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Summary

In this thesis, we introduce an inexact SQP Newton method for solving general

convex SC1 minimization problems

min θ(x)

s.t. x ∈ X,

where X is a closed convex set in a finite dimensional Hilbert space Y and θ(·) is

a convex SC1 function defined on an open convex set Ω ⊆ Y containing X.

The general convex SC1 minimization problems model many problems as spe-

cial cases. One particular example is the dual problem of the least squares covari-

ance matrix (LSCM) problems with inequality constraints.

The purpose of this thesis is to introduce an efficient inexact SQP Newton

method for solving the general convex SC1 minimization problems under realistic

assumptions. In Chapter 2, we introduce our method and conduct a complete

convergence analysis including the superlinear (quadratic) rate of convergence.

Numerical results conducted in Chapter 3 show that our inexact SQP Newton

method is competitive when it is applied to the LSCM problems with many lower

and upper bounds constraints. We make our final conclusions in Chapter 4.

v



Chapter 1
Introduction

In this thesis, we consider the following convex minimization problem:

min θ(x)

s.t. x ∈ X,
(1.1)

where the objective function θ and the feasible set X satisfy the following assump-

tions:

(A1) X is a closed convex set in a finite dimensional Hilbert space Y ;

(A2) θ(·) is a convex LC1 function defined on an open convex set Ω ⊆ Y containing

X.

The LC1 property of θ means that θ is Fréchet differentiable at all points in Ω

and its gradient function ∇θ : Ω → Y is locally Lipschitz in Ω. Furthermore, an

LC1 function θ defined on the open set Ω ⊆ Y is said to be SC1 at a point x ∈ Ω if

∇θ is semismooth at x (the definition of semismoothness will be given in Chapter

2).

There are many examples that can be modeled as SC1 minimization prob-

lems [10]. One particular example is the following least squares covariance matrix
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(LSCM) problem:

min
1

2
‖X − C‖2

s.t. 〈Ai, X〉 = bi, i = 1, . . . , p ,

〈Ai, X〉 ≥ bi, i = p + 1, . . . , m ,

X ∈ Sn
+ ,

(1.2)

where Sn and Sn
+ are, respectively, the space of n× n symmetric matrices and the

cone of positive semidefinite matrices in Sn, ‖ · ‖ is the Frobenius norm induced

by the standard trace inner product 〈·, ·〉 in Sn, C and Ai, i = 1, . . . , m are given

matrices in Sn, and b ∈ <m.

Let q = m− p and Q = {0}p ×<q
+. Denote A : Sn → <m by

A(X) :=




〈A1, X〉
...

〈Am, X〉


 , X ∈ Sn .

For any symmetric X ∈ Sn, we write X º 0 and X Â 0 to represent that X is

positive semidefinite and positive definite, respectively. Then the feasible set of

problem (1.2) can be written as follows:

F = {X ∈ Sn | A(X) ∈ b + Q, X º 0} .

The Lagrangian function l : Sn
+ ×Q+ → < for problem (1.2) is defined by

l(X, y) :=
1

2
‖X − C‖2 + 〈y, b−A(X)〉 ,

where (X, y) ∈ Sn
+ × Q+ and Q+ = <p × <q

+ is the dual cone of Q. Define

θ(y) := − inf
X∈Sn

+

l(X, y). Then the dual problem of (1.2) takes the following form

(cf. [2, 16]):

min θ(y) :=
1

2
‖ΠSn

+
(C +A∗y)‖2 − 〈b, y〉 − 1

2
‖C‖2

s.t. y ∈ Q+ ,
(1.3)
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where ΠSn
+
(·) is the metric projector onto Sn

+ and the adjoint A∗ : <m → Sn takes

the form

A∗(y) =
m∑

i=1

yiAi, y ∈ <m . (1.4)

It is not difficult to see that the objective function θ(·) in the dual problem (1.3)

is a continuously differentiable convex function with

∇θ(y) = AΠSn
+
(C +A∗y)− b, y ∈ <m .

For any given y ∈ <m, both θ(y) and ∇θ(y) can be computed explicitly as the

metric projector ΠSn
+
(·) admits an analytic formula [17]. Furthermore, since the

metric projection operator ΠSn
+
(·) over the cone Sn

+ has been proved to be strongly

semismooth in [18], the dual problem (1.3) belongs to the class of the SC1 min-

imization problems. Thus, applying any dual based methods to solve the least

squares covariance matrix problem (1.2) means that eventually we have to solve a

convex SC1 minimization problem. In this thesis we focus on solving such general

convex SC1 problems.

