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Abstract

This thesis is based on two of our recent working papers (see Dai and Zhong

(2008a), Dai and Zhong (2008b)). We have considered two free boundary prob-

lems in optimal investment. Problem I is concerned with the optimal decision to

sell or buy a stock in a given period with reference to the ultimate average of

the stock price. Strictly speaking, we aim to determine an optimal selling (buy-

ing) time so as to maximize (minimize) the expectation of the ratio of the selling

(buying) price to the ultimate average price over the period. This is an optimal

stopping time problem which can be formulated as a variational inequality problem.

We provide a partial differential equation (PDE) approach to study the optimal

strategy. Problem II concerns numerical solutions for the continuous-time portfo-

lio selection with proportional transaction costs which is described as a singular

stochastic control problem. The associated value function is governed by a varia-

tional inequality with gradient constraints. We propose a penalty method to deal

with the gradient constraints and then employ the finite difference discretization.

Convergence analysis and numerical results are presented. In addition, we show

that the standard penalty method can be applied in the case of single risky asset

where the problem can be reduced to a standard variational inequality.

vi



Chapter 1
Introduction

This chapter summarizes the work of this thesis. Firstly, we give the overviews of

the two free boundary problems involved in our research. Problem I is on the deci-

sion of selling/buying a stock with reference to the ultimate average. Problem II is

related to the optimal investment and consumption in the presence of transaction

costs.

1.1 The overviews

1.1.1 Stock selling/buying with reference to the ultimate

average

Assume that the discounted stock price evolves according to

dSt = αStdt+ σStdBt,

where constants α ∈ (−∞,+∞) and σ > 0 are the discounted expected rate of

return and volatility, respectively, and {Bt; t > 0} is a standard Brownian motion

on a filtered probability space (S,F , {Ft}t≥0,P) with B0 = 0 almost surely. We

1



1.1 The overviews 2

are interested in the following optimal decision to sell or buy a stock in a given

period [0, T ] with reference to the ultimate average:

Buy case: min
0≤ν≤T

E

(
Sν

AT

)
, (1.1.1)

Sell case: max
0≤ν≤T

E

(
Sν

AT

)
, (1.1.2)

where E stands for the expectation, ν ∈ T, the set of all Ft stopping time, and the

benchmark value AT is taken as either geometric or arithmetic average price over

the period [0,T], namely,

AT =





exp
(

1
T

∫ T

0
logSνdν

)
, geometric average,

1
T

∫ T

0
Sνdν, arithmetic average.

(1.1.3)

Problem (1.1.1) and (1.1.2) are motivated by Shiryaev, Xu and Zhou (2008)

that studied the optimal stock selling strategy with reference to the ultimate max-

imum, that is, the benchmark AT is taken as max
0≤ν≤T

Sν . They derived a surprising

optimal selling strategy: one either sells the stock immediately or holds it until

expiry. More precisely, if α > σ2/2, it is optimal to hold the stock until expiry; if

α ≤ σ2/2, it is optimal to sell the stock immediately at time zero.

To analyze the optimal strategy, Shiryaev, Xu and Zhou (2008) adopted a

stochastic analysis approach which was also employed by Graversen, Peskir and

Shiryaev (2001), Pedersen (2003) and Du Toit and Peskir (2007) where various

models of predicting the maximum of a Brownian motion were studied. In our

thesis, the arithmetic average involved makes the problems intractable. We will

instead make use of a partial differential equation (PDE) approach.

The PDE formulation, described by a variational inequality, seemingly resem-

bles the pricing model of American-style Asian options which has been extensively

studied by numerous researchers (e.g., Geman and Yor (1993), Roger and Shi

(1995), Wu, Kwok and Yu (1999), Vecer (2001), Ben-Ameur, Breton and Ecuyer
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(2002), Wu and Fu (2003), Halluin, Forsyth and Labahn (2005), Dai and Kwok

(2006), and reference therein). However, the present problem gets a different ob-

stacle function involved and theoretical analysis of the resulting optimal strategy

is distinct from the previous ones.

1.1.2 Penalty method for portfolio selection with propor-

tional transaction costs

One risky asset

The study of portfolio optimization and consumption problems via stochastic con-

trol in continuous time was initiated by Merton (1969, 1971). In the absence of

transaction costs, he showed that the optimal strategy of a CRRA investor is to

allocate constant fraction (“Merton line”) of total wealth in each asset and to

consume at a constant rate. Such a strategy leads to incessant trading, which is

impracticable in a real market with transaction costs. This motivated Magill and

Constantinides (1976) to introduce proportional transaction costs into Merton’s

model. They provided a fundamental insight that there exists a no-trading region.

Mathematically, the portfolio selection with proportional transaction costs is de-

scribed as a singular stochastic control problem whose value function is governed

by a variational inequality with gradient constraints. Since then, there have been

extensive literatures studying the optimal transaction policies for an investor facing

proportional transaction costs. Some examples are as follows. Davis and Norman

(1990) showed that the optimal policy of the infinite horizon problem is determined

by the solution of a free boundary problem and can be calculated by solving an

ordinary differential equation (ODE). In 1994, Shreve and Soner provided rigorous

mathematical analysis of the optimal policies, relying on the concept of viscos-

ity solutions to Hamilton-Jacobi-Bellman (HJB) equations. Muthmuraman (2006)
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considered the infinite horizon problem and provided a computational scheme that

transforms the resulting free boundary problem to a sequence of fixed boundary

problems.

Many other authors studied the finite horizon problem. Gennotte and Jung

(1994) employed dynamic programming method to numerically solve the finite

horizon investment problem, while Liu and Loewenstein (2002) first examined the

behaviors of the free boundaries of the finite horizon optimal investment problem

by virtue of a sequence of approximate analytical solutions. Dai and Yi (2006)

considered the same problem and obtained an equivalent standard variational in-

equality by which they completely characterize the behaviors of the free bound-

aries. It is worthwhile pointing out that Dai and Yi (2006) essentially established a

connection between optimal stopping and singular control problems, which though

well-known [cf. Karatzas and Shreve (1984) or Soner and Shreve (1991)], had never

been revealed for the present problem. The idea of Dai and Yi (2006) was further

extended by Dai et al. (2007) and Dai, Xu and Zhou (2007) to deal with the

consumption case and the continuous-time mean-variance framework, respectively.

Multiple risky assets

The multiple risky assets case with transaction costs is much more challenging.

Relatively, the number of papers that concern this problem is much lower and

most of existing literatures rely on the numerical methods. Alkian, Menaldi and

Sulem (1996) considered the case that stock returns are uncorrelated. They showed

the existence and uniqueness of the value function by restricting the risk aversion

coefficient to lie in (0, 1). They also numerically studied the optimal policies by

use of policy iteration together with multigrid method. Liu (2004) considered the

problem under two assumptions: uncorrelated asset returns and constant absolute

risk aversion (CARA) utility, which result in the separability of optimal policies
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for transactions on each asset and the multidimensional problem collapses to a set

of one dimensional problems which can be characterized by ODEs. Muthuraman

and Kumar (2006) extended the approach of Muthmuraman (2006) to the case of

multiple risky assets and solve it by the finite element method. All of the above

papers on multiple risky assets are confined to infinite horizon problems.

Penalty method

The standard penalty method has been extensively studied for the variational

inequality arising from the American option pricing. For example, Forsyth and

Vetzal (2002) first provided a convergence analysis and demonstrated its efficiency

for pricing American options. An extension to the jump-diffusion model was made

by D’Halluin, Forsyth and Labahn (2005). Dai, Kwok and You (2007) established

a linkage between the intensity-based framework and penalty method of optimal

stopping problems. However, it should be emphasized that the variational inequal-

ity of American option pricing model is different from that resulted from a singular

stochastic problem because the latter gets the gradient constraints involved. For-

tunately, the efficiency of the penalty method to the latter case has been verified

by Dai, Kwok and Zong (2007) which dealt with another singular control problem

arising from the pricing of guaranteed minimum withdrawal benefits.

1.2 The scope of this thesis

The scope of our work involves two aspects including theoretical analysis in Chapter

2 and numerical analysis in Chapter 3.

First of all, we are going to formulate problem I as a standard variational

inequality and then make use of a PDE approach to fully characterize the optimal

selling/buying strategy with reference to the ultimate average. It turns out that
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the optimal selling strategy is still bang-bang, while the optimal buying strategy

can be a feedback one subject to the type of average and parameter values.

Secondly, we assume the investor to be of CRRA, and then focus on on log

or power utility function when we consider problem II. We will propose a penalty

method combined with the finite difference discretization to numerically solve the

variational inequality with gradient constraints that the value function satisfies. We

only confine to the finite horizon problem, and it is straightforward to extend to

the infinite horizon case. Moreover, convergence analysis is provided in single risky

asset case. When such a problem can be reduced to a double obstacle problem, we

will make use of the standard penalty method (cf. Forsyth and Vetzal (2002) and

Dai, Kwok and You (2007)) to achieve a better order of convergence. In addition,

a comprehensive numerical analysis is provided.

1.3 The outline

The rest of this thesis is organized as follows. The formulation of problem I and

theoretical analysis of the optimal selling/buying strategy are presented in Chapter

2. Chapter 3 is devoted to the numerical solutions of portfolio selection with

transaction costs. The numerical examples confirm the theoretical analysis in Dai

and Yi (2006) and Dai et al. (2007) in single risky asset case. We conclude the

thesis in chapter 4.



Chapter 2
Optimal Stock Selling/Buying Strategy

with reference to the Ultimate Average

In this chapter, we will make use of a PDE approach to study the optimal sell-

ing/buying strategy with reference to the ultimate average. The organization is as

follows. In the first section, we formulate problem (1.1.1) and (1.1.2) as variational

inequality problems. In section 2, we confine to the case of geometric average

in which the problems allow analytical solutions and the optimal strategy can be

readily figured out. Section 3 is devoted to the case of arithmetic average. Due

to lack of analytical solutions, we provide a thorough theoretical analysis on the

optimal strategy. We finish this chapter with an Appendix.

2.1 PDE formulation

In this section, we will provide a PDE formulation for the optimal stopping prob-

lems (1.1.1) and (1.1.2). Let us begin with the buy case.

7



2.1 PDE formulation 8

2.1.1 Buy case

As in (1.1.3), we denote by At the running average over [0, t]. Then, we can write

the value function associated with problem (1.1.1) as

ϕ(St, At, t)
.
= min

t≤ν≤T
Et

(
Sν

AT

)
= min

t≤ν≤T
Et

[
Sν Eν

(
1

AT

)]
, (2.1.1)

where Et(·) = E(· |Ft).

Denote φ(St, At, t)
.
= Et

(
1

AT

)
. Since

dAt =





At

t
log St

At
dt, geometric case

St−At

t
dt, arithmetic case

.
= f(St, At, t)dt,

it is easy to verify that φ satisfies




L0φ = 0, 0 < S,A <∞, t ∈ (0, T ),

φ(S,A, T ) = 1
A
,

(2.1.2)

where L0 = −∂t −
1
2
σ2S2∂SS − αS∂S − f(S,A, t)∂A.

It follows from (2.1.1) that

ϕ(St, At, t) = min
t≤ν≤T

Et [Sνφ(Sν , Aν , ν)] , (2.1.3)

which is the unique viscosity solution to the following HJB equation (or variational

inequality equation)




max{L0ϕ, ϕ− Sφ} = 0, 0 < S,A <∞, t ∈ (0, T ),

ϕ(S,A, T ) = S
A
,

(2.1.4)

Remark 2.1.1. (2.1.2) resembles the well-known pricing model of a European-style

Asian option, whereas (2.1.4) resembles that of an American-style Asian option.

See, for example, Barles, Daher and Romano (1995), Wilmott, Dewynne and How-

ison (1995) or Jiang and Dai (2004).



