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Summary

A linear polymer can be thought of as a flexible long chain of beads that follows a

lattice where each bead represents a monomer unit. It can be modelled as a self-

avoiding random walk on a lattice. When the linear polymer is in a chemical solution

and is following a 2-dimensional hexagonal lattice, it becomes self-entangled. It can

be shown that in all sufficiently long polymers a pattern is present. Kesten’s Pattern

Theorem, which was originally proved for self-avoiding walks on cubic lattices, is

extended to the self-avoiding walks on hexagonal lattices. Properties of the hexagonal

lattice, self-avoiding walks on the hexagonal lattice and the connective constant for

the hexagonal lattice are then provided. Further, computation of the probability of

a self-avoiding walk on the hexagonal lattice encircling the points (1
2
, 1

2
) and (1

2
,−1

2
)

is discussed.
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Ẽk Event that occurs at ω(j) if E∗ or Ek or both occur there

E Any of the events E∗, Ek or Ẽk
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Chapter 1

Introduction

A polymer is a large molecule composed of many small, simple chemical units,

or monomers, joined together by chemical bonds. The structural properties of a

polymer are related to the physical arrangement of monomers along the chain. Long

chain linear polymers composed of a large number of units display properties that are

completely different from short chain polymers composed of fewer units. For example,

two samples of natural rubber may exhibit different durability even though they are

made up by the same monomers. The structure has a strong influence on the physical

properties of a polymer and these can be understood through statistical mechanics.

A linear polymer chain has a high degree of flexibility. We can think of it as a very

long chain of beads where we can assume that the chain follows a lattice, that is, each

bead represents a monomer unit and occupies a lattice site adjacent to the monomer

units to which it is attached. When a polymer molecule is dissolved in a solvent, the
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entire molecule forms a coil structure with a large number possible folding shapes,

because of the high flexibility of the chemical bonds that connect the atoms.

1.1 Modelling a Polymer

Let us assume that there is no correlation between the directions that different

chemical bonds take and all the directions have the same probability. Then the

configuration of a polymer may be modelled as a random walk on a lattice and hence

we can find out properties of the polymer molecule by using the properties of a random

walk on the lattice structure. This would describe an ideal chain polymer model.

The configuration of an ideal chain, with no interactions between monomers, is the

essential starting point of most models in polymer physics. In an ideal model, fixed

length polymer segments are linearly connected and all bonds and angles between

the bonds are equiprobable. In the ideal chain polymer, there are no interactions

between monomers that are far apart along the chain even if they approach each

other in space. This situation is never completely realized for real chains. The ideal

model takes place only in short range interactions between segments which are located

close to each other along the chain. This model allows a chain to loop back onto itself.

It means that the segments which are widely separated along the chain will occupy

the same region in space. This is a physical impossibility since each segment possesses

its own finite volume and two segments cannot occupy the same region in space. This

type of condition is called the excluded volume effect. Real chains interact with both



12

their solvent and themselves. The relative strength of these interactions determines

whether the monomers effectively attract or repel one another. When we model a

polymer as a connected path on a lattice, the excluded volume effect will correspond

to the condition that the path cannot pass through any sites that have been traversed

previously. This is called a self-avoiding walk and the polymer thus represented is

called an excluded volume chain. To get the idea about polymers, one can see [5]

and [18]. Self-avoiding walks on regular lattices have been studied for many years

as a model of linear polymer molecules in dilute solution. Self-avoiding walks have

a high degree of conformational freedom, and it ensures non-occupation of the same

volume space by more than one monomer unit in the polymer. A walk is a directed

sequence of edges, such that adjacent pairs of edges in the sequence are incident on a

common vertex. A walk is self-avoiding if no vertex is visited more than once. Two

walks are considered distinct if they cannot be super-imposed by translation. For

more properties of a self-avoiding walk, one can see [14] and [15].

There are rigorous results proving that almost all sufficiently long polymers are

knotted. A knot is created by beginning with a one-dimensional line segment, wrap-

ping it around itself arbitrarily, and then fusing its two free ends together to form a

closed loop. It is of interest to know how many different configurations an n-monomer

chain can adopt and how far apart the end points of the molecule typically are. These

problems can be viewed as problems of self-avoiding random walk in an appropriate

lattice.
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The idea to show that all sufficiently long polymers are knotted falls into three

parts. The first is a pattern theorem by Kesten in [13]. A pattern is a finite self-

avoiding walk that occurs as part of a longer self-avoiding walk. Given a particular

pattern γ, if there exists a self-avoiding walk on which the pattern γ appears at least

three times, then we call γ a K-pattern. The point of appearing three times is that

one of the occurrences must be “between” the other two, and hence there must be a

way in to the beginning of the patern and a way from the end.

Let cN denote the number of N -step self-avoiding walks, which begin at the ori-

gin. This measures the number of possible configurations of a polymer of (N + 1)

monomers. It can be shown that lim
N→∞

c
1
N
N exists. Let us take the limit as, lim

N→∞
c

1
N
N = µ,

where we define µ as the connective constant for that particular molecular lattice.

When the self-avoiding walk is on a cubic lattice, there are rigorous results for the

relations between cN and µ in [13] and [15]. Kesten’s Pattern Theorem can be used

to prove some useful results for the square lattice structures. For 2-dimensional

honeycomb lattice there is strong evidence from physical arguments in [16] that

µ =
√

2 +
√

2. This value has been confirmed numerically, but not yet by a rig-

orous proof. In this thesis, we have tried to see whether the theorems and results

which are applicable for a square lattice can be extended to a honeycomb lattice.
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1.2 Organization of the Thesis

In Chapter 2 of this thesis we define a hexagonal lattice, and show how to generate

the hexagonal lattice. The definition of a self-avoiding walk and its trajectory remains

similar to that for a square lattice. For the hexagonal lattice, we have given the

values of cN for N = 1, · · · , 14, an upper and lower bound for cN and seen that the

subadditive property of cN also holds. We have also given the definitions of a pattern,

proper internal pattern and a self-avoiding N -loop in this chapter.

In Chapter 3, we have discussed about a few results of [22] which are the motivation

behind this thesis. Kesten’s pattern theorem which is the very first step to see if a

long chain polymer is knotted, is proved for square molecular lattice structure by

Kesten in [13]. The basic idea of Kesten’s pattern theorem is, if a given pattern can

possibly occur several times on a self-avoiding walk, then it must occur at least aN

times on on all N -step self-avoiding walks, except for an exponentially small fraction

of the walk. We have extended the pattern theorem and a few lemmas and conclusions

related to this theorem to the hexgonal lattice.

Dubins et al. in [6] have shown that the probability that a N -step self-avoiding

random loop in a square lattice structure, contains the point (1
2
, 1

2
) is 1

2
− 1

N
. In

Chapter 4, we have discussed similar results for a N -step self-avoiding random loop

in a hexagonal lattice structure and have found out that the probability that the

point (1
2
, 1

2
) is inside is 1

2
− 1

N
. We have also seen that the probability that a N -step

self-avoiding random loop on a hexagonal lattice will contain the points (1
2
, 1

2
) and
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(1
2
,−1

2
) is 1

6
− 1

N
.

In appendix C, we have given a MAPLE code which we have used to calculate

the results in Table 2.1.
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Chapter 2

Hexagonal Lattice

There are various results for the cubic lattice regarding the structure of the lattice,

the number of N -step self-avoiding walks cN and connective constant µ. We now

extend some of those results to the hexagonal lattice structures. For that, we need to

introduce a few definitions and notations for the hexagonal lattice.

2.1 Hexagonal Lattice and Some Properties

A hexagon is a polygon with six edges and six vertices. The internal angles of

a regular hexagon (one whose all sides and all angles are equal) are all 120o. It

has 6 lines of symmetry. Like squares and equilateral triangles, regular hexagons fit

together without any gaps to tile the plane (three hexagons meeting at every vertex).

The resulting lattice is called the hexagonal lattice. Denote the hexagonal lattice

by H and suppose that the length of the edge joining adjacent vertices are one unit.
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Define a unit hexagon as a regular hexagon with unit side length. We now introduce

•

••

•

• •

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......................................................................................................................................................................................................................................................................................................................................................................................
.........
.........
.........
.........
.........
.........
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.........
.