The general convex SC1 minimization problem (1.1) can be solved by many

kinds of methods, such as the projected gradient method and BFGS method. In

[10], Pang and Qi proposed a globally and superlinearly convergent SQP Newton

method for convex SC1 minimization problems under a BD-regularity assumption

at the solution point, which is equivalent to the local strong convexity assumption

on the objective function. This BD-regularity assumption is too restrictive. For

example, the BD-regularity assumption fails to hold for the dual problem (1.3).

For the details, see [7].

The purpose of this thesis is twofold. First we modify the SQP Newton method

of Pang and Qi with a much less restrictive assumption than the BD-regularity.

Secondly we introduce an inexact technique to improve the performance of the SQP

Newton method. As the SQP Newton method in Pang and Qi [10], at each step,
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we need to solve a strictly convex program. We will apply the inexact smoothing

Newton method recently proposed by Gao and Sun in [7] to solve it.

The following part of this thesis is organized as follows. In Chapter 2, we intro-

duce a general inexact SQP Newton method for solving convex SC1 minimization

problems and provide a complete convergence analysis. In Chapter 3, we apply

the inexact SQP Newton method to the dual problem (1.3) of the LSCM problem

(1.2) and report our numerical results. We make our final conclusions in Chapter

4.



Chapter 2
An inexact SQP Newton method

In this chapter, we introduce an inexact SQP Newton method for solving the

general convex SC1 minimization problems (1.1).

Since θ(·) is a convex function, x̄ ∈ X solves problem (1.1) if and only if it

satisfies the following variational inequality

〈x− x̄,∇θ(x̄)〉 ≥ 0 ∀x ∈ X. (2.1)

Define F : Y → Y by

F (x) := x− ΠX(x−∇θ(x)), x ∈ Y , (2.2)

where for any x ∈ Y , ΠX(x) is the metric projection of x onto X, i.e., ΠX(x) is

the unique optimal solution to the following problem:

min
1

2
‖y − x‖2

s.t. y ∈ X.

Then one can easily check that x̄ ∈ X solves (1.1) if and only if F (x̄) = 0 (cf. [4]).

5
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2.1 Preliminaries

In order to design our inexact SQP Newton algorithm and analyze its convergence,

we next recall some essential results related to semismooth functions.

Let Z be an arbitrary finite dimensional real vector space. Let O be an open

set in Y and Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function on the

open set O. Then, by Rademacher’s theorem [16, Chapter 9.J] we know that Ξ is

almost everywhere Fréchet differentiable in O. Let OΞ denote the set of points in

O where Ξ is Fréchet differentiable. Let Ξ′(y) denote the Jacobian of Ξ at y ∈ OΞ.

Then Clarke’s generalized Jacobian of Ξ at y ∈ O is defined by [3]

∂Ξ(y) := conv{∂BΞ(y)},

where “conv” denotes the convex hull and the B-subdifferential ∂BΞ(y) is defined

by Qi in [11]

∂BΞ(y) :=

{
V : V = lim

j→∞
Ξ′(yj) , yj → y , yj ∈ OΞ

}
.

The concept of semismoothness was first introduced by Mifflin [9] for functionals

and was extended to vector-valued functions by Qi and Sun [12].

Definition 2.1.1. Let Ξ : O ⊆ Y → Z be a locally Lipschitz continuous function

on the open set O. We say that Ξ is semismooth at a point y ∈ O if

(i) Ξ is directionally differentiable at y; and

(ii) for any x → y and V ∈ ∂Ξ(x),

Ξ(x)− Ξ(y)− V (x− y) = o(||x− y||) . (2.3)

The function Ξ : O ⊆ Y → Z is said to be strongly semismooth at a point y ∈ O
if Ξ is semismooth at y and for any x → y and V ∈ ∂Ξ(x),

Ξ(x)− Ξ(y)− V (x− y) = O(‖x− y‖2) . (2.4)
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Throughout this thesis, we assume that the metric projection operator ΠX(·)
is strongly semismooth. The assumption is reasonable because it is satisfied when

X is a symmetric cone including the cone of nonnegative orthant, the second-order

cone, and the cone of symmetric and semidefinite matrices (cf. [19]).

We summarize some useful properties in the next proposition.

Proposition 2.1.1. Let F be defined by (2.2). Let y ∈ Y . Suppose that ∇θ is

semismooth at y. Then,

(i) F is semismooth at y;

(ii) for any h ∈ Y ,

∂BF (y)h ⊆ h− ∂BΠX(y −∇θ(y))(h− ∂B∇θ(y)(h)).

