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SUMMARY

Biological strains are increasingly used to produce amino acids, vitamins, antibi-

otics, metabolites, enzymes, solvents, organic acids and bulk chemicals. Millions of

tons of biotechnology products are produced each year for a multi-billion dollar mar-

ket. Considering the depletion of fossil fuels, environmental issues and increase in use

of therapeutic proteins, the number and scale of bioprocesses will significantly increase

in the future. Improvement of strains by modifying genetic targets to increase yield of

desired products is the key issue for the successful and economical operation of biopro-

cesses.

The advent of microarray technology has created a deluge of gene expression data

by virtue of its ability to measure the expression levels of thousands of genes simultane-

ously. This data, when suitably mined, can provide understanding of the physiological

state of cells and thus enable the identification of genetic targets for strain improvement.

In this thesis, a data-driven framework is proposed for identifying genetic targets

for strain improvement. The framework contains different methods for identifying dif-

ferentially expressed genes, clustering of genes, cluster validation, and integration of

complementary datasets to identify genetic targets for strain improvement. Novel meth-

ods based on multivariate statistics are proposed for each step of the proposed frame-

work. In the first step, a method using Principal Components Analysis is proposed to

discover the genes differently expressed between wild-type strain and the strain pro-

vii



ducing desired product. These differently expressed genes shed light on the changes in

the cellular processes due to genetic modifications done to strains and hence provide

the clues to manipulate the genotype of cells to have desired phenotype.

In the second step, clustering and cluster validation algorithms to group genes into

disjoint and homogenous clusters based on their similarity in their expression profiles

are proposed. Since genes within a cluster are more similarly expressed, the potential

roles of uncharacterized genes can be hypothesized based on the expression similarity

with the other known genes. In contrast to the generally used clustering algorithms that

induce a fixed topological structure on cluster, the proposed algorithm takes into the

consideration the actual geometric shape of the gene clusters in the expression space.

It is devised to work effectively even if some of the clusters lie in subspaces due to the

inter-dependency of the different time-points. Then, methods based on an evolutionary

approach for spherical clusters and PCA subspace similarity metric for ellipsoidal clus-

ters are proposed to find the number of clusters in the expression dataset.

In the last step, a Bayesian method is introduced to integrate the gene expression

data with the genome-wide Transcription Factor-DNA interaction data in order to reli-

ably identify TFs that are targeted for strain improvement. All the methods proposed in

this thesis are tested with artificial as well as expression data from different organisms.

A real case study involving improvement of Escherichia coli K12 strain producing re-

combinant protein by identifying genetic targets is used to illustrate the integration of

the above steps.

viii
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1. INTRODUCTION

Bioprocesses using microbial strains for producing metabolites, proteins and vitamins

are becoming prominent in many industries including chemical, pharmaceutical, health

care, food, and agriculture industries. Approximately, one million tons of amino acids

with market value over $3 billion dollars are being produced every year through fermen-

tation processes (Demain, 2000). Currently, 5% of all chemicals produced including

fuels, polymers, and specialty chemicals are through the bioprocess route. The share of

bioprocesses in chemical production is expected to increase to 10-20% by 2010 (Bach-

mann, 2005). The use of microorganisms for the production of pharmaceutical drugs

is enormous. Approximately, 165 bio-pharmaceutical drugs are currently in use worth

approximately $30 billion; this market is expected to increase to $70 billion by 2010

(Walsh, 2006). Considering the depletion of fossil fuels, the use of microorganisms for

the conversion of biomass to useful products is also of great importance for a sustain-

able future.

The importance of fermentation processes is due to the ability of microorganisms

to accept a variety of carbon sources and the diversity of chemical reactions they are

capable of carrying out. However, natural microorganisms produce no (or at best in

small amounts) compounds of interest. Increase in yield and productivity of desired

compounds is essential for successful and economical viability of bioprocess indus-

tries. The improvement of yield is generally achieved by developing improved strains

(Stephanopoulos, 2002).
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1.1 Strain Improvement

Biological production of chemicals and proteins starts with the identification of

strains that are suitable for the production of desired products. The next stage is the op-

timization of bioprocess for economical production of desired product. Optimization

of bioprocess can be achieved either at the process level or through strain improvement

(Lee et al., 2005). Since the improvement of strains that yield more desired products

has greater impact on economics, strain improvement programs have attracted more in-

terest recently (Lee et al., 2005).

Initially, approaches for strain improvement were greatly dependent on mutagenesis

and screening. The development of recombinant DNA technology has revolutionized

the strain improvement process by enabling modifications at genetic level. Now, re-

searchers are using directed approaches for strain improvement through modification

of genes. The first step in strain improvement program is to select genetic targets for

modification that results in higher yield of desired product (Nielsen, 1998). However,

it is very difficult to identify such genetic targets due to the complexity and redundancy

of cellular processes. Understanding the interactions among different compounds in-

side the cells is essential to successfully identify genetic targets.

The classical way of identifying gene targets relied on biochemistry literature and

knowledge about the organism. However, this approach is limited by the availability of

literature. Recently, this approach has been complemented by constraints-based anal-

ysis of cellular metabolism, called Flux Balance Analysis (FBA) (Price et al., 2004;
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Edwards and Palsson, 2000). FBA is a constrained optimization procedure to identify

the flux distribution through different pathways in a metabolic network. The genetic

targets are identified such that more flux is directed towards desired pathway. Though

FBA has been successful in some cases, it requires a mathematical model of metabolic

reactions. Such a model is laborious to develop and specific to the organism. Also,

the FBA approach uses only known biological processes and interactions. With the

progress in molecular biology and advent of new technologies, it is now possible to

collect comprehensive data even at the molecular level. These data capture the internal

state of cells and hence useful for understanding the functioning of cell. The DNA mi-

croarray technology is one such technique.

The DNA microarray allows measurement of expression levels of genes at the

genome-scale. The data contain information about almost all the molecules expressed

in the cells during the bioprocess. There is a lot of potential to use this data to identify

the genetic targets for improving microbial strains (Van der Werf, 2005). In contrast

to model based approaches, data-driven methods make fewer assumptions and are not

limited by known interactions. However, suitable statistical data-mining approaches

are essential to extract useful information from these data.

In this thesis, a data-driven framework is proposed for genetic target selection for

improving biological strains. Novel data-mining methods suitable for gene expression

data mining are proposed and validated using artificial and real expression datasets. In

the following sections, gene expression data generation and challenges in mining these

data are described followed by the overview of thesis.
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1.2 Large Scale Data Generation: Microarrays

The central dogma of biology is that genes are first transcribed to messenger RNA

(mRNA) and mRNA is translated to proteins as shown in Figure 1.1. Measurement

of internal and external variables that determine the behaviour of cells is important for

understanding cell functioning. The internal state and response of cells to changes in

environment are sensitively reflected in the mRNA levels of all genes (Lander, 1996).

Hence, simultaneous monitoring the expression levels, i.e. mRNA levels, of the genes is

essential. Initially measurement of mRNA levels was limited to a handful of genes. The

development of DNA microarray technology enables the simultaneous measurement of

mRNA levels of all the genes at the genome-scale (Schena et al., 1995).

Fig. 1.1. The central dogma of biology. Genes are first transcribed to
mRNA and then translated to proteins.

Microarrays exploit the capacity of nucleic acid sequence to recognize the com-

plementary sequence through base-pairing. The process of recognition, called as hy-

bridization, is extremely parallel—every sequence in the mixture can identify its com-

plementary sequence. A microarray slide consists of large number of DNA sequences

(for example, all the 6200 known and predicted genes of Saccharomyces cerevisiae
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called probes. The extracted mRNA from the cell is labeled with fluorescent dye, re-

verse transcribed to produce the DNA sequence complimentary to the sequence at-

tached to the slide and hybridized with these probes. The slides are excited with light

and amount of fluorescence at each probe is measured. The amount of florescence is

proportional to the amount of specific mRNA present, thus the level of expression of

the corresponding gene can be inferred.

Now, it is possible to spot thousands of genes on a single microscope slide and

quantify the expression levels of each gene. DNA microarrays thus provide a natural

vehicle for systematic and comprehensive exploration of genomes (Brown and Bot-

stein, 1999). Recently, the gene expression data is complimented by proteomics data,

i.e. the proteins produced by cell, since mRNA levels do not always correlate with

the protein concentrations (Ideker et al., 2001). Two dimensional gel electrophoresis

(2DE) and mass spectrometry (MS) are the two important techniques generally used to

identification and quantification of proteins present in cell. However, there are several

limitations for protein quantification. The accuracy of protein measurement is low due

to the complex and dynamic nature of proteins. Also, large-scale protein quantification

is not possible with the 2DE and MS techniques (Beranova-Giorgianni, 2003).

1.3 Time-Course Gene Expression Data

In the early days of microarray experiments, expression data was measured for a

given condition. These provide a snapshot of the expression levels at that particular

condition and hence it does not provide any insights into the dynamics of the biological

process. Current gene expression research focuses on time-course experiments where
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expression levels are measured at multiple time-points. The time-course gene expres-

sion data capture the changes happening within the cells during a bioprocess. The rest

of the thesis focuses mainly on time-course gene expression data analysis.

1.4 Challenges in Gene Expression Data-mining

Though gene expression data provides the state of a cell by measuring the expres-

sion levels of almost all its genes, the information is hidden in the data. We need

efficient data-mining methodologies to uncover the hidden patterns and identify the ge-

netic targets for strain improvement. There are several challenges for the analysis of

gene expression data. Some of the important ones are given below:

1. The main question in microarray experiments is that which genes are differen-

tially expressed between two or more conditions, say between a wild-type and an

organism producing desired product or normal cells and cancerous cells? Differ-

entially expressed genes are the ones which explain the difference in molecular

mechanisms leading to the phenotypic changes. Currently available techniques

for identifying differentially expressed genes (DEG) are not suitable for time-

course datasets.

2. Clustering of genes into different clusters such that genes within a cluster are

more similar in expression is an important challenge in gene expression data

analysis. This organization of genes into clusters reveals the broad organiza-

tion of genetic programs and execution of the regulatory program in the cells.

The understanding of cell function facilitates the identification of genetic targets.
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The currently available algorithms for clustering identify only spherical clusters

where as clusters can be of different geometrical shapes.

3. Another important challenge in gene expression data analysis is the identification

of number of clusters in a dataset. Number of clusters is one of the key parameters

that has to be specified a priori to many clustering algorithms. The results with

different number of clusters varies significantly (Bezdek and Pal, 1998). Though

there exists a lot of literature on finding number of clusters, they are dependent

on the characteristics of the data. Methods that work on a particular type of data

may not be suitable for another kind of data. So, methods specifically suited for

gene expression data are needed.

4. Another important challenge is integration of multiple and complementary ge-

nomic datasets in order to increase the reliability of predictions. Though gene

expression data provide the expression levels (mRNA levels) of thousands of

genes, it does not provide any information about the regulation of expression.

Specific kind of proteins, called Transcription Factors (TFs), bind to genes and

regulate their expression according to the cell’s requirement. To understand the

functioning of cells and to modify them, it is essential to find which TF regulates

which genes. Fortunately, there is a genome-scale technique, called Genome-

Wide Location experiments, for identification of TF-gene binding. However, as

other genome-scale techniques, the genome-wide location data contain noise. To

enhance the reliability of TF-gene interactions, it is necessary to combine com-

plementary datasets such as gene expression and genome-wide location data.
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1.5 Thesis Overview

In this thesis, novel methods are proposed for identifying DEG, clustering genes and

finding number of clusters. A Bayesian approach for combining gene expression data

with genome-wide location data is proposed. A systematic framework that combines

these methods in a principled way to identify the genetic targets for strain improvement

is also proposed.

In Chapter 2, several methods currently available for identifying DEG, clustering

and finding number of clusters are reviewed. In Chapter 3, a data-driven framework

that combines several data-mining techniques to identify targets for strain improvement

is proposed. A Principal Component Analysis (PCA) based approach for identifying

DEG in time-course data is presented and validated in Chapter 4. A novel clustering

method that identifies ellipsoidal clusters in gene expression data is proposed in chapter

5. An evolutionary approach for finding number of clusters in gene expression data is

proposed in Chapter 6. In Chapter 7, a method for finding distinct clusters in gene ex-

pression data through comparing clusters in PCA subspaces is presented. A Bayesian

approach for combining complementary genomic datasets is proposed in Chapter 8.

In Chapter 9, a complete case study is provided where the proposed data-driven

framework is used for identifying genetic targets for improvement of Escherichia coli

strain. Conclusions and suggestions for future work are provided in Chapter 10.
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2. LITERATURE REVIEW

Microarray technology has transformed the genomic research from studying handful

of genes to genome-scale by facilitating the measurement of expression levels of thou-

sands of genes simultaneously (Schena et al., 1995). There are two different types

of microarray technologies commonly used in genomic experiments, namely cDNA

microarray and Oligonucleotide arrays. cDNA microarray is a specially coated glass

microscope slide to which DNA sequences are printed at fixed locations, called spots,

using a robotic arrayer (Brown and Botstein, 1999). With up-to-date computer con-

trolled high-speed robots, more than 20000 spots can be printed on a single slide, each

representing a single gene. Affymetrix is one of the main promoters of oligonucleotide

arrays. Affymetrix’s ‘GeneChip’ arrays consist of small glass plates with thousands

of oligonucleotide DNA probes (short stretches of nucleotides, typically 25-mers) at-

tached to their surface (Lipshutz et al., 1999). The oligonucleotides are synthesized

directly onto the surface using a combination of semiconductor-based photolithogra-

phy and light-directed chemical synthesis. With this high-tech approach, very large

numbers of mRNAs can be probed at the same time.

To measure the expression levels of genes, the total mRNA from the cells is ex-

tracted, labeled using fluorescent dyes and reverse transcribed to cDNA. The sample is

then hybridized with the arrayed DNA spots. After hybridization, a laser microscope il-

luminates each spot and measures fluorescence intensities. The gene expression levels

are estimated from the fluorescence intensities. For measuring the relative expression

of a gene in two cell populations (control and sample), different fluorescent dyes (gen-
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erally red for sample and green for control) are used.

Many researchers explored the gene expression at genome-scale with microarrays.

DeRisi et al. (1997) published the first whole-genome gene expression measurements

(approximately 6400 distinct cDNA sequences), a seven-point time series on the di-

auxic shift (transition from sugar metabolism to ethanol metabolism) in yeast using

cDNA microarrays. Recently, Alizadeh et al. (2000) used cDNA microarray data to

discover previously unknown sub-types within Diffuse Large B-cell Lymphomas, as-

sociated with significantly different survival of patients. Wodicka et al. (1997) used

oligonucleotide chip technology to do genome-wide analysis on yeast gene expression.

Cho et al. (1998) employed oligonucleotide microarrays to query the abundances of

6220 mRNA species in synchronized Saccharomyces cerevisiae batch cultures.

There is a huge potential to use these large scale gene expression data for under-

standing functioning of cells and identifying genetic targets for strain improvement.

However, identification of genetic targets for strain improvement requires extraction

of information from gene expression datasets using statistical data-mining techniques.

This includes identification of differentially expressed genes, clustering of genes, find-

ing number of clusters, etc. Also, it is essential to integrate multiple and complemen-

tary genomic datasets due to the inherent limitations of individual datasets to provide

all the information about the cell. Here, currently available data-mining techniques are

reviewed.
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2.1 Identifying Differentially Expressed Genes

Microarray expression profiling is often carried out to identify genes whose expres-

sion change across biological conditions (Slonim, 2002). This includes comparison

of gene expressions from one group with another group and delineate a list of genes

ranked according to their respective differential expression (Steinhoffand and Vingron,

2006). Two types of expression profiling can be differentiated, static and time-course.

In the static type, snapshots of gene expression levels are measured in two different cell

populations, such as normal and diseased (Alizadeh et al., 2000). Genes that are differ-

entially expressed in the diseased cells, compared to normal cell population, disclose

pathways related to the disease and also serve as signature of the disease. However,

measuring expression levels irrespective of time does not provide information about

the dynamic interactions that characterize the cellular processes (Fielden et al., 2002).

This necessitates time-course experiments where gene expression levels are measured

at different time-points and across biological conditions such as wild-type and gene-

knockout (Zhu et al., 2000), normal and stimulated cells (Calvano et al., 2005), etc.

Several methods have been proposed in literature to identify DEG in static exper-

iments. The simplest technique is the calculation of fold change of gene expression

between normal and diseased states. Genes with fold change above a user-defined

threshold (say 2-fold) may be considered as differently expressed (DeRisi et al., 1997).

The fold change approach results in poor results since it does not consider the natural

variation in gene expression levels (Kerr and Churchill, 2001). This necessitates the use

of replicates in microarray experiments. Availability of replicates enable the applica-
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tion of statistical methods for identifying DEG. Ranking of genes based on differential

expression can be done based on t-statistic for each gene if replicates are available in

both groups. The gene specific t-statistic is given by:

ti =
x1

i − x2
i√

s1
i

n1 +
s2
i

n2

(2.1)

where xi, si are the mean and standard deviation of replicates of ith gene, n is the num-

ber of replicates. The superscripts indicate the conditions 1 and 2. Problems arise when

the denominator of Equation 2.1 becomes very small due to the small expression levels.

Several penalizing factors that artificially increase the variation are proposed to circum-

vent this problem (Tusher et al., 2001; Efron et al., 2001; Pan et al., 2003). More de-

tails and comparison of several methods for identifying DEG in static case are available

(Pan, 2002; Troyanskaya et al., 2002). These methods are not directly applicable for

time-course experiments where differential expression has to be calculated globally in

the temporal space and not just between corresponding time points (Storey et al., 2005).

Recently, several methods have been proposed to identify the differentially ex-

pressed genes in time-course data. Bar-Joseph et al. (2003a) proposed a method that

represents expression profiles as continuous curves and then uses a global difference

between the curves to identify differentially expressed genes. In their approach, clus-

tering of genes is used as a preprocessing step; although simple, this makes the method

computationally expensive for large datasets. Storey et al. (2005) proposed a method

that measures the improvement in goodness-of-fit when a single curve is used to fit the

data from both conditions compared to fitting a separate curves for each condition. If

12



the improvement in goodness-of-fit is significant then that particular gene is considered

as differentially expressed. Their approach treats all genes as equal irrespective of their

expressions levels in the experiments. This leads to the identification of genes with low

expression in both conditions as differentially expressed genes. Conesa et al. (2006)

proposed a regression-based approach that models the expression profile of each gene

with time as regressor and tests the hypothesis on the equality of regression coefficients.

A similar method is proposed by Vinciotti et al. (2006) where the expression profiles

are fitted using cubic polynomials and tested for similarity of coefficients. Modeling

individual genes is generally not recommended due to noise in the microarray data

(Bar-Joseph et al., 2003c). Cheng et al. (2006) proposed an approach that represents

the time-course data from both conditions as two different gene relationship networks

where each node is a gene and each edge links two genes. Differentially expressed

genes are identified by comparing the neighborhood, genes that have very similar and

very dissimilar expression profiles in both networks. Genes with dramatic change in

neighborhood are deemed as differentially expressed. Since the actual expression of

gene is not directly compared in both conditions, genes similarly expressed in both

conditions can be declared as differentially expressed if their neighbors are changed.

Reverter et al. (2006) proposed a method that identifies genes that are simultaneously

differentially expressed and differentially connected. However, they quantify the dif-

ference in expression of a gene as the sum of differences in individual time-points

which may not capture systematic variations. Methods based on Analysis of Variance

(ANOVA) (Park et al., 2003) and Analysis of Covariance (ANCOVA) (Tabibiazar et al.,

2005) models have also been proposed specifically for replicated time-course data.
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Each one of the currently available methods for identifying differentially expressed

genes in time-course data have particular drawbacks associated to them. They do not

consider natural dependencies among different time-points and the noise in the data.

A novel statistical method for identifying differentially expressed genes in time-course

data is proposed in this thesis. The proposed method uses PCA that considers the

correlation among different time-points and identifies fundamental patterns in the data

that are independent of each other. The scores of genes on these fundamental patterns

are used to identify the differentially expressed genes. The noise is discounted from the

analysis by considering only the most significant Principal Components (PCs) in the

analysis.

2.2 Clustering Expression Profiles

Microarrays provide a deluge of gene expression data by simultaneous measure-

ment of expression levels of thousands of genes. This large amount of gene expression

data necessitates use of data-mining techniques to organize and extract useful informa-

tion from these data. Clustering is one such technique widely used for gene expression

data analysis.

The objective of clustering is to separate a finite set of objects into a few discrete

groups, called clusters, with high internal homogeneity and external separation (Har-

tigan, 1975). Internal homogeneity and external separation means that objects within

a cluster are similar to each other and dissimilar to objects in other clusters. The sim-

ilarity between the objects is measured in the feature space using a suitable distance
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metric. The most widely used distance metric is the Euclidean distance. The Euclidean

distance, d2, between two objects, x and y, is given by:

d2 = (
p∑

i=1

(xi − yi)
2)(1/2) (2.2)

where p is the dimensionality of feature space. Other well known distance metrics

are Pearson correlation, standard correlation coefficient, mutual information, etc (Jiang

et al., 2004).

In gene expression data analysis, genes or samples (assays) are clustered based on

similarity in expression. Two way clustering, i.e. simultaneous clustering of both genes

and samples is also possible (Eisen et al., 1998). Clustering of genes results in clusters

of co-expressed genes whereas sample clustering results in correlated samples. Clus-

tering of genes has several benefits: (1) Genes having similar expression profiles often

function together, hence, clustering of genes leads to the identification of gene func-

tions. (2) Similarly expressed genes are often regulated by the same TFs leading to

identification of TFs. (3) In case of sample clustering, new subtypes of diseases or

molecular level signatures of diseases can be identified which enables development of

customized diagnostic procedures.

Clustering methods can be broadly classified as hierarchical and partitional ap-

proaches based on the type of results from these algorithms (Jain et al., 1999). Hi-

erarchical clustering method arranges the objects into a hierarchy based on their simi-

larity to each other. The partitional clustering algorithms create a predefined number of
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disjoint clusters that optimizes the given objective function (generally the sum of dis-

tance of objects to cluster centroids). In the following sections, the hierarchical clus-

tering and two partitional clustering methods—k-means and model-based clustering—

methods are described. These clustering methods are widely used for gene expression

data analysis.

2.2.1 Hierarchical clustering

Hierarchical clustering generates a hierarchical series of nested clusters which can

be visualized as a tree generally called as dendrogram. The branches of the dendrogram

represent clusters and the branch length represents the similarity between clusters. The

clusters are extracted from the dendrogram by cutting the it at different levels (Jiang

et al., 2004). Hierarchical clustering can be further divided as agglomerative and di-

visive approaches. Agglomerative hierarchical clustering starts by considering each

object as single cluster. In each iteration, the distance between all pairs of clusters is

calculated and the pair with the smallest distance is merged. The merger of clusters

continues till the last pair and the algorithm terminates. The divisive approach con-

siders all the objects as single cluster initially and sequentially splits clusters till only

singleton clusters with one object remains.

For agglomerative clustering, different approaches are available for measuring the

cluster proximity for merging clusters. In single linkage clustering, the minimal dis-

tance between the clusters is used. The maximum distance between clusters is used for

complete linkage clustering. Average distance between the all objects in pair of clus-

ters is used for average linkage clustering. For divisive clustering approach heuristics
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based on graph theory are generally used for spiting clusters (Jiang et al., 2004). Eisen

et al. (1998) pioneered the use of hierarchical clustering for gene expression data. They

developed a software for hierarchical clustering and visualization of results.

2.2.2 k-means clustering

k-means is a partitional clustering technique that partitions a dataset into specified

number of clusters while minimizing an objective function (MacQueen, 1967; Hartigan,

1975). The general objective function is the sum, Jk, over all k clusters, of the within-

cluster sums of object-to-cluster-centroid distances given by:

Jk =
k∑

i=1

∑

x∈Ci

d(x,mi) (2.3)

where d is the distance metric used for clustering, x represents the object belonging

to cluster Ci and mi is the centroid of cluster Ci.

k-means starts with the random assignment of data objects to k clusters. Then the

loop containing the calculation of cluster centroids and redistribution of data objects to

clusters that minimizes objective function is activated and carried out till the objective

function reaches a local minimum. Since k-means terminates at a local minima, it

generally gives different results for different initiations. To overcome this problem, the

multi-start method is employed in this thesis. For a given value of k, the procedure

is repeated with different initial guesses (replicates) and the partition with the lowest

Jk is selected as the best partition. Tavazoie et al. (1999) used k-means clustering for

clustering yeast Saccharomyces cerevisiae cell-cycle data and identified novel TFs.
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2.2.3 Model-based clustering

Model-based clustering approach assumes that the data to be clustered is generated

from a finite mixture of underlying probability distributions, where each component in

this mixture corresponds to a different cluster (Banfield and Raftery, 1993). Given a

dataset X consisting of N objects {x1, x2...xN}, and number of components (clusters),

k , the objective is to estimate the parameters Θ = {θi|1 ≤ i ≤ k} and Γ = {τ i
r|1 ≤

i ≤ k, 1 ≤ r ≤ N} that maximize the likelihood function given by:

L(Θ, Γ) =
N∑

r=1

k∑

i=1

τ i
rfi(xr|θi) (2.4)

where τ i
r is the probability that a data object xr belonging to ith component, and

fi(xr|θi) is the density function of xr of ith component.

In Gaussian mixture models, each component is represented by a multivariate nor-

mal distribution with mean µi and covariance matrix Σi. The parameters are generally

estimated using the Expectation Maximization (EM) algorithm (Redner and Walker,

1984). Banfield and Raftery (1993) proposed a general framework for identifying clus-

ters of different shapes using model-based clustering. With this framework, by relaxing

some of the parameters in covariance matrix, clusters of different geometrical shapes

can be identified: Equal-volume spherical (EI), Unequal-volume spherical (VI), and

elliptical models. More details of these schemes are available in Yeung et al. (2001).

Fraley and Raftery (1999) implemented these schemes as a MatlabTM toolbox. The

model-based clustering with Equal-volume spherical scheme (EI) is used in this thesis

since it requires estimation of least number of parameters from data compared to other
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schemes. Also, the EI scheme is more accurate and can be used with large number of

clusters.

Hierarchical clustering is widely used for gene expression data clustering due to

its ability to visualize the clustering results (Eisen et al., 1998). But, there are several

problems with hierarchical clustering. Hierarchical clustering follows a series of clus-

ter merge/split based on local decision not on global objective. Hence, any bad merge

or split occurred at any step cannot be corrected in later steps. Besides this, hierarchical

clustering generates several singleton clusters and hence difficult to extract meaningful

clusters from the dendrogram (Leach and Hunter, 2000). Several other clustering ap-

proaches such as Self-Organizing Maps (SOM) (Tamayo et al., 1999), graph-theoretic

(Sharan et al., 2003), fuzzy clustering algorithms (Dembele and Kastner, 2003) and

density based clustering (Wicker et al., 2002) are proposed for gene expression data

analysis. Gibbons and Roth (2002) compared different clustering algorithms using real

gene expression data with functional enrichment of clusters as objective. The study

shows that the performance of hierarchical clustering is more or less equal to random

clustering. It also shows that partitional clustering perform better than hierarchical clus-

tering.

Although the partitional clustering methods are successful in some cases, they have

the following drawbacks. Any partitional clustering algorithm has two critical compo-

nents: (1) the distance metric used for measuring the similarity of expression profiles,

and (2) an algorithm for assigning each gene to a cluster. There is a challenge associ-

ated with each component:
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1. The generally used Euclidean distance metric identifies spherical clusters whereas

the objective of clustering is to identify the natural structure in the data.

2. The optimization algorithm for assigning genes to clusters generally leads only

to a local minima whereas reaching global minimum is preferred.

Methods have been proposed with adaptive distance metrics that can identify clus-

ters of different shapes. Gustafson and Kessel proposed a new clustering method known

as GK clustering with adaptive distance metric (Gustafson and Kessel, 1979). Gath and

Geva proposed similar approach for identifying clusters of different shapes (Gath and

Geva, 1989). A Self-organizing neural-network based algorithm is proposed by Mao

and Jain (1996) for identifying hyper-ellipsoidal clusters (HEC) in the data. The com-

mon feature of these methods is the adaptation of distance metric to the shape of cluster

by estimating the covariance matrix of cluster. Problems arise in estimating the co-

variance matrix when the number of objects in the cluster are smaller than number

of features or due to the linear correlation among features or objects (Babuska et al.,

2002). In such cases, the covariance matrix becomes singular or close to singular and

cannot be inverted for calculation of adaptive distance metric.

