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Summary 
 

Lipid droplets which consist of a highly hydrophobic core of neutral lipids and are 

surrounded by a monolayer of phospholipids are ubiquitously found in eukaryotic cells. 

Importantly, changes in cellular dynamics of lipid droplets are associated with many 

devastating diseases, such as obesity, diabetes, and atherosclerosis. Despite the obvious 

physiological and pathological importance of lipid droplets, the mechanism underlying 

the biogenesis of lipid droplets is largely obscure. Several mammalian proteins have been 

found to have an important role in lipid droplet biosynthesis, but many remain 

unidentified. 

The yeast Saccharomyces cerevisiae is a powerful model genetic system, and has 

proven invaluable to the understanding of many cellular processes, including lipid 

metabolism. In an effort to identify genes that regulate lipid droplet dynamics, I screened 

the entire collection of viable single-gene deletion yeast strains, and found 16 mutants 

with markedly reduced accumulation of lipid droplets and 117 mutants with increased 

accumulation of lipid droplets. The scope of the functions of identified genes is very 

broad. The finding that some mutants defective in protein glycosylation or ER-associated 

degradation displayed elevated synthesis of lipid droplets suggests that a link between ER 

stress and lipid droplet synthesis likely exists. 

A major discovery of this study is that yeast cells accumulate morphologically distinct 

lipid droplets due to the deletion of YLR404W. 3 classes of lipid droplets could be 

observed in ylr404w cells cultured in YPD medium: supersized lipid droplets with a 

diameter of 0.5 to 1.5 μm, amorphous aggregation of small/intermediate-sized lipid 
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droplets, loosely scattered and weakly stained tiny lipid droplets with a diameter of less 

than 0.1 μm. The lipid droplets of ylr404w cells demonstrated enhanced fusion both in 

vivo and in vitro, suggesting that the formation of supersized lipid droplets is very likely 

the result of fusion of small lipid droplets. 

Sequence homology search, prediction of secondary structure, and expression of 

human and mouse seipin in ylr404w cells indicate that Ylr404wp is an ortholog of seipin. 

Seipin mutations are implicated in human congenital generalized lipodystrophy, but the 

mechanism is unknown. In this dissertation, I present that there is a shift from long-chain 

(18:1) to medium/short-chain (16:0, 14:0, 12:0) in acyl chain pattern of phospholipids in 

ylr404w cells. This result may indicate that aberrant phopholipid metabolism is the 

unifying theme of lipodystrophy, considering that mutations of AGPAT2 and lipin also 

lead to lipodystrophy.  

This dissertation for the first time presents evidence that Ylr404wp regulates the size 

and morphology of lipid droplets. In addition, the functional domain of Ylr404wp appears 

to reside in the ER lumen. Our finding that YLR404W deletion results in a shift from 

long-chain to medium/short-chain fatty acid incorporation into phospholipids should open 

up new avenues of research into the role of seipin in adipogenesis. It is possible that 

seipin, AGPAT2, and lipin control adipogenesis through modulation of phospholipid 

metabolism. 

For future studies, whether there is a cause-effect relationship between the phenotypic 

acyl chain pattern of phospholipids and TAG of ylr404w cells and fusion of lipid droplets 

requires further investigation. Experiments are also needed to establish the role of 
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Ylr404wp/seipin in metabolism of phospholipids. Moreover, genetic seipin-knockout 

animal model or cell line is mandatory for understanding the role of seipin in the 

assembly of lipid droplets and adipogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 X



 

List of Tables 

 

Table 2-1. Primers used to replace IRE1 by HIS3 marker amplified from pFA6-His3MX6……..42 

Table 2-2. Primer sequence used for reverse transcription PCR to determine the mRNA levels of 

ARE1, ARE2, DGA1, and LRO1…………………………………………………………………..42 

Table 4-1. Genes identified in genome-wide screening for fld strains……………………………61 

Table 4-2. Genes identified in genome-wide screening for mld strains…………………………..61 

Table 4-3. The number of LDs of the WT cells and the mutants defective in protein glycosylation 

when cells were grown to stationary phase……………………………………………………….66 

Table 5-1 Prediction of transmembrane helix in Ylr404wp by TMHMM, HMMTOP, and 

SOSUI……………………………………………………………………………………………108 

Table 5-2, Prediction of transmembrane helices by TMHMM, HMMTOP, and SOSUI in proteins 

that exhibit sequence similarity to Ylr404wp……………………………………………………112 

Table 5-3. Proteins of LD-rich fractions isolated from the WT and ylr404w strains identified by 

MS (MALDI-TOF MS)………………………………………………………………………….124 

Table 6-1, Prediction of transmembrane helices by TMHMM and HMMTOP in human seipin and 

its homologs……………………………………………………………………………………...128 

Table 6-2. Normalized intensity of seven phosphatidyl inositol (PI) subspecies of ylr404w cells 

relative to WT and their difference………………………………………………………………135 

 

 

 

 XI



 

List of Figures 

 

Figure 1-1. Model of LD structure…………………………………………………………………2 

Figure 1-2. LDs are found among smooth ER……………………………………………………10 

Figure 1-3. Colocalization of LDs and the ER marker……………………………………………10 

Figure 1-4. TAG biosynthesis in liver via the phosphatidic acid pathway………………………..16 

Figure 1-5. TAG biosynthesis via the monoacylglycerol pathway………………………………..17 

Figure 1-6. The budding model of LD formation…………………………………………………20 

Figure 1-7. An alternative budding model according to Ploegh…………………………………..21 

Figure 1-8. The delivery model of LD formation…………………………………………………22 

Figure 2-1. Diagrams of vectors used for subcloning…………………………………………….39 

Figure 3-1. LD biogenesis does not depend on microtubule……………………………………...49 

Figure 3-2. LD biogenesis does not require F-actin………………………………………………50 

Figure 3-3. ER-to-Golgi transport is not essential in LD synthesis………………………………52 

Figure 3-4. Energy poisons cannot block oleate-induced LD formation…………………………54 

Figure 4-1. Nile red staining of LDs in the WT cells and selected mutants……………………...60 

Figure 4-2. Thin-section electron micrograph of WT cells and selected mutants………………...62 

Figure 4-3. Neutral lipids analysis of WT and fld strains…………………………………………64 

Figure 4-4. Mutants defective in protein glycosylation display more intracellular LDs………….65 

Figure 4-5. ERAD mutants accommodate more LDs…………………………………………….67 

Figure 4-6. Tm treatment induces LD formation in the WT cells and BFA in erg6 mutants at early 

log phase…………………………………………………………………………………………..69 

 XII



 

Figure 4-7. Addition of Mn2+ reduces the fatness of pmr1 cells………………………………….72 

Figure 4-8. Intracellular LDs and neutral lipids synthesis are not reduced after IRE1 was knocked 

out in strains defective either in protein glycosylation or ERAD………………………………...74 

Figure 4-9. Tm treatment induces LD formation in ire1 cells…………………………………….75 

Figure 4-10. Enzymes involved in neutral lipids synthesis are not upregulated in conditions of ER 

stress………………………………………………………………………………………………76 

Figure 4-11. [3H]oleate incorporation into neutral lipids of WT and cwh8 cells…………………78 

Figure 4-12. Expression level of Are1p and Lro1p in WT strain, cwh8 strain, and cwh8 strain 

transformed with YCplac111-CWH8 vector……………………………………………………...79 

Figure 4-13. Neutral lipids analysis of ade strains………………………………………………..84 

Figure 5-1. The ylr404w cells synthesize morphologically distinct LDs…………………………88 

Figure 5-2. Conventional transmission electron microscopy (TEM) of WT and ylr404w cells….90 

Figure 5-3. Culture media affect LD morphology in ylr404w cells………………………………91 

Figure 5-4. The spatial relationship between LDs and the ER in the ylr404w cells under TEM…95 

Figure 5-5. Fusion of LDs occurs in ylr404wΔ cells and this process requires only several 

seconds……………………………………………………………………………………………97 

Figure 5-6 LDs isolated from ylr404w cells Fuse in vitro………………………………………..98 

Figure 5-7. Fusion of LDs in the ylr404w strain requires filament actin (F-actin), but not 

microtubule…………………………………………………………………………………101-102 

Figure 5-8. Nucleotide sequence and deduced amino acid sequence for YLR404W…………….103 

Figure 5-9. Transformation of YLR404W gene complements the ylr404w phenotype…………..105 

Figure 5-10. Ylr404wp is an integral endoplasmic reticulum (ER) membrane protein…………107 

 XIII



 

Figure 5-11 Neither N-terminus nor C-terminus is essential for Ylr404wp’s function in LD 

formation………………………………………………………………………………………...110 

Figure 5-12. Overexpression of Ylr404wp does not lead to morphological change of LDs…….111 

Figure 5-13. Sequence alignment of Ylr404wp and its homologs via PROMALS……………...113 

Figure 5-14. Site-directed mutagenesis (SDM) of Ylr404wp………………………………115-116 

Figure 5-15. An identical motif observed both in Ylr404wp and mammalian FOXD4 proteins..118 

Figure 5-16. The PGPLLGAP motif is not essential for Ylr404wp’s function in LD formation..118 

Figure 5-17. Lipid analysis of WT and ylr404w cells…………………………………………...119 

Figure 5-18. Gross profiling of lipids extracted from LDs isolated from WT and ylr404w cells via 

thin layer chromatography (TLC)……………………………………………………………….121 

Figure 5-19. Protein pattern of LDs……………………………………………………………..124 

Figure 6-1. Sequence alignment of seipin and Ylr404wp via PROMALS………………………126 

Figure 6-2. Topology model of Ylr404wp and seipin based on the prediction of transmembrane 

helices by TMHMM……………………………………………………………………………..128 

Figure 6-3. Expression of human and mouse seipin in ylr404w cells rescues the defect in LD 

morphology………………………………………………………………………………………129 

Figure 6-4. Expression of the highly conserved (amino acids 1-280) region of seipin and various 

seipin mutants in ylr404w cells………………………………………………………………….130 

Figure 6-5. Fatty acyl profiling of phospholipids and TAG of WT and ylr404w cells……..131-134 

Figure 6-6. Phospholipids and TAG profiles of LDs isolated from WT and ylr404w cells cultured 

in SC medium……………………………………………………………………………….137-138 

Figure 7-1. The role of AGPAT and PAP-1 in synthesis of phospholipids and TAG……………151 

 XIV



 

Chapter 1    

Introduction  

 

Obesity, specifically referring to having an abnormally high proportion of body fat, is 

now a global public health crisis because of its health complications which include 

diabetes, heart diseases, stroke, and cancer. Not only developed countries face this 

exploding health issue, but developing nations also show patterns of emerging obesity as 

well. In the United States, 17.1% of children and adolescents were overweight 

(overweight is specifically used for children and adolescents) and 32.2% of adults were 

obese in 2003-2004; moreover, the prevalence of overweight among children and 

adolescents and obesity among men increased significantly during the 6-year period from 

1999 to 2004 (Ogden et al., 2006). In China, the results of the National Health and 

Nutrition Examination Survey (NHANES) of year 2002 by Chinese Center for Disease 

Control and Prevention indicated that 7.1% adults were obese and 8.1% children were 

overweight (CDC annual report, 2002).  

