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SUMMARY 

 

Background: Acute pancreatitis is increasing in incidence and can be a fatal human 

disease, in which the pancreas digests itself and its surroundings. Inflammatory mediators 

such as substance P and chemokines have been shown to be critically involved in the 

pathogenesis of acute pancreatitis.  

Aim: To investigate the functional consequences of exposing pancreatic acinar cells to 

the neuropeptide substance P and determine if it leads to pro-inflammatory signaling such 

as production of chemokines. Moreover, to investigate the mechanisms through which 

substance P mediates pro-inflammatory signaling in mouse pancreatic acinar cells. 

Furthermore, to test the significance of my in vitro findings in a more complex in vivo 

model of acute pancreatitis. 

Results: Exposure of mouse pancreatic acini to substance P significantly increased 

synthesis of the CC chemokines MCP-1, MIP-1α and the CXC chemokine MIP-2. 

Furthermore, substance P increased NFκB activation. Blockade of the NFκB pathway 

significantly attenuated chemokine production, thus demonstrating that substance P-

induced chemokine synthesis in mouse pancreatic acinar cells is NFκB dependent.  

Substance P also induced activation of MAP Kinases ERK and JNK as well as the 

transcription factor AP-1. Both ERK and JNK were found to be essential for NFκB and 

AP-1 activation, resulting in increased chemokine production. Moreover, CP96345, a 

selective substance P receptor (NK1R) antagonist, attenuated the activation of ERK, 

JNK, NFκB and AP-1 mediated chemokine production, hence showing that chemokine 

production is dependent on substance P/NK1R in pancreatic acinar cells. 



x 

 

I also showed that substance P stimulated an early phosphorylation of the novel PKC 

isoform PKCδ, followed by an increased activation in MEKK1, ERK, JNK as well as 

NFκB and AP-1 driven chemokine production. Depletion of PKCδ decreased the 

activation of PKCδ, MEKK1, ERK, JNK, NFκB, AP-1 and chemokine production. 

Besides, PKCδ activation was attenuated by CP96345, hence showing that PKCδ 

activation was indeed mediated by substance P/NK1R in pancreatic acinar cells.  

In addition, substance P stimulated the activation of conventional PKCα/βII which was 

mediated by PLC. Besides activating PKCα/βII, substance P-induced PLC increased 

intracellular mobilization of [Ca2+] in pancreatic acinar cells. The increase in [Ca2+]i 

resulted in the phosphorylation of PKCα/βII, ERK and JNK; consequently leading to the 

activation of NFκB, AP-1 and ultimately to chemokine production.  

Substance P/NK1R also induced a transient increase in the activation of Src family 

kinases (SFKs) in pancreatic acinar cells. Moreover, substance P-induced SFKs mediated 

the activation of ERK and JNK, transcription factors STAT3, NFκB and AP-1 as well as 

MCP-1, MIP-1α and MIP-2 in vitro. Blockade of SFKs, both prophylactically and 

therapeutically, reduced the severity of acute pancreatitis in vivo as evidenced by a 

significant attenuation of hyperamylasemia, pancreatic MPO activity, pancreatic 

chemokine levels and pancreatic water content. Moreover, histological evidence of 

diminished pancreatic injury confirmed the protective effect of the inhibition of SFKs on 

acute pancreatitis. 

Conclusions and Implications: Substance P induces chemokine synthesis in pancreatic 

acinar cells. The proposed signaling pathway through which substance P mediates acute 

pancreatitis is through substance P/NK1R - (PLC-PKCα/βII-Ca2+)/(PKCδ-
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MEKK1)/(SFKs) - (ERK, JNK) - (STAT3, NFκB, AP-1) - (MCP-1, MIP-1α, MIP-2). A 

deeper understanding of the mechanisms by which substance P modulates its downstream 

functions will facilitate the discovery and development of novel therapeutic approaches 

that can target selective pathways to prevent disease progression in acute pancreatitis 

and/or improve treatment efficacy. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

The present chapter serves as a literature review of the topics covered in my thesis. It 

provides the background information that enabled its development. Following are my 

hypothesis and aims of this work. Subsequently, each chapter introduces and discusses 

the results of a main finding. Finally, conclusion consists of a general discussion, the 

proposed mechanisms and implications of this work. 

 

1.1 ACUTE PANCREATITIS 

Acute Pancreatitis is an inflammatory disorder of the pancreas. It varies in severity from 

mild to severe. Majority of the patients (80%) suffer mild pancreatitis, which is self-

limiting and recover in a few days. The remaining 20% suffer a severe attack and 

between 30 and 50% of these will die (Neoptolemos, Raraty et al. 1998; Wilson, Manji et 

al. 1998; Winslet, Hall et al. 1992). The most common symptom is the presence of acute 

and constant abdominal pain.  

The incidence of acute pancreatitis has increased in the past twenty years (Bhatia, Wong 

et al. 2005; Giggs, Bourke et al. 1988; Imrie 1997; Jaakkola, Nordback et al. 1993; 

Trapnell, Duncan et al. 1975). In California (1994-2001), the incidence of first time 

attack has increased from 33 to 44 per 100 000 adults (Frey, Zhou et al. 2006). Presently 

in USA, acute pancreatitis accounts for more than 200 000 hospital admissions yearly 
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(DeFrances, Hall et al. 2005). A similar increase is also observed in European countries 

(Yadav, Lowenfels et al. 2006). 

Most cases result from excess alcohol consumption or biliary disease leading to ductal 

obstruction. Other minor factors include hyperlipidemia, viral infection, drugs, and 

hypercalcemia (Sakorafas and Tsiotou 2000). The exact mechanisms by which different 

aetiological factors induce acute pancreatitis are still not fully understood, but once the 

disease process is initiated, common inflammatory and repair pathways are brought into 

play. Acinar cell damage leads to a local inflammatory response but the inflammatory 

mediators also spill over into the general circulation. This leads to a systemic 

inflammatory response syndrome (SIRS), and it is this systemic response that is 

ultimately responsible for the majority of the morbidity and mortality (Neoptolemos, 

Raraty et al. 1998; Wilson, Manji et al. 1998; Winslet, Hall et al. 1992). Figure 1.1 

illustrates the progression of acute pancreatitis and also the inflammatory mediators 

involved in the pathogenesis of the disease. Acute pancreatitis consists of a three-phase 

continuum: local inflammation of the pancreas, a systemic inflammatory response and the 

final stage of multi-organ dysfunction (Bhatia, Brady et al. 2000; Bhatia, Brady et al. 

2002; Bhatia and Moochhala 2004; Bhatia, Neoptolemos et al. 2001). 



3 

 

 

Figure 1.1 Schematic diagram of inflammatory mediators in the pathogenesis of acute 
pancreatitis. Activation of various digestive enzymes in pancreatic acinar cells leads to 
autodigestion of the pancreas and release of inflammatory mediators. The severity of 
acute pancreatitis is determined by an imbalance between pro- and anti- inflammatory 
mediators. When the inflammatory reaction is severe, it leads to pathological damages in 
various organs such as pancreas, lung and kidney and eventually death.  
 

1.2 INTRA-ACINAR EVENTS IN ACUTE PANCREATITIS 

The pancreas is an enzyme factory that secretes large amounts of digestive enzymes, 

many of which are proenzymes known as zymogens. The pancreatic acinar cell is the 

functional unit of the exocrine pancreas which comprises about 80% of the pancreas. The 

mechanism and site of initiation of pancreatitis have been a mystery. Originally, it was 
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believed that the pancreatic juice leaking from the pancreatic duct was responsible for the 

initiation of pancreatitis and that the disease began in the periductal region (Foulis 1980). 

Then, the observation of pancreatic fat necrosis at the time of autopsy in the patients 

suffering from pancreatitis led to the hypothesis that the initial event was the release of 

active pancreatic lipase from the acinar cells, leading to peripancreatic fat necrosis 

(Kloppel, Dreyer et al. 1986). Subsequent studies in animal models that simulate the 

human disease suggested that the acinar cell was the initial site of morphological damage 

(Lerch, Saluja et al. 1992). At present, it is generally agreed that the initiating events of 

acute pancreatitis occur in acinar cells. Thus, besides animal models of pancreatitis, 

isolated pancreatic acini are considered a valid model with which to investigate the 

pathogenesis of pancreatitis.  

 

1.3 PATHOPHYSIOLOGY OF ACUTE PANCREATITIS IN ACINAR CELLS 

Under normal physiological conditions, digestive enzymes are only activated once they 

have reached the duodenum. However, in acute pancreatitis premature activation of these 

enzymes takes place within the pancreatic acinar cells, resulting in autodigestion of the 

pancreas. Trypsinogen, a serine protease, is now thought to be the first enzyme to be 

activated; subsequently other digestive enzymes (chymotrypsin and elastase) are cleaved 

and activated (Gorelick, Otani et al. 1999; Grady, Mah'Moud et al. 1998; Saluja, Lee et 

al. 1999; Steer 1999). The activation of trypsinogen and other pancreatic zymogens was 

demonstrated in the pancreatic homogenate from animals with caerulein-induced 

pancreatitis (Bialek, Willemer et al. 1991; Grady, Saluja et al. 1996; Luthen, Niederau et 

al. 1995). The pancreas has a variety of mechanisms to prevent intracellular zymogen 
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activation and subsequent autodigestion. But in acute pancreatitis, these protective 

mechanisms are no longer effective or are overwhelmed (Gorelick, Otani et al. 1999; 

Grady, Mah'Moud et al. 1998; Saluja, Lee et al. 1999; Steer 1999). Hence, activated 

pancreatic enzymes break down cell membranes as well as tissue, causing pancreatic 

edema, vascular damage, hemorrhage and necrosis. The strong local inflammatory 

response that follows activates leukocytes and endothelial cells among others. Secreted 

bioactive molecules from infiltrating leukocytes contribute to local damage and 

subsequently to the systemic inflammatory response, which may result in multiple organ 

dysfunction and ultimately to death (Bhatia, Brady et al. 2000). A number of 

inflammatory mediators have been implicated in the recruitment of leukocytes into the 

pancreas (Bhatia, Brady et al. 2000). Inflammatory mediators such as substance P and 

chemokines along with cytokines, interleukins, intercellular adhesion molecules and 

platelets activating factor have been shown to play significant roles in the pathogenesis of 

acute pancreatitis (Bhatia, Brady et al. 2002; Bhatia, Ramnath et al. 2005; Bhatia, Saluja 

et al. 1998). My work focuses mainly on the inflammatory mediators substance P and 

chemokines. 

 

1.4 SUBSTANCE P  

Substance P is an 11 amino acid neuropeptide that was originally isolated and purified by 

Chang and Leeman from bovine pituitary glands. It is a member of the tachykinin family 

and has been shown to induce rapid smooth muscle contraction in guinea pig ileum and 

rat duodenum (Chang and Leeman 1970). Other members of the tachykinin family, 

sharing common carboxyl terminal Phe-X-Gly-Leu-Met-NH2 sequences in mammals, 
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include neurokinin A and neurokinin B (Kimura, Goto et al. 1984). Tachykinins are 

produced by three genes, preprotachykinin A (PPTA), preprotachykinin B (PPTB) and 

preprotachykinin C (PPTC) in mammals. Substance P is a product of the PPTA gene 

(Harrison and Geppetti 2001; Severini, Improta et al. 2002) and is localized in the central 

nervous system as well as in several peripheral tissues, including the entire length of the 

gastrointestinal tract, the pancreas as well as the colon. The effects of substance P are 

mediated by three different G protein coupled receptors (GPCRs), namely neurokinin 

(NK) 1, 2, and 3. Substance P binds with high affinity to NK1 receptor (NK1R), and with 

low affinity to NK2 and 3 receptors (Koon and Pothoulakis 2006). 

Substance P is released from nerve endings in many tissues. Subsequent to its release 

from nerve endings, substance P binds to its G protein coupled receptor NK1 on effector 

cells, increases microvascular permeability, and promotes plasma extravasation from the 

intravascular to the extravascular space. It has been demonstrated that there is an elevated 

expression of substance P receptor binding sites in the submucosa of patients suffering 

from the inflammatory bowel disease (Mantyh, Gates et al. 1988). Patients with Crohn’s 

disease showed increased NK1R in lymphoid aggregates, small blood vessels, and enteric 

neurons (Mantyh, Vigna et al. 1994; Mantyh, Vigna et al. 1995). Treatment with NK1R 

antagonist reduced the severity of colitis in rats. These results point to an important pro-

inflammatory role of substance P and NK1R in inflammatory diseases. 

1.41 Substance P in Acute Pancreatitis 

Studies have indicated that substance P, acting through NK1R, plays an important role in 

the pathogenesis of acute pancreatitis (Bhatia, Saluja et al. 1998; Bhatia, Slavin et al. 

2003; Patto, Vinayek et al. 1992; Sjodin and Gylfe 1992). Both genetic deletion of NK1R 
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and blockade of NK1R with its selective antagonist CP96345 protected mice against 

acute pancreatitis and associated lung injury (Lau, Wong et al. 2005; Saluja et al. 1998). 

The role of substance P in acute pancreatitis is further described in the following 

chapters. 

 

1.5 CHEMOKINES 

Chemokines are a family of small (8-10 kDa) inducible cytokines with activating and 

chemotactic effects on leukocyte subsets. Over 40 chemokines have been identified to 

date. These proteins are defined by four invariant cysteines and are classified into four 

subfamilies (two major and two minor) based on the relative position of the first two 

cysteines: CXC (α-subfamily), CC (β-subfamily), C (γ-subfamily) and CX3C (δ-

subfamily) chemokines (Zlotnik and Yoshie 2000). In the CC chemokines, the first two 

cysteine residues are adjacent to each other. The CXC chemokines have their first two 

cysteine residues separated by a single amino acid. The two major subfamilies CC and 

CXC chemokines have been extensively investigated in various disease conditions such 

as acute pancreatitis.   

Chemokines act as regulators of immune, inflammatory and hematopoietic processes. 

They play a major role in leukocyte trafficking, recruiting and recirculation. The CC 

chemokines [Monocyte chemoattractant protein (MCP)-1, MCP-2, MCP-3, regulated 

upon activation normal T cell expressed and secreted (RANTES), macrophage 

inflammatory protein (MIP)-1α and MIP-1β] are believed to act on monocytes, but not on 

neutrophils and tend to be involved in chronic inflammation (Baggiolini, Loetscher et al. 

1995; Wells, Power et al. 1996). The CXC chemokines such as interleukin (IL)-8, 
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growth-related oncogene-alpha (GRO-α) and the rodent CXC chemokines cytokine-

induced neutrophil chemoattractant (CINC) and MIP-2 are believed to act preferentially 

on neutrophils and are primarily involved in neutrophil-mediated inflammation. 

However, recent work has shown that these narrow definitions are no longer valid 

(Bhatia, Proudfoot et al. 2003; Bonecchi, Polentarutti et al. 1999; Gerard, Frossard et al. 

1997; Kobayashi, Takahashi et al. 2002). The key CC chemokines MCP-1, MIP-1α, 

RANTES and CXC chemokines, IL-8, GRO-α, CINC and MIP-2 are important in acute 

pancreatitis.  

1.5.1 Chemokines in Acute Pancreatitis 

A study of chemokine gene expression in rat pancreatic acinar cells showed an 

upregulated rat CXC chemokine mob-1 and CC chemokine MCP-1 mRNA expression 

within 1 h of cerulein induced acute pancreatitis in vivo. The mob-1 mRNA was also 

induced by either retrograde injection of bile salts or caerulein in acinar cells in vitro 

(Grady, Liang et al. 1997; Han and Logsdon 1999). An in vitro study on cholecystokinin 

(CCK)- and ethanol-treated rat pancreatic acinar cells demonstrated that rat pancreatic 

acinar cells secreted MCP-1 and RANTES in response to CCK and ethanol stimulation, 

suggesting a role for these two chemokines in the pathogenesis of acute pancreatitis 

(Yang, Demaine et al. 2000). It has been shown that caerulein hyperstimulation induced 

synthesis of MCP-1 but not CINC in rat pancreatic acinar cells (Bhatia, Brady et al. 

2000). The synthesis is through a calcium-dependent mechanism involving NFκB 

activation. 

The role of MCP-1 as well as two other CC chemokines MIP-1α and MIP-1β has been 

extensively evaluated in human AP. It was found that complicated acute pancreatitis is 
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associated with significantly elevated levels of local and systemic concentrations of 

MCP-1 and MIP-1α. A close correlation between the severity of remote organ failure and 

the degree of MCP-1 elevation suggests that MCP-1 might play a pivotal role in the 

pathological mechanism of complicated human acute pancreatitis (Rau, Baumgart et al. 

2003). Further, MCP-1 is believed to contribute to the progression of chronic pancreatitis 

(which results from repetitive pancreatic injury with sustained production of various pro-

inflammatory cytokines and chemokines) through monocyte/macrophage recruitment 

(Ohashi, Nishio 2006). Moreover, blockade of MCP-1 may reduce the development of 

pancreatic fibrosis in chronic pancreatitis (Zhao, Ito et al. 2005).  

Although the mechanism of inflammation in acute pancreatitis is still not fully 

understood, a substantial body of evidence suggests that chemokines play a critical role in 

the pathogenesis of acute pancreatitis (Bhatia, Brady et al. 2000; Bhatia, Brady et al. 

2002; Bhatia, Ramnath et al. 2005). The ability of epithelial cells (as opposed to immune 

and inflammatory cells) to produce chemokines has been recognized only recently 

(Bowden, Garland et al. 1994). It is now known that pancreatic acinar cells can 

synthesise and secrete both chemokines and cytokines (Bhatia, Brady et al. 2002; Grady, 

Liang et al. 1997; Gukovskaya, Gukovsky et al. 1997). 

 

1.6 TEST SYSTEM: IN VITRO MODEL 

Pancreatic acini have previously been used as a model cell type to study the mechanisms 

of protein secretion, hormone action, and stimulus-secretion coupling (Williams 2006). 

Various studies have used isolated pancreatic acinar cells (in vitro system) to shed light 

on early events in pancreatitis. Studies have shown that both isolated pancreatic acinar 
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cells and the pancreas respond similarly when exposed to the gastrointestinal hormone 

CCK. Supramaximal stimulation of pancreatic acinar cells with CCK or its analog 

caerulein has been commonly used as the cellular model of acute pancreatitis (Thrower, 

Osgood et al. 2008). Several in vitro studies conducted on pancreatic acini have 

substantiated the findings from animal studies. For example, in parallel to the pancreatic 

necrosis found in vivo models, diverse biochemical parameters such as cytosolic lactic 

dehydrogenase release, propidium iodide (PI) incorporation, and trypan blue retention 

have been used as markers of cellular injury in in vitro models (Saluja, Lerch et al. 2007). 

Besides being the site of initiation of injury in pancreatitis, pancreatic acinar cells also 

produce and release chemokines very early in the course of pancreatitis, which then 

attract and activate inflammatory cells and initiate the systemic phase of the disease. 

This, therefore, makes isolated pancreatic acinar cells an ideal system in which to 

investigate the pathogenesis of acute pancreatitis and the signaling mechanism involved.  

 

1.7 TEST SYSTEM: IN VIVO MODEL 

Animal models of acute pancreatitis range from mild edematous pancreatitis to severe 

necrotizing pancreatitis. Some examples are choline-deficient ethionine supplement diet-

induced pancreatitis, bile duct obstruction model of pancreatitis and duct infusion 

induced pancreatitis among others. However, most studies evaluating the pathogenesis of 

pancreatitis have used the secretagogue induced acute pancreatitis. In this model, 

supramaximal doses of the secretagogue CCK or its analog caerulein are given to rodents, 

resulting in the induction of acute pancreatitis. Physiological concentrations of 

CCK/caerulein trigger normal secretion from the pancreas. It is known that physiological 
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doses of CCK/caerulein occur via stimulation of high-affinity CCK receptors. When 

supramaximal dose of CCK/caerulein is given to the animals, the excess stimulation leads 

to abnormally high digestive enzyme secretion, resulting in acute pancreatitis, as 

indicated by hyperamylasemia, edema of the pancreas acinar, cell necrosis, hemorrhage, 

and severe inflammation of the pancreas. This appears to be mediated by the low-affinity 

CCK receptors (Saluja, Saluja et al. 1989). What makes caerulein induced acute 

pancreatitis such an ideal animal model is that the histological presentation of this model 

is quite similar to the early phase of acute pancreatitis in humans (Dabrowski, Konturek 

et al. 1999). Among other advantages are rapid induction, non-invasiveness, high 

reproducibility and high applicability. Moreover, caerulein can effectively induce 

pancreatitis in different animals such as mice, rats, rabbits, dogs, and pigs (Chan and 

Leung 2007; Kahle, Lippert et al. 1991; Klar, Schratt et al. 1994; McEntee, Leahy et al. 

1989; Renner, Wisner et al. 1986; Yotsumoto, Manabe et al. 1993). Another advantage of 

the CCK/caerulein-induced model is the availability of parallel in vitro research, where 

caerulein is administered to isolated pancreatic acinar cells in vitro to mimic 

CCK/caerulein induced acute pancreatitis (Chaudhuri, Kolodecik et al. 2005; Ueda, 

Takeyama et al. 1992) 

 

1.8 NUCLEAR FACTOR κB (NFκB)  

NFκB activation is a key mediator of the inflammatory response in pancreatitis (Chen, Ji 

et al. 2002; Jaffray, Yang et al. 2000; Satoh, Shimosegawa et al. 1999; Steinle, 

Weidenbach et al. 1999). NFκB is a ubiquitous transcription factor which is implicated in 
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the regulation of many genes that code for mediators of the immune, acute phase and 

inflammatory responses (Baeuerle and Baichwal 1997).  

NFκB is usually composed of the two subunits p65 (also called RelA) and p50, although 

these polypeptides belong to a family of proteins that can form homo- or heterodimers 

with each other (Ghosh, May et al. 1998). In a classical pathway as illustrated in Figure 

1.2, NFκB is sequestered in the cytoplasm of most resting cells through its association 

with an inhibitory protein called IκB. During stimulation by IL-1 or TNFα, a whole 

cascade of adaptor proteins and protein kinases is activated, leading to the 

phosphorylation of IκB by the IκB kinases α and β (IKK α / β) (Karin 1999). This 

depends on the regulatory protein NEMO/ IKK γ (NFκB essential modifier) associated 

with the complex containing two kinases, IKK α and IKK β (Akira and Takeda 2004; 

Hayden and Ghosh 2004). Once phosphorylated, IκB is ubiquitinated and subsequently 

degraded through 26S proteasome. Consequently, NFκB is freed to migrate into the 

nucleus, and binds to its consensus decameric sequence located in the promoter region of 

several genes involved in the pro-inflammatory response, encoding various 

immunoreceptors, cell adhesion molecules, cytokines and chemokines (Baeuerle and 

Baichwal 1997). 
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Figure 1.2 Schematic representation of the classical pathway of NFκB activation. During 

stimulation by IL-1 or TNFα, a whole cascade of adaptor proteins and protein kinases is 
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activated, leading to the phosphorylation of inhibitory protein IκB by the IKK complex. 

Once phosphorylated, IκB is ubiquitinated and subsequently degraded through 26S 

proteasome. Consequently, NFκB is freed to migrate into the nucleus to promote 

transcription of its target gene. 

 

1.9 ACTIVATOR PROTEIN-1 (AP-1)  

AP-1 expression is induced by multiple stimuli such as inflammatory cytokines, 

mitogenic growth factors, phorbol esters, oncogenes and cellular stress among others. It 

is activated during the cell cycle to promote cell survival, differentiation and adaptive 

responses.  