Moreover, if I − S(I − V ) is nonsingular for any S ∈ ∂BΠX(y − ∇θ(y)) and

V ∈ ∂B∇θ(y), then

(iii) all W in ∂BF (y) are nonsingular;

(iv) there exist σ > σ > 0 such that

σ‖x− y‖ ≤ ‖F (x)− F (y)‖ ≤ σ‖x− y‖ (2.5)

holds for all x sufficiently close to y.

Proof. (i) Since the composite of semismooth functions is also semismooth (cf. [6]),

F is semismooth at y.

(ii) The proof can be done by following that in [7, Proposition 2.3].

(iii) The conclusion follows easily from (ii) and the assumption.

(iv) Since all W ∈ ∂BF (y) are nonsingular, from [11] we know that ‖(Wx)
−1‖ =

O(1) for any Wx ∈ ∂BF (x) and any x sufficiently close to y. Then, the semis-

moothness of F at y easily implies that (2.5) holds (cf. [11]). We complete the

proof.
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2.2 Algorithm

Algorithm 2.2.1. (An inexact SQP Newton method)

Step 0. Initialization. Select constants µ ∈ (0, 1/2) and γ, ρ, η, τ1, τ2 ∈ (0, 1).

Let x0 ∈ X and fpre := ‖F (x0)‖. Let Ind1 = Ind2 = {0}. Set k := 0.

Step 1. Direction Generation. Select Vk ∈ ∂B∇θ(xk) and compute

εk := τ2 min{τ1, ‖F (xk)‖}. (2.6)

Solve the following strictly convex program:

min 〈∇θ(xk), ∆x〉+
1

2
〈∆x, (Vk + εkI)∆x〉

s.t. xk + ∆x ∈ X
(2.7)

approximately such that xk + ∆xk ∈ X,

〈∇θ(xk), ∆xk〉+
1

2
〈∆xk, (Vk + εkI)∆xk〉 ≤ 0 (2.8)

and

‖Rk‖ ≤ ηk‖F (xk)‖ , (2.9)

where Rk is defined by

Rk := xk + ∆xk − ΠX

(
xk + ∆xk − (∇θ(xk) + (Vk + εkI)∆xk

))
(2.10)

and

ηk := min{η, ‖F (xk)‖}.

Step 2. Check Unit Steplength. If ∆xk satisfies the following condition:

‖F (xk + ∆xk)‖ ≤ γfpre, (2.11)

then set xk+1 := xk + ∆xk, Ind1 = Ind1 ∪ {k + 1}, fpre = ‖F (xk+1)‖ and go

to Step 4; otherwise, go to Step 3.
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Step 3. Armijo Line Search. Let lk be the smallest nonnegative integer l such

that

θ(xk + ρl∆xk) ≤ θ(xk) + µρl〈∇θ(xk), ∆xk〉 . (2.12)

Set xk+1 := xk +ρlk∆xk. If ‖F (xk+1)‖ ≤ γfpre, then set Ind2 = Ind2∪{k+1}
and fpre = ‖F (xk+1)‖.

Step 4. Check Convergence. If xk+1 satisfies a prescribed stopping criteria,

terminate; otherwise, replace k by k + 1 and return to Step 1.

Before proving the convergence of Algorithm 2.2.1, we make some remarks to

illustrate the algorithm.

(a). A stopping criterion has been omitted, and it is assumed without loss of

generality that ∆xk 6= 0 and F (xk) 6= 0 (otherwise, xk is an optimal solution

to problem (1.1)).

(b). In Step 1, we approximately solve the strictly convex problem (2.7) in order

to obtain the search direction such that (2.8) and (2.9) hold. It is easy to see

that the conditions (2.8) and (2.9) can be ensured because xk is not optimal

to (2.7) and Rk = 0 with ∆xk being chosen as the exact solution to (2.7).

(c). By using (2.8) and (2.9), we know that the search direction ∆xk generated

by Algorithm 2.2.1 is always a descent direction. Since

lim
l→∞

[θ(xk + ρl∆xk)− θ(xk)]/ρl = ∇θ(xk)T ∆xk < µ∇θ(xk)T ∆xk,

a simple argument shows that the integer lk in Step 2 is finite and hence

Algorithm 2.2.1 is well defined.

(d). The convexity of X implies that {xk} ⊂ X.
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2.3 Convergence Analysis

2.3.1 Global Convergence

In this subsection, we shall analyze the global convergence of Algorithm 2.2.1. We

first denote the solution set by X, i.e., X = {x ∈ Y | x solves problem (1.1)}.
In order to discuss the global convergence of Algorithm 2.2.1, we need the

following assumption.

