
KEYWORD-BASED SEARCH

IN PEER-TO-PEER NETWORKS

Yingguang Li

NATIONAL UNIVERSITY OF SINGAPORE
2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48631727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

KEYWORD-BASED SEARCH

IN PEER-TO-PEER NETWORKS

Yingguang Li

(M.Sc. NATIONAL UNIVERSITY OF SINGAPORE)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2008

Acknowledgment

I would like to express my sincere and deep gratitude to my advisor, Professor Kian-

Lee Tan for his guidance during my research and study at the National University

of Singapore (NUS). His patience, understanding and encouragement have helped

me greatly throughout my five years of Ph.D. study. When I brought many naive

ideas to him, he explained to me why they are too simple or impractical, but he also

discussed with me possible extensions from them; when I changed a few research

problems in the early stage, he gave me time to broaden my knowledge; when

I was frustrated by some rejections on my paper submissions, he encouraged me

and helped me to get the papers accepted eventually. Moreover, I appreciate the

countless hours he spent to update my writings and improve my presentations.

I would also like to thank the oversea co-authors: Professor H. V. Jagadish

from the University of Michigan, Professor M. Tamer Özsu from the University of

Waterloo and Associate Professor Lidan Shou from Zhejiang University. Professor

Jagadish’s insight on SPRITE improves the technical content and literary style of

the paper. His theorization on SPRITE has inspired me in the early stage of my

Ph.D. study. Professor Özsu spent a lot of time to discuss with me on the XCube

work when he was visiting NUS. Associate Professor Shou discussed with me about

the idea on CYBER. After he went back to China, we continued the discussion until

the work was accepted for publication.

I am very thankful to the members of my thesis evaluation committee: Dr.

i

ii

Chee Yong Chan and Dr. Panagiotis Kalnis. The advice and comment from them

on my term paper and thesis proposal helped me to refine my work and explore

new research problems in the early stage of my Ph.D. study.

I am so happy that I have been a member of the database group, a big family

full of joy and research spirit. I would like to thank Professor Beng Chin Ooi.

He taught and inspired me many things when I worked with him as a research

assistant. I also thank Dr. Chee Yong Chan for his kind support in the later stage

of my study. I want to thank Dr. Panagiotis Kalnis for the discussions with him

when I was looking for research problems in the P2P realm. Thank Dr. Anthony

Tung for sharing with us his understanding on research. I would like to thank Dr.

Stéphane Bressan and Dr. Mong Li Lee who showed me the research path.

I would like to thank my friends in NUS also, for their encouragement, discus-

sions, team work, and company, especially before conference deadlines. They are:

Xuan Zhou, Yanfeng Shu, Wee Hyong Tok, Wenqiang Wang, Chenyi Xia, Bin Cui,

Qi He, Zhuo Chen, Wei Ni, Shili Xiang, Changqing Li, Yuan Ni, Ting Chen, Jing

Hu, Enhua Jiao, Wei Zhang, Han Zhang, Wei Zheng, Chong Sun, Weiwei Cheng,

Gabriel Ghinita, Ding Chen, Xianjun Wang, Jianneng Cao, Bin Liu, Chang Sheng,

Xiaoyan Yang, Zhifeng Bao, Liang Xu, Huayu Wu, Yueguo Chen, Bei Yu, Sai Wu,

Quang Hieu Vu, Mihai Lupu, Zhenjie Zhang, Yu Cao, Su Chen, Dongxiang Zhang,

Bingtian Dai, Ji Wu, Wei Wu, Yongluan Zhou, Xuyang Song, Linhao Xu and many

others. They have made my study in the big family very enjoyable.

I would like to thank my parents for their consistent love, encouragement and

understanding. I also want to thank my wife, Jun, for her love, her support during

my Ph.D. study and the happiness she brings to me.

Finally, I want to thank NUS for providing me the scholarship so that I can

concentrate studying.

Contents

1 Introduction 1

1.1 Keyword-based Search in P2P Networks 3

1.2 Motivations . 5

1.2.1 Building Compact Yet Effective Index 5

1.2.2 Improving search quality . 7

1.2.3 Handling structural constraints 8

1.3 Contributions . 10

1.4 Thesis Organization . 12

2 Background 13

2.1 Peer-to-Peer Networks . 13

2.1.1 Unstructured P2P Networks 14

2.1.2 Structured P2P Networks 15

2.2 Keyword Search . 19

2.2.1 Vector Space Model and TF ·IDF 19

2.2.2 Relevance Feedback . 21

2.3 XPath Queries . 22

3 Related Work 23

3.1 Document Retrieval in P2P Networks 23

iii

iv

3.2 Social Networks and Personalized Search 25

3.3 XML Query Processing in P2P Networks 27

3.4 Load Balancing in Structured P2P Networks 31

4 SPRITE : Selective PRogressive Index Tuning by Examples 34

4.1 Introduction . 34

4.2 Overview of SPRITE . 36

4.3 Query Processing . 40

4.4 Index Construction and Tuning . 42

4.4.1 Metadata in SPRITE . 43

4.4.2 Initial term selection . 43

4.4.3 Tuning indexing terms . 44

4.5 Experimental Study . 49

4.5.1 Data set and query set . 50

4.5.2 Experimental setup . 54

4.5.3 Experimental results . 55

4.6 Summary . 58

5 CYBER: a CommunitY -Based sEaRch engine 60

5.1 Introduction . 60

5.2 CYBER . 65

5.2.1 Profile initialization . 66

5.2.2 Profile-based query processing 67

5.2.3 Document profile updating 69

5.2.4 User profile updating . 70

5.3 Dynamic Tuning of CYBER Indexes 71

5.3.1 CYBER+ . 71

v

5.3.2 CYBER++ . 72

5.4 Experimental Evaluation . 74

5.4.1 Data set and query set . 75

5.4.2 Experiment setup . 78

5.4.3 Experimental results . 79

5.5 Summary . 84

6 XCube: Processing XPath Queries in a HyperCube Overlay Net-

work 87

6.1 Introduction . 87

6.2 Preliminaries . 89

6.2.1 The Hypercube Structure 89

6.2.2 XML Documents and Representations 91

6.2.3 A Naive Tag-based Scheme over Hypercube Overlay 94

6.3 The XCUBE System . 97

6.3.1 Document Indexing . 98

6.3.2 Querying Documents . 101

6.4 Load Balancing Issues . 104

6.4.1 Load-Balanced Partitioning of the Hypercube 104

6.4.2 Balancing Storage Load . 108

6.5 Experimental Study . 109

6.5.1 Data and Query Generation 111

6.5.2 Experiment Settings . 112

6.5.3 Comparing XCube, NAIVE-XCube and PC-XCube 113

6.5.4 Comparing XCube and IFT 116

6.6 Summary . 122

vi

7 Conclusion 124

7.1 Summary of Contributions . 124

7.2 Future Work . 126

7.2.1 Searching pure text data . 126

7.2.2 Searching richer text data 127

7.2.3 Browsing . 128

Summary

Information sharing is one of the most useful applications of Internet. Peer-to-

peer (P2P) platform attracts many researchers’ attention because of the increasing

number of users and the advantages of P2P systems over traditional centralized

systems, such as scalability and administration-free. While P2P platforms provide

many advantages, we are facing many new research challenges as well. In this

dissertation, we focus on issues related to keyword-based search in P2P networks,

because keyword-based search is the most feasible and easiest searching interface

in a decentralized system where users are not expected to have apriori knowledge

about the remote data.

We first propose SPRITE (Selective PRogressive Index Tuning by Examples),

to build effective index on the shared data in a structured P2P network. In a P2P

network, building complete inverted index for documents is infeasible due to the

high maintenance cost. SPRITE builds partial index based on the query history so

that only the representative terms of a document are chosen and indexed. With the

compact, yet accurate index, SPRITE is able to achieve good search performance

close to a centralized system with complete index.

We then propose CYBER (a CommunitY-Based sEaRch engine) to further

improve the search effectiveness by incorporating social network and feedback tech-

niques. In CYBER, users with similar interests (a community) are linked together

vii

viii

with their profiles implicitly. Within such a community, a document identified

as relevant by a user is likely ranked higher to a query issued by another user.

Our experimental results show that CYBER outperforms the traditional feedback

techniques because it accumulates positive feedback.

Besides searching plain text data, we also investigate how to share and query

XML data, which is also a kind of text data, yet with more complex structure. We

propose XCube to process XPath (and tag-based) queries in a hyperCube overlay

network. The XCube system extracts the tag names from an XML document, and

then indexes them together as one entry. Given an XPath query, the tag names

in the query are extracted in the same way first. A group of peers containing the

supersets of the query tags are searched. The structural constraints and predicates

are examined in the related indexing peers and owner peers respectively. We com-

pare XCUBE with the scheme that indexes individual tags and show that XCUBE

is more efficient.

We believe that our research has identified and solved some significant prob-

lems in keyword-based searching systems in P2P networks. Our comprehensive

experimental results and the comparison with the representative existing methods

prove that the proposed schemes improve the searching effectiveness and efficiency

tremendously. Such improvements make keyword-based search in P2P networks

more feasible and attractive to end users.

List of Figures

4.1 Indexing terms in a Chord Ring. 38

4.2 The learning phase in SPRITE. 44

4.3 The learning example in SPRITE. 49

4.4 Defining relevant documents. 54

4.5 Varying number of answers. 55

4.6 Varying number of index terms. 56

4.7 Change on query pattern. 57

5.1 A search example with query “apple photo” and 6 documents in the

ranked list. 62

5.2 Index entry example. 65

5.3 An example of user profiles. 66

5.4 User clicks simulation . 77

5.5 Varying number of answers. 79

5.6 Varying number of index terms. 80

5.7 Varying number of clicked documents. 81

5.8 Changes in query pattern. 82

5.9 Varying size of document profiles. 83

5.10 Varying size of user profiles. 84

5.11 Comparison on varying the number of answers. 85

ix

x

5.12 Comparison on varying the number of indexing terms. 86

6.1 The querying flow in XCube. 88

6.2 A 4-dimensional cube. 90

6.3 Bit vector calculation (d=8). 92

6.4 The synopsis of SigmodRecord.xml 93

6.5 Document indexing and query routing. 100

6.6 A dynamically partitioned 3-d cube. 105

6.7 Comparison among XCube, NAIVE-XCube and PC-XCube. 113

6.8 Overhead load distribution comparison. 116

6.9 Storage load distribution with various number of virtual peers. . . . 117

6.10 Comparison on various network sizes. 118

6.11 Comparison on various query sizes. 119

6.12 Comparison on various synopsis sizes. 120

6.13 Efficiency comparison. 121

6.14 Effectiveness of bit maps. 122

List of Tables

5.1 Experiment Settings. 78

6.1 Experiment Settings. 112

6.2 Local process at anchor peers. 114

xi

Chapter 1

Introduction

Along with the inventions of intranet and internet, the amount of information in-

creases dramatically. On one hand, more information is generated and shared;

on the other hand, more users are searching useful information from the inter-

net/intranet. The last decade has witnessed the limitations of the traditional

client-server (C/S) computing architecture on searching data. In a C/S struc-

tured network, a server can cause a single point of failure easily, which makes the

whole network vulnerable. Data sharing in situ is infeasible in many applications,

such as search engines, which mainly rely on crawlers to collect data. Moreover,

the C/S architecture apparently limits the scalability of the network.

Personal computers are becoming more powerful with faster processor, larger

RAM and storage, yet more affordable in terms of price. The network bandwidth

for normal users is increased significantly nowadays. Such hardware improvement

makes Peer-to-peer (P2P) network architecture practical. A P2P network incor-

porates a number of computing nodes with some shared resources, such as storage

and bandwidth, to provide some network services. Among these resources, band-

width is usually the bottleneck because data indexing, monitoring, searching and

1

2

routing require message transmission. A key characteristic of a P2P network is that

every peer plays the role of both server and client. One arbitrary peer (or even

several peers) going offline will not stop the entire network service. Similarly, it is

important for all peers to have similar work load so that some offline peers will not

affect the network service seriously. The number of peers/users in a P2P network

can increase freely as every peer consumes resources as well as provides resources.

It is worth noting that we are not advocating that P2P networks will dominate

and replace C/S networks completely. On the contrary, we believe that they are

mutually complementary and suitable for different applications. A C/S network

tends to minimize the resources consumed, while a P2P network manages to fully

utilize the resources in the network. Therefore, we do not compare the two types

of networks on the network cost in this thesis.

Currently, the existing P2P network systems provide several kinds of services,

such as data sharing, storage sharing, audio and video media streaming. In this

thesis, we focus on the service of data sharing. Query processing has been addressed

for various types of queries, such as range query and K-nearest neighbor (KNN)

query [7, 47, 71, 75], skyline query [87, 22, 45, 19] and queries in publish/subscribe

systems [17, 6, 3, 74]. In a P2P network, different softwares and applications are

being used by peers with various operating systems. Hence, many different types

of data are generated and shared. In order to share data among peers, an easy

way is to convert or annotate them to text format, which is acceptable for all

operating systems. Keyword-based queries can be easily interpreted by all peers.

Keyword search has been extensively studied on pure text data [10, 40, 16, 15],

XML data [5, 32, 93, 36], and relational data [35, 4, 34] in centralized systems.

However, many research challenges on keyword search in a P2P environment are

not addressed. Moreover, processing complicated queries, such as SQL queries in

3

traditional database management systems, in a P2P network is non-trivial. Such

queries usually require users to have better knowledge on the data sources they are

querying on, which is hardly true in a P2P network. While keyword search has also

been investigated in the relational context [98], this thesis focuses on keyword-based

search for textual (document and xml) data in P2P networks.

1.1 Keyword-based Search in P2P Networks

Supporting keyword-based search (also known as text retrieval) in a large scale dis-

tributed environment (e.g., P2P networks) is a challenging task. Traditional doc-

ument retrieval techniques need statistical information of the entire corpus (global

knowledge) to calculate similarities and rank the result list, such as the document

frequency of a term and the corpus size (total number of documents). Hence, such

techniques cannot be directly applied to a distributed environment where global

knowledge is unavailable.

In the literature, there are mainly four approaches to support keyword-based

search in P2P systems. The most straightforward approach, typically adopted in

unstructured systems, such as Gnutella [30], is to flood a query within a certain

radius of the neighborhood of the querying peer. However, such an approach is not

only bandwidth inefficient but may have low recall (the ratio of discovered relevant

answers over all relevant answers) as peers containing relevant documents may be

beyond the search scope and unknown within the local neighborhood searched. To

reduce the communication overhead, an alternative approach is to employ routing

indexes [21] that provide more directed search as only peers with matching query

terms are searched. However, this method also operates within a certain radius in

an unstructured environment, and has the same limitation of low recall.

4

A third approach employs a structured overlay network. Every document is

indexed in the structured network on the terms it contains [83, 49]. In other words,

each peer maintains an inverted list for the terms assigned to it by the overlay net-

work. To process a query, all peers responsible for the query keywords are visited,

and the relevant index entries are returned to the querying peer. The querying

peer can then compute the similarities between the query and the documents con-

taining those keywords to generate the ranked list. This approach is relatively

query-efficient, and is expected to have higher recall than the other approaches.

The fourth approach is to index the documents on some combinations of certain

terms in a structured P2P network [29, 85, 38]. Each term combination is indexed

in an indexing peer similar to the term indexing scheme in the third approach.

When processing a query, peers responsible for the related term combinations are

contacted. This approach attempts to reduce the number of participating peers for

a query from the third approach.

The former two approaches employing unstructured P2P networks have some

key drawbacks. Broadcasting a query in a P2P network is expensive, even with TTL

to control the search radius. Information discovered is always from “nearby” peers,

which limits the scalability of the network. Many relevant documents of better

quality (with larger similarities) may be missed out as they are beyond the search

radius, thus the recall is seriously affected. Such approaches based on unstructured

networks are only suitable for some applications. Therefore, we mainly investigate

the mechanisms employing structured P2P networks. Structured P2P networks

guarantee that existing answers can be found with routing cost of logarithmic

bound.

The latter two approaches reduce the number of contacted peers to a query

significantly by leveraging on the efficiency of structured P2P networks. However,

5

the construction of a distributed index may involve a large number of peers be-

cause the number index entries is usually proportional to the number of terms in a

document. The cost to build such indices is high, and maintaining the indices will

cost even more messages. We tackle this challenge in Chapter 4.

1.2 Motivations

As text data can be processed on all types platforms, the demand on keyword-based

search in P2P networks is increasing rapidly. For example, many big organizations

are employing P2P systems to store, backup and share documents. Employees

search text data, such as emails and documents by issuing keyword queries. Even in

conventional file sharing, eg. software distribution, P2P users start to issue keyword

queries to search softwares with certain functionality and hardware requirements.

We have seen the limitations of unstructured networks on data sharing in the

previous section. We now investigate several key issues of keyword-based search in

structured networks. These issues motivate the work in this thesis.

1.2.1 Building Compact Yet Effective Index

The number of shared documents in a P2P network is usually proportional to

the number of users. Each shared document contains a large number of terms

(keywords) also. In a P2P network, a peer is allowed to join and leave the network

freely without notifying other peers. When a peer, Pi (indexing peer), indexes

a term for a document shared by another peer, Po (owner peer), either Pi needs

to ping Po periodically to check its availability and thus maintains its index up

to date; or Po needs to ping Pi periodically to ensure the indexing peer is alive

(otherwise, Po will re-index the document on that particular term). If all terms in

6

each document are indexed in a P2P network, then peers will be busy with pinging

the indexing peers or the owner peers. Such maintenance overhead is significantly

huge when more peers join the network and share more documents. Therefore,

building complete index seriously degrades the scalability of a P2P network.

Although such pinging messages are small in terms of size, the total number of

such messages is huge in a P2P network. Assume there are 10000 peers in a P2P

network; on average, every peer shares 10 documents; each document contains 1000

distinct terms; and an owner peer pings an indexing peer every 1 hour. An owner

peer has to check the availability of 10000 indexing peers periodically (equivalent

to broadcast), which means the peer has to handle about 3 pinging messages every

second. From the point of view of an individual peer, such frequent pinging mes-

sages will surely degrade its performance. From the point of view of the entire P2P

network, the significant overhead on the maintenance over-consumes the network

bandwidth. Moreover, the complete distributed indices cause the sizes of many

index entries on popular terms to be large. When such an indexing peer reacts

to some queries, the size of the replied message to the querying peers is large too.

Hence, there is a need to investigate ways to reduce maintenance overhead without

sacrificing the answer quality.

Besides the maintenance overhead, Li. et al. also extensively discuss the im-

practicality of building complete index in a P2P network with storage constraints

in [46]. Without compression, each peer has to contribute several gigabytes of stor-

age on average to store complete index entries, which is a significant overhead as a

program requirement in a personal computer.

7

1.2.2 Improving search quality

In centralized information retrieval systems, techniques based on user feedback have

been effective in improving the query precision and recall. These methods typically

re-formulate and re-evaluate a query based on the feedback provided by the user

who issues the query. After a ranked list is returned to a user, the user selects some

results as relevant answers. According to the relevant answers, some terms are

injected into the query or their weights in the query are increased. The new query,

which reflects the user interest more accurately, is sent back for evaluation again.

However, it is non-trivial to deploy these feedback-based techniques directly in a

P2P network. In a relatively dynamic (unstructured or structured) P2P network,

submitting a query multiple times means increasing the cost for routing the query

proportionally. Additionally, because of the dynamism of the system as peers join

and leave the network, the user may have to wait for a longer response time or some

answers may be missed. Therefore, more intelligent novel methods are required to

improve searching effectiveness in P2P networks without sacrificing the efficiency.

Moreover, we observe that many users share some common interests. Such

users construct a community and tend to issue similar/overlapping queries. The

existing research work has demonstrated that a single ranked list cannot satisfy

users from different communities issuing the same query [99, 44, 20, 88]. Ideally,

a unique ranked list should be generated for each community. If a query can

be re-formulated and re-evaluated based on the past queries from the same user

community, then we can achieve similar search quality as employing the feedback

techniques. However, how to incorporate community-based relevance feedback in

a P2P network has not yet to be clearly defined. Since a user can have multiple

interests at a time, it is not clear how the query of his current interest can be

associated with the correct community. Therefore, a community-based relevance

8

feedback technique is desired to improve search accuracy in P2P networks.

1.2.3 Handling structural constraints

We have seen keyword-based search on plain text data in the previous two sections.

In many applications, searching for data of richer format is strongly demanded. On

one hand, a lot of information has been described and represented with richer for-

mat; on the other hand, many data are generated by some programs or applications,

rather than by the users manually. XML - a text-based, self-descriptive, tagged

language for encoding hierarchical data structures - can be readily understood by

users and machines, and as such, has been widely used as a standard to represent

and exchange data. Comparing with the pure text data, which is document-centric,

XML data are more data-centric. The text content in every element can be queried

possibly. Therefore, we cannot summarize an XML document with a small number

of terms only.

Designing a peer-based XML data management system requires addressing two

tightly integrated issues: search capability and query expressiveness. The first

issue is influenced by the overlay structure of the P2P network. In order to find all

available answers, a structured network is employed to avoid broadcasting the entire

network. And the second issue deals with the query types that can be supported.

Structural constraints are always embedded in most XML queries, such as XPath

[91] and XQuery [92]. For the sake of simplicity, we discuss the XPath query

processing solely in this thesis, but it is easy to extend our work to support XQuery

as well. Only the elements in certain “paths” in some XML documents are potential

answers to an XPath query. XPath queries mainly contain two types of conditions

to examine: structural constraints and predicates on attribute/element. Hence,

XML documents can be indexed on the structure of the document, the attribute

9

values or both of them. Due to the data-centric constraint, building distributed

index on every attribute value and element content is infeasible because of the

high index maintenance cost. This is because every attribute or element could be

queried, such as author names and book titles. The data-centric characteristic of

XML documents renders that summarizing the content is ineffective in reducing

the number of index entries. On the contrary, structural information is easier to

summarize since the number of tags is usually much smaller than the number of

keywords/numbers in the content. Hence, indexing the structure of a document is

both feasible to deploy and selective for many queries.

Since an XPath query cannot be completely handled with the indices on struc-

ture, content or both of them, we have to locate the owner peers of the potentially

relevant documents first, and then process the query in every owner peer. In a

P2P network, the size of a document shared by a normal user is usually very small

and a peer shares a small number of documents, thus processing XPath queries

locally can be easily handled by many existing softwares1. Instead, locating the

relevant owner peers efficiently for an XPath query is the core operation. It is ex-

actly this challenge that we tackle in this work. Many existing works are proposed

to index all the distinct tags in XML documents [25, 2]. The query issuing peer

process a query by consolidating all path/fragment metadata collected from the

related indexing peers. This approach incurs two problems. One problem is popu-

lar tags can overload some indexing peers easily; the other one is the the querying

peer cannot locate the relevant data sources until the last message (on a tag) is

replied. Therefore, a novel mechanism is needed to balance the load and improve

the efficiency.

1In the case that a large number of XML documents or an XML document of large size are
shared by a peer, we assume the peer is as capable as a server. Thus, query processing is also
efficient in such peers

10

1.3 Contributions

The major contributions of this thesis are three-fold:

• In Chapter 4, we propose SPRITE (Selective PRogressive Index Tuning

by Examples) to bring down the cost of index construction and maintenance

in a DHT network. In SPRITE, a small number of representative terms are

selected and indexed for a document. This is extremely important in a P2P

system, not only for index construction and update, but also because periodic

checking on distributed indexes is required. Moreover, SPRITE refines the

selected index terms by learning from past queries progressively, so that the

search effectiveness can recover very soon when the query patterns change.

Our extensive simulation study shows that SPRITE can achieve performance

similar to a centralized system in terms of precision and recall, and consider-

ably outperforms a static index term selection approach.

• In Chapter 5, we propose CYBER, a CommunitY-Based sEaRch engine,

for information retrieval utilizing community-based feedback information in a

DHT network. In CYBER, each user is associated with a set of user profiles

that capture his/her interests. As such, a group of users sharing similar

interests will have similar profiles and form a (virtual) community. Likewise,

a document is associated with a set of profiles - one for each indexed term. A

document profile is updated by users who query on the term and consider the

document as a relevant answer. Thus, the profile acts as a consolidation of

users feedback from the same community, and reflects their interests. In this

way, as one user finds a document to be relevant, another user in the same

community issuing a similar query will benefit from the feedback provided

by the earlier user. Hence, the search quality in terms of both precision and

11

recall is improved. We conduct a comprehensive experimental study and the

results show the effectiveness of our scheme.

