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Summary 

Separation of biomolecules using polymeric gels is one of the most important tasks 

and has become a standard routine practice in various biological or medical 

applications. Although such processes are performed everyday all over the world, the 

physical mechanisms behind them remain far from clear, especially those involving 

the entropic effect due to the loss of the configurational degree of freedom. Recently a 

number of microfabricated nanofilter devices have been developed as the potential 

substitute for the gels for research and industrial purposes.   

This thesis studies electrophoretic separation of the rod-like short DNA molecules 

over repeated regular nanofilter arrays consisting of alternative deep and shallow 

regions. Unlike most methods based on stochastic modeling, this thesis reports a 

theoretical study based on macroscopic continuum transport theory. In this study, an 

entropy term that represents the equilibrium dynamics of rotational degree of freedom 

is inserted to the macroscopic transport equations. Analytical formulas are derived 

from a one-dimensional simplified description and numerical methods are developed 

to solve the general three-dimensional nanofiltration problem.  It is demonstrated that 

the complex partitioning of rod-like DNA molecules of different sizes over the 

nanofilter array can be well described by the continuum transport theory with the 

orientational entropy and confinement induced anisotropic transport parameters 

properly quantified.  

The first part of the thesis is devoted to the mechanisms and quantification of 

orientational entropy of the rod-like DNA in aqueous solution and in the confined 

space. Configurational entropy and the flux caused by entropic differences are derived 
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from the equilibrium theory of rotational and translational diffusions.  

The second part contributes to the development of a simplified one-dimensional 

transport model, from which important analytical expressions of the mobility and the 

dispersion are obtained. Effects of all the considered factors are explicitly given. A 

method for the assessment and optimization of the nanofilter arrays is proposed. It is 

expected to serve as the handy theoretical tool for the experimentalists to predict the 

performance of the nanofilters.   

The last part of the thesis describes a more complex three-dimensional model in 

which the non-uniform electric field and the anisotropic flux of the molecules are 

considered. Effects of the confinement on the transport parameters of the DNA in the 

shallow channels are calculated. Numerical methods to solve the anisotropic transport 

equations are developed based on the smoothed particle hydrodynamics formulation. 

The results of simulation are compared with the experimental data.  

The most important contributions of this thesis to the field of nanofiltration are 

highlighted as follows: (1) It is demonstrated that the macroscopic continuum model 

is capable of description of Ogston sieving process in nanoscale filtration systems, as 

long as the microscopic physics that are averaged to zero in macroscopic scale are 

restored appropriately.  (2) Using a simplified one-dimensional model, analytical 

expressions for the mobility and dispersion in nanofiltration systems are obtained. 

These formulas describe the effects of several physical mechanisms explicitly. They 

are currently the only tools that experimentalists can rely on to assess and optimize 

their nanofilters.  (3) The role of the rotational diffusion of an anisotropic particle on 

its partition near a solid wall are realized and quantified. Better understanding might 

be achieved when this effect is considered in analysis of nanoscale transport problems. 
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Nomenclature 
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c  averaged concentration of DNA in the well 

C  concentration  
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1 Introduction 

1.1 Background 

As the carrier of the heredity, deoxyribonucleic acid (DNA) is a highly complex 

macro-molecule. It contains all the necessary information responsible for the 

biological identity of a specific species and for a particular individual in this species. 

Naturally, DNA is a long thin thread-like molecule made of nucleotides constructed 

from the bases adenine (A), thymine (T), guanine (G) and cytosine (C). Two 

complementary strands are kept together by the hydrogen bonds between the A-T and 

C-G nucleotide pairs (see Fig. 1.1). Because DNA molecules go by pairs that are 

exactly complement of each other, they are able to replicate. The sequence of 

nucleotides contains the codes for the synthesis of all the proteins and other 

biomolecules. Segments of DNA encoding specific proteins are called genes.  

 

Fig. 1.1. The structure of a double stranded DNA molecule (image 
courtesy of http://en.wikipedia.org/wiki/DNA). The two stands of the 
DNA are compliment to each other. An adenine (A) forms a pair with 
thymine (T) and guanine (G) forms pair with cytosine (C). 
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Deciphering genes by determining the DNA sequences and their generic functions is 

therefore the first step to the understanding of life and is the core task in basic 

research studying fundamental biological processes. Practically, in the genome 

sequencing process, short pieces of chromosomes are broken down into a set of DNA 

fragments that differ in length from each other. The fragments in this set are separated 

according to their lengths, which enables the identification of the sequence of bases of 

each fragment. The sequences of the chromosome pieces (DNA segments) from 

which these fragments are generated are then obtained.   

As one of the most important step in the above processes, separation of DNA 

molecules by size has become one of the most essential techniques in the analysis of 

restriction endonuclease digests of genomic DNA and polymerase chain reaction 

(PCR) products. The separation of DNA molecules are normally performed through 

application of an electric field. A DNA backbone has one dissociable proton per 

phosphate group. Ionization of phosphate causes the negative charge on DNA. This 

negative charge provides electrostatic force to DNA molecules in the solution. The 

free-solution electrophoretic mobility, which characterizes the speed of a DNA 

obtained in free solution when a unit electric field is applied, is found to be 

independent of sizes of DNA if the DNA molecules are longer than a few hundred 

base pairs. This feature is due to the balance between the hydrodynamics drag of the 

polymer and the opposing counterions forces (Muthukumar, 1997). As a result, DNA 

molecules can not be fractioned in free solution. However, DNA molecules of 

different size can be separated through gels because of the combined effects of 

electric force, interaction with the surrounding fluid and steric forces exerted by the 

gel fibers. Longer DNA molecules have decreased electrophoretic mobility due to 

increased collisions with the gel matrix. Similarly, a narrower gel pore also reduces 
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the electrophoretic mobility of the molecules passing through it. Apart from DNA 

molecules, other types of polyelectrolytes including RNAs, denatured proteins, most 

polysaccharides and synthetic polyelectrolytes can also be separated in gel. Nowadays, 

gel electrophoresis is performed everyday as standard process in many industrial 

applications and research projects (Viovy 2000). 

As the foundation of gel electrophoresis theory, Ogston-Morris-Rodbard-Chrambach 

(OMRC) model (Ogston, 1958; Rodbard and Chrambach, 1970; Morris,1966) states 

that the gel electrophoretic mobility of biomolecules is determined by the ratio of the 

characteristic size of the random porous network and that of molecules in solution. It 

is found later that OMRC model is only applicable to the cases of small molecule 

electrophoresis with low electrical fields and low gel concentrations. For more 

complicated situations, more sophisticated models and extensive calculations are 

required (Locke and Trinh, 1999). Although a large number of modifications have 

been suggested for OMRC model trying to address the problem of hindered transport 

of biomolecules with arbitrary shapes through porous gels, the interpretation of 

experimental data for even simple, rod-like cylindrical molecules is still far from 

satisfactory (Allison et al., 2002). It has been realized that, in addition to the 

characteristic sizes of the molecule and the gel pore, comprehensive interpretation of 

experimental data for systems involving anisotropic solutes requires information 

about entropic barrier that originates from reduction of the orientational freedom of 

polyelectrolytes in small pores of polymeric gels (Yuan et al., 2006). Since the 

experimental situations using gels are very complex and many factors contribute to 

the observed phenomena, the explanation of experimental results is difficult. One of 

the main obstacles is the disorder present in the gels, which plays an essential, but 

very unpredictable, role in gel electrophoresis.  
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To achieve better understanding of the sieving process involved in gel electrophoresis 

and identify effect of various specific factors, quantitative characterization on a well 

characterized model system is desirable. Patterned periodic regular sieving structures 

are ideal for study of molecular dynamics of electromigration of polyelectrolytes 

because the dimension of obstacles and channels can be easily controlled 

(Muthukumar and Baumgartner, 1989; Muthukumar, 2007).  

The development of artificial electrophoresis sieving media is a major step to 

optimize DNA separation methods. Arrays of micro- or nano-sized obstacles are 

etched on the surface of a silicon wafer. Examples of artificial sieving structures 

include matrices of poles (Turner et al., 1998; Chou et al., 2000; Volkmuth 1992), 

alternated shallow slits and deep wells (Han et al., 1999; Han and Craighead, 2000; Fu 

et al., 2005; Fu et al., 2006), etc. The main advantages of artificial structures are the 

flexibility and precision in geometry of sieving system. In addition to these 

experimental efforts, simulation studies have also contributed very much into the 

understanding of such processes, some of which are difficult to achieve by 

experimental means. 

A shown in Fig. 1.2, the microfabricated filtration device developed by Han and his 

group consists of regions of two different depths. This kind of devices have been used 

to study the migration of long DNA (Han et al., 1999; Han et al., 2000), rod-like short 

DNA (Fu et al., 2006; Fu et al., 2007) and small proteins (Fu et al., 2005). For typical 

nanofilter array, the depths of the wells are in the scale of 1µm while those of the slits 

are less than 100nm. As the effective sizes of the migrating molecules (rod length of 

the short DNA) are in the same order or larger than the depth of the slits (nanofilter 

gap size), the entry into the restricted nanofilter slits requires the DNA molecules to 

be positioned and oriented properly without interfering with the nanofilter wall. This 
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steric constraint forms an orientational entropy barrier for the transport of DNA and 

plays a major role in the electrophoretic separation of DNAs over such repeated 

nanofilter arrays. Theoretical size selectivity of such nanochannels has been addressed 

empirically based on experimental observations and the basic equilibrium models (Fu 

et al., 2006). However, optimization of the nanofilter separation system would require 

an efficient computational model that can estimate the performance of different 

device structures in terms of both separation selectivity (partitioning) and dispersion. 

Simulations of the same system, based on dissipative particle dynamics (Fan et al., 

2006; Duong-Hong et al., 2007) and Brownian dynamics (Laachi et al., 2007), have 

recently been reported. However, these types of stochastic modeling techniques tend 

to be computationally expensive. Also, these simulations often track only a single 

molecule in the nanochannel system, and therefore are not well-suited for modeling 

the peak dispersion behavior, which is another important figure of merit of the 

nanofilter separation systems.  

 

 

Fig. 1.2. The nanofilter array that consists of regions of two different 
depths designed for separation of the charged biomolecules.   
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1.2 Literature review 

Study of the detailed dynamics of single macromolecules such as DNA and proteins 

in solvent environment is essential to understanding of their fundamental properties 

and biological functions. The experimental and theoretical progress made from both 

macroscopic and molecular-level points of view has significantly enriched our 

understanding of the structure, mechanics, and thermodynamics of DNA in aqueous 

solution.  

1.2.1 Free volume model of gel electrophoresis of globular particles 

The electrophoretic migration of polyelectrolyte in polymeric gels forms the 

foundation of gel separation of biomolecules. It has become one of the essential tools 

for separation, quantification and characterization of various biological 

polyelectrolytes including DNAs and proteins. It is the most widely used owing to its 

low cost, wide availability and ease of performing.  

A straightforward approach to analyses of gel electrophoresis process is to treat the 

gel as a sieve with a certain distribution of pore sizes and the separation as an electric 

field driven filtration. Under this formulation, the result of electrophoresis 

fractionalization is determined by characteristic size of the random porous network 

and that of molecules in solution. Basically, the scaled or reduced mobility, which is 

the ratio of the electrophoretic mobility in the gel (µ ) relative to the free-solution 

mobility 0µ , is assumed to be equal to the fractional volume ( f ) available to the 

particle in the gel 

),(*
0

MCf gel==
µ
µµ . (1.1) 
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Fraction free volume ( f ) is a function of gel concentration ( gelC ) and the analyte 

molecular size ( M ). Fraction free volume has been calculated for spheres in 

suspension of obstacles of various geometries by Ogston (1958), Morris (1966), 

Rodbard and Chrambach (1970, 1971). This model is known as Ogston-Morris-

Rodbard-Chrambach (OMRC) model. It has been the dominant approach for 

interpreting the experimental data of gel electrophoresis mobilities semi-quantitatively 

for several decades. However, OMRC model has been shown unsuccessful in 

explaining many experimental results. In such cases, precise structure of the sieving 

matrix and the properties of the analyte should be taken into account. Also, this model 

fails in explanation of the mobility dependence on the electric field in a medium-to-

high field strength in its original form (Slater et al., 2002; Viovy, 2000).  To solve 

these problems, there have been a large number of modified approaches based on 

OMRC model trying to address the problem of hindered transport of more general 

polyelectrolytes through porous gels. For example, a few models have been proposed 

in order to take into account effects ignored in OMRC model, such as hydrodynamic 

interactions (Lumpkin, 1984), nonuniform local electric field (Locke, 1998). However, 

the relationship between gel electrophoresis mobility and the geometrical parameters 

of the anisotropic analyte geometry remain very difficult to characterize quantitatively. 

Up to now, the interpretation of experimental data for even the rod-like cylindrical 

molecules is still far from satisfactory (Allison et al., 2002). The main reason lies in 

the complexity in the experimental situations. The polymeric gels used in 

electrophoresis are complicated random structures. Statistical characterization of 

irregularity in geometry of random pores of the polymeric gel is difficult. In addition, 

comprehensive interpretation of experimental data for such systems requires 

information about entropic barrier that originates from reduction of the orientational 



8 

Chapter 1                                                                                           Introduction

freedom of polyelectrolytes in small pores of polymeric gels (Yuan et al., 2006).  

1.2.2 Effects of entropy barriers on DNA transport 

Apart from the complexity in describing the random gel structure, the anisotropy of 

the polyelectrolyte causes additional difficulty in analyses results of gel 

electrophoresis experiments. When an anisotropic analyte enters the narrow pore of 

the gel, the analyte’s orientation freedom is reduced due to the spatial confinement 

from the wall. This reduction causes an entropy loss of the molecule and results in an 

increase in the chain free energy. This entropic barrier will become significant if the 

longest dimension of the analyte is comparable of larger than the diameter of the pore. 

If the external electric potential is weaker than the entropic trapping, the mobility is 

significantly reduced. As the polymers of different lengths have different entropy 

barriers, these polymers are trapped for different time. Separation of the 

polyelectrolytes is achievable although their free-solution electrophoretic mobility 

might be the same. Although the physics involved in these processes are quite straight 

forward to understand, quantitative analysis has been shown extremely difficult.  

Yuan et al. (2006) proposed a model for gel electrophoretic mobility that considers 

the effect of entropy barrier in addition to the usual excluded-volume contribution. 

Their reduced mobility is the multiplication of the reduced mobility from OMRC 

model and an entropic factor that decays exponentially with of the characteristic 

length of the analyte and the pore size. Their predictions agreed much favorably with 

the experimental data for linear and three-armed branched rigid DNA molecules than 

OMRC model. 

Muthukumar and Baumgartner studied the effects of entropic barriers on chain 

diffusion of polymer in random porous media (Baumgartner and Muthukumar, 1987) 
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and in a well-characterized cubic cavity with gates at the center of walls of the cavity 

(Muthukumar and Baumgartner, 1989) using Monte Carlo simulations. The found the 

dependences of the reduced diffusion coefficient ( D ) on the length of polymer ( N ) 

are different in random porous media and the regular arrays. In a random media, D  

decays in the form of 2.9~D N − . However, in the regular cubic cavity, D  decays 

exponentially with N  if the cross section of the gate is large while in the small gate 

regime, D  is determined by the gate size but independent of N .  

 Dorfman and Brenner (2002) employed generalized Taylor-Aris dispersion (macro-

transport) theory for spatially periodic networks to derive analytical expressions for 

transport parameters, including the solute dispersion, number of theoretical plates, and 

separation resolution etc. Their expressions are in qualitative agreement with 

experimental data.  

1.2.3 Simulation study on gel electrophoresis 

Simulation of gel electrophoresis process is important in understanding the physical 

mechanism and in developing new methods or devices. Unfortunately, the 

computational analysis of polymer dynamics is also extremely difficult. In one hand, 

the macroscopic hydrodynamic models are thought not applicable because that the 

size of the DNA molecule is comparable to the size of the space it can reside, and 

thermal fluctuations are not negligible. In the other hand, the tools that are suitable in 

the molecular scale remain prohibitive to currently available computational resources.  

