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Summary 

Association rule mining aims to discover useful and meaningful rules which can be 

applied to the future data. Most existing works have focused on traditional 

association rule mining which mines the rules in the entire data, without considering 

time information. However, more often than not the data nowadays is subjected to 

change. The rules existing in the evolving data may have dynamic behaviors which 

might be useful to the user. 

   In this thesis, we investigate the association rules from temporal dimension. We 

analyze the dynamic behavior of association rule over time and propose to classify 

rules into different categories which can help the user to understand and use the 

rules better. We also define some interesting evolution relationships of association 

rules over time, which might be important and useful in real-world applications. The 

evolution relationships reveal the relationships about the effect of the conditions on 

the consequent over time, which reflect the change of the underlying data. Therefore 

they can give the domain expert a better idea about how and why the data changes.  

   To mine association rule in our problem, we partition the whole dataset into 

positive and negative sub-datasets, then mine the frequent itemsets from the positive 
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sub-dataset and count the support of the frequent itemsets from the negative 

sub-dataset. To analyze the dynamic behavior of the rule, we propose to find trend 

fragments and classify a rule based on the number of its trend fragments over time.  

To find evolution relationships among rules, we propose Group Based Finding 

(GBF) method and Rule Based Finding (RBF) method. GBF first groups the 

comparable trend fragments and then find relationships in each comparable group. 

RBF directly find relationships among rules.  

 The effectiveness and efficiency of our approaches are verified via 

comprehensive experiments on both synthetic and real-world datasets. Our 

approaches exhibit satisfying processing time on synthetic dataset and the 

experiments on real-world dataset show that our approaches are effective. 
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Chapter 1   

Introduction 

 

Association rule mining was first introduced to capture important and useful 

regularities that exist in the data [1]. Formally, association rule mining is stated as 

follows [2]: Let 1 2{ , ,..., }mI i i i=  be a set of literals, called items. Let D be a set of 

transactions, where each transaction T  is a set of items such that . An 

itemset 

IT ⊆

X  contains a set of items in I . A transaction  contains T X  if . 

An association rule is an implication of the form , where , 

and

TX ⊆

YX ⇒ IYIX ⊂⊂ ,

φ=∩YX . and are called the antecedent and consequent of the rule 

respectively. The rule  has support s in D if s% of the transactions in D 

contain 

X Y

YX ⇒

YX ∪ . The rule  holds in the transaction dataset D with 

confidence  if c% of the transactions in D that contain 

YX ⇒

c X  also contain Y . The 

1 
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confidence of a rule is a measure to evaluate the accuracy of the antecedent implying 

the consequent and the support measures the generality of the rule. The task of 

association rule mining is to generate all the association rules whose supports and 

confidences exceed the user-specified minimum support (min_sup) and minimum 

confidence (min_conf) from the dataset D. 

   With the rapid proliferation of data, applying association rule mining to the huge 

dataset results in thousands of associations being discovered, many of them are 

non-interesting and non-actionable. In a dynamic environment where changes occur 

frequently in a short period of time, it is more important to discover evolving trends 

in the data. For example, suppose we have collected data of three years as shown in 

Table 1.1. Applying association rule mining to the entire data in Table 1.1 with a 

min_sup of 20% will result in association rules being discovered as shown in Table 

1.2. None of these rules stands out. However, when we investigate the rules further, 

we realize that the confidence of the rule “beer ⇒ chip” is 20% in 1997, 40% in 

1998, and 80% in 1999. In other words, there is an increasing trend in the confidence 

values of “beer ⇒ chip” from 1997 to 1999. This could be useful information to the 

user.  

In addition, when we examine the rules “toothbrush A ⇒ toothpaste C” and 

“toothbrush B ⇒ toothpaste C” over each individual year, we observe that the 

confidence series of “toothbrush A ⇒ toothpaste C” from 1997 to 1999 is [100%, 

80%, 60%], while the confidence series of “toothbrush B ⇒ toothpaste C” is [60%, 

80%, 100%]. They have a negative correlation. This may indicate that the two rules 
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Id Transaction Time 
1 beer, toothbrush A, toothpaste C 1997 
2 beer, toothbrush A, toothpaste C 1997 
3 beer, cake, toothbrush A, toothbrush B, toothpaste C 1997 
4 beer, chip, toothbrush B 1997 
5 chip, cake, toothbrush B, toothpaste C 1997 
6 cake, beer, toothbrush B 1997 
7 cake, toothbrush B, toothpaste C 1997 
8 beer, chip, toothbrush A, toothpaste C 1998 
9 beer, chip, toothbrush A, toothpaste C 1998 
10 beer, toothbrush A, toothbrush B, toothpaste C 1998 
11 chip, toothbrush B, toothbrush A 1998 
12 beer, cake, toothbrush A, toothpaste C 1998 
13 beer, cake, toothbrush B, toothpaste C 1998 
14 chip, toothbrush B, toothpaste C 1998 
15 toothbrush B, toothpaste C 1998 
16 chip, toothbrush A, toothpaste C 1999 
17 beer, chip, toothbrush A, toothpaste C 1999 
18 cake, toothbrush A 1999 
19 beer, chip, cake, toothbrush B, toothpaste C 1999 
20 beer, chip, toothbrush A 1999 
21 beer, cake, toothbrush B, toothpaste C 1999 
22 beer, chip, toothbrush B, toothpaste C 1999 
23 toothbrush A, toothpaste C 1999 

Table 1.1: Sample Transactions 
 

have a competing relationship：people who buy toothbrush A or B tend to buy 

toothpaste C but over the years people who buy toothbrush B are more and more 

likely to buy toothpaste C; whereas people who buy toothbrush A are less and less 

likely to buy toothpaste C. As such, if toothpaste C is the key product and the 

company wants to increase the sale of toothpaste C, it may produce more toothbrush 

B rather than A as a promotion for buying toothpaste C. 
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Id Rule Confidence 
1 beer ⇒ chip 46% 
2 chip ⇒ beer 63% 
3 beer ⇒ toothpaste C 80% 
4 cake ⇒ toothpaste C 77% 
5 chip ⇒ toothpaste C 72% 
6 toothbrush A ⇒ toothpaste C 76% 
7 toothbrush B ⇒ toothpaste C 76% 
8 toothpaste C ⇒ toothbrush A 55% 
9 toothpaste C ⇒ toothbrush B 55% 
10 toothbrush A, toothbrush B ⇒ toothpaste C 66% 
…. …. …. 

Table 1.2 Discovered Association Rules 
 

On the other hand, if the confidence series of “toothbrush A ⇒ toothpaste C” is 

[60%, 50%, 40%] and the confidence series of “toothbrush B ⇒ toothpaste C” is 

[70%, 60%, 50%], but the confidence series of “toothbrush A, toothbrush B ⇒ 

toothpaste C” is [50%, 70%，90%], the relationship between the three rules is 

interesting as it is counter-intuitive. It indicates that the combined effect of 

toothbrush A and toothbrush B is opposite to that of toothbrush A and B individually. 

As such, the company could sell toothbrush A and B together rather than 

individually if it wants to increase the sell of toothpaste C. 

Based on above observations, we wish to investigate the dynamic aspects of 

association rule mining in this thesis. First, we find the evolving trends of each 

individual rule over time. In most of the time, it is important to know whether a rule 

is stable or whether it exhibits some systematic trends. Knowing such dynamic 

behavior of a rule will enable the user to make better decisions and to take 

appropriate actions. For example, if the rule exhibits trends, the user can exploit the 
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desirable trends, and take some preventive measures to delay or change the 

undesirable trends. 

Second, we analyze the correlations among rules in the statistical properties over 

different time periods. Based on the correlations, we find some unexpected and 

interesting relationships among rules over time. In general, we are interested to find 

relationships among the association rules which have the same consequent but 

different antecedents. Suppose we have three association rules R1: α ⇒ C, R2: β ⇒ 

C, R3: α, β⇒ C, where C is the target item. We focus on the correlations among the 

confidence series of the rules. The correlations may reflect the change of the 

underlying data over time. They could help the user to understand the domain better. 

There are some challenges in this work. First, since we investigate the 

association rules over time, the dataset is dynamic and may be huge. It needs an 

efficient algorithm to mine the association rules. Second, finding evolution 

relationships among rules is not straightforward. The rules might be of various forms. 

It is neither reasonable nor necessary to directly analyze the correlations among all 

rules. Instead we should analyze the dynamic behavior of the rules first and the 

correlation analysis should be done among the rules within the same category. Third, 

association rule mining tends to produce huge number of rules and each rule may 

have many trends. Pairwise way of directly finding relationships among rules might 

not be so efficient. Efficient algorithms and strategies need to be developed to 

improve efficiency. 
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1.1 Contributions 

In this thesis, we investigate the trends and correlations in the statistical properties of 

association rules over time. We propose four categories of rules based on their trends 

over time and four interesting relationships among rules based on the correlations in 

their statistical properties. To our best knowledge, this is the first work to find such 

relationships among association rules over time. Our contributions are summarized 

as follows: 

• Propose an efficient algorithm to mine the association rules with a known 

consequent 

• Design novel algorithms and do some optimizations to discover relationships 

among the mined rules over time. 

• Verify the efficiency and effectiveness of the proposed approaches with 

synthetic and real-world datasets. 

 

1.2 Organization 

This thesis is organized as follows. We introduce the related work in Chapter 2 and 

give some preliminary definitions about our work in Chapter 3. In Chapter 4, we 

propose our approaches and in Chapter 5 we evaluate the proposed approaches on 

both synthetic and real-world datasets. We conclude our work and identify the future 

research topics in Chapter 6.  