2.1 PDE formulation 9

Next, we will show that problem (2.1.2) and (2.1.4) can be reduced to one-

dimensional time dependent problems. Indeed, by the transformation

z =
A

S
, τ = T − t, V (z, τ) = ϕ(S,A, t) and Φ(z, τ) = Sφ(S,A, t), (2.1.5)

(2.1.4) reduces to 



max{L1V, V − Φ} = 0, in D,

V (z, 0) = 1
z
,

(2.1.6)

where D = (0,∞) × (0, T ),

L1 = ∂τ −
1

2
σ2z2∂zz − (σ2 − α)z∂z − f(z, τ)∂z, (2.1.7)

f(z, τ) =





− z
T−τ

log z, geometric average,

1
T−τ

(1 − z), arithmetic average,

and Φ(z, τ) satisfies





L1Φ = σ2zΦz + (σ2 − α)Φ, in D,

Φ(z, 0) = 1
z
.

(2.1.8)

In physics, problem (2.1.6) is known as an upper obstacle problem and Φ is

the upper obstacle.

2.1.2 Sell case

In a similar way, we introduce the value function associated with problem (1.1.2)

as follows:

ψ(St, At, t)
.
= max

t≤ν≤T
Et

(
Sν

AT

)
= max

t≤ν≤T
Et [Sνφ(Sν , Aν , ν)]

satisfying




min{L0ψ, ψ − Sφ} = 0, 0 < S,A <∞, t ∈ (0, T ),

ψ(S,A, T ) = S
A
,

(2.1.9)
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where L0 and φ are the same as in the buy case. In terms of the same transfor-

mation as in (2.1.5), we can deduce that U(z, τ)
.
= ψ(S,A, t) satisfies the following

lower obstacle problem:





min{L1U,U − Φ} = 0, in D,

U(z, 0) = 1
z
,

(2.1.10)

where L1 and Φ are as given in (2.1.5) and (2.1.7).

2.2 Geometric average case

In this section, we confine to the geometric average case in which analytical solu-

tions to the variational inequality problem (2.1.6) and (2.1.10) are available. Then

we can explicitly work out the optimal strategies.

Let us first present the analytical expression of the obstacle function Φ.

Lemma 2.2.1. Let Φ be the obstacle function in the geometric average case, i.e.,

the solution to problem (2.1.8) with f(z, τ) = − z
T−τ

log z. Then

Φ(z, τ) = z
τ−T

T exp(g(τ)), (2.2.1)

where g(τ) = σ2τ3

6T 2 − (α− σ2

2
) τ2

2T
.

Proof. Substituting into (2.1.8), it is easy to verify the result.

Remark 2.2.2. The expression of Φ(z, τ) can also be derived by computing expec-

tation. We place the derivation in Appendix 2.4.1.
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2.2.1 Optimal buying strategy

Proposition 2.2.3. Let V be the solution to problem (2.1.6) in the geometric

average case. Then

V (z, τ) =





Φ(z, τ) exp(− σ2

2T
τ 2 + ατ), if α ≤ 0,

Φ(z, τ), if 0 < α < σ2, 0 ≤ τ ≤ α
σ2T,

Φ(z, τ) exp(− σ2

2T
(τ − α

σ2T )2), if 0 < α < σ2, α
σ2T < τ < T,

Φ(z, τ), if α ≥ σ2,

(2.2.2)

for any (z, τ) ∈ D.

Proof. We postulate that V (z, τ) takes the form of Φ(z, τ) exp (b(τ)) , namely,

V (z, τ) = z
τ−T

T exp(g(τ) + b(τ)).

Substituting into (2.1.6), we get





max
{
b′(τ) + σ2

T
τ − α, b(τ)

}
= 0, τ ∈ (0, T ),

b(0) = 0,

which has a unique solution

b(τ) =





− σ2

2T
τ 2 + ατ, if α ≤ 0,

0, if 0 < α < σ2 and 0 ≤ τ ≤ α
σ2T,

− σ2

2T
(τ − α

σ2T )2, if 0 < α < σ2 and α
σ2T < τ ≤ T,

0, if α ≥ σ2.

This completes the proof.

Now let us define the buying region. It is worth pointing out that τ = T

(i.e. t = 0) should be considered. Since z = 1 at τ = T, we introduce D̂ =

D ∪ {(z, τ) = (1, T )} . Then, the buying region can be defined as follows:

BR = {(z, τ) ∈ D̂ : V (z, τ) = Φ(z, τ)}. (2.2.3)
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Noting that (2.2.2) is also true for (z, τ) = (1, T ), we immediately have the

following corollary.

Corollary 2.2.4. Let BR be the buying region as defined in (2.2.3).

i) If α ≤ 0, then BR = ∅;

ii) If 0 < α < σ2, then BR = {(z, τ) ∈ D̂ : 0 < τ ≤ α
σ2T};

iii) If α ≥ σ2, then BR = D̂.

The corollary indicates that, given the geometric average as benchmark, one

should never buy the stock before expiry if α ≤ 0, and one should buy the stock

immediately if α ≥ σ2. When 0 < α < σ2, one should not buy the stock until

τ = α
σ2 T.

2.2.2 Optimal selling strategy

In a similar way, we can find the analytical solution of variational inequality (2.1.10)

in the geometric average case.

Proposition 2.2.5. Let U be the solution to problem (2.1.10) in the geometric

average case. Then

U(z, τ) =





Φ(z, τ), if α ≤ 0,

Φ(z, τ), if 0 < α ≤ σ2

2
and 2α

σ2T ≤ τ ≤ T,

Φ(z, τ) exp(− σ2

2T
τ 2 + ατ), if 0 < α ≤ σ2

2
and 0 < τ < 2α

σ2T,

Φ(z, τ) exp(− σ2

2T
τ 2 + ατ), if α > σ2

2
,

(2.2.4)

for any (z, τ) ∈ D̂.

The proof resembles that of Proposition 2.2.3 and is omitted.

Similarly, we can define the corresponding selling region as follows:

SR = {(z, τ) ∈ D̂ : U(z, τ) = Φ(z, τ)}. (2.2.5)
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By Proposition 2.2.5, we obtain the following corollary.

Corollary 2.2.6. Let SR be the selling region as defined in (2.2.5).

i) If α ≤ 0, then SR = D̂;

ii) If 0 < α ≤ σ2

2
, then SR = {(z, τ) ∈ D̂ : 2α

σ2T ≤ τ ≤ T};

iii) If α > σ2

2
, then SR = ∅.

We emphasize that in the scenario of 0 < α ≤ σ2

2
, {(z, τ) = (1, T )} is always

in SR. Therefore, combining with part i) and ii) in the corollary, we conclude that

the optimal selling strategy is a bang-bang one. That is, one should never sell the

stock before expiry if α > σ2

2
, and one should immediately sell the stock at time 0

if α ≤ σ2

2
.

2.3 Arithmetic average case

Unlike the geometric average case, analytical solutions are no longer available in

the arithmetic average case. We will make use of a PDE approach to investigate

the optimal strategy.

First, let us make the following transformation which plays a critical role in

the analysis1:

x = log((T − τ)z), F (x, τ) = log

(
Φ(z, τ)

T

)
,

V (x, τ) = log

(
V (z, τ)

Φ(z, τ)

)
, and U(x, τ) = log

(
U(z, τ)

Φ(z, τ)

)
. (2.3.1)

Then, (2.1.8), (2.1.6) and (2.1.10) reduce to




Fτ −
σ2

2
(Fxx + F 2

x ) + (α− 3σ2

2
− e−x)Fx + (α− σ2) = 0, in Ω,

F (x, 0) = −x,
(2.3.2)

1Without the help of this transformation, it seems hard (at least for us) to prove the existence

of the optimal selling boundary as a single function of time and its monotonicity in α.
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



max{L V + σ2Fx − (α− σ2), V } = 0, in Ω,

V (x, 0) = 0,
(2.3.3)

and 



min{L U + σ2Fx − (α− σ2), U} = 0, in Ω,

U(x, 0) = 0,
(2.3.4)

respectively, where Ω = (−∞,∞) × (0, T ) and

L = ∂τ −
σ2

2

[
∂xx + (∂x)

2 + 2Fx∂x

]
+ (α−

σ2

2
− e−x)∂x.

Correspondingly, we can define the buying and selling regions. Note that

x = −∞ when τ = T. It is convenient to introduce Ω̂ = Ω∪ {x = −∞} and define

BRx = {(x, τ) ∈ Ω̂ : V (x, τ) = 0} (2.3.5)

and

SRx = {(x, τ) ∈ Ω̂ : U(x, τ) = 0}. (2.3.6)

2.3.1 Two lemmas

Let us introduce two lemmas which are useful for both buy and sell cases.

Lemma 2.3.1. Let V (x, τ) and U(x, τ) be the solutions to problem (2.3.3) and

(2.3.4), respectively. Then,

V (x, τ) < U(x, τ) in Ω.

Proof. It is easy to see that L V ≤ LU(x, τ) in Ω and V (x, 0) = U(x, 0). Applying

the strong maximum principle gives the result.

Lemma 2.3.2. Suppose F (x, τ) is the solution to (2.3.2), then F (x, τ) has the

following properties.

i) −1 < Fx(x, τ) < 0,∀ (x, τ) ∈ Ω;
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ii) Fxx(x, τ) < 0,∀ (x, τ) ∈ Ω;

iii) Fxτ (x, τ) ≥ 0,∀ (x, τ) ∈ Ω;

iv) Fx(x, τ ;α + δ, σ) < Fx(x, τ ;α, σ) + δ
σ2 ,∀ δ > 0, (x, τ) ∈ Ω;

v) limx→−∞ Fx(x, τ) = 0 and limx→∞ Fx(x, τ) = −1,∀ τ ∈ (0, T ].

Proof. Denote F̃ (x, τ)
.
= Fx(x, τ), F

xx(x, τ)
.
= Fxx(x, τ) and F xτ (x, τ)

.
= Fxτ (x, τ).

It is easy to verify that F̃ , F xx and F xτ satisfy




F̃τ −
σ2

2
(F̃xx + 2F̃ F̃x) + (α− 3σ2

2
− e−x)F̃x + e−xF̃ = 0, in Ω,

F̃ (x, 0) = −1,





F xx
τ − σ2

2
(F xx

xx + 2FxF
xx
x + 2(F xx)2) + (α− 3σ2

2
− e−x)F xx

x + 2e−xF xx = e−xFx, in Ω,

F xx(x, 0) = 0,

and




F xτ
τ − σ2

2
(F xτ

xx + 2FxF
xτ
x + 2FxxF

xτ ) + (α− 3σ2

2
− e−x)F xτ

x + e−xF xτ = 0, in Ω,

F xτ (x, 0) = e−x,

respectively. By virtue of the (strong) maximum principle2, we obtain part i), ii)

and iii).

Next we prove part iv). Denote F̃ δ(x, τ)
.
= Fx(x, τ ;α + δ, σ) and F̂ (x, τ)

.
= Fx(x, τ ;α, σ) + δ

σ2 . Let P = F̃ δ− F̂ . Then, it suffices to show P < 0 in Ω. It is

easy to check that F̃ δ(x, τ) and F̂ (x, τ) satisfy




F̃ δ
τ − σ2

2
(F̃ δ

xx + 2F̃ δF̃ δ
x ) + (α+ δ − 3σ2

2
− e−x)F̃ δ

x + e−xF̃ δ = 0, in Ω,

F̃ δ(x, 0) = −1
(2.3.7)

and




F̂τ −
σ2

2
(F̂xx + 2F̂ F̂x) + (α + δ − 3σ2

2
− e−x)F̂x + e−xF̂ = δ

σ2e
−x, in Ω,

F̂ (x, 0) = −1 + δ
σ2 ,

(2.3.8)

2Apparently the solutions we consider do not grow too fast as state variables go to infinity.

So, we can use the maximum principle of unbounded domain.
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respectively. Subtracting (2.3.8) from (2.3.7), we obtain




Pτ −
σ2

2
(Pxx + F̂Px + F̃ δ

xP ) + (α+ δ − 3σ2

2
− e−x)Px + e−xP = − δ

σ2 e
−x, in Ω,

P (x, 0) = − δ
σ2 .