AP-1 transcription factors belong to a large family of structurally related transcription 

factors that includes ATF1-4, c-Fos, c-Jun, c-Myc and C/EBP (Shaywitz and Greenberg 

1999; Wisdom 1999). The members of this family, named bZIP, share a dimerization 

domain with a leucine zipper motif and a DNA binding domain rich in basic residues 

(lysines and arginines). AP-1 is composed of a mixture of heterodimeric complexes of 

proteins derived from the Fos and Jun families including c-Fos, FosB, Fra-1, Fra-2, c-Jun, 

JunB and JunD. Only Jun proteins can form transcriptionally active homodimers with 

AP-1 members or heterodimers with CREB/ATF members, to bind the CRE element (5’-

TGACGTCA-3’) (Shaywitz and Greenberg 1999). Primarily, AP-1 dimers bind to DNA 

on a TPA-response element (TRE) with the 5´-TGA(C/G)TCA-3´sequence (Angel, 

Imagawa et al. 1987). Phosphorylation of AP-1 family members by kinases is required 

for transactivation activity. The transcriptional activity of c-Jun is stimulated by 

phosphorylation at Ser-63 and -73 within its N-terminal activation domain (Binetruy, 
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Smeal et al. 1991; Pulverer, Kyriakis et al. 1991; Smeal, Binetruy et al. 1991; Smeal, 

Binetruy et al. 1992). It was reported that the serine/threonine kinase activity, termed 

JNK, binds to c-Jun and specifically phosphorylates its N-terminal sites. However there 

were also reports that the N-terminal sites of c-Jun are phosphorylated in vitro by 

extracellular signal-regulated kinases (ERK)1 and ERK2 (Pulverer, Hughes et al. 1993; 

Pulverer, Kyriakis et al. 1991)  

 

1.10 MITOGEN-ACTIVATED PROTEIN KINASES (MAPKs) 

MAPKs are a family of serine/threonine kinases activated by a cascade of intracellular 

phosphorylation events and transduce signals from the cell surface to the nucleus (Chang 

and Karin 2001; Dong, Davis et al. 2002; Hazzalin and Mahadevan 2002). There are 

three well-characterized subfamilies of MAPKs that control an array of physiological 

processes. It is generally believed that ERKs function in the control of cell division, Jun-

N terminal kinases (JNKs) are critical regulators of transcription and p38 MAPKs are 

activated by inflammatory cytokines and environmental stress.  

The MAP kinase cascade is one of the most ancient and evolutionarily conserved 

signaling pathways. A typical MAPK cascade is composed of MAPKs (e.g ERK and 

JNK), the kinases that activate the MAPKs is MAPK kinases (e.g MEKs). MEKs are 

dual-specificity kinases that recognise and phosphorylate a Thr-X-Tyr motif in the 

activation loop of their downstream targets, the MAPKs. MEK kinases (MEKKs), on the 

other hand, is located directly upstream of MEKs and serve as their activators (Schramek 

2002). Thus MAPK activity is regulated through three-tiered cascades (as illustrated in 

Figure 1.3) composed of a MAPK, MAPK kinase (MAPKK, MKK or MEK) and a 
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MAPKK kinase or MEK kinase (MAPKKK or MEKK) (English et al. 1999). The focus 

of my thesis is on the MAPKs JNK and ERK. Most cells express two isoforms of JNK, 

46 and 55 kDa in size and termed JNK1 and JNK2, that are highly similar in their modes 

of regulation (Hibi, Lin et al. 1993; Su, Jacinto et al. 1994). The two best-characterized 

isoforms, p42 MAPK (ERK2) and p44 MAPK (ERK1), are directly activated by 

phosphorylation on specific tyrosine and threonine residues. Like activation of ERK1 and 

ERK2 (Ahn, Seger et al. 1992), activation of JNK requires its phosphorylation on 

adjacent threonine and tyrosine residues (Drijard, Hibi et al. 1994). Activation of the 

MAPKs results in phosphorylation of various transcription factors (e.g NFκB and AP-1), 

other protein kinases, phospholipases, cytoskeleton-associated proteins, thus resulting in 

biological responses. 
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Figure 1.3 Schematic representation of a typical MAPK cascade. A typical MAPK 

cascade is composed of MAPKs (e.g ERK and JNK), the kinases that phosphorylate and 

activate MAPKs is MAPK kinases (e.g MEKs). MAP3 kinases (MEKKs) is located 

directly upstream of MEKs and serve as their activators. 
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Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) are made up 

of α, β, and γ subunits. They are classified according to their α subunits into four families 

namely Gs, Gi, Gq, and G12. They are responsible for the transduction of external signals 

from the receptor into biological responses. Substance P is known to activate G protein 

Gq (Mizuta, Gallos et al. 2008; Sinnett-Smith, Santiskulvong et al. 2000; Williams, Zou 

et al. 2007). As shown in Figure 1.4, activation of the GPCR (e.g. NK1R) induces a 

conformational change in the cytoplasmic domain of the receptor that results in the 

exchange of guanosine diphosphate (GDP) bound to the α subunit of the G protein for 

guanosine triphosphate (GTP) (Johnston and Siderovski, 2007; Kobilka 2007; Oldham, 

Van Eps et al. 2007; Rozengurt 2007) and hence induces its dissociation into Gα and Gβγ 

subunits. The resulting GTP-Gα complex consequently activates the β isoforms of 

phospholipase C (PLC). Once activated, it then catalyses the hydrolysis of phosphatidyl 

inositol 4,5 bisphosphate (PIP2) in the plasma membrane to generate two second 

messengers, inositol 1,4,5 trisphosphate (IP3) and 1,2,diacylglycerol (DAG) (Exton 1996; 

Rozengurt 1998). IP3 then binds to its intracellular receptor, which is a ligand gated 

calcium channel found in the endoplasmic reticulum. This leads to the release of calcium 

from the internal stores (Mikoshiba 1997). The other second messenger DAG directly 

activates PKC (Nishizuka 1995).  



19 

 

 

Figure 1.4 The schematic representation of PLC signaling pathway. (This figure is taken 

from Barron et al. 2002) 

 

1.12 PROTEIN KINASE C (PKC) 

PKC family of proteins consists of 12 members that are phospholipid-dependent 

serine/threonine kinases (Dempsey, Newton et al. 2000; Gschwendt 1999; Hug and Sarre 

1993; Liu and Heckman 1998; Ron and Kazanietz 1999) that are involved in regulation 

of cellular processes including growth, migration, and inflammatory responses (Patto, 

Vinayek et al. 1992). The PKC superfamily is classified into three subfamilies based on 

their domain structure and their ability to respond to calcium and DAG (Newton and 

Johnson 1998). The three subfamilies are the calcium-dependent conventional PKCs (α, 

β1, β11, and γ), the calcium-independent subgroups are the novel PKCs (δ, ε, η, θ), and 

atypical PKCs (ζ, λ/ι, and μ) (Hug and Sarre 1993; Liu and Heckman 1998; Ron and 

Kazanietz 1999).  

GPCR β-subunit 

Releases Ca2+ from 
endoplasmic reticulum 
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The kinase domains of each family member are basically the same, it is the subgroups 

that demonstrate considerable differences among their regulatory domains. The two 

mechanisms that regulate PKC activation are: phosphorylation of sites in the kinase 

domain and interactions of cofactors with the regulatory domains (Newton 1997; Newton 

2003). Different cofactors activate distinct regulatory domains that characterize each 

subgroup. C1 and C2 modules are the main structural elements of the regulatory domains. 

They differ in their cofactor binding and subsequent activation mechanism for each 

enzyme (Webb, Hirst et al. 2000). For instance, conventional PKC which are activated by 

DAG and calcium bind to the C1 and C2 domains respectively. The novel PKC which 

possess only the functional C1 domains, are activated by DAG alone and do not require 

calcium. Atypical PKC lack a C2 module but contain a C1 module. So they do not bind 

to calcium and are activated by complex mechanisms involving binding of 

phosphoinositides and phosphorylation (Nishizuka 2001). 

Once activated, PKC becomes tightly associated with the membranes. Calcium binding to 

the C2 domains of conventional PKC induces conformational changes that promote 

binding of the enzymes to the membrane lipids. Novel PKCs also bind to membrane 

lipids, but because they lack the calcium-binding domain, their translocation rates are 

much lower when compared to those of conventional PKCs. The mechanisms through 

which atypical PKC is targeted to distinct subcellular regions remain unknown. 

Moreover, PKC can bind to specific membrane proteins termed ‘receptors for activated C 

kinase’ (RACK) (Ron, Luo et al. 1995). The RACK-PKC interactions may occur 

between specific isoforms and is regulated by phosphorylation. The characterizations of 

RACK-PKC pairing have been limited to only a few PKC isoforms; some examples are 
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PKC α, β and δ. Many of these isoforms play a prominent role in the pathogenesis of 

acute pancreatitis. 

 

1.13 CALCIUM 

Calcium is an intracellular messenger that regulates several cellular functions. The 

calcium signals are responsible for the physiological release of inactive zymogens from 

the apical pole of the acinar cells into the pancreatic duct and duodenum, where the 

zymogens are activated. Physiological calcium signals are generally transient and 

localized. Global and sustained increase in cytosolic calcium levels causes abnormal 

intracellular enzyme activation, vacuole formation and necrosis (Criddle, Raraty et al. 

2004; Kim, Kim et al. 2002; Krüger, Albrecht et al. 2000; Raraty, Ward et al. 2000; 

Voronina, Longbottom et al. 2002), all of which are important in the initiation of acute 

pancreatitis. Necrosis occurs as a result of excessive loss of calcium from the 

endoplasmic reticulum. This is mediated through specific calcium channels, inhibition of 

calcium pumps in intracellular stores and entry of extracellular calcium. 

 

1.14 SRC FAMILY KINASES (SFKs) 

SFKs consist of nine members. Src, Fyn, Yes, and Yrk are ubiquitously expressed, 

whereas the expression of Blk, Fgr, Hck, Lck, and Lyn are more restricted (Thomas and 

Brugge 1997). The SFKs are nonreceptor tyrosine kinases involved in signal transduction 

in both normal and cancer cells. All SFKs share common structural features and are 

composed of seven functional domains. The NH2-terminal unique domain enables 

membrane attachment and is known as the Src homology (SH) 4 region. Subsequent to 



22 

 

the SH4 region, is the regulatory SH3 and SH2 domains, which are highly conserved and 

bind proline-rich and phosphotyrosyl regions, respectively. It is through these interactions 

that these domains participate in intra and inter-molecular regulation of kinase activity 

and hence determine the localization and substrate recognition of SFK (Williams, 

Wierenga et al. 1998). Next to SH3 and SH2 domains are the catalytic domain and the 

COOH-terminal tail. When Src is phosphorylated at Tyr-527 in its COOH-terminal tail, it 

interacts with its own SH2 domain, thus masking its catalytic domain and locking it in an 

inactive form (Brown and Cooper 1996). Once activated, Src is dephosphorylated at Tyr-

527 and thus no longer interacts with its own SH2 domain. This leads to a conformational 

change which then activates its catalytic domain (Brown and Cooper 1996). Hence, the 

activity of Src protein tyrosine kinase members is upregulated by phosphorylation of the 

tyrosine in the catalytic region (Tyr416 for Src) and negatively regulated by 

phosphorylation of the tyrosine in the COOH-terminal tail (Tyr527 for Src) (Okutani, 

Lodyga et al. 2006; Williams, Wierenga et al. 1998). The activation of SFKs is mediated 

through a variety of cell surface receptors (Thomas and Brugge 1997), such as tyrosine 

kinase receptors, integrin receptors, and GPCRs among others (Han, Lodyga et al. 2005). 

SFKs are known effectors of activated G proteins. Inactive Src can be activated in vitro 

by the G protein subunits Gαs [bound to the nonhydrolyzable GTP analog, GTP-γS] and 

Gαi (Ma, Huang et al. 2000). Activated c-Src interacts with and activates several 

substrates. Studies have shown that both v-Src and c-Src are capable of activating signal 

transducers and activators of transcription (STAT) 3 in fibroblasts (Bromberg, Horvath et 

al. 1998; Turkson, Bowman et al. 1999; Yu, Meyer et al. 1995). Src activation of STATs 

is the most well characterized model. 
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1.15 SIGNAL TRANSDUCERS AND ACTIVATORS OF TRANSCRIPTION 

(STAT) 3 

There are seven STAT proteins that have been discovered. STATs 2, 4 and 6 are 

activated by cytokines such as IFNα, IL 6, IL 12 and IL 13 respectively. STATs 1, 3, 5a 

and 5b are activated not only by cytokines but also growth factors and GPCR agonists 

(Brivanlou and Darnell 2002; Levy and Darnell 2002; O’Shea, Gadina et al. 2002). 

All seven STAT proteins share a highly homologous domain structure. These include an 

N-terminal domain which is involved in protein-protein interactions, a DNA-binding 

domain that binds to the consensus sites upstream of its regulated genes and a SH-2 

domain that interacts with tyrosine phosphorylated residues on receptors and/or kinases 

(Kisseleva, Bhattacharya et al. 2002). Activation of the STAT proteins involves a 

tyrosine phosphorylation cascade. STAT protein is recruited to the receptor kinase 

complex through the interaction of its SH2 domain with a phosphorylated tyrosine 

residue at the receptor or kinase complex. STATs are then phosphorylated at a single 

tyrosine residue in the C terminal domain. Activation occurs when the STAT proteins 

form hetero- or homodimers through tyrosine phosphorylation–SH2 domain interaction. 

The activation and dimerisation of the STAT protein also exposes its nuclear localisation 

signal. The STAT dimer then translocates to the nucleus. Once inside, STAT dimers 

interact, through their DNA binding domain, with the consensus DNA elements upstream 

of their target genes and hence initiate transcription (Silva 2004). 
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1.16 HYPOTHESIS AND AIMS 

 

At present, there is no cure for acute pancreatitis. Besides, the mechanism of 

inflammation in acute pancreatitis is still not fully understood. A substantial body of 

evidence suggests that inflammatory mediators such as substance P and chemokines play 

a key role in the pathogenesis of acute pancreatitis. However, the mechanisms by which 

substance P and chemokines contribute to acute pancreatitis are still unknown. 

 

In light of the existing information, I hypothesized an interaction between the two 

inflammatory mediators namely substance P and chemokines, and its contributions to 

acute pancreatitis. Substance P could be mediating acute pancreatitis through the 

induction of chemokines.  If so, the underlying signaling mechanisms need to be 

investigated.  Furthermore, it is important to determine the implications of these signaling 

pathways in a disease model of acute pancreatitis. Finally, it is crucial to show if 

inhibition of the signaling pathway would protect against acute pancreatitis.  

 

To address these questions I needed a suitable model/s. It is generally accepted that the 

initiating events of acute pancreatitis occur in pancreatic acinar cells. Therefore, isolated 

pancreatic acini are considered a valid in vitro model to investigate the pathogenesis of 

acute pancreatitis.  

 

Therefore, to investigate my hypothesis, I have used two systems namely an in vitro 

model of isolated pancreatic acinar cells and an in vivo model of caerulein-induced acute 
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pancreatitis. The in vitro model is a simpler system where isolated pancreactic acinar 

cells are used to investigate the interaction between substance P and chemokines. The in 

vivo system is a more complex model, but appropriate system to investigate the in vivo 

relevance of the in vitro findings.  

  

The present study aims: 

 

1. To investigate the interaction between the two inflammatory mediators substance 

P and chemokines in an in vitro system of isolated pancreatic acinar cells. To 

determine if substance P treatment leads to the activation of pro-inflammatory 

signals such as production of CC and CXC chemokines in pancreatic acinar cells. 

 

2. If so, to establish the underlying signaling mechanisms through which substance P 

mediates chemokine production in pancreatic acinar cells. 

 

3. Then, to test the significance of my in vitro findings in a more complex in vivo 

model of caerulein-induced acute pancreatitis. To determine if blockade of a 

signaling pathway that contributes to chemokine production would protect against 

acute pancreatitis. 
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CHAPTER 2 

 

SUBSTANCE P TREATMENT STIMULATES CHEMOKINE 

SYNTHESIS IN MOUSE PANCREATIC ACINAR CELLS VIA THE 

ACTIVATION OF NFκB  

 

2.1 INTRODUCTION 

Acinar cell injury early in acute pancreatitis leads to a local inflammatory reaction and to 

the subsequent systemic inflammatory response, which may result in multiple organ 

dysfunction and death (Bhatia, Brady et al. 2000). The initial signals that recruit 

leukocytes into the pancreas are not completely defined, although several inflammatory 

mediators have been implicated (Bhatia, Brady et al. 2000; Grady, Liang et al. 1997). 

Inflammatory mediators such as chemokines and substance P are known to play a key 

role in the pathogenesis of acute pancreatitis (Bhatia, Brady et al. 2002; Bhatia, Ramnath 

et al. 2005; Bhatia, Saluja et al. 1998).  

It has been shown that pancreatic acinar cells produced the CC chemokine MCP-1 in 

response to CCK or its analog caerulein hyperstimulation, indicating that acinar-derived 

MCP-1 is an early mediator of inflammation in acute pancreatitis. Treatment with 

bindarit, a blocker of MCP-1 synthesis, considerably decreased caerulein-induced MCP-1 

production in pancreatic acinar cells (Bhatia, Brady et al. 2002; Bhatia, Ramnath et al. 

2005). Moreover, both prophylactic and therapeutic treatment with bindarit protected 
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mice against acute pancreatitis (Bhatia, Ramnath et al. 2005). CC chemokine MIP-1α and 

CXC chemokine MIP-2 are the other chemokines involved in acute pancreatitis. 

Substance P has been shown to play an important role in asthma, inflammatory bowel 

disease and arthritis (Bowden, Garland et al. 1994; Thurgston, Baluk et al. 1996). 

Substance P levels in the pancreas and pancreatic acinar cell expression of NK1R are 

both increased during secretagogue-induced experimental pancreatitis (Bhatia, Saluja et 

al. 1998; Jensen, Jones et al. 1984; Patto, Vinayek et al. 1992; Sjodin and Gylfe 1992). It 

has been suggested that the neuropeptide substance P might play a role in the evolution of 

pancreatic inflammatory disease such as acute pancreatitis (Bhatia, Saluja et al. 1998). 

Moreover, genetic deletion of NK1R reduces the severity of pancreatitis and pancreatitis-

associated lung injury (Bhatia, Saluja et al. 1998). These observations indicate that 

substance P, acting through NK1R, plays an important pro-inflammatory role in 

regulating the severity of acute pancreatitis. However, the exact mechanism by which 

substance P contributes to the pro-inflammatory signaling in acute pancreatitis is not 

completely understood. 

The study described in this chapter aims to examine the functional consequences of 

exposing mouse pancreatic acinar cells, which is known to express NK1R, to substance 

P. The specific aim is to determine if substance P leads to pro-inflammatory signaling 

such as the production of the CC chemokines MCP-1, MIP-1α and the CXC chemokine 

MIP-2 and establish the underlying mechanisms.  
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2.2 MATERIALS AND METHODS  

2.2.1 Animal Ethics 

All animal experiments were approved by the Animal Ethics Committee of National 

University of Singapore and carried out in accordance with established International 

Guiding Principles for Animal Research. Male Swiss albino mouse (20-30 g) were 

maintained in the Animal Housing Unit of this University in an environment with 

controlled temperature (21-24 °C) and lighting (12:12 h light-dark cycle). Standard 

laboratory chow and drinking water were provided ad libitum. A period of 2 days was 

allowed for animals to acclimatize before any experimental manipulations were 

undertaken. 

2.2.2 Preparation of mouse pancreatic acini 

Pancreatic acini were obtained from mouse pancreas by collagenase treatment as 

described previously (Bhatia, Wallig et al. 1998; Gerasimenko, Gerasimenko et al. 2002; 

Gukovskaya, Gukovsky et al. 2002; Wallig, Gould et al. 1988; Wallig, Kore et al. 1992) 

Briefly, pancreas from three Swiss mice (20-30 g) were removed, infused using 29G 

syringes with buffer A (in mM: 140 NaCl, 4.7 KCl, 1.13 MgCl2, 1 CaCl2, 10 glucose, 10 

HEPES, pH 7.2) containing 200 U/ml collagenase and 0.5 mg/ml soybean trypsin 

inhibitor. The bloated pancreas were then minced with a sharp tip surgical scissors till a 

fine suspension was achieved, and incubated in a shaking water bath for 10 min at 37°C. 

The digested tissue was passed through (by centrifugation) 50 mg/ml bovine serum 

albumin (BSA) and washed twice with buffer A before further experiments. A cell 



29 

 

suspension of (in buffer A) consisting of only small clumps, around 3 to 5 acinar cells, 

was used to carry out the following experiments.  

2.2.3 Viability of mouse pancreatic acinar cells 

Viability of the pancreatic acinar cells was determined by trypan blue dye exclusion 

assay. One drop of 0.4% trypan blue dye was added to one drop of the isolated acinar 

cells and examined under the light microscope (Carl Zeiss, Oberkochen, Germany). The 

number of unstained cells/clumps was expressed as a percentage of the total number of 

cells/clumps. This process was repeated for different fields and the average was then 

calculated. In all experiments, cell viability was greater than 95%. 

2.2.4 In vitro treatment with substance P  

Experiments were performed to examine the effects of substance P (Sigma-Aldrich) 

treatment on chemokine production and NFκB activation in mouse pancreatic acini. Acini 

in buffer A (500 μl) were incubated in a shaking water bath at 37°C with substance P at a 

concentration of 10-6 M (1 μM) for 45 min. After which the supernatant was used for 

chemokine detection by ELISA whereas the pellet was used for NFκB isolation and 

detection. No gas mixture was used during incubation. 

2.2.5 Chemokine detection 

Pancreatic acinar cell supernatants were assayed for MCP-1, MIP-1α and MIP-2 using a 

sandwich ELISA, according to the manufacturer’s instructions (Duoset kit; R&D 

Systems, Minneapolis, MN). For example MCP-1, anti-MCP-1 primary antibody was 

aliquoted onto ELISA plates and incubated at 4°C overnight. Samples and standards were 

incubated for 2 h, the plates were washed, and a biotinylated anti-MCP-1 antibody was 

added for 2 h. Plates were washed again, and streptavidin bound to horseradish 
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peroxidase was added for 20 min. After a further wash, tetramethylbenzidine was added 

for colour development, and the reaction was terminated with 2 M H2SO4. Absorbance 

was measured at 450 nm by using a 96-well microplate reader (Tecan Systems, San Jose, 

CA). The same procedure was followed for the detection of the remaining chemokines 

MIP-1α and MIP-2. 

2.2.6 Preparation of nuclear cell extract  

Nuclear cell extracts were prepared by employing a kit from Active Motif (SciMed, 

Asia). In brief, cells were washed, collected in ice-cold PBS in the presence of 

phosphatase inhibitors, to limit further protein modifications, and then centrifuged (4°C) 

at 24 g for 5 min. The pellets were resuspended in a hypotonic buffer, treated with 

detergent and centrifuged (4°C) at 14,000 g for 30s. After collection of the cytoplasmic 

fraction, the nuclei were lysed and nuclear proteins solubilized in lysis buffer containing 

proteasome inhibitors. Protein concentrations were determined by using Bio-Rad protein 

assay. 5 μl of sample was added to 250 μl of Bradford reagent (Bio-Rad Laboratories, 

Hercules, CA) and read at 595 nm after a 5 min incubation at room temperature.  

2.2.7 NFκB DNA-binding activity 

The binding of NFκB to DNA was measured in nuclear extracts with an ELISA-based 

TransAM NFκB p65 assay kit (Active Motif, SciMed, Asia). This assay uses multi-well 

plates coated with an unlabeled oligonucleotide containing the consensus binding site for 

NFκB (5’-GGGACTTTCC-3’) (Parry and Mackman 1994). Nuclear proteins (5 µg) were 

added to each well and incubated for 1 h at room temperature to allow NFκB DNA 

binding. Subsequently, by using an antibody that is directed against NFκB p65 subunit, 

the NFκB complex bound to the oligonucleotide is detected. Addition of the secondary 
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antibody conjugated to horseradish peroxidase (HRP) provides sensitive colorimetric 

readout that is easily quantified by spectrophotometry. Absorbance was read at 450 nm 

within 5 min by using a 96-well microplate reader (Tecan Systems, San Jose, CA). The 

wild-type consensus oligonucleotide was provided as a competitor for NFκB binding to 

monitor the specificity of the assay. Results were expressed as fold increase over the 

control group. 

2.2.8 NFκB inhibition 

Pancreatic acini were incubated for 2 h with 50 μM of the NEMO- binding domain 

peptide (NBD) (Tas, de Jong et al. 2005) purchased from Calbiochem, or vehicle 

(DMSO) prior to stimulation with 1 μM substance P for 45 min. Subsequently, the 

supernatant was used for chemokine detection. 

2.2.9 Preparation of total cell lysates 

After treatment, pancreatic acinar cells were homogenized on ice in 

radioimmunoprecipitation assay (RIPA) buffer supplemented with 1 mM 

phenylmethylsulphonyl fluoride (PMSF) and the protease inhibitor cocktail (Sigma-

Aldrich) containing pepstatin, leupeptin, chymostatin, antipain and aprotinin (5 µg/ml of 

each), and centrifuged at 4 °C for 15 min at 14,000 g. The supernatants were collected 

and stored at -80°C until use. Protein concentrations were determined by using Bio-Rad 

protein assay. 5 μl of sample was added to 250 μl of Bradford reagent (Bio-Rad 

Laboratories, Hercules, CA) and read at 595 nm after a 5 min incubation at room 

temperature.  