The singularity of covariance matrix is common in time-course gene expression

data analysis as different time-points are correlated to each other (Schafer and Strim-

mer, 2005). So, the methods based on adaptive distance metric such as GK, GG and

HEC are not suited for gene expression data. In this thesis, a distance metric is pro-

posed which takes the natural structure, i.e. ‘shape’, of the cluster into consideration

while calculating the distance and able to identify clusters even the covariance matrix
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becomes singular. To address the issues with local minima, the proposed method uses

a Genetic Algorithm (GA) to optimize the objective function..

2.3 Finding Number of Clusters in Expression Data

The selection of clustering parameters affects, directly or indirectly, the resulting

partition. In many cases, the optimal specification of number of clusters, k, is difficult

especially if there is inadequate biological understanding of the system. A suboptimal

specification of number of clusters can generally result in misleading results — either

all classes may not be identified or spurious classes may be generated (Bezdek and Pal,

1998).

Several methods have been proposed for finding the ‘best’ number of clusters. Com-

prehensive reviews of several methods are available in Milligan and Cooper (1985) and

Halkidi et al. (2001). Methods for finding the number of clusters in a dataset can be

classified as global or local methods (Gordon, 1999). Global methods evaluate the

clustering results by calculating some measure over the entire dataset. Local methods

considers the pairs of clusters and test whether they should be amalgamated. The dis-

advantage of the global methods is that there is no definition for the measure for k = 1,

i.e., the global methods do not provide any clue whether the data should be clustered

or not. Since the local methods consider the pair of clusters, they can be used to know

whether data should be clustered or not. The disadvantage of local methods is that they

need a threshold value or significance level to decide whether the clusters are amalga-

mated. The threshold or significance level is generally depends on the actual data and

may not be available a priori. Apart from this, local methods are only suitable for eval-
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uating the results from hierarchical clustering approaches where as the global methods

are independent of clustering techniques.

In practice, global cluster validation methods are more popular than local methods

as they can be applied to several clustering methods. The general procedure for finding

the number of clusters requires the evaluation of quality of clusters generated by the

clustering algorithm using an index, I . The procedure consists of the following steps

(Halkidi et al., 2001):

1. Run the clustering algorithm for each value of number of clusters, k, between

[kmin kmax]. kmin is generally set to 2 and kmax is decided by the user.

2. For each value of k, calculate the index, I , using the compactness of individual

clusters and the separation from other clusters.

3. Plot the index value as a function of k.

4. Identify the optimal value for number of clusters, kopt, for which the index value

is optimal (maximum or minimum).

In the next section, a brief description about methods that are frequently used for

finding number of clusters is given.

2.3.1 Silhouette index

The Silhouette index (Rousseeuw, 1987) assigns a measure called Silhouette width

to every object in the clustered partition. The value of the Silhouette width of an object

is based on the average distance of that object to its own cluster and the minimum
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of average distances to all other clusters in the partition. Consider a dataset with N

objects. Let a(i) be the average distance of the ith object to its own cluster and b(i) the

minimum of average distances to other clusters. Then the Silhouette width of the ith

object is given by:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2.5)

From the above equation, it is clear that s(i) takes a value between [-1 1]. A value

around 1 (a(i) << b(i)) indicates that the object is ‘well-clustered’, a value around

0 (a(i) ≈ b(i)) indicates that the object can be assigned to other cluster as well (i.e.

marginally classified), and around −1 (a(i) >> b(i)) indicates that the object is ‘mis-

classified’. The Silhouette index, S, for a given partition is the average Silhouette width

over all the objects in the dataset.

S =
1

N

N∑

i=1

s(i) (2.6)

Given several partitions of the dataset, the partition with the highest Silhouette index is

selected as the optimal one.

2.3.2 Dunn’s index

The Dunn’s index (Dunn, 1974) identifies the partition that maximizes the ratio of

the minimum inter-cluster distance to the maximum intra-cluster distance. This index
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finds the partition with compact and well separated clusters. For a given partition with

k clusters (C1, C2...Ck), the Dunn’s index, DI , is given by:

DI = min
1≤i≤k





min

1 ≤ j ≤ k
j 6=i





δ(Ci, Cj)

max
1≤l≤k

{∆(Cl)}









(2.7)

where δ(Ci, Cj) is the inter-cluster distance between clusters Ci and Cj , and ∆(Cl) is

the intra-cluster distance of cluster Cl. The value of the index depends on the definition

of δ() and ∆(). Six different variants of inter- and three variants of intra-clusters dis-

tances have been proposed, thus leading to 18 generalized Dunn’s indices (Bezdek and

Pal, 1998). An averaging scheme that combines these 18 generalized indices into a sin-

gle normalized Dunn’s index value for a given partition is available (Bolshakova and

Azuaje, 2003). A partition with compact, well-separated clusters results in high mini-

mum inter-cluster distance and low maximum intra-cluster distance and has the highest

Dunn’s index.

2.3.3 Davies-Bouldin index

The Davies-Bouldin index (Davies and Bouldin, 1979) also finds the clusters that

are compact and well-separated. The Davies-Bouldin index, DB, for a partition with k

clusters is given by:

DB =
1

k

k∑

i=1

max
i6=j

{
∆(Ci) + ∆(Cj)

δ(Ci, Cj)

}
(2.8)

A partition with the lowest Davies-Bouldin index is selected as optimal one. Similar to

Dunn’s index, generalized and normalized forms of the Davies-Bouldin index can also
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be developed; the latter is used in this thesis.

All the methods that are described above use either or both intra- and inter-clusters

distances to identify the best partition. These methods are suitable for cases where the

clusters are compact and well-separated from each other. These methods fail to detect

the ‘correct’ number of clusters when the intra- and inter-cluster distances vary widely

(Jonnalagadda and Srinivasan, 2004). Gene expression data contains clusters of differ-

ent sizes, shapes, and there exist smaller clusters within the larger well-separated cluster

(Jiang et al., 2003). Hence, these distance based methods have limited applicability for

gene expression data.

2.3.4 Other Methods

Recently, several methods have been proposed for finding number of clusters in

gene expression datasets. Tibshirani et al. (2001) proposed the gap statistic that mea-

sures the difference between within-cluster dispersion and its expected value under the

null hypothesis of uniform distribution i.e. no clusters exit in data. The k that maxi-

mizes the difference is selected. The gap statistic is given by:

Gap(k) = E(ln(Wk))− ln(Wk) (2.9)

where Wk is the within-cluster dispersion, and E indicates the expected within-cluster

dispersion based on uniform distribution. The within-cluster dispersion is given by:

Wk =
k∑

m=1

1

2nm

Dm (2.10)
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Dm =
∑

i,j∈Cm

d(xi, xj) (2.11)

where Dm is sum of distances between all pairs of objects in cluster Cm measured us-

ing distance metric d, nm is the number of objects in Cm.

Since the gap statistic uses within-cluster sum of squares around the cluster means

to evaluate the within-cluster dispersion, this method is suitable for compact, well sep-

arated clusters. Dudoit and Fridlyand (2002) proposed a prediction based re-sampling

method for finding the number of clusters. For each value of k, the original data is

randomly divided into training and testing sets. The training data is used to build a

predictor for predicting the class labels of the test set. The predicted class labels are

compared to that obtained by clustering of test data using a similarity metric. This value

is compared to that expected under an appropriate null distribution. The k for which

the evidence of significance is the largest is selected. Ben-Hur et al. (2002) proposed a

similar re-sampling approach where two random subsets (possibly overlapping) are se-

lected from the data. The two random subsets are subsequently clustered independently

and the similarity between the resulting partitions is measured. The distribution of this

similarity (from multiple runs) is visualized for each k and the optimal number of clus-

ters is selected where transition from high to low similarity occurs. The approach of

Dudoit and Fridlyand as well as Ben-Hur et al. assume that the sample subset can repre-

sent the inherent structure in the original data which may not be true for small clusters.

Furthermore, the user has to manually locate the transition in Ben-Hur et al. approach.
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In this thesis, two different methods for identifying number of clusters in gene ex-

pression data are proposed. The first method named Net InFormation Transfer Index

(NIFTI) evaluates a cluster partition based on separability of resultant clusters. A statis-

tical test is proposed for testing the separability of clusters. NIFTI increases if clusters

are separable and decreases otherwise. In contrast to other methods, NIFTI gives no

weightage for larger inter-cluster distances and hence suitable for identifying number

of clusters in complex data with varying inter-cluster distances. The partition with the

largest value of NIFTI is identified as the optimal partition. The second method, called

NEPSI, finds the maximum number of distinct clusters in the data. NEPSI evaluates the

quality of partition using the distinctness of clusters. NEPSI increases with increase in

number of distinct clusters and decreases if clusters are similar to each other. A sim-

ilarity metric based on PCA is used for determining whether a cluster is distinct or

not. A partition corresponding to the maximum value of NEPSI is selected as the best

partition.

2.4 Integration of Genomic Datasets

Cells carry-out their complex functions by temporally altering the transcription rates

of specific genes. The transcription rate of a gene is precisely regulated by the com-

binatorial action of activator and repressor proteins called Transcription Factors (TFs)

that bind to the promoter regions of genes and regulate the expression of genes (Lee

and Young, 2000). Strain improvement through modification of genetic targets requires

the understanding of gene regulation. Primarily, we need to know which TFs regulate

which genes. Even though analysis of genome-wide expression profiles enhances our

understanding of cellular processes, individual datasets provide only a part of informa-
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tion about the cell.

Attempts were made to identify TFs and their target regulated genes exclusively

from gene expression data. Segal et al. (2003) proposed a method to identify the tar-

gets of regulators using gene expression data. Their procedure first identifies clusters

of similarly expressed genes from gene expression data. The expression similarity of

known and putative regulators (TFs) to these clusters establishes the link between TFs

and their target regulated genes. There are several drawbacks in this approach. Mi-

croarray expression profiles do not distinguish between effect of direct binding of TF

to a target gene and the indirect effect caused by intermediate TFs. So genes can have

similar expression profile even though their regulators are different. Hence clustering

of co-expressed genes is of limited use for TF assignment (Bar-Joseph et al., 2003b).

The approach of Segal et al. (2003) also assumes that expression profile of regulated

genes depend on expression of their regulators. This assumption is not always valid.

For example, during post-transcriptional modifications of TFs the expression of regu-

lator does not change appropriately. Hence expression data alone is not adequate for

identifying the regulators for genes.The remedy is to integrate different and comple-

mentary datasets to enhance the TF-gene interactions.

There are other genomic data sources that provide complementary information about

TF-gene interactions. For example, the genome-wide location analysis method identi-

fies the direct TF-gene physical interactions at genome-scale by combining the chro-

matin immunoprecipitation (ChiP) procedure with microarrays (Ren et al., 2000). Though

location data is highly useful, false positives and false negatives hinder the assignment
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of TFs to genes. For instance, there is only moderate agreement between the genome-

wide location studies of Saccharomyces Cerevisiae by Iyer et al. (2001) and Simon

et al. (2001) for the same TFs (Futcher, 2002). However, by integrating gene expres-

sion and genome-wide location data one can extract useful and reliable information

about regulation of genes.

Two different approaches have been proposed to combine these two datasets. In the

first approach, a Bayesian network approach is proposed to combine gene expression

data and location data (Hartemink et al., 2001). A Bayesian network is a represen-

tation of joint probability distribution of several random variables (genes), expressed

in the form of a directed a-cyclic graph and a conditional distribution for each vari-

able (Friedman et al., 2000). The genes make up the vertices of the acyclic graph.

Hartemink et al. (2001) uses Bayesian networks with the location data influencing the

model prior and the expression data influencing the likelihood. The identified network

provides the links between TFs and their target genes. The Bayesian network makes

assumption that the expression level of a genes is not dependent on the expression of

descendent genes in the directed graph which is not reasonable. As another approach,

Bar-Joseph et al. (2003b) proposed a method that combines the expression data with

location data. In their approach, location data is used to classify genes into different

sets such that genes in each set are bound by the same TFs. Then for each set, a min-

imum radius sphere (capturing the genes within the set) is found in gene expression

data. Genes without any regulators (false negatives) in location data are classified into

these sets if they fall in the sphere and have the combined probability of regulatory in-

teractions lesser than a predefined threshold. One of the limitations of their method is
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the computational complexity of finding the minimum radius sphere in the high dimen-

sional expression data. The predictions that can be made from this approach are also

limited due to the strict criteria of minimal radius sphere. Furthermore, this method is

not extendable to other datasets such as gene / promoter sequences.

A Bayesian approach that reliably assigns TFs to genes by combining genome-wide

location data with gene expression is proposed in this thesis. The proposed method is

based on statistical theory and can be extended to new types of data. The proposed

method uses genome-wide location data and gene expression data in an incremental

way to reliably assign regulators to genes. A model is first developed using genes for

which high-confidence TFs are available in the location data. This model is then used

for assigning TFs to the remaining genes (i.e. those without reliable TF information)

using expression similarity.

2.5 Gene Expression Data for Strain Improvement

Since the advent of microarrays, several researchers employed them to explore the

cell functioning and identification of targets using DEG between wild-type (WT) and

recombinant strains. Choi et al. (2003) used microarrays to compare the transcriptome

profiles between WT Escherichia coli and recombinant strain producing Insulin-Like

Growth Factor I Fusion Protein (IGF-If) and identified 600 DEG. Genes prsA (encoding

a phosphoribosyl pyrophosphate synthetase) and the glpF (encoding a glycerol trans-

porter) are selected as targets for improvement of production of (IGF-If). These two

genes are involved in biosynthetic pathway of nucleotides and amino acids (Trp and

His) and glycerol utilization, respectively (Choi et al., 2003). Up-regulation of these
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two genes resulted in increase of IGF-If from 1.8 g/liter to 4.3 g/liter. A similar ap-

proach is used by Wierckx et al. (2008) to understand the genetic basis for improved

phenol production by a recombinant Pseudomonas putida S12.

Though there are some successful cases for identifying targets for strain improve-

ment using gene expression data, development of systematic procedure for this purpose

is still a vision (Bro and Nielsen, 2004; Lee et al., 2005). In this thesis, a data-driven

framework to identify the genetic targets for strain improvement is proposed. The pro-

posed framework combines data-mining methods proposed in this thesis in a systematic

way for identifying genetic targets. The framework is described in detail in Chapter 3.
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3. OVERVIEW OF PROPOSED DATA-MINING FRAMEWORK

FOR STRAIN IMPROVEMENT

As described in Chapter 1, the currently available methods for identifying genetic tar-

gets for strain improvement rely on known metabolic network of organisms. Since all

the interactions among different compounds in the cell are not yet known, the currently

used metabolic networks are incomplete and hence do not represent the true nature of

the cells. The high throughput -omics data such as transcriptomics, proteomics and

metabolomics overcomes this limitation by providing the genome-scale picture of the

cells by virtue of their ability to measure several thousands of compounds simultane-

ously (Lee et al., 2005). Especially, gene expression data contain vast amount of infor-

mation by measuring expression levels of large number of genes simultaneously. There

is a lot of potential to use these data for identifying genetic targets for strain improve-

ment (Van der Werf, 2005). However, lack of suitable computational techniques to mine

and extract useful information from these data hinders this objective. In this chapter,

I propose a data-driven framework for mining gene expression data and integrating it

with TF-gene interaction data to identify genetic targets for strain improvement.

The proposed data-driven framework for gene expression data mining to identify

gene targets is shown in Figure 3.1. The first step in the framework is to compare the

gene expression datasets from two or more experiments and identify genes differen-

tially expressed between them. The datasets could be from wild-type vs high-producing

strains or wild-type vs gene knock-out studies or wild-type vs cells producing recom-

binant proteins, etc. In all these cases, the changes exhibited at the phenotype originate
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at the molecular level. By carefully assaying the expression of genes, it is possible to

identify these molecular level changes. The differentially expressed genes serve the

purpose of identifying the molecular level changes of cell functions between different

conditions. For example, the production of recombinant protein or heterogenous genes

in host cells creates metabolic burden on host cells leading to decreased growth (Choi

et al., 2006). The metabolic burden on the cells would be reflected as change in expres-

sion levels of several genes. The differentially expressed genes can thus be used for

understanding the change in metabolism of host and can be used as targets for genetic

modification in order to increase the host strain’s performance.

Though differentially expressed genes provide useful information, typically there

are a large number of such genes, which makes the analysis difficult. In the second

step of the proposed framework, the differentially expressed genes are clustered into

different groups based on similarity in expression. The grouping of genes into clus-

ters reveals the organization of reprogramming occurring in the of cells to due to the

recombinant protein production. A key step in clustering is to specify the number of

clusters. The number of clusters to be used is identified by the cluster validation pro-

cedures. The comparison of clusters of genes between wild-type cells and cells pro-

ducing recombinant protein reveals reprogramming of metabolism in the recombinant

cells due to metabolic burden. Clustering generally reveals higher level information

of metabolic reprogramming such as alteration of biosynthesis pathways, regulation of

ribosomal proteins, amino acids and nucleotide synthesis. It also reveals the strate-

gies used by the cells to cope up with stress and changes in transportation genes. Such

higher level information about metabolic reprogramming is useful to decide steps for
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Fig. 3.1. The proposed data-driven methodology for identification of
gene targets for strain improvement

strain improvement.

In the third step, other genomic datasets such as genome-wide location data is com-

bined with gene expression data to reliably identify the Transcription Factors for the

shortlisted genes. In case if genome-wide location data is not available, the known

TF-gene interactions can be used in this step. Then, average correlation of cluster of
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genes to different regulator genes (TFs) is used to assign TFs to cluster since similarly

expressed genes often regulated by same TFs. A TF may regulate genes from multi-

ple clusters. Also, TFs may regulate genes indirectly through other TFs. Hence, a high

correlation of TF expression to gene cluster may not be sufficient to reliably assign TFs

to clusters. To circumvent this problem, the number of genes in a cluster that are actu-

ally bound by a given TF is also considered while assigning TFs to a cluster. These key

regulator genes are the potential candidates for further knock-out or over expression in

order to improve the strain.
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4. PCA BASED METHODOLOGY FOR IDENTIFYING

DIFFERENTIALLY EXPRESSED GENES IN TIME-COURSE

MICROARRAY DATA

4.1 Introduction

Microarray expression profiling is often carried out to identify genes whose expres-

sion change across biological conditions (Slonim, 2002). Several methods have been

proposed in literature to identify differentially expressed genes in static experiments

where snapshots of gene expression levels are measured in two different cell popula-

tions (Pan, 2002; Troyanskaya et al., 2002). These methods are not directly applicable

for time-course experiments where differential expression has to be calculated globally

in the temporal space and not just between corresponding time points (Storey et al.,

2005).

Recently, several methods have been proposed to identify the differentially ex-

pressed genes in time-course data. Bar-Joseph et al. (2003a) proposed a method that

represents expression profiles as continuous curves and then uses a global difference be-

tween the curves to identify differentially expressed genes. In their approach, clustering

of genes is used as a preprocessing step; although simple, this makes the method com-

putationally expensive for large datasets. Storey et al. (2005) proposed a method that

measures the improvement in goodness-of-fit when two separate curves are used to fit

the data from two conditions compared to single curve is used to fit the data from both

conditions together. If the improvement in goodness-of-fit is significant then that par-
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ticular gene is considered as differentially expressed. Their approach treats all genes

as equal irrespective of their expressions levels in the experiments. This leads to the

spurious identification of genes with low expression in both conditions as differentially

expressed genes. Conesa et al. (2006) proposed a regression-based approach that mod-

els the expression profile of each gene with time as regressor and tests the hypothesis on

the equality of regression coefficients. A similar method is proposed by Vinciotti et al.

(2006) where the expression profiles are fitted using cubic polynomials and tested for

similarity of coefficients. Modeling individual genes is generally not recommended due

to noise in the microarray data (Bar-Joseph et al., 2003c). Cheng et al. (2006) proposed

an approach that represents the time-course data from both conditions as two different

gene relationship networks where each node is a gene and each edge links the two sim-

ilarly expressed genes. Differentially expressed genes are identified by comparing the

neighborhood, genes that have very similar and very dissimilar expression profiles, of

each gene i in both networks. Genes with dramatic change in neighborhood are deemed

as differentially expressed. Since the actual expression of gene is not directly compared

in both conditions, genes similarly expressed in both conditions can be declared as dif-

ferentially expressed if their neighbors are changed. Reverter et al. (2006) proposed a

method that identifies genes that are simultaneously differentially expressed and differ-

entially connected. However, they quantify the difference in expression of a gene as the

sum of differences in individual time-points which may not capture systematic varia-

tions. Methods based on ANOVA (Park et al., 2003) and ANCOVA (Tabibiazar et al.,

2005) models have also been proposed specifically for replicated time-course data.
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Each one of the available methods for identifying differentially expressed genes

in time-course data have particular drawbacks. They also do not consider natural de-

pendencies among different time-points. The noise in the data is also not explicitly

considered in these methods. Here, a statistical method is proposed for identifying dif-

ferentially expressed genes in time-course data. The proposed method uses PCA to

consider the correlation among different time-points and reveal fundamental patterns

in the data. The scores of genes on these fundamental patterns are used to identify the

differentially expressed genes. Noise is discounted by considering only the most sig-

nificant PCs (patterns) in the analysis.

Let time-course gene expression be measured at two different biological conditions,

C1 and C2. The proposed method relies on PCA to model the expression data from C1.

Noise is removed from the model by using only the dominant components. When the

expression data from C2 is projected on this PCA model, differences in the gene ex-

pression program can be identified. Genes whose expressions do not change between

the two conditions will have similar scores, while scores will be different for differen-

tially expressed genes. A statistical test is used to find the significance of the difference

in scores and reliably identify differentially expressed genes and their p-value.

There are several advantages of using PCA for finding differentially expressed

genes: (1) The score of a gene on a PC is the correlation between the gene and the

PC. Comparing the scores is equivalent to comparing the similarity of temporal expres-

sion profiles. So the proposed approach uses the systematic differences in expression

to identify differentially expressed genes, (2) Since only the dominant PCs are used for
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analysis, the effect of noise in the data is alleviated. This leads to meaningful com-

parison of expression profiles across conditions and identifies significant differentially

expressed genes. (3) PCs are the fundamental patterns in the data. They can be in-

terpreted and hence provides more information about the differences in expression of

genes (Holter et al., 2000; Raychaudhuri et al., 2000; Alter et al., 2000).

4.2 Methods

4.2.1 Modeling C1 expression data using PCA

Let X
(1)
n×t be the expression data containing n genes measured at t time-points. The

superscript refers to the biological condition at which the expression data is collected.

Each element xij represents the expression level of ith gene measured at the jth time-

point. PCA decomposes the expression matrix X(1) as the sum of outer product of two

vectors zi and pi plus a residual matrix E (Jackson, 1991)

X
(1)
n×t = z

(1)
1 pT

1 + z
(1)
2 pT

2 + .... + z
(1)
k pT

k + E (4.1)

where z
(1)
i vectors, known as scores, are of size n×1, the pi vectors are called loadings

and their size is t× 1. Here k ≤ min(n, t).

PCA relies on the eigenvalue decomposition of the covariance matrix of X(1), given by:

S =
X(1)T

X(1)

n− 1
(4.2)
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provided X(1) is mean-centered. The pi vectors are the eigenvectors of the covariance

matrix of data and represent the Principal Components (directions) of variation in the

data, i.e

Spi = λipi (4.3)

where λi is the eigenvalue associated with the eigenvector pi. The eigenvalue λi is

the variance ins direction represented by pi. The Principal Components pi form an

orthogonal set. Hence the score vector for each pi is given by:

z
(1)
i = X(1)pi (4.4)

The Principal Components (PCs) are similar to the eigengenes of Alter et al. (2000)

that represent the fundamental patterns of the gene expression program that contribute

to the expression of genes all over the genome. In this model (Equation 4.1), the ex-

pression profile of each gene is represented as a linear combination of the PCs with

associated gene-specific scores. So the expression dataset can be reconstructed if all

the pairs of score and loading vectors are retained. The (z
(1)
i ,pi) pairs are arranged in

descending order of λi. So, the first few components associated with larger variance

represent the systematic variation in data whereas components with lower variance es-

sentially contain noise due to uncontrolled experimental and instrumental variations.

The filtering of the insignificant components removes noise from the expression data

and enables a meaningful comparison of the expression profiles.

The identification of significant components translates to selecting a value for k, the

number of PCs to be retained. The simplest approach is to find the number of PCs that
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can capture at least a predefined amount (say 95%) of the original variance in the data.

Another technique, scree test, plots the eigenvalues in non-increasing order to find the

‘knee’ between dominant and insignificant PCs. The number of PCs can also be found

by significance tests Bartlett (1950). Here, the cross-validation procedure proposed

by Wise and Ricker (1991) is used for selecting number of PCs. In this procedure,

the dataset is divided into a predefined number of equal sized segments. PCA model

is developed on all but one of the segments. The developed PCA model is used to

reconstruct the un-modeled data. The error in reconstruction, the Root-Mean Square

Error of Cross-Validation (RMSECV), is plotted as function of number of PCs and the

number of PCs, k, is selected with minimum RMSECV.

4.2.2 Projection of expression data on PCA model

Through the procedure described above, a PCA model of C1 expression is generated

where the expression profile of each gene over time, xi, is represented as a combination

of PCs. The expression data from condition C2 can then be compared for statistically

significant differences from this PCA model. Let the expression data from C2 be de-

noted as X
(2)
n×t where the same genes are measured at the same time points in a different

biological condition C2. If there are differences in the time points between C1 and C2,

it can be addressed by resampling either/both C1 and C2. Projection of X(2) on to the

PCA model gives the corresponding scores vectors

z
(2)
i = X(2)pi, i ∈ [1, k] (4.5)
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Genes whose expression is not significantly altered in C2 will have approximately

the same scores, i.e. z
(1)
i ≈ z

(2)
i , while differentially expressed genes will have signif-

icant differences in their zis . A statistical test is used to find the significance of the

difference in scores and thus identify differentially expressed genes.

4.2.3 Calculation of significance of differential expression

Let Z∆ be the difference between Z1 and Z2 where the ith row of Z∆ is the differ-

ence in the scores of gene gi

zi
∆ = zi

(1) − zi
(2) (4.6)

We test the hypothesis that the differences in scores is due to noise. Therefore, the null

and alternative hypotheses are:

H0 = Difference in the scores of gene is due to noise

H1 = Difference in scores of gene is not due to noise

This hypothesis is tested based on the following insight. When we depict each gene

gi on the scores plot, genes with small zi
∆ will form a k-dimensional cloud around the

origin while genes that are differentially expressed will be away from the origin. The

distance of zi
∆ from the origin measured using a suitable metric and considering the

null distribution, reveals the significance of the difference in the scores, and thus that

of differential expression of that gene.

The Mahalanobis distance is a common metric used with PCA and is given by:

MD2
i = (Z∆

i − Z)Σ−1(Z∆
i − Z)T (4.7)
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where Z is the centroid of Z∆ and Σ is the covariance matrix of Z∆. We use the Ma-

halanobis distance to find the distance between each point to the centroid and use it as

evidence for the differential expression. Mahalanobis distance is the most widely used

distance metric with PCA analysis (Jackson, 1991). The larger the distance, the more

evidence there is to conclude that a particular gene is differentially expressed and hence

the null hypothesis can be rejected. When the difference in scores follows a multidi-

mensional normal distribution, the Mahalanobis distance follows a χ2 distribution with

k degrees of freedom. The p-value that the differential expression occurred due to noise

is then given by the cumulative distribution function:

Pi = 1−
∫ MD2

0

t(k−2)/2e(−t)/(2)

2k/2Γ(k/2)
(4.8)

where Γ(·) is a Gamma function.

4.3 Results

We evaluate the proposed method using two case studies. The first case study

involves genome-wide study of differences in the heat-shock response of wild-type

mouse and strain lacking Heat-Shock Transcription Factor 1 (HSF1). The second case

study concerns the Yeast cell-cycle response between the wild-type and a mutant lack-

ing forehead proteins (Fkh1 and Fkh2). We compare the results from these studies with

results from other recent approaches.
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4.3.1 Case Study 1: Mouse time-course dataset

HSF1 is the primary regulator for many heat-shock proteins in mammalian cells. To

characterize its role, Trinklein et al. (2004) measured the transcription levels and also

assayed the binding of HSF1 on human promoters. From this study, Trinklein et al.

(2004) hypothesized that the induction of several heat response genes is independent of

HSF1. To test the hypothesis, Trinklein et al. (2004) measured the expression levels of

9468 mouse genes using cDNA microarrays. Expression levels of genes are measured

at 0, 0.5, 1, 2, 3, 4, 6, and 8 h after the heat-shock in both wild-type and mouse lacking

HSF1. Trinklein et al. (2004) analyzed the transcriptional response of different gene

groups: (A) mouse genes homologues of human genes that are bound by HSF1 and

induced, (B) homologues that were bound by HSF1 but not induced, (C) homologues

that were induced but not bound by HSF1, (D) genes induced by heat in wild-type

but not in mutant, (E) genes induced in mutant mouse, (F) genes induced similarly in

both wild-type and mutant. Ideally, genes belonging to groups A, D and E should be

identified as differentially expressed between wild-type and HSF1 mutant mouse and

genes belonging to groups C and F as similarly expressed.