 



 

 

 

 

Chapter 2  

Related Work 

 
Association rule mining was first proposed in R. Agrawal et al. [1]. Since then, many 

variants of association rule mining have been proposed and studied, such as efficient 

mining algorithms of traditional association rules [2,4], constraint association rule 

mining [5-7], incremental mining and updating [8-10], mining of generalized and 

multi-level rules [11-12], interestingness of association rules [3,13-18] and 

association rule mining related to time [19-32].  

 

2.1 Association Rule Mining Algorithms 

In this section, we briefly introduce two widely used association rule mining 

algorithms. In general, association rule mining includes two processes [1-2]. The 

first step is to generate all the frequent itemsets, whose support counts are at least as 

7 
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large as the predetermined minimum support count. The second step is to generate 

association rules from the frequent itemsets; these association rules must satisfy the 

minimum support and minimum confidence. The major challenge is the first step. 

   Apriori algorithm [2] was first introduced to mine frequent itemsets. The basic 

idea is to employ the Apriori property of frequent itemsets: all nonempty subsets of a 

frequent itemset must also be frequent. Based on this property, Apriori algorithm 

uses a bottom-up strategy. To find frequent k-itemsets , it first generate 

candidates of frequent k-itemsets  by joining  with itself. Since  is a 

superset of , its members may or may not be frequent. According to Apriori, any 

(k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. 

Therefore if any (k-1)-subset of a candidate frequent k-itemset is not in , the 

candidate cannot be frequent and hence can be removed from . In this way, the 

size of  can be significantly reduced. 

kL

kC 1−kL kC

kL

1−kL

kC

kC

   J. Han et al. [4] introduces a more efficient algorithm (FP-growth) to mine 

frequent itemsets without candidate generation. FP-growth adopts a 

divide-and-conquer strategy. First, it compresses the database representing frequent 

items into a frequent pattern tree which retains the itemset association information. It 

then divides the compressed database into a set of conditional databases, each 

associated with one frequent item, and mines each such database separately. To find 

long frequent patterns FP-growth searches for shorter ones recursively and then 
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concatenates the suffix. It uses the least frequent items as a suffix, offering good 

selectivity. The method substantially reduces the search costs. 

   These two algorithms are widely used in tradition association rule mining which 

does not consider any time information. 

 

2.2 Temporal Association Rule Mining 

Recently, there have been interests in mining association rule which incorporates 

time information [19-22]. They consider lifespan of a rule or lifespan of items in the 

rule. 

   B. Ozden et al. [19] proposes to find cyclic association rules, where the rules 

satisfy the min_sup and min_conf at regular time intervals over time. Such a rule 

does not need to hold for the entire transaction database, but only for transaction data 

in a particular time interval. For example, we might find that beer and chip are sold 

together primarily between 6pm and 9pm. Therefore, if we partition the data over the 

intervals 6am-7am and 6pm-9pm, we may discover the rule “beer ⇒ chip” in 

6pm-9pm interval. On the other hand, if we mine the whole data directly, the rule 

could not be found. 

However, B. Ozden et al. [19] can only find “cyclic association rules”. B. Ozden 

et al. [20] generalizes the idea of B. Ozden et al. [19] to find calendar association 

rule, where the author introduces the notion of using a calendar algebra to describe 

the time period of interest in association rules. This calendar algebra is used to define 
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and manipulate groups of time intervals. The time intervals are specified by the user 

to divide the data into disjoint segments. An association rule will be mined if it 

satisfies the min_sup and min_conf during every time interval contained in a 

calendar. 

In Y. Liu et al. [21], the authors further generalize the idea of S. Ramaswamy et 

al. [20] by using a calendar schema as a framework for temporal patterns, rather than 

user-defined calendar algebraic expression. As a result, the approach in Y. Liu et al. 

[21] requires less prior knowledge. In addition, the approach considers all possible 

temporal patterns in the calendar schema, thus can potentially discover more 

temporal association rules and unexpected rules. The main contribution of the work 

is to develop a novel representation mechanism for temporal association rules on the 

basis of calendars and identify two classes of interesting temporal association rules: 

temporal association rules with respect to the full match and temporal association 

rule with respect to the relaxed match. Association rules with respect to the full 

match refer to those rules that hold for each basic time interval covered by the 

calendar; while relaxed match association rules refer to those that hold for at least a 

certain percentage of time intervals covered by the calendar. 

Similarly, J. Ale et al. [22] also incorporates time information in the frequent 

itemsets by taking into account the items’ lifespan. An item’s lifespan is the period 

between the first and the last time when the item appears in the transactions. They 

compute the support of an itemset in the interval defined by its lifespan and define 

temporal support as the minimum interval width. Because they limit the total number 
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of transactions to the items’ lifetime, those associations with a high confidence level 

but with little support would be discovered. The approach differs from the works of 

[19-21] in that it is not necessary to define an interval or a calendar, since the 

lifespan is intrinsic to the data.  

   In another branch of research [23-25], the focus is on mining rules that express 

the association among items from different transaction records with certain time lag 

existing in the items of the antecedent and the consequent. Such rules reflect the 

delayed effect of the items on the others. 

S. Harms et al. [23] and S. Harms et al. [24] model the association rule with a 

time lag between the occurrence of the antecedent and the consequent. The approach 

finds patterns in one or more sequences that precede the occurrence in other 

sequences, with respect to user-specified constraints. The approach is well suited for 

sequential data mining problems which have groupings of events that occur close 

together. The papers also show that the methods can efficiently find relationships 

between episodes and droughts by using constraints and time lags. 

Similarly, H. Lu et al. [25] also finds association rules that have time lags. The 

difference is that H. Lu et al. [25] is more general in that the time lag not only exists 

between the antecedent and the consequent, it can also exist among the items in the 

antecedent or consequent. One rule they found is that “UOL(0),SIA(1) ⇒ DBS(2)” 

with confidence of 99%, which means if the stock UOL goes down on the first day 

and SIA goes down the following day, DBS will go down the third day with 

probability of 99%.  
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   To summarize, the works of [19-25] incorporate time information into 

association rule mining, either mining association rules in the time intervals where 

the items appear or association rules with a time lag existing in the items of the 

antecedent or consequent. 

 

2.3 Association Rules Over Time 

Another thread of association rule mining in recent years focus on analyzing the 

dynamic behavior of association rules over time [26-31] and detecting emerging 

pattern or deviation between two consecutive datasets [32]. 

   S. Baron et al. [26] proposes to view a rule as a time object, and gives a generic 

rule model where each rule is recorded in terms of its content and statistics properties 

along with the time stamp of the mining session in which the rule is produced. In the 

follow-up papers, the works of [27-29] monitor statistics properties of a rule at 

different time points using the generic rule model. They further give some heuristics 

to detect interesting or abnormal changes about the discovered rule. One heuristic, 

for example, is to partition the range of values in the statistical property under 

observation into consecutive intervals and raises alerts when the value observed in an 

interval shifts to another interval. Other heuristics include significant test, corridor 

and occurrence based grouping heuristics. The basic idea is that concept drift as the 

initiator of pattern change often manifests itself gradually over a long time period 

where each of the changes may not be significant at all. Therefore the authors use 

different heuristics to take different aspects of pattern stability into account. For 

 



Chapter 2. Related Work                                              13                

example, the occurrence based grouping heuristic identifies the changes to the 

frequency of pattern appearance, while the corridor-based heuristic identifies the 

changes that differ from past values. 

   B. Liu et al. [30] also studies the temporal aspect of an association rule over time, 

but it focuses on discovering the overall trends of the rule rather than abnormal 

changes of the rule. It uses statistical methods to analyze interestingness of an 

association rule from temporal dimension, and classifies the rule into a stable rule, 

rule that exhibits increasing or decreasing trend and semi-stable rule. It employs 

Chi-square test to check whether the confidence (or support) of a rule over time is 

homogeneous. If it is homogeneous, the rule is classified as a stable rule. For an 

unstable rule, the authors use Run test to test whether the confidence or support of 

the rule exhibits trend.  

   In X. Chen et al. [31], the authors propose to identify two temporal features with 

the interesting rules. The motivation is that in real-world applications, the discovered 

knowledge is often time varying and people who expect to use the discovered 

knowledge may not know when it became valid, whether it is still valid at present, or 

if it will be valid sometime in the future. Therefore the paper focuses on mining two 

temporal features of some known association rules. The first one is to find all 

interesting contiguous intervals during which a specific association rule holds. And 

the second one is to find all interesting periodicities that a specific association rule 

has. 
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   G. Dong et al. [32] finds the support differences of itemsets mined from two 

consecutive datasets and uses the differences to detect the emerging patterns (EP). In 

the paper, EPs are defined as itemsets whose supports increase significantly from one 

dataset to another. Because useful Apriori property no longer holds for EPs and there 

are usually too many candidates, the paper proposes the description of large 

collections of itemsets using their concise borders and design mining algorithms 

which manipulate only the borders of the collections to find EPs. Our work differs 

from this in that we analyze the relationships among rules over time rather than focus 

on emerging itemsets between two time points.      

   In summary, the works of [26-32] mine association rules in different time periods 

and investigate the behavior of the rule over time. The works of [26-29] detect 

interesting or abnormal changes about the discovered rule, the works of [30-31] 

discover the overall trend or pattern of the rule over time, and the work of [32] focus 

on the change of patterns in two consecutive datasets. However, all these works only 

consider the dynamic behavior of a single rule or pattern over time. To date, no work 

has been done to discover the relationships among the changes of the rules over time. 