Although there have been some full-atom molecular dynamics (MD) simulations, for 

example, on the translocation of DNA through synthetic nanopores (Heng et al., 2006; 

Aksimentiev et al., 2004).  such molecular dynamics analysis is still infeasible. 
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Currently, typical simulation time of MD is at most in the scale of nanosecond, while 

the translocation over the nanopore happens in the scale of milliseconds. Furthermore, 

the MD model is also too idealized in the description of structure and the physical 

interactions involved in the actual experimental systems. The relation between the 

MD simulation results and experimental data are quite difficult to establish. Therefore 

it is necessary to develop coarse-grained models to capture the slow coarse-scale 

features accurately while fast fine-scale dynamics are assumed to remain at local 

equilibrium. 

The most popular coarse-grained models are Brownian dynamics (BD) ( Larson et al., 

1999; Hur et al., 2000; Hur et al., 2002; Doyle and Underhill, 2005,) and dissipative 

particle dynamics (DPD) ( Español and Warren, 1995; Groot and Warren 1997; Fan et 

al., 2006). Such methods discretize the problem domain using a set of point particles, 

each of which represents a collection of molecules that move together. These particles 

interact with each other through a set of prescribed forces. In BD, the forces that drive 

the motion of the particle include: a conservative force calculated from the particle 

interaction potentials; a velocity-dependent friction; and a Brownian force term. In 

DPD for fluid dynamics, these forces include a purely repulsive conservative force 

(pressure force), a dissipative force that tries to reduce velocity differences between 

the particles (viscous force ) and a stochastic force directed along the line joining the 

centre of the particles (random force) ( Español, 2003). The amplitude of these forces 

are dictated by a Fluctuation-Dissipation theorem ( Español and Warren, 1995) to 

conserve the momentum and to reproduce the macroscopic diffusive behavior.  

To simulate the dynamics of the suspensions of polymeric macromolecules such as 

DNA and RNA, the simple BD or DPD particles are usually used to model the solvent, 

while the coarse-grained bead-rod or bead spring models are used to characterize the 
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dynamics of polymers. DNA molecule in an aqueous solution takes random coil 

conformation as a result of thermal fluctuation. Such a fluctuation shortens the end-to-

end distance of the polymer, even against an applied force. This elasticity against 

stretching is purely entopic. In the Kramer’s bead-rod model (Kramers, 1946), the 

polymer chain is modeled as a series of beads connected by rigid links where the 

beads are the points experiencing the viscous drag force and are also under constant 

thermal bombardment by solvent molecules whereas the rods serve to hold the beads 

apart at constant distance. As each rod represents a fixed length (one Kuhn length, the 

smallest rigid length scale of the polymer when there is no excluded volume effect) of 

the macromolecule, the number of rods needed to represent a polymer molecule is 

proportionally with the molecular contour length. Therefore, it is not applicable to 

long DNA molecules. In a bead-spring system, beads are distributed uniformly along 

the backbone of chain and linked together by springs. All the forces experienced by 

the polymer including the viscous force, pressure force, electric forces and the random 

forces are applied on the beads. The spring accounts for the entropy- induced 

elasticity which describes the force-extension relationship. Because one single spring 

can represent varied (large) number of Kuhn steps through changing the spring force 

parameters. Therefore number of the beads can be significantly reduced as long as it 

can describe in sufficient detail the distribution of configurations (Larson, 2004). It 

should be noted that it is assumed that the elasticity of submolecule represented by the 

spring is identical to that of the whole molecule. This assumption is only valid when 

each spring is representing a sufficient number (>10) of Kuhn length of DNA, and 

therefore set an upper limit of the beads number used to represent a DNA (Larson, 

2004). 

There have been a lot of force model for the springs such as the Hookean dumbbell 
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model (Kuhn and Grün, 1942), the Rouse model (1953) and the Zimm model (1956), 

the finitely extensible nonlinear elastic (FENE) dumbbell model (Bird, 1987; 

Wedgewood et al., 1991), the worm-like chain (WLC) model (Vologodskii, 1994; 

Marko and Siggia, 1995), and the inverse Langevin chain model (Hur, 2000), etc. 

Among all these models, the WLC model is found exellent in approximation of the 

entropic elasticity of DNA at low and intermediate forces. In WLC, the molecule is 

treated as a flexible rod of length L that curves smoothly as a result of thermal 

fluctuation. The force F  required to induce an end-to-end distance extension of x  in 

a chain of contour length L  is given by (Vologodskii, 1994; Marko and Siggia, 1995),  

L
x

L
x

Tk
F

B

p +−⎟
⎠
⎞

⎜
⎝
⎛ −=

−

4
11

4
1 2λ

,  (1.2) 

where Bk  is Boltzmann constant, T  is the absolute temperature, and pλ  is the 

effective persistence length. According to (Smith et al., 1992), the effective 

persistence length can be set as 50 ~ 53pλ = nm under most biophysical or 

experimental conditions. Although  (1.2) is derived from force-extension relationship 

of the whole molecule, it is expected to be applicable also to subsections as long as 

the length of the pieces of DNA corresponding to a single spring is much greater than 

the persist length of DNA (Hur et al., 2000).The spring forces in these models are 

always attractive. They are balanced by the pressure force, viscous force and other 

external forces.  

Mesoscopic simulation methods, such as BD and DPD, along with suitable polymer 

model facilitate the studies of the dynamics of long DNA under various conditions by 

representing the long polymer using a sequence of bead-spring segments.  

The most difficult problem in the study of the dynamics of polymers arises from the 
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complex coupling of factors including viscous force, entropic elasticity, Brownian 

forces, hydrodynamic interactions, excluded-volume interactions ,internal viscosity 

and self-entanglement, etc. (Larson, 2005). These forces and interactions are strongly 

coupled with each other through complicated atomic level interactions among the 

polymer and surrounding solvent molecules. Due to the oversimplification of coarse-

grained particle interactions, most of BD and DPD implementations consider only the 

effect of the viscous drag, entropic elasticity and Brownian forces. 

In addition, as these methods are stochastic, the simulation processes are normally 

very slow. To obtain reliable results, a number of simulations are required, the results 

of which are averaged to obtain the final results. In addition, there are no established 

methods to determine the parameters such as the viscosity of the fluid, the physical 

length and time scales which are required by these methods as input (Español, 2003). 

1.3 Objective and significance of the study 

In this thesis, electrophoresis filtration of short double stranded DNA segments is 

studied. Without special declaration, all the DNA molecules studied in this thesis are 

double stranded. The short DNA molecules is chosen here because the persistence 

length of DNA is ~50 nm in physiological conditions which means that it is quite safe 

the treat DNA molecules shorter than ~50nm as the rigid rod. This simplification 

permits one to focus on the role of entropic barrier in such process without 

considering the deformation of DNA molecules.  

  The theoretical model that will be developed for the analyses of the electrophoretic 

separation of rod-like DNA molecules in the patterned nanofilter arrays is based on 

continuum transport theory. In this theory, the degree of freedom in a DNA’s 
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orientations is projected into an orientational entropy term, using statistical theory for 

the equilibrium distribution of rigid cylindrical molecules near solid channel walls. 

The effect of the orientational entropy on the partition and migration of DNA 

molecules is quantified as a single entropy driven transport term in the master flux 

equation. One-dimensional analytical formulas of the electrophoretic mobility and 

peak desperation will be derived. Theses analytical formulas provide handy tools for 

experimentalist to predict the results of separation and optimize the task-specific 

structure of the nanofiltration devices.  

In addition, the effects of the spatial confinement of nanochannel to the DNA’s 

mobility and translational diffusion coefficient will also be quantified using statistical 

theory for the equilibrium distribution. As the analytical solution to the anisotropic 

transport problem is not available. Numerical analysis is performed using a model 

nanofilter array consisting of a small number of repeated unit cells. From the 

translation and broadening of peaks over these repeats, the results of separation of the 

DNA molecules passing through the full-length channel, which may consists of tens 

of thousands repeats, are estimated using one-dimensional unified separation theory. 

It will be shown that the entropic barrier effect, combined with the modified 

anisotropic transport parameters in the confined nanofilter space, accounts for the 

fractionation of the DNA molecules of different sizes.  

Unlike all the previous simulations, this continuum theory provides a platform to fully 

describe sieving, diffusion and convection of a band of biomolecules passing through 

a repeated array of nanofilters. 
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1.4 Organization of the thesis 

This thesis is composed of 8 chapters, the contents of which are listed as follows. 

In Chapter 1, the background of the DNA electrophoresis over random polymeric gels 

and the regular nanoarrays are provided. The review includes the established 

knowledge on the experimental, theoretical and simulation aspects of the 

electrophoresis of polyelectrolytes, especially those related to the entropic barrier 

mechanism. The objective and significance of this study are also provided.  

Chapter 2 constitutes a brief introduction of the transport properties of the rod-like 

DNA molecules in free solution. Experimentally determined formulas or curves for 

free-solution diffusion coefficient and free-solution electrophoretic mobility of short 

rod-like DNAs are given. As one of the main objectives, the rotational diffusion of the 

DNA rods is presented to provide basis for calculation of entropy barriers, and 

analysis of other transport problems.  

Chapter 3 describes the physics of rod-like DNA molecules in confined space. 

Orientational entropy is quantified using statistical mechanics theory. In addition, the 

mobility corresponding to the interactive force from the solid wall, which is referred 

to as entropic force, is also obtained.  

In chapter 4, principles of membrane transport theory is applied to develop an exact 

analytical solution for the mobility and dispersion of DNA molecules migrating in the 

nanofilter array.  This model is based on equilibrium partition theory using isotropic 

transport parameters. The physical mechanisms of electric field driven transport and 

trapping time induced by entropy barrier are elucidated clearly. Method to assess and 

optimize the structure of the nanofilter and selection of the electric field is proposed. 
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In Chapter 5, the model for anisotropic transport of DNA molecules is developed, 

followed by the numerical solutions to the anisotropic transport equations as 

described in Chapter 6. These approaches serve as more accurate tools to analyze 

more complicated phenomena, especially for the cases with nonuniform electric field. 

The results and discussions are given in Chapter 7. Using the experimental 

specifications of the nanochannel structure and the well-established values of 

transport parameters, reproduction of the experimental results for mobility is achieved 

faithfully. In addition, band dispersion is also estimated, which is far more difficult in 

other stochastic simulation methods.  

 Last, in Chapter 8 the conclusions are drawn and some future work to extend this 

study is given. 
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2 Rod-like DNA molecules in aqueous solution  

Double stranded DNA molecules are relatively stiff polymer, with a persistence 

length of ~50nm, corresponding to ~150 base pairs (bp). Geometrically, short DNA 

molecules of a few hundred base pairs normally behave as rigid rod of diameter ~2 

nm in solutions.  As a polyelectrolyte with 2e- charge per base pair, a DNA is subject 

to an electrostatic force if it is located in an electric field. A short DNA rod also 

undergoes high-speed random translational and rotational thermal motions.   

The dynamics of DNA molecules in aqueous solution are traditionally characterized 

by free-solution (translational) diffusion ( dD ) and free-solution electrophoretic 

mobility ( eU ). The first two sections of this chapter briefly outline the formula and 

data that have been established by experiments, followed by a section discussing the 

relationship between dD  and eU , i. e. the Nernst-Einstein relation. Although the 

analysis of rotational motion of DNA rod is not necessary in free solution 

electrophoresis (because all the orientations are equally accessible, DNA molecules 

can be treated as isotropic), the random rotation of DNA molecules has to be studied 

here to provide proofs of validity of our approaches. 

2.1 Free-solution diffusion coefficient of rod-like DNA 

Diffusion of particles in a solution from a region of high concentration to regions of 

low concentration is a spontaneous process caused by the Brownian motion of the 

particles. Starting from a point in three-dimensional space, the variance of distance 
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( 2
tr< > ) that a particle travel in time duration τ  is described by diffusion coefficient 

( dD ) such that, 

2 2 d
tr D τ< >= .  (2.1) 

Free-solution diffusion coefficient of short DNA molecules of length  L  and diameter 

d  has been extensively studied and well established (Allison and Mazur, 1998; Eimer 

and Pecora, 1991; Tirado et al., 1984). For short rod-like DNA molecules, diffusion 

coefficient dD  is given by  

0

ln( )
3

d B
c

k T LD
L d

ν
πη

⎛ ⎞= +⎜ ⎟
⎝ ⎠

  (2.2) 

where 0η  is the viscosity of the solvent, and 

22 /010.0/565.0312.0 LdLdc ++=ν  (2.3) 

represents the correction term for the end effect of short DNA molecules (Tirado et al., 

1984). 

2.2 Free-solution electrophoretic mobility of DNA 

The free-solution electrophoretic mobility ( eU ) characterizes the drift velocity of an 

electrolyte in the solution under a unit external electric field. It is experimentally 

established that the free-solution electrophoretic mobility of DNA is independent of 

molecular weight for DNA molecule longer than a threshold value of ~400bp 

(Stellwagen et al., 1997; Stellwagen and Stellwagen 2002). For these molecules free-

solution separation is impossible. Although the mobility of shorter DNA molecule is 

size dependant, the range of mobility differences for 10-400bp DNAs is less than 15%. 

This minor difference made the free-solution separation impractical even for short 



19 

Chapter 2                                    Rod-like DNA molecules in aqueous solution 

DNA molecules. 

The free-solution electrophoretic mobility of a polyelectrolyte is dependent on many 

factors including the ionic strength, temperature etc. In this thesis, the experimental 

curves established by Stellwagen et al. (1997) is adopted because their experimental 

conditions are similar to those for the DNA filtration studied here. 

 

 

Fig. 2.1. Size dependence of the free-solution electrophoretic mobility 
of DNA molecules (reproduced from Fig. 7 of Stellwagen et al., 1997.)  

2.3 Validity of Nernst-Einstein relation 

For small spherical solute particles, the hydrodynamic friction coefficients for 

translational diffusion and the electric field driven motion would be identical. Let ζ  

be the friction coefficient that relates the drifting velocity V%  and the force applied to 

the particle F  by 

F Vζ= % . (2.4) 
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This means that the translational diffusion coefficient of the particle is equal to 

d Bk TD
ζ

= , (2.5) 

while electric mobility is 

e zeU
ζ

= . (2.6) 

where z  is the charge number of the charged particle.  

In this case, Nernst-Einstein relation  

/ /d e
BD U k T ze=  (2.7) 

would be valid.   

For the Nernst-Einstein relation holds for the DNA molecules, the dependences of  

dD  and eU  on molecule size N  should be characterized by the same form of 

functions. However, it is well known that free-solution mobility for DNA longer than 

~400bp is independent of N , i.e. 0~eU N  (Stellwagen et al., 1997; Stellwagen and 

Stellwagen, 2002; Stellwagen et al., 2003). On the other hand, diffusion coefficient of 

long DNA molecules changes with molecule size by ~dD N υ− , with 0.5 ~ 0.75υ =  

depending on theoretical or experimental conditions (Nkodo et al., 2001; Smith et al., 

1996; Lukacs et al., 2000; Sorlie and Pecora, 1990; Stellwagen et al., 2003). It is 

apparent that the Nernst-Einstein relationship is generally not valid for DNA 

molecules (Nkodo et al. 2001, Mercier and Slater, 2006).  

As an exception to this result, it is claimed that Nernst-Einstein relation is valid for 

short DNA molecules smaller or shorter than the persistence length (Mercier and 

Slater, 2006). However, when one analyzes the experimental data of diffusion 

coefficient and the free-solution electrophoretic mobility, it is found that Nernst-
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Einstein relation does not hold for molecules even as short as 10-100bp. To show this 

the free-solution electrophoretic mobility is calculated from Nernst-Einstein equation 

and the formula of diffusion coefficient. If the Nernst-Einstein relation is valid, the 

calculated data should reproduce the experimental curves as shown in Fig. 2.1 at least 

approximately. 

If the Nernst-Einstein relation (2.7) holds for short DNA, the free-solution 

electrophoretic mobility of N -bp DNA can be calculated as  

2 d
e

B

NeU D
k T

∝ .  (2.8) 

Substituting the expression for diffusion coefficient Eq. (2.2) to (2.8), one has  
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.  (2.9) 

Equation (2.9) tells that the free-solution electrophoretic mobility eU  has to be 

proportional to  

' ln( ) c
N LU
L d

ν⎛ ⎞= +⎜ ⎟
⎝ ⎠

  
(2.10) 

if the Nernst-Einstein relation is valid for short molecules.   