Although how obesity leads to diabetes, heart disease, and cancer at the molecular 

level is still under intensive study, epidemiological investigations and statistical analysis 

have unambiguously linked being overweight to increased risk for the above-mentioned 

diseases. Obesity brings a very heavy financial burden to the citizens and government. 

United States spends more than $70 billion annually on overweight both in direct health 

care costs and in indirect costs such as lost productivity (Kopelman, 2000). Therefore 

obesity study has become increasingly important in biomedical research. 
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It is known that the deposition of excessive amounts of energy leads to obesity. To be 

precise, extra energy is stored by mammalian adipocytes mainly as triacylglycerols (TAG) 

and/or sterol esters (SE) in the form of lipid-rich droplets which we now term lipid 

droplets (LDs) (Mersmann et al., 1975; Traber and Kayden, 1987; Ramirez-Zacarias et al., 

1992; Martin and Parton, 2006). As a result, obesity research necessarily involves the 

study of LDs.  

Nevertheless, LD research was largely neglected before the early 1990’s. In the past, 

research of LDs was mainly carried out in the tissues that play a role in lipid storage or 

transport in animals or plants, such as adipose tissue and liver of animals or seeds and 

fruits of plants, or microorganisms in response to environment stress. However, as more 

and more cell types were examined, LDs have been virtually found ubiquitous. Moreover, 

the importance of LDs as a cellular component has been increasingly recognized. They 

are no longer reckoned as simple storage compartments; rather LDs have become an 

emerging cellular organelle widely involved in various physiological and 

pathophysiological cellular processes. 

Figure 1-1. Model of LD structure 
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1.1 The unique structure and general compositions of LDs 

LDs consist of a highly hydrophobic core of neutral lipids, mainly TAG and/or SE, 

and are surrounded by a monolayer of phospholipids with proteins embedded (Murphy 

and Vance 1999; Zweytick et al., 2000) (Figure 1-1). The structure of LDs is unique in 

that they are enclosed by a monolayer of phospholipids, which is totally different from 

other cellular organelles since they are limited by a phospholipid bilayer. In addition, the 

phospholipid monolayer and the core of LDs have unique compositions as well. 

Furthermore, LDs have their own characteristic protein compositions. I will present the 

compositions of the phospholipid monolayer and the contents of the LD core in Section 

1.1.1, and discuss the protein compositions of LDs in Section 1.1.2l. 

 

1.1.1 Lipid Compositions of LDs 

LDs are covered by a phospholipid monolayer, or a hemi-membrane (Yatsu and Jacks, 

1972; Tauchi-Sato et al., 2002). Most, if not all, types of phospholipids, including 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and 

phosphatidylserine, can be found in the LD phospholipid monolayer. Their relative ratio 

differs between cells and tissues. For instance, the major phospholipids of the bovine 

heart LDs are phosphotidylcholine with ~50% and phosphotidylethanolamine with ~40% 

of total phospholipids (Christiansen and Jensen, 1972). Whereas LDs of the budding yeast 

Saccharomyces cerevisiae contains ~40% phosphatidylcholine, ~20% 

phosphatidylethanolamine, ~30% phosphatidylinositol, and other phospholipids (Leber et 
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al., 1994). In HepG2 cells the surface of LDs appears to have a unique property: 

lysophosphatidylcholine in LDs contains a high proportion of unsaturated acyl chains. In 

addition, free cholesterol is also contained in the LDs. The content of free cholesterol may 

vary in different cells, and in adipocytes it was estimated ~30% of the total cellular pool.  

The LD core is made of TAG and SE, and their relative ratio is also variable 

depending on the cell type. For instance, TAG predominates in adipocytes, whereas SE is 

enriched in steroidogenic cells. In some specialized cells, other esters such as retinyl 

esters are stored in a large amount (Yamada et al., 1987). 

 

1.1.2 Protein Compositions of LDs 

1.1.2.1 Proteins of Mammalian LDs  

Recent studies have revealed that dozens of proteins are associated with mammalian 

LDs and/or are contained in LD-rich fractions. Among them, most studied are PAT 

proteins, named after perilipin, adipocyte differentiation-related protein (ADRP; also 

called as adipophilin), and TIP47 (tail-interacting protein of 47 kDa), which share 

sequence similarities. Perilipin, which is best characterized among the PAT proteins, is a 

key component of LDs in adipocytes and steroidogenic cells (Blanchette-Mackie et al., 

1995; Servetnick et al., 1995). Perilipin knockout studies done by Chan’s group 

(Martinez-Botas et al., 2000) and Londos’ group (Tansey et al., 2001) revealed that 

perilipin null mice were lean, exhibited elevated basal lipolysis and dramatically 

attenuated catecholamine-stimulated lipolytic activity. These results suggest that on one 

hand perilipin have a protective function in basal lypolysis, while on the other hand 
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perilipin are required for stimulated lipolysis. Parallel with these two studies, Clifford et 

al. (2000) discovered that perilipin and homone-sensitive lipase (HSL) were 

phosphorylated upon lipolytic stimulation in rat adipocytes and phosphorylated HSL was 

translocated from the cytosol to the surface of LDs, where it executes lipolysis. Later 

Sztalryd et al. (2003) and Miyoshi et al. (2006) showed that stimulated lipolysis was 

dependent on the phosphorylation of perilipin.  

ADRP was isolated because of its strong expression in adipose tissue and early 

induction during adipocyte differentiation (Jiang and Serrero, 1992). Later it was 

discovered that ADRP is ubiquitously expressed and localizes to LDs (Brasaemle et al., 

1997). But its molecular function has not been defined clearly. Gao and Serrero (1999) 

reported that expressed ADRP in transfected COS-7 cells selectively facilitates uptake of 

long chain fatty acids. Later, it was found that recombinant histidine-tagged murine 

ADRP expressed in E. coli is capable of binding fatty acids (Serrero et al., 2000). Taken 

together, ADRP might function as a fatty acid transporter. However, this is not conclusive.  

Chan and colleagues (Chang et al., 2005) showed that in ADRP-null mice uptake of 

free fatty acids was not compromised. Additionally they reported that adipogenesis was 

not affected at all in the ADRP-null mice and the LDs in white adipose tissue and brown 

adipose tissue of mutants and wild type mice were similar in size. However, they 

discovered that the ADRP-null mice markedly displayed a 60% reduction in hepatic TAG, 

while maintained a similar rate of VLDL secretion. After further analyzing the TAG 

content in the hepatic microsomes, they found a twofold increase of microsomal TAG in 

ADRP-/- mice compared with the wild type. More recently, Magnusson et al. (2006) 
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reported that overexpression of ADRP increased the accumulation of LDs and reduced the 

secretion of VLDL, but ADRP RNAi had an opposite effect. These two studies suggest 

that ADRP may play an important in sorting TAG into storage or secretion.  

TIP47, which selectively binds to the cytoplasmic domains of mannose 6-phosphate 

receptors (MRPs) and is required for MPR transport from endosomes to the trans–Golgi 

network, is 40% identical to the sequence of the mouse ADRP (Diaz and Pfeffer, 1998). 

Unlike ADRP, the majority of TIP47 is cytosolic when cells are grown in low 

lipid-containing culture medium, although the presence of TIP47 on the surface of LDs 

can be detected; upon addition of fatty acids, TIP47 is rapidly recruited to the LDs 

(Wolins et al., 2000). Currently the role of TIP47 on the surface of LDs is even less 

defined than ADRP and perilipin.  

Other than perilipin, ADRP, and TIP47, several other proteins containing the PAT 

domain also localize to LDs. Among them are the LSDP1 (Patel et al. 2005) and LSD2 

(Gronke et al., 2003) in the insect fat body, S3-12 of the adipocytes (Wolins et al., 2003), 

and myocardial lipid droplet protein (MLDP, Yamaguchi et al., 2006). The identification 

of these proteins can eventually help us understand the role of PAT proteins. 

Besides PAT proteins, another exciting discovery is the association of caveolin and 

Rab proteins with the LDs. The caveolins which have three isoforms, caveolin-1 (Cav-1), 

caveolin-2 (Cav-2), and caveolin-3 (Cav-3), are major proteins of cell surface caveolae 

(Kurzchalia and Parton, 1999).  In recent years several studies have identified LD as a 

possible target organelle of caveolins (Pol et al., 2001; Ostermeyer et al., 2001; Fujimoto 

et al., 2001; Liu et al., 2004; Brasaemle et al., 2004). The association of caveolins with 
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LDs was first described after the finding that the mutant caveolin protein, Cav-3DVG 

specifically associated with LDs; subsequently full-length caveolins were also detected in 

the LDs, particularly when their concentration at the ER is elevated by overexpression 

(Pol et al., 2001). This discovery leads to speculation that LD can have an important role 

in lipid trafficking because caveolins have been suggested a role in cholesterol transport 

(van Meer, 2001).  

Unlike caveolin, the association of Rab proteins with LDs was inferred from the 

proteomic analysis of LD-enriched fraction (Fujimoto et al., 2004; Liu et al., 2004; 

Umlauf et al., 2004). Among these proteins, the targeting of Rab18 to LDs was confirmed 

by colocalization studies (Ozeki et al., 2005; Martin et al., 2005). The role of Rab proteins 

on the LDs has not been defined. One possibility is that they are involved in LD lipolysis, 

which might also be true for caveolins. The reason for this speculation is that Rab 

proteins and caveolin-1 which were present in the LD-enriched fraction isolated from 

lipolytically stimulated 3T3-L1 adipocytes were absent in the LDs under basal condition 

(Brasaemle et al., 2004). 

Besides the above-mentioned proteins, mammalian LDs could harbor many other 

proteins which were identified by proteomics of LD-rich fractions. However, results from 

these proteomic studies show a diverse nature of protein compositions of LDs, which is 

likely to reflect differences between cell types. 

 

1.1.2.2 Proteins of Plant LDs 

The protein components of plant LDs (also called oil bodies) have not been studied as 
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intensively as those of mammalian LDs with the exception of oleosins. Oleosin proteins 

and genes have been characterized at the biochemical, cellular, molecular levels in 

numerous desiccation-tolerant plant species (Tzen et al., 1990; Roberts et al., 1993; 

Millichip et al., 1996; Chen et al., 1997). Oleosins continuously wrap around the LDs of 

these plants. In addition, plant oleosin is correctly targeted to yeast LDs in transformed 

yeast strains (Ting et al., 1996). Evidence suggests that the targeting of oleosin to LDs is 

regulated by the protein’s characteristic hydrophobic central domain (Li et al., 1992), and 

in particular, by a triple-proline knot motif (Abell et al., 1997). It should be noted, 

however, that oleosins are absent from lipid-rich tissues of fruits and many tropical 

oilseeds which normally do not undergo desiccation (Murphy, 1993). This suggests that 

oleosins are unlikely to play a major role in LD biogenesis per se.  

