative error of the current versus the number of iterative sweeps. 

 

In order to improve the accuracy, iterative refinement process is required. Fig.3.21 

shows the relative error of the current during the iterative process for a 1 by 14 

antenna array. It is observed that MBF-PM-AIM requires only one iterative sweep to 

give a relative error of the current less than 1.4% while SMA and SED require at least 

4 iterative sweeps to give the same error.  

 

Table 3.9 summarizes the performance of MBF-PM-AIM, SED and SMA with 
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iterative process B. We observe that MBF-PM-AIM has the fastest computational 

time as compared to the other two methods. For a 1 by 14 antenna array with uniform 

excitation, MBF-PM-AIM has an improvement of around 56% in the computational 

time as compared to SMA. For a 1 by 5 antenna array with non-uniform excitation, 

the computational time for MBF-PM-AIM is faster than SMA by 29.3%. It is 

expected that as more non-identical patches are added to the array, the time saved for 

MBF-PM-AIM will be greater. MBF-PM-AIM has demonstrated a less memory usage 

as compared to the other two reported method. Thus, we can conclude that 

MBF-PM-AIM is a very competitive approach to solve large and non-identical 

structure and its gain in computational time increases with the number of unknowns. 

 

Table 3.9: Comparison of the reduction in time and memory usage under various 

methods with iterative refinement process subject to 
e 1.5%∆ ≤ . 

 

Time reduction, 
MoM

t MoM

T T

T

−
∆ = subject to e 1.5%∆ ≤  

Arrays 

MBF-PM-AIM SED [55] SMA [50] 

Linear Series-fed array with uniform excitation 

1314 

(1 X 5) 
57.3% 51.4% 51.5% 

No of iterative sweeps 1 2 2 

Memory (MB) 66 71 71 

CPU Time 114.6 sec 130.4 sec 130.2 sec 

3737 

(1 X 14) 
90.7% 78.8% 78.9% 

No of iterative sweeps 1 4 4 

Memory (MB) 66 92 92 

CPU Time 137.3 sec 313 sec 311.5 sec 

Linear Series-fed array with non-uniform excitation 

1025 

(1 X 5) 
30.3% - 1.2% 

No of iterative sweeps 1 - 2 

Memory (MB) 67  72 

CPU Time 92.7 sec - 131.2 sec 

(* For linear series-fed array with non-uniform excitation, SED method is not 

applicable.) 
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Table 3.10: Comparison of the CPU time, the number of MBFs generated and the 

relative errors between MBF-PM, MBF-PM-AIM and characteristics basis function 

(CBF). 

 

1 X 14 Array (3737 unknowns) 

 MBF-PM MBF-PM-AIM CBF [96] 

CPU Time 

Block matrices 287.5 sec N. A 287.5 sec 

Generation of MBFs and 

solving the reduced matrix 
12.18 sec 137.3 sec 65.03 sec 

Total Time 299.68 sec 137.3 sec 352.56 sec 

Number of MBFs generated 13 13 169 
MoM

2
e MoM

2

I I

I

−
∆ =  1.1% 1.18% 2% 

(* For MBF-PM-AIM, one does not need to generate the block matrices.) 

 

Table 3.10 shows the comparison of the results computed from MBF-PM, 

MBF-PM-AIM and the characteristic basis function (CBF) [98] for a 1 by 14 antenna 

array. The antenna is partitioned into 14 sub-domains. In the characteristic basis 

function, the primary CBF, the second-order and third-order coupling (secondary 

CBFs) are generated which lead to 169 CBFs while MBF-PM only generates 13 

MBFs. The computational time involved in the methods are examined. For MBF-PM 

and CBF, there are two main stages in the methods, namely, the interaction of the 

sub-domains and the generation and solving of the reduced matrix. The CPU times for 

these stages are presented in the table. It is observed that the total CPU time for 

MBF-PM is 52.88 seconds faster than CBF. For MBF-PM-AIM, the total CPU time is 

approximately 40% faster than CBF. 

 

Fig.3.22 gives the comparison of the CPU time using MBF-PM-AIM, MBF-PM and 

the conventional MoM. We note that the CPU time for MBF-PM-AIM becomes more 

efficient as the number of unknowns increases. Their memory requirements are 
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illustrated in Fig.3.23. For 3737 unknowns, MBF-PM-AIM has demonstrated 71.3% 

less memory usage as compared to conventional MoM.  

 

Fig.3.22: Comparison of CPU time among MBF-PM-AIM, MBF-PM and the 

conventional MoM. 

 

 

Fig.3.23: Comparison of Memory Usage among MBF-PM-AIM, MBF-PM and the 

conventional MoM. 
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Fig.3.24: Comparison of the current along the line AA’ for Array A among 

MBF-PM-AIM, MBF-PM and the conventional MoM with the proposed iterative 

refinement process after 1 iterative sweep. 

 

Fig.3.24 compares the computed current obtained from MBF-PM-AIM and the 

conventional MoM for Array A at 9.25 GHz. The current shown is along the center of 

the Array A, AA’ (refer to Fig.3.17 (a)). After one iterative sweep, the three curves 

practically give the same result as shown in Fig.3.24.  

 

Table 3.11: Comparison of the relative error of the input impedance between 

MBF-PM and MBF-PM-AIM. 

 

Relative error, 

MoM
input input

2
e MoM

input
2

Z Z
100

Z

−
∆ = ×  

Series-fed array 

(N) 

MBF-PM MBF-PM-AIM 

1334 

(1 X 5) 
0.66% 0.84% 

1620 

(1 X 6) 
0.39% 0.86% 

1868 

(1 X 7) 
0.46% 0.64% 

2135 

(1 X 8) 
0.56% 0.83% 

3737 

(1 by 14) 
0.72% 0.87% 

 

Table 3.11 shows a comparison of the relative error of the input impedance between 
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MBF-PM and MBF-PM-AIM. MBF-PM-AIM yields satisfactory results with relative 

errors below 0.9%. 

 
Fig.3.25: Reflection coefficients of Array A and Array B. 

 

Fig.3.25 depicts the return loss of Array A using the conventional MoM, MBF-PM, 

MBF-PM-AIM and IE3D. The result obtained under MBF-PM is practically the same 

as in the case of the result obtained under the conventional MoM. The return loss of 

Array B computed with MBF-PM-AIM is also depicted in the figure. Both arrays 

have an impedance bandwidth of approximately 5.4%. Fig.3.26 (a) and (b) show the 

computed radiation patterns in the E-plane and H-plane of Array A respectively. 

Fig.3.27 (a) and (b) show the computed radiation patterns in the E-plane and H-plane 

of Array B respectively. From Fig.3.26, it is observed that the results obtained from 

MBF-PM-AIM are in good agreement with the results computed from the 

conventional MoM. The slight discrepancy between the results obtained from 

MBF-PM-AIM and those from the commercial software, IE3D is mainly attributed to 

the number of quadrature points used in the evaluation of the MoM matrix. Array A 

has a 3 dB beamwidth of 13
0 

in the E-plane, a side-lobe level of -10 dB and a 
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broadside gain of 14 dBi at 9.25 GHz. Array B has a 3 dB beamwidth of 18.3
0
 in the 

E-plane with a side-lobe level of -15 dB and a broadside gain of 13.6 dBi at 9.25 GHz. 

Compared to Array A, the lowering of the side-lobe levels and the broadening of the 

beamwidth for Array B are attributed to the tapering of the amplitude distribution of 

the antenna elements. 

 
 

(a) 

Array A

 
(b) 

Fig.3.26: Radiation Patterns of Array A. (a) E-plane (b) H-plane 
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(a) 

 

(b) 

Fig.3.27: Radiation Patterns of Array B. (a) E-plane (b) H-plane 
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3.8.3 Bowtie Dipole Array 

 

 
 

Fig.3.28: Bowtie dipole array  

 

We next consider an 8 by 8 dual polarized bowtie dipole array as shown in Fig.3.28 

with the spacing of Gx=0.075 λ  and Gy=0.075 λ , where the coupling among all the 

elements are strong. The specifications of the array are given in Table 3.12. 

 

Table 3.12: Specifications of the bowtie dipole array. 
 

Center frequency 150 MHz  

Gain at the center frequency 13 dBi 

Side-lobes < -13 dB 

3 dB Beamwidth < 25
0
 

 

The size of the bowtie array element is 0.45 X 0.5 m with flare angle at 90
0
. Each 

bowtie is discretized into 30 sub-triangles with the help of RWG basis function 

leading to 2240 unknowns. There are 35 unknowns for each bowtie. The bowtie is 

center-fed, with a feeding edge located exactly in the middle junction. The elements 



 96 

are numbered from one corner of the array to the opposite corner, first along y then 

along x.  

 

An 8 by 4 array problem is first carried out directly using the conventional MoM. The 

rest of the elements are then inserted into the problems. The solved currents on each 

element are then merged into MBFs. In the patterns shown below, uniform excitation 

is considered. The results are compared with those from the conventional MoM. 

 

Fig.3.29 shows the comparison of the current coefficients computed using the 

conventional MoM, the macro-basis function with progressive method (MBF-PM), 

the sub-entire-domain (SED) basis function method and the sub-domain multilayer 

approach (SMA) at 150 MHz with respect to the basis function on elements 28 and 37. 

In this example, a small domain made up of a 4 by 4 antenna array is used for SED. 

The current on the internal elements of the small domain is then used to represent the 

current on the interior elements of the array while the current on the edge and corner 

are used as the corresponding edge and corner of the array. By inspecting the current 

on elements 28 and 37, it is observed that MBF-PM is able to capture the trend of the 

current more accurately than SED and SMA. Table 3.13 compares the relative errors 

in the current and the time reduction with respect to the conventional MoM computed 

using the three methods without any iterative refinement techniques. In this example, 

only the interactions between the first sub-domain and other sub-domains need 

computing. The interactions are then stored in a matrix and used repeatedly to express 

the interactions among other blocks. The time for generating the MBFs is reduced 

dynamically. Although MBF-PM has the slowest computation time, it has the smallest 

relative error (13.72%). SED has the largest relative error of 35.24%. Thus, for brevity, 
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we will only study the radiation patterns computed from MBF-PM and SMA as they 

give lower relative errors in current. 

 

Table 3.13: Comparison of the relative errors in current and time reduction with 

respect to the conventional MoM for the bowtie array without iterative refinement 

process. 

 

 MBF-PM SED [55] SMA [50] 

MoM

2
e MoM

2

I I

I

−
∆ =  13.72% 35.24% 24.83% 

MoM

t MoM

T T

T

−
∆ =  94.3% 95.4% 97.8% 

 

Table 3.14: Summary of the radiation patterns of the bowtie array. 