1

(a) Regular Hexagon

 

(b) Hexagonal Lattice H

Figure 2.1: Regular Hexagon and Hexagonal lattice

the idea of layers as follows, which is done recursively.

Definition 2.1.1 Consider a lattice point H0 in H. Define it as the 0-th layer or

l0 for a hexagonal ball as in Figure 2.2. Suppose that the hexagonal ball, Hn has been

defined. Then define the (n+ 1)-th layer ln+1 as the set of all lattice points belonging

to at least one unit hexagon in H which has at least one vertex common with Hn.

Then define

Hn+1 = Hn ∪ ln+1 (2.1)
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Note:

1. Hn is a hexagonal ball of size n (i.e. it has n+ 1 layers), centered at H0, i.e.

Hn =
n⋃
i=0

li.

2. A lattice point x belongs to a layer n around H0 if it belongs to a unit hexagon

touching the layer (n − 1) around point H0, but does not belong to that layer

(n− 1) itself. For example, the hexagonal ball with only one layer, H1 is shown

•H0

Figure 2.2: 0-th layer of a hexagonal ball

in Figure 2.3.
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Figure 2.3: H1

3. We denote by H a hexagonal ball whose size is not specified.
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Definition 2.1.2 A Euclidean circle centered at H0 with radius rn =
√

1 + 3n2 units

will enclose all points of the n-layered hexagonal ball Hn. The circle is called the

circumscribing circle of Hn.
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......

Figure 2.4: Circumscribing circle of H1 with radius r1 = 2

Note:

1. In Figure 2.4 the dotted circle is circumscribing H1 where the radius of the circle

is r1 = 2. Suppose, Hn is an n-layered hexagonal ball centered at H0 = y(say).

We define the following,

Hn = {x ∈ H : |x− y| ≤ rn}

Hn+1 = {x ∈ H : |x− y| ≤ rn+1}.

The following equation (2.2) is another way to define the n-layer hexagonal ball

Hn and (n + 1)-th layer of the hexagonal ball, ln+1, using the circumscribing
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circle.

ln+1 = Hn+1 \Hn. (2.2)

We have shown that the two definitions of layers are the same in appendix A.

(a) (b)

Figure 2.5: Two types of possible origins in a hexagonal lattice

2. Note that, as shown in Figure 2.5, we can have two types of configuration for a

center of a hexagonal ball. These two orientations may seem to be different as

they cannot be superimposed on each other by translation. If we use rotation

and reflection, then we can superimpose them.

Proposition 2.1.1 The hexagonal lattice can be generated by the following set,

H = {λ1~e1 + λ2~e2 ∈ R2 : λ1 + λ2 6≡ 2(mod 3), λ1, λ2 ∈ Z} (2.3)

where ~e1 = ~i

and ~e2 = −1

2
~i+

√
3

2
~j

Proof: We will give an outline to generate the hexagonal lattice. Let us take O(0, 0)

as the origin and let ~e1 and ~e2 be two unit vectors along the two edges of the hexagon
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where the angle between ~e1 and ~e2 is 120o. In Figure 2.6, we have taken ~e1 along

~OA and ~e2 along ~OB. Now we are trying to span the hexagonal lattice using ~e1 and

~e2. We can see that the centers of the hexagons (in the Figure 2.6, the centers are,

•

••

•

• •
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..........
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.......................................................................................................................................................................................

•o1

O

•o2

•o3

~e1

~e2
.........
.........
................
A

...................

.....................
B

Figure 2.6: Spanning a hexagonal ball

o1, o2 and o3), which are not part of the lattice can be generated by the following

expression.

m(~e1 + 2~e2) + n(2~e1 + ~e2)− ~e2 = (m+ 2n)~e1 + (2m+ n− 1)~e2, (2.4)

where m and n are integers.

The derivation of (2.4) is provided in appendix B. Now, if ~a = (λ1~e1 +λ2~e2) is the

position vector of a center of a hexagon, then, we have,

λ1 = m+ 2n,

λ2 = 2m+ n− 1.
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So, 3n = 2λ1 − λ2 − 1, and hence to generate the centers of a hexagon the required

condition is that 3|(2λ1− λ2− 1) as m, n are integers. Thus the condition on λ1 and

λ2 to generate hexagonal lattice is that 2λ1 −λ2 6≡ 1(mod 3), which can be simplified

to

λ1 + λ2 6≡ 2(mod 3).

Hence we can span the hexagonal lattice as described by proposition 2.1.1.

�

2.2 Self-avoiding Walks on a Hexagonal Lattice

To define a N -step self-avoiding walk, we first define a step in a hexagonal lattice.

Definition 2.2.1 A step is defined as an element of {±~e1,±~e2,±(~e1 + ~e2)}. A walk

is a finite sequence of steps. The length of a walk is the number of steps in the lattice.

A walk of length N is an N-walk. So, if we have a walk, ω = {ω(0), · · · , ω(N − 1)}

in H, then, (−1)iω(i) ∈ {~e1, ~e2,−(~e1 + ~e2)} and as ω has N elements, hence it is an

N-walk.

We need at least one step for a walk.

Definition 2.2.2 Let, ω = {ω(0), · · · , ω(N − 1)} be an N-walk. The trajectory of

the walk is defined as the sequence ω = {ω(0), · · · , ω(N−1)} defined by ω(0) = ~0 and

ω(j) = ω(0) + · · ·+ ω(j), for 1 ≤ j ≤ N − 1.
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Definition 2.2.3 Let, ω = {ω(0), · · · , ω(N − 1)} be an N-walk. Then, ω is a self-

avoiding walk if,

i∑
k=0

ω(k) 6=
j∑

k=0

ω(k),∀i 6= j

⇐⇒ ω(i) 6= ω(j), ∀i 6= j.

In other words, we can say that a self-avoiding walk is a walk from one lattice point to

another along the lattice which never intersects itself. So, we denote a self-avoiding

walk by ω, a step of the self-avoiding walk by ω(i) and the i-th trajectory of the

self-avoiding walk by ω(i). Let ω = (ω(0), · · · , ω(N − 1)) be a N -step self-avoiding

walk on the hexagonal lattice H and suppose that Hn is an n-layered hexagonal ball

in H centered at ω(j), where ω(j) denotes the j-th step of ω. For j = 0, 1, · · · , N , we

denote

Hn(j) = {x ∈ H : |x− ω(j)| ≤ rn}.

2.2.1 On Number of N-step Self-avoiding Walks

Let SN denote the set of N -step self avoiding walks ω such that ω(0) = ~0. Let us

denote by |SN | = cN , i.e. cN is the number of N -step self-avoiding walks which begin

at the origin.

Now suppose that ω1 and ω2 are two M -step and N -step self-avoiding walks re-

spectively. Then, the concatenation of ω1 and ω2, which we denote by ω, can be
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defined in terms of its trajectory as follows,

ω(k) = ω1(k), k = 0, · · · ,M − 1;

ω(k) = ω2(k −M) + ω1(N)− ω2(0), k = M, · · · ,M +N − 1.

Proposition 2.2.1 Let cM , cN and cN+M be the cardinalities of the set of self-

avoiding walks of length M , N and (N +M) respectively. Then

cN+M ≤ cNcM . (2.5)

Proof: Since cM and cN are the cardinalities of the set of self-avoiding walks of

length M and N respectively, the product cNcM is equal to the cardinality of the

set of (N +M)-step walks which are self-avoiding in the initial N -step and the final

M -steps, but which may not be completely self-avoiding. Hence, by concatenation of

M -step walks to N -step walks, we can say that,

SN+M ≤ SN ∪ SM

⇒ |SN+M | ≤ |SN ||SM |

⇔ cN+M ≤ cNcM . (2.6)

Thus the sequence {cq} is submultiplicative. �

So, by (2.6) and taking logarithm, we have,
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Corollary 2.2.1

log cN+M ≤ log cN + log cM , (2.7)

i.e. the sequence {log cq} is subadditive.

We now introduce a property for a sequence of subadditive real numbers, which is

proved in [14] and [15]. The result is shown in lemma 2.2.1.