 

1.1.2.3 Proteins of Yeast LDs 

In the yeast S. cerevisiae, proteins associated with LDs are predominantly involved 

in the synthesis and activation of fatty acids and sterols (Athenstaedt et al., 1999). Among 

them are Erg1p, Erg6p, and Erg7p (ergosterol biosynthesis), Faa1p, Faa4p, and Fat1p 

(fatty acid metabolism), and Tgl1p, Tgl3p, and Tgl4p (neutral lipids degradation). A 

similar result was also found in the yeast Yarrowia lipolytica (Athenstaedt et al., 2006). In 

addition, the same group found that Rab proteins were also detected in the LD-rich 

fraction when Y. lipolytica was grown in oleic acid-supplemented medium to induce LD 

formation.  
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In summary, LDs have their own unique lipid and protein compositions, suggesting 

that LDs are an independent organelle. In addition, their association with proteins of 

various cell functions implies that LDs are engaged in a variety of cellular activities. 

 

1.2 Intracellular Localization of LDs  

Results from electron microscopy studies have indicated that the ER encases the 

surfaces of LDs to varying degrees (Novikoff et al., 1980; Bozzola and Russell, 1992; 

Prattes et al., 2000; Martin et al., 2005; Ozeki et al., 2005). Figure 1-2 shows an 

illustration. This finding is consistent with the result of colocalization studies using 

fluorescence microscopy which suggests that a portion of LDs accumulate at 

subcompartments of the ER (Figure 1-3). Taken together, these results lead to speculation 

that LDs are synthesized by the ER; they may be associated with the ER closely after 

formation before their eventual detachment.  

Other than their intimate relationship with the ER, LDs have also been found to have 

association with mitochondria (Blanchette-Mackie et al., 1995; Cohen et al., 2004) and 

peroxisomes (Blanchette-Mackie et al., 1995; Schrader, 2001; Binns et al., 2006). In 

addition, LDs, the ER, mitochondria, and peroxisomes were found to form constellations 

in differentiating 3T3-L1 cells, suggesting the interplay of these organelles in lipid 

metabolism (Novikoff et al., 1980).  
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Figure 1-2. LDs are found among smooth ER. Thin membrane cisternae of the smooth ER 
wrap around the surface of LDs. Bozzola and Russell, Electron microscopy, principles and 
techniques for biologists, 1992: Jones and Bartlett Publishers, Sudbury, MA. WWW.jbpub.com. 
Reprinted with permission. 

Figure 1-3. Colocalization of LDs and the ER marker (green, middle panel). BHK cells were 
transfected with an HA-tagged Cav-3 mutant protein which localizes to LDs. LDs were labeled with a 
mAb to HA tag (right panel). Reproduced from Journal of Cell Biology, 2001, 152: 1057-1070. 
Copyright 2001, Rockefeller University Press. 

 

1.3 LDs, the emerging cellular organelle 

In the past, LDs were regarded only as inert lipid storage depots providing energy 
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sources and substrates for synthesis of membrane components and some specific 

lipophilic substances, such as steroid hormone. However, LD studies in the past 10 years 

have greatly expanded our understanding of this organelle. These studies demonstrate that 

LDs are associated with many cellular processes, such as immune response, viral diseases, 

and protein quality control and degradation.  

 

1.3.1 The role of LDs in inflammation and immune response 

LDs have a central regulatory role in both innate and acquired immune response 

(reviewed by Bozza et al., 2007). Increased numbers of LDs in leukocytes and other cells 

associated with imflammation have been repeatedly reported. In addition, significant 

correlation between increased LD formation and enhanced LO- and COX-derived 

eicosanoids has been observed both clinically and experimentally.  

Recent studies have also shown that LDs in eosinophils contain 

arachidonyl-phospholipids and enzymes required to release arachidonic acid from 

phospholipids, including cytosolic phospholipase A2 (cPLA2) and mitogen activated 

protein (MAP) kinase. They also contain all the downstream enzymes needed for 

eicosanoid synthesis, including lipoxygenase (LO), cyclooxygenase (COX), and 

leukotriene (LT) C4 synthase. Moreover, direct evidence has been demonstrated more 

recently that LDs are the main formation sites of eicosanoid within stimulated leukocytes. 

Thus LDs function as a key feature of leukocyte activation and a critical regulator of 

inflammatory disease and become a target for novel anti-inflammatory therapies. 
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1.3.2 LDs and Hepatitis C virus infection 
The Hepatitis C virus is the major causative agent of non-A/non-B hepatitis (Choo et 

al., 1989). The majority of acutely infected individuals subsequently develop chronic 

infection; liver cirrhosis and hepatocellular carcinoma are well-recognized late 

complications of chronic hepatitis C (Saito et al., 1990). HCV is a positive-stranded RNA 

virus of about 10kb nucleotides. The viral genome encodes a precursor polyprotein of 

about 3000 amino acids, which is then cleaved into structural and nonstructural proteins. 

The structural proteins are located at the N-terminal end of the polyprotein and consist of 

the core protein, which forms the viral capsid, and two envelope glycoproteins, E1 and E2. 

The nonstructural proteins include NS2, NS3, NS4A, NS4B, NS5A, and NS5B, which are 

involved in polyprotein processing and viral replication (reviewed by De Francesco, 

1999).  

The HCV core protein which has a regulatory effect on cellular gene expression and 

on the viral cycle was detected on the ER membrane and on the surface of LDs as well 

(Moradpour et al., 1996; Barba et al., 1997), suggesting that LDs may play an important 

role in HCV infection. Later it was found that a central hydrophobic domain (AA 125-144) 

is required for its association with LDs (Hope and McLauchlan, 2000) and this motif has 

sequence similarity with the central hydrophobic domain of plant oleosin and they are 

interchangeable (Hope et al., 2002). Very recently, three published papers presented 

evidence that the association of core protein with LDs through this LD binding domain is 

critical for virus assembly, indicating that LDs are involved in the production of 

infectious HCV particles. Among them, one discussed that the disruption of the 

association of HCV core protein with LDs reduces the production of infectious virus 

(Boulant et al., 2007). Another showed that the central domain of core protein is a major 

determinant for efficient virus assembly (Shavinskaya et al., 2007). The third paper 
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provided data that core protein recruits nonstructural proteins and replication complexes 

to LD-associated ER membranes, and this recruitment is critical for producing infectious 

particles (Miyanari et al., 2007). Considered together, accumulated evidence undoubtedly 

points to LDs as an important factor in HCV infection. 

 

1.3.3 The role of LDs in protein storage and degradation 

The idea that LDs may serve as a transient storage depot for proteins which are either 

destined for degradation or for future use when conditions change was inspired by several 

independent findings that histones were abundant in LDs of early Drosophila embryos 

and that apolipoprotein B (ApoB) accumulated on the surface of LDs in cultured 

mammalian cells (reviewed by Brasaemle and Hansen, 2006; Fujimoto and Ohsaki, 2006; 

Welte, 2007).  

Early Drosophila embryogenesis is characterized by rapid nuclear division which is 

not accompanied by cell division. Twelve nuclear divisions generate more than 4,000 

nuclei, the assembly of which requires quite a number of histone proteins to package 

thousands of copies of Drosophila genome into chromatin. Since histones of early 

Drosophila embryos are derived from maternal histones deposited in oocytes, and from 

translation of maternal mRNAs, in order to prevent excessive free histones which are 

potentially toxic from causing harm during early embryogenesis, these histones should be 

stored somewhere. In a proteomic study of LDs of Drosophila embryos, Cermelli et al. 

(2006) found that abundant histones 2A, 2Av, and 2B (H2A, H2Av, and H2B) were bound 

to LDs, suggesting that LDs appear to provide a safe haven for embryonic histones. In 

addition, their finding that the copies of histones on LDs decreased during the first six 
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hours of embryogenesis further supported this hypothesis.  

ApoB, the primary protein of very low-density lipoproteins (VLDL), was found to be 

highly concentrated around LDs of HuH7 cells, particularly after proteasomal or 

autophagic inhibition. In addition, ApoB associated with LDs was poly-ubiquinated and 

surrounded by autophagic vacuoles, suggesting that it is destined for destruction (Ohsaki 

et al., 2006). Given that ApoB has the propensity to form aggregates in aqueous 

environment which are considered toxic, its association with LDs suggests that LDs may 

serve as a temporal storage place.  

In addition to histones and ApoB, various other proteins were found to be associated 

with LDs under certain conditions, such as overproduced HMG-CoA reductase in the 

fission yeast Schizosaccharomyces pombe (Lum and Wright, 1995), the Parkinson’s 

disease protein α-synuclein and the peripheral membrane protein Nir2 after lipid loading 

(Cole et al., 2002; Litvak et al., 2002), as well as Hsp70 after heat shock (Jiang et al., 

2007). These findings indicate that LDs play an active role in protein management.  

 

 

1.4 Biosynthesis of LDs 

The involvement of LDs in cellular processes and diseases helps LDs gain attention. 

However, little is known about the exact mechanism of LD biogenesis at the molecular 

level. The pathways and enzymes involved in these pathways leading to the synthesis of 

TAG and SE, the core components of the LDs, have been largely defined. These data 

point to ER as the site for the synthesis of LD core components. But LDs are a unique 
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structure because they are encapsulated by a phospholipid monolayer. It is still unknown 

how LDs acquire this limiting monolayer. 

 

1.4.1 Biosynthesis of LD Core Components 

It has been established that eukaryotic organisms are equipped with several pathways 

for TAG and SE synthesis. In addition, multiple isoforms of the enzymes in the lipid 

synthetic pathway catalyze the same chemical reaction. The focus of this section is on the 

last step of TAG and SE biosynthesis.  

In eukaryotic organisms, TAG is primarily synthesized by acylation of diacylglycerol 

(DAG) via the phosphatidic acid pathway or via the monoacylglycerol pathway, which 

are both acyl-CoA dependent (Lehner and Kuksis, 1996) although TAG synthesis can also 

be catalyzed by phospholipid diacylglycerol acyltransferase (Oelkers et al., 2000; 

Dahlqvist et al., 2000) or diacylglycerol transacylase (Lehner and Kuksis, 1993). Figure 

1-4 presents an illustration of the phosphatidic acid pathway and Figure 1-5 the 

monoacylglycerol pathway. 
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Figure 1-4. TAG biosynthesis in liver via the phosphatidic acid pathway. ACS, 
acyl-CoA synthetase; AGPAT, acylglycerolphosphate acyltransferase; CL, cardiolipin; DAG, 
diacylglycerol; DGAT, diacylglycerol acyltransferase; DHAP, dihydroxyacetone phosphate; 
DHAP-DH, DHAP dehydrogenase; ER, endoplasmic reticulum; FA, fatty acid; G3P, 
glycerol-3-phosphate; GPAT, glycerol-3-phosphate acyltransferase; LPA, lysophosphatidic 
acid; PA, phosphatidic acid; PAP, phosphatidic acid phosphatase; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PS, 
phosphatidylserine; TAG, triacylglycerol; VLDL, very low density lipoprotein. Adapted from 
Coleman and Lee (2004). Prog Lipid Res. 43, 134-176 
 

FA-CoA 

 

The phosphatidic acid pathway mainly associated with the microsomal fraction 

represents the de novo route to TAG formation. It involves a stepwise acylation of 

sn-glycerol-3-phosphate or of dihydroxyacetone phosphate to phosphatidic acid. The 

hydrolysis of the phosphatidic acid results in sn-1,2-diacylglycerol, which is further 
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acylated to TAG.  The monoacylglycerol pathway of TAG biosynthesis forms a major 

route in enterocytes. 2-monoacylglycerols are derived from the hydrolysis of TAG in the 

intestinal lumen by pancreatic lipase. Sequential acylation of monoacylglycerol by 

monoacylglycerol acyltransferase and diacylglycerol acyltransferase (DGAT) ultimately 

leads to the formation of TAG.  

sn-2-MAG 
FA-CoA 

MGAT 

sn-1,2-DAG 

sn-2,3-DAG

FA-CoA 

DGAT 

FA-CoA 

DGAT 

TAG

TAG

Figure 1-5. TAG biosynthesis via the monoacylglycerol pathway. MAG, 
monoacylglyccrol; MGAT, monoacylglycerol acyltransferase; DAG, diacylglycerol; 
DGAT, diacylglycerol acyltransferase; TAG, triacylglycerol.  

