

Discovering Relationships Among Association
Rules Over Time

Chen Chaohai

NATIONAL UNIVERSITY OF SINGAPROE
2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Discovering Relationships Among Association
Rules Over Time

Chen Chaohai
(B.Eng. Harbin Institute of Technology, China)

A THESIS SUBMITTED
FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

2008

Acknowledgements

I would like to express my sincere gratitude to all those who have shared the

graduate life with me and helped me in all kinds of ways. Without their

encouragement and support I would not be able to write this section.

 Firstly, I would like to thank my supervisor Professor Wynne Hsu for her

guidance, advice, patience and all kinds of help. Her kindness and supports are

important to my work and her personality also gives me insights which are beneficial

to my life and future career. I would also like to thank my co-supervisor Professor

Mong Li Lee, who is nice and continuously help me throughout my postgraduate

studies. Her guidance and help are really appreciated.

 I would like to particularly thank Sheng Chang, Patel Dhaval, Zhu Huiquan and

all the other previous and current database group members. Their academic and

personal helps are of great value to me. I also feel the need to thank Sun Jun and Lin

Yingshuai for their encouragement and support during the period of my thesis

writing. They are such good and dedicated friends.

 i

ACKNOWLEDGEMENTS ii

 Finally, I would like to thank the National University of Singapore and

Department of Computer Science, which give me the opportunity to pursue the

advanced knowledge in this wonderful place. The period studying in NUS might be

one of the most meaningful parts in my whole life. And I would also like to thank

my family, who always trust me and support all of my decisions. They taught me to

be thankful to life and made me understand that experience is much more important

than the end-result.

Contents

Summary .v

1 Introduction .1

1.1 Contribution .6

1.2 Organization .6

2 Related Work .7

2.1 Association Rule Mining Algorithms . 7

2.2 Temporal Association Rule Mining . 9

2.3 Association Rules Over Time . 12

3 Preliminary Definitions 15

3.1 Dynamic Behavior of a Rule .15

3.2 Evolution Relationships Among Rules .19

4 Proposed Approaches . 23

4.1 Mine Association Rule Over Ttime . 24

4.2 Dynamic Behavior of a Rule .28

4.3 Find Evolution Relationships Among Rules .32

 iii

CONTENTS iv

5 Experiments 48

5.1 Synthetic Data Generator .48

5.2 Experiments on Mining Association Rule .50

5.3 Experiments on Finding Relationships among Rules. 53

5.4 Experiments on Real World Dataset .55

6 Conclusion 59

BIBLIOGRAPHY .62

Summary

Association rule mining aims to discover useful and meaningful rules which can be

applied to the future data. Most existing works have focused on traditional

association rule mining which mines the rules in the entire data, without considering

time information. However, more often than not the data nowadays is subjected to

change. The rules existing in the evolving data may have dynamic behaviors which

might be useful to the user.

 In this thesis, we investigate the association rules from temporal dimension. We

analyze the dynamic behavior of association rule over time and propose to classify

rules into different categories which can help the user to understand and use the

rules better. We also define some interesting evolution relationships of association

rules over time, which might be important and useful in real-world applications. The

evolution relationships reveal the relationships about the effect of the conditions on

the consequent over time, which reflect the change of the underlying data. Therefore

they can give the domain expert a better idea about how and why the data changes.

 To mine association rule in our problem, we partition the whole dataset into

positive and negative sub-datasets, then mine the frequent itemsets from the positive

 v

SUMMARY vi

sub-dataset and count the support of the frequent itemsets from the negative

sub-dataset. To analyze the dynamic behavior of the rule, we propose to find trend

fragments and classify a rule based on the number of its trend fragments over time.

To find evolution relationships among rules, we propose Group Based Finding

(GBF) method and Rule Based Finding (RBF) method. GBF first groups the

comparable trend fragments and then find relationships in each comparable group.

RBF directly find relationships among rules.

 The effectiveness and efficiency of our approaches are verified via

comprehensive experiments on both synthetic and real-world datasets. Our

approaches exhibit satisfying processing time on synthetic dataset and the

experiments on real-world dataset show that our approaches are effective.

List of Figures

Figure 3.1: Rule Categories . 18

Figure 4.1: Work Overview . 23

Figure 4.2: Example of Finding Trend Fragment .29

Figure 4.3: Example of Comparable and Incomparable Fragments38

Figure 5.1: Running Time of Association Rule Mining .51

Figure 5.2: Running Time with Varying T .51

Figure 5.3: Running Time with Varying perc . 52

Figure 5.4: Running Time of GBF and RBF . 53

Figure 5.5: Varying min_ratio in GBF and RBF . 54

 vii

List of Tables

Table 1.1: Sample Transactions .3

Table 1.2: Discovered Association Rules .4

Table 4.1: Identifiers of Items .34

Table 4.2: Hash Table of Rules .34

Table 5.1: Parameters of Data Generator .50

Table 5.2: Number of Relationships with Different Categories56

Table 5.3: Examples of Relationships ..57

viii

Chapter 1

Introduction

Association rule mining was first introduced to capture important and useful

regularities that exist in the data [1]. Formally, association rule mining is stated as

follows [2]: Let 1 2{ , ,..., }mI i i i= be a set of literals, called items. Let D be a set of

transactions, where each transaction T is a set of items such that . An

itemset

IT ⊆

X contains a set of items in I . A transaction contains T X if .

An association rule is an implication of the form , where ,

and

TX ⊆

YX ⇒ IYIX ⊂⊂ ,

φ=∩YX . and are called the antecedent and consequent of the rule

respectively. The rule has support s in D if s% of the transactions in D

contain

X Y

YX ⇒

YX ∪ . The rule holds in the transaction dataset D with

confidence if c% of the transactions in D that contain

YX ⇒

c X also contain Y . The

1

Chapter 1. Introduction 2

confidence of a rule is a measure to evaluate the accuracy of the antecedent implying

the consequent and the support measures the generality of the rule. The task of

association rule mining is to generate all the association rules whose supports and

confidences exceed the user-specified minimum support (min_sup) and minimum

confidence (min_conf) from the dataset D.

 With the rapid proliferation of data, applying association rule mining to the huge

dataset results in thousands of associations being discovered, many of them are

non-interesting and non-actionable. In a dynamic environment where changes occur

frequently in a short period of time, it is more important to discover evolving trends

in the data. For example, suppose we have collected data of three years as shown in

Table 1.1. Applying association rule mining to the entire data in Table 1.1 with a

min_sup of 20% will result in association rules being discovered as shown in Table

1.2. None of these rules stands out. However, when we investigate the rules further,

we realize that the confidence of the rule “beer ⇒ chip” is 20% in 1997, 40% in

1998, and 80% in 1999. In other words, there is an increasing trend in the confidence

values of “beer ⇒ chip” from 1997 to 1999. This could be useful information to the

user.

In addition, when we examine the rules “toothbrush A ⇒ toothpaste C” and

“toothbrush B ⇒ toothpaste C” over each individual year, we observe that the

confidence series of “toothbrush A ⇒ toothpaste C” from 1997 to 1999 is [100%,

80%, 60%], while the confidence series of “toothbrush B ⇒ toothpaste C” is [60%,

80%, 100%]. They have a negative correlation. This may indicate that the two rules

Chapter 1. Introduction 3

Id Transaction Time
1 beer, toothbrush A, toothpaste C 1997
2 beer, toothbrush A, toothpaste C 1997
3 beer, cake, toothbrush A, toothbrush B, toothpaste C 1997
4 beer, chip, toothbrush B 1997
5 chip, cake, toothbrush B, toothpaste C 1997
6 cake, beer, toothbrush B 1997
7 cake, toothbrush B, toothpaste C 1997
8 beer, chip, toothbrush A, toothpaste C 1998
9 beer, chip, toothbrush A, toothpaste C 1998
10 beer, toothbrush A, toothbrush B, toothpaste C 1998
11 chip, toothbrush B, toothbrush A 1998
12 beer, cake, toothbrush A, toothpaste C 1998
13 beer, cake, toothbrush B, toothpaste C 1998
14 chip, toothbrush B, toothpaste C 1998
15 toothbrush B, toothpaste C 1998
16 chip, toothbrush A, toothpaste C 1999
17 beer, chip, toothbrush A, toothpaste C 1999
18 cake, toothbrush A 1999
19 beer, chip, cake, toothbrush B, toothpaste C 1999
20 beer, chip, toothbrush A 1999
21 beer, cake, toothbrush B, toothpaste C 1999
22 beer, chip, toothbrush B, toothpaste C 1999
23 toothbrush A, toothpaste C 1999

Table 1.1: Sample Transactions

have a competing relationship：people who buy toothbrush A or B tend to buy

toothpaste C but over the years people who buy toothbrush B are more and more

likely to buy toothpaste C; whereas people who buy toothbrush A are less and less

likely to buy toothpaste C. As such, if toothpaste C is the key product and the

company wants to increase the sale of toothpaste C, it may produce more toothbrush

B rather than A as a promotion for buying toothpaste C.

Chapter 1. Introduction 4

Id Rule Confidence
1 beer ⇒ chip 46%
2 chip ⇒ beer 63%
3 beer ⇒ toothpaste C 80%
4 cake ⇒ toothpaste C 77%
5 chip ⇒ toothpaste C 72%
6 toothbrush A ⇒ toothpaste C 76%
7 toothbrush B ⇒ toothpaste C 76%
8 toothpaste C ⇒ toothbrush A 55%
9 toothpaste C ⇒ toothbrush B 55%
10 toothbrush A, toothbrush B ⇒ toothpaste C 66%
…. …. ….

Table 1.2 Discovered Association Rules

On the other hand, if the confidence series of “toothbrush A ⇒ toothpaste C” is

[60%, 50%, 40%] and the confidence series of “toothbrush B ⇒ toothpaste C” is

[70%, 60%, 50%], but the confidence series of “toothbrush A, toothbrush B ⇒

toothpaste C” is [50%, 70%，90%], the relationship between the three rules is

interesting as it is counter-intuitive. It indicates that the combined effect of

toothbrush A and toothbrush B is opposite to that of toothbrush A and B individually.

As such, the company could sell toothbrush A and B together rather than

individually if it wants to increase the sell of toothpaste C.