Assumption 2.3.1. The solution set X is nonempty and bounded.

The following result will be needed in the analysis of global convergence of

Algorithm 2.2.1.

Lemma 2.3.1. Suppose that Assumption 2.3.1 is satisfied. Then there exists a

positive number c > 0 such that Lc = {x ∈ Y | ‖F (x)‖ ≤ c} is bounded.

Proof. Since ∇θ is monotone, the conclusion follows directly from the weakly uni-

valent function theorem of [13, Theorem 2.5].

We are now ready to state our global convergence results of Algorithm 2.2.1.

Theorem 2.3.1. Suppose that X and θ satisfy Assumptions (A1) and (A2). Let

Assumption 2.3.1 be satisfied. Then, Algorithm 2.2.1 generates an infinite bounded

sequence {xk} such that

lim
k→∞

θ(xk) = θ̄, (2.13)

where θ̄ := θ(x̄) for any x̄ ∈ X.

Proof. Let Ind := Ind1 ∪ Ind2. We prove the theorem by considering the following

two cases.

Case 1. |Ind| = +∞.
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Since the sequence {‖F (xk)‖ : k ∈ Ind} is strictly decreasing and bounded from

below, we know that

lim
k(∈Ind)→∞

‖F (xk)‖ = 0. (2.14)

By using Lemma 2.3.1, we easily obtain that the sequence {xk : k ∈ Ind} is

bounded. Since any infinite subsequence of {θ(xk) : k ∈ Ind} converges to θ̄ (cf.

(2.14)), we conclude that limk(∈Ind)→∞ θ(xk) = θ̄.

Next, we show that limk→∞ θ(xk) = θ̄. For this purpose, let {xkj} be an

arbitrary infinite subsequence of {xk}. Then, there exist two sequence {kj,1} ⊂ Ind

and {kj,2} ⊂ Ind such that kj,1 ≤ kj ≤ kj,2 and

θ(xkj,2) ≤ θ(xkj) ≤ θ(xkj,1),

which implies that θ(xkj) → θ̄ as kj →∞. Combining with Assumption 2.3.1, we

know that the sequence {xkj} must be bounded. The arbitrariness of {xkj} implies

that {xk} is bounded and limk→∞ θ(xk) = θ̄.

Case 2. |Ind| < +∞.

After a finite number step, the sequence {xk} is generated by Step 3. Hence,

we assume without loss of generality that Ind = {0}. It follows from [14, Corollary

8.7.1] that Assumption 2.3.1 implies that the set {x ∈ X : θ(x) ≤ θ(x0)} is bounded

and hence {xk} is bounded. Therefore, there exists a subsequence {xk : k ∈ K}
such that xk → x̄ as k(∈ K) → ∞. Suppose for the purpose of a contradiction

that x̄ is not an optimal solution to problem (1.1). Then, by the definition of F (cf.

(2.2)), we know that it holds ‖F (x̄)‖ 6= 0 and hence ε̄ := τ2 min{τ1, ‖F (x̄)‖/2} > 0.

Hence, it follows from (2.8) that we have that for all large k,

− 〈∇θ(xk), ∆xk〉 ≥ ε̄

2
‖∆xk‖2, (2.15)

which implies that the sequence {∆xk} is bounded.

Since {θ(xk)} is a decreasing sequence and bounded from below, we know that

the sequence {θ(xk)} is convergent and hence {θ(xk+1)− θ(xk)} → 0. The stepsize
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rule (2.12) implies that

lim
k→∞

αk〈∇θ(xk), ∆xk〉 = 0, (2.16)

where αk := ρlk .

There are two cases: (i) lim infk(∈K)→∞ αk > 0 and (ii) lim infk(∈K)→∞ αk = 0.

In the first case, by (2.16), we can easily know that

lim
k(∈K)→∞

〈∇θ(xk), ∆xk〉 = 0.

In the latter case, without loss of generality, we assume that limk(∈K)→∞ αk = 0.

Then, by the definition of αk (cf. (2.12)), it follows that for each k,

θ(xk + α′k∆xk)− θ(xk) > µα′k〈∇θ(xk), ∆xk〉 , (2.17)

where α′k := αk/ρ. Note that we also have

lim
k(∈K)→∞

α′k = 0.

Dividing both sides in the expression (2.17) by α′k, passing k ∈ K to ∞, we can

easily derive that

lim
k(∈K)→∞

〈∇θ(xk), ∆xk〉 ≥ µ lim
k(∈K)→∞

〈∇θ(xk), ∆xk〉,

which, together with µ ∈ (0, 1/2) and (2.8), yields

lim
k(∈K)→∞

〈∇θ(xk), ∆xk〉 = 0.