2.2.10 Western blot analysis 
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Cell lysates (50 µg) were separated on 12% SDS-polyacrylamide gel and 

electrophoretically transferred to nitrocellulose membranes (Bio-Rad Laboratories, 

Hercules, CA). Non-specific binding was blocked by 1 h incubation of the membranes, at 

room temperature, in 5% nonfat dry milk in phosphate buffered saline Tween 20 (PBST) 

(0.05% Tween 20 in phosphate buffered saline). The blots were then incubated overnight 

at 4°C with the primary antibody IκB-α (purchased from Cell Signaling Technology) at 

1:1000 dilutions in the buffer containing 2.5% nonfat dry milk in PBST. The blots were 

then washed four times with PBST, and finally incubated for 1 h with goat anti-rabbit 

HRP-conjugated secondary antibody (purchased from Santa Cruz Biotechnology) at 

1:2000 dilutions in the buffer containing 2.5% nonfat dry milk in PBST. The blots were 

developed for visualization using enhanced chemiluminescence (ECL) detection kit 

(Pierce, Rockford, IL). Hypoxanthine-guanine phosphoribosyl transferase (HPRT) 

(purchased from Santa Cruz Biotechnology) was used as the housekeeping protein. The 

densities of the bands were quantified using a UVP GelDoc-It Imaging Systems (Scimed, 

Asia). 

 

2.2.11 Amylase estimation 

Pancreatic acini were incubated with substance P or caerulein (Bachem, Bubendorf, 

Switzerland) (10-12 to 10-6 M) for 45 min and amylase assays were performed. Amylase 

activity was measured by using a kinetic spectrophotometric assay. Acinar cell 

supernatant samples were incubated with the substrate, 4,6-ethylidene (G7)-p-nitrophenol 

(G1)-1-D-maltoheptoside (Sigma, St. Louis, MO) for 2 min at 37°C, and absorbance was 

measured every minute for the subsequent 2 min at 405 nm (Bhatia, Brady et al. 2000; 
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Bhatia, Saluja et al. 1998; Pierre, Tung et al. 1976). The change in absorbance was used 

to calculate the amylase activity. Pre-treatment of acini with 50 μM of NBD peptide 

followed by stimulation with caerulein ranging from 10-12 to 10-7 M had no effect on 

amylase secretion. 

 

2.2.12 Statistical analysis 

Results are presented as means + SE with 6 replicates for each condition. Each 

experiment was repeated at least three times. The significance of changes was evaluated 

by using ANOVA and Tukey’s method was used as a post hoc test for the difference 

between groups. A P value < 0.05 was taken as the level of significance. 
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2.3 RESULTS 

2.3.1 Substance P induces chemokine production in mouse pancreatic acinar cells in 

a concentration-dependent manner 

To investigate the effect of different doses of substance P on chemokine synthesis in 

mouse pancreatic acini, isolated pancreatic acinar cells were challenged for 45 min at 

37°C with different concentrations of substance P, ranging from 0.01 to 1 μM. 

Subsequently, the supernatant was used to assess the levels of chemokines MCP-1, MIP-

1α and MIP-2 by ELISA. As shown in Figure 2.1, substance P increases MCP-1, MIP-1α 

and MIP-2 production in a concentration-dependent manner. Maximal activation of 

MCP-1, MIP 1α and MIP-2 was observed with 1 μM of substance P. The increased in 

MCP-1, MIP-1α and MIP-2 synthesis was significantly higher when compared to vehicle 

(saline) treated control. The concentration of 1 μM (10-6 M) of substance P was used to 

carry out subsequent experiments. 

2.3.2 Substance P or caerulein induces NFκB activation in mouse pancreatic acinar 

cells 

Pancreatic acinar cells were stimulated with 1 μM of substance P or 0.1 μM of caerulein 

for 45 min at 37˚C. After which the pellet was used for nuclear extraction and NFκB was 

detected by performing an ELISA-based NFκB DNA binding assay. As shown in Figure 

2.2 (a), substance P at a concentration of 1 μM significantly upregulated NFκB activation 

when compared to the vehicle-treated control. This finding was further confirmed by the 

western blot analysis. As shown in Figure 2.2 (b), when mouse pancreatic acini were 

stimulated with 1 μM of substance P for 45 min at 37˚C, there is an increased degradation 
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of total IκB when compared to vehicle-treated control. As shown in Figure 2.2 (c) 0.1 μM 

of caerulein significantly increased NFκB activation when compared to the vehicle-

treated control. Furthermore, pre-treatment of acini with 50 μM NBD, an NFκB inhibitor, 

significantly attenuated the caerulein induced NFκB activation 

2.3.3 Substance P- or caerulein-induced chemokine synthesis is prevented by 

NEMO-Binding Domain peptide (NBD), an NFκB inhibitor 

I further investigated the role of NFκB on chemokine production in mouse pancreatic 

acinar cells. Pancreatic acini were pre-treated with NBD peptide for 2 h followed by 

stimulation with 1 μM of substance P or 0.1 μM caerulein. After which the levels of 

MCP-1, MIP-1α and MIP-2 were determined by ELISA. As shown in Figure 2.3, 

treatment of pancreatic acini with 1 μM substance P or 0.1 μM caerulein caused a 

significant production in MCP-1, MIP-1α and MIP-2. Pre-treatment of acini with 50 μM 

of NBD peptide followed by stimulation with 1 μM of substance P or 0.1 μM caerulein 

significantly attenuated the production in (2.3a) MCP-1, (2.3b) MIP-1α and (2.3c) MIP-2 

when compared to substance P or caerulein-treated pancreatic acini. 

2.3.4 Substance P and caerulein may act via different pathways in inducing 

chemokine synthesis 

Studies have shown that treatment of pancreatic acinar cells with supramaximal dose of 

caerulein 0.1 μM leads to activation of NFκB as well as production of chemokine both in 

vitro and in vivo (Bhatia, Brady et al. 2000; Bhatia, Brady et al. 2002; Bhatia, Saluja et 

al. 1998). My aim was to investigate the effect of both substance P and caerulein on 

mouse pancreatic acini. I therefore incubated the cells with both 1 μM of substance P and 

0.1 μM of caerulein for 45 minutes at 37˚C. After which the supernatant obtained was 
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used for chemokines MCP-1, MIP-1α and MIP-2 detection by ELISA. As shown in 

Figure 2.4, stimulation of acini with substance P or caerulein caused a significant 

increase in chemokine synthesis when compared to vehicle-treated acini. Furthermore, 

when mouse pancreatic acinar cells were treated with both substance P and caerulein the 

increased production of chemokines (2.4a) MCP-1, (2.4b) MIP-1α and (2.4c) MIP-2 

production was significantly higher when compared to either substance P or caerulein-

treated cells. These data show that substance P and caerulein act via overlapping, yet 

distinct pathways in activating chemokine synthesis.  

2.3.5 Effect of substance P treatment on amylase secretion in mouse pancreatic 

acinar cells 

Mouse pancreatic acini were treated with different doses, ranging from 10-12 to 10-6 M, of 

substance P. After incubation for 45 minutes at 37˚C, the supernatant was used for the 

amylase assay. As shown in Figure 2.5, substance P did not have any effect on amylase 

secretion. As a positive control, mouse pancreatic acini were also treated with different 

concentration of caerulein, ranging from 10-12 to 10-7 M. In accord with previously 

reported findings (Bhatia, Saluja et al. 1998), a biphasic stimulation/inhibition of amylase 

secretion by increasing concentration of caerulein was observed.  
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2.4 DISCUSSION 

It is generally believed that the earliest events in the induction of acute pancreatitis lead 

to intra-acinar cell activation of digestive zymogens and that those enzymes once 

activated cause acinar cell injury (Saluja, Saluja et al. 1989a; Saluja, Saluja et al. 1989b). 

Recent studies have suggested that the ultimate severity of the resulting pancreatitis may 

be determined by events that occur subsequent to acinar cell injury, such as inflammatory 

cell recruitment, activation, generation, release of cytokines and other chemical mediators 

of inflammation including substance P and chemokines (Dusetti, Ortiz et al. 1995; Gross, 

Leser et al. 1993; Scholmerich 1996). Substance P has been detected within the pancreas 

and it has been suggested that it may act as a neurotransmitter for sensory afferent nerves 

in the pancreas. Receptors for substance P have also been detected on guinea pig 

pancreatic acinar cells (Sjodin, Dahlen et al. 1991; Sjodin, Viitanen et al. 1994; Song, 

Iwashita et al. 1988) and now it is known that mouse pancreatic acini also express NK1R 

(Bhatia, Saluja et al. 1998). Substance P has been shown to activate the transcription 

factor NFκB in macrophages (Marriott, Mason et al. 2000). Intra-pulmonary 

administration of substance P results in rapid activation of NFκB in lung tissues. Its 

administration also results in the appearance of the neutrophil-attracting CXC chemokine, 

MIP-2, in bronchoalveolar lavage fluid (Okaya, Holthaus et al. 2004).  

Although pancreatic acinar cells have earlier been shown to express NK1R (Bhatia, 

Saluja et al. 1998; Lau and Bhatia 2006; Lau, Wong et al. 2005), the mechanism by 

which substance P induces synthesis of chemokines in acute pancreatitis is not yet 

known. To that end, I investigated the effect of substance P on chemokine synthesis, such 
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as CC chemokines MCP-1, MIP-1α and CXC chemokine MIP-2 in mouse pancreatic 

acini. Furthermore, I showed that the increased chemokine synthesis was mediated by the 

activation of NFκB. I demonstrated that substance P induced chemokine synthesis in a 

concentration-dependent manner. Substance P at a concentration of 1 μM significantly 

increased NFκB activation resulting in significant chemokine synthesis when compared 

to its vehicle-treated control. 

NFκB activation is a key mediator of the inflammatory response in pancreatitis (Chen, Ji 

et al. 2002; Jaffray, Yang et al. 2000; Satoh, Shimosegawa et al. 1999; Steinle, 

Weidenbach et al. 1999). The importance of NFκB response stems from its ability to up 

regulate the expression of chemokines/cytokines and other inflammatory molecules that 

are induced in human and experimental pancreatitis (Bhatia, Brady et al. 2000; Norman 

1998). The mechanism and regulation of NFκB response, in relation to substance P, in 

the pancreatic acinar cell are however not well understood. To my knowledge, this is the 

first time that a neuropeptide is shown to induce activation of transcriptional activator 

NFκB as well as chemokine synthesis in mouse pancreatic acinar cells. To prove that the 

effect of substance P was dependent upon NFκB activation and chemokine synthesis, I 

pre-treated the acini with NEMO-binding domain peptide (NBD). NBD is a short cell-

permeable peptide, spanning IKKβ. This peptide was already shown to disrupt the 

association of NEMO with IKKβ in vitro, to block TNFα-induced NFκB activation, and 

to effectively ameliorate responses to various inflammatory stimuli in vivo (May, 

D’Acquisto et al. 2000). Pre-treatment of mouse pancreatic acini with NBD completely 

attenuated the chemokine synthesis induced by substance P. This shows that the 
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increased in chemokine synthesis induced by substance P was mediated by NFκB 

activation. 

It is known that treatment with supramaximal dose of caerulein, CCK analog, induces 

NFκB activation as well as chemokine synthesis in pancreatic acini both in vitro as well 

as in vivo (Bhatia, Brady et al. 2002; Bhatia, Ramnath et al. 2005). Similar observation 

was made when mouse pancreatic acini were treated with supramaximal dose of 

caerulein, there was a significant up regulation in NFκB activation. Furthermore, I 

showed that pre-treatment with NBD significantly attenuated caerulein-induced NFκB 

activation.  

In order to investigate the combined effect of substance P and caerulein in mouse 

pancreatic acini, the cells were incubated simultaneously with substance P and caerulein. 

Substance P and caerulein independently activated the synthesis of chemokine MCP-1, 

MIP-1α and MIP-2 in mouse pancreatic acini. However, when cells were treated with 

both substance P and caerulein the increased in chemokine synthesis was significantly 

higher when compared to cells treated with either substance P or caerulein alone. 

Moreover, substance P had no effect on amylase secretion. This is in contrast to caerulein 

which is known to produce a dose dependent response in amylase secretion (Bhatia, 

Saluja et al. 1998). Studies characterizing acinar cell secretion in the presence of 

increasing caerulein concentrations have revealed a typical biphasic dose-response 

relationship, with stimulation at low caerulein concentrations and inhibition at 

supramaximally stimulating concentrations (10-7 M). Treatment of mouse pancreatic acini 

with different concentration of substance P did not have any effect on amylase secretion 

unlike that observed with caerulein treatment. These results suggest that substance P and 
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caerulein act via overlapping, yet distinct, pathways to stimulate chemokine synthesis in 

pancreatic acinar cells. 

In conclusion, substance P induced synthesis of CC chemokines MCP-1, MIP-1α and 

CXC chemokine MIP-2 via a NFκB dependent pathway. This is the first direct evidence 

of the role of substance P, acting via NK1R present on mouse pancreatic acini, in 

inflammation and points to the mechanism by which substance P contributes to 

inflammation in acute pancreatitis.  

 
 

 

 

 



41 

 

 

MCP-1

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control 0.01 0.1 1

Substance P (μM)

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 

 

MIP-1α

*

0

0.5

1

1.5

2

2.5

Control 0.01 0.1 1

Substance P (μM)

Fo
ld

 in
cr

es
e 

ov
er

 c
on

tro
l

 

Figure 2.1 (a) 

Figure 2.1 (b) 



42 

 

 

 

     

MIP-2

*

0

0.5

1

1.5

2

2.5

Control 0.01 0.1 1

Substance P (μM)

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 

 

Figure 2.1 Substance P (SP) induces chemokine production in a concentration-
dependent manner in mouse pancreatic acinar cells. Pancreatic acini, obtained from 
three mice, were incubated for 45 minutes at 37°C with different concentration of SP 
ranging from 0.01 to 1 μM. After which the suspension was centrifuged. The supernatant 
obtained was used for (a) MCP-1, (b) MIP-1α and (c) MIP-2 detection. Results shown are 
the means + SE. *P < 0.05 when 1 μM SP treated acini were compared with vehicle-
treated acini. 

Figure 2.1 (c) 
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Figure 2.2 Substance P (SP) or caerulein (Cae) induces NFκB activation in mouse 
pancreatic acinar cells. Pancreatic acini, obtained from three mice, were incubated for 
45 minutes at 37˚C with 1 μM SP or 0.1 μM Cae. Acini were separated from incubation 
medium by centrifugation. (a) The pellet (acini) was used for NFκB extraction and 
detection. MW in (kDa) for IκB is 39 and HPRT is 24. Results shown are the means + 
SE. *P < 0.05 when 1 μM substance P treated acini were compared with vehicle-treated 
acini. (b) Western blot analysis was performed as described in Materials and Methods. (c) 
*P < 0.05 when 0.1 μM Cae treated acini were compared with vehicle-treated acini, # P 
< 0.05 when NBD and Cae-treated acini were compared with Cae alone stimulated cells. 
 

 

 

Figure 2.2 (c) 
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Figure 2.3 (a) 

Figure 2.3 (b) 



46 

 

 

 

MIP-2

†#

*
*

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Control SP N+SP Cae N+C

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 

 

 

Figure 2.3 Substance P (SP) or caerulein (Cae)-induced chemokine synthesis is 
abolished with NEMO-Binding Domain peptide (NBD), an NFκB inhibitor. The 
effect of NFκB inhibitor, NBD, on (a) MCP-1, (b) MIP-1α and (c) MIP-2 production 
after being stimulated by SP or Cae. Freshly isolated mouse acini, obtained from three 
mice, were pre-incubated with or without NBD, 50 μM, for 2h followed by stimulation 
with 1 μM SP or 0.1 μM of Cae for 45 minutes at 37˚C. (a) MCP-1, (b) MIP-1α and (c) 
MIP-2 levels in conditioned media were measured by ELISA. Results shown are the 
means + SE. *P < 0.05 when SP or Cae-treated acini were compared with vehicle-treated 
acini. # P < 0.05 when NBD and SP-treated acini were compared with SP alone 
stimulated cells. † P < 0.05 when NBD and Cae-treated acini were compared with Cae 
alone stimulated cells. 
 

 

 

Figure 2.3 (c) 
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Figure 2.4 (a) 

Figure 2.4 (b) 
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Figure  2.4 Substance P (SP) and caerulein (Cae) act independently in inducing 
chemokine synthesis. The effects of combined treatment, SP and Cae, on (a) MCP-1, (b) 
MIP-1α and (c) MIP-2 production. Freshly isolated mouse acini, obtained from three 
mice, were incubated with either 1 μM SP alone or 0.1 μM Cae alone or both SP and Cae 
for 45 minutes at 37˚C. (a) MCP-1, (b) MIP-1α and (c) MIP-2 levels in conditioned 
media were measured by ELISA. Results shown are the means + SE. *P < 0.05 when SP 
or Cae-treated acini were compared with vehicle-treated acini. +P < 0.05 when acini 
treated with both SP and Cae were compared to either SP or Cae-treated acini. 
 

 

 

 

Figure 2.4 (c) 
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Figure 2.5 Amylase secretion. Freshly isolated mouse pancreatic acini, obtained from 
three mice, were treated with substance P (SP) ranging from 10-12 to 10-6 M or caerulein 
(Cae) ranging from 10-12 to 10-7 M for 45 minutes at 37˚C. Amylase secretion was 
determined in response to SP or Cae treatment as described earlier. The results are 
representative of three independent experiments. Results shown are the means + SE. 
 
 

Figure 2.5 
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CHAPTER 3 

 

EFFECT OF MITOGEN-ACTIVATED PROTEIN KINASES ON 

CHEMOKINE SYNTHESIS INDUCED BY SUBSTANCE P IN 

MOUSE PANCREATIC ACINAR CELLS  

 

3.1 INTRODUCTION 

Substance P, acting via NK1R, plays an important pro-inflammatory role in acute 

pancreatitis. During acute pancreatitis, both pancreatic levels of substance P and the 

expression of its receptor NK1 are elevated (Bhatia, Saluja et al. 1998).  Genetic deletion 

of NK1R as well as knockout mice deficient in the PPTA gene, which encodes for 

substance P, reduces the severity of pancreatitis and pancreatitis-associated lung injury 

(Bhatia, Saluja et al. 1998; Bhatia, Slavin et al. 2003). Furthermore, knockout mice 

deficient in neutral endopeptidase, the enzyme that hydrolyzes substance P, thereby 

terminating its action are more susceptible to acute pancreatitis and associated lung injury 

(Bhatia, Saluja et al. 1997; Maa, Grady et al. 2000). In addition, blockade of substance P 

receptor with its potent and selective antagonist, CP96345, protected mice against acute 

pancreatitis and associated lung injury (Lau, Wong et al. 2005). The exact mechanism by 

which substance P contributes to the pro-inflammatory signaling in acute pancreatitis is 
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not completely understood. However, its interaction with chemokines has been revealed 

to play a crucial role in the pathogenesis of acute pancreatitis. 

In chapter 2, it was shown that substance P stimulated the release of CC chemokines 

MCP-1, MIP-1α and CXC chemokine MIP-2 production in pancreatic acinar cells. 

Substance P-induced chemokine production was mediated through the activation of 

NFκB in pancreatic acinar cells. It has been demonstrated that treatment with CP96345 

attenuated the increase in MCP-1, MIP-1α and MIP-2 production in both pancreas and 

lungs in mice induced with acute pancreatitis (Sun and Bhatia 2007). Hence, substance P 

plays an important role in the pathogenesis of acute pancreatitis by inducing chemokine 

production via the NFκB dependent pathway. In parallel with my study, research 

conducted by various groups has shown that substance P induces the synthesis of 

chemokines. It has been found to induce IL-8 secretion from human dental pulp cells 

(Koon, Zhao et al. 2005; Park, Hsiao et al. 2004). Moreover, it stimulated the production 

of IL-8 through pro-inflammatory transcription factor NFκB and MAP kinases in lung 

epithelial cells (Williams, Zou et al. 2007).  

MAPKs are known to regulate the production of pro-inflammatory cytokines/chemokines 

and the downstream signaling events leading to inflammation. It is known that substance 

P receptor (NK1) activates the MAP Kinase families (ERK, JNK, and p38) (Tansky, 

Pothoulakis et al. 2007). Activation of substance P receptor in human glioblastoma cells 

led to the phosphorylation of ERK1/2 (Yamaguchi, Richardson et al. 2005) and blockade 

of NK1R inhibited phosphorylation of MAPK ERK in sensory neurons (Donnerer and 

Liebmann 2006).  



52 

 

The signal transduction pathway through which substance P/NK1R interaction induces 

chemokine MCP-1, MIP-1α, and MIP-2 production in mouse pancreatic acini has not 

been elucidated yet. Whether MAPKs are involved in substance P-induced pro-

inflammatory signaling in pancreatic acinar cells is yet to be investigated. To that end, I 

examined the participation of MAPKs in substance P-induced synthesis of chemokines 

MCP-1, MIP-1α and MIP-2 in pancreatic acini and determined the pro-inflammatory 

signaling pathway involved in acute pancreatitis. 
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3.2 MATERIALS AND METHODS  

3.2.1 Animal Ethics 

Please refer to section 2.2.1. 

3.2.2 Preparation of mouse pancreatic acini  

Mouse pancreatic acinar cells were prepared, as previously described in section 2.2.2. 

3.2.3 Viability of mouse pancreatic acinar cells  

The viability of mouse pancreatic acinar cells was assessed, as previously described in 

section 2.2.3. 

3.2.4 Cell signaling experiments 

Pancreatic acini were treated with substance P (Sigma-Aldrich) at a concentration of 1 

μM for 0, 3, 5, 10, 15, 45, 60 and 120 min at 37˚C. After which the cells were subjected 

to either nuclear extract for NFκB (p65) and AP-1 (c-Jun) detection or cell lysis to detect 

for MAPKs activation by Western blot analysis. In some experiments, cells were also 

pre-treated with MAPK kinase (MEK1) inhibitor PD98059 at 10 µM and 30 µM 

(Calbiochem) for 1 h and then stimulated with 1 μM substance P or vehicle (saline) for 

45 min at 37°C. In other experiments, cells were pre-incubated with JNK inhibitor 

SP600125 at 10 µM and 25 µM (Calbiochem) for 1 h followed by treatment with 1 μM 

substance P or vehicle (saline) for 45 min at 37°C. In yet another experiment, cells were 

pre-incubated with the selective NK1R antagonist, CP96345, at 1 µM (Pfizer 

Diagnostics) for 30 min followed by treatment with 1 μM substance P or vehicle (saline) 
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for 45 min at 37°C. Subsequently, the supernatant was used for chemokine detection and 

the pellet was used for either nuclear extract, to detect NFκB (p65) and AP-1 (c-Jun) 

activation, or cell lysis for Western blot analysis. PD98059 or SP600125 stock solutions 

were prepared by dissolving 5 mg of PD98059 or SP600125 into 100 μl of DMSO. The 

final concentration of the vehicle was ≤ 0.1% DMSO. CP96345 stock solution was 

prepared by dissolving 1 mg of CP96345 into 2 ml of saline. PD98059, SP600125 and 

CP96345 had no effect on mouse pancreatic acinar cell viability. The negative control in 

which pancreatic acini were pre-treated with 10 µM (the concentration sufficient to block 

substance P-mediated activation) of PD98059 or SP600125 for 1 h followed by 

stimulation with vehicle (saline) for 45 min had no significant effect on MAPKs ERK 

and JNK, NFκB (p65), AP-1 (c-Jun) and chemokine production when compared to 

unstimulated controls.  