 

 MoM MBF-PM SMA [50] 

Broadside Gain (dBi) 

XZ-plane 14.48 14.66 13.9 

YZ-plane 14.18 14.32 14.85 

3 dB Beamwidth 

XZ-plane 25
0
 25

0
 23.6

0
 

YZ-plane 22
0
 22

0
 24.6

0
 

Root mean square deviation (dB) 

XZ-plane 0 1.03 3.72 

YZ-plane 0 0.92 3.08 

Maximum deviation(dB) 

XZ-plane 0 3.4 26 

YZ-plane 0 2.36 8.06 

 

Table 3.15: Root mean square deviation and maximum deviation from the 

conventional MoM after one iterative sweep. 

 

 MBF-PM SMA [50] 

Root mean square deviation (dB) 

XZ-plane 0.53 0.82 

YZ-plane 0.64 1.87 

Maximum deviation (dB) 

XZ-plane 2.5 6.52 

YZ-plane 1.21 4.52 
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Fig.3.30 (a) and (b) show the radiation patterns of the array at 150MHz in the 

XZ-plane and YZ-plane respectively. By inspecting Fig.3.30 (b), it is observed that 

the side-lobe level computed from SMA deviates from the conventional MoM by 

approximately 46%. Table 3.14 summarizes the performance of the radiation patterns 

computed from the conventional MoM, MBF-PM and SMA. The root mean square 

deviations of the radiation patterns from the conventional MoM are also included in 

the table. Generally, MBF-PM and SMA give good predictions on the broadside gain 

and the 3 dB beamwidth with a maximum relative error of 4.7% with respect to the 

conventional MoM. However, MBF-PM gives a smaller root mean square deviation 

of the radiation patterns with a maximum deviation of 3.4 dB than SMA, which has a 

maximum deviation of 26 dB. The accuracy of MBF-PM is better than SMA by 

approximately 3 times. Even though the accuracy for both MBF-PM and SMA has 

improved after one iterative sweep as shown in Table 3.15, MBF-PM still gives 

smaller errors. Our proposed method provides accuracy comparable to the 

conventional MoM and yields more than 90% reduction in time.  
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(a) 

 

(b) 
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Numbering of the RWG

basis functions

 

(c) 

 

(d) 

Fig.3.29: Comparison of the current coefficients among the macro-basis function with 

progressive method (MBF-PM), the sub-entire-domain basis function method (SED), 

the sub-domain multilevel approach (SMA) and the conventional MoM with respect 
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to the RWG basis functions on elements 28 and 37 of the bowtie array. The 

numbering of the RWG basis functions is shown in the insets. 

 

 

(a) 

 

(b) 

Fig.3.30: Radiation patterns of the bowtie array at 150MHz (without iterative process) 

(a) XZ-plane (b) YZ-plane. 

 

 



 102 

3.8.4 Design of 24GHz Antenna Array 
 

 

 

Fig.3.31: Photograph of the 24 GHz antenna array. 

 

As a final example, a 24 GHz antenna array is studied. Based on the most recent 

standard of ETSI EN 302 288-1 V1.1.1 (2005-01) defined in January 2005 [103], the 

24 GHz antenna can be used in automotive industry. MBF-PM-AIM is used to design 

a 24 GHz antenna array.  

 

The initial dimensions of the array were obtained using a CAD program [102]. With 

the initial values, the 24 GHz antenna array was optimized with proposed method and 

verified by the commercial software, IE3D. The antenna was then fabricated on a 

RT/Duroid 5880 substrate as shown in Fig.3.31. The substrate has a permittivity of 

2.2, a loss tangent of 0.0004 and a thickness of 10 mil. The results of our method are 

compared with IE3D and the measured results.  
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3.8.4.1   Design Procedure 

 

The specifications of the antenna array are given in Table 3.16. 

Table 3.16: Specifications of the 24 GHz antenna array. 
 

Center frequency 24 GHz (Automotive System) 

Impedance Bandwidth for VSWR < 2 2% 

Gain at the center frequency 24 dBi 

Side-lobes < -13 dB 

3 dB Beamwidth < 15 

 

The design procedure is described as follows: 

(i) Patch dimension and feed line width 

The patch dimension is calculated using the well known equations for rectangular 

patch antennas [104]. For patch width, 
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where c is the velocity of light in free space. 

 

For patch length, 
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where eε  is the effective permittivity and is given by 
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and L∆  is the line extension due to the fringing fields given as 
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In order for the patches to operate like antennas, the feed line width should be a small 

fraction of the antenna width. Otherwise, significant blockage of the radiating edges 

occurs. The feed line must be small compared to the narrowest patch. On the other 

hand, extremely narrow lines suffer from high losses. Some compromise is necessary. 

In this case, a 90Ω line will be used. 

 

(ii) Linear series-connected array 

An array with a uniform excitation produces the narrowest possible beamwidth along 

with the highest side-lobe level. Sometimes it is necessary to reduce the side-lobe 

level. High side-lobe level can increase interference or result in spurious signal 

reception. The side-lobe level is reduced by introducing a taper in the amplitudes of 

the elements. When tapering the amplitude distribution, the excitation is highest at the 

center of the array and then decreases toward the edge. For series-mounted patches, 

the amplitude of the element excitation is controlled by varying the patch width. The 

patch width can be determined by finding the excitation coefficients. From the 

excitation coefficients, one can obtain element conductances, leading to the patch 

width values. The method used in the CAD [102] is briefly discussed below. 

 

 

(a) 
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(b) 

 

(c) 

Fig.3.32: Equivalent circuit of a series-connected patch array. 

 

The equivalent circuit of the series-connected patch array (refer to Fig.3.32 (a)) is 

shown in Fig.3.32 (b). The feed line consists of alternating sections. One is the narrow 

line connecting adjacent patches, and the other is the patch itself. The patch edges 

have a shunt capacitance associated with the fringing fields. Each patch places two 

conductances and capacitors across the feed line. The closed-form expression for the 

edge conductance, g [105] is 

 

2

2 2
0

2 3

sin(w) s
wSi(w) cos(w) 2 1

w 241
g

s 1 cos(w) sin(w)

12 3 w w
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, (3.32) 

where s=k0W, W is the patch width, Si(w) is the sine integral, and s=k0ΔL. Since the 

patch is nominally a half-wavelength long, the line in between patches is also a 

half-wavelength long. The characteristic impedance of the patch line is much lower 
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than that of the interconnect. The capacitors can be removed by replacing the physical 

length of the patch with an equivalent length that includes the end-effect extensions. 

The voltages across the input and output edge conductances are equal but out of phase. 

Each edge absorbs essentially the same power. The equivalent circuit can be further 

simplified by combining the edge conductances as in Fig.3.32 (c). The patches are 

now represented by a shunt conductance of twice the edge value. A fictitious line 

connects the patches. It must be emphasized that Fig.3.32 (c) is an extremely 

simplified representation that should only be used to find the element conductances. 

 

The voltage across all the elements is the same because of the wavelength spacing. 

The power absorbed by the nth element is  

 2

n nP V g= , (3.33) 

where V is the voltage across each element. The far field radiated by the n
th

 element is 

 
n e n

(2n 1)
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2

− 
= θ  

. (3.34) 

The power radiated by the element is proportional to the field squared, for example, 

 2 2

n n nP E a∝ ∝ . (3.35) 

This power is related to the amplitude excitation distribution, an. The absorbed power 

must equal the power radiated, ignoring the usually negligible losses in the antenna. 

From this conservation of power argument, the element conductance, 
ng  must be 

proportional to the amplitude distribution squared expressed as 

 2

n ng Ka= , (3.36) 

where K is the constant of proportionality. Since the elements are spaced a 

wavelength apart and the conductances are normalized, the input conductance to the 

array is the sum of all the element conductances, 
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K is found by combining equation (3.36) with equation (3.37) as 
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The excitation amplitudes distribution can be determined with Dolph-Chebyshev 

distributions [4]. The relative current distribution for an array with 2N+1 elements is  
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and for an array with 2N elements is 
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where u0 is determined from Tm(u0)=b in equation (3.41), with b fixed by the desired 

side-lobe level. The order m of the Chebyshev polynomial, Tm is always one less than 

the total number of elements and is given by 
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Finally, the amplitude excitation distribution for 2N and 2N+1 elements are given by 

n
n

1

I
a

I
=  and n

n

0

I
a

I
= respectively. Substituting an into equation (3.38), one can 

determine K. After K has been found, it is possible to find the required element 

conductance. The conductance can then be linked to the patch width.  

 

(iii) Planar series-connected array 

For a larger two dimensional array, the vertical feed line does not have to be as high in 

impedance as for the linear series-fed array. There is no concern about blockage of the 
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radiating element. The feed line length between rows of arrays is equal to a 

wavelength in the feed line. 

 

3.8.4.2   Simulations and Measurements 

 

The array is densely meshed at 24 GHz, which leads to a large number of N=31,087 

basis functions. The final dimensions of the array are shown in Fig.3.33. The mesh of 

the array is depicted in Fig.3.34. Since the distance between each row of arrays is 

approximately a wavelength, the structure can be split into eleven parts: the feed 

network (root domain) and ten rows of arrays with each row merging into MBF. Each 

row is further decomposed into fourteen sub-domains in which the MBF on each row 

is solved by adopting macro-basis function with progressive and integral adaptive 

method. The small domain requires by the MBF-PM-AIM consists of the first three 

and the last sub-domains. To speed up the computation of the MBF reaction terms, the 

MBF on each row is projected to its corresponding rectangular grid. By exploiting the 

translational invariance of the Green’s function, the interaction between the MBFs can 

be efficiently computed using fast Fourier transform.  

 

The computational time per frequency point is about 4.74 min when the proposed 

approach was applied to solve a 10 by 14 antenna array. For the commercial software, 

IE3D using AIMS II solver, the computational time for the same problem is 171.8 min 

per frequency and approximately 7 iterations are required for each frequency point.  
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Fig.3.33: Layout of the 10 X 14 antenna array. d1=85.8, d2=9.2, W1=2.57, 

W2=0.8324, W3=0.3, W4=1.52, W5=1.72, W6=2.253, W7=2.987, W8=1.28, 

L1=1.85, L2=4.25, L3=0.67, L4=5.24, L5=4.39, L6=4.2. All dimensions given in mm. 

Printed on substrate with εr=2.2 and h=0.254 mm. The dashed box defines how the 

sub-domains is subdivided. 

 

 

Fig.3.34: Mesh of the 10 X 14 antenna array. 
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Table 3.17: Comparison of the performances among MBF-PM-AIM, the sub-domain 

multilevel approach and the commercial software, IE3D.  