Fig. 2.2 shows the curves of 'U  for short DNA with 2d = nm and L  calculated from 

Kratky-Porod model (Kratky and Porod 1949; Marko and Siggia, 1995) 

1/ 2
/2 [1 (1 )]plp

pL l e
l

λλ
λ −⎧ ⎫

= − −⎨ ⎬
⎩ ⎭

. (2.11)

This curve departs seriously from the data shown in Fig. 2.1 by Stellwagen et al. 

(1997) and it does not fit into the free draining DNA electrophoresis mobility (which 

is independent of the length). For the molecules between 10-100bp, the change in 
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experimentally obtained free-solution electrophoretic mobility is rather small (about 

10%), while 'U  (derived here from Nernst-Einstein relationship) is about 200%. 

Similarly, for molecules between 100-300bp, the change in mobility is about 20%, 

while that in 'U  is about 50%. Based on these arguments, one can conclude that 

Nernst-Einstein relationship is not valid for DNA in any range of lengths.  

The reason for this, as explained partly by Nkodo et al. (2001) and Stellwagen et al. 

(2003), is because the frictional constants involved in the electric driven motion and 

the diffusion are different. Einstein’s relation only focuses on the molecule itself and 

the surrounding neutral fluid, but the electrophoresis is also determined by the friction 

between DNA and counterion (with opposite charges). Since the counterions are also 

charged and are driven by electric field as well, the friction constant will be different.  
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Fig. 2.2. Electrophoretic mobility of rod-like DNA predicted from the 
diffusion coefficient and the Nernst-Einstein relation. If the Nernst-
Einstein relation is valid, this curve should reproduce the experimental 



23 

Chapter 2                                    Rod-like DNA molecules in aqueous solution 

data approximately. 

2.4 Rotational diffusion of a DNA rod 

As a short cylindrical rod, a DNA molecule is a highly anisotropic molecule.  The 

non-interacting Brownian rotation of rod-like DNA molecules causes a continuous 

reorientation, which gives rise to rotational diffusion. For short DNA rods, this 

rotational diffusion is much faster than its translational diffusion or electric field 

driven migration, so much so that at any point during the migration, all the 

orientations are accessed many times with equal probabilities. This fact allows for a 

simplification of modeling and calculation by removing the rotational degree of 

freedom as performed in the later chapters of this thesis. In this section, the process of 

rotational diffusion of rod-like DNA molecules will be analyzed in order to provide 

the basis for the calculation of the entropy barrier and other transport quantities.  

2.4.1 Stokes-Einstein-Debye model 

The main focus of theory on rotational Brownian motion is the calculation of the 

probability density function for the orientation. The first theory of rotational 

Brownian motion was developed by Debye (1929) and is the rotational analog of the 

simple translational diffusion. The fundamental assumption of this theory is that 

collisions between the DNA and the surrounding liquid molecules are so frequent that 

DNA molecule can rotate only through a very small angle before suffering the next 

reorientation collision. The direction of the next rotation is independent of its current 

orientation.   

The orientation of DNA rod can be specified by the unit vector )(tu  with spherical 

polar coordinates ),( φθ  as shown in Fig. 2.3a. During the rotation, the two ends of 
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DNA rod remain on the surface of a sphere of unit radius as the length of the rod is 

constant. Therefore, the reorientation of the molecule corresponds to a random 

trajectory on the surface of the unit sphere. An example is shown in Fig. 2.3b, where 

the orientation angle of a rod changes from )0(u  at time 0 to )(tu  at time t  though 

rotational random walks. In a sufficiently long run, this random trajectory will cover 

the whole sphere surface uniformly, which means that the DNA molecule samples all 

the possible orientation equally.   
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Fig. 2.3. The orientation and reorientation of the rod-like DNA 
molecules. (a) Orientation of the rod-like DNA is represented by a unit 
vector u . (b) the reorientation of the rod corresponding to a random 
trajectory on the surface of the unit sphere. 

The basic assumption of the Debye theory indicate that the random rotation of rod-

like DNA molecule is equivalent to a particle (attached to the tip of DNA rod) 

randomly moving on the surface of a unit sphere. Microscopic particles in solution 

have an average kinetic energy associated with rotation about any axis of 2/TkB , 

which are equal to the average kinetic energy associated with translation along any 

axis. Corresponding to the viscous drag force which is proportional to the velocity in 
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translation, the frictional torque θN  is also assumed to be proportional to angular 

velocity rΩ  of the particle with a friction coefficient rf  by  

rr fN Ω=θ . 
 

(2.12) 

As a result, the relationship between the rotational diffusion coefficient and rotational 

friction coefficient is described by Stokes-Einstein-Debye equation (Stokes, 1856; 

Einstein, 1906; Debye, 1929) 

r B

r

k TD
f

= . (2.13)

The mean square angular random deviation of the infinitesimal angle θ∆  by which a 

vector rotates during an infinitesimal time interval t∆  is  

2 4 rD tθ< ∆ >= ∆ . (2.14)

The rotational diffusion coefficient of a rod-like DNA of length L  and diameter 

d was has been established by Tirado et al. (1984)  

3
0

3 ln( )r Bk T LD
L d

δ
πη

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (2.15)

where the end effect correction term δ  is given by 

22 /050.0/917.0662.0 LdLd −+−=δ . (2.16)

Equation (2.14) is valid for only very short time. This is because in contrast to the 

three-dimensional translational diffusion in the infinite domain, the rotational 

diffusion takes place in a periodic angular space.  For a cylindrical DNA rod, the 

recognizable rotation angle lies in a very small range of 2/~0 π . A more accurate 

description is given in the next subsection. 
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2.4.2 Time dependent angular distribution 

The governing equation for rotational diffusion can be derived from the governing 

equation for the translational diffusion  

2( , ) ( , )rP t D P t
r

∂
= ∇

∂
r r   

(2.17) 

by representing the Laplacian operator 2∇  in spherical coordinate system ),,( φθr , 

φθθ
θ

θθ 2

2

222
2

2
2

sin
1)(sin

sin
1)(1

∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=∇
rrr

r
rr

,  
(2.18) 

where ),( tP r is the probability that the tip DNA molecule is located at point r at 

time t . 

On a unit sphere surface, r  is equal to 1, and all the derivatives respect to r  are 0. 

Therefore, the Laplacian operator reduces to, 

φθθ
θ

θθ 2

2

2
2

sin
1)(sin

sin
1

∂
∂

+
∂
∂

∂
∂

=∇ .  
(2.19) 

Substituting expression  (2.19) to  (2.17), one gets the rotational diffusion equation in 

spherical coordinate system, 

2

2 2

( , , ) 1 ( , , ) 1 ( , , )(sin )
sin sin

rP t P t P tD
t

θ φ θ φ θ φθ
θ θ θ θ φ

⎛ ⎞∂ ∂ ∂ ∂
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.  
(2.20) 

Let us consider a special case where a fixed number of molecules were released 

instantaneously at 0=θ at 0=t  (all the molecules are aligned in z  direction as 

shown in Fig. 2.3). At any time 0>t , the distribution of orientation is independent of 

φ . Therefore, all the derivatives of ),,( tP φθ  with respective to φ  are zero. The 

rotational diffusion equation (2.20) becomes, 
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Using numerical method, this mater equation for rotation diffusion is solved with the 

initial condition at 0t =  

1 0
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(2.22) 

to obtain the probability density function ( , , )P tθ φ at any time.   

Integrating the probability density over φ ,  the probability of the rod oriented with 

angle θ  is, 

),,( sin2),( tPtP φθθπθθ = . 
 

(2.23) 

Subsequently, angular variance 2θ< ∆ > and anisotropy parameter IA  are obtained by, 

 2 2
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( , )P t d

π

θθ θ θ θ< ∆ >= ∫ ,  
(2.24) 

and (Carrington and McLachlan, 1967; Lavalette et al., 1999) 
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respectively. The anisotropy parameter described by Eq.(2.25) decays exponentially 

with time t ,  

( ) exp( 6 ) exp( / )r
I rA t D t t τ= − = − , 

 
(2.26) 

with rτ  being the  rotational correlation time given by 

1
6r rD

τ =  .  
(2.27) 

The relationship described by Eq. (2.14) works well when the diffusion time is 
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smaller than the critical residing time  

1
4

c
r rD
τ = ,  

(2.28) 

which satisfies  

2 1θ< ∆ >= rad 2 . (2.29)

when equation (2.14) is used to calculate the angular variance in rotational diffusion.   
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Fig. 2.4. The angular variance and the anisotropy factor changing with 
time. Estimation of angular variance using 2 4 rD tθ< ∆ >=  is generally 
accurate for 1/ 4c r

rt Dτ≤ =  ( 1/ rD =0.25). At  c
rt τ=  the anisotropy 

factor is less than 0.2, meaning that the orientation of an anisotropic 
particle is almost uniformly distributed regardless of its initial 
orientation.  

In practice, c
rτ  serves at the threshold value in judging the dependence of the 

orientational distribution on the initial state. If a particle resides at a point for a time 
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longer than c
rτ , all its orientations would occur in approximately equal probability, 

regardless of its original orientation. This can be confirmed from the simulation 

results shown in Fig. 2.4. In this figure, the anisotropic factor is less than 0.2 at time 

c
rt τ=  . It is also noteworthy that  c

rτ  also serves as the threshold time for the validity 

of Eq. (2.14). For c
rt τ≤ , 2θ< ∆ >  is approximately equal to 4 rD t . Beyond the 

critical value, Eq. (2.14) is not valid anymore. 

Now let us look at the short DNA molecules migrating in the regular nanofilter array. 

At room temperature, the rotational diffusion coefficients for 50-300bp DNA 

molecules are in the order of 4 6 210 ~ 10 /rad s . The critical residing times are within 

the range of  0.1 ~ 10 sµ . Actually, the mean residing time of DNA molecules in one 

unit of nanofilter (repeat length 1.0 mµ ) under typical electric field strengths (14-

57V/cm)  is  about 0.05~0.1s. This residing time is far more higher than the critical 

threshold value, therefore a DNA molecule is able to sample all accessible 

orientations many times. It is quite safe to assume that there exists an orientational 

equilibrium at all points of the nanofilter.  The orientational degrees of freedom of the 

DNA rod can be eliminated by averaging of the orientation dependent quantities with 

their Boltzmann probabilities.   
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3 Rod-like DNA in confined space 

When a DNA rod is located in a confined space, some of its orientations are forbidden 

due to the presence of solid channel walls. This reduction in configurational 

accessibility causes an entropy loss which has been shown to play an essential role in 

transport of the biomolecules through pores in various biological membranes. This 

entropy reduction is also responsible to the separation of rod-like DNA through the 

nanofilter array device studied in this thesis. In this chapter, configurational entropy 

DNA rod is quantified using the theory of equilibrium statistical mechanics. In 

addition, the confinement in the orientational space made the transport of DNA 

molecules anisotropic (the flux caused by the thermal motion or the electrostatic force 

is direction dependent). The anisotropic transport parameters will also be calculated 

based on the experimental data for free-solution isotropic cases. 

3.1 Probability of orientation for a DNA rod in confined space 

As shown in Fig. 3.1, vector r  denotes the position of center of the DNA ( 'O ) in 

global coordinate system Oxyz . The orientation of rod is represented by a vector 

( , )θ φ=Θ  ( | ' | 1O A = ) that is locked into the DNA rod ( | ' | / 2O B L= , L  is the length 

of the rod) and lies along the rod’s long axis. The surface of the unit sphere is 

represented by S , representing all the possible orientations of the rod. 
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Fig. 3.1. The position and orientation of a DNA rod. The position of 
DNA is defined by a vector r  in the global system Oxyz, while the 
orientation of the DNA rod is represented by vector ( , )θ φ=Θ . 

Based on the discussions presented in Section 2.4, one may assume that all the 

orientations of DNA rod in free solution are equally accessible due to fast rotational 

diffusion. Because the surface area of a unit sphere is equal to 4π , the probability 

density of the rod oriented at Θ  is 

0
1( )

4
p

π
=Θ .  (3.1) 

Now let us consider the case when the centre of DNA rod 'O  is located at r near a 

solid wall as shown in  

Fig. 3.2. Some orientations are not accessible because the DNA rod would intersect 

with the solid wall at these orientations. Such inaccessible orientations correspond to 

the domain represented by the dashed curves on the surface of unit sphere as shown in  

Fig. 3.2. Other orientations, which are permissible, are represented by domain 'S  on 
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the surface in solid curves. The ratio of the number of permissible orientations to the 

total number of orientations of a DNA rod centered at is  r  given by 

1 2

'
( ) (4 )

S
dρ π −

Θ = ∫∫r Θ .  (3.2) 

 

'S'S
O’ Θ

B 

 

Fig. 3.2. Permissible and forbidden orientations of the DNA rod near a 
solid wall. The surface represented by S’ corresponds to permissible 
orientations while the others (S-S’) shown by dashed curves are 
forbidden. 

The ratio ( )ρΘ r  describes how much of the rod’s orientational space is accessible at 

position r . It has a maximum value of 1.0 meaning that all orientations are 

permissible (as in the free-solution), and a minimum value of 0.0 which means that 

the rod intersects with the solid wall at all orientations. 

3.2 Orientational entropy of the rod-like DNA in confined space 

The interactions between a rigid boundary and a rigid molecule imply a hard-wall 

potential. The interactive energy between the DNA rod and solid boundary is 

∞=Mbε  if the molecule and boundary overlap and 0=Mbε  if they do not overlap.  

The Boltzmann factor of the molecule boundary interactive energy, 
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]/)(exp[ kTMb λε− , is there fore either 1 (for all molecular orientations free from 

boundary overlap) or 0 (for all overlapping orientations). It is very straightforward to 

find that in the hard-wall approximation, the Boltzmann factor is equivalent to ( )ρΘ r , 

the probability of no intersection with boundary walls at given location r .  

For the purpose of rigid DNA transport, only orientational entropy needs to be 

calculated as other type of entropies does not affect the flux of DNA over the 

nanochannel structure. According to statistical theory, orientational entropy of rigid 

molecules is defined as  

)(ln)( rr Ω−=∆ RS ,  (3.3) 

where )(rΩ is the accessible microscopic orientation state integrals at location r  

(Giddings et al., 1968).  

For the rod-like rigid DNA molecules specifically, the orientational entropy of interest 

can be rather simply expressed by  

( ) ln ( )BS k κΘ =r r .  (3.4) 

where the subscript Θ  indicates that the entropy SΘ is induced by the loss of 

orientational freedom, ( )κ r  is the local partition function (defined as the ratio of 

number of accessible microscopic configurations at r  near the solid wall to those in 

the bulk liquid, Giddings et al., 1968). As this ( )κ r  is exactly the ratio ( )ρΘ r given by 

Eq. (3.2), the entropy is given by 

( ) ln ( )BS k ρΘ Θ=r r .  (3.5) 

Based on this formulation, a DNA molecule acquires maximum entropy of value 0 

when it is located in the bulk solution. As the DNA is located close to a solid wall, a 
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portion of its orientational space is not accessible and therefore the orientational 

entropy decreases to a negative value. A negative entropy causes no problem here as 

only the gradient of entropy enters the expression of the flux of DNA molecules as 

studied in next chapter. This definition of orientational entropy of a rod-like DNA 

molecule is based on the assumption that all the possible orientations occur in equal 

probabilities. This assumption is valid when electric force exerted on the electrolyte is 

much smaller than the random thermal force, and the molecule has enough time to 

sample all the available orientations at any location of domain.  

3.3 Mobility of DNA rod for entropic force 

Another important parameter is the mobility associated with the entropic force. By 

definition, SU  corresponds to the velocity of a rigid DNA obtained if 1 newton of 

“entropic force” is applied to 1mol of DNA molecules. Although this quantity is not 

available through experimental observation, one can derive it based on some 

qualitative assumptions.  