Modeling the wild-type mouse time-course data

We modeled the time-course expression data from the wild-type mouse using PCA.

The number of PCs, k, to be retained in the model was found using cross-validation.

The RMSECV takes the minimum value at k = 2 (Figure 4.1). In PCA, the extracted

PCs are arranged in the descending order of data variance they capture. The first two

PCs capture 42.12% and 24.75% of the total variance, respectively. The third PC cap-
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tures only 9% of the variance and the remaining PCs smaller amounts. The expression

profiles of PCs are shown in Figure 4.2. Though several PCs modeling systematic

changes in expression data, the variance captured by PCs 3 to 8 is small compared to

variance captured by first two PCs. So the first two PCs are used to model this dataset.
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Cross−validation Results for wild−type mouse data

Fig. 4.1. Cross-validation results for the wild-type mouse time-course
data. The RMSECV has the minimum value at number of PCs 2. So
two PCs are used to model this dataset.

In order to validate the PCA model, we analyzed the expression profiles of these

two PCs shown in Figure 4.3. In wild-type mouse, the heat-shock activates several

heat inducible genes. The first PC has an upward trend while the second PC shows

an upward trend initially after the heat-shock and a downward trend afterward. Genes

whose scores are positive on first PC has upward trend after heat shock. Some of these

genes include known heat inducible genes hsp60, hsp70, hsp86, etc. This indicates that
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Fig. 4.2. Expression profiles of PCs extracted in mouse dataset.
Though several PCs modeling systematic changes in expression data,
the variance captured by PCs 3 to 8 is small compared to variance cap-
tured by first two PCs.

the first PC corresponds to activation of the genes due to heat-shock. The second PC

represents the dynamic changes in the expression of genes over time.

Identifying differentially expressed genes

The time-course data from the mouse lacking HSF1 is projected on the developed

PCA model and the scores of these genes on the two PCs extracted. The differences

in their scores are used to calculate the p-values for the genes. The histogram of the

p-values for all the genes is shown in Figure 4.4. There are 288 genes in the p-value

range 0−0.01. The frequency drops to 70 in the range 0.01−0.02 (inset in Figure 4.4)

and the p-values for the rest of the genes are distributed more or less uniformly. So we

selected a p-value threshold of 0.01 for this dataset.
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Fig. 4.3. Expression profiles of the 2 PCs used to model wild-type
mouse dataset. First PC shows the pattern related to activation of
genes. The second PC has the increased expression in the first time-
points and then decreased. It corresponds to the dynamic changes in
genes expression due to heat-shock.

The proposed method identifies 288 genes as differentially expressed at this p-value

threshold. The differences in the scores on two PCs are shown in Figure 4.5. The dif-

ferentially expressed genes (marked as ‘*’) are far away from the majority of the genes.

This confirms that the proposed hypothesis test identifies the genes with large differ-

ence in scores. Since the HSF1 gene is knocked-out in the experiment, we expect that

the targets of HSF1 gene will be differentially expressed in the mutant mouse. On the

other hand, genes related to metabolism and signaling processes are expected to be sim-

ilarly expressed in the wild-type and mutant mice. The differentially genes identified

by the proposed method include genes previously reported as the targets of the HSF1

such as hsp60, hsp70, hspa8 (McMillan et al., 1998). In contrast, several metabolic and

signal transduction genes including methylene tetrahydrofolate dehydrogenase, carbon
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Fig. 4.4. The distribution of p-values of the genes in mouse dataset.
There are 288 genes in the p-value range 0-0.01. After that the distri-
bution if more or less uniform. The p-value threshold selected for this
dataset is 0.01.

catabolite repressor, Protein kinase C alpha binding protein, and MAD homologue 7

are not identified as differentially expressed. The p-values for these genes are between

0.018-0.9989. This clearly shows that the proposed method is able to identify differen-

tially expressed genes with biological implications.

Our method identifies four (out of 9), group A mouse genes homologues of human

genes that are both bound by HSF1 and induced in wild-type mouse. These are Hsp105,

Dnajb1, hsp84-1, and Cacybp and the corresponding p-values are 1.0× 10−15, 7.014×

10−8, 3.0614 × 10−4, and 4.7355 × 10−4. On the other hand, 13 (out of 15) group C

mouse genes homologue to human genes that are induced in wild-type but not bound

by HSF1 are not identified as differentially expressed genes. The p-values for these
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Fig. 4.5. Difference of scores of mouse genes on first two PCs. The
differentially expressed genes identified by the proposed method are
marked ‘*’.

genes are in the range of 0.035-0.927. These results support the hypothesis that HSF1

does not regulate all the heat induced genes.

Comparison of results with previous study

Trinklein et al. (2004) reported 167 genes differentially expressed in the experi-

ment (groups D and E). Our approach identified 78 of the genes out of these 167 genes

identified by Trinklein et al. (2004). Most of the remaining genes identified by Trin-

klein et al. (2004) have <2-fold change at all the time-points in both wild-type and

the mutant mouse. Trinklein et al. (2004) used the heatmaps of the clusters to identify

differentially expressed genes. In heatmaps, small positive and small negative values

are showed in different colors and hence lead to the identification of genes with small

changes as differentially expressed genes. The proposed approach also identified 210
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novel genes as differentially expressed. We clustered these genes using hierarchical

clustering (Figure 4.6).

Fig. 4.6. Heatmap of the novel genes identified by the proposed
method in mouse time-course dataset. Up-regulation of gene is indi-
cated by red color and down-regulated genes are represented by green
color. From this figure, it is clear that these novel genes are differently
expressed between wild-type and mouse lacking HSF1 gene.

The figure shows that the novel genes are differentially expressed between the wild-

type and mutant mouse. Trinklein et al. (2004) identified the genes that have completely

up- or down-regulated between the wild-type and mutant mice. This can be seen in

Figure 4.7 where the genes identified by Trinklein et al. (2004) are spanned only in the

direction of first PC that represents activation of genes after heat-shock. Genes on the

positive side of the plane are up-regulated in wild-type and down-regulated in mutant
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mouse. Genes on the negative side of the plane are down-regulated in wild-type and

up-regulated in mutant mouse. This indicates that Trinklein et al. (2004) identified only

the genes that are completely up- or down-regulated. The proposed approach identifies

all the genes with differential expression between the two mice.
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Fig. 4.7. Difference of scores of mouse genes on first two PCs. The
differentially expressed genes identified by Trinklein et al. (2004) are
marked ‘+’.

4.3.2 Case Study 2: Yeast cell-cycle dataset

For the second case study, we use the Yeast cell-cycle dataset where the expression

levels of genes are measured over two cell-cycles in a wild type and Fkh1, Fkh2 dou-

ble mutant strain. Spellman et al. (1998) monitored the expression levels of almost all

genes during two cell-cycles. Eighteen samples were taken following the α factor re-

lease with a sample period of 7 mins. They identified 800 cell-cycle regulated genes
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using periodic algorithms. Zhu et al. (2000) monitored the expression levels of Yeast

genes in a mutant strain that lacks two forkhead transcription factors Fkh1 and Fkh2.

They measured expression levels at 13 time-points, the first twelve at 15 min intervals

from time 0 till 165 mins, and the last at 210 mins. Out of the 800 cell-cycle genes

reported by Spellman et al. (1998) in the Wild-Type (WT) strain, expression data is

available for 746 genes in the Knock-Out (KO) experiment. So we use the expression

data for these 746 genes from both strains to evaluate the proposed method.

Since the number of samples and the time of samples are different in WT and KO

experiments, we use dynamic time warping (Sakoe and Chiba, 1978) to align the ex-

pression profiles by warping their time scales. Particularly, we use asymmetric time

warping algorithm to map the time axis of the KO genes signals to the WT ones. The

expression profiles of both the WT and KO genes are fitted to cubic splines and re-

sampled at each minute. These supersets are aligned using asymmetric DTW. After

alignment, the resampled expression values for the KO are obtained at the time points

corresponding to the original WT samples (0 to 119 mins with a period of 7 mins). The

aligned datasets for both the WT and KO strains thus contain expression of 746 genes

at 18 time points.

Modeling the wild-type time-course data

We modeled the expression time-course data from the wild-type Yeast strain us-

ing PCA. The RMSECV has local minima at k is 4, 8 and 11 (Figure 4.8). The first

4 PCs capture approximately 80% of the variance in the data. Considering the noise

in microarray data, we use only the first 4 PCs. The expression profiles of the four
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eigengenes (PCs) are shown in Figure 4.9. These PCs correspond to the different fun-

damental patterns in the WT cell-cycle data. Genes from different phases are found to

be highly correlated with these patterns. For example, genes with high scores on the

PC 1 such as Clb2, Clb1, Ace2 and Cdc5 are mainly from G2 and M phases. Simi-

larly, genes from G1 and S phases have higher scores on PC 2 and the PC 3 maps to the

M/G1 and G2 phases. PC 4 contributes to genes from different phases.
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Fig. 4.8. Cross-validation results for wild-type yeast cell-cycle dataset.
The RMSECV takes local minima at number of PCs 4, 8 and 11. The
first 4 PCs captured almost 80% of variance in the data. The first 4
PCs are used to model this dataset.

For comparison, expression profiles of all PCs are shown in Figure 4.10. The first

four PCs have systematic changes in expression and the expression profile of rest of

PCs is random depicting noise. So modeling this dataset with 4 PCs good.
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Fig. 4.9. Principal Components extracted from the wild-type Yeast
cell-cycle dataset. The four PCs extracted from the wild-type Yeast
cell-cycle dataset have distinct patterns and map to different phases of
the cell-cycle.

Identifying differentially expressed genes

When the re-sampled KO (C2) gene-expressions were projected to the PCA model,

the proposed method identified 72 genes as differentially expressed at the p-value

threshold of 0.05 since the total number of genes are small. We identified several genes

expressed at high levels in WT strain but showing little or no expression in KO strain.

For example, 40 genes had 2-fold change in at least at one time-point in the WT strain

that lost their expression in the KO strain and showed less than 2-fold change in all

the time-points. The proposed method also identified 4 genes that have less than 2-

fold change in WT strain but having 2-fold change at one time-point (2 genes) and 2

time-points (2 genes) in the KO strain. We identified one gene that has less than 2-fold

change in both WT and KO strain as differentially expressed. All the remaining genes

showed high expression levels in both the WT and KO strains but differed in their ex-
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Fig. 4.10. Expression profiles of Principal Components (PCs) ex-
tracted in Yeast cell-cycle dataset. PCs 1-4 have systematic changes
in expression over time where as the expression profile of rest of PCs
is nearly random. This indicates that modeling this dataset with 4 PCs
is good.

pression profiles.

Zhu et al. (2000) analyzed the heatmaps of clusters of co-expressed cell-cycle genes

and reported that genes from CLB2 and SIC1 clusters are differentially expressed in

the mutant strain. The proposed method identifies several genes from CLB2 and SIC1

clusters. We identified 11 genes (out of 31) from CLB2 cluster. The expression profiles

of four of these genes in WT and KO are shown in Figure 4.11. These genes show a

significant difference in their expression between the WT and KO strains - oscillatory

behavior (with > 2-fold change) in the WT strain and almost no expression in KO
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strain. Some of the remaining genes in this cluster have flat expression profiles in the

KO as well as the WT (Figure 4.12). The genes identified by the proposed method

are the most significantly differentially expressed genes in CLB2 cluster. In the SIC1

cluster, we identified 16 (out of 26) genes. The expression profiles of some of these

genes in WT and KO are shown in Figure 4.13. From this figure, it is clear that the

genes identified are differentially expressed. The remaining 10 genes showed a little

expression in both the WT and KO (Figure 4.14). The benefit of the proposed method is

the quantitative comparison of the expression profiles which enables the identification

of significantly differentially expressed genes and minimizes subjective errors.
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Fig. 4.11. Expression profiles of four genes identified by the proposed
method in the CLB2 cluster. The solid line represents the expression of
gene in the WT and the dotted line represents the expression of gene in
the KO strain. Gene names and the p-values are shown for all genes.
The WT genes show an oscillatory behavior while the expression in
KO is significantly changed.

We validate the results at different levels. First, we compare the genes identified by

the proposed method with the results from other approaches for identifying differen-
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Fig. 4.12. Expression profiles of genes from CLB2 cluster that are not
identified as differentially expressed by the proposed method. Solid
line represents the expression profile in WT strain and the dash line
represents the expression profile in KO strain. Horizontal lines corre-
spond to 2-fold change. Most (15 of 20) have less than 2-fold change
in both WT and KO strains. Increasing the p-value threshold from
0.05 to 0.10 will lead to identification of 3 more genes as differentially
expressed.

tially expressed genes. The novel genes identified by our method are evaluated using the

Genome-wide location data from Simon et al. (2001) who studied genome-wide tran-

scription factor (TF)-DNA interactions for nine cell-cycle TFs including Fkh1, Fkh2,

Ace2 and Swi5. Finally, differential expression of genes is also confirmed by directly

comparing the actual expression profiles.
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Fig. 4.13. Expression profiles of four genes identified by the proposed
method in SIC1 cluster. The solid line represents the expression of
gene in the WT and the dotted line represents the expression of gene in
the KO strain. Gene names and the p-values are shown for all genes.
There is a considerable change in the expression of SIC1 genes be-
tween WT and KO strain.

Comparison with results from other methods

We compare our results with the results from the different approaches proposed

for identifying differentially expressed genes in time-course microarray datasets. Bar-

Joseph et al. (2003a) used the same datasets and reported 56 genes as differentially

expressed. There is a significant overlap between the genes identified by our method

and those reported by Bar-Joseph et al. (2003a). Our method identifies 44 of these 56.

Changing the p-value threshold to 0.1 includes 5 more genes. We found all the genes

identified by Bar-Joseph et al. (2003a) in CLB2 cluster. Additionally, our list includes

Cdc5 and YPR156C from that cluster. Cdc5 is a pole-like kinase, possibly a substrate

of Cdc28, which is found to be bound by Ndd1. Even though Ndd1 is not directly af-

fected in this experiment, its binding is mediated by Fkh2 in G2/M (Koranda et al.,

2000). The second gene YPR156C is involved in polyamine transport. There are no
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Fig. 4.14. Expression profiles of genes from SIC1 cluster that are not
identified as differentially expressed by the proposed method. Solid
line represents the expression profile in the WT strain and the dash
line represents the expression profile in the KO strain. Horizontal lines
correspond to the 2-fold change.

regulators found to be bound to this gene in TF-DNA interaction data. However, its

expression is different between WT and KO. Similarly, most of the genes reported by

Bar-Joseph et al. (2003a) from the SIC1 cluster have been identified by our method.

We used the EDGE software developed by Storey et al. (2005) to identify differen-

tially expressed genes based on goodness-of-fit approach. Using natural cubic splines

with basis of 4, their method identifies 73 genes as differentially expressed at the p-

value threshold of 0.001. Only 30 (out of these 73) genes overlap with the genes iden-

tified by our method, and only 22 genes with those identified by Bar-Joseph et al.

(2003a). Overall, 21 genes are identified by all the three methods, while 42 are novel

genes identified only by Storey et al. (2005) approach. Most of these novel genes show
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very little expression in both the WT and KO strain (Figure 4.15). Only 7 of the 42

novel genes are found to be bound by one or more of Fkh1, Fkh2, Ace2 and Swi5. The

normalization procedure they use equally weighs highly expressed genes and genes

with little expression. This is the probable reason for the misidentification of genes

with little expression as being differentially expressed.

Recently, Cheng et al. (2006) used the cell-cycle dataset to evaluate their approach

and identified 100 genes as differentially expressed, among which 41 genes are present

in our dataset (we used 746 cell-cycle regulated genes). We identified 19 out of these 41

genes as differentially expressed. Additional 6 genes will be identified as differentially

expressed if the p-value threshold is increased to 0.1. The expression profiles of the

remaining 22 genes are showed in Figure 4.16. Several genes showed similar expres-

sion in both wild-type and the mutant strain. The approach proposed by Cheng et al.

(2006) considers the change in neighborhood of a gene in two conditions. Since the

actual expression profile of genes is not compared in different conditions, genes with

similar expression profiles could also be detected as differentially expressed if their

neighborhood genes are differentially expressed.

Validation of Novel genes

The proposed PCA based approach identified 28 novel genes that have previously

not been identified. We find the TFs for the novel genes using Genome-wide location

data from Simon et al. (2001) with a strict p-value threshold of 0.005 for TF-DNA

binding (Table 4.1). The novel genes we identified are from all cell-cycle phases. It is

known that cell-cycle is carried out by serial regulation of transcription factors (Simon
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Fig. 4.15. Expression profiles of novel genes identified by EDGE
method proposed by Storey et al. (2005). Solid line represents the
expression profile in WT strain and the dash line represents the ex-
pression profile in KO strain. Horizontal lines correspond to the 2-fold
change. Most of the genes have < 2-fold change both in WT and KO
strains and also has similar expression profiles.

et al., 2001). So it is expected that a change in the cell-cycle will affect the different

phases. 13 genes (out of 28) are found to be bound by one or more of Fkh1, Fkh2, Ace2,

and Swi5. Fhk2 is the predominant binding partner for Mcm1 and it also mediates the

binding of Ndd1 (Koranda et al., 2000). So genes regulated by Mcm1 or Ndd1 would
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Fig. 4.16. Expression profiles of genes from identified as differentially
expressed by Cheng et al. (2006) but not by the proposed method.
Most of these genes have very little expression in both the WT and
KO Yeast strains. Moreover, their expression profiles are similar in
both strains. Increasing the p-value threshold from 0.05 to 0.10 will
lead to identification of 6 more genes as differentially expressed by our
method.

possibly change their expression in the mutant strain. The remaining genes are found

to be bound by one or more of Swi4, Swi6, and Mbp1. Both Swi6 and Mbp1 have

very little expression in WT and they were not identified as cell-cycle regulated genes

by Spellman et al. (1998). So, the data we used includes only Swi4. The p-value for

Swi4 is 0.06 which is very close to the threshold we used. It also shows a difference in

expression between WT and KO. This differential expression of Swi4 is probably the

reason for the differential expression of genes bound by it.
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Table 4.1
Novel differentially expressed genes identified by the proposed
method. Genes are grouped based on the phase of the cell-cycle where
they show peak expression.

Gene Phase p-value TFs
PCL9 M/G1 0.0495 Swi5
CHS1 M/G1 0.0098 Swi5

YDL117W M/G1 0.0110
YBR296C M/G1 0.0104

SST2 M/G1 0.0224
AGA1 M/G1 0.0048 Mcm1, Mbp1,Swi4, Swi6
TSL1 G1 0.0274 Fkh1, Fkh2, Ndd1, Ace2, Swi5,Mbp1, Swi4, Swi6
CLB6 G1 0.0027 Fkh2, Mbp1, Swi4, Swi6
SVS1 G1 0.0001 Fkh1, Fkh2, Swi4, Swi6

POL30 G1 0.0268
MCD4 G1 0.0257
YOX1 G1 0.0085 Fkh2, Mbp1, Swi4, Swi6
CLN2 G1 0.0088 Swi6

YMR305C G1 0.0187 Mcm1, Mbp1, Swi4, Swi6
HHT1 S 0.0403 Fkh2
HHO1 S 0.0162 Swi4, Swi6

YIL129C G2 0.0021 Swi5
YMR215W G2 0.0025 Fkh1,Fkh2, Mbp1, Swi6

CIK1 G2 0.0126 Fkh1, Fkh2
CDC5 M 0.0033 Ndd1

YPR156C M 0.0064
YPR157W M 0.0219

NCE2 M 0.0203 Fkh2, Ndd1, Swi4
FET3 M 0.0042

YOR383C M 0.0371
YDL039C M 0.0089

CLN3 M 0.0108 Mcm1, Ace2, Swi5, Swi4, Swi6
MFA2 M 0.0216 Fkh1,Ndd1, Mcm1, Swi5

Understanding cell-cycle using novel genes

To understand how the cell-cycle is affected by the deletion of the two forkhead

proteins Fkh1 and Fkh2, we constructed a heatmap of the cell-cycle regulated genes
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using the Treeview software (Eisen et al., 1998) (Figure 4.17).

Wild-type
 Knock-out


M/G1
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G2


M


Fig. 4.17. Heatmap of cell-cycle expression data from WT and KO
strains. Most of the genes from M/G1 and M phases differentially ex-
pressed in KO strain compared to WT strain. Genes from G1 phase
retained their expression during first cell-cycle but differentially ex-
pressed in second cell-cycle. Most of the genes from G2 and S phase
showed little or no change from their WT expression.

As expected, genes having peak expression in M (CLB2 genes) and M/G1 (SIC1

genes) phases of cell-cycle have lost their expression in the KO strain. Several G1

genes also showed a significant difference in their expression. One interesting aspect

we observed in the heatmap is that in the KO strain most of the genes from G1 phase

retained their expression in the first cell-cycle but not in the second cycle. However,

the phenotype indicates that cells entered into second cell-cycle: mother and daughter

cells budding synchronously (Zhu et al., 2000). The novel genes we identified as dif-

ferentially expressed partially explain this phenomenon.
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To understand the cell-cycle regulation in Yeast, consider Figure 4.18, a simpli-

fied form of Simon et al. (2001) cell-cycle model. Two transcription factor complexes

SBF (complex of Swi4 and Swi6) and MBF (complex of Mbp1 and Swi6) are major

regulators of G1 phase genes. SBF requires Cln3-Cdc28 to change to active state by

post-transcriptional action (Koch et al., 1996).

Mcm1
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M


G2


Swi4


Mcm1


Mbp1
 Swi6


Fkh2


Ndd1


Ace2


Swi5


Swi6


Cln3


SBF


Fig. 4.18. Simple model of cell-cycle-regulation of Yeast. Transcrip-
tion factors (TF) that regulate genes from different phases of cell-cycle
are represented as ovals and placed near to the corresponding phases.
Solid lines represent the regulatory interaction and dotted line repre-
sents the post transcriptional actions.

In contrast to the other approaches which identify only Cln1, we identified all three

CLN genes (Cln1, Cln2 and Cln3) as differentially expressed. The expression profile of

these three genes is shown in Figure 4.19. In the WT strain, all three show oscillatory

behavior. Cln1 loses its oscillatory behavior in the KO strain and its expression is

very low. Cln2 retains its oscillatory behavior but at a lower magnitude. Cln3 is not

expressed in the KO strain. Cln3 is found to be bound by Mcm1, Ace2, Swi5, Swi4
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and Swi6 (Table 4.1). So we hypothesize that for the KO strain, expression of Cln3

is affected, because of which SBF is in an inactive state. Consequently the expression

of G1 phase genes during the second cell-cycle is altered. It has been reported that

the other two CLN genes (Cln1 and Cln2) are regulated by SBF (Nasmyth and Dirick,

1991). The significant decrease in their expressions in the KO strain also lends evidence

to the hypothesis that Cln3 affected SBF which in turn affected several G1 phase genes

in the second cell-cycle (Figure 4.17). Further evidence is that CLB6, which is bound

by SBF (Table 4.1), is also identified as differentially expressed.
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Fig. 4.19. Expression profile of three CLN genes in WT and KO strain.
Cln1 lost its oscillatory behavior and almost flat in KO strain. Cln2
retains its oscillation but the magnitude of oscillation id diminished.
Cln3 is not expressed in KO strain. Only Cln1 is reported previously as
differentially expressed. We identified the remaining two CLN genes.
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4.4 Discussion and Conclusions

In both the case studies, the Wild-Type (WT) dataset was modeled using PCA and

the Knock-out data was projected on the model. When the KO data is used for model

development and WT data projected on the model to identify differentially expression

genes, the results are almost the same. For the Yeast cell-cycle Case study, 5 PCs are

needed to model the Knock-out data (Figure 4.20). With this model, 89 genes were

detected as differentially expressed at a p-value threshold of 0.05. There is a significant

overlap between the two sets. Out of 72 genes from the WT model, 69 were also

identified by the KO model. The median rank of these 72 genes is 37.5 which is very

close to median rank of 36.5 if all these 72 were top in the list. This indicates that

almost same genes are identified as differentially expressed in both scenarios and the

proposed method is robust.

The proposed method uses Mahalanobis distance as the distance metric to find dif-

ferentially expressed genes. Mahalanobis distance is the most widely used distance

metric with PCA analysis. It weighs different directions (PCs) differently and the

weights are inversely proportional to the variance in those directions. So, differences

in expression in directions with large variance (higher noise) are given less credit when

identifying differentially expressed genes. The advantage of having weightage for dif-

ferent directions is to separate the natural disturbances from real difference in expres-

sion of genes. However, giving weights to directions could lead to failing to detect some

genes as differentially expressed if their co-expressed genes are highly variant. This is

because the highly variant genes result higher variance in the PCs. This probably hap-

pens for the genes whose products work as Transcription Factors since their expression
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Fig. 4.20. Cross-validation results for Knock-out Yeast cell-cycle
dataset. The RMSECV takes minimum value at 5 PCs. The first 5
Principal components (PCs) captured almost 87% of the variance in
the data and are used to model this dataset.

may not be high. For example, the p-value for gene ACE2 in Yeast cell-cycle case study

is 0.1794. ACE2 is a Transcription factor that activates expression of early-G1 genes.

The expression levels of ACE2 is lower compared to its other co-expressed genes such

as ALK1, CLB1, and IQG1 etc. which are identified as differentially expressed genes.

This problem is with all computational methods as they depend on quantitative analy-

sis. ACE2 is also not reported as differentially expressed by Bar-Joseph et al. (2003a).

It is better to treat known Transcription factors separately or use suitable normalizing

techniques in processing step.

Another important issue is the estimation of covariance matrix for the Mahalanobis

distance calculation. Estimations of Covariance is prone to outliers in the data. Dif-
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ferentially expressed genes are outliers in the PCA scores data. Hence, the covariance

matrix is affected by these outliers. Methods are available for estimation of robust co-

variance matrix which is not effected by outliers in the data (Rousseeuw and Leroy,

1987). These methods use re-sampling approach and identify minimum volume ellip-

soid that capture predefined (say 75%) of the data points in multidimensional space.

The covariance matrix corresponding to minimum volume ellipsoid is un-effected by

outliers as outliers are excluded from analysis. The eigen-values of robust covariance

matrix are generally smaller than eigen-values of covariance matrix estimated from

whole sample data. Hence, the proposed significance test for identifying differentially

expressed genes becomes more sensitive and identifies more genes as differentially ex-

pressed. This could increase the quality of results. The robust covariance matrix is used

in Chapter 9.

The proposed method currently does not include replicates information. Since the

gene expression data is known to be noisy, it is always recommended to use replicates.

Replicates allow comparison of variation in gene expression within each group and be-

tween groups and improve the reliability of identifying differentially expressed genes.

The idea of using within and between group variation should be included in PCA anal-

ysis. The Multiway Principal Component Analysis (MPCA) which is routinely used to

analyze data from multiple batches could be used (with modifications ) to explicitly in-

clude replicates.

The proposed method uses a hypothesis test to find the significance of the differ-

ential expression of a gene between two biological conditions. This test assumes that
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difference of scores between WT and KO follows a multivariate normal distribution.

The scores are the weighted linear combination of original expressions (Equation 4.4).

As per the central limit theorem, linear combinations of different variables would fol-

low normal distribution even if the individual variables are non-normal. If scores are

normally distributed, so would their difference. We tested the normality of the dif-

ference of scores on each PC using quantile-quantile plots for mouse dataset (Figure

4.21) and Yeast cell-cycle dataset (Figure 4.22). The coefficient of determination, be-

tween the observed values and the expected values ranges from 0.92 to 0.97. We also

tested the multivariate normality of scores using beta probability plot of Small (1978).

In multivariate normality test, the proportionality between the ordered squared Maha-

lanobis distances is compared with beta distribution. A high correlation indicates the

data is multivariate normal. The coefficient of determination, using all genes, is 0.65

for mouse dataset which further increases to 0.95 after removal of only 1% of genes

(Figure 4.23). Similarly, for Yeast cell-cycle dataset the coefficient of determination is

0.81 when all genes are used and 0.96 after removal of 5% outlier genes (Figure 4.24).

Hence, the assumption of the normality is reasonable.

Finally, the proposed method is useful especially for large datasets since it relies

on PCA which is computationally efficient even for large number of genes. In large

datasets, most of the genes are generally unchanged between different biological con-

ditions. Consequently, the differential expression may not be reflected in all dominant

PCs as the PCs are not driven by differential expression between different conditions.