 

No of elements 10X14 10X20 

No of unknowns 31,087 44,628 

MBF-PM-AIM 

 Time (s) RAM (MB) Time (s) RAM (MB) 

MBF on each row 

Small domain 137 73 137 73 

MBF-PM-AIM 3.39 60 8 61 

1 iteration 12.16 60 24.95 63 

Feed Network (Root domain) 

 98 62 98 62 

Whole Structure (Root domain + 10 MBFs) 

 33.85 69 48.4 69 

Total Time and Peak Ram Required 

Total Time (s) 284.4 316.35 

Peak Ram (MB) 73 73 

Sub-domain Multilevel Approach [50] 

Total Time (s) 3177.2 3978.2 

Peak Ram (MB) 90 90 

IE3D (Solver: AIMII) 

Total Time (s) 10310 17850 

 

 

Table 3.17 shows the breakdown in computational time and RAM usage of the 

MBF-PM-AIM. The small domain for each row and the feed network are solved using 

the conventional MoM with direct solver. It is noted that most of the computation 

time is dominated by the small domain and the feed network. If the number of 

elements in each row is increased to 20, forming a 10 by 20 antenna array, the time 

taken to solve the array is 5.27 min, 0.53 min slower than the previous array. The 

RAM required for the MBF-PM-AIM is 73 Mb. The computational time for 

MBF-PM-AIM is 3661.85 seconds faster than the sub-domain multilevel approach. 

Fig.3.35 shows the CPU time consumption for the MBF-PM-AIM and IE3D versus 

the number of unknowns. The numbers of unknowns are 17870, 31087, 44628, 87780 

and 87780, which correspond to 4 by 20, 10 by 14, 10 by 20, 20 by 20 and 30 by 20 
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antenna arrays, respectively. For 87780 unknowns, the CPU time for MBF-PM-AIM 

is faster than the time taken for IE3D by 98.4% even though MBF-PM-AIM was 

coded in MATLAB 6.5 and direct solver was used instead of iterative solver. 

 

The reflection coefficients of the 10 by 14 antenna array (see Fig.3.36) computed by 

the various methods are shown in Fig.3.36. MBF-PM-AIM and IE3D show a good 

agreement with MBF-PM-AIM being in more advantageous computational time. 

These results are then verified by the measured data. The measured impedance 

bandwidth according to the 10 dB return loss is approximately 2.3% (23.6 GHz 

~24.15 GHz).  

 

 

Fig.3.35: Comparison of CPU time used in the proposed method and the simulation 

software, IE3D, for the 10 X 14 array. 
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Fig.3.36: Reflection coefficient of the 10 X 14 antenna array.  

 

 

Finally, we compare the computed and the simulated (IE3D) radiation patterns in the 

E-plane and H-plane to the measured data in Fig.3.37 (a) and Fig.3.37 (b) respectively. 

The far-field radiation patterns are measured in anechoic chamber. The computed and 

the simulated patterns show good agreement with the measured results. The half 

power beamwidths in the E-plane and H-plane are 5.5
0
 and 14

0
 respectively. The peak 

side-lobe levels are -13.5 dB for the E-plane and -20 dB for the H-plane. The 

measured peak gain is 24.4 dBi. As an end-fed array is used in the design and the 

array is not symmetrical along the horizontal directions, the side-lobe level in the 

E-plane is not balanced. When theta is between -90
0
 to -20

0
, the side-lobe level is 

approximately -27 dB. When theta is between 20
0
 to 90

0
, a side-lobe level of around 

-22 dB is achieved. More symmetrical pattern is observed in the H-plane. The slight 

deviation between the simulated and the measured results is due to the connector 

effect that is not taken into account in the simulation. As the antenna array is mounted 
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on the finite ground plane, the edge diffraction will affect the radiation pattern. In our 

simulation, an infinite ground plane is used in the simulation model. 

 

(a) 

 

(b) 

Fig.3.37: Radiation patterns of the 10 X 14 antenna array at f=24 GHz. (a) E-plane (b) 

H-plane 
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3.9  Conclusion 

In this chapter, a grouping concept of near-far neigbhour evaluation, which utilizes the 

macro-basis function with progressive method, is introduced to analyze microstrip 

structures. The macro-basis function with progressive method gives a better accuracy 

as compared to the sub-domain multilevel approach and the sub-entire-domain basis 

function. To further improve the accuracy of the solution, an iterative refinement 

process is developed.  

 

In a large electromagnetic problem, where the memory requirements and the 

computational time have already been significantly reduced using the macro-basis 

function with progressive method, the calculation of the MBF reaction terms remains 

the most time-consuming part of the procedure. Therefore, an efficient way of 

computing MBF reaction terms is introduced. The strategy for improving the 

computational time is based on translating the MBFs to grid nodes using multipole 

moments through the adaptive integral method. Fast Fourier transform is utilized to 

carry out the matrix-vector multiplication, leading to an improvement of around 

56.5% in MoM fill-in time as compared to the macro-basis function with progressive 

method for a 1 by 14 series fed array with 3737 unknowns.  

 

Examples given have shown that the computational time of the macro-basis function 

with progressive and adaptive integral method is faster than the conventional MoM. 

The gain in CPU time increases with the number of unknowns. It has been shown that 

for a 20 by 20 antenna array with 87780 unknowns, the CPU time computed from 

MBF-PM-AIM is 98.4% faster than the commercial software IE3D. In terms of 

accuracy, the proposed method compares well with the conventional MoM and IE3D
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Equation Chapter 4 Section 1 

CHAPTER 4   Design of Various Wideband 

Probe-Fed Microstrip Patch Antennas and Arrays 

 

4.1   Introduction 

Microstrip antennas have been widely used due to its distinct advantages like light 

weight and small size [5]-[6]. However, it is well known that the bandwidth of the 

microstrip antenna is very narrow. Antenna designers are constantly finding a way to 

fulfill the bandwidth requirements without affecting the other features of patch 

antennas, including their compactness. Many techniques [7]-[26] such as using thick 

and air-filled substrate have been developed to improve the bandwidth. However, the 

modern wireless communication systems significantly increase the bandwidth demand 

and new solutions have to be found. The goal of satisfying these new bandwidth 

requirements is usually accompanied by the practical requestment to keep the antenna 

overall dimensions compact. 

 

In the multipath environments, typical of mobile and cellular communication systems, 

the polarization purity of antennas mounted in terminal equipments does not represent 

a strong design constraint as the signal polarization on the receiving antenna is 

difficult to predict. Based on the statistical consideration, the channel’s impulse 
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response is virtually independent of the states of polarization of the transmitting and 

receiving antennas if there is no line-of-sight path between them [106]-[107]. 

Therefore high cross-polarization levels for the antenna do not worsen the radio-link 

performances. Instead, they represent a good choice for polarization diversity 

purposes. This opens the possibilities of improving the impedance bandwidth of the 

antenna by exciting higher order modes, whose resonant frequencies are closed 

together while keeping the antenna size compact. Every current mode by itself would 

produce an almost purely polarized radiated field. However, the strong coupling 

between two (or more) of them may represent a way to extend the impedance 

matching, at the tradeoff between polarization purity and impedance bandwidth. In 

the communication systems where polarization purity does not represent a constraint, 

exciting higher order mode can be enhanced which has led to current interest in 

employing polygonal patch for the design of compact antennas in multipath 

environments [107]-[108]. 

 

In this chapter, three new wideband probe-fed microstrip patch antennas based on 

polygonal shapes are studied. A wideband feeding mechanism, semi-circle probe feed 

is introduced. As multiple resonance technique is employed to improve the bandwidth 

of the antennas, the antennas have high cross-polarization. The designs can be 

extended to low cross-polarized applications through array configuration where 

elements are positioned in a back-to-back configuration. A probe-fed stub patch array 

with low cross-polarized is presented. 

 

The design of the antenna elements is carried out with the developed code and 

verified with the commercial software, IE3D. Both results give good agreement. For 
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the array design, in which the number of unknowns is large, our developed code had 

to be used. The standard we employ to characterize the operating bandwidth is the 

frequency range that is less than 10 dB return loss. The S-parameters are measured 

using an HP8510A network analyzer. The field radiation pattern and gain are obtained 

by measurements in a compact antenna test range with N5230A Antenna 

Measurement System. 

 

The chapter begins by briefly introducing the background of the development of 

probe-fed patch antennas. This will be followed by the design of wideband probe-fed 

patch antennas. Finally two probe-fed arrays are discussed. 

 

4.2  Overview of Wideband Probe-fed Microstrip Patch Antenna 

The microstrip patch antenna is basically a leaky cavity and therefore has narrow 

bandwidth, impeding their application in many systems. Hence the discussion on 

bandwidth-enhancement techniques will focus on input impedance. There are a 

number of ways in which the impedance bandwidth of probe-fed microstrip patch 

antennas can be enhanced. In this section, the approaches based on multiple 

resonances are characterized in terms of the antenna structures which include parasitic 

elements, slotted patches and shaped probes. 

 

4.2.1 Parasitic Elements [7]-[14] 
 

Ground

plane

Substrate

Parasitic Patch

Probe
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Fig. 4.1: Geometry of a probe fed microstrip antenna with edge-coupled parasitic 

patches. 

 

Fig. 4.2: Geometry of a probe feed stacked microstrip antenna. 

 

In order to enhance the impedance bandwidth of a patch antenna, multiple resonance 

technique has been employed. By adding parasitic elements either in the same layer [7] 

or different layer [8]-[14], the impedance bandwidth of a patch antenna can be 

increased to about 20-30% for VSWR <2. The basic idea is to introduce additional 

resonant patches to provide two or more closely spaced resonance. By doing so, a few 

closely-spaced resonances can be created. Fig. 4.1 shows a probe-fed antenna with 

edge-coupled parasitic patches. The designs of coplanar parasitic subarrays improve 

the impedance bandwidth and gain at the expense of size. They are simple to design 

and fabricate. Fig. 4.2 shows a stacked geometry consisting of one fed patch and a 

parastic patch on another layer. The method has the advantages of small projection 

size, wide impedance bandwidth and relatively stable radiation pattern over the 

frequency range. 

 

4.2.2 Slotted Patches [15]-[22] 

 

Fig.4.3: Geometry of a probe feed antenna with a U-slot. 
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It is important to keep the size of an antenna as small as possible while maintaining its 

performance. Coplanar parasitic subarray geometry has the disadvantage of increasing 

the size of the antenna, while stacked geometry has the disadvantage of increasing the 

thickness of the antenna. Hence it would be preferable to use a single-layer 

single-patch antenna with wideband and stable radiation pattern. One way is to 

modify the patch. An example is a U-slot patch antenna [15]-[19] as shown in Fig.4.3. 

This antenna has no additional parasitic elements. An impedance bandwidth of about 

30% for VSWR <2 can be achieved. The shape of U slot can be modified to V-shaped 

[20]-[21] or E-shaped [22] and similar impedance bandwidth can be obtained.  

 

4.2.3 Shaped Probes [23]-[26] 
 

Besides modifying the patch shape, another method to keep the size of the antenna 

small and still maintain its performance is to modify the probe-fed [23]-[26]. Fig.4.4 

shows the geometry of patch antennas with different probe shaped. The L-Probe 

antenna and T-Probe antenna can achieve a bandwidth of 36% and 40% respectively.  