Lemma 2.2.1 Let {pN}N≥0 be a sequence of real numbers which is subadditive, i.e.,

pN+M ≤ pN + pM . Then the limN→∞
pN
N

exists in [−∞,∞). Also,

lim
N→∞

pN
N

= inf
N≥1

pN
N
. (2.8)

Proof: It is clear that

lim inf
N→∞

pN
N
≥ inf

N>0

pN
N
. (2.9)

To prove (2.8), it is sufficient to show that,

lim sup
N→∞

pN
N
≤ pk

k
, ∀k. (2.10)

Fix k. Let,

Pk = max
1≤r≤k

pr.

Let N be a positive integer, and j be the largest integer strictly less than N
k

. Then,
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N = jk + r, for 1 ≤ r ≤ k, where r is an integer. By subadditivity,

pN ≤ jpk + pr ≤
N

k
pk + Pk. (2.11)

Dividing (2.11) by N , we have,

pN
N
≤ j

N
pk +

pr
N
≤ 1

k
pk +

Pk
N
. (2.12)

Hence (2.10) follows by taking limsup as N →∞. �

Hence by lemma 2.2.1, we can see that lim
N→∞

c
1
N
N exists. Now,

Proposition 2.2.2 For a self-avoiding N step walk ω, in the lattice H,

cN ≤ cN+4. (2.13)

Idea of the proof: The idea to show (2.13) is to increase the length of an N -step self-

avoiding walk by 4. Suppose ω is a N -step self-avoiding walk on n-layered hexagonal

ball Hn. Let,

H(n) = max {Hi : at least one ω(i) ∈ Hi, for i = 1, · · · , n}

l(n) = outer most layer of H(n)

K = max
{
n : ω(i) ∈ l(n) , for some i

}
.
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Then ω can be extended to ω̃ ∈ SN+4 within HK+1 by adding 4 steps to ω. Now we
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(b) (N + 4)-step self-avoiding
walk

Figure 2.7: Augmenting a self-avoiding random walk by 4 steps

join two lattice points from HK+1 to ω in the following way,

ω(i+ 1) = ω(i) + ~e2

ω(i+ 2) = ω(i+ 1) + (~e1 + ~e2)

ω(i+ 3) = ω(i+ 2) + ~e1

ω(i+ 4) = ω(i+ 3)− ~e2

ω(i+ 5) = ω(i+ 4)− (~e1 + ~e2).

So, we get a (N + 4)-step self-avoiding walk on the lattice. Hence, we have (2.13). �

An interesting question would be to find out about the values of cN for various

values of N for a hexagonal lattice. We define c0 = 1.

In Table 2.1 we can see the values of cN for different values of N . This has been
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N cN

1 3

2 6

3 12

4 24

5 48

6 90

7 174

8 336

9 648

10 1218

11 2328

12 4416

13 8838

14 15780

Table 2.1: Number of self-avoiding walks for different step lengths

found out by using MAPLE. The codes are given in appendix B. Since lim
N→∞

c
1
N
N = log κ

(say) exists, we can say that

cN ∼ ceκN
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for some c > 0 for large N .

We can find out upper and lower bounds for cN . A simple way to estimate a crude

upper and lower bound for cN is given by the following proposition.

Proposition 2.2.3 For an N-step self-avoiding walk on a hexagonal lattice,

2
N
2 ≤ cN ≤ 3× 2N−1. (2.14)

Proof: The upper bound of cN is given by the number of walks ω which never visit

the same site at steps ω(i) and ω(i + 2). At the first step of ω, we can move along

the direction of either of the three basis vectors, ~e1, ~e2, or − (~e1 + ~e2) . So, we have

3 choices for the first step of ω. At the second step of ω, as the walk is self-avoiding,

we have 2 choices. So we are having 2 choices for each of the remaining N − 1 steps.

Thus, as upper bound of cN we have,

cN ≤ 3× 2N−1. (2.15)

We can also have a lower bound for cN . To find a lower bound, we apply a few

restrictions on the self-avoiding walk on the hexagonal lattice H. Here we will always

move forward or upward at each lattice point. In a lattice point like Figure 2.8 (a), we

allow the walk to move only upwards, i.e. along the direction of (~e1 + ~e2). When the

lattice point configuration is like Figure 2.8(b), then we have two choices, which are

moving forward or moving upward, i.e. along the direction ~e1 or along direction ~e2. So
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our Type 1 choice would be moving along (~e1 +~e2) direction and Type 2 choice would

be moving along either ~e1 direction or along ~e2 direction. From the hexagonal lattice

(a) (b)

Figure 2.8: Lower bound for cN

structure we can see that the Type 1 choice and the Type 2 choice occur alternatively

at each lattice points. Hence, the Type 2 choice occurs N
2

number of times. So,

2
N
2 ≤ cN . (2.16)

Hence, we get (2.14), the upper and lower bounds for cN from (2.15) and (2.16) �

As lim
N→∞

c
1
N
N exists by lemma 2.2.1, we can have the following corollary,

Corollary 2.2.2

2
1
2 ≤ lim

N→∞
c

1
N
N ≤ 2. (2.17)

2.2.2 Further Discussion on the Bounds on cN

We can improve the upper bound in (2.14) further. Suppose we are unfolding our

self-avoiding walk to make it a restricted walk. The unfolding is done with the help
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of reflection along a side joining two adjacent lattice points on the lattice H. The rule

is that, we do not reflect as long as we are going forward, upward or downward. But

suppose we have a segment of the path which goes backward. We will then reflect the

rest of the self-avoiding walk along the segment which is just before the segment which

goes backwards. In Figure 2.9(a), we are reflecting along a to get Figure 2.9(b). Now

(a) Before reflection (b) After reflection
along a

Figure 2.9: Reflecting and unfolding of a self-avoiding walk

we record the positions of the segments along which an N -step self-avoiding random

walk needs to be reflected to get a restricted walk. Equivalently, we are trying to find

the number of possible ways of partitioning the number N . For example, if we need

to reflect a 20-step self-avoiding walk at the 5-th, 7-th and 10-th segment, then, the

corresponding partition would be {5, 2, 3, 10}. Hardy and Ramanujan in [12] showed

that R(N), the number of partitioning of the number N is,

R(N) ≈
exp(π

√
2N
3

)

4N
√

3
. (2.18)
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As we are partitioning the set SN , as described above, we get,

SN = tR(N)SR(N) (2.19)

where, SR(N) = set of elements in each partition.

Hence, from (2.19), we have,

|SN | = cN =
∑
R(N)

|SR(N)| ≤ R(N)× 2
N
2 (2.20)

as we have seen the restricted walk which goes only forward and upward has 2
N
2

possibilities. So from (2.20), we get,

cN ≤ R(N)× 2
N
2 < 2N (2.21)

for large N . Hence we get a better upper bound smaller than 2 which means that

the bounds on cN can be further improved by restricting self-avoiding walks on the

hexagonal lattice.

2.3 Patterns and Random Loops

In this section we define patterns and self-avoiding loops. Patterns can be de-

scribed as self-avoiding walks which appear as a sub-walk in a longer self-avoiding
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walk.

Definition 2.3.1 A pattern γ = (γ(0), · · · , γ(M)) is a self-avoiding walk and it is

said to occur at the j-th step of the self-avoiding walk ω = (ω(0), · · · , ω(N − 1)) if

ω(j + k) = γ(k),∀k = 0, · · · ,M .

Definition 2.3.2 Let us suppose that H is a hexagonal ball and γ is a pattern such

that it is totally contained inside H, there is a way into to the hexagonal ball H to

γ and there is a way out from γ and from H. Then we can say that γ is a proper

internal pattern.

Figure 2.10: A pattern which is not a proper internal pattern

Figure 3.1 in Chapter 3, represents a proper internal pattern on a hexagonal lattice.

There can also be patterns which are not proper internal patterns. One example is
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given Figure 2.10.

Suppose that Hn is an n-layered hexagonal ball and γ = (γ(0), · · · , γ(M)) is an

M -step pattern such that γ(0) and γ(M) are one of the n-th layer lattice points of

Hn, and γ(i) ∈ Hn,∀i = 0, · · · ,M , i.e., γ is a proper internal pattern. Then we define

the following,

Definition 2.3.3 (γ,Hn) denotes a pair which consists of a proper internal pattern

γ and the hexagonal ball Hn. (γ,Hn) occurs at the j-th step of the self-avoiding walk

ω if ω(j + k) = γ(k) for every k = 0, · · · ,M , and ω(i) is not in Hn for every i < j

and every i > j +M .