• In Chapter 6, we propose XCube, a tag-based scheme that manages XML

data in a hyperCube overlay network to support XPath (and tag-based)

queries. In XCube, each node in a d-dimensional hypercube is identified by

a d-bit vector. A peer manages a smaller hypercube with dimension d′ < d.

An XML document is compactly represented as a structure summary and a

content summary. The structure summary comprises a d-bit vector derived

from the distinct tag names in the document and a synopsis capturing the

structure of the document. The content summary consists of a bit map

that summarizes the document content. The metadata of a document, i.e.,

owner IP, document identifier, structure summary and content summary, is

indexed at its anchor peer (the peer that manages the node with matching

bit vector). In addition, the structure summary is further indexed at all

peers that manages nodes whose bit vectors are covered by the document’s

bit vector. An XPath query is processed in four phases. In phase 1, the query

is routed to its anchor peer according to the bit vector of the query. In phase

2, the query is evaluated against all the synopses stored in its anchor peer

and forwarded to the anchor peers of the matching synopses. In phase 3, the

anchor peer of each related synopsis examines the query on the related bit

maps and forwards the query to the related owner peers. Finally in phase

4, the owner peers evaluate the query on the XML documents and return

answers to the querying peer. We also present a scheme that dynamically

partitions the hypercube to balance the load across peers. We further exploit

the partition history to remove redundant messages.

12

The work in this thesis have resulted in a number of publications and manuscript:

[49], [50] and [48].

1.4 Thesis Organization

Hereby, we outline the organization of this thesis. The rest of the thesis contains

6 chapters. In Chapter 2, we first introduce the background knowledge on P2P

networks and some related techniques on keyword search in traditional information

retrieval systems. A survey on the related work is provided in Chapter 3, where we

mainly focus on the existing works on keyword search and XML query processing

in P2P network.

Chapter 4 proposes our solution, SPRITE, to build practical partial index.

SPRITE selects and indexes representative terms in a structured network, and re-

fines them according to the queries. We conduct experiments to show that SPRITE

is nearly as effective as the centralized system, and considerably outperforms the

static scheme.

In Chapter 5, we propose CYBER, which leverages on community-based feed-

back to improve search quality. Our comprehensive experimental results show that

CYBER outperforms the scheme based on individual feedback techniques.

We then present the design and evaluation of XCube, a system to process XML

queries in a P2P network in Chapter 6. In XCube, an XML document is indexed

on all of its tags as a whole entry, and XPath queries are routed according to its

tags as well. Our extensive experimental results show that XCube is more efficient

than the scheme that indexes individual tags.

Finally, Chapter 7 concludes this thesis and discusses some directions for future

work.

Chapter 2

Background

In this chapter, we introduce some fundamental overlay structures of P2P networks,

which are employed in our proposed schemes or some closely related works. In

addition, we also briefly review some background knowledge on keyword search

over text data and XPath queries over XML data.

2.1 Peer-to-Peer Networks

Peer-to-Peer (P2P) systems are becoming the key paradigm in information sharing

and retrieval today. In a P2P network, a number of computing peers construct a

logical network, where the peers cooperate loosely to share resources and services.

In this work, we mainly focus on keyword-based search, which requires a certain

percentage of hard disk space, CPU and bandwidth sharing. Among these re-

sources, bandwidth is the bottleneck because data indexing, monitoring, searching

and downloading all require message transmission.

In a P2P network, messages are routed by following the overlay network and the

indexing scheme (broadcast in case of no indices), so the routing efficiency highly

depends on the structure of the overlay network. According to the structure that

13

14

peers are organized in the network, we can classify P2P networks into unstructured

P2P networks and structured P2P networks. Note that usually the index of a

datum, instead of the datum itself, is stored in a remote peer, which is named as the

indexing peer in this thesis. We focus on the search procedure among the indexing

peers, cause the downloading procedure is done in a client-server architecture in all

P2P networks. We now introduce the two categories of P2P networks with some

representative overlay structures.

2.1.1 Unstructured P2P Networks

In an unstructured P2P network, peers join the network randomly. Each peer

maintains several links pointing to a few neighbors. The neighbors are randomly

selected and may be optimized according to additional information provided by

users or obtained from other peers, such as the historical query results.

The straightforward searching strategy is flooding. Without any index built

beforehand, a query is broadcast to all of the neighbors within a radius, which is

usually controlled by a counter, Time To Live (TTL1). The receiving peers then

decide whether to continue forwarding the message according to the TTL. Peers

containing relevant answers will reply the querying peer. Gnutella [30] is a well

known decentralized P2P application. The search scheme is a kind of Breadth First

Search (BFS). It is fast in terms of response time, but costly in terms of routing

hops. Usually, most of the peers in the searching scope do not contain any answer,

so the overhead is very large. Moreover, the searching scope is always limited to a

certain group of peers, thus only local optimal answers are found usually, instead

of global optimal answers.

Many refined strategies are proposed on top of the basic BFS scheme. In [95], a

1The TTL is usually implemented as the number of hops to forward the message in a P2P
network

15

small TTL is initialized when issuing a query. If the query results are insufficient,

the TTL is increased and the search radius is enlarged. A query on popular data

items may not be broadcast to too many peers, but there may be many duplicated

messages for sending queries multiple times. In the k-walker strategy [55], a peer

sends a query to a subset of neighbors rather than broadcast the query. If there

are more replicas of a file in the network, then the query will have a higher chance

to find relevant answers in a few hops. However, this strategy does not have any

guarantee on the search results.

Routing Index [21] and Q-Routing [51] make use of historical metadata to guide

the routing. Routing Index records the past query results from every neighbor on

each topic. A query is only forwarded to the peers that may contain sufficient

answers. Q-Routing maintains the routing cost, in terms of time, to retrieve each

data item. A query is sent to the neighbor that can reach the answer peer in the

shortest time.

In summary, the naive strategies are upgraded by maintaining more detailed

and complex neighbor information. However, because the neighbors are loosely

indexed and the restricted search scope, the mentioned systems cannot guarantee

a query can find some answers or the query can find all existing (online) answers.

The retrieval techniques that require certain global knowledge cannot be applied

in this kind of networks either. Therefore, these strategies are only suitable for

applications, in which the users only demand some answers without requirement

on global ranking.

2.1.2 Structured P2P Networks

In structured P2P systems, the network structure is predefined. Both the scheme

that a peer joins the network and the manner that data is indexed follow the

16

network structure. Structured P2P networks are attracting the interests from many

researchers for its bounded routing performance and guarantee on finding existing

data. The advantages come with the price of the acceptable overhead on network

construction & maintenance and index insertion & maintenance. More specifically,

a message can be routed to its destination peer in log N hops on average, where N is

the total number of peers in the network. An arbitrary peer needs to maintain links

to log N remote peers on average. The precondition of the bounded routing cost

and maintenance overhead is that peers are uniformly distributed in the predefined

space. The uniform distribution is implemented with a consistent hash function

usually2. Thus, such structured networks are generally called Distributed Hash

Table (DHT) networks.

Many DHT networks have been proposed: Chord [81], CAN [63], Pastry [66],

Symphony [56], HyperCup [69] and BATON [37]. Here, we illustrate DHT networks

with two representative examples, Chord [81] and HyperCuP [69], because they

are employed in our proposed schemes: Chord is employed in SPRITE (Chapter

4) and CYBER (Chapter 5); and HyperCuP is altered and employed in XCube

(Chapter 6). However, as our proposed schemes mainly exploit the common lookup

interface of the DHT networks [23], they can be easily substituted with another

DHT network.

Chord

Chord [81] is one of the most well known DHT overlay. Chord defines a universal

space as a ring with 2m identifiers. A peer obtains its identifier (ID) by hashing

sustainable object, such as its IP address. A peer is responsible for the segment

whose Chord ID locates between its ID and its clockwise predecessor’s ID. Data

2The consistent hash functions in data encryption, such as SHA-1 and MD5 are employed.

17

items are hashed using the same hash function (SHA-1 is used in Chord), thus the

length of a Chord ID is 160 bits (m=160). Every peer manages the indices of the

data items whose hash values fall in its responsible segment. If the ID of a new

peer is hashed to the segment managed by an existing peer, the segment is split

and each peer is assigned with a new, smaller segment.

In Chord, every peer needs to maintain two sets of links pointing to some remote

peers: a small number of successor links3 to ensure the ring is always close and m

finger links to achieve efficient routing performance. A peer periodically checks the

availability of its successors. When all of the successors fail in a short period, the

ring is not closed, which rarely happens. The finger table is built up in a manner

analogous to binary-search-tree (BST). The 2m identifiers are halved recursively

with respect to the Chord ID of the peer who is building the finger table. The peer

maintains a finger pointing to the peer who is responsible for the splitting point.

Chord can route point queries very efficiently with the successor links and finger

links. Given a point query, Chord first obtains its hash value based on the same

hash function that is used to generate Chord IDs. The query and its hash value are

encapsulated in a routing message. When a peer receives the message, it lookups

the peer (from its finger table) that is the nearest to the destination point, and then

forwards the message to the peer. Such forwarding process halts until the message

is sent to the destination peer. The routing is performed in a binary search manner

because of the BST-like finger table.

It has been proven experimentally and theoretically in [81] that routing a mes-

sage to an arbitrary peer costs log N hops on average, where N is the total number

of peers in the network. Because many fingers point to the same peer, the average

number of effective fingers is log N too. The routing performance degrades slightly

3We consider the predecessor link as a special successor link counter-clockwise.

18

when a small fraction of pointers in the finger table and successor list are out of

date. It is worth noting the key assumption to achieve the average log N routing

hops is the uniformity of peer distribution. In the worst case, the routing hops

from one peer to another is m rather than log N (m > log N). This assumption is

shared by the other DHT networks as well.

HyperCuP

In HyperCuP [69], peers are organized in a hypercube graph. In a d-dimensional

hypercube, there are 2d nodes (vertices)4. Each hypercube node can be represented

as a bit vector. Every hypercube node has one adjacent neighbor node in an

arbitrary dimension by altering the corresponding bit in the vector.

HyperCuP is originally designed to perform broadcast efficiently, so all dimen-

sions follow a certain order. An existing hypercube with d dimensions is “unfolded”

when a new peer joins the network, i.e. a new dimension is created, if all of the 2d

nodes are assigned to the existing peers. The new nodes (except for the one that

is assigned to the newly joined peer) are assigned to the corresponding existing

peers. In this manner, dimensions are sorted according to the order the hypercube

is “unfolded”. In order to broadcast a message, peers forward the message in the

dimensions that is subsequent to the dimension in which the message is received.

Therefore, each peer receives a broadcast message exactly once. Moreover, the

longest distance in the broadcast process is d (Each forwarding is equivalent to

altering 1 bit in the bit vector, so after d bits are altered, the message reaches the

destination peer.). The search algorithm is basically a broadcast controlled with a

time-to-live token.

However, it is easy to see that the above structure can be changed to route a

4For the sake of simplicity, we only study hypercubes with base 2 (2 nodes in each dimension).
In [70], an extension on hypercubes with a base greater than 2 is presented

19

message within log N hops, where N is the number of peers. We can predefine the

dimensionality of the hypercube (similar to the length of Chord ID). An data item

can be hashed with a consistent hash function, such as SHA-1. The hash value can

be represented as a binary number, which can be mapped to a bit vector. When a

new peer joins the network, the hypercube nodes of an existing peer are halved in

a dimension randomly, and each of them are responsible for a number of hypercube

nodes, which construct a sub-hypercube. When routing a message, a peer forwards

the message to a neighbor peer, who is responsible for a node with more similar bit

vector (with more matching bits).

2.2 Keyword Search

In this section, we introduce some traditional keyword search strategies, which

include the model to calculate the similarity between a query and a document, the

method to calculate the weight of a term/keyword, and the mechanism to improve

the quality of search results. These strategies are related to our proposed solutions

or other existing methods.

2.2.1 Vector Space Model and TF ·IDF

The Vector Space Model (VSM) has been well studied. In VSM, every document is

mapped to a point in a vector space based on the weights of the terms it contains.

Analogously, a query is mapped to the vector space based on the keywords ap-

pearing in it. By calculating the similarity between the two points, we can obtain

the similarity between the query and the document. Usually, the cosine similarity

function is employed as the distance function. Finally, all documents are sorted

according to the similarities in descending order to generate the ranked list.

20

In traditional IR techniques, every term in a document is assigned a certain

weight based on some statistics. One of the most popular formulas is TF ·IDF .

The weight of term k in document i is:

wik = tfik × idfk.

Here, tfik is the frequency of term k in document i and idfk is the invert document

frequency of term k in the entire document repository. The intuitive meaning of

this formula is that a term is important to a document in the repository if (i) it

occurs frequently in the document, and (ii) it appears infrequently in the repository.

More specifically, tfik is the normalized term frequency, by either the docu-

ment length or the maximum term frequency in the document. While idfk is more

complicated:

idfk = log N
nk

.

Here, N is the total number of documents in the repository; and nk is the number

of documents containing term k, which is called document frequency of term k.

Given the term weights, we can now calculate the cosine similarity between a

query and a document:

sim(Q,Di) =

∑n

j=1
wQ,j×wi,j

√

∑

j
w2

Q,j
·
∑

i
w2

i,j

where wQ,j is the weight of the jth term in query Q, and wi,j is the weight of the

jth term in document Di.

To facilitate keyword search in a P2P network, two issues are closely related in

VSM. One issue is an inverted index is built to improve the searching performance

in a centralized system. When calculating the dissimilarity between a query and

a document, only terms appearing in the query are checked. In order to avoid

checking irrelevant terms, a distributed inverted index should be built in a P2P

21

network. The other issue is how to calculate the weight of a term in a document,

as both N and nk are global information that are not readily available in a P2P

network. Besides the two issues, some observations that motivate our solution are

further discussed in Chapter 4.

2.2.2 Relevance Feedback

Relevance feedback is a general technique to improve search quality. We present the

technique with keyword based search as the sample application. In the TF ·IDF

scheme, terms are weighted solely based on repository. As a retrieval system in-

volves user interactions with the system, relevance feedback is proposed to refine

the queries, more specifically, to tune the term weights in queries. After a user

issues a query, an initial ranked list is returned first. The user then selects some

results as relevant answers. The terms weights in the query is refined according to

the user selections:

Q′ = Q + α·∑Di∈R Di - β·∑Dj /∈R Dj

Here, Q is the original term vector of the query and Q′ is the refined term vector. α

and β are some tunable parameters. R is the set of relevant answers in the returned

list. Intuitively, the terms appearing in the relevant documents should be assigned

with larger weights, while the terms appearing in the irrelevant documents should

be assigned with smaller weights. In this way, relevant documents and irrelevant

documents are better separated regarding to the query. Usually, only relevant

documents in the returned list are used to refine the query.

In order to obtain more accurate results, users are expected to participate the

feedback process. Apparently, the overhead is the longer response time. We will see

in Chapter 5, how CYBER avoids such explicit user involvement in a P2P network

while improving the search quality.

22

2.3 XPath Queries

The eXtensible Markup Language XML [24] has been widely used to represent and

exchange data. XML is self-describing (user-readable), text-native (machine read-

able) and extensible. In a P2P network, users have little knowledge on remote data,

use different platforms and softwares and need to describe data in their own ways.

Because of the P2P user demands and the XML’s properties, XML is becoming an

ideal data format naturally in P2P networks. Here, we introduce XPath queries

[91], the fundamental query language for XML data.

An XPath query mainly contains two types of constraints: structural constraints

and attributive constraints. The structural constraints examine if the structure of

an XML document matches the structure specified in a query. Such constraints

concentrate on the element relationships and existences. The element relationships

include: parent-child relationship, ancestor-descendant relationship and sibling re-

lationship. The attributive constraints examine if the values of some attributes or

the content of some elements satisfy some conditions. Consider the sample XPath

query Qxp below.

Qxp: //author[conference=“VLDB”][@year=2008]/name

It is looking for the names of authors who publish some papers in VLDB’08.

The structural constraint for Qxp is //author[conference][@year]/name; while the

attributive constraints include (conference=“VLDB”) and (@year=2008). We will

present how XCube in Chapter 6, processes XPath queries in a P2P network.

Chapter 3

Related Work

In this Chapter, we discuss the existing work on keyword search in P2P systems.

We first review the schemes on supporting document retrieval in P2P networks.

Then, we present how personalized search and relevance feedback techniques are

exploited to improve the search performance in the existing work. Finally, we

discuss the mechanisms of processing XML queries in P2P networks.

3.1 Document Retrieval in P2P Networks

In structured P2P networks [81, 63], including the “loosely structured” networks1

[9], search on file names can be easily handled. Moreover, the lookup function

guarantees that a term can be found in log N hops, where N is the number of peers

in the network. A file name can be treated as an integrated entry or a set of terms,

and hashed if necessary, and then indexed in the network. However, indexing file

content involves more challenging issues. Many of these have been addressed in [46],

in which two major concerns are discussed: storage constraints and communication

1In a DHT network, peers build their routing tables strictly following a predefined manner;
while in a “loosely structured” network, the routing tables are built based on some probabilities.

23

24

constraints. Both of these are caused by the large number of terms in a document

to be indexed.

To the best of our knowledge, the most similar work to our SPRITE is eSearch

[83]. In eSearch, a document is indexed on the top k terms and the complete

inverted list of the document is replicated and stored in k indexing peers. In the

description of top term selection, the authors assume that some global statistics

can be obtained. However, global statistics are expensive to obtain and tend to be

inaccurate in a P2P network, where peers frequently join and leave the network,

and documents are shared and unshared frequently as well. In SPRITE, we do not

make this assumption. Term expansion is employed in eSearch. This is orthogonal

to the basic scheme, and not discussed further in this thesis, though term expansion

could also be used with SPRITE.

In [53], Lu and Callan proposed a scheme to process content-based retrieval in

hybrid P2P networks. In the hybrid network, a superpeer is responsible for summa-

rizing the contents among its normal peers. The summaries are defined as “resource

descriptions”. Queries are routed according to the “resource descriptions”: a query

is forwarded to the peers containing the relevant resources with some probability

above a threshold. KSS [29] divides predefined queries into a set of combinations.

Each element in the set is hashed and indexed in a structured DHT. The query term

space can be very large and the combination is too complex to forecast. Besides

addressing some challenges of keyword search in P2P systems, Li et al. [46] pro-

posed to combine some techniques (e.g., caching and query compression) to reduce

communication cost. In [64], bloom filter is employed to compress the message size.

Works based on latent semantic indexing (LSI), such as pSearch [85, 84], predefines

the term spaces. A global knowledge is assumed to compress documents with LSI

into fewer dimensions. The indexes are rotated several times and a set of important

25

indexes are placed into an overlay of CAN [63] each time. A query is preprocessed

similarly and answered as a KNN search in the CAN space.

Podnar et al. present an indexing/retrieval model with highly discriminative

keys stored in a distributed global index [60]. Their experiments show reduced total

traffic compared with distributed single-term strategies, and the retrieval perfor-

mance is also good. The authors also refine the work by introducing a querying-

driven indexing scheme later in [80].Chen et al. propose a scheme based on Bloom

Filter to reduce the message size when processing queries in [18]. The peers that in-

dex the query terms are visited sequentially. In a query message, only the metadata

of the documents that potentially contain all keywords are encapsulated. However,

the supported queries are AND-based and OR-based only. The cost for similarity-

based queries are still very high.

Papapetrou et al. propose a technique to eliminate replicated documents shared

in a P2P network in [59]. In [59], Global Document Occurrence is employed to

reduce the importance of the replicated documents, so that a final ranked list

contains few replicated answers.

Traditional distributed information retrieval has been extensively studied [14,

77, 76, 58]. In a traditional distributed environment, servers are organized stati-

cally, so the methods are not applicable in dynamic P2P networks and beyond our

scope.

3.2 Social Networks and Personalized Search

In recent years, many studies on social search techniques have been carried out.

As stated by Watts et al., social networks have the surprising property of being

“searchable” [39]. A social search engine is a certain type of search engine that

26

determines the relevance of the search results by taking into consideration the

interactions of users. The main techniques involved in social search engine include

recommendation, relevance feedback, and personalization etc. In many existing

works, these techniques are often combined to achieve better performance.

An original work on social recommendation is Ringo [72], a social music rec-

ommendation system which employs the social filtering technique to offer music

among users of similar tastes. Social filtering in a centralized manner has been

well understood and the similar idea has been in use by popular Web sites such as

Amazon and eBay, but it cannot be directly applied in a P2P environment as its

computation requires global knowledge.

Shen et al. studied the method to infer a user’s interest from the user’s search

context, and proposed a framework for implicit user modeling[73]. Unfortunately,

this framework is implemented on client-side search agent, and therefore cannot be

used for P2P environment.

In [57] Mislove et al. proposed a Web search framework enhanced by social

networks, and study the mechanisms for content publishing and location in social

networks. By using cached results from a connected group of individuals during

their search, the framework led to considerable improvement in search effectiveness.

Beydoun et al. presented a “semantic annotation approach” to support search in

a social network [11]. In a P2P search environment, we can also adopt a person-

alization scheme to suggest results (or change the ranking of the results) based on

previous user feedback. However, a P2P model that utilizes such a scheme among

a group of socialized users has never been reported.

Löser et al. proposed a semantic social routing mechanism, called INGA, based

on an unstructured overlay network [52]. INGA treats each peer in the network as

a person in a social network. Each peer in the network maintains local “topical

27

knowledge” and determines the relevance of a remote peer to a query using a

personal semantic shortcut index. Routing of queries can be based on a shortcut

selection function being able to identify and group peers with similar interests. This

work differs from our proposed CYBER model in two ways. First, it exploits social

connections explicitly as routing index, but CYBER treats the socially similar users

implicitly as profile vectors. Since INGA has to rely heavily on the generated social

shortcuts to route queries, a TTL limits the length of the “social path” that a query

can follow. In contrast, CYBER does not have that limitation. Second, INGA is

proposed for an unstructured overlay, while CYBER works for a structured one.

3.3 XML Query Processing in P2P Networks

There are mainly two broad categories of mechanisms to search XML data in P2P

networks. The first category is based on unstructured overlay networks. The key

idea here is to cluster peers with similar XML documents close to one another

(based on some similarity measurement in content or structure). Like the routing

index [21], once a query is routed to a peer containing (potentially) relevant docu-

ments, it can be expected that the cluster around this peer will also hold relevant

answers, and hence broadcasting the query within the cluster and the clusters close

to it will provide better search performance.

In [42], multi-level bloom filters are used to calculate the structural similarity

between XML documents. Peers in the network are organized in a hierarchical

manner according to structural similarity. Queries are forwarded to superpeers in

upper levels until the most similar bloom filters are found. The superpeers then

forward the queries to the related peers downwards. However, this method requires

a larger number of powerful/capable superpeers in the hierarchical network. This

28

requirement is much more difficult to comply with than the superpeer network

presented in [96] and thus limits its scalability. The failure of a peer in the hierar-

chical structure can disconnect its entire subtree, so queries cannot be sent upwards

and data in the subtree cannot be found. XPeer [68] clusters peers according to

a schema-similarity. Superpeers are employed to route the queries. A query is

sent to superpeers, who search for the related peers. However, only a framework

is proposed without technical details. In [26], each peer maintains two inverted

indices: a local index on its own XML documents and a peer index on others’

XML documents. Queries are routed based on the peer index in a similar fashion

as in Routing Index [21]. The peer index cannot be too large because of the high

storage and update cost. This method is not scalable and may miss many answers.

The advantage of mechanisms in this category is that network construction and

maintenance costs are low. However, the disadvantages are more dominating: ex-

isting answers are not guaranteed to be found, and routing cost is high because of

broadcast.

The second category indexes XML documents in structured overlay networks.

This category can be further classified into three approaches according to the in-

dices. One extreme approach, the content-based approach, indexes all terms in

XML documents. A CAN-like [63] mechanism is proposed in [86] to process XML

queries in the granularity of XML elements. A Cartesian space is predefined with

all possible paths. Every path corresponds to a dimension. Every XML element is

mapped to a CAN region. An important assumption is that all users must adopt

the same schema, which is very hard to achieve in a P2P network. The other lim-

itation is the number of XML elements can be very large. Monitoring the indices

is too expensive in a P2P network.

Another extreme approach is the structural approach that indexes complex

29

structures, more specifically, paths in XML documents. In XP2P [12], simple path

queries are supported in a DHT network. An XML document is partitioned into

multiple path-based fragments and each fragment is indexed according to its path.