 

(a) 

 

(b) 

Fig.4.4: Geometry of patch antennas with different probe shaped (a) L-Probe (b) 

T-Probe. 
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4.3  Wideband Semi-circle Probe-fed Microstrip Patch Antennas 

This section is devoted to the design of wideband semi-circle probe-fed microstrip 

patch antennas. The specification is listed in Table 4.1 

Table 4.1: Specifications of the antenna. 
 

Center frequency 5.4 GHz (WLAN application) 

Impedance Bandwidth for VSWR < 2 >45% 

Gain at the center frequency 7 dBi 

3 dB gain bandwidth >45% 

 

4.3.1 Semi-circle Probe-fed Rectangular Patch Antenna 
 

A study on the semi-circle fed patch is first carried out followed by its effect on a 

rectangular patch. The geometry of a semi-circle fed patch proximity coupled to a 

rectangular patch is shown in Fig.4.5. The patch dimensions are obtained using 

equations (3.22) and (3.23). The structure depicts in Fig.4.5 actually corresponds to 

the stub patch antenna with W1=0.  

 
Fig.4.5: Geometry of a semi-circle fed patch proximity coupled to a rectangular patch. 
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Fig.4.6: Variation of the diameter of the Semi-circle Fed Patch, D without the 

parasitic patch (Simulated). 

 

Fig.4.6 displays the return loss of the semi-circle fed patch without any parasitic patch 

with respect to its diameter, D. It is observed that the diameter of the semi-circle fed 

patch is inversely proportional to the impedance matching at the higher frequency 

range. This implies that the inherent inductance of the probe can be compensated by 

the semi-circle fed patch. The inductor Xp produced by the probe is given by [109]: 

 
p o o

X tan(0.5k h) ln(2.25 / k d)
η

=
π

, (4.1) 

where h is the height of the substrate, η is the intrinsic resistance, d is the diameter of 

the probe and k0 is the wave number. The matching condition to compensate the 

inductive probe effectively is given by 

 r pCX 1ω = . (4.2) 

The capacitance of the semi-circle fed patch, C can be approximately given by [110]  

 
2

o r
r r

r

r1 2h r h
C 1 ln (1.41 1.77) (0.268 1.65)

2 h r 2h r

 ε ε π   
= + + ε + + ε +   πε    

, (4.3) 

where r is the radius of the semi-circle. The initial dimension of the semi-circle, r can 

be obtained from equations (4.1) to (4.3). One possible way of finding r is to locate 
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the intersection point between the capacitance value determined from equations (4.2) 

and (4.3) as indicated in Fig.4.7. At 6.5 GHz, a diameter of 7.6mm is required to 

compensate the inductive effect of the probe. Although there is significant fringing at 

the edges of the semi-circle disk, through our experimentation, equation (4.3) is found 

to give a relatively good approximation for the capacitance.  

 

Because of the finite probe width and the technical constraint of soldering the thin 

connector pin on the semi-circle disk, the feed is maintained at 1mm away from the 

horizontal edge of the semi-circle disk for all the antennas adopted. The design of our 

proposed structure is an incremental approach whereby the semi-circle resonant 

structure is first designed at its optimum matching position and followed by the 

addition of parasitic patch for tuning. 

 

Fig.4.7: Capacitance, C with respect to the diameter of the semi-circle at 6.5 GHz. 

 

Fig.4.8 exhibits the return loss of the semi-circle fed patch proximity coupled to a 

rectangular patch with respect to its diameter, D. The centre frequency of the 

rectangular patch is designed at around 5.4 GHz. It is noted that when D= 10 mm, the 

Intersection Point 
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impedance bandwidth below -10 dB is approximately 35%, centre at 4.6 GHz. 

However, when D=6 mm, the impedance matching improves at higher frequencies but 

deteriorate at lower frequencies. When D=8 mm, the return loss between 4 GHz to 8 

GHz ripples around -7.5 dB. Therefore, if the impedance matching within this range 

of frequency can be further improved, wideband can be realized.  

3 4 5 6 7 8 9 10
-25

-20

-15

-10

-5

0

frequency(GHz)

S
1

1
(d

B
)

D=6mm

D=8mm

D=10mm

 
Fig.4.8: Variation of the diameter of the Semi-circle Fed Patch, D with rectangular 

patch (Simulated). 

 

4.3.2 Semi-circle Probe-fed Stub Patch Antenna 
 

4.3.2.3 Antenna Structure 

 

In this section, a stub patch antenna, which is originated from stub matching concept, 

will be investigated to achieve wideband operation. Fig.4.9 shows the geometry of the 

proposed antenna. The antenna comprises of 3 layers; a main stub patch in the top 

layer, a semi-circle fed patch in the second layer and a ground plane. The main stub 

patch has two stubs, one at each side of the patch, to improve the impedance matching 

of the antenna. Since an air-filled dielectric is used, the main plate is separated from 

the ground plane by means of basswoods and proximity fed via a semi-circle probe 
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where the vertical section is made from the 50 Ω coaxial connector with an inner 

diameter of 1.25 mm and the horizontal section (semi-circle plate) is etched from a 

0.14 mm thick copper sheet. The basswoods used are noticed experimentally to have 

no effect on the antenna. The centre frequency is designed at around 5.4GHz and the 

height of the substrate is approximately 0.1 λ . Fig.4.10 shows the photographs of the 

fabricated proposed antenna. 

 
 

Fig.4.9: Geometry of the semi-circle probe-fed stub patch antenna. 

 

  
 

Fig.4.10: Photographs of the fabricated semi-circle probe-fed stub patch antenna. 

 

Probe 

Top view 

Side view 
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4.3.2.2 Simulations and Measurements 

 
Fig.4.11: Simulated and measured return loss of the semi-circle probe-fed stub patch 

antenna. 

 

The proposed stub patch antenna is first simulated. After which, a prototype was 

fabricated and measured. Fig.4.11 displays the simulated and measured return loss 

results. The measured impedance bandwidth, which corresponds to the level of -10 dB 

return loss, is approximately 62.3% (3.95 GHz ~ 7.50 GHz). The simulated and 

measured results are in relatively good agreement. The deviations between the 

simulated and the measured results are caused by the inaccurate modeling of the 

semi-circle probe-fed. In here, a thin-strip model for modeling the vertical probe is 

adopted. 

 

A comparison of the measured impedance locus of the stub patch and the rectangular 

patch is depicted in Fig.4.12 (a). As shown from the figure, three distinct resonances 

are observed. The fundamental mode, TM01 of the antenna patch is located at about 

5.6 GHz. Another resonance mode which corresponds to a delta mode is located at 

4.35 GHz. This added mode is generated by the combined effort of the probe, the 
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semi-circle disk and the patch, and this is clearly evident by the sharp dip in Fig.4.8 

and Fig.4.11. The inductance of the vertical probe together with the capacitance of the 

semi-circle disk and the stub patch acts as a series-resonant element to create a 

resonant frequency close to that of the TM01 mode of the antenna patch. A third 

resonance is also observed at 6.86 GHz. This mode, which is absent from the 

proximity coupled rectangular patch, is mainly due to the effect of the added stubs on 

the patch and this fact is clearly evident by the sharp dip shown in Fig. 4.20. A 

resonant mode is defined to be the frequency at which the input impedance is real. It 

is noted that by adding two stubs to the rectangular patch, it aids in shifting in the 

impedance loop towards the centre, thus, improving the overall matching. It is 

observed that the added open circuit stubs have capacitive effect on the antenna before 

5.6 GHz. Beyond 5.6 GHz, the added stubs have inductive effect on the antenna. 

Fig.4.12(b) shows the return loss of the stub patch, rectangular patch and semi-circle 

fed patch. The stub patch has demonstrated a tremendous improvement in the 

impedance bandwidth.  

 

 
(a) 
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(b) 

 

Fig.4.12: (a) Measured Impedance Locus of the stub patch antenna, rectangular patch 

antenna and semi-circle fed patch. (b) Comparison of the measured return loss of the 

stub patch, the rectangular patch and the Semi-circle Fed Patch. 

 

 
Fig.4.13: Comparison of the broadside gain of the semi-circle probe-fed stub patch 

antenna between the measurement and the simulation. 

 

Fig.4.13 shows the measured and the simulated gains at θ=0
0
 and φ = 0

0
. The 

measured peak gain is 8.02 dBi. The simulated and measured gains are found to be in 

good agreement with the exception that the measured gain is typically 0.5-1.5 dB 
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below the simulated gain. This is ascribed to the conductor loss that is not modelled in 

the simulation. Due to the excitation of higher order modes, there is a drop in gain at 

higher frequencies. The 3 dB gain bandwidth is 39.2% (3.9 GHz-5.8 GHz).The gain 

of the antenna can be increased by implementing an array. 

 

Figs 4.14 to 4.16 plot the measured radiation patterns of the semi-circle probe-fed 

stub patch antenna at 4.2 GHz, 5.4 GHz and 7.0 GHz respectively. As observed, the 

patterns look very similar to a rectangular patch. The cross-polarized pattern in the 

E-plane of the antenna is relatively low throughout the frequency band. However, it 

can be seen that the cross-polarized pattern in the H-plane increases with frequencies. 

The high cross-polarized radiation is mainly contributed from the horizontal section 

of the sub patch. The asymmetrical E-plane pattern is due to the asymmetric structure 

of the antenna. The measured results of the half power beamwidth and the cross 

polarization level extracted from the H-plane radiation patterns are summarized in 

Table 4.2. 

 

Table 4.2: Summary of the radiation characteristics of stub patch antenna.  

 

Frequency (GHz) 4.2 5.4 7.0 

Half power beamwidth 

(H-plane) 
64

0
 52

0
 42

0
 

X-polar Level (dB) -13.2 -1.31 3.83 

 

Fig.4.17 shows the current distribution at 4.5 GHz, 5.5 GHz and 7.0 GHz. It is 

observed that at 4.5 GHz and 5.5 GHz, current mainly flows in the vertical direction. 

This mode physically corresponds closely to the TM01 mode. However as the 

frequency increases, the current splits in the centre and flows towards the left and the 

right sides of the patch. From these current distributions, one can deduce that the 
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radiation patterns at 4.5 GHz and 5.5 GHz have a maximum gain at the broadside. 

However as frequency increases, the maximum gain is shifted away from the 

broadside. 

 

 
(a) 

 

Fig.4.14: Measured radiation patterns of the semi-circle probe-fed stub patch antenna 

at 4.2 GHz. Black lines represent co-polarized pattern. Blue lines represent 

cross-polarized pattern. 

 

 
Fig.4.15: Measured radiation patterns of the semi-circle probe-fed stub patch antenna 

at 5.4 GHz. Black lines represent co-polarized pattern. Blue lines represent 

cross-polarized pattern.  
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Fig.4.16: Measured radiation patterns of the semi-circle probe-fed stub patch antenna 

at 7.0 GHz. Black lines represent co-polarized pattern. Blue lines represent 

cross-polarized pattern.  