Consequently, in both cases (i) and (ii), we have that

lim
k(∈K)→∞

〈∇θ(xk), ∆xk〉 = 0.

Hence, by (2.15), we obtain that

lim
k(∈K)→∞

∆xk = 0.



2.3 Convergence Analysis 13

Then, we deduce by passing to the limit k(∈ K) →∞ in (2.9) that

‖F (x̄)‖ ≤ η̄‖F (x̄)‖, (2.18)

where η̄ := min{η, ‖F (x̄)‖}. Note that η̄ < 1, by (2.18), we easily obtain that

‖F (x̄)‖ = 0, which is a contradiction. Hence, we can conclude that F (x̄) = 0 and

hence x̄ ∈ X.

By using the fact that limk→∞ θ(xk) = θ(x̄), together with Assumption 2.3.1,

we know that {xk} is bounded and (2.13) holds. The proof is completed.

2.3.2 Superlinear Convergence

The purpose of this subsection is to discuss the (quadratic) superlinear convergence

of Algorithm 2.2.1 by assuming the (strong) semismoothness property of ∇θ(·) at

a limit point x̄ of the sequence {xk} and the nonsingularity of I − S(I − V ) with

S ∈ ∂BΠX(x̄−∇θ(x̄)) and V ∈ ∂B∇θ(x̄).

Theorem 2.3.2. Suppose that x̄ is an accumulation point of the infinite sequence

{xk} generated by Algorithm 2.2.1 and ∇θ is semismooth at x̄. Suppose that for

any S ∈ ∂BΠX(x̄−∇θ(x̄)) and V ∈ ∂B∇θ(x̄), I − S(I − V ) is nonsingular. Then

the whole sequence {xk} converges to x̄ superlinearly, i.e.,

‖xk+1 − x̄‖ = o(‖xk − x̄‖). (2.19)

Moreover, if ∇θ is strongly semismooth at x̄, then the rate of convergence is

quadratic, i.e.,

‖xk+1 − x̄‖ = O(‖xk − x̄‖2). (2.20)

We only prove the semismooth case. One may apply the similar arguments to

prove the case when ∇θ is strongly semismooth at x̄. We omit the details. In order

to prove Theorem 2.3.2, we first establish several lemmas.
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Lemma 2.3.2. Assume that the conditions of Theorem 2.3.2 are satisfied. Then,

for any given V ∈ ∂B∇θ(x̄), the origin is the unique optimal solution to the

following problem:

min 〈∇θ(x̄), ∆x〉+
1

2
〈∆x, V ∆x〉

s.t. x̄ + ∆x ∈ X.
(2.21)

Proof. By [4], we easily obtain that ∆x solves (2.21) if and only if

G(∆x) = 0, (2.22)

where

G(∆x) := x̄ + ∆x− ΠX(x̄ + ∆x− (∇θ(x̄) + V ∆x)).

Since x̄ is an optimal solution to problem (1.1), we know that x̄−ΠX(x̄−∇θ(x̄)) =

0, which, together with (2.22), implies that the origin is an optimal solution to

problem (2.21).

Next, we show the uniqueness of solution of problem (2.21). Suppose that

∆x̄ 6= 0 is also an optimal solution to problem (2.21). Then, since problem (2.21)

is convex, for any t ∈ [0, 1], we know that t∆x̄ 6= 0 is an optimal solution to

problem (2.21). However, by Proposition 2.1.1, we know that the nonsingularity

of I − S(I − V ) with S ∈ ∂BΠX(x̄ − ∇θ(x̄)) and V ∈ ∂B∇θ(x̄) implies that

G(∆x) = 0 has only one unique solution in a neighborhood of the origin. Hence,

we have obtained a contradiction. The contradiction shows that the origin is the

unique optimal solution to problem (2.21).

Lemma 2.3.3. Assume that the conditions of Theorem 2.3.2 are satisfied. Then,

the sequence {∆xk} generated by Algorithm 2.2.1 converges to 0.

Proof. Suppose on the contrary that there exists a subsequence of {∆xk} which

does not converge to 0. Without loss of generality, we may assume that {∆xk}



2.3 Convergence Analysis 15

does not converge to 0. Let tk := 1/ max{1, ‖∆xk‖}(∈ (0, 1]) and ∆x̂k := tk∆xk.