Let cN [k, γ] denote the number of self-avoiding walks in SN for which γ occurs

at no more than k different steps, for k ≥ 0 and γ a pattern. For every k ≥ 0,

let cN [k, (γ,Hn)] denote the number of self-avoiding walks in SN for which (γ,Hn)

occurs at no more than k different steps.

We have already defined a self-avoiding walk in Definition 2.2.3. Now we give a

few more definitions which are related to the self-avoiding random loop which will be

used in Chapter 4.

Definition 2.3.4 A random self-avoiding N-walk is an uniformly distributed

random element of the set of self-avoiding N-walks. (It is a sequence of independent

random variables)
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Definition 2.3.5 Let, ω = {ω(0), · · · , ω(N − 1)} be an N-walk. Then, ω is a self-

avoiding N-loop if,
i∑

k=0

ω(k) 6=
j∑

k=0

ω(k), ∀i 6= j.

and ω(0) = ω(N). A random self-avoiding N-loop is a uniformly distributed random

element of the set of self-avoiding N-loops.

2.4 Connective Constant

Polymer molecules become self-entangled when they are in a solution. This may

change the property of the polymer. So, it is quite interesting to know the possible

number of configurations of a polymer chain in a solution. Since, cN gives the number

of possible configurations, so finding out its limit as N →∞ may help us to find out

the number of possible configurations as the length of the polymer N increases. In

(2.6) we can see that the sequence {cq} is submultiplicative. Using the Lemma 2.2.1,

we can ensure that the lim
N→∞

c
1
N
N exists, where this limit is taken as µ and cN ≥ µN . This

limit µ is known as the connective constant. The precise value of µ is not known

in any dimensions. Rigorous lower and upper bounds on the connective constant for

a cubic lattice, µc is given in [20]. The bounds given in table 2.2. The references

given in table 2.2 for (a), (b), (c), (d), (e) and (f) are as follows, (a) corresponds to

[3], (b) corresponds to [20], (c) corresponds to [11], (d) corresponds to [2] and [10],

(e) corresponds to [9] and (f) corresponds to [8]. Nienhuis in [16] showed that for
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d Lower Bound Estimate Upper Bound

2 2.620 (a) 2.63815 (d) 2.695 (b)

3 4.572 (c) 4.68390 (c) 4.756 (b)

4 6.742 (c) 6.7720 (c) 6.832 (b)

5 8.828 (c) 8.8386 (e) 8.881 (b)

6 10.874 (c) 10.8788 (e) 10.903 (b)

Table 2.2: Lower and upper bound for µc for dimensions 2,3,4,5,6

2-dimensional hexagonal lattice, there is strong evidence from physical arguments,

that µ =
√

2 +
√

2 ≈ 1.847759. In [1], Alm and Parviainen have used a relation

between the hexagonal lattice and the (3.122) to improve the bounds for the connective

constant, µ, for the hexagonal lattice.
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Chapter 3

Pattern Theorem

When a linear polymer is in a solution, it can become self entangled and may

undergo a ring closer reaction. Frisch and Wasserman in [7] and Delbruk in [4]

conjectured that sufficiently long ring polymers would be knotted with probability

one. The validity of Frisch-Wasserman-Delbruk conjecture was established for a lat-

tice model of a polymer by Sumners and Whittington in [21] and independently by

Pippenger in [17]. In [22], Whittington has discussed about knotted polymers and

N -edge polygons. If pN is the number of polygons with N edges in Z3 and p0
N is the

number of N -edge polygons which are unknotted, then, it can be shown that the ratio

p0N
pN

goes to zero exponentially rapidly as N → ∞. This means that the probability

that a randomly chosen polygon with N -edges is knotted goes to unity exponentially

rapidly. Whittington in [22] has examined the methods used in proving this result,

and their various extensions.
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An interesting statistic regarding patterns is the frequency of occurrence of a

particular pattern at the beginning of a self-avoiding walks. In general dimension d,

it is an open problem to prove that the fraction of N -step self-avoiding walks that

begin with a given pattern converges as N tends to infinity. Kesten in [13] showed

that lim
N→∞

cN+2

cN
= connective constant of the cubic lattice in all dimension, using an

argument based on ‘Pattern Theorem’. Kesten’s Pattern Theorem states that, if a

given pattern can possibly occur several times in a self-avoiding walk, then it must

occur at least aN times on almost all N -step self-avoiding walks, for some a > 0.

Now let us state our version of Kesten’s Pattern Theorem for the hexagonal lattice.

Theorem 3.0.1 Let H be a hexagonal ball in the hexagonal lattice and µ be the

connective constant for the hexagonal lattice H.

(a) γ be a pattern as in Definition 2.3.3. Then there exists an a > 0 such that

lim sup
N→∞

(cN [aN, (γ,H)])
1
N < µ. (3.1)

(b) For any proper internal pattern γ, there exists an a > 0, such that

lim sup
N→∞

(cN [aN, γ])
1
N < µ. (3.2)

This theorem has been proved for cubic lattices by Kesten. Our aim is to show that,

this theorem still holds when the lattice is a hexagonal lattice.



39

3.1 Pattern Theorem for Hexagonal Lattice

Kesten’s Pattern Theorem for cubic lattices depend on three main lemmas. To

show Theorem 3.0.1, we will be following the similar path by checking whether the

three lemmas hold for hexagonal lattice structures. The first lemma is about filling

up a lattice by a self-avoiding walk and extending a proper internal pattern inside an

n-layered hexagonal ball Hn to an (n+ 2)-layered hexagonal ball Hn+2.

Lemma 3.1.1 (a) Let H be a hexagonal ball in H. Then there exists a self-avoiding

walk ω, whose endpoints are two of the lattice points of the outermost layer of

H, which is entirely contained in H and visits every point of H. Also, the

number of steps in ω is one less than the number of points in H.

(b) Let γ = (γ(0), · · · , γ(k)) be a pattern contained in the n-layered hexagonal ball

Hn, whose endpoints are two of the lattice points of the outermost layer of Hn,

i.e., γ(0) and γ(n) ∈ ln. Let x and y be two distinct outer points of ln+1 ∪ ln+2.

Then there exists a self-avoiding walk ω′ with the following properties: Its initial

point is x and its last point is y; it is entirely contained in Hn+2; there exists

a j such that ω′(j + i) = γ(i) for every i = 0, · · · , k; and ω′(i) ∈ ln+1 ∪ ln+2

whenever i < j or i > j + k. In particular, (γ,H) occurs at the j-th step of ω′

as in definition 2.3.2.

Idea of the proof: We can fill up a hexagonal ball by a self-avoiding walk which

visits every lattice point of the hexagonal ball. The way a hexagonal ball can be filled
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up is to follow the path of spiral in and spiral out. We can see it from Figure 3.1.

Part (a) of Lemma 3.1.1 is clear from Figure 3.1. The pattern in Figure 3.1 suggests

 
 
 

 

Figure 3.1: Filling up a hexagonal ball

how to fill up a hexagonal ball in general. Part (b) of the lemma can be shown by

using part (a) of the lemma. �

Now we are defining some events which depend on how many lattice points are

being covered on the lattice structure, by the self-avoiding walk ω. The event E∗

occurs at the j-th step of ω if Hn(j) is completely covered by ω. For every k ≥ 1, we

say that the event Ek occurs at the j-th step of ω if at least k points of Hn+2(j) are

covered by ω. The event Ẽk occurs at the j-th step of ω if E∗ or Ek (or both) occur

there. We will be using E to denote any of E∗, Ek or Ẽk.
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Let m be a positive integer. We say that the event E(m) occurs at the j-th step

of ω if E occurs at the m-th step of the 2m step walk (ω(j −m), · · · , ω(j + m)). If

j −m < 0 or j +m > N , then we will modify the definition: for j −m < 0, it means

E occurs at the j-th step of (ω(0), · · · , ω(j+m)). For j+m > N , it means E occurs

at the m-th step of (ω(j −m), · · · , ω(N)). In particular, if E(m) occurs at the j-th

step of ω, then E occurs at the j-th step of ω. For every k ≥ 0, let

cN [k,E] = # of self-avoiding walks in SN for which

E occurs at no more than k different steps

cN [k,E(m)] = # of self-avoiding walks in SN for which

E(m) occurs at no more than k different steps.

cN [k,E(m)] is the non-increasing function in m for fixed N and k, since occurrences

of E(m) are more frequent as m increases.