 

 
(a) 

 
(b) 
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(c) 

 

Fig.4.17: Simulated current distributions of the semi-circle probe-fed stub patch 

antenna at (a) 4.5 GHz (b) 5.5 GHz (c) 7 GHz. 

 

4.3.2.3 Parametric Study 

 

In order to better understand the antenna’s characteristics, some key parameters are 

varied to analyze the structure through simulation. The first variation is performed by 

adjusting the diameter of the semi-circle fed patch of the proposed antenna. As 

mentioned above, this parameter plays a crucial role in matching. It is prominent in 

Fig. 4.18 that slight variation in the diameter of the semi-circle can affect the 

antenna’s performance significantly. Increasing the diameter from 8 mm to 10 mm 

improves the impedance matching at the lower frequencies. Inversely, when the 

diameter of the semi-circle is reduced to 6 mm, it will deteriorate the matching at the 

lower frequencies but enhance the impedance bandwidth at the higher frequencies. 

Hence, one can conclude that there exists an optimum diameter where the impedance 

bandwidth is the largest.  

 

It is observed from Fig.4.19 that the impedance matching of the antenna is sensitive to 

the gap, G, between the stub patch and the fed patch. Increasing the gap will improve 

the matching at higher frequencies while deteriorating the matching at lower 
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frequencies. On the other hand, decreasing the gap will enhance the matching at the 

centre frequencies and reduce the matching at the sides.  

 

It is observed in Fig. 4.20 that as the length, L1 increases, a dip is introduced at the 

higher frequencies but at the expense of a narrow bandwidth. The dip becomes 

prominent when the length, L1 is increased to the same length as the patch (25 mm) 

(i.e. to form a rectangular patch). However the overall impedance bandwidth (5.1 

GHz~7.22 GHz) deteriorates. Thus, there exists an optimum length, L1 where the 

impedance bandwidth is the largest. 

 

The width, W1 of the stub plays a significant role in matching at the higher 

frequencies as depicted in Fig.4.21. By progressively increasing W1 from 3 mm to 5 

mm, the matching at the higher frequencies improves but the overall impedance 

bandwidth reduces. It is observed that there is tradeoff in impedance matching at the 

higher frequencies. To achieve a very good matching, the overall impedance 

bandwidth will suffers. In fact, the rectangular patch in Fig.4.12(b), which 

corresponds to the case of W1=0, clearly indicates that W1 plays a crucial role in 

ensuring a wide impedance matching. 

 

As noted from Fig.4.22, a relative shift in positions between the top patch and the fed 

patch will also affect the antenna impedance matching performance. Progressively 

offset the position from -1 mm to 1 mm will improve the matching at lower 

frequencies while deteriorating the frequencies at the higher frequencies. 

 

Fig.4.23 shows the variation of the probe feed position from 0.5 mm to 1.5 mm from 
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the edge of the semi-circle in the presence of the parasitic patch plus. As noted from 

the figure, there is minor change in the frequency response and this implies that the 

proposed feed position of the semi-circle is already at its best matching position. 

 

 
Fig. 4.18: Variation of the diameter of the Semi-circle Fed Patch, D with the stub 

patch (Simulated). 
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Fig.4.19: Variation of the gap, G between the top patch and the fed patch (Simulated). 
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Fig. 4.20: Variation of the length, L1 of the stub patch (Simulated). 
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Fig.4.21: Variation of the length, W1 of the stub patch (Simulated). 
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Fig.4.22: Relative longitudinal translation between the fed patch and the stub patch 

(Simulated). 
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Fig.4.23: Variation of the feed position, F of the semi-circle probe-fed stub patch 

antenna. 

 

After studying the effects of the various parameters on the impedance matching, a 
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reliable design guideline for the stub-patch antenna is developed. The following 

procedures are recommended to design the antenna: 

Step 1: Calculate the resonant length of the rectangular patch W and L with 

equation (3.28) and equation (3.29). 

Step 2: Choose a probe height. Determine the diameter of the semi-circle using 

equation (4.1) to equation (4.3). 

Step 3: Add two stubs at the side of the rectangular patch with length, L1 ≈ 

0.24 λ  and width W1≈ 0.07 λ .  

Step 4: Determine the gap, g with g ≈ 0.04 λ  between the patch and the 

semi-circle probe. 

 

4.3.3 Semi-circle Probe-fed Flower-shaped Patch Antenna 

Besides feeding a stub patch, the semi-circle probe is also able to feed patch antenna 

with different patch shapes. A flower-shaped patch is next used in the study. The 

antenna has center frequency around 5.4 GHz and the height of the substrate is 

approximately 0.1 λ . The flower-shaped antenna made used of higher order modes to 

achieve wideband performance. 

 

4.3.3.3 Antenna Structure 

 

Fig. 4.24 shows the geometry and photographs of the fabricated flower-shaped 

microstrip patch antenna. The antenna comprises a flower-shaped microstrip patch in 

the first layer, a semi-circle-fed patch in the second layer and a ground plane. The 

exact dimensions of the antenna are given in Fig. 4.24(a). 
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(a) 

 

  
 

(b) 

Fig. 4.24: (a) Geometry of semi-circle probe-fed flower-shaped patch antenna. (b) 

Photographs of the fabricated semi-circle probe-fed stub patch antenna. 

 

4.3.3.3 Simulations and Measurements 

 

Fig.4.25 compares the simulated and measured return loss of the semi-circle 

probe-fed flower-shaped patch antenna. The measured impedance bandwidth for our 

proposed antenna is approximately 63% (3.875 GHz - 7.45 GHz). The deviations 

Probe 
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between the simulated and measured results are caused by the inaccurate modeling of 

the semi-circle probe-fed.  

 

Fig.4.26 shows a comparison of impedance bandwidth performance between the 

flower-shaped, a rectangular patch antenna and a diamond-shaped (using a 

similar-size rectangular patch but with the four corners being chipped off) antenna. 

All three antennas are subjected to the same excitation. From the results given in 

Fig.4.26, we observed that the diamond-shaped antenna has an impedance bandwidth 

of 47.9%. The slanted edge of the diamond-shaped antenna helps to introduce another 

resonance dip at 6 GHz by exciting the next higher-order mode, which is absent from 

the response due to the rectangular patch antenna. By further introducing the 

flower-shaped patch antenna, we observed that this resonance dip is pushed outwards 

to 7 GHz, thus producing an extension to the impedance bandwidth (63%). From the 

smith chart shown in Fig.4.27, it is observed that by modifying the rectangular patch 

antenna into a diamond patch antenna, an inductive shift occurs at the higher 

frequencies. The gap between the flower petals acts as a series capacitor, giving 

capacitive coupling as indicated by a downward shift in the impedance locus of the 

flower-shaped patch antenna from the diamond patch at the higher and lower 

frequencies. As noted from Fig.4.28 and 4.29, the length of L2 and S1 play significant 

roles in controlling the higher frequencies response, with minor effect on the lower 

frequencies. Through the parametric study of the variable L2 and S1, it is found that 

the optimal length for L2 and S1 are 0.09 λ and 0.001 λ respectively. 
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Fig.4.25: Simulated and measured return loss of semi-circle probe-fed flower-shaped 

patch antenna. 
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Fig.4.26: Comparison of measured return loss of flower-shaped patch, 

diamond-shaped patch and rectangular-shaped patch. 
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Fig.4.27: Measured impedance locus of the rectangular patch, diamond patch and 

flower-shaped patch. 
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Fig.4.28: Variation of the length L2 of the flower-shaped patch (simulated). 
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Fig.4.29: Variation of the length S1 of the flower-shaped patch (simulated). 

 

Fig.4.30: Comparison of the broadside gain of the semi-circle probe-fed 

flower-shaped patch antenna between measurement and simulation. 

 

The measured broadside gain is plotted against the frequency and is represented by 

circles in Fig.4.30. The maximum measured gain is 8.2 dBi. The 3 dB bandwidth for 

gain is 31.6%. There is a drop of 7.6% in the 3 dB bandwidth as compared to 

semi-circle probe-fed stub patch antenna. As the flower-shaped patch increases the 
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overall length, higher order modes are excited. By inspecting the simulated current 

distribution in Fig.4.34, it is observed that strong current (indicated by the intensity of 

the arrow) is created along the 4 slots at the corners of the flower-shaped patch, 

preventing it to radiate strong vertical polarized field as frequencies increase, leading 

to a faster drop in gain as compared to stub patch antenna. 

 

Figs 4.31 to 4.33 plot respectively, the measured radiation patterns at 4.2 GHz, 5.4 

GHz and 7.0 GHz of the proposed antenna. Similar to probe-fed antenna, there is a 

beam tilt in the E-plane copolar radiation patterns, which increases with frequency. 

This is again due to the asymmetric antenna structure. It is observed that a broadside 

beam is switch to a double beam at an angle 30
0
 from the broadside beam at 7.0 GHz. 

The measured results of the half power beamwidth and the cross polarization level in 

H-plane radiation pattern are summarized in Table 4.3.  

 

Table 4.3: Summary of the characteristics of flower-shaped patch antenna. 
 

Frequency (GHz) 4.2 5.4 7.0 

Half power beamwidth 

(H-plane) 
71

0
 71

0
 80

0
 

X-polar Level (dB) -10.6 -3.25 2.95 

 

Fig.4.34 plots the simulated current distribution of the antenna at 4.5 GHz, 5.5 GHz 

and 7.0 GHz. At 4.5 GHz and 5.5 GHz, it is observed that currents mainly flow in a 

vertical direction at the center of the patch while the current follows the shape of the 

antenna at the sides of the patch, resulting in a lower cross-polarized level than stub 

patch antenna at 5.4 GHz. As the frequency increases, the current along the upper and 

lower vertical portion of the patch flows in opposite direction and splits towards the 

left and the right sides of the patch, having a pattern that is close to TM11 mode. 
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Fig.4.31: Measured radiation patterns for flower-shaped patch antenna at 4.2 GHz. 

Black lines represent co-polarized pattern. Blue lines represent cross-polarized 

pattern. 

 

 
 

Fig.4.32: Measured radiation patterns for flower-shaped patch antenna at 5.4 GHz. 

Black lines represent co-polarized pattern. Blue lines represent cross-polarized 

pattern. 

 

 



 144 

 
Fig.4.33: Measured radiation patterns for flower-shaped patch antenna at 7.0 GHz. 

Black lines represent co-polarized pattern. Blue lines represent cross-polarized 

pattern. 

 

 

(a) 

 

(b) 



 145 

 

(c) 

Fig.4.34: Simulated current distribution of the semi-circle probe-fed flower-shaped 

patch antenna at (a) 4.5 GHz (b) 5.5 GHz (c) 7.0 GHz. 