Applying the maximum principle gives the desired result.

The proof of part v) is placed in Appendix 2.4.2.

2.3.2 Optimal buying strategy

To begin with, we present the properties of V (x, τ).

Proposition 2.3.3. The variational inequality problem (2.3.3) has a unique so-

lution V (x, τ) ∈ W 2,1
p (ΩN), 1 < p < +∞, where ΩN is any bounded set in Ω.

Moreover,

0 ≤ V x ≤ 1 and Vτ ≤ 0 in Ω. (2.3.9)

Proof. Using the penalty approximation method [cf. Friedman (1982)], it is not

hard to show that (2.3.3) has a unique solution V (x, τ) ∈W 2,1
p (ΩN), 1 < p < +∞,

where ΩN is any bounded set in Ω.

To show 0 ≤ V x ≤ 1, we only need to confine to the noncoincidence set

Λ = {(x, τ) ∈ Ω : V > 0}. Denote w = V x and v = V x − 1, then w and v satisfy




wτ −
σ2

2
(wxx + 2wwx + 2Fxxw + 2Fxwx) + (α− σ2

2
− e−x)wx + e−xw = −σ2Fxx,

in Λ

w|∂Λ = 0,

and




vτ −
σ2

2
(vxx + 2vvx + 2Fxxv + 2Fxvx) + (α− 3σ2

2
− e−x)vx + e−xv = −e−x, in Λ

v|∂Λ = −1,

respectively. Since −σ2Fxx > 0 and −e−x ≤ 0, one can deduce w ≥ 0 and v ≤ 0 in

Λ by the maximum principle, which is desired.
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At last, let us prove V τ ≤ 0. Denote Ṽ (x, τ) = V (x, τ + δ). It suffices to show

Q(x, τ)
.
= Ṽ (x, τ) − V (x, τ) ≤ 0 in Ω, ∀ δ > 0. Suppose not, then

∆ = {(x, τ) ∈ Ω : Q(x, τ) > 0} 6= ∅.

It is easy to verify that Q(x, τ) satisfies





Qτ −
σ2

2

(
Qxx + (Ṽx + V x)Qx + 2FxQx

)
+ (α− σ2

2
− e−x)Qx

≤ δσ2Fxτ (·, ·)(Ṽx − 1) ≤ 0, in ∆,

Q|∂∆ = 0,

where we have used part iii) of Lemma 2.3.2 and Ṽx ≤ 1. Applying the maximum

principle, we get Q ≤ 0 in ∆, which conflicts with the definition of ∆. The proof

is complete.

In terms of Lemma 2.3.2 and Proposition 2.3.3, we will show the following

theorem.

Theorem 2.3.4. Let BRx be the buying region as defined in (2.3.5).

i) If α ≤ 0, then BRx = ∅;

ii) If 0 < α < σ2, there is a monotonically increasing boundary x∗b(τ) : (0, T ) →

(−∞,∞) such that

BRx = {(x, τ) ∈ Ω : x ≥ x∗b(τ), 0 < τ < T}. (2.3.10)

Moreover,

lim
τ→0+

x∗b(τ) = −∞; (2.3.11)

iii) If α ≥ σ2, then BRx = Ω̂;

Proof. According to part i) in Lemma 2.3.2 and (2.3.3),

L V ≤ −σ2(Fx + 1) + α < 0, for α ≤ 0.
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Applying the strong maximum principle, we infer V < 0 in Ω for α ≤ 0. Due to

(2.3.9), we infer V (−∞, T ) < 0. Part i) then follows.

If α ≥ σ2, part i) in Lemma 2.3.2 leads to

σ2Fx − (α− σ2) ≤ 0.

So, V = 0 is a solution to (2.3.3), which implies part iii).

It remains to show part ii). Since V x ≥ 0, we can define a free boundary

x∗b(τ) = inf{x ∈ (−∞,∞) : V (x, τ) = 0}, for any τ ∈ (0, T ).

Due to V τ ≤ 0, we infer that x∗b(τ) is monotonically increasing with τ. Let us prove

x∗b(τ)> −∞ for all τ. Suppose not, then there exists a τ0 > 0, such that x∗b(τ) =

−∞ for all τ ∈ [0, τ0]. This leads to V (x, τ) = 0, in (−∞,∞) × [0, τ0]. By (2.3.3),

we have L V + σ2Fx − (α− σ2) ≤ 0 in (−∞,∞) × (0, τ0], namely,

Fx ≤
α

σ2
− 1 in (−∞,∞) × (0, τ0].

So,

lim
x→−∞

Fx(x, τ) ≤
α

σ2
− 1 < 0, ∀ 0 < τ ≤ τ0,

which is in contradiction with part v) in Lemma 2.3.2.

Further, the idea of the proof of x∗b(τ) < ∞ stems from Brezis and Friedman

(1976) [cf. also the proof of Lemma 4.2 in Dai, Kwok and Wu (2004)]. Thanks to

limx→∞ Fx(x, τ) = −1, we see there exists an x∗ > 0, such that σ2Fx−(α−σ2) < −α
2

uniformly in τ, if x > x∗, where Fxτ (x, τ) ≤ 0 is used.We now construct an auxiliary

function W (x) =





− ε(R−x)2

R
if x∗ < x < R,

0 if x ≥ R,
and aim to show W (x) ≤ V (x, τ),

∀x > x∗, where ε and R will be determinate later.

Note that if x∗ < x < R,

LW −
α

2
≤ −

σ2ε

R
−

2σ2Fxε(R− x)

R
+ (α−

σ2

2
− e−x)

2ε(R− x)

R
−
α

2

≤ −
σ2ε

R
+ 2σ2‖Fx‖ε+ 2‖α−

σ2

2
− e−x‖ε−

α

2
< 0,
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by choosing ε sufficiently small.

It is easy to see LW − α
2

= −α
2
< 0, if x ≥ R. So that

LW + σ2Fx − (α− σ2) < 0, ∀x > x∗.

Since we can always choose R sufficiently large such that

W (x∗) < V (x∗, τ),∀τ ∈ [0, T ],

we obtain W (x) ≤ V (x, τ) in [x∗,∞) × (0, T ], by the comparison principle, which

implies x∗b(τ) ≤ R < +∞.

In addition, due to the monotonicity of x∗b(τ), we deduce that {x = −∞} /∈

BRx. So, (2.3.10) follows.

At last, we need to prove (2.3.11). Assume contrary, i.e., limτ→0+ x∗b(τ) = x0 >

−∞. Then, we have

L V + σ2Fx − (α− σ2) = 0, ∀ x < x0, 0 < τ < T,

which, combined with V (x, 0) = 0 for all x, gives

V τ |τ=0 = −σ2Fx|τ=0 + (α− σ2) = α > 0, ∀ x < x0.

This conflicts with V τ ≤ 0. The proof is complete.

Figure 1 presents a numerical example about the optimal buying boundary

x∗b(τ) in the arithmetic average case with 0 < α < σ2.

2.3.3 Optimal selling strategy

Now let us look at the sell case. Similar to the buy case, we can deal with the

scenario of α ≤ 0 and α ≥ σ2. However, the scenario of 0 < α < σ2 is more
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Figure 2.1: The optimal buying boundary x∗b(τ) in the arithmetic average case.

Parameter values used: α = 0.06, σ = 0.4, T = 2.

challenging because we no longer have the monotonicity of U w.r.t. τ. To overcome

the difficulty, we introduce an auxiliary problem:





LU
∗
+ σ2Fx − (α− σ2) = 0, in Ω,

U
∗
(x, 0) = 0.

(2.3.12)

Lemma 2.3.5. Let U
∗
(x, τ) be the solution to (2.3.12). Then for any τ ∈ (0, T ],

lim
x→−∞

U
∗
(x, τ) > 0 if α >

σ2

2
,

lim
x→−∞

U
∗
(x, τ) = 0 if α =

σ2

2
,

lim
x→−∞

U
∗
(x, τ) < 0 if α <

σ2

2
.

We place the proof in Appendix 2.4.3.

Proposition 2.3.6. The variational inequality problem (2.3.3) has a unique so-

lution U(x, τ) ∈ W 2,1
p (ΩN), 1 < p < +∞, where ΩN is any bounded set in Ω.

Moreover, for any (x, τ) ∈ Ω,
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i) 0 ≤ Ux ≤ 1;

ii) U(x, τ ;α) ≤ U(x, τ ;α + δ) for δ > 0;

iii) U(x, τ) = U
∗
(x, τ) > 0 for α ≥ σ2

2
. And, for any τ ∈ (0, T ],

lim
x→−∞

U(x, τ) > 0, if α >
σ2

2
, (2.3.13)

lim
x→−∞

U(x, τ) = 0, if α =
σ2

2
, (2.3.14)

lim
x→−∞

U(x, τ) = 0, if α <
σ2

2
. (2.3.15)

Proof. The proof of part i) is the same as that of Proposition 2.3.3. Now let us

prove part ii). Suppose not, then

O = {(x, τ) ∈ Ω : H(x, τ) < 0} 6= ∅,

where H(x, τ) = U(x, τ ;α+ δ)−U(x, τ). Denote F δ
x (x, τ) = Fx(x, τ ;α+ δ). It can

be verified that




Hτ −
σ2

2
(Hxx +H2

x + 2UxHx + 2F δ
xHx) + (α + δ − σ2

2
− e−x)Hx

≥ −(σ2F δ
x − σ2Fx − δ)(1 − Ux) in O,

H|∂O = 0.

By part iv) in Lemma 2.3.2, F δ
x < Fx + δ

σ2 , which, combines with Ux ≤ 1, gives

−(σ2F δ
x − σ2Fx − δ)(1 − Ux) ≥ 0.

Again applying the maximum principle, we get H ≥ 0, in O, a contradiction with

the definition of O.

To show part iii), it is easy to see U
∗

x(x, τ) > 0 in Ω by virtue of Fxx < 0 and the

strong maximum principle. Combining with Lemma 2.3.5, we infer U
∗
(x, τ) > 0

in Ω when α ≥ σ2

2
. So, U

∗
(x, τ) must be the solution to (2.3.4), which yields

U(x, τ) = U
∗
(x, τ) for α ≥ σ2

2
. Then (2.3.13) and (2.3.14) follow. To show (2.3.15),
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apparently we have limx→−∞ U(x, τ) ≥ 0. Thanks to part ii) and (2.3.14), we infer

limx→−∞ U(x, τ) ≤ 0 for α < σ2

2
, which leads to (2.3.15). This completes the proof.

We then study the optimal selling region.

Theorem 2.3.7. Let SRx be the optimal selling region as defined in (2.3.6).

i) If α > σ2

2
, then SRx = ∅.

ii) If α = σ2

2
, then SRx = {x = −∞} .

iii) If 0 < α < σ2

2
, then {x = −∞} ⊂ SRx. Moreover, there is a free boundary

x∗s(τ) : (0, T ] → (−∞,+∞) ∪ −∞ such that

SRx =
{

(x, τ) ∈ Ω̂ : x ≤ x∗s(τ)
}
.

iv) If α ≤ 0, then SRx = Ω̂.

Proof. Part i) and ii) follow by part iii) of Proposition 2.3.6. The proof of part iv)

is similar to that of part i) in Theorem 2.3.4. Now let us prove part iii). Thanks to

(2.3.15), we immediately get {x = −∞} ⊂ SRx. Combined with Ux ≥ 0, we can

define

x∗s(τ) = sup{x ∈ (−∞,+∞) : U(x, τ) = 0}, for any τ ∈ (0, T ].

We only need to show that x∗s(τ) < ∞. Let x∗b(τ) be the free boundary as given

in part ii) of Theorem 2.3.4. Due to Lemma 2.3.1, we infer x∗s(τ) ≤ x∗b(τ), which,

combined with x∗b(τ) <∞, yields the desired the result. The proof is complete.

Remark 2.3.8. Numerical results show that x∗s(τ) is always monotonically in-

creasing and x∗s(τ) > −∞ when 0 < α < σ2

2
. But currently we cannot prove this.