We think in many cases the changes of the rules are correlated. Such correlations 

reflect the change of the underlying data. Therefore they may give the domain user a 

better idea about how and why the data changes. This is the main motivation of our 

work. In this thesis, we define some evolution relationships among rules over time 

and propose the corresponding approaches to find the relationships.

 



 

 

 

 

 

Chapter 3  

Preliminary Definitions  

 

In this chapter, we give some preliminary definitions used in this work before we 

introduce the details of the proposed approaches in Chapter 4. First, we define four 

types of rules according to their dynamic behavior over time. Second, we define four 

categories of evolution relationships among rules based on the correlations of their 

confidences. 

 

3.1 Dynamic Behavior of a Rule 
 
As mentioned in Chapter 1, we analyze the dynamic behavior of the rules and the 

correlations in their statistical properties. A rule’s dynamic behavior is referred to as 

the changes in its statistical properties, i.e. confidence or support, over time. We 

15 
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model a rule’s confidence over time as a time series, denoted as {y1, y2, …., yn}. 

First, we introduce the terminology used in this thesis. 

Definition 3.1.1 (Strict Monotonic Series): Given a time series {y1, y2, …., yn}. We 

say the time series is a strict monotonic series if 

1) yi – yi+1 > 0 ∀ i∈[1, n-1] (monotonic decreasing) or 

2) yi – yi+1 < 0 ∀ i∈[1, n-1] (monotonic increasing) 

Definition 3.1.2 (Constant Series): Given a time series {y1, y2, …., yn}. We say the 

time series is constant if yi – yi+1 = 0 ∀ i∈[1, n -1].  

Definition 3.1.3 (Inconsistent Sub-Series): Given a time series {y1, y2, …., yn}, we 

say {yi, …, yj} , 1 ≤ i < j ≤ n, is an inconsistent sub-series in {y1, y2, …., yn} if by 

removing {yi, …, yj} , we can obtain the time series {y1,…, yi-1, yj+1, …,yn} such that 

it is either a strict monotonic or constant series. 

Definition 3.1.4 (Trend Fragment): Suppose T = {y1, y2, …., yn} is a time series 

with k inconsistent sub-series S1, S2, …, Sk. |Si| denotes the number of time points in 

sub-series Si. T is said to be a trend fragment if 

1) |Si| < max_inconsistentLen, 1 ≤ i ≤ k; 

2) n – ∑i |Si| > min_fragmentLen 

where min_fragmentLen and max_inconsistentLen are the user-specified parameters 

denoting the minimum length of the trend fragment and the maximum length of 

inconsistent series. 
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   A trend fragment is said to be stable/increasing/decreasing if the resultant series, 

after removing the inconsistent sub-series, is constant/monotonic 

increasing/monotonic decreasing.  

 

Example 3.1.1  

Suppose we are given the confidence values of a rule over 18 time points, CS = {0.8, 

0.8, 0.8, 0.8, 0.8, 0.8, 0.48, 0.6, 0.8, 0.8, 0.8, 0.8, 0.75, 0.68, 0.8, 0.8, 0.8, 0.8} with 

the user-specified parameters min_fragmentLen = 10 and max_inconsistentLen = 3.  

   Then, the sub-series S1 = {0.48, 0.6} and S2 = {0.75, 0.68} are inconsistent 

sub-series. Here, |CS| = 18, |S1| = 2 < max_inconsistentLen, |S2| = 2 < 

max_inconsistentLen, 18 – (|S1| + |S2|) = 18 – 4 = 14 > min_fragmentLen. We say 

CS is a stable trend fragment.  

      

Based on the definition of stable/increasing/decreasing trend fragments, we 

classify a rule into the following categories: 

Definition 3.1.5 (Stable Rule): A rule  with confidence series CS is said to be a 

stable rule if CS is a stable trend fragment. 

r

Definition 3.1.6 (Monotonic Rule): A rule  with confidence series CS is said to 

be a monotonic increasing/decreasing rule if CS is an increasing/decreasing trend 

fragment. 

r

Definition 3.1.7 (Oscillating Rule): A rule  with confidence series CS is an 

oscillating rule if CS has more than one trend fragment or CS has only one trend 

fragment which is the sub-series of CS. 

r
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Definition 3.1.8 (Irregular Rule): A rule  with confidence series CS is an 

irregular rule if CS has no trend fragment. 

r

Figure 3.1 illustrates the four different types of rules. Suppose 

min_fragmentLen = 5 and max_inconsistentLen = 2. The rules in Figure 3.1(a) are 

monotonic rules as their confidence series are increasing or decreasing trend 

fragments. The rules in Figure 3.1(b) are oscillating rules. There are two trend 

fragments in both rules. The confidence sub-series from time point 1 to 5 of R3 is a  

 

 

(a)Monotonic Rules                  (b) Oscillating Rules 

 

            (c) Irregular Rule                     (d) Stable Rule 

                        Figure 3.1 Rule Categories 

 

decreasing trend fragment and the confidence sub-series from time point 5 to 10 is an 

increasing trend fragment. There is no trend fragment of the rule in Figure 3.1(c), so 
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it is an irregular rule. The confidence series of the rule in Figure 3.1(d) is a stable 

trend fragment, so the rule is a stable rule. 

A stable rule is more reliable, so it can be used in real-world tasks. A monotonic 

rule has a systematic trend in the whole time period therefore is predictive. The 

confidence of an oscillating rule may increase in some time periods, and may 

decrease or stay unchanged in other time periods. An irregular rule is neither 

predictive nor reliable, so it may not be much useful in real-world applications. 

   In this thesis, we call a monotonic rule or stable rule a trend rule as it has a 

systematic trend in its entire confidence series, either increasing, decreasing or 

stable. 

 

3.2 Evolution Relationships Among Rules  
 
Besides analyzing the dynamic behavior of each association rule, we also wish to 

find the relationships among rules over time. These relationships are also called 

evolution relationships. They are based on the confidence correlations among rules. 

Here, to measure the confidence correlation, we use the Pearson correlation 

coefficient which is defined as follows [33]: 

           , 2 2 2 2

( ) ( ) ( )
( ) ( ) ( ) ( )

X Y
E XY E X E Y

E X E X E Y E Y
ρ −

=
− −

                     (2) 

where X and Y are the vectors of the two confidence series and E is the expected 

value operator.  
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   Our relationships are defined among the rules with the same consequent C. 

Suppose we have three rules: R1: α ⇒ C, R2: β ⇒ C, R3: γ ⇒ C where C is the target 

value, α ∪ β = γ, α ⊄ β and β ⊄ α. Let CS1, CS2, CS3 be the confidence values of R1, 

R2, R3 over the period [t1, t2] in which CS1, CS2, CS3 are trend fragments. 
1 2,CS CSρ is 

the Pearson correlation coefficient between CS1 and CS2, and δ is a user-defined 

tolerance. 

    

Definition 3.2.1 (Competing Relationship): Suppose CS1 and CS2 are monotonic 

trend fragments. We say R1 : α ⇒ C and R2 : β ⇒ C (α β∩ =∅ ) have a competing 

relationship in [t1, t2] if 
1 2,CS CSρ < -1 + δ. 

   Competing relationship implies that the confidence of one rule increases as the 

confidence of the other rule decreases. It indicates that the antecedents of R1 and R2, 

i.e. α  and β , are competing with each other over time in implying the consequent 

C. 

Definition 3.2.2 (Diverging Relationship): Suppose CS1, CS2 and CS3 are 

monotonic trend fragments. We say R1 : α ⇒ C and R2 : β ⇒ C have a diverging 

relationship with R3: α ∪ β ⇒ C in [t1, t2] if  

1) 
1 2,CS CSρ >1 - δ,  

2) 
1 3,CS CSρ <-1 + δ, or 

2 3,CS CSρ < -1 + δ 

Diverging relationship indicates that the combined effect of α  and β  on 

implying the consequent C is opposite to that of α  or β  individually. 
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Definition 3.2.3 (Enhancing Relationship): Suppose CS1 and CS3 are monotonic 

trend fragments while CS2 is a constant trend fragments. We say R1 : α ⇒ C and R2 : 

β ⇒ C have an enhancing relationship with R3: α ∪ β ⇒ C in [t1, t2] if  

1) 
1 3,CS CSρ < -1 + δ 

2) CS1 is monotonic decreasing and CS3 is monotonic increasing 

Enhancing relationship implies that the condition β  enhances the effect of α  

on the consequent C. 

Definition 3.2.4 (Alleviating Relationship): Suppose CS1 and CS3 are monotonic 

series while CS2 is a constant series. We say R1 : α ⇒ C and R2 : β ⇒ C have an 

alleviating relationship with R3: α ∪ β ⇒ C in [t1, t2] if  

1) 
1 3,CS CSρ < -1 + δ 

2) CS1 is monotonic increasing and CS3 is monotonic decreasing 

Alleviating relationship implies that the condition β  alleviates the effect of α  

on the consequent C. 

These relationships are unexpected and counter-intuitive therefore could be 

important and useful in real-world applications. For example, consider the scenario 

that which type of qualifications may increase the chance of finding a job, competing 

relationship may indicate that the persons with qualification α  are more and more 

likely to get the position over time, compared to the persons with qualification β . 