Denote

φk(∆x) := 〈∇θ(xk), ∆x〉+
1

2
〈∆x, (Vk + εkI)∆x〉.

Then, by the convexity of φk, we obtain that

φk(∆x̂k) = φk((1− tk) · 0 + tk∆xk)

≤ (1− tk)φk(0) + tkφk(∆xk)

= 0 + tkφk(∆xk) < 0, (2.23)

where the strict inequality follows from (2.8). Since the sequence {∆x̂k} satisfies

‖∆x̂k‖ ≤ 1, by passing to a subsequence, if necessary, we may assume that there

exists a constant δ̂ ∈ (0, 1] such that the sequence {∆x̂k} → ∆x̂ with ‖∆x̂‖ = δ̂.

Hence, since the matrices in ∂B∇θ(xk) are uniformly bounded, from (2.23), by

passing to the limit k → ∞ and taking a subsequence if necessary, we can easily

deduce that

〈∇θ(x̄), ∆x̂〉+
1

2
〈∆x̂, V ∆x̂〉 ≤ 0 (2.24)

for some V ∈ ∂B∇θ(x̄) since ∂B∇θ(·) is upper semicontinuous.

On the other hand, since xk +∆xk ∈ X and xk ∈ X, we know that xk +∆x̂k =

tk(x
k +∆xk)+(1− tk)x

k ∈ X, which, due to the fact that X is closed, implies that

x̄ + ∆x̂ ∈ X. This, together with (2.24), means that ∆x̂ is an optimal solution to

problem (2.21), which is a contradiction to Lemma 2.3.2 since ‖∆x̂‖ = δ̂. Hence,

the sequence {∆xk} generated by Algorithm 2.2.1 converges to 0. The proof is

completed.

Lemma 2.3.4. Assume that the conditions of Theorem 2.3.2 are satisfied. Then

x̄ is the unique optimal solution to problem (1.1) and {xk} converges to x̄ such

that

‖xk + ∆xk − x̄‖ = o(‖xk − x̄‖). (2.25)
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Proof. By Theorem 2.3.1 and Proposition 2.1.1 we know that x̄ is the unique

optimal solution to problem (1.1) and {xk} converges to x̄.

It follows from Lemma 2.3.3 that ∆xk → 0 as k → ∞. Let us denote x̂k :=

xk + ∆xk − (∇θ(xk) + (Vk + εkI)∆xk). Then, we first obtain that

x̂k − x̄ +∇θ(x̄) = xk + ∆xk − (∇θ(xk) + (Vk + εkI)∆xk)− x̄ +∇θ(x̄)

= xk + ∆xk − x̄− (∇θ(xk)−∇θ(x̄)− Vk(x
k − x̄))−

−(Vk + εkI)(xk + ∆xk − x̄) + εk(x
k − x̄)

= (I − Vk)(x
k + ∆xk − x̄) + o(‖xk + ∆xk − x̄‖) + o(‖xk − x̄‖),

where the third equality follows from the semismoothness of ∇θ at the point x̄ and

εk → 0 as k →∞.

By noting the definition of Rk (cf. (2.10)), we further obtain that

xk + ∆xk − x̄ = Rk + ΠX(x̂k)− x̄

= Rk + ΠX(x̂k)− ΠX(x̄−∇θ(x̄))

= Rk + Sk(x̂
k − x̄ +∇θ(x̄)) + O(‖x̂k − x̄ +∇θ(x̄)‖2)

= Rk + Sk(I − Vk)(x
k + ∆xk − x̄) + o(‖xk + ∆xk − x̄‖)+

+o(‖xk − x̄‖), (2.26)

where Sk ∈ ∂BΠX(x̂k) and the third equality comes from the strong semismooth-

ness of ΠX(·).
Since I − S(I − V ) is nonsingular for any S ∈ ∂BΠX(x̄ − ∇θ(x̄)) and V ∈

∂B∇θ(x̄), I − Sk(I − Vk) is also nonsingular for all k sufficiently large. This,

together with (2.26), implies that all xk sufficiently close to x̄,

‖xk + ∆xk − x̄‖ ≤ O(‖Rk‖) + o(‖xk − x̄‖).

By combining (iv) of Proposition 2.1.1 with (2.9), we obtain that ‖Rk‖ ≤ O(‖xk−
x̄‖2). It follows that (2.25) holds. This completes the proof.
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We are now ready to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. By Lemma 2.3.4 we know that {xk} converges to x̄. In

virtue of Lemma 2.3.4, it then remains to show that the unit steplength in Algo-

rithm 2.2.1 can be always chosen for sufficiently large k. By virtue of Proposition

2.1.1, by using the fact that F (x̄) = 0, we know that there exist σ > σ > 0

satisfying for sufficiently large k,

σ‖xk − x̄‖ ≤ ‖F (xk)‖ ≤ σ‖xk − x̄‖.