As mentioned before, x = −∞ at τ = T (i.e. t = 0). By Theorem 2.3.7,

{x = −∞} ⊂ SRx if α ≤ σ2

2
, and SRx = ∅ if α > σ2

2
. We then obtain the

bang-bang selling strategy as follows.
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Figure 2.2: The optimal selling boundary x∗s(τ) in the arithmetic average case.

Parameter values used: α = 0.06, σ = 0.4, T = 2.

Corollary 2.3.9. It is optimal to sell the stock immediately at time 0 if α ≤ σ2

2
,

and to hold the stock until expiry T if α > σ2

2
.

Remark 2.3.10. The main reason that we have the bang-bang selling strategy is

that the average period is taken from time 0. This leads the initial position being in

the selling region for α ≤ σ2

2
. If the average period is taken from some time horizon

earlier than time 0, then the initial position is likely to be beyond the selling region,

which would result in a feedback strategy for 0 < α < σ2

2
, which will result in a

feedback strategy. The same remark applies to the sell case with reference to the

ultimate maximum or geometric average price.

Figure 2 presents a numerical example about the optimal selling boundary

x∗s(τ) in the arithmetic average case with 0 < α < σ2

2
.
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2.4 Appendix

2.4.1 The probability derivation of Lemma 2.2.1

Proof. Recall that Φ(z, τ) = StEt

(
1

AT

)
, where the z = A

S
, τ = T − t. It suffices

to calculate StEt

(
1

AT

)
. Indeed,

Et


 St

exp
{

1
T

∫ T

0
logSνdν

}




=
St

exp
{

1
T

∫ t

0
logSνdν

}Et

(
exp

{
−

1

T

∫ T

t

logSνdν

})

=

(
St

At

) t

T

Et

(
exp

{
−

1

T

∫ T

t

(logSν − logSt)dν

})

=

(
St

At

) t

T

E

(
exp

{
−

1

T

∫ T

t

(
(α−

σ2

2
)(ν − t) + σBν−t

)
dν

})

=

(
St

At

) t

T

exp

(
−(α−

σ2

2
)
(T − t)2

2T

)
E

(
exp

{
−

1

T

∫ T−t

0

σBνdν

})

=

(
St

At

) t

T

exp

(
−(α−

σ2

2
)
(T − t)2

2T

)
E

(
exp

{
−
σ

T

∫ T−t

0

(T − t− ν)dBν

})

=

(
St

At

) t

T

exp

(
−(α−

σ2

2
)
(T − t)2

2T

)
E exp

{
−
σ

T
B

[(
(T − t)3

3

) 1
2

]}

=

(
St

At

) t

T

exp

{
σ2(T − t)3

6T 2
− (α−

σ2

2
)
(T − t)2

2T

}
.

Thus, (2.2.1) follows.
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2.4.2 The proof of part v) of Lemma 2.3.2

Proof. Note that

F (x, τ) = log

(
Φ(z, τ)

T

)
= log

(
Et

(
St

TAT

))
= log Et

[(
tAt

St

+

∫ T

t

Sν

St

dν

)−1
]

= log E

[(
ex +

∫ τ

0

e(α−
σ2

2
)s+σBsds

)−1
]
.

It follows

Fx(x, τ) =

−ex
E

[(
ex +

∫ τ

0
e(α−

σ2

2
)s+σBsds

)−2
]

E

[(
ex +

∫ τ

0
e(α−

σ2

2
)s+σBsds

)−1
] .

We then get the desired results by letting x→ −∞ and +∞.

2.4.3 The proof of Lemma 2.3.5

Proof. Let

ϕ∗(St, At, t) = Et

(
ST

AT

)
,

which represents the value function associated with a simple strategy: holding the

stock until expiry T . Similar to the transformation (2.3.1), we consider

U ∗(z, τ) = ϕ∗(S,A, t), U
∗
(x, τ) = log

(
U ∗(z, τ)

Φ(z, τ)

)
,

where the definitions of x, z and τ are the same as earlier. It is easy to check that

U
∗
(x, τ) is the solution to (2.3.12). So, we only need to show

U ∗(0, τ) > Φ(0, τ), if α >
σ2

2
,

U ∗(0, τ) = Φ(0, τ), if α =
σ2

2
,

U ∗(0, τ) < Φ(0, τ), if α <
σ2

2
.
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Let us only consider the case of α ≥ σ2

2
since the case of α < σ2

2
is similar.

Note that

Φ(0, τ) = lim
z→0+

Φ(z, τ) = lim
z→0+

TEt

(
St

TAT

)
= T lim

z→0+
Et

(
tz +

∫ T

t

Sν

St

dν

)−1

= TE

(∫ T

t

exp((α−
σ2

2
)(ν − t) + σBν−t)dν

)−1

≤ TE

(∫ τ

0

eσBνdν

)−1

, for τ ∈ (0, T ).

In a similar way,

U ∗(0, τ) = lim
z→0+

U ∗(z, τ) = lim
z→0+

TEt

(
tz +

∫ T

t

Sν

ST

dν

)−1

= TE



∫ T

t

exp
(
(α− σ2

2
)(ν − t) + σBν−t

)

exp
(
(α− σ2

2
)(T − t) + σBT−t

)dν




−1

= TE

(∫ T

t

exp
(
(α−

σ2

2
)(ν − T ) + σ(Bν−t −BT−t)

)
dν

)−1

≥ TE

(∫ τ

0

eσB∗

νdν

)−1

≥ Φ(0, τ), for τ ∈ (0, T ),

where B∗
ν = B(T−t)−ν −BT−t is also a standard Brownian motion. In addition, we

have the equality if and only if α = σ2

2
. The proof is complete.



Chapter 3
Penalty Methods for Continuous-Time

Portfolio Selection with Proportional

Transaction Costs

In this chapter, we will make use of the penalty method to numerically study the

optimal trading strategies in the presence of transaction costs. The organization

is as follow. In the first section, we present the problem formulation. Section 2

introduces a series of changes of variables that are also helpful for implementing

penalty algorithm. In section 3, we describe the penalty method combined with the

finite discretization. Section 4 is devoted to the convergence analysis. In section

5, we show that the standard penalty method can be employed in the single risky

asset case. Numerical examples are given in section 6 before the chapter ends with

an Appendix.

27
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3.1 Model formulation

Suppose that there are N+1 assets available for investment: a risk free asset (bank

account) and N risky assets (stocks). Their prices, denoted by S0(t) and Si(t), i =

1, 2, . . . , N respectively at time t, evolve according to the following equations:

dS0 = rS0dt,

dSi = Si (αidt+ σidBit) ,

where r > 0 is the constant risk free rate, αi > r and σi > 0 are constant ex-

pected rate of return and volatility, respectively, of the risky assets. The pro-

cesses {Bit; t > 0} are standard Brownian motions on a filtered probability space
(
S,F , {Ft}t≥0 ,P

)
with Bi0 = 0 almost surely and constant coefficients of corre-

lation ρij, namely, E(dBitdBjt) = ρijdt. We assume that the filtration {Ft}t≥0 is

right-continuous and each Ft contains all P-null sets of F .

Assume that an investor holds a portfolioXt = (X0(t), X1(t), ..., XN (t)) , where

X0(t) and Xi(t), i = 1, 2, ..., N, are dollar values in bank and the ith risky asset

respectively at time t. In the presence of transaction costs, the equations describing

their evolution are

dX0 = (rX0 − κC(t))dt−
N∑

i=1

(1 + λi)dLi +

N∑

i=1

(1 − µi)dMi, (3.1.1)

dXi = αiXidt+ σiXidBit + dLi − dMi. (3.1.2)

Here C(t) ≥ 0 is the consumption rate and κ is taken to be either 1 or 0 subject

to whether consumption is considered or not. Li(t) and Mi(t) are right-continuous

(with left hand limits), nonnegative, and nondecreasing {Ft}t≥0-adapted processes

with Li(0) = Mi(0) = 0, representing cumulative dollar values for the purpose

of buying and selling the ith stock respectively. The constants λi ∈ [0,∞) and

µi ∈ [0, 1), i = 1, 2, . . . , N, appearing in these equations account for proportional
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transaction costs incurred on purchase and sale of the ith stock respectively. We

will always assume λi + µi > 0, i = 1, 2, . . . , N.

Due to transaction costs, the investor’s net wealth in monetary terms is X0 +
∑N

i=1[(1−µi)X
+
i − (1+λi)X

−
i ]. With the requirement that net wealth at any time

t be positive, the solvency region S is defined as

S =

{
x = (x0, x1, . . . , xN) ∈ R

N+1 : x0 +
N∑

i=1

[(1 − µi)x
+
i − (1 + λi)x

−
i ] > 0

}
.

Assume that the investor is given an initial position x0 ∈ S at time 0. An

investment and consumption strategy ({Li} , {Mi} , C) is admissible for x starting

from time s ∈ [0, T ) if Xt given by (3.1.1)-(3.1.2) withXs = x is in S .We let As(x)

be the set of admissible investment strategies starting from time s. The investor

aims to choose an admissible strategy so as to maximize the discounted expected

utility of consumption and terminal wealth WT , that is,

sup
({Li},{Mi},C)∈A0(x0)

E
x0

0

[∫ T

0

κe−βsu(C(s))ds+ e−βTu(WT )

]
, (3.1.3)

where u(·) is utility function and β > 0 is the discount rate. We will only confine

to CRRA investors whose utility function takes the following form:

u(W ) =





W γ

γ
, if γ 6= 0, γ < 1,

logW, if γ = 0.

Define the value function by

V (x, t) = sup
(Li,Mi,C)∈At(x)

E
Xt=x
t

[∫ T

t

κe−βsu(C(s))ds+ e−βTu(WT )

]
,

for x ∈ S , t ∈ [0, T ). The problem is indeed a singular control problem for the

displacement of the state variables Xt due to control effort might be discontinuous.

It turns out that the value function satisfies the following HJB equation [cf. Shreve

and Soner (1994) or Alkian, Menaldi and Sulem (1996) or Fleming and Soner
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(2006)]:

max

{
∂V

∂t
+ L0V + κu∗(

∂V

∂x0

), max
1≤i≤N

L0iV, max
1≤i≤N

M0iV

}
= 0, y ∈ S , t ∈ [0, T ),

(3.1.4)

with the terminal condition

V (x, T ) = u

(
x0 +

N∑

i=1

[
(1 − µi)x

+
i − (1 + λi)x

−
i

]
)
, (3.1.5)

where

L0V =
1

2

N∑

i,j=1

ρijσiσjxixj

∂2V

∂xi∂xj

+
N∑

i=1

αixi

∂V

∂xi

+ rx0
∂V

∂x0

− βV,

L0iV = −(1 + λi)
∂V

∂x0

+
∂V

∂xi

, M0iV = (1 − µi)
∂V

∂x0

−
∂V

∂xi

,

u∗(ν) = max
c≥0

(−cν + u(c)) =





( 1
γ
− 1)ν

γ
γ−1 , if γ 6= 0, γ < 1;

− log ν − 1, if γ = 0.
.

3.2 Change of variables

Due to the homotheticity of the utility function, it follows that for any positive

constant ρ,

V (ρx, t) =





ργV (x, t), if γ 6= 0, γ < 1;

g(t) log ρ+ V (x, t), if γ = 0,

where g(t) = κ(1−e−β(T−t))
β

+ e−β(T−t). Take

ρ =
1

∑N

i=0 xi

and yi = ρxi, i = 1, 2, ..., N1.

Denote y = (y1, y2, ..., yN ) and ϕ(y, t) = V (1 −
∑N

i=1 yi, y1, y2, . . . , yN , t), then

V (x0, x1, . . . , xN , t) =





ργϕ(y, t), if γ 6= 0, γ < 1;

g(t) log ρ+ ϕ(y, t), if γ = 0.
(3.2.6)

1yi, i = 1, 2, . . . , N, can be consider as the fraction of the ith risky asset over the total wealth.