Based on above observations, we wish to investigate the dynamic aspects of

association rule mining in this thesis. First, we find the evolving trends of each

individual rule over time. In most of the time, it is important to know whether a rule

is stable or whether it exhibits some systematic trends. Knowing such dynamic

behavior of a rule will enable the user to make better decisions and to take

appropriate actions. For example, if the rule exhibits trends, the user can exploit the

Chapter 1. Introduction 5

desirable trends, and take some preventive measures to delay or change the

undesirable trends.

Second, we analyze the correlations among rules in the statistical properties over

different time periods. Based on the correlations, we find some unexpected and

interesting relationships among rules over time. In general, we are interested to find

relationships among the association rules which have the same consequent but

different antecedents. Suppose we have three association rules R1: α ⇒ C, R2: β ⇒

C, R3: α, β⇒ C, where C is the target item. We focus on the correlations among the

confidence series of the rules. The correlations may reflect the change of the

underlying data over time. They could help the user to understand the domain better.

There are some challenges in this work. First, since we investigate the

association rules over time, the dataset is dynamic and may be huge. It needs an

efficient algorithm to mine the association rules. Second, finding evolution

relationships among rules is not straightforward. The rules might be of various forms.

It is neither reasonable nor necessary to directly analyze the correlations among all

rules. Instead we should analyze the dynamic behavior of the rules first and the

correlation analysis should be done among the rules within the same category. Third,

association rule mining tends to produce huge number of rules and each rule may

have many trends. Pairwise way of directly finding relationships among rules might

not be so efficient. Efficient algorithms and strategies need to be developed to

improve efficiency.

Chapter 1. Introduction 6

1.1 Contributions

In this thesis, we investigate the trends and correlations in the statistical properties of

association rules over time. We propose four categories of rules based on their trends

over time and four interesting relationships among rules based on the correlations in

their statistical properties. To our best knowledge, this is the first work to find such

relationships among association rules over time. Our contributions are summarized

as follows:

• Propose an efficient algorithm to mine the association rules with a known

consequent

• Design novel algorithms and do some optimizations to discover relationships

among the mined rules over time.

• Verify the efficiency and effectiveness of the proposed approaches with

synthetic and real-world datasets.

1.2 Organization

This thesis is organized as follows. We introduce the related work in Chapter 2 and

give some preliminary definitions about our work in Chapter 3. In Chapter 4, we

propose our approaches and in Chapter 5 we evaluate the proposed approaches on

both synthetic and real-world datasets. We conclude our work and identify the future

research topics in Chapter 6.

Chapter 2

Related Work

Association rule mining was first proposed in R. Agrawal et al. [1]. Since then, many

variants of association rule mining have been proposed and studied, such as efficient

mining algorithms of traditional association rules [2,4], constraint association rule

mining [5-7], incremental mining and updating [8-10], mining of generalized and

multi-level rules [11-12], interestingness of association rules [3,13-18] and

association rule mining related to time [19-32].

2.1 Association Rule Mining Algorithms

In this section, we briefly introduce two widely used association rule mining

algorithms. In general, association rule mining includes two processes [1-2]. The

first step is to generate all the frequent itemsets, whose support counts are at least as

7

Chapter 2. Related Work 8

large as the predetermined minimum support count. The second step is to generate

association rules from the frequent itemsets; these association rules must satisfy the

minimum support and minimum confidence. The major challenge is the first step.

 Apriori algorithm [2] was first introduced to mine frequent itemsets. The basic

idea is to employ the Apriori property of frequent itemsets: all nonempty subsets of a

frequent itemset must also be frequent. Based on this property, Apriori algorithm

uses a bottom-up strategy. To find frequent k-itemsets , it first generate

candidates of frequent k-itemsets by joining with itself. Since is a

superset of , its members may or may not be frequent. According to Apriori, any

(k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.

Therefore if any (k-1)-subset of a candidate frequent k-itemset is not in , the

candidate cannot be frequent and hence can be removed from . In this way, the

size of can be significantly reduced.

kL

kC 1−kL kC

kL

1−kL

kC

kC

 J. Han et al. [4] introduces a more efficient algorithm (FP-growth) to mine

frequent itemsets without candidate generation. FP-growth adopts a

divide-and-conquer strategy. First, it compresses the database representing frequent

items into a frequent pattern tree which retains the itemset association information. It

then divides the compressed database into a set of conditional databases, each

associated with one frequent item, and mines each such database separately. To find

long frequent patterns FP-growth searches for shorter ones recursively and then

Chapter 2. Related Work 9

concatenates the suffix. It uses the least frequent items as a suffix, offering good

selectivity. The method substantially reduces the search costs.

 These two algorithms are widely used in tradition association rule mining which

does not consider any time information.

2.2 Temporal Association Rule Mining

Recently, there have been interests in mining association rule which incorporates

time information [19-22]. They consider lifespan of a rule or lifespan of items in the

rule.

 B. Ozden et al. [19] proposes to find cyclic association rules, where the rules

satisfy the min_sup and min_conf at regular time intervals over time. Such a rule

does not need to hold for the entire transaction database, but only for transaction data

in a particular time interval. For example, we might find that beer and chip are sold

together primarily between 6pm and 9pm. Therefore, if we partition the data over the

intervals 6am-7am and 6pm-9pm, we may discover the rule “beer ⇒ chip” in

6pm-9pm interval. On the other hand, if we mine the whole data directly, the rule

could not be found.

However, B. Ozden et al. [19] can only find “cyclic association rules”. B. Ozden

et al. [20] generalizes the idea of B. Ozden et al. [19] to find calendar association

rule, where the author introduces the notion of using a calendar algebra to describe

the time period of interest in association rules. This calendar algebra is used to define

Chapter 2. Related Work 10

and manipulate groups of time intervals. The time intervals are specified by the user

to divide the data into disjoint segments. An association rule will be mined if it

satisfies the min_sup and min_conf during every time interval contained in a

calendar.

In Y. Liu et al. [21], the authors further generalize the idea of S. Ramaswamy et

al. [20] by using a calendar schema as a framework for temporal patterns, rather than

user-defined calendar algebraic expression. As a result, the approach in Y. Liu et al.

[21] requires less prior knowledge. In addition, the approach considers all possible

temporal patterns in the calendar schema, thus can potentially discover more

temporal association rules and unexpected rules. The main contribution of the work

is to develop a novel representation mechanism for temporal association rules on the

basis of calendars and identify two classes of interesting temporal association rules:

temporal association rules with respect to the full match and temporal association

rule with respect to the relaxed match. Association rules with respect to the full

match refer to those rules that hold for each basic time interval covered by the

calendar; while relaxed match association rules refer to those that hold for at least a

certain percentage of time intervals covered by the calendar.

Similarly, J. Ale et al. [22] also incorporates time information in the frequent

itemsets by taking into account the items’ lifespan. An item’s lifespan is the period

between the first and the last time when the item appears in the transactions. They

compute the support of an itemset in the interval defined by its lifespan and define

temporal support as the minimum interval width. Because they limit the total number

Chapter 2. Related Work 11

of transactions to the items’ lifetime, those associations with a high confidence level

but with little support would be discovered. The approach differs from the works of

[19-21] in that it is not necessary to define an interval or a calendar, since the

lifespan is intrinsic to the data.

 In another branch of research [23-25], the focus is on mining rules that express

the association among items from different transaction records with certain time lag

existing in the items of the antecedent and the consequent. Such rules reflect the

delayed effect of the items on the others.

S. Harms et al. [23] and S. Harms et al. [24] model the association rule with a

time lag between the occurrence of the antecedent and the consequent. The approach

finds patterns in one or more sequences that precede the occurrence in other

sequences, with respect to user-specified constraints. The approach is well suited for

sequential data mining problems which have groupings of events that occur close

together. The papers also show that the methods can efficiently find relationships

between episodes and droughts by using constraints and time lags.

Similarly, H. Lu et al. [25] also finds association rules that have time lags. The

difference is that H. Lu et al. [25] is more general in that the time lag not only exists

between the antecedent and the consequent, it can also exist among the items in the

antecedent or consequent. One rule they found is that “UOL(0),SIA(1) ⇒ DBS(2)”

with confidence of 99%, which means if the stock UOL goes down on the first day

and SIA goes down the following day, DBS will go down the third day with

probability of 99%.

Chapter 2. Related Work 12

 To summarize, the works of [19-25] incorporate time information into

association rule mining, either mining association rules in the time intervals where

the items appear or association rules with a time lag existing in the items of the

antecedent or consequent.

2.3 Association Rules Over Time

Another thread of association rule mining in recent years focus on analyzing the

dynamic behavior of association rules over time [26-31] and detecting emerging

pattern or deviation between two consecutive datasets [32].

 S. Baron et al. [26] proposes to view a rule as a time object, and gives a generic

rule model where each rule is recorded in terms of its content and statistics properties

along with the time stamp of the mining session in which the rule is produced. In the

follow-up papers, the works of [27-29] monitor statistics properties of a rule at

different time points using the generic rule model. They further give some heuristics

to detect interesting or abnormal changes about the discovered rule. One heuristic,

for example, is to partition the range of values in the statistical property under

observation into consecutive intervals and raises alerts when the value observed in an

interval shifts to another interval. Other heuristics include significant test, corridor

and occurrence based grouping heuristics. The basic idea is that concept drift as the

initiator of pattern change often manifests itself gradually over a long time period

where each of the changes may not be significant at all. Therefore the authors use

different heuristics to take different aspects of pattern stability into account. For

Chapter 2. Related Work 13

example, the occurrence based grouping heuristic identifies the changes to the

frequency of pattern appearance, while the corridor-based heuristic identifies the

changes that differ from past values.

 B. Liu et al. [30] also studies the temporal aspect of an association rule over time,

but it focuses on discovering the overall trends of the rule rather than abnormal

changes of the rule. It uses statistical methods to analyze interestingness of an

association rule from temporal dimension, and classifies the rule into a stable rule,

rule that exhibits increasing or decreasing trend and semi-stable rule. It employs

Chi-square test to check whether the confidence (or support) of a rule over time is

homogeneous. If it is homogeneous, the rule is classified as a stable rule. For an

unstable rule, the authors use Run test to test whether the confidence or support of

the rule exhibits trend.