A query is routed heuristically by shrinking the query path (one tag each time

from the leaf node) until all matching paths are found. It is very expensive to

find all matching documents in this way. Another drawback of XP2P is that users

have to know exactly how others fragment their XML documents and issue queries

based on the fragmentations. In [79], all distinct paths rooted at different levels

for every XML element are indexed in a P-Grid overlay network [1]. An XPath

query is partitioned into sub-paths delimited with “//”. All peers responsible for

the sub-paths are visited to fetch the metadata of related XML documents. The

final results are generated in the querying peer. The drawback of this method is

the number of paths to index for a document can be very large, which increases

exponentially with the document structure size (i.e., the number of distinct tags).

The third approach, the tag-based approach, indexes the tags in XML docu-

ments. The tag-based approach incurs low index maintenance cost and users can

issue queries without knowing the remote peer schemas. In [25], XML documents

are indexed using an inverted file approach. However, instead of indexing terms,

only tags are indexed. We refer to this scheme as the inverted-file tag-based (IFT)

scheme. Each tag of a document is hashed and assigned to an indexing peer in

a DHT network. Along with a tag name, the document URI, paths reachable to

the tag, and data summary (such as histograms for numerical data) are attached

to the index entry. When processing a query, the set of related peers are searched

in sequence. Initially, the related peer set is large after visiting the first peer. In

the subsequent hops, potential document structures are reconstructed by combin-

ing document URIs and paths of the checked tags. Many peers are pruned from

30

the related peer set if their documents lack some paths in the query or they do

not satisfy some constraints according to the data summary. After all tags in the

query are checked, the query is sent to all the remaining relevant peers for final

processing. A key drawback of this method is that some element/attribute names

are very popular in the system and frequently queried. In such cases, peers respon-

sible for these “hot” names will be easily overloaded. Unbalanced load can cause

network instability as overloaded peers have strong incentives to leave or rejoin the

network and thus affect data availability. The failure of a peer responsible for some

popular tags has a serious impact on the whole system as some frequently accessed

information would be missing. The system performance is also degraded because

the overloaded peers can delay forwarding many messages. Though a splitting

technique is proposed to balance the load by distributing the load of popular tags

to some closely related tags, it is not sufficiently autonomous and heavy adminis-

trative work is assigned to expert users. This may not be achievable in many real

applications, and hence limits the applicability of the scheme. Another IFT-based

approach, KaDoP [2], also indexes individual tags in a DHT network. Besides the

tag indices, documents with similar contents are linked together so that the queries

can be easily extended. However, the extension comes at the expense of user effort:

the links between documents have to be identified manually. This requirement

limits the scalability of the scheme.

Wu et al. propose a just-in-time technique to index data in a structured P2P

network [89]. Based on the cost to route queries, popular values are indexed as data

points while unpopular values are indexed as data ranges. This technique can be

applied to index XML data in a P2P network where a common schema is employed

by all users. However, there are many different schemas in a P2P network usually.

In [38], the hypercube structure is used to support keyword search in document

31

retrieval. A hypercube node can be identified by a d-bit vector. Similarly, a docu-

ment can also be mapped into a d-bit vector derived from its terms. In this way,

the document can be indexed at the node with the matching bit vector. A keyword

search is performed by first mapping the query keywords to a d-bit query vector Q

in the same manner as a document is mapped. Clearly, to locate the documents

that match the query exactly, we only need to search the node with identifier Q. In

addition, to find documents that contain the query keywords, we can search every

node whose identifier VN covers VQ (VN covers VQ if for every bit in VQ that is set

to 1 the corresponding bit in VN is also set to 1). While this scheme is simple, it

has two limitations: (a) the number of terms in a document is large and hence the

dimension has to be very large for effective performance; (b) containment search is

inefficient as the number of nodes to be searched is large; moreover, many of these

may not contain relevant documents.

3.4 Load Balancing in Structured P2P Networks

Load balancing is one of the key criteria for a P2P network. Unbalanced load

violates the spirit of P2P network and can incur many problems of a client-server

structured network. In the DHT networks, storage load is uniformly distributed

across peers by hashing data items. However, some peers still receive O(log N)

times as much load as the average peers [13]. Overloaded peers tend to leave

or rejoin the network to avoid the heavy load, which renders the entire network

unstable and increase the maintenance overhead. Such overloaded peers are the hot

spots, and thus the vulnerable points of the network. We review load balancing

techniques in this section.

In [82], Godfrey et al. employ the concept of virtual nodes and extend their

32

static scheme presented in [62] to balance the load dynamically. Every peer is

responsible for a number of virtual nodes. Some heavily-loaded peers transfer some

virtual nodes (including its load) to some lightly-loaded peers. The lightly-loaded

peers actively search for heavily-loaded peers; or the other way around. A “many-

to-many” scheme is also proposed to balance the load from the entire network point

of view, where a number of directory peers are employed to gather the information

of lightly-loaded peers and heavily-loaded peers. The overhead is the maintenance

cost of the network structure for all of the virtual nodes (instead of one peer).

In [13], Byers et al. propose to balance the load with the heuristic paradigm,

“power of two choices”. When indexing an item, it is hashed d times (d > 2) and

d peers are contacted initially. Among the potential indexing peers, the peer with

the lowest load is chosen to index the item. When processing a search request, the

search key is hashed d times and d related peers are contacted, which introduces a

large overhead (d-1 times more routing messages). In order to avoid this problem,

a redirection pointer linking to the actual indexing peer is maintained by every

related peer when indexing the item.

In [27], Ganesan et at. employ two fundamental operations: NBRADJUST and

REORDER to balance the load. While NBRADJUST adjusts load with directly

linked peers only, REORDER transfers load from overloaded peers to underloaded

peers globally. By combining the two operations, the load is evenly distributed

among all peers. In order to obtain the peer with the heaviest load, all peers must

be sorted according to their load. Therefore, a separate skip graph is built on the

load, which is the major overhead of this scheme.

In [8], Aspnes et al. decouple a structured network into two layers: routing

layer and bucket layer. The routing layer is responsible for search and network

maintenance by following the original routing protocol. The bucket layer stores

33

data/index entires with buckets. A number of similar keys are placed in a bucket.

Each peer is responsible for 2 or 3 buckets, so that keys in heavily-loaded buckets

can be shed to lightly-loaded buckets. When all buckets are heavily-loaded, the

peer and its neighbor peers reconstruct buckets with all keys they are responsible

fore.

Replication-based load balancing algorithms are proposed in [94] and [65]. In

[94], the requested data is replicated in some peers in the access path. Roussopoulos

and Baker focus on balancing the load of downloading data in [65]. Peers announce

their maximum capacity that they can provide. A peer forwards a request to a peer

with probability proportional to its maximum capacity.

In summary, all of the above algorithms are designed for general structured P2P

networks. Therefore, we can easily adopt them in our work since SPRITE, CYBER

and XCube are all based on some DHT networks. We will present how to apply a

proper load balancing algorithm in the corresponding chapters.

Chapter 4

SPRITE : Selective PRogressive

Index Tuning by Examples

4.1 Introduction

The goal of the thesis is to design efficient and effective schemes to retrieve data

through keyword search. As presented in the introduction and literature review,

existing techniques are limited. In particular, for DHT-based techniques, the index

construction and maintenance overhead are not acceptable. In this chapter, we

propose SPRITE (Selective PRogressive Index Tuning by Examples) to bring

down the cost of index construction and maintenance. Our proposed solution is

motivated by three observations. First, a document will most often be queried

using a small number of terms that characterize it. It may suffice to index a

document on only these characteristic terms, and drop all others. In fact, it has

been argued in [83] that if a query term p is not among the top frequent terms

of a document, then adding p to the query is unlikely to materially affect the

ranking of this document. Second, a term that is not used in a query has no effect

34

35

on the ranking of the documents. If we can know which terms will be used in

queries that seek a particular document, then we should index only those terms

for the document: all other terms merely increase the index size without providing

any additional accuracy. Third, users with similar interests are likely to retrieve

a similar collection of documents with a similar set of queries that share some

common keywords. Such a query locality phenomenon is not uncommon in search

engine queries - analysis of Excite search engine trace [90] and Altavista search

engine trace [78] showed that queries submitted to these search engines not only

have significant locality, many are repeatedly issued by either the same or other

users, and that multiple-word queries are common.

We note that the first and second observations suggest that it may suffice to

index only a small well-chosen set of representative terms in each document. The

second and third observations also hint that the query keywords may potentially

contribute to the set of representative terms. Furthermore, the third observation

suggests that it may be possible to learn from past queries - since similar queries

share certain common keywords, past queries may be used to refine the selected

representative terms.

As we shall see, our proposed algorithm SPRITE ensures that a small set of

representative terms are well-chosen. SPRITE also progressively learns from (past)

queries to refine the set of chosen indexing terms. In this way, new terms may be

injected into the system, while “obsolete” terms (as a result of changing access

patterns) may be removed/replaced.

The rest of this chapter is organized as follows: In Section 4.2, an overview of the

SPRITE architecture is described. Section 4.3 discusses how queries are processed

in SPRITE. We also discuss how to integrate the text retrieval task with the overlay

network routing protocols, using Chord[81] as a specific example. Whereas we have

36

used Chord in all our examples and in our implementation, there is nothing in our

central idea that depends on Chord, and the reader should be able to see how to

make the necessary adaptation to a different overlay network.

In Section 4.4, we present the scheme to select and refine indexing terms. We

have implemented the proposed strategy, and compare its retrieval effectiveness

(in terms of both precision and recall) against a static scheme (without learning)

and an ideal centralized system. Our experimental results, presented in Section 4.5,

show that SPRITE is nearly as effective as the centralized system, and outperforms

the static scheme. Finally, we make some concluding remarks in Section 4.6.

4.2 Overview of SPRITE

The SPRITE system comprises a large number of computers (peers) that are orga-

nized into a structured overlay network, such as Chord, that is capable of supporting

simple indexing through a distributed hash table. Each peer plays two roles: owner

peer and indexing peer. An owner peer owns and shares certain documents. It is

responsible for maintaining each shared document it owns, locally indexing it, and

selecting the global index terms (A global index term is a document term to be

injected into SPRITE to facilitate query searching.) for it. An indexing peer is

responsible for managing meta-data for terms assigned to it. This meta-data is

primarily an inverted index of the (global index) terms managed by the peer. The

information maintained in the inverted list include the documents containing the

term and their respective owner peers. In addition, each indexing peer also main-

tains a history of past queries (rather, the keywords corresponding to the queries).

To reduce the storage, each indexing peer maintains only the most recently issued

queries.

37

There are two main services supported by SPRITE. First, a peer can share a

new document with other users. In this case, the document owner has to select

and publish corresponding global index terms into the SPRITE system. Second, a

peer can submit a query to retrieve relevant documents through keyword search.

While the query processing service is straightforward, the document sharing service

is challenging. As noted above, it is too expensive to publish all the terms (even

after stemming and stop-words elimination) in a document. Moreover, based on

the observations in the introduction, we believe it would suffice to index only a

small well-chosen set of representative terms. Thus, SPRITE publishes only a

small subset of representative terms that are subsequently refined based on past

queries.

More formally, let the set of documents in the network be D and the set of

queries be Q, over all time. Suppose document di is determined to be relevant to

queries qi1, qi2, ... qik. Let the union of the keywords in the queries be Ki. In the

ideal case (with perfect knowledge into the future), document di is only indexed on

the keywords in Ki. SPRITE attempts to do exactly this with limited knowledge:

it learns a set of keywords, K ′
i, which approximates Ki. Terms in K ′

i − Ki are

indexed unnecessarily; terms in Ki − K ′
i may cause document di to be misjudged

as irrelevant to some query qij. Choosing K ′
i wisely is at the heart of SPRITE.

Towards this end, for each document, SPRITE begins with an initial guess at

the important terms. This guess can be based on user input or through auto-

matic selection of high frequency terms in the document, or a combination of such

techniques. For ease of presentation, in this thesis, we shall simply pick the most

frequent terms as the initial global index terms. Next, with these terms, SPRITE

examines past queries that have queried these terms. (Recall that the queries are

stored at indexing peers. As such, they can be obtained from the indexing peers.)

38

a: 0.89

b

5

e

d

12

a

14

15

4

6

7
8

9

10

b: 0.87

Q3 (b, d, e)

Q2 (a, b, d)

Q2 (a, b, d)
Q1 (a, d, e)

doc1, doc2
...

Qj ...

doc1, doc2
...

Qi ...

doc1

c: 0.84

g: 0.6
f: 0.7
e: 0.77
d: 0.8

11

0
1

2

313

Figure 4.1: Indexing terms in a Chord Ring.

Based on these queries, SPRITE identifies a new set of terms to be indexed, aug-

menting and replacing the initial set of index terms. This process of examining

past queries, and refining the indexing terms, is repeated periodically.

When an owner peer of a document D wants to update the indexed terms of D,

it polls the indexing peers with an index update message that contains all the global

index terms of D. It is possible that a past query contains multiple global index

terms of D and thus is cached by multiple indexing peers. Apparently, it involves

much redundancy if such a query is sent to the owner peer by all related indexing

peers. In SPRITE, every cached query is hashed also, which can be precomputed

offline in fact. The closest term to the query can be identified among all global

index terms by comparing the hash values. Only the indexing peer responsible for

the closest term sends the query back. In this way, we avoid sending the same query

multiple times. Note that the number of global index terms is much smaller than

the number of past queries cached in the indexing peers. Therefore, the redundancy

above can be removed effectively.

Figure 4.1 illustrates an example with peer 12 as the owner of document doc1.

39

Suppose two terms a and b are selected as the most important terms in doc1 to

be indexed initially. These terms are published to the appropriate indexing peers,

say peer 14 and peer 5 for a and b respectively. Now suppose Peer 14 receives two

queries, Q1 and Q2, on term a, and peer 5 has two queries, Q3 and Q4, on term

b. In the next learning period, peer 12 sends messages to peer 14 and peer 5 for

past queries on terms a and b respectively. Upon receiving the four queries, peer 12

calculates the similarity between the queries and document doc1 and then chooses

another set of terms to be published further. In this example, terms d and e are

chosen and added into the index. It is worth noting that even though term c has a

higher rank (more frequent) than d and e for doc1, yet it is not indexed because it

has not been used in any query for doc1 thus far. One may worry that c may have

been specified as a search term in many queries, none of which returned doc1, and

regarding which peer 12 is thus completely unaware. However, we note that peer 12

can be unaware of such queries only if they do not involve any of {a, b, d, e}. doc1

will not be relevant to any such query with high probability, since it only specifies

one of multiple frequent terms in doc1.

Next, let’s look at the information retrieval service. A query is processed in

searching and retrieval phases. The searching phase is more complicated and im-

portant since it decides the quality of the answers. Given a query, all indexing

peers responsible for the query terms are visited, and the related indices are ob-

tained by the querying peer. Besides the term frequency, the document length and

the counted document frequency are also returned along with each index entry.

The term frequency and document length can be combined as a normalized term

frequency. Next, at the querying peer, index entries for the same document are

consolidated and used to calculate the similarity between the document and the

query. Finally a ranked list is constructed and a desired number of documents are

40

returned to users as answers. The retrieval phase is simply a downloading action

to the relevant documents, so we do not discuss it further in this thesis.

Note that we do not have the precise document frequency of a term (i.e., the

number of documents containing the term). Instead we use as surrogate the indexed

document frequency, which is the number of documents for which this term has been

chosen as a global index term. The difference between these two frequencies is the

set of documents in which the term occurs but has not been chosen for the global

index. The indexed document frequency for each term is easily available at its

indexing peer. Semantically, one can see that indexed document frequency serves

the same purpose as, and can even be argued to be more appropriate than, regular

document frequency. This intuition is borne out by the retrieval quality results we

present in Section 4.5.

4.3 Query Processing

Consider a query peer that issues a keyword search, say comprising n terms. The

query peer first hashes on each keyword to determine the indexing peer responsible,

and retrieves the corresponding inverted list entries. Using these, it can determine

the similarity between the query and potentially relevant documents.

In traditional IR techniques, every term in a document is assigned a certain

weight based on some statistics. One of the most popular formulas is TF ·IDF .

The weight of term k in document i is:

wik = tfik × log N
nk

.

Here, tfik is the frequency of term k in document i normalized by the document

length, N is the total number of documents in the entire corpus and nk is the

document frequency, or number of documents containing term k.

41

In a structured P2P network, tfik is available as part of the metadata in the

inverted list. The number of documents containing term k, n′
k, can be counted

by the querying peer once the list is retrieved. However, this indexed document

frequency is smaller than nk in the case of SPRITE because the term may appear in

some documents but is not selected as a global index term because it is lowly ranked

among other terms in these documents. N , unfortunately, cannot be accurately

determined in a P2P context: peers join and leave the network and documents

may be shared and unshared at will. However, N is usually much larger than nk,

except for the terms in the stop word list, which are filtered away anyway. As long

as N is the same for all the peers in calculating term weights, only the absolute

IDF values will be affected and so does the similarity. Thus, it will not affect the

relative positions of documents in the final ranked list. Therefore, we can simply

use a sufficiently large N .

Given the individual term weights, we use the similarity formula proposed in

[43] (the second method):

sim(Q,Di) =

∑n

j=1
wQ,j×wi,j√

number of terms in Di

where wQ,j is the weight of the jth term in query Q, and wi,j is the weight of the

jth term in document Di. Note that the number of terms in Di is available in the

metadata of the inverted list retrieved. This formula simplifies the normalization

(compared to the original similarity formula) and reduces the computation cost.

Its performance is shown to be almost the same as the original formula in [43].

A document Di containing a specified query term tj may not have chosen tj

to be a global index term. In this case, wij is erroneously assumed to be zero

rather than positive, and the value of sim(Q,Di) computed is decreased. In the

next section, we will show how to choose index terms such that if the true value

of wij is large, then tj is chosen as a global index term for document Di with

42

high probability. If the true value of wij is small, then approximating it to zero

introduces only a small error in the score computation and may make no difference

to whether Di is included in the ranked list for Q.

Before leaving this section, we mention an alternative approach to compute

the similarity between a query and a document. Instead of the querying peer

performing the computation, we can push the task to the indexing peers. This

approach is adopted in [83]. Here, for each term of a document indexed, all the

terms of the entire document are also stored as meta-data. In this way, the indexing

peers can determine the similarity between a keyword and the documents containing

the term to produce the ranked list. However, the indexing peers have to return

their locally produced ranked lists to the querying peer eventually and the querying

peer needs to merge the ranked lists into one. Many similarity calculations and

ranked list sorting are performed repeatedly and redundantly. Therefore, we choose

to assign the entire task to the querying peers.

4.4 Index Construction and Tuning

When an owner peer shares a document D, it indexes some representative terms

in the system. This involves two stages. First, some initial terms in D are chosen

and injected into the system. Next, the second stage is performed periodically

to tune the index progressively. Essentially, at each run, more terms are selected

from D based on the historical queries. The index terms for D are then refined by

inserting new terms and removing noisy terms. To control the number of terms to

be maintained, we limit the maximum number of terms to be indexed to a small

value (say, 30). We will present the two steps below. Before that, we describe the

metadata maintained at each peer.

43

4.4.1 Metadata in SPRITE

Recall that in SPRITE, each peer plays two roles: owner peer and indexing peer.

Every indexing peer maintains two types of information: (a) A number of terms

and the corresponding inverted lists, i.e. the documents that contain those terms.

For each indexed term, the indexing peer also needs to store the owner peer’s IP

address, the owner document ID, the term frequency in the document and the

document length. These metadata are used in query processing. (b) A set of

queries, σ. Each query essentially comprises a set of keywords. Note that a query

is only maintained at peers whose indexing terms contain at least one query term.

These queries are used in the learning process.

At every owner peer, for each term in a document, two values are stored: (1)

qScore, the similarity between the document and the most similar historical query

(maintained at an indexing peer) containing this term (to be discussed shortly);

and (2) QF (query frequency), the number of historical queries containing this

term.

4.4.2 Initial term selection

When an owner peer first shares a document, we need to select an initial represen-

tative set of global index terms. The initial important terms of a document can

be selected systematically or input by users. As a first cut, we adopt the following

approach. First, we summarize the terms in a document and filter them with a

stop-word-list to remove frequent but meaningless terms, such as “the” and “is”.

Second, we apply the stemming algorithm to unify terms by removing the suffix,

such as “ed” and “ing”. These two methods are well studied in the text retrieval

community. The top F most frequent terms are then chosen as the initial terms.

Note that at this point, only local information is available, so initial term selection

44

Q3Q2Q1

i3i i2i1

Q

t1, t5

t1, t2, t5

t1, t2, t3

Document D

Figure 4.2: The learning phase in SPRITE.

solely relies on term frequency in the owner peer.

4.4.3 Tuning indexing terms

The learning stage is invoked periodically. We shall first present the basic idea with

a naive implementation, and then discuss an efficient scheme. We use Figure 4.2 to

illustrate the learning stage. In the figure, we show several iterations of learning:

at iteration i, an owner peer bases its learning on the historical query set Q; at

iteration i1, the peer learns from a larger set of queries, Q ∪ Q1; and so on. At

iteration i, it is able to identify two terms, say t1 and t5. At iteration i1, it identifies

two new terms t2 and t6. However, suppose that we are limited to indexing only 3

terms, and it turns out that t6 is the lowest ranked among the 4 terms, thus t6 is

removed. In iteration i2, a new term t3 replaces an obsolete term t5.

The query set used for learning is determined by the current set of indexed

terms. Essentially, for each indexing term, the indexing peer is polled to retrieve

the query metadata of that term. The query set is then the union of all queries

over all the indexing terms. The crux of the learning scheme lies in selecting the

useful terms of a document from the query set. Now, from the query set, we can

gather two important pieces of information. First, we can determine how similar

45

is the document to the past queries. We define the query score, qScore, as follows:

qScore(Q,D) = |Q∩D|
|Q|

Intuitively, if a query is very similar to a document, then it indicates that the terms

in the query can represent the key meaning of the document. In other words, the

document is likely to be relevant to that query. Careful readers may question why

we have not used the conventional formula to measure the similarity between a

query and a document. If the conventional formula is employed, the role of a query

and document are interchanged: the document is treated as a query and the queries

are treated as the document corpus. This is because we are now selecting similar

queries for a document. In the conventional formula, the more documents a term

occurs in, the less important the term is, which is not true in our scenario. When

choosing descriptive queries, a term occurring in many queries as well as in the

document indicates that the term is more descriptive of the document. Therefore,

qScore can represent the similarity between a query and a document better than

the conventional formula.

Second, for each term t in the query set ϑ, we can determine how frequently

it appears in ϑ. This is denoted as QF (t, ϑ), the query frequency of t in ϑ. This

essentially tells us how common the query term is. Intuitively, if a term occurs

frequently in many queries, it may be potentially useful to index it.

Now, given a set of queries ϑ, the similarity of term j in query i to document

D (tij ∈ D) is defined in the following formula:

Score(tij, D) = qScore(Qi, D) · log QF (tij, ϑ).

The formula indicates that a term is representative to a document if (1) the query

containing it is similar to the document; and (2) the term in the document is

frequent among the queries. Intuitively, it is insufficient to consider (1) alone since

46

Algorithm 1: The basic learning algorithm.

Q is the past query set;1

Q′ is the current query set;2

RL is a rank list, which is empty initially;3

for each shared document, Dk do4

for each t ∈ Dk do5

let qf = QF (t, Q);6

let qf ′ = QF (t, Q′);7

for each Qi ∈ Q∪Q′ do8

if t ∈ Qi then9

let s = qScore(Qi, Dk)·log (qf + qf ′);10

if t is not in RL then11

Insert (s, t) into RL;12

else13

if the existing similarity is smaller than s then Replace14

the existing similarity with s;

Choose top T highest ranked terms for Dk;15

it does not factor in the frequency of the occurrences of the terms in a query

(and hence fails to consider similar queries). It is insufficient to consider (2) alone

because a document is relevant to a query if there are more matching terms from

the query. Thus, a combination of the two is necessary. In combining the two,

we have used a logarithm of the QF to give higher weight to the contribution of

qScore. The reason for reducing the effect of QF is because the qualities of the

queries are different. Expert users usually have good domain knowledge and issue

high quality queries. Such queries are very useful in differentiating the requested

documents from others. On the other hand, poor queries always include terms that

are too general to distinguish the requested documents.

Algorithm 1 presents a straightforward implementation of this scheme. The

algorithm checks every term in the shared documents against all the queries.