 

The terminal step of TAG synthesis is catalyzed by DGAT both in the phosphatidic 

acid pathway and in the monoacylglycerol pathway as well. DGAT activity 

predominantly localizes to microsomal subcellular fraction (Coleman and Bell, 1976). 

Precise identification of DGAT had been hampered by the extreme difficulty in purifying 

the protein (Lehner and Kuksis, 1996) because it is an integral membrane protein. 

DGAT1 was cloned based on its homology to acyl-CoA:cholesterol acyltransferase 

(ACAT) (Cases et al., 1998; Oelkers et al., 1998). The existence of DGAT2 was 

anticipated because DGAT1─/─ mice have normal plasma TAG levels, store TAG in fat 

cells, and maintain some DGAT activity in most tissues. When two novel DGAT isoforms 

without sequence homology to DGAT1 were purified and cloned from the oleaginous 
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fungus Mortierella rammaniana (Lardizabal et al., 2001), the mouse and human 

homologs were sought. DGAT2 was cloned because of its identity with this fungal DGAT 

(Cases et al., 2001).  

DGAT in S. cerevisiae was also characterized through its sequence homology to 

DGAT2 of M. rammaniana (Sorger and Daum, 2001; Oelkers et al., 2002) and the gene 

was termed DGA1 corresponding to the yeast ORF YOR245C. Unexpectedly, localization 

studies by Sorger and Daum (2001) suggested that the enzyme activity of Dga1p is 

mainly localized in the LDs, although the ER is also the localization site. Incorporation 

assay using C14-labeled DAG and acyl-CoA revealed a 70-90 fold enrichment of DGAT 

activity in LDs over the homogenenate, but also a 2-3 fold enrichment in microsomal 

fraction.  

Apart from the acylation of DAG, TAG is also synthesized using phospholipids as 

acyl donor and DAG as acceptor; the reaction is catalyzed by the enzyme called 

phospholipid diacylglycerol acyltransferase (PDAT) (Dahlqvist et al., 2000; Oelkers et al., 

2000). PDAT was unveiled in microsomal preparations from plant oil seeds and its 

activity was also noticed in yeast microsomes. Sequence homology search revealed that 

the gene LRO1 corresponding to ORF YNR008W has significant similarity to lecithin 

cholesterol acyltransferase (LCAT), which transfers an acyl group from 

phosphatidylcholine to cholesterol.  

 

The formation of SE is catalyzed by the enzymes either from the acyl-CoA cholesterol 

acyltransferase (ACAT) family or from the lecithin cholesterol acyltransferase (LCAT) 
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family. ACAT is capable of catalyzing the synthesis of cholesterol esters in the crude rat 

liver homogenate (Goodman et al., 1964). Subcellular fractionation studies suggested that 

ACAT enzyme activity resides in the rough ER (Hashimoto and Fogelman, 1980; 

Reinhart et al., 1987; Lange et al., 1993) and detergent treatment indicated that ACAT is 

an integral membrane protein (Doolittle and Chang, 1982). However, due to its sparse 

presence and its susceptibility to inactivation by detergents, little progress had been made 

towards purifying the enzyme to homogeneity before the cloning and functional 

expression of ACAT cDNA.  Human ACAT1 gene was cloned by functional 

complementation of mutant cells lacking ACAT activity (Chang et al., 1993). The cloning 

and expression of two sterol esterification genes in yeast was also reported and the genes 

were named ARE1 and ARE2, respectively (Yang et al., 1996). Both genes share strong 

sequence homology with the human ACAT1 gene near the C-terminal region.  

The discovery of ACAT2 was preceded by several findings which led to the 

expectation for a second mammalian cholesterol esterification enzyme (Buhman et al., 

2000). Human ACAT2 cDNA was identified through homology search of sequence 

database and cloned; it has over 40% identity with human ACAT1 (Cases et al., 1998).  

Contrary to ACAT which is membrane bound, LCAT is a soluble enzyme. It converts 

cholesterol and phosphatidylcholines (lecithins) to cholesteryl esters and 

lysophosphatidylcholines on the surface of HDL, and LCAT, thus, determines the removal 

of cholesterol from tissues. LCAT was identified as a unique plasma enzyme by Glomset 

(1962). The gene and cDNA for human LCAT were first cloned and sequenced by Mclean 

et al. (1986).  Sequence homology search for LCAT led to the identification of DGAT1 
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and PDAT, which do not catalyze the formation of cholesteryl esters, but TAG instead. 

Lro1p in yeast is a member of PDAT family.  

 

The identification of these enzymes and the localization of most of them to the ER 

(except mammalian LCAT which are cytosolic and yeast Dga1p which also localizes to 

LDs in addition to the ER) unequivocally show that the ER is the site of TAG and SE 

synthesis. However, how the synthesized TAG and SE reach their final destination ―the 

LDs is yet to be elucidated. Currently there are several models hypothesized for this 

process. These models will be briefly introduced in the next section. 

 

 

1.4.2 Models of the 

Biogenesis of LD 

The prevailing model of LD 

biogenesis is budding of nascent 

LDs from the ER (Murphy and 

Vance, 1999). Figure 1-6 shows 

this model for LD formation. In 

this model, neutral lipids are 

synthesized between the two 

leaflets of the ER bilayer. 

Subsequently the mature LD buds 

from the cytoplasmic leaflet of the 

Figure 1-6. The budding model of LD formation. 
According to this model, neutral lipids are synthesized 
between the leaflets of the ER. The mature LD is 
speculated to subsequently bud off from the cytoplasmic 
leaflet of the ER membrane to form an organelle which is 
bound by a limiting monolayer of phospholipids and 
LD-associated proteins.  
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ER membrane to form an organelle which is contained within a limiting monolayer of 

phospholipids and associated LD proteins. Although this model is widely accepted, it is 

more hypothetical than based on firm evidence. To date, neutral lipids accumulation has 

never been observed within the leaflets of the ER bilayer. Blanchette-Mackie et al. (1995) 

claimed that they observed sites of continuity between membrane surface of LDs and the 

outer membrane leaflet of ER using freeze-fracture electron microscopy, the resolution of 

their image, however, is not sufficient to make this argument stand firm. 

Figure 1-7. An alternative 
budding model according to 
Ploegh. Neutral lipids are also 
synthesized between the leaflets 
of the ER. But unlike the first 
model, a portion of phospholipids 
monolayer is taken from the ER 
luminal leaflets, together with its 
inserted proteins. 

 

More recently, Ploegh proposed an alternative budding model (2007). Based on the 

presence of Bip and Calnexin in isolated LD fraction, he considered that LD formation 

involves the formation of transient bicellar structures, created by fusion of the luminal 

and cytoplasmic leaflets of the ER membrane (Figure 1-7). However, the presence of 
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Calnexin and Bip could be an isolation artifact, particularly in view of the propensity of 

the ER enwrap LDs, although he argued that the absence of other abundant ER-resident 

proteins might rule out this possibility.  

 

Besides, it is noteworthy to mention that a “delivery” model was proposed by 

Robenek et al. (2006) based on results obtained through freeze-fracture electron 

microscopy. This model is shown in Figure 1-8. Based on this model, LDs closely appose 

to domains of the cytoplasmic leaflet of the ER membrane, where lipids and proteins are 

delivered from the ER membrane to the LDs. This model takes the spatial relations of the 

ER and LDs into consideration and may account for the enlargement and maturation of 

LDs, but it fails to explain how the nascent LDs are generated.  

Figure 1-8. The delivery model of LD formation. According to 
this model, LDs closely appose to the cytoplasmic leaflet of the ER 
membrane. Neutral lipids and phospholipids are synthesized at the ER 
and transferred from the ER to the nascent LDs. This process may 
occur in specialized domains of the ER. 

 

In addition to the aforesaid three models, another hypothesis for LD biogenesis is the 

post-encasement model (Zweytick et al., 2000). Based on ultrastructural studies of 

developing seeds of mustard (Bergfeld et al., 1978) and crambe (Smith, 1974), this model 

proposes that LD may arise from a membranous matrix contained within the cytoplasm. 
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Lipids released naked from the ER form droplets in the cytoplasm and subsequently 

associate with proteins synthesized by free ribosomes (Stobart et al., 1986). Apparently 

this model does not explain clearly the formation of surface phospholipid monolayer. 

 

At present, none of these models can be definitely confirmed. Many questions remain 

to be answered. Thus concerted effort is needed in order to determine how LDs are 

generated by the ER. 

 

 

1.5 The search for factors that affect LD biogenesis 

Attempts have been made in the past 10 years to identify factors that affect LD 

biogenesis. Neutral lipids synthesis has been identified as an essential determinant in LD 

formation. In addition, quite a number of proteins are actively involved in LD synthesis. 

 

1.5.1 No neutral lipids, no LDs 

The core of LDs consists of TAG and/or SE. As previously stated, TAG synthesis in 

yeast is primarily catalyzed by Dga1p and Lro1p, and SE synthesis by Are1p and Are2p. 

Reduced LD formation was observed in yeast cells deficient in TAG synthesis due to 

deletion of DGA1 and LRO1 genes (Oelkers et al., 2002), and also in cells deficient in SE 

synthesis due to mutation in ARE1 and ARE2 genes (Yang et al., 1996). Moreover, yeast 

cells in which all the four genes implicated in neutral lipids synthesis were knocked out 

could no longer synthesize LDs (Oelkers et al., 2002; Sandager et al., 2002). These data 
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show that impaired neutral lipids synthesis affects the synthesis of cytoplasmic LDs. 

When neutral lipids synthesis is completely disrupted, no LD formation occurs. This 

indicates that neutral lipids synthesis is essential for LD formation. 

 

1.5.2 The role of LD-associated proteins in LD biosynthesis 

1.5.2.1 PAT proteins and fat packaging 

Based on the nature of their association with LDs, PAT proteins can be divided into 

two classes: those that constitutively associate with LDs, such as perilipin and ADRP 

(class 1); and those that move from the cytosol to coat nascent LDs during rapid LD 

synthesis, such as TIP47, S3-12, and MLDP (class 2). An emerging concept is that class 1 

proteins control access of metabolic enzymes to stored neutral lipids, thereby regulating 

lipolysis, while class 2 proteins sequester newly synthesized neutral lipids and facilitate 

their delivery to mature LDs (Wolins et al., 2006).  