 In X. Chen et al. [31], the authors propose to identify two temporal features with

the interesting rules. The motivation is that in real-world applications, the discovered

knowledge is often time varying and people who expect to use the discovered

knowledge may not know when it became valid, whether it is still valid at present, or

if it will be valid sometime in the future. Therefore the paper focuses on mining two

temporal features of some known association rules. The first one is to find all

interesting contiguous intervals during which a specific association rule holds. And

the second one is to find all interesting periodicities that a specific association rule

has.

Chapter 2. Related Work 14

 G. Dong et al. [32] finds the support differences of itemsets mined from two

consecutive datasets and uses the differences to detect the emerging patterns (EP). In

the paper, EPs are defined as itemsets whose supports increase significantly from one

dataset to another. Because useful Apriori property no longer holds for EPs and there

are usually too many candidates, the paper proposes the description of large

collections of itemsets using their concise borders and design mining algorithms

which manipulate only the borders of the collections to find EPs. Our work differs

from this in that we analyze the relationships among rules over time rather than focus

on emerging itemsets between two time points.

 In summary, the works of [26-32] mine association rules in different time periods

and investigate the behavior of the rule over time. The works of [26-29] detect

interesting or abnormal changes about the discovered rule, the works of [30-31]

discover the overall trend or pattern of the rule over time, and the work of [32] focus

on the change of patterns in two consecutive datasets. However, all these works only

consider the dynamic behavior of a single rule or pattern over time. To date, no work

has been done to discover the relationships among the changes of the rules over time.

We think in many cases the changes of the rules are correlated. Such correlations

reflect the change of the underlying data. Therefore they may give the domain user a

better idea about how and why the data changes. This is the main motivation of our

work. In this thesis, we define some evolution relationships among rules over time

and propose the corresponding approaches to find the relationships.

Chapter 3

Preliminary Definitions

In this chapter, we give some preliminary definitions used in this work before we

introduce the details of the proposed approaches in Chapter 4. First, we define four

types of rules according to their dynamic behavior over time. Second, we define four

categories of evolution relationships among rules based on the correlations of their

confidences.

3.1 Dynamic Behavior of a Rule

As mentioned in Chapter 1, we analyze the dynamic behavior of the rules and the

correlations in their statistical properties. A rule’s dynamic behavior is referred to as

the changes in its statistical properties, i.e. confidence or support, over time. We

15

Chapter 3. Preliminary Definitions 16

model a rule’s confidence over time as a time series, denoted as {y1, y2, …., yn}.

First, we introduce the terminology used in this thesis.

Definition 3.1.1 (Strict Monotonic Series): Given a time series {y1, y2, …., yn}. We

say the time series is a strict monotonic series if

1) yi – yi+1 > 0 ∀ i∈[1, n-1] (monotonic decreasing) or

2) yi – yi+1 < 0 ∀ i∈[1, n-1] (monotonic increasing)

Definition 3.1.2 (Constant Series): Given a time series {y1, y2, …., yn}. We say the

time series is constant if yi – yi+1 = 0 ∀ i∈[1, n -1].

Definition 3.1.3 (Inconsistent Sub-Series): Given a time series {y1, y2, …., yn}, we

say {yi, …, yj} , 1 ≤ i < j ≤ n, is an inconsistent sub-series in {y1, y2, …., yn} if by

removing {yi, …, yj} , we can obtain the time series {y1,…, yi-1, yj+1, …,yn} such that

it is either a strict monotonic or constant series.

Definition 3.1.4 (Trend Fragment): Suppose T = {y1, y2, …., yn} is a time series

with k inconsistent sub-series S1, S2, …, Sk. |Si| denotes the number of time points in

sub-series Si. T is said to be a trend fragment if

1) |Si| < max_inconsistentLen, 1 ≤ i ≤ k;

2) n – ∑i |Si| > min_fragmentLen

where min_fragmentLen and max_inconsistentLen are the user-specified parameters

denoting the minimum length of the trend fragment and the maximum length of

inconsistent series.

Chapter 3. Preliminary Definitions 17

 A trend fragment is said to be stable/increasing/decreasing if the resultant series,

after removing the inconsistent sub-series, is constant/monotonic

increasing/monotonic decreasing.

Example 3.1.1

Suppose we are given the confidence values of a rule over 18 time points, CS = {0.8,

0.8, 0.8, 0.8, 0.8, 0.8, 0.48, 0.6, 0.8, 0.8, 0.8, 0.8, 0.75, 0.68, 0.8, 0.8, 0.8, 0.8} with

the user-specified parameters min_fragmentLen = 10 and max_inconsistentLen = 3.

 Then, the sub-series S1 = {0.48, 0.6} and S2 = {0.75, 0.68} are inconsistent

sub-series. Here, |CS| = 18, |S1| = 2 < max_inconsistentLen, |S2| = 2 <

max_inconsistentLen, 18 – (|S1| + |S2|) = 18 – 4 = 14 > min_fragmentLen. We say

CS is a stable trend fragment.

Based on the definition of stable/increasing/decreasing trend fragments, we

classify a rule into the following categories:

Definition 3.1.5 (Stable Rule): A rule with confidence series CS is said to be a

stable rule if CS is a stable trend fragment.

r

Definition 3.1.6 (Monotonic Rule): A rule with confidence series CS is said to

be a monotonic increasing/decreasing rule if CS is an increasing/decreasing trend

fragment.

r

Definition 3.1.7 (Oscillating Rule): A rule with confidence series CS is an

oscillating rule if CS has more than one trend fragment or CS has only one trend

fragment which is the sub-series of CS.

r

Chapter 3. Preliminary Definitions 18

Definition 3.1.8 (Irregular Rule): A rule with confidence series CS is an

irregular rule if CS has no trend fragment.

r

Figure 3.1 illustrates the four different types of rules. Suppose

min_fragmentLen = 5 and max_inconsistentLen = 2. The rules in Figure 3.1(a) are

monotonic rules as their confidence series are increasing or decreasing trend

fragments. The rules in Figure 3.1(b) are oscillating rules. There are two trend

fragments in both rules. The confidence sub-series from time point 1 to 5 of R3 is a

(a)Monotonic Rules (b) Oscillating Rules

 (c) Irregular Rule (d) Stable Rule

 Figure 3.1 Rule Categories

decreasing trend fragment and the confidence sub-series from time point 5 to 10 is an

increasing trend fragment. There is no trend fragment of the rule in Figure 3.1(c), so

Chapter 3. Preliminary Definitions 19

it is an irregular rule. The confidence series of the rule in Figure 3.1(d) is a stable

trend fragment, so the rule is a stable rule.

A stable rule is more reliable, so it can be used in real-world tasks. A monotonic

rule has a systematic trend in the whole time period therefore is predictive. The

confidence of an oscillating rule may increase in some time periods, and may

decrease or stay unchanged in other time periods. An irregular rule is neither

predictive nor reliable, so it may not be much useful in real-world applications.

 In this thesis, we call a monotonic rule or stable rule a trend rule as it has a

systematic trend in its entire confidence series, either increasing, decreasing or

stable.

3.2 Evolution Relationships Among Rules

Besides analyzing the dynamic behavior of each association rule, we also wish to

find the relationships among rules over time. These relationships are also called

evolution relationships. They are based on the confidence correlations among rules.

Here, to measure the confidence correlation, we use the Pearson correlation

coefficient which is defined as follows [33]:

 , 2 2 2 2

() () ()
() () () ()

X Y
E XY E X E Y

E X E X E Y E Y
ρ −

=
− −

 (2)

where X and Y are the vectors of the two confidence series and E is the expected

value operator.

Chapter 3. Preliminary Definitions 20

 Our relationships are defined among the rules with the same consequent C.

Suppose we have three rules: R1: α ⇒ C, R2: β ⇒ C, R3: γ ⇒ C where C is the target

value, α ∪ β = γ, α ⊄ β and β ⊄ α. Let CS1, CS2, CS3 be the confidence values of R1,

R2, R3 over the period [t1, t2] in which CS1, CS2, CS3 are trend fragments.
1 2,CS CSρ is

the Pearson correlation coefficient between CS1 and CS2, and δ is a user-defined

tolerance.

Definition 3.2.1 (Competing Relationship): Suppose CS1 and CS2 are monotonic

trend fragments. We say R1 : α ⇒ C and R2 : β ⇒ C (α β∩ =∅) have a competing

relationship in [t1, t2] if
1 2,CS CSρ < -1 + δ.

 Competing relationship implies that the confidence of one rule increases as the

confidence of the other rule decreases. It indicates that the antecedents of R1 and R2,

i.e. α and β , are competing with each other over time in implying the consequent

C.

Definition 3.2.2 (Diverging Relationship): Suppose CS1, CS2 and CS3 are

monotonic trend fragments. We say R1 : α ⇒ C and R2 : β ⇒ C have a diverging

relationship with R3: α ∪ β ⇒ C in [t1, t2] if

1)
1 2,CS CSρ >1 - δ,

2)
1 3,CS CSρ <-1 + δ, or

2 3,CS CSρ < -1 + δ

Diverging relationship indicates that the combined effect of α and β on

implying the consequent C is opposite to that of α or β individually.

Chapter 3. Preliminary Definitions 21

Definition 3.2.3 (Enhancing Relationship): Suppose CS1 and CS3 are monotonic

trend fragments while CS2 is a constant trend fragments. We say R1 : α ⇒ C and R2 :

β ⇒ C have an enhancing relationship with R3: α ∪ β ⇒ C in [t1, t2] if

1)
1 3,CS CSρ < -1 + δ

2) CS1 is monotonic decreasing and CS3 is monotonic increasing

Enhancing relationship implies that the condition β enhances the effect of α

on the consequent C.

Definition 3.2.4 (Alleviating Relationship): Suppose CS1 and CS3 are monotonic

series while CS2 is a constant series. We say R1 : α ⇒ C and R2 : β ⇒ C have an

alleviating relationship with R3: α ∪ β ⇒ C in [t1, t2] if

1)
1 3,CS CSρ < -1 + δ

2) CS1 is monotonic increasing and CS3 is monotonic decreasing

Alleviating relationship implies that the condition β alleviates the effect of α

on the consequent C.

These relationships are unexpected and counter-intuitive therefore could be

important and useful in real-world applications. For example, consider the scenario

that which type of qualifications may increase the chance of finding a job, competing

relationship may indicate that the persons with qualification α are more and more

likely to get the position over time, compared to the persons with qualification β .