The entropic force in this thesis is originated from the reactive force that the solid 

wall applies to a rigid rod when this rod hits the solid wall through rotational motion 

starting from a permissible orientation. As the energy of thermal fluctuation in each 

dimension is / 2Bk T  for both rotational and translational diffusions, the expression of 

SU  is derived through the comparison between the speeds of the motion at the centre 

of a rod caused by these two types of diffusions. 

The free-solution diffusion coefficient and the rotational diffusion coefficient of the 

short rod-like DNA molecules are given by (Tirado et al., 1984)  
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0

ln( )
3

d B
c

k T LD
L d

ν
πη

⎛ ⎞= +⎜ ⎟
⎝ ⎠

  (2.2) 

and 

3
0

3 ln( )r Bk T LD
L d

δ
πη

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (2.15) 

respectively. The parameters cν  and δ  represent the correction terms as the end 

effect for DNA rods. Neglecting the end effect terms δ  and ν  in Eq.  (2.2) and (2.15), 

the relationship between dD and rD  is  

29 /r dD D L= .  (3.6) 

Within a typical time duration τ , the one-dimensional average diffusion angle of the 

DNA rod in bulk solution is  

1/ 2(2 )rDα τ< >= ,  (3.7) 

 corresponding to an effective angular velocity (Berg, 1983)  

1/ 2(2 / )rDα τ< >=& .  (3.8) 

When one end of a DNA molecule hits the solid wall during rotation, it is assumed 

that the tip of this end stops instantaneously and the other portions of the rod rotate at 

the same speed as that before hitting (Fig. 3.3). This assumption is based on the nature 

of the near-wall thermal diffusions of nanoparticles (Kihm et al. 2004). The 

amplitudes of the thermal fluctuations of solid particles and the surrounding fluids 

decrease when they approach the wall. The particles or the portions of an object that 

are further from the solid wall will are subject to a higher degree of thermal motion, 

while motions of those on the solid surface are hindered.  
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Fig. 3.3. Interaction between the rotational rod and the solid wall. 
When one end of a DNA rod (D) hits the wall at rotational velocity (α& , 
shown by thick arrow) during rotational Brownian motion, that end 
stops instantaneously as its motion is hindered in all directions while 
other portions of the rod retain their original rotational velocities owing 
to the sustained random thermal fluctuations of the surrounding fluid 
molecules (shown by the irregular thin arrows). 

As shown in Fig. 3.3 , at the moment when one end of the DNA (end D) hits the wall 

at a rotational velocity, the motion of end D is hindered in xy-plane by stationary fluid 

(no-slip boundary condition), -z by solid wall. The motion in +z direction is also not 

possible at this moment because of the momentum of the whole rod. Therefore D is 

treated as fixed instantaneously. As long as the thermal fluctuations of surrounding 

fluids are not affected by the event that the DNA hits the wall, the fluids will continue 

to push the other portions of the rod to rotate at its original velocity α&  and induces a 

translational motion for the center of the DNA. Consequently the translational 

velocity at the centre of the rod is  

/ 2rr Lα< >=< >&& ,  (3.9) 

which can be further expressed as  

rr< >& 1/ 2(9 / 2 )dD τ= .  (3.10) 

From the translational diffusion point of view, during the same time duration ofτ , the 
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one-dimensional average translational diffusion speed is  

tr< >=& 1/ 2(2 / )dD τ .  (3.11) 

Comparing the velocity of the centre of the rod caused by hindered rotational 

diffusion and that induced by translational diffusion, one can find the relationship of  

9 / 4r tr r< >= < >& & .  (3.12) 

This relationship tells that the speed caused by the rotational diffusion near the solid 

wall (entropic force) is 9/4 times that of the translational diffusion. Therefore one has 

9 / 4S dU D RT= ,  (3.13) 

The orientational entropy S and the entropic mobility SU  enable one to incorporate 

the effect of orientational confinement in shallow channels to the expression of 

traditional unified electrochemical potentials and the flux developed for continuum 

transport of small spherical particles.  
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4 One-dimensional isotropic transport theory 

In this chapter, a theoretical model is developed for the analysis of Ogston sieving of 

anisotropic polyelectrolytes in patterned nanofilter arrays based on steady state 

transport theory. In this model, the electric field driven migration of the 

polyelectrolytes is formulated as the transport of point-sized charged particles in the 

aqueous solutions, owing to the fact that there exists an equilibrium state in the 

rotational degree of freedom, as discussed Chapter 2 and Chapter 3.  In addition, the 

three-dimensional transport problem will be transformed into a one-dimensional one 

through appropriate projections. Formula for the electrophoretic mobility and the 

dispersion of the polyelectrolytes across rectangle-shaped barrier will be derived 

analytically and the theoretical results are compared with experimental data. A 

method of designing the sieving structure and the electric field strengths will also be 

proposed. 

4.1 Dynamically effective charged of rodlike DNA 

In an aqueous solution, the electrostatic force that a polyelectrolyte is subjected to 

under an external electric field E  is balanced by the viscous friction through  

eqE Vς= %   (4.1) 

where q  is the net charge, V%  is the drifting velocity, and eς  is the hydrodynamic 

friction coefficient for electric field driven motion. Free-solution electrophoretic 

mobility, which characterizes the velocity an electrolyte obtained under unit electric 
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field strength, is related to the friction coefficient by 

/ /e eU V E q ς= =% .  (4.2) 

Apart from the electric field driven migration, polyelectrolytes in aqueous solution 

undergo random Brownian motions which magnify as translational diffusions. The 

translational diffusion coefficient is related to the translational diffusion coefficient by, 

/d d
BD k T ς=   (4.3) 

where dς  denotes the hydrodynamic friction coefficient for diffusion (Berg 1993). As 

discussed in Section 2.3, the friction coefficients eς  and dς  may take different values 

because the friction to diffusive motion and that to the electric field driven motion are 

associated with different physical phenomena (Mercier and Slater, 2006; Stellwagen 

et al., 2003). When a polyelectrolyte is moving due to non-electrostatic forces such as 

random kicks in diffusion, its surrounding counterions may move with it, while in the 

electric field, the counterions will be driven by the electric field to move in the 

opposite direction to that of the polyelectrolyte. In order to unify the flux caused by 

these diverse phenomena, so that the flux is dependent solely on the gradient of a 

unified energy (a force) and a unified friction coefficient ( ς ) regardless of the 

physical forces involved, a dynamically effective charge q%  of the polyelectrolyte is 

introduced as 

e
B

d

k TUq
D

=% .  (4.4) 

This effective charge satisfies the relationship   

/ /d e eq q Uς ς= =% ,  (4.5) 

and it does not change the mobility of the electrolyte.  
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The introduction of q%  permits one to reproduce the dynamics caused by the diffusion 

and electric field driven motion simultaneously without the need to deal with the two 

phenomena separately. Therefore one can use the transport model established for 

small spherical charged particles to analyze the electrophoretic dynamics of DNA 

molecule.  

4.2 Partition coefficient between the shallow and the deep regions of 

the nanofilter 

Let ( )C r be the concentration of an electrolyte at a point ( , , )x y z=r  in three-

dimensional space. The partition function in a domain V at equilibrium state is 

defined by Giddings et al.  (1968) 

 

0 

( )
V

V

C d
K

c d
=
∫∫∫
∫∫∫

r r

r
,  (4.6) 

where 0c  is the reference concentration in the bulk solution. 

 For the field free partition of anisotropic particles in the nanochannel space, ( )C r is 

determined by the balance between the steady state flux caused by diffusion  

( )d
d

dCJ D
d

= −
r

r
 (4.7) 

and that caused by the difference of orientational entropy  

( )( )s
S

dSJ U C
d
Θ=

rr
r

. (4.8) 

At equilibrium state, dJ  and SJ  canceled each other such that 
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0d sJ J+ = . (4.9) 

Substituting the formulas of the orientational entropy and the entropic mobility as 

described in Chapter 3,  

( ) ln ( )BS k ρΘ Θ=r r   (3.5)  

and 

9 / 4S dU D RT= ,  (3.13)  

to Eq. (4.9), ( )C r  is obtained as a function of ( )ρΘ r , which is 

9/ 4
0( ) ( )C c ρΘ=r r . (4.10) 

One may calculate the value of ( )ρΘ r  of a DNA rod at point r  in the deep wells and 

shallow slits of the nanofilter numerically. Subsequently, the partition functions at the 

deep and shallow regions ( dK  and sK ) can be obtained from Eqs. (4.6) and (4.10) . 

The partition coefficient between the shallow region and the deep region is then 

/s dK K K= .  (4.11) 

This partition coefficient describes the distribution of anisotropic particles in the 

shallow and deep regions of the nanofilter caused by the difference of orientational 

entropies in these regions. It is noteworthy that this partition coefficient is defined in 

terms of the concentration in three-dimensional space. For particles whose sizes are 

significantly smaller than the channel dimension, the partition function is 1.0.  

4.3 Projection of nanofilter to an equivalent channel with uniform 

cross sections 

Because the transport of DNA molecules happens mainly in the direction of the 
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channel axis ( x ) direction, the degree in the depth ( y ) and width ( z ) directions of 

the channel can be eliminated by proper approximations. By this means, flux or 

migration in y - and z - directions are eliminated, one may formulate on the dynamics 

of DNA in the channel as one-dimensional transport problem (in x  direction). 

Let ( )aC x  be the averaged concentration over the cross section of the nanofilter at x , 

( , , )
( ) A

a

A

C x y z dydz
C x

dydz
= ∫∫

∫∫
  (4.12) 

where A is the cross section of the channel. Here ( )aC x , which has a unit of 3mol m−⋅ , 

is still the concentration in three-dimensional space.    

Because the area of the cross sections of the shallow and the deep regions  

S
sA

dydz w d= ⋅∫∫   (4.13) 

and 

d
dA

dydz w d= ⋅∫∫   (4.14) 

are different, variables that are related to the areas of cross section are all different for 

these two regions. For example, the amount of the molecules in deep region and that 

in shallow regions are  given by 

( )d d awell
n w d C x dx= ⋅ ∫   (4.15) 

and  

( )s s aslit
n w d C x dx= ⋅ ∫   (4.16) 

respectively, where w  is the width of the nanochannel. 
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Similarly, the amount of particles passing through the cross section of the deep region 

and that passing through the cross section of the shallow region are  

( )d d dN w d J x= ⋅   (4.17) 

and  

( )s s sN w d J x= ⋅   (4.18) 

respectively. At a steady state, the conservation of the mass requires that  

d sN N=   (4.19) 

meaning that  

( ) ( )s
d s

d

dJ x J x
d

= .  (4.20) 

The cross section difference causes unnecessary complications to the description of 

the problem when the three-dimensional description is projected to one-dimensional 

one. For simplification, the nanofilter is transformed to an equivalent imaginary 

channel with the uniform cross sections (width w  and depth dd ) as shown in Fig. 

4.1b. In this equivalent channel, the concentration of the electrolytes in the shallow 

and deep regions are defined as  

( ) if  belongs to the slit  
( )

( ) if  belongs to the well
a

a

C x x
C x

C x x
ε⎧

= ⎨
⎩

  (4.21) 

where 

/s dd dε =   (4.22) 

is the depth ratio between the shallow and deep regions. It could be found easily that 

the steady state flux is constant over this imaginary channel, which is consistent to the 

conventional expressions.  
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Fig. 4.1. Projection of the nanofilter array to an equivalent channel 
with uniform cross sections. (a) The nanofilter array. (b) The 
equivalent channel with uniform cross sections. (c) Partitions of 
molecules between shallow and deep regions in a field-free 
equilibrium state in the nanofilter array (solid lines) and in the 
equivalent channel (dotted lines). The coefficient 2 1/K c c=  reflects the 

partition effect induced by configurational entropy. The ratio 

3 2/K c cε =  is the partition coefficient caused by projection.  

Actually, the projection from the three-dimensional channel to the equivalent one-

dimensional one through Eqs. (4.12) and (4.21) constitutes a new partition coefficient 

between regions representing the slit and the well of the nanofilter in this equivalent 

one-dimensional channel  

Kε ε= .  (4.23) 

For example, let us consider an equilibrium state of a solution of ion where ion 
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concentration is a constant ( 0c ) in the whole channel space without an electric field. 

In this situation, K  is equal to 1 because there is no configurational entropy effect. 

The values of ( )aC x  at deep and the shallow regions calculated using Eq. (4.12) are 

the same (both are equal to 0c ). When one transforms these concentrations to the 

equivalent one-dimensional channel as shown in Fig. 4.1b, ( )C x  in deep regions is 

equal to 0c  while ( )C x  in shallow regions is 0cε . There arises a partition between 

these two regions (= ε ) in this equivalent one-dimensional channel. The same 

reasoning holds for the cases where the orientational entropy exists ( 1K ≠ ). Fig. 4.1c 

illustrates the typical concentration profile in the nanofilter array (solid lines) and that 

in the equivalent channel (dotted lines) at the field-free equilibrium state. The 

difference in the concentrations in the shallow and deep regions ( 2 1/c c K= ) is caused 

by the partition effect induced by configurational entropy. As one studies the 

distribution of the concentration in the imaginary one-dimensional channel, the 

partition coefficient is 3 1/c c Kε= . The ratio 3 2/K c cε ε= =  is the result of 

projection.  

4.4 The potential energy landscape 

The potential energy of a rigid anisotropic electrolyte in the nanofilter as shown in Fig. 

4.2a is determined by the electric potential and the entropy. Based on the effective 

charge calculated in the Section 4.1, the dynamically unified potential in the 

equivalent channel as shown in Fig. 4.2b is given by 

( ) ( ) ( )U x q x TS x= Φ −%   (4.24) 

where ( )xΦ  is the electric potential, and ( )S x  is the entropy. The entropy ( )S x  
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accounts for the partitions caused by both the orientational entropy and the 

contraction in the channel width in the shallow regions.   
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Fig. 4.2. The potential energy landscape of a rodlike DNA molecule 
along the nanofilter channel under an electric field. Under external 
electric field avE , the overall slope of the energy landscape is avqE− % . 

The energy barrier W∆  is determined by the geometry of the 
nanofilter and the partition coefficient by lnBW k T Kε∆ = − . 

A typical potential energy landscape is show in Fig. 4.2c. This energy landscape has 

an overall slope of avqE− % , superimposed on which are a step function of entropic 

barrier and the variation of electric field in the deep and shallow regions.  

The energy barrier at the junction of the well and the slit is 
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lnBW T S k T Kε∆ = − ∆ = − .  (4.25) 

Meanwhile, the electric field strength in the direction of channel axis in deep and 

shallow regions are given by 

av
dsds

sds
d E

dlld
dll

E
+

+
=

)(
  (4.26) 

and 

av
dsds

dds
s E

dlld
dll

E
+

+
=

)(
  (4.27) 

respectively.  

The energy landscape ( )U x permits one to calculate the migrating speed of the 

electrolytes under appropriate assumptions. For example one can estimate the flux of 

charged particles using the Kramer’s model, which states that the rate of transition 

from one potential well to the next well is determined by the height of the energy 

barrier between them in an exponential way.  This method has been adopted widely to 

study the hindered transport problems (Stockmayer,1976; Ajdari and Prost, 1991). 

However, Kramer’s model works only when the energy barriers are sufficiently high. 

In this thesis, the same problem will be solved using membrane theory. This method 

does not differentiate between the energy barrier and energy well and it can give the 

most accurate results under all range of electric fields. 

4.5 Flux of electrolytes across the imaginary membrane with 

boundaries of fixed concentrations 

Suppose there is an imaginary membrane separating the two deep regions. The 

thickness of this membrane is equal to the repeat length. The time for the solutes to 
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travel from one side of this imaginary membrane to the other side is exactly the 

trapping time in a well in Kramer’s model. Based on the potential energy within this 

membrane, one can calculate the flux of particles at the steady state given the 

concentrations at the left side and the right one. The concentration within the 

membrane at steady state is determined by Boltzmann factor. By packing these 

imaginary membranes one exactly touching another (representing the repeats of the 

nanofilter array), non-steady-state evolution of concentration is described by changing 

of the concentrations at the interface between these membranes. In this case, the 

concentrations within the whole channel satisfy Boltzmann distribution piecewisely.  