Theorem 3.0.1 states that certain configurations occur quite often except in a

small set of walks. We are trying to show that quite often a self-avoiding walk fills

up a whole hexagonal ball. Lemma 3.1.2 tells us that if the event E occurs on almost

all walks, then for some m, E(m) must occur on almost all walks.

Lemma 3.1.2 If

lim inf
N→∞

(cN [0, E])
1
N < µ (3.3)
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then, there exists an a1 > 0 and an integer m such that

lim sup
N→∞

(cN [a1N,E(m)])
1
N < µ. (3.4)

So it means that, if a self-avoiding walk is likely to fill a hexagonal ball, then it is

also likely to fill a hexagonal ball within some bounded number of steps. The proof of

Lemma 3.1.2 does not depend on the lattice structure.Thus it is the same for both the

cubic lattice structure and the hexagonal lattice structure. This proof of this lemma

for cubic lattice is done in [15] and in [13].

Proof: Let us notice that, a path of length greater than N can occur only after

the N -th step. So we have, cN [0, E] = cN [0, E(N)]. Hence we can say, there exists

an ε > 0 and an integer m, such that,

cm[0, E(m)] < (µ(1− ε))m

and, since, lim
N→∞

c
1
N
N = µ, we have,

cm < (µ(1 + ε))m.

Let us consider an N -step self-avoiding walk ω, and M = bN
m
c. By defining M , we

are dividing the N -step self-avoiding walk into M number of m-length subwalks. So

if E(m) occurs at most k times in ω, then E(m) occurs in at most k of the M number
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of m-step subwalks (ω((i− 1)m), ω((i− 1)m+ 1), · · · , ω(im)), where, i = 1, ..,M .

There are cm[0, E(m)] possible choices for m-step subwalk without E(m) occuring,

and at most cm choices for an arbitrary m-step subwalk. If E(m) occurs in j of the

M pieces of length m, then, their places can be chosen in
(
M
j

)
ways.

So, we have to count the number of ways in which k or fewer of these subwalks

can contain an occurrence of E(m), and also counting the last (N −Mm) steps of ω

we have the bound,

cN [k,E(m)] ≤
k∑
j=0

(
M

j

)
(cm)j(cm[0, E(m)])M−jcN−Mm (3.5)

≤
k∑
j=0

(
M

j

)
(µ(1 + ε))jm(µ(1− ε))m(M−j)cN−Mm

= µmMcN−Mm

k∑
j=0

(
M

j

)
(1 + ε)jm(1− ε)Mm−jm

It is sufficient to show that there is a ρ, where 0 < ρ < 1
2

and a t < 1 such that,

cN [ρM,E(m)]
1
M < tµm (3.6)

for all sufficiently large M , as this gives (3.4) whenever 0 < a1 <
ρ
m

. But if ρ is a

small positive number, then,

ρM∑
j=0

(
M

j

)
(1 + ε)jm(1− ε)Mm−jm ≤ (ρM + 1)

(
M

ρM

)(
1 + ε

1− ε

)ρMm

(1− ε)Mm (3.7)
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(since,
(
M
j

)
≤
(
M
ρM

)
for 0 < ρ < 1

2
, and hence,

ρM∑
j=0

(
M

j

)
≤ (ρM + 1)

(
M

ρM

)
.)

As, M →∞, the M -th root of the right hand side of (3.7) converges to

1

ρρ(1− ρ)(1−ρ)

(
1 + ε

1− ε

)ρm
(1− ε)m

which is less than 1 whenever 0 < ρ < ρ0, for sufficiently small ρ0. Combining this

with (3.5), we see that (3.6) holds if 0 < ρ < ρ0 and M is sufficiently large. �

The next lemma plays a very significant role in Kesten’s Pattern Theorem. This

lemma says that almost all walks fill some hexagonal ball. The proof of this lemma

is done by contradiction.

Lemma 3.1.3 We have,

lim inf
N→∞

(cN [0, E∗])
1
N < µ (3.8)

Proof: Suppose that the lemma is not true, i.e. assume that, lim inf
N→∞

(cN [0, E∗])
1
N ≥ µ.

As cN [0, E∗]
1
N ≤ µ, so,

lim
N→∞

(cN [0, E∗])
1
N = µ. (3.9)

Let us denote the number of layers of the hexagonal ball by n. So n = 5 would mean

that the hexagonal ball has 5 layers. We make the following observations.
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1. cN

[
0, Ẽk

]
is a non-decreasing function of k. cN

[
0, Ẽk

]
is the number of N -

step self-avoiding walks which do not cover k points of H and do not fill the

hexagonal ball and cN

[
0, Ẽk+1

]
is the number of n-step self-avoiding walk which

do not cover k+ 1 points of H and do not fill the hexagonal ball. If Ck denotes

the set cN

[
0, Ẽk

]
and Ck+1 denotes the set cN

[
0, Ẽk+1

]
, then, |Ck+1| ≥ |Ck|,

and hence we can say that cN

[
0, Ẽk

]
is a non-decreasing function of k.

2. If E∗ does not occur on a given walk, then E(6n2+6n+1) cannot occur, where,

(6n2 +6n+1) is the number of lattice points of an n-layered hexagonal ball Hn.

Hence,

cN [0, E∗] ≤ cN [0, E(6n2+6n+1)] ≤ cN (3.10)

and hence (3.9) and (3.10) implies that,

lim
N→∞

cN [0, Ẽ(6n2+6n+1)]
1
N = µ. (3.11)

3. cN [0, Ẽ(n+4)] = 0,∀N ≥ n+ 3.

The first (n + 4) points of any walk which starts from origin, must be in Hn+2(0).

Therefore we can say that, there exists an K such that n + 4 ≤ K < 6n2 + 6n+ 1

such that

lim inf
N→∞

cN [0, ẼK ]
1
N < µ (3.12)

and lim inf
N→∞

cN [0, ẼK+1]
1
N = µ. (3.13)
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By (3.12) and Lemma 3.1.2 , there exists an a1 > 0 and an integer m such that

lim sup
N→∞

cN [a1N, ẼK(m)]
1
N < µ. (3.14)

Let us define the set of self-avoiding walk,

TN =
{
ω ∈ SN : ẼK+1 never occurs, EK(m) occurs at least a1N times

}
. (3.15)

We can see that by replacing EK(m) by ẼK(m) in (3.15) does not change anything,

since the condition that ẼK+1 never occurs ensures that E∗(m) never occurs. Now

suppose that, A denotes the set of walks which satisfy (3.12) and B denotes the set

of walks which does not satisfy (3.14), then TN = A \B.

So the cardinality condition of TN satisfies,

|TN | ≥ cN [0, ẼK+1]− cN [a1N, ẼK(m)] = cN [0, ẼK+1][1−
cN [a1N, ẼK(m)]

cN [0, ẼK+1]
] (3.16)

and therefore, by (3.13) and (3.14),

lim
N→∞

|TN |
1
N = µ. (3.17)

From (3.17) we can say that the pattern is coming more or less everywhere. Hence

there is a number K, such that it is not unusual to find lots of hexagonal balls with
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exactly K points occupied and no hexagonal balls with more than K points occupied.

Suppose ω is an N -step self-avoiding walk such that ẼK+1 never occurs on ω and

EK(m) occurs at the j1th, · · · , jsth steps of ω (and perhaps at other steps as well).

Suppose in addition that,

0 < j1 −m, js +m < N and jl +m < jl+1 −m,∀l = 1, · · · , s− 1, (3.18)

and Hn+2(j1), · · · , Hn+2(js) are pairwise disjoint. (3.19)

For l = 1, · · · , s let

σl = min {i : ω(i) ∈ Hn+2(jl)}

τl = max {i : ω(i) ∈ Hn+2(jl)} .