Based on the ranking by (this combined) Score, we pick the high scoring terms

to be indexed. Now, a straightforward optimization is for the owner peer to store

47

the query sets whenever they are retrieved, so that each iteration only needs to

pull back the incremental query set. Even so, this algorithm is expensive in terms

of both storage cost and computation cost. The owner peer has to keep all the

past queries and check all of them in each iteration of learning. We propose an

algorithm that can compute Score for all terms based on only the incremental query

set between iterations (without having to recompute from the entire historical query

set). See Algorithm 2.

Algorithm 2 gives an algorithmic description of the scheme. Let the query set

between the current iteration and the last iteration be Q′. Here, the owner peer

only needs to store some statistics for the past queries (up to the last iteration,

but excluding queries in Q′) along with the documents instead of the entire set of

queries. For each term in a shared document, only its query frequency and the

largest query score in the history are maintained. Then every new query in Q′ is

processed. If the term occurs in the query, we calculate the query score for this

term and count its query frequency in Q′. If the query score is larger than the

one saved for past queries, we update it for this term. The query frequency of this

term is the sum of the one for past queries and the one in Q′. A new similarity

between the term and the document is calculated with the two parameters. We

then insert the term with its new similarity into a list sorted by similarity. If the

term exists in the list, then we simply update its similarity value. After all the

new queries are processed for a term, the largest query score of the term is stored

in the statistics and the query frequency of the term is increased also. Given two

sets, S1 and S2, it is obvious that max(S1 ∪ S2) = max(max(S1),max(S2)). So,

the query score used is the largest for a term. QF is simply a count function and

is thus cumulative. With the same two factors, the multiplication is the same, so

the results of Algorithm 2 is equivalent to the naive scheme described earlier (that

48

Algorithm 2: The optimized learning algorithm.

Q′ is current query set;1

RL is a rank list, which is empty initially;2

for each t in the document Dk do3

Let qf be the query frequency of t stored for the past queries;4

Let qf ′ = QF (t,Q′);5

for each Qi ∈ Q∪Q′
do6

if t ∈ Qi then7

Let qs be the largest query score associated with t in the past queries;8

qs′ = qScore(Qi,Dk);9

if qs < qs′ then qs = qs′;10

Let s = qs · log (qf + qf ′);11

if t is not in RL then12

Insert (s, t) into RL;13

else14

if the existing similarity is smaller than s then15

Replace the existing similarity with s;16

Choose top T ranked terms for this document;17

reprocesses all the queries in each learning iteration). Clearly, since Algorithm 2

exploits incremental computation (i.e., only need to compute for queries that arrive

between the last iteration and the current iteration), it is very efficient.

The score of a term to a document calculated using Algorithm 2 is the same as

the one using Algorithm 1. Let us look at QF first. QF is counted on the union

of the past query set and the current query set in Algorithm 1. In Algorithm 2,

QF on the past query set is stored as metadata and QF on the current query set

is counted. They are summed to get the new QF , which is obviously the same as

the one in Algorithm 1. Algorithm 1 calculates the largest query score in the union

of the past query set and the current query set. In Algorithm 2, the largest query

score, Score(t,D), of the past query set is stored. The largest query score of the

current query set can be calculated. The larger score between the two is the largest

score in the union of the two sets. With the same two factors, the multiplication

is the same, so the two algorithms basically select the same terms for a document.

A learning example with Algorithm 2 is discussed in figure 4.3. A document,

49

Term: QF, QS
t1: 21, 0.75

t8: 1, 0.2
t5: 32, 0.33
t3: 5, 0.75
t2: 6, 0.75

t9: 0, 0

DocDoc

+ =

Term: QF, QS
t1: 20, 0.75

t8: 1, 0.2
t3: 4, 0.75
t5: 30, 0.33
t2: 5, 0.75

t9: 0, 0

q1 (t1, t2, t3, t7)

q3 (t5, t4, t7)

q2 (t5, t6, t4)

New Queries (Q3)

Figure 4.3: The learning example in SPRITE.

Doc, is limited to be indexed with three terms. At time i, t1, t2 and t5 are in-

dexed (shown in the left Doc). Their similarities to the documents for the past

queries are: 0.75*log 20=0.975, 0.75*log 5=0.524 and 0.33*log 30=0.492 respec-

tively. Three queries are pulled back in the learning process: {Q1, Q2, Q3}. Then

the query frequency and the largest query score are updated accordingly (shown in

the right Doc). We recalculate the similarities and obtain a new ranked list. The

new score of t3 is 0.75*log 5=0.524 and the new score of t5 is 0.33*log 32=0.501.

Thus, t3 is indexed and t5 is removed from the distributed index for Doc.

4.5 Experimental Study

In this section, we evaluate the performance of SPRITE. As reference, we use a

centralized text retrieval system and the basic eSearch system [83]. The centralized

system acts as an ideal distributed system with perfect global knowledge, including

the exact document frequency and total number of documents in the corpus. (We

used a classic TF · IDF scheme in the centralized system). Hence, it is expected

to be superior. By comparing against it, we will be able to see how close SPRITE

is to an optimal solution. The basic eSearch system indexes a fixed number of most

frequent terms in a document. It is the best distributed search system currently

50

known. The comparison against eSearch demonstrates the gain that can be derived

from adaptivity/learning.

We preprocessed the documents in the standard way: removing the terms in the

stop-word-list, and then stemming is applied to the remaining terms. The default

stop-word-list in Lucene [54] is used for this purpose. We used the two standard

metrics for text search: precision and recall. If the top K documents are returned

for a query, K ′ of them are relevant to the query and there are R relevant documents

in the entire corpus, then the precision is defined as K ′/K and the recall as K ′/R.

All precision and recall results presented later are in terms of the ratio of a specific

system over the centralized system.

We implemented Chord as designed in [81]. All terms are hashed using MD5

hash function. Our study is based on simulation, and all experiments are conducted

on a dual-Pentium4 3.0GH CPU PC with 1GB RAM.

4.5.1 Data set and query set

To evaluate SPRITE, we need queries to be “similar” (share some keywords and

relevant documents) for SPRITE to learn from. Unfortunately, benchmarks are

usually created to exercise a maximum of functionality with as few queries as

possible. Hence, there is little similarity between queries. To deal with this, we

implemented a query generator to generate queries from a real dataset and its cor-

responding queries. We used the TREC9 dataset and its queries [33] as the base

dataset. This dataset contains 348565 documents and 63 queries and their cor-

responding relevant documents (identified by experts). Our generator is designed

based on two reasonable properties: (a) queries with similar relevant documents as

answers ought to share some common keywords; and (b) the term distribution and

result distribution should follow those of the original query set. The first property

51

ensures that the system can build an effective index with the training queries and

the testing queries can benefit from the learning process. The second property en-

sures fairness: popular terms in the original query set should occur frequently in the

generated query set. If an original query has many answers (the documents), then

the new queries derived from it should have many answers as well. In the central-

ized system (the benchmark), the relevant document distribution in the ranked list

of a new query should be similar to that of its original query. The query generator

comprises the following two phases.

Phase 1: Term Selection. In phase 1, for each query in the original dataset,

we generate k new queries. (In our study, we set k to 9.) We shall define some

terminology first and then use them to illustrate how to generate new queries from

an existing one.

• Q: The original query with a set of terms: {q1, q2, ...qn}.

• Q′: A new query generated from Q. It contains another set of terms: {q′1, q′2, ...q′m}.

• |Q|: Number of terms in Q.

• E: Number of examined answers.1

• R: The set of documents identified as relevant to Q among the top E answers

by experts: {D1, D2, ...Dr}.

• Di: A relevant document to Q, Di ∈ R. The document contains terms:

{ti1, ti2, ...tik}.

• R′: The set of documents defined as relevant to Q′ among the top E answers.

1Some relevant documents will never be returned to users because their ranks are very low
and users are usually interested in a small number of highly ranked results only. Thus, they will
not affect the precision or recall and are not considered when defining relevant documents for the
new queries.

52

A new query Q′ is composed of two sets: Q′ = Q′
1 ∪ Q′

2. The terms in Q′
1 are

from the Q: Q′
1 ⊂ Q. Each term in Q′

2 is randomly selected from the term space,

which contains all terms appearing in all documents. Thus, while Q′
1 inherits some

terms from Q, Q′
2 targets different aspects of the documents to introduce some

noisy terms to model a more realistic scenario. For the new query Q′, we need to

identify a set of documents R′ as its relevant results (see phase 2).

We define a tunable parameter to control the overlaps between the original

queries and new queries.

O =
|Q′

1
|

|Q|

The threshold, O (overlap), determines the percentage of terms in the original

query that is retained in the new queries. Tuning this factor will change the overlap

between the original query and new queries. The actual terms in Q′
1 are randomly

picked from Q.

In order to select terms of type Q′
2, we pick terms from the entire corpus that are

“equally” important as the terms that have been dropped from Q. The importance

depends on the distribution of the term: the number of term occurrence and the

number of documents containing the term. We define a simple metric to measure

the distribution of a term in a corpus.

Distribution(ti) = Freq(ti) × Num(ti)

Here, Freq(ti) is the total term frequency of term ti in all documents and Num(ti)

is the number of documents containing term ti. The two factors are used to measure

the importance of the term. The reason we do not use the conventional term weight

formula TF · IDF is that it can only represent the weight of a term in a document.

Distribution(ti) focuses more on the distribution of a term in the corpus. Given a

term in Q−Q′
1, we find the top S similar terms and choose one of them randomly to

53

replace the old term. Here, the difference between two terms ti and tj is measured

by |Distribution(ti)−Distribution(tj)| (the smaller the value is, the more similar

they are). In our study, S is set to 5. All terms in Q′
2 are selected randomly from

the replaced terms in Q − Q′
1.

Phase 2: Identifying Relevant Documents. In phase 2, the relevant docu-

ments of the generated queries are defined based on the relevant documents of the

original queries. We now define some documents as relevant answers to the new

queries. A new query ought to share some relevant documents with the original

query and have some new relevant documents for itself. With the centralized sys-

tem, we can calculate the ranked list, RL for the original query Q, and RL′ for a

new query Q′, over all the documents. The top E documents in the ranked lists are

considered when defining relevant documents for Q′. Some relevant documents will

never be returned to users because their ranks are very low and users are usually

interested in a small number of results only. Thus, they will not affect the preci-

sion or recall and are not considered when defining relevant documents for the new

queries. For each such document in RL′ and relevant to Q, we define it as relevant

to Q′ and mark the relevant document in RL with the most similar rank. Then, for

each unmarked relevant document in RL, the document in RL′ with the same rank

is defined as relevant to Q′. An example is shown in Figure 4.4. Here, RL is the

ranked list to an original query Q, and RL1, RL2 and RL3 are the new ranked lists

for new queries Q1, Q2 and Q3 derived from Q. Circles are the original relevant

documents to Q and crosses are newly defined relevant documents. The left most

document has the highest rank. In this example, E = 14 (In the experiments,

E = 1000). For Q1, 3 original relevant documents (marked with circles) are in its

top E ranked list. Three documents in RL with the most similar ranks are marked

(indicated by the dashed lines). For the remaining two relevant documents, two

54

2RL

3RL

RL

1RL

Figure 4.4: Defining relevant documents.

documents in RL1 with the same ranks are defined as relevant to Q1 (marked with

crosses). In this way, the distribution of the new relevant documents is similar to

the distribution of the original relevant documents.

4.5.2 Experimental setup

We started with 63 queries from the TREC9 dataset, so we eventually have 630

queries with the overlap ratio O = 70% after the query generation. We split these

queries into 2 equal groups: a training set and a testing set. The queries are

randomly assigned to the groups. For each query in the training set, the keywords

are inserted into SPRITE. Next, we insert the metadata of the documents into the

system as follows. For each document to be inserted, 5 most frequent terms are

initially indexed. Following the 5 initial terms, 3 iterations of learning are executed

by the owner peer of a document. In each iteration, 5 new terms are indexed. So

the total number of terms indexed equal to 20. Once all the documents have been

indexed, we run the queries in the testing set. For each query, we retrieve top 20

answers and determine its precision and recall. For eSearch, we set the number of

indexed terms as 20. In the above description, the parameters used (e.g., 5 initial

terms), are the default settings. Unless otherwise stated, we assume the default

settings.

55

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

R
at

io
 o

ve
r

ce
nt

ra
liz

ed
 s

ys
te

m

Number of answers

SPRITE-precision
eSearch-precision

SPRITE-recall
eSearch-recall

Figure 4.5: Varying number of answers.

4.5.3 Experimental results

First, we compare the precision and recall between SPRITE and eSearch when the

number of answers varies. As shown in Figure 4.5, the eSearch system outperforms

SPRITE when the number of answers is small (5-10); but SPRITE gives better

performance when the number of answers is larger (15-30). Both eSearch and

SPRITE are not as good as the centralized system, which is the price for indexing

20 terms only. Some relevant documents are missed due to some unindexed terms.

We also observe that SPRITE’s precision of 89% and recall of 87% are relatively

constant with respect to the centralized scheme. The eSearch system degrades

much faster when the number of answers is larger. The terms indexed in SPRITE

are more representative for the documents because it is able to learn from past

queries. Therefore, SPRITE can perform constantly well when the number of

answers increases; the most frequent terms indexed in eSearch can only benefit a

small fraction of documents in the collection.

Next, we vary the number of terms indexed. Figure 4.6 shows the results of

56

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30

R
at

io
 o

ve
r

ce
nt

ra
liz

ed
 s

ys
te

m

Number of terms indexed

SPRITE-precision w-zipf
eSearch-precision w-zipf
SPRITE-precision w/o-r
eSearch-precision w/o-r

Figure 4.6: Varying number of index terms.

two sets of queries: “w/o-r” (without repeats), where every query appears exactly

once and “w-zipf” (with Zipfian distribution, whose slope is set to 0.5), where

the frequency of a query is roughly inversely proportional to the popularity of the

query. The “w/o-r” query set is an extreme case that is biased against SPRITE.

Most queries are repeated as we mentioned previously and the phenomenon is

shown in [90] and [78]. SRPITE can obtain the least knowledge from the past

queries in this case. Note that when 5 terms are initially indexed, no learning

process is involved, so the two systems have the same performance. First, we

observe that SPRITE outperforms eSearch with the same number of terms indexed.

In fact, the gain over eSearch is larger with fewer terms indexed (except when the

number of terms is 5). Second, SPRITE can achieve similar performance as eSearch

with fewer terms. For example, the performance of SPRITE with only 20 terms

indexed is nearly the same as that of eSearch with 30 terms indexed. This is very

important and useful in a P2P system since indexing fewer terms means lower cost

for inserting the global index terms initially as well as for maintaining the index

subsequently. This also suggests that many frequent terms indexed by eSearch

57

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

R
at

io
 o

ve
r

ce
nt

ra
liz

ed
 s

ys
te

m

Number of iterations

SPRITE-precision
eSearch-precision

SPRITE-recall
eSearch-recall

Figure 4.7: Change on query pattern.

do not contribute to answering queries. Instead, SPRITE successfully removed

these redundant terms. Lastly, under the circumstance that either queries do not

even repeat (“w/o-r”) or queries are issued in a very skewed distribution (“w-

zipf”), SPRITE always outperforms eSearch. SPRITE can sufficiently learn the

key meanings of a document from similar queries or identical queries. We observe

similar trend for recalls and do not present the results due to the space limitation.

Finally, we study SPRITE’s robustness to changes in query access patterns,

e.g., users may be interested in one collection of documents in a period and then

in another collection later. Figure 4.7 depicts the precision and recall when query

pattern changes. The query set is evenly partitioned into two groups such that all

new queries and their corresponding original query are in the same group. In the

first 5 learning iterations, queries in one group are processed and evaluated. In the

next 5 iterations, the other group of queries are processed and evaluated. Thus,

in the first 5 iterations, none of the queries in the second group is known to the

system. In this set of experiments, we set the maximum number of terms to index

to 30, after which the number of indexed terms remains unchanged. Instead, we

58

apply term replacement (as described in Algorithm 2) only. This is also the reason

the performance of eSearch remain unchanged after iteration 6. SPRITE always

outperforms eSearch as usual when the number of indexed terms increases in the

first 5 iterations. From the 6th iteration, new queries are issued in the system. As

can be seen from the results, SPRITE adapts to the changes very quickly. The

precision and recall decrease a little bit at the beginning of the new queries arrival,

but are still better than those of eSearch. After just one iteration, SPRITE recovers

and gives good performance in a stable status. The reasons are twofold: The first

5 iterations mainly polish the indices of related documents based on the first group

of queries. They have very little effect on the later queries and their relevant

documents. When the new queries are issued (in the 6th iteration), the terms

indexed (based on the first group of queries) are unable to provide adequate relevant

documents. However, SPRITE’s learning capability ensures that the indices are

carefully tuned to meet the new set of queries in the following iterations.

4.6 Summary

In this chapter, we have presented a novel scheme to build compact yet effective

index on text data in a P2P network. Building complete index on text documents is

impractical in a P2P network because of the extremely high maintenance overhead.

SPRITE reduces the overhead cost by indexing a small number of terms in a DHT

network. In SPRITE, the index is tuned progressively based on past queries, so

that only a small number of representative terms of a document are selected and

indexed. The meaning of a document is mainly characterized by the indexed terms.

Therefore, queries can be processed based on the partial index effectively.

SPRITE offers the following advantages over the IFT scheme. First, only a small

59

number of selected terms in a document are indexed based on past queries. The

major meaning of the document is represented by these terms. This is extremely

important in a P2P system, not only for index construction and update, but also

because periodic checking on distributed indexes is required. Second, SPRITE

uses progressive learning to refine the set of selected index terms. Even when

users change their interests, SPRITE can adapt quickly to tune the index. Our

extensive simulation study showed that SPRITE can achieve performance similar to

a centralized system in terms of precision and recall, and considerably outperforms

a static index term selection approach.

Chapter 5

CYBER: a CommunitY -Based

sEaRch engine

5.1 Introduction

In the previous chapter, we have presented SPRITE as an effective solution to re-

duce the index construction and maintenance overhead. In this chapter, we inves-

tigate how to further improve the accuracy of information retrieval in DHT-based

schemes by leveraging on community-based feedback.

In centralized systems, techniques based on relevance feedback have been effec-

tive in improving the query precision and recall. We can classify feedback-based

techniques in a P2P network into three groups based on the granularity of the

community that a user belongs to.

On one extreme, we have the single-user community-based approaches. This

is essentially a straightforward adaptation of centralized methods, and is accom-

plished in two steps. Every individual user is returned with a preliminary ranked

list, from which the user makes some selection. The query is refined by increasing

60

61

the weights of some existing query terms or introducing new query terms. The

refined query is then routed again to construct a new ranked list. This process is

repeated until the user is satisfied with the answers. While the quality of the ranked

list improves in each iteration of user feedback, the routing cost is also higher. In

addition, this approach fails to exploit the feedback of other users who share the

same interests.

On the other extreme, we have the global community-based approaches where

the entire user base is treated as a single global community. Here, the weights

of terms in a document is adjusted as follows: whenever a document is selected

as relevant to a particular query, its terms appearing in the query are assigned

larger weights. In this manner, a document will eventually be characterized by

user queries. However, this approach implicitly assumes that all users in the global

community share the same interest. In practice, end-users come from different com-

munities - while users within a community are expected to share similar interests,

users from different communities have little overlap in their interests (even if the

query terms are the same, they may be looking for different data). As a result, by

treating all users alike, a document that is relevant to a community may have a

negative impact on the query results of users in another community.

The third approach, which we advocate in this chapter, is a pure community-

based approach, where each community corresponds to a group of users with similar

interests. The objective is to leverage on community information so that the doc-

uments can be ranked according to the community that the user belongs to. In

other words, the feedback of users in the same community are unified such that

they only have impact on queries that are issued by other users from the same com-

munity. Thus, users from different communities sharing the same query keywords

should retrieve different ranked results. This approach overcomes the problems in

62

User A User B User C User D

D1

D6
D5
D4

D2
D3

D1

D6
D5
D4

D2
D3

D1

D3
D2

D5
D6

D4 D6

D2
D3

D5

D4
D1

D1 Apple − iLife − iPhoto

D2 Apple Journal− Photo Gallery (page one)

D3 NY Apple Country Jonamac Apple Photo

D4 red apple photo −− Declan McCullagh photograph

D5 PC World − First Look: iPod Brings Music to Your Photos

D6 Amazon.com: Apple 30 GB iPod Photo ...

Query: apple photo

Figure 5.1: A search example with query “apple photo” and 6 documents in the
ranked list.

the first two approaches. On one hand, a user is not required to refine his query

manually/explicitly. On the other hand, the feedback are more accurate since they

are from users in the same community.

Figure 5.1 illustrates a search example. There are four users, A and B belong

to the community of Apple fans who are interested in the latest products from

Apple, and C and D are nutritionists who are looking for information on apples.

At first, users A and C issue the same query and obtain the default ranked list

shown in the figure (these 6 documents are obtained using Google search engine).

From the figure, it is clear that the ranking is not satisfactory - for user A, D5

is ranked lower than D2, D3 and D4; for user B, the highest ranked answer has

nothing to do with apples. In the ideal case, when user B queries after user A,

had user A’s preferences been noted, the result should be a more accurate rank

list where documents related to Apple are ranked higher than documents related

to apples (e.g., in the figure, D5 is ranked higher than D2, D3 and D4). Likewise,

for user D to issue his query after user C, (s)he should retrieve a list that ranks

63

apples higher than Apple products. Thus, a community-aware system is desirable

for improving search effectiveness.

Our solution is motivated by the following three observations. First, users with

common interests tend to query on similar objects. On the other hand, users

querying on similar objects share some common interests. In reality, an earlier

query issuer always recommend “good” articles, books or movies to his friends in

a particular community. Second, in the real world, a user base usually consists

of many communities (e.g., Apple products and fruit lovers), and each community

may further consist of smaller groups (e.g. in the Apple community, a group may be

interested in Apple iPod and another in Apple iMac). It is very hard to fully exploit

any recommendations because of the overhead to build and maintain the relation-

ships amongst all users/peers with similar interests. A more practical approach is

to somehow consolidate community feedback so that peers can locate them easily.

This will also reduce the initialization and maintenance cost on the community.

Third, recommendations should be made available only to related peers. For those

who are not in the same community, these recommendations should be ignored.

With the three observations in mind, we propose CYBER, a CommunitY Based

sEaRch engine, for information retrieval utilizing community feedback information

in a DHT network. Like existing DHT-based document retrieval systems [49],

CYBER builds a DHT-based index on (selected) terms of a document. However,

CYBER distinguishes itself from these systems as follows. First, for each term

indexed at a peer, the peer also maintains a number of document profiles of the

term. Each such profile reflects a community’s interests on the document w.r.t. the

term. For example, for a community that finds the document relevant, the profile

facilitates higher ranking of the document when another user of the community

queries with the term. On the other hand, for a community that finds the same

64

document to be irrelevant, its profile will result in this document being weighted

lowly for a user of the community. To some extent, the indexing peer acts as a

“meeting place” where users of a community can “annotate” terms of documents

to “post” their “recommendations” (by updating the document profile for that

community).

Second, unlike existing feedback-based mechanism, users’ answers are obtained

based on the aggregated feedback from the community: the weight of every queried

terms is adjusted according to the similarity between the document profile and user

profile, and then the new weights are used to calculate the ranked list. Essentially,

if the user profile matches a document profile, the term weight for this document

would be adjusted to be higher; and vise versa. More importantly, no iterative

feedback is required.

Third, in CYBER, users offer feedback after viewing some selected objects

for his query. The feedback can be as simple as relevance judgment, i.e. rele-

vant/irrelevant or as complex as some scores/ranks of relevant objects. However,

these feedback are not used to refine the same user’s query. Instead this feedback

and the user’s profile of interests are sent to the peers indexing the queried terms

to refine the profile of the selected documents. We conducted an extensive perfor-

mance study, and our results showed that CYBER is an effective P2P system for

document retrieval.

The rest of this chapter is organized as follows: We present the proposed CY-

BER system in Section 5.2, and report results of an experimental study in Section

5.4. Finally, we conclude this chapter in Section 5.5.

65

...

...

apple

D1

D2

D4

D5

D6

D3

apple ilife iphoto

apple red color gallary

apple amazon iPod iPhone

iPod iPhone iMac

red green yellow photo

photo color red green

5, 141, IP4

7, 270, IP5

9, 350, IP1

4, 141, IP2

8, 241, IP3

11, 390, IP6

Figure 5.2: Index entry example.