Even in such situations, the proposed method is sensitive to use the changes in scores

on first a few dominant PCs and correctly identifies differentially expressed genes. To
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Fig. 4.21. Normal distribution plots for the difference of scores on
individual PCs for mouse dataset. The coefficient of determination,
r2, between the observed values and the expected values ranges from
0.95 to 0.97.

illustrate this, we used the complete dataset containing all cell-cycle- and non-cell-

cycle-regulated genes. The datasets contain measurements for 5696 genes at 18 time

points. Considering the large number of genes, a more stringent p-value threshold of

0.001 is used instead of 0.05 that was used for the cell-cycle genes. We identified 151

genes as differentially expressed which contained 68 (out of 72) genes identified in the

cell-cycle data alone.
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Fig. 4.22. Normal distribution plots for the difference of scores on
individual PCs for Yeast cell-cycle dataset. The coefficient of determi-
nation, r2, between the observed values and the expected values ranges
from 0.92 to 0.97 indicating normal distributions for all directions.

Here, a method was proposed for identifying differentially expressed genes in time-

course data. The proposed method was evaluated using two gene expression datasets

and the results are compared with previously published results. The proposed method

models the expression data from one condition using PCA and projects the expression

data from different condition on the developed PCA model. The scores of genes are

used to identify differentially expressed genes. Since scores represent the linear rela-

tion between the expression profile of genes and the PC, comparison of scores measures
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Fig. 4.23. Multivariate normal distribution plot for the difference of
scores of mouse dataset. The coefficient of determination, r2, is 0.65
when all genes are used and its value increases to 0.95 after removing
only 1% of outlier genes.

the systematic variation in the gene expressions. In contrast to previously published

methods that treat all the genes equally irrespective of actual expression levels (Storey

et al., 2005), direct comparison of expression profiles (Bar-Joseph et al., 2003a) or not

use of expression levels (Cheng et al., 2006), our approach uses PCA where different

PCs contribute differently to the gene expression profiles and provide comparison at

multiple levels represented by different PCs. This is important because, for some genes

a small change in expression is sufficient for change of biological function whereas
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Fig. 4.24. Multivariate normal distribution plot for the difference of
scores of Yeast cell-cycle dataset. The coefficient of determination,
r2, is 0.81 when all genes are used and its value increases to 0.96 after
removing only 5% of outlier genes. The plots indicates that the multi-
variate normality assumption for the difference of scores is reasonable.

some genes require large expression change. Comparing genes at multiple levels con-

siders these differences and identifies biologically meaningful genes that explain the

biological phenomena. For example, CLN3 has similar scores on PC 1, 2 and 4 in both

wild-type and mutant Yeast strain. However, it has large difference in score on PC 2

which made it to be identified as differentially expressed gene. None of the previously

mentioned approaches identified this gene. It confirms that the proposed method iden-

tifies differentially expressed genes which have biologically meaningful information.
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5. DETECTING ELLIPSOIDAL CLUSTERS IN GENE

EXPRESSION DATA

5.1 Introduction

Clustering is the most widely used data-mining tool for gene expression data anal-

ysis. The objective of clustering gene expression data is to organize large number of

genes into a few groups, called clusters, such that genes within a cluster are more simi-

lar in expression compared to genes belonging to other clusters. Some of the advantages

of clustering gene expression data such as functional annotation, identifying TFs etc are

described in Section 2.2.

Several clustering approaches have been used for clustering genes including hier-

archical (Eisen et al., 1998), k-means (Tavazoie et al., 1999), Self-Organizing Maps

(SOM) (Tamayo et al., 1999), graph-theoretic (Sharan et al., 2003), model-based (Ye-

ung et al., 2001) and fuzzy clustering algorithms (Dembele and Kastner, 2003). Gib-

bons and Roth (2002) compared different clustering algorithms using real gene expres-

sion data with functional enrichment of clusters as objective. The study shows that the

performance of hierarchical clustering is poor and more or less equal to random clus-

tering. It also shows that partitional clustering methods such as k-means and SOM

perform better than hierarchical clustering.

Although the partitional clustering methods are successful in some cases, they have

the following drawbacks. Any partitional clustering algorithm has two critical compo-
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nents: (1) the distance metric used for measuring the similarity of expression profiles,

and (2) an algorithm for assigning each gene to a cluster. The is a challenge associated

with each component:

1. The generally used Euclidean distance metric identifies spherical clusters whereas

the objective of clustering is to identify the natural structure in the data.

2. The optimization algorithm for assigning genes to clusters generally lead only to

a local minima whereas reaching global minimum is preferred.

Let Xn×p denotes the time-course gene expression data with n genes measured at

p time-points. Each element xij is the expression level of the ith gene at the jth time-

point. The objective of partitional based clustering algorithms is to classify these genes

X = {x1, x2, x3, ..., xn} into k disjoint clusters represented as C = {C1, C2, C3, ..., Ck}

such that the total genes to cluster centroid distance is minimum:

J =
n∑

i=1

k∑

j=1

µijD
2
ijAj

(5.1)

where µij = 1 if xi belongs to cluster Cj and 0 otherwise. D2
ijAj

is the distance

metric that measures the distance between the given gene xi to the centroid of cluster

given by:

D2
ijAj

= ||xi − vi||2Aj
= (xi − vj)Aj(xi − vj)

T (5.2)

where vj are the cluster centroids given by:

vj =
1

nj

n∑

i=1

µijxi (5.3)
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where nj is the number of genes in jth cluster. The matrix Aj is called as norm

matrix which is a positive definite symmetric matrix. The norm matrix determines the

size and shape of cluster. Since the cluster shapes and sizes are unknown a priori, Aj

are typically taken to be identity matrix. Hence, D2
ijAj

becomes Squared Euclidean dis-

tance. The Squared Euclidean distance identifies hyper-spheroid clusters in the data

(Krishnapuram and Kim, 1999).

Methods such as GK (Gustafson and Kessel, 1979), GG (Gath and Geva, 1989), and

HEC (Mao and Jain, 1996) have been proposed to overcome the drawback associated

with Euclidean distance. The feature of these methods is the adaptation of distance

metric to the shape of cluster by estimating Ai from the data. To have a non-trivial

solution for Equation 5.1, additional constraint is necessary for Aj . The constraint that

is generally used is

det(Aj) = ρj, ρj > 0, 1 ≤ j ≤ k (5.4)

where ρj is the volume for each cluster. This allows clusters to have different shapes

while the cluster volume is fixed. Solving Equation 5.1 results Aj as the inverse fuzzy

covariance matrix of each cluster (Gustafson and Kessel, 1979). For partitional cluster-

ing approaches, Aj is replaced with inverse covariance matrices (Mao and Jain, 1996).

Hence, the distance metric is given by:

D2
ijAj

= ||xi − vi||2Aj
= (xi − vj)Σ

−1
j (xi − vj)

T (5.5)
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where Σj is the covariance matrix for cluster j.

Then D2
ijAj

becomes Squared Mahalanobis distance which generally identifies el-

lipsoidal clusters. The GK clustering has been employed with gene expression data and

showed that it outperforms k-means and SOM indicating the importance of adaptive

distance metric (Kim et al., 2005). However, problems arise when estimating the co-

variance matrix when the number of genes in the cluster are smaller than number of

time-points or if the time-points are linearly correlated (Babuska et al., 2002). In such

cases, the covariance matrix becomes singular or close to singular and cannot be in-

verted for calculation of adaptive distance metric. In adaptive distance calculation, the

distance in the directions of major axes are reduced and the distance in minor axes are

magnified. Such normalization leads to elongation of clusters in the direction of larger

variance and grab objects from other clusters (Krishnapuram and Kim, 1999). The sin-

gularity of covariance matrix add to this problem since singularity of covariance matrix

leads to nearly zero variance in some directions (Babuska et al., 2002).

The problems with GK clustering with singularity of covariance matrix is illus-

trated using artificial data shown in Figure 5.1. The data contains 500 objects over

three dimensions and they are arranged into three clusters. The determinant of covari-

ance matrices for clusters 1, 2, and 3 are 37.19, 0.626, and 4.242× 10−7, respectively.

The values for z direction of cluster 3 are generated using the formula z = x + y + f

where x and y represent the first and second dimensions and f is uniform distribution

in the range [0 0.001]. So, the covariance matrix for cluster 3 becomes near singular.

The resultant partition from GK clustering method is shown in Figure 5.2. As can be
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seen from Figure 5.2, Cluster 3 is elongated and incorrectly takes objects from Clus-

ters 1 and 2. More importantly, the elongation is in the direction of third dimension

(inset in Figure 5.2) which shows the effect of singularity of covariance matrix. Kim

et al. (2005) used large datasets (approximately 6000 genes) in their study and results

are compared for number of clusters k in the range [2 10]. Hence, the problems with

singularity of covariance matrix in GK clustering for gene expression data analysis are

not revealed in their study.
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Fig. 5.1. Artificial dataset containing 500 objects arranged into three clusters

From the above illustration, it is clear that methods based on adaptive distance

fail for cluster data if covariance matrix becomes singular. Singularity of covariance

matrix is common in gene expression data as different time-points are often corre-

lated to each other. For example, the determinants of covariance matrices of clus-
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Fig. 5.2. Results from GK clustering for artificial data. Cluster 3 is
extended and incorrectly takes objects from other clusters

ters reported by Spellman et al. (1998) in yeast cell-cycle data are in the range of

[4.25 × 10−99 2.07 × 10−229] indicating that the covariance matrices are singular.

This necessitates the development of clustering methods that are able to identify ellip-

soidal clusters in gene expression data.

Here, a clustering method is proposed. The proposed method takes the natural

structure, i.e. ‘shape’, of the cluster into consideration while calculating the distance

and able to identify clusters even the covariance matrix becomes singular. In order to

address the issues with minimization of objective function, the proposed method uses

Genetic Algorithms to optimize the objective function towards a global minimum.
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5.2 Methods

In this section, a Principal Components Analysis based clustering method is pro-

posed to identify ellipsoidal clusters in gene expression data. The proposed method

employs PCA which splits the original space spanned by the gene expression data into

two subspaces, namely a PCA subspace and a residual subspace. The PCA subspace

is formed by the dominant PCs that capture most of the variance in data and residual

subspace is formed by non-dominant PCs that capture the remaining variance. A PCA

distance metric that measures the distance in both subspaces independently and then

combines them is used. The distance measured in PCA subspace is the squared Ma-

halanobis distance that captures the geometrical shape of cluster whereas the distance

measured in residual subspace is the squared Euclidean distance which represents the

thickness of cluster. Since the PCA subspace is formed by dominant PCs, the co-

variance matrix is non-singular and hence, the problem with singularity of covariance

matrix is eliminated. Reduced distances are calculated from these two measurements

which are comparable across clusters. The objective function for clustering is formed

using this distance metric. A Genetic Algorithm based optimization procedure is used

to minimize the objective function towards global minimum and identify clusters in

gene expression data.

5.2.1 PCA distance metric

The PCA distance metric employs PCA on each cluster for calculating the distance

from each gene to its cluster centroid. PCA is a multivariate statistical technique that

finds the Principal Components (directions) of variability in the data, and transforms
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the related variables into a set of uncorrelated ones (Jackson, 1991). Mathematically,

PCA is a linear transformation of original data in such a way that the covariance matrix

becomes diagonal. Then Equation 5.2 becomes

D2
ijAj

= x
′
iΣ

′ −1
j x

′ T
i (5.6)

where Σ
′
j is the covariance matrix of jth cluster which is diagonal and off-diagonal

elements are zero. PCA is employed with column mean centered cluster so the cluster

centroid, vj , moves to the origin. The superscript ′ indicates the values after PCA trans-

formation.

The diagonal elements of Σ
′
j are the eigenvalues {λ1, λ2, ...λp} of the covariance

matrix. Equation 5.6 can also be written as

D2
ijAj

= x
′
i




1/λ1 0 . . . 0

0 1/λ2 . . . 0

...
... . . .

...

0 0 . . . 1/λp




x
′ T
i (5.7)

The PCs are arranged in the descending order of the variance they capture, i.e.

{λ1 ≥ λ2 ≥ λ3... ≥ λp}. The first few PCs capture most of the variance and represent

the dominant patterns in the data. The last PCs capture very little variance are essen-

tially represent noise. By selecting the dominant PCs suitably the whole space can be

divided into two subspaces namely PCA subspace and residual subspace. The PCA

subspace is spanned by the dominant PCs whereas the residual subspace is spanned by

the remaining PCs. Hence, the distance of a gene to its cluster centroid can be calcu-
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lated individually in both subspaces and then combined to get the total distance. Since

PCA subspace is spanned by dominant PCs, a distance measure that captures the geo-

metrical shape of cluster using covariance matrix can be used. The distance measure

used in the PCA subspace is the Hotelling’s T 2 which is squared Mahalanobis distance.

The Hotelling’s T 2 for ith gene in jth cluster is given by:

T 2
ij = [x′i1, x

′
i2, ..., x

′
il]




1/λ1 0 . . . 0

0 1/λ2 . . . 0

...
... . . . . . .

0 0 . . . 1/λlj




[x′i1, x
′
i2, ..., x

′
il]

T (5.8)

where lj is the number of dominant PCs for jth cluster.

The distance measures in the residual subspace is the Q statistic which is the

squared Euclidean distance that measures the perpendicular distance from the PCA

subspace to the gene . The Q statistic for ith gene in jth cluster is given by:

Qij = (x′i(lj+1), x
′
i(lj+2), ..., x

′
ip)(x

′
i(lj+1), x

′
i(lj+2), ..., x

′
ip)

T (5.9)

The distances measured by both T 2 and Q are shown in Figure 5.3. As shown in

Figure 5.3, Hotelling T 2 measures the distance between the gene and the centroid of

the cluster in the PCA subspace and Q statistic measures the distance in residual space.

Hotelling T 2 considers the variation in different directions and weights the directions in

order of decreasing order of the variation in those directions. This will make the iden-

tification of the ellipsoidal clusters. In the residual subspace, the proposed approach
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measures the perpendicular distance from the PCA subspace i.e. measures the thick-

ness of the cluster.

Fig. 5.3. Graphical visualization of proposed distance metric

Residual distances

The Hotelling’s T 2 and Q statistic are comparable across clusters if all clusters

used same number of PCs. However, different clusters are needed to modeled different

clusters as the correlation between time-points are different. To account for this, the

T 2 and Q metrics should be made independent of number of PCs used for modeling.

The common procedure for making T 2 and Q independent of number of PCs is by

normalizing by confidence limits for T 2 and Q. The residual distances are given by:

T 2
ijr = T 2

ij/Tαj (5.10)

Qijr = Qij/Qαj (5.11)
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where Tαj , Qαj are the values for confidence limits for T 2 and Q statistics corre-

sponding to jth cluster. α is the confidence level which is generally taken as 0.95 (95%

confidence).

The confidence limits for T 2, Tαj , can be calculated by means of the F distribution

Tαj =
lj(nj − 1)

nj − l
Flj ,nj−lj ,α (5.12)

where, lj is the number of PCs used for jth cluster and nj is the number of genes

in jth cluster. Confidence limit for Q statistic, Qαj , can be calculated provided all the

eigenvalues {λ1, λ2, ..., λp} of the covariance matrix are available (Jackson, 1991)

Qαj = Θ1


cα

√
2Θ2h2

0

Θ1

+ 1 +
Θ2h0(h0 − 1)

Θ2
1




1
h0

(5.13)

where cα is the standard normal deviate corresponding to upper (1− α) percentile and

Θa =
p∑

b=lj+1

λa
b for a = 1, 2, 3 (5.14)

h0 = 1− 2Θ1Θ3

3Θ2
2

(5.15)

The Hotelling’s T 2
r and the Qr statistic are generally combined as given below to

calculate the total distance from an object to its centroid (Wold, 1976)

D2
ijAj

=
√

(T 2
ijr)

2 + (Qijr)2 (5.16)
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Clustering based on PCA distance metric

The PCA distance metric given in Equation 5.16 can be used with clustering ob-

jective function (Equation 5.1) to identify ellipsoidal clusters in gene expression data.

However, we need additional constraints to avoid non-trivial solution for clustering.

Without constraints, the minimization procedure allows clusters to grow arbitrarily

large resulting an arbitrary partition. This is avoided by constraining the cluster vol-

umes (Gustafson and Kessel, 1979). Since the proposed distance metric splits the space

into two subspaces, we need to have constraints on cluster volume on both spaces. Clus-

ter volumes in PCA subspace and residual subspace are the product of eigenvalues for

the PCs spanned in those subspaces. Hence, the cluster volume for PCA subspace and

residual subspace are
lj∏

a=1
λa and

p∏
a=lj+1

λa, respectively. In the proposed method, the

cluster volumes are constrained as given below

lj∏

a=1

λa = ρpca ρPCA > 0 (5.17)

p∏

a=lj+1

λa = ρres ρRES > 0 (5.18)

where ρpca and ρres are the volume of cluster in PCA and residual spaces, respec-

tively.

Adding the constraint on cluster volume and selecting ρpca and ρres as 1 in the

absence of actual cluster volumes, results in the final equation for the proposed distance

metric as
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D2
ijAj

=

√√√√√((
lj∏

a=1

λa))(1/lj)T 2
ijr)

2 + ((
p∏

a=lj+1

λa))(p−lj)Qijr)2 (5.19)

The objective function for clustering is thus given by:

J =
n∑

i=1

k∑

j=1

µijD
2
ijAj

(5.20)

The above equation is minimized to identify clusters in gene expression data. Here,

a Genetic Algorithm based optimization procedure is used to minimize the objec-

tive function to identify clusters. The cross-validation approach proposed by Wise

and Ricker (1991) is used for finding the number of PCs in each cluster. The cross-

validation approach is described in Section 4.2.1. The GA approach for clustering is

described in following section.

5.2.2 Minimization of objective function using GA

The objective of clustering is to assign the genes into predefined number of clusters,

k, that minimizes the objective function shown in Equation 5.20. Here, Evolutionary

Algorithms are used to minimize the objective function to avoid trapping in the lo-

cal optima. Evolutionary Algorithms are stochastic optimization algorithms which are

based on natural process of evolution: natural selection, mutation and crossover. In this

thesis, the Genetic Algorithms (GA) proposed by Holland (1975) which comprise the

majority part of Evolutionary algorithms is used. Krishna and Murty (1999) used GA

for clustering and have shown that GA converges to the best optimum.

87



GA works on population of solutions, P = {s1, s2, ..., sM}, to solve the optimiza-

tion problem. A solution, si, consists of a string of symbols or binary values and it is

associated with fitness value generated from objective function value. The number of

solutions that GA works on is called as population size, M . During evolution process,

GA produces new population from current population by applying genetic operators

such as mutation, crossover and natural selection. The crossover and mutation help to

explore the search space where as the natural selection operators selects the next popu-

lation from the current population with probability proportional to fitness value. After

a given number of generations, N , the solution with the best fitness is selected as the

final solution for the optimization problem.

In the current work, the population is initialized randomly such that each solution

si is of length of number of genes, n, and selected from uniform distribution over the

set {1, 2, ..., k}. This means that each solution is a clustering result where each gene

is assigned to one of the k clusters. In the subsequent generations, the solutions are

updated using crossover and mutation operations and new population is selected using

natural selection.

Crossover

In general, the crossover operator works on two solutions, called parents, from old

population and exchanges portions of it to generate two new solutions called children.

However, this operator is not directed by objective function and hence inefficient. So,

the crossover operator is replaced with the new operator proposed by Krishna and Murty

(1999). The new operator works on individual solution and reassigns each gene to new
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cluster based on minimum centroid distance (Equation 5.19). The procedure includes

calculations of centroids for clusters from the given solution si and then calculation of

the distance from each gene to the clusters centroids. Then each gene is reassigned to

the clusters for which the centroid distance is minimum. This directed approach always

minimizes the objective function (Krishna and Murty, 1999).

Mutation

Mutation operator is also works on individual solution. For each gene in a given

solution, si, a random number is generated from uniform distribution within the range

[0 1]. If this random number is smaller than predefined mutation probability, pm, then,

that gene is reassigned to a new cluster chosen randomly from the set {1, 2, ..., k} with

probability given as:

pr =
Dij,max −Dij

k∑
j=1

Dij,max −Dij

(5.21)

The crossover and mutation operators described above work of individual solutions

and update them. Hence, the updated population is taken as population for the next

generation. The natural selection operator, hence , not necessary.

In the next section, the proposed clustering method is evaluated using artificial and

real gene expression datasets and results are compared with other clustering approaches

meant for identifying clusters of different geometric shapes.
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5.3 Results

Here, the performance of the proposed clustering technique is illustrated using arti-

ficial data shown in Figure 5.1 and two gene expression time-course datasets.

5.3.1 Case Study 1: Artificial dataset

The first dataset is the artificial dataset shown in Figure 5.1. The partition resulted

form clustering approaches based on covariance matrix such as GK clustering is not

accurate for such datasets (Figure 5.2) due to the singularity of covariance matrix of

cluster 3. Here, the proposed method is tested using this dataset to show efficacy of

proposed method to identify clusters even when the covariance matrix becomes singu-

lar.

The proposed clustering approach uses GA to partition data while minimizing the

global distance metric given in Equation 5.20. The population size M and mutation

probability, pm, are selected as 100 and 0.01, respectively. The number of generations,

N , for GA is set to 100. The resulted partition is shown in Figure 5.4. All the three

clusters are clearly identified without overlap. Since the structure of this is known

to us, the number of PCs is selected such that the selected PCs capture at least 93%

of variation. The proposed clustering method models cluster 1 using 3 PCs whereas

cluster 2 and 3 are modeled using 2 PCs. The first 2 PCs capture 97% of variance in

cluster 2. Since cluster 3 actually contains only two independent dimensions, 2 PCs

are sufficient for modeling this clusters. The performance of GA for minimizing the

objective function is shown in Figure 5.5. The minimum value for objective function
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over all solutions in the population is shown as a function of number of generations.

The objective function is minimized within a few generations and unchanged thereafter.

This indicates that the GA technique is able to find the best possible minimum in this

case though it is not guaranteed to be globally minimum.
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Fig. 5.4. Resulted partition for artificial data from the proposed clustering approach.

5.3.2 Case Study 2: Human macrophage dataset

The first gene expression dataset is the response of human macrophages to pathogens

conducted by Nau et al. (2002). Macrophages are large versatile immune cells. They

play important role in host defence by recognizing, swallowing, and killing microor-

ganisms. Understanding the response of macrophages to bacteria provides insights of

tactics used by bacteria to circumvent these responses and hence helps disease pre-

vention. In this study DNA microarrays were used to capture the response of human
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Fig. 5.5. Performance of GA in minimizing the objective function.

macrophages to a variety bacteria. Gene expression levels are measured for 6800 genes

at five different time-points over a period of 24 hrs. Out of the several genes that have

significant expression during the experiment, 198 genes are similarly responded to all

the eight pathogens used in this test. Nau et al. (2002) clustered these 198 genes into

two distinct clusters. The first cluster contains genes up-regulated during the experi-

ment and the second cluster contains genes that are down-regulated. We used the pro-

posed algorithm on this data to identify these two clusters.

The proposed algorithm is used with a population size of 100 and mutation prob-

ability of 0.01. The number of generations are kept to 300. The objective function is

shown in Figure 5.6 as a function of generations. The objective function is unchanged

after 12 iterations. No change in objective function was observed even after 1000 iter-
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ations. The heatmap of the two clusters identified in this dataset are shown in Figure

5.7. Heatmap is frequently used in gene expression data visualization. In heatmap,

red color is used to indicate the up-regulation of genes and green for down-regulation.

As shown in Figure 5.7, two patches of red and green are formed by these clusters. It

clearly shows that the proposed method groups the genes based on their similarity.
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Fig. 5.6. Performance of GA in minimizing the objective function for
Human macrophage dataset.

We compare the results using k-means, GK, GG clustering algorithms with the re-

ported partition for this dataset. Results from the proposed method are also compared

with reported partition to show the efficacy of proposed method. For this, the reported

partition is first shown in two dimensional PC scores plot (Figure 5.8). These two PCs

capture 93.09% of overall variance. From Figure 5.8, it is clear that the both clusters
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Fig. 5.7. Heatmap of two clusters identified by proposed method in
Human macrophage dataset.

in this dataset are clearly separated from each other. The shape of Cluster 1 is elliptical

where as the shape of Cluster 2 is spherical with some outliers. The results for k-means

clustering is shown in Figure 5.9. The identified clusters are in spherical shape. This is

because of the Euclidean distance used for clustering that forces clusters to have spheri-

cal shapes. Due to this, Cluster 1 is extended and incorrectly takes genes from Cluster 2.

Fig. 5.8. Scores plot of reported partition for Human macrophage dataset
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Fig. 5.9. Scores plot of clustering result for Human macrophage
dataset using k-means clustering. Cluster 1 is extended and incorrectly
takes genes from Cluster 2

The resultant partition for GK and GG clustering methods are shown in Figure 5.10

and Figure 5.11, respectively. The GK and GG clustering algorithms used in this thesis

are from the Fuzzy Clustering and Data Analysis Toolbox developed by Janos Abonyi,

Balazs Balasko, and Balazs Feil at the Department of Process Engineering at the Uni-

versity of Veszprem, Hungary. As shown in Figure 5.10, GK clustering is able to model

Cluster 1 as elliptical cluster whereas Cluster 2 is modeled as spherical. But, Cluster

1 is allowed to extend and incorrectly take genes from cluster 2. The result from GG

clustering is also similar to result from GK clustering. This is due to the near singu-

larity of the covariance matrix of cluster 1 (the determinant of covariance matrix for

cluster 1 reported by Nau et al. (2002) is 0.0014).

Figure 5.12 shows the clustered partition resulted from the proposed PCA clustering

method. The clusters identified by proposed method are clearly separated without any
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Fig. 5.10. Scores plot of clustering result for Human macrophage
dataset from GK clustering approach. Cluster 1 is extended and in-
correctly takes genes from cluster 2.

Fig. 5.11. Scores plot of clustering result for Human macrophage
dataset from GG clustering approach. Cluster 1 is extended and in-
correctly takes genes from cluster 2

overlap. The proposed algorithm used 1 PC to model cluster 1 and 2 PCs for cluster

2. The number of PCs used for cluster 1 captured only 39% of variance in that cluster.
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A close look at the eigenvalues for this cluster shows that all eigenvalues are small.

The first and largest eigenvalue is 0.811 and the second and third eigenvalues are 0.58

and 0.36, respectively. This might be the reason for selecting only 1 PC for modeling

this cluster. The total variance captured by 2 PCs used for modeling cluster 2 capture

89.27% of the total variance in this cluster.

Fig. 5.12. Scores plot of clustering results from proposed clustering
method for Human macrophage dataset. Both the identified clusters
are clearly separated

Since the ‘true’ (reported) partition is available for this dataset, we verify the simi-

larity between the partitions using clustering algorithms and the reported partition using

Jaccard Coefficient (JC). JC is a measure of the similarity between two partitions. Let

C1 be the partition from the clustering algorithm and C2 be the reported solution. The

JC measures the extent to which C1 matches with C2

JC =
n11

n11 + n10 + n01

(5.22)
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where n11 is the number of pairs of objects that are in the same cluster in both C1

and C2, n10 is the number of pairs of objects that are in the same cluster in C1 but not

in C2, and n01 is the number of pairs of objects that are in the same cluster in C2 but

not in C1. JC takes a value between 0 (complete mismatch) and 1 (perfect match). The

better the agreement between identified and the ‘true’ solution, the higher the value of

JC. The JC for the partition resulted from the proposed method is 0.9332. The JC for

k-means is 0.8562. This indicates that the ellipsoidal clusters results in partitions which

are close to experts partition. The JC for partition from GK and GG clustering methods

are 0.4143 and 0.4451,respectively. This clearly indicates that results from proposed

clustering method are better than the other methods for clustering.

5.3.3 Case Study 3: Yeast diauxic dataset

The second gene expression dataset is from the Yeast Saccharomyces cerevisiae di-

auxic shift study from Brauer et al. (2005). In this study, the physiological response

of Yeast was studied in glucose limiting condition in batch and steady-state cultures

followed by global patterns of gene expression. During experiment, expression profile

of 2284 genes were measured over 12 time-points with 15 min interval starting from

7.15 hrs to 10 hrs. In the initial phase, Saccharomyces cerevisiae preferably metabolize

glucose by using high-flux, fermentative Embden-Meyerhof pathway and produce even

when oxygen is abundant. When the glucose is exhausted, cells undergo a diauxic shift

in which cells switch to fully respiratory metabolism and catabolize carbon compounds

through TCA cycle (Brauer et al., 2005). During this shift, several genes initially ex-

pressed as maximal are down-regulated and some other genes are activated to export

and metabolize the new substrate. Here, this large gene expression dataset is used to
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show the efficacy of proposed clustering approach to group functionally related genes.