 

4.3.4 Semi-circle Probe-fed Pentagon-slot Patch Antenna 
 

4.3.4.1 Antenna Geometry 

 

Besides flower-shaped patch antenna, a pentagon-slot patch antenna can also achieve 

a wideband operation with the semi-circle feeding mechanism. Fig.4.35 shows the 

geometry of the pentagon-slot patch antenna. The antenna is composed of the 

pentagon-slot patch in the first layer, a semi-circle-fed patch in the second layer and a 

ground plane. A pentagon slot is cut at each corner of a rectangular patch (denoted by 

dotted lines in Fig.4.35 (a). Fig.4.35 (b) shows the photographs of the fabricated 

proposed antenna. 

 

4.3.4.2 Simulations and Measurements 

 

Fig.4.36 displays the simulated and measured return loss results. The measured 

impedance bandwidth according to the -10 dB return loss is approximately 68.3% 

(4.125 GHz - 8.4 GHz). The simulated and measured results are in good agreement. 

Fig.4.37 shows the measured return loss of the pentagon slot patch, rectangular patch 
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and semi-circle-fed patch. By cutting a pentagon slot at the four corner of the 

rectangular patch, the impedance bandwidth improves tremendously. From the smith 

chart (Fig.4.38), it is observed that a pentagonal-slot patch antenna has five resonant 

modes at 4.4 GHz, 4.85 GHz, 6.1 GHz, 6.9 GHz and 7.5 GHz while a rectangular 

antenna has only two resonant modes at 4.2 GHz and 5.65 GHz. Similar to the 

flower-shaped antenna, the higher frequencies response is controlled by the length s1 

and s2 as shown in Fig.4.39 and Fig.4.40.  

 
 

(a) 

 

  
 

(b) 

Fig.4.35: (a) Geometry of the semi-circle probe-fed pentagon-slot patch antenna. (b) 

Photographs of the fabricated semi-circle probe-fed pentagon-slot patch antenna. 

Probe 
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Fig.4.36: Simulated and measured return loss of the pentagon-slot antenna. 

 

The simulated and the measured gains of the antenna at θ=0
0
 and φ= 0

0
 were 

investigated and shown in Fig.4.41. The maximum measured gain is 7.5 dBi, 

occurring at 5 GHz. The 3 dB gain bandwidth is approximately 45.5% from 4.15 GHz 

to 6.6 GHz. Among the three designs, this antenna displays the largest 3 dB gain 

bandwidth. This phenomenon is attributed to the shape of the antenna. The pentagonal 

slot patch increases its length, thereby exciting higher-order mode. However because 

of the reduction in the patch length and width toward the end, the excitation of the 

higher order mode is not very strong and the patch still radiates a strong vertically 

polarized field as shown in Fig.4.45.  

 

Figs 4.42 to 4.44 plot the measured co-polarized H-plane and E-plane radiation 

patterns at 4.3 GHz, 6.1 GHz and 7.3 GHz respectively. Table 4.4 summarizes the 

measured radiation patterns in the H-plane. The half power beamwidth in the H-plane 

at 4.6 GHz, 6.4 GHz and 7.3 GHz is 70
0
. At 6.1 GHz, the cross-polarized level is 

-4.31 dB. Fig.4.45 shows the current distributions of the antenna at 4.5 GHz, 5.5 GHz 
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and 7.0 GHz.  

 

Table 4.4: Summary of the radiation characteristics of pentagon-slot patch antenna. 

 

Frequency (GHz) 4.6 6.1 7.3 

Half power beamwidth 

(H-plane) 
70

0
 70

0
 70

0
 

X-polar Level (dB) -15.2 -4.31 1.56 
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Fig.4.37: Comparison of the measured return loss of the pentagon slot patch, the 

rectangular patch and the semi-circle fed patch. 
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Fig.4.38: Measured input impedance plot of the pentagon slot patch (solid line) and 

the rectangular patch (dashed line). 
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Fig.4.39: Variation of length, S2 of the pentagon-slot patch (Simulated). 

 

 

3 4 5 6 7 8 9 10
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

frequency(GHz)

S
1

1
(d

B
)

S1=10mm

S1=12mm

S1=14mm

 
Fig.4.40: Variation of length, S1 of the pentagon-slot patch (Simulated). 
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Fig.4.41: Comparison of broadside gain of the semi-circle probe-fed pentagon-slot 

patch antenna between the measurement and simulation. 

 

 
Fig.4.42: Measured radiation patterns of the semi-circle probe-fed pentagon-slot 

antenna at 4.6 GHz. Black lines represent co-polarized pattern. Blue lines represent 

cross-polarized pattern. 
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Fig.4.43: Measured radiation patterns of the semi-circle probe-fed pentagon-slot 

antenna at 6.1 GHz. Black lines represent co-polarized pattern. Blue lines represent 

cross-polarized pattern. 

 

 

 
 

Fig.4.44: Measured radiation patterns of the semi-circle probe-fed pentagon-slot 

antenna at 7.3 GHz. Black lines represent co-polarized pattern. Blue lines represent 

cross-polarized pattern. 

 



 152 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig.4.45: Simulated current distributions of the semi-circle probe-fed pentagon-slot 

patch antenna at (a) 4.5 GHz (b) 5.5 GHz (c) 7.0 GHz. 

 

Table 4.5 shows a summary of the performance of the three proposed probe-fed patch 
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antennas. Among the three proposed antennas, the pentagonal slot patch antenna gives 

the best performance with an impedance bandwidth of 68.3% and a 3 dB broadside 

gain bandwidth of 45.5%. In addition, it has the lowest cross-polarized level of -7.1 

dB at 5.4 GHz. All the three antennas have impedance bandwidth greater than 45%. 

However, only pentagon slot patch antenna meets all the specifications stated earlier 

in Table 4.1. 

 

Table 4.5: Summary of the performance of the three proposed probe fed patch 

antennas. 

 

 Impedance BW 
3 dB BW 

(gain) 

Broadside Gain 

at 5.4 GHz 

X-polar level at 

5.4 GHz 

Stub patch 62.3% 39.2% 6.36 dBi -1.31 dB 

Flower-shaped 

patch 
63% 31.6% 6.4 dBi -3.25 dB 

Pentagon Slot 

patch 
68.3% 45.5 % 7.07 dBi -7.1 dB 

 

4.4  Semi-circle Probe-fed Microstrip Stub Array 

Microstrip patch antennas are very often used in array configurations where there 

might be specific requirements in terms of antenna gain, beamwidth and polarization. 

Among the three proposed antenna elements, the stub antenna has the simplest 

structure and the highest cross-polarized level at 5.4 GHz. Hence, this antenna 

element is used to develop an antenna array. In this section, two applications for 

mobile communication system are addressed where stub patch antennas with 

semi-circle probes can be very useful. The first application is for system in which 

polarization purity does not represent a constraint and the second application is for 

linearly polarized system. To increase antenna efficiency and gain, a low loss material 

should be used to fabricate the feed network. However, due to the size limitation of 
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our fabrication equipment in the microwave laboratory, the feed networks are etched 

on a FR4 substrate with relative permittivity 4.4, thickness 1.6mm and loss tangent of 

approximately 0.02 instead of low loss materials such as Duroid or Rogers. It has 

been reported in [115] that FR4 is quite lossy at 5 GHz. A typical 50 Ω transmission 

line on FR4 has a loss of about 0.2 dB/ cm at 5 GHz. Thus, it is important to keep the 

transmission lines short. In this thesis, we will investigate two different feed networks 

(a longer feed network and a shorter feed network) and study their effects on the gain 

of the antenna array. 

 

4.4.1 4 by 4 Semi-circle Probe-fed Microstrip Stub Patch Antenna Array 
 

4.4.1.1 Antenna Geometry 

 

The geometry of the antenna array for the first application is shown in Fig.4.46. It 

consists of 16 antenna elements and they are separated by a distance Gx=15 mm and 

Gy=15 mm. Each antenna element has the same dimension given in Fig 4.8. The size 

of the ground plane is 26 by 28 cm. The total number of basis functions for the 4 by 4 

array is 12520. Each antenna element is excited with uniform excitation. The feed 

network is not included in the simulation. Since the feed network is separated from 

the array elements by a ground plane, it is possible to perform separate simulations on 

both the feed network and the array elements as the spurious radiation from the feed 

network will not have significant effect on the broadside radiation.  

 

After the design of the array has been completed, we will next consider the design of 

the feed network that provides the required excitations for the semi-circle probe-fed 

stub patch antenna elements. Since the antenna element is excited with uniform 

excitation, a feed network that is made up of identical power dividers is developed. 
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The power divider is connected to the semi-circle probe through a small circular hole 

formed in the ground plane. 

 

The power divider is made up of quarter-wavelength impedance transformer to match 

100 Ω input to 50 Ω antenna element as shown in Fig.4.47. The insert in Fig.4.48 

shows the layout of the power divider. The quarter-wavelength impedance transformer 

is bent to optimize the space. The measured S-parameters response of a power divider 

is shown in Fig.4.48. 

 

Fig.4.46: 4 by 4 semi-circle probe-fed microstrip stub patch antenna array. 

 

In this thesis, two different feed networks, A and B are designed as depicted in 

Fig.4.49 (a) and (b) respectively. Feed network A is approximately 70 cm longer than 

feed network B. The average current density of the two feed networks is shown in 

Fig.4.50. It is observed that there is no distinct color difference among the output 

Ports 2 to 17 for both the feed networks, implying that the difference among the 

current density at the output ports is not large. The arrows in the diagram indicate the 

direction of the current. It is observed that as long as the symmetry of the geometry is 

maintained, and as long as the port excitation is uniform in amplitude and phase, the 
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cancellation of the cross-coupling contributions from the feed network occurs. For 

feed network B only the vertical section of the transmission line from Port 1 and the 

small horizontal sections of the transmission line towards the output ports are 

susceptible to the cross-coupling. Fig.4.51 shows the simulated S-parameters (S11 and 

S21) of feed network A and feed network B from 3.5 GHz to 7.5 GHz. The return loss 

(S11) of feed network B is below -10dB throughout the frequency range while the 

return loss of feed network A hover around -10 dB at the higher frequency range. At 

5.4 GHz, the S21 of feed network B is around -17 dB while that of feed network A is 

around -23.9 dB. There is an additional loss of around -6.9 dB for a longer feed 

network as compared to the shorter feed network. The high losses in the feed 

networks are due to the lossy material used as explained above. The feed network is 

simulated independently from the array elements. The voltage at each port where the 

element is fed by the feed network is computed and stored. The radiation pattern from 

the elements is determined using the excitation voltage obtained from the feed 

network. Fig.4.52 shows a prototype of the fabricated antenna array and Fig.4.53 

shows the far field measurement for the antenna array in the anechoic chamber. 