Enhancing relationships may imply that a person who have both qualifications α  

and β  at the same time is more and more likely to get the position, compared with 
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the past time when only having qualification α  can make a person to get the 

position. This might indicate the change of standards used in human resources 

department. 

    

 

 

 



 

 

 

 

 

Chapter 4  

Proposed Approaches 

 

In this chapter, we introduce our proposed approaches. The overview of our work is 

shown in Figure 4.1. We have three tasks. First, partition the original dataset by time 

period and mine association rules over multiple time points; second, analyze the 

dynamic behavior of each individual rule over time and classify the rule by its 

dynamic behavior; third, find the evolution relationships among rules. 

 

 

Partition data 
Mine rules 

Analyze and
Classify rules

Find evolution 
relationships 

Original data 

Figure 4.1: Work Overview 

 

The following three sections give the details of our approaches. 

 

23 
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4.1 Mine Association Rules over Time 

To analyze the dynamic behavior of a rule and the relationships among rules over 

time, we first partition the available dataset into sub-datasets by year, month or day, 

depending on the applications. We then mine association rules from each sub-dataset 

and track the confidences of the rules over the different sub-datasets. One issue is 

immediately apparent: what happens if an association rule fails to meet the min_sup 

requirement in some sub-datasets but in other sub-datasets, the min_sup requirement 

is satisfied. This would imply that when we examine the time series of the 

confidence of this association rule, there will be missing confidences at those time 

points where the rule fails to satisfy the min_sup requirement. An association rule 

with too many missing confidences is said to be unstable. In this thesis, an unstable 

rule is one whose number of missing values exceeds the user defined maximum 

number of disappearance (max_disAppear). We filter these unstable rules from 

further considerations as they do not provide meaningful information in the evolution 

analysis process.  

For those rules with only a few missing confidences, we perform additional 

database scans to compute the supports of the itemsets corresponding to these rules 

in the sub-datasets. With these supports, we can compute the missing confidences 

using the following formula [1, 2]: 

sup( { })( )
sup( )

CConfidence C αα
α
∪

⇒ =                          ( 3 ) 
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Where sup( { })Cα∪  and sup( )α  are the supports of { }Cα∪  and α  

respectively. The procedure is summarized in Algorithm 4.1.1. 

 

Algorithm 4.1.1 MineAssoRuleOverTime 

Input: dataset in the whole time period, target value C 

Output: association rules with its consequent as C over time 

1. partition the dataset into sub-datasets by time period 

2. mine association rules in each sub-dataset  

3. for each rule r 

4.   If the number of missing confidences > max_disAppear 

5.     drop r 

6.   end if 

7. end for 

8. for each sub-dataset 

9.   for each of the remaining rules α ⇒ C which misses the confidence in this   

  sub-dataset 

10.     put the itemsets α and α ∪ {C} in I.  

11.   end for 

12.   scan the sub-dataset to get the supports of the itemsets in I 

13.   for each of the remaining rules α ⇒ C which misses the confidence in this     

sub-dataset  

14.     compute the missing confidence using sup(α ∪ {C})/sup(α) 

15.   end for 

16. end for 

 

In Algorithm 4.1.1, line 1 partitions the dataset by time period and line 2 mines 

association rules in each sub-dataset. After that, lines 3-7 check the confidences of 
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the rules. If the number of missing confidences of a rule exceeds the 

max_disApppear, we drop the rule. For the remaining rules, lines 8-16 complete their 

missing confidences as follows. For each sub-dataset, lines 9-11 first collect the 

itemsets needed to compute the missing confidences. After that, line 12 scans the 

sub-dataset once to get the supports of the itemsets and lines 13-15 computes the 

missing confidences with the supports. 

Another issue is the efficiency consideration of mining association rules in line 2. 

Traditionally, mining association rule is performed in two steps. The first step 

generates all the frequent itemsets in the dataset. The second step derives the 

association rules from the frequent itemsets. Generation of frequent itemsets is time 

consuming and there have been many algorithms proposed to mine the frequent 

itemsets efficiently such as Apriori [2] and FP-Growth [4]. In this thesis we make 

use of the constraint that the association rules we are interested in must have a target 

value, say C, as the consequent. This reduces the number of frequent itemsets 

generated as we only need to generate the frequent itemsets containing target value C. 

So we can reduce the time complexity of the frequent itemset generation as follows. 

First we partition the dataset into two parts, positive dataset (PD) and negative 

dataset (ND). PD consists of all instances with target value C. ND consists of all 

instances without target value C. To discover association rules with C as their 

consequents, we mine the frequent itemsets from PD, and count the frequencies of 

these itemsets in ND to compute the rules’ confidences using the following formula. 
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   sup( )( )
sup( ) sup ( )

in PDconfidence C
in PD in ND

αα
α α

=> =
+

        ( 4 ) 

where α  is a frequent itemset mined from PD, sup( )in PDα  is the support of α  

in PD and sup ( )in NDα  is the support of α  in ND. Note that Formula 4 is 

consistent to Formula 3 in that sup( )in PDα  is equal to sup( { })Cα∪  since every 

instance in PD contains target value C, and sup( ) sup ( )in PD in NDα α+  is equal 

to sup( )α  since both of them are the support of the instances that contain α  in the 

whole dataset. 

  The algorithm is summarized in Algorithm 4.1.2. When size of PD is much 

smaller than that of the original dataset D, the resulting savings is substantial as 

compared to naively mining the association rules from the dataset directly.  

 

Algorithm 4.1.2 MineAssoRule 

Input: sub-dataset, target value C 

Output: association rule with its consequent as C 

1. partition the sub-dataset into two parts, PD and ND 

2. mine the frequent itemsets from PD using FP-Growth algorithm. For each   

frequent itemset α , there will be a corresponding rule α ⇒ C 

3. count each of the frequent itemsets in step 2 from ND 

4. compute the confidence of each rule, using 

         sup( )( )
sup( ) sup ( )

in PDconfidence C
in PD in ND

αα
α α

=> =
+

 

5. output rules whose confidences satisfy the min_conf 
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4.2 Dynamic Behavior of a Rule 

Having mined all the association rules with target value C as the consequents, we 

proceed to analyze the dynamic behavior of these rules. Recall in Chapter 3, we have 

defined the concepts of stable, monotonic increasing, monotonic decreasing and 

irregular rules. 

   Given the confidence values of a rule over n time points {y1,…,yn}, we scan the 

series from left to right, grouping the values into consistent sub-series such that all 

the values in each sub-series are either constant or monotonic increasing/decreasing 

(see Algorithm 4.2.1). Note that there are three fields in a consistent sub-series (CSS). 

A “begin” field is used to record the start point of the sub-series; An “end” field 

records the end point of the sub-series; and a “flag” indicates the trend of the 

sub-series, with value of -1 decreasing trend, value of 1 increasing trend, and value 

of 0 stable. 

 

Algorithm 4.2.1 FindCSSs  
Input: confidence series of a rule CS 
Output: all consistent sub-series CSSArray 
1. if (CS[2]-CS[1] = = 0) 
2.    initialFlag = 0 
3. else if (CS[2]-CS[1] >0) 
4.    initialFlag = 1 
5. else 
6.    initialFlag = −1 
7. end if 
8. k = 1, initialBegin = 1 
9. for i = 3 to |CS| 
10.   if (CS[i]-CS[i-1] = = 0) 
11.     newFlag = 0 
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12.   else if (CS[i]-CS[i-1] > 0) 
13.     newFlag = 1 
14.   else 
15.     newFlag = -1 
16.   end if 
17.   if (newFlag ! = initialFlag)   // store the sub-series and find the next CSS 
18.     CSSArray[k].begin = initialBegin 
19.     CSSArray[k].end = i-1 
20.     CSSArray[k].flag = initalFlag 
21.     k = k+1 
22.     initalFlag = newFlag 
23.     initialBegin = i 
24.   end if 
25. end for 
 

 

Example 4.1 

Suppose the min_fragmentLen is 9 and max_inconsistentLen is 3. Figure 4.2 shows 

the confidence series of a rule over time. According to Algorithm 4.2.1, we find six 

consistent sub-series, namely CSS1 = CS[1:3] (denoting the sub-series of confidence 

series from time point 1 to 3), CSS2 = CS[4:5], CSS3 = CS[6:9], CSS4 = CS[10:14], 

CSS5 = CS[15:16] and CSS6 = CS[17:20]. 

 

 

Figure 4.2 Example of Finding Trend Fragment 
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After all the sub-series have been formed, we proceed to merge the adjacent 

sub-series if the gap between the two series is less than max_inconsistentLen and the 

merged series is strictly monotonic or constant. The merged sub-series whose lengths 

are greater than min_fragmentLen are identified as trend fragments (see Algorithm 

4.2.2 for details). Back to Example 4.1, CSS1 and CSS3 are merged as CS[1:9], CSS4  

and CSS6  are merged as CS[10:20]. Since both the merged sub-series CS[1:9] and 

CS[10:20] are longer than 9, they are both trend fragments. 

        

   After all the trend fragments are found, we classify a rule based on the number of 

its trend fragments. If the number of trend fragment is zero (this implies that the 

confidences of the rule vary greatly with no specific trend), we classify the rule as an 

irregular rule. If the number of trend fragment is one, we classify the rule as a trend 

rule. Rules that do not fall into the above categories are classified as oscillating rules 

which means that their confidences may increase in some time periods, and decrease 

or remain stable in other time periods. Details of the steps can be found in Algorithm 

4.2.2. Note that Algorithm 4.2.2 calls Function 4.2.1 which returns a value indicating 

whether two sub-series should be merged.  