Since xk + ∆xk is closer to x̄ than xk (cf. (2.25)), we further obtain that for

sufficiently large k,

σ‖xk + ∆xk − x̄‖ ≤ ‖F (xk + ∆xk)‖ ≤ σ‖xk + ∆xk − x̄‖,

which implies that for sufficiently large k,

‖F (xk + ∆xk)‖ ≤ σ

σ

‖xk + ∆xk − x̄‖
‖xk − x̄‖ ‖F (xk)‖ ≤ o(1)‖F (xk)‖, (2.27)

where the second inequality follows from (2.25).

Next, we prove that that for sufficiently large k, the unit steplength is always

satisfied by considering the following two cases:

Case I. If |Ind1| = +∞. Then, there exists sufficiently large k such that at the

(k − 1)-th iteration, k ∈ Ind1 and fpre = ‖F (xk)‖. It follows from (2.27) that

the condition (2.11) is always satisfied for sufficiently large k and hence xk+1 =

xk + ∆xk.

Case II. If |Ind1| < +∞. Then, since limx→x̄ θ(xk) = θ(x̄) (cf. Theorem 2.3.1),

we know that lim infk→∞ ‖F (xk)‖ = 0 and hence |Ind2| = +∞. This means that

there exists a sufficiently large k such that at the (k−1)-th iteration, k ∈ Ind2 and

fpre = ‖F (xk)‖. The same arguments as in Case I) lead to xk+1 = xk + ∆xk.

Thus, by using (2.25) in Lemma 2.3.4, we know that (2.19) holds. The proof is

completed. ¤



Chapter 3
Numerical Experiments

In this chapter, we shall take the following special least squares covariance matrix

problem (3.1) as an example to demonstrate the efficiency of our inexact SQP

Newton method:

min
1

2
‖X − C‖2

s.t. Xij = eij, (i, j) ∈ Be ,

Xij ≥ lij, (i, j) ∈ Bl ,

Xij ≤ uij, (i, j) ∈ Bu ,

X ∈ Sn
+ ,

(3.1)

where Be, Bl, and Bu are three index subsets of {(i, j) | 1 ≤ i ≤ j ≤ n} satisfying

Be ∩ Bl = ∅, Be ∩ Bu = ∅, and lij < uij for any (i, j) ∈ Bl ∩ Bu. Denote the

cardinalities of Be, Bl, and Bu by p, ql, and qu, respectively. Let m := p + ql + qu.

For any (i, j) ∈ {1, . . . , n} × {1, . . . , n}, define E ij ∈ <n×n by

(E ij)st :=





1 if (s, t) = (i, j) ,

0 otherwise ,
s, t = 1, . . . , n .

18
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Thus, problem (3.1) can be written as a special case of (1.2) with

A(X) :=




{〈Aij, X〉}(i,j)∈Be

{〈Aij, X〉}(i,j)∈Bl

−{〈Aij, X〉}(i,j)∈Bu




, X ∈ Sn (3.2)

and

b :=




{eij}(i,j)∈Be

{lij}(i,j)∈Bl

−{uij}(i,j)∈Bu




,

where Aij := 1
2
(E ij + E ji). Then, its dual problem takes the same form as (1.3)

with q := ql + qu.

In our numerical experiments, we compare our inexact SQP Newton method,

which is referred as Inexact-SQP in the numerical results, with the exact SQP

Newton and the inexact smoothing Newton method of Gao and Sun [7], which are

referred as Exact-SQP and Smoothing, respectively, for solving the least squares

covariance matrix problem with simple constraints (3.1). We also use Smoothing

to solve our subproblems (2.7) approximately.

We implemented all algorithms in MATLAB 7.3 running on a Laptop of Intel

Core Duo CPU and 3.0GB of RAM. The testing examples are given below.

Example 3.0.1. Let n = 387. The matrix C is the n×n 1-day correlation matrix

from the lagged datasets of RiskMetrics (www.riskmetrics.com/stddownload edu.html).

For the test purpose, we perturb C to

C := (1− α)C + αR,

where α ∈ (0, 1) and R is a randomly generated symmetric matrix with en-

tries in [−1, 1]. The MATLAB code for generating the random matrix R is: R =

2.0*rand(n,n)-ones(n,n); R = triu(R)+triu(R,1)’; for i=1:n; R(i,i) = 1;
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end. Here we take α = 0.1 and

Be := {(i, i) | i = 1, . . . , n} .