5.2 CYBER

We now present how CYBER improves the search effectiveness with community

feedbacks. When a document is shared, a number of terms are chosen to index the

document in order to reduce the index maintenance overhead. For each indexing

term, a profile is constructed, which contains a set of representative terms. Initially,

all document profiles are identical for all indexing terms of a document. However,

they will be updated by different user feedbacks and each of them then reflects the

interest of a community of users on a particular term. Figure 5.2 shows an example

on an index entry stored in an indexing peer. The indexing peer may be responsible

for several terms. There are 6 documents (D1 - D6) containing the term, apple.

Let us consider D1 in the first row of term apple’s table. The indexing peer stores

the document profile, {apple, ilife, iphoto}; the term frequency, 9; the document

length, 350; and the IP address of the owner peer. From the profiles, we can see

that documents D1, D5 and D6 are related to Apple products; and documents D2,

D3 and D4 are about the fruit.

A user has several profiles to represent his/her multiple interests. Similarly,

each user profile also contains a term vector. Figure 5.3 illustrates the profiles of

two users, A and B. User A has two profiles and user B has one only. When a user

issues a query, his profiles are also attached. For each queried term, its original

66

apple iPod iPhone

travel hostel ticket photo
apple iPod iMacUser A User B

Figure 5.3: An example of user profiles.

weight in a particular document (measured with TF ·IDF) is adjusted with the

similarity between the document profile and the user profile. The score of the

document in the ranked list is affected by the weights of all queried terms. After

the user selects a few relevant documents by clicking the related links, the document

profile of each queried term w.r.t. the relevant documents is refined according to

the user profile. User profiles are enhanced with relevant (downloaded) documents

as well.

In order to facilitate query refinement with community feedback in CYBER,

owner peers and indexing peers need to perform some additional tasks. After some

documents are shared in an owner peer, a profile is initialized for the user. When

routing a query, the profile is attached as well. Besides storing the metadata of a

term, an indexing peer is also responsible for maintaining a document profile for

the term on each related document. When processing queries, the user profiles (in

owner peers) and the document profiles (in indexing peers) that are involved will

be updated automatically.

5.2.1 Profile initialization

Initializing a document profile is straightforward. Suppose that a user is willing to

share a document, Di. We use the same method for choosing the indexing terms

to initialize the profile. The K ′ most frequent terms are extracted to construct

the document profile. Alternatively, the owner can initialize the document profile

or update the top K ′ terms manually. When a document is indexed, its profile

is attached to every indexing term and stored in the corresponding indexing peer.

67

When an owner peer periodically checks if the indexing peer is alive, the owner

peer will backup the document profile when it is changed significantly. We will

present profile updating shortly. In case the indexing peer is offline, rebuilding the

profile (based on feedback) is avoided. However, the frequency is much lower than

checking the availability of the indexing peer. This is because an offline indexing

peer can lead to missing answers for some queries, while a stale profile will only

cause relatively inaccurate results.

It is a bit more complicated to initialize a user’s profiles as the user can have

multiple interests. All of the shared documents are clustered first. In each clus-

ter, the frequency of every term is accumulated. The M terms with the highest

frequencies in a cluster are chosen to construct a user profile. The reason the user

profiles are not combined into one is that profile matching calculation is normalized

by the user profile. A large user profile will always cause a small matching value.

Therefore, using one of the multiple user profiles is more accurate. Since the user

profiles are stored at the local machine, the owner peer does not need to backup

these profiles. Figure 5.3 illustrates the profiles of two users, A and B. User A has

two profiles and user B has one only.

5.2.2 Profile-based query processing

When a user issues a query, his profiles are sent to the involved indexing peers with

the query together. For each user profile, the indexing peer calculates its similarity

to every document profile associated with the queried term. The similarity between

two profiles is defined as: vsim(Vu, VD) = |Vu∩VD|/|Vu|, where Vu is the uth profile

of a user and VD is a document profile. |V | is the size of the profile V . Recall the

document profile example in Figure 5.2 and the user profile example in Figure 5.10.

For user A, the profile similarity vsim(VA1
, VD5

) = 2/3, since there are 3 terms in

68

the first profile of A and 2 of them appears in the profile of document D5.

The similarity between the profiles has an effect on the weight of the querying

term in the related document. Instead of weighting the term simply with TF ·IDF ,

the term weight is adjusted by vsim. The new weight of a term is: Wi,j,u =

wi,j × (1 + vsim(Vu, VD)). The factor, wi,j is the original term weight derived from

TF ·IDF . The factor (1 + vsim(Vu, VD) increases the weight of the term by taking

the similarity between the two profiles into account. In our running example, the

original weight of apple in document D5 is w1,5 = 7× log 300/6 = 11.89, given that

apple is the first term in the query and the total number of documents is defined

as 300. After the augmentation with profile similarity, the new weight W1,5,1 =

11.89 × (1+2/3) = 19.82. In document D3, the original weight of apple, w1,3 =

13.59 and the new weight, W1,3,1 = 18.12. For query term apple, we can see that its

weight in D5 is increased tremendously and larger than that in D3 with the factor

of profile similarity considered. Hence D5 will be ranked in front of D3 with larger

probability. Note that we cannot guarantee every relevant document will be ranked

before irrelevant documents. However, the probability that relevant documents are

moved forward in the ranked list is increased, which is the ultimate goal of a search

engine.

Because a user may have several profiles, an indexing peer can interpret the

query term in multiple ways for every document indexed on the queried term.

Therefore, given a query term, multiple weights are returned to the querying peer

for the same document. After all the metadata of the query terms are returned, the

querying peer calculates the similarities between the query and involved documents

for each user profile. Then the maximal value is associated to the document as its

final similarity to the query. The similarity between a document, Di and a query,

Q is:

69

SIM(Q,Di)=Max(∀u∈U,

∑

j∈Q
wQ,j×Wi,j,u√

number of terms in Di

)

Every query term is still weighted using the TF ·IDF . Each term in the document

is weighted with the profile matching considered. There are U user profiles, and the

one with the maximum similarity is selected. Referring to our running example,

for the query “apple photo”, the second profile of user A is dominated by the first

one.

5.2.3 Document profile updating

The document profile consisting the most frequent terms may not capture the

meaning of the document accurately. Therefore, CYBER refines the document

profile according to user profiles progressively. After a user issues a query, a ranked

list is returned to the querying peer. The user clicks a few documents from the

result list to view them or download them from their owner peers. At the same

time, a message on the user selection is sent to all participating indexing peers. The

user selection includes both the relevant document identifiers and the user profile

identifier that is used in increasing the document score. Previously, when the query

is submitted to the indexing peers, the user profile is attached. The user profile is

not abandoned within a certain time. If a user selection message is sent back, then

it indicates that some documents are determined as relevant answers due to the

indexed query term. Otherwise, the profile is discarded after a certain period of

time. Note that a query usually contains a few terms only and the querying peer

can directly contact the involved indexing peers, so the routing overhead is very

small.

With the user profile, the original query and the user selection, the involved

indexing peers can now perform the update on the document profile for those

queried terms. First, the indexing peer checks the similarity between the profiles.

70

The profiles of relevant documents will only be updated according to the user profile

if the similarity is above a certain threshold. For each term in the involved user

profile, the indexing peer checks if it is in the document profile. If not, the term

is injected into the document profile. For the indexing term, its term frequency

(initially calculated in its owner peer and sent to the indexing peer) in the relevant

document is increased by a certain percentage (In our implementation, the default

incremental rate is set to 0.5).

In such a manner, the document profile is eventually constructed by the key-

words from users who consider the document as a relevant answer. By then, the

document profile will rarely be changed as nearly all important descriptive terms

appear in the document profile. Such users share the common interest on this doc-

ument, and thus their virtual relationship in the community is established with the

assistance of the document profile in the indexing peer.

Assume D5 is selected by the user in our running example in Figure 5.2 and the

profile similarity threshold is 0.2. A message is sent to the indexing peer responsible

for apple. Since the profile similarity between the profile of D5 and the user profile

is 2/3 (which is great than 0.2), the document profile should be updated by the

user profile. The keyword apple is inserted and the new profile of D5 is (apple,

iPod, iPhone, iMac). As both users A and B are Apple fans, their profiles are

expected to be similar. When user B’s query is sent to the indexing peer responsible

for apple, because his profile similarity to D5 is 1 (see B’s profile in Figure 5.10),

document D5 will (very likely) be ranked higher.

5.2.4 User profile updating

The profile of a user should be able to evolve with both the change in user’s interests

and the trend of documents shared in the network. After a user downloads some

71

relevant documents for a issued query, a number of the most representative terms

are extracted from them and compared with the user profile. If the overlap between

them is below a certain threshold, then a new profile is initialized for the user,

which indicates that the user is interested in a new topic most likely. Otherwise,

the most similar profile is updated according to the new set of terms. Essentially,

the downloaded documents and the original cluster of documents are merged and

a number of representative terms are extracted to construct the profile. In this

case, the new vocabulary in the interested topic is captured and stored in the

user profile. In this manner, changes in either the user interest or the document

trend are reflected in the user profile. Depending on iMac’s frequency in user A’s

collection, including both shared and downloaded documents, it may be inserted

into the first profile of user A.

5.3 Dynamic Tuning of CYBER Indexes

In CYBER, a subset of terms are selected for indexing. However, these terms are

picked statically. To ensure the set of terms are always relevant and representative,

it is necessary to remove terms that are not used in queries and to add terms that

are frequently used (but not previously indexed). In this section, we shall present

two approaches to extend CYBER to facilitate dynamic index tuning: CYBER+

and CYBER++, which are based on SPRITE.

5.3.1 CYBER+

Our first approach to tuning the indexes of CYBER is essentially a straightforward

adaptation of SPRITE. Besides re-evaluating queries with community-based rele-

vance feedback, CYBER+ refines the index in the same manner as SPRITE. In

72

CYBER+, refining index and re-evaluating queries are loosely coupled. An owner

peer periodically pulls back related past queries, which are stored in indexing peers.

Then the score of each overlapping term between the shared documents and past

queries is calculated. A certain number of terms with the highest scores are indexed

after each learning iteration. When a new term is selected, the owner peer indexes

it in the network, with its initial document profile attached. For each indexed

term that is dominated by some new terms, the document profile of the term with

respect to the document is discarded by the indexing peer. For each remaining

term that is not dominated by any new term, its document profile is not affected.

The document profile of such a term will then be updated by user profiles in the

future query process as described in Section 5.2. While CYBER builds index on

the most frequent terms, CYBER+ attempts to index terms that are more likely

to be queried.

Consider there are only two queries in the past: Q1 (t0, t1, t2, t3) and Q2 (t0, t4, t5),

where ti is a term. A document, D, that has indexed t0 needs to refine its index.

Its owner peer first pulls back Q1 and Q2. Suppose D also contains t1 and t4.

Obviously, the overlap ratio between D and Q2 is larger. Therefore, t4 is selected

as the new indexing term. In the future, if a query containing t0 and t4 is issued

in the network, then D will be returned as an answer very likely.

5.3.2 CYBER++

We now present a more tightly coupling scheme, CYBER++. Apparently, using

past queries alone to select indexing terms is not adequate. Relevance feedback can

also be used to refine the index. If a document is identified as a relevant answer

to a query, the overlapping terms between the query and the document should be

selected and indexed.

73

After a user issues a query, a ranked list is returned to the user. The user

clicks a few answers and download the documents from their owner peers. When

an owner peer receives a download request, it stores the query with respect to the

document.

When an owner peer needs to refine the index for its shared documents, it first

pulls back past queries from the related indexing peers. The owner peer then checks

the relevant queries it stores locally. To calculate the score of a term, relevance

feedback is considered, if available. If D is relevant to Qj, then the score of a term

to a document is augmented as:

Score(tij, D) =
(

|Qj∩D|

|Qj |
+ 1

)

· log QF (tij, ϑ).

From the formula, we can see that the first factor is increased by 11, for terms

in relevant documents, while the second factor is not changed. The terms with

top scores are selected and indexed after each learning iteration. Therefore, if the

document is relevant to a query, the overlapping term is very likely to be selected

and indexed. In this manner, we expect fewer irrelevant terms are indexed, and

thus some noise are removed to the document. Query processing is the same as

described in CYBER.

Let us reconsider the running example in the previous section. Suppose a user

identified that D is relevant to Q1. The relevance feedback is kept in the owner

peer of D. When D wants to refine its index, its owner peer checks both the overlap

ratio between D and past queries and the relevance relationship. In CYBER++,

terms in Q1 is more important than terms in Q2, so t1 is chosen as the new indexing

term. In this manner, D1 will be ranked higher in future queries containing t0 and

t1.

1The increment is large, considering the range of the original value is (0, 1].

74

5.4 Experimental Evaluation

In this section, we evaluate the performance of CYBER. We compare CYBER

against two other DHT-based systems: (a) a search engine that is based on a

complete index (CI); (b) a search engine based on partial index with “single-user”

feedback technique (PIF). Recall that CYBER is based on partial index and em-

ploys community feedback. The full index search engine (CI) is an ideal (but

impractical) system where all global information is known and its performance is

expected to be as good as a centralized system. By comparing with the CI system,

we can study the benefits of feedback-based systems. For both PIF and CYBER,

the partial index is built in the same manner so the difference between the two is

the way feedback mechanisms are employed. The PIF scheme processes a query

in two steps: a preliminary ranked list is returned first; the user clicks some rele-

vant documents and then the weights of query terms are refined and a new ranked

list is returned. CYBER is clearly more efficient than PIF as the user receives a

final ranked list after submitting the query without any iterative feedback process.

Moreover, CYBER follows the Chord routing protocol. Thus, the routing cost is

bounded by the number of terms in a query and the number of peers in the network

logarithmically.

We use two standard metrics to evaluate the three systems: precision and recall.

Given a query, let the number of returned documents be K and K ′ of them are

identified as relevant answers, then the precision P = K ′/K. If there are A relevant

documents in the repository, then the recall of this query R = K ′/A. All results are

presented in terms of the improvement ratio of a specific system (either CYBER or

PIF) over the CI system. For example, the precision result of CYBER is defined as:

PCY BER−PCI

PCI
, where PCY BER is the precision of CYBER and PCI is the precision of

the CI system. A value larger than 0 means the scheme has better precision/recall

75

than CI.

We implemented the basic Chord protocol as designed in [81]. All terms are

hashed using MD5 hash functions. Our study is simulation based and all experi-

ments are conducted on a dual-Pentium4 3.0GH CPU PC with 512MB RAM.

5.4.1 Data set and query set

In a scalable P2P network, both the number of users and the number of queries

issued by them are large. In order to evaluate CYBER, we need users to share many

documents and issue many queries. The users belong to various communities. In

each community, the users issue queries on similar topics. Unfortunately, existing

benchmarks are usually created to exercise a maximum of functionality with as

few queries as possible. User profiles are not considered either. Therefore, we

extend our query generator presented in Chapter 4 to generate queries from the

TREC9 dataset and queries [33] as a first step. The TREC9 dataset contains 348565

documents and 63 queries. All relevant documents of every query are identified by

experts.

Our original generator mainly derives a number of queries from each existing

query and defines a set of documents as relevant answers to every new query. Ev-

ery new query shares some terms with the original query. Because the queries are

similar, they share some documents as relevant answers also. The importance of a

new query term (measured as a combination of overall frequency and distribution

amongst documents) is similar to that of the original term it replaces. When defin-

ing new relevant documents, we endeavor to choose documents that have similar

ranks to the relevant documents of the original query. For each original query,

we generate 5 queries (including the original one), so there are 63×5 = 315 new

queries. The number of relevant documents of a query is approximately the same

76

as the number for its original query.

Modeling Community

With the larger set of queries and their relevant documents, we now define commu-

nities. Even if two users issue two identical queries, they may expect two different

sets of documents if their interests/profiles are different. With this in mind, we first

define an expected number of communities, C, for every query, which means there

are C different interpretations for the query and thus C different sets of answers

are expected. Every query is processed with Lucene [54] to generate a ranked list.

From the top 200 documents, the first group, R0, containing all documents that

are defined as relevant to the query in the original dataset is extracted first. Let

its size be |R0|. The remaining documents are then clustered into 2C groups. If

the size of a group is above a threshold (we set it to 5 in the experiments), then

at most |R0| documents in this group are defined as relevant answers to the query

issued from a community. Finally, C clusters of documents are randomly selected

to model community effects. In our experiments, we generate at most 5 communi-

ties for each query. Again, we attempt to define new relevant relationships between

queries and documents following the relationships in the original dataset. All re-

maining documents are considered as noise for the query by all communities. The

new relevance relationship is defined as: a document Di is relevant to a new query,

Qj, with respect to a user in community Ck.

We now introduce how user profiles in every querying peer are modeled. A

user can have several interests and thus belong to multiple communities. N peers

are selected as query issuing peers, where N is smaller than the total number of

queries. Let the total number of effective queries be NQ. On average, each peer

will issue NQ/N queries. For each query the peer will issue, a subset of relevant

77

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10

0.999

0.900

0.810

0.728

0.655

0.4

0.7

0.1

0.9

Ranked list Clicks

D1
D2

D4

D90.5

Random()

Figure 5.4: User clicks simulation

documents are chosen as the publications of this peer, so that a profile is generated

for the user accordingly. For the TREC9 dataset, the total number of effective

new queries should be 63×5×5 = 1575. Because some cluster distributions are

very skew (fewer than 5 effective clusters are generated from a query because one

cluster size is extremely large), we generated 1356 new queries. The new queries

are distributed among 1000 peers in the network, so a user issues 1.356 queries on

average. For every query a peer issues, 10% of all relevant documents are randomly

selected as the user’s publications.

User click simulation

We also need to simulate user clicks when a ranked list is returned to a user. The

key idea is that the higher a relevant document is ranked, the more likely it will

be clicked. We set a click decay ratio to 0.9 and the probability of clicking the

first relevant document is 0.999. So the probability that the user clicks on the ith

relevant document is 0.999 * 0.9i−1. With a very low probability, an irrelevant doc-

ument is clicked, which simulates mis-clickings on user behaviors. The mis-clicking

probability is set to 0.001. Figure 5.4 illustrates how user clicks are simulated. The

78

Table 5.1: Experiment Settings.

Parameters Default values Ranges
number of answers 20 [10, 30]
number of indexed terms 30 [10, 40]
document profile size 20 [5, 30]
user profile size 10 [5, 30]
number of user clicks 2 [1, 4]

top 10 results are displayed to the user and 5 documents are relevant to the query.

Their probabilities of being selected are pointed from the documents. A number is

generated in the range of [0, 1) for every relevant document. Since the probability

of document D6 is smaller than the random number, it is not clicked. The other

4 documents are clicked finally. In this way, we can control the user cooperation

level.

5.4.2 Experiment setup

We started with 63 queries in the TREC9 dataset and generated 1356 queries from

them. While the queries are randomly issued from peers in the network, we measure

the precision and recall for each of them. By default, the top 30 terms are indexed

in a document; the top 20 terms are used to initialize the document profile; every

user profile contains 10 terms; only 2 relevant documents are clicked; and the top

20 documents in the ranked list are evaluated. The default settings and the ranges

of these parameters are listed in Table 5.1. We vary the parameters to evaluate the

performance of CYBER and PIF.

79

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 15 20 25 30

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Number of answers

Cyber-recall
Cyber-precision

PIF-recall
PIF-precision

Figure 5.5: Varying number of answers.

5.4.3 Experimental results

As shown in the figures, both CYBER and PIF have higher recall and precision

compared to CI. Though they only index a small number of terms (while CI in-

dexes all terms), user feedback can contribute significantly improved performance.

Furthermore, the small number of selected terms are important terms that are

frequently used in queries.

First, we compare CYBER and the PIF scheme by varying the number of an-

swers. The results are shown in Figure 5.5. CYBER outperforms the PIF scheme

in terms of both precision and recall. This is a pleasant surprise as, for a particu-

lar query, the community feedback is less accurate than the single user feedback.

Our investigation shows that CYBER’s effectiveness arises because it accumulates

positive feedback for every query. The user profiles keep updating the document

profile so that the document profile evolves and becomes an accurate annotation

to the document. On the contrary, in the PIF scheme, a query only benefits from

the feedback once.

80

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 15 20 25 30 35 40

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Number of terms indexed

Cyber-recall
Cyber-precision

PIF-recall
PIF-precision

Figure 5.6: Varying number of index terms.

Next, we compare the effects of varying the number of indexed terms, since we

built partial index for both CYBER and PIF. We can see clearly that CYBER

outperforms the PIF scheme again in Figure 5.6. When the number of indexed

terms is greater than 30, the performance of PIF does not change much any more,

while CYBER’s performance is relatively consistent. The reason is that the terms

indexed in a later stage do not occur in many relevant documents. Therefore,

only a small number of queries that overlap with such documents can benefit from

feedbacks in PIF. On the contrary, in CYBER, such terms cause some relevant

document profiles to be enriched. Thus, the weights of terms in related queries are

increased by the profile similarity.

We then compare CYBER and the PIF scheme by varying the number of rel-

evant documents clicked by a user. Figure 5.7 shows that CYBER is superior to

PIF. When more documents are clicked, CYBER becomes less accurate, but PIF’s

accuracy increases. This is because document profiles are less accurate when lower

ranked relevant documents are selected. One user clicks more documents means a

document is clicked by more users in a community. The profile of such a document

81

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Number of user clicks

Cyber-recall
Cyber-precision

PIF-recall
PIF-precision

Figure 5.7: Varying number of clicked documents.

is updated according to more terms in the user profiles, so the chance of irrelevant

terms are used is increased. However, a user usually stop clicking additional rele-

vant documents once he found the information. Therefore, a small number of clicks

is more realistic and preferred by CYBER.

Figure 5.8 shows the the robustness of CYBER to changes in query patterns, eg.,

a user may be interested in a completely new topic, on which his existing profiles

do not help. To simulate that a new query pattern occurs, we randomly choose

a number of terms from the document corpus to construct a user profile. Such

user profiles have little overlap with the document profiles of the queried terms.

Therefore the queries are “new” to the initial user profiles and the user interests

change. In the figure, CYBER′ denotes the search results on new topics. We can

see the performance of CYBER′ degrades a bit from CYBER, but it still clearly

outperforms PIF. Initially, the existing profiles do not help on the queries. As a

new profile is built up for the new topic, the latter queries are better evaluated and

thus the answers become more accurate and the average precision and recall are

improved.

82

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 15 20 25 30

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Number of answers

CYBER-recall
CYBER-precision

CYBER'-recall
CYBER'-precision

PIF-recall
PIF-precision

Figure 5.8: Changes in query pattern.

We then evaluate CYBER by varying the number of terms in the document

profile in Figure 5.9. When more terms are inserted into the document profile,

the precision and recall increase, until the document profile size reaches 20. This

indicates that the document profiles are refined by user profiles in feedback infor-

mation effectively, which shows the robustness of CYBER. Larger document profile

increases the opportunity that a user profile overlaps with it. However, after the

most common vocabularies of users are covered by the document profile, increasing

the profile size does not help any more.

In Figure 5.10, we show CYBER’s performance over various sizes of user profiles.

When the user profile size is larger, the search result of CYBER is slightly more

accurate. When the user profile contains 20 or more terms, CYBER performs

consistently well. We believe this is due to two reasons. One is that only a small

number of terms are commonly accepted by various users to describe their interest

on a particular topic. The additional terms do not capture user interest accurately

for many queries, instead, they introduce noise to user interest. The other is that

there is no repeated queries, thus updates on document profiles will not be fully

83

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5 10 15 20 25 30

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Size of document profile

Cyber-recall
Cyber-precision

Figure 5.9: Varying size of document profiles.

utilized by user profiles.

Experimental results of CYBER+ and CYBER++

Having shown the effectiveness of CYBER, we now study the effectiveness of the

two extended versions, CYBER+ and CYBER++.

Figure 5.11 shows the effectiveness on CYBER, CYBER+ and CYBER++.

CYBER+ and CYBER give very similar performance in terms of both precision

and recall. In the similarity calculation of the two schemes, query terms and profile

terms are involved. The two kinds of terms construct a larger term set, which can

capture the major meaning of a document. The majority of terms in the two sets of

a document in CYBER and CYBER+ overlap. CYBER++ outperforms the other

two significantly. This is because terms are selected and indexed more accurately.

This shows that it is necessary to consider both past queries as well as community

feedback for improved performance.

In Figure 5.12, we compare the three systems by varying the number of indexing

terms. For CYBER+ and CYBER++, each learning iteration introduces 5 more

84

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 5 10 15 20 25 30

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Size of user profile

CYBER-recall
CYBER-precision

Figure 5.10: Varying size of user profiles.

terms to be indexed. We can see that CYBER and CYBER+ still perform simi-

larly, while CYBER++ shows its advantages on refining its indices with relevance

feedback. With more learning iterations, CYBER++ learns more indexing terms.