Since EK(m) occurs at the jlth step and EK+1 does not occur at the jlth step, there

must be exactly K points of Hn+2(jl) that are occupied by points of ω and those points

must lie between ω(jl−m) and ω(jl+m) on the walk. Hence, jl−m ≤ σl < jl < τl ≤

jl + m,∀l Consider all possible ways of replacing each subwalk (ω(σl), · · · , ω(τl)) by

a subwalk that stays inside Hn+2(jl) and completely covers Hn(jl). A special feature

of a filled hexagonal ball is that, if the hexagonal ball Hn(jl) is filled between the qth

and vth step of ω, where q < v, then, a lattice point of Hn(jl) can never be occupied

by ω before its qth or after its vth step, because ω is a self-avoiding walk. So we have
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ensured that there are no overlap amongst the sub-walks and also no overlap amongst

the hexagonal balls Hn(jl). So we can do this replacement simultaneously for all the

walks in the hexagonal balls. This is true by Lemma 3.1.1.

The result is always a self-avoiding walk ψ on which E∗ occurs at least s times, and

where length N ′ satisfies,

N ′ < N + s[6(n+ 2)2 + 6(n+ 2) + 1]

i.e., N ′ < N + s[6n2 + 30n+ 37]. (3.20)

Consider all triples (ω, ψ, J), where ω is a self-avoiding walk in TN ; J = {j1, .., js}

is a subset of {1, .., N} such that (3.18) and (3.19) hold, EK(m) occurs at each jl in

J . s = bδNc, (δ is small positive number) and ψ is a self-avoiding walk that can be

obtained from ω and J by the procedure discussed previously.

Now we shall estimate the number of such triples both from above and below to

obtain a contradiction.

If the hexagonal ball Hn+2(jl) intersects another hexagonal ball of (n + 2) layers,

centered at x, then, ||ω(j) − x|| ≤ 2rn+2, where rn is defined as rn =
√

1 + 3n2.

Now notice that, 2rn+2 < r2n+5. (Note: 2rn+2 = 2
√

1 + 3(n+ 2)2 and r2n+5 =√
1 + 3(2n+ 5)2, so
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2
√

1 + 3(n+ 2)2 <
√

1 + 3(2n+ 5)2

⇒ 12n2 + 48n+ 52 < 12n2 + 60n+ 76

⇒ n+ 2 > 0

which is true. Hence, we have, 2rn+2 < r2n+5.)

Therefore, if the hexagonal ball Hn+2(jl) intersects another hexagonal ball of (n+ 2)

layers, then ||ω(j)− x|| < r2n+5.

Let us consider (n + 2) layered hexagonal balls which satisfies ||ω(j) − x|| < 2r2n+5.

If we move the centers of those hexagonal balls through the (2n + 5)-th layer vertex

points, and through the lattice points of (2n + 4)-th layer, (2n + 3)-rd layer, and so

on, we will have an estimate of the number of hexagonal balls which will intersect

our original hexagonal ball Hn+2(jl) and will have the property ||ω(j)− x|| < 2r2n+5.

Let V ′ = No. of (n + 2) layered hexagonal balls which will intersect Hn+2(jl). Then

V ′ < 6(2n + 5)2 + 6(2n + 5) + 1. The expression on the right hand side is the total

number of lattice points of a hexagonal ball with (2n+ 5) layers. Let

V = 6(2n+ 5)2 + 6(2n+ 5) + 1 = 24n2 + 132n+ 156.

Therefore, V ′ < V .
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The number of such triples is at least the cardinality of TN times the minimum number

of possible choices of J for walks ω in TN . Let us define u = b a1N
(2m+2)V

c. Each ω in TN

contains at least a1N occurences of EK(m) and so we can find h1 < · · · < hu, such

that

1. EK(m) occurs at the hl th step of ω for every l = 1, · · · , u

2. 0 < h1 −m,hu +m < N and hl +m < hl+1 −m for every l = 1, · · · , u− 1

3. The hexagons Hn+2(h1), .., Hn+2(hu) are pairwise disjoint.

Now, any subset of {h1, .., hu} that has cardinality bδNc is a possible choice for J .

So if we set, ρ = a1

(2m+2)V
, then,

No. of triples ≥ |TN |
(
ρN − 2

bδNc

)
. (3.21)

For an upper bound, consider a triple, (ω, ψ, J).Observe that E∗ occurs at least

|J | = [δN ] times on ψ. It may occur more than |J | times because when we are making

a change in a hexagonal ball Hn+2(jl), it can produce occurrences of E∗ in some of the

hexagonal balls with (n+2) layers that intersects Hn+2(jl). Since, E∗ never occurs on

ω, we infer that E∗ no more than V |J | times on ψ. Hence, given ψ,there are atmost(
V [δN ]
[δN ]

)
possibilities for the locations of the hexagons Hn+2(jl), l = 1, ..|J |. Given ψ

and the locations of these |J | hexagons, each hexagon Hn+2(jl) determines a subwalk

of ψ that replaced some subwalk of ω.
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Since each of the replaced subwalks of ω had length 2m or less, there are at most

(
∑2m

i=0 ci)
δN possibilities for ω if we know both ψ and the locations of the |J | hexagonal

balls.

Finally, if we know ω and the locations of the hexagonal balls, then J is uniquely

determined. Since, if we define, Z = (
∑2m

i=0 ci), then using
(
V δN
δN

)
≤ 2V δN and (3.20)

we see that,

No. of triples ≤ 2V δNZδNC (3.22)

where, C =
∑g(n,N)δN

i=0 ci and g(n,N) = N + (6n2 + 30n+ 37). Combining (3.21) and

(3.22), taking N -th root and letting N →∞, we get by (3.17),

µρρ/
{
δδ(ρ− δ)ρ−δ

}
≤ 2V δµ1+(6n2+30n+37)δZδ. (3.23)

Let Y = 2V µ1+(6n2+30n+37)Z, t = δ/ρ,. Then (3.23) is equivalent to ,

1 ≤ (tt(1− t)1−tY t)ρ. (3.24)

Consider

f(t) = tt(1− t)1−tY t. (3.25)

We have, f(t) < 1 for sufficiently small t > 0, as lim
t↓0
f(t) = 1 and lim

t↓0
f ′(t) = −∞.

Hence we get f(t)ρ < 1 and thus contradicting (3.24) which says that 1 ≤ [f(t)]ρ.

Hence lim inf
N→∞

(cN [0, E∗])
1
N < µ is true. �
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Now we will prove Theorem 3.0.1, which is Kesten’s Pattern theorem for hexagonal

lattice.

Proof of Theorem 3.0.1: Let us assume that the hexagonal ball H in the

statement of the theorem is

Hn = {x ∈ H : |x| ≤ rn} .

Let us suppose that the theorem is not true. Then, for every a > 0,

lim sup
N→∞

(cN [aN, (γ,H)])
1
N = µ. (3.26)

Now we define an event E∗∗. The event E∗∗ occurs at the j-th step of ω if the

hexagonal ball Hn+2 is completely covered by ω. By Lemma 3.1.2 and Lemma 3.1.3,

we can say, there exists a′ > 0 and m′ such that,

lim sup
N→∞

(cN [a′N,E∗∗(m′)])
1
N < µ. (3.27)

Let a > 0 be a small unspecified number, and let TN be defined as the following set

of walks,

TN = {ω ∈ SN : (γ,Hn) occurs at most aN times on ω;

E∗∗(m′) occurs at least a′N times }.
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Hence, the cardinality of TN satisfies,

|TN | ≥ cN [aN, (γ,Hn)]− cN [a′N,E∗∗(m′)].

So, by (3.26) and (3.27), we have,

lim
N→∞

|TN |
1
N = µ. (3.28)

Let δ be a small positive number. Consider all triples (ω, u, J), such that, ω is in

TN ; J = {j1, · · · , js} is a subset of {1, · · · , N} such that E∗∗(m′) occurs at each jl.

( (3.18) of Lemma 3.1.3 holds here when we are replacing m by m′.) Also we have,

s = bδNc. u is a self-avoiding walk obtained by replacing the occurrence of E∗∗(m′)

at each jl by an occurrence of (γ,Hn), similar to the method used in the proof of

Lemma 3.1.3. We will define similar to Lemma 3.1.2 for l = 1, · · · , s, let,

σl = min {i : ω(i) ∈ Hn+2(jl)}

τl = max {i : ω(i) ∈ Hn+2(jl)} .