   

Algorithm 4.2.2 MergeCSSAndClassifyRules 
Input: a rule’s confidence series, CS 
     its consistent sub-series, CSSArray 
Output: the rule’s trend fragments, TFArray 
       the category of the rule, CR 
1. k = 1, mergedCSS = CSSArray[1] 
2. for i = 2 to |CSSArray|   
3.   if (isMergeable(CS,CSSArray[i-1],CSSArray[i]) 
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4.      mergedCSS.end = CSSArray[i].end 
5.   else  
6.      if (|mergedCSS| ≥ min_fragmentLen) // if yes, it is a trend fragment 
7.        TFArray[k] = mergedCSS 
8.        k = k+1 
9.      end if 
10.      mergedCSS = CSSArray[i]       // start to find a new merged sub-series 
11.   end if 
12. end for 
13. if (|TFArray| = = 0)                  // classify the rule  
14.   CR = irregular rule 
15. else if ((|TFArray| = = 1)  
16.   CR = trend rule (monotonic or stable) 
17. else 
18.   CR = oscillating rule 
19. end if 
 

   In Algorithm 4.2.2, lines 2-12 merge adjacent consistent sub-series from left to 

right and find the trend fragments of the rule. In each iteration, we first check 

whether current sub-series should be merged with the previous one; if they can be 

merged, we merge the current sub-series and continue to check the next sub-series 

(lines 3-4); otherwise, we check whether the merged sub-series is a trend fragment 

and start to find another merged sub-series (lines 5-10). Lines 13-19 classify the rule 

based on the number of the trend fragments. 

 

Function 4.2.1 isMergeable 
input: a confidence series CS; its two consistent sub-series, CSSi and CSSj   
output: a value indicating whether the two sub-series should be merged   
1. if (CSSj.begin – CSSi.end > max_inconsistentLen)  
2.    return false 
3. end if 
4. result = false            
5. if(CSSi.flag = =0)      // case 1: both sub-series stable         
6.    if(CSSj.flag = = 0) 
7.      if(CS[CSSi.end] = = CS[CSSj.begin]) 
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8.        result = true 
9.      end if 
10.    end if 
11. else if (CSSi.flag = = 1)  // case 2: both sub-series increasing 
12.    if(CSSj.flag = = 1) 
13.      if(CS[CSSi.end] < CS[CSSj.begin]) 
14.        result = true 
15.      end if 
16.    end if 
17.  else                // case 3: both sub-series decreasing 
18.    if(CSSj.flag = =-1) 
19.      if(CS[CSSi.end] > CS[CSSj.begin]) 
20.        result = true 
21.      end if 
22.    end if 
23.  end if 
24.  return result 

 
 

   In Function 4.2.1, lines 1-3 check whether the gap between the two sub-series is 

greater that max_inconsistentLen. If it is, the two sub-series cannot be merged and 

we return false. Lines 4-24 check whether the merge of the two sub-series is strictly 

monotonic or constant series. If it is, the two sub-series can be merged and the 

function returns true. 

 

4.3 Find Evolution Relationships Among Rules 

In this section, we introduce the approaches to find relationships among trend rules 

and oscillating rules. First we define the notion of a combined rule and sub-rule as 

follows: 

 



Chapter 4.Proposed Approaches                                        33        

Defintion 4.3.1 (Combined Rule): Suppose we have three rules :ir α ⇒ C, :jr β ⇒ 

C , : γ ⇒ C. If α ∪ β = γ, α ⊄ β and β ⊄ α, we say  is the combined rule of  

and .   

Definition 4.3.2 (Sub-Rule): Given two rules :

kr kr ir

jr

ir α ⇒ C, : γ ⇒ C. If α ⊂ γ, we 

say  is a sub-rule of . 

kr

ir kr

 

4.3.1 Find Combined Rules 

From the definitions of diverging, enhancing and alleviating relationships discussed 

in Chapter 3, it is evident that we need to analyze the confidence correlations 

between a combined rule and its sub-rules. Repeated scanning of the rules to find the 

corresponding combined rule is inefficient and time consuming. Hence, in this thesis, 

we design a hash table structure that captures the implicit relationships between a 

combined rule and its sub-rules.  

For each rule r of the form a1, a2, …, am ⇒ C, where a1, a2,…, am are the unique 

integer identifiers of the items, we add up these unique identifiers to form a hash key. 

A hash function is then applied to this key to obtain the location of the rule r. In this 

way, the rules are stored in a hash table indexed by the antecedents of the rules. The 

procedure is summarized in Algorithm 4.3.1.  

 

Algorithm 4.3.1 StoreRuleUsingHash 
Input:  a1,a2,…,am ⇒ C where a1,a2,…,am are unique integer identifiers of  
       items; number of buckets: Num 

 



Chapter 4.Proposed Approaches                                        34        

Output: bucket number: BNo 
1. hashKey = a1+ a2+…+ am 
2. BNo = hashKey%Num 
3. return BNo 

 

Back to our running example, suppose the integer identifiers of the items are 

tabulated in Table 4.1 and the number of buckets is 20. Some of the rules in Table 

1.2 are stored into the hash structure as shown in Table 4.2. 

 

Item Identifier 
beer 101 
chip 102 
cake 103 
toothbrush A 104 
toothbrush B 105 
toothpaste C 106 

Table 4.1 Identifiers of Items 

 

Bucket No Rules 
1 beer ⇒ toothpaste C 
2 chip ⇒ toothpaste C 
3 cake ⇒ toothpaste C 
4 toothbrush A ⇒ toothpaste C 
5 toothbrush B ⇒ toothpaste C 
6  
7  
8  
9 toothbrush A, toothbrush B ⇒ toothpaste C 
… … 

Table 4.2 Hash Table of Rules 
 
 
With the hash structure, given any two rules, we can simply union and add the 

antecedents of the two rules to form a hash key that is used to access the location of 
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the combined rule. For example, given the rules “toothbrush A ⇒ toothpaste C” and 

“toothbrush B ⇒ toothpaste C”, we add toothbrush A(104) and toothbrush B(105) to 

form a hashKey: 104+105 = 209, then we can get the bucketNo: 209%20 = 9. After 

that, we use the bucketNo to locate the combined rule “toothbrush A, toothbrush B 

⇒ toothpaste C”. 

 

4.3.2 Find Relationships Among Trend Rules 

In this section, we discuss how to discover interesting relationships among trend 

rules. Recall, a trend rule is one that exhibits a singular behavior over the whole time 

period. Hence, there is only one trend fragment associated with each trend rule. For 

such rules, we apply the definitions in Chapter 3 to find the relationships among each 

pair of rules. Algorithm 4.3.2 gives the details, where δ is the user-defined tolerance. 

 

Algorithm 4.3.2 FindRelInTrendRules 

Input: all trend rules 

     user-defined tolerance δ 

Output: the relationships among trend rules 

1. for each pair of trend rules  ,i jr r
2.   if ( both  and  are not stable)  // case 1:  not stable, not stable ir jr ir jr
3.      corr = calculateCorrelation ( ) ,i jr r
4.      if (corr < -1 + δ) 
5.         if (  and have no common items in the antecedent) ir jr
6.             output: competing relationship( , ) ir jr
7.         end if 
8.      else if (corr > 1 - δ) 
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9.         if( , the combined rule of  and , is a trend rule and is not stable) kr ir jr
10.             corr = calculateCorrelation ( , )  kr ir
11.             if(corr < -1 + δ)  
12.                output: diverging relationship( , , ) kr ir jr
13.             end if 
14.         end if 
15.      else ; 
16.      end if 
17.   else if (  is not stable and  is stable)  // case 2:  not stable,  stable ir jr ir jr
18.     if ( , the combined rule of  and , is a trend rule and is not stable)  kr ir jr
19.         corr = calculateCorrelation( , ) kr ir
20.         if(corr <-1 + δ)  
21.            if(  is increasing)  output: enhancing relationship( , , ) kr kr ir jr
22.            else              output: alleviating relationship( , , ) kr ir jr
23.            end if 
24.         end if 
25.     end if 
26.   else if(  is stable and  is not stable)  // case 3:  stable,  not stable ir jr ir jr
27.      /* similar process as 18-25 */ 
28.   else ;                              // case 4:  stable,  stable   ir jr
29.   end if 
30. end for  
 

 

In Algorithm 4.3.2, calculateCorrelation ( ) computes the Pearson correlation 

coefficient between the confidence series of  and . The algorithm performs 

pairwise comparisons of the rules. If both rules are not stable, we compute the 

Pearson correlation coefficient (line 3); if the correlation is less than -1 + δ (close to 

-1) and they have no common items in the antecedent, we say the two rules exhibit a 

competing relationship (lines 4-7). If the correlation is greater than 1- δ (close to 1), 

we obtain their combined rule to determine whether the rules exhibit a diverging 

,i jr r

ir jr
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relationship (lines 8-14). If one of the rules is stable, we obtain their combined rule 

to determine whether the rules exhibit an enhancing or alleviating relationship (lines 

17-27). If both rules are stable, there is no evolution relationship (line 28). 

 

4.3.3 Find Relationships Among Oscillating Rules 

Finding relationships among oscillating rules is more complex than finding 

relationships among trend rules. This is because the oscillating rules may increase in 

some time periods and decrease or remain stable in other time periods. The algorithm 

must automatically discover the overlapped time intervals of the trend fragments in 

which the oscillating rules exhibit trends and have the different types of relationships 

as discussed in Chapter 3. If the overlapped interval is too short, it is not significant. 