Instead of clustering with fixed number of clusters, results are generated for differ-

ent number of clusters from k = 2 to k = 10. For all the cases, the population size

is fixed as 200 and the number of generations is selected as 500 considering the large

number of genes. The value of objective function reaches minimum after some itera-

tions for all situations and it is relatively unchanged with further increasing number of

iterations (Figure 5.13). This indicates that the proposed GA algorithm is performing

correctly. However, it is clear that the number of iterations should be increased with in-

creasing number of clusters.
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Fig. 5.13. Performance of GA in minimizing the objective function for
Yeast diauxic shift data.
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Since we don’t have the ‘true’ solution in this case, we use z-scores proposed by

Gibbons and Roth (2002) for evaluation of results. The z-scores of a partition indicates

the enrichment of clusters with functionally related genes compared to the random par-

tition. The higher the score, the better the partition. It uses, for Yeast, the Saccha-

romyces Genome Database (SGD) annotation of yeast genes with the gene ontology

developed by Gene Ontology Consortium (Ashburner et al. (2000); Issel-Tarver et al.

(2002)). Figure 5.14 shows the z-scores for this dataset as a function of number of clus-

ters using proposed clustering method (solid line) and GK (dash line) and GG (dash-dot

line). The large positive values of the z-scores indicate that the clusters are significantly

enriched with functionally related genes than the random partitions. The z-scores for

proposed clustering method span from 10.3 to 57.7. The z-scores range for GK clus-

tering is 9 to 22, very low compared to other clustering methods. The z-score for GG

clustering is 15.5 to 38.1. This indicates that the proposed method identifies clusters

that are biologically significant.

5.4 Discussion and Conclusions

A clustering method is proposed to identify ellipsoidal clusters in gene expres-

sion data. The proposed method employs PCA on each cluster to and splits the space

spanned by gene expression data into two subspaces. The distance of a gene to it’s

cluster centroid is calculated separately in both the spaces and then combined to get the

total distance. The distance measured in PCA space captures the geometrical shape of

clusters whereas the distance in residual space represents the thickness of cluster. The

objective function for clustering is formed using this total distance and GA is used to

optimize it. Two case studies with real gene expression data is used to validate the pro-
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Fig. 5.14. Comparison of z-scores of proposed clustering method
(solid line) with GK (dash line) and GG (dash-dot line) clustering
methods for Yeast diauxic dataset.

posed method. In Case Study 1, the proposed method to identifies clusters which are

very similar to the clusters reported by an expert. In Case Study 2, the proposed method

identifies biologically significant clusters. The proposed method showed better perfor-

mance when compared with other clustering methods.

Given that the actual ‘shape’ of clusters in gene expression data is unknown, it is es-

sential to have methods with a general distance metric which is capable of identifying

clusters of different shapes. Identification of ellipsoidal clusters is one step towards that

goal. Methods that identify ellipsoidal clusters also identify spherical clusters as spher-

ical cluster is a specific case of ellipsoidal cluster with equal eigenvalues for covariance

matrix. However, singularity of covariance matrix hinders identification of ellipsoidal
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clusters in gene expression data. The proposed method eliminates the problem using

PCA and successfully identifies biologically significant clusters.

The proposed method uses a adaptive distance metric which is based on the idea

of Soft Independent Method of Class Analogy (SIMCA) approach for pattern classi-

fication proposed by Wold (1976). The SIMCA approach develops a PCA model for

each class in the training data with number of PCs appropriate for that class. Once the

classier is built, new objects are classified to different class using the values T 2
r and

Qr. The original SIMCA approach is for classification purpose where training data is

available for model development. Here, the idea is extend for clustering with additional

constraints in the cluster volume in both PCA subspace and residual subspace.

The constraint on cluster volume is necessary to get a non-trivial solution for clus-

tering. Without this constraint, clusters can grow larger and the results in non-homogenous

clusters. These constraints are implemented by multiplying T 2
ijr and Qijr with (

lj∏
a=1

λa)
(1/lj)

and (
p∏

a=lj+1
λa)

(p−lj), respectively. These two multipliers can also be seen as wightage

factors for T 2
ijr and Qijr for getting the distance matric (Equation 19). From this view,

the weightage for Qijr is always smaller than the weightage for T 2
ijr as the λi are ar-

ranged in descending order. This makes sense as the distance in PCA subspace is more

important than the distance in residual subspace since residual subspace is spanned by

non-dominant PCs.

Genetic Algorithms is used for minimizing the global distance objective function

formed with proposed distance metric. From our results, it seems that GA is able to
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identify the best possible minima. However, stochastic optimization techniques such as

GA are computationally expensive. Along with this, the proposed distance metric re-

quires to employ PCA on each cluster in each iteration. So the algorithm takes long

time for large datasets with large number of clusters. For case study 1, the proposed

method took approximately 20 mins for 100 iterations in MATLABTM environment

on Pentium 4 2.8 GHz Personal Computer with 1 GB of RAM. The time taken for the

second case study is large (hours) as there are more genes. Development of determin-

istic optimization techniques may reduce the processing time.
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6. EVOLUTIONARY APPROACH FOR FINDING NUMBER OF

CLUSTERS IN MICROARRAY DATA

6.1 Introduction

Despite the widespread use of clustering algorithms in gene expression data analy-

sis (Eisen et al., 1998; Tavazoie et al., 1999; Tamayo et al., 1999; Yeung et al., 2001;

Dembele and Kastner, 2003; Sharan et al., 2003), selection of clustering parameters

continues to be a challenge. In many cases, the optimal specification of number of

clusters, k, is difficult especially if there is inadequate biological understanding of the

system (Jiang et al., 2004). A suboptimal specification of number of clusters can gen-

erally result in misleading results — either all classes may not be identified or spurious

classes may be generated (Bezdek and Pal, 1998). While the correct number of clusters

can be identified by visual inspection in some cases, in most gene expression datasets,

the data dimensions are too high for effective visualization. Hence, methods that find

the optimal number of clusters are essential. Finding number of clusters is called as

Cluster Validation (Halkidi et al., 2001).

Several methods have been proposed for finding the number of clusters in data. The

popular methods evaluate the partition using a metric and optimize it as a function of

number of clusters. Comprehensive reviews of these methods are available elsewhere

(Milligan and Cooper, 1985; Halkidi et al., 2001). Here we briefly describe some recent

methods recommended for gene expression data analysis. Tibshirani et al. (2001) pro-

posed the gap statistic that measures the difference between within-cluster dispersion
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and its expected value under the null hypothesis. The k that maximizes the difference

is selected. Since the gap statistic uses within-cluster sum of squares around the clus-

ter means to evaluate the within-cluster dispersion, this method is suitable for compact,

well separated clusters. Dudoit and Fridlyand (2002) proposed a prediction based re-

sampling method for finding the number of clusters. For each value of k, the original

data is randomly divided into training and testing sets. The training data is used to build

a predictor for predicting the class labels of the test set. The predicted class labels are

compared to that obtained by clustering of test data using a similarity metric. This value

is compared to that expected under an appropriate null distribution. The k for which

the evidence of significance is the largest is selected. Ben-Hur et al. (2002) proposed a

similar re-sampling approach where two random subsets (possibly overlapping) are se-

lected from the data. The two random subsets are subsequently clustered independently

and the similarity between the resulting partitions is measured for the common objects

between two subsets. The distribution of this similarity (obtained from multiple runs)

is visualized for each k and the optimal number of clusters is selected where transition

from high to low similarity occurs. The approach of Dudoit and Fridlyand (2002) as

well as Ben-Hur et al. (2002) assume that the sample subset can represent the inherent

structure in the original data which may not be true for small clusters. Furthermore, the

user has to manually locate the transition in Ben-Hur et al. (2002) approach.

Recently, Bolshakova and Azuaje (2003) employed Silhouette (Rousseeuw, 1987),

Generalized Dunn’s index (Bezdek and Pal, 1998), and Davies-Bouldin index (Davies

and Bouldin, 1979) on gene expression data. These methods use the intra- and inter-

clusters distances to identify the best partition (detailed description is given in Section
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2.3). In general, cluster validation is easier when the underlying clusters are well sepa-

rated. But, most cluster validation methods lead to suboptimal results when inter- and

intra-cluster distances vary largely. To illustrate this, consider the artificial dataset in

Figure 6.1 consisting of 600 objects in three clusters (A, B, and C). Clusters B and C

are closer to each other and far from Cluster A. Figure 6.2 shows the results of Silhou-

ette, normalized Dunn’s and normalized Davies-Bouldin indices for this dataset. For

ease of visualization, all indices have been min-max re-scaled to [0 1]. For a given

index value Ik(k = 1, 2, 3, ...kmax), the re-scaled index value is obtained as

Îk =
Ik −min(Ik)

max(Ik)−min(Ik)
(6.1)
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Fig. 6.1. Two dimensional artificial dataset with 3 inherent clusters
(A, B, and C). Clusters B and C are closer to each other and far from
Cluster A.
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Fig. 6.2. Cluster validation results for the artificial dataset in Figure
6.1. All three indices, Silhouette (dash line), Dunn’s (dot line), and
Davies-Bouldin (dash-dot line) incorrectly predict 2 clusters although
the underlying data can be seen to have 3 clusters (* indicates the op-
timal number of clusters predicted by specific index)

Silhouette, Generalized Dunn’s index, and Davies-Bouldin indices incorrectly iden-

tified only 2 clusters in this dataset. A partition with two clusters {A} and {B ∪ C}

is more favorable according to intra- and inter-cluster distance based methods. Since

the gene expression data contain clusters of varying inter- and intra-distances which

are often intersecting and embedding in other clusters (Jiang et al., 2003), the cluster

validation methods based on intra- and inter-cluster distances are not suitable for gene

expression data (Jonnalagadda and Srinivasan, 2004). This finding motivates develop-

ment of new methods that do not rely on intra- and inter-cluster distances.
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In this chapter, we propose a new method to find optimal number of clusters in the

data. Our approach is based on an evolutionary view of the clustering process (Fig-

ure 6.3). We start by considering the whole dataset as a single cluster and notate it as

Generation 1 (G1). In each subsequent generation, the number of clusters, k, is incre-

mented by one and the data re-clustered. A generation with k clusters is notated as

Gk. The net change in the information content due to the addition of a cluster is mea-

sured using Net InFormation Transfer Index (NIFTI). NIFTI includes two components

—direction of information change and magnitude of information change—in its calcu-

lation. The direction of change indicates whether information is gained or lost during

evolution. The magnitude indicates the extent of change. During evolution, objects

from ith cluster, Ci
k, in the current generation, Gk, will be distributed across several

clusters in the next generation, Gk+1. The clusters in Gk+1 that receive objects from

Ci
k are called as offspring of parent cluster Ci

k. NIFTI considers this rearrangement of

cluster members when a new cluster is added for calculating the information change.

The net information change is the sum of the information change for all parent clusters.

Information increases if offspring clusters are separable. We use a simple but effec-

tive procedure with statistical basis to check the separability of offspring clusters. The

magnitude of information change is calculated using information theory. This evolu-

tionary procedure is carried out for a predefined number of generations (Gmax). The

Total Information Content, TIC, of a partition is defined as the cumulative informa-

tion gained till that generation. A partition with the highest TIC is selected as the best

partition. While testing for separability of clusters, NIFTI does not give weightage for

largely separated clusters or penalize marginally separated clusters, thus eliminates the

problems associated with varying inter-cluster distances.
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Fig. 6.3. Proposed cluster validation procedure. The procedure starts
with unclustered data (G1). In each subsequent generation, an addi-
tional cluster is added and the data reclustered. The Net InFormation
Transfer calculated based on the evolution of objects during the gen-
eration. This procedure is carried out for a predefined number of gen-
erations (Gmax). Finally the partition with highest total information is
selected as the optimal partition.

6.2 Methods

Let ZN×m be the dataset to be clustered containing N objects on which m features

are measured. In gene expression data analysis, N is number of genes and m is number

of assays. We use a clustering algorithm to generate a series of partitions from G1

through Gmax with an increment of one cluster in each generation. The migration of

the objects during evolution from parent clusters in Gk to their offspring in Gk+1 forms

the basis for evaluating the quality of partition in Gk+1. Consider the migration of

objects among clusters during evolution from Gk to Gk+1 shown in Figure 6.4. Three

scenarios are possible during evolution:
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1. All objects in Ci
k may continue to be clustered together as a single cluster in

Gk+1. We call this phenomenon as cluster conservation. Example: The cluster

C1
k is conserved as C1

k+1 with all objects intact.

2. Most members of Ci
k may stay together as a single cluster in Gk+1, but a few es-

cape to other clusters. This phenomenon is termed as cluster leakage. Example:

Out of 400 objects in cluster C2
k most stay together in C2

k+1, and 15 leak to C3
k+1

3. Members of Ci
k migrate to a small number≥ 2 of clusters in Gk+1 such that each

recipient cluster receives a significant fraction of objects. This is called as cluster

disassociation. Example: Cluster C3
k disassociates to C3

k+1 and C4
k+1
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Fig. 6.4. Behavior of cluster members during evolution. A few clusters
in Gk continue as single clusters in Gk+1 while others disassociate or
undergo leakage.

During evolution from Gk to Gk+1, some clusters are conserved, some disassoci-

ated, and others undergo leakage. The quality of the partition is measured in terms

information transferred from Gk to Gk+1 using the Net InFormation Transfer Index
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(NIFTI). The TIC of partition is calculated for each generation as the sum of cumula-

tive information transferred till that generation. The partition with the largest TIC is

selected as the optimal one. The TIC for a partition at (k + 1)th generation is given by:

TICk+1 = TICk + NIFTIGk→Gk+1
(6.2)

where TIC1 = 0.

The optimal number of clusters is given by:

koptimal = arg max
1≤k≤kmax

TICk (6.3)

6.2.1 Net InFormation Transfer Index (NIFTI)

The Net InFormation Transfer Index during evolution from Gk to Gk+1 is defined

as the sum of the information changes of all parent clusters weighted by the fraction of

total objects they contain.

NIFTIGk→Gk+1
=

k∑

i

N i
k

N
× gi

k (6.4)

where N i
k is the number of objects in ith parent cluster and gi

k is its change in in-

formation as it evolves from Gk to Gk+1. Equation 6.4 is similar to the one used by Li

et al. (2004) for calculating the information content of a partition.

The change in information of a parent cluster Ci
k is given by:
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gi
k = Di

k ×M i
k (6.5)

Di
k is the direction (gain or loss) and M i

k the magnitude of information change aris-

ing from ith parent cluster.

The objective of clustering is to identify clusters where objects within a cluster are

more similar to each other compared to objects within other clusters. Geometrically,

this means that clusters should be distant and separable from each other in the m di-

mensional feature space. Here, we propose a statistical test to check whether offspring

clusters are separable or not. If the offspring of parent cluster are separable from other

sibling, information is deemed to have been gained during transfer and Di
k takes +1. In

contrast, if offspring are not separable, information is deemed to be lost during transfer

and Di
k is –1. In contrast to other methods, the NIFTI is not weighted as per the inter-

and intra-cluster distances.

The magnitude of information change, M i
k, is calculated using Shannon entropy

given by:

M i
k =

r∑

j=1

−pij
k ln pij

k (6.6)

where r is the number of offspring and pij (j = 1, 2, ..., r) is the fraction of objects that

jth offspring inherits.
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As described before, during evolution from Gk to Gk+1, some clusters are con-

served, some disassociated, and others undergo leakage. Consequently M i
k is 0 for

conservation, small for leakage, and large for cluster disassociation. Offspring clusters

are tested using a separability test and NIFTI increases if they are separable and de-

creases otherwise. We propose a simple but effective test for separability of clusters.

The cluster separability test is described below.

6.2.2 Test for separability of offspring

Though a parent cluster can result in many offspring, in practice it is observed that

most members of a parent cluster migrate to a few proximal offspring. This is not a sur-

prise since only one additional cluster is added at each step. Therefore, the incremental

reorganization that takes place during evolution is minimal. We term those offspring

which inherit large fractions of objects from a parent as the dominant offspring. The

information transferred for a parent cluster can be approximated by considering only

the dominant offspring. The information change arising from the other offspring (non-

dominated) is very small and can be neglected. Hence, r in Equation 6.6 is set to 2 for

all parent clusters.

Let X and Y be the two dominant offspring of a parent cluster given by:

X = arg max
j

pij (6.7)

Y = arg max
j 6=X

pij (6.8)
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where pij is the fraction of objects migrated from ith parent cluster, Ci
k to the jth

offspring cluster, Cj
k+2.

We use inter- and intra-cluster distances to identify whether X and Y are separable

or not. X and Y are said to be separable if the distance between their centroid, δXY ,

is larger than the sum of their radii (∆X and ∆Y ). A variety of methods can be used

to measure the cluster radius Bezdek and Pal (1998). Here, the mean distance between

the cluster centroid to all members of that cluster is used for this purpose.

Radius of cluster X:

∆X =
1

|X|
∑

x∈X

d(x, v̄X) (6.9)

where |X| is the number of objects in X , x represents the object in cluster X , d is

the distance metric used for clustering, and v̄X the centroid of the cluster. Similarly, the

radius of cluster Y is given by:

∆Y =
1

|Y |
∑

x∈Y

d(x, v̄Y ) (6.10)

The centroid distance between X and Y is the distance between their centroids

given as:

δXY = d(v̄X , v̄Y ) (6.11)

Hence, the separability of offspring of C i
k notated as Di

k is given by:

Di
k =





+1 if δXY ≥ (∆X + ∆Y )

−1 if δXY < (∆X + ∆Y )

(6.12)
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Geometrically, the proposed procedure for finding the separability of clusters is

equal to modeling each offspring clusters as a hyper-spheres with radii (∆X and ∆Y )and

check whether the hyper-spheres overlap. Statistically, this procedure is a hypothesis

test with the following null and alternative hypotheses:

H0 = Offspring clusters are part of single cluster

H1 = Offspring clusters are different clusters

The equations for hypothesis testing are derived considering the situation where a

single cluster is artificially broken into two clusters. Let us consider a single cluster C

containing n objects. Assume that the data is drawn from Gaussian distribution with

mean µ and covariance matrix Σ. Without loss of generality, we can assume that the

mean is at origin and covariance matrix has only diagonal elements and off-diagonal

elements are all zero (if the original covariance matrix contains non-zero off diagonal

elements it can be converted to diagonal matrix by principal axis rotation). Suppose,

now that we partition C into two clusters (offspring), we can reject the null hypothesis

using the distribution functions of both centroid distance and radii of offspring clusters.

There are two cases:

1. Same variance in all dimensions i.e.

Σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
... . . . . . .

0 0 . . . σ2
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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and σ2
1 = σ2

2 = ... = σ2
m.

2. The σis of Σ are different.

We derive the equations for proposed test of separability of offspring for case 1 and

show how it can be extended to case 2.

Case 1: Geometrically, this means that the cluster of objects form a spheroid in

m-dimensional space. Application of any clustering algorithm to partition this cluster

into two offspring results in optimal (based on the objective function used for cluster-

ing) partition. If we know the analytical solution for that optimal partitioning, we could

determine the distribution functions for centroid distance and radii of clusters. Lacking

the analytical solution for the optimal partitioning, we cannot derive the actual sam-

pling distributions. However, approximate estimates can be obtained by considering

the suboptimal partition provided by a hyperplane through the centroid of parent clus-

ter (Duda and Hart, 1973). This hyperplane approximation is schematically described

in Figure 6.5 for two dimensional data. The data contains 1000 samples drawn from 2

dimensional Gaussian distribution with mean at origin and covariance matrix [1 0;0 1].

k-means clustering algorithm is used to generate the two partitions.

Because of the hyperplane, the centroids for individual offspring clusters will be

same as centroid of original parent cluster except in one dimension (the dimension⊥ to

hyperplane). Let the dimension ⊥ to hyperplane be denoted as f . Then f follows half-

normal distribution with mean
√

2/π σ (Figure 6.5). So, the centroid distance between

the two offspring is 2
√

2/π σ. Considering the sample size, n, the squared centroid
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Fig. 6.5. Artificial partitioning of natural cluster

distance between the two offspring cluster follows Gaussian distribution with mean as

((n−1)/n)(8/π)σ2 and variance 2((n−1)/n2)(64/π2)σ4. The squared radius of clus-

ter ∆2 also follows a Gaussian distribution with mean ((m − 2)/π)σ2 and variance

4((m− 8)/π2)σ4 (Duda and Hart, 1973).

Now consider the Equation 6.12 for testing the separability of offspring clusters.

δXY ≥ (∆X + ∆Y ) (6.13)

Squaring both sides

δ2
XY ≥ (∆X + ∆Y )2 (6.14)
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Since the clusters are separated by a hyperplane passing through the origin, the two

offspring clusters approximately contain same number of samples and hence (∆X ≈

∆Y = ∆).

Hence the test of separability of offspring clusters reduces to

δ2 ≥ 4×∆2 (6.15)

where the subscripts X and Y have been removed for convenience. Hence, the

offspring clusters are deemed to be separable if

h ≥ 0 (6.16)

where h = δ2 − 4×∆2

Using the distributions for δ2 and ∆2 derived above the distribution for above equa-

tions can be obtained. This distribution refers to the null distribution for the proposed

hypothesis test as this derivation is through artificial portioning of a single cluster.

Hence, the null hypothesis can be rejected considering the distribution of above equa-

tion. Since, both δ2 and ∆2 follows Gaussian distribution, h follows a Gaussian distri-

bution with mean as 4(n−1
n

)(4/π −m)σ2 and variance 2
n
[ 64
π2 + 8(m− 8/π2)]σ4.

The false discovery rate for rejecting the single cluster hypothesis can be calculated

using the distribution of h. The false discovery rate is the probability of h > 0. The

false discovery rate indicates the probability that a offspring of a single parent cluster

are incorrectly deemed as two separable clusters. Table 6.1 shows the false discovery
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rate for different sample sizes. The values given in parenthesis are the false discov-

ery rates obtained by computational study with 1000 datasets with mean at origin and

σ2 = 2. The false discovery rates are very low even for small samples sizes. It clearly

shows that the proposed cluster separability test is able to correctly identify the arti-

ficial break of natural clusters. When a natural clusters is artificially broken, NIFTI

decreases. So, selecting a partition with highest NIFTI gives number of natural clusters

in the data.

Case 2: Geometrically this means that the cluster form a ellipsoid in m-dimensional

space. An Analytical solution is difficult for this case. However, it is possible to show

that δ2 − 4∆2 ≥ 0 for many situations. Assuming that the hyperplane separating the

two offspring cluster is ⊥ to the dimension of largest variance, the δ2 is given by:

8/πσ2
max. Similarly, ∆2 is given

∑m
i=1,i 6=j σ2

i + (1 − 2/π)σ2
max where j corresponds to

the dimension of largest variance. Hence, the separability test δ2 − 4∆2 is given by:

4σ2
max[4/π− 1]−∑m

i=1,i6=j σ2
i . This means the artificial partition of single cluster is de-

tected by proposed separability criteria whenever the sum of variances in all directions

(except the variance of largest direction) has value at least 0.275×σ2
max. Since this cri-

teria is satisfied in most of the cases, the proposed test for separability works well even

in this case. To check the performance of proposed separability test, we generated 1000

random datasets with 1000 samples each in 3-dimensional space with the largest vari-

ance as σ2
max = 3 and other variances equal to 0.75. In all the datasets the proposed

method correctly identified the partition of a single cluster.
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6.3 Results

Four publicly available microarray datasets are used to illustrate the performance of

the proposed approach. The first two datasets are time-course datasets and other two

datasets contain data from different samples.

Two different clustering techniques, namely k-means and model-based, are used

for generating partition with different number of clusters. The distance metrics used

for clustering are the same as those used by the data publishers i.e Pearson coefficient

for first, third, and fourth case studies and standard correlation coefficient for the second

dataset. In all the case studies, the maximum number of generations, Gmax is selected

as Gmax ≤
√

N (Pal and Bezdek, 1995).

6.3.1 Case Study 1 : Yeast cell-cycle data

The Yeast cell-cycle dataset was generated by Cho et al. (1998). Oligonucleotide

microarrays were used to monitor the expression levels of all known and predicted

Yeast genes during two cell-cycles. Expression levels were measured at 17 time points

with a time period of 10 min. The aim of this experiment was to identify the cell-cycle

controlled genes in Yeast. Cho et al. (1998) visually observed the highly variant genes

for consistent periodicity during the cell-cycle and identified 384 genes. These 384

genes were classified into five classes—early G1, late G1, S, G2, and M phases—based

on their peak expression.
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The proposed method, NIFTI, correctly identifies five clusters in this dataset using

k-means method (Figure 6.6). For comparison, the results for Silhouette, Dunn’s, and

Davies-Bouldin indices are shown in Figure 6.6. All three indices predict 4 clusters in

this data. The reason is as follows. At k = 4, genes from S and G2 phases are com-

bined into one cluster while those from Early G1, Late G1, and M phases are clustered

correctly. These four clusters are well-separated. When the number of clusters is in-

creased to 5, while S and G2 clusters are identified correctly, the inter-cluster distance is

small. The three methods therefore identify the partition with four clusters as optimal.

In contrast to these distance based methods, the proposed method gives no weightage

for larger inter-cluster distances and correctly identifies 5 clusters.
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Fig. 6.6. Results for Yeast cell-cycle dataset using k-means clustering.
NIFTI (solid line) correctly finds 5 clusters in this dataset. Silhou-
ette (dash line), Dunn’s (dot line), and Davies-Bouldin (dash-dot line)
indices predict only 4 clusters.
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The five clusters identified by k-means clustering correspond to the five phases of

cell-cycle—early G1, late G1, S, G2, and M phases. For example, cluster 1 contains

the cell-cycle regulated genes including PCL9, SIC1 and DNA replication genes CDC6

and CDC46 that are classified into early G1 by Cho et al. (1998). The mean expression

profile of this cluster shows single peak during the early stage of G1 (Figure 6.7).

Similarly, other clusters are also enriched with genes that are classified into one of

the reported clusters and their mean expression profiles peak during the corresponding

stages (Figure 6.7).
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Fig. 6.7. Mean expression levels of Yeast cell-cycle clusters. Solid
line represents the mean expression profile of clusters reported by Cho
et al. (1998) and dash line corresponds to the optimal clusters from
NIFTI. A strong similarity between the two can be observed.

However, some of the genes especially S phase genes are found to be ‘mis-classified’

by k-means clustering algorithm. To understand the discrepancy, we used Principal

Component Analysis and plotted the scores with the first two dominant Principal Com-
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ponents (Figure 6.8). From Figure 6.8, it is clear that some of the genes from reported

classes, especially S phase genes, are distributed to other classes. The k-means algo-

rithm put those genes in appropriate classes which explains the mismatch between the

reported and k-means partitions.
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Fig. 6.8. Scores plot of Yeast cell-cycle dataset. The first two PCs
capture 65% variance.

Results for this dataset using model-based clustering are shown in Figure 6.9. NIFTI

correctly identifies 5 clusters using model-based clustering as well. Since the ‘true’ (re-

ported) partition is available for this dataset, we compare the clustering results using

k-means and model-based clustering with reported partition using Jaccard Coefficient

(JC) (described in Section 5.3.2). JC takes a value between 0 (complete mismatch) and

1 (perfect match). The better the agreement between identified and the ‘true’ solution,

the higher the value of JC. Figure 6.10 shows the JC for Yeast cell-cycle five phase

criterion data as a function of number of clusters using k-means and model-based al-
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gorithm. The JC takes a maximum value of 0.445 at k = 5 indicating that in the given

range of k the extracted partition best matches with the reported one. This clearly shows

that the 5 clusters identified using proposed method are correct.
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Fig. 6.9. Results for Yeast cell-cycle dataset using model-based clus-
tering. NIFTI correctly finds 5 clusters in this dataset.

6.3.2 Case Study 2 : Serum data

The Serum gene expression dataset is reported by Iyer et al. (1999). In this study,

the response of human fibroblasts to serum was measured using microarrays containing

around 8000 probes. Filtering techniques were employed to short list 517 most variant

genes.

NIFTI identifies 6 clusters in this dataset using k-means clustering (Figure 6.11).