3.2.5 Preparation of cell lysates for Western blot analysis 

Pancreatic acini were treated with substance P at a concentration of 1 μM for 0, 3, 5, 10, 

15, 45, 60 and 120 min at 37˚C. After treatment, pancreatic acinar cells were 

homogenized on ice in RIPA buffer supplemented with 1 mM PMSF and the protease 

inhibitor cocktail containing pepstatin, leupeptin, chymostatin, antipain and aprotinin (5 

µg/ml of each), and centrifuged at 4 °C for 15 min at 14,000 g. The supernatants were 

collected and stored at -80°C until use. Protein concentrations were determined by using 

Bio-Rad protein assay. 5 μl of sample was added to 250 μl of Bradford reagent (Bio-Rad 

Laboratories, Hercules, CA) and read at 595 nm after a short incubation (5 min) at room 

temperature.  
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3.2.6 Western blot analysis 

Cell lysates (50 µg of protein) were separated on 12% SDS-polyacrylamide gel and 

electrophoretically transferred to nitrocellulose membranes. Non-specific binding was 

blocked by 1 h incubation of the membranes in 5% non-fat dry milk in PBST (0.05% 

Tween 20 in PBS). The blots were then incubated overnight with the primary antibodies 

phospho-ERK1/2, ERK 1/2, phospho-SAPK/JNK, SAPK/JNK, IκBα (Cell Signaling 

Technology) and HPRT (Santa Cruz Biotechnology) at 1:1000 dilutions in the buffer 

containing 2.5% non-fat dry milk in PBST. After which they were washed four times 

with PBST, and finally incubated for 1 h with goat anti-rabbit HRP-conjugated secondary 

antibody (Santa Cruz Biotechnology) at 1:2000 dilutions in the buffer containing 2.5% 

non-fat dry milk in PBST. The blots were developed for visualization using enhanced 

chemiluminescence (ECL) detection kit (Pierce, Rockford, IL).  

3.2.7 Preparation of nuclear cell extract  

Nuclear cell extract was prepared, as previously described in section 2.2.6. 

3.2.8 NFκB DNA-binding actitvity 

The binding of NFκB to DNA was measured in nuclear extracts, as previously described 

in section 2.2.7. 

3.2.9 AP-1 DNA-binding activity 

TransAM AP-1 kits are designed specifically to detect and quantify AP-1 activation. 

Similar to TransAM NFκB p65, TransAM AP-1 c-Jun kits contain a 96-well plate on 
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which has been immobilized an oligonucleotide that contains a TPA- responsive element 

TRE (5’-TGAGTCA-3’). AP-1 dimers contained in nuclear extract (5 µg of protein) 

specifically binds to this oligonucleotide. The primary antibodies used recognize 

accessible epitopes on c-Jun proteins upon DNA binding. Secondary antibody conjugated 

to HRP generates the colorimetric reaction. Absorbance was read at 450 nm within 5 min. 

3.2.10 Chemokine detection 

Pancreatic acinar cell supernatants were assayed for MCP-1, MIP-1α and MIP-2 using a 

sandwich ELISA, as previously described in section 2.2.5. 

3.2.11 Statistical analysis 

Results are presented as means + SE with 6 replicates for each condition. Each 

experiment was repeated at least three times. The significance of changes was evaluated 

by using ANOVA and Tukey’s method was used as a post hoc test for the difference 

between groups. A P value < 0.05 was taken as the level of significance.  



57 

 

3.3 RESULTS 

3.3.1 Substance P stimulates ERK1/2 phosphorylation and NFκB activation in a 

time-dependent manner 

To examine if substance P causes ERK1/2 phosphorylation in pancreatic acini, mouse 

pancreatic acinar cells were treated with 1 μM substance P for 0, 3, 5, 10, 15, 45, 60, 120 

min. Cells were then lysed, and cell proteins were subjected to Western blot analysis 

using antibodies against both phospho-ERK1/2 and total ERK1/2. As shown in Figure 3.1 

(a), substance P induced a time-dependent increase in the phosphorylation of ERK1/2 in 

pancreatic acini. In Figure 3.1 (b), densitometric analysis of Western blot experiments 

revealed a significant increase in phosphorylation of ERK1/2 when compared to 0 min 

control. The time-dependent increase in phosphorylation of ERK1/2 was in line with the 

time-dependent degradation of total IκBα as shown in Figure 3.1 (c). In a similar 

experiment nuclear extract was used, instead of cell lysate, to detect NFκB (p65) 

activation by ELISA. As shown in Figure 3.1 (d), treatment with 1 μM substance P 

caused a time-dependent increase in NFκB (p65) activation. The increase became 

significant at 10 min after substance P treatment.  

3.3.2 ERK1/2-mediated NFκB activation is involved in substance P-induced 

chemokine synthesis 

To determine if the MEK1 inhibitor PD98059 blocks phosphorylation of ERK1/2 in 

substance P-treated cells, mouse pancreatic acinar cells were pre-incubated with 

PD98059 for 1 h followed by stimulation with 1 μM substance P for 45 min. Cells were 
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then lysed, and cell proteins were subjected to Western blot analysis. As shown in Figure 

3.2 (a), PD98059 attenuated substance P-induced phosphorylation of ERK1/2. In Figure 

3.2 (b), densitometry showed that the two different doses of PD98059 namely 10 μM and 

30 μM significantly blocked phosphorylation of ERK1/2 when compared to substance P 

only treated group. To confirm the role of ERK1/2 in substance P-induced NFκB (p65) 

activation and chemokine production, I pre-treated the pancreatic acini with PD98059 for 

1 h followed by stimulation with 1 μM substance P for 45 min. The results, in Figure 3.3 

(a), showed that pre-treatment with PD98059 significantly inhibited substance P-induced 

NFκB (p65) activation, which was followed by a decrease in CC chemokines (3.3b) 

MCP-1, (3.3c) MIP-1α and CXC chemokine (3.3d) MIP-2. These results indicate that 

substance P induces the production of chemokines MCP-1, MIP-1α and MIP-2 via the 

ERK1/2-mediated NFκB signaling pathway. 

3.3.3 Substance P induces phosphorylation of JNK and AP-1 activation in a time 

dependent manner 

To examine if substance P stimulates JNK phosphorylation in pancreatic acini, mouse 

pancreatic acinar cells were treated with 1 μM substance P for 0, 3, 5, 10, 15, 45, 60, 120 

min. Cells were then lysed, and cell proteins were subjected to Western blot analysis 

using antibodies against both phospho-p54 and -p46 JNK and total JNK. As shown in 

Figure 3.4 (a), substance P induced phosphorylation of phospho-p54 and -p46 JNK in 

pancreatic acini in a time-dependent manner. In Figure 3.4 (b), densitometric analysis of 

Western blot experiments revealed a significant increase in phospho-p54 from 10 min 

when compared to 0 min control. Densitometric analysis of phospho-p46 could not be 

carried out as the control for phospho-p46 was undetectable. In Figure 3.4 (c), the time-
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dependent increase in phosphorylation of phospho-p54 and -p46 JNK was in accord with 

the time-dependent increase in AP-1 (c-Jun) activation; with a significant maximal 

intensity ranged from 45 to 120 min when compared to the 0 min control. 

3.3.4 Involvement of JNK in substance P-induced AP-1 activation and chemokine 

synthesis 

SP600125 is an inhibitor of JNK. It prevents the phosphorylation of JNK substrates by 

blocking the ATP-binding domain of JNKs. To determine if SP600125 inhibits 

phosphorylation of JNK in substance P-treated cells, mouse pancreatic acinar cells were 

pre-incubated with SP600125 for 1 h followed by stimulation with 1 μM substance P for 

45 min. Cells were then lysed, and cell proteins were subjected to Western blot analysis. 

As shown in Figure 3.5 (a), SP600125 attenuated substance P-induced phosphorylation of 

JNK. In Figure 3.5 (b), densitometry showed that 10 μM and 25 μM of SP600125 

significantly blocked phosphorylation of JNK when compared to substance P only treated 

group. To determine if substance P-induced synthesis of chemokines MCP-1, MIP-1α 

and MIP-2 and AP-1 (c-Jun) activation are mediated through JNK, pancreatic acini were 

pre-treated with SP600125 for 1 h followed by stimulation with 1 μM substance P for 45 

min. The data in Figure 3.6 (a) shows that SP600125 inhibited substance P-induced AP-1 

(c-Jun) activation. As shown in Figure 3.6 (b, c, d), pre-treatment with SP600125 caused 

an attenuation of substance P-induced production of MCP-1, MIP-1α and MIP-2. These 

results demonstrate that substance P-induced synthesis of MCP-1, MIP-1α and MIP-2 is 

mediated by JNK/AP-1 (c-Jun) signaling pathway.  

3.3.5 Substance P-induced ERK1/2 and JNK cross activate NFκB and AP-1  
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Pancreatic acini were pre-treated with either PD98059 or SP600125 followed by 

stimulation with 1 μM substance P for 45 min. As shown in Figure 3.7 (a), PD98059 

given at concentrations of 10 μM and 30 μM significantly blocked AP-1 (c-Jun) 

activation. As shown in Figure 3.7 (b), SP600125 attenuated NFκB (p65) activation. The 

data suggest that substance P-induced chemokine production takes place through ERK1/2 

mediated AP-1 (c-Jun) activation and JNK mediated NFκB (p65) activation. These 

results imply that there is a cross-talk between the two classical pathways, ERK1/2-NFκB 

(p65) and JNK-AP-1 (c-Jun), to induce synthesis of chemokines MCP-1, MIP-1α and 

MIP-2 in pancreatic acini. 

3.3.6 Substance P/NK1R interaction is involved in ERK 1/2 and JNK activation 

The data show that substance P-induced ERK1/2 and JNK activation were mediated 

through NK1R. I pre-treated the pancreatic acini with 1 μM of CP96345, a selective 

NK1R antagonist, for 30 min followed by stimulation with 1 μM of substance P for 45 

min. Cells were then lysed, and cell proteins were subjected to Western blot analysis. The 

results, in Figure 3.8, demonstrate that CP96345 significantly reduced substance P-

induced ERK1/2 and JNK activation in pancreatic acinar cells when compared to 

substance P only treated cells. 

3.3.7 Substance P-induced NFκB and AP-1 activation as well as chemokine 

production are mediated through NK1R 

The role of NK1R in substance P-induced NFκB (p65) and AP-1 (c-Jun) activation and 

chemokine production was confirmed by pre-treating the cells with 1 μM of CP96345 

followed by stimulation with 1 μM of substance P for 45 min. The cells were used for 

nuclear extraction to determine NFκB (p65) and AP-1 (c-Jun) activation whereas the 
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supernatant obtained was used for detection of chemokines MCP-1, MIP-1α, and MIP-2 

by ELISA. The results, in Figure 3.9 (a, b, c, d, e), show that pre-treatment with selective 

antagonist CP96345 significantly inhibited substance P-induced activation of NFκB (p65) 

and AP-1 (c-Jun) as well as production of MCP-1, MIP-1α, and MIP-2 in pancreatic 

acinar cells when compared to substance P only treated cells.  
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3.4 DISCUSSION 

In chapter 2, it was shown that substance P induces production of chemokines MCP-1, 

MIP-1α and MIP-2 in mouse pancreatic acinar cells. In the present study, I have 

investigated the signaling cascades through which substance P/NKIR stimulate 

production of these chemokines in mouse pancreatic acini. Substance P has been shown 

to stimulate a number of intracellular signaling molecules such as MAPK members. 

Ligand binding to NK1R activates MAPKs (Luo, Sharif et al. 1996). In the present study, 

I have focussed on the MAPKs ERK1/2 and JNK, as p38 was not activated upon 

substance P stimulation in my model of isolated acinar cells. 

In this study, I have shown that substance P induced JNK phosphorylation which was in 

accord with AP-1 (c-Jun) activation. It was established that phosphorylation of AP-1 

family members by kinases (for example JNK) is required for transactivation activity. 

Substance P-induced JNK/AP-1(c-Jun) activation led to increase synthesis of MCP-1, 

MIP-1α and MIP-2. To confirm that production of these chemokines was mediated 

through the JNK/AP-1(c-Jun) signaling pathway, pancreatic acini were pre-treated with 

SP600125 followed by stimulation with substance P. SP600125 is a selective inhibitor of 

JNK. In cells, it dose-dependently inhibits the phosphorylation of c-Jun. It competitively 

and reversibly inhibits JNK1, 2 and 3 and has been shown to have less inhibitory potency 

on ERK2, p38 and a range of other kinases (Bennett, Sasaki et al. 2001; Shin, Yan et al. 

2002). My data shows that SP600125 attenuated the activation of AP-1 (c-Jun) as well as 

the production of MCP-1, MIP-1α and MIP-2. Moreover, I found that SP600125 

attenuated NFκB activation. I also confirmed with the use of Western blot analysis that 

SP600125 indeed blocked phosphorylation of JNK in pancreatic acini. Total JNK was 
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used as a control. My data suggests that substance P-induced chemokine production 

occurs not only through the classic JNK/AP-1 (c-Jun) pathway but also through JNK 

mediated NFκB activation.  

Previously, it has been established that MEKK1 induces activation of both IKK-α and 

IKK-β leading to NFκB activation (Barnes and Karin 1997; Ghosh, May et al. 1998). 

Furthermore, ERK1/2 activity and phosphorylation have been associated with 

degradation of IκB protein leading to NFκB activation. Moreover, it has been shown that 

MEK-1 and ERK-1 act as intermediates in the cascade of events that regulate AP-1 and 

NFκB activation. NFκB activates several genes involved in the pro-inflammatory 

response, encoding various immunoreceptors, cell adhesion molecules, cytokines and 

chemokines (Akira and Kishimoto 1997; Baeuerle and Baichwal 1997; Grimm and 

Baeuerle 1993). 

In the present study, I investigated the possible involvement of ERK1/2 in mediating 

substance P-induced chemokine synthesis in mouse pancreatic acinar cells, in particular 

their role in increasing NFκB (p65) and AP-1 (c-Jun) activity. I demonstrated that 

substance P induced ERK1/2 activation. This was in line with NFκB activation and an 

increased synthesis of chemokines MCP-1, MIP-1α and MIP-2. The ERK pathway-

specific inhibitor PD98059 inhibited NFκB activation and chemokine production.  

PD98059 is a potent, selective and cell-permeable inhibitor of MAP kinase kinase. It 

selectively inhibits the MAPK-activating enzyme, (MEK), without significant inhibitory 

activity of MAPK itself. Inhibition of MEK by PD98059 prevents activation of MAPK 

and subsequent phosphorylation of MAPK substrates both in vitro and in intact cells 

(Alessi, Cuenda et al. 1995; Dudley, Pang et al. 1995). Here I found that PD98059 also 
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blocked AP-1(c-Jun) activation. This is in agreement with other studies that reported the 

N-terminal sites of c-Jun were phosphorylated in vitro by ERK1 and ERK2 (Pulverer, 

Hughes et al. 1993; Pulverer, Kyriakis et al. 1991). Furthermore, using Western blot 

analysis I confirmed that PD98059 effectively blocked phosphorylation of ERK1/2 in 

pancreatic acinar cells.  

In chapter 2, I have demonstrated that pre-treatment of pancreatic acini with NEMO-

binding domain peptide (NBD), an NFκB inhibitor, completely attenuated the chemokine 

synthesis induced by substance P. This shows that the increase in chemokine synthesis 

induced by substance P was specifically dependent on NFκB activation. Taken together, 

these results demonstrate that substance P-induced production of MCP-1, MIP-1α and 

MIP-2 is mediated not only through the classic signaling pathways namely ERK1/2- 

NFκB and JNK/AP-1 (c-Jun) but also through a cross-talk between the two classic 

signaling pathways.  

To further understand the molecular mechanism and to show that chemokine production 

was indeed mediated by substance P, pancreatic acinar cells were pre-treated with the 

selective NK1R antagonist, CP96345. In the present study CP96345 decreased the 

activation of ERK1/2, JNK, NFκB and AP-1 mediated chemokine production; hence 

showing that substance P-induced chemokine production is dependent on NK1R in 

pancreatic acinar cells.  

To my knowledge, this is the first study that shows the involvement of ERK1/2, JNK, 

AP-1(c-Jun) and NFκB (p65) in substance P-induced chemokine production in pancreatic 

acini. In this chapter, I provide evidence that activation of p42/p44 MAPK pathways by 

substance P is necessary for production of MCP-1, MIP-1α and MIP-2. Furthermore, 
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JNK seems to be the other MAPK required for substance P-induced chemokine 

production in these cells. These results show that substance P-induced activation of both 

ERK1/2 and JNK cascades are essential for NFκB and AP-1 activation, resulting in 

increased production of chemokines MCP-1, MIP-1α and MIP-2 in mouse pancreatic 

acini. The study presented in this chapter gives us an insight into the mechanism by 

which substance P contributes to the inflammatory responses in acute pancreatitis.  
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Figure 3.1 Substance P (SP) stimulates ERK1/2 phosphorylation and NFκB 
activation in a time-dependent manner. SP induces a time-dependent phosphorylation 
of ERK1/2 which coincides with a time dependent activation of NFκB (p65). Freshly 
isolated pancreatic acini, obtained from three mice, were incubated with 1 μM SP for 0, 
3, 5, 10, 15, 45, 60, 120 min at 37˚C. In some experiments, cells were lysed, and cell 
proteins were subjected to Western blot analysis using antibodies against (a) phospho-
ERK1/2, total ERK1/2 and (c) IκBα. (b) Densitometric analysis of Western blot 
experiments from pancreatic acini. In another experiment, the nuclear extract was used to 
isolate NFκB and ELISA was carried out to detect activation of (d) NFκB (p65). MW in 
(kDa) for IκBα is 39, ERK1/2 is 44/42 and HPRT is 24. The results are representative of 
three independent experiments. Results shown are the means + SE. #P < 0.05 when 
compared to 0 min control. 
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Figure 3.2 (a) 

Figure 3.2 (b) 
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Figure 3.2 PD98059 decreases phosphorylation of ERK1/2 in pancreatic acini. 
PD98059 (an inhibitor of MEK1/2) effectively blocked phosphorylation of ERK1/2. 
Freshly isolated pancreatic acini, obtained from three mice, were pre-incubated with 
PD98059 at doses of 10 μM and 30 μM for 1 h at 37˚C followed by stimulation with 1 
μM substance P (SP) for 45 min at 37˚C. Cells were subsequently lysed, and cell proteins 
were subjected to Western blot analysis using antibodies against (a) phospho-ERK1/2 
and total ERK1/2. (b) Densitometric analysis of Western blot experiments from 
pancreatic acini. MW in (kDa) for ERK1/2 is 44/42. The results are representative of 
three independent experiments. Results shown are the means + SE. *P < 0.05 when 
compared to control, +P < 0.05 when compared to SP. 



71 

 

 
 

 
 

NFκB

++

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control SP 10 μM 30 μM

PD98059

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 
 
 

 

MCP-1

++

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control SP 10 μM 30 μM

PD98059

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 
 

Figure 3.3 (b) 

Figure 3.3 (a) 
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Figure 3.3 (c) 

Figure 3.3 (d) 
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Figure 3.3 ERK1/2-mediated NFκB activation is involved in substance P (SP)-
induced chemokine synthesis. SP-induced ERK1/2 phosphorylation and activation 
mediate NFκB (p65) activation and chemokine production. Freshly isolated pancreatic 
acini, obtained from three mice, were pre-incubated with MEK1 inhibitor PD98059 for 1 
h followed by stimulation with 1 μM SP for 45 min. Acini were separated from 
incubation medium by centrifugation. (a) The pellet (acini) was used for NFκB (p65) 
extraction and detection whereas the supernatant was used to measure (b) MCP-1, (c) 
MIP-1α and (d) MIP-2 levels by ELISA. The results are representative of three 
independent experiments. Results shown are the means + SE. *P < 0.05 when compared 
to control, +P < 0.05 when compared to SP. 
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Figure 3.4 Substance P (SP) induces phosphorylation of JNK and AP-1 activation in 
a time-dependent manner. SP induces a time-dependent phosphorylation of JNK which 
is in line with a time-dependent activation of AP-1 (c-Jun). Freshly isolated pancreatic 
acini, obtained from three mice, were incubated with 1 μM SP for 0, 3, 5, 10, 15, 45, 60, 
120 min at 37˚C. In some experiments, cells were lysed, and cell proteins were subjected 
to Western blot analysis using antibodies against (a) phospho-JNK, total JNK. In another 
experiment, the nuclear extract was used to isolate AP-1 (c-Jun) and ELISA was carried 
out to detect activation of (c) AP-1 (c-Jun). (b) Densitometric analysis of Western blot 
experiments from pancreatic acini. MW in (kDa) for JNK 2/1 is 54/46. The results are 
representative of three independent experiments. Results shown are the means + SE. #P 
< 0.05 when compared to control (0 min). 
 
 
 

 

Figure 3.4 (c) 
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Figure 3.5 SP600125 decreases phosphorylation of JNK in pancreatic acini. 
SP600125 (JNK inhibitor) effectively blocked phosphorylation of JNK. Freshly isolated 
pancreatic acini, obtained from three mice, were pre-incubated with SP600125 at 
different doses of 10 μM and 25 μM, for 1 h at 37˚C followed by stimulation with 1 μM 
substance P (SP) for 45 min at 37˚C. Cells were subsequently lysed, and cell proteins 
were subjected to Western blot analysis using antibodies against (a) phospho-JNK and 
total JNK. (b) Densitometric analysis of Western blot experiments from pancreatic acini. 
The results are representative of three independent experiments. MW in (kDa) for JNK 
2/1 is 54/46. Results shown are the means + SE. *P < 0.05 when compared to control, +P 
< 0.05 when compared to SP. 
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Figure 3.6 (a) 

Figure 3.6 (b) 
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Figure 3.6 (c) 

Figure 3.6 (d) 
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Figure 3.6 JNK is involved in substance P (SP)-induced AP-1 activation and 
chemokine synthesis. SP-induced JNK phosphorylation and activation mediate AP-1 (c-
Jun) activation and chemokine production. Freshly isolated pancreatic acini, obtained 
from three mice, were pre-incubated with JNK inhibitor SP600125 for 1 h followed by 
stimulation with 1 μM SP for 45 min. Acini were separated from incubation medium by 
centrifugation. (a) The pellet (acini) was used for AP-1 (c-Jun) extraction and detection 
whereas the supernatant was used to measure (b) MCP-1, (c) MIP-1α and (d) MIP-2 
levels by ELISA. The results are representative of three independent experiments. Results 
shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 when 
compared to SP. 
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Figure 3.7 (a) 

Figure 3.7 (b) 
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Figure 3.7 Substance P (SP)-induced ERK1/2 and JNK cross activate NFκB and AP-
1. Freshly isolated pancreatic acini were obtained from three mice. The acini were then 
pre-incubated with either MEK1 inhibitor PD98059 or JNK inhibitor SP600125 for 1 h 
followed by stimulation with 1 μM SP for 45 min. The acini were separated from 
incubation medium by centrifugation. The pellet (acini) was used for extraction and 
detection of (a) NFκB (p65) activation and (b) AP-1 (c-Jun) activation. The results are 
representative of three independent experiments. Results shown are the means + SE. *P 
< 0.05 when compared to control, +P < 0.05 when compared to SP. 
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Figure 3.8 (a) 

Figure 3.8 (b) 
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Figure 3.8 Substance P (SP)/NK1R interaction is involved in ERK1/2 and JNK 
activation. Freshly isolated pancreatic acini, obtained from three mice, were pre-
incubated with 1 μM CP96345 for 30 min at 37˚C followed by stimulation with 1 μM 
substance P for 45 min at 37˚C. Cells were subsequently lysed, and cell proteins were 
subjected to Western blot analysis using antibodies against (a) phospho-ERK, total 
ERK1/2 (b) phospho-JNK, total JNK. Corresponding densitometric analysis of Western 
blot experiments from pancreatic acini. The results are representative of three 
independent experiments. MW in (kDa) for JNK 2/1 is 54/46 and ERK1/2 is 44/42. 
Results shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 
when compared to SP.  
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Figure 3.9 (a) 

Figure 3.9 (b) 
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Figure 3.9 (c) 

Figure 3.9 (d) 
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Figure 3.9 NK1R is involved in substance P (SP)-induced NFкB and AP-1 activation 
as well as MCP-1, MIP-1α and MIP-2 production. Freshly isolated pancreatic acini, 
obtained from three mice, were pre-incubated with 1 μM CP96345 for 30 min followed 
by stimulation with 1 μM SP for 45 min. Acini were separated from incubation medium 
by centrifugation. The pellet was used for (a) NFκB and (b) AP-1 extraction and NFκB 
(p65) and AP-1 (c-Jun) DNA-binding assays were carried out. The supernatant was used 
to measure (c) MCP-1, (d) MIP-1α and (e) MIP-2 levels by ELISA. The results are 
representative of three independent experiments. Results shown are the means + SE. *P 
< 0.05 when compared to control, +P < 0.05 when compared to SP. 
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CHAPTER 4 

 

ROLE OF PROTEIN KINASE C δ ON SUBSTANCE P-INDUCED 

CHEMOKINE SYNTHESIS IN MOUSE PANCREATIC ACINAR 

CELLS 

 

4.1 INTRODUCTION 

The critical initiating events in acute pancreatitis occur in the pancreatic acinar cells. 