Enhancing relationships may imply that a person who have both qualifications α

and β at the same time is more and more likely to get the position, compared with

Chapter 3. Preliminary Definitions 22

the past time when only having qualification α can make a person to get the

position. This might indicate the change of standards used in human resources

department.

Chapter 4

Proposed Approaches

In this chapter, we introduce our proposed approaches. The overview of our work is

shown in Figure 4.1. We have three tasks. First, partition the original dataset by time

period and mine association rules over multiple time points; second, analyze the

dynamic behavior of each individual rule over time and classify the rule by its

dynamic behavior; third, find the evolution relationships among rules.

Partition data
Mine rules

Analyze and
Classify rules

Find evolution
relationships

Original data

Figure 4.1: Work Overview

The following three sections give the details of our approaches.

23

Chapter 4.Proposed Approaches 24

4.1 Mine Association Rules over Time

To analyze the dynamic behavior of a rule and the relationships among rules over

time, we first partition the available dataset into sub-datasets by year, month or day,

depending on the applications. We then mine association rules from each sub-dataset

and track the confidences of the rules over the different sub-datasets. One issue is

immediately apparent: what happens if an association rule fails to meet the min_sup

requirement in some sub-datasets but in other sub-datasets, the min_sup requirement

is satisfied. This would imply that when we examine the time series of the

confidence of this association rule, there will be missing confidences at those time

points where the rule fails to satisfy the min_sup requirement. An association rule

with too many missing confidences is said to be unstable. In this thesis, an unstable

rule is one whose number of missing values exceeds the user defined maximum

number of disappearance (max_disAppear). We filter these unstable rules from

further considerations as they do not provide meaningful information in the evolution

analysis process.

For those rules with only a few missing confidences, we perform additional

database scans to compute the supports of the itemsets corresponding to these rules

in the sub-datasets. With these supports, we can compute the missing confidences

using the following formula [1, 2]:

sup({ })()
sup()

CConfidence C αα
α
∪

⇒ = (3)

Chapter 4.Proposed Approaches 25

Where sup({ })Cα∪ and sup()α are the supports of { }Cα∪ and α

respectively. The procedure is summarized in Algorithm 4.1.1.

Algorithm 4.1.1 MineAssoRuleOverTime

Input: dataset in the whole time period, target value C

Output: association rules with its consequent as C over time

1. partition the dataset into sub-datasets by time period

2. mine association rules in each sub-dataset

3. for each rule r

4. If the number of missing confidences > max_disAppear

5. drop r

6. end if

7. end for

8. for each sub-dataset

9. for each of the remaining rules α ⇒ C which misses the confidence in this

 sub-dataset

10. put the itemsets α and α ∪ {C} in I.

11. end for

12. scan the sub-dataset to get the supports of the itemsets in I

13. for each of the remaining rules α ⇒ C which misses the confidence in this

sub-dataset

14. compute the missing confidence using sup(α ∪ {C})/sup(α)

15. end for

16. end for

In Algorithm 4.1.1, line 1 partitions the dataset by time period and line 2 mines

association rules in each sub-dataset. After that, lines 3-7 check the confidences of

Chapter 4.Proposed Approaches 26

the rules. If the number of missing confidences of a rule exceeds the

max_disApppear, we drop the rule. For the remaining rules, lines 8-16 complete their

missing confidences as follows. For each sub-dataset, lines 9-11 first collect the

itemsets needed to compute the missing confidences. After that, line 12 scans the

sub-dataset once to get the supports of the itemsets and lines 13-15 computes the

missing confidences with the supports.

Another issue is the efficiency consideration of mining association rules in line 2.

Traditionally, mining association rule is performed in two steps. The first step

generates all the frequent itemsets in the dataset. The second step derives the

association rules from the frequent itemsets. Generation of frequent itemsets is time

consuming and there have been many algorithms proposed to mine the frequent

itemsets efficiently such as Apriori [2] and FP-Growth [4]. In this thesis we make

use of the constraint that the association rules we are interested in must have a target

value, say C, as the consequent. This reduces the number of frequent itemsets

generated as we only need to generate the frequent itemsets containing target value C.

So we can reduce the time complexity of the frequent itemset generation as follows.

First we partition the dataset into two parts, positive dataset (PD) and negative

dataset (ND). PD consists of all instances with target value C. ND consists of all

instances without target value C. To discover association rules with C as their

consequents, we mine the frequent itemsets from PD, and count the frequencies of

these itemsets in ND to compute the rules’ confidences using the following formula.

Chapter 4.Proposed Approaches 27

 sup()()
sup() sup ()

in PDconfidence C
in PD in ND

αα
α α

=> =
+

 (4)

where α is a frequent itemset mined from PD, sup()in PDα is the support of α

in PD and sup ()in NDα is the support of α in ND. Note that Formula 4 is

consistent to Formula 3 in that sup()in PDα is equal to sup({ })Cα∪ since every

instance in PD contains target value C, and sup() sup ()in PD in NDα α+ is equal

to sup()α since both of them are the support of the instances that contain α in the

whole dataset.

 The algorithm is summarized in Algorithm 4.1.2. When size of PD is much

smaller than that of the original dataset D, the resulting savings is substantial as

compared to naively mining the association rules from the dataset directly.

Algorithm 4.1.2 MineAssoRule

Input: sub-dataset, target value C

Output: association rule with its consequent as C

1. partition the sub-dataset into two parts, PD and ND

2. mine the frequent itemsets from PD using FP-Growth algorithm. For each

frequent itemset α , there will be a corresponding rule α ⇒ C

3. count each of the frequent itemsets in step 2 from ND

4. compute the confidence of each rule, using

 sup()()
sup() sup ()

in PDconfidence C
in PD in ND

αα
α α

=> =
+

5. output rules whose confidences satisfy the min_conf

Chapter 4.Proposed Approaches 28

4.2 Dynamic Behavior of a Rule

Having mined all the association rules with target value C as the consequents, we

proceed to analyze the dynamic behavior of these rules. Recall in Chapter 3, we have

defined the concepts of stable, monotonic increasing, monotonic decreasing and

irregular rules.

 Given the confidence values of a rule over n time points {y1,…,yn}, we scan the

series from left to right, grouping the values into consistent sub-series such that all

the values in each sub-series are either constant or monotonic increasing/decreasing

(see Algorithm 4.2.1). Note that there are three fields in a consistent sub-series (CSS).

A “begin” field is used to record the start point of the sub-series; An “end” field

records the end point of the sub-series; and a “flag” indicates the trend of the

sub-series, with value of -1 decreasing trend, value of 1 increasing trend, and value

of 0 stable.

Algorithm 4.2.1 FindCSSs
Input: confidence series of a rule CS
Output: all consistent sub-series CSSArray
1. if (CS[2]-CS[1] = = 0)
2. initialFlag = 0
3. else if (CS[2]-CS[1] >0)
4. initialFlag = 1
5. else
6. initialFlag = −1
7. end if
8. k = 1, initialBegin = 1
9. for i = 3 to |CS|
10. if (CS[i]-CS[i-1] = = 0)
11. newFlag = 0

Chapter 4.Proposed Approaches 29

12. else if (CS[i]-CS[i-1] > 0)
13. newFlag = 1
14. else
15. newFlag = -1
16. end if
17. if (newFlag ! = initialFlag) // store the sub-series and find the next CSS
18. CSSArray[k].begin = initialBegin
19. CSSArray[k].end = i-1
20. CSSArray[k].flag = initalFlag
21. k = k+1
22. initalFlag = newFlag
23. initialBegin = i
24. end if
25. end for

Example 4.1

Suppose the min_fragmentLen is 9 and max_inconsistentLen is 3. Figure 4.2 shows

the confidence series of a rule over time. According to Algorithm 4.2.1, we find six

consistent sub-series, namely CSS1 = CS[1:3] (denoting the sub-series of confidence

series from time point 1 to 3), CSS2 = CS[4:5], CSS3 = CS[6:9], CSS4 = CS[10:14],

CSS5 = CS[15:16] and CSS6 = CS[17:20].

Figure 4.2 Example of Finding Trend Fragment

Chapter 4.Proposed Approaches 30

After all the sub-series have been formed, we proceed to merge the adjacent

sub-series if the gap between the two series is less than max_inconsistentLen and the

merged series is strictly monotonic or constant. The merged sub-series whose lengths

are greater than min_fragmentLen are identified as trend fragments (see Algorithm

4.2.2 for details). Back to Example 4.1, CSS1 and CSS3 are merged as CS[1:9], CSS4

and CSS6 are merged as CS[10:20]. Since both the merged sub-series CS[1:9] and

CS[10:20] are longer than 9, they are both trend fragments.

 After all the trend fragments are found, we classify a rule based on the number of

its trend fragments. If the number of trend fragment is zero (this implies that the

confidences of the rule vary greatly with no specific trend), we classify the rule as an

irregular rule. If the number of trend fragment is one, we classify the rule as a trend

rule. Rules that do not fall into the above categories are classified as oscillating rules

which means that their confidences may increase in some time periods, and decrease

or remain stable in other time periods. Details of the steps can be found in Algorithm

4.2.2. Note that Algorithm 4.2.2 calls Function 4.2.1 which returns a value indicating

whether two sub-series should be merged.

Algorithm 4.2.2 MergeCSSAndClassifyRules
Input: a rule’s confidence series, CS
 its consistent sub-series, CSSArray
Output: the rule’s trend fragments, TFArray
 the category of the rule, CR
1. k = 1, mergedCSS = CSSArray[1]
2. for i = 2 to |CSSArray|
3. if (isMergeable(CS,CSSArray[i-1],CSSArray[i])

Chapter 4.Proposed Approaches 31

4. mergedCSS.end = CSSArray[i].end
5. else
6. if (|mergedCSS| ≥ min_fragmentLen) // if yes, it is a trend fragment
7. TFArray[k] = mergedCSS
8. k = k+1
9. end if
10. mergedCSS = CSSArray[i] // start to find a new merged sub-series
11. end if
12. end for
13. if (|TFArray| = = 0) // classify the rule
14. CR = irregular rule
15. else if ((|TFArray| = = 1)
16. CR = trend rule (monotonic or stable)
17. else
18. CR = oscillating rule
19. end if

 In Algorithm 4.2.2, lines 2-12 merge adjacent consistent sub-series from left to

right and find the trend fragments of the rule. In each iteration, we first check

whether current sub-series should be merged with the previous one; if they can be

merged, we merge the current sub-series and continue to check the next sub-series

(lines 3-4); otherwise, we check whether the merged sub-series is a trend fragment

and start to find another merged sub-series (lines 5-10). Lines 13-19 classify the rule

based on the number of the trend fragments.

Function 4.2.1 isMergeable
input: a confidence series CS; its two consistent sub-series, CSSi and CSSj
output: a value indicating whether the two sub-series should be merged
1. if (CSSj.begin – CSSi.end > max_inconsistentLen)
2. return false
3. end if
4. result = false
5. if(CSSi.flag = =0) // case 1: both sub-series stable
6. if(CSSj.flag = = 0)
7. if(CS[CSSi.end] = = CS[CSSj.begin])

Chapter 4.Proposed Approaches 32

8. result = true
9. end if
10. end if
11. else if (CSSi.flag = = 1) // case 2: both sub-series increasing
12. if(CSSj.flag = = 1)
13. if(CS[CSSi.end] < CS[CSSj.begin])
14. result = true
15. end if
16. end if
17. else // case 3: both sub-series decreasing
18. if(CSSj.flag = =-1)
19. if(CS[CSSi.end] > CS[CSSj.begin])
20. result = true
21. end if
22. end if
23. end if
24. return result

 In Function 4.2.1, lines 1-3 check whether the gap between the two sub-series is

greater that max_inconsistentLen. If it is, the two sub-series cannot be merged and

we return false. Lines 4-24 check whether the merge of the two sub-series is strictly

monotonic or constant series. If it is, the two sub-series can be merged and the

function returns true.

4.3 Find Evolution Relationships Among Rules

In this section, we introduce the approaches to find relationships among trend rules

and oscillating rules. First we define the notion of a combined rule and sub-rule as

follows:

Chapter 4.Proposed Approaches 33

Defintion 4.3.1 (Combined Rule): Suppose we have three rules :ir α ⇒ C, :jr β ⇒

C , : γ ⇒ C. If α ∪ β = γ, α ⊄ β and β ⊄ α, we say is the combined rule of

and .

Definition 4.3.2 (Sub-Rule): Given two rules :

kr kr ir

jr

ir α ⇒ C, : γ ⇒ C. If α ⊂ γ, we

say is a sub-rule of .

kr

ir kr

4.3.1 Find Combined Rules

From the definitions of diverging, enhancing and alleviating relationships discussed

in Chapter 3, it is evident that we need to analyze the confidence correlations

between a combined rule and its sub-rules. Repeated scanning of the rules to find the

corresponding combined rule is inefficient and time consuming. Hence, in this thesis,

we design a hash table structure that captures the implicit relationships between a

combined rule and its sub-rules.

For each rule r of the form a1, a2, …, am ⇒ C, where a1, a2,…, am are the unique

integer identifiers of the items, we add up these unique identifiers to form a hash key.

A hash function is then applied to this key to obtain the location of the rule r. In this

way, the rules are stored in a hash table indexed by the antecedents of the rules. The

procedure is summarized in Algorithm 4.3.1.

Algorithm 4.3.1 StoreRuleUsingHash
Input: a1,a2,…,am ⇒ C where a1,a2,…,am are unique integer identifiers of
 items; number of buckets: Num

Chapter 4.Proposed Approaches 34

Output: bucket number: BNo
1. hashKey = a1+ a2+…+ am
2. BNo = hashKey%Num
3. return BNo

Back to our running example, suppose the integer identifiers of the items are

tabulated in Table 4.1 and the number of buckets is 20. Some of the rules in Table

1.2 are stored into the hash structure as shown in Table 4.2.

Item Identifier
beer 101
chip 102
cake 103
toothbrush A 104
toothbrush B 105
toothpaste C 106

Table 4.1 Identifiers of Items

Bucket No Rules
1 beer ⇒ toothpaste C
2 chip ⇒ toothpaste C
3 cake ⇒ toothpaste C
4 toothbrush A ⇒ toothpaste C
5 toothbrush B ⇒ toothpaste C
6
7
8
9 toothbrush A, toothbrush B ⇒ toothpaste C
… …

Table 4.2 Hash Table of Rules

With the hash structure, given any two rules, we can simply union and add the

antecedents of the two rules to form a hash key that is used to access the location of

Chapter 4.Proposed Approaches 35

the combined rule. For example, given the rules “toothbrush A ⇒ toothpaste C” and

“toothbrush B ⇒ toothpaste C”, we add toothbrush A(104) and toothbrush B(105) to

form a hashKey: 104+105 = 209, then we can get the bucketNo: 209%20 = 9. After

that, we use the bucketNo to locate the combined rule “toothbrush A, toothbrush B

⇒ toothpaste C”.

4.3.2 Find Relationships Among Trend Rules

In this section, we discuss how to discover interesting relationships among trend

rules. Recall, a trend rule is one that exhibits a singular behavior over the whole time

period. Hence, there is only one trend fragment associated with each trend rule. For

such rules, we apply the definitions in Chapter 3 to find the relationships among each

pair of rules. Algorithm 4.3.2 gives the details, where δ is the user-defined tolerance.

Algorithm 4.3.2 FindRelInTrendRules

Input: all trend rules

 user-defined tolerance δ

Output: the relationships among trend rules

1. for each pair of trend rules ,i jr r
2. if (both and are not stable) // case 1: not stable, not stable ir jr ir jr
3. corr = calculateCorrelation () ,i jr r
4. if (corr < -1 + δ)
5. if (and have no common items in the antecedent) ir jr
6. output: competing relationship(,) ir jr
7. end if
8. else if (corr > 1 - δ)

Chapter 4.Proposed Approaches 36

9. if(, the combined rule of and , is a trend rule and is not stable) kr ir jr
10. corr = calculateCorrelation (,) kr ir
11. if(corr < -1 + δ)
12. output: diverging relationship(, ,) kr ir jr
13. end if
14. end if
15. else ;
16. end if
17. else if (is not stable and is stable) // case 2: not stable, stable ir jr ir jr
18. if (, the combined rule of and , is a trend rule and is not stable) kr ir jr
19. corr = calculateCorrelation(,) kr ir
20. if(corr <-1 + δ)
21. if(is increasing) output: enhancing relationship(, ,) kr kr ir jr
22. else output: alleviating relationship(, ,) kr ir jr
23. end if
24. end if
25. end if
26. else if(is stable and is not stable) // case 3: stable, not stable ir jr ir jr
27. /* similar process as 18-25 */
28. else ; // case 4: stable, stable ir jr
29. end if
30. end for

In Algorithm 4.3.2, calculateCorrelation () computes the Pearson correlation

coefficient between the confidence series of and . The algorithm performs

pairwise comparisons of the rules. If both rules are not stable, we compute the

Pearson correlation coefficient (line 3); if the correlation is less than -1 + δ (close to

-1) and they have no common items in the antecedent, we say the two rules exhibit a

competing relationship (lines 4-7). If the correlation is greater than 1- δ (close to 1),

we obtain their combined rule to determine whether the rules exhibit a diverging

,i jr r

ir jr

Chapter 4.Proposed Approaches 37

relationship (lines 8-14). If one of the rules is stable, we obtain their combined rule

to determine whether the rules exhibit an enhancing or alleviating relationship (lines

17-27). If both rules are stable, there is no evolution relationship (line 28).

4.3.3 Find Relationships Among Oscillating Rules

Finding relationships among oscillating rules is more complex than finding

relationships among trend rules. This is because the oscillating rules may increase in

some time periods and decrease or remain stable in other time periods. The algorithm

must automatically discover the overlapped time intervals of the trend fragments in

which the oscillating rules exhibit trends and have the different types of relationships

as discussed in Chapter 3. If the overlapped interval is too short, it is not significant.

Hence, in this thesis we find the relationships only in the trend fragments that have a

significant overlapped interval.

 In general, we say a trend fragment is comparable to another trend fragment if

they have a significant overlapped interval. More precisely, Suppose we have a trend

fragment TFi = { , , … }. We say trend fragment TF
1ny 11+ny

2ny j =

{ , ,… }, where n
1my 11+my

2my 1 ≤ m1, is comparable to TFi if n1 = m1 and n2 = m2; or

(min(n2,m2) − m1)/(max(n2,m2) – min(n1,m1)) > min_ratio, where min_ratio is the

user-specified minimum ratio. Here, TFi is called the seed fragment. In other words,

a fragment is comparable to the seed fragment if the proportion of the overlap

between the two fragments is greater than a user-specified ratio. Suppose min_ratio

Chapter 4.Proposed Approaches 38

is 0.7. Figure 4.3(a) shows examples of trend fragments that are comparable; and

Figure 4.3(b) shows examples of trend fragments that are not comparable.

(a) comparable (b) incomparable

Figure 4.3: Example of Comparable and Incomparable Fragments

By the definition of comparable trend fragments, the task of finding relationships

among oscillating rules is to find the relationships among rules in the overlapped

time intervals of their comparable trend fragments.

A naïve approach is to perform pairwise comparisons of the rules and confine the

computation of the correlation to the overlapped region of the comparable trend

fragments in each pair of rules. Details are given in Algorithm 4.3.3 and Algorithm

4.3.5. Note that Algorithm 4.3.3 finds diverging, alleviating and enhancing

relationships. Algorithm 4.3.5 finds competing relationship. The pseudocodes of

findCombinedRel (, ,), findSeed(, ,) and isComparable(,) in

Algorithm 4.3.3 are given in Algorithm 4.3.4, Function 4.3.1 and Function 4.3.2.

if jf kf if jf kf if jf

Algorithm 4.3.3 FindRelInOsciRules

Input: all oscillating rules

Chapter 4.Proposed Approaches 39

Output: the diverging, alleviating and enhancing relationships among rules

1. for each pair rules and ir jr
2. find the combined rule, kr
3. if (exists) kr
4. TFSi = trend fragments of ,TFSir j = trend fragments of , jr

 TFSk = trend fragments of , m = 0,n = 0, l = 0 kr
5. while m < |TFSi| and n < |TFSj| and l < |TFSk|
6. = TFSif i[m], = TFSjf j[n], = TFSkf k[l]
7. seed = findSeed(, ,) if jf kf
8. if(seed = = 1)
9. if(isComparable(,) and isComparable(,)) if jf if kf
10. findCombinedRel (, ,) // call Algorithm 4.3.4 if jf kf
11. m = m+1
12. if(.begin = = .begin and .end = = .end) jf if jf if
13. n = n+1
14. if(.begin = = .begin and .end = = .end) kf if kf if
15. l = l+1
16. else if (seed = = 2)
17. /* similar process as seed = = 1, this time the seed fragment is */ jf
18. else
19. /* similar process as seed = = 1, this time the seed fragment is */ kf
20. end if
21. end while
22. end if
23. end for

 Algorithm 4.3.3 works as follows. For each pair of rules, line 2 finds the

combined rule of the two rules using Algorithm 4.3.1. If the combined rule exists, we

find relationships among the combined rule and the sub-rules in each pair of

comparable trend fragments. The finding proceeds in a left-to-right order. We view

the trend fragments of the three rules as three queues individually, and scan them

Chapter 4.Proposed Approaches 40

from left to right until one of the rules runs out of its fragments (lines 5-21). In each

iteration, findSeed(, ,) choose a seed fragment from the fragments of the

three rules (line 7). The seed fragment to be chosen is the fragment that has the

smallest start point and end point. After choosing the seed fragment, we check

whether the other two fragments are comparable to the seed fragment (line 9). If they

are comparable, we find relationships among them using Algorithm 4.3.4 (line 10).

At the end of the iteration, the seed fragment is dropped (line 11), and the other two

fragments are discarded if they have the same start point and end point as the seed

fragment (lines 12-15).

if jf kf

Function 4.3.1 FindSeed

Input: three fragments , , if jf kf
Output: the seed fragment
1. sort , , by their start point and end point in ascending order if jf kf
2. if(is the first fragment) if
3. return 1
4. else if(is the first fragment) jf
5. return 2
6. else
7. return 3

Function 4.3.2 IsComparable
Input: seed fragment: if , a fragment: jf , user-defined min_ratio
Output: a value indicating whether jf is comparable to if
1. overlapLen = min(if .end, jf .end) − jf .begin
2. wholeLen = max(if .end, jf .end) – min(if .begin, jf .begin)
3. if(overlapLen / wholeLen ≥ min_ratio)

Chapter 4.Proposed Approaches 41

4. return true
5. else
6. return false
7. end if

In Algorithm 4.3.3, the approach findCombinedRel(, ,) finds the

diverging, alleviating and enhancing relationships of rules in the pair of three

comparable trend fragments. It is summarized in Algorithm 4.3.4. Algorithm 4.3.4 is

similar to Algorithm 4.3.2. The difference is that we need to compute the overlapped

region (lines 1-2) and output the relationships in the overlapped region.

if jf kf

Algorithm 4.3.4 FindCombinedRel

Input: three fragments , , , where is the fragment of the combined if jf kf kf
 rule, and are the fragments of the sub-rules jf if
Output: the relationship among the rules of , , if jf kf
1. begin = max(if .begin, jf .begin, .begin) kf
2. end = min(if .end, jf .end, .end) kf
3. = the rule of ir if , = the rule of jr jf , = the rule of kr kf
4. if (both if and jf are not stable) // case 1: if not stable, jf not stable
5. corr = calculateCorrelation (, , begin, end) ir jr
6. if (corr > 1 - δ)
7. corr = calculateCorrelation (, , begin, end) ir kr
8. if(corr < -1 + δ)
9. output: diverging relationship(, , , begin, end) kr ir jr
10. end if
11. end if
12. else if (if is not stable and jf is stable) // case 2: if not stable, jf stable
13. corr = calculateCorrelation(, , begin, end) ir kr
14. if(corr < -1 + δ)
15. if(kf is increasing) output: enhancing relationship(, , , begin, end) kr ir jr
16. else output: alleviating relationship(, , , begin, end) kr ir jr

Chapter 4.Proposed Approaches 42

17. end if
18. else if(if is stable and jf is not stable) // case 3: if stable, jf not stable
19. /* similar process as 12-17 */
20. else ; // case 4: if stable, jf stable
21. end if

The algorithm to find competing relationships among oscillating rules is

summarized in Algorithm 4.3.5. Similar to Algorithm 4.3.3, to find competing

relationship, Algorithm 4.3.5 views the fragments of the two rules as two queues and

proceeds in a left-to-right order (lines 4-28). In each iteration, if the two fragments

have the same start point and end point, it is comparable (lines 7-8). Otherwise we

choose the fragment that have the smaller start point and end point as the seed

fragment and check whether the other fragment is comparable to it (lines 11-18). If

they are comparable, find competing relationship in their overlapped region (lines

20-27). In each iteration, the seed fragment and the fragment that has the same start

point and end point as the seed fragment are dropped (lines 9,10,14,18).

Algorithm 4.3.5 FindComRel

Input: all oscillating rules
Output: the competing relationship among rules
1. for each pair of rules and ir jr
2. TFSi = trend fragments of , TFSir j = trend fragments of jr
3. m = 0,n = 0
4. while m < |TFSi| and n < |TFSj|
5. = TFSif i [m], = TFSjf j [n]
6. flag = 0;
7. if(.begin = = .begin and .end = = .end) if jf if jf
8. flag = 1
9. m = m+1

Chapter 4.Proposed Approaches 43

10. n = n+1
11. else if(.begin < .begin or .begin = = .begin and .end < if jf if jf if

 .end) jf
12. if(isComparable(,) if jf
13. flag = 1
14. m = m+1
15. else
16. if(isComparable(,) jf if
17. flag = 1
18. n = n+1
19. end if
20. if(flag = = 1)
21. begin = max(.begin, .begin) if jf
22. end = min(.end, .end) if jf
23. corr = calculateCorrelation(, ,begin,end) if jf
24. if(corr < -1 + δ)
25. if(and have no common items in the antecedent) if jf
26. output: competing relationship(, ,begin,end) ir jr
27. end if
28. end while
29. end for

 Note that with the naive approach, all the rules are compared even when they do

not have any comparable trend fragments. This observation leads to our optimized

algorithm. Instead of focusing on the rules, we first examine all the trend fragments

and group the trend fragments if they are comparable.

The grouping of trend fragments proceeds in a left-to-right order. First, the

fragments are sorted by their start points in increasing order. Fragments that have the

same start points but different end points are sorted by their end points in ascending

order. After sorting, we start with the fragment with the smallest start point as a seed

fragment and check whether the adjacent fragment is comparable to the seed

Chapter 4.Proposed Approaches 44

fragment. If it is comparable to the seed fragment, we place it in the group of the

seed fragment and continue to find all the other comparable fragments; After all the

comparable fragments of the seed fragment are found, we choose the next seed

fragment and repeat the process to find another group of comparable fragments. Here

the next seed fragment is the fragment that follows the current seed fragment and

does not have the same start point and end point as the current seed fragment. Details

are given in Algorithm 4.3.6.

Algorithm 4.3.6 FindComparableGroups
Input: trend fragments of the oscillating rules, TFs
Output: groups of comparable fragments, G
1. sort the fragments in TFs by their start points and end points in
 increasing order // left-to-right
2. k = 1, i = 1
3. while (i ≤ |TFs|)
4. count = 0;
5. for j = i to |TFs|
6. if (TFs[j].begin > TFs[i].end) // no overlap anymore
7. break
8. else if(TFs[j].begin = = TFs[i].begin and TFs[j].end = = TFs[i].end)
9. put TFs [j] into G[k]
10. count = count+1
11. else if(isComparable(TFs[j],TFs[i])
12. put TFs [j] into G[k]
13. else ;
14. end if
15. end for
16. i = i+count-1
17. k = k+1
18. end while

In Algorithm 4.3.6, line 1 sorts the fragments by their start points and end points

in ascending order. After that, lines 3-18 find comparable groups from left to right.

Chapter 4.Proposed Approaches 45

In each iteration, a seed fragment is chosen (fragment i). All the adjacent fragments

that are comparable to the seed fragment are added into its comparable group (lines

8-12). At the end of each iteration, the current seed fragment and all the fragments

which have the same start point and end point as the seed fragment are dropped (line

16). We then continue to the next seed fragment and repeat the process.

 Once all the groups of comparable trend fragments are found, we find the

relationships only among the oscillating rules whose trend fragments are in the same

comparable group. This strategy allows us to skip comparisons among rules that do

not have any comparable trend fragments. Note that according to Algorithm 4.3.6,

one fragment may belong to more than one group corresponding to different seed

fragments. To avoid repeated comparisons, we further partition a comparable group

G into G1 and G2. G1 includes the fragments that have the same start point and end

point as the seed fragment. The remaining fragments in G are placed in G2. To find

the relationships of rules among comparable trend fragments in G, we only perform

pairwise comparisons within G1, and between G1 and G2. In other words, we skip

the pairwise comparisons within G2. This is because the fragments in G2 will appear

in the next group(s), and the pairwise comparisons among fragments in G2 can be

done in the next group(s). Therefore there is no need to do the comparisons in

current group. Algorithm 4.3.7 gives the details.

Algorithm 4.3.7 FindRelInGroup

Input: a group of comparable trend fragments, G

Chapter 4.Proposed Approaches 46

Output: the relationships of rules in the group

1. G1 = fragments in G that have the same start point and end point as the seed
fragment; G2 = G − G1

2. for i = 1 to |G1|
3. = the rule of G1[i] ir
4. for j = i+1 to |G1|
5. findCompRelInFrag(G1[i], G1[j]) // find competing relationship
6. = the rule of G1[j] jr
7. = the combined rule of and kr ir jr
8. = the fragment of kf kr
9. if(kf is not stable)
10. findCombinedRel(G1[i], G1[j], kf) // find diverging,…,relationships
11. end if
12. end for
13. for j = 1 to |G2|
14. findCompRelInFrag(G1[i], G2[j]) // find competing relationship
15. = the rule of G2[j] jr
16. if (is the sub-rule of) jr ir
17. find the other sub-rule such that is the combined rule of and kr ir kr jr
18. kf = the fragment of kr
19. findCombinedRel(kf ,G2[j],G1[i]) // find diverging,…,relationships
20. else
21. /* similar process as 6-11 */
22. end if
23. end for
24. end for

In Algorithm 4.3.7, lines 3-12 find relationships among the fragments within G1

and lines 13-23 find relationships among the fragments between G1 and G2. Note

that findCompRelInFrag(G1[i], G1[j]) finds the competing relationship using

Function 4.3.3, and findCombinedRel(G1[i], G1[j], kf) finds the diverging,

alleviating and enhancing relationships using Algorithm 4.3.4.

Chapter 4.Proposed Approaches 47

Function 4.3.3 FindCompRelInFrag
Input: two trend fragments and if jf
 user-defined tolerance δ
Output: the competing relationship between the two rules of and if jf
1. begin = larger(.begin, .begin) if jf
2. end = smaller(.end, .end) if jf
3. corr = calculateCorrelation(, ,begin,end) if jf
4. if(corr < -1 + δ)
5. if(and have no common items in the antecedent) if jf
6. output: competing relationship(’s rule, ’s rule, begin, end) if jf
7. end if
8. end if

 In summary, to find relationships among oscillating rules, we focus on fragments.

We first find groups of comparable trend fragments. Comparisons are done only

among the fragments within each comparable group. In this way, we skip those rules

that do not have any comparable trend fragments. In each group of comparable trend

fragments, we further partition the fragments into sub-groups to avoid redundant

comparisons. We call this method Group Based method of Finding relationships

(GBF), and we call the naïve method Rule Based method of Finding relationships

(RBF).

Chapter 5

Experiments

In this chapter, we carry out experiments to evaluate the proposed approaches on

both synthetic and real-world datasets. All our approaches are implemented in C++.

The experiments are run on a PC with 2.33 GHZ CPU and 3.25 GB RAM, running

Windows XP.

5.1 Synthetic Data Generator

We design a synthetic data generator by extending the data generator in R. Agrawal

et al. [2] to incorporate time and class information. The data generation includes two

steps.

 In the first step, we create a table of potential frequent itemsets. The size of each

itemset is generated from a Poisson distribution with mean equal to parameter I. The

48

Chapter 5.Experiments 49

items in each itemset are randomly chosen from a set of N different items. Next, we

generate M combined itemsets. Each combined itemset is generated by randomly

selecting and combining two potential frequent itemsets. For each generated itemset,

we assign a confidence value c which determines the probability that the itemset will

appear in the transaction having target value C. The confidence value c is given by

the following formula.

0 1

0 0 ;
1 1,

r if r
c if r

if r

;≤ ≤⎧
⎪= <⎨
⎪ >⎩

 (5)

where r is a normal-distributed random number with mean = 0.5 and deviation = 0.1.

Each itemset is associated with two arrays which capture how the confidence c

changes over time. The first array stores the change rates. Each change rate is

randomly chosen from a normal distribution. The second array stores the change

flags where each flag indicates whether the confidence increase, decrease, or remain

unchanged for the corresponding time point. We generate n fragments for each

itemset, where n is a random number from 1 to the maximum number of fragments

(maxFrag). Each fragment has several time points. The change flags of the itemset at

different time points in the same fragment could be the same (increases, decreases,

stay unchanged) or different. In this way, the itemset will have a trend in the

fragment if the change flags are the same, or change randomly if the change flags are

different.

 In the second step, we generate a dataset for each time point by generating its

transactions as follows. We change the confidence of each itemset based on its

Chapter 5.Experiments 50

change flag and change rate at the time point. The dataset consists of two sub-sets:

PD (which consists of transactions with target value C) and ND (which consists of

transactions without target value C). The transactions of PD and ND are generated as

follows. The size of a transaction is chosen from a Poisson distribution with mean

equal to T. The content of the transaction is generated as follows. We randomly

choose an itemset from a series of itemsets generated in the first step. If the

confidence of a selected itemset is c, we append it to the transaction of PD with

probability c, or append it to the transaction of ND with probability 1 – c. When a

transaction reaches its size, we proceed to generate the next transaction.

 Table 5.1 summarizes the main parameters in the data generator as well as the

default values used in our experiments.

Parameter Description Default Value

| D | Number of transactions 100 000

perc Percentage of positive transactions in D 1/2

T Average size of the transactions 10

I Average size of itemsets 2

N Number of items 10 000

maxFrag Maximum number of fragments in each itemset 10

Table 5.1: Parameters of Data Generator

5.2 Experiments on Mining Association Rule

In this section, we compare the performance of the proposed partition-based

approach of mining association rule (Algorithm 4.1.2) with the naïve approach which

Chapter 5.Experiments 51

directly utilizes existing frequent itemset mining algorithms such as FP-Growth. We

call our method Partition based Association rule Mining (PAM) and the naïve

method Direct Association rule Mining (DAM). Figure 5.1 shows the execution time

when the number of transactions in the dataset increases from 50 000 to 300 000

with the average size of the transactions T = 10. Figure 5.2 shows the execution time

when T ranges from 5 to 30 and the number of transactions in the dataset is 100 000.

0

200

400

600

800

1000

1200

50 100 150 200 250 300

Number of Transactions (in thousands)

Ti
m

e(
se

c)

PAM

DAM

Figure 5.1: Running Time of Association Rule Mining

0

500

1000

1500

2000

2500

5 10 15 20 25 30

Average Size of Transactions

Ti
m

e(
se

c)

PAM

DAM

Figure 5.2: Running Time with Varying T

Chapter 5.Experiments 52

Both Figure 5.1 and Figure 5.2 show that our approach is better than the naïve

approach. This is because the most time consuming part of association rule mining is

the generation of frequent itemsets. In PAM we partition the dataset into positive

sub-dataset and negative sub-dataset, and mine the frequent itemsets only in the

positive sub-dataset; while in DAM we mine the frequent itemsets in the entire

dataset, which may produce many redundant frequent itemsets.

We also evaluate the sensitivity of PAM and DAM to perc parameter. Figure 5.3

shows the running time of PAM and DAM when perc ranges from 1.0 to 0.1. We

observe that PAM is better than DAM. As perc becomes smaller PAM becomes

more efficient than DAM. The reason is that when perc is smaller we mine the

frequent itemsets in a smaller positive sub-dataset while DAM still mine the frequent

itemsets in the whole dataset.

0

50

100

150

200

250

300

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

perc

Ti
m

e(
se

c)

PAM

DAM

Figure 5.3 Running Time with Varying perc

Chapter 5.Experiments 53

5.3 Experiments on Finding Relationships Among

Rules

Since a trend rule can be viewed as a single trend fragment spanning the whole time

period, it can be regarded as a special case of the oscillating rule. Therefore we only

evaluate the approaches (GBF and RBF) which are used to find the relationships in

oscillating rules.

Figure 5.4 shows the running time of GBF and RBF when the number of rules

increases from 1000 to 10 000 and parameter min_ratio is 0.85. We observe that

GBF outperforms RBF. As the number of rules increases, the running time of RBF

increases faster than GBF. In other words, GBF is more scalable than RBF. The

reason for this is that RBF performs pairwise comparisons among rules, while GBF

groups comparable fragments and performs pruning to avoid unnecessary

comparisons.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Number of Rules (in thousands)

Ti
m

e(
se

c)

GBF

RBF

Figure 5.4: Running Time of GBF and RBF

Chapter 5.Experiments 54

We also evaluate the sensitivity of GBF and RBF to min_ratio parameter. The rule

number is set to be 5000. We vary min_ratio from 0.55 to 1 and evaluate the

performance of GBF and RBF as shown in Figure 5.5.

0

5

10

15

20

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

min_ratio

Ti
m

e(
se

c)

GBF

RBF

Figure 5.5: Varying min_ratio in GBF and RBF

We observe that GBF is faster than RBF. As the min_ratio increases from 0.55 to

1, the running time of GBF decreases rapidly, while the running time of RBF

remains relatively constant. The reason is that when min_ratio is large, many

combined rules do not have comparable fragments with the sub-rules and there is no

relationship among them. GBF finds pairs of combined rule and its sub-rules only if

they have fragments in the same group of comparable fragments. However, RBF

finds each pair of combined rule and its sub-rules even when the rules do not have

comparable fragments, and check whether their fragments have combined

relationships (diverging, enhancing, and alleviating). As a result, GBF is more

efficient when min_ratio is larger.

Chapter 5.Experiments 55

5.4 Experiments on Real World Dataset

Finally we use a real-world dataset to demonstrate the applicability of the algorithms

in discovering meaningful relationships among rules. The dataset is the currency

exchange rate dataset [34]. It contains the prices of 12 currencies relative to the US

dollar from 10/9/1986 to 8/9/1996. The 12 currencies include AUD Australian Dollar

(AUD), Belgian Franc (BEF), Canadian Dollar (CAD), French Franc (FRF), German

Mark (DEM), Japanese Yen (JPY), Dutch Guilder (NLG), New Zealand Dollar

(NZD), Spanish Peseta (ESP), Swedish Krone (SEK), Swiss Franc (CHF) and UK

Pound (GBP). As discussed in the previous chapters, we mine association rules with

a specific target. If we are interested in the conditions where the Japanese Yen will

increase, then the target value is “Japanese Yen increase”. One example of such rule

is “Australian Dollar decrease, Canadian Dollar decrease ⇒ Japanese Yen increase”

with support of 0.5 and confidence of 0.9. This rule means that if we find that

Australian Dollar decrease and Canadian Dollar decrease, we can predict that

Japanese Yen will increase with a high accuracy of 0.9. To find such rules, we

transform the changes of the prices on each day into a corresponding transaction as

follows. For each day, the price of each currency is compared with its price of the

previous day. Each increase or decrease of the price is associated with a

corresponding Integer item in the transaction. If the target currency increases, the

transaction will be put into the positive sub-dataset (PD). Otherwise the transaction

Chapter 5.Experiments 56

will be put into the negative sub-dataset (ND). After that we mine the association

rules from PD and ND using Algorithm 4.1.2.

 To analyze the dynamic behavior of the rules and the relationships among rules

over time, we divide the dataset into 9 sub-datasets by year, excluding Year 1986

since its data is small. Then we mine each sub-dataset using the method discussed

above and track the confidences of each rule. After that, we analyze the dynamic

behavior of the rules and find evolution relationships among rules using the

approaches proposed in Chapter 4.

Table 5.2 shows the number of relationships found when we target the increase

of five different currencies and Table 5.3 shows some samples of the relationships.

Each row corresponds to the number of different relationships found when the target

currency is the entry of the first column. Note that in Table 5.3 “↑”denotes the

confidence of the rule increases, “↓”denotes the confidence of the rule decreases

and “–”denotes the confidence of the rule stays stable.

Target currency Diverging Enhancing Alleviating Competing

French Franc 31 0 31 755

German Mark 9 0 0 548

New Zealand 286 4 0 311

Spanish Peseta 107 1 78 807

Swedish Krone 319 0 28 317

Table 5.2: Number of Relationships With Different Categories

Chapter 5.Experiments 57

No Relationship Rules Period

1 Competing NLG +,DEM- => ESP+ ↑

NZD+,JPY- =>ESP+ ↓

1987-1991

2 Diverging 1 AUD-,CAD-,FRF-,GBP- => ESP+ ↑

AUD-, FRF-,GBP- => ESP+ ↓

CAD- => ESP+ ↓

1990-1992

3 Diverging 2 FRF+,ESP+,AUD-,CAD- => SEK+ ↓

AUD-,CAD- => SEK+ ↑

FRF+,ESP+ => SEK+ ↑

1991-1994

4 Enhancing AUD-,FRF-,JPY-,SEK-, CHE- =>ESP+ ↑

AUD-,FRF-,CHE- =>ESP+ ↓

JPY-,SEK- =>ESP+ –

1990-1992

Table 5.3: Examples of Relationships

Following is the interpretation of the relationships in Table 5.3. For the first

relationship, the rule “NLG +, DEM- => ESP+” means that if NLG increases and

DEM increases, we can predict that ESP will increase, with some accuracy (the

confidence of this rule). The competing relationship between the two rules means

that from 1987-1994, the accuracy of the rule “NCG +, DEM- => ESP+” increases as

the accuracy of the rule “NZD+,JPY- =>ESP+” decreases. As such, we have more

confidence to judge whether ESP will increase based on the former rule than the

latter rule because the former rule is more and more accurate. As for the second

relationship, the diverging relationship among the three rules means that the

accuracy of “AUD-, FRF-,GBP- => ESP+” and “CAD- => ESP+” decrease over

Chapter 5.Experiments 58

time while the accuracy of their combined rule “AUD-,CAD-,FRF-,GBP- => ESP+”

increases. This is important information to the currency traders because they are

aware that nowadays they cannot predict that ESP increases only based on the

conditions {AUD decrease, RFF decrease and GBP decrease} or the condition

{CAD decrease}. They are more confident to predict that ESP increases if all these

conditions are satisfied. Similar interpretation can be applied to the other two

relationships.

Chapter 6

Conclusion & Future Work

In this work, we have investigated the association rules from temporal dimension.

We analyze the dynamic behavior of association rules over time and propose to

classify the rules into different categories. By our definition, a stable rule is more

reliable and can be trusted. A monotonic rule has a systematic trend in the whole

time period and therefore it is predictive. An oscillating rule has several trends over

time. An irregular rule has no trends and change irregularly which make it not so

useful. Classifying rules into these categories can help the user to understand and use

the rules better.

 We also define some interesting evolution relationships of association rules, which

might be important and useful in real-world applications. The evolution relationships

reveal the correlations about the effect of the conditions on the consequent over time,

59

Chapter 6. Conclusion 60

which reflect the change of the underlying data. Therefore they give the domain user

a better idea about how and why the data changes.

 In the last, we propose the corresponding approaches. To mine the association

rule in our problem, we partition the whole dataset into positive and negative

sub-datasets. Then we mine the frequent itemsets from the positive sub-dataset and

count the support of the frequent itemsets from the negative sub-dataset. In this way,

we only mine the frequent itemsets from part of the whole dataset, which make our

approach more efficient. To analyze the dynamic behavior of the rule, we propose to

find the trend fragments and classify a rule based on the number of its trend

fragments over time. To find evolution relationships among rules we present a series

of related methods such as GBF and RBF which are used to find the relationships

among oscillating rules. Experiments on the synthetic and real-world datasets show

that our approaches are efficient and effective.

In this work, we leave the task of partitioning the original dataset into

sub-datasets by time period to the user. This requires the user possesses some prior

knowledge of the domain. One of the possible future topics is to design a suitable

method to automatically partition the dataset into sub-datasets, such partition should

reflect the change of underlying data accurately. Another possible direction is to

discover the relationships among rules by analyzing their content, rather than their

statistics properties (support or confidence) as in this work, i.e. to discover whether a

rule is the mutation of another rule. That is to identify the transformation of rules

over time. For example, we might want to know whether one rule is changed from

Chapter 6. Conclusion 61

another rule or several other rules. This can also give the user better insights into the

dynamic behavior of the underlying data.

BIBLIOGRAPHY

[1] R. Agrawal, T. Imielinski and A. Swami. Mining association rules between sets

of items in large databases. SIGMOD 93, pp 207-216.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB

94, pp 487- 499.

[3] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen and A.I. Verkamo.

Finding interesting rules from large sets of discovered association rules. CIKM 94,

pp 401-408.

[4] J. Han, J. Pei, Y. Yin and R. Mao. Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge

Discovery, 8, 53–87, 2004.

[5] J. Bayardo and R. Agrawal. Constraint-Based Rule Mining in Large, Dense

Databases. Data Mining and Knowledge Discovery, 4, 217-240, 2000.

[6] R.T. Ng, S. Lakshmanan, A. Pang and J. Han. Exploratory mining and pruning

optimizations of constrained associations rules. SIGMOD 98.

[7] R. Srikant, Q. Vu and R. Agrawal. Mining association rules with item constraints.

62

BIBLIOGRAPHY 63

KDD 97, pp 67-73.

[8] R. Agrawal and J. C. Shafer. Parallel mining of association rules: Design,

implementation, and experience. IEEE TKDE, 8. pp 962-969, Dee 1996.

[9] D.W. Cheung, J. Han, V. Ng and C.Y. Wang. Maintenance of discovered

association rules in large databases:An incremental updating technique. ICDE 96, pp

106-114.

[10] E.H. Han, G. Karypis and V. Kumar. Scalable Parallel Data Mining for

Association Rules. SIGMOD 97, pp 277-288.

[11] J. Han and Y. Fu. Discovery of multiple-level association rules from large

databases. VLDB 95, pp 420-431.

[12] R. Srikant and R. Agrawal. Mining generalized association rules. VLDB 95, pp

407-419.

[13] B. Liu, W. Hsu, S. Chen and Y. Ma. Analyzing the subjective interestingness of

association rules.Intelligent Systems and Their Applications.2000.

[14] B. Liu, W. Hsu, L.F. Mun and H.Y. Lee. Finding interesting patterns using user

expectations.IEEE Trans.on Know. & Data Eng, vol: 11(6),1999.

[15] G. Piatetsky-Shapiro and C.J. Matheus. The interestingness of deviations.

KDD-94, 1994.

[16] B. Liu, M. Hu and W. Hsu. Multi-level organization and summarization of the

discovered rules. KDD-2000.

[17] B. Padmanabhan and A. Tuzhilin. A belief-driven method for discovering

unexpected patterns. KDD-98.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=824588
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=824588

BIBLIOGRAPHY 64

[18] P.N. Tan and V. Kumar. Interestingness measures for association patterns: a

perspective. KDD-2000 Workshop on Post-processing in Machine Learning and

Data Mining, 2000.

[19] B. Ozden, S. Ramaswamy and A. Silberschatz. Cyclic association rules. In Proc.

1998 Int. Conf. Data Engineering (ICDE'98),1998.

[20] S. Ramaswamy, S. Mahajan and A. Silberschatz. On the Discovery of

Interesting patterns in Association Rules. VLDB, 1998.

[21] Y. Li and P. Ning. Discovering Calendar-based Temporal Association Rules.

Data & Knowledge Engineering 44 (2003).

[22] J. Ale and G. Rossi. An Approach to Discovering Temporal Association Rules.

ASC’2000. Italy

[23] S.K. Harms, J. Deogun and T. Tadesse Discovering Sequential Association

Rules with Constraints and Time Lags in Multiple Sequences. ISMIS 2002, LNAI

2366, pp. 432-441. 2002.

[24] S.K. Harms and J. Deogun. Sequential Association Rule Mining with Time

Lags. Journal of Intelligent Information Systems, 22:1,7-22,2004.

[25] H. Lu, J. Han and L. Feng. Stock movement prediction and n-dimensional

inter-transaction association rules. In Proc. ACM SIGMOD Workshop on Research

Issues on Data Mining and Knowledge Discovery, pages 12:1--12:7, 1998.

[26] S. Baron and M. Spiliopoulou. Monitoring Change in Mining Results.

Proceedings of the 3rd International Conference on Data. pp.51-60, 2001.

http://www.springerlink.com/index/9TCGGGKRB2AL37KL.pdf

BIBLIOGRAPHY 65

[27] S. Baron, M. Spiliopoulou and O. Gunther. Efficient Monitoring of Patterns in

Data Mining Environments. ADBIS, pp 253-265, 2003.

[28] S. Baron and M. Spiliopoulou. Monitoring the Evolution of Web Usage Patterns.

EWMF 2003, pp.181-200, 2004.

[29] M. Spiliopoulou and S. Baron. Temporal Evolution and Local Patterns.

LNAI 3539, pp.190-206, 2005.

[30] B. Liu, R. Lee and Y. Ma. Analyzing the Interestingness of Association Rules

from the Temporal Dimension. Proceedings of the 2001 IEEE International

Conference on Data Mining (ICDM), 2001.

[31] X. Chen and I. Petrounias. Mining Temporal Features in Association Rules.

PKDD’99

[32] G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends

and differences. KDD 99, 1999.

[33] S. Mann. Introductory Statistics. John Wiley & Sons. INC.2003.

[34] http://www.stat.duke.edu/data-sets/mw/ts_data/all_exrates.html.

http://www.springerlink.com/index/qy1t4j0y4g04vn9y.pdf
http://www.springerlink.com/index/qy1t4j0y4g04vn9y.pdf

	3.1 Dynamic Behavior of a Rule
	3.2 Evolution Relationships Among Rules