Such terms are more precise because they appear in the queries, to which the doc-

ument is identified as a relevant answer. More precise indexing terms indicate less

noise terms are indexed, therefore, CYBER++ outperforms the other two schemes.

In summary, we see that CYBER outperforms the PIF scheme in terms of

both precision and recall. Moreover, CYBER is robust in updating profiles and

adaptive to the change of query patterns. The overhead for CYBER is small because

document profiles tend to stabilize after some feedback information is consolidated.

Therefore, we consider such cost can be amortized.

5.5 Summary

In this chapter, we have presented the design and evaluation of CYBER, a keyword

search system utilizing community feedback information deployed on top of a DHT

85

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 15 20 25 30

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Number of answers returned

CYBER++-recall
CYBER++-precision

CYBER+-recall
CYBER+-precision

CYBER-recall
CYBER-precision

Figure 5.11: Comparison on varying the number of answers.

network. The traditional feedback techniques have been proved to be effective in

improving search quality in centralized systems. However, applying the recursive

procedure of traditional feedback techniques increases the response time dramati-

cally in a P2P network. In CYBER, feedbacks from previous users are utilized to

organize users as virtual communities. The feedbacks also help to annotate the rel-

evant documents. A new query is evaluated once only based on past feedbacks from

users with similar interests. In this manner, more accurate results are returned to

the current user.

CYBER offers the following advantages over the PIF scheme. First, CYBER

does not require explicit user efforts and reduces the response time. Second, the

precision and recall of a search is improved significantly by CYBER with commu-

nity feedback. Third, CYBER is robust in initializing and managing both user

profiles and document profiles and adaptive to the change of query patterns. Our

extensive simulation study confirms that CYBER outperforms the single-user feed-

86

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 15 20 25 30 35 40

Im
pr

ov
em

en
t R

at
io

 o
ve

r
C

I

Number of terms indexed

CYBER++-recall
CYBER++-precision

CYBER+-recall
CYBER+-precision

Cyber-recall
Cyber-precision

Figure 5.12: Comparison on varying the number of indexing terms.

back scheme in terms of both precision and recall.

Chapter 6

XCube: Processing XPath

Queries in a HyperCube Overlay

Network

6.1 Introduction

We have so far focused on keyword search over unstructured data like text doc-

uments. In this chapter, we look at the problem of querying XML documents in

P2P networks. We focus on XPath and tag-based queries.

We propose XCube, a tag-based scheme that manages XML data in a hy-

perCube overlay network to support XPath (and tag-based) queries. In a d-

dimensional hypercube, each node is represented as a d-bit vector, and a link is

built between two adjacent nodes whose bit vectors differ from each other in one

bit only. This property supports efficient routing for superset/subset search, which

is the core of the XML document indexing and query routing strategies used in

XCube. Each peer in XCube is responsible for managing a subset of nodes in the

87

88

BVdBVq

Querying Peer Query’s Anchor Peer Document’s Anchor Peer Owner Peer

IP

Figure 6.1: The querying flow in XCube.

hypercube, i.e., a smaller hypercube with dimension d′ < d.

An XML document is compactly represented as a triple: a d-bit vector derived

from the distinct tag names in the document, a synopsis of the document, and a bit

map of the content summary. In this work, we adopt the strong DataGuide in [31]

as the synopsis of an XML document. To facilitate speedy search, the metadata

of a document is associated with an anchor peer (the peer that manages the node

with matching bit vector). The metadata includes the IP address of the owner peer,

the document identifier and the triple values. We also refer to the (bit vector and

synopsis)-pair as the structure summary and the bit map as the content summary.

In addition, the synopsis alone is further indexed at all peers that manage

hypercube nodes whose bit vectors are covered by the document bit vector. We refer

to these peers as the indexing peers. We exclude the IP addresses, the document

identifiers and the bit map from the indexing peers because (a) storing them will

incur significant maintenance overhead (periodically ping messages) to ensure that

the IP addresses are up-to-date, (b) values are much more dynamic than schemas,

and (c) they can be obtained indirectly from the structure summaries, if needed.

When a user issues an XPath query, the query tags are first extracted. The

query is then processed in four phases as shown in Figure 6.1. In phase 1, the

bit vector, BVq, derived from the query tags is used to locate the anchor peer of

the query (which contains a superset of the synopses of all potentially matching

answers). In phase 2, the query is compared against all the synopses at its anchor

89

peer and then forwarded to the anchor peer of every document with matching

synopsis according to its bit vector, BVd. At the end of this phase, a coarse answer

set is generated, i.e., for each relevant document, its synopsis satisfies the structural

constraint. In phase 3, the predicates in the query are examined based on the bit

maps stored in the anchor peer of every relevant document. The answer set is

refined since many documents that can fulfill the structural requirements but not

the predicates in the query are pruned away. In phase 4, the query is forwarded to

every owner peer in the answer set based on its IP address, IP . The owner peers

evaluate the query against the related XML documents and return the answers to

the querying peer.

Since the number of peers is much smaller than the number of hypercube nodes,

we also present a scheme to dynamically partition the hypercube to balance the

loads across the peers. Furthermore, we exploit the partition history to remove

redundant messages during routing. We have conducted an extensive performance

evaluation of XCube. Our results show that XCube is efficient.

6.2 Preliminaries

In this section, we shall first give an overview of the hypercube structure. Following

that, we shall look at how XML documents can be represented, and present a naive

tag-based strategy for managing XML documents over a hypercube network.

6.2.1 The Hypercube Structure

In a d-dimensional hypercube, there are 2d nodes. Each node is represented by

a d-bit vector. Two nodes are directly connected when their bit vectors differ by

exactly one bit. Thus, every node has exactly d neighbors. Figure 6.2 shows an

90

(1110)14V (1111)15V

(1101)13V(1100)12V

2V

(0000)0V

(0101)5V(0100)4V

(0111)7V(0110)6V

(0010) (1010)10V (1011)11V

(1001)9V(1000)8V(0001)1V

(0011)3V

Figure 6.2: A 4-dimensional cube.

example of a complete 4-dimensional hypercube. As shown in the figure, every

node is represented by a bit vector of length 4; node V5 (0101) has four neighbors

- V1 (0001), V4 (0100), V7 (0111), and V13 (1101).

As a network structure, a hypercube has two very nice properties: (1) For

a network with 2d nodes, the network diameter is only d. This means that the

searching/routing cost can be bounded logarithmically w.r.t. the network size.

(2) Dissemination of data to nodes within a sub-cube of dimension d′ (d′ ≤ d)

can be done efficiently using broadcasting. The longest path for the broadcast

in the sub-cube is d′. Moreover, the d′ neighbors ensure effective parallelism of a

broadcast.

In this thesis, we shall use the following definitions to describe the features of

a hypercube.

Definition 1 Given a bit vector, v, its weight is defined as the number of 1 bits

in v, represented as |v|.

In Figure 6.2, the weight of V4 is 1; and that of V0, V9 and V15 are 0, 2, and 4

respectively.

91

Definition 2 The distance between two nodes in a hypercube is the weight of the

XOR (denoted by ⊗) of their bit vectors: Dist(V1, V2) = |v1 ⊗ v2|

In Figure 6.2, the distance between V7 and V8 is |0111 ⊗ 1000| = |1111| = 4, and

that between V3 and V11 is 1. Intuitively, the distance between two nodes is the

length of the shortest path between them. The routing algorithm is based on the

distance definition.

Definition 3 Let the bit vector of node Vi be vi, and the bit vector of node Vj be

vj. We say that vi covers vj if for any bit in vj that is 1, the corresponding bit in

vi is 1 also. For convenience, we will also say that node Vi covers Vj.

In Figure 6.2, the bit vector of V7 (0111) covers the bit vector of V5 (0101). Likewise,

we have node V13 covering V12. Note that by definition, a bit vector always covers

itself.

Definition 4 Given a node, V , in a hypercube, we define its SubCube+ as the

cube constructed with all nodes whose bit vectors cover the bit vector of V , and its

SubCube− as the cube constructed with all nodes whose bit vectors are covered by

the bit vector of V .

If |V | = m, then there are 2d−m nodes in its SubCube+ and 2m nodes in its

SubCube−. In Figure 6.2, the SubCube+ of node V9 includes (V9, V11, V13, V15),

and the SubCube− of node V4 includes (V4, V0).

6.2.2 XML Documents and Representations

Given an XML document, we obtain its structural summary which comprises a (VD,

SD)-pair where VD is a d-bit vector and SD is a synopsis. VD is obtained as follows.

Every tag in the XML tree1 is hashed into the range [0, d-1]. The ith bit is set

1We will use the terms document structure, synopsis, and XML tree interchangeably in the
chapter.

92

01 01

GC

A

E

3D

101 101 0

Q

//

C

A

D

0 10001 0101 10

D

A

DB

C

100101 01

h(A) = 0, h(B) = 3, h(C) = 7, h(D) = 6, h(E) = 4, h(F) = 1, h(G) = 6

1

1

F

E

2D

DC

A

Figure 6.3: Bit vector calculation (d=8).

to 1 if there exists a tag name whose hash value is i; otherwise, the bit is 0. A

query can also be treated as an XML tree and hashed in the same manner to obtain

a bit vector. In Figure 6.3, we describe the calculation of document bit vector

and query bit vector with dimension=8. The document and query trees and their

corresponding bit vectors are shown at the top. The hash values of all tags (from

A to G) are shown at the bottom. The calculation of the first tree, D1, is depicted

in detail. Tags A, B, C and D are hashed to 0, 3, 7 and 6 respectively, so the bit

vector of D1 is (11001001). The rightmost tree in Figure 6.3 represents an XPath

query, Q: /A[D]//C, where only the structural constraints are considered. The

dashed line in the query tree reflects that the user is unsure about the relationship

between A and C, which is represented as “//” in the query. The bit vector of Q

is (11000001).

The synopsis of a document, SD, is essentially a tree representation, as adopted

in many existing works [31, 41, 100, 61]. Users can easily apply one of the existing

tools to generate a synopsis for an XML document. In this chapter, we adopt the

strong DataGuide in [31] as the synopsis of an XML document. Figure 6.4 shows

93

<SigmodRecord>

<issue>

<volume/>

<number/>

<articles>

<article>

<title/>

<initPage/>

<endPage/>

<authors>

<author/>

</authors>

</article>

</articles>

</issue>

</SigmodRecord>

Figure 6.4: The synopsis of SigmodRecord.xml

the synopsis of SigmodRecord.xml, which is stored as an XML document also. As

can be seen, SD is very compact, and its size is very minimal compared to the

original document.

Summarizing contents is orthogonal to summarizing structures. Various al-

gorithms can be applied to summarize content values in XML documents. We

opt to employ bit map since it is compact (high compression ratio), easy to up-

date (value changing may affect a few bits only), and the co-occurrence relationship

among XML elements are taken into account, which is frequently checked in XPath

queries. In an XML document, there are usually a number of subtrees of the same

structure. Each subtree is used to describe the properties of an object. In this

chapter, we only demonstrate how to summarize numerical values in an XML doc-

ument of regular structure for simplicity. For example, SigmodRecord.xml contains

a number of “issue” elements and each of them can be identified by two numbers:

“volume” and “number” as shown in its synopsis in Figure 6.4. We summarize

94

the values in such subtrees of the same structure in one bit map. Each type of

element constructs one dimension of the bit map. We denote the dimensions of a

bit map as a set of tag names. SigmodRecord.xml can be summarized with two

bit maps of dimensions {volume, number} and {initPage, endPage}. Let the

number of leaves of the subtree be s and each dimension is evenly divided into p

partitions. The volume (the number of distinguishable objects) of the bit map is

ps. On each dimension, a value is normalized into the range [0, 1], α, and it falls

into the ith range, where i = ⌊α · p⌋. Each subtree can be mapped to one bit in

the s-dimensional bit map according to the values of its leave nodes, and then the

bit is set to true. Due to the space limitation, let us consider a small version of

SigmodRecord.xml that contains 3 “issue” elements with (“volume”, “number”)

pair values (1, 1), (1, 3) and (2, 2). Each dimension is divided into 3 partitions and

the value bound is 3. The matrix presentation of its bit map ({volume, number})

is shown below:

1 0 1

0 1 0

0 0 0

We illustrate how to map the element (1, 3) to a bit in the bit map. First, 1 is

mapped to the first row (1 / 3 × 3) and 3 is mapped to the third column (3 / 3 ×

3). So The corresponding bit is set to 1.

6.2.3 A Naive Tag-based Scheme over Hypercube Overlay

To appreciate the proposed XCube scheme, we first present a naive scheme (denoted

NAIVE-XCube) for managing XML documents over a hypercube network. Given a

set of N peers, and a d-dimensional hypercube with 2d nodes(N << 2d), each peer

manages a hypercube with dimension d′ ≤ d. Referring to Figure 6.2, if N = 1,

95

then the entire hypercube is managed by a single peer. On the other hand, with

N = 5, the hypercube may be partitioned to 5 “smaller” hypercubes - nodes V0−V7,

V12 − V15, V8 − V9, V10, V11 - each managed by one of the peers. We shall defer the

discussion on how we can partition the hypercube to balance the load across the

peers to Section 6.4. It suffices for now to note that each partition is essentially a

hypercube and each peer has log N neighbors on average (d neighbors at most).

Under NAIVE-XCube, a document D’s structure summary (i.e., d-bit vector

and synopsis) and content summary are first extracted. D has a matching hyper-

cube node with the same bit vector. We refer to this node as the anchor node of

the bit vector (and of the document), and the peer that manages the anchor node

the anchor peer. D is then indexed at its anchor peer. The anchor peer stores

the corresponding metadata. In this work, the metadata are the owner peer’s IP

address, the document identifier, the structure summary and the content summary.

Note that the owner peer has to ping the anchor peer periodically to ensure that

it is online; otherwise, the document has to be (reinserted and) indexed in another

peer (that is newly assigned to manage the anchor node).

When an XPath query, Q, is issued, its bit vector VQ is derived (recall that we

can treat an XPath query as a document). All the documents whose bit vectors

cover VQ are potential answers to Q. Thus, answering a query is equivalent to

finding all bit vectors that cover the query bit vector. In fact, the nodes whose

bit vectors cover the query bit vector are exactly the set of nodes that need to be

searched. Recall that this set corresponds to the SubCube+ of VQ in the hypercube.

Thus, all that is needed is to broadcast VQ to all peers that manage nodes of

the SubCube+. As each peer receives the query, it compares the query against

the synopses of all documents indexed by it. For each indexed document, if its

synopsis can answer the query structurally and the bit map indicates that the

96

document satisfies the predicates, the corresponding document identifier and the

query are forwarded to the owner peer based on the IP address stored in the anchor

peer. Finally, the owner peer processes the query and returns results (if any) to

the querying peer directly.

As would be expected, this is an expensive operation since a large number of

peers must be visited but not all of them contain relevant documents. The struc-

tural constraints and content predicates are checked in a very late stage, while the

bit vector of the query alone is not very selective. Referring to our running example

in Figure 6.3, D1, D2 and D3 are indexed in the SubCube+ of Q (11000001). While

D1 and D2 are relevant documents, D3 is a false positive. For a broadcast in a

SubCube+, the total number of nodes involved is 2d−|VQ| and therefore a large por-

tion of peers (responsible for such nodes) would be visited. Similarly, broadcasting

within a SubCube− incurs high routing cost also. The proposed XCube algorithm

avoids such high cost on broadcasting.

Before leaving this section, we shall briefly discuss how a query is routed in

the hypercube overlay. To route the query with bit vector VQ from the query peer

towards its destination peer (i.e., anchor peer of VQ), a greedy mechanism can be

adopted: each hop should bring the query at its current location/peer (with a bit

vector VC) closer to the destination peer through a neighbor node/peer (containing

a bit vector VN) such that distance(VC , VQ) > distance(VN , VQ). In other words,

each hop should take the query closer to its destination peer. Once the query

reaches the destination peer, it can be broadcast to all peers that manage the

nodes of the SubCube+.

97

6.3 The XCUBE System

We note that NAIVE-XCube is essentially a two-phase strategy: In phase 1, which

is tag-based, it finds all potentially matching documents. In fact, it does not miss

any relevant documents. The answer set, however, can be very large. In phase 2,

the structure summary and content summary are used to prune away irrelevant

documents that provide relevant bit vectors but have different structures from the

query or lack certain contents in the query predicates.

The proposed XCube system adopts a 4-phase strategy. XCube aims to over-

come the poor performance of NAIVE-XCube that arises because the entire SubCube+

needs to be searched during a retrieval process. The design of XCube is based on

the following observations:

• If we had replicated the metadata from all nodes in a SubCube+ at its anchor

node, then we would have all information at the anchor node. Hence, the

search would be efficient. This, however, implies that the overhead to insert

a document becomes larger. Moreover, the maintenance cost may also be

high. The challenge is to be able to control these overheads. Our solution is

to selectively replicate part of the metadata, but not all. In particular, we do

not need to maintain owner peer information at all indexing peers.

• Given that we choose to replicate the metadata, this can be easily done during

a document insertion (i.e., when a document is shared or injected into the

network). Essentially, a document D is relevant to all queries that its bit

vector covers, which means that the metadata of D should be replicated at

all nodes in its SubCube−. In other words, a query whose bit vector matches

a node in the SubCube− would find D potentially relevant. As such, our

solution is to replicate certain metadata in a document’s SubCube− when it

98

is inserted.

By replicating some metadata in the corresponding SubCubes−, queries can be

examined on some constraints in an early stage, so that fewer peers are visited. We

are now ready to present the XCube system.

6.3.1 Document Indexing

To share an XML document, the owner peer first extracts the structure summary,

i.e., bit vector and synopsis, and the content summary, i.e., the bit maps. The

metadata (IP address of owner, document ID, structure summary and content

summary) is then routed to the peer responsible for the bit vector, the anchor

peer of the document. The anchor peer determines the SubCube− of the inserted

document. Recall that nodes in the SubCube− correspond to the potential query

bit vectors covered by the bit vector of the inserted document. We shall refer to

the set of peers that manage the nodes in a SubCube− as the indexing peers. The

anchor peer then broadcasts the existence of the metadata to its indexing peers.

By existence, we mean that the information maintained by each indexing peer is

much less than the anchor peer - while the anchor peer maintains the complete

metadata of the document, the indexing peers store the structure summary only.

As noted, by replicating the structure summary, searching can be performed

very efficiently. We shall discuss how searching is performed shortly. Now, let

us examine why this scheme is reasonable in terms of maintenance and insertion

overhead. We argue that the maintenance overhead of this scheme is no worse

than that of NAIVE-XCube. First, the owner peer only needs to keep in touch

with the anchor peer. Since the indexing peers do not store any information about

the owner peer, they need not be checked periodically. To determine the owner

peer from the indexing peer, all that is needed is an “indirect addressing” - to find

99

the owner of a synopsis, locate the anchor peer of the corresponding document

using the accompanying bit vector, and from the anchor peer, the IP address of

the owner can be obtained. Second, if the anchor peer goes offline, an existing peer

takes over its partition and indices. The owner peer does not need to broadcast

the existing synopses again. Only the new anchor peer is contacted. Third, when

a new peer joins the network, it learns the existing structure summaries from the

peer accepting it. Hence, we do not need to periodically broadcast the existence of

every synopsis because of the dynamism of the network.

The insertion overhead cannot be avoided, but XCube attempts to minimize re-

dundant messages in two ways. First, as we shall discuss in Section 6.4, we exploit

a partition history to remove redundant messages from being disseminated when

broadcasting a structure summary to the indexing peers. Second, for multiple doc-

uments that share the same synopsis, the information need not be re-distributed. In

other words, an anchor peer only needs to replicate each unique structure summary.

In addition, we note that the insertion overhead is incurred only once when a doc-

ument of new synopsis is shared. The broadcast overhead is essentially amortized

over the life time of the document, so the amortized cost is very low. Moreover,

in the entire P2P system, documents are shared at different time, so the insertion

overhead can hardly cause network congestion. There is no extra network mainte-

nance cost for these indexing peers. The broadcast is efficient and the summary can

reach the essential peers in a few hops as the diameter of any SubCube is bounded

by d.

In terms of storage, assume the average size of a summary is 1K bytes. Storing

1000 such summaries only consumes 1M bytes, which is very manageable with

modern hardwares.

An example on indexing the 3 XML documents in Figure 6.3 is shown in Figure

100

11001001 11000011

... ...

1101001111010011...

{D2 (IP, ID), M2}

Q

11000001 01000011 3

4

5

...

11010001

S2 ...

{D3 (IP, ID), M3}, S2{D1 (IP, ID), M1} ... S2 ...

S1, S2, S3 ...

Figure 6.5: Document indexing and query routing.

6.5. Only a partial set of nodes at 3 different levels (here, a level is determined

by the weight of every bit vector) in a 8-dimensional hypercube are depicted due

to space limitation. Di represents the index entry of an XML document, which

contains the structure summary, bit maps, owner’s IP address and the document

identifier. Si represents the structure summary only and Mi represents the bit

maps of document i. The dashed lines and the solid arrows are the links amongst

the nodes. When a new document is indexed, for instance, D2, it is sent to the

anchor peer (11010011) first. The anchor peer then broadcasts the existence of D2

towards upper levels, level 4 and level 3 in the figure (higher levels denote nodes in

the SubCube−). Every peer receiving the message stores the summary of D2 (i.e.

S2) locally. At the top-left peer (11000001), 3 summaries are stored, S1, S2 and S3.

101

6.3.2 Querying Documents

Given an XPath query, XCube processes it in four phases. In phase 1, the querying

peer obtains its bit vector by hashing all of the tags in it. The query and its bit

vector are encapsulated into a message. The message is then routed to the anchor

peer responsible for the hypercube node matching the query bit vector. Since this

phase is essentially based on the tags, the query’s anchor peer stores the synopses

of all potentially matching documents. Thus, the anchor peer stores a superset of

the answer synopses, containing both answers and false positives. This phase takes

log N hops to route the query message to its corresponding anchor peer (It has

been proven that a point query can be accomplished in log N hops on average in

[69]).

In phase 2, the query’s anchor peer examines all synopses stored locally against

the query structure. Here, the structural constraints, such as parent-child relation-

ships(/), ancestor-descendant relationships(//) and wildcard(*), are fully checked.

A subset of the synopses are obtained as the refined answer set, whose anchor peers

should be visited to process the query’s predicates, such as equality and range con-

tainment. In case that an anchor peer is offline, an arbitrary 1-bit in the query’s

bit vector is set to 0. The query is routed to the peer responsible for the new bit

vector, which also has the complete structure summaries that can answer the query.

In this way, all and only the documents that can answer the query structurally are

searched.

In phase 3, the query is forwarded to the anchor peers of structurally matching

documents. This is accomplished by routing the message according to the bit

vector of every related document. In the anchor peer of a potentially matching

document, the predicates in the query is evaluated based on the bit maps stored

locally. Many XML documents share a common synopsis, but their contents may

102

be very different. By evaluating the predicates in the query, a lot of documents

that do not contain contents requested in the query are eliminated. In this manner,

the answer set is further refined.

Finally in phase 4, each document’s anchor peer forwards the query to the

related owner peer according to its IP address. In an owner peer, the query can be

processed against the related XML document with many existing tools/softwares,

and then the final results are returned to the querying peer. We will not discuss

this phase further because the XML query processing techniques are very mature.

In an XPath query, the ancestor-descendant relationship “//” and the wildcard

“*” are always used when a user is unsure about some structural details of a

document. In XCube, such uncertain structural constraints are not encoded to

guide query routing in phase 1, but they are checked in phase 2. Hence, the

query expressiveness is not limited and no false positive is included after phase

2. Moreover, the efficiency is not affected by this type of expensive structural

constraint, which is a strong advantage over the path-based mechanisms.

The algorithm to route a query is presented in Algorithm 3. Initially, the query

is routed to the anchor peer responsible for its bit vector (line 3). The anchor peer

examines the structure summaries stored in it and determines the answer set (line

4). For each answer (a document summary) in the set, the anchor peer can obtain

its bit vector and judge which direction the query should be forwarded to. For the

answers in the same direction, the anchor peer sends one message including their

summaries and the query to the neighbor peer in that direction (lines 13-17). The

neighbor peers continue to check their stored summaries and forward the query in

groups. When a peer storing the metadata of related document receives the query,

it will first examine the query against the bit maps of the document. If the bit maps

can answer the predicates in the query, the peer then forwards the query to the

103

Algorithm 3: The query routing algorithm.