Fig. 4.3 shows the energy landscape and the concentration profile of the electrolytes 

across the imaginary membrane representing a unit of nanofilter. The values of 

concentration ( ( )C C x≡ ) at the left side and the right side of the membrane are Ac  

and Bc  respectively. If the speed of electric motion is significantly smaller than that 

of translational diffusion, the steady state net flux of charged Brownian particles 

across the potential energy landscape ( ( )U U x≡ ) is given by (Stockmayer,1976)  

1Bk TJ C C U
ς ς

= − ∇ − ∇ .  (4.28) 

 By multiplying / BU k Te  to both sides of Eq. (4.28), one has 

/ /( )B BU k T U k TBk TJe Ce
ς

= − ∇   (4.29) 

At steady state, the flux J  is independent of x . Therefore, the flux J  can be 

calculated simply by spatial integration of both sides of Eq. (4.29) over the thickness 

of the membrane ( x ), which is (Cooper et al., 1985; Kocherginsky and Zhang, 2003) 
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Fig. 4.3. The profile of potential and the concentration of a rod like 
DNA over a unit of a nanofilter. A and B are two corresponding points 
in the deep wells of two adjacent repeats (both of them are of distance 

da l≤  from the right wall of the well). (a) The potential profile of the 

DNA over the nanofilter under an average external electric filed avE . 

sE  and dE  are electric fields in the slits and the wells, respectively. q%  

is the effective charge of the electrolyte. (b) Concentration of the 
electrolyte in the steady state when the concentrations at points A and 
B are maintained as  Ac  and Bc  respectively.  
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= − − ∫ .  (4.30) 

With reference to Fig. 4.3a, if the reference energy at A is set as zero, the potential 

energy is given by  

0
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d s
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qE x x a
U x qE a W qE x a a x ls a

qE p E p x ls a x p

− ≤ <⎧
⎪= − + ∆ − − ≤ < +⎨
⎪ − + − + ≤ ≤⎩

%

% %

%

  (4.31) 

Integration of the denominator of (4.30) yields, 

{ } 1(1 )( ) [1 ( 1) ]
( )

m my ymB
A B

yk TJ c c e e e
p

ε ν ε η
ς ε ν

−− −+
= − − − + −

+
h .  (4.32) 

Here the dimensionless parameters  

/s dl lν = ,  (4.33) 

/m B By U k T= ,  (4.34) 

and 

/ lnBW k T Kε= ∆ = −h   (4.35) 

are the ratio of length of the slits to that of the wells, the reduced electric potential, 

and  the reduced energy barrier, respectively.  Parameters 

/ da lλ = ,  (4.36) 

and 

(1 )m my y
e e

ν ελ
ε ν ε νη

− −
+ += − δ   (4.37) 

are introduced for simplicity in expression.  Substituting Eqs (4.4), (4.5), (4.31) and 

(4.35) to Eq. (4.32), one gets the expression of J  in terms of mobility and electric 

field strength,  
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{ } 11(1 )( ) [1 ( 1) ]
( )

m my ye
av A BJ U E c c e e Kε ν η

ε ν
−− − −+

= − − + −
+

.  (4.38) 

4.6 The mobility of an electrolyte across the imaginary membrane 

From the flux of particles under various conditions, transport parameters such as the 

electrophoretic mobility in the device and the dispersion rate can be obtained. To 

obtain the expression of the mobility in the nanofilter, one needs only to supply the 

electrolyte with constant concentration at one end and let them pass out at the other 

end. In the long run, a steady state is established such that the concentration profiles 

in every repeat are exactly the same. In such a steady state, the diffusion across the 

nanofilters is cancelled each other. The effective mobility can be obtained accordingly.  

By setting A Bc c=  in Eq. (4.38), the effective mobility of anisotropic charged 

particles migrating across the imaginary membrane is derived as 

1

1 (1 )
1 ( 1)

m

m

y
e

y
e U

e K
ε νµ

η ε ν

−

− −

− +
=

− + − +
.  (4.39) 

This mobility characterizes the average speed an electrolyte obtained under unit 

electric field strength when it migrates across the imaginary membrane representing 

one unit cell the nanofilter (From A to B in Fig. 4.3a).  It is in accordance with the 

expectations that this mobility of anisotropic electrolyte is dependent on the 

electrolyte’s free-solution ( eU ), the geometry of the nanofilter ( ,ε ν ), the partition 

coefficient due to orientational entropy ( K ) and the electric field strength ( my ). 

However, it is quite counterintuitive to find that this mobility is dependant on the 

starting point of migration (η  in Eq. (4.39), which is a function of distance a  in  Fig. 

4.3a). This paradoxical fact arises from the nonuniform distribution of concentration 

of electrolyte in the well. At steady state, electrolytes are distributed such that the net 
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flux  

( ) ( )J V x C x= %   (4.40) 

is constant at any value of x .  The varied concentration ( )C x  along the channel axis 

means that the average migrating velocity ( )V x%  in the channel differs at different 

points.  The result is that the mobility of electrolytes over the membrane derived from 

( )V x%  is dependent on the location of the starting point or boundary conditions. 

Calculating the effective mobility using ( ) / avV x E%  will surely produce a function of x . 

4.7 The mobility of an electrolyte across a nanofilter cell 

To derive the expression of the mobility for the nanofilter, one needs to have a further 

look into the problem. In the special case shown in Fig. 4.4, each well contains an 

amount of An  electrolytes and the concentration profiles in all the repeats are identical.  

The average concentration in the well is given by 

A

d d

nc
wl d

= .  (4.41) 

At the steady state, the distribution of the concentration ( )C x  in the wells (and in the 

slits) is determined the Boltzmann factor and the constant flux requirements.  

If one sets the left wall of the well at 0x =  (the right wall at dx l= ) the concentration 

( )C x and the flux J  at steady state can be obtained as,  

( 1) (1 ) ( 1)
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(1 )(1 )(1 )( ) ( 1)
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  (4.42) 

and 
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 (4.43) 

respectively. From the value of steady state flux, one can obtain the average speed (V ) 

of all the An  electrolytes in the well (the concentration is c ) migrating over the 

nanofilter as  

/V J c= .  (4.44) 

 

C

X

avE

0c

c

An

Well A  Well B  

1c

 

Fig. 4.4. Concentration profile over the nanofilter array at the steady 
state. As the concentration profiles in all repeats of nanoarray are 
identical, the net flux is entirely due to the motion driven by the 
electric field, from which the mobility can be obtained. The mobility of 
the electrolytes is based on the average speed for all the An  electrolytes 

in well (A) to migrate to the next well (B). 

 Corresponding to the migration of solutions of electrolytes in the flat channel at the 

same speed V  under electric field avE , the mobility of a electrolyte over the 

nanofilter is given by 
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 (4.45)

This mobility is an average value of the mobilities of a group molecules passing 

through the nanofilter arrays. It directly corresponds to the data obtained from 

experiments. In addition, unlike the previous models based on Kramer’s model, which 

are valid approximately for low field cases, this mobility is valid in all ranges of 

electric fields.  

4.8 Effect of electroosmotic flow 

The finite charge of the solid channel wall leads to the electro-osmotic flow of the 

solution (Pennathur and Santiago, 2005a; Pennathur and Santiago, 2005b). As the 

surface properties of the solid channel and the depth of the Debye layer are difficult to 

obtain, the electro-osmotic mobility is difficult to determine ab initio. Fortunately, it 

is well known that, in the limit of thin Debye layer (under high ionic strength 

conditions) and low electric field, the profile of electroosmotic flow is similar to that 

of the electric field (Cummings et al., 2000; Duong-Hong et al., 2008). The result is 

that the effect of such an electro-osmotic flow can be modeled through modification 

of electrophoretic mobility of DNA molecules. Under such formulation, one needs to 

replace free-solution electrophoretic mobility eU  in expressions of mobility (and the 

dispersions described in Section 4.10) to incorporate the effect of the effect of 

electroosmotic flow.     
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4.9 Properties of the mobility of anisotropic electrolytes in the 

nanofilter array 

The expression of the mobility of an anisotropic electrolyte over a nanofilter given be 

Eq. (4.45) ) looks very complicated. It can be reduced to all known results or 

observations in the simpler cases.   

4.9.1 Flat channel 

If 1ε =  ( s dd d= ) or 0ν =  ( 0sl = ), the nanofilter reduces to a flat channel of depth 

dd .  The mobility in Eq. (4.45) will become 

1
eUµ = .  (4.46) 

Here the subscript “1” (and also the number in subscripts in the following subsections) 

means nothing but to indicate this is a special case (case 1) of the general mobility. 

This is in agreement with the expectation that the mobility of an electrolyte is equal to 

that of free-solution value when the hydrodynamic friction between the electrolyte 

and the channel wall is not considered due to presence of electroosmotic flow. 

4.9.2 Transport of small ions 

For small ions, the size of the particle is negligible to that of the channel. Because 

there is no orientational entropy effect, the partition functions due to orientation loss 

is 1s dK K= =  .  Substituting 1K =  to Eq. (4.45) yields 

2
(1 ) eUε νµ
ε ν
+

=
+

.  (4.47) 

This mobility for point-sized ions is the maximum mobility for an electrolyte to 
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migrate over a nanofilter array. It is often referred to as the maximum sieving free 

mobility maxµ , against which the mobilities of different electrolytes are compared to 

evaluate result of separation.   

4.9.3 To mimic the channel to a gel membrane 

The difference in the depths of the well and that of the slit of nanofilter (characterized 

by parameter ε ), has two roles in the nanofiltration system: (1) to determine the size 

of the pore for the electrolytes to pass though (taking effect along with K ), and (2) to 

distribute the electric potential gradients between the well and the slit ( this role takes 

effect only in the insulate channel). To compare the mobility of electrolytes over 

insulate nanofilter with formula for the conducting gels, ε  must be set as 1.0 ( s dd d= ) 

in order to ensure the same electric field in the regions with and without gel fibers. In 

this case, the shallow slit corresponds to a porous gel structure with partition 

coefficient K ,  while the deep well represents the open space filled with the solution.  

With reference to Fig. 4.3a, because the gel corresponds only to slits of the nanofilter, 

the length of the deep well has to be 0, which means  1ν >> . 

Under low electric field, where the mobility can be obtained by substitution of 

1my
me y− ≈ − , 1ε =  and 1ν >>  to Eq. (4.45), which gives 

3
eKUµ ≈ .  (4.48) 

This is exactly the free volume model, which states that electrophoretic mobility of 

molecules in a porous system is simply equal to partition coefficient, or the ratio of 

the volume available to the molecule and the total gel volume (Ogston, 1958; Rodbard 

and Chrambach, 1970; Morris,1966).  
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4.9.4 Loss of entropic barrier effect under high field 

Under high electric fields, with 0mye− ≈ , the mobility approaches 

4
(1 )

( )
eUε νµ

ε ν
+

≈
+

.  (4.49) 

This expression tells that under high electric field, the role of orientational entropy 

barrier (partition function K  in Eq. (4.45)) becomes negligible. This phenomenon has 

been observed in both experimental observations (Fu et al. 2005) and stochastic 

model simulations (Lacchi et al, 2007 ). They contribute this finding to the lack of 

time for the DNA rods to sample all the orientations. However, based on the 

approximate equality between expression (4.49) (under high electric field and 

orientational entropy considered) and Eq. (4.47) (under any field strength, without 

orientational entropy), it can be established that even if the molecule has enough time 

to establish its orientational equilibrium state, the entropy barrier will still be 

overcome by the strong electric field.  

4.10 Trapping time due to entropic barrier 

The average time for an electrolyte molecule to travel from one repeat to the next one 

is obtained from the mobility µ  

av

p p
V E

τ
µ

= =   (4.50) 

This time corresponds to the transition time from one state to the other across an 

energy barrier in Kramer’s model. Substituting the Eq. (4.45) to (4.50), one gets the 

transition time being the sum of two terms,   
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0
( )
(1 )travel
ε ντ τ
ε ν

+
=

+
  (4.51) 

and 

( )(1 )(1 ) (1 )
(1 )

m m

m

y y

trap travely
m

e e K
e y K

ε ν
ε ν ε νε ντ τ

ε

− −
+ +

−

+ − − −
=

−
  (4.52) 

where 0 0/ avp Eτ µ=  is the traveling time of the electrolyte in flat channel. 

The drift time travelτ  in Eq. (4.51) describes the traveling time of an electrolyte without 

orientation entropic barrier. It is the time for a group of ions with mobility eU  to 

migrate across a unit nanofilter. Because the average electric field in the well is 

(1 ) /( )d avE E ε ν ε ν= + + ,  travelτ  of  these ions in the nanofilter is prolonged by a factor 

of /av dE E , meaning that these ions migrate at an average speed of a speed e
dU E  over 

the nanofilter.  

The trapping time trapτ  in Eq. (4.52) is the average time for the anisotropic particles to 

find their permissible orientations and travel across the slit of the nanofilter. Among 

all the An  particles, AKn  of them are at permissible orientations and passed without 

being trapped. The other (1 ) AK n−  particles need a time duration 1/ K  times longer to 

find their permissible orientations, meaning that (1 ) /trap K Kτ ∝ − . The first factor in 

Eq. (4.52) reflects the focusing effect, which accumulates the electrolytes near the 

orientational entropy barrier and reduces trapτ .  This can be clearly seen at an 

intermediate or high voltages with  ~ 0mye−  and /( ) ~ 0mye ν ε ν− + . In such cases, 

introducing /d d av rE l E lλ =  as the fractional voltage in deep region, the first factor in 

trapτ  is approximately (1 ) /my
me yλ λ−− , which is exactly the ratio of to / ( )d dc C l  . A 



59 

Chapter 4                                           One-dimensional isotropic transport theory

higher the electric field in the deep region induces higher concentrations of 

electrolytes in the junction, which facilitates a higher number of them enter the slit. 

Therefore average trapping time is reduced. 

4.11 Diffusion coefficient of electrolyte in the nanofilter 

By comparison of the diffusion-induced flux is in the presence of the entropic barrier 

( 1ε < )  and electric field (using(4.43)), and the corresponding flux in a flat channel 

( 1ε =  in Eq. using(4.43)), the effective diffusion coefficient in the nanofilter is 

obtained as, 

e
eff d

eff e

U
D D

U
= .  (4.53) 

Spatial variance of the diffusive dispersion over one nanofilter unit is therefore  

2
02 2 d

diffu effD Dσ τ τ= = ,  (4.54) 

where 0τ  is the times required for a particle to travel in flat channel for distance  rl . 

In addition to the diffusive dispersion, there is a convective dispersion arising from 

the exponential decay of concentration with time in a deep well. The mean and 

standard deviation of transition time ( pt ) from one well (A) to the next (B) are 

pt τ< >=  and 2 22pt τ< >= , respectively(Ajdari and Prost, 1991). The variances in 

spatial space observed at B is 2 2
conv pσ = . The total variance of band dispersion over 

the n -repeat nanofilter array is  

2 2
02 d

T np nDσ τ= + .  (4.55) 

This implies that in an electric field, the diffusive dispersion is not affected by the 

presence of the entropic barrier. The convective dispersion is dependent solely on the 
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structure of the nanofilter. 

4.12 Design of task-specific nanofilter array  

The analytical expression of the mobility permits one to assess the performance of a 

nanofilter without expensive experiments and time consuming numerical simulations. 

Specifically, Kµ −  plots can be drawn for different electrolytes under various electric 

field strengths for the designed nanofilters as shown in Fig. 4.5. Generally, the 

mobility µ  of electrolytes increases with partition function K , approaching maxµ  

with a rate dependent on the strength of the electric field. In a specific nanofilter, 

DNA rods of different sizes take different partition function values. The optimization 

of the nanofilter structure and the electric field is achieved when the mobilities of 

molecules with various lengths are well separated from each other. 