In the following disscusion, we will adopt y as state variable.
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It is easy to verify that for γ 6= 0 and γ < 1, (3.1.4)-(3.1.5) are reduced to




max
{

∂ϕ

∂t
+ L1ϕ+ κ( 1

γ
− 1)

(
γϕ−

∑N

i=1 yi
∂ϕ

∂yi

) γ
γ−1

,

max1≤i≤N L1iϕ, max1≤i≤N M1iϕ
}

= 0,

ϕ(y, T ) =
(1−

PN
i=1(µiy

+
i +λiy

−

i ))
γ

γ
, y ∈ ΩN , t ∈ [0, T ),

(3.2.7)

where ΩN =
{
y = (y1, y2, . . . , yN ) ∈ RN : 1 −

∑N

i=1(µiy
+
i + λiy

−
i ) > 0

}
,

L1ϕ =
N∑

k,l=1

ak,l

∂2ϕ

∂yk∂yl

+
N∑

k=1

bk
∂ϕ

∂yk

− θγϕ,

L1iϕ =
N∑

k=1

(δik + λiyk)
∂ϕ

∂yk

− λiγϕ, M1iϕ =
N∑

k=1

(−δik + µiyk)
∂ϕ

∂yk

− µiγϕ

and

ak,l = ykyl

N∑

i,j=1

1

2
ρijσiσj(δil − yi)(δjk − yj),

bk = yk

N∑

i=1

(δik − yi)
[
(αi − r) +

N∑

j=1

(γ − 1)ρijσiσjyj

]
,

θ =
β

γ
−

(
r +

N∑

i=1

yi

(
αi − r −

1 − γ

2

N∑

j=1

ρijσiσjyj

))
.

Here δij represents Kronecker index, i.e. δij = 1 if i = j, and δij = 0 otherwise.

The above change of variables is well-known and has been widely adopted, see

Davis and Norman (1990) for N = 1, and Alkian, Menaldi and Sulem (1996) and

Muthuraman and Kuman (2006) for N = 2. These authors considered numerical

implementation based on (3.2.7). However, numerical oscillation would be caused

when applying penalty method to (3.2.7) because the associated penalty terms

Kλiγϕ and Kµiγϕ, with K large enough, may result in a singular matrix after

discretization in the case of γ < 0. To overcome the difficulty, we further make the

following transformation originally adopted by Dai and Yi (2006):

W (y, t) =
log(γϕ)

γ
. (3.2.8)
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It follows



max
{

∂W
∂t

+ LW + κf(W ),max1≤i≤N LiW,max1≤i≤N MiW
}

= 0,

W (y, T ) = log
(
1 −

∑N

i=1(µiy
+
i + λiy

−
i )
)
, y ∈ ΩN , t ∈ [0, T ),

(3.2.9)

where

LW =
N∑

k,l=1

ak,l

(
∂2W

∂yk∂yl

+ γ
∂W

∂yk

∂W

∂yl

)
+

N∑

k=1

bk
∂W

∂yk

− θ,

LiW =
N∑

k=1

(δik + λiyk)
∂W

∂yk

− λi, MiW =
N∑

k=1

(−δik + µiyk)
∂W

∂yk

− µi,

f(W ) =

(
1

γ
− 1

)
e

γ
γ−1

W

(
1 −

N∑

i=1

yi

∂W

∂yi

) γ
γ−1

,

and

ak,l = ykyl

N∑

i,j=1

1

2
ρijσiσj(δil − yi)(δjk − yj),

bk = yk

N∑

i=1

(δik − yi)
[
(αi − r) +

N∑

j=1

(γ − 1)ρijσiσjyj

]
.

Another advantage of transformation (3.2.8) is that a slight modification of

(3.2.9) applies to the case of logarithmic utility. Indeed, for γ = 0, let

W (y, t) =
ϕ(y, t)

g(t)
, (3.2.10)

then it can be verified that W (y, t) satisfies (3.2.9) with

f(W ) = −
1 + log g(t) + log

(
1 −

∑N

i=1 yi
∂W
∂yi

)
+W

g(t)
,

θ = −r −
N∑

i=1

yi

(
αi − r −

1

2

N∑

j=1

ρijσiσjyj

)
.

Define

BRi = {(y, t) ∈ ΩN × [0, T ) : LiW = 0},

SRi = {(y, t) ∈ ΩN × [0, T ) : MiW = 0},

NTRi = ΩN × [0, T )\(BRi ∪ SRi), and NTR = ∩N
i=1NTRi.
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Then, NTR represents the no transaction region, BRi, SRi and NTRi represent

the buy region, sell region and no-trading region with regard to the ith stock,

respectively.

3.3 The penalty method

Let us consider a penalty approximation to (3.2.9):





−∂W
∂t

− LW − κf(W ) = K
∑N

i=1

[
(LiW )+ + (MiW )+] , y ∈ ΩN , t ∈ [0, T ),

W (y, T ) = log
(
1 −

∑N

i=1(µiy
+
i + λiy

−
i )
)
,

(3.3.1)

where K is a large positive constant. (3.3.1) is expected to converge to (3.2.9) as

K goes to infinity.

3.3.1 The control problem associated with (3.3.1).

The approximation (3.3.1) corresponds to the original problem (3.1.3) restricted to

a class of admissible policies: Lit and Mit are absolutely continuous with bounded

derivatives, i.e.

Lit =

∫ t

0

lisds, Mit =

∫ t

0

misds, 0 ≤ lis ≤ K, 0 ≤ mis ≤ K, for i = 1, 2, . . . , N.

Indeed, it is easy to see that the associated value function, denoted by V (x, t),

satisfies (taking γ 6= 0 as an example)

max
(li,mi,C)

{
∂V

∂t
+ L0V + κ

Cγ

γ
+

N∑

i=1

(
liL0iV +miM0iV

)
}

= 0 in S × [0, T ).



3.3 The penalty method 34

The optimal strategies are

C =

(
∂V

∂x0

) 1
γ−1

, li =





K if ∂V
∂xi

− (1 + λi)
∂V
∂x0

≥ 0,

0 otherwise,

and mi =





K if (1 − µi)
∂V
∂x0

− ∂V
∂xi

≥ 0,

0 otherwise,

which yields

∂V

∂t
+L0V +κu∗

(
∂V

∂x0

)
+K

N∑

i=1

[(
L0iV

)+
+
(
M0iV

)+]
= 0 in S ×[0, T ). (3.3.2)

Applying the transformations (3.2.6), (3.2.8) and (3.2.10), (3.3.2) with terminal

condition is reduced to the penalty approximation (3.3.1).

3.3.2 Computation domain and boundary conditions

We are most interested in the NTR that is much smaller than the solvency region.

The intuition behind this is that it is not optimal for a risk averse investor to buy

or short sell too much in one stock when the assets are not perfectly corrected.

Then, we confine to

DN = [y1m, y1m] × . . .× [yNm, yNm] ⊂ ΩN

and impose the boundary conditions as follows:

LiW = 0 at yi = yim, i = 1, 2, . . . , N, (3.3.3)

MiW = 0 at yi = yim, i = 1, 2, . . . , N, (3.3.4)

which imply buying the ith risky asset at yim, i.e. the fraction of the asset is too

small and selling the ith risky asset at yim, i.e. the fraction of the asset is too high.

Figure 3.1 shows the computation domain (the rectangle) and boundary conditions

when N = 2 and λ1 = λ2 = µ1 = µ2 = 1%.
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Figure 3.1: The computation domain and boundary conditions when N = 2

3.3.3 Finite difference discretization

Let ∆t be the time step, n = T
∆t

and tn = n∆t. Assume that we have a uniform

grid, denoted by DN
h . Let hi and ei be respectively the mesh size and the associated

unit vector in yi direction. For illustration, let us perform discretization at (y, tn)

with y ∈ DN
h and denote W (y, tn) = W n(y).

The first order terms ∂W
∂yi

are discretized by the upwind scheme. For example,

bi
∂W

∂yi

∼





bi
W n(y+hiei)−W n(y)

hi
if bi > 0;

bi
W n(y)−W n(y−hiei)

hi
if bi < 0.

Since the upwind scheme is only of the first order accuracy, we use the fully implicit

approximation to the temporal term

∂W

∂t
∼
W n+1(y) −W n(y)

∆t
.

The term ∂2W
∂y2

i

is discretized as usual:

∂2W

∂y2
i

∼
W n(y + hiei) − 2W n(y) +W n(y − hiei)

h2
i

.



3.4 Convergence analysis 36

As in Clift and Forsyth (2008), we discretize the cross terms ∂2W
∂yi∂yj

, i 6= j, as

follows:

aij

∂2W

∂yi∂yj

∼
aij

2hihj

[
W n(y + hiei + hjej) +W n(y − hiei − hjej) + 2W n(y)

−W n(y + hiei) −W n(y − hiei) −W (y + hjej) −W (y − hjej)
]

if aij < 0;

aij

∂2W

∂yi∂yj

∼ −
aij

2hihj

[
W n(y + hiei − hjej) +W n(y − hiei + hjej) + 2W n(y)

−W n(y + hiei) −W n(y − hiei) −W n(y + hjej) −W n(y − hjej)
]

if aij > 0.

3.3.4 Newton iteration for nonlinear terms

(3.3.1) contains several nonlinear terms: the penalty terms, the nonlinear terms in

LW due to transformation (3.2.8) if γ 6= 0, and the consumption term f(W ) if

κ = 1. All these terms can be linearized by Newton iteration. Especially, owing

to their non-smoothness, we linearize the penalty term using the following non-

smooth Newton iteration as in Forsyth and Vetzal (2002). For illustration, let us

take K (LiW )+ for example. Assume that W l be the lth estimate for W . Then we

linearize K (LiW )+ as 



KLiW if LiW
l ≥ 0,

0 if LiW
l < 0.

Here we emphasize that the upwind scheme should be applied for discretizing the

first order terms in LiW .

3.4 Convergence analysis

In this section, we will focus on the convergence analysis, where we only confine

to the case of single risky asset with log utility and without consumption, namely,

N = 1, κ = 0 and γ = 0. To simplify the notation, we surrender the subscript due
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to the state variable, then y = y1, h = h1, a = a11, b = b1 and so on. In addition,

the subscript k below means y = kh.

The discrete scheme can be written as follows:



(FW n)k =: −W n+1
k +W n

k + (AW n)k + θk∆t

= P n
1k

(
(E+W n)k

h
−
(

λ
1+λy

)
k

)
+ P n

2k

((
−µ

1−µy

)
k
− (E−W n)k

h

)
,

W n
k = log(1 − (µy+ + λy−))k, for k = m+ 1, ...,m− 1, n = 0, ..., n− 1,

(3.4.1)

where

(AW n)k = −
∆t

h2
ak

[
(E+W n)k − (E−W n)k

]
+

∆t

h
bkI{bk<0}(E

+W n)k+
∆t

h
bkI{bk>0}(E

−W n)k,

(E+W n)k = W n
k+1 −W n

k and (E−W n)k = W n
k −W n

k−1,

P n
1k =





Large, if (E+W n)k

h
>
(

λ
1+λy

)
k
,

0, otherwise.
(3.4.2)

P n
2k =





Large, if
(

−µ

1−µy

)
k
> (E−W n)k

h
,

0, otherwise.
(3.4.3)

with

ak =
1

2
σ2
(
y2(1 − y)2

)
k
, bk =

(
(α− r − σ2y)y(1 − y)

)
k
,

θk = −

(
r + (α− r)y −

σ2

2
y2

)

k

, Large = K∆t.

The first and last rows of A will have to be modified to take into account the

boundary conditions:

(E+W n)k

h
=

(
λ

1 + λy

)

k

, at k = m;
(E−W n)k

h
=

(
−µ

1 − µy

)

k

, at k = m.