The hydrophobicity of neutral lipids such as TAG and SE necessitates elaborate 

mechanisms to emulsify these molecules before their transport between aqueous 

compartments of organisms. Consistent with this purpose, an elongated helix formed by 

11-mer repeats was identified in many LD binding proteins, including perilipin, ADRP, 

TIP47, S3-12, as well as apolipoproteins (Bussell and Eliezer, 2004). It was proposed that 

the 11-mer repeats form unusual right-handed helices with 3 turns per repeat, thereby 

generating a TAG miscible face and a water miscible face. Notably, approximately 

two-thirds of the amino acid sequence of the 160 kDa S3–12 consists of these 11-mer 

repeats.  
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Furthermore, TIP47, S3-12, and MLDP also contain a 4-helix bundle (Hickenbottom 

et al., 2003). This domain has significant structure similarity to an amphipathic 4-helix 

bundle present in exchangeable apolipoprotein apoE which allows apoE to coat the 

lipoprotein surface in TAG-rich lipoproteins and to release from the particle as TAG is 

hydrolyzed and the lipoprotein particle shrinks. Given that class 2 PAT proteins primarily 

associate with LDs during rapid LD synthesis, this structure similarity suggests that they 

and apoE function in a similar manner. Consistent with the structure prediction, Wollins et 

al. (2005) found that under basal condition, all of the TAG is in large, centrally located 

perilipin-coated LDs and class 2 PAT proteins are cytosolic. However, when adipocytes 

are cultured in the presence of long-chain fatty acid, within 10 min, small LDs emerge 

that are uniform in size and have a uniform coat composed of TIP47, S3-12, and ADRP. 

Over the next hour of long-chain fatty acid treatment, TIP47 and S3–12 are concentrated 

on the smallest, most peripheral LDs. ADRP is concentrated on LDs intermediate in size 

and location between the smaller, peripheral TIP47/S3–12 coated LDs and the large, 

central perilipin coated LDs. When long-chain fatty acid is removed from the adipocyte 

media, adipocytes return readily over 30–180 min to their homeostatic LD architecture, 

with S3–12 in the cytosol and all of the TAG packaged in perilipin-coated LDs.  

 

1.5.2.2 Caveolin and LD synthesis 

Following the finding that caveolins associate with LDs under some experimental 

conditions, Pol et al. (2004) went on to examine whether this association has 

physiological relevance. In their study, caveolin-1 and caveolin-2 redistributed from 
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plasma membrane and/or Golgi apparatus to LDs in A431 and FRT cells upon lipid 

loading. In addition, removal of oleic acid from the culture medium rapidly reversed the 

redistribution, suggesting a bidirectional caveolin trafficking pathway. Strikingly, during 

the first hours of liver regeneration after partial hepatectomy, caveolins show a dramatic 

redistribution from cell surface to newly synthesized LDs. At later stages of liver 

regeneration, the level of caveolins in LDs suddenly decreased, even when LDs were still 

abundant. More strikingly, residual hepatocytes after partial hepatectomy in caveolin-1 

gene-disrupted mice (cav1-/-) failed to accumulate LDs and cell divisions stalled, which 

led to impaired liver regeneration and low survival. Given that during liver regeneration 

fatty acids released by adipocytes are taken up by hepatocytes where they are esterified 

and stored as TAG in large LDs before ultimately being metabolized (Farrell, 2004), the 

function of caveolins may be mainly to transport fatty acids for its deposition into LDs as 

TAG.  

 

1.5.2.3 Phospholipase D and LD formation 

Phospholipase D (PLD) catalyzes the hydrolysis of membrane glycerophospholipids 

to form phosphatidic acid (PA). Mammalian PLD exists in two isoforms, PLD1 and PLD2. 

PLD1 uses phosphatidylcholine as substrate. PLD1 is regulated by 

phosphatidylinositol-4,5-bisphosphate, protein kinase C and ADP Ribosylation Factor 

(ARF) and Rho family GTPases (Jenkins and Frohman, 2005). In a recent study, ADRP 

was shown to interact with ARF1, preferentially in the GDP-bound form, and evidence 

suggested that GDP-bound ARF1 induces dissociation of ADRP from the LD surface 
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(Nakamura et al., 2004). More recently, it was found that oleic acid-induced LD 

formation in NIH3T3 cells was accompanied by an increase in PLD activity; the 

activation of PLD1 appeared to be ARF1-dependent since Brefeldin A suppressed both 

PLD activation and LD formation in oleic acid-treated cells. In addition, co-existence of 

PLD1 with ADRP and Arf1 in LD-enriched subcellular fractions prepared from oleic 

acid-treated cells was observed in this study (Nakamura et al., 2005). In another study, 

PLD1 overexpression induced TAG synthesis and LD formation, whereas PLD1 siRNA 

inhibited oleic acid-induced LD formation (Andersson et al., 2006). Based on these 

studies, PLD1 is suggested to have an important role in LD biosynthesis. However, PLD1 

may not be essential for LD formation. A yeast strain spo14 in which the yeast PLD1 

gene SPO14 was removed from the chromosome still synthesizes a significant number of 

LDs (our unpublished data).  

 

In summary, a number of LD-associated proteins have been shown to be implicated in 

neutral lipids synthesis and LD formation. Besides the above-mentioned proteins, there 

are also prp19 (Cho et al., 2007), and Fat specific protein 27 (Puri et al., 2007). Given that 

energy storage and metabolism is a highly orchestrated event, we hypothesize that more 

genes and their protein products are required to modulate LD dynamics, including their 

synthesis and degradation. For instance, snf2 mutant lacking Snf2p, the catalytic subunit 

of the SWI/SNF chromatin remodeling complex displayed hyperaccumulation of LDs 

(Kamisaka et al., 2006), indicating that transcriptional regulation plays a critical role in 

LD synthesis. To identify these genes and protein products, more effort is needed. 
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1.6 Saccharomyces cerevisiae as a model to study LD biosynthesis 

The budding yeast Saccharomyces cerevisiae is a unicellular eukaryotic 

microorganism. It is extremely important as a model organism in modern cell biology 

research, and is one of the most thoroughly studied eukaryotic microorganisms. It is easy 

to culture, and being a eukaryote, it shares the complex internal cell structure of plants 

and animals. Therefore, it becomes a very important tool for developing basic knowledge 

about the function and organization of eukaryotic cell genetics and physiology. Over the 

past several decades, S. cerevisiae has been used for studying mechanisms underlying 

many cellular activities, such as cell cycle, vesicular trafficking, ribosome biogenesis, and 

so on. 

S. cerevisiae is the first eukaryotic genome that is completely sequenced (Goffeau et 

al., 1996). Based on that, a whole collection of gene deletion strains have been 

constructed (Winzeler et al., 1999). With this advancement, it is more convenient to use S. 

cerevisiae as a tool to identify genes and proteins involved in a specific cellular activity, 

particularly when “reverse genetics” is employed. 

 

The budding yeast S. cerevisiae, like other eukaryotic organisms, synthesizes 

cytosolic LDs as well. LDs can be found in this unicellular eukaryote throughout the life 

cycle. Proliferation of LDs can be observed when cells enter stationary phase, or when 

cells are limited to nitrogen supply (Willison and Johnston, 1985), or when the culture 

media are supplemented with free fatty acids such as oleic acid (Binns et al., 2006).  
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Yeast LDs share many common features with the animal and plant LDs. First, yeast 

LDs also consist of a hydrophobic core of neutral lipids encircled by a monolayer of 

amphipathic phospholipids with a specific population of proteins associated with the 

phospholipid monolayer. Second, lipid biosynthesis enzymes essential for the formation 

of neutral lipids are closely associated with the ER in yeast cells as in animals and plants. 

Thus it is reasonable to imagine that the mechanism of LD biogenesis in yeast should 

have some degree of similarity with that of animal and plant cells. In this study, we used S. 

cerevisiae as a tool to identify novel gene products that may play a role in LD formation 

by screening ~4700 single deletion mutants for abnormalities in the number and 

morphology of LDs.  
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Chapter 2 

Materials and Methods 

 

2.1 Reagents and antibodies 

Reagents: 

From Amersham Biosciences: [4-14C]cholesterol, FicollTM PM400, and [9,10(n)-3H]oleic 

acid. 

From BD: peptone, tryptone, yeast extract, and yeast nitrogen base (without amino 

acids). 

From BDH: PMSF, and potassium chloride. 

From Bio 101: yeast nitrogen base (without ammonium sulfate, amino acids and 

dextrose). 

From BioRad: dithiothreitol, Bradford protein assay reagent, sodium dodecyl sulfate, 

sucrose, Tween 20, Triton X-100, urea, and X-Gal. 

From Duchefa: EDTA. 

From Electron Microscopy Sciences: 25% (v/v) glutaraldehyde and 4% (w/v) osmium 

tetroxide. 

From J.T.Baker: Tris (Base). 

From Merck: acetic acid, chloroform, diethyl ether, hexane, potassium acetate 

(KAcO), and sodium hydroxide. 

From Invitrogen: BODIPY 493/503, DiOC6(3), rhodamine phalloidin; and 

MS-compatible silver stain kit. 
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From Sigma: adenine, all the essential amino acid components, ampicilin, aprotinin, 

ATP, Brefeldin A, Brij58, BSA, creatine phosphate, creatine phosphate kinase, 

cycloheximide, 1,2-dioctanoyl-sn-glycerol (DAG), DMSO, doxycycline, formaldehyde, 

galactose, glucose, GMP-PNP, GTP, GTP-γ-S-Li4, HEPES, IPTG, latrunculin A, lithium 

acetate, lyticase, magnesium acetate (MgAcO), manganese chloride tetrahydrate, 

mannitol, Nile red, nocodazole, NP-40, oleic acid, oleoyl coenzyme A, pepstatin A , 

polyethylene glycol, raffinose, sodium azide, sodium fluoride, sorbitol, trichloroacetic 

acid, tunicamycin, tyloxapol, and uracil. 

From US Biological: zymolase 20T. 

 

Antibodies: 

From Biorad: Goat anti-rabbit IgG (H+L)-HRP conjugate and goat anti-mouse IgG 

(H+L)-HRP conjugate. 

From Molecular probes: anti-Dpm1 mouse monoclonal, anti-GFP rabbit polyclonal, 

anti-tubulin mouse monoclonal, and rhodamine-conjugated goat anti-mouse antibodies. 

From Santa Cruz Biotechnology: anti-GST Mouse Monoclonal 

Anti-Vti1 rabbit polyclonal was a gift from Dr Wanjin Hong, Institute of molecular 

and cell biology, Singapore (Coe et al., 1999). 

 

 

2.2 Strains 

Wild type BY4741 and a collection of approximately 4700 haploid saccharomyces 
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cerevisiae deletion strains developed by the Saccharomyces Genome Deletion Project 

(Winzeler et al., 1999) is available at EUROSCARF (EUROpean Saccharomyces 

Cerevisiae ARchives for Functional analysis) collection center 

(http://web.uni-frankfurt.de/fb15/mikro/euroscarf/). The collection was made by 

polymerase chain reaction-mediated start- to stop- codon disruption of each of the open 

reading frames (ORFs) larger than 100 codons in the BY4741 wild-type strain. The 

genotype of the wide-type strain is: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0. Because 

18.7% of the genes are essential for growth on rich media, only non-essential genes are 

represented in this collection. 