Fig. 4.5 (solid markers) shows the computed mobilities of short DNA rods in a 

nanofilter with geometric parameters 0.5s dl l mµ= = , 60sd nm=  and 240dd nm=  

(referred to as 60/240 structure), and the comparison of these results with our 

experimental data. In the calculation, the electro-osmotic mobility eeoU  is used as the 

single free parameter to fit the predicted data to the experimental ones.  
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Fig. 4.5.  The dependence of mobility µ  on the partition coefficient K  
of DNA molecules of different sizes under varied electric field 
strengths. Colors of the curves represent the electric fields (red 
114V/cm, green 57V/cm, and blue 14V/cm). For a specific DNA 
molecule, different nanoarray structures vary in the partition 
coefficients, indicated by solid (60/240) and unfilled (80/320) markers 
respectively. Thick lines connecting the solid or unfilled markers 
correspond to the experimentally obtained curves of mobility. The 
selectivity is optimized (by choosing the nanofilter and the selection of 
electric field) if the mobilities of DNA molecules of different sizes are 
well separated from each other in a given structure under a specific 
electric field.  

Among voltages investigated here, 14V/cm electric field yields the best selectivity 

between 50bp, 100bp and 300bp DNA molecules. In addition to the 60/240 structure, 

Fig. 4.5 also shows Kµ −  plots of these DNA molecules over a wider nanofilter 

80sd nm=  and 320dd nm=  (80/320) under the same electric fields. These two 

structures take the same values of ε  and ν , therefore they produce the same 

maxµ
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maximum mobility maxµ  for a specific DNA. The Kµ −  curves for these two 

structures are also the same under a specific electric field.  However, for a given DNA 

molecule, its partition coefficient K  takes different values, and therefore its 

mobilities in these two structures are different. For example, a 300bp DNA has 

partition coefficient ~0.22 in 60/240 structure, while in 80/320 one, this value is ~0.42. 

It could be found from Fig. 4.5 that the selectivity for 50-300bp DNA in 80/320 

structure is lower than that in 60/240 one under low electric field strengths. Under the 

electric field of 57 V/cm for 80/320 structure and that of 114V/cm for 60/240 

structure, the separation is difficult as the mobilities of different molecules are close 

to each other in these cases. All these results agree well with our experimental 

observations. It is noteworthy that the mobility of DNA under high electric field 

strengths is close to the maxµ  at all levels of K , meaning that the effect of entropy 

barrier becomes insignificant. In the previous study, this phenomenon was interpreted 

in terms of the aligning of DNA molecules along the electric field (Laachi et al., 

2007). 

4.13 Discussions 

As the most important contribution to the theory of electrophoretic separation 

utilizing the entropy barrier in the nanofilter array, the formulas of the mobility and 

dispersion are established. Important insights into the mechanisms involved in this 

kind of separation process are obtained from these formulas. It provides valuable tools 

for design and analysis of the separation devices. 

The analytical expressions in this chapter, including the mobilities, trapping times and 

the dispersions etc., are derived from the over-simplified one-dimensional continuous 
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transport equation. Factors such as the nonuniform distribution of the electric field in 

the well, deformation of the electrolytes, the variations in the channel thickness and 

channel wall angles, non-zero depth of Debye layer, Joule heating and a lot of others 

are ignored, although some of them may have significant impacts on the separation 

results in the practice of experiments. Precautions must be taken in comparing the 

analytical results with the experimental data.  

Despite of all these over-simplifications, the theoretical solutions obtained in this 

chapter are the only solution that is currently available for the experimentalists. To 

conduct more complicated simulations studies such as BD, DPD considering some of 

these factors are practically very computational expensive. Even the continuum model 

as described in the next two chapters is not easy for experimentalists. In addition, the 

physics involving the factors that have been neglected in this chapter are mostly not 

well established in the nanoscale. Analyzing the effect of these factors is not expected 

to be ubiquitously successful through any modeling approaches. 

The dynamics of DNA electrophoresis in this chapter (and all through this thesis) is 

described in terms of behavior of a group of molecules. However, some physical 

parameters, such as the electrophoretic mobility and the trapping time, are normally 

defined and presented in a particle-based way. It seems that the group behavior should 

be different from that of the single molecule. For example, the time for a single 

molecule to migrate across a small pore of size that is comparable to the size of the 

particle is definitely different from that for a large group of molecules. However, this 

impression is not necessarily to be correct when the particle is subjected to some 

random forces and its dynamics has to be described stochastically.  

Actually, the relationship between the dynamics of the group and that of a particle is 

that the group behavior is just average value of the dynamics single particles. This 
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average can be carried out in either time or spatial domain. The stochastic dynamics 

of a single molecule in the very long run should be the same as the dynamics of the 

group, which are characterized by dynamics of the group. Similarly, if one calculates 

the stochastic dynamics of a large number of particles concurrently, the averaged 

quantities of these dynamics should be the same as those obtained from group 

description.  Specific to the problem of electrophoretic separation studied in this 

chapter, expectation of mobility of single molecule (particle-based description) should 

be the equal to that computed from the flux of a group of molecules (the group 

behavior).  

The above justification works also for the definition of transition time. The average 

amount of time required for a group of molecules trapped in one trap to move on to 

the next trap is equal to the average time required for a single molecule.  That is why 

concentration does not appear in the expressions of the mobility in Eq. (4.45) or 

transition times in Eqs. (4.51) and (4.52).  
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5 Three-dimensional anisotropic transport model 

The one-dimensional theoretical formulation developed in Chapter 4 provides a 

simple analytical solution to the mobility and dispersion of anisotropic electrolytes 

migrating over the nanofilter array. It helps one to identify the effect of the nanofilter 

geometries and the electric field strengths without consideration of many other factors 

which are often very difficult to describe. In this chapter, a more complicated scenario 

is considered that includes the effect of some complicated factors such as the 

inhomogeneous electric field, the anisotropic transport parameters etc. For this 

purpose, the master differential equations for the flux and the concentration will be 

developed in three-dimensional space using anisotropic transport theory.  These 

differential equations are to solved numerically (details to be described in the next 

chapter) to obtain the concentration profile of the electrolytes at any time in the 

channel.  

5.1 Anisotropic transport equation 

Let ( , )C C t≡ r  denote the concentration of DNA molecules at a point ( , , )x y z=r  at 

time t , a unified electrochemical potential ( , )t≡ r  of an electrolyte in an aqueous 

solution can be expressed as (Kocherginsky and Zhang, 2003)  

0 lnRT C q TS= + + Φ −  .  (5.1) 

Here 0 , R ,T , q and ( )Φ ≡ Φ r denote the reference standard-state potential, the gas 

constant, the absolute temperature, the effective charge of the DNA and the external 
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electric filed potential, respectively. Scalar field function ( )S S≡ r  represents the 

orientational entropy of the rigid DNA rod which captures the stochastic distribution 

of its orientations in the presence of solid channel walls. The spatial gradient of this 

unified potential ∇  constitutes a driving force that generates a flux of the DNA in 

the solvent. According to Eq.  (5.1), ∇  consists of forces from three independent 

factors, namely thermal fluctuation, electric force and entropic gradient respectively. 

The fluxes induced by these forces are the sum of their respective contributions, i. e.  

( )Se SC C U CT= − ∇ + ∇Φ − ∇dJ D U ,  (5.2) 

where ( )≡d dD D r  and ( )e e≡U U r  are the tensors of diffusion coefficient (in unit of 

2 1cm s− ) and electrophoretic mobility (in -1 -1ms V  ) respectively. The scalar SU , which 

is referred to as entropic mobility in this thesis, represents the mobility associated with 

the gradient of orientational entropy (an entropic force). This mobility captures the 

stochastic interactions of a DNA with the solid wall. It has a unit of 1 1 1m s mol N− − −⋅  

and equals to the velocity of a DNA rod obtained if 1 newton of force is applied to 

1mol of DNA molecules. The evolution of the concentration of DNA is governed by 

the mass conservation law 

C
t

∂
= −∇ ⋅

∂
J .  (5.3) 

The solution of master equations  (5.2) and  (5.3) with no-flux boundary conditions 

describes the electrophoretic transport of the rod-like DNA molecules in the nanofilter 

array. 

5.2 Electric field in the nanofilter 

The channel walls studied in this thesis are made of insulate silicon-based material. 
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When an external electric field avE  is applied over a nanochannel with length L% , the 

electric filed is distributed according to Laplace equation   

2 0∇ Φ = ,  (5.4) 

with boundary conditions 

(0, , ) 0
( , , )

0

av

y z
L y z LqE

Φ =

Φ = −

∂Φ
=

∂n

% % % ,  (5.5) 

where n represents the normal vector of surface of the channel wall. Because the 

analytical solutions of the electric potential Φ  and its gradient ∇Φ  not available, 

they are obtained numerically (as described in the next chapters).  

5.3 Anisotropic diffusion coefficient and electrophoretic mobility 

A DNA rod has two different translational hydrodynamic friction coefficients, 

denoted by //
dζ  and dζ ⊥ , respectively, for the motion parallel and perpendicular to its 

long axis under thermal fluctuation, gravity and other non-electrostatic forces 

(Brenner, 1979; Han et al., 2006; Berg 1993). As a result, the translational diffusion 

coefficient is orientation dependent. When the same force is applied to two identical 

DNA rods with different orientations, the speeds that these DNA acquired will be 

different.  

When a DNA is oriented at ( , )θ φ=Θ  as shown in Fig. 5.1, its translational diffusion 

coefficient is given by tensors (Brenner, 1979) 

//( ) ( )d dD D⊥= + −Θ ΘΘ I ΘΘdD ,  (5.6) 

where  
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// ///d d
BD k T ζ=   (5.7) 

and  

/d d
BD k T ζ⊥ ⊥=   (5.8) 

are the coefficients of the rod for translational diffusion parallel and perpendicular to 

the rod’s axis, respectively. The expression 

= x x y y z zI i i + i i + i i   (5.9) 

denotes the physical space identity tensor. 
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Fig. 5.1. The position and orientation of a DNA rod. Axes Oxyz  
represent a global system. Vector r  denotes the position of center of 
the DNA. Vector ( , )θ φ=Θ  represents the unit vector ( | ' | 1O A = ) 
locked into the DNA rod ( | ' | / 2O B L= ) and lies along the rod’s long 
axis. The surface of the unit sphere is represented by S , corresponding 
to all the possible orientations of the rod. 

Similarly, the orientation dependent electrophoretic mobility is given by, 

//( ) ( )e eU U⊥= + −Θ ΘΘ I ΘΘeU ,  (5.10) 
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where  

// ///e eU q ζ= ,  (5.11) 

and  

///e eU q ζ⊥ =   (5.12) 

are the coefficients of the rod for electric field driven motion parallel and 

perpendicular to the rod’s axis, respectively. Here translational hydrodynamic friction 

coefficients for electric field driven motion, //
eζ  and eζ⊥ , are not necessarily equal to 

their corresponding values for diffusion, //
dζ  and dζ⊥  respectively. The reason is that 

these two are different physical phenomena (Mercier and Slater 2006; Stellwagen et 

al., 2003). When a DNA is diffusing or moving due to non-electrostatic forces, its 

surrounding counterions will move with it, while in the electric field, the counterions 

will be driven by the electric field to move in the opposite direction.  

At the rotational equilibrium state, the mean translational diffusion coefficient ( )dD r  

and the mean electrophoretic mobility ( )eU r  at position r  are given by the weighted 

summation of orientation dependent tensors ( ( )ΘdD  and ( )ΘeU ),  such that 

2( ) ( | ) ( )
S

p d= ∫∫dD r Θ r Θ ΘdD   (5.13) 

and 

2( ) ( | ) ( )
S

p d= ∫∫eU r Θ r Θ ΘeU ,  (5.14) 

respectively. Here the areal element on the surface of the unit sphere 

{0 ;0 2 }S θ π φ π= ≤ < ≤ <  is 

2 sind d dθ θ φ=Θ ,  (5.15) 
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and ( | )p Θ r  is the probability that the rod is orientated at Θ  when its center is 

located at point r. 

When the DNA lies in the bulk solution, or when it is located such that there is no 

intersection between the rod and the wall at any orientation, all its orientations are 

accessible at an equal probability of  

1( | ) (4 )p π −=Θ r .  (5.16) 

On the other hand, if the DNA rod is in a confined space, some of its orientations is 

not accessible. The occurrence of the orientation Θ  is determined by the requirement 

that the summation of the probabilities of the permissible orientations be equal to 

unity, which yields, 

1[4 ( )]  if orientation  is permissible at 
( | )

0 otherwise
p

πρ −
Θ⎧

= ⎨
⎩

r Θ r
Θ r .  (5.17) 

For the calculation of ( )dD r and ( )eU r , parameters //
dD , dD⊥ , //

eU  and eU⊥  have to be 

determined. These values can be obtained approximately from the free-solution 

diffusion coefficient and free-solution electrophoretic mobility using methods as 

described below.   

In the bulk solution, the mean diffusion coefficient and the mean electrophoretic 

mobility are isotropic (Brenner, 1979). The tensors dD  and eU  are given by  

dD=dD I   (5.18) 

and  

eU=eU I ,  (5.19) 

respectively. The scalars  
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//( 2 ) / 3d d dD D D⊥= +   (5.20) 

and  

//( 2 ) / 3e e eU U U⊥= +   (5.21) 

correspond to the diffusion coefficient and the free-solution electrophoretic mobility 

that are obtained experimentally (Stellwagen and Stellwagen, 2002; Allison and 

Mazur 1998; Eimer and Pecora, 1991; Tirado et al., 1984; Tinland et al., 2000; 

Arvanitidou and Hoagland, 1991; Stellwagen et al., 1997).  

Equations (5.20) and (5.21) permit one to estimate the values of //
dD , dD⊥ , //

eU  and eU⊥  

from dD  and eU  directly using the established relationships  // 2d dD D⊥≈  (Happel and 

Brenner, 1991) and // 2e eU U⊥≈  (Ohshima, 1996),  

//
32
2

d d dD D D⊥≈ ≈   (5.22) 

and  

//
32
2

e e eU U U⊥≈ ≈ .  (5.23) 

To determine //
dD , dD⊥ , //

eU  and eU⊥  using the experiment data relieves one from the 

complicated task of determining the hydrodynamic coefficients and effective charges 

for the DNA molecules (Levine et al., 2004; Nkodo et al., 2001).  

It should be noted that while the relationship between //
dD  and dD⊥  is well-established 

(Happel and Brenner, 1991), the relationship between the //
eU  and eU⊥  is not so simple. 

It has been shown that eU⊥  is dependent on Daκ  ( Dκ  is the Debye-Hückel parameter 

and a  is the radius of the DNA) in contrast to //
eU , which is Daκ  independent 
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(Ohshima,1996). In the low Daκ  regime, Debye length 1
Dκ
−  is comparable or larger 

than the width of the DNA ( a ), so that hydrodynamic drag to the surrounding fluid 

occurs just as in the non-electrophoresis case. In this circumstance, the dynamics of 

the rod is dominated by the simple hydrodynamic interactions, i. e. // 2e eU U⊥≈ . 

However, when Daκ  becomes large, there won't be any difference //
eU  and eU⊥  

because the Debye screening effect takes the dominant role. Under our experimental 

conditions, 1Daκ ≈ , the relationship // 2e eU U⊥≈   holds approximately. 

The calculation of the position specific diffusion coefficient ( )dD r  and the 

electrophoretic mobility ( )eU r  using relationships  (5.20) through  (5.23) relieves one 

from determination of a lot of parameters such as effective charge q , friction 

coefficients //
eζ  , eζ⊥ ,  //

dζ   and dζ⊥  , etc. 

5.4 Effect of the electro-osmotic flow on anisotropic transport 

In the presence of electro-osmotic flow, the electrophoretic mobility of DNA 

molecules has to be determined from the velocities induced by two different forces. 

First, the velocity induced by electrostatic force is 

( ) ( ) ( )= ∇Φev r U r r .  (5.24) 

Second, the velocity caused by the friction force of the fluids with electro-osmotic 

flow  is 

( ) ( )eeo eeoU= ∇Φv r r ,  (5.25) 

with eeoU  denoting the mobility of the electro-osmotic flow. 

Thus the velocity of the DNA rod is the sum of these two,  
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( )( ) ( )eeoU= + ∇Φev U r I r .  (5.26) 

This means that the effective electric mobility is  ( )( ) eeoU+eU r I  in the presence of 

the electro-osmotic flow. In this circumstance, ( )eU r  in Eq. (5.2) has to be replaced 

by this effective electrophoretic mobility in the calculation.  