The two index sets Bl, Bu ⊂ {(i, j) | 1 ≤ i < j ≤ n} consist of the indices of

min(n̂r, n − i) randomly generated elements at the ith row of X, i = 1, . . . , n

with n̂r taking the following values: 1, 5, 10, 20, 50, 100, and 150. We take

lij ∈ [−0.5, 0.5] for (i, j) ∈ Bl randomly and set uij = 0.5 for (i, j) ∈ Bu.

Example 3.0.2. The matrix C is a randomly generated n× n symmetric matrix

with entries in [−1, 1]. The index sets Be, Bl, and Bu are generated in the same as

in Example 3.0.1 with n̂r = 1, 5, 10, 20, 50, 100, and 150. We test for n = 500 and

n = 1000, respectively.

We report the numerical results in Tables 3.1-3.2, where “Iter” and “Res” stand

for the number of total iterations and the residue at the final iterate of an algorithm,

respectively. The cputime is reported in the hour:minute:second format.
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Example 3.0.1

Method n̂r Iter cputime Res

Exact-SQP 1 9 0:44 1.1e-8

5 10 1:21 4.0e-8

10 10 2:01 8.1e-9

20 10 3:01 2.0e-8

50 10 11:20 2.4e-7

100 11 25:07 7.7e-7

150 12 48:59 1.3e-8

Inexact-SQP 1 9 0:22 9.3e-9

5 10 0:43 2.0e-8

10 10 1:06 5.7e-8

20 10 1:36 3.9e-8

50 10 4:21 2.7e-7

100 12 13:36 5.3e-8

150 12 19:49 1.9e-8

Smoothing 1 8 0:17 1.2e-8

5 10 0:27 5.2e-9

10 10 0:32 2.1e-7

20 12 0:52 1.9e-7

50 22 6:05 6.4e-8

100 23 26:01 5.0e-8

150 22 14:07 9.9e-8

Table 3.1: Numerical results for Example 3.0.1
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Example 3.0.2 n=500 n=1000

Method n̂r Iter cputime Res Iter cputime Res

Exact-SQP 1 7 0:29 3.5e-7 8 4:06 1.8e-8

5 8 0:53 5.1e-7 9 6:56 9.3e-8

10 9 1:29 7.5e-8 10 9:20 6.0e-8

20 10 4:05 2.0e-8 11 16:46 2.4e-7

50 10 8:55 1.0e-7 13 39:33 1.6e-8

100 11 28:39 7.7e-8 13 1:49:13 2.2e-7

150 12 57:27 4.8e-8 13 3:17:41 1.5e-7

Inexact-SQP 1 7 0:16 3.6e-7 8 2:01 5.3e-8

5 8 0:27 7.4e-7 9 3:31 1.5e-7

10 9 0:47 1.2e-7 10 4:04 1.3e-7

20 10 1:35 4.9e-8 11 8:44 2.6e-7

50 11 5:16 1.0e-8 13 25:01 2.0e-8

100 11 13:39 7.7e-8 13 57:46 2.4e-7

150 12 25:29 2.4e-8 13 1:24:08 1.7e-7

Smoothing 1 7 0:13 1.5e-7 7 1:31 5.4e-7

5 9 0:20 1.2e-7 9 2:26 5.0e-8

10 9 0:28 1.6e-7 9 2:49 9.5e-7

20 12 1:11 1.3e-8 11 4:18 1.6e-8

50 12 1:42 1.9e-7 15 9:23 9.3e-8

100 19 12:31 1.2e-8 18 17:00 1.2e-8

150 24 46:33 6.0e-8 21 27:36 8.1e-8

Table 3.2: Numerical results for Example 3.0.2



Chapter 4
Conclusions

In this paper, we introduced a globally and superlinearly convergent inexact SQP

Newton method – Algorithm 2.2.1 for solving convex SC1 minimization problems.

Our method much relaxes the restrictive BD-regularity assumption made by Pang

and Qi in [10]. The conducted numerical results for solving the least squares

covariance matrix problem with simple constraints (3.1) showed that Algorithm

2.2.1 is more effective than its exact version. For most of the tested examples,

Algorithm 2.2.1 is less efficient than the inexact smoothing Newton method of

Gao and Sun [7]. Nevertheless, it is very competitive when the number of the

constraints is large, i.e., when m is huge. Further study is needed in order to fully

disclose the behavior of our introduced inexact SQP Newton method. This is,

however, beyond the scope of this thesis.
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