Some of the key early acinar cell events include activation of zymogens, decrease apical 

secretion of digestive zymogens, edema, release of inflammatory mediators and cell 

death. Activation of selective signaling molecules in pancreatic acinar cells mediates and 

contributes to the development of acute pancreatitis. 

The protein kinase C (PKC) family plays a prominent role in critical stages of acute 

pancreatitis. It mediates physiological as well as pathophysiological responses in the 

pancreatic acinar cells. PKC α, δ, ε, and ζ are present in rodent acinar cells (Gorelick, 

Pandol et al. 2008). The role of PKC isoforms has been determined by using cellular and 

in vivo experimental models of acute pancreatitis. These models often use supramaximal 

concentrations of the hormone CCK or its analog caerulein to induce acute pancreatitis 

(Satoh, Gukovskaya et al. 2006; Tapia JA, Garcia-Marin et al. 2003). Studies have shown 

that CCK at a supraphysiological concentration of 100 nM resulted in activation of PKC 

δ, ε, and ζ whereas CCK at a physiological concentration of 100 pM induced activation of 

only PKCδ in acinar cells (Satoh, Gukovskaya et al. 2004). CCK-induced PKC activation 
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has been shown to stimulate NFκB activation, an upstream mediator of inflammatory 

responses (Gukovskaya, Hosseini et al. 2004).  

It has been earlier demonstrated that PKCδ modulates inflammatory responses, as 

evidenced by its capability to induce matrix metalloproteinase and chemokine expression 

in vitro (Jedrzkiewicz, Nakamura et al. 2000; Liu, Crepin et al. 2002). Various studies 

have reported that PKCδ regulates the expression of inflammatory mediators (Cosen-

Binker, Lam et al. 2007; Satoh, Gukovskaya et al. 2006; Tapia JA, Garcia-Marin et al. 

2003). PKC is one of the downstream effectors of the NK1 activation. Studies have 

shown that upon stimulation of the NK1 receptor by substance P, PKC in its active form 

translocates from the cytoplasm to the plasma membrane (Monastyrskaya, Hostettler et 

al. 2005).  

A limited number of studies have examined substance P-induced activation of PKCδ 

signaling pathways. It has been reported that substance P-stimulated IL-8 expression in 

human colonic epithelial cells involves PKCδ activation and Rho family small GTPases 

(Koon, Zhao et al. 2005; Zhao, Kuhnt-Moore et al. 2002). Moreover, activation of NK1R 

by substance P or GR73632 (a potent NK1R agonist) triggered activation of PKC and 

MAP Kinases in cultured adult rat dorsal root ganglion neurons (Tang, Li et al. 2007).  

However, little is known of the ability of substance P/NK1R interaction to activate PKCδ 

and its effect on the pro-inflammatory mediator chemokine in pancreatic acinar cells. In 

this study, I sought to investigate whether substance P activates PKCδ in pancreatic 

acinar cells and also to determine the underlying signaling mechanism in the involvement 

of substance P/NK1R-PKCδ in chemokine production in pancreatic acinar cells. 
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4.2 MATERIALS AND METHODS  

 

4.2.1 Animal Ethics 

Please refer to section 2.2.1. 

4.2.2 Preparation of mouse pancreatic acini  

Mouse pancreatic acinar cells were prepared, as previously described in section 2.2.2. 

4.2.3 Viability of mouse pancreatic acinar cells 

The viability of mouse pancreatic acinar cells was assessed, as previously described in 

section 2.2.3. 

4.2.4 Acinar experimental protocol 

Pancreatic acini were treated with substance P (Sigma-Aldrich) at a concentration of 1 

μM for 0, 3, 5, 10, 15, 30, 45, 60 and 120 min at 37˚C. After which the cells were lysed 

to detect for PKCδ or MEKK1 activation by Western blot analysis. In some experiments, 

cells were also pre-treated with the selective PKCδ inhibitor rottlerin at 1 µM, 5 µM and 

10 µM (Calbiochem) for 1 h and then stimulated with 1 μM substance P or vehicle 

(saline) for 10 or 45 min at 37°C. A specific PKCδ translocation inhibitor (δV1–1: S-F-

N-S-Y-E-L-G-S-L) (Chen, Hahn et al. 2001) was synthesized (SIGMA Genosys). The 

peptide was conjugated to a Drosophila antennapedia peptide (R-Q-I-K-I-W-F-Q-N-R-

R-M-K-W-K-K) to make it cell permeable. This peptide corresponds to specific 

sequences in the V1 regions that are responsible for anchoring PKCδ to its translocation 

site. Thus the peptide competitively inhibits the binding of PKCδ to its anchoring protein. 

Hence, this prevents activation of this particular PKC isoform (Satoh, Gukovskaya et al. 

2004; Satoh, Gukovskaya et al. 2006). Pancreatic acinar cells were pre-treated with 5 µM 
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and 10 µM of the specific PKCδ translocation inhibitor for 3 h followed by stimulation 

with 1 μM substance P or vehicle for 10 or 45 min at 37°C. 

In other experiments, cells were pre-incubated with the selective NK1R antagonist, 

CP96345, at 1 µM (Pfizer Diagnostics) for 30 min followed by treatment with 1 μM 

substance P or vehicle for 10 min at 37°C. Subsequently, the supernatant was used for 

chemokine detection and the pellet was used for either nuclear extract, to detect NFκB 

(p65) and AP-1(c-Jun) activation, or cell lysis for Western blot analysis to detect PKCδ, 

MEKK1, ERK and JNK. 

4.2.5 Immunofluorescence 

After treatment with substance P, pancreatic acinar cells were fixed in 3.7% 

formaldehyde and placed on microscope slides using CytoFuge 2 cytocentrifuge 

(StatSpin, Westwood, MA, USA). Then, the fixed cells were blocked for non-specific 

binding with 1% BSA for 30 min at room temperature. Fluorescent labeling was 

performed by incubating the cells with a 1:50 dilution of PKCδ mAb [p-PKCδ Tyr 523  

(Konishi, Tanaka et al. 1997), Santa Cruz Biotechnology] for 90 min at room 

temperature, followed by secondary detection for 40 min in the dark with a 1:200 dilution 

of FITC-conjugated, donkey anti-goat IgG (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA). Staining was observed with a fluorescence microscope (Carl Zeiss, Oberkochen, 

Germany) and captured by a digital camera (Carl Zeiss). 

4.2.6 Preparation of total cell lysates for Western blot analysis 

After treatment, pancreatic acinar cells were homogenized on ice in RIPA buffer 

supplemented with 1 mM PMSF and the protease inhibitor cocktail containing pepstatin, 

leupeptin, chymostatin, antipain and aprotinin (5 µg/ml of each), and centrifuged at 4 °C 
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for 15 min at 14,000 g. The supernatants were collected and stored at -80°C until use. 

Protein concentrations were determined by using Bio-Rad protein assay. 5 μl of sample 

was added to 250 μl of Bradford reagent (Bio-Rad Laboratories, Hercules, CA) and read 

at 595 nm after a 5 min incubation at room temperature.  

4.2.7 Western blot analysis 

Cell lysates (50 µg of protein) were separated on 12% SDS-polyacrylamide gel and 

electrophoretically transferred to nitrocellulose membranes. Non-specific binding was 

blocked by 1 h incubation of the membranes in 5% nonfat dry milk in PBST (0.05% 

Tween 20 in PBS). The blots were then incubated overnight with the primary antibodies 

phospho-PKCδ Thr505 (Koon, Zhao et al. 2005; Parekh, Ziegler et al. 1999; Tan, Xu et 

al. 2003), phospho-ERK1/2, phospho-SAPK/JNK (Cell Signaling Technology), MEKK1 

and HPRT were purchased from Santa Cruz Biotechnology. HPRT was used as the 

housekeeping protein. The above antibodies were used at a 1:1000 dilutions in the buffer 

containing 2.5% nonfat dry milk in PBST. After which they were washed four times with 

PBST, and finally incubated for 1 h with goat anti-rabbit HRP-conjugated secondary 

antibody (Santa Cruz Biotechnology) at 1:2000 dilutions in the buffer containing 2.5% 

nonfat dry milk in PBST. The blots were developed for visualization using enhanced 

chemiluminescence (ECL) detection kit (Pierce, Rockford, IL).  

4.2.8 Nuclear cell extract preparation 

Nuclear cell extract was prepared, as previously described in section 2.2.6. 

4.2.9 NFκB DNA-binding activity 
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The binding of NFκB to DNA was measured in nuclear extracts, as previously described 

in section 2.2.7. 

4.2.10 AP-1 DNA-binding activity 

The binding of AP-1 to DNA was measured in nuclear extracts, as previously described 

in section 3.2.9. 

4.2.11 Total RNA isolation 

Total RNA was extracted from pancreatic acinar cells by using TRIzol reagent 

(Invitrogen) following the manufacturer’s instructions with some modifications. Briefly, 

isolated cells were homogenized in TRIzol reagent. Chloroform was then added to the 

homogenates, and samples were shaken, incubated for 5 min at 4°C, and centrifuged for 

15 min at 12,000 g at 4°C. The aqueous phase was separated and RNA was precipitated 

by addition of isopropyl alcohol. After RNA was pelleted by centrifugation (12,000 g for 

10 min at 4°C), the pellet was washed twice in 70% ethanol, air-dried, and dissolved in 

RNase-free water. RNA was quantitated spectrophotometrically by absorbance at 260 

nm. The purity of RNA was assessed by a 260/280 ratio between 1.6 and 2.0. The 

integrity of RNA was verified by the presence of distinct 28S and 18S rRNA bands on a 

denaturing agarose gel. 

4.2.12 Semiquantitative RT-PCR 

Semiquantitative RT-PCR was performed to analyze mRNA expression levels of MCP-1, 

MIP-1α, and MIP-2 in the acini. Total RNA (1 μg) was reverse transcribed by use of the 

iScript cDNA synthesis kit (Bio-Rad). The cDNA synthesized was used as the template 

for PCR amplification by iQ Supermix (Bio-Rad). The PCR protocol consisted of 

optimized 36 cycles of denaturation at 95°C for 30 s, annealing for 30 s (at 55, 58 and 
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55°C, for MCP-1, MIP-1α, and MIP-2 respectively), and extension at 72°C for 30 s 

performed in MyCycler (Bio-Rad). The following specific primer pairs (Proligo, 

Singapore) of chemokines and were used: MCP-1 sense 5’-

GGAAAAATGGATCCACACCTTGC-3’and antisense 5’-TCTCTTCCTCCACCACCA 

TGCAG-3’ resulting in a 582-bp product; MIP-1α sense 5’-

ACTGCCCTTGCTGTTCTTCTCT-3’ and antisense 5’-

GCATTCAGTTCCAGGTCAGTGA-3’ resulting in a 261-bp product; MIP-2 sense 5’-

TGCCTGAAGACCCTGCCAAGG-3’and anti sense 5’-

GTTAGCCTTGCCTTTGTTCAG-3’ resulting in a 189-bp product; 18S sense 5’-

GTAACCCGTTGAACCCCATT-3’ and antisense 5’-CCATCCAATCGGTAGTAGCG-

3’ resulting in a 150-bp product. All PCR products were analyzed on 1.5% wt/vol agarose 

gels containing 0.05 mg/100 ml ethidium bromide and image captured by use of Gel 

Doc-It Imaging System (UVP). Product sizes were identified by comparison with DNA 

size standards included in the gels. Densitometry results from PCR products were 

normalized to 18S internal controls. 

4.2.13 Chemokine detection 

Pancreatic acinar cell supernatants were assayed for MCP-1, MIP-1α and MIP-2 using a 

sandwich ELISA, as previously described in section 2.2.5. 

4.2.14 Statistical analysis 

Results are presented as means + SE with 6 replicates for each condition. Each 

experiment was repeated at least three times. The significance of changes was evaluated 

by using ANOVA and Tukey’s method was used as a post hoc test for the difference 

between groups. A P value < 0.05 was taken as the level of significance.  
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4.3 RESULTS 
 
4.3.1 Substance P induces phosphorylation of PKCδ in a time dependent manner. 

In order to investigate if substance P causes phosphorylation of PKCδ, pancreatic acinar 

cells were stimulated with 1 μM substance P for 0, 3, 5, 10, 15, 30 and 45 min. Cells 

were then lysed, and cell proteins were subjected to Western blot analysis using 

antibodies against phospho-PKCδ and HPRT. As shown in Figure 4.1 (a, b), substance P 

induced phosphorylation of PKCδ in pancreatic acini which was evident from 3 min and 

increased in a time-dependent manner up to 10 min, followed by a time-dependent 

decrease until 45 min. Densitometric analysis of Western blot experiments revealed a 

significant increase in phosphorylation of PKCδ at all the above mentioned time points 

when compared to 0 min control.  

The specific effect of substance P on PKCδ activation in pancreatic acinar cells was 

further confirmed by immunostaining. As shown in Figure 4.1 (c), in unstimulated 

pancreatic acini, the staining of PKCδ was present in the cytosolic area of the pancreatic 

acinar cell. Treatment of the cells with 1 μM substance P decreases the presence of PKCδ 

in the cytosol and increases its presence near the membrane, indicating translocation of 

PKCδ from the cytosol to the cell membranes as a measure of PKCδ activation. 

4.3.2 Substance P stimulates activation of MEKK1 in a time dependent manner.  

To find out if MEKK1 is activated upon substance P stimulation, pancreatic acinar cells 

were stimulated with 1 μM substance P for 0, 3, 5, 10, 30, 45, 60 and 120 min. Cells were 

then lysed, and cell proteins were subjected to Western blot analysis using antibodies 

against MEKK1 and HPRT. As shown in Figure 4.2 (a), substance P induced activation 

of MEKK1 in pancreatic acini which was evident from 3 min and increased in a time-



97 

 

dependent manner up to 45 min, followed by a time-dependent decrease until 120 min. 

Densitometric analysis of Western blot experiments, Figure 4.2 (b), revealed a significant 

increase in MEKK1 at 10, 30 and 45 min when compared to 0 min control.  

4.3.3 Substance P-induced PKCδ is involved in activation of MEKK1, ERK and 

JNK.  

To determine if PKCδ is involved in the activation of MEKK1, ERK and JNK, pancreatic 

acinar cells were pre-treated with either rottlerin, a selective PKCδ inhibitor, ranging 

from 1 to 10 μM or with 5 μM and 10 μM of the specific PKCδ translocation inhibitor 

peptide (δV1–1) followed by stimulation with 1 μM of substance P. Cells were then 

lysed, and cell proteins were subjected to Western blot analysis. Both rottlerin and δV1–1 

concentration-dependently decreased phosphorylation of PKCδ, Figure 4.3, hence 

confirming their inhibitory effect on substance P-induced activation of PKCδ. Rottlerin 

as well as δV1–1 attenuated substance P-induced activation of MEKK1 and 

phosphorylation of ERK and JNK in a concentration-dependent manner. The data 

presented in Figure 4.3 (e) is qualitative. 

4.3.4 PKCδ is involved in substance P-induced NFκB and AP-1 activation.  

To determine the role of PKCδ in substance P-induced NFκB and AP-1 activation, 

pancreatic acinar cells were pre-incubated with either rottlerin, ranging from 1 to 10 μM 

or with 5 μM and 10 μM of the specific PKCδ translocation inhibitor peptide (δV1–1) 

followed by stimulation with 1 μM of substance P. After which nuclear fractions from the 

cells were extracted. NFκB and AP-1 DNA-binding assay revealed that treatment with 

substance P led to a notable increase in the activity of NFκB p65 and AP-1 c-jun, 

indicating that NFκB and AP-1 play an important role in substance P triggered signaling 
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pathway in acinar cells as shown in chapter 3. As shown in Figure 4.4 (a, b), pre-

treatment with either rottlerin or δV1–1 attenuated substance P-induced DNA-binding 

activity of NFκB p65 and AP-1 c-jun in a concentration-dependent manner. 

4.3.5 Effect of PKCδ inhibitors on the gene expression and secretion of several pro-

inflammatory chemokines in pancreatic acinar cells.  

I have also determined the role of PKCδ on substance P-induced chemokine production 

both at the mRNA and protein levels. Treatment of pancreatic acini with 1 μM substance 

P resulted in enhanced expression of pro-inflammatory chemokines MCP-1, MIP-1α, and 

MIP-2. Pancreatic acinar cells were pre-treated with either rottlerin, ranging from 1 to 10 

μM, or with 5 μM and 10 μM of the specific PKCδ translocation inhibitor peptide (δV1–

1) followed by stimulation with 1 μM of substance P. Total RNA from cells was 

extracted, and RT-PCR for MCP-1, MIP-1α, and MIP-2 was performed. I have also 

determined the protein levels of these chemokines by ELISA. The results, in Figure 4.5 

and 4.6, showed that pre-treatment with rottlerin markedly decreased MCP-1, MIP-1α, 

and MIP-2 mRNA levels as well as their protein levels in a concentration-dependent 

manner. Similarly, pre-treatment with δV1–1 significantly attenuated substance P-

induced MCP-1, MIP-1α, and MIP-2 production in pancreatic acinar cells. 

4.3.6 Substance P/NK1R interaction is involved in PKCδ and MEKK1 activation.  

To show that substance P-induced PKCδ and MEKK1 activation was indeed mediated by 

substance P, I pre-treated the pancreatic acini with 1 μM of CP96345, a selective NK1R 

antagonist, followed by stimulation with 1 μM of substance P. Cells were then lysed, and 

cell proteins were subjected to Western blot analysis. The results, in Figure 4.7 (a, b), 

demonstrated that CP96345 significantly reduced substance P-induced PKCδ activation 
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in pancreatic acinar cells when compared to substance P only treated cells. Moreover, 

substance P-induced MEKK1 activation was significantly downregulated in the presence 

of CP96345 when compared to substance P only treated cells. 
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4.4 DISCUSSION 

Although the mechanism of inflammation in acute pancreatitis is still not fully 

understood, a substantial body of evidence suggests that inflammatory mediators such as 

substance P and chemokines (MCP-1, MIP-1α and MIP-2) play a critical role in the 

pathogenesis of acute pancreatitis (Bhatia, Brady et al. 2000; Bhatia, Brady et al. 2002; 

Bhatia, Ramnath et al. 2005; Bhatia, Saluja et al. 1998; Bhatia, Slavin et al. 2003). In 

chapters 2 and 3, I have demonstrated that substance P stimulated the production of 

chemokines MCP-1, MIP-1α and MIP-2 in pancreatic acinar cells via activation of 

NFκB, AP-1 and MAP Kinases. However, the signaling mechanisms by which the 

interaction between substance P and the G protein-coupled receptor, NK1R, mediates 

chemokine production remain unclear. Previous studies have demonstrated that substance 

P induced the phosphorylation of PKCδ in rat parotid acinar cells. Moreover, it has been 

reported that PKCδ plays an important role in substance P-induced pro-inflammatory 

signaling in human colonocytes (Koon, Zhao et al. 2005; Soltoff and Toker 1995); 

however to my knowledge no studies have explored the involvement of PKCδ in 

substance P/NK1R-induced chemokine production in pancreatic acinar cells. 

In this chapter, I treated isolated pancreatic acinar cells, which is known to express NK1R 

(Jensen, Jones et al. 1984; Patto, Vinayek et al. 1992; Sjodin and Gylfe 1992), to the 

neuropeptide substance P and determine the role of PKCδ in substance P-triggered 

signaling pathway. I report here that substance P induced a rapid increase in 

phosphorylation of PKCδ. Substance P also caused the translocation of PKCδ from the 

cytosol to the cell membranes, as a measure of PKCδ activation which was confirmed by 

the immunofluorescence visualization. I determined the role of PKCδ in substance P-
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induced MCP-1, MIP-1α, and MIP-2 production by demonstrating that rottlerin, a 

selective PKCδ inhibitor, decreased the gene expression and secretion of these pro-

inflammatory chemokines in pancreatic acinar cells. To further confirm the critical role 

of PKCδ in chemokine production, I have shown that pre-treatment of the cells with the 

specific PKCδ translocation inhibitor peptide attenuated substance P-induced chemokine 

production. Satoh et al. has previously shown that PKCδ translocation inhibitor peptide 

has high potency and specificity in pancreatic acini (Satoh, Gukovskaya et al. 2004; 

Satoh, Gukovskaya et al. 2006). 

It is generally known that NFκB plays a key role in the regulation of inflammation 

because of its ability to control the expression of numerous inflammatory mediators. 

However, despite its crucial role in inflammation, it is unlikely that the mere activation of 

NFκB is sufficient to trigger any single target gene that is involved in the initiation of 

inflammatory responses (Karin 2005). Therefore, NFκB requires the support from other 

transcription factors, for instance AP-1. Our group, as well as others, has shown that 

substance P stimulates the activation of not only NFκB but AP-1 as well (Christian, 

Gilbert et al. 1994). In chapter 3, I have shown that substance P activates NFκB and AP-1 

in a time dependent manner and that both transcription factors are required for substance 

P-induced chemokine production in pancreatic acinar cells. The study presented in this 

chapter demonstrates that rottlerin as well as PKCδ translocation inhibitor attenuated 

substance P-induced NFκB and AP-1 activation in a concentration-dependent manner, 

consequently leading to a concentration-dependent decrease in chemokine production in 

pancreatic acinar cells. Studies conducted by Satoh et al (Satoh, Gukovskaya et al. 2004) 

have shown that both PKCδ and ε are required to activate NFκB when induced by CCK 
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in pancreatic acinar cells. However, in my study I have found that supraphysiologic 

concentration of substance P significantly increased PKCδ activation and its activation 

alone was sufficient to significantly upregulate the activation of not only NFκB but also 

AP-1 in pancreatic acinar cells. Both PKCδ translocation inhibitor and rottlerin 

attenuated substance P-induced activation of PKCδ as well as NFκB and AP-1 activation.  

In chapter 3, I have shown that substance P stimulates ERK and JNK phosphorylation in 

a time-dependent manner and that these MAPKs mediate NFκB and AP-1 signaling 

pathways in mouse pancreatic acini. Similarly, various studies have implicated substance 

P in acute inflammation, and that it activates a number of intracellular signaling 

molecules such as MAPK members (Castagliuolo, Valenick et al. 2000; Koon, Zhao et 

al. 2004; Lallemend, Lefebvre et al. 2003; Luo, Sharif et al. 1996; Yang, Hsiao et al. 

2002). A typical MAPK cascade is composed of MAPK (e.g ERK and JNK), the kinase 

that activates the MAPK by phosphorylation on serine and tyrosine residues is MAPK 

kinase (e.g MEK) and the kinase that activates the MAPK kinase is MAPKK kinase (e.g 

MEKK1) (Karin 2005). It is known that once activated, MEKK1 can activate at least 

three known downstream pathways, thus leading to ERK, JNK and NFκB activation 

(Garrington and Johnson 1999). In the current study substance P activated MEKK1 in a 

time dependent manner and induced the phosphorylation of ERK and JNK in pancreatic 

acinar cells. The activation of these kinases was significantly inhibited by PKCδ 

translocation inhibitor as well as rottlerin, a specific PKCδ inhibitor but not MAPKs 

inhibitor (Kim, Lim et al. 2007; Koon, Zhao et al. 2005; Smyth, Kerr et al. 2006). These 

results indicate that the activation of the above kinases is mediated through PKCδ. 

Moreover, 10 μM of PD98059 [selective MEK inhibitor (Alessi, Cuenda et al. 1995; 



103 

 

Dudley, Pang et al. 1995)] or 10 μM of SP600125 [selective JNK inhibitor (Bennett, 

Sasaki et al. 2001; Shin, Yan et al. 2002)] had no significant effect on substance 

P/NK1R-induced phosphorylation of PKCδ in pancreatic acinar cells, suggesting that 

PKCδ is upstream of MAP Kinases ERK and JNK in substance P-induced chemokine 

synthesis. Zhou et al (Zhou, Yang et al. 2006) has shown that activation of MEKK1 and 

NFκB were mediated by PKCβ in LPS-stimulated rat peritoneal macrophages. It is highly 

likely that substance P is activating conventional as well as other novel PKC isoforms 

besides PKCδ and thus contributing to the activation of NFκB and ultimately to 

chemokine production. 