Let Q be the query;1

Let Pq be the query originating peer;2

Peer Pa = Pq.route(Q);3

Initialize D as the set of bit vectors indexed in Pa whose synopses can4

answer Q structurally;
Let Peer Pi is Pa’s neighbor in the ith dimension;5

Let Di be the answer set to forward to Pi;6

for each index entry with complete metadata do7

if the bit vector of the entry appears in D then8

if the corresponding bit maps can answer Q on the predicates then9

Forward Q to the related owner peer;10

Remove the bit vector from D;11

for each bit vector vj in D do12

for each dimension i in the partition history (from the oldest to the13

newest) do

if the ith bit in vj is 1 then14

put vj in Di;15

break;16

for each dimension i do17

Forward the message containing Di to Pi;18

Pi repeats the procedure until Di is empty;19

corresponding owner peer based on its IP address (lines 7-12). Note that the peer

does not need to check the structural constraint again, because it has been done

in the anchor peer of the query. This mechanism combines routing paths to a set

of messages, which reduces the total number of hops without affecting parallelism.

Answers are produced incrementally. Users can receive some answers very fast,

which is valuable in a distributed environment. Users can react fast to judge the

query/answer quality.

In Figure 6.5, query Q is sent to its anchor peer (the left peer at level 3). The

anchor peer has three structure summaries, S1, S2 and S3. Though all of their bit

vectors can cover the bit vector of Q, we can easily see that only D1 and D2 can

104

answer the query from Figure 6.3. If the anchor peer does not have the summaries

of the related documents, it can only decide based on the bit vectors: forward Q

to all of the related peers. With the guidance of the summaries (more specifically,

the bit vectors of the relevant synopses), the anchor peer can now avoid forwarding

the query to the anchor peer of D3 (11010001). For a relevant document, say D2,

the anchor peer examines the corresponding bit vector of its synopsis, and forwards

Q to the peer responsible for the node with the bit vector (the right peer at level

5). This peer is essentially the anchor peer of D2, which would have stored the

complete metadata of D2. The anchor peer of D2 then evaluate Q using M2. If M2

can answer Q, then Q is sent to the owner peer of D2 based on the IP address in

the complete metadata. All owner peers of the relevant documents receive Q in a

similar manner.

6.4 Load Balancing Issues

For XCube to be efficient, there are two challenges on load balancing to be ad-

dressed: (a) how to partition the hypercube such that the system load is balanced

across all peers and redundant messages are removed? and (b) how to store the

synopsis copies evenly among the indexing peers?

6.4.1 Load-Balanced Partitioning of the Hypercube

In practice, the number of peers in a P2P network (N) is much smaller than the

number of nodes in a d-dimensional hypercube (2d). Hence, we need to partition the

hypercube into N subcubes, and assign them to the physical peers. Partitioning

the hypercube introduces two issues. First, load imbalance arises because some

partitions may manage more synopses than others. We can view the data space

105

B (001)

C (011)

E (100)

A (000)

P4

P1

P2

P3

F (101)

D (010)

H (110) G (111)

1

2

0

Figure 6.6: A dynamically partitioned 3-d cube.

as all points in the d-dimensional space (a.k.a. each node is a data point) in

XCube. Moreover, each XML document corresponds to a point in the d-dimensional

space based on its bit vector. Unlike the inverted-file tag-based scheme, popular

terms/tags are distributed among all structures containing the hot tags. Hence,

as long as documents do not share some terms/tags, they would very likely be

mapped to different bit vectors and hence scattered across different hypercube

nodes. However, it is still not uncommon to find that some topics are very popular,

which leads to a lot of similar structures. This means that these documents would

be clustered into the same regions in the hypercube space.

Second, the same message may be transmitted multiple times through a peer

when documents are inserted as a result of broadcasting the synopses to the peers

that manage nodes in the SubCube−. As an example, consider the 3-dimensional

hypercube in Figure 6.6. Here, we assume that there are four peers, P1, P2, P3

and P4, which share four documents whose bit vectors are located at nodes A, B,

C and H respectively. Suppose, initially, there is only P1 in the system, which is

assigned all the 8 hypercube nodes to manage. When P2 joins, the hypercube is

partitioned in dimension 0 (so that P1 manages nodes A, D, E and H, while P2

manages B, C, F and G). Next P4 joins P1, and P3 joins P2. The two subcubes

106

are partitioned in dimensions 1 and 2 respectively. Assume a message, whose bit

vector is (010), is sent to P1, and it is supposed to be broadcast in the SubCube+ of

D(010). P1 forwards the message to P3 (D→C) and P4 (D→H). P4 further forwards

the message to P3 (H→G). We have a redundant message from P4 to P3, i.e., the

forwarding message represented by the dashed arrow from P4(H) to P3(G) should

not have been transmitted.

In HyperCuP [69], the dimensions are preordered and the hypercube is par-

titioned by cutting the edges in the predefined order. Because of the preordered

partitioning, redundant messages can be avoided completely. However, this method

is not adaptive to unbalanced load.

There have been several load balancing techniques introduced in the literature

(e.g., [28]). The key is for a peer to adjust its load with its neighbor peers in a certain

dimension dynamically. However, as we have seen in our example above, a dynamic

and random partitioning will lead to redundant messages being transmitted.

In XCube, we opted to build on existing load balancing techniques and address

the redundant message problem within such a load-balanced mechanism. Our load-

balanced partitioning scheme works as follows. A peer joins the network based on

the data item (in our case, the bit vector of an XML document) it is going to

share. The peer accepting the newly joined peer splits the load in its original sub-

hypercube (together with the data points of the new peer) and assigns one part

to the new peer. In this way, the dense area where many documents are located

can be finer partitioned. While this method leads to load balancing, it is unable to

remove the redundant messages from different neighbors. We introduce partition

history to overcome the problem. For simplicity in discussion, we shall present

our solution in the context of broadcasting in SubCubes+. Our solution is also

applicable if messages are broadcast in SubCubes− and in a general partitioning

107

scheme.

To handle the redundant messages, each peer stores a partition history. This is

simply an array of integers representing the sequence of splits that eventually lead to

the sub-hypercube maintained by a peer. This history is obtained as follows. When

a peer joins the network, it learns the partition history from the peer accepting

it. The sub-hypercube managed by the accepting peer is split and the history is

appended with the new dimension, in which the two peers point to each other. We

note that each dimension is split at most once, and hence the partition history is

at most of size d. Thus, the partition history introduces very marginal additional

storage cost. Let us illustrate this using Figure 6.6. With partition histories, P1 and

P2 partitioned the cube along dimension 0 first, so their partition histories are the

same, [0], at first. Then P3 and P2 partition P2’s sub-hypercube along dimension

2, so their partition histories are the same: [0, 2]. Similarly, the partition history

of P4 and P1 are the same as well: [0, 1].

The partition history is used to guide a peer in broadcasting a message to avoid

redundant messages. We shall describe how this is achieved. The starting point is at

the anchor peer that is supposed to broadcast the message. Let the broadcast space

be Sub-Cube. Each peer along the broadcast space that receives the message (and

the broadcast space Sub-Cube) performs the operations in Algorithm 4. Every peer

receiving an incoming space, Sub-Cube, to broadcast a message, splits it along each

dimension in its partition history and forwards the new Sub-Cube to its neighbor

in the corresponding dimension. Note that given a hypercube, it is partitionable in

an arbitrary dimension at most once. The two Sub-Cubes cannot be further split

along that dimension. Hence, every node in the Sub-Cube is visited exactly once.

Coming back to our running example in Figure 6.6, P1 broadcasts a message to

P3 and P4. P4 stops forwarding the message because the Sub-Cube received by P4

108

Algorithm 4: The broadcast algorithm.

Let Sub-Cube be the hypercube in which the message should be broadcast;1

Let P be the peer that receives Sub-Cube;2

Let HP be the partition history of P (from the earliest to the latest);3

for each dimension, d in HP do4

if the Sub-Cube is not split along d then5

Partition the Sub-Cube along d into Sub-Cube1 and Sub-Cube2;6

Sub-Cube = Sub-Cube1;7

Forward the Sub-Cube2 to the neighbor peer in dimension d;8

contains one node only, i.e. H(110). Hence, the redundant message from P4 to P3

is avoided.

6.4.2 Balancing Storage Load

When indexing a synopsis, all nodes in the SubCube− determined by the bit vector

of the synopsis should be contacted. If a node corresponds to a bit vector with a

small number of 1-bits (we refer to such bit vectors as light weight vectors), it is

very possible that this node is involved in more SubCubes−. Recall the example in

Figure 6.3, the node corresponding with the bit vector (10000000) is contained in

the SubCubes− determined by bit vectors (11001001), (11010011) and (11010001)

of the three synopses. A peer responsible for such a node will store many synopses

and be contacted by many peers. While this may be a concern, it is manageable.

The reason is because storage cost is not a major concern for modern hardwares.

Moreover, each synopsis is only indexed once in the network, and used many times.

Thus, the (amortized) indexing overhead is small compared to the query routing

cost. In addition, it is worth noting that the number of synopses indexed in a peer

does not affect the performance of routing queries, since the number of answers

determines the number of messages.

In this thesis, we offer a solution to handle the unbalanced storage load. Our

109

solution is based on the following observations. On average, the hypercube node

corresponding to a bit vector of weight b has to store 1

Cd
b

fraction of the total

synopses, where d is the dimensionality of the hypercube. For instance, when the

weight is 1, the node is responsible for 1

d
fraction of the total synopses. Therefore,

if more peers partition the hypercube near the all-zero bit vector (000...0), the load

will be more balanced.

After a peer joins the network, it takes over an additional subcube as a “virtual

peer” if the peer is connecting to the network with a broadband or more advanced

connection. The peer randomly selects a bit vector from the hypercube nodes it

is currently responsible for. The chosen bit vector is then altered by randomly

turning some 1 bits to 0, so that the new bit vector is nearer to the all-zero bit

vector. According to the new bit vector, the peer joins the network again as a

“virtual peer” (without giving up the current subcube). In this manner, nodes

corresponding to bit vectors of lighter weights are taken over by more peers, and

thus the load is more balanced. In the experiment, we restrict that each peer can

take over at most two subcubes.

6.5 Experimental Study

In this section, we report an experimental study to evaluate the performance of

XCube. We compare XCube against the following schemes which have the same

query expressiveness (recall that path-based schemes cannot efficiently support

ancestoral-descendant relationships and wildcards):

• NAIVE-XCube. Recall that NAIVE-XCube (see Section 6.2) broadcasts

queries to indexing peers (those managing nodes in the SubCube+ of the query

bit vector). By comparing XCube and NAIVE-XCube, we can study the

110

performance gain in XCube as a result of replicating the structure summaries.

• PC-XCube. PC-XCube builds on and extends XCube to incorporate parent-

child (PC) relationships in generating bit-vectors. All other protocols (e.g.,

routing, querying, searching) remain the same as that of XCube. Basically,

every PC relationship is treated as a tag, which can be represented as P/C,

where P is the parent node name and C is the child node name in the synop-

sis. The bit vector is derived by hashing all tag names and P/C patterns. For

queries, their tags and PC relationships are also encoded in the same man-

ner. However, ancestor-descendant (“//”) relationships are omitted. Note

that this poses no problem in terms of finding the final answers as such

relationships are checked in the query’s anchor node (through the compar-

ison between the query and the synopses). Given that PC-XCube encodes

more information, it is expected to lead to fewer false positives in phase 1, a

shorter computation time at the anchor peer, and fewer peers to be searched

for matching synopsis in phase 2. However, as more bits in the bit vector has

to be set, it also means that peers with matching synopses may be further

away (in terms of hops). Comparing XCube and PC-XCube allows us to

evaluate the benefit of complex encoding schemes (in our case, the additional

PC relationships).

• IFT. IFT is the inverted-file tag-based scheme. By comparing XCube and

IFT, we show the advantages of indexing XML documents on the complete

synopsis over separate tags in it.

111

6.5.1 Data and Query Generation

The XML research community has relied on many real data and benchmark data

to test and evaluate their works in centralized systems, such as INEX2 (real),

XMark3 (benchmark) and XBench [97] (benchmark). However, these data are not

suitable for a large scale P2P network where the XML documents are diverse, their

structures are more heterogeneous and many similar structures are used to describe

data on the same topics. Therefore, we generated syntactic data (essentially the

structure summary of XML documents) to evaluate the performance of XCube.

To generate heterogeneous structures, we project a number of (document and

query) trees from a real, large industrial DTD, NITF4, and distort their tag names

afterwards. In this way, we can model users describing the data with a subset of

tags even if they agree on several common DTDs. Such scenarios are supported by

DTDs mainly with the two options, ‘*’ and ‘?’. Therefore, we simulate such cases

with smaller XML trees. First, we define the number of clusters existing in the net-

work to be 50 to simulate many different user interests. The structure summaries in

each cluster describe documents on the same topic and thus have similar structures

and tags. Each synopsis is essentially represented as a tree (IDREF is omitted for

simplicity, but XCube can also index synopses with IDREF or route queries with

such constraints). The cluster sizes follow a Gaussian distribution. Second, a topic

tree is projected from the original XML tree for each cluster. Each tag name in

the topic tree of a cluster is concatenated with the cluster ID, so that there are

many tags of different names in the entire corpus. Finally, a number of instance

trees are projected from the topic tree. In a new tree, all relationships between

two directly connected nodes are set to parent-child relationships. The instance

2http://inex.is.informatik.uni-duisburg.de
3http://monetdb.cwi.nl/xml
4http://www.nitf.org

112

Table 6.1: Experiment Settings.

Parameters Default values Ranges
virtual peer ratio 0.4 [0.1, 0.5]
query size 6 [3, 10]
network size 2000 [1000, 10000]
synopsis size 40 [10, 100]
bit map dimension 4 [2, 6]
bit map partitions per dimension 20 [5, 30]

trees have different number of tags. The default range is 40-45 tags in our study.

Each instance tree is treated as a synopsis and 100 XML documents are generated

from it with different contents. The values of a type of element follow Gaussian

distribution. Query trees are projected from instance trees in a similar manner

with fewer tags. The predicates in a query is generated based on some existing

elements in a document. To show the effectiveness of the bit map, one document

is summarized with one bit map5 and only equality queries are considered.

6.5.2 Experiment Settings

We implemented four tag-based schemes: XCube, NAIVE-XCube, PC-XCube, and

IFT. We have conducted many studies, and present representative results on the

effects of some parameters: query size, network size and synopsis size. The default

settings and the range of these parameters are listed in Table 6.1. For fair com-

parison, we adapt the load balance technique [28] to the IFT-base scheme as well.

All terms are hashed using MD5 hash function. The length of the hash value is

120 bits, so we set the dimension of the hypercube to 120. Because the processing

on structural constraints and predicate constraints are orthogonal, we present their

costs separately. The results before subsection 6.5.4 are for finding relevant syn-

5If a document can be summarized with multiple bit maps, the bit maps can be built with
more bits, and thus they are more accurate.

113

 0

 50

 100

 150

 200

 250

 1000 3000 5000 7000 9000

#H
op

s

Network Size

Naive
PC-XCube

XCube

Figure 6.7: Comparison among XCube, NAIVE-XCube and PC-XCube.

opses to a query (on structural constraints only); and subsection 6.5.4 presents the

cost on routing a query to the related owner peers according to the predicates. The

routing cost on predicates is the same for all the implemented tag-based schemes.

Our study is based on simulation, and all experiments are conducted on an Intel

Xeon 3.0GH CPU Server with 18GB RAM (2GB in use).

6.5.3 Comparing XCube, NAIVE-XCube and PC-XCube

Since XCube, NAIVE-XCube and PC-XCube are essentially variants of the tag-

based approach, we first compare their performance.

Figure 6.7 shows the performance of XCube, NAIVE-XCube and PC-XCube

in networks of various sizes. As expected, NAIVE-XCube does not scale with the

network size. Both PC-XCube and XCube are highly scalable. However, contrary

to expectation, PC-XCube costs more hops than XCube. Our investigations con-

clude that capturing additional structural information does not guarantee all false

positive results are filtered out. Therefore, the anchor peer of a query still must

114

Table 6.2: Local process at anchor peers.
PC-XCube XCube

query size #CS #FS Time(ms) #CS #FS Time(ms)
4 579.00 7.86 7.55 253.56 8.29 7.58
5 251.83 4.16 4.08 101.53 4.56 4.32
6 99.91 2.64 2.66 46.14 2.95 2.89
7 39.41 1.92 2.01 22.91 2.16 2.21
8 17.02 1.57 1.74 13.34 1.68 1.81
9 8.36 1.33 1.53 8.99 1.4 1.57

check all answer candidates against the query and then forward the query to all

related indexing peers. The cost, in terms of number of hops, to find the anchor

peer for a query are about the same for the two schemes, both are bounded by

log N (phase 1). The key factor for the different cost is the number of indexing

peers to visit (phase 2). In XCube, the number of 1-bits in a bit vector is bounded

by the number of tags, while in PC-XCube, the bound is doubled6. The bit vectors

are sparsely distributed in the hypercube space in PC-XCube, so XML documents

with similar synopses are indexed in peers with longer distance. On the other hand,

in XCube, similar synopses are indexed in closer peers and hence fewer number of

hops are needed.

We note that XCube needs to process an XPath query against some synopses

stored at the anchor peer of the query. As the number of synopses might be large,

the computational overhead may be significant. This study evaluates the processing

time for anchor peers to choose relevant synopses. Every synopsis is stored as an

XML document in the hard disk of an anchor peer. The anchor peer selects all

synopses that can answer the query structurally in two steps. In the first step,

for each synopsis whose bit vector covers the query bit vector (termed as coarse

synopsis), the anchor peer checks if it contains all the tag names in the query. This

6The number of edges in a tree is (T−1), where T is the number of nodes in the tree. Therefore,
the number of 1-bits in the bit vector is bounded by 2N .

115

is to prune away false positives that arise because of collisions in the mapping, i.e,

different tags are mapped to the same position in the bit vector. In the second step,

Xalan7 is employed to evaluate the query on structural constraints against every

synopsis chosen in step one (termed as fine synopsis). The total processing time of

the two steps is measured. Table 6.2 shows the results, with abbreviations: #CS for

the number of coarse synopses, #FS for the number of fine synopses and Time(ms)

for the process time in millisecond. PC-XCube checks more coarse synopses than

XCube because more 1-bits in bit vectors introduce more false positives. However,

it can be done much more efficiently (simply containment checking) comparing with

structure checking, which is a tree matching operation. The number of fine synopses

PC-XCube needs to check is fewer than that of XCube because the parent-child

relationships prune away some synopses. Therefore, PC-XCube is slightly faster

than XCube for the entire processing time. Although tree matching is expensive,

the process turns out to be very efficient due to two reasons. First, the number

of nodes in a synopsis is much smaller than the number of nodes in a document.

Second, the number of candidates to check is small also. The shorter a query is,

the more potential relevant synopses to check. As shown, the average processing

time in an anchor peer is negligible. Moreover, an anchor peer does not need to

wait till all synopses are checked. Once a synopsis is judged as relevant, a message

is sent to its indexing peer.

To summarize, XCube outperforms NAIVE-XCube and PC-XCube. In partic-

ular, the fact that it is superior over PC-XCube makes it attractive given that it is

simpler to implement. For the rest of this section, we shall focus on XCube only.

7http://xml.apache.org/xalan-j/

116

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f
L

oa
d

Cumulative Percentage of Peers

IFT
XCube

Ideal

Figure 6.8: Overhead load distribution comparison.

6.5.4 Comparing XCube and IFT

In this section, we shall evaluate the performance of XCube and IFT.

Load Distribution

First, we study the load distribution on the overhead across the peers in the system.

The overhead includes the index maintenance overhead (owner peers need to ping

anchor peers periodically) and the query processing overhead (anchor peers need

to process the query against the bit maps and forward the query to related owner

peers). Therefore, we can easily see that the overhead is proportional to the number

of complete metadata a peer stores. Figure 6.8 shows the load for 2000 peers, with

40 distinct tag names in each document. Peers are sorted according to the number

of indices they store in descending order. The x-axis shows the percentage of peers

and the y-axis shows the percentage of indices they maintain in the system. The

perfectly balanced load is presented in the dashed straight line (Ideal). Clearly,

indices are more balanced in XCube than in IFT. The reason is that the load

117

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f
L

oa
d

Cumulative Percentage of Peers

XCube-0%
XCube-20%
XCube-40%

Ideal

Figure 6.9: Storage load distribution with various number of virtual peers.

of popular tag names are shared by many different related synopses in XCube.

The peers with more metadata entries are typically more likely to be contacted

by some query anchor peers and thus receive more queries. We assume the query

distribution follows the data distribution. However, it is straightforward to tune the

data distribution by introducing weight to documents according to their popularity

if necessary.

Figure 6.9 presents the cumulative percentage of synopses stored by cumulative

percentage of peers to show the effectiveness of virtual peers. Peers are sorted

according to the number of synopses they store in descending order. XCube-x%

represents that x% peers are chosen to join the network again as virtual peers.

Ideally, every peer should store a similar number of synopses (the “Ideal” line).

Without any virtual peers, 5% of peers store more than 40% of synopses; while

some virtual peers are involved, it is reduced to 25%. In [67], the study has shown

that at least 70% peers have broadband or even faster connections, while at most

30% peers make the connections through dial-up modems in Napster and Gnutella.

118

 0

 30

 60

 90

 120

 150

 180

 2000 4000 6000 8000 10000

#H
op

s

Network Size

IFT
XCube

Figure 6.10: Comparison on various network sizes.

Therefore, we believe that employing 40% of peers as virtual peers are very feasible.

When more capable peers are in charge of additional subcubes as virtual peers, the

load is more balanced. This is because the nodes corresponding to many synopses

are assigned to more peers.

Varying Network Size

In another experiment, we compare XCube and IFT by varying the network sizes.

The results are shown in Figure 6.10. In XCube, the major cost is consumed by

the anchor peer to forward the query to the indexing peers that store relevant

synopses. Once a query is routed to its anchor peer (in log N hops), the distances

between the anchor peer and the indexing peers are not affected by the network

size significantly. The routing cost is closely related to the distance between the

query’s bit vector and the relevant synopses’ bit vectors. On the other hand, in

IFT, the total cost is the sum of costs of all individual point (tag) queries, and the

cost of each point query (in terms of the number of hops) is closely related to the

119

 0

 40

 80

 120

 160

 3 4 5 6 7 8 9

#H
op

s

Query Size

IFT
XCube

Figure 6.11: Comparison on various query sizes.

network size, N . Hence, XCube is less sensitive to the network size than IFT.

Varying Query Size

Next, we present the performance of the two schemes by varying the query size

(the number of tags in a query). The results are shown in Figure 6.11. XCube

outperforms IFT when the query size is larger than 4. The two schemes give two

contrasting trends: XCube performs better when the query size is larger; while

IFT is superior for shorter queries. The reasons are straightforward. In XCube, a

query of large size means more 1-bits in the query bit vector, so the anchor peer

of the query is nearer to the anchor peers of the related documents. In IFT, a

shorter query means fewer peers to visit. As XML queries tend to be more specific

and contain more tag information (as can be seen in the benchmark queries in

traditional benchmark datasets), this result shows that XCube is a promising and

more effective scheme over the IFT scheme.

120

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

#H
op

s

Synopsis Size

IFT
XCube

Figure 6.12: Comparison on various synopsis sizes.

Varying Synopsis Size

In Figure 6.12, we show the results for the performance of XCube and IFT on

various synopsis sizes. The x-axis is the synopsis size, the y-axis is the number of

hops to route a query on average. The cost of IFT does not change much when the

synopsis size increases. This shows that the performance of IFT is not affected by

synopsis sizes, but mainly by the query size and network size. XCube incurs more

hops when the synopsis size increases because the distance between the anchor peer

of the query and the anchor peers of related documents are larger. In practice, the

synopsis size is usually much smaller than 100.

Efficiency comparison

We compare the efficiency of XCube and IFT in Figure 6.13. Here, we examine the

time (in terms of the number of hops) that answers are progressively returned. As

shown in the figure, XCube incrementally returns answers to a query as they are

produced, while IFT can only start to generate output when the metadata of the

121

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80 90 100

#R
es

po
ns

e
H

op
s

Answer Percentage

IFT
XCube

Figure 6.13: Efficiency comparison.

last tag is returned. From the figure, we can see that it takes around 18 hops for

XCube to return the first answer and around 23 hops to return the last answer; on

the other hand, IFT returns answers after the metadata of all tags are retrieved at

about 27 hops. Clearly, XCube is more efficient than IFT, because XCube starts

to find answers once the query is routed to its anchor indexing peer.