The discrete form (3.2.9) can be written as

(FW n)k ≥ 0(
λ

1 + λy

)

k

−
(E+W n)k

h
≥ 0

(E−W n)k

h
−

(
−µ

1 − µy

)

k

≥ 0
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(FW n
k = 0) ∨

((
λ

1 + λy

)

k

=
(E+W n)k

h

)
∨

(
(E−W n)k

h
=

(
−µ

1 − µy

)

k

)
(3.4.4)

W n
k = log(1 − (µy+ + λy−))k.

Here (·) ∨ (·) ∨ (·) denotes that at least one holds.

We aim to show that as Large → +∞, the discrete solution of (3.4.1) converges

to (3.4.4). Thus, it suffices to prove the following theorem.

Theorem 3.4.1. (Error in the penalty formulation) If ∆t
h
< const., as ∆t, h→ 0,

then the penalty method for (3.4.1) solves

FW n
k ≥ 0 (3.4.5)(

λ

1 + λy

)

k

−
(E+W n)k

h
≥ −

C0

Large
(3.4.6)

(E−W n)k

h
−

(
−µ

1 − µy

)

k

≥ −
C0

Large
(3.4.7)

(FW n
k = 0)∨

(∣∣∣∣
(

λ

1 + λy

)

k

−
(E+W n)k

h

∣∣∣∣ ≤
C0

Large

)
∨

(∣∣∣∣
(E−W n)k

h
−

(
−µ

1 − µy

)

k

∣∣∣∣ ≤
C0

Large

)

(3.4.8)

W n
k = log(1 − (µy+ + λy−))k,

where constant C0 > 0 is independent of K,∆t, h, Large.

Let us proceed with one lemma.

Lemma 3.4.2. (Bounds for discrete solution) Let W n
k be the solution to (3.4.1).

Then

−‖θ‖∞T + ‖W (T, y)‖∞ ≤W n
k ≤ ‖θ‖∞T + ‖W (T, y)‖∞, for all n, k, (3.4.9)

where ‖ · ‖∞ refers to the L∞ norm.

Proof. It is easy to see that Un
k = −‖θ‖∞(T − tn) − ‖W (T, y)‖∞ satisfies

−Un+1
k + Un

k + (AUn)k + θk∆t ≤ 0, and Un
k ≤ W n

k , for all k, n. (3.4.10)
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Note that A is an M -matrix. Due to the discrete maximum principle, we get the

left hand side inequality.

Now let us prove the right hand side inequality. First, we prove

W n
k ≤ Un

k for all k and n (3.4.11)

provided that U satisfies

(FUn)k ≥ 0, (3.4.12)

(E+Un)k

h
≤

(
λ

1 + λy

)

k

and
(E−Un)k

h
≥

(
−µ

1 − µy

)

k

, (3.4.13)

Un
k ≥ W n

k , (3.4.14)

for all k and n. Suppose not, there exists a node (k0, n0), such that W n0
k0

−Un0
k0
> 0.

Without loss of generality, we assume

W n0

k0
− Un0

k0
= max

{(k,n)}
{W n

k − Un
k } > 0.

Moreover, we can assume n0 is the maximum index of the nodes, if there are more

than one maximum point.

Since W n0
k0

−Un0
k0

≥W n0
k0−1−U

n0
k0−1 and W n0

k0
−Un0

k0
≥W n0

k0+1−U
n0
k0+1, we deduce

that

(E+W n0)k0

h
=
W n0

k0+1 −W n0
k0

h
≤
Un0

k0+1 − Un0
k0

h
≤

(
λ

1 + λy

)

k0

, (3.4.15)

(E−W n0)k0

h
=
W n0

k0
−W n0

k0−1

h
≥
Un0

k0
− Un0

k0−1

h
≥

(
−µ

1 − µy

)

k0

. (3.4.16)

Then, according to the terminal condition and boundary conditions, we are able

to choose an interior node (k0, n0), i.e. m < k0 < m, and 0 ≤ n0 < n.
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Subtracting (3.4.12) from (3.4.1) at the node (k0, n0), we have

(W n0 − Un0)k0 + (A(W n0 − Un0))k0 ≤ (W n0+1 − Un0+1)k0

+P n0

1k0

(
(E+W n0)k0

h
−

(
λ

1 + λy

)

k0

)

+P n0
2k0

((
−µ

1 − µy

)

k0

−
(E−W n0)k0

h

)

= (W n0+1 − Un0+1)k0 , (3.4.17)

where the equality is due to (3.4.15)-(3.4.16) and the definition of P n0

1k0
and P n0

2k0
.

Since A is an M -matrix, (A(W n0 − Un0))k0 ≥ 0. Thus,

(W n0 − Un0)k0 ≤ (W n0+1 − Un0+1)k0 ,

which is in contradiction with the selection of n0. Then, (3.4.11) follows.

It is easy to verified that Un
k = ‖θ‖∞(T−tn)+‖W (T, y)‖∞, for all k, n, satisfies

(3.4.12)-(3.4.14). This completes the proof.

Proof of Theorem 3.4.1. To establish the satisfaction of (3.4.5)-(3.4.8), it suffices

to show that

P n
1k

(
(E+W n)k

h
−

(
λ

1 + λy

)

k

)
≤ C0, (3.4.18)

P n
2k

((
−µ

1 − µy

)

k

−
(E−W n)k

h

)
≤ C0, (3.4.19)

where C0 is independent of K,∆t, h. We will only show (3.4.18), and the proof of

(3.4.19) is similar.

Let (n, k0) denote the node at which the penalty term

P n
1k

(
(E+W n)k

h
−

(
λ

1 + λy

)

k

)

achieves the maximum, then we can infer that

(E+W n)k0

h
−

(
λ

1 + λy

)

k0

= max
k

{
(E+W n)k

h
−

(
λ

1 + λy

)

k

}
> 0. (3.4.20)
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It follows

(E+W n)k0−1

h
−

(E+W n)k0

h
≤

(
λ

1 + λy

)

k0−1

−

(
λ

1 + λy

)

k0

,

and thus

(AW n)k0 =
∆t

h
ak0

(
(E+W n)k0−1

h
−

(E+W n)k0

h

)
+ ∆tbk0I{bk0

<0}
(E+W n)k0

h

+∆tbk0I{bk0
>0}

[(
λ

1 + λy

)

k0−1

+
(E+W n)k0−1

h
−

(
λ

1 + λy

)

k0−1

]

≤
∆t

h
ak0

[(
λ

1 + λy

)

k0−1

−

(
λ

1 + λy

)

k0

]
+ ∆tbk0I{bk0

<0}

(
λ

1 + λy

)

k0

+∆tbk0I{bk0
>0}

(
λ

1 + λy

)

k0−1

+ ∆tbk0I{bk0
>0}

(
(E+W n)k0

h
−

(
λ

1 + λy

)

k0

)

≤ 2‖a‖∞‖
λ

1 + λy
‖∞

∆t

h
+ ‖b‖∞‖

λ

1 + λy
‖∞∆t

+‖b‖∞∆t

(
(E+W n)k0

h
−

(
λ

1 + λy

)

k0

)
.

Thanks to (3.4.1), we then obtain

(P n
1k0

− ‖b‖∞∆t)

(
(E+W n)k0

h
−

(
λ

1 + λy

)

k0

)

≤ −W n+1
k0

+W n
k0

+ (AW n)k0 + θk0∆t− ‖b‖∞∆t

(
(E+W n)k0

h
−

(
λ

1 + λy

)

k0

)

≤ C1 + C2 + ‖θ‖∞∆t+ 2‖a‖∞‖
λ

1 + λy
‖∞

∆t

h
+ ‖b‖∞‖

λ

1 + λy
‖∞∆t

≤
C0

2

(3.4.18) then follows by choosing K > 2‖b‖∞. The proof is complete.

Now we move to the convergence of nonlinear iteration. Let W n,l be the lth

estimate for W n, and W n,0 = W n+1. For notational convenience, we define

P n,l
1 = P n

1 (W n,l) and P n,l
2 = P n

2 (W n,l).
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The iteration process for the nonlinear system (3.4.1)is as follows.

For l = 0, 1, . . . until convergence

[(I +M)−
1

h
P n,l

1 E+ +
1

h
P n,l

2 E−]W n,l+1 = W n+1 − θ∆t−P n,l
1

λ

1 + λy
−P n,l

2

µ

1 − µy
,

(3.4.21)

If
‖W n,l+1 −W n,l‖∞
max(1, ‖W n,l‖∞)

< tol, quit.

Theorem 3.4.3. (Convergence of the nonlinear iteration) The algorithm for the

nonlinear iteration scheme has the following properties.

i) The iterations converge monotonically, i.e. W n,l+1 ≥W n,l for l ≥ 1.

ii) The nonlinear iteration (3.4.21) converges to the unique solution to equation

(3.4.1), for any initial iterate value W n,0.

The proof is placed in Appendix 3.7.1, which is similar to Forsyth and Vetzal

(2002). In contrast to Forsyth and Vetzal (2002), we are unable to prove the so-

called “finite termination of iteration” due to the gradient constraints. However,

our algorithm still converges for a given tolerance owing to the boundedness of

discrete solution (Lemma 3.4.2) and monotone convergence.

3.5 The standard penalty method

At some occasions a singular stochastic control problem has a connection with an

optimal stopping problem [cf. Karatzas and Shreve (1984)]. In other words, the

variational inequality with gradient constraints arising from a singular stochastic

control problem can be reduced to a standard variational inequality (i.e. compli-

mentary problem or obstacle problem) in some cases, which enables us to make

use of the standard penalty methods proposed by Forsyth and Vezval (2002) and

Dai, Kwok and You (2007). In fact, Dai and Yi (2006) and Dai et al. (2007) have
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proved such a reduction for N = 1. Indeed, let

v = wy, (3.5.1)

which proves to satisfy the following double obstacle problem2:




min
{

max
{
−vt − T v − κf(w), v − λ

1+λy

}
, v + µ

1−µy

}
= 0,

v(y, T ) = − µ

1−µy
, y ∈ [0, 1

µ
), t ∈ [0, T ).

(3.5.2)

Here

T v =
1

2
σ2y2(1 − y)2vyy +

[
α− r + (γ − 1)σ2y + (1 − 2y)σ2

]
y(1 − y)vy

+
[
(α− r)(1 − 2y) + (γ − 1)σ2y(2 − 3y)

]
v +

[
α− r + (γ − 1)σ2y

]

+γσ2y(1 − y)v [(1 − 2y)v + y(1 − y)vy] ,

f(w) =





e
γ

γ−1
w(1 − yv)

1
γ−1y(vy + v2) if γ 6= 0, γ < 1,

y

g(t)(1−yv)
(v2 + vy) if γ = 0.

where − µ

1−µy
and λ

1+λy
are called the lower obstacle and the upper obstacle, re-

spectively. Note that we only need to consider y ≥ 0 because it can be shown that

short selling is suboptimal in the case of α > r and N = 1 [see for example, Shreve

and Soner (1994)].

Since the lower obstacle − µ

1−µy
tends to infinity as y → 1

µ
, we impose a bound-

ary condition

v(y, t) = −
µ

1 − µy
at y =

1

µ
− ǫ with 0 < ǫ << 1. (3.5.3)

The condition is deduced from the theoretical analysis in Dai and Yi (2006) and

Dai et al. (2007) that the selling boundary never hits y = 1
µ
.

It is seen that at y = 0, (3.5.2) reduces to




min {max {−vt − (α− r)v − (α− r), v − λ} , v + µ} = 0,

v(0, T ) = −µ, in t ∈ [0, T ),

2In Dai and Yi (2006) and Dai et al. (2007), they used a different state variable and the

resulting double obstacle problem is slightly different.
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solving which we obtain the boundary condition at y = 0:

v(0, t) = v(0, t) = min{(1 − µ)e(α−r)(T−t) − 1, λ},∀t ∈ [0, T ). (3.5.4)

Hence, we will use the following penalty approximation:




−vt − T v − κf(w) = −K(v − λ
1+λy

)+ +K(− µ

1−µy
− v)+,

v(y, T ) = − µ

1−µy
, in y ∈ (0, 1

µ
− ǫ), t ∈ [0, T ),

(3.5.5)

with the boundary conditions (3.5.3)-(3.5.4). The discretization is similar to that

in Forsyth and Vetzal (2002) or Dai, Kwok and You (2007). We highlight that

the Crank-Nicolson scheme will be used because the current penalty terms do not

involve the first order terms.