To further understand the molecular mechanism and to show that activation of PKCδ was 

indeed mediated by substance P, and not by some non-specific effects, I pre-treated the 

cells with the selective NK1R antagonist, CP96345. In the present study, CP96345 

decreased substance P-induced PKCδ activation. Moreover, CP96345 attenuated 

substance P-induced MEKK1 activation in pancreatic acinar cells. In chapter 3, I have 

shown that substance P-induced activation of ERK, JNK, NFκB and AP-1 driven 

chemokine production were attenuated by CP96345 in pancreatic acinar cells; hence 

showing that substance P-induced PKCδ activation and its downstream signaling 

pathway are dependent on NK1R.  

My findings indicate that PKCδ acts as an important pro-inflammatory signal transducer 

in substance P/ NK1R-induced production of pro-inflammatory mediators MCP-1, MIP-

1α and MIP-2 in pancreatic acinar cells. The secretion of these pro-inflammatory 

mediators is mediated through the signaling cascade of PKCδ-MEKK1-(ERK & JNK)-
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(NFκB & AP-1), thereby contributing to local inflammation and consequently leading to 

systemic inflammation in AP.  

 



105 

 

 
 
 
 

 
 

PKCδ 

*

*

*

*

*

*

0

2

4

6

8

10

12

14

16

0 3 5 10 15 30 45
Time (min)

D
en

si
to

m
et

ry

 
 

 

p-PKCδ 

HPRT 

0 3 5 Time (min) 10 15 30 45 

 

 

Control, 0 min SP, 10 min 

Figure 4.1 

 (a) 

 (b) 

 (c) 



106 

 

 
Figure 4.1 Substance P (SP) induces phosphorylation of PKCδ in a time dependent 
manner. Freshly isolated pancreatic acini, obtained from three mice, were incubated with 
1 μM SP for 0, 3, 5, 10, 15, 30 and 45 min at 37˚C. The cells were lysed, and cell proteins 
were subjected to Western blot analysis using antibodies against (a) phospho-PKCδ and 
HPRT. (b) Densitometric analysis of Western blot experiments from pancreatic acini. (c) 
The expression of PKCδ on the cell surface was visualized by fluorescence microscopy. 
Original magnification is ×400. MW in (kDa) for PKCδ is 78, and HPRT is 24. The 
results are representative of three independent experiments. Results shown are the means 
+ SE. *P < 0.05 when compared to 0 min control. 
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Figure 4.2 Substance P (SP) stimulates activation of MEKK1 in a time dependent 
manner. Freshly isolated pancreatic acini, obtained from three mice, were incubated with 
1 μM SP for 0, 3, 5, 10, 30, 45, 60 and 120 min at 37˚C. The cells were lysed, and cell 
proteins were subjected to Western blot analysis using antibodies against (a) MEKK1 and 
HPRT. (b) Densitometric analysis of Western blot experiments from pancreatic acini. 
MW in (kDa) for MEKK1 is 190, and HPRT is 24.Results shown are the means + SE. *P 
< 0.05 when compared to 0 min control. 
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Figure 4.3 Substance P (SP)-induced PKCδ is involved in activation of MEKK1, 
ERK and JNK. Freshly isolated pancreatic acini, obtained from three mice, were pre-
incubated with either rottlerin at different doses of 1 μM, 5 μM and 10 μM for 1h at 37˚C 
or with 5 μM and 10 μM of the specific PKCδ translocation inhibitor peptide (δV1–1) for 
3h at 37˚C followed by stimulation with 1 μM SP for 10 min at 37˚C. Cells were 
subsequently lysed, and cell proteins were subjected to Western blot analysis using 
antibodies against (a) phospho-PKCδ, (b) MEKK1, (c) phospho-JNK (d) phospho-ERK, 
and HPRT. The corresponding densitometric analysis of Western blot experiments from 
pancreatic acini is shown in (a, b, c, d). The data for 4.3 (e) is qualitative. MW in (kDa) 
for PKCδ is 78, MEKK1 is 190, JNK 2/1 is 54/46, ERK1/2 is 44/42 and HPRT is 24.The 
results are representative of three independent experiments. ND means not detected. 
Results shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 
when compared to SP. 
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Figure 4.4 PKCδ is involved in substance P (SP)-induced NFκB and AP-1 activation. 
1. Freshly isolated pancreatic acini, obtained from three mice, were pre-incubated with 
rottlerin at different doses of 1 μM, 5 μM and 10 μM for 1h followed by stimulation with 
1 μM SP for 45 min. 2. In another experiment, pancreatic acinar cells from three mice 
were pre-incubated with 5 μM and 10 μM of the specific PKCδ translocation inhibitor 
peptide (δV1–1) for 3h followed by stimulation with 1 μM SP for 45 min. Acini were 
separated from incubation medium by centrifugation. The pellet (acini) was used for (a) 
NFκB and (b) AP-1 nuclear extraction and NFκB (p65) and AP-1 (c-jun) DNA-binding 
assays were carried out. The results are representative of three independent experiments. 
Results shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 
when compared to SP. 
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Figure 4.5 PKCδ is involved in substance P (SP)-induced MCP-1, MIP-1α and MIP-
2 mRNA expression. Freshly isolated pancreatic acini, obtained from three mice, were 
pre-incubated with rottlerin at different doses of 1 μM, 5 μM and 10 μM for 1h followed 
by stimulation with 1 μM SP for 45 min. Acini were separated from incubation medium 
by centrifugation to carry out total RNA extraction followed by mRNA expression for (a) 
MCP-1, (b) MIP-1α and (c) MIP-2 by RT-PCR. 18S was used as a loading control. The 
results are representative of three independent experiments. Results shown are the means 
+ SE. *P < 0.05 when compared to control, +P < 0.05 when compared to SP.  
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Figure 4.6 PKCδ is involved in substance P (SP)-induced MCP-1, MIP-1α and MIP-
2 secretion. 1. Freshly isolated pancreatic acini, obtained from three mice, were pre-
incubated with rottlerin at different doses of 1 μM, 5 μM and 10 μM for 1 h followed by 
stimulation with 1 μM SP for 45 min. 2. In another experiment, pancreatic acinar cells 
from three mice were pre-incubated with 5 μM and 10 μM of the specific PKCδ 
translocation inhibitor peptide (δV1–1) for 3 h followed by stimulation with 1 μM SP for 
45 min. The supernatant was used to measure (a) MCP-1, (b) MIP-1α and (c) MIP-2 
levels by ELISA. The results are representative of three independent experiments. Results 
shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 when 
compared to SP.  
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Figure 4.7 Substance P (SP)/NK1R interaction is involved in PKCδ and MEKK1 
activation. Freshly isolated pancreatic acini, obtained from three mice, were pre-
incubated with 1 μM CP96345 for 30 min at 37˚C followed by stimulation with 1 μM SP 
for 10 min for PKCδ and MEKK1 at 37˚C. Cells were subsequently lysed, and cell 
proteins were subjected to Western blot analysis using antibodies against (a) phospho-
PKCδ, (b) MEKK1, and (c) HPRT. Corresponding densitometric analysis of Western blot 
experiments from pancreatic acini. MW in (kDa) for PKCδ is 78, MEKK1 is 190 and 
HPRT is 24. The results are representative of three independent experiments. Results 
shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 when 
compared to SP. 
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CHAPTER 5 

 

ROLE OF CALCIUM AND CONVENTIONAL PROTEIN KINASE C 

α/βII IN SUBSTANCE P-INDUCED CHEMOKINE SYNTHESIS IN 

MOUSE PANCREATIC ACINAR CELLS 

 

5.1 INTRODUCTION 

Acute pancreatitis is an acute inflammatory process of the pancreas. Inflammatory 

mediators have been shown to play a key role in the pathogenesis of acute pancreatitis. 

The interaction between substance P and chemokines is critically involved in mediating 

acute pancreatitis. There is an increased production of substance P and chemokines 

during acute pancreatitis. I have previously demonstrated that substance P stimulated the 

production of inflammatory mediators MCP-1, MIP-1α and MIP-2 in pancreatic acinar 

cells. Blockade of substance P receptor attenuated chemokine production in pancreatic 

acinar cells as well as protected mice against acute pancreatitis (Lau, Wong et al. 2005; 

Sun and Bhatia 2007). 

Phospholipase C (PLC)-dependent signaling pathways have been implicated in the 

development of acute and chronic inflammatory responses in vivo (Hou, Kirchner et al. 

2004). Studies have shown that neuropeptide bombesin stimulation of pancreatic acinar 

cells leads to activation of PLC. PLC then hydrolyzes membrane phospholipid, PIP2 to 

generate two intracellular messengers, DAG and IP3, which in turn, mediate the 
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activation of PKC and intracellular calcium [Ca2+]i release, respectively (Hou, Kirchner 

et al. 2004; Schulz, Krause et al. 1999; Wu, Huang et al. 2000).  

It has been shown that substance P induced elevation of [Ca2+]i, in Chinese hamster 

ovary cells expressing the substance P receptor (Mochizuki-Oda, Nakajima et al. 1993), 

in dorsal horn neurons (Ansel, Kaynard et al. 1996) and in rat pancreatic acinar cell line 

(Gallacher, Hanley et al. 1990). The [Ca2+]i elevation induced by substance P was 

blocked by the NK1 receptor antagonist CP96345 (Mochizuki-Oda, Nakajima et al. 

1994). Another NK1 receptor antagonist, GR 82334, completely inhibited the increase in 

[Ca2+]i that was recorded in polymorphonuclear leukocytes when exposed to substance P 

(Tanabe, Otani et al. 1996). There is evidence suggesting that elevated Ca2+ in pancreatic 

acinar cells is involved in the development of acute pancreatitis (Frick, Fernandez-del 

Castillo et al. 1997). 

Substance P, chemokines and Ca2+ play critical roles in the pathogenesis of acute 

pancreatitis. As demonstrated in chapter 2, substance P stimulated the production of 

chemokines in pancreatic acinar cells via NFκB. Moreover, as shown in chapters 3 and 4, 

PKCδ, MAPKs ERK and JNK as well as transcription factor AP-1 were involved in 

substance P-induced chemokine production in pancreatic acinar cells. To my knowledge, 

no study has explored the interplay between substance P and Ca2+ in inducing the 

production of pro-inflammatory mediators in pancreatic acinar cells. Therefore, the aim is 

to investigate the role of Ca2+ in substance P-induced chemokine production in an in vitro 

model of isolated pancreatic acinar cells and also, to study the underlying signaling 

mechanisms involved.  



123 

 

5.2 MATERIALS AND METHODS  

 

5.2.1 Animal Ethics 

Please refer to section 2.2.1. 

5.2.2 Test system used 

Mouse pancreatic acinar cells were prepared, as previously described in section 2.2.2. 

5.2.3 Viability of mouse pancreatic acinar cells 

The viability of mouse pancreatic acinar cells was assessed, as previously described in 

section 2.2.3. 

5.2.4 Experimental design 

Pancreatic acinar cells (500 μl of cell suspension) were treated with substance P (Sigma-

Aldrich) at a concentration of 1 μM for 0, 3, 5, 10, 15, 30, 45 and 60 min at 37˚C. 

Following treatment with substance P, the cells were lysed to detect for PKCα/βII 

activation by Western blot analysis. In some experiments, cells were either pre-treated 

with the specific Ca2+ chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic 

acid tetrakis-acetoxymethyl ester (BAPTA-AM), Sigma-Aldrich, at 1 µM, 5 µM and 10 

µM, or the selective PLC inhibitor, 1-[6-((17b-3-Methoxyestra-1,3,5(10)-trien-17-

yl)amino)hexyl]-1H-pyrrole-2,5-dione (U73122), Calbiochem/Merck,  at 1 µM, 2.5 µM 

or the PKC inhibitor (chelerythrine chloride), Calbiochem/Merck,  at 10 µM for 30 min 

and then stimulated with 1 μM substance P or vehicle for 10 or 45 min at 37°C. 

Subsequently, the supernatant was used for chemokine detection and the pellet was used 

for either nuclear extract, to detect NFκB (p65) and AP-1(c-Jun) activation, or cell lysis 

for Western blot analysis to detect PKCα/βII, ERK and JNK. The negative control in 
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which pancreatic acini were pre-treated with 1 µM BAPTA-AM or 1 µM U73122 or 10 

µM chelerythrine chloride for 30 min followed by stimulation with vehicle (saline) for 45 

min had no significant effect on chemokine production when compared to unstimulated 

controls. 

5.2.5 Preparation of total cell lysates for Western blot analysis 

Total cell lysates for Western blot analysis were prepared, as previously described in 

section 3.2.5. 

5.2.6 Western blot analysis 

Cell lysates (50 µg of protein) were separated on 12% SDS-polyacrylamide gel and 

electrophoretically transferred to nitrocellulose membranes (Bio-Rad Laboratories, 

Hercules, CA). Non-specific binding was blocked by 1 h incubation of the membranes, at 

room temperature, in 5% nonfat dry milk in phosphate buffered saline Tween 20 (PBST) 

(0.05% Tween 20 in phosphate buffered saline). The blots were then incubated overnight 

at 4°C with the primary antibodies (at a 1:1000 dilutions in the buffer containing 2.5% 

nonfat dry milk in PBST) phospho-PKCα/βII, phospho-ERK1/2, total ERK1/2, phospho-

SAPK/JNK, total SAPK/JNK (Cell Signaling Technology) and HPRT purchased from 

Santa Cruz Biotechnology. HPRT was used as the housekeeping protein. PKCα/βII 

antibody detects PKCα only when phosphorylated at threonine 638 and PKC βII only 

when phosphorylated at threonine 641. It reacts weakly with phosphorylated PKC βI and 

γ. After which the nitrocellulose membranes were washed four times with PBST, and 

finally incubated for 1 h at room temperature with goat anti-rabbit HRP-conjugated 

secondary antibody (Santa Cruz Biotechnology) at 1:2000 dilutions in the buffer 

containing 2.5% nonfat dry milk in PBST. The blots were developed for visualization 
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using enhanced chemiluminescence (ECL) detection kit (Pierce, Rockford, IL). The 

densities of the bands were quantified using a UVP GelDoc-It Imaging Systems (Scimed, 

Asia). 

5.2.7 Nuclear cell extract preparation 

Nuclear cell extract was prepared, as previously described in section 2.2.6. 

5.2.8 NFκB DNA-binding activity 

The binding of NFκB to DNA was measured in nuclear extracts, as previously described 

in section 2.2.7. 

5.2.9 AP-1 DNA-binding activity 

The binding of AP-1 to DNA was measured in nuclear extracts, as previously described 

in section 3.2.9. 

5.2.10 Chemokine detection 

Pancreatic acinar cell supernatants were assayed for MCP-1, MIP-1α and MIP-2 using a 

sandwich ELISA, as previously described in section 2.2.5. 

5.2.11 Cytosolic calcium measurement 

Cytosolic calcium was measured as described previously (Melendez and Ibrahim 2004; 

Zhi, Leung et al. 2006). Briefly, cells were loaded with 1 mg/ml Fura2-AM (Invitrogen) 

in calcium assay buffer (in mM: 145 NaCl, 5 KCl, 1 MgSO4, 1 CaCl2, 10 HEPES, pH 

7.4) containing 1.8 mg/ml glucose and 2 mg/ml BSA. After removal of excess reagents 

by dilution and centrifugation at 4°C, the cells were re-suspended in calcium assay buffer 

and warmed to 37°C in the cuvette; after a baseline measurement was obtained, the cells 

were stimulated by the addition of 1 μM substance P. Fluorescence was measured at 340 

and 380 nm. 
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5.2.12 Statistical analysis 

Results are presented as means + SE with 6 replicates for each condition. 3 independent 

experiments (n = 3) were carried out. The significance of changes was evaluated by using 

ANOVA and Tukey’s method was used as a post hoc test for the difference between 

groups. A P value < 0.05 was taken as the level of significance.  
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5.3 RESULTS 

 

5.3.1 Substance P induces phosphorylation of PKCα/βII in a time dependent 

manner. 

Pancreatic acinar cells were treated with 1 μM substance P or vehicle (saline) for 0, 3, 5, 

10, 15, 30, 45 and 60 min at 37˚C. Cells were then lysed, and cell proteins were subjected 

to Western blot analysis. As shown in Figure 5.1 (a, b), substance P induced 

phosphorylation of PKCα/βII in pancreatic acini which was evident from 3 min and 

increased in a time-dependent manner up to 10 min, followed by a time-dependent 

decrease until 60 min. Densitometric analysis of Western blot experiments revealed a 

significant increase in phosphorylation of PKCα/βII at 10 min when compared to 0 min 

control. No significant change was detected in the housekeeping proteins HPRT.  

5.3.2 Substance P-induced [Ca2+]i is involved in activation of PKCα/βII, ERK and 

JNK.  

The data in Figure 5.2 (a, b) shows that substance P stimulation rapidly triggered calcium 

release from internal stores in pancreatic acinar cells. However, when these cells were 

pre-treated for 30 min with 1 μM BAPTA-AM, a calcium-specific chelator, the increase 

in [Ca2+]i was inhibited (Figure 5.2). 

Stimulation of pancreatic acinar cells with 1 μM substance P significantly upregulated 

phosphorylation of PKCα/βII, ERK and JNK. Pancreatic acinar cells were pre-treated for 

30 min with different concentration of BAPTA-AM, ranging from 1 to 10 μM, followed 

by stimulation with 1 μM of substance P for 10 min. Cells were then lysed, and cell 

proteins were subjected to Western blot analysis. As shown in Figure 5.3, BAPTA-AM 
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concentration-dependently decreased phosphorylation of PKCα/βII, ERK and JNK in 

pancreatic acinar cells when compared to substance P only stimulated cells. No 

significant change was detected in the housekeeping proteins HPRT, total ERK and total 

JNK. 

5.3.3 Role of PLC in substance P-induced activation of PKCα/βII, ERK and JNK in 

pancreatic acinar cells 

Pancreatic acini were pre-treated with the selective PLC inhibitor, U73122, at 1 µM, 2.5 

µM for 30 min followed by stimulation with 1 μM of substance P for 10 min. Cells were 

then lysed, and cell proteins were subjected to Western blot analysis. As shown in Figure 

5.4, U73122 decreased phosphorylation of PKCα/βII, ERK and JNK in pancreatic acinar 

cells when compared to substance P only stimulated cells. No significant change was 

detected in the housekeeping proteins HPRT, total ERK and total JNK. 

5.3.4 PLC and Ca2+ are involved in substance P-induced NFκB p65 and AP-1 c-Jun 

activation in pancreatic acinar cells. 

Pancreatic acinar cells were pre-incubated for 30 min with either BAPTA-AM, ranging 

from 1 to 10 μM, or U73122, at 1 µM, 2.5 µM followed by stimulation with 1 μM of 

substance P for 45 min. NFκB p65 and AP-1 c-Jun DNA-binding assay revealed that 

treatment with substance P led to a notable increase in the activity of NFκB p65 and AP-1 

c-Jun, in pancreatic acinar cell. As shown in Figure 5.5 (a, b), pre-treatment with either 

BAPTA-AM or U73122 attenuated substance P-induced DNA-binding activity of NFκB 

p65 and AP-1 c-Jun when compared to substance P only treated cells. 

5.3.5 PLC, Ca2+ and PKC are involved in the secretion of several pro-inflammatory 

chemokines in pancreatic acinar cells. 
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Treatment of pancreatic acini with 1 μM substance P resulted in enhanced expression of 

pro-inflammatory chemokines MCP-1, MIP-1α, and MIP-2. Pancreatic acinar cells were 

pre-treated with BAPTA-AM, ranging from 1 to 10 μM, or U73122, at 1 µM, 2.5 µM or 

chelerythrine chloride at 10 µM for 30 min followed by stimulation with 1 μM of 

substance P for 45 min. The protein levels of these chemokines were determined by 

ELISA. Figure 5.6 (a, b, c) shows that pre-treatment with either BAPTA-AM or U73122 

markedly decreased MCP-1, MIP-1α, and MIP-2 production when compared to substance 

P only treated cells. Furthermore, treatment with PKC inhibitor chelerythrine chloride 

significantly decreased the secretion of MCP-1, MIP-1α, and MIP-2 in pancreatic acinar 

cells. These results demonstrated that PLC, Ca2+ and PKC were involved in the 

production of several chemokines in pancreatic acinar cells. 
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5.4 DISCUSSION  

In the present study, I have investigated the role of PLC in substance P/NK1R induced 

chemokine production in pancreatic acinar cells using U73122. U73122 is a membrane-

permeable aminosteroid PLC inhibitor. It was reported to selectively inhibit the PLC-

dependent process in human platelets and neutrophils and was thus proven to be useful in 

evaluating the role of PLC in cell activation (Bleasdale, Thakur et al. 1990; Smith, Justen 

et al. 1996; Smith, Sam et al. 1990; Stam, Michiels et al. 1998). Inhibition of PLC 

significantly decreased substance P-induced phosphorylation of Ca2+-dependent 

PKCα/βII, ERK and JNK. Previous studies have shown that in PLC deficient mice, there 

was a reduction in chemoattractant-induced phosphorylation of JNK and MAPK in 

murine neutrophils (Li, Jiang et al. 2000). Moreover, in my study U73122 significantly 

inhibited substance P-induced activation of NFκB p65 and AP-1 c-Jun and the secretion 

of MCP-1, MIP-1α, and MIP-2 in pancreatic acinar cells.  

Acute pancreatitis was found to be associated with hypercalcaemia in humans (Frick, 

Fryd et al. 1987) and in experimental animal models, acute pancreatitis was induced by 

bolus infusions (intravenous injection) of calcium (Mithofer, Fernandez-del Castillo et al. 

1995). It has been shown that hypercalcaemia induces a secretory block and 

accumulation of digestive zymogens within the pancreatic acinar cell (Frick, Mithofer et 

al. 1995). It is generally believed that ectopic activation of digestive enzymes, 

particularly intracellular trypsinogen activation, is an early event in the pathophysiology 

of acute pancreatitis (Frick, Fernandez-del Castillo et al. 1997; Mithofer, Fernandez-del 

Castillo et al. 1995). In the current study, I were interested in elucidating the mechanisms 

by which substance P-induced [Ca2+]i elevation leads to production of pro-inflammatory 
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mediators. I have shown that substance P elevates [Ca2+]i in pancreatic acinar cells which 

is in accordance with previous studies conducted in various cells expressing the substance 

P receptor (Ansel, Kaynard et al. 1996; Gallacher, Hanley et al. 1990; Mochizuki-Oda, 

Nakajima et al. 1993). Moreover, treatment with BAPTA-AM significantly attenuated 

the increase in [Ca2+]i in pancreatic acinar cells. BAPTA-AM, the membrane-permeable 

form of BAPTA, is hydrolyzed by cytosolic esterases and is trapped intracellularly as the 

active Ca2+ chelator BAPTA and is widely used as an intracellular calcium sponge 

(Ahluwalia, Topp et al. 2001; Harrison and Bers 1987; Kim, Kim et al. 2002; Smith, 

Selak et al. 1992). BAPTA-AM significantly attenuated phosphorylation of PKCα/βII, 

ERK and JNK, subsequently leading to a decrease in activation of NFκB p65, AP-1 c-Jun 

and production of MCP-1, MIP-1α, and MIP-2 in pancreatic acinar cells. 