Effectiveness of bit maps

Finally, we evaluate the effectiveness of bit maps on pruning away irrelevant doc-

uments in Figure 6.14. The size of a bit map is determined by two factors: the

dimension of the bit map and the number of partitions in each dimension. BitMap-

p indicates that each dimension is divided into p partitions. The x-axis is the bit

map dimension; and the y-axis is percentage of positive answers. We can see clearly

from the figure that the accuracy of a bit map increases when the dimension or the

number of partitions increases. In the best case where the bit map represents data

of 6 dimensions and each dimension is partitioned into 10 segments, the size of the

122

 0

 20

 40

 60

 80

 100

 2 3 4 5 6

Pe
rc

en
t o

f
Po

si
tiv

e

Bit Map Dimension

BitMap-4
BitMap-6
BitMap-8

BitMap-10

Figure 6.14: Effectiveness of bit maps.

bit map is 106/8 ≈122K bytes. For a shared XML document, the owner peer only

needs to index its bit map in one anchor peer (a transmission of 122K bytes data

can even be finished in a few seconds for a dial-up peer). We believe that such bit

maps are commonly acceptable in terms of both storage cost and bandwidth cost.

In summary, XCube offers more balanced load, requires fewer messages to com-

plete routing a query and fewer messages to obtain the first and last answers, and

is clearly superior over IFT.

6.6 Summary

In this chapter, we have presented the design and evaluation of XCube, a system

to process XPath queries over a P2P network. In XCube, an XML document is

indexed based on its structure summary and content summary in a hypercube

overlay network. The two types of summaries and the complete metadata are

indexed in the anchor peer of the document. Then the structure summary alone

123

is further indexed in the SubCube−. The IP address of the owner peer is excluded

in the SubCube−. An XPath query is processed in 4 phases. In phase 1, the bit

vector of the query is derived to locate the anchor peer of the query. In phase 2, the

query is evaluated on the structural constraints and then forwarded to the anchor

peers of the related documents. In phase 3, the predicates are examined based on

the content summary in every anchor peer of involved document. In phase 4, the

query is forwarded to the related owner peer according to its IP address stored in

the document’s anchor peer. The owner peers then evaluate the query against the

related XML documents and return the answer to the querying peer.

XCube offers the following advantages over traditional methods. First, the

load in XCube is more balanced, which is extremely important for a P2P network.

Balanced load ensures that peers share load fairly and the network is relatively

stable. Load balancing is accomplished automatically with few user efforts. Second,

users do not need to know the precise information about remote XML schemas.

They can issue queries over XML elements or structures according to their demands

including queries involving ancestor-descendant relationships and wildcards. Third,

answers to a query are returned incrementally. This is also an important feature

for P2P applications as users can refine the query or issue a new query earlier in

case of poor quality queries. Our comprehensive experimental study shows that

XCube is adaptive to varying query sizes and scalable to large P2P networks and

outperforms several other methods (NAIVE-XCube, PC-XCube and IFT).

Chapter 7

Conclusion

In this chapter, we summarize the contributions of the thesis and discuss some

future works.

7.1 Summary of Contributions

This thesis focuses on keyword-based search in P2P networks. We propose SPRITE

to build partial distributed index for text data first. Then, CYBER is proposed to

exploit relevance feedback in a community basis. Last, keyword-based search on

structure information of XML data is supported in XCube.

Many documents are shared in P2P networks. Building a complete index on

every document in a DHT network is impractical, because the construction and

maintenance of such index is extremely expensive. SPRITE builds a partial index

on a small number of representative terms. Progressively, the index is refined by

learning from query history, so that the documents can still be found even if the

user interests change. We conducted a comprehensive simulation study to show

that SPRITE performs nearly as good as a centralized system with complete index

in terms of precision and recall. SPRITE also outperforms a static partial indexing

124

125

scheme by a wide margin.

Thereafter, we propose CYBER to enhance the search quality by involving

community-based relevance feedback. Different from the traditional relevance feed-

back techniques, CYBER frees users from selecting a set of relevant answers and

waiting for the re-evaluation. Every group of users with a similar interest construct

a community. Users of the same community are discovered by matching user pro-

files and document profiles when routing queries in a DHT network. Given a query,

CYBER leverages on the community based feedback to refine the queries on-the-fly.

The user profiles and document profiles are updated by the system automatically so

that query patterns are always reflected in the profiles. Our extensive experimen-

tal study showed that CYBER outperforms the traditional single-user relevance

feedback technique, because user feedbacks are accumulated in a community.

Besides processing simple queries on pure text data, we also investigate keyword-

based queries on data of richer format, XML data. In XCube, the structure sum-

mary and content summary are indexed for a shared XML document in various

peers. Instead of indexing every individual tag name, XCube indexes the synopsis

of an XML document as one entry. Indexing content summaries can prune away a

large portion of documents that fulfill the structural constraints but not predicate

constraints. XPath queries are routed to indexing peers responsible for related syn-

opses. XCube offers the following advantages over traditional methods. First, the

load in XCube is balanced as popular tag names are distributed to various synopses

containing them. Balanced load ensures that peers share load fairly and the net-

work is relatively stable. Second, users do not need to know the precise information

about remote XML schemas. They can issue queries over XML elements or struc-

tures according to their demands including queries involving ancestor-descendant

relationships and wildcards. Third, answers to a query are returned incrementally.

126

This is also an important feature for P2P applications as users can refine the query

or issue a new query earlier in case of poor quality queries. Our comprehensive ex-

perimental study shows that XCube is adaptive to varying query sizes and scalable

to large P2P networks and outperforms several other methods (NAIVE-XCube,

PC-XCube and IFT).

7.2 Future Work

In this section, we suggest the following major possible research directions as future

work.

7.2.1 Searching pure text data

Term positions

We have seen that SPRITE successfully reduces index size and CYBER improves

search quality with community-based feedback. There are still some aspects, in

which search quality can be further improved. Techniques in the literature have

been focusing on simple formulas to calculate term weights. The relationships

among query terms are not considered. Their positions in documents are not

fully utilized. Intuitively, terms appearing in the same sentence is more important

than terms appearing in the same paragraph/document. Such information has

been used to calculate term weights in centralized systems. However, keeping

such information in a P2P network can easily increase the size of an inverted list

dramatically. Methods to optimize building such complex index, such as combining

some terms, in a distributed environment are desired in future research.

127

Searching queries

Answer-based applications become popular recently, such as “Yahoo! Answers”1

and “Baidu Zhidao”2. Such applications empowers users to participate a huge

community more deeply. Indexing queries in a P2P network is straightforward,

but maintaining the answers (documents) is non-trivial. Replication algorithms

should be introduced to incorporate searching and replicating large chunk of text

data. Moreover, the answers should be searchable to the users as well. The answers

should be ranked first, which involves user interactions. The top answers can then

be labeled by some queries, summarized and indexed. New techniques are required

to accomplish these tasks.

7.2.2 Searching richer text data

XML is commonly accepted as data exchange format for its text nature. In XCube,

most irrelevant documents are pruned away by checking structural constraints and

predicates when routing a query. However, pure keyword search on XML documents

is useful because of its simplicity. A compact fragment of the relevant document,

instead of the entire document, should be returned as a result. The main challenge

is how to reduce index maintenance cost. Summarizing schemes are not applicable

in this case because a large number of keywords can be queried in a data-centric

document. A possible solution is to cluster similar XML documents/fragments first,

and then build index on every cluster. The index can also be built in just-in-time

manner to further reduce the index entries.

1answers.yahoo.com
2http://zhidao.baidu.com

128

7.2.3 Browsing

When Web users look for some useful information, the two major actions are search-

ing and browsing. Keyword-based search usually leads a user to some relevant

data sources. The user usually can find additional information by browsing from

the sources. In a P2P network, browsing is still weakly supported either within a

peer or across peers. How can we browse related data stored in various peers from

a peer that is discovered by a normal keyword query? The key challenge is how

to link related data/peers effectively. More specifically, there are two problems:

(i) grouping similar documents in a P2P network and (ii) identify some important

phrases as anchor text, like the hyperlinks in Web. New algorithms are required to

accomplish these tasks.

Bibliography

[1] K. Aberer. P-Grid: A self-organizing access structure for P2P information

systems. In Proceedings of the 6th CoopIS Conference, pages 179–194, 2001.

[2] S. Abiteboul, I. Manolescu, and N. Preda. Constructing and querying a

peer-to-peer warehouse of XML resources. In Semantic Web and Databases

Workshop, pages 219–225, 2004.

[3] I. Aekaterinidis and P. Triantafillou. Pastrystrings: A comprehensive content-

based publish/subscribe dht network. In Proceedings of the 26th IEEE Inter-

national Conference on Distributed Computing Systems, page 23, 2006.

[4] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for keyword-

based search over relational databases. In ICDE ’02: Proceedings of the

18th International Conference on Data Engineering, page 5, Washington,

DC, USA, 2002. IEEE Computer Society.

[5] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Struc-

ture and content scoring for xml. In Proceedings of the 31st VLDB Confer-

ence, pages 361–372, Trondheim, Norway, 2005.

[6] E. Anceaume, M. Gradinariu, A. K. Datta, G. Simon, and A. Virgillito. A

semantic overlay for self- peer-to-peer publish/subscribe. In Proceedings of

129

130

the 26th IEEE International Conference on Distributed Computing Systems,

page 22, 2006.

[7] A. Andrzejak and Z. Xu. Scalable, efficient range queries for grid information

services. In Proceedings of the 2nd IEEE International Conference on Peer-

to-Peer Computing, 2002.

[8] J. Aspnes, J. Kirsch, and A. Krishnamurthy. Load balancing and locality in

range-queriable data structures. In PODC ’04: Proceedings of the twenty-

third annual ACM symposium on Principles of distributed computing, pages

115–124, 2004.

[9] J. Aspnes and G. Shah. Skip graphs. In Proceedings of the 14th Annual

ACM-SIAM Symposium on Discrete Algorithms, 2003.

[10] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval.

ACM Press / Addison-Wesley, 1999.

[11] G. Beydoun, R. Kultchitsky, and G. Manasseh. Evolving semantic web with

social navigation. Expert Syst. Appl., 32(2):265–276, 2007.

[12] A. Bonifati, U. Matrangolo, A. Cuzzocrea, and M. Jain. XPath lookup queries

in p2p networks. In WIDM’04: Proceedings of the 6th annual ACM inter-

national workshop on Web information and data management, pages 48–55,

New York, NY, USA, 2004. ACM Press.

[13] J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for dis-

tributed hash tables. In 2nd International Workshop on Peer-to-Peer Systems

(IPTPS), 2003.

[14] J. Callan. Distributed information retrieval. In Advances in information

retrieval, pages 127–150, 2000.

131

[15] J. Callan and M. Connell. Query-based sampling of text databases. ACM

Transactions on Information Systems, 19(2):97–130, 2001.

[16] D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, Y. S. Maarek,

and A. Soffer. Static index pruning for information retrieval systems. In

Proceedings of the 24th annual International ACM SIGIR Conference, pages

43–50, 2001.

[17] R. Chand and P. Felber. Semantic peer-to-peer overlays for publish/subscribe

networks. In Euro-Par, pages 1194–1204, 2005.

[18] H. Chen, H. Jin, J. Wang, L. Chen, Y. Liu, and L. M. Ni. Efficient multi-

keyword search over p2p web. In WWW ’08: Proceeding of the 17th interna-

tional conference on World Wide Web, pages 989–998, 2008.

[19] L. Chen, B. Cui, H. Lu, L. Xu, and Q. Xu. iSky: Efficient and progres-

sive skyline computing in a structured p2p network. Proceedings of the 28th

International Conference on Distributed Computing Systems, pages 160–167,

2008.

[20] P.-A. Chirita, C. S. Firan, and W. Nejdl. Summarizing local context to

personalize global web search. In CIKM ’06: Proceedings of the 15th ACM

international conference on Information and knowledge management, pages

287–296, 2006.

[21] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems.

In Proceedings of the 22nd ICDCS Conference, July, 2002.

[22] B. Cui, H. Lu, Q. Xu, L. Chen, Y. Dai, and Y. Zhou. Parallel distributed

processing of constrained skyline queries by filtering. In ICDE, 2008.

132

[23] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards

a common api for structured peer-to-peer overlays. In 2nd International

Workshop on Peer-to-Peer Systems (IPTPS), pages 33–44, 2003.

[24] Extensible Markup Language (XML). www.w3.org/xml/.

[25] L. Galanis, Y. Wang, S. Jeffery, and D. DeWitt. Locating data sources in

large distributed systems. In Proceedings of VLDB’03, pages 874–885, Berlin,

Germany, 2003.

[26] L. Galanis, Y. Wang, S. R. Jeffery, and D. J. Dewitt. Processing queries in

a large peer-to-peer system. In Proceedings of the 16th CAiSE Conference,

pages 273–288, 2003.

[27] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-

partitioned data with applications to peer-to-peer systems. In Proceedings of

VLDB’04, pages 444–455, 2004.

[28] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-

partitioned data with applications to peer-to-peer systems. In Proceedings of

VLDB’04, pages 444–455, 2004.

[29] O. D. Gnawali. A keyword-set search system for peer-to-peer networks.pdf.

In Master thesis. Massachusetts Institute of Technology, 2002.

[30] Gnutella Development Home Page. http://gnutella.wego.com/.

[31] R. Goldman and J. Widom. Dataguides: Enabling query formulation and

optimization in semistructured databases. In Proceedings of VLDB’97, pages

436–445, 1997.

133

[32] L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK: ranked

keyword search over xml documents. In SIGMOD ’03: Proceedings of the

2003 ACM SIGMOD international conference on Management of data, pages

16–27, 2003.

[33] W. Hersh, C. Buckley, T. Leone, and D. Hickam. Ohsumed: An interactive

retrieval evaluation and new large test collection for research. In SIGIR, 1994.

[34] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style keyword

search over relational databases. In Proceedings of the 29th international

conference on Very large data bases, pages 850–861. VLDB Endowment, 2003.

[35] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in relational

databases. In VLDB ’02: Proceedings of the 28th international conference on

Very Large Data Bases, pages 670–681. VLDB Endowment, 2002.

[36] V. Hristidis and Y. Papakonstantinou. Keyword proximity search in xml

trees. IEEE Trans. on Knowl. and Data Eng., 18(4):525–539, 2006.

[37] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: a balanced tree structure

for peer-to-peer networks. In VLDB’05: Proceedings of the 31st international

conference on Very large data bases, pages 661–672, 2005.

[38] Y. J. Joung, C. T. Fang, and L. W. Yang. Keyword search in DHT-based

peer-to-peer networks. In Proceedings of ICDCS’05, pages 339–348, 2005.

[39] D. J.Watts, P. S. Dodds, and M. J. Newman. Identity and search in social

networks. Science, 296, 2002.

[40] G. Karypis and E.-H. Han. Concept indexing: A fast dimensionality reduc-

tion algorithm with applications to document retrieval and categorization.

Technical report tr-00-0016, University of Minnesota, 2000.

134

[41] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth. Covering indexes

for branching path queries. In Proceedings of ACM SIGMOD’02, pages 133–

144, 2002.

[42] G. Koloniari and E. Pitoura. Content-based routing of path queries in peer-

to-peer systems. In Proceedings of the EDBT Conference, 2004.

[43] D. L. Lee, H. Chuang, and K. Seamons. Document ranking and the vector-

space model. IEEE Software, 14(2):67–76, 1997.

[44] U. Lee, Z. Liu, and J. Cho. Automatic identification of user goals in web

search. In WWW ’05: Proceedings of the 14th international conference on

World Wide Web, pages 391–400, 2005.

[45] H. Li, Q. Tan, and W.-C. Lee. Efficient progressive processing of skyline

queries in peer-to-peer systems. In InfoScale ’06: Proceedings of the 1st

international conference on Scalable information systems, page 26, 2006.

[46] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger, and R. Morris. On

the feasibility of peer-to-peer web indexing and search. In 2nd International

Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[47] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-dimensional range

queries in sensor networks. In Proceedings of Communications of the ACM,

2003.

[48] Y. Li, M. T. Özsu, and K.-L. Tan. XCube: Processing XPath queries in a

hypercube overlay network. Peer-to-Peer Networking and Applications, 2008.

[49] Y. G. Li, H. V. Jagadish, and K.-L. Tan. Sprite: A learning-based text

retrieval system in dht networks. In ICDE, pages 1106 – 1115, 2007.

135

[50] Y. G. Li, L. D. Shou, and K.-L. Tan. Cyber: Community-based search

engine. In proceedings of the 8th International Conference on Peer-to-Peer

Computing (P2P), Aachen, Germany, September 8-11, 2008.

[51] C. Y. Liau, S. Bressan, and A. N. Hidayanto. Adaptive peer-to-peer rout-

ing with proximity. In Proceedings of The 14th International Conference on

Database and Expert Systems Applications (DEXA), 2003.

[52] A. Löser, S. Staab, and C. Tempich. Semantic social overlay networks. IEEE

JSAC, 25(1):5–14, 1 2007.

[53] J. Lu and J. Callan. Content-based retrieval in hybrid peer-to-peer net-

works. In Proceedings of the 12th International Conference on Information

and Knowledge Management, pages 199–206. ACM Press, 2003.

[54] Lucene Home Page. http://lucene.apache.org/.

[55] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in un-

structured peer-to-peer networks. In Proceedings of 16th ACM International

Conference on Supercomputing, New York, USA, June, 2002.

[56] G. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in

a small world. In Proceedings of USITS, 2003.

[57] A. Mislove, K. P. Gummadi, and P. Druschel. Exploiting social networks for

internet search. In HotNets, 2006.

[58] P. Ogilvie and J. Callan. The effectiveness of query expansion for distributed

information retrieval. In Proceedings of the 10th International Conference on

Information and Knowledge Management, pages 183–190, 2001.

136

[59] O. Papapetrou, S. Michel, M. Bender, and G. Weikum. On the usage

of global document occurrences in peer-to-peer information systems. In

CoopIS/DOA/ODBASE (1), 2005.

[60] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Scalable peer-to-

peer web retrieval with highly discriminative keys. In ICDE, pages 1096–1105,

2007.

[61] N. Polyzotis and M. Garofalakis. XSKETCH synopses for XML data graphs.

ACM Trans. Database Syst., 31(3):1014–1063, 2006.

[62] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load

balancing in structured p2p systems. In 2nd International Workshop on

Peer-to-Peer Systems (IPTPS), 2003.

[63] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable

content-addressable network. In SIGCOMM, 2001.

[64] P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching. In

Proceedings of the International Middleware Conference, June, 2003.

[65] M. Roussopoulos and M. Baker. Practical load balancing for content requests

in peer-to-peer networks. Distributed Computing, 18(6):421–434, June 2006.

[66] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location

and routing for large-scale peer-to-peer systems. In IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), 2001.

[67] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of

peer-to-peer file sharing systems. In Proc. ofMultimedia Computing and Net-

working, 2002.

137

[68] C. Sartiani, P. Manghi, G. Ghelli, and G. Conforti. XPeer: A self-organizing

XML P2P database system. In Proceedings of the First EDBT Workshop on

P2P and Databases, 2004.

[69] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. HyperCuP - hypercubes,

ontologies and efficient search on P2P networks. In Workshop on Agents and

P2P Computing, pages 112–124, 2002.

[70] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Shaping up peer-to-peer

networks. Technical report, Stanford University, 2002.

[71] C. Schmidt and M. Parashar. Flexible information discovery in decentralized

distributed systems. In Proceedings of the 12th IEEE International Sympo-

sium on High Performance Distributed Computing, 2003.

[72] U. Shardanand and P. Maes. Social information filtering: Algorithms for

automating “word of mouth”. In CHI, 1995.

[73] X. Shen, B. Tan, and C. Zhai. Implicit user modeling for personalized search.

In CIKM, pages 824–831, 2005.

[74] Z. Shen and S. Tirthapura. Approximate covering detection among content-

based subscriptions using space filling curves. In Proceedings of the 27th

International Conference on Distributed Computing Systems, page 2, 2007.

[75] Y. Shu, B. C. Ooi, K.-L. Tan, and A. Zhou. Supporting multi-dimensional

range queries in peer-to-peer systems. In Proceedings of the Fifth IEEE Inter-

national Conference on Peer-to-Peer Computing, pages 173–180, Washington,

DC, USA, 2005.

[76] L. Si and J. Callan. The effect of database size distribution on resource

selection algorithms, 2003.

138

[77] L. Si and J. Callan. Relevant document distribution estimation method for

resource selection, 2003.

[78] C. Silverstein, M. Henzinger, H. Marais, and M. Moricz. Analysis of a very

large alta vista query log. In Digital System Research Center, Technical

Report 1998-014, Oct, 1998.

[79] G. Skobeltsyn, M. Hauswirth, and K. Aberer. Efficient processing of XPath

queries with structured overlay networks. In OTM Conferences, pages 1243–

1260, 2005.

[80] G. Skobeltsyn, T. Luu, K. Aberer, M. Rajman, and I. P. Zarko. Query-driven

indexing for peer-to-peer text retrieval. In WWW, pages 1185–1186, 2007.

[81] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. In SIGCOMM,

2001.

[82] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I. Stoica.

Load balancing in dynamic structured peer-to-peer systems. Perform. Eval.,

63(3):217–240, 2006.

[83] C. Tang and S. Dwarkadas. Hybrid global-local indexing for efficient peer-

to-peer information retrieval. In NSDI, 2004.

[84] C. Tang, S. Dwarkadas, and Z. Xu. On scaling latent semantic indexing for

large peer-to-peer systems. In Proceedings of the 27th annual International

ACM SIGIR Conference, Sheffield, UK, 2004.

[85] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using

self-organizing semantic overlay networks. In SIGCOMM, 2003.

139

[86] Q. Wang and M. T. Özsu. A data locating mechanism for distributed XML

data over P2P networks. In Technical report CS-2004-45, University of Wa-

terloo, 2004.

[87] S. Wang, B. C. Ooi, A. K. H. Tung, and L. Xu. Efficient skyline query

processing on peer-to-peer networks. In ICDE, pages 1126–1135, 2007.

[88] X. Wang and C. Zhai. Learn from web search logs to organize search results.

In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR

conference on Research and development in information retrieval, pages 87–

94, 2007.

[89] S. Wu, J. Li, B. C. Ooi, and K.-L. Tan. Just-in-time query retrieval over

partially indexed data on structured p2p overlays. In SIGMOD ’08: Proceed-

ings of the 2008 ACM SIGMOD international conference on Management of

data, pages 279–290, New York, NY, USA, 2008. ACM.

[90] Y. Xie and D. O’Hallaron. Locality in search engine queries and its implica-

tions for caching. In Proceedings of IEEE Infocom 2002, July, 2002.

[91] XML Path Language (XPath). www.w3.org/tr/xpath/.

[92] XQuery 1.0: An XML Query Language. www.w3.org/tr/xquery/.

[93] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest lcas

in xml databases. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD

international conference on Management of data, pages 527–538, 2005.

[94] H. Yamamoto, D. Maruta, and Y. Oie. Replication methods for load bal-

ancing on distributed storages in p2p networks. In SAINT, pages 264–271,

2005.

140

[95] B. Yang and H. Garcia-Molina. Improving search in peer-to-peer networks.

In Proceedings of the 22nd ICDCS Conference, 2002.

[96] B. Yang and H. Garcia-Molina. Designing a super-peer network. In Proceed-

ings of the 18th International Conference on Data Engineering, 2003.

[97] B. B. Yao, M. T. Özsu, and N. Khandelwal. XBench benchmark and per-

formance testing of XML DBMSs. In Proceedings of ICDE’04, page 621,

2004.

[98] B. Yu, G. Li, K. Sollins, and A. K. H. Tung. Effective keyword-based selection

of relational databases. In SIGMOD ’07: Proceedings of the 2007 ACM

SIGMOD international conference on Management of data, pages 139–150,

2007.

[99] H.-J. Zeng, Q.-C. He, Z. Chen, W.-Y. Ma, and J. Ma. Learning to cluster

web search results. In SIGIR ’04: Proceedings of the 27th annual interna-

tional ACM SIGIR conference on Research and development in information

retrieval, pages 210–217, 2004.

[100] N. Zhang, M. T. Özsu, A. Aboulnaga, and I. F. Ilyas. XSEED: Accurate and

fast cardinality estimation for XPath queries. In Proceedings of ICDE’06,

page 61, 2006.