5.5 Integration of master transport equations 

Given the electric field ∇Φ , orientational entropy S , and the transport parameters 

dD ,  eU  and SU  , the migration of DNA in the channel of the nanofilter array can be 

obtained by integration of Eq. (5.3), such that  

 

0  0
 C( , ) C ( )- ( , ') '

t
t t dt= ∇⋅∫r r J r ,  (5.27) 

where 0C ( )r  is the initial distribution of the concentration.  

As the analytical expressions for the flux and the concentration are not available for 

three-dimensional analysis, numerical methods are employed to discretize the 

problem domain and perform the necessary integration. Although the running of such 

numerical simulations requires a significant amount of computations, it is much faster 

than the stochastic models because no random variables are involved in the current 

continuum model. The detailed description of the numerical methods is given in the 

next chapter.  
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6 Numerical method for discretization and 

integration 

This thesis uses Smoothed particle hydrodynamics (SPH) method to discretize the 

problem domain and the master transport equations. SPH discretizes the 

hydrodynamic equations using a set of particles that follow the flow field. Since its 

invention in 1977 (Lucy, 1977), these methods have been successfully applied in 

many areas such as astrophysics, fluid flows, material modeling and other multi-

disciplinary fields (Liu and Liu, 2003; Monaghan 2005; Kum et al., 2005). SPH 

methods discretize the problem domain and control differential equations using a set 

of particles.  An arbitrary continuous field function )(rA and its derivatives rrA ∂∂ /)(  

are approximated as the weighted summation over the neighboring particles through a 

smoothing function )(rW and its derivative drrdW /)( . The main idea of SPH is 

illustrated in Fig. 6.1. The function value at particle i , )( irA , is approximated by the 

weighted summation of the function values of its neighbors ( j ). The weight function  

)(rW , which is referred to as kernel function, is designed to satisfy the following 

requirements:  (1) )(rW  is continuous function which decreases with increasing 

distance r; (2)  )(rW  is non-zero only within a local domain (supporting domain), 

beyond which it becomes zero;  and  (3) The integration of )(rW  in the supporting 

domain is equal to 1. 
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( )W r

ijr
i

j

 

Fig. 6.1. SPH approximations of the function value at a particle  by 
weighted summation of the function values at all the particles within 
its supporting domain (shown as circle). The kernel function ( )W r  
takes non-zero values only within the supporting domain. Particles 
outside the supporting domain do not affect particle i  directly. 

As all the calculations in SPH are performed in a local supporting domain and the 

time-integration is done explicitly, they are very efficient. This localized formulation 

also enables one to simulate a multiple-repeated nanochannel using structural data of 

only one repeat. As shown in Fig. 6.2, calculation in nth repeat requires only the state 

variables in the nth repeat and those in the shadowed regions of the two neighboring 

repeats. Other regions of the nanofilter (no matter how long the nanofilter is) do not 

affect the nth repeat directly. Therefore in the implementation, only the concentration 

is required to be stored for the whole multiple-repeated structure. Other data, 

including the electric field, tensors of diffusion coefficients and the electric mobility, 

the entropy etc., are all calculated and stored in a single repeat. In calculation of the 

flux and the changes of the concentration, the single repeat structure shown in gray 

(along with the shadowed region) is used to represent any repeat of the nanofilter by 

assigning the appropriate respective concentrations in the nanofilter. Avoiding 

discretization of large-scale structure reduces the scale of the problem significantly. 
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n n+1 n-1 

 

Fig. 6.2. Representation of a multiple-repeated structure using only one 
repeat ( n ). The structure shown in gray, including the shadowed 
extended regions (represented by virtual particles) to both sides of it, is 
used to represent any one of the multiple-repeated channel. The state 
variables of the virtual particles in the shadowed regions are taken 
from the neighboring repeats to provide correct supporting domain for 
particles near the junctions of two repeats. 

6.1 Basic equations of SPH 

In SPH, an arbitrary continuous field function )(rf  and its derivatives rr ∂∂ /)(f  at 

point ),,( zyx=r are approximated as the weighted summation over the neighboring 

particles through a smoothing function )(rW and its derivative drrdW /)( .  For a 

given particle centered at point ir , the function value and the gradient can be 

evaluated as  

∑
=

=
N

j
ijj Wff

1
)()( ji rr υ ;  (6.1) 

[ ]∑
=

∇−=
∂

∂ N

j
ijij Wfff

1

)()()(
ij

i

i rr
r
r

υ ,  (6.2) 

where N  is the number of particles in the supporting domain of particle i , 

|| jiijr rr −=  is the distance between particle j  and i , jυ  is the volume of space 

represented by particle j .  The expressions ijW  and ijiW∇  are given by 
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)( ijij rWW =   (6.3) 

and 

ijiW∇ =
ij

ij

ij

ji

r
W

r ∂

∂− rr
, (6.4) 

respectively. 

The kernel function )(rW may take many forms as discussed in (Liu and Liu, 2003). 

In this work, the kernel function and its derivative are chosen as, 
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respectively. A lot of other kernel functions can be found in Liu and Liu (2003).  

6.2 SPH equations for flux and concentration evolution 

Substituting Eqs. (6.1) through (6.4) to Eq. (5.2), the components of flux of 

electrolytes in the coordinate direction α = zyx ,,  at ir  can be rewritten in the 

following form 

1

1

1

( )

       ( )

       ( ) .

N
ij

i j j i j
j i

N
ij

j j i j j
j i

N
ijs

j j i j
j i

W
J C C D

r
W

C U
r

W
U T S S C

r

α αβ
β

αβ
β

α

υ

υ

υ

=

=

=

∂
= − −

∂

∂
− Φ −Φ

∂

∂
+ −

∂

∑

∑

∑

.  (6.7) 
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Here jD αβ  and jU αβ  are αβ - components of tensors ( )d
jD r and ( )e

jU r respectively. 

The summations over different directions are represented by the repeated index β  

(= zyx ,, ). An example expansion of such summations is as follows  

ij ij ij ijx y z

i i i i

W W W W
D D D D

r x y z
αβ α α α

β

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
.  (6.8) 

After obtaining the fluxes, the evolution of concentration Eq. (5.3) acquires its SPH 

form as, 

1

( )
N

iji
j j i

j i

WC J J
t r

β β
βυ

=

∂∂
= − −

∂ ∂∑ .  (6.9) 

Once again, the repeated index β  represents the summations over all the coordinate 

directions.  

Using the rate of concentration /iC t∂ ∂  at time t , the concentration of particle iC  at 

time t t+ ∆  is updated from its value ( )iC t  according to  

 ( ) ( ) i
i i

CC t t C t t
t

∂
+ ∆ = + ∆

∂
.  (6.10) 

6.3 SPH formulation of no-flux boundary conditions 

SPH suffers from the problems of particle deficiency near the boundary (Liu and Liu, 

2003). For particles near the boundary, they have incomplete supporting domains as 

there are no particles outside the boundaries of the problem domain. Calculation of 

function values and derivatives would be problematic without special treatments. To 

apply no-flux boundary conditions on the channel wall, a set of virtual particles are 

introduced to construct a symmetrical scenario about the boundary surface (Libersky 

et al. 1993; Randles and Libersky, 1996). If the state variables are set such that they 
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are symmetric about the boundary, there would be no exchange of the materials across 

it. 

 

i
'i

k

'k

v

'v
x

y

  

Fig. 6.3. No-flux boundary conditions in SPH. The supporting domain 
of particle i  near the solid boundary (thick solid line) is incomplete. 
To facilitate SPH calculation, virtual particles (gray dots ) are 
introduced by reflecting the real particles (black dots) against the 
boundary. Examples of virtual particles are  'i   and 'k  being reflection 
of real particles i  and k  respectively. The scalar field variable of a 
virtual particle is set the same as its corresponding real particle, while 
the vector variables are set such that the virtual particle has a value 'v  
being reflection of that of the real particle v .   

As shown in Fig. 6.3, virtual particles  'i  and 'k  are generated from real particles  i   

and k  respectively. If, for example, the no-flux boundary surface lies in −xz plane, 

the scalar field variables at particle 'i  are set as 

'

'

'

i i

i i

i i

C C

S S

=

Φ = Φ

=

.  (6.11) 

In the calculation of concentration change, the values of the flux at the virtual particle 

are set as the reflected vector against the no-flux boundary in the −xz plane, such that 
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'

'

'

x x
i i
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i i
z z
i i

J J
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J J
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⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

  (6.12) 

Such treatments permit one to calculate variables for the particles near the boundary 

in the same way as those for the interior particles. Meanwhile the no-flux boundary 

conditions are satisfied automatically. 

6.4 Periodic boundary conditions 

 

Repeat n Repeat 1 

1L,1LE
,R nEnR

 

Fig. 6.4. Periodic boundary conditions for multiple-repeated nanofilter 
array. Periodic boundary conditions are implemented through virtual 
particles in two extended regions by duplicating the state variables of 
real particles in 1L  to the corresponding virtual particles in nRE ,  and 

those in nR  to 1,LE .  

Our model nanofilter array contains up to 20 repeats for the purpose of the numerical 

simulation. However, the actual nanofilter arrays contain tens of thousands repeats. 

Without appropriate treatment, the model channel is unable to describe the dynamics 

of DNA molecules in long channels. The flux is heavily dependent on the state at the 

two openings of the channel. One commonly adopted method is to apply periodic 

boundary conditions, in which the rightmost portion of the structure is interacting 

which the leftmost portion of the next structure that is identical to itself. If some 
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molecules flow out from the right end of the channel, the same amount of molecules 

enter the system from the left end. This guarantees mass conservation of the 

molecules in the system and incorporates of the effects of other repeats that are not 

described in the model.  

Owing to the fact that SPH simulation runs on a local domain, the treatment of 

repeated boundary conditions is very simple. As shown in Fig. 6.4, in calculation for 

the repeat 1, the state variables of the virtual particles in region to the left of the repeat 

( 1,LE ) are copied from the right most portion of the repeat n ( nR  as shown in fine 

dots). Similarly the state variables in the extended virtual particle region of repeat n 

( nRE , ) is copied from the left most portion of repeat 1 ( 1L ). As long as the widths of 

these virtual extended regions are larger than the radius of the supporting domain, the 

results for the real particles representing repeat 1 and repeat n are correct. If the peak 

width of the concentration is less than the half of the channel length (which 

guarantees that head of the peak does not catch up the end of it from the back), the 

dynamics of molecules in this model system is the same as that in the infinitely long 

channel. 

6.5 Simulation of nanofiltration using SPH 

In our simulation, a 20-repeat model structure is used to analyze the evolution of 

concentration of the DNA molecules in the channel space. Each unit cell of nanofilter 

is discretized with an assembly of 6000  particles, every one of which represents a 

fraction of DNA solution within the nanoarray. All the field functions including DNA 

concentration, electric field, orientational entropy, flux density etc. are calculated at 

the centers of these particles. Periodic boundary conditions are applied to this 20-
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repeated structure in order to simulate effects of the neighboring repeats and ensure 

the conservation of mass in the system. At the beginning, the concentration at 

particles at the entrance of the first repeat is set to 1 (arbitrary unit), while the 

concentration at other particles as are 0. Flux and concentrations at later time steps are 

calculated according to master transport equations and the field variables at the 

current time. Evolution of the concentrations of DNA molecules in this model 

nanofilter array is therefore obtained. The results will be given in the next chapter.  
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7 Results and discussions 

In an experiment conducted earlier in MIT (Li et al. 2008), the migration of DNA 

molecules of 50bp, 150bp and 300bp across the nanofilter array was studied under the 

electric field strengths of 57, 29 and 14 /V cm respectively. The specifications of the 

nanofilter cell are 60=sd nm, 240=dd nm, and 500nm= =s dl l . The total length of 

the nanochannel is 1L =% cm, corresponding to a repeat number of n 10000= . 

Mobilities and dispersions are measured, against which our simulation results will be 

compared. As the input parameters of the numerical simulation, the free-solution 

mobilities for 50bp, 150bp and 300bp DNA molecules are 43.38 10−× , 43.6 10−× , and 

43.72 10−×  112 −− sVcm  respectively. The free-solution diffusion coefficients of these 

molecules are calculated using Eq. (2.2).  For numerical simulations, the spatial 

domain is discretized by particles of size 5nm 5nm× . Electric fields, configurational 

entropies, concentrations and fluxes are evaluated at centers of these particles. 

Simulation results of evolution times and dispersions will be compared with the 

experimental data. 

7.1  The electric field  

The electric potential is calculated through solving the Laplace’s equation Eq. (5.4) 

with boundary conditions described by Eqs. (5.5). The profile of the nonuniform 

electric field is shown in Fig. 7.1.  From these electric fields, the effect of 

inhomogeneous field lines on the distribution can be estimated. Because the 
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orientation dependent electric potential difference ( ( )
2

A B
C

q qΦ +Φ
−Φ ) at any 

orientation (direction of the rod’s 'x  ) is at least three orders smaller than Bk T  at any 

point within the nanochannel for the DNA lengths and electric fields studied here,  the 

effect of inhomogeneous field lines on the orientational distribution of DNA is 

negligible compared to that caused by the rotational diffusion.  As a result, even under 

these inhomogeneous electric fields, the assumption of the uniform orientational 

distribution is still valid even when the DNA. 

 

'x

A

B
C

 

Fig. 7.1. The inhomogeneous distribution of electric field in space of 
the nanofilter. 

7.2 Orientational entropy, diffusion coefficient and the 

electrophoretic mobilities in the nanochannel  

When a DNA molecule is located in the confined space of a nanochannel, some of its 

orientations are forbidden due to the presence of the channel wall. This induces an 

orientational entropy that is given by Eq.  (3.5). In the calculation of ( )S r ,  the values 

of ( )ρΘ r  are determined numerically by enumerating all possible values of Θ  and 

checking their hindrances at position r .  As an example, the gradient of entropy of 
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15nm DNA rods in a nanofilter is shown Fig. 7.2. These gradients pointing to the 

internal region of the channel constitute an entropic force that drives the DNA 

molecules to the internal region of the channel.   

 

Fig. 7.2. The gradient of configurational entropy of a 150bp DNA rod 
in space of the nanofilter. A DNA rod has higher entropy in the 
internal region than that near the channel wall. This entropy difference 
forms an effective force that drive DNA molecules near the boundary 
to the internal region of the nanochannel. 

When a DNA rod loses some of its orientation freedom due to confinement by the 

channel wall, its translational diffusion and entropic mobility would be affected. In 

this case, the probability that DNA molecules are aligned in the direction of channel 

axis ( x -axis) is much higher than that in direction of depth ( y − axis) if the dimension 

of the nanofilter is comparable to the length of the DNA. As a result, components of 

the electrophoretic mobility and diffusion coefficient in x-direction are larger than 

their counterparts in y −direction. The longer the rod is, the higher these differences 

are. In order to evaluate the effect of this spatial confinement on the transport 

parameters, tensors of translational diffusion coefficient and electrophoretic mobility 

for each particle are calculated using  (5.13) and  (5.14), respectively. Then a relative 
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diffusion coefficient and a relative electrophoretic mobility are defined as the ratio of 

their values in confined space to their respective isotropic free-solution values, i. e. 

' / ,dD=< >dD D   (7.1) 

and 

( ) /( )e
EEO EEOU U U= < > + +' eU U ,  (7.2) 

respectively, where the bracket < ⋅ >  represents the average over all the particles in a 

specific domain (the well or the slit of the nanofilter). Among all the components in 

the tensor 'D and 'U , '
xxD   and '

xxU  have the most significant effect as the external 

force are applied in this direction and the motions in other directions are confined or 

canceled by each other.  

Fig. 7.3 shows the values of '
xxD  and '

xxU  of DNA rods of different sizes in deep and 

shallow regions of the nanoarray. It could be seen that the relative diffusion 

coefficient '
xxD   is close to 1.0 at all conditions, indicating that the spatial confinement 

does not affect the diffusion coefficient significantly. On the contrary, the relative 

electrophoretic mobilities are affected by the electroosmotic flow and may induce 

very large changes in '
xxU . In the cases where ~EEO

eU U− , a small deviation in 

e
xxU< >  from eU  yields a much larger '

xxU , which will change the final mobility 

significantly. For the studied experimental conditions here, the effective 

electrophoretic mobility is increased by ~40% for a 300bp DNA in the shallow region 

in x-direction compared with free-solution value, while the increase for a 50bp DNA 

is less than 10% based on the structure of the nanoarray under investigation.  
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Fig. 7.3. The dependence of the relative diffusion coefficients and 
relative electrophoretic mobilities on the sizes of DNA molecules in 
deep wells (d) and shallow slits (s) of the nanofilter. Only components 
in the direction of channel axis ( '

xxD  and '
xxU ) are shown because the 

effects of other components are much weaker due to spatial 
confinement in their relevant directions. The mobility xxU  is modified 

more significantly than the diffusion coefficient xxD  because of the 

presence of electroosmotic flow.  