We can say that the occurrences of E∗∗(m′) makes sure that (3.19) holds. Making a

similar argument as in (3.21), we have,

No. of triples ≥ |TN |
(
ρN − 2

δN

)
(3.29)
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where ρ = a′

(2m′+2)
. For the upper bound we use the fact that u has almost aN +

2m′V δN occurrences of (P,Hn). This allows for

i) at most aN occurrences of (γ,Hn) on ω.

ii) the possibility that changing a single occurrence of E∗∗(m′) to a (P,Hn) may

create several other occurrences of (P,Hn) either by creating additional occur-

rences of γ or by vacating sites of other hexagonal balls.

Also note that u has at most N steps. Therefore to the analogue of (3.22), here we

have,

No. of triples ≤ 2aN+2m′V δNZ ′δND (3.30)

where, D =
∑N

i=0 ci and Z ′ =
∑2m′

i=0 ci. We combine (3.29) and (3.30) and put a = δ,

taking N -th roots, and let N →∞ , by (3.28) we get,

µ
ρρ

δδ(ρ− δ)(ρ−δ) ≤ 2aN+2m′V δNZ ′δNµ. (3.31)

Similar to the proof of Lemma 3.1.2, this leads to a contradiction for sufficiently small

δ, and hence the theorem is proved. �

3.2 Application of Pattern Theorem

Linear polymers become self-entangled when they move in solution.These entan-

glements are interesting to polymer physicists. If the polymer is self-entangled, then
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the entanglement can be preserved in the crystallization process producing a defect

or fault in the crystal. Also, when the polymers become self-entangled, the physical

and chemical properties of the polymer solution may change. Let P (N, γ) denote the

probability that an N -step self-avoiding walk contains the pattern γ. Then similar

to the theorem about an knotted N -gon in [22], we have the following theorem about

patterns.

Theorem 3.2.1 Let γ be a proper internal pattern on an N-step self-avoiding walk

on a hexagonal lattice. Then

lim
N→∞

P (N, γ) = 1. (3.32)

Proof: Let us suppose that,

c0N,γ = # of N -step self-avoiding walk without γ

cN = # of N -step self-avoiding walk.

By concatenation property and by sub-additivity Lemma 2.2.1, we can say that

lim
N→∞

ln c0N,γ
N

and lim
N→∞

ln cN
N

exists, and suppose they are,

lim
N→∞

ln c0N,γ
N

= κ0 (3.33)

lim
N→∞

ln cN
N

= κ. (3.34)
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From Kesten’s Pattern Theorem 3.0.1, we get that,

lim sup
N→∞

ln c0N,γ
N

< κ

⇒ κ0 < κ. (3.35)

From (3.34) we get,

lim
N→∞

ln cN
N

= κ

⇔ lim
N→∞

(
ln cN
N
− κ
)

= 0

⇔ lim
N→∞

(
ln cN −Nκ

N

)
= 0

⇔ ln cN −Nκ = o(N)

⇔ ln cN = Nκ+ o(N)

⇔ cN = eNκ+o(N). (3.36)

Similarly c0N,γ = eNκ0+o(N). So,
c0N,γ
cN

= eN(κ0−κ)+o(N) → 0 as N → ∞. Now, as,

P (N, γ) is the probability that an N -step self-avoiding walk contains the pattern γ,

and κ− κ0 > 0 by (3.35), hence, we have,

P (N, γ) = 1− c0N,γ
cN

. (3.37)



57

Now, taking N →∞ in (3.37), and since, κ− κ0 > 0, we have,

lim
N→∞

P (N, γ) = 1. (3.38)

�

So this theorem shows that the probability of occurrence of a pattern in a self-

avoiding walk is a sure event as the length of the walk increases.

3.3 Discussions

From the proof of Kesten’s Pattern theorem for the hexagonal lattice, we can see

that, it is basically similar to Kesten’s Pattern theorem for cubic lattices. Here we

have followed a similar path. We have used the three lemmas given for cubic lattice

and changed only those parts which are really dependent on the lattice structure.

Lemma 3.1.2 does not depend on lattice structure, hence no change has been done

there. But for Lemma 3.1.1, Lemma 3.1.3 and the main proof and statement of

Theorem 3.0.1, we have used some properties of the hexagonal lattice and changed

some parts of the proof accordingly.

In [1], Alm and Parviainen give improved bounds for the connective constant of

a hexagonal lattice µ. The lower bound is determined by using Kesten’s method

of irreducible bridges and by determining generating functions for bridges on one

dimensional lattices. In [13], Kesten has used a method to find the lower bound
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for the connective constant for cubic lattice depending upon irreducible bridges. We

will now describe some definitions and ideas discussed by Kesten in [13] for finding

upper and lower bounds of the connective constant of the cubic lattice and some

improvisation made by Alm and Parviainen in [1] for finding upper and lower bound

for the connective constant µ of the hexagonal lattice.

Definition 3.3.1 Let us denote the coordinates of a lattice point of a self-avoiding

walk ω by (ω(xi), ω(yi)). A bridge of length N is a self-avoiding walk, such that,

ω(y0) < ω(yi) ≤ ω(yN), i = 1, · · · , N − 1

An irreducible bridge is a bridge that cannot be decomposed into two bridges.

Define, bN = # of bridges of length N and aN = # of irreducible bridges of length

N . Kesten showed that, for the connective constant of the cubic lattice,

lim
N→∞

b
1
N
N = lim

N→∞
a

1
N
N = lim

N→∞
c

1
N
N = µ

i.e. the connective constant for bridges and irreducible bridges are the same for the

self-avoiding walk. We can think of the N -step self-avoiding walks, the bridges and

the irreducible bridges as sequences. Sometimes the behavior of a sequence can be

understood by its generating function. The generating function for the sequence {cN}
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of N -step self-avoiding walk, can be defined as,

C(x) =
∞∑
N=0

cNx
N , c0 = 1. (3.39)

Similar to (3.39), we can define generating functions of bridges and irreducible bridges.

Suppose we denote the generating function of bridges by B(x) and the generating

function of irreducible bridges of A(x). Then, in [1] it is shown that, if

B(x) =
∞∑
N=0

bNx
N , b0 = 1 (3.40)

A(x) =
∞∑
N=0

aNx
N , a0 = 1, (3.41)

then the relation between B(x) and A(x) is,

B(x) =
1

1− A(x)
. (3.42)

The radius of convergence of the series A(x) is, µ−1. Alm and Janson earlier showed

that it is theoretically possible to calculate BN(x) and hence we can have AN(x) by

(3.42). In [1], Alm and Parviainen have used a similar method to calculate the gen-

erating functions for bridges and irreducible bridges for hexagonal lattice structures.

For this they have used a different embedding of the hexagonal lattice as shown in

Figure 3.2. On this embedding (Figure 3.2) of hexagonal lattice, bridges, irreducible

bridges can be defined similar to that of a cubic lattice. The best upper and lower
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Figure 3.2: A different embedding of hexagonal lattice

bounds found by Alm and Parviainen in [1] is,

1.833009764 < µ < 1.868832

where the actual conjectured value of the connective constant of the hexagonal lattice,

µ =
√

2 +
√

2 ≈ 1.847759.
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Chapter 4

Self-Avoiding Random Loops

In Chapter 1, we defined self-avoiding walks, patterns, some properties of self-

avoiding walks on hexagonal lattice structures. In this part we will look at self-

avoiding random loops. In [6], Dubins et al. described a random loop, or polygon

as a simple random walk whose trajectory is a simple closed Jordan curve. It was

shown in [6] that the probability that a random N -step loop contains the point (1
2
, 1

2
)

in the interior of the loop is 1
2
− 1

N
. In this chapter, we will extend this result to

hexagonal lattices. Let us consider a self-avoiding N -loop α = {α(0), · · · , α(N − 1)}.

The points α(0), · · · , α(N − 1) together with the unit line segments joining α(j) to

α(j + 1), for j = 0, · · · , (N − 1), forms a simple closed Jordan curve J in the plane

with vertices α(0), .., α(N − 1). A Jordan curve partitions the plane into an inside

and an outside region. It is of interest to know what would be the probability that a

point (x, y) on the plane is inside, outside or on the Jordan curve J and what would
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be the probability that the two points (x, y) and (x,−y) on the plane would both be

inside, outside or on the curve. In the next two theorems we will find the probability

of the points (1
2
, 1

2
) is inside the Jordan curve and the probability of the point (1

2
, 1

2
)

and (1
2
,−1

2
) are both inside the Jordan curve when the lattice is a hexagonal lattice.