In the following we will discuss the implementation of numerical methods re-

spectively for κ = 0 and κ = 1. Without loss of generality, we only confine to

γ 6= 0, γ < 1, and the case of γ = 0 is similar3.

3.5.1 No-consumption case

In this case, at y = 1, (3.5.2) reduces to





min
{

max
{
−vt + (α− r − (1 − γ)σ2)v − (α− r − (1 − γ)σ2), v − λ

1+λ

}
, v + µ

1−µ

}

= 0,

v(1, T ) = − µ

1−µ
, in t ∈ [0, T ),

which yields

v(1, t) = max

{
min

{
1 −

1

1 − µ
e−(α−r−(1−γ)σ2)(T−t),

λ

1 + λ

}
,−

µ

1 − µ

}
. (3.5.6)

In terms of (3.5.6), we can solve (3.5.5) separately in {0 < y < 1} and {1 <

y < 1
µ
− ǫ}, which significantly reduces the size of computations.

3In the consumption case, the case of γ = 0 is simpler because the double obstacle problem

(3.5.2) becomes a self-contained system.
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3.5.2 Consumption case

In this case, at y = 1, there is no explicit solution due to the presence of f(w). As a

consequence, we have to solve the problem in
{

0 < y < 1
µ
− ǫ
}
. Moreover, (3.5.2)

is not a self-contained system for w is involved. Fortunately, Dai et al. (2007)

derived a relation between w and v. It can be shown that there exists ys(t) such

that

SR =
{
(y, t) ∈ Ω1 × [0, T ) : y ≥ ys(t)

}
.

From (3.5.1), we can write

w(y, t) = A(t) + log(1 − µys(t)) −

∫ ys(t)

y

v(ξ, t)dξ, (3.5.7)

where A(t) is to be determined. Clearly A(T ) = 0. It is shown in Dai et al. (2007)

that

A(t) =
1 − γ

γ
log

(
e

γ
1−γ

R T

t
h(ys(ζ))dζ

(
1 +

∫ T

t

e−
γ

1−γ

R T

τ
h(ys(ζ))dζdτ

))
, (3.5.8)

where h(y) = 1
(1−µy)2

[
γ−1

2
σ2y2(1 − µ)2 +

(
αy(1 − µ) + r(1 − y)

)
(1 − µy)

]
− β

γ
. A

brief derivation of (3.5.8) is placed in Appendix 3.7.2.

Let vn,l (·) and wn,l (·) be the lth discrete solutions at time tn. In terms of

(3.5.7), we can have an iterative algorithm as follows.

Step 1: At time step t = tn, start off with an initial guess of wn, denoted by

wn,0.

Step 2: Find vn,l+1 in virtue of the penalty method for (3.5.5) with w = wn,l.

Step 3: Compute the corresponding boundary

yl+1
s (tn) = min

{
y ∈ (0,

1

µ
− ǫ) : vn,l+1(y, tn) ≤ −

µ

1 − µy

}
.

Step 4: Update A(tn) by (3.5.8), then compute wn,l+1 by (3.5.7).

Step 5: Stop if
‖vn,l+1−vn,l‖
max{1, ‖vn,l‖}

< tol. Otherwise, set l = l + 1 and go back to

Step 2.
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3.6 Numerical results

In this section, we shall provide numerical analysis for both one stock case and

two-stock case. First, we will study the effect of penalty parameter K and the

convergence rate. Then, we compare trading policies between consumption case

and no consumption case. We further examine the effects of the parameter values

such as expected return, transaction costs, correlation on the optimal strategies.

3.6.1 Penalty parameter K and convergence rate

Let us first look at the convergence as the penalty parameter K goes to infinity.

Table 3.1 presents the values of ϕ(yM , 0) and v(yM , 0) against varying K, computed

from the standard penalty method with N = 1. Here yM refers to the “Merton line”

in the absence of transaction costs. It is apparent that the values converge as K

goes to infinity. Similar convergence for N = 2 can be observed from Table 3.2,

where the penalty method for variational inequality with gradient constraints is

adopted.

Next, we examine the order of convergence of the penalty methods. In Table

3.3, we list the numerical results for N = 1 obtained from the standard penalty

method with the Crank-Nicolson scheme. When there is no consumption (κ = 0),

the second order of convergence can be observed. When consumption is involved

(κ = 1), the rate of convergence is however slower than the expected rate due to the

upwind treatment of the consumption term. Table 3.4 lists the numerical results

for N = 2 obtained from the penalty method with the fully implicit scheme. The

apparent first order of convergence is revealed.
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Table 3.1: Test of varying the penalty parameterK on the double obstacle problem

(N = 1).

K ϕ(yM , 0) v(yM , 0)

10 -7.123355 -0.009888

103 -7.123726 -0.009140

105 -7.123796 -0.009136

106 -7.123798 -0.009136

107 -7.123798 -0.009136

Default parameter values: α = 0.15, σ = 0.4, r = 0.07, β = 0.1, γ = −1,

λ = µ = 0.01, T = 2, κ = 1, ym = 0, ym = 1, ∆t = 5 × 10−4, h = 10−3. ϕ(·, ·) and

v(·, ·) are the numerical solutions to (3.2.7) and (3.5.2). yM = α−r
(1−γ)σ2 refers to the

“Merton line” in the absence of transaction costs.

Table 3.2: Test of varying the penalty parameter K on the gradient constraint

problem (N = 2).

K ϕ(y1M
, y2M

, 0)

0.1 -7.104291

0.5 -7.097533

1 -7.097456

102 -7.097435

106 -7.097435

Default parameter values: α1 = 0.15, σ1 = 0.4 α2 = 0.12, σ2 = 0.3, ρ = 0.2, r =

0.07, β = 0.1, γ = −1, λ1 = µ1 = λ2 = µ2 = 0.01, T = 2, κ = 1, y1m = y2m = 0,

y1m = y2m = 0.4, ∆t = 5 × 10−4, h1 = h2 = 2 × 10−3. ϕ(·, ·, ·) is the numerical

solution to (3.2.7). yiM = 1
1−ρ2

(
αi−r

(1−γ)σ2
i

− ρ
αj−r

(1−γ)σiσj

)
refers to the “Merton line” of

the ith risky asset in the absence of transaction costs, i, j ∈ {1, 2}, i 6= j.
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Table 3.3: The convergence rate of the standard penalty method with Crank-

Nicolson scheme (N = 1).

n̄ Ny ‖ǫ‖∞, κ = 0 Ratio ‖ǫ‖∞, κ = 1 Ratio

600 100 - - - -

1200 200 2.36e-5 - 3.06e-3 -

2400 400 9.39e-6 2.5 1.26e-3 2.4

4800 800 2.59e-6 3.6 4.13e-4 3.1

9600 1600 6.69e-7 3.9 1.53e-4 2.7

19200 3200 1.65e-7 4.1 5.16e-5 2.7

Default parameter values: α = 0.15, σ = 0.4, r = 0.07, β = 0.1, γ = −1,

λ = µ = 0.01, T = 0.5, ym = 0, ym = 1, K = 103

∆t
, ∆t = T

n̄
, h =

ym − ym

Ny
. Here, ‖ǫ‖∞

is the L∞-norm of the difference in the solution from the coarser gird, “Ratio” is

the ratio of changes ‖ǫ‖∞ on the successive grids.

Table 3.4: The convergence rate of the penalty method with fully implicit scheme

(N = 2).

n̄ Ny1 Ny2 ‖ǫ‖∞ Ratio

100 20 20 - -

200 40 40 7.96e-4 -

400 80 80 4.00e-4 2.0

800 160 160 2.00e-4 2.0

1600 320 320 1.00e-4 2.0

Default parameter values: α1 = 0.15, σ1 = 0.4 α2 = 0.12, σ2 = 0.3, ρ = 0.2,

r = 0.07, β = 0.1, γ = −1, λ1 = µ1 = λ2 = µ2 = 0.01, T = 0.6, κ = 1, yim = 0,

yim = 0.4, ∆t = T
n̄
, hi =

yim − yim

Nyi

, K = 103

∆t
, i ∈ {1, 2}.
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3.6.2 Consumption vs no-consumption

We compare the optimal buying (selling) boundary between consumption case and

no consumption case with single risky asset in Figure 3.2, which plots the shape of

the BR, the SR and the NTR in y-t plane for both the consumption case and the

no-consumption case. It turns out that there are two time-dependent boundaries,

one being the optimal buying boundary (the lower) and the other being the selling

boundary (the upper), such that the BR is below the buying boundary and the

SR is above the selling boundary and the NTR is between them. This indicates

that a risk averse investor prefers to buy low and sell high. Observe that the

selling (buying) boundary in the consumption case is lower than the counterpart

in the no consumption case. The intuition behind is that the investor has to keep a

larger fraction of wealth in the bank account to maintain consumption. This is also

consistent with the general observation that investors prefer present consumption.

In addition, Figure 3.2 also reveals that it is never optimal to buy the stock

provided that the time is greater than a threshold value no matter whether con-

sumption is involved. Apparently, no one would like to buy a stock if there is

not enough time to recover the transaction costs incurred. Such a phenomenon,

called “no-buying near maturity” feature, was first proved by Liu and Loewenstein

(2002) for no-consumption case and Dai et al. (2007) for the consumption case,

the threshold value t0 = T − 1
α−r

log
(

1+λ
1−µ

)
= 2.818 for the given example.

Dai and Yi (2006) proved that both the optimal buying and selling boundaries

are monotonically decreasing with time t in no-consumption case, which is consis-

tent with the typical invest wisdom that the younger investor should allocate more

wealth to stocks than the older investor [cf. Liu and Loeweinstein (2002)]. Our

numerical results confirm this. Surprisingly, it may not be true in consumption

case if the discount factor β is big enough. Figure 3.3 presents an example with

β = 7, where the optimal buying boundary in the consumption case is apparently
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not monotone. One possible reason is that the investor has to balance present

consumption and terminal wealth according to the discount factor β.

Let us move to examine the case ofN = 2.A time snapshot of the SRi, BRi, NTRi,

i = 1, 2, and NTR is displayed in Figure 3.4. As in the case of single risky asset, the

optimal trading strategy is to keep the ratio (y1, y2) in the NTR by selling high and

buying low. In what follows, we only focus on theNTR. Figure 3.5 depicts the time

snapshot of the NTR at different time. It can be observed that as time approaches

to maturity, the bottom and the left-hand sides of the NTR match {y1 = 0} and

{y2 = 0}, respectively, which confirms the “no-buying near maturity”. In Fig-

ure 3.6, we compare the no transaction region between the consumption case and

no-consumption case. Same as the single risky asset case, it can be seen that larger

fraction of wealth in each asset is allocated in the no-consumption case.

3.6.3 Parameter effects

The impact of the risky asset return

In Figure 3.7, we plot the optimal buying and selling boundaries with varying α.

It can be observed that the buying (selling) boundary is increasing with α in both

the consumption case and the no-consumption case, which means that the bigger

the return rate of the risky asset α, the larger the fraction of wealth in the risky

asset. If α = 0.18, then α − r < (1 − γ)σ2 and the NTR is contained in the

region {y < 1} , which implies that leverage is always suboptimal. If α = 0.3, then

α − r > (1 − γ)σ2 and the NTR contains part of {y > 1} , which indicates that

leverage is likely needed. If α = 0.25, then α − r = (1 − γ)σ2 and the selling

boundary is exactly y = 1. All these results are consistent with the theoretical

analysis in Liu and Loewenstein (2002), Dai and Yi (2006) and Dai et al. (2007).
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The impact of risk aversion

We now investigate the impacts of risk aversion and transaction costs on the opti-

mal strategy. Let us only take the consumption case for illustration. By Figure 3.8,

we can see that both the optimal buying and selling boundaries are increasing with

γ, or equivalently, decreasing with the index of risk aversion 1 − γ. Moreover, the

NTR also expands as γ increases. The intuition behind this is that a more risk

averse investor would like to keep larger fraction of wealth in the bank account and

trade more often to reduce the risk.