Such modification in the electrophoretic mobility may produce a totally different 

sequence of evolution peaks compared with that from wide channels where dD  and 

eU  are approximately isotropic. The diffusion coefficient is also affected by the 

constraints in the orientation space, but its magnitude is much smaller than that of the 

effective electrophoretic mobility. 

7.3 Evolution of DNA concentration in the nanochannel 

At 0t = , the concentration of the DNA molecule is set as 1.0 (arbitrary unit) within a 
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narrow band (its width is equal to the particle size) in the left side of the first repeat 

and the concentration in other regions is zero. For 0t > , the time and position 

dependant of DNA concentrations are obtained through integration of (5.2) and (5.3) 

using Eqs. (6.7), (6.9) and (6.10) with no-flux boundary conditions on the surfaces of 

channel walls. 

0⋅ =J n .  (7.3) 

At any time, the concentration profile along the channel axis is obtained by the 

summation of the amount of DNA molecules in all the particles having the same 

coordinate along the channel axis. One example of concentration distribution along 

the channel axis is shown Fig. 7.4. It could be found that the concentration profiles 

along the channel axis are complicated because of the partitioning between the 

alternate wells and slits.  

 

Fig. 7.4. One-dimensional distribution of DNA concentration along 
channel axis.  The entropic trapping effect can be observed from the 
significantly increased amount of DNA molecules in the deep well 
near the entrance of the shallow slits.  

Direct analysis of the concentration profiles as shown in Fig. 7.4 is quite complicated. 
However, when one focuses on time dependant concentration values at the end of 
each repeat (one example using 50bp DNA and 57V/cm filed is shown in  

Fig. 7.5), one can find that these values are well described by a Gaussian zone 
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undergoing constant translation and broadening (Giddings, 1991). In the next section, 

theory of one-dimensional zone evolution used to obtain the effective speed of 

translation and rate of zone broadening, from which the evolution time of DNA 

molecules over channel of any length can be estimated.  
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Fig. 7.5. Time dependence of DNA concentrations at the end of first 10 
repeats of the nanofilter array. As DNA molecules migrate in the 
channel, the molecules become dispersed because of the diffusion and 
the trapping effect. Longer time is required for the peak to pass a 
detection point at farther distance from the origin. In addition, the 
concentration curves detected at farther distance are also broader and 
shorter.   

7.4 Effective zone formation and evolution 

Assuming that the initial peak width is zero, the shape of the zone undergoing 

constant spreading and translation observed at time t  by a detector located at a 

distance L%  takes the form (Giddings, 1991), 
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2

2

( )( , ) exp[ ]
22 TT

n L Vty L t
σπσ
−

= −
% %%% ,  (7.4) 

where n%  is the amount of the DNA; V%  is the apparent traveling velocity; and 2
Tσ  is 

the spatial variance of the Gaussian zone. By assumption, 2
Tσ  increase linearly with 

respect to t , i. e.  

2
T tσ = Γ ,  (7.5) 

where Γ  denotes the combined zone broadening rate as the DNA molecules are 

passing though the filtration device. The peak passing time at distance L%  is obtained 

from the solution of equation / 0y t∂ ∂ = ,  

2 2 2

2

4( )
2

P L Vt L
V

−Γ + Γ +
=

% %
%

%
.  (7.6) 

From our simulation results, one can obtain the peak passing time )~( i
p Lt  at the end of 

each repeat ,   1, 2, ,iL i p i n= ⋅ =% K . Parameters V%  and Γ  are estimated from curve 

fitting using Eq. (7.6). Once Γ  and V%  are known, evolution time and dispersion of 

the DNA at the end of channel of any length can then be calculated accordingly. 

This expression of peak passing time in Eq.  (7.6) approaches the widely adopted one  

( ) /Pt L L V=% % % ,  (7.7) 

when /L V>> Γ% % . Therefore as long as the channel length L%  is significantly larger 

than the plate height  

/H V= Γ % ,  (7.8) 

or the number of plates is significantly greater than 1, electrophoretic velocity can be 

estimated from 
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/ ( )PV L t L=% % % .  (7.9) 

However, the maximum channel length is 20 mµ  in our model, while the plate height 

is about 1 ~ 9 mµ , corresponding to the number of plates of 2 ~ 22 . Therefore, one 

can not estimate the parameters Γ  from the peak width at half height, and V%  from Eq. 

(7.9), which are widely adopted in experimental studies. 

 

Fig. 7.6. The comparison of simulated evolution times with the 
experimental ones. The simulation evolution times agree well with 
their corresponding experimental data for 50bp and 150bp DNA 
molecules. For a 300bp DNA, its evolution time is overestimated in the 
simulation due to over-estimated entropy barrier. 

The simulation and experimental results of evolution times of DNA molecules of 

various sizes subjected to different electric fields over 1 cm nanochannel are shown in 

Fig. 7.6. The simulation results are in good agreement with the experimental ones for 

50bp and 150bp DNAs. However, the traveling time for 300bp DNA is overestimated 

in this simulation. This difference has to be attributed to the factors that are not 
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considered in our simulation model. As the persistence length of DNA is about 50 nm 

(~150bp), DNA segments of 300bp are deformable under thermal fluctuations. In our 

simulation, however, DNA molecules are treated as rigid rods, thereby the entropy 

barrier at confined region is overestimated compared with the actual deformable 

molecules. The result of this overestimation is that the traveling time of the 300bp 

DNA is longer than the experimental results.   

7.5 Normalized mobility and size selectivity 

The normalized mobility *U  of the DNA through the nanofilter array is defined as 

*
max/( )avU V E U= % , where maxU is the maximum sieving free mobility. Experimentally, 

the maximum sieving free mobility across the nanofilter array is obtained by 

extrapolation of the mobility curve to a zero length (Fu et al., 2005). Size selectivity 

of the nanofilter device is characterized by the derivative of normalized mobility with 

respect to the DNA size, * /dU dN  (N is the size of DNA in bp). As shown in Fig. 7.7, 

the normalized mobility is dependent on both the electric fields and the DNA sizes. 

Low field strength leads to a steeper mobility slope, corresponding to a better size 

selectivity. However, reducing the electric field lengthens separation time, which will 

increase the dispersion and compromise the resolution of the separation. A tradeoff 

between the size selectivity, separation time, and peak dispersion is required to obtain 

optimized separation results.  
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Fig. 7.7. The dependence of relative mobility on DNA sizes under 
different electric field strengths calculated from simulation data with 
consideration of electro-osmotic flow. Lower electric field leads to a 
higher mobility difference for DNA sizes, or a higher selectivity. 

7.6 Band dispersion 

As shown in Fig. 7.8, the dispersion data obtained from the simulation are generally 

comparable in magnitudes to the experimental data. However, the model-predicted 

dispersion decreases as the DNA size or electric field strength increase, while the 

experimental data show an almost length- and field- independent dispersion behavior. 

These differences are mainly due to the simplicity of our simulation model. 
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Fig. 7.8. The experimental and simulation dispersions under different 
electric field strengths against DNA sizes. Compared with 
experimental data that are generally size and field independent, 
variances in simulation are dependent on both factors. The deviation 
between the experimental and simulation data is due to the simplicity 
of this model, in which only the diffusive dispersion and convective 
dispersion are considered. Other unconsidered factors that might 
contribute to dispersion may include inter-molecule interactions, 
flexibility of molecules, stochastic nature of dye attachment etc. 

The band broadening in this simulation model is caused by several mechanisms. The 

diffusive dispersion is induced by the random Brownian motion of the DNA 

molecules. The convective dispersion is due to the exponential decaying of the 

concentration with time as DNA molecules are travelling from one deep well to the 

next one (crossing the energy barrier in the shallow slits). In addition, there is another 

dispersion arising from the field non-uniformity (which provides different field lines 

for the molecules to take) in the deep well of the device. Our method models all the 

above-mentioned dispersion mechanisms appropriately. Among the three dispersion 

mechanisms discussed above, diffusive dispersion would be more severe for shorter 
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DNA molecules, while the convective dispersion would be independent of the DNA 

length.  

Other factors that are not considered in this thesis might include the intermolecular 

interactions, the stochastic dye attachment, the flexibility of DNA molecules, and 

Joule heating etc. Non-uniform dye labeling will definitely contributes to the 

dispersion (width of peak) because it causes the DNA molecules in the experiment to 

have slightly different free-solution electrophoretic mobility. Any modification of the 

electrophoretic mobility may cause significant alteration in the effective 

electrophoretic mobility in the presence of electro-osmotic flow (because these two 

terms are similar in magnitude and have opposite signs), which gives rises to the band 

widths. Also inter-molecular interactions, especially the repulsion between the 

charged molecules surely contribute to dispersion. In addition, flexibility of the DNA 

molecules is certainly a factor that contributes to the mismatch between the 

experimental results and the simulation data. It has been observed that the fitting is 

getting worse as the length of the chain increases, where the flexibility of the DNA 

increases. However, it is unbelievable that Joule heating is a factor in our experiments, 

simply because the nanochannels in the device are too thin (less than 500nm, even in 

‘deep’ region). Therefore the amount of current going through the system is tiny 

compared with other standard microfluidic systems. Any temperature shift in this 

system caused by Joule heating would be negligible (Fu et al., 2005; Fu et al., 2006). 

One should note that the selectivity of the nanofilter sieving systems is more 

straightforward to simulate, compared with dispersion behavior. In most of previous 

modeling of nanofilters and entropic trapping device (Doyle and Underhill, 2005; Fan 

et al., 2006; Duong-Hong et al. 2008), such as Brownian dynamics and dissipated 

participle dynamics, the selectivity is obtained by simulating the dynamics of a single 
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DNA molecule through one nanofilter, while the absolute value of the electrophoretic 

mobility is usually one of the fitting parameters. Under such formulation, the physics 

that are neglected in the model are accounted for by the modifications in the (free-

solution) electrophoretic mobility. However, such a method does not work for 

calculation of dispersion. For these reasons, most of previous modeling studies focus 

mainly on the selectivity, not the dispersion. Our simulation model is developed to 

predict the dispersion, as well as the mobility, by solution of the continuum transport 

equation for a collection of molecules in a non-steady state condition. The magnitude 

of electro-osmotic flow is the only adjustable parameter (which is estimated as ~ 4 / 5  

of the DNA’s free-solution electrophoretic mobility) that is used to fit the selectivity. 

Although dispersions in some cases are underestimated due to omission of some 

factors mentioned above, they are largely comparable in size. Based on the correctly 

predicted mobility and approximately estimated dispersion, a practical evaluation of 

the quality of a nanofilter array is still achievable. 

The deviations between the simulation data and the experiment ones may also be due, 

in part, the non-ideal shape of the nanochannel devices. Our simulation is based on 

the ideal, square-shaped device structure, while the actual nanofilter devices have 

rather sloped sidewalls between nanochannels and deep wells (Fu et al., 2006). In fact, 

micro/nanofluidic channel sidewalls are rarely ideal as shown in Fig. 1.2, which could 

have a significant impact on the separation of the molecules in the system, leading to 

modified sieving/dispersion characteristics.  
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8 Conclusions and future work 

8.1 Concluding remarks  

This thesis proposes a theoretical model based on continuum transport theory for 

analysis of electrophoretic traveling of the rod-like DNA molecules over repeated 

regular nanofilter arrays. Unlike computationally expensive, stochastic methods such 

as BD and DPD, this method focuses on the behavior of group of DNA molecules 

rather than a single one. It is therefore capable of investigating large time and length 

scale macroscopic phenomena. It can also provide the estimation of peak dispersion, 

which is often computationally prohibitive for the current stochastic modeling 

techniques. 

Through the theoretical and simulation studies, it is established that the orientational 

entropy barrier in shallow slits plays a major role in the electrophoretic partitioning of 

the rod-like DNA molecules of different sizes across nanofilter arrays. In addition, the 

steric constraint in the shallow region increases the mobility of longer rod-like DNAs. 

This modification affects the separation results significantly if the mobility of 

electroosmotic flow is comparable in amplitude to the DNA’s free-solution 

electrophoretic mobility. It may helps to explain the complex experimental data of 

short DNA electrophoresis over flat nanochannels observed by Pennathur et al., (2007) 

and Cross et al., (2007). These findings are critically important in design and 

optimization of nanofiltration devices for the separation of the rod-like electrolytes 

and charged particles of other geometrical shapes. 
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The most important contributions of this thesis to the field of nanofiltration are 

highlighted as follows: 

(1) It is shown that the macroscopic continuum model is suitable for description of 

Ogston sieving process in nanochannels, as long as the microscopic physics, such 

as loss of orientational freedom in confined space, are properly incorporated into 

to continuum transport equations. This finding permits one to study this kind of 

nanofiltration problems without running extremely time-consuming stochastic 

simulations. 

(2) Analytical formulas for the mobility and dispersion in such systems are obtained 

through a simplified one-dimension model. Physical mechanisms of entropic 

trapping are elucidated explicitly. Based on these formulas, a method for assessing 

and optimization of task-specific nanofilters and strength of electric fields is 

proposed. These methods and formulas are extremely important to the 

experimentalists 

(3) The effect of the rotational diffusion on the partition of anisotropic particles are 

realized and quantified (through the mobility corresponding to the entropic force). 

This knowledge has significant consequences in our understanding of many 

processes involving transport of anisotropic particles in nanochannels. 

8.2 Recommendation for future work  

This thesis investigates the processes of nanofiltration from a totally different view. It 

can be extended in many aspects as described below: 

A direct extension of the current work is to analyze nanofilters with sloped walls. 

Actual devices often have rather sloped sidewalls between shallow channels and deep 
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wells. This slop of the sidewall may affect the result of separation significantly. 

Although it is expected that the slope may produce a higher mobility, very little is 

known about its overall effects on the final outcome of the separation. 

In the current work, the interactions between the charged biomolecules are ignored. 

This assumption is valid when the concentration of molecules is extremely dilute. 

Because all the molecules are charged, the repulsion between the molecules may play 

a significant role when the concentration of molecules becomes higher. This effect 

will give rises to the dispersion, which will provide a better description on the 

dispersion dynamics. 

Another very important extension of this work is to model a ratchet structure. For 

example, one may consider a nanofilter array that has sloped sidewalls on one side 

and vertical walls on the other side. Such device may produce very high resolution of 

separation if nonsymmetrical voltages are applied.    

From the physics point of view, deformation of polyelectrolytes should be considered 

because even the ~200bp DNA molecules are not strictly rigid rods in aqueous 

solutions. As the DNA molecules to be separated frequently are normally a few 

hundred base pairs in length, the mode of deformations for these molecules is 

comparably simple compared with very long ones. Consideration of deformation, 

even very approximately, can improve the quality of analysis. This can be achieved 

by inclusion of another potential energy term in calculation orientation-dependent 

parameters and variables.  

The electrokinetic flow poses a lot of complications in the electric field driven 

nanofiltration system. This thesis circumvented this problem through introduction of 

an electroosmotic flow which is assumed to be directly proportional to the electric 
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field. This assumption is valid in cases of high ionic strength, where the Debye layer 

is significantly thinner than channel depth. However, this assumption may become 

invalid when the depth of the channel is in the order of nanometers. An extension of 

the current model with consideration of electrostatic energy and nonuniform 

electroosmotic flow in Debye layer may solve this problem.  

Last but not least, the description of dispersions in this thesis is still far from complete. 

The dispersions considered in this thesis include only the diffusive dispersions and the 

convective dispersion caused by the trapping effect (induced by the energy barrier). A 

more detailed description may include the effect of nonuniform electric field, more 

complex osmotic flow etc. 
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