02Z

02Z

0Z

0Z

02Z

0Z

02Z

 

Fig.4.47: Circuit schematic of a Power Divider. 
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Fig.4.48: Measured S-parameters of a power divider. 
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(b) 

Fig.4.49: 4 X 4 semi-circle probe-fed microstrip stub patch antenna array. (a) Feed 

Network A (b) Feed Network B  

 

(a) 
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(b) 

Fig.4.50: Average current density of the feed network at 5.4 GHz. The arrows indicate 

the direction of the current (a) Feed network A (b) Feed network B. 

 

 

(a) 
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(b) 

Fig.4.51: Simulated S-parameters of feed network A and feed network B. (a) S11 (b) 

S21. 

 

 

Fig.4.52: Photograph of the 4 X 4 semi-circle probe-fed stub patch antenna array with 

feed network A. 

 

 

Probe 

Stub 
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Fig.4.53: Far field measurement for the 4 X 4 semi-circle probe-fed stub patch 

antenna array in the anechoic chamber. 

 

4.4.1.2 Simulations and Measurements 

 

Fig.4.54 (a) and (b) show the measured return loss of a 4 by 4 antenna array with feed 

network A and feed network B respectively. The antenna has a wide bandwidth. As 

indicated in the figure, within the frequency range (3 GHz to 8 GHz), the return loss 

of the antenna is approximately below -10 dB from 3.5 GHz onwards for both feed 

network A and feed network B.. 

 

Table 4.6 shows a summary of the simulated broadside gain without the effect of the 

feed network and the measured broadside gain with feed network A and feed network 

B. We observe that the losses due to the transmission lines have significant effect on 

the overall gain. There is an improvement of around 2.4 dBi to 4.35 dBi in gain when 

shorter feed network B is used instead of feed network A. 
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(a) 

 

(b) 

Fig.4.54: Measured return loss of the 4 X 4 semi-circle probe-fed stub patch antenna 

array with (a) Feed Network A and (b) Feed Network B. 
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Table 4.6: Comparison of the simulated and the measured gains of the 4 X 4 

semi-circle probe-fed stub patch antenna array. 

 

Measured Gain (dBi) 
Freq (GHz) 

Simulated Gain (dBi) 

without feed network With Feed Network A With Feed Network B 

4.2 GHz 19 13.2 15.6 

5.4 GHz 18.13 10.1 13.1 

7.0 GHz 14.83 2.0 6.95 

 

Figs 4.55 to 4.57 show the radiation patterns at 4.2 GHz, 5.4 GHz and 7.0 GHz 

respectively. Since the cross-polarized levels in the E-plane are below -25 dB for the 

three frequencies, their patterns are not shown for brevity. Generally there is a good 

agreement between the simulated and the measured results. The difference is possibly 

due to experimental tolerance and the radiation from the feed network that is not taken 

into account in the simulation. At 7.0 GHz, there is a 2 degree beam tilt in the E-plane 

copolar radiation pattern. The measured half-power beamwidths and the 

cross-polarized level in the H-plane are summarized in Table 4.7. At 5.4 GHz, the 3 

dB beamwidth in the H-plane and the E-plane are 15
0
 and 14

0
 respectively.  

 

Table 4.7: Summary of the radiation characteristics of the 4 X 4 semi-circle probe-fed 

stub patch antenna array with feed network B. 

 

Half-power beamwidth Freq (GHz) 

E-plane H-plane 

X-polar level (dB) 

4.2 GHz 22.5
0
 18

0
 -20.3 

5.4 GHz 15
0
 14

0
 -11.05 

7.0 GHz 12
0
 10.5

0
 2.51 
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(a) 

Simulated

 

(b) 
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(c) 

Fig.4.55: Radiation patterns of the 4 X 4 semi-circle probe-fed stub patch antenna 

array at 4.2 GHz. (a) Co-polarized pattern in E-plane (b) Co-polarized pattern in 

H-plane (c) Cross-polarized pattern in H-plane 

 

 

(a) 
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Simulated

 

(b) 

Simulated

 

(c) 

Fig.4.56: Radiation patterns of the 4 X 4 semi-circle probe-fed stub patch antenna 

array at 5.4 GHz. (a) Co-polarized pattern in the E-plane (b) Co-polarized pattern in 

the H-plane (c) Cross-polarized pattern in H-plane 
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(a) 

 

(b) 
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(c) 

Fig.4.57: Radiation patterns of the 4 X 4 semi-circle probe-fed stub patch antenna 

array at 7 GHz. (a) Co-polarized pattern in the E-plane (b) Co-polarized pattern in the 

H-plane (c) Cross-polarized pattern in the H-plane 

 

4.4.2 Two-element Linearly-polarized Array 

 

4.4.2.1 Antenna Geometry 

 

 

Fig.4.58: 2 X 1 linearly polarized array. 

 

For some applications, it is required that the cross-polarization levels of the antennas 
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are low. It is possible to reduce the cross-polarization levels of a probe-fed patch 

antenna by using two elements that are positioned in a back-to-back configuration as 

shown in Fig.4.58. The two ports have to be excited exactly out of phase (i.e. a 180
0
 

phase difference). The resulting effect is that the co-polarized currents on the two 

resonant patches are aligned, but that the fields radiated by the cross-polarized 

currents, cancel out. The spacing between the antenna elements is 15 mm.  

 

4.4.2.2 Feed Network 

 

The two-element array is excited by a feed network with its circuit schematic shown 

in Fig.4.59. The 180
0
 broadband balun was designed to operate at a center frequency 

of 5.4 GHz. The balun structure comprises of a two-way equal power division 

cascaded by a non-coupled-line broadband 180
0
 phase shifter as shown in Fig.4.58. 

The characteristics impedances of the microstripline are given as follows [111]: 

 

1 0

2 0

3 0

Z 2Z

Z 1.27Z

Z 1.61Z

=

=

=

 (4.4) 

Fig.4.60 shows the measured S-parameters results of the planar balun. The balun 

exhibits balanced output ports power distribution with deviation of ± 0.4dB from 4 to 

7.35 GHz. Fig.4.61 depicts the measured output ports phase difference. The relative 

average phase imbalance is about 6.5 degrees over a considerably wideband from 

3GHz to 7.2 GHz. We observed that as the frequency increases, the losses increases as 

depicted in Fig 4.45.  
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Fig.4.59: Circuit schematic of the planar balun. 

 

Fig.4.60: Measured output ports S-parameters of the planar balun. 

 

Fig.4.61: Measured phase difference between the output ports of the planar balun. 
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4.4.2.3 Simulations and Measurements 

 

The measured return loss of the array is depicted in Fig.4.62. A wide impedance 

bandwidth of approximately 66% is achieved. Fig.4.63 shows the measured and 

simulated radiation patterns at 5.4 GHz in the E-plane and H-plane respectively. Note 

that feed network is not included in the simulation. Generally there is a good 

agreement between the simulated and the measured radiation patterns. The cross-polar 

discrimination of this array is better than -15 dB. The measured broadside gain at 5.4 

GHz is 9.25 dBi. The half-power beamwidth in the E-plane and H-plane are 35.1
0
 and 

61
0
 respectively. 

 

 

Fig.4.62: Measured return loss of the 2 X 1 linearly polarized array. 
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(a) 

 

(b) 

Fig.4.63: Radiation patterns of the 2 X 1 linearly polarized antenna array at 5.4 GHz. 

(a) E-plane (b) H-plane 

 

4.4.3 4 by 4 Linearly-polarized Array 
 

In order to demonstrate that the technique to reduce the cross-polarized level can also 

be extended to the larger antenna array, the performance of a 4 by 4 linearly polarized 

antenna array is investigated and presented in this section. Since the radiation patterns 
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obtained from the proposed method have a good agreement with the measured ones, 

the performance of this array is predicted by the simulation only. 

 

The 4 by 4 antenna array is shown in Fig.4.64. The dimensions of each array element, 

the spacings, Gx and Gy between the elements and the dielectric substrate used for the 

feeding networks are the same as that of the proposed 2 by 1 antenna array described 

in Section 4.4.2. The simulated radiation patterns in the E and H plane for 5.4GHz are 

shown in Fig.4.65. The cross-polarized levels are below -30 dB. The simulated 

broadside gain of the antenna at 5.4 GHz is 19.1 dBi. The half-power beamwidth in 

the E-plane and H-plane are 17.3
0
 and 12.9

0
 respectively. 

 

 

Fig.4.64: 4 X 4 linear polarized antenna array. 
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(a) 

 

(b) 

Fig.4.65: Radiation patterns of the 4 X 4 linear polarized antenna array at 5.4 GHz. (a) 

E-plane (b) H-plane 
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4.5   Conclusion 

In this chapter, three wideband antennas for wireless LAN application have been 

developed. Wideband operations can be achieved by employing multiples resonance 

technique. A semi-circle probe is used to excite the antennas. The initial dimension of 

the semi-circle can be obtained from equations (4.1) to (4.3). The antenna elements 

are characterized in order to show how the various dimensions of the structure affect 

the impedance bandwidth of the antenna elements. It is shown that the length and the 

width of the added stubs are the two important parameters for controlling the 

impedance bandwidth of the semi-circle probe fed stub patch antenna. It is found 

through numerical simulations that the optimum length and width of the stub are 

0.24 λ  and 0.07 λ  respectively. By modifying the rectangular patch antenna into a 

diamond patch, an impedance bandwidth of 47.9% is achieved. The slanted edge of 

the diamond-shaped antenna helps to introduce another resonance dip at 6 GHz. By 

further introducing four slots at the center of the slanted edges (flower-shaped patch 

antenna), we observe that this resonance dip is pushed outward to 7 GHz. Besides the 

flower-shaped patch antenna, it is also possible to cut pentagon slot at each corner of a 

rectangular patch (pentagonal-slot patch antenna) to achieve wideband operation. 

Among the three antennas, the pentagonal slot patch antenna gives the best 

performance. It is also shown how the stub patch antenna element can be used in two 

different applications.  
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CHAPTER 5   Conclusions and Future Work 

The main focus of the work presented in this thesis is the development of an efficient 

technique to accelerate the analysis of microstrip structures. Various novel wideband 

probe-fed microstrip patch antennas and arrays are then designed with the proposed 

method. This chapter discusses and summarizes the results of the research work 

described in the previous chapters. The major contributions of this work are reviewed 

and suggestions for future work are discussed. 

 

5.1  Conclusions 

The multilayer Green’s function, the method of moments and the computation of the 

antenna parameters have been discussed in Chapter 2. Three interpolation schemes, 

namely the radial basis function, the Cauchy method and the generalized 

pencil-of-function method (GPOF) are investigated to speed up the evaluation of the 

Green’s function for large structure. GPOF is noted to be more accurate than the 

radial basis function and the Cauchy method when the number of interpolation points 

is small. To evaluate 500000 number of Green’s functions, GPOF takes approximately 

3.3 seconds while the direct computation of the closed-form Green’s function takes 

about 3000 seconds.  