This result is supported by an other independent study using a graph-theoretical clus-
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Fig. 6.10. Jaccard Coefficient for Yeast cell-cycle dataset. The JC has
a maximum at k = 5 indicating that there are 5 clusters.

tering algorithm (Sharan et al., 2003). The Silhouette, Dunn’s and Davies-Bouldin

indices identify only 2 clusters in the dataset (Figure 6.11). This dataset is more com-

plex than the previous one. It contains two large clusters—one with up-regulated genes

and another with down-regulated genes. All the other clusters are embedded in these

large clusters. The ratio of difference between the intra- and inter-clusters distances

is highest at k = 2. So any distance based method will generally identify only two

clusters in this dataset. Multiple peaks observed for NIFTI index for this dataset while

model-based clustering is used for generation of different clustering partitions (Figure

6.12). Though highest peak is at k = 9, the Jaccard Coefficient has the highest value at

k = 6 (Figure 6.13) indicating 6 clusters in this dataset.

In the next two case studies, the datasets contain gene expression data from different

cancer samples. In these datasets, samples are clustered based on their similarity in

expression patterns. Model-based clustering is not suitable for these datasets as it uses
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Fig. 6.11. Results for Serum dataset using k-means clustering. NIFTI
(solid line) predicts 6 clusters. Silhouette (dash line), Dunn’s (dot
line), and Davies-Bouldin (dash-dot line) estimate only 2 clusters.
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Fig. 6.12. Results for Serum dataset using model-based clustering.
NIFTI index has multiple peaks with a maximum peak ak k = 9.
However, the Jaccard coefficient between the partition from model-
based clustering and expert partition has maximum at k = 6 (Figure
6.13).
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Fig. 6.13. Jaccard Coefficient for Serum dataset. The Jaccard Coef-
ficient for Serum dataset has maximum at number of clusters k = 6
indicating that identifying 6 clusters is correct.

covariance matrix in its computation. The estimation of covariance matrix is inaccurate

for sample clustering as the number of samples in each cluster are very small. So,

results are given for only k-means clustering.

6.3.3 Case Study 3 : Lymphoma data

The lymphoma dataset was reported by Alizadeh et al. (2000). In this experiment,

cDNA microarrays were used to characterize gene expression patterns in adult lym-

phoid malignancies. After filtering, the final dataset contain 4026 genes whose ex-

pression levels were measured using 96 arrays. The dataset comprises samples from

three prevalent adult lymphoid malignancies - Diffuse Large B-cell Lymphoma (DL-

BCL), Follicular Lymphoma (FL), and Chronic Lymphocytic lymphoma (CLL). For

comparison, the normal lymphocyte subpopulation under a variety of conditions is also
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included. The objective of the study was to identify if the presence of malignancy and

its type can be identified from gene expression patterns. Alizadeh et al. (2000) used hi-

erarchical clustering for clustering the samples and identified two distinct subtypes of

DLBCL-Germinal Center B-like DLBCL and Activated B-like DLBCL.

NIFTI finds 4 clusters in this dataset using k-means clustering algorithm with Pear-

son correlation as the distance metric (Figure 6.14). Not surprisingly, these four clus-

ters correspond to the four distinct branches of the dendrogram reported in Alizadeh

et al. (2000). Two of these clusters contain the samples from two subtypes of DLBCL

namely germinal center B-like DLBCL and activated B-like DLBCL. The third clus-

ter contains all FL and CLL samples along with the resting blood samples. Most of

the cell-cycle control genes, checkpoint genes and DNA synthesis genes that are de-

fined as ‘proliferation signature’ by Alizadeh et al. (2000) are under expressed in these

samples. This makes these samples distinct from DLBCL samples in which the prolif-

eration signature genes are up-regulated. The fourth cluster comprises the remaining

normal lymphocyte subpopulation under different activation conditions. However, the

transformed cell line samples which are grouped with other normal sub-populations

by Alizadeh et al. (2000) are clustered with DLBCL samples by k-means. The over-

expression of proliferation signature genes in these samples might be the reason that

they appear ‘closer’ to DLBCL samples to k-means. Nevertheless, k-means clustering

correctly clustered two out of the three DLBCL samples that were incorrectly clustered

by the hierarchical clustering.
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Fig. 6.14. Results for Lymphoma dataset. NIFTI (solid line) finds
4 clusters in this dataset. Silhouette (dash line) identifies 2 clusters.
Dunn’s (dot line) predicts 3 clusters. Davies-Bouldin (dash-dot line)
predicts 4 clusters.

The Silhouette, Dunn’s and Davies-Bouldin indices for this dataset are also shown

in Figure 6.14. The Silhouette index estimates only 2 clusters and Dunn’s index predicts

3. The lowest value of Davies-Bouldin index occurred at k = 10 in the range of k values

tested (it continued to decrease further with increase of k). However, Davies-Bouldin

index has a local minima at k = 4 indicating four clusters in this dataset. At k = 2,

all DLBCL samples are grouped into one cluster and all other samples (FL, CLL, and

normal) are lumped into other. At k = 3, the latter is split and normal samples are

identified as the third cluster. This indicates that at k = 2 and k = 3 subclasses

of DLBCL cannot be identified. Only at k = 4, the two subclasses of DLBCL are

identified. This clearly shows the usefulness of proposed method to identify correct

number of clusters that aids discovering novel sub-types of diseases.
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6.3.4 Case Study 4 : Pancreas data

The Pancreas dataset used in this study was reported by Iacobuzio-Donahue et al.

(2003). In this study, cDNA microarrays were used to analyze gene expression patterns

in 14 pancreatic cell lines, 17 resected infiltrating pancreatic cancer tissues (two sub

types), and 5 normal pancreases. The final filtered dataset consists of 1493 genes and

36 samples.

As shown in Figure 6.15, Silhouette, Dunn’s, and Davies-Bouldin indices estimate

2 clusters for this dataset. A partition with two clusters lumps together the normal

and pancreatic cancer tissues into a single cluster. The second cluster contains all the

pancreatic cancer cell lines. NIFTI estimates four clusters in this data. A partition

with four clusters describes this data well: all cancer cell line samples are accurately

placed in one cluster, all normal samples are grouped together, and two different can-

cer tissues are well separated into two clusters. Only one sample was found to be

mis-clustered. This partition with four clusters also exactly matches the dendrogram

reported in Iacobuzio-Donahue et al. (2003).

6.4 Discussion and Conclusions

The use of clustering techniques in gene expression data analysis is increasing

rapidly. To obtain the best results from these clustering techniques, optimal specifica-

tion of the number of clusters is essential. Hence, methods that automatically identify

the number of clusters in high-dimensional gene expression data have been proposed.

Methods for finding the number of clusters in a dataset can be classified as global or lo-
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Fig. 6.15. Results for Pancreas dataset. NIFTI (solid line) finds 4
clusters in this dataset. Silhouette (dash line), Dunn’s (dot line), and
Davies-Bouldin (dash-dot line) indices predict only 2 clusters.

cal methods (Gordon, 1999). Global methods evaluate clustering results by calculating

some measure over the entire dataset whereas local methods consider pairs of clusters

and test whether they should be amalgamated. The disadvantage of the global meth-

ods is that there is no definition for the measure for k = 1, i.e., the global methods do

not provide any clue whether the data should be clustered or not. Since local methods

consider pairs of clusters, they can be used to decide if data should be clustered. The

disadvantage of local methods is that they need a threshold value or significance level to

decide whether the clusters should be amalgamated. The proposed approach combines

both local and global approaches. At the local level, offspring clusters are checked for

overlap and this information is converted into a global index.
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The well-known methods for finding the number of clusters use within-cluster dis-

persion and/or inter-cluster distances. These ‘distance’ based methods are generally

suitable when clusters are compact and well-separated but fail when sub-clusters ex-

ist. Our approach overcomes this limitation by giving no extra weightage for larger

inter-cluster distances. In our approach, clusters lose or gain information based on in-

tersection with other clusters. The actual distance between the clusters is not taken into

consideration. Furthermore, the cumulative way of measuring information content of a

partition ensures that information increase as long as a non-intersecting cluster can be

identified.

However, the proposed method has a limitation. It models clusters as hyper-spheres.

Even though modeling clusters as hyper-spheres simplifies the task of finding cluster

intersections, it may lead to incorrect results in case the clusters do not have a spheri-

cal shape. Nevertheless, this procedure consistently identified the ‘correct’ number of

clusters suggesting, in part, the spherical shape of gene clusters.

Here, the proposed method is evaluated using k-means clustering algorithm with

Pearson correlation as distance metric for the Yeast cell-cycle and lymphoma datasets.

The standard correlation coefficient (dot product of normalized vectors) is used for the

Serum dataset. These two metrics are bounded: the minimum and maximum distances

are 0 and 2 respectively. On the other hand metrics such as Euclidean distance and

Manhattan distance are unbounded. Hence, the affect of outliers will be high while es-

timating the cluster radii. This may lead to incorrect estimation of number of clusters.

This can be overcome by suitably normalizing the data or selecting other ways to find
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cluster radius that are less sensitive to outliers. Further study using various distance

metrics and clustering techniques is needed to further evaluate the method.

Generally computational time is an important issue in determining the number of

clusters. In this study, we used 100 replicates of k-means algorithm for all datasets.

The time required for finding the best number of clusters is less than 10 minutes for all

datasets on a Pentium4 with 2.8 GHz processor.
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7. SIMILARITY IN PRINCIPAL COMPONENT SUBSPACES

FOR DETERMINING DISTINCT CLUSTERS IN GENE

EXPRESSION DATA

7.1 Introduction

In this chapter, a method for finding the maximum number of ‘distinct’ clusters

in gene expression data is described. This method uses Principal Component Analy-

sis (PCA) for measuring the distinctness of clusters in a given partition and marks the

clusters as ‘distinct’ or ‘indistinct’. This is transformed to an index using information

theory. ‘Distinct’ clusters contribute positively to the index whereas the ‘indistinct’

clusters contribute negatively. The partition with highest value for the index contains

maximum number of ‘distinct’ clusters. This method for finding number of clusters is

the extension of NIFTI method described in Chapter 6. NIFTI models each cluster as

hyper-sphere. The use of PCA eliminates the problem associated with shape of cluster.

The proposed method has one more advantage compared to NIFTI. The NIFTI requires

the series of partitions with number of clusters from k = 1 to k = kmax as it uses the

rearrangement of objects to measure the quality of partition. The method proposed in

this chapter does not have such limitation. The proposed method can also be used to

compare the quality of results from different clustering algorithms with the same num-

ber of clusters.

The proposed method for determining distinct clusters is based on the definition of

cluster: objects within the cluster are similar to one another (homogeneity) while be-
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ing dissimilar to objects in other clusters (separation or distinctness). A partition with

distinct, homogenous clusters is preferable to other partitions. Here, we use PCA simi-

larity factor, Sλ
PCA, to identify such partition.

Initially a number of candidate partitions are generated, for example, by using dif-

ferent clustering techniques and/or by specifying different number of clusters, k, in each

partition. Then the similarity between all the pairs of clusters in each partition is cal-

culated using Sλ
PCA and the ‘distinct’ clusters are identified. A ‘distinct’ cluster shows

low similarity to all other clusters in that partition whereas an ‘indistinct’ cluster shows

high similarity to at least one of the other clusters. This information is summarized into

an index called Net Principal Subspace Information (NEPSI) Index. ‘Distinct’ clusters

contribute positively to this index whereas ‘indistinct’ clusters contribute negatively. A

higher value of the index indicates the higher contribution of ‘distinct’ clusters over ‘in-

distinct’ clusters; hence the partition with highest NEPSI Index is selected as the ‘best’

partition.

7.2 Methods

7.2.1 Principal Components Analysis and Sλ
PCA

Here, we use PCA based similarity factor, Sλ
PCA, to measure the degree of similarity

between two clusters. In this section, we briefly describe the PCA and Sλ
PCA. PCA is

a multivariate technique that finds the principal components (directions) of variability

in the data, and transforms the related variables into a set of uncorrelated ones. These

principal components (PCs) are the linear combinations of original variables (Jackson,
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1991). PCA is traditionally used to reduce the dimensionality of data.

Let XN×m be the dataset containing N observations on m variables, v = {v1, v2...vm}.

In gene expression dataset, observations (rows) are the genes and the variables (columns)

are the assays. Each element, xij , is the expression level of ith gene in jth assay.

Given the matrix X , the objective of PCA is to find a new set of uncorrelated vari-

ables, zj(j ≤ m). The first PC z1 is given by:

z1 = w11v1 + w12v2 + ... + w1mvm (7.1)

The coefficients, wij = {w11, w12, ..., w1m} are selected such that the variance of

the first PC is greatest while satisfying the constraint w1 · w1
′ = {w2

11 + w2
12 + ... +

w2
1m} = 1. The second PC, z2 = w2 · v′, has the greatest variance satisfying the two

conditions:w2 ·w2
′ = 1 and w2 ·w1

′ = 0 (so that PCs are uncorrelated). Similarly, the

jth PC, zj = wj · v′, has the greatest variance satisfying wj ·wj
′ = 1 and wj ·wi

′ = 0

(∀i ≤ j, i 6= j) . The variance of zj is given by:

var(zj) = wj · S ·w′
j (7.2)

where S is the covariance matrix of the original variables. S is given by:

S =
XT X

N − 1
(7.3)
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provided X is column-mean centered. The solution of wj that maximizes the variance

of zj is the eigenvector of S corresponding to the jth largest eigenvalue of S. The

eigenvalues of S are the roots of the equation

|S− λjI| = 0 (7.4)

If λ1, λ2, ...λm are the eigenvalues of S such that λ1 ≥ λ2 ≥ λ3...λm−1 ≥ λm, then wj

are the eigenvectors of S obtained by the solution of the equations

|S− λjI|w′
j = 0 (7.5)

The first few PCs capture most of the variance in the data whereas the remaining PCs

represent noise. The number of PCs, l, generally used to reconstruct the data is much

smaller than the original number of variables. In this work, l is chosen such that the l

PCs describes at least 93% of the total variance in each dataset. The degree of similarity

between two clusters with the same number of variables can be estimated by compar-

ing their PCs (Krzanowski, 1979). The similarity factor SPCA measures the similarity

between the clusters based on the angles between the space spanned by the l PCs. Let

A and B be two clusters with m variables. PCA transformation is carried out on the

clusters separately and their first l PCs are obtained. The similarity between the two

clusters is quantified by comparing their subspaces L and M, which are the eigenvector

matrices corresponding to the first l PCs, and is given by:

SPCA(A, B) =
1

N

l∑

i=1

l∑

j=1

cos2 θij (7.6)
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where θij is the angle between the ith eigenvector of L and the jth eigenvector of

M. The similarity can also be expressed as (Krzanowski, 1979)

SPCA(A,B) =
trace(L′MM ′L)

l
(7.7)

Note that while the two clusters are required to have the same number of variables

(assays), they could have different number of observations (genes). Smaller values of

SPCA indicate the low similarity between the groups whereas values larger than a pre-

specified threshold signify high similarity.

The advantage of SPCA is that it quantifies the similarity between two groups by a

single number. One shortcoming of SPCA is that it gives equal weight for all the PCs

used in its calculation while the amount of variation captured by them varies largely.

To overcome this limitation, Singhal and Seborg. (2002) developed a modified form of

SPCA, denoted as Sλ
PCA, that weighs the PCs by the variation captured by them. Sλ

PCA

is defined as:

Sλ
PCA(A,B) =

l∑
i=1

l∑
j=1

λA
i λB

j cos2 θij

l∑
i

λA
i λB

i

(7.8)

where λA
i and λB

j are the ith and jth largest eigenvalues (variances of ith and jth

PCs) of the covariance matrices of A and B, respectively. The Sλ
PCA takes values be-

tween [0 1]; a value close to 0 indicates that A and B are dissimilar while a value close

to 1 indicates that they are similar (Srinivasan et al., 2004).
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The expression profile of a gene is a point in m-dimensional assay space. A group

of genes form a cluster of points. Application of PCA on a cluster identifies the direc-

tions of largest variations in that cluster and rotates the axes to these principal direc-

tions. If only the first l PCs are used to represent a cluster, the points can be considered

as embedded in the l-dimensional PC subspace of the m-dimensional original space

(Krzanowski, 1979). The PC sub-space thus captures the structure of the cluster of

points. The Sλ
PCA measures the similarity between the sub-spaces embedding two gene

clusters by measuring the angle between the sub-spaces. When the structures of the

two clusters are similar, their PC subspaces coincide and Sλ
PCA ≈ 1.

In gene expression data clustering, genes are generally grouped together based on

the ‘shape’ of their expression profile i.e. genes are grouped into the same cluster

even if their expression profiles differ in magnitude. In many applications, genes with

inversely correlated expression profiles are also grouped together; this is achieved by

using the squared Pearson correlation metric during clustering. Since Sλ
PCA measures

the angles between the PCs of the two groups, it effectively discounts differences in

their magnitudes and instead measures the similarity of the correlations (positive or

negative) between the constituent genes. It is therefore a suitable measure for finding

similarity or distinctness of gene clusters.

7.2.2 Calculation of NEPSI Index

The Net Principal Subspace Information (NEPSI) Index for a given partition is de-

rived from Information theory. Information theory measures the information contained

in a message selected from a set of possible messages. If the message is certain or
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known a priori, i.e. the set contains only one message, the information content is zero.

The more uncertain (large set of possible distinct messages) a message the more the

information content of the message. Shannon defined the entropy that measures the

average information contained in a single observation of a random variable (Shannon,

1948). Let the random variable R takes the values {r1, r2, ...rt} with the probabilities

{p(r1), p(r2), ..., p(rt)}. Shannon entropy of R is given by:

E(R) = −∑
r

p(r) log p(r) (7.9)

While Shannon entropy was originally developed for communication technology,

it is widely used in a variety of applications including gene expression data analysis

(Fuhrman et al., 2000). Here, we use Shannon entropy to measure the information con-

tent of a partition.

The information content of a partition C = {C1, C2, .., Ci, ..Ck} with k clusters can

be defined as (Li et al., 2004):

E(C) =
k∑

i=1

piE(Ci) (7.10)

where pi is the probability and E(Ci) is the entropy of cluster Ci. The probability of a

cluster is given by:

pi =
|Ci|
N

(7.11)

where |Ci| is the number of genes in cluster Ci.
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Suppose each cluster Ci follows the m-dimensional Gaussian distribution with co-

variance matrix Σi . Then E(Ci) is given by:

E(Ci) = log(2πe)m/2 + 1/2 log |Σi| (7.12)

Substituting this in Equation 7.10 and discarding the constant term log(2πe)m/2 gives

the expression for E(C) as

E(C) =
1

2

k∑

i=1

pi log |Σi| (7.13)

Shannon entropy requires the messages in the set to be distinct. Adding a message

that models the existing one does not increase the entropy. This can be accounted for

by including the similarity between the clusters. We incorporate the ‘distinctness’ of

the clusters, di, into the Shannon entropy. We call this measure as NEPSI Index defined

as:

NEPSIk =
k∑

i=1

di · pi log |Σi| (7.14)

Whenever there are highly similar clusters, the similarity metric Sλ
PCA identifies

them as ‘indistinct’ clusters and the information contribution of those clusters is nega-

tive.

The crucial step in the proposed method is the identification of ‘distinct’ clusters in

the given partition. As described previously, we use the PCA based similarity metric

Sλ
PCA for this purpose.
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Let C = {C1, C2, C3, ...Ck} be a partition with k clusters. Each cluster Ci is com-

pared to other clusters Cj(i 6= j). Cluster Ci is said to be ‘distinct’ if it shows lower

similarity than a predefined similarity threshold, θT , to all other clusters in that parti-

tion. The distinctness of information contribution from this cluster, di, is given by:

di =





+1 if max {Sλ
PCA(Ci, Cj)∀j 6= i} ≤ θT

−1 if max {Sλ
PCA(Ci, Cj)∀j 6= i} > θT





(7.15)

Sλ
PCA is symmetric, i.e. Sλ

PCA(Ci, Cj) = Sλ
PCA(Cj, Ci). Hence, while finding similari-

ties among clusters, we need to find only




k

2


 similarities.

Next, we describe how maximizing NEPSI identifies the partition with most ‘dis-

tinct’ clusters. Let Copt be the best partition with kopt distinct clusters. Three different

scenarios are possible:

1. Number of clusters k in a partition is greater than kopt : some ‘natural’ clus-

ters will be split into two or more clusters in this case. These offspring clus-

ters will generally show high similarity to each other. The proposed method

identifies these clusters as ‘indistinct’ clusters since Sλ
PCA will be high (> θT ).

Therefore di = −1 and these clusters contribute negatively to NEPSI Index. So

NEPSIk < NEPSIkopt for k > kopt.

2. The number of clusters in a partition k < kopt : Some or all of the k clusters may

be ‘distinct’. Even if all of them are ‘distinct’ NEPSIk < NEPSIkopt since the

Shannon entropy (equation 7.14) increases with k as long as additional ‘distinct’

clusters (di = +1) can be found in other partition as will be the case with Copt.

143



3. When k = kopt , the partition contains the largest number of ‘distinct’ clusters.

So NEPSIkopt is the largest.

The proposed method uses one parameter, θT for identifying distinct clusters. We

have used θT = 0.55 in all cases. The procedure for selecting threshold is as follows:

we collected twenty five reported gene clusters (not from the datasets used for eval-

uation of proposed method) from publicly available datasets. For these 25 ‘training’

clusters, we measured the similarity between all possible distinct pairs using Sλ
PCA.

Then we artificially split each cluster into two sub-clusters (to generate 50 ‘indistinct’

clusters) and found the similarity between them. Histograms of similarity scores for

’distinct’ (shaded) and ‘indistinct’ (plain) clusters are shown in Figure 7.1. The simi-

larity scores for ‘distinct’ clusters spanned the range from [0.1 0.6] whereas those of

‘indistinct’ clusters spanned [0.5 0.85]. The ‘distinct’ and ‘indistinct’ clusters can be

separated in the range from [0.5 0.6]. Hence we selected θT = 0.55

Fig. 7.1. Histograms of similarity scores for distinct (shaded) and
indistinct (plain) clusters. Distinct clusters show a low similarity
whereas indistinct clusters show high similarity.
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7.3 Results

The NEPSI method for finding number of distinct clusters in gene expression data

is evaluated using two gene expression datasets. The two datasets are standardized,

i.e. the mean and standard deviation for each expression profile is set to zero and

one respectively before clustering. The similarity metric used for clustering is Pearson

correlation. Two different clustering techniques—k-means and model-based— are used

for generation of partitions. More details of model-based clustering are available in

Yeung et al. (2001). Specifically, we use the equal volume spherical (EI) models of

Banfield and Raftery (1993) as implemented in the MatlabTM toolbox by Fraley and

Raftery (1999). The toolbox also implements the Bayesian Information Criterion (BIC)

to find the number of clusters. BIC compares two models using the fitness (likelihood)

and the number of parameters. The higher the BIC score, the better the model. A score

difference≥ 10 is considered to be sufficient to say that a model is more favorable than

others (Kass and Raftery, 1995).

7.3.1 Case Study 1: Yeast cell-cycle five-phase criterion dataset

This Yeast cell-cycle five-phase criterion dataset is described in Section 6.3.1. Re-

sults for Yeast cell-cycle five-phase criterion data are shown in Figure 7.2. The NEPSI

Index correctly finds five distinct clusters using both k-means and model-based (EI)

clustering algorithms. The BIC score shows no maxima within the given range of k

(Figure 7.3). For all k values in this range, BIC(k + 1) − BIC(k) > 10 indicating

that there is no optimal number of clusters. However, BIC score shows inflection at

k = 4 (visual observation) suggesting incorrectly 4 clusters in the data. The Silhouette
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index, Dunn’s index, and Davies-Bouldin index also identify only 4 clusters in this data

(Figure 6.6). This clearly shows the efficacy of the proposed method in identifying the

number of ‘distinct’ clusters in the data.
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Fig. 7.2. Results for Yeast cell-cycle five-phase criterion data. The
NEPSI index correctly finds 5 distinct clusters using both k-means and
model-based (EI) clustering algorithms.

The JC for Yeast cell-cycle five phase criterion data as a function of number of clus-

ters using k-means algorithm is shown in Figure 6.10. The JC takes a maximum value

of 0.445 at number of clusters, k = 5 indicating that the extracted partition best matches

with the reported one in the given range of k.

Table 7.1 shows the distribution of genes in the reported clusters over the 5 ‘dis-

tinct’ clusters extracted by k-means. Rows represent the k-means clusters and columns

the reported clusters. Three of the reported clusters (Early G1, Late G1, and M) are
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Fig. 7.3. Results for Yeast cell-cycle five-phase criterion data. BIC
incorrectly reports 4 clusters with model-based (EI) clustering.

accurately identified by k-means. Some of the genes from other clusters (S and G2)

are misclassified. To find the reason for this, we calculated the average homogeneity

(Havg ) and average separation (Savg) of both the reported and identified partitions as

described in Sharan et al. (2003). The Havg and Savg are the average similarity of all

the pairs of genes in the same and different clusters, respectively. A partition with high

Havg and low Savg is preferable. The results are shown in Table 7.2. The Havg and Savg

for the identified partition are significantly better than the reported partition. The ho-

mogeneity values of the S and G2 reported clusters are found to be 0.3316 and 0.4363,

respectively. The low homogeneity of these clusters indicates that some genes in these

clusters are not similar to other genes within the same clusters. This finding is also

supported by another independent study (Lukashin and Fuchs, 2001). The clustering
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algorithms used here might have placed these genes in more ‘appropriate’ (homoge-

neous) clusters resulting in the higher homogeneity and better separation. The heatmap

(Eisen et al., 1998) of the five distinct clusters obtained from k-means shows that the

identified five ‘distinct’ clusters are enriched with similarly expressed genes (Figure

7.4).

Table 7.1
Comparison of distinct clusters identified using k-means against the re-
ported clusters for the Yeast cell-cycle dataset shows that each distinct
cluster is enriched with the genes from one of the reported clusters.

Reported
Identified

Early G1 Late G1 S G2 M
1 67 5
2 130 13
3 46
4 16 32
5 20 55

Table 7.2
Comparison of distinct clusters identified using k-means and model-
based (EI) clustering algorithms against the reported partition for the
Yeast cell-cycle dataset. The proposed method correctly identified five
clusters with k-means and model-based (EI) clustering. The average
homogeneity and average separation are better than reported results.

Result kopt Havg Savg

Reported 5 0.5328 -0.0633
k-means 5 0.6615 -0.1125

Model-based 5 0.6615 -0.1125

7.3.2 Case Study 2: Yeast sporulation dataset

This data is reported by Chu et al. (1998). In this study, DNA microarrays are used

to measure the expression levels of almost all the genes in Yeast Saccharomyces cere-
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Fig. 7.4. Heat-map of five distinct clusters identified by k-means clus-
tering in Yeast cell-cycle dataset. Each cluster is enriched with simi-
larly expressed genes.

visiae during the temporal program of meiosis and spore formation. Expression levels

are measured at seven time-points — 0, 0.5, 2, 5, 7, 9, and 11.5 hours. We collected

the complete dataset and filtered the dataset to identify highly variant genes that show

two-fold change at least once during the experiment. The final dataset contains 963

genes that qualified in this test.

Results for the Yeast sporulation dataset are shown in Figure 7.5. NEPSI Index finds

6 distinct clusters using both k-means and model-based (EI) clustering techniques. The

BIC score for model-based (EI) is nearly flat after k = 6, thus indicating 6 clusters in

this data (Figure 7.6). The Silhouette, Dunn’s, and Davies-Bouldin indices suggest 4,
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3, and 6 clusters, respectively (Figure 7.7).
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Fig. 7.5. Results for Yeast sporulation dataset. The NEPSI index iden-
tifies 6 distinct clusters using both k-means and model-based (EI) clus-
tering algorithms. The BIC score for model-based (EI) clustering is
flat after k = 6, thus also indicating 6 clusters in this dataset.

Since we don’t have the ‘true’ solution in this case, we use z-scores proposed by

Gibbons and Roth (2002) for evaluation of results. The z-scores of a partition indicates

the relation between its clusters and the annotations relative to the random partition.

The higher the score, the better the partition. It uses, for Yeast, the Saccharomyces

Genome Database (SGD) annotation of yeast genes with the gene ontology developed

by Gene Ontology Consortium (Ashburner et al., 2000; Issel-Tarver et al., 2002). Fig-

ure 7.8 shows the z-scores for this dataset as a function of number of clusters using

k-means (solid line) and model-based (EI) (dotted line). The large positive values of

the z-scores indicate that the clusters are significantly enriched with functionally re-
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Fig. 7.6. Results for Yeast sporulation dataset. The BIC score for
model-based (EI) clustering is flat after k = 6, thus also indicating 6
clusters in this dataset.
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Fig. 7.7. Results for Yeast sporulation dataset. The Silhouette index
finds 4 clusters, Dunn index finds 3 clusters, and Davies-Bouldin index
selects the partition with k = 6.
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lated genes than the random partitions. The z-scores for k-means are spanned from

36 to 58.6 with the maximum at k = 6. For model-based clustering, the z-scores are

spanned from 31.7 to 57.8 with the maximum at k = 7. However, the z-scores for the

partition with 6 clusters is equally good and only 0.4 lesser than the maximum. Hence,

the partition with 6 clusters is reasonable.
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Fig. 7.8. z-scores as a function of number of clusters for Yeast sporula-
tion dataset. The z-score is maximum for k = 6 for k-means clustering
algorithm. z-scores for Model-based (EI) clustering are almost equal
for k = 6 and k = 7.