In addition, w303 (MATa leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15) and 

its derivative are1Δare2Δdga1Δlro1Δ 

(are1Δ::HIS3are2Δ::LEU2dga1Δ::URA3lro1Δ::URA3) were also used in this study. 

The E. Coli DH5α strain used for plasmid construction was purchased from Invitrogen. 

The BL21 strain used for protein expression was also from Invitrogen. 

 

 

2.3 Culture and media 

Unless otherwise stated yeast cells were grown with rotary shaking at 30°C in liquid 

YPD medium (1% yeast extract, 2% bacto peptone, 2% dextrose). Alternatively, cells 

were grown in synthetic complete medium (0.67% nitrogen base, 2% dextrose with all 

amino acids supplemented), or in YPO medium (1% yeast extract, 2% bacto peptone, 

0.1% oleic acid in 1% Brij58), or in YPDO medium (1% yeast extract, 2% bacto peptone, 
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2% dextrose, 0.1% oleic acid in 1% Brij58). Plasmid-carrying strains were grown on 

synthetic medium with appropriate selection as described by Kaiser et al. (1994). Cell 

growth was monitored by OD600 of yeast in suspension. 

Bacteria were grown in LB medium (Ausubel et al., 2005) at 37°C.  

 

 

2.4 Fluorescence microscopy 

Fluorescence imaging was performed on a Leica DMLB microscope (Wetzlar, 

Germany) with a Curtis ebq 100 fluorescent lamp. Samples were viewed using a 

×100/1.30 oil immersion objective lens. Images were taken with a DFC480 digital camera 

and a Leica FW4000 software. 

 

LD staining― Nile red (Sigma) is a specific and excellent vital dye for intracellular 

LDs. Because Nile red has broad excitation and emission fluorescence spectra, one of the 

following two UV-filter sets was used in this study based on the resolution. First, a 

436/7-nm bandpass excitation filter, a 455-nm dichromatic mirror, and a 470-nm longpass 

emission filter (Leica filter cube E4); second, a 450-490-nm bandpass excitation filter, a 

510 dichromatic mirror, and a 515-nm longpass emission filter (Leica filter cube I3). 

To record the process of LD fusion in the ylr404w mutant, 3 μl of mid-log phase cells 

(OD600~1.5) stained with Nile red were spotted on a slide and covered with a coverslip. 

Under the microscope, cells in which two or several LDs lay close together were selected. 

Images were collected at a one-second interval until the fusion process completed. The 
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images were edited with Macromedia Flash MX 2004 into movie format.  

 

Actin staining― Actin staining by Rhodamine-conjugated phalloidin was done 

according to the procedure described previously by Pringle et al. (1989). Briefly, cells 

were fixed with 3.7% formaldehyde for 1 h, washed for three times and resuspended in 

PBS, and stained with Rhodamine phalloidin for 1 h. Cells were washed for another three 

times, resuspended in PBS and processed with fluorescence microscopy. Rhodamine 

fluorescence was visualized with a 515-560-nm bandpass excitation filter, a 580-nm 

dichromatic mirror, and a 590-nm long-pass emission filter (Leica filter cube N2.1). 

 

Microtubule staining― Tubulin-containing structures were visualized by indirect 

immunofluorescence as described previously (Adams and Pringle, 1984) except that 50 

U/ml lyticase was used instead of Glusulase. Essentially, Microtubules were labeled with 

mouse α-tubulin mAbs and visualized using rhodamine-conjugated goat α-mouse 

antibodies. 

 

Green fluorescence protein― GFP signal was visualized with a 470/40-nm bandpass 

excitation filter, a 500-nm dichromatic mirror, and a 525/50-nm bandpass emission filter 

(Leica filter cube GFP). 

 

DAPI staining of nucleus― Cells fixed with 3.7% formaldehyde for 15 min were 

stained with 5 μg/ml DAPI. DAPI fluorescence was observed with a 340-380-nm 
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bandpass excitation filter, a 400-nm dichromatic mirror, and a 425-nm longpass emission 

filter (Leica filter cube A). 

 

 

2.5 Lipid analysis 

Neutral lipids analysis 

Lipid extraction― Lipid extraction from lyophilized yeast cells was done as 

previously described (Zhang et al., 2003). Briefly, cells were grown in appropriate 

medium until required growth phase (determined by OD600), harvested, washed twice 

with 0.5% Nonidet P-40, once with dH2O, and lyophilized. The dried cell pellets were 

resuspended in 50µl of lyticase (Sigma) solution (1700 units/ml in 10% glycerol) and 

incubated at 37°C for 15 min, at -70°C for 1 h and at 37°C for 15 min. Lipids were 

extracted with hexane, blown dry and kept for further characterization. 

 

Thin layer chromatography― Quantitation of neutral lipids was as described by 

Zweytick et al. (2000) with modifications. Samples were dissolved in 100 µl of 

chloroform/methanol (2:1, v/v) and applied to Silica gel 60 F254 plates (Merck) and 

chromatograms were developed in hexane:diethyl ether:acetic acid (85:15:1) with triolein 

and cholesteryl ester as the standard. For quantitation of SE and TAG, plates were dipped 

into methanolic MnCl2 solution (0.63g MnCl2·4H2O, 60mL water, 60mL methanol and 

4mL concentrated sulfuric acid), dried and heated at 120°C for 15 min. Densitometric 

scanning was performed at 500nm with a CAMAG TLC scanner. For each assay, at least 
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three independent tests were done; average and standard deviation were calculated. 

 

Oleic acid incorporation― The in vivo assay of incorporation of [3H]oleic acid into 

SE and TAG was done as described previously (Zhang et al., 2003). 5mL of cells at 

OD600~0.6-0.8 were pulsed with 5µCi of [3H]oleic acid at 30°C for 30 min with shaking. 

Lipid extraction and TLC were done as mentioned above except that the plates were 

stained with iodine vapor. Incorporation of label into neutral lipids was determined after 

scintillation counting (Beckman) and normalization to a [14C]cholesterol internal standard 

and cell dry weight. For each assay, at least three independent tests were done; average 

and standard deviation were calculated.  

 

Phospholipids and fatty acyl profile analysis 

Lipid extraction― Extraction of total lipids was done essentially as described 

elsewhere (Bligh and Dyer, 1959). Briefly, cell pellets were resuspended in 900 μL of ice 

clod chlorofom:methanol (1:2) and incubated under vacuum with shaking at 900 RPM 

inside a 4°C cold dark room. Then 400 μL of ice-cold water and 300 μL of chloroform 

were added, mixed, and centrifuged at 12000rpm for 3 min at 4°C. After the lower 

organic phase was collected, 50 μL of 1M HCl and 500 μL of chloroform were added to 

the aqueous phase for a second lipid extraction. The lower organice phase was collected 

and combined with the first extract. The combined lipid extract was dried.  

 

Analysis of lipids using high performance liquid chromatography/mass 
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spectrometry― An Agilent high performance liquid chromatography (HPLC) system 

coupled with an Applied Biosystem Triple Quadrupole/Ion Trap mass spectrometer 

(4000Qtrap) was used for quantification of individual lipids. Samples were introduced 

into the mass spectrometer by loop injections with chloroform:methanol:300mM 

piperidine (1:1:0.1) as a mobile phase at a flow of 200μL.min-1 (Shui et al., 2007). Based 

on product ion and precursor ion analysis of head groups and fatty aclys, two 

comprehensive sets of multiple reaction monitoring (MRM) transitions were set up for 

quantitative analysis of various lipids (Guan et al., 2006), and results are expressed as 

normalized intensities. 

Fatty acyl profiles of polar lipids were acquired using a Waters Micromass Q-Tof 

micro mass spectrometer in the negative electrospray ionization (ESI) ion mode. 

Piperidine (final concentration 15 µM) was added into lipid extracts to enhance ionization. 

Samples were infused into the mass spectrometer at a flow rate of 15μL.min-1. High 

collision energy (state how much) was applied to fragment polar lipid parent ions to 

generate fatty acyl profiles. The operation parameters for mass spectrometer are: sample 

cone temperature, 250°C; sample cone voltage, 70 V; collision energy, 55 V. Mass 

spectra were recorded from m/z 140 to 900. 

 

Calculation of Lipid Levels― Precursor ion (PIS) or neutral loss (NL) scans of 

phospholipids headgroup fragments (Han et al, 2005) were used to obtain information on 

yeast phospholipid compositions. Based on this information, a comprehensive list of 

multiple reaction monitoring (MRM) transitions was next setup to follow fatty acyl 
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compositions of these lipids (parent _fatty acyl fragment transitions). The signal intensity 

of each MRM value was normalized using Eqn (1). 

 

Fatty acyl profiles of neutral lipids were analyzed using a sensitive HPLC/ESI/MS 

method. Briefly, separation of TAG from polar lipids was carried out on an Agilent 

Zorbax Eclipse XDB-C18 column (i.d. 4.6X150mm). HPLC conditions were (1) 

chloroform:Methanol:0.1M NH4OAc (100:100:4) as a mobile phase at a flow rate of 0.25 

mL. min-1; (2) column temperature: 30°C; (3) injection volume: 30 μL. An Applied 

Biosystem Triple Quadrupole/Ion Trap mass spectrometer (3200Qtrap) was used to record 

mass spectra in both positive and negative ESI modes in enhanced MS (EMS) scan mode. 

Turbo spray source voltage, 5000 and -4500 volts for positive and negative, respectively; 

source temperature, 250 °C. A total run time of 30 min was utilized to elute both polar 

lipids and TAGs. Selective ion monitoring (SIM) was used to record major TAGs and 

phospholipids and intensities of individual TAG ions were normalized to total polar lipids 

for comparison. 

 

 

2.6 Yeast genetic manipulations 

S. Cerevisiae gene sequence and genome information could be retrieved from NCBI 

or from Yeast Genome Database (http://www.yeastgenome.org/). Standard DNA 

manipulations were performed according to Ausubel et al. (2003). DNA fragments were 
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purified from agarose gel using GFX Gel Band Purification kit (Amersham Biosciences). 

DNA sequencing was done by standard method (Sanger et al., 1977) to check some of the 

constructions. DH5α cells were transformed according to the manufacturer’s instruction. 

Transformation of yeast using lithium acetate was done as described by Gietz and Woods 

(2002).  

 

Vectors used for subcloning are shown in Figure 2-1. 

Figure 2-1. Diagrams of vectors used for subcloning. 
 

Construction of a vector expressing GFP-tagged YLR404wp: A 1.4 Kb fragment 
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containing the natural promoter and the coding sequence before the stop codon of 

YLR404W was amplified by PCR, using a 5’ primer, 

5’-HindIII-TTACCATGCACGTTGTCG, and a 3’ primer, 

5’-BamHI-GCTATGTTTCTTGGATT. This fragment was then subcloned into the 

HindIII- and BamHI-cleaved YCplac111-GFP plasmid in which the GFP coding sequence 

was inserted between the BamHI and EcoRI restriction sites.  