The impact of transaction costs

Let us look at the dependence of the optimal trading strategies on the transaction

costs. Keeping buying and selling costs equal, Figure 3.9 shows the NTR expands

quickly as the transaction costs increase, which means the investor trends to de-

crease the trading frequency to save transaction costs. In addition, similar to Liu

and Loewenstein (2002), we find that the buying boundary is more sensitive to

transaction costs than the optimal selling boundary.

The impact of correlation

The impact of correlation between two stocks is displayed in Figure 3.10 and Fig-

ure 3.11. It can be observed that the NTR elongates in the direction (1,−1) and

shrinks in the direction (1, 1) as positive correlation increases in Figure 3.10. On

the contrary, Figure 3.11 shows that the NTR elongates in the direction (1, 1)

and shrinks in the direction (1,−1) as negative correlation increases. These are

the same as what Muthuraman and Kuman (2006) have observed for the infinite

horizon problem. Further, we follow Muthuraman and Kuman (2006) to keep
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the Merton line fixed, then such an impact can be displayed more clear (see Fig-

ure 3.12).
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3.7 Appendix

3.7.1 The proof of Theorem 3.4.3

To begin with, we prove the monotone property of (3.4.21). Writing (3.4.21) at

the (l − 1)th iteration, where l ≥ 1, gives

[
(I +M) −

1

h
P n,l−1

1 E+ +
1

h
P n,l−1

2 E−

]
W n,l = W n+1−θ∆t−P n,l−1

1

λ

1 + λy
−P n,l−1

2

µ

1 − µy
.

(3.7.1)

Note that equation (3.7.1) always has a solution, since

[
(I +M) −

1

h
P n,l−1

1 E+ +
1

h
P n,l−1

2 E−

]

is an M -matrix.

Subtracting (3.7.1) from (3.4.21), we have

[
(I +M) −

1

h
P n,l

1 E+ +
1

h
P n,l

2 E−

]
(W n,l+1−W n,l) =

(
P n,l

1 − P n,l−1
1

)(E+W n,l

h
−

λ

1 + λy

)

+
(
P n,l

2 − P n,l−1
2

)(
−

µ

1 − µy
−
E−W n,l

h

)
(3.7.2)

Now we examine each of the components of the right hand side of (3.7.2). Observe

(
P n,l

1 − P n,l−1
1

)(1

h
E+W n,l −

λ

1 + λy

)
≥ 0

and (
P n,l

2 − P n,l−1
2

)(
−

µ

1 − µy
−

1

h
E−W n,l

)
≥ 0.

Therefore, we infer that

[
(I +M) −

1

h
P n,l

1 E+ +
1

h
P n,l

2 E−

]
(W n,l+1 −W n,l) ≥ 0.

Since
[
(I +M) − 1

h
P n,l

1 E+ + 1
h
P n,l

2 E−
]

is an M -matrix, it follows that

W n,l+1 −W n,l ≥ 0.
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Now we show that the solution obtained by the penalty iteration is unique.

Suppose there are two solutions W and W to the penalized equation( 3.4.1). Then

[
(I +M) −

1

h
P1E

+ +
1

h
P2E

−

]
W = W n+1−θ∆t−P1

λ

1 + λy
−P2

µ

1 − µy
, (3.7.3)

[
(I +M) −

1

h
P 1E

+ +
1

h
P 2E

−

]
W = W n+1−θ∆t−P 1

λ

1 + λy
−P̄2

µ

1 − µy
. (3.7.4)

Subtracting (3.7.4) from (3.7.3) gives

[
(I +M) −

1

h
P1E

+ +
1

h
P2E

−

]
(W −W ) = (P1 − P 1)

(
1

h
E+W −

λ

1 + λy

)

+(P2 − P 2)

(
−

µ

1 − µy
−

1

h
E−W

)
.

Using a similar argument as we used in proving monotone iteration, we obtain

W −W ≤ 0. Similarly we have W −W ≥ 0, and hence W = W.

3.7.2 Derivation of (3.5.8)

As shown in Dai, et.al (2007), v(., t) ∈ C1 and w(., t) ∈ C2, and

wt + Lw|y=ys(t) = 0. (3.7.1)

Thus,

wy|y=ys(t) = −
µ

1 − µys(t)
, wyy|y=ys(t) = −

µ2

(1 − µys(t))2
.

Substituting into (3.7.1) gives

−A′(t) = −wt(ys(t), t) = Lw|y=ys(t) =

(
1

γ
− 1

)
e

γ
γ−1

A(t) + h(ys(t)). (3.7.2)

Solving (3.7.2) with A(T ) = 0, we obtain (3.5.8).

3.7.3 Figures in 3.6
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Figure 3.2: Shape of BR, SR and NTR, and comparison of the buying and selling

boundaries between the consumption case and the no consumption case (N = 1).

Default parameter values: α = 0.18, r = 0.07, σ = 0.3, γ = −1, β = 0.1,

λ = µ = 0.01, T = 3.
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Figure 3.3: An example of non-monotone buying boundary in the consumption

case (N = 1). Default parameter values: α = 0.18, r = 0.07, σ = 0.3, γ = −1,

β = 7, λ = µ = 0.01, T = 3.
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Figure 3.4: The time snapshot of NTR, BRi, SRi and NTRi, i = 1, 2, and N = 2.

Default parameter values: r = 0.07, β = 0.10, α1 = 0.15, α2 = 0.12, σ1 = 0.4,

σ2 = 0.35, ρ = 0.20, γ = −1, λ1 = µ1 = λ2 = µ2 = 0.01, T = 2, κ = 1.
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Figure 3.5: The different time snapshots of NTR (N = 2). Default parameter

values: α1 = 0.15, α2 = 0.12, r = 0.07, σ1 = 0.4, σ2 = 0.35, ρ = 0.2, γ = −1,

β = 0.1, λ1 = µ1 = λ2 = µ2 = 0.01, T = 2, κ = 1.
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Figure 3.6: The comparison of the NTR between the consumption case and the

no consumption case (N = 2). Default parameter values: α1 = 0.15, α2 = 0.11,

r = 0.07, σ1 = 0.4, σ2 = 0.3, ρ = 0.2, γ = −1, β = 0.1, λ1 = µ1 = λ2 = µ2 = 0.01,

T = 4.
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Figure 3.7: The impact of the risky asset return α on the optimal strategy (N = 1).

Default parameter values: r = 0.07, σ = 0.3, γ = −1, β = 0.1, λ = µ = 0.01,

T = 3, κ = 1.
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Figure 3.8: The impact of risk aversion γ on optimal strategy (N = 1). Default

parameter values: α = 0.15, r = 0.07, σ = 0.3, β = 0.1, λ = µ = 0.01, T = 3,

κ = 1.
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Figure 3.9: The impact of transaction costs on the optimal strategy (N = 1).

Default parameter values: α = 0.15, r = 0.07, σ = 0.3, γ = −1, β = 0.1, λ = µ,

T = 3, κ = 1.
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Figure 3.10: The impact of positive correlation on the NTR at t = 0 (N = 2).

Parameter default values: α1 = 0.14, α2 = 0.11, r = 0.07, σ1 = 0.4, σ2 = 0.3,

γ = −1, β = 0.1, λ1 = µ1 = λ2 = µ2 = 0.01, T = 2, κ = 0.
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Figure 3.11: The impact of negative correlation on the NTR at t = 0 (N = 2).

Default parameter values: α1 = 0.14, α2 = 0.11, r = 0.07, σ1 = 0.4, σ2 = 0.3,

γ = −1, β = 0.1, λ1 = µ1 = λ2 = µ2 = 0.01, T = 2, κ = 0.
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Figure 3.12: The impact of positive correlation on the NTR at t = 0 when the

“Merton line” is fixed (N = 2). Default parameter values: α1 = 0.15, α2 = 0.15,

r = 0.07, σ2
1 = σ2

2 = (0.4 − η)2 + η2, ρ = 2η(0.4−η)
(0.4−η)2+η2 , γ = −1, β = 0.1, λ1 = µ1 =

λ2 = µ2 = 0.01, T = 2, κ = 0. Given the parameter values, the “Merton line”

as defined in Table 3.2 is constant. The positive correlation is measured by the

parameter η [cf. Muthuraman and Kuman (2006)].



Chapter 4
Conclusion

Two free boundary problems in optimal investment are studied in this thesis. One is

related to the optimal decision to sell/buy a stock in a given period with reference to

the ultimate average of the stock price. The other is concerned with the numerical

study of optimal investment and consumption problem with finite horizon in the

presence of transaction costs.

By assuming the geometric Brownian motion of stock price, the first problem

reduces to an optimal stopping problem which is formulated as a variational in-

equality problem. By virtual of the PDE approach, we have fully characterized the

optimal buying (selling) strategy. It turns out that the optimal selling strategy is

bang-bang, which is the same as that obtained by Shiryaev, Xu and Zhou (2008)

taking the ultimate maximum of the stock price as the benchmark. However, the

optimal buying strategy can be a feedback one subject to the type of average and

parameter values. More precisely, for the sell case, if α > σ2

2
, it is optimal to hold

the stock until expiry; if α ≤ σ2

2
, it is optimal to sell the stock immediately at time

0. For the buy case, if α ≥ σ2, one should buy the stock immediately; if α ≤ 0, one

should never buy the stock before expiry; if 0 < α < σ2, there is an optimal buying

boundary and one should buy the stock once the boundary is reached. Moreover,
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we show that optimal strategy only depends on the time to expiry for the geometric

average case, and on the ratio of stock price to the running average in addition to

the time to expiry for the arithmetic average case.

It is worth pointing out that the bang-bang strategy for the sell case is the same

as that obtained by Shiryaev, Xu and Zhou (2008) taking the ultimate maximum

as benchmark. This, from another angle, justifies the definition of the “goodness

index” presented in their paper. Nevertheless, we highlight that the bang-bang

selling strategy heavily depends on the fact that the average period is taken from

time 0. If we take the average period from some time horizon earlier than time 0,

this can also lead to a feedback selling strategy, as we have seen in the buy case.

Mathematically, Problem II is equivalent to a variational inequality problem

with gradient constraints. We have provided a general framework of penalty ap-

proximation method to numerically solve this variational inequality. Such a penalty

approximation has a good interpretation that we restrict a class of policies being

absolutely continuous and bounded. This is in contrast to the relation between

the penalty approximation and the intensity framework for an optimal stopping

problem [cf. Dai, Kwok and You (2007)]. In terms of a series of transformations,

we obtain a unified variational inequality with gradient constraints that the value

function satisfies both for power utility and log utility, and it is straightforward to

apply the penalty method to the variational inequality. Convergence analysis is

provided as well.

When there is only one risky asset, Dai and Yi (2006) and Dai et al. (2007)

established a linkage with a standard variational inequality (obstacle problem).

In this case, we can make use of the standard penalty method as in Forsyth and

Vetzal (2002) and Dai, Kwok and You (2007), which allows us to adopt the Crank-

Nicolson scheme. Then the better order of convergence can be achieved.

In addition, we carry out a comprehensive numerical analysis on the behaviors
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of the optimal buying and selling boundaries. The effects of parameter values on

the optimal boundaries are investigated as well. In the case of single risky asset,

numerical results demonstrate the theoretical analysis in Dai and Yi (2006) and

Dai et al. (2007). Moreover, we offer an example that the optimal buying and

selling boundaries may not be monotone when consumption is involved. In the

case of multiple risky assets, we find that one should never buy any risky assets

when time is close to maturity. Such a phenomenon has been proved by Liu and

Loewenstein (2002), Dai and Yi (2006) and Dai et al. (2007) for the single risky

asset case, but has never been revealed for the multiple risky assets case.
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