We now analyze the partition with ‘distinct’ clusters extracted using k-means. The

centers of the 6 clusters with error-bars are showed in Figure 7.9. Table 7.3 gives the

enriched Gene Ontology (GO) processes for all the clusters. For each cluster, only 3

significantly enriched (based on p-value) processes are given. The number of genes in

the cluster and the enriched process are given in the parenthesis. From Figure 7.9, it is
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clear that each cluster has ‘distinct’ expression pattern. The first 3 clusters contain the

genes that are activated during sporulation with difference in the time of activation and

duration of activated state. For example, the first cluster contains the genes that are im-

mediately and transiently activated after the change of environment. The remaining 3

clusters are formed with the repressed genes. Twenty three (out of 53) genes from this

cluster 1 are involved in organic acid metabolism (P = 2.26 E-19), 19 involved in amine

metabolism (P = 3.09 E-16), and 17 involved in amino acid and derivative metabolism

(P = 1.91 E-14). Similarly, other clusters are also significantly enriched with the genes

participating in sporulation (cluster 2), meiosis (cluster 3), macromolecular biosynthe-

sis (cluster 4), alcohol and carbohydrate metabolism (cluster 5), and cell organization

and biosynthesis (cluster 6), respectively. Each cluster is enriched with functionally re-

lated genes and the functions of genes in different clusters are different. This clearly

shows the ability of proposed method to identify ‘distinct’ clusters with functionally

enriched genes.

7.4 Discussion and Conclusions

Here, a method was proposed which uses Principal Component similarity factor to

gauge distinctness of clusters in a partition. The proposed method selects the partition,

out of a set of partitions, with maximum number of distinct clusters while satisfying

the objectives of clustering. The efficacy of the proposed method was illustrated using

two gene expression datasets and two clustering methods. In all the cases the pro-

posed method performed reasonably well and showed better performance than other

approaches.
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Fig. 7.9. Cluster centers of the 6 distinct clusters identified in Yeast
sporulation data. Clusters 1, 2, and 3 are up-regulated and cluster 4, 5,
and 6 are down-regulated. Each cluster is enriched with genes related
to specific biological function.

The calculation of NEPSI requires the determinant of covariance matrix of clusters.

If some of the input variables are highly correlated then the covariance matrix becomes

ill-conditioned and determinant approaches zero. To avoid this, we calculated the de-

terminant from the product of most significant eigenvalues that capture at least 93% of

variance. The results were unchanged even when using all the eigenvalues in the case

studies.

Since computational efficiency is an important requirement in cluster validation,

we also evaluate the performance of the proposed method. To eliminate the effect of

initial guess on k-means, we initiated k-means with 25 guesses for each value of k and
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Table 7.3
Functional mapping of the 6 distinct clusters identified by k-means
clustering algorithm in Yeast sporulation dataset. Clusters are enriched
with genes with relevant functions and the function of each cluster of
genes is different from those of others.

Cluster GO process
Organic acid metabolism (23)

C1(53) Amine metabolism (19)
Amino acid and derivative metabolism (17)

Sporulation (42,)
C2(321) Development (68)

Cell-cycle (45)
Meiosis (29)

C3(95) Chromosome segregation (14)
Meiotic gene conversion (6)

Macromolecule biosynthesis (83)
C4(144) Ribosome assembly (12)

Cytoplasm organization and biogenesis (17)
Alcohol metabolism (20)

C5(180) Carbohydrate metabolism (23)
Alcohol catabolism (10)

Cell organization and biogenesis (88)
C6(170) Biopolymer metabolism (77)

Ribosome assembly (16)

used the best result for further analysis. The time taken for identifying distinct clusters

using the proposed method in Yeast cell-cycle dataset with k-means and model-based

clustering (including the time for clustering) were 0.6 and 2 mins, respectively in a

Pentium 4, 2.8GHz class machine using MatlabTM 6.5.1. Similarly, the time taken

for Yeast sporulation dataset was 1.2 and 10 mins, respectively. Excluding the time for

clustering, the proposed method identifies best partition within one minute in both the

datasets.
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8. BAYESIAN APPROACH FOR INTEGRATING

TRANSCRIPTION REGULATION AND GENE EXPRESSION

DATA

8.1 Introduction

Cells carry-out their complex functions by altering the transcription rates of spe-

cific genes throughout the genome in timely fashion. The transcription rate of a gene

is precisely regulated by the combined action of several activator and repressor pro-

teins called Transcription Factors (TFs) that bind to the promoter regions of genes and

regulate the expression of genes (Lee and Young, 2000). A primary goal of biologi-

cal studies is to understand gene regulation and to identify which Transcription Factors

regulate which genes. Such insights are essential to develop models that predict cell re-

sponses to novel conditions. Even though analysis of genome-wide expression profiles

enhances our understanding of cellular processes, there are certain inherent challenges

when assigning regulators for genes.

Microarray expression profiling does not distinguish between effect of direct bind-

ing of TF to a target gene and the indirect effect caused by intermediate TFs. So genes

can have similar expression profile even though their regulators are different. Hence

clustering of co-expressed genes is of limited use to reliably assign TFs to genes (Bar-

Joseph et al., 2003b). Segal et al. (2003) proposed a method to identify the targets of

regulators using expression data. Their approach assumes that expression profile of reg-

ulated genes depend on expression of their regulators. This assumption is not always
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valid. For example, during post-transcriptional modifications of TFs the expression of

regulator does not change appropriately. Hence expression data alone is not adequate

for identifying the regulators for genes.

However, there are other genomic data sources that provide complementary infor-

mation about TF-gene interactions. For example, the genome-wide location analysis

method (Ren et al., 2000) identifies the direct TF-gene physical interactions at genome-

scale by combining the chromatin immunoprecipitation (ChiP) procedure with microar-

rays. Though location data is highly useful, false positives and false negatives hinder

the assignment of TFs to genes. For instance, there is only moderate agreement be-

tween the genome-wide location studies of Saccharomyces Cerevisiae by Iyer et al.

(2001) and Simon et al. (2001) for the same TFs: mbp1, swi4, and swi6 (Futcher,

2002). However, by integrating gene expression and genome-wide location data one

can extract useful and reliable information about regulation of genes.

There are two reported approaches to combine these two datasets. The first ap-

proach, proposed by Hartemink et al. (2001) uses Bayesian networks with the location

data influencing the model prior and the expression data influencing the likelihood. The

identified network provides the links between TFs and their target genes. As another

approach, Bar-Joseph et al. (2003b) proposed a method that compliments the expres-

sion data with location data to overcome the false negatives in location data. In their

approach, location data is used to classify genes into different sets such that genes in

each set are bound by the same TFs. Then for each such group, a minimum radius

sphere (capturing the genes within the set) is found in gene expression data. Then the
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genes without any regulators (false negatives) in location data are classified into these

sets if they fall in the sphere and have the combined probability of regulatory inter-

actions lesser than the predefined threshold. One of the limitations of their method is

the computational complexity of finding the minimum radius sphere in the high dimen-

sional expression data. Furthermore, their method is not extendable to other datasets

such as gene / promoter sequences. In this chapter, a Bayesian approach is proposed

to integrate gene expression data with genome-wide location data in order to reliably

assign TFs for genes.

8.2 Proposed Method

The proposed method uses the genome-wide location data and gene expression data

in an incremental way to reliably assign regulators to genes. The method is schemat-

ically shown in Figure 8.1. A model is first developed using genes for which high

confidence transcription factors are available in the location data. This model is then

used for assigning TFs to the remaining genes (i.e. those without reliable transcription

factor information) using expression similarity. There are three steps in the method: (1)

Conversion of location data into binary values, (2) Model development for genes with

TFs in location data, and (3) Bayesian classification of the remaining genes using the

model identified in Step 2. We describe these three steps in the following sections.

8.2.1 Conversion of Location Data to Binary Values

The genome-wide location data contains the p-values for the TF-gene interactions.

The lower the p-value, the higher the probability of interaction. These p-values have to
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Fig. 8.1. Proposed methodology for integrating gene expression and
genome-wide location data. Genes are first classified into several
classes where each class of genes is bound by the same transcription
factors (TFs). Unclassified genes are the assigned to one of the exist-
ing classes using Bayesian decision rule.

be converted to binary values to decide whether a particular TF binds to the gene or not.

The value ‘1’ indicates an interaction between a transcription factor and gene whereas

the value ‘0’ indicates no interaction. Binary conversion is carried out by selecting a

suitable threshold for p-value.
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Let Bm×t be the location data for m genes on t transcription factors where each el-

ement, bij , is the p-value for the interaction between gene ith gene and jth transcription

factor. Then, we consider that the interaction between the ith gene and jth transcription

factor occurs if bij is smaller than the p-value threshold PT

bij =





1 if bij < PT

0 otherwise





(8.1)

8.2.2 Model Development for Genes with TFs in Location Data

A model consisting of TFs linked to expressions of the gene they regulate is devel-

oped in the next step. For this, by using a strict PT , we can identify the most reliable

interactions after binary conversion. Then different classes in the location data are

identified such that all the genes within a class are bound by same TFs set. For this,

the method searches for all the possible combinations of transcription factors (i.e. 2t−1

combinations are possible with t TFs). For each such set, our method finds the genes

bound by all the TFs and considers them as a model component. Genes are allowed to

be present in multiple model components. For example, a gene bound by regulators A,

B and C in location data is allowed to be present in both the classes regulated by {A,

B}, and C, respectively. However, it is not allowed in model components regulated by

{A} and {B}.

8.2.3 Model-based Bayesian Classification

After identification of reliable interactions and classification of genes, putative TFs

are assigned to the remaining genes using the Bayesian classification rule. In general,
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Bayesian rule updates the belief of a hypothesis in the light of new evidence. In the

present context, the Bayesian rule updates the a priori probability (belief) that a pre-

viously unclassified gene belongs to the one of the classes (hypothesis) to a posterior

probability using the expression similarity of the gene to the already classified genes

(evidence).

Let Xm×n be the expression data matrix containing m genes measured at n time

points. Assume that these m genes are classified into wi(1 ≤ i ≤ C) classes where all

the genes in class wi are bound by the same set of transcription factors. Given a new

gene with expression profile represented by x , the probability that x belongs to the ith

class is given by Bayesian rule as (Duda and Hart, 1973):

P (wi/x) =
P (wi).p(x/wi)

p(x)
(8.2)

where P (wi/x) is the a posterior probability of x belongs to class wi , P (wi) is

the a priori probability that x belongs to class wi , p(x/wi) is the probability density

function of x given the class wi , and p(x) is the probability density function of x given

by:

p(x) =
C∑

i=1

p(x/wi).P (wi) (8.3)

The Bayes rule (8.2) shows how measuring the expression profile of a gene changes

the a priori probability to a posterior probability. According to the Bayesian theory, to

reduce the probability or error, a gene should be assigned to the class for which it has

the highest posterior probability i.e. assign x to class wj if
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P (wj/x) > P (wi/x) ∀i 6= j (8.4)

The denominator in Equation 8.2 is a normalization factor which makes the sum

of posterior probabilities equals to 1. For classification purposes, it is not necessary

to have the normalized posterior probabilities; hence the denominator is normally dis-

carded. Then the classification rule in Equation 8.4 becomes

p(x/wj).P (wj) > p(x/wi).P (wi) ∀i 6= j (8.5)

In practice, we can use any monotonic function of p(x/wi)P (wi) that is conve-

nient for calculation of posterior probabilities. In this work, we use the logarithm of

p(x/wi)P (wi) represented by gi(x). The conditional probability function of x for a

given class wi , p(x/wi), is assumed to be a multivariate normal distribution. Hence the

Bayesian decision rule is given by:

gj(x) > gi(x) ∀i 6= j (8.6)

gi(x) = −1

2
(x− µi)Σ

−1
i (x− µi)

T − 1

2
ln(|Σi|) + ln P (wi) (8.7)

whereµi and Σi are the mean and covariance of class wi , respectively. P (wi) is the

fraction of genes in class wi . The mean and covariance of a class are estimated using

the samples in that class as:

µi =
1

ni

∑
xεwi

x (8.8)
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Σi =
1

ni

∑
xεwi

(x− µi)(x− µi)
T (8.9)

where ni is the number of samples in class wi.

In Equation 8.7, the Bayesian rule is used with the Mahalanobis distance between

the expression profile of gene x and the mean of the class µi to generate the a posterior

probability that a gene belongs to a class. As a strict PT is used in binary conversion

(Equation 8.1) of the location data, the gene interactions are identified with high confi-

dence (few false positives). False negatives may be induced by the strict threshold; the

proposed method reduces such false negatives by complimenting with gene expression

data. For each gene with no regulators in location data, the proposed method uses its

expression similarity to the already classified genes as evidence and generates the prob-

ability that it belongs to these classes. Finally, the gene is assigned to the class (set of

TFs) for which it has highest similarity. Hence the proposed method reliably assigns

the TFs to genes.

8.3 Results

We evaluate the proposed Bayesian approach to identify the regulators for Sac-

charomyces Cerevisiae cell-cycle regulated genes reported by Spellman et al. (1998).

Spellman et al. (1998) measured the expression levels of Yeast genes at 73 time points

during three independent conditions: α factor arrest, elutriation, and arrest of cdc15.

They identified approximately 800 cell-cycle regulated genes using periodicity and cor-

relation algorithms. The genome-wide location data for these genes are collected from

Simon et al. (2001). Simon et al. (2001) conducted the genome-wide location study for
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nine known cell-cycle transcription factors: Fkh1, Fkh2, Ndd1, Mcm1, Ace2, Swi5,

Mbp1, Swi4, and Swi6. Out of the 800 cell-cycle regulated genes location data is avail-

able for 794 genes. We use these 794 genes in this study.

We used the strict p-value threshold, PT , of 0.001 to convert the p-values to binary

values (Bar-Joseph et al., 2003b). This means there is 0.1% probability that an inter-

action happened by chance. We then tested all the combination of the nine cell-cycle

regulators for eligible gene classes. This procedure identified 28 classes containing

206 unique genes (out of these 794). Considering the false positives even at this strict

threshold, we considered only the classes containing at least 5 genes. The first three

columns of Table 8.1 show the classes, class sizes and their regulators. In the third

step, we calculated the probabilities for each of the remaining 588 genes belonging to

all the 28 classes using Bayesian rule. The proposed approach needs the inverse of the

covariance matrix of each class to generate the posterior probabilities (Equation 8.7).

Since the dimensionality of the expression data is 73 (time points), we need at least

73 genes in each class to calculate a non-singular covariance matrix and hence the in-

verse. Given that a class has smaller number of genes than the minimum requirement,

calculation of covariance matrix is untenable. To solve this problem we used Principal

Component Analysis (PCA). PCA is a multivariate technique that finds the principal

components (directions) of variability in the data, and transforms the related variables

into a set of uncorrelated ones. These principal components (PCs) are the linear com-

binations of original variables (Jackson, 1991). The first few PCs capture most of the

variance in the data whereas the remaining PCs represent noise. Hence the dimension-

ality of the data can be reduced by considering the first few PCs. We applied PCA on
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the whole data before identifying the classes. Since the minimum size of the classes is

5, we used the first four PCs in order to have the non-singular covariance matrix for all

classes. Then the 588 genes are assigned to one of these 28 classes using their highest

posterior probabilities. The last column of Table 8.1 shows the number of novel genes

assigned to the 28 classes. The number of gene assigned to different sets varies from

zero to a maximum of 98. The distribution of normalized maximum a posterior prob-

ability of 588 genes is shown in Figure 8.2. 169 (out of 588) genes have the highest

posterior probability of at least 0.5.

Fig. 8.2. Distribution of normalized maximum a posterior probability
of the 588 genes whose regulators are predicted using the proposed
method.

Here, we give a brief analysis of the classification results. Spellman et al. (1998)

clustered cell-cycle regulated genes into different clusters based on their similarity in
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Table 8.1
Prediction of class labels for genes without any transcription factors
in genome-wide location data. Genes are assigned to the class with
highest posterior probability.

Model development Classification of novel genes
Class No. Size Transcription Factors (TFs) No. of genes classified

1 5 Fkh2 Ndd1 Mcm1 Mbp1 Swi4 Swi6 0
2 6 Fkh2 Ndd1 Mbp1 Swi6 5
3 7 Fkh2 Ndd1 Swi4 Swi6 1
4 5 Fkh2 Mcm1 Swi4 Swi6 0
5 7 Fkh2 Ace2 Swi4 Swi6 1
6 12 Fkh2 Mbp1 Swi4 Swi6 14
7 5 Mcm1 Mbp1 Swi4 Swi6 9
8 5 Ace2 Swi5 Mbp1 Swi6 4
9 6 Ace2 Swi5 Swi4 Swi6 5

10 5 Ace2 Mbp1 Swi4 Swi6 7
11 5 Swi5 Mbp1 Swi4 Swi6 1
12 9 Fkh2 Ndd1 Mcm1 18
13 6 Fkh1 Fkh2 2
14 6 Fkh2 Ace2 3
15 6 Fkh2 Swi5 18
16 5 Fkh2 Swi4 19
17 7 Fkh2 Swi6 1
18 9 Ace2 Swi5 18
19 8 Mbp1 Swi4 19
20 13 Mbp1 Swi6 50
21 28 Swi4 Swi6 50
22 16 Fkh1 98
23 16 Ndd1 65
24 22 Mcm1 76
25 34 Swi5 35
26 7 Mbp1 30
27 16 Swi4 31
28 5 Swi6 8
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expression over all experiments. We analyze the results for some of these clusters:

CLN2 Cluster: The CLN2 cluster contains 76 genes that show peak expression dur-

ing mid-G1 phase in their expression. These genes are regulated by MBF (complex of

Mbp1 and Swi6) and SBF (complex of Swi4 and Swi6) (Spellman et al., 1998). TFs

are available for 29 (out of 76) genes in location data, but no regulators are found for

remaining 47 genes. The proposed method correctly identifies the regulators for these

genes. Our approach assigns either MBF or SBF or both as the regulators for 37 of

these genes. These genes include POL12, POL30, CDC9, and STB1 etc. For the re-

maining genes, one of the subunits of SBF and MBF are assigned.

CLB2 cluster: The CLB2 cluster contains 36 genes regulated by the complex formed

the transcription factors Mcm1, Ndd1, Fkh1/Fkh2 (Koranda et al., 2000; Zhu et al.,

2000). Regulators are not available for 15 of these genes in genome-wide location data.

Our approach identifies all three TFs Mcm1, Ndd1, and Fkh1/Fkh2 as the regulators

for 12 out of these 15 genes. These genes include CLB1, MOB1, and HOF1 etc. Ndd1

is assigned as a regulator for 2 genes and Fkh1 is assigned for the remaining one gene.

MCM cluster: The MCM cluster contains 34 genes regulated by Mcm1 (Spellman

et al., 1998). Our approach predicted the transcription factors for 23 out of these 34

genes. Comparing to the other clusters, the results for this clusters are not accurate.

Mcm1 is assigned as a transcription factor for 9 genes and Ndd1 for 7 genes. One or

more of the Fkh2, Ace2, Swi4, and Swi5 are assigned to the remaining genes.
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Application of Bar-Joseph et al. (2003b) procedure for these same datasets yielded

34 classes with a mean class size of around 9. Only 22 of the 76 genes from CLN2

cluster are included in these 34 classes. Similarly 19 and 15 genes from CLB2 and

MCM clusters included in these 34 classes. Moreover, these 22, 19, and 15 genes are

distributed over several classes giving no clear clue of regulators for these genes.

8.4 Discussion and Conclusions

Here, a Bayesian approach to integrate genome-wide location data with gene ex-

pression data to predict the regulators for genes has been proposed. The proposed

method has been evaluated by predicting the regulators for Saccharomyces Cerevisiae

Cell Cycle regulated genes. The proposed method showed reasonable performance and

correctly predicted the regulators for several genes. However, there are several issues

to be addressed. The first one is the low sample situation. Out of these 794 genes used

in this study, only 206 genes have reliable TFs in location data whose expression data

is later used to identify the parameters (mean and covariance matrices). The minimum

class size is 5. The estimation of the parameters generally needs more genes in each

class to cancel the effect of noise in the data. This problem can be eliminated by us-

ing the same covariance matrix for all the classes. Then the parameters can be reliably

estimated by pooling the genes from all the classes. This also eliminates the need for

PCA. This needs further examination. Nevertheless, for the case considered here, the

proposed method showed reasonable performance. All the genes with no regulators

in location data are assigned to one of the predefined classes based on their posterior

probability. Even though the results are reasonably correct, it is preferable to develop

criterion to reject genes in case no significant evidence is available for classification.
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From Figure 8.2, it is evident that some of the genes have the maximum posterior prob-

ability less than 0.5 indicating that they do not have significant evidence to be assigned

to any class. Hence, it is better not to assign these genes to any of the classes.
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9. INTEGRATIVE CASE STUDY: IMPROVEMENT OF AN

ESCHERICHIA COLI STRAIN FOR PRODUCING

RECOMBINANT PROTEIN

9.1 Introduction

The production of recombinant proteins in host organisms such as Escherichia coli

has become indispensable for both research and industrial applications. DNA plas-

mids containing heterogenous genes are inserted into the host organisms for the pro-

duction of proteins and metabolites. It has been demonstrated that plasmid bearing

(PB) cells grow slower than the wild-type (WT) cells (without plasmids) due to addi-

tional metabolic burden on host cells by plasmid replication, DNA transcription, and

plasmid-encoded mRNA translation (Bentley et al., 1990). In this chapter, the data-

driven framework proposed in Chapter 3 is employed to analyze the gene expression

datasets from both WT and PB Escherichia coli. The analysis is aimed at understand-

ing the genetic reprogramming due to expression of foreign genes in Escherichia coli

and to identify genetic targets for recovering growth.

Expression of heterogenous genes in host organism has profound effects on their

metabolism and phonotype. Especially, over-expression of recombinant proteins use

large portion of cells resources and create a metabolic load on cells leading to the

decrease in cell growth rate. Though the physiology of PB cells is more or less un-

derstood, the changes occurring at the genetic level are not clearly known (Diaz-Ricci

et al., 1995). It is essential to understand the genetic level changes in PB strain to

170



recover the growth rate and subsequently the yield and productivity of recombinant

protein.

As described in Chapter 3, the proposed data-driven framework contains a series of

data-mining methods which provide useful information about the functioning of cells.

The first step in the proposed framework is to identify the genes differentially expres-

sion between the WT and PB cells. The differentially expressed genes (DEG) are iden-

tified using the method proposed in Chapter 4. These DEG provide the molecular level

changes happened in PB cells compared to WT cells. The second step is to organize

these DEG into different clusters such that genes within a cluster are similar in expres-

sion. Both clustering and cluster validation tools described in chapters 5 and 6 are used

for this purpose. The last step in the proposed approach is to use the correlation in-

formation between the Transcription Factors (TFs) and genes to identify the key TFs

which have to be modified to enhance the growth of PB strain.

9.2 Escherichia coli case study

Escherichia coli has been the most widely used organism for production of recom-

binant proteins as its molecular genetics, physiology and expression systems are rela-

tively well characterized (Choi et al., 2006). Fed-batch experiments are conducted for

both WT Escherichia coli and the Escherichia coli producing beta-lactamase antibiotic

resistant marker protein. The experiments were conducted at Bioprocessing Technol-

ogy Institute (BTI), A*STAR, Singapore (Ow et al., 2006, 2009). The experimental

details are described below.
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Strain

In this study Escherichia coli K12 of strain DH5α was used. NS3 plasmids were

constructed from pcDNA3.1 (Invitrogen, Carlsbad, CA) containing a beta-lactamase

antibiotic selection marker and a non expressing 1.8 kb DNA fragment of Dengue virus.

The plasmids were inserted into Escherichia coli (Ow et al., 2006, 2009).

Growth Medium

The complex medium R25 was used in this study. The components in the growth

medium were: yeast extract (12 gL−1), tryptone (6 gL−1), dipotassium phosphate (6

gL−1), magnesium sulphate (0.48 gL−1), and glucose (5 gL−1) (Ow et al., 2006, 2009).

Fed-batch experiments

Fed-batch experiments were conducted for both WT strain and the PB strain. The

cell growth (in terms of Optical Density, OD600) and the glucose concentrations were

monitored over time. The concentrations are shown in Figure 9.1 and Figure 9.2 for

WT and PB cells, respectively. Figure 9.1 and Figure 9.2 are drawn with same scales.

From Figures 9.1 and 9.2, it is apparent that the growth rate of PB cells is lower

than that of WT cells. Also, PB cells have prolonged lag phase compared to the WT

cells. Since the growth medium and conditions are similar between the WT and PB

strain, the prolonged lag phase can be attributed to the maintenance of plasmid. Since

the recombinant protein productivity is dependent on cell growth, lower growth of PB
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Fig. 9.1. Concentration of glucose and cell density for WT strain
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Fig. 9.2. Concentration of glucose and cell density for plasmid bearing strain
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cells leads to smaller quantity of protein. In this study, we use the proposed data-mining

framework to identify genetic targets to improve the PB strain performance.

Gene expression data

Microarrays were used to measure the expression of almost all the Escherichia coli

genes in the WT cells and cells containing plasmid. The expression levels were mea-

sured at 8 time-points during the fermentation experiments. The time-points spanned

all the phases including early exponential, before feeding, fed-batch stage, and station-

ary phase. The gene expression time-course data contain information about the changes

during the fermentation. To understanding the dynamic changes at the gene expression

levels, during the growth of the cells, these expression datasets have to be analyzed.

Analysis of the gene expression datasets using the methods described in this thesis

would provide understanding of cell functioning and provide the basis for selecting

genetic targets.

9.3 Identifying differentially expressed genes

The proposed data-driven framework contains a series of data-mining methods for

identifying DEG, clustering, finding number of clusters and for assigning TFs for genes.

These methods extract the information about the functioning of cells which leads to se-

lecting of genetic targets. First, PCA based algorithm described in Chapter 4 is used for

identifying genes that are differentially expressed between the WT and PB cells. The

cross validation approach for finding number of PCs to model the WT data returns 3

PCs (Figure 9.3). These 3 PCs capture 70.32% of total variation in data. The eigenval-
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ues corresponding to these two PCs are 1.12, 0.89, and 0.53, respectively (Figure 9.4).

The eigenvalues corresponding to the remaining PCs are very small. Hence, only three

PCs are used to model the WT. Expression data from the PB strain is projected onto

the PCA model developed from the WT gene expression data. Robust Mahalanobis

distance described in Section 4.4 is used for finding whether a gene is differentially ex-

pressed.
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Fig. 9.3. Cluster validation result for WT gene expression data. RM-
SECV takes minimum at number of PCs 3

At a p-value threshold of 0.05, 534 genes are identified as differentially expressed

between the WT and the PB strains. The difference of scores for all the genes on

the 3 PCs used to model the data is shown in Figure 9.5. The DEG identified by the

proposed method are shown by ‘*’ on the scores plot. From Figure 9.5, it is clear that

the proposed method identified genes that are away from the origin as differentially
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Fig. 9.4. Cumulative variance and Eigenvalues for WT gene expression data

expressed genes. In the next section, these DEG are used to understand the effects of

plasmid on the host strain.

9.3.1 Mapping of DEG on the Central Metabolic Network

The Central metabolic network shown in Figure 9.6 comprising Glycolysis, TCA

cycle and Phosphate Pentose pathways (PPP) provides the precursors, co-factors and

energy for biosynthesis and other metabolic pathways (Mandelstam et al., 1982). It is

known that production of recombinant proteins results in differential expression of sev-

eral genes from central metabolic network (Choi et al., 2006). Since central metabolic

network provides the precursors for biomass, disruption of it directly leads to low

growth rates. So, the DEG identified above are first mapped on to the central metabolic

network to explore the effect of plasmid on metabolism.
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Fig. 9.5. Plot of difference of scores of all genes on 3 dominant PCs.
Genes marked as ‘*’ and identified as differentially expressed genes

Out of approximately 40 genes that catalyze the reactions in central metabolic net-

work of Escherichia coli K12, five genes are found to be differentially expressed be-

tween the WT strain PB strain. Two of them, namely pgi and fbaB, are from the glycol-

ysis pathway, one, tktB, from Phosphate Pentose Pathway and two, acnA and icd, from

the TCA cycle.