 

Construction of GST-tagged Ylr404wp overexpression vector: An 858-bp fragment 

containing the coding sequence of YLR404W was amplified by PCR, using a 5’ primer, 

5’-BamHI-ATGAAAATCAATGTATCC, and a 3’ primer, 

5’-EcoRI-TCAGCTATGTTTCTTGG. The fragment was then subcloned into the BamHI- 

and EcoRI-cleaved pYEX 4T-1 plasmid.  

 

Construction of Ylr404wp protein segments: DNA sequences that code for 

Ylr404wp1-253, Ylr404wp1-274, Ylr404wp12-285, and Ylr404wp37-285 were amplified 

by PCR, using primers containing BamHI and EcoRI restriction sites added to the 5’ and 

the 3’ end of these fragments. The PCR products were then subcloned into the BamHI and 

EcoRI cleaved pYEX 4T-1 plasmid. 

 

Construction of a vector expressing GFP-tagged Tgl3p: A 2.7 Kb fragment containing 

the natural promoter and the coding sequence before the stop codon of TGL3 was 

amplified by PCR, using a 5’ primer, 5’ACGGC-HindIII-TCTGTT, and a 3’ primer, 
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5’-BamHI-CCTACTCCGTCTTGCTCTT. This fragment was then subcloned into the 

HindIII- and BamHI-cleaved YCplac111-GFP plasmid in which the GFP coding sequence 

was inserted between the BamHI and EcoRI restriction sites.  

 

Construction of vectors expressing GFP-tagged seipins: The coding sequences of 

human seipin and mouse seipin were amplified by PCR, using a 5’ primer, 5’-SphI- 

ATGGTCAACGACCCTCCAGTACCTGC, and a 3’ primer, 5’-BamHI- 

GGAACTAGAGCAGGTGGGGCGCTGTC from human cDNA BC009866 or 

BC012140; a 5’ primer, 5’-SphI- ATGTCTACAGAAAAGGTAGACCAAAAGG, and a 3’ 

primer, 5’-BamHI- GGAACTAGAGCAGGTGGGGCGCTGTC from human cDNA 

AF052149; a 5’ primer, 5’-SphI- ATGATACATCAAAGAAGAGAAGCTGG, and a 3’ 

primer, 5’-XbaI- GGAACTGGAGCAGGTCGGGCGTTGC from mouse cDNA 

BC061689. The fragments were subcloned into SphI- and BamHI- cleaved or SphI- and 

XbaI- cleaved YCplac111-MET3-GFP plasmid in which the MET3 promoter was inserted 

between HindIII- and SphI- restriction sites and the GFP coding sequence inserted 

between the BamHI- and EcoRI- sites. 

 

Gene deletions: PCR-based gene deletion strategy was as described by Baudin et al. 

(1993). The IRE1 gene in the anp1, mnn10, mnn11, pmr1, and doa10 strains were 

replaced by a HIS3 marker amplified from pFA6-His3MX6 with primers containing 

flanking sequences for the genes of interest. The primers are shown in Table 2-1.  
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Table 2-1. Primers used to replace IRE1 by HIS3 marker amplified from pFA6-His3MX6. Letters 
in bold are the flanking sequences. 
gene  primers 

5’ CTCCATATCACCCTTCATACACATTAAAAAAACAGCATATCTGAGGAAT
TAATA CGTACGCTGCAGGTCGAC 

IRE1 

3’ GGTTACTACTAATGATCAAAGTAACATTAATGCAATAATCAACCAAGAA
GAAGATCGATGAATTCGAGCTCG 

 

Site-directed mutagenesis: Site-directed mutagenesis was performed using a 

Stratagene Quickchange II XL kit according to the manufacturer’s instruction.  

 

Table 2-2. Primer sequence used for reverse transcription PCR to determine the mRNA levels of 
ARE1, ARE2, DGA1, and LRO1. ACT1 serves as a loading control. 
Gene  Sequence 
ARE1  
 

forward 
reverse 

5’TACGTGTTCGCATGGATGTT 
5’ACCCAGTCCACTTCCAGTTG 

ARE2  
 

forward 
reverse 

5’TCATCCCAGGAACTGCTACC 
5’GTGACCACCGTTTCTGAGGT 

DGA1  
 

forward 
reverse 

5’AGCGTTTGCAACAGAAGGTT 
5’CAAATGCAAACACAGGCACT 

LRO1  
 

forward 
reverse 

5’AGTGAAAATTTTGCCGTTGG 
5’TGCACGTAGCGTAAAGTTCG 

ACT1  
 

forward 
reverse 

5’TGTCACCAACTGGGACGATA 
5’AACCAGCGTAAATTGGAACG 

 

RNA isolation and RT-PCR― Total RNA was extracted using the RNeazy kit 

(Qiagen). On-column Dnase digestion (Qiagen) was done for all RNA samples. RNA 

concentrations were determined by measuring absorbance at 260 nm and 280 nm. RNA 

purity and integrity was assessed by gel electrophoresis. RT-PCR was performed using an 

Access RT-PCR kit (Promega). 1 μg total RNA for each sample was used in a 50 μl 

system. Both ribosomal RNA and ACT1 which encodes yeast actin were used as loading 

controls. Primers are shown in Table 2-2. PCRs were performed for 25 cycles. 10 μl final 

products were used to run gel electrophoresis and the intensity of the bands under the UV 
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light was compared. 25-cycle PCR was still in the exponential phase, because for all 

samples the intensity of the PCR product after 30-cycle amplification was significantly 

stronger than that after 25-cycle amplification. 

 

2.7 Antibody preparation and protein immunoblotting 

Preparation of antisera: Antibodies against Are1p and Lro1p were raised by 

immunizing the rabbits with GST-fused Are1p-12-190 and Lro1p-440-661 corresponding 

to the 179 near N-terminal amino acids of Are1p and 222 C-terminal amino acids of 

Lro1p, respectively. DNA sequence encoding Are1p-12-190 was amplified by PCR using 

a 5’ primer, 5’-BamHI-GTAGATCCCTGAAAAGTTC, and a 3’ primer, 5’ -XhoI- 

GAGTTTCTTAAGATCCGC. DNA sequence encoding Lro1p-440-661 was amplified by 

PCR using 5’-BamHI-ACTGACACATACGGCAAT, and 5’ -XhoI- 

TCAATGTCGGTCATT. Both segments were inserted into BamHI- and XhoI- cleaved 

pGEX 4T-1 vector (Figure 2-2). GST-fused peptides were expressed in the BL21 bacteria 

strain.  

 

Protein immunoblotting: Bradford protein assay (Bradford, 1976) was performed with 

1-20 μl samples in a microtiter plate using Bio-Rad protein assay reagent. BSA was used 

as a protein standard. SDS-PAGE was performed according to Laemmli (1970) using 

10% or 8% acrylamide. Electrophoresed proteins were visualized by staining with 

Coomassie blue (Ausubel et al., 2005). For immunoblotting, electrophoresed proteins 

were transferred to nitrocellulose filters as previously described (Towbin et al., 1979). 
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Filters were blocked and antibody incubations were performed with 5% nonfat dry milk 

in 20 mM Tris·Cl, pH7.4, 150 mM NaCl (TBS) with 0.05% Tween 20. Detection of 

filter-bound antibodies was performed using the ECL detection system (Pierce). 

 

 

2.8 Subcellular fractionation and Isolation of organelles 

Preparation of spheroplasts― Spheroplasts from yeast cells were prepared according 

to Daum et al. (1982). Cells were harvested by centrifugation at 3,000g for 5 min, washed 

once with ddH2O, suspended to 0.5g, wet weight/ml in 0.1M Tris·Cl, PH9.4, 10mM DTT, 

and incubated at 30°C for 10min. Afterwards they were washed once with 1.2M sorbitol 

and suspended in 1.2M sorbitol, 20mM K3PO4, PH7.4, to 0.15g, wet weight/ml. 

Zymolase 20T was added to 2mg/g wet weight cells. The suspension was incubated at 

30°C with gentle shaking for 30 to 60 min. Conversion of spheroplasts was checked as 

described (Schatz and Kovac, 1974). Spheroplasts were harvested by centrifugation for 

5min at 1,500g, washed twice with 1.2M sorbitol, and suspended in appropriate buffer for 

homogenization. 

 

Isolation of LDs― LDs were purified as described by Leber et al. (1994) with 

modifications. Briefly, spheroplasts were suspended 0.15 g/ml in breaking buffer (10mM 

Tris·Cl, PH6.9, 0.2 mM EDTA, 12% (w/w) Ficoll 400) and chilled on ice. Protease 

inhibitors were added in buffers as such: 1 mM PMSF, 2 µg/ml aprotinin, 0.5 µg/ml 

leupeptine, 1 µg/ml pepstatin A. Spheroplasts were homogenized with a Dounce 
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homogenizer applying 10-20 strokes using a loose fitting pistil and the homogenate was 

transferred into 13.5 ml Ultra clear centrifuge tubes (Beckman) and overlaid with an 

equal volume of breaking buffer. Centrifugation was performed for 60 min at 28 000 rpm 

in an SW-41 swing bucket rotor (Beckman). A floating layer which consists mainly of 

lipid droplets and vacuoles was collected and suspended gently in breaking buffer using a 

Dounce homogenizer with a loose fitting pistil. The suspension was again transferred into 

13.5 ml Ultra clear tubes, overlaid with an equal volume of 10mM Tris·Cl, PH7.4, 0.2mM 

EDTA, 8% (w/w) Ficoll 400, and centrifuged as described above. The floating layer was 

recovered, suspended gently in 10 mM Tris·Cl, 0.2 mM EDTA, 0.6 M sorbitol, 8% (w/w) 

Ficoll 400 in 13.5 ml Ultra clear tubes, and overlaid with 10 mM Tris·Cl, 0.2 mM EDTA, 

0.25 M sorbitol. After centrifugation at 28 000 rpm for 30 min, the floating layer consists 

of highly enriched lipid droplets separated from vacuoles. 

To solubilize LD-associated proteins, isolated LDs were mixed with 1 vol of 10% 

SDS and incubated for 1 h at 37°C in a sonicating water bath. During the incubation, 

samples were removed every 10 min and agitated on a vortex mixer before returning to 

the bath. Then samples were centrifuged for 10 min at 15 000g, room temperature. The 

infranatant containing the solubilized proteins beneath the floating lipid layer was 

collected (Ausubel et al., 2003).  

To extract lipids, isolated LD-rich fractions were mixed with 10 vol of hexane. The 

mixtures were vigorously agitated on a vortex mixer for 5 min. After centrifugation at 

2,000 g for 5 min, the organic supernatant was collected and hexane was blown dry.  
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Fractionation of whole cell extract― To fractionate whole cell extract, a continuous 

sucrose density gradient fractionation procedure was used as described (Kolling and 

Hollenberg, 1994) except that only 13 fractions were taken from top to bottom. Briefly, 

cells were lysed in STED10 (10% w/w sucrose, 10 mM Tris PH7.4, 1 mM EDTA, 1 mM 

DTT) using a glass-bead beater, and spun at 500 g for 5 min to remove cell debris. 950 μl 

of cleared cell extracted was loaded onto a sucrose density prepared as such: In 13 ml 

SW41 centrifuge tubes 3.8 ml of STED53 (53% sucrose), STED35 (35% sucrose) and 

STED20 (20% sucrose) were loaded on top of each other. Centrifugation was performed 

at 30,000 rpm for 13-17 h for membranes to reach their equilibrium density. 950 μl 

fractions were collected from the top of gradient. Dpm1p was used as the ER marker. 