4.1 Encircling the points (1
2,

1
2) and (1

2,−1
2)

In this section we will calculate the probability of a self-avoiding random loop

to encircle the point (1
2
, 1

2
) and both the points (1

2
, 1

2
) and (1

2
,−1

2
). We modify the

method of Dubins et al. in [6] for the hexagonal lattice. We now state and prove the

version for the hexagonal lattice structure.

Theorem 4.1.1 Let α = {α(0), · · · , α(N − 1)} be a random self-avoiding N-loop in

a hexagonal lattice tracing a Jordan curve J with the origin as one of its vertices. Let

us consider two points A =
(

1
2
, 1

2

)
, and B =

(
1
2
,−1

2

)
. Then,

a) the probability that the point A is inside the random self-avoiding N-loop is,

P (A ∈ J) =
1

2
− 1

N
; (4.1)

b) the probability that the points A and B are both inside the random self-avoiding

N-loop is,

P (A and B are inside J ) =
1

6
− 1

N
. (4.2)
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Proof : For a self-avoiding random N -loop α on a hexagonal lattice. N will be

even. J consists of the points α(0), · · · , α(N −1) and the line segements joining α(k)

and α(k + 1) for k = 0, · · · , N − 1. Each α(k) is a vertex of J . At each vertex point,

the angle between two adjacent sides is either 120o or 240o. Let

a = # of 120o angles

and b = # of 240o angles.

Then

N = a+ b. (4.3)

We have to consider all possible random self-avoiding N -loop which can be drawn in

such a way that the origin is a vertex of the loop. This can be done in the following

way. We will cyclically permute the trajectory of the vertices to α(k) − α(k), α(k +

1)−α(k), · · · , α(k+N)−α(k) for k = 0, 1, · · · , N − 1, where α(N + i) = α(i). This

way we will be constructing the N Jordan curves J0, J1, · · · , JN−1. If we rotate each

of the Jordan curve Ji, for i = 0, · · · , N − 1, through, 0o, 120o and 240o, then we will

get 3N Jordan curves, which would be the total number of possible Jordan curves

which would have origin as a vertex. Some of the Jordan curves may be identical,

but our J maybe any of these 3N Jordan curves with equal probability. Now we try

to do part (a) of the theorem. We will try to calculate the fraction p1 of these Jordan

curves which will contain the point
(

1
2
, 1

2

)
, and for part (b), we will try to calculate
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the fraction p2 of these Jordan curves which will contain both the points
(

1
2
, 1

2

)
and(

1
2
,−1

2

)
. From properties of external angle of a polygon, we have,

Figure 4.1: Encircling the points A and B

a
π

3
− bπ

3
= 2π

⇒ a− b = 6. (4.4)

Solving (4.3) and (4.4) for a and b in terms of N , we get,

a =
N + 6

2
(4.5)

b =
N − 6

2
. (4.6)
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a) Now, suppose that at the vertex α(k) of J , the angle is 120o. Then, exactly

one of the three rotations of Ji will contain the point
(

1
2
, 1

2

)
. If at the vertex α(k) of

J , the angle is 240o, then for exactly two of the three rotations of J will contain the

point
(

1
2
, 1

2

)
. So, we have the fraction p1 as,

p1 =
a+ 2b

3N
. (4.7)

Using, (4.5) and (4.6) in (4.7), we get,

p1 =
a+ 2b

3N

=
N+6

2
+ 2N−6

2

3N

=
1

2
− 1

N
.

Now we show part (b) of the theorem.

b) Similar to part (a), suppose that at the vertex α(k) of J , the angle is 120o.

Then, none of the three rotations of Ji will contain the points A and B. If at the

vertex α(k) of J , the angle is 240o, then for exactly one of the three rotations of J

will contain the points A and B. So, we have the fraction p2 as,

p2 =
b

3N
. (4.8)



66

Using (4.6) in (4.8)

p2 =
b

3N
=

N−6
2

3N

=
1

6
− 1

N
.

Hence, we have proved Theorem 4.1.1. �

4.2 Related Results and Discussions

We can see that it is not so difficult to find the probability that an N -step self-

avoiding loop on a hexagonal lattice encircles the point
(

1
2
, 1

2

)
. In [6], it has been

conjectured that, whenever x and y are both non-integers on a square lattice, then,

lim
N→∞

PN ((x, y) ∈ N -step self-avoiding loop ) = 1
2
. But it is not easy to prove this

result even for (x, y) =
(

3
2
, 1

2

)
. So, Dubins et al. have used simulations for the point(

3
2
, 1

2

)
in [6].
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Appendix A

Equivalence of two definitions of

layers of a hexagonal ball

It can be easily shown that the points in the n-th layer as defined by definition

2.1.2 are either of the distance n
√

3 or
√

1 + (n
√

3)2 = rn from the center of the

hexagonal ball. We can see that the points of the (n + 1)-th layer ln+1 are either of

distance (n+ 1)
√

3 or
√

1 + ((n+ 1)
√

3)2 = rn+1. As both these numbers are greater

than rn, the equivalence with definition 2.1.2 and equation (2.2) follows.
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Appendix B

Spanning a hexagonal lattice

The proof of (2.4) follows by induction. First notice that for the origins of type

(a) in Figure (2.5), the 3 hexagons adjacent to the origin have centers −~e1, −~e2 and

~e1 + ~e2 respectively, which are of the form (2.4) with (m,n) = (1,−1), (0, 0) and (1, 0)

respectively. Similarly for origins of type (b) in figure (2.5), the 3 hexagons adjacent

to the origin are with centers of the form (2.4) with (m,n) satisfying m,n ∈ {−1, 0, 1}.

Now, let us assume the origin is of type (a) and prove the result; type (b) will follow

similarly.

Call all the hexagons adjacent to the origin (hexagons having the origin as one

of their vertices) as hexagons of stage 1, all the hexagons adjacent to (sharing at

least one side with) hexagons of stage 1 but not belonging to stage 1 as stage 2, all

hexagons adjacent to hexagons of stage 2 but not belonging to stages 1 or 2 as stage

3, and so on. In general, we define stage (k + 1) as the collection of all the hexagons
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adjacent to the hexagons of stage k but not belonging to stages 1 to k. So, a layer

will overlap with a stage if H0 is shifted to the origin. We have shown that all the

hexagons in stage 1 satisfy (2.4). Now, suppose that all the hexagons in stages k

or below satisfy (2.4). Notice now that for any hexagon with center ~a, its adjacent

hexagons will have centers ~a + l1(~e1 + 2~e2) + l2(2~e1 + ~e2), where l1, l2 ∈ {−1, 0, 1}.

This implies that the hexagons in stage (k+1) have centers of the form m(~e1 +2~e2)+

n(2~e1 + ~e2)− ~e2 + l1(~e1 +2~e2)+ l2(2~e1 + ~e2) =(m+ l1)(~e1 +2~e2)+(n+ l2)(2~e1 + ~e2)− ~e2,

which is again of the form given by (2.4). This completes the induction.
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Appendix C

MAPLE codes for generating cN

for different N

The following program has been used to find the values of cN for different values of

N which are showed in table 2.1. This program checks through each of the 3N walks

and see which one is self-avoiding by means of a function p defined in the program.We

have given the value for N = 12 below. cn gives the value of cN for N = 12. As the

number of steps N increases, the time for calculation is also increasing. The program

needs to be restarted for each choice of n, which represents N in the program.

> restart:

> n:=12;

n := 12

> alpha:=array(1..n):w:=exp(I*Pi/3):
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> p:=1:for i from 1 to n

do for j from i+1 to n

do h:=sum((-1)^(j-k)*w^(alpha[k]),k=i..j):

p:=p*h:od:od;

> A:=array(1..3^n):A[1]:=[seq(0,i=1..n)]:

for k from 0 to n-1

do for j from 1 to 3^k

do A[3^k+j]:=A[j]: A[2*3^k+j]:=A[j]: A[3^k+j][n-k]:=1:

A[2*3^k+j][n-k]:=2: od:od:

> c[n]:=0: for i from 1 to 3^n

do alpha:=A[i]:

if p<>0 then print(alpha):

c[n]:=c[n]+1:fi:od:

> print(c[n]=c[n]);

cn = 4416