The PKC superfamily is classified into three subfamilies based on their domain structure 

and their ability to respond to calcium and diacylglycerol (Newton and Johnson 1998). In 

this study, I have focused on the Ca2+-dependent conventional PKCα/βII. Substance P 

induced a time-dependent increase in phosphorylation of PKCα/βII in pancreatic acinar 

cells. The increase in phosphorylation was significantly blocked by pre-treatment with 

either U73122 or BAPTA-AM. Moreover, chelerythrine chloride significantly abrogated 

the increase in substance P-induced production of chemokines MCP-1, MIP-1α, and 

MIP-2 in pancreatic acinar cells. Studies have shown that chelerythrine chloride 

specifically blocked PKC phosphorylation and it has been shown to inhibit PKCα and 

PKCβ translocation from the cytosol to the membrane in isolated ileal synaptosomes 

(Chao, Chen et al. 1998; Herbert, Augereau et al. 1990).  
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In conclusion, substance P stimulates pancreatic acinar cells to release chemokines MCP-

1, MIP-1α, and MIP-2 through PLC dependent mechanisms. Substance P induces an 

increase in [Ca2+]i which results in the phosphorylation of PKCα/βII, ERK and JNK; 

consequently leading to the activation of NFκB p65, AP-1 c-Jun and ultimately to 

chemokine production. Apart from being involved in trypsinogen activation (Frick, 

Fernandez-del Castillo et al. 1997; Mithofer, Fernandez-del Castillo et al. 1995), an 

increase in [Ca2+]i also entailed elevated production of chemokines which play a critical 

role in the pathogenesis of acute pancreatitis. In light of this study, I proposed that drugs 

targeting the substance P-calcium mediated signaling pathways could prove beneficial in 

improving the treatment of acute pancreatitis. 
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Figure 5.1 Substance P (SP) induces phosphorylation of PKCα/βII in a time 
dependent manner. Freshly isolated pancreatic acini were incubated with either 1 μM 
SP or vehicle (saline) for 0, 3, 5, 10, 15, 30, 45 and 60 min at 37˚C. The cells were lysed, 
and cell proteins were subjected to Western blot analysis using antibodies against (a) 
phospho-PKCα/βII and HPRT. (b) Densitometric analysis of Western blot experiments 
from pancreatic acini. MW in (kDa) for PKCα/βII is 80 and HPRT is 24.The results are 
representative of three independent (n=3) experiments. Results shown are the means + 
SE. *P < 0.05 when compared to 0 min control. 
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Figure 5.2 Substance P (SP) induces mobilization of [Ca2+]i in pancreatic acinar 
cells. Freshly isolated pancreatic acini were pre-incubated with either 1 μM BAPTA-AM 
or vehicle (DMSO) for 30 min. The cells were then rinsed twice with calcium assay 
buffer and then loaded with 1 mg/ml Fura2-AM. After removal of excess reagents, the 
cells were re-suspended in calcium assay buffer and warmed to 37°C in the cuvette; after 
the baseline reading was obtained, the cells were stimulated by the addition of 1 μM SP. 
Fluorescence was measured at 340 and 380 nm. Figure 2 (a) is a representative example. 
The results shown in figure 2 (b) are representative of three independent (n=3) 
experiments. Results shown are the means + SE. *P < 0.05 when compared to control, 
+P < 0.05 when compared to SP.  
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Figure 5.3 Substance P (SP)-induced [Ca2+]i is involved in activation of PKCα/βII, 
ERK and JNK. Freshly isolated pancreatic acini were pre-incubated with either different 
concentration of BAPTA-AM, ranging from 1 to 10 μM, or vehicle (DMSO) for 30 min 
followed by stimulation with 1 μM of SP for 10 min. Cells were then lysed, and cell 
proteins were subjected to Western blot analysis using antibodies against (a) phospho-
PKCα/βII, HPRT (b) phospho-ERK, total ERK (c) phospho-JNK and total JNK. The 
phosphorylated sub-units such as p-PKCα/βII, p-44 ERK, p-42 ERK, p-54 JNK and p-46 
JNK have been quantified. Densitometric analysis of Western blot experiments was 
performed and the group data from 3 independent preparations (n=3) are presented in (d, 
e, f). MW in (kDa) for PKCα/βII is 80, JNK 2/1 is 54/46, ERK1/2 is 44/42 and HPRT is 
24. Results shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 
when compared to SP.  
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Figure 5.4 Substance P (SP)-induced activation of PKCα/βII, ERK and JNK is 
mediated by PLC in pancreatic acinar cells. Freshly isolated pancreatic acini were pre-
incubated with either U73122 at 1 µM, 2.5 µM or vehicle (DMSO) for 30 min at 37˚C 
followed by stimulation with 1 μM SP for 10 min at 37˚C. Cells were subsequently lysed, 
and cell proteins were subjected to Western blot analysis using antibodies against (a) 
PKCα/βII, HPRT, (b) phospho-ERK, total ERK, (c) phospho-JNK and total JNK. The 
phosphorylated sub-units such as p-PKCα/βII, p-44 ERK, p-42 ERK, p-54 JNK and p-46 
JNK have been quantified. Densitometric analysis of Western blot experiments were 
performed and the group data from 3 independent preparations (n=3) are presented in (d, 
e, f). MW in (kDa) for PKCα/βII is 80, JNK 2/1 is 54/46, ERK1/2 is 44/42 and HPRT is 
24. Results shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 
when compared to SP.  
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Figure 5.5 PLC and Ca2+ are involved in substance P (SP)-induced NFκB p65 and 
AP-1 c-Jun activation in pancreatic acinar cells. Freshly isolated pancreatic acini were 
pre-incubated with BAPTA-AM, ranging from 1 to 10 μM, or U73122 at 1 µM, 2.5 µM 
or vehicle (DMSO) followed by stimulation with 1 μM of SP for 45 min. The cells were 
separated from incubation medium by centrifugation. The pellet (cells) was used for (a) 
NFκB and (b) AP-1 nuclear extraction. NFκB p65 and AP-1 c-Jun DNA-binding assays 
were then carried out. The results are representative of three independent (n=3) 
experiments. Results shown are the means + SE. *P < 0.05 when compared to control, 
+P < 0.05 when compared to SP. 
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Figure 5.6 PLC, Ca2+ and PKC are involved in the secretion of several pro-
inflammatory chemokines in pancreatic acinar cells. Freshly isolated pancreatic acini 
were pre-incubated with BAPTA-AM, ranging from 1 to 10 μM, or U73122 at 1 µM, 2.5 
µM or chelerythrine chloride at 10 µM or vehicle (DMSO) for 30 min followed by 
stimulation with 1 μM of substance P (SP) for 45 min. The supernatant was used to 
measure (a) MCP-1, (b) MIP-1α and (c) MIP-2 levels by ELISA. The results are 
representative of three independent (n=3) experiments. Results shown are the means + 
SE. *P < 0.05 when compared to control, +P < 0.05 when compared to SP.  
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CHAPTER 6 

 

INVOLVEMENT OF SRC FAMILY KINASES IN SUBSTANCE P-

INDUCED CHEMOKINE PRODUCTION IN MOUSE PANCREATIC 

ACINAR CELLS, AND ITS SIGNIFICANCE IN ACUTE 

PANCREATITIS 

 

6.1 INTRODUCTION 

Acute pancreatitis is increasing in incidence and is often a fatal human disease, in which 

the pancreas digests itself and its surroundings (Bhatia, Brady et al. 2000; Bhatia and 

Moochhala 2004; Bhatia, Neoptolemos et al. 2001). Most cases are secondary to 

gallstones or excess alcohol consumption. Regardless of the cause, activation of digestive 

enzymes within pancreatic acinar cells is thought to be a critical initiating event. 

Pancreatic damage results in a local inflammatory response, which if pronounced leads to 

a systemic inflammatory response. Thus inflammatory mediators play a key role in the 

pathogenesis of acute pancreatitis (Bhatia 2002; Bhatia 2004; Bhatia, Brady et al. 2000; 

Bhatia and Moochhala 2004; Bhatia, Neoptolemos et al. 2001).  

SFKs specifically Src has been widely studied in tumorigenesis. However, latest studies 

have revealed that SKFs are among the most important families for the intracellular 

signal transduction related to acute inflammatory responses (Armstrong 2004; Lowell 

2004; Yuan 2002). Several animal studies have shown that inhibition of SFKs with small 

chemical inhibitors prevented ischemia-reperfusion-induced injury in the brain and heart. 
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Moreover, blockade of SFKs attenuated sepsis, acute lung injury, and other organ 

damage (Akiyama, Yuguchi et al. 2004; Khadaroo, He et al. 2004; Kusaka, Ishikawa et 

al. 2004; Lennmyr, Ericsson et al. 2004; Paul, Zhang et al. 2001; Severgnini, Takahashi 

et al. 2005; Weis, Shintani et al. 2004).  

SFKs are activated in response to the stimulation of a variety of cell surface receptors 

(Thomas and Brugge 1997). One class of receptor is GPCR. The neuropeptide bombesin 

has been shown to induce a rapid and transient increase in the activation of SFK 

(Rodríguez-Fernández and Rozengurt 1996). Once activated Src is then capable of 

interacting with and activating several substrates, such as Shc, Rho GTPase-activating 

protein p190 and the transcription factor STAT3 (Brown and Cooper 1996). Previous 

studies have demonstrated that both v-Src and c-Src are capable of activating STAT3 in 

fibroblasts (Bromberg, Horvath et al. 1998; Turkson, Bowman et al. 1999). The STAT 

family of proteins has been implicated in the function of a wide range of cells (Akira 

2000; Bromberg and Darnell 2000) and it is known to activate various key inflammatory 

mediators, for example the cytokine signaling pathway (Severgnini, Takahashi et al. 

2004).  

Accumulating experimental evidence has suggested that substance P/NK1R as well as 

chemokines play critical roles in the pathogenesis of acute pancreatitis. I have shown, in 

chapter 2, that substance P causes an increased synthesis in CC and CXC chemokines in 

pancreatic acinar cells. Moreover, blockade of NK1R attenuated chemokine production in 

pancreatic acinar cells, as demonstrated in chapter 3, and protected mice from acute 

pancreatitis (Lau, Wong et al. 2005; Sun and Bhatia 2007).  
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Limited knowledge is available on the role of SFKs in chemokine production in acute 

pancreatitis. Therefore, the aim is to investigate the role of SFKs in mediating substance 

P-induced chemokine production in pancreatic acinar cells and also the underlying signal 

transduction mechanisms involved. Moreover, I sought to test the significance of my in 

vitro findings in an in vivo model of acute pancreatitis. 
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6.2 MATERIALS AND METHODS  

 

6.2.1 Animal Ethics 

Please refer to section 2.2.1. 

6.2.2 Test system used 

Mouse pancreatic acinar cells were prepared, as previously described in section 2.2.2. 

6.2.3 Viability of mouse pancreatic acinar cells 

The viability of mouse pancreatic acinar cells was assessed, as previously described in 

section 2.2.3. 

6.2.4 In vitro experimental design 

Pancreatic acinar cells (500 μl of cell suspension) were treated with substance P (Sigma-

Aldrich) at a concentration of 1 μM for 0, 3, 5, 10, 15, 30 and 45min at 37˚C. Following 

treatment with substance P, the cells were lysed to detect for SFK activation by Western 

blot analysis. In some experiments, cells were either pre-treated with a potent and 

selective inhibitor of the Src family of protein tyrosine kinases, 4-amino-5-(4-

chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine, PP2, (Calbiochem) at 1 and 10 μM 

or a negative control for the Src family protein tyrosine kinase inhibitor, 4-Amino-7-

phenylpyrazol [3,4-d] pyrimidine, PP3, (Calbiochem) at 1 μM for 30 min followed by 

stimulation with 1 μM substance P or vehicle for 10 or 45 min at 37°C. Subsequently, the 

supernatant was used for chemokine detection and the pellet was used for either nuclear 

extract, to detect STAT3, NFκB (p65) and AP-1(c-Jun) activation, or cell lysis for 

Western blot analysis to detect SFKs, ERK and JNK. In another experiment, isolated 

pancreatic acinar cells were pre-incubated with the selective NK1R antagonist, CP96345, 
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at 1 µM (Pfizer Diagnostics) for 30 min followed by treatment with 1 μM substance P or 

vehicle for 10 min at 37°C. Subsequently, the cells were lysed and used for Western blot 

analysis to detect SFKs. 

6.2.5 Preparation of total cell lysates for Western blot analysis 

Total cell lysates for Western blot analysis were prepared, as previously described in 

section 3.2.5. 

6.2.6 Western blot analysis 

Cell lysates (50 µg of protein) were separated on 12% SDS-polyacrylamide gel and 

electrophoretically transferred to nitrocellulose membranes (Bio-Rad Laboratories, 

Hercules, CA). Non-specific binding was blocked by 1 h incubation of the membranes, at 

room temperature, in 5% nonfat dry milk in phosphate buffered saline Tween 20 (PBST) 

(0.05% Tween 20 in phosphate buffered saline). The blots were then incubated overnight 

at 4°C with the primary antibodies (at a 1:1000 dilutions in the buffer containing 2.5% 

nonfat dry milk in PBST) phospho-Src family, phospho-ERK1/2, phospho-SAPK/JNK, 

(Cell Signaling Technology) and HPRT, purchased from Santa Cruz Biotechnology. 

HPRT was used as the housekeeping protein. Phospho-Src Family (Tyr416) antibody 

detects endogenous levels of Src only when phosphorylated at tyrosine 416. The antibody 

may cross-react with other Src family members (Lyn, Fyn, Lck, Yes and Hck) when 

phosphorylated at equivalent sites. It does not cross-react with Src phosphorylated at 

tyrosine 527. After which, the membranes were washed four times with PBST, and 

finally incubated for 1 h at room temperature with goat anti-rabbit HRP-conjugated 

secondary antibody (Santa Cruz Biotechnology) at 1:2000 dilutions in the buffer 

containing 2.5% nonfat dry milk in PBST. The blots were developed for visualization 
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using enhanced chemiluminescence (ECL) detection kit (Pierce, Rockford, IL). The 

densities of the bands were quantified using a UVP GelDoc-It Imaging Systems. 

6.2.7 Nuclear extract preparation 

Nuclear cell extract was prepared, as previously described in section 2.2.6. 

6.2.8 STAT3 DNA-binding activity 

The binding of STAT3 to DNA was measured in nuclear extracts with ELISA-based 

TransAM STAT3 assay kit (Active Motif, SciMed, Asia). This assay uses multi-well 

plates coated with an unlabeled oligonucleotide containing the consensus binding site for 

STAT (5’-TTCCCGGAA-3’). Nuclear proteins (5 µg) were added to each well and 

incubated for 1 h at room temperature to allow STAT3 DNA binding. Subsequently, by 

using an antibody that is directed against STAT3 subunit, the STAT3 complex bound to 

the oligonucleotide is detected. Addition of the secondary antibody conjugated to 

horseradish peroxidase (HRP) provides sensitive colorimetric readout that is quantified 

by spectrophotometry. Absorbance was read at 450 nm within 5 min by using a 96-well 

microplate reader (Tecan Systems, San Jose, CA). The wild-type consensus 

oligonucleotide is provided as a competitor for STAT3 binding to monitor the specificity 

of the assay. Results were expressed as fold increase over the control group. 

6.2.9 NFκB DNA-binding activity 

The binding of NFκB to DNA was measured in nuclear extracts, as previously described 

in section 2.2.7. 

6.2.10 AP-1 DNA-binding activity 
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The binding of AP-1 to DNA was measured in nuclear extracts, as previously described 

in section 3.2.9. 

6.2.11 Chemokine detection 

Pancreatic acinar cell supernatants and pancreatic homogenate were assayed for MCP-1, 

MIP-1α and MIP-2 using a sandwich ELISA, as previously described in section 2.2.5. 

6.2.12 Induction of Acute Pancreatitis  

Swiss mice (20-25 g) were randomly assigned to control or experimental groups using 10 

or more animals for each group. Animals were given hourly intra-peritoneal (i.p.) 

injections of normal saline or saline containing caerulein (50 µg/kg) for 10 h. PP2 at 

doses of 0.5, 1.0 and 1.5 mg/kg or PP3 at a dose of 1.0 mg/kg was administered to mice 

i.p. either 1h before or 1 h after the first caerulein injection. 1 h after the last caerulein 

injection animals were sacrificed by an i.p. injection of a lethal dose of pentabarbitone. 

Harvested heparinized blood was centrifuged, the plasma removed and stored at -80°C. 

Random cross-sections of the head, body, and tail of the pancreas were fixed in 4% 

neutral phosphate-buffered formalin then embedded in paraffin wax. Freshly harvested 

sample of pancreas was weighed and then dried and reweighed to determine pancreatic 

water content (Bhatia, Saluja et al. 1998). Samples of pancreas were stored at -80°C for 

subsequent measurement of tissue myeloperoxidase (MPO) activity, to perform ELISA 

and Western blot analysis.  

6.2.13 Amylase estimation 

Amylase activity was measured using a kinetic spectrophotometric assay. Plasma 

samples were incubated with the substrate, 4, 6-ethylidene (G7)-p-nitrophenyl (G1)-1-D-
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maltoheptoside (Sigma, St. Louis, MO, USA) for 2 minutes at 37°C and absorbance 

measured every minute for the subsequent 2 minutes at 405 nm (Bhatia, Brady et al. 

2000; Bhatia, Saluja et al. 1998; Pierre, Tung et al. 1976).  The change in absorbance was 

used to calculate the amylase activity. 

6.2.14 Myeloperoxidase estimation 

Neutrophil sequestration in pancreas was quantified by measuring tissue MPO activity 

(Bhatia, Brady et al. 2000; Bhatia, Saluja et al. 1998). Tissue samples were thawed, 

homogenised in 20 mM phosphate buffer (pH 7.4), centrifuged (10,000 × g, 10 min, 4°C) 

and the resulting pellet resuspended in 50 mM phosphate buffer (pH 6.0) containing 0.5% 

hexadecyltrimethylammonium bromide (Sigma, St. Louis, MO, USA). The suspension 

was subjected to four cycles of freezing and thawing and further disrupted by sonication 

(40 sec). The sample was then centrifuged (10,000 × g, 5 min, 4°C) and the supernatant 

used for the MPO assay. The reaction mixture consisted of the supernatant, 1.6 mM 

tetramethylbenzidine (Sigma, St. Louis, MO, USA), 80 mM sodium phosphate buffer 

(pH 5.4), and 0.3 mM hydrogen peroxide. This mixture was incubated for 120 sec, the 

reaction terminated with 2M H2SO4 and the absorbance measured at 450 nm. This 

absorbance was then corrected for the protein content of the tissue sample.  

6.2.15 Morphological Examination 

Paraffin-embedded pancreas samples were sectioned (5 µm), stained with 

hematoxylin/eosin, and examined under light microscopy at ×400 magnifications. For 

these studies, 8 randomly chosen microscopic fields (x125) were examined for each 

tissue sample. The criteria used while choosing the pictures were the presence of acinar-

cell ghosts, vacuolization, swelling of acinar cells and the destruction of the 
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histoarchitecture of whole or parts of the acini, all of which had been associated with 

inflammatory reaction. 

6.2.16 Statistical Analysis 
 
Data are expressed as the mean + standard error of the mean (SEM). In all figures, 

vertical bars denote the SEM and the absence of such bars indicates that the SEM is too 

small to illustrate. The significance of changes was evaluated by using Student's t test 

when the data consisted of only two groups or by analysis of variance (ANOVA) when 

comparing three or more groups. If ANOVA indicated a significant difference, the data 

were analyzed by using Tukey's method as a post hoc test for the difference between 

groups. A P value of < 0.05 was considered to indicate a significant difference. 
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6.3 RESULTS 

6.3.1 Substance P/NK1R induces a rapid and transient increase in phosphorylation 

of Src family (Tyr 416) in mouse pancreatic acinar cells 

Pancreatic acinar cells were stimulated with 1 μM substance P or vehicle (saline) for 0, 3, 

5, 10, 15, 30 and 45 min at 37˚C. Cells were then lysed, and cell proteins were subjected 

to Western blot analysis. As shown in Figure 6.1 (a, b), substance P induced 

phosphorylation of Src family (Tyr 416) in a time dependent manner up to 10 min, 

followed by a time-dependent decrease. Densitometric analysis of Western blot 

experiments revealed a significant increase in phosphorylation Src family (Tyr 416) at 10 

and 15 min when compared to 0 min control. No significant change was observed when 

pancreatic acinar cells were treated with the vehicle at different time points. Pancreatic 

acini were also pre-treated with 1 μM of CP96345, a selective NK1R antagonist, for 30 

min followed by stimulation with 1 μM of substance P for 10 min. Cells were then lysed, 

and cell proteins were subjected to Western blot analysis. As demonstrated in Figure 6.1 

(c, d), CP96345 significantly reduced substance P-induced phosphorylation of Src family 

(Tyr 416) in pancreatic acinar cells. No significant change was detected in the 

housekeeping protein HPRT. This shows that substance P-induced phosphorylation of 

Src family is mediated through substance P/NK1R in pancreatic acinar cells. 

6.3.2 Involvement of SFKs in substance P-induced MAP Kinases in pancreatic 

acinar cells. 

Stimulation of pancreatic acinar cells with 1 μM substance P significantly upregulated 

phosphorylation of Src family (Tyr 416), ERK and JNK. Pancreatic acinar cells were pre-

treated for 30 min with the selective inhibitor of the Src family of protein tyrosine 
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kinases, PP2, at 1 and 10 μM, followed by stimulation with 1 μM of substance P for 10 

min. Cells were then lysed, and cell proteins were subjected to Western blot analysis. As 

shown in Figure 6.2, PP2 decreased substance P-induced phosphorylation of Src family 

(Tyr 416), hence confirming its inhibitory effect. Moreover, PP2 attenuated substance P-

induced phosphorylation of ERK and JNK in pancreatic acinar cells. No significant 

change was detected in the housekeeping proteins HPRT. 

6.3.3 Substance P-induced SFKs is involved in activation of STAT3, NFκB and AP-1 

in pancreatic acinar cells.  

Pancreatic acinar cells were pre-incubated for 30 min with PP2, at 1 and 10 μM followed 

by stimulation with 1 μM of substance P for 45 min. STAT3, NFκB and AP-1 DNA-

binding assay revealed that treatment with substance P led to a notable increase in the 

activity of STAT3, NFκB and AP-1 in pancreatic acinar cell. As shown in Figure 6.3 (a, 

b, c), pre-treatment with PP2 attenuated substance P-induced DNA-binding activity of 

STAT3, NFκB and AP-1. 

6.3.4 SFKs mediate substance P-induced production of CC and CXC chemokines in 

pancreatic acinar cells. 

Treatment of pancreatic acini with 1 μM substance P resulted in increased production of 

CC chemokine MCP-1, MIP-1α and CXC chemokine MIP-2. Pancreatic acinar cells were 

pre-treated with either PP2 at 1 and 10 μM or its negative control PP3 at 1 µM for 30 min 

followed by stimulation with 1 μM of substance P for 45 min. The protein levels of these 

chemokines were determined by ELISA. Figure 6.4 (a, b, c) shows that pre-treatment 

with PP2 markedly decreased MCP-1, MIP-1α, and MIP-2 production. However, 
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treatment with the negative control PP3 had no significant effect on chemokine 

production when compared to substance P only treated cells.  

6.3.5 Effect of prophylactic and therapeutic treatment with PP2 on the severity of 

caerulein-induced acute pancreatitis.  

Acute pancreatitis was induced by intraperitoneal administration of caerulein at a 

concentration of 50 μg/kg hourly for 10 h. Evidence of pancreatic injury in acute 

pancreatitis mice was confirmed by a rise in plasma amylase, Figure 6.5 (a, b); and an 

increase in pancreatic edema as evidenced by elevated pancreatic water content, Figure 

6.5 (c, d). Animals were administered either PP2 or PP3 1h before or after starting 

caerulein injection. Both prophylactic and therapeutic treatment with PP2 significantly 

attenuated plasma amylase levels and pancreatic edema when compared with animals 

treated with caerulein alone, Figure 6.5 (a, c). Histological examination of pancreas 

sections confirmed a protection by PP2 treatment on acute pancreatitis in terms of acinar 

cell injury/necrosis, neutrophil infiltration as well as edema, Figure 6.6. However, 

prophylactic and therapeutic treatment with PP3 had no protective effect on pancreatic 

injury in acute pancreatitis when compared to mice treated with caerulein alone. 

6.3.6 Involvement of SFKs in the mobilization of neutrophils and chemokines in 

acute pancreatitis.  

Induction of acute pancreatitis by caerulein hyperstimulation resulted in heightened 

pancreatic MPO, a measure of neutrophil infiltration. Acute pancreatitis also resulted in 

increased level of pancreatitc CC chemokine MCP-1, MIP-1α and CXC chemokine MIP-

2 when compared to vehicle-treated animals. Prophylactic treatment with PP2 resulted in 

a dose-dependent decrease in MPO activity, MCP-1, MIP-1α and MIP-2 levels in the 
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pancreas when compared to caerulein-treated animals. Moreover, mice administered with 

1mg/kg PP2 therapeutically had a significant reduction in pancreatic MPO activity, 

chemokines MCP-1, MIP-1α and MIP-2 levels when compared to caerulein treated mice, 

Figure 6.7.  

6.3.7 Inhibition of SFKs attenuated the activation of pancreatic STAT3, NFκB, AP-1 

and MAP Kinases in acute pancreatitis 

Caerulein-induced acute pancreatitis resulted in significant activation of transcription 

factors STAT3, NFκB and AP-1 in pancreas when compared to vehicle-treated animals. 