 

Preparation of lipid droplet-free cytosol― The strain are1Δare2Δdga1Δlro1Δ which 

is deficient in neutral lipids synthesis, hence devoid of lipid droplets, was used to prepare 

lipid droplet-free cytosol. Cytosol was prepared by differential centrifugation principally 

as described by Allan and Balch (2005). Spheroplasts were suspended 0.15 g/ml in lysis 

buffer, and homogenized with a Dounce homogenizer. After the homogenate was 

centrifuged at 1,500 g for 5 min, the supernatant was further clarified by centrifugation at 

27,000 g for 10 min and at 150,000 g for 90 min at 4ºC. 

 

 

2.9 Transmission electron microscopy  

Cell cultures were centrifuged at 2,000 g for 3 min to pellet the cells. Subsequently 
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cells were fixed with 2·5% (v/v) glutaraldehyde (Electron Microscopy Sciences) and 

postfixed with 2% (w/v) osmium tetroxide (Electron Microscopy Sciences). Samples 

were further dehydrated in an ethanol series and embedded in Spurr's Resin. 80-nm 

ultrathin sections were stained with uranyl acetate and lead citrate and examined under a 

JEM-1230 Joel electron microscope. 
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Chapter 3  

Biochemical characterization of LD synthesis 

 

As mentioned in Chapter 1, LD is ubiquitously found in eukaryotic cells. The only 

known eukaryotic cell type that does not contain cellular LDs is the 

are1Δare2Δdga1Δlro1Δ yeast strain in which all the four enzymes catalyzing the 

synthesis of neutral lipids, i.e., Are1p, Are2p, Dga1p, and Lro1p, were deleted (Sandager 

et al., 2002). Given that our understanding of the mechanism underlying LD biogenesis is 

rather limited, it has not been determined whether other factors besides neutral lipids 

synthesis are essential for LD formation. In this chapter, evidence is presented that 

cytoskeleton and ER-to-Golgi transport are not required for LD synthesis. More 

intriguingly, energy poisons do not block LD formation either. 

 

3.1 Biosynthesis of LDs does not necessarily require cytoskeleton 

In NIH 3T3 cells, newly formed LDs were observed to form complexes with one 

another, and this process is microtubule-dependent (Bostrom et al., 2005). In Drosophila, 

controlled transport and distribution of LDs requires the perilipin homolog LSD2, which 

is a regulator of microtubule motor activity (Welte et al., 2005). These data might suggest 

microtubule play a role in LD maturation and trafficking, however, whether microtubule 

is required in LD biogenesis is not conclusive. In this study, nocodazole was used to 

disrupt the microtubule structure (Jacobs et al., 1988) and the disruption was confirmed 

by visualization of tubulin-containing structure (Adams and Pringle, 1984). As shown in 
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Figure 3-1. LD biogenesis does not depend on microtubule. Cells were refreshed in YPD and 
grown for ~6 h at 30°C till OD600 ~0.5. Subsequently cells were treated with 15 μg/ml nocodazole (c&d) 
or an equivalent volume of DMSO (control, a&b). After 1 h incubation, cells were either harvested 
(a&c) or treated with 0.5 mM oleate for another 1 h (b&d). Fluorescence microscopy and lipid analysis 
were performed afterwards. A. Nile red staining of LDs. Bar, 10 µm. B. Quantitation of intracellular 
TAG and SE. C. Indirect antitubulin immunofluorescence micrograph of cells fixed after 1 h of 
incubation in medium containing DMSO (e) or DMSO plus nocodazole (f). OA, oleate; Noco, 
nocodazole. 

Figure 3-1C, after 1 h incubation in the presence of 15 μg/ml nocodazole, microtubules 

were disassembled completely, whereas the microtubule structure remained intact in the 

control group. Subsequently the cells were treated with 0.5 mM oleate for 1 h. Similar to 

the control group, cells pretreated with nocodazole increased LD synthesis as well (Figure 

3-1A). Neutral lipids quantitation revealed that TAG and SE synthesis was only slightly 

affected after the disassembly of microtubule, about 10% less than the control group 

 49



 

(Fgiure 3-1B). 

 

Figure 3-2. LD biogenesis does not require F-actin. Cells were refreshed in YPD and grown for ~6 
h at 30°C till OD600 ~0.5. Subsequently cells were treated with 100 µM Latrunculin A (c&d) or an 
equivalent volume of DMSO (control, a&b). After 1 h incubation, cells were either harvested (a&c) or 
treated with 0.5 mM oleate for another 1 h (b&d). Fluorescence microscopy and lipid analysis were 
performed afterwards. A. Nile red staining of LDs. Bar, 10 µm. B. Quantitation of intracellular TAG and 
SE. C. Rhodamine phalloidin staining of cells fixed after 1 h of incubation in medium containing 
DMSO (e) or DMSO plus Latrunculin A (f). OA, oleate; Lat-A, Latrunculin A. 
 

Similarly, Latrunculin A was used to disrupt the F-actin (Ayscough et al., 1997) and 

the disruption was confirmed by rhodamine phalloidin staining (Pringle et al., 1989). 

After 1-h treatment with Lat-A, the actin patch disappeared (Figure 3-2C). Then the cells 

were incubated in the presence of 0.5 mM oleate for 1 h, followed by microscopic 
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examination and lipid analysis. After the disruption of actin, lipid analysis revealed that 

oleate-induced TAG synthesis was at the same level as the control group while SE 

synthesis was moderately affected, i.e., about 30% reduced (Figure 3-2B), and the 

formation of LDs was not greatly affected (Figure 3-2A). The data above show that the 

deposition of TAG and SE into LDs does not require cytoskeleton. 

 

3.2 ER-to-Golgi transport is not essential in LD biogenesis 

Generation of a vesicle from a precursor membrane constitutes the initial step of 

vesicular trafficking, followed by transport of the vesicle to its destination, and finally the 

fusion of the vesicle with the target compartment. COPII-coated vesicles mediate the 

export of newly synthesized protein from the ER. In the budding yeast, COPII vesicles 

are assembled on the surface of the ER by sequential binding of Sar1p GTPase which is 

activated by Sec12p guanidine nucleotide exchange factor, followed by the Sec23/24p 

complex and Sec13/31p complex (Barlowe, 2002). The loss of function of any of these 

proteins blocks the exit of secretory protein from the ER (Nakano and Muramatsu, 1989; 

Kaiser and Schekman, 1990; Hicke et al., 2002; Salama et al., 1997). After vesicles are 

synthesized, they are transported to the targeted compartment, eventually dock at the 

target compartment and fuse with it. The docking of vesicles at the target compartment 

and the fusion of apposing membranes are mediated by SNAREs (Hong, 2005). NSF and 

α-SNAP are essential regulators of the SNAREs. Sec18p in yeast is a mammalian NSF 

ortholog, the loss of function of which results in an inability of the vesicles to fuse with 

the target membrane (Kaiser and Schekman, 1990). Whether ER-to-Golgi transport is 
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Figure 3-3. ER-to-Golgi transport is 
not essential in LD synthesis. Cells were 
grown in YPD at 24°C till OD600 ~0.5. 
Subsequently cells were harvested (1, 5, 9), 
or incubated in the presence of 0.5 mM 
oleate (2, 6, 10), or shifted to 37°C (3, 7, 
11, and 4, 8, 12). After incubation at 37°C 
for 1h, cells were either harvested (3, 7, 11) 
or supplied with 0.5 mM oleate for 1h (4, 
8, 12). A. Nile red staining of LDs. Bar, 10 
µm. B. Quantitation of intracellular TAG 
and SE.  



 

essential in LD biogenesis has not been defined yet. To test this possibility, we made use 

of the sec12, sec13, and sec18 temperature-sensitive (ts) mutants.  

The mutant strains were grown at the permissive temperature (24°C) and then shifted 

to the nonpermissive temperature (37°C) and incubated for 1 h. Subsequently, cells were 

supplied with 0.5 mM oleate and incubated for another 1 h. As shown in Figure 3-3 A, 

oleate-induced LD synthesis was not impaired when the cells were shifted to the 

nonpermissive temperature. On the contrary, parallel to the elevated synthesis of neutral 

lipids at the nonpermissive temperature (Figure 3-3B), these sec mutants synthesized 

more LDs at 37°C than at 25°C (Figure 3-3A). Since Sec12p and Sec13p are 

indispensable for the formation of COPII, and Sec18p is an essential regulator of 

SNAREs, this data clearly shows that ER-to-Golgi transport is not essential for LD 

biogenesis.  

 

3.3 Energy poisons cannot block LD formation  

Then I moved forward to test whether energy depletion could inhibit the synthesis of 

LDs. Wild type cells were incubated in the presence of 10 mM NaF and 10 mM NaN3 

serving as energy poisons to block all ATP production (Vida and Emr, 1995). To my great 

surprise, energy poisoning failed to block oleate- induced synthesis of LDs. As seen in 

Figure 3-4B, after the treatment with NaF/NaN3 for 1 h, cells had an increase of both 

TAG and SE synthesis, about twofold increase for each. Meanwhile microscopy 

demonstrated that besides an enlarged vacuole, energy depletion also resulted in a twofold 

increase of LDs (Figure 3-4A). It suggested that cells sensed the stress caused by energy 
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depletion and made an immediate storage of TAG and SE into LDs.  

Figure 3-4. Energy poisons cannot block oleate-induced LD formation. Cells were grown in 
YPD at 30°C till OD600 ~0.5. Subsequently cells were either harvested (1), or treated for 1 h with 
10 mM NaF and 10 mM NaN3 (2 &3). After energy depletion, cells were either harvested (2) or 
incubated with 0.5 mM oleate for 1 h (3). A. Nile red staining of LDs. Bar, 10 µm. B. Quantitation 
of intracellular TAG and SE. C. Thin-section electron micrograph of cells. Bar, 2 μm.  
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When the energy-starved cells were further supplied with exogenous oleate, they 

continued to synthesize more TAG, since lipid analysis discovered another 90% increase 

of intracellular TAG compared to the energy-depleted group without oleate treatment. SE 

level also had a 15-20% increase (Figure 3-4B). Moreover, when counted under the 

fluorescence microscope, intracellular LDs increased as well, from 2.5±1.1 per cell on 

average (n=223) to 4.3±1.9 per cell on average (n=251) (Figure 3-4A). LD synthesis in 

response to energy depletion was further confirmed using thin-section electron 

microscopy, and so was oleate-induced LD synthesis in energy-starved cells (Figure 

3-4C). When the wild type cells were grown in YPD medium to OD600~0.5, almost all 

cross-sections of the cell contained 0-2 LDs. After the cells were subjected to 1-h 

NaF/NaN3 treatment, some cross-sections contained 3-4 LDs. When 0.5 mM oleate was 

supplied to these energy-starved cells, even more (5-6) LDs could be observed