 

Chapter 3 addresses the issue concerning excessive matrix size generated by the 
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conventional MoM when solving large microstrip problems. A new grouping concept 

called the macro-basis function with progressive method is presented to analyze large 

microstrip array. The method reduces the matrix size and in turn, leads to saving in 

computer storage and computational time when compared to conventional MoM. 

Through our numerical simulations, we find that for strong coupled structure the 

computed current give high error of more than 10% as compared with the 

conventional MoM. In order to remedy the problem, a new iterative refinement 

process is developed. If the number of iterative sweeps required is large, the 

computational time increases. Therefore, it is imperative to reduce the number of 

iterative sweeps. The initial current can be computed using either the macro-basis 

function with progressive method or the sub-domain multilevel approach. However, 

between the two methods, we find that the macro-basis function with progressive 

method gives a better convergence and its effectiveness in accelerating the 

convergence of the iterative procedure is demonstrated in the thesis. This chapter also 

addresses the improvement in the MoM matrix fill-in time with the help of multipole 

expansion via the adaptive integral method. The testing functions and the macro-basis 

function are translated to rectangular grid, allowing their interaction to be carried out 

in compressed representation. This also permits the use of fast Fourier transform to 

carry out the matrix-vector multiplication, leading to an improvement of around 

56.5% in MoM fill-in time as compared to the macro-basis function with progressive 

method for a 1 by 14 series fed array with 3737 unknowns. The accuracy of the 

macro-basis function with progressive and adaptive integral method has been 

demonstrated through several examples, in which this technique is compared with a 

conventional MoM approach and measurements. For a 20 by 20 antenna array with 

87780 unknowns, the proposed method is 98.4% faster than the commercial software, 



 178 

IE3D. 

 

As the bandwidth demand of modern wireless communication systems is expanding, 

it is necessary to use antennas that have wide impedance bandwidth. Various novel 

wideband probe-fed antennas were developed in Chapter 4. They are the semi-circle 

probe-fed stub antenna, semi-circle probe-fed flower-shaped antenna and semi-circle 

probe-fed pentagon-slot antenna. By adding a semi-circle patch on top of the vertical 

probe, the inherent inductance of the probe is compensated. It has been demonstrated 

that by using such a feeding mechanism on the polygonal patches, wide impedance 

bandwidth can be achieved. To our knowledge, at the time of the design, the proposed 

antennas have the largest bandwidth that can be obtained from the probe 

proximity-coupled technique. The measured impedance bandwidth of the stub patch 

antenna is 62.3% with a broadside gain of 6.36 dBi at 5.4 GHz. The 3 dB gain 

bandwidth is 39.2%. The wideband operation is achieved by introducing stubs at the 

sides of the rectangular patch. Similar impedance bandwidth performance can be 

achieved for the flower-shaped patch antenna. By modifying the rectangular patch 

antenna to a diamond-shaped antenna, an impedance bandwidth of 47.9% can be 

achieved. By further introducing the flower-shaped patch antenna, an impedance 

bandwidth of 63% is achieved. However, the 3 dB gain bandwidth is only 31.6%. 

Besides stub patch and flower-shaped patch antennas, wideband operation can also be 

achieved by cutting pentagonal slots at the four corners of the rectangular patch, thus 

increases its length, thereby exciting higher-order modes. This unique configuration 

can produce a wide impedance bandwidth of about 68.3%, a 3 dB gain bandwidth of 

45.5% and a broadside gain of 7.07 dBi at 5.4 GHz. Among the three antennas, 

pentagonal slots patch antenna gives the best performance with the largest impedance 
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and gain bandwidth. Since the stub patch antenna has the simplest structure and the 

highest cross-polarized level at 5.4 GHz, it is used in array configuration. Two 

applications are addressed. The first application is for system in which polarization 

purity does not represent a constraint and the second application is for linearly 

polarized system. In the second application, it is important to reduce the 

cross-polarized levels of the array. This can be achieved by positioning two elements 

in a back-to-back configuration and the two ports have to be excited exactly out of 

phase.  

 

5.2  Suggestions for Future Work 

This thesis has provided a solution for the efficient simulation of planar structures that 

need a large number of unknowns to be accurately modelled. Besides, it has also 

introduced three novel wideband antennas using proximity coupled techniques. 

However, there are several possible improvements that can be carried out in addition 

to the developments presented. These new ideas that resulted from the work done in 

this thesis are discussed in the following paragraphs. 

 

High-order sub-domain basis functions can be incorporated into MBF-PM method 

where MoM is implemented using curvilinear triangular patches or rectangular 

patches. High-order sub-domain basis function is used with the intention to reduce the 

number of unknowns.  

 

With the widespread evolution of wireless communications, miniaturization for 

personal communications equipment has become one of the most fundamental 
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requirements. The size of the developed antenna elements is quite large. Hence there 

is a need to investigate miniaturization of the antenna elements. Compact microstrip 

antenna can be designed with substrate having higher dielectric constant. There is a 

need to look into methods to reduce the size of the antennas while maintaining its 

performance. 

 

The use of smart antennas in small mobile terminals, such as notebooks or handheld 

computers, is restricted solely by the lack of space. Placing the individual radiators 

closer together aggravates the problem of mutual coupling between antenna ports 

which leads to highly distorted beam patterns and greatly reduced radiation efficiency. 

As such, there is a need to find a method to decouple and match an antenna array with 

reduced radiator separation so as to minimize the antenna array.  
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APPENDIX A  Transmission Line Green’s Function 

 

A.1  Transmission Line Green’s Function 

 

This appendix derived the functions p

iV , p

vV , p

iI and p

vI  in the expression of the 

Green’s function in equation (2.26) to equation (2.29) based on transmission line 

equation. The transmission line analog of the layered medium consists of a cascade 

connection of uniform transmission line sections, where section n  with terminals at 

nz and n 1z + has propagation constant p

znk and characteristic impedance p

nZ . To find the 

TLGF’s, we excite the transmission line network by unit strength voltage and current 

sources at z’ in section n and compute the voltage and current at z in section m. The 

voltage and current source section is illustrated in Fig A.1 where nΓ
�

and n 1−Γ
�

 are the 

voltage reflection coefficients looking to the left and right, respectively out of the 

terminals of section n. Similarly, nZ
�

and n 1Z −

�
are the input impedance looking to the 

left and right respectively out of the terminals. kΓ
�

and kΓ
�

 are expressed as follows: 
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k k 1
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 (A.1) 

where 10 0 +Γ≡≡Γ n

��
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Fig A.1: (a) Voltage source (b) Current source in the i
th

 transmission-line section. 

 

kZ
�

and kZ
�

 are expressed as follows: 
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where 11 ZZ =
�

 and 1+= nn ZZ
�

 

 

When the source and observation points are in the same section (n=m), p

iV  is given 

by 
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where zn n 1 nj2k (z z )

n 1 nD 1 e −− −
−= − Γ Γ
� �

. 

From equation (2.23), we can derive p

iI  as 
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From the third equation of equation (2.23), we can derive p

vV  
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Finally from the second equation of equation (2.23), we can derive p

vI  as 
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The upper and lower signs in the equations pertain to z>z’ and z<z’, respectively. 

 

When the source section is above the observation section (m<n), the voltage and 

current at z in section m can be derived recursively from those in section n. The final 

solution of pV  and pI is 

 
p
zm m 1

p
zm m 1 m

n 1
p

pP k
jk (z z)P mk m 1

n pP j2k (z z )p
mm

(z)V (z)
V (z ) e

y (z)I (z) 1 e

+

+

−

− −= +

− −

Τ∏    τ
= ×   

+ Γ   

�
�

� � , (A.7) 

where 
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p
zm mj2k (z z )p p p

m m my (z) Y 1 e
− − = − − Γ

 

��
. (A.10) 

 

Equation (A.7) can be applied to any source type. Hence, if section n is excited by a 

unit-strength current source at z’, then p p

n i nV (z ) V (z z ')= . If section n is excited by 

a unit-strength voltage source at z’, then p p

n v nV (z ) V (z z ')= . 

 

Analogous formulas may be developed for the case m>n, where z is outside the 

source section and z>z’. However this is hardly necessary because the reciprocity 

theorems allow one to interchange the source and field point locations. 

 

A.2 Single-Layer Green’s Functions 

1Γ
�

0Γ
�

0Γ
�

 

Fig A.2: Single-layer microstip structure. 

 

Using the formulation derived in Section A.1, one can easily determine the Green’s 

function for a single layer. Consider an x-directed electric dipole of unit strength 

located above a microstrip substrate. Fig A.2 shows the open microstip structure and 

the equivalent transmission line section with 00 =Γ
�

, 11 −=Γ
�

. 
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The spectral-domain potentials in the air region can be represented as follows: 
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APPENDIX B  Method of Averages 

 

Let us consider the integral 

 
a

I cos( )f ( )d
∞

= λρ λ λ∫ , (B.1) 

where f ( )λ is a continuous function, having an asymptotic behavior of the 

form
x
lim f ( ) c α

→∞
λ = λ . Above a certain value of the argument λ , the function f ( )λ and 

all its derivatives have a constant sign. When 0α > , the function f ( )λ diverges at 

infinity. The infinite integration interval must obviously be bounded. Partial values 

can then be calculated numerically, defining 1

mI (m 1, 2,...,M)= as 

 
m

1

m
a

I cos( )f ( )d , m 1, 2,...,M
λ

= λρ λ λ =∫ , (B.2) 

where 
mλ are the successive zeros of the oscillatory function cos( )λρ ,superior to the 

integration boundary a. The variation between the real value I of the integral and the 

approximations 1

mI is given by the value of the integral over m[ , ]λ ∞ . This value can 

be estimated, dividing the interval into an infinite number of subintervals, each having 

as its width one period of cos( )λρ . 

 

A new sequence 2

mI (m 1,2,..., M 1)= − is defined by taking the average of two 

consecutive values of the sequence 1

mI , following the general expression: 

 ( )l 1 l l

m m m 1

1
I I I , l 1,...,M 1,m 1,...,M 1

2

+
+= + = − = − . (B.3) 
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Subsequence use of the average relation produces new sequence l

mI . Taking into 

account the asymptotic behavior of f ( )λ , the sequence l

mI with l 1> α +  is the first 

one that will converge toward the real value of I. Successive sequences converge 

faster each time. The last sequence reduces to a single value M

1I which will be closer 

to the true value than 1

MI in spite of the fact that no new evaluations of the integrand 

have been required. The final value M

1I can be expressed directly in terms of the 

starting sequence 1

MI by 

 
M

M 1 M 1

1 m
m 1

M 1
I 2 I

m 1

−

=

− 
= ∑  

− 
. (B.4) 

 

The average value algorithm can be applied to Bessel functions nJ ( )λρ , defining the 

values 
mλ  as zeros of cos( / 4 n / 2)λρ − π − π . 

 

 

 