Treatment with PP2 both prophylactically and therapeutically significantly attenuated the 

activation of pancreatic STAT3, NFκB and AP-1 when compared to caerulein-treated 

animals, Figure 6.8 (a, b, c). To further explore the signaling pathways mediated by SRC 

tyrosine kinases in acute pancreatitis, I have investigated the MAP kinases’ pathway. 

Acute pancreatitis increased phosphorylation of MAP kinases ERK and JNK in pancreas 

when compared to vehicle-treated animals. Both prophylactic and therapeutic treatment 

with PP2 significantly attenuated activation of ERK and JNK when compared to 

caerulein-treated mice, Figure 6.8 (d, e, f). No significant change was observed in the 

housekeeping protein HPRT in the pancreas. 
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6.4 DISCUSSION 

SFKs are signaling proteins that participate in several cell signaling pathways and 

mediate a wide spectrum of cellular activities such as proliferation, differentiation, 

survival, adhesion, and migration. Moreover, SFKs have been shown to play a key role in 

cytokine signaling and inflammatory response (Chaturvedi, Reddy et al. 1998; Song, 

Turkson et al. 2003). However, the involvement of SFKs in substance P-induced 

chemokine production and also its role in acute pancreatitis have not been investigated 

yet. 

In this study, I have demonstrated that substance P induced a rapid and transient 

activation of SFKs as evidence by the phosphorylation of Src family (Tyr 416) in 

pancreatic acinar cells. I further confirmed that activation of SFKs was indeed mediated 

by substance P. I observed a significant reduction in phosphorylation of Src family (Tyr 

416) when pancreatic acinar cells were pre-treated with its selective NK1R antagonist. 

SFKs also mediated substance P-induced activation of MAP Kinases ERK and JNK. My 

results are in agreement with several other studies which have found that Src activation 

was induced by GPCR agonists, and it has also been implicated in promoting Ras 

dependent ERK activation (Della Rocca, van Biesen et al. 1997). Src also acted as a 

mediator of substance P-stimulated ERK1/2 phosphorylation in human U373 MG 

glioblastoma cells (Yamaguchi, Kugimiya et al. 2005). Src was found to be a major 

component of the substance P receptor signaling pathway as blockade of the Src inhibited 

the activation of ERK1/2 and PKC δ in U373 MG human glioblastoma cells (Yamaguchi, 

Richardson et al. 2005). Another group has shown that substance P activation of NK1R 

stimulated the formation of a scaffolding complex comprising of the internalized 
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receptor, beta-arrestin, Src and ERK1/2 to mediate its downstream effects (DeFea, 

Vaughn 2000). 

It is known that SFKs plays an important role in cytokine signaling, however only a 

limited number of studies have invesstigated the role of SFKs in chemokine production. 

In the current study, I have illustrated that substance P-induced phosphorylation of Src 

tyrosine kinases is involved in activation of of transcription factors STAT3, NFκB, AP-1 

and production of chemokines MCP-1, MIP-1α and MIP-2 in pancreatic acinar cells. 

Studies have shown that MAP Kinase 1, 2 phosphorylates Ser727 on STAT3 and 

phosphorylation of this residue is thought to modulate the transcriptional activity of 

STAT3 (Chung, Uchida et al. 1997). Additionally, activation of JNK/SAPK is thought to 

be required for v-Src activation of STAT3 (Turkson, Bowman et al. 1999). In parallel 

with NFκB, STATs also regulate the expression of genes that are critically involved in 

inflammatory and immune responses (Akira 2000). 

As shown in chapters 2 and 3, NFκB and AP-1 are involved in substance P induced 

chemokine synthesis. Substance P-induced activation of SFKs most likely is mediating 

chemokine production through the MAP Kinases ERK and JNK induced transcription 

factors NFκB and AP-1. However, whether substance P-induced STAT3 activation is 

directly involved in the production of chemokines remained to be investigated. On one 

hand, studies have suggested that STAT3 plays a pivotal role in orchestrating 

inflammatory responses by increasing the expression of inflammatory mediators, 

cytokines and chemokines (Schumann, Kirschning et al. 1996; Takeda, Clausen et al. 

1999). STAT3 might be playing a part in the initiation of lung injury as it was found to be 

activated very early in the lungs in different models of acute lung injury (Gao, Guo et al. 
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2004; Severgnini, Takahashi et al. 2004). However, on the other hand, studies have 

revealed that STAT3 modulates anti-inflammatory responses (Matsukawa, Takeda et al. 

2003). STAT3 was found to mediate IL 10 production (Opal and DePalo 2000) which is a 

potent anti-inflammatory cytokine. STAT3 expressed in macrophages and neutrophils 

might negatively regulate inflammation (Riley, Taked et al. 1999). Studies have also 

shown that STAT3-/- mice were susceptible to endotoxemia due to high levels of 

inflammatory cytokines TNFα, IL1β and IFNγ (Takeda, Clausen et al. 1999). Hence, 

more work need to be carried out to elucidate the complexity of STAT3 signaling 

mechanisms in acute pancreatitis. 

I have used primary culture of isolated pancreatic acinar cells as my model to show that 

substance P-induced activation of Src tyrosine kinases is involved in MAP Kinases ERK 

and JNK mediated STAT3, NFκB and AP-1 driven chemokine synthesis. I further sought 

to test the significance of SFKs signaling pathway in acute pancreatitis. My results show 

that treatment of animals with the potent and selective inhibitor of the Src family of 

protein tyrosine kinases PP2 but not its negative inhibitor PP3 (either prophylactic or 

therapeutic) reduces the severity of pancreatitis as evidenced by a significant attenuation 

of hyperamylasemia, pancreatic MPO activity, chemokines and water content which is a 

measure of edema. Moreover, histological evidence of diminished pancreatic injury such 

as acinar cell injury/necrosis, neutrophil infiltration as well as edema also confirmed the 

protective effect of the inhibition of SFKs on acute pancreatitis. In line with my study, 

Src tyrosine kinase inhibitors were found to suppress inflammatory responses in vivo by 

blocking the function of inflammatory cells including neutrophils, monocytes and 

macrophages (Okutani, Lodyga et al. 2006). Previous studies have demonstrated that Src 
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tyrosine kinases are rapidly activated in the lungs in an LPS model of acute lung injury. 

Systemic inhibition of Src tyrosine kinases using specific small molecule inhibitor PP2 

significantly attenuated LPS-induced lung injury by blocking LPS-dependent cytokine 

and chemokine production in the lungs (Severgnini, Takahashi et al. 2005) 

Using the in vivo model of acute pancreatitis, I further explored the molecular 

mechanisms through which SFKs protected against acute pancreatitis, I found that SFKs 

mediate their protective effects through the same signaling pathway that I have shown in 

my in vitro model of isolated acinar cells. Acute pancreatitis resulted in elevated 

activation of pancreatic MAP kinases ERK and JNK, transcription factors STAT3, NFκB, 

and AP-1. Both prophylactic and therapeutic treatment with PP2 significantly attenuated 

activation of ERK, JNK, STAT3, NFκB and AP-1 and hence resulted in protection 

against acute pancreatitis.  

Based on my results I proposed that elevated levels of substance P, which is produced as 

a result of acute pancreatitis, bind to NK1R to activate several signaling molecules to 

mediate chemokine production. One such signaling complex is SFKs and its blockade 

attenuated MAP Kinases, STAT3, NFκB, AP-1 and chemokines, thus resulting in 

protection against acute pancreatitis. It is difficult to determine solely on the basis of 

pharmacological studies which group of Src family members is involved in acute 

pancreatitis as the selectivity of these inhibitors to different Src protein tyrosine kinases 

has not been fully tested. The proposed signaling pathway through which substance P 

mediates acute pancreatitis is through substance P/NK1R - SFKs - (ERK, JNK) - 

(STAT3, NFκB, AP-1) - (MCP-1, MIP-1α, MIP-2). Moreover, these results further 
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confirmed the credibility of using isolated pancreatic acinar cells as valid model to test 

pathogenesis of acute pancreatitis 

The mechanism of activation of SFKs in acute pancreatitis is most likely to be 

multifactorial, however one of the factors involved is substance P. Using a clean system 

of isolated pancreatic acinar cells I were able to show that substance P/NK1R indeed 

induces activation of SRC tyrosine kinases. Blockade of SFKs attenuated chemokine 

production both in vitro and in vivo as well as protected the mice against acute 

pancreatitis. The study presented in this chapter gives us a deeper insight into the 

mechanisms by which substance P contributes to acute pancreatitis. Increased 

understanding of the signal transduction mechanisms involved in acute pancreatitis would 

facilitate the discovery of novel therapeutic compounds useful in treating inflammatory 

disorders such as acute pancreatitis.  
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Figure 6.1 Substance P (SP)/NK1R induces a time dependent increase and decrease 
in phosphorylation of Src family (Tyr 416) in mouse pancreatic acinar cells. Freshly 
isolated pancreatic acini were incubated with either 1 μM SP/vehicle (saline) for 0, 3, 5, 
10, 15, 30 and 45 min at 37˚C or pre-incubated with 1 μM CP96345 for 30 min followed 
by stimulation with 1 μM SP for 10 min. The cells were lysed, and cell proteins were 
subjected to Western blot analysis using antibodies against (a, c) phospho-Src family 
(Tyr 416) and HPRT. MW in (kDa) for Phospho-Src Family is 60 and HPRT is 24. 
Densitometric analysis of Western blot experiments were performed and the group data 
from 3 independent preparations (n=3) are presented in (b, d). The results are 
representative of three independent (n=3) experiments. Results shown are the means + 
SE. *P < 0.05 when compared to 0 min control, +P < 0.05 when compared to SP.  
 

Control SP CP96345 

 

 

Phospho-Src 
Family (Tyr 416) 
 

HPRT 

(c) 

(d) 



169 

 

 
 
 

 

 

 

 

Phospho-Src Family 

+

+

*

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Control SP 1 μM 10 μM

D
en

si
to

m
et

ry

 

 

HPRT 

SP 1 C 10 

PP2 + SP (μM) 

 

 

p-ERK 

p-JNK 

     
    P 44 
   P 42 

P 54
P 46 

Phospho-Src 
Family (Tyr 416)  

 

PP2 + SP  

Figure 6.2 

(a) 

(b) 



170 

 

 

p-44 ERK

+

+

*

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Control SP 1 µM 10 µM

D
en

si
to

m
et

ry

 

 

 

p-42 ERK

+

+

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control SP 1 µM 10 µM

D
en

si
to

m
et

ry

 

 

 

PP2 + SP  

PP2 + SP  

(c) 



171 

 

 

p-54 JNK

+

+

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control SP 1 µM 10 µM

D
en

si
to

m
et

ry

 

 

 

 

p-46 JNK

+
+

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control SP 1 µM 10 µM

D
en

si
to

m
et

ry

 

 

PP2 + SP 

PP2 + SP  

(d) 



172 

 

 

Figure 6.2 Substance P (SP)-induced activation of ERK and JNK is mediated by 
SFKs in pancreatic acinar cells. Freshly isolated pancreatic acini were pre-incubated 
with either PP2, at 1 µM, 10 µM or vehicle (DMSO) for 30 min at 37˚C followed by 
stimulation with 1 μM SP for 10 min at 37˚C. Cells were subsequently lysed, and cell 
proteins were subjected to Western blot analysis using antibodies against (a) phospho-Src 
family (Tyr 416), phospho-ERK, phospho-JNK and HPRT. MW in (kDa) for phospho-
Src family is 60, JNK 2/1 is 54/46, ERK1/2 is 44/42 and HPRT is 24.The phosphorylated 
sub-units such as p-Src family, p-44 ERK, p-42 ERK, p-54 JNK and p-46 JNK have been 
quantified. Densitometric analysis of Western blot experiments were performed and the 
group data from 3 independent preparations (n=3) are presented in (b, c, d). Results 
shown are the means + SE. *P < 0.05 when compared to control, +P < 0.05 when 
compared to SP.  
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Figure 6.3 SFKs are involved in substance P (SP)-induced STAT3, NFκB and AP-1 
activation in pancreatic acinar cells. Freshly isolated pancreatic acini were pre-
incubated with PP2 at 1 and 10 μM of PP2 or vehicle (DMSO) followed by stimulation 
with 1 μM of SP for 45 min. The cells were separated from incubation medium by 
centrifugation. The pellet (cells) was used for (a) STAT3, (b) NFκB and (c) AP-1 nuclear 
extraction. STAT3, NFκB and AP-1 DNA-binding assays were then carried out as 
described in MATERIALS AND METHODS. The results are representative of three 
independent (n=3) experiments. Results shown are the means + SE. *P < 0.05 when 
compared to control, +P < 0.05 when compared to SP. 
 

PP2 + SP  

(c) 



175 

 

 

MCP-1

*

+ +

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Control SP 1 μM 10 μM 1 μM

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 

 

MIP-1α

*

++

*

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Control SP 1 μM 10 μM 1 μM

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 

PP2 + SP  

PP2 + SP  

PP3 + SP  

PP3 + SP  

Figure 6.4 

(a) 

(b) 



176 

 

MIP-2

++

**

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Control SP 1 μM 10 μM 1 μM

Fo
ld

 in
cr

ea
se

 o
ve

r c
on

tro
l

 

 

 
 
 
 
Figure 6.4 SFKs are involved in the secretion of CC and CXC chemokines in 
pancreatic acinar cells. Freshly isolated pancreatic acini were pre-incubated with either 
PP2 at 1 and 10 μM, or PP3 at 1 µM for 30 min followed by stimulation with 1 μM of 
substance P (SP) for 45 min. The supernatant was used to measure (a) MCP-1, (b) MIP-
1α and (c) MIP-2 levels by ELISA as described in MATERIALS AND METHODS. The 
results are representative of three independent (n=3) experiments. Results shown are the 
means + SE. *P < 0.05 when compared to control, +P < 0.05 when compared to SP.  
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Figure 6.5 Effects of prophylactic and therapeutic PP2 administration on the 
severity of acute pancreatitis. Mice (n =10 in each group) were given 10 hourly 
injections of caerulein (50 μg/kg i.p.). PP2 or PP3 was administered to mice i.p. either 
prophylatically (1h before) or therapeutically (1h after) the first caerulein injection. 1h 
after the last caerulein injection, mice were sacrificed by an i.p. injection of a lethal dose 
of pentabarbitone. Plasma amylase activity (a, b) and pancreatic edema (water content c, 
d) were determined as described in MATERIALS AND METHODS. Results shown are 
the means + SE. *P < 0.05 when caerulein or PP3-treated animals were compared with 
vehicle-treated animals. +P < 0.05 when PP2-treated animals were compared to 
caerulein-treated animals. 
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Figure 6.6 Morphological changes in mouse pancreas on induction of acute 
pancreatitis with/without prophylactic and therapeutic treatment with PP2 or PP3.  
A: control; no pancreatitis. B: caerulein-induced acute pancreatitis. C: caerulein-induced 
acute pancreatitis in mice administered PP3 1mg/kg (prophylactic). D: caerulein-induced 
acute pancreatitis in mice administered PP3 1mg/kg (therapeutic). E: caerulein-induced 
acute pancreatitis in mice administered PP2 1mg/kg (prophylactic). F: caerulein-induced 
acute pancreatitis in mice administered PP2 1mg/kg (therapeutic). The criteria used were 
the presence of neutrophil infiltration, edema, necrosis, acinar-cell ghosts, vacuolization 
and the destruction of the histoarchitecture of whole or parts of the acini, all of which had 
been associated with inflammatory reactions in acute pancreatitis. 
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Figure 6.7 Involvement of SFKs in the mobilization of pancreatic neutrophils and 
chemokines in acute pancreatitis. Mice (n=10 in each group) were given 10 hourly 
injections of caerulein (50 μg/kg i.p). PP2 was administered in mice at doses of 0.5, 1, 1.5 
mg/kg i.p. 1h before or at a dose of 1 mg/kg 1 h after the first caerulein injection. One 
hour after the last caerulein injection, mice were sacrificed by an intraperitoneal injection 
of a lethal dose of pentabarbitone, and pancreatic MPO, MCP-1, MIP-1α and MIP-2 
levels were measured, as described in MATERIALS AND METHODS. Results shown 
are the means + SE. *P < 0.05 when caerulein-treated animals were compared with 
vehicle-treated animals. +P < 0.05 when PP2-treated animals were compared to 
caerulein-treated animals. 
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Figure 6.8 Inhibition of SFKs attenuated the activation of pancreatic STAT3, NFκB, 
AP-1 and MAP Kinases in acute pancreatitis. Mice (n=10 in each group) were given 
10 hourly injections of caerulein (50 μg/kg i.p). PP2 was administered to mice at a dose 
of 1 mg/kg i.p. 1h before or 1 h after the first caerulein injection. One hour after the last 
caerulein injection, mice were sacrificed by an intraperitoneal injection of a lethal dose of 
pentabarbitone. The activation of pancreatic STAT3, NFκB, AP-1 and MAP Kinases was 
quantified as described in MATERIALS AND METHODS. MW in (kDa) for JNK 2/1 is 
54/46, ERK1/2 is 44/42 and HPRT is 24. Results shown are the means + SE. *P < 0.05 
when caerulein-treated animals were compared with vehicle-treated animals. +P < 0.05 
when PP2-treated animals were compared to caerulein-treated animals. 

(f) 
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CHAPTER 7 

 

CONCLUSIONS AND IMPLICATIONS 
 
Even though much advance has been made in elucidating the pathogenesis of acute 

pancreatitis, yet no specific treatment is currently available.  

Previously, it has been shown that during acute pancreatitis, pancreatic levels of 

substance P and pancreatic acinar cell expression of NK1R are both increased during 

secretagogue-induced experimental pancreatitis (Bhatia, Saluja et al. 1998). Genetic 

deletion of NK1R reduces the severity of pancreatitis and pancreatitis-associated lung 

injury (Bhatia, Saluja et al. 1998). Similarly, blockade of substance P receptor with its 

potent and selective antagonist, CP96345, protected mice from acute pancreatitis by 

attenuating the increase in CC chemokines MCP-1, MIP-1α, and CXC chemokine MIP-2 

production in pancreas (Lau and Bhatia 2007; Sun and Bhatia 2007). Substance P, acting 

through NK1R, plays an important pro-inflammatory role in regulating the severity of 

acute pancreatitis. However, the exact mechanism by which substance P contributes to 

the pro-inflammatory signaling in acute pancreatitis is not completely understood. 

In chapter 2, I have demonstrated that substance P, by itself, induced synthesis of CC 

chemokines MCP-1, MIP-1α and CXC chemokine MIP-2 via NFκB dependent pathway 

in mouse pancreatic acinar cells. This is the first direct evidence of the role of substance 

P, acting via NK1R present on mouse pancreatic acini, in inflammation and points to the 

mechanism by which substance P contributes to inflammation in acute pancreatitis.  
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Looking at the signaling pathways, I showed, in chapter 3, that substance P induced the 

activation of MAP Kinases ERK and JNK as well as transcription factor AP-1 in mouse 

pancreatic acinar cells. To my knowledge, this is the first study that shows that substance 

P-induced activation of both ERK and JNK cascades are essential for NFκB and AP-1 

activation, resulting in increased production of chemokines MCP-1, MIP-1α and MIP-2 

in mouse pancreatic acini. This study gives us a further insight into the mechanism by 

which substance P contributes to the inflammatory responses in acute pancreatitis.  

Going deeper into the signaling mechanisms I demonstrated, in chapter 4, that substance 

P/NK1R stimulated the activation of PKCδ as well as MEKK1. My findings indicated 

that PKCδ acts as an important pro-inflammatory signal transducer in substance P/NK1R-

induced production of pro-inflammatory mediators MCP-1, MIP-1α and MIP-2 in 

pancreatic acinar cells. The secretion of these pro-inflammatory mediators was mediated 

through the signaling cascade of PKCδ-MEKK1-(ERK, JNK)-(NFκB, AP-1), thereby 

contributing to local inflammation and consequently leading to systemic inflammation in 

acute pancreatitis.  

Moreover, in chapter 5, substance P stimulated pancreatic acinar cells to release 

chemokines MCP-1, MIP-1α, and MIP-2 through a PLC dependent mechanism. 

Substance P induced an increase in [Ca2+]i which resulted in the phosphorylation of 

PKCα/βII, ERK and JNK; consequently leading to the activation of NFκB, AP-1 and 

ultimately to chemokine production. This study reveals the critical role of calcium in 

substance P-induced chemokine production in pancreatic acinar cells and also points to 

another mechanism through which calcium could be mediating acute pancreatitis. 
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To my knowledge, this is the first study, as shown in chapter 6, which illustrates the 

involvement of non receptor tyrosine kinases SFKs in substance P-induced chemokine 

production in pancreatic acinar cells. Substance P-induced activation of SFKs was also 

involved in the phosphorylation of ERK, JNK as well as activation of STAT3, NFκB and 

AP-1. I also tested the significance of my in vitro results in a more complex in vivo 

system of caerulein-induced acute pancreatitis. I demonstrated that SFKs mediated 

protection against acute pancreatitis through the same signaling pathway that I had shown 

in my in vitro model of isolated acinar cells, which is through  substance P/NK1R-SFKs-

(ERK, JNK)-(STAT3, NFκB, AP-1)-(MCP-1, MIP-1α, MIP-2). 

Based on my results, I propose that elevated levels of substance P, which is produced as a 

result of acute pancreatitis, bind to pancreatic NK1R to activate several intracellular 

signaling molecules which lead to chemokine production. One such signaling complex is 

SFKs. Another signaling cascade that mediates chemokine production is through PLC-

induced elevated intracellular calcium and conventional PKCα/βII activation. Novel 

PKCδ and MEKK1 are equally responsible for substance P-induced chemokine 

production in pancreatic acinar cells. The activation of all these upstream signaling 

molecules converges towards the phosphorylation of MAP Kinases ERK and JNK, 

leading to the activation of transcription factors NFκB, AP-1 and STAT3 which then up 

regulate both CC chemokines MCP-1, MIP-1α and CXC chemokine MIP-2. In addition, I 

have shown that inhibition of SFKs which blocked the activation of pancreatic ERK, 

JNK, NFκB, AP-1 and STAT3 also protected mice against acute pancreatitis. My 

proposed signaling pathways through which substance P mediates chemokine production 

in acute pancreatitis is illustrated in Figure 7.1 
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Figure  7.1 Schematic representation of the proposed cascades through which substance 

P stimulates the production of chemokines in acute pancreatitis.Substance P interacts 
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with its preferred receptor NK1 to induce activation of PLC, which causes the release of 

[Ca2+]i and activation of PKCα/βII. [Ca2+]i also causes activation of PKCα/βII, leading to 

phosphorylation of MAP Kinases ERK and JNK, thereby activating transcription factors 

NFκB, AP-1, resulting in chemokine production. Substance P, through NK1R induces 

phosphorylation of PKCδ, activation of MEKK1 which results in phosphorylation of 

ERK and JNK, activation of NFκB, AP-1, consequently leading to chemokine 

production. Substance P via NK1R induces activation of SFKs, resulting in 

phosphorylation of ERK and JNK, leading to activation of transcription factors STAT3, 

NFκB, AP-1, resulting in the production of CC chemokines MCP-1, MIP-1α and CXC 

chemokine MIP-2. 

 

It is clear that substance P and NK1R play important roles in acute pancreatitis and that 

NK1R antagonist represents a promising therapeutic tool for the treatment of acute 

pancreatitis. However, care should be taken as blocking the GPCR NK1R altogether can 

have some adverse effects due to the promiscuity of GPCR. In light of my study, I 

proposed that drugs targeting the substance P/NK1R mediated signaling pathways could 

prove beneficial in improving the treatment of acute pancreatitis.  

Understanding the mechanisms that mediate acute pancreatitis is crucial for the discovery 

and development of more effective treatment strategies. The cascade of cellular and 

molecular pathways mediating acute pancreatitis is intricate and not fully understood. 

Using the information obtained from single signaling pathways and building up complex 

signaling networks can enable us to better understand the mechanisms and physiological 

outcome of substance P/NK1R mediated responses. An understanding of the mechanisms 
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by which substance P/NK1R modulate its downstream effects would facilitate the 

discovery and design of strategies by which specific points in the signaling network can 

be modulated, leading to specific changes in the physiological functions. This in turn 

would help to prevent disease progression and/or improve treatment efficacy by 

developing clinically effective anti-inflammatory therapies. 
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