Hence, in this thesis we find the relationships only in the trend fragments that have a 

significant overlapped interval. 

   In general, we say a trend fragment is comparable to another trend fragment if 

they have a significant overlapped interval. More precisely, Suppose we have a trend 

fragment TFi  = { , , … }. We say trend fragment TF
1ny 11+ny

2ny j  = 

{ , ,… }, where n
1my 11+my

2my 1 ≤ m1, is comparable to TFi if n1 = m1 and n2 = m2; or 

(min(n2,m2) − m1)/(max(n2,m2) – min(n1,m1)) > min_ratio, where min_ratio is the 

user-specified minimum ratio. Here, TFi is called the seed fragment. In other words, 

a fragment is comparable to the seed fragment if the proportion of the overlap 

between the two fragments is greater than a user-specified ratio. Suppose min_ratio 
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is 0.7. Figure 4.3(a) shows examples of trend fragments that are comparable; and 

Figure 4.3(b) shows examples of trend fragments that are not comparable.  

 
 

 
(a) comparable                         (b) incomparable 

 
Figure 4.3: Example of Comparable and Incomparable Fragments 

   

By the definition of comparable trend fragments, the task of finding relationships 

among oscillating rules is to find the relationships among rules in the overlapped 

time intervals of their comparable trend fragments. 

A naïve approach is to perform pairwise comparisons of the rules and confine the 

computation of the correlation to the overlapped region of the comparable trend 

fragments in each pair of rules. Details are given in Algorithm 4.3.3 and Algorithm 

4.3.5. Note that Algorithm 4.3.3 finds diverging, alleviating and enhancing 

relationships. Algorithm 4.3.5 finds competing relationship. The pseudocodes of 

findCombinedRel ( , , ), findSeed( , , ) and isComparable( , ) in 

Algorithm 4.3.3 are given in Algorithm 4.3.4, Function 4.3.1 and Function 4.3.2. 

if jf kf if jf kf if jf

 

Algorithm 4.3.3 FindRelInOsciRules 

Input: all oscillating rules 

 



Chapter 4.Proposed Approaches                                        39        

Output: the diverging, alleviating and enhancing relationships among rules 

1. for each pair rules  and  ir jr
2.   find the combined rule,  kr
3.   if (  exists) kr
4.     TFSi = trend fragments of ,TFSir j = trend fragments of ,  jr

    TFSk = trend fragments of , m = 0,n = 0, l = 0 kr
5.     while m < |TFSi|  and  n < |TFSj|  and  l < |TFSk| 
6.         = TFSif i[m], = TFSjf j[n], = TFSkf k[l] 
7.        seed = findSeed( , , ) if jf kf
8.        if(seed = = 1) 
9.           if(isComparable( , ) and isComparable( , )) if jf if kf
10.             findCombinedRel ( , , )  // call Algorithm 4.3.4 if jf kf
11.           m = m+1 
12.           if( .begin = = .begin  and  .end = = .end)  jf if jf if
13.             n = n+1 
14.           if( .begin = = .begin  and  .end = = .end) kf if kf if
15.             l = l+1 
16.        else if (seed = = 2) 
17.           /* similar process as seed = = 1, this time the seed fragment is */ jf
18.        else 
19.           /* similar process as seed = = 1, this time the seed fragment is */ kf
20.        end if 
21.     end while 
22.   end if 
23. end for 
 

 

   Algorithm 4.3.3 works as follows. For each pair of rules, line 2 finds the 

combined rule of the two rules using Algorithm 4.3.1. If the combined rule exists, we 

find relationships among the combined rule and the sub-rules in each pair of 

comparable trend fragments. The finding proceeds in a left-to-right order. We view 

the trend fragments of the three rules as three queues individually, and scan them 
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from left to right until one of the rules runs out of its fragments (lines 5-21). In each 

iteration, findSeed( , , ) choose a seed fragment from the fragments of the 

three rules (line 7). The seed fragment to be chosen is the fragment that has the 

smallest start point and end point. After choosing the seed fragment, we check 

whether the other two fragments are comparable to the seed fragment (line 9). If they 

are comparable, we find relationships among them using Algorithm 4.3.4 (line 10). 

At the end of the iteration, the seed fragment is dropped (line 11), and the other two 

fragments are discarded if they have the same start point and end point as the seed 

fragment (lines 12-15).  

if jf kf

 

Function 4.3.1 FindSeed 

Input: three fragments , ,  if jf kf
Output: the seed fragment 
1. sort , ,  by their start point and end point in ascending order  if jf kf
2. if(  is the first fragment) if
3.   return 1 
4. else if(  is the first fragment) jf
5.   return 2 
6. else  
7.   return 3  

 

 

Function 4.3.2 IsComparable 
Input: seed fragment: if , a fragment: jf , user-defined min_ratio 
Output: a value indicating whether jf is comparable to if  
1. overlapLen = min( if .end, jf .end) − jf .begin 
2. wholeLen = max( if .end, jf .end) – min( if .begin, jf .begin) 
3. if(overlapLen / wholeLen ≥ min_ratio)  

 



Chapter 4.Proposed Approaches                                        41        

4.   return true 
5. else 
6.   return false 
7. end if 
 

In Algorithm 4.3.3, the approach findCombinedRel( , , ) finds the 

diverging, alleviating and enhancing relationships of rules in the pair of three 

comparable trend fragments. It is summarized in Algorithm 4.3.4. Algorithm 4.3.4 is 

similar to Algorithm 4.3.2. The difference is that we need to compute the overlapped 

region (lines 1-2) and output the relationships in the overlapped region.  

if jf kf

 

Algorithm 4.3.4 FindCombinedRel 

Input: three fragments , , , where is the fragment of the combined  if jf kf kf
     rule, and  are the fragments of the sub-rules jf if
Output: the relationship among the rules of , ,  if jf kf
1. begin = max( if .begin, jf .begin, .begin) kf
2. end = min( if .end, jf .end, .end) kf
3. = the rule of ir if , = the rule of jr jf , = the rule of  kr kf
4. if ( both if  and jf  are not stable)  // case 1: if  not stable, jf not stable 
5.   corr = calculateCorrelation ( , , begin, end) ir jr
6.   if (corr > 1 - δ) 
7.     corr = calculateCorrelation ( , , begin, end)  ir kr
8.     if(corr < -1 + δ)  
9.        output: diverging relationship( , , , begin, end) kr ir jr
10.     end if 
11.   end if 
12. else if ( if  is not stable and jf  is stable)  // case 2: if  not stable, jf  stable 
13.   corr = calculateCorrelation( , , begin, end) ir kr
14.   if(corr < -1 + δ)  
15.      if( kf  is increasing)  output: enhancing relationship( , , , begin, end) kr ir jr
16.      else               output: alleviating relationship( , , , begin, end) kr ir jr

 



Chapter 4.Proposed Approaches                                        42        

17.   end if 
18. else if( if  is stable and jf  is not stable)  // case 3: if  stable, jf  not stable 
19.   /* similar process as 12-17 */ 
20. else ;                               // case 4: if  stable, jf  stable   
21. end if 

 

 

The algorithm to find competing relationships among oscillating rules is 

summarized in Algorithm 4.3.5. Similar to Algorithm 4.3.3, to find competing 

relationship, Algorithm 4.3.5 views the fragments of the two rules as two queues and 

proceeds in a left-to-right order (lines 4-28). In each iteration, if the two fragments 

have the same start point and end point, it is comparable (lines 7-8). Otherwise we 

choose the fragment that have the smaller start point and end point as the seed 

fragment and check whether the other fragment is comparable to it (lines 11-18). If 

they are comparable, find competing relationship in their overlapped region (lines 

20-27). In each iteration, the seed fragment and the fragment that has the same start 

point and end point as the seed fragment are dropped (lines 9,10,14,18). 

 

Algorithm 4.3.5 FindComRel 

Input: all oscillating rules 
Output: the competing relationship among rules 
1. for each pair of rules  and  ir jr
2.   TFSi = trend fragments of , TFSir j = trend fragments of  jr
3.   m = 0,n = 0 
4.   while m < |TFSi| and n < |TFSj| 
5.     = TFSif i [m], = TFSjf j [n] 
6.     flag = 0; 
7.     if( .begin = = .begin and .end = = .end) if jf if jf
8.        flag = 1 
9.        m = m+1 
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10.        n = n+1 
11.     else if( .begin < .begin or .begin = = .begin and .end < if jf if jf if

 .end) jf
12.        if(isComparable( , ) if jf
13.          flag = 1 
14.          m = m+1 
15.     else  
16.        if(isComparable( , ) jf if
17.          flag = 1 
18.          n = n+1 
19.     end if 
20.     if(flag = = 1) 
21.        begin = max( .begin, .begin) if jf
22.        end = min( .end, .end) if jf
23.        corr = calculateCorrelation( , ,begin,end) if jf
24.        if(corr < -1 + δ) 
25.          if(  and  have no common items in the antecedent) if jf
26.            output: competing relationship( , ,begin,end) ir jr
27.     end if 
28.    end while 
29.  end for 
 

  Note that with the naive approach, all the rules are compared even when they do 

not have any comparable trend fragments. This observation leads to our optimized 

algorithm. Instead of focusing on the rules, we first examine all the trend fragments 

and group the trend fragments if they are comparable. 

The grouping of trend fragments proceeds in a left-to-right order. First, the 

fragments are sorted by their start points in increasing order. Fragments that have the 

same start points but different end points are sorted by their end points in ascending 

order. After sorting, we start with the fragment with the smallest start point as a seed 

fragment and check whether the adjacent fragment is comparable to the seed 
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fragment. If it is comparable to the seed fragment, we place it in the group of the 

seed fragment and continue to find all the other comparable fragments; After all the 

comparable fragments of the seed fragment are found, we choose the next seed 

fragment and repeat the process to find another group of comparable fragments. Here 

the next seed fragment is the fragment that follows the current seed fragment and 

does not have the same start point and end point as the current seed fragment. Details 

are given in Algorithm 4.3.6.  

 

Algorithm 4.3.6 FindComparableGroups 
Input: trend fragments of the oscillating rules, TFs 
Output: groups of comparable fragments, G 
1. sort the fragments in TFs by their start points and end points in 
   increasing order                             // left-to-right 
2. k = 1, i = 1 
3. while (i ≤ |TFs|) 
4.    count = 0; 
5.    for j = i to |TFs| 
6.      if (TFs[j].begin > TFs[i].end)   // no overlap anymore 
7.        break 
8.      else if(TFs[j].begin = = TFs[i].begin and TFs[j].end = = TFs[i].end) 
9.        put TFs [j] into G[k] 
10.       count = count+1 
11.     else if(isComparable(TFs[j],TFs[i]) 
12.       put TFs [j] into G[k] 
13.     else ; 
14.     end if 
15.   end for 
16.   i = i+count-1 
17.   k = k+1 
18. end while 
 

In Algorithm 4.3.6, line 1 sorts the fragments by their start points and end points 

in ascending order. After that, lines 3-18 find comparable groups from left to right. 
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In each iteration, a seed fragment is chosen (fragment i). All the adjacent fragments 

that are comparable to the seed fragment are added into its comparable group (lines 

8-12). At the end of each iteration, the current seed fragment and all the fragments 

which have the same start point and end point as the seed fragment are dropped (line 

16). We then continue to the next seed fragment and repeat the process.  

   Once all the groups of comparable trend fragments are found, we find the 

relationships only among the oscillating rules whose trend fragments are in the same 

comparable group. This strategy allows us to skip comparisons among rules that do 

not have any comparable trend fragments. Note that according to Algorithm 4.3.6, 

one fragment may belong to more than one group corresponding to different seed 

fragments. To avoid repeated comparisons, we further partition a comparable group 

G into G1 and G2. G1 includes the fragments that have the same start point and end 

point as the seed fragment. The remaining fragments in G are placed in G2. To find 

the relationships of rules among comparable trend fragments in G, we only perform 

pairwise comparisons within G1, and between G1 and G2. In other words, we skip 

the pairwise comparisons within G2. This is because the fragments in G2 will appear 

in the next group(s), and the pairwise comparisons among fragments in G2 can be 

done in the next group(s). Therefore there is no need to do the comparisons in 

current group. Algorithm 4.3.7 gives the details.  

 

Algorithm 4.3.7 FindRelInGroup 

Input: a group of comparable trend fragments, G 
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Output: the relationships of rules in the group 

1. G1 = fragments in G that have the same start point and end point as the seed 
fragment; G2 = G − G1 

2. for i = 1 to |G1| 
3.   = the rule of G1[i] ir
4.   for j = i+1 to |G1| 
5.      findCompRelInFrag(G1[i], G1[j])     // find competing relationship 
6.      = the rule of G1[j] jr
7.      = the combined rule of  and    kr ir jr
8.      = the fragment of     kf kr
9.         if( kf is not stable) 
10.         findCombinedRel(G1[i], G1[j], kf )  // find diverging,…,relationships 
11.      end if 
12.   end for 
13.   for j = 1 to |G2| 
14.      findCompRelInFrag(G1[i], G2[j])      // find competing relationship 
15.      = the rule of G2[j] jr
16.      if (  is the sub-rule of ) jr ir
17.        find the other sub-rule such that is the combined rule of and  kr ir kr jr
18.        kf  = the fragment of  kr
19.        findCombinedRel( kf ,G2[j],G1[i])   // find diverging,…,relationships 
20.      else 
21.        /* similar process as 6-11 */ 
22.      end if 
23.   end for 
24. end for 
 
 

In Algorithm 4.3.7, lines 3-12 find relationships among the fragments within G1 

and lines 13-23 find relationships among the fragments between G1 and G2. Note 

that findCompRelInFrag(G1[i], G1[j]) finds the competing relationship using 

Function 4.3.3, and findCombinedRel(G1[i], G1[j], kf ) finds the diverging, 

alleviating and enhancing relationships using Algorithm 4.3.4. 
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Function 4.3.3 FindCompRelInFrag 
Input:  two trend fragments  and  if jf
       user-defined tolerance δ 
Output: the competing relationship between the two rules of  and   if jf
1. begin = larger( .begin, .begin) if jf
2. end = smaller( .end, .end) if jf
3. corr = calculateCorrelation( , ,begin,end) if jf
4. if(corr < -1 + δ) 
5.   if(  and  have no common items in the antecedent) if jf
6.      output: competing relationship( ’s rule, ’s rule, begin, end) if jf
7.   end if 
8. end if 
 

   In summary, to find relationships among oscillating rules, we focus on fragments. 

We first find groups of comparable trend fragments. Comparisons are done only 

among the fragments within each comparable group. In this way, we skip those rules 

that do not have any comparable trend fragments. In each group of comparable trend 

fragments, we further partition the fragments into sub-groups to avoid redundant 

comparisons. We call this method Group Based method of Finding relationships 

(GBF), and we call the naïve method Rule Based method of Finding relationships 

(RBF). 

 



 

 

 

 

Chapter 5  

Experiments 
 

In this chapter, we carry out experiments to evaluate the proposed approaches on 

both synthetic and real-world datasets. All our approaches are implemented in C++. 

The experiments are run on a PC with 2.33 GHZ CPU and 3.25 GB RAM, running 

Windows XP. 

 

5.1 Synthetic Data Generator 

We design a synthetic data generator by extending the data generator in R. Agrawal 

et al. [2] to incorporate time and class information. The data generation includes two 

steps.  

   In the first step, we create a table of potential frequent itemsets. The size of each 

itemset is generated from a Poisson distribution with mean equal to parameter I. The 

48 
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items in each itemset are randomly chosen from a set of N different items. Next, we 

generate M combined itemsets. Each combined itemset is generated by randomly 

selecting and combining two potential frequent itemsets. For each generated itemset, 

we assign a confidence value c which determines the probability that the itemset will 

appear in the transaction having target value C. The confidence value c is given by 

the following formula. 

                           
0 1

0 0 ;
1 1,

r if r
c if r

if r

;≤ ≤⎧
⎪= <⎨
⎪ >⎩

                       (5) 

where r is a normal-distributed random number with mean = 0.5 and deviation = 0.1. 

Each itemset is associated with two arrays which capture how the confidence c 

changes over time. The first array stores the change rates. Each change rate is 

randomly chosen from a normal distribution. The second array stores the change 

flags where each flag indicates whether the confidence increase, decrease, or remain 

unchanged for the corresponding time point. We generate n fragments for each 

itemset, where n is a random number from 1 to the maximum number of fragments 

(maxFrag). Each fragment has several time points. The change flags of the itemset at 

different time points in the same fragment could be the same (increases, decreases, 

stay unchanged) or different. In this way, the itemset will have a trend in the 

fragment if the change flags are the same, or change randomly if the change flags are 

different. 

   In the second step, we generate a dataset for each time point by generating its 

transactions as follows. We change the confidence of each itemset based on its 
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change flag and change rate at the time point. The dataset consists of two sub-sets: 

PD (which consists of transactions with target value C) and ND (which consists of 

transactions without target value C). The transactions of PD and ND are generated as 

follows. The size of a transaction is chosen from a Poisson distribution with mean 

equal to T. The content of the transaction is generated as follows. We randomly 

choose an itemset from a series of itemsets generated in the first step. If the 

confidence of a selected itemset is c, we append it to the transaction of PD with 

probability c, or append it to the transaction of ND with probability 1 – c. When a 

transaction reaches its size, we proceed to generate the next transaction.  

   Table 5.1 summarizes the main parameters in the data generator as well as the 

default values used in our experiments. 

 

Parameter Description Default Value 

| D | Number of transactions  100 000 

perc Percentage of positive transactions in D 1/2 

T Average size of the transactions 10 

I Average size of itemsets 2 

N Number of items 10 000 

maxFrag Maximum number of fragments in each itemset 10 

Table 5.1: Parameters of Data Generator 
 
 

5.2 Experiments on Mining Association Rule 

In this section, we compare the performance of the proposed partition-based 

approach of mining association rule (Algorithm 4.1.2) with the naïve approach which 
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directly utilizes existing frequent itemset mining algorithms such as FP-Growth. We 

call our method Partition based Association rule Mining (PAM) and the naïve 

method Direct Association rule Mining (DAM). Figure 5.1 shows the execution time 

when the number of transactions in the dataset increases from 50 000 to 300 000 

with the average size of the transactions T = 10. Figure 5.2 shows the execution time 

when T ranges from 5 to 30 and the number of transactions in the dataset is 100 000. 
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Figure 5.1: Running Time of Association Rule Mining 
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Figure 5.2: Running Time with Varying T 
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Both Figure 5.1 and Figure 5.2 show that our approach is better than the naïve 

approach. This is because the most time consuming part of association rule mining is 

the generation of frequent itemsets. In PAM we partition the dataset into positive 

sub-dataset and negative sub-dataset, and mine the frequent itemsets only in the 

positive sub-dataset; while in DAM we mine the frequent itemsets in the entire 

dataset, which may produce many redundant frequent itemsets. 

We also evaluate the sensitivity of PAM and DAM to perc parameter. Figure 5.3 

shows the running time of PAM and DAM when perc ranges from 1.0 to 0.1. We 

observe that PAM is better than DAM. As perc becomes smaller PAM becomes 

more efficient than DAM. The reason is that when perc is smaller we mine the 

frequent itemsets in a smaller positive sub-dataset while DAM still mine the frequent 

itemsets in the whole dataset. 

 

0

50

100

150

200

250

300

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

perc

Ti
m

e(
se

c)

PAM

DAM

 

Figure 5.3 Running Time with Varying perc 
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5.3 Experiments on Finding Relationships Among 

Rules  

Since a trend rule can be viewed as a single trend fragment spanning the whole time 

period, it can be regarded as a special case of the oscillating rule. Therefore we only 

evaluate the approaches (GBF and RBF) which are used to find the relationships in 

oscillating rules.  

Figure 5.4 shows the running time of GBF and RBF when the number of rules 

increases from 1000 to 10 000 and parameter min_ratio is 0.85. We observe that 

GBF outperforms RBF. As the number of rules increases, the running time of RBF 

increases faster than GBF. In other words, GBF is more scalable than RBF. The 

reason for this is that RBF performs pairwise comparisons among rules, while GBF 

groups comparable fragments and performs pruning to avoid unnecessary 

comparisons. 
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Figure 5.4: Running Time of GBF and RBF  
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We also evaluate the sensitivity of GBF and RBF to min_ratio parameter. The rule 

number is set to be 5000. We vary min_ratio from 0.55 to 1 and evaluate the 

performance of GBF and RBF as shown in Figure 5.5. 
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Figure 5.5: Varying min_ratio in GBF and RBF 

 

We observe that GBF is faster than RBF. As the min_ratio increases from 0.55 to 

1, the running time of GBF decreases rapidly, while the running time of RBF 

remains relatively constant. The reason is that when min_ratio is large, many 

combined rules do not have comparable fragments with the sub-rules and there is no 

relationship among them. GBF finds pairs of combined rule and its sub-rules only if 

they have fragments in the same group of comparable fragments. However, RBF 

finds each pair of combined rule and its sub-rules even when the rules do not have 

comparable fragments, and check whether their fragments have combined 

relationships (diverging, enhancing, and alleviating). As a result, GBF is more 

efficient when min_ratio is larger. 
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5.4 Experiments on Real World Dataset 

Finally we use a real-world dataset to demonstrate the applicability of the algorithms 

in discovering meaningful relationships among rules. The dataset is the currency 

exchange rate dataset [34]. It contains the prices of 12 currencies relative to the US 

dollar from 10/9/1986 to 8/9/1996. The 12 currencies include AUD Australian Dollar 

(AUD), Belgian Franc (BEF), Canadian Dollar (CAD), French Franc (FRF), German 

Mark (DEM), Japanese Yen (JPY), Dutch Guilder (NLG), New Zealand Dollar 

(NZD), Spanish Peseta (ESP), Swedish Krone (SEK), Swiss Franc (CHF) and UK 

Pound (GBP). As discussed in the previous chapters, we mine association rules with 

a specific target. If we are interested in the conditions where the Japanese Yen will 

increase, then the target value is “Japanese Yen increase”. One example of such rule 

is “Australian Dollar decrease, Canadian Dollar decrease ⇒ Japanese Yen increase” 

with support of 0.5 and confidence of 0.9. This rule means that if we find that 

Australian Dollar decrease and Canadian Dollar decrease, we can predict that 

Japanese Yen will increase with a high accuracy of 0.9. To find such rules, we 

transform the changes of the prices on each day into a corresponding transaction as 

follows. For each day, the price of each currency is compared with its price of the 

previous day. Each increase or decrease of the price is associated with a 

corresponding Integer item in the transaction. If the target currency increases, the 

transaction will be put into the positive sub-dataset (PD). Otherwise the transaction 
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will be put into the negative sub-dataset (ND). After that we mine the association 

rules from PD and ND using Algorithm 4.1.2. 

   To analyze the dynamic behavior of the rules and the relationships among rules 

over time, we divide the dataset into 9 sub-datasets by year, excluding Year 1986 

since its data is small. Then we mine each sub-dataset using the method discussed 

above and track the confidences of each rule. After that, we analyze the dynamic 

behavior of the rules and find evolution relationships among rules using the 

approaches proposed in Chapter 4.  

Table 5.2 shows the number of relationships found when we target the increase 

of five different currencies and Table 5.3 shows some samples of the relationships. 

Each row corresponds to the number of different relationships found when the target 

currency is the entry of the first column. Note that in Table 5.3 “↑”denotes the 

confidence of the rule increases, “↓”denotes the confidence of the rule decreases 

and “–”denotes the confidence of the rule stays stable. 

 

Target currency Diverging Enhancing Alleviating Competing 

French Franc 31 0 31 755 

German Mark 9 0 0 548 

New Zealand  286 4 0 311 

Spanish Peseta 107 1 78 807 

Swedish Krone 319 0 28 317 

Table 5.2: Number of Relationships With Different Categories 
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No Relationship  Rules Period 

1 Competing NLG +,DEM- => ESP+              ↑ 

NZD+,JPY- =>ESP+                ↓ 

1987-1991 

2 Diverging 1 AUD-,CAD-,FRF-,GBP- => ESP+     ↑ 

AUD-, FRF-,GBP- => ESP+          ↓ 

CAD- => ESP+                    ↓ 

1990-1992 

3 Diverging 2 FRF+,ESP+,AUD-,CAD- => SEK+    ↓ 

AUD-,CAD- => SEK+              ↑ 

FRF+,ESP+ => SEK+               ↑ 

1991-1994 

4 Enhancing AUD-,FRF-,JPY-,SEK-, CHE- =>ESP+ ↑ 

AUD-,FRF-,CHE- =>ESP+           ↓ 

JPY-,SEK- =>ESP+                 – 

1990-1992 

Table 5.3: Examples of Relationships 

 

Following is the interpretation of the relationships in Table 5.3. For the first 

relationship, the rule “NLG +, DEM- => ESP+” means that if NLG increases and 

DEM increases, we can predict that ESP will increase, with some accuracy (the 

confidence of this rule). The competing relationship between the two rules means 

that from 1987-1994, the accuracy of the rule “NCG +, DEM- => ESP+” increases as 

the accuracy of the rule “NZD+,JPY- =>ESP+” decreases. As such, we have more 

confidence to judge whether ESP will increase based on the former rule than the 

latter rule because the former rule is more and more accurate. As for the second 

relationship, the diverging relationship among the three rules means that the 

accuracy of “AUD-, FRF-,GBP- => ESP+” and “CAD- => ESP+” decrease over 
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time while the accuracy of their combined rule “AUD-,CAD-,FRF-,GBP- => ESP+” 

increases. This is important information to the currency traders because they are 

aware that nowadays they cannot predict that ESP increases only based on the 

conditions {AUD decrease, RFF decrease and GBP decrease} or the condition 

{CAD decrease}. They are more confident to predict that ESP increases if all these 

conditions are satisfied. Similar interpretation can be applied to the other two 

relationships. 

 



 

 

 

 

 

Chapter 6  

Conclusion & Future Work 
 

In this work, we have investigated the association rules from temporal dimension. 

We analyze the dynamic behavior of association rules over time and propose to 

classify the rules into different categories. By our definition, a stable rule is more 

reliable and can be trusted. A monotonic rule has a systematic trend in the whole 

time period and therefore it is predictive. An oscillating rule has several trends over 

time. An irregular rule has no trends and change irregularly which make it not so 

useful. Classifying rules into these categories can help the user to understand and use 

the rules better. 

  We also define some interesting evolution relationships of association rules, which 

might be important and useful in real-world applications. The evolution relationships 

reveal the correlations about the effect of the conditions on the consequent over time, 
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which reflect the change of the underlying data. Therefore they give the domain user 

a better idea about how and why the data changes.  

   In the last, we propose the corresponding approaches. To mine the association 

rule in our problem, we partition the whole dataset into positive and negative 

sub-datasets. Then we mine the frequent itemsets from the positive sub-dataset and 

count the support of the frequent itemsets from the negative sub-dataset. In this way, 

we only mine the frequent itemsets from part of the whole dataset, which make our 

approach more efficient. To analyze the dynamic behavior of the rule, we propose to 

find the trend fragments and classify a rule based on the number of its trend 

fragments over time. To find evolution relationships among rules we present a series 

of related methods such as GBF and RBF which are used to find the relationships 

among oscillating rules. Experiments on the synthetic and real-world datasets show 

that our approaches are efficient and effective. 

In this work, we leave the task of partitioning the original dataset into 

sub-datasets by time period to the user. This requires the user possesses some prior 

knowledge of the domain. One of the possible future topics is to design a suitable 

method to automatically partition the dataset into sub-datasets, such partition should 

reflect the change of underlying data accurately. Another possible direction is to 

discover the relationships among rules by analyzing their content, rather than their 

statistics properties (support or confidence) as in this work, i.e. to discover whether a 

rule is the mutation of another rule. That is to identify the transformation of rules 

over time. For example, we might want to know whether one rule is changed from 
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another rule or several other rules. This can also give the user better insights into the 

dynamic behavior of the underlying data.
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