The Glycolysis pathway is the primary catabolic route for degradation of carbo-

hydrates to provide energy and precursor building blocks for the synthesis of other
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Fig. 9.6. The Central metabolic network of Escherichia coli

macromolecules. Glucose or other sugars are fed into glycolysis pathway and degraded

to Pyruvate that is further degraded in the TCA cycle. Two enzymes in this pathway,

namely pgi and fbaB, are found to be down-regulated in the PB strain compared to the

WT strain. The expression of these two enzymes are shown as heatmaps (horizontal
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bars of green and red colors) in Figure 9.6.

pgi catalyzes the reaction Glucose-6-Phosphate (G6P) to Fructose-6-Phosphate.

Down regulation of pgi forces the glucose catabolism through Phosphate Pentose Path-

way which converts glucose to Fructose-6-Phosphate (F6P) and Glyceraldehyde-3-

Phosphate (G3P). As a consequence of this, NADPH production increases through PPP

and creates NADPH imbalance in the cell leading to lower growth (Kabir and Shimizu,

2003). F6P and G6P produced through PPP is fed through the glycolysis pathway.

However, the enzyme tktB which is an intermediate step in PPP is also found to be

down-regulated. This indicates that the glucose intake is reduced which clearly explains

the lower growth rate. Activity of tktB is also required to produce aromatic amino acids

and tktB mutant strain of Escherichia coli requires supply of aromatic amino acids for

growth (Zhao and Winkler, 1994).

The end-product of glycolysis and PPP is Pyruvate (PYR) which is further degraded

in TCA cycle thus providing energy and building blocks for macromolecular biosynthe-

sis. Pyruvate is first oxidized to Acetyl Coenzyme A (AcCoA) before it is fed to TCA

cycle. In TCA cycle, complete oxidation of AcCoA takes place and energy is gener-

ated along with precursors for biosynthesis. In TCA cycle, both acnA and icd are found

to be down-regulated in PB strain. These two reactions catalyze the second and third

steps of the TCA cycle. Down-regulation of these two genes reduces the uptake rate of

TCA, which results in conversion of AcCoA to acetate (El-Mansi and Holms, 1989).

It is commonly observed that Escherichia coli cells excrete 10-30% of the carbon flux

from glucose as Acetate (Farmer and Liao, 1997). Acetate accumulation is observed in
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fermentation experiments for both WT and PB cells. In WT strain fermentation, Ac-

etate concentration is observed to increase smoothly as the cells enters the exponential

growth phase. Peak Acetate concentration was observed at the point where glucose

concentration is limiting and feeding started. In the rest of the experiment, Acetate

concentration is minimal during exponential growth and increased in stationary phase

for WT cells. On the contrary, in PB strain Acetate concentration continues to increase

throughout the experiment. The down-regulation of acnA and icd which reduces the

uptake rate of TCA cycle might have diverted the AcCoA to Acetate. It is therefore

clear from this mapping of gene expression onto the central metabolic network that

central metabolic network is repressed in PB strain. Since the central metabolic net-

work supplies the building blocks for other biosynthesis, cell growth was consequently

reduced.

9.3.2 Effect of plasmid on Amino acid production

It is known that plasmid maintenance and recombinant protein production creates a

metabolic burden on host cells resulting in down-regulation of macromolecular synthe-

sis, especially the amino acid production. We now consider the amino acid production

in PB strain. The amino acid production pathways for Escherichia coli are shown in

Figure 9.7.

The expression of 8 genes involved in amino acid biosynthesis were down regulated

in PB cells (hisG, aroF, pheA, trpC, livC, dapA, metE and argF). hisG catalyzes the

first reaction of histidine biosynthesis and down-regulation of hisG decreases the pro-

duction of histidine. The production of aromatic amino acid pathway was completely
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Fig. 9.7. The amino acid biosynthesis pathways of Escherichia coli

repressed. Aromatic amino acid production starts with erythrose-4-phosphate (E4P)

and ends with the production of phenylalanine, tyrosine, and tryptophan. The enzymes

aroF, pheA and trpC catalyze the intermediate steps in this pathway. Down-regulation

of these genes decreased the aromatic amino acids production. The biosynthesis of

amino acids valine, lysine, methionine and arginine is reduced in the PB cells due to

the down-regulation of livC, dapA, metE and argF, respectively.

The above mapping of DEG on the central metabolic network and amino acid syn-

thesis pathways provides understanding of the effects of the plasmid on the host strain.
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It also reveals genetic targets to improve the growth of PB cells. In this case, the 5

genes that are down-regulated in the PB cells compared to WT cells are the potential

targets. The performance of PB cells can be enhanced by over-expression of these five

genes. However, there are many more genes that are differentially expressed. Analyz-

ing 534 genes individually is tedious. We need methods for organizing these genes in

a systematic fashion so that more information can be extracted. The rest of the steps in

the proposed framework work on the difference of scores of these 534 genes.

9.4 Clustering and finding number of clusters

Clustering is a method to organize the genes into groups such that genes within a

group are more similar to each other. Comparison of clusters of genes between WT

cells and PB cells reveals reprogramming of metabolism in the later due to metabolic

burden. Clustering generally revels higher level information of metabolic reprogram-

ming such as alteration of biosynthesis pathways, regulation of ribosomal proteins,

amino acids and nucleotide synthesis. It also reveals the strategies used by the cells to

cope up with stress and changes in transportation genes. Such higher level information

about metabolic reprogramming is useful to decide steps for strain improvement.

Before employing any clustering algorithm on a dataset, it is necessary to find the

number of ‘natural’ clusters present in the data since clustering algorithms requires the

number of clusters to be specified a priori. So the cluster validation procedure, NIFTI,

described in Chapter 6 is employed on the 534 differentially expressed genes identified

above. The results are shown in Figure 9.8. NIFTI using k-means clustering and Eu-
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clidean distance as distance metric identifies 4 clusters in this dataset.
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Fig. 9.8. Cluster validation results for differentially expressed genes in
Escherichia coli

Next, the clustering method described in Chapter 5 is used cluster the 534 genes.

The clustering algorithm uses Genetic Algorithms (GA) to cluster the genes based on

the distance metric described in Section 5.2. The population size and the mutation prob-

ability are selected as 100 and 0.01, respectively. The number of generations is selected

as 300. The performance of the GA in minimizing the objective function for clustering

is shown in Figure 9.9. The objective function is constant after 19 iterations indicating

that a minimum has been reached.

The heatmap of the four clusters are shown in Figure 9.10. From the heatmap, it is

clear that the genes having similar expression profiles are clustered together. The mean
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Fig. 9.9. Performance of GA for clustering differentially expressed genes

expression profile of the four clusters are shown in Figure 9.11. The mean expression

profile for WT are shown as solid lines and that of plasmid are shown in dash line. A

significant difference in mean expression profiles can be observed from Figure 9.11.

These clusters can be analyzed further.

Cluster 1 contains 10 genes which have low expression in WT strain but have high

expression in PB strain. This cluster contains transporter genes such as yejF, ynfM,

and the Ferric uptake regulator fur. The up-regulation may be due to the incapabil-

ity of strain to produce all the compounds required for biosynthesis. This cluster also

contains genes related to protein degradation such as tdcA, tdcG. During exponential

growth, WT cells do not degrade proteins. However, when amino acid production is de-

creased, higher degradation of amino acids is observed (Sussman and Gilvarg, 1969).
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Fig. 9.10. Heatmap of differentially expressed genes. Clusters are
enriched with similarly expressed genes.
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Fig. 9.11. Mean expression profiles of clusters. Solid lines represent
the expression profiles of WT strain and dash lines represent the plas-
mid strain.

This phenomena also indicates that the cell is not capable of producing all compounds
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it needs for growth.

Genes in Cluster 2 are expressed in large quantities in WT strain and repressed in

plasmid strain. This cluster contains genes related to acid resistance response of cells.

These genes include gadA, gadB, gadC, gadE, gadX, and gadW. It also contains ydeO

which is a Transcription Factor that activates other acid resistance genes including gadA

family. This cluster of genes explains the survival of WT strain during the low pH due

to the presence of acetate in the medium. WT strain expressed the genes to resist the

acidic condition of the growth medium. On the other hand, these acid resistance genes

are down regulated in PB strain which is the reason for its low growth.

Cluster 3 comprises genes that are expressed in low levels in WT strain but over-

expressed in PB strain. Similar to cluster 1, this cluster also contains genes related to

transport. The difference between this cluster and the cluster 1 is the magnitude of the

gene activation (Figure 9.11). The genes included in this cluster are lacY, manY, malE,

malK and melB. It also contains crp which is a global regulator for many transporter

genes (Keseler et al., 2005).

The fourth cluster contains genes that are up-regulated in WT strains but down-

regulated in PB strain. This cluster contains genes involved in utilization and degrada-

tion of several metabolic intermediates whose products are precursors for biosynthesis

of other molecules. Well known genes in this cluster include pgi and fbaB from gly-

colysis pathway, and tktB from Phosphate Pentose pathway. Other genes include those

participating in degradation of glycolate (adlA), glyoxylate (glcB), lysine (ldcC) , ala-

186



nine (dadA), galactitol (gatY), ethanol (adhE), glycerol (glpK), etc. All the biodegra-

dation genes are down-regulated in PB cells leading to unavailability of energy and

building blocks for biosynthesis which ultimately would affect the growth rate.

One of the important gene identified in cluster 4 is acs which is involved in acetate

utilization. Since acetate production hinders the growth of Escherichia coli cells, it is

interesting to identify the differences between the WT and PB cells in resisting the low

pH due to increase in acetate concentration. The expression profile (data was slightly

modified) of acs is shown in Figure 9.12.
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Fig. 9.12. Expression profile of the acetate utilization gene acs. Solid
lines represent the expression profile of WT strain and dash line repre-
sent the plasmid strain.

As discussed above, during the fermentation of the WT cells, the concentration of

Acetate gradually increase from start of exponential growth phase. To come up with
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this acid medium, acid resistance genes are up-regulated in WT cells protecting the

cells from low pH. Also, as the glucose concentration depletes, WT cells expressed

the ace gene whose product converts the Acetate to AcCoA which feeds into the TCA

cycle. This is the reason for decrease in the concentration of Acetate during WT fer-

mentation. During fed-batch phase feeding is controlled and no acetate is produced.

In contrast, the acid resistance genes are down-regulated in PB strain that reduces the

growth rate. Also, the down-regulation of acs indicates that Acetate is not used as car-

bon source by PB strain.

In summary, through clustering the differentially expressed genes it is evident that

(1) genes involved in catabolic reactions in glycolysis, PPP, TCA cycle and degradation

of other carbon sources are down regulated in PB cells (Cluster 4). (2) as a consequence

of this, PB cells loose their capability to produce building blocks for biosynthesis, hence

transporter genes and amino acids degradation genes are activated (Cluster 1 and 3). (3)

acid resistance genes are down-regulated in PB cells making them susceptible to low

pH (Cluster 2).

9.5 Integration of TF-gene data and gene expression data

Integration of clustering results with TF-gene interaction data gives global regula-

tors that regulate sets of genes. Identifying such global TFs is important since modify-

ing a few of TFs brings the effect of modifying all the genes they regulate.

The next step in the data-driven approach for target selection is integration of TF-

gene interaction data. The Bayesian approach described in Chapter 8 can be used to
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reliably assign TFs (regulators) to genes. Then correlational analysis will be used to

identify the global TFs. Though the genome-wide location data is not available for Es-

cherichia coli, the TF-gene interaction network is available due to the vast amount of

literature of Escherichia coli. Here, we use the RegulonDB database for this informa-

tion (Gama-Castro et al., 2008). RegulonDB contains information of 155 regulators

(TFs) and their regulated genes. Our of these 155 TFs, gene expression data is avail-

able for 143 TFs. These 143 TFs are used for further analysis.

Out of the 143 TFs, 22 shows difference in expression between the WT and PB

strain. The expression profiles (data were slightly modified) of these TFs are shown in

Figure 9.13. All these TFs and other genes found to be differentially expressed are ge-

netic targets that can be modified (over-expressed or down-regulated) to improve the

PB strain. However, modifying a large number of genes is not desirable considering

the experimental complexity. In the next step, the correlation between these TFs and

the four gene clusters along with the understanding of cell functioning will be used to

identify a reduced set of genetic targets.

The mean correlation between the 22 differentially expressed TFs in PB cell is

given in Table 9.1. Since, gene expression data does not differentiate between direct

regulation of gene by a TF or indirect regulation, we also find the number of genes

that each of these 22 TFs bind to. This number is given in parenthesis along with the

mean correlation. Mean correlation is important, as it cancels the noise associated with

individual genes. Some TFs, called activators, activate the expression of genes whereas

some TFs, called repressor, repress gene expression. There are some TFs that can work
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Fig. 9.13. Expression profile of TFs differentially expressed in PB
strain compared to WT strain. TF names and corresponding p-values
are also shown. Solid lines represent the expression profile in WT
strain and dash line in PB strain.

as both activator and repressor based on the condition. The kind of action of each TF is

given in the last column of the Table 9.1.

Considering the expression correlation and binding information, tdcA is selected as

a global regulator of cluster 1. It has a correlation value of 0.978 and binds to 2 of the

10 genes in cluster 1. tdcA is an activator of operon containing tdc genes involved in

amino acids degradation. As mentioned above, during starvation, cells degrade amino

acids for manufacturing other compounds (Sussman and Gilvarg, 1969). tdcA is not ex-

pressed in WT cells but over-expressed in PB strain.
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Table 9.1
Average correlation of differentially expressed TFs to four clusters

TF name Cluster 1 Cluster 2 Cluster 3 Cluster 4 Action
tdcA 0.978(2) -0.9194(0) 0.7031(0) -0.617(0) Activator
gadE -0.9434(0) 0.9532(7) -0.704(2) 0.6233(1) Activator
gadX -0.9634(0) 0.9613(7) -0.714(0) 0.6321(2) Activator
ydeO -0.9609(0) 0.9517(1) -0.710(0) 0.6101(0) Activator
fur 0.9578(1) -0.9573(1) 0.7113(4) -0.62(6) Dual
crp 0.5928(3) -0.6802(5) 0.475(28) -0.40(30) Dual

gadW -0.9736(0) 0.95539(4) -0.716(0) 0.616(0) Repressor
nac -0.8601(0) 0.9061(1) -0.654(0) 0.6416(1) Dual
cbl -0.8607(0) 0.9101(0) -0.657(1) 0.6292(1) Activator

atoC 0.8249(0) -0.795(0) 0.5978(0) -0.612(1) Activator
cspA 0.9654(0) -0.9475(0) 0.7087(0) -0.658(0) Activator
glcC 0.7431(0) -0.8185(0) 0.5813(1) -0.528(1) Dual
appY -0.7822(0) 0.6914(0) -0.549(0) 0.363(0) Activator
argR 0.9149(0) -0.9008(0) 0.6716(5) -0.656(2) Dual

ompR 0.4579(0) -0.549(1) 0.3777(3) -0.292(2) Dual
ihfA -0.8398(0) 0.8285(0) -0.621(0) 0.4723(0) Unknown

mngR 0.4163(0) -0.3555(0) 0.291(1) -0.087(0) Repressor
alsR -0.14(0) -0.0346(0) -0.038(0) -0.074(2) Repressor
uidR -0.2428(0) 0.0944(0) -0.121(0) 0.11(1) Repressor
cynR 0.9552(0) -0.9133(0) 0.691(1) -0.642(0) Dual
hupA 0.7291(0) -0.7437(0) 0.550(0) -0.403(0) Dual
lctR 0.9705(0) -0.9168(0) 0.699(1) -0.628(0) Repressor

gadE, gadX and ydeO are the global regulators for Cluster 2. Cluster 2 is very im-

portant as it contains the genes related to acid resistance. gadE and gadX are glutamate

decarboxylase-dependent acid resistance transcription factors which activate genes re-

lated to acid resistance. ydeO also belongs to the same family and activates gadE which

in turn activates gadX (Ma et al., 2003).

The ferric uptake regulator fur and crp are considered as regulators for Cluster 3.

Though their expression correlation is not high, they bind to more genes from Cluster
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3. They are also known as transporter gene regulators (Keseler et al., 2005).

No regulators are evident for Cluster 4 through correlational analysis and TF-gene

binding information. This is not a surprise since Cluster 4 contains genes related to

degradation of intermediate metabolites in central and other metabolic pathways. The

central metabolic pathway is regulated via complex interactions that provide redun-

dancy to pathways, so the organism can survive even if some TFs are mutated. So, it

may not be possible to identify regulators for the whole cluster.

In summary, the growth of PB cells is lower than the corresponding WT cells with-

out plasmid. The gene expression analysis identifies the reasons for this as (1) down-

regulation of glycolysis and TCA cycle genes, (2) down-regulation of amino acid pro-

duction, (3) incapability of PB strain to withstand low pH caused by high acetate, and

(4) inability of the PB strain to utilize acetate as a substrate.

The gene targets identified through the proposed data-driven framework are pgi,

fbaB tktB, acnA, icd, ydeO and acs. All these genes have to be over-expressed to in-

crease the growth rate of PB cells. Up-regulation of pgi, fbaB tktB, acnA, icd is re-

quired to enhance the glucose uptake rate in glycolysis and subsequent conversion to

energy and building blocks for other macromolecules. Experimental analysis of in-

crease of glucose uptake rate by inactivating global regulator FruR shows 60% recov-

ery of growth rate in PB cells (Ow et al., 2007). Inactivation of FruR up-regulated

several genes including fbaA which functions similar to fbaB. This clearly shows that

the genetic targets identified proposed method are useful for strain improvement. The
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experiment in which FruR is inactivated is carried only batch phase. Increase in acetate

concentration is observed in the experiment. The proposed framework recommended

over expression of ydeO and acs in order to cope up with decrease in PH and use of

acetate as carbon source, respectively. Though the experiment with PB strain with

overexpression of ydeO is not done yet, other studies have been reported expression

of acid resistance genes when ydeO was overexpressed (Masuda and Church, 2003).

The expression of ydeO could also lead to expression of acs indirectly (Rahman and

Shimizu, 2008; Rahman et al., 2006; Keseler et al., 2005). Hence, ydeO should be

over-expressed first followed by phenotype analysis and subsequent over-expression of

other genes if necessary. Some other gene targets from amino acid biosynthesis are also

important. However, the down-regulation of amino acid biosynthesis may be due to re-

duced uptake rate of TCA cycle. So, these genes should be considered after increasing

the expression of TCA cycle genes.

9.6 Discussion and Conclusions

The proposed data-mining framework is used for identifying genetic targets for the

improvement of Escherichia coli strain producing recombinant protein. The proposed

framework contains different data-mining techniques for extracting information from

gene expression data. Each data-mining technique provides different and complemen-

tary information about the functioning of cells which leads to identification of targets

for strain improvement. In this case study, the proposed method for identifying DEG

is able to identify the biologically significant genes which explain the phenotype of PB

strain. Methods for clustering and finding number of clusters are also able to group the

genes correctly. The correlation analysis and gene binding information correctly pre-
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dicted TFs for clusters leading to reduced set of targets for strain improvement. The

predictions from the framework have to be experimentally tested to further validate and

refine the framework.

The proposed framework combines methods for identifying DEG, clustering and

finding number of cluster in a systematic way which makes the framework suitable

for target selection for strain improvement. However, the quality and availability of

the data is an important issue to use this framework. The gene expression data can be

generated relatively easily. But generation the genome wide location data is difficult

(Ren et al., 2000). Currently, the genome scale location data is currently available for

yeast Saccharomyces cerevisiae only. Lack of such data hinders the identification of key

regulator genes for strain improvement for other organisms. In such cases, the available

literature related to the organism of interest should be compiled to get the TF-gene

interaction data. Other important issue is the noise in genome scale datasets. Though

the genome scale data provides global view of cell functioning, they are associated with

high noise levels which reduce the accuracy of predictions (Kothapalli et al., 2002).

Improvement of technology and careful design of experiments is necessary to improve

the quality of data.
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10. CONCLUSIONS AND FUTURE WORK

In this thesis, different statistical data-mining methods have been proposed and vali-

dated. These methods include identification of differentially expressed genes in time-

course gene expression datasets, clustering of gene expression profiles and cluster vali-

dation methods. These data-mining methods comprise the prime data-mining methods

for gene expression data analysis. A Bayesian approach for integration of gene ex-

pression data and genome-wide location data has been proposed. All these methods

were validated separately using artificial and real gene expression datasets and results

are compared with other methods for the same purpose. The proposed methods have

shown reasonably good performance in all the case studies. Finally, these methods

were combined in a principled way to identify genetic targets for strain improvement.

Here, the possible extensions of proposed method to further improve their performance

are discussed.

10.1 Conclusions

In Chapter 4, a PCA based method was proposed for identifying differentially ex-

pressed genes in time-course gene expression data measured between two different

conditions. For this purpose, a model is developed for the expression data from one of

the datasets (generally the control condition) using the dominant PCs. The expression

data from the other condition is projected onto the model. A hypothesis test using Ma-

halanobis distance is used to evaluate the significance of the differences in the scores

to identify differentially expressed genes. The proposed method is validated using two

real gene expression datasets. In both cases, the proposed method identified differen-
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tially expressed genes which are biologically significant.

Clustering is an important aspect of gene expression data analysis. Clustering or-

ganizes a large number of genes into a few clusters such that genes within a cluster

are more similar to each other. It gives the overall view of reprogramming of the gene

expression due to change in biological condition of cells. A novel clustering method

has been proposed and validated in Chapter 5. The proposed method identifies ellip-

soidal clusters in gene expression. The proposed method uses PCA and divides the

gene expression space into PCA subspace and residual subspace. The PCA subspace

is spanned by dominant PCs and residual space is spanned by the remaining PCs. The

division of original space facilitates identification of ellipsoidal clusters even if their

covariance matrices becomes singular as in the case of gene expression data clustering.

To address the issues with local minima in optimizing the clustering objective function,

the proposed method uses Genetic Algorithms for minimizing the objective function.

The proposed clustering method is validated using real gene expression datasets. The

results are compared with already published results. The proposed method successfully

identifies groups of genes that are functionally enriched.

Cluster validation methods identify number of clusters, k, in the dataset. Identifica-

tion of number of clusters is important as many clustering algorithms require this to be

specified a priori. A wrong specification leads to incorrect results. Two different clus-

ter validation procedures, namely NIFTI and NEPSI, were proposed in chapter 6 and

7, respectively. NIFTI evaluates a cluster partition based on separability of resultant

clusters. A statistical test is proposed for testing the separability of clusters. NIFTI in-
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creases if clusters are separable and decreases otherwise. NEPSI finds the maximum

number of distinct clusters in the data. PCA is used for determining whether a cluster

is distinct or not. NEPSI increases if a cluster is distinct and decreases otherwise. In

both methods, the value of the indices are calculated for different number of clusters

and the k corresponding to the maximum value the of index is selected. Both NIFTI

and NEPSI are validated using the gene expression data and results are compared with

literature and results from other methods. Both the methods correctly identify number

of clusters in gene expression data and outperform other methods.

In Chapter 8, a Bayesian approach for integration of gene expression data with TF-

genes interaction data was proposed and validated using real genomic datasets. The

proposed method models genes for which TFs are known from TF-gene interaction

data and uses the developed models to predict the TFs for genes of unknown TFs using

their expression similarity to modeled genes. The proposed Bayesian approach is used

to combine yeast Saccharomyces Cerevisiae gene expression data and genome-wide lo-

cation data. The proposed method correctly assigns TFs to genes for which no TFs are

currently available.

The data-mining methods described in this thesis are combined systematically to

identify genetic targets for strain improvements. A case study of this data-driven frame-

work is give in Chapter 9 where genetic targets for improvement of growth rate of

plasmid bearing strain. The data-mining tools provide information to understand the

functioning of cell and subsequently leads to identification of genetic targets.
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10.2 Future work

In this section, the possible extensions of methods proposed in this thesis are dis-

cussed.

The most important extension of proposed method for identifying DEG is to include

replicates information. Replicates are very important in gene expression data analysis

due to the inherent variability of gene expression data (Lee et al., 2000). Replicates are

of two types, biological replicates and technical replicates. Biological replicates indi-

cates the samples collected from different populations of the same organism maintained

at same conditions. Technical replicates indicate multiple experiments from the same

sample. Replicates allows comparison variation in gene expression within each group

and between groups and improve the reliability of identifying differentially expressed

genes. The idea of using within and between group variation should be included in

PCA analysis. The Multiway Principal Component Analysis (MPCA) which is rou-

tinely used to analyze data from multiple batches could be used (with modifications) to

explicitly include replicates.

Another important improvement necessary is to improve the estimation of covari-

ance matrix for the Mahalanobis distance calculation. Estimations of Covariance is

prone to outliers in the data. Differentially expressed genes are outliers in the PCA

scores data. Hence, the covariance matrix is affected by these outliers. Methods are

available for estimation of robust covariance matrix which is not effected by outliers

in the data (Rousseeuw and Leroy, 1987). These methods use re-sampling approach
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and identify minimum volume ellipsoid that capture predefined (say 75%) of the data

points in multidimensional space. The covariance matrix corresponding to minimum

volume ellipsoid is un-effected by outliers as outliers are excluded from analysis. The

eigen-values of robust covariance matrix are generally smaller than eigen-values of co-

variance matrix estimated from whole sample data. Hence, the proposed significance

test for identifying differentially expressed genes becomes more sensitive and identi-

fies more genes as differentially expressed. This could increase the quality of results.

The first improvement suggested for clustering technique is to extend this method

to identify clusters of different sizes along with different shapes. One of the constraints

used in optimizing the objective function is to fix the cluster volume to 1. This con-

straint is necessary to have a non-trivial solution. However, this constraint forces the

optimizer to identify clusters of equal volume. The possibility of using reduced dis-

tance which are independent of cluster volumes can be explored in the future. Another

improvement is to reduce the computational time for clustering using deterministic op-

timization algorithms.

One of the problems associated with cluster validation methods is the selection of

maximum value of k to be tested. NIFTI checks whether offspring of a parent cluster

overlap or not by modeling them as spheroids. NIFTI increases if there is no overlap,

and decreases otherwise. For large values of k, no overlap can be detected even when

a natural cluster is artificial broken. At the theoretical maximum number of clusters

i.e when each gene is identified as a cluster, no overlap can be detected as the radii

of all the clusters is zero. The phenomena of a continuous increase in NIFTI at large
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value of k has been observed in some tests. Similar problem occurs for NEPSI also.

The possible improvement for these methods is to add a new component that penalizes

large values of k similar to penalizing higher order curves in regression. However, the

penalty component should be selected in such as way that it does not hinder these meth-

ods from finding the correct number of clusters at the small values of k.

The proposed Bayesian approach is used to assign TFs to genes for yeast Saccha-

romyces Cerevisiae by combining gene expression data and genome-wide location data.

The proposed Bayesian method assigned all the genes with no TFs in location data to

one of the predefined classes based on their posterior probability. Even though the re-

sults are reasonably correct, it is preferable to develop criterion to reject genes in case

no significant evidence is available for classification. From Figure 8.2, it is evident that

some of the genes have the maximum posterior probability less than 0.5 indicating that

they do not have significant evidence to be assigned to any class. Hence, it is better not

to assign these genes to any of the classes. Also, the proposed method needs regulator

information for some genes which is used to find TFs for other genes. Such informa-

tion can also be extracted from other sources, such as literature search and promoter

sequence analysis. Since the proposed Bayesian approach uses any new evidence to

convert a priori probabilities to a posterior, it is relatively easy to extend this method

to other complementary datasets. For example, if we know that a particular gene has a

regulatory element similar to that of a set of other genes, we can use this as additional

evidence (similar to expression profile similarity). The same procedure can be used for

other complimentary data. These points have to be explored in future.
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The data-mining methods described in this thesis are combined systematically to

identify genetic targets for strain improvements. One of the bottleneck for such ap-

proaches is collecting information of individual genes that show differential expression

between WT and PB strain. The redundancies in of metabolic network connectivity

and presence of isoenzymes provide cells with the capability to exhibit a large num-

ber of phenotypes. This makes deriving of conclusions very difficult. It is necessary

to have more information about genes. Integration of a text mining tool that searches

relevant literature and provides information about genes would increase the understand-

ing of cell function. Apart from this, the connectivity of metabolic networks seems to

play a major role in selecting genetic targets. So, integration of graph-theoretic ap-

proaches for checking the connectivity and redundancy of metabolic networks are also

helpful. Finally, development of a software package with a graphical user interface

for data analysis and visualization is essential for successful genetic target selection by

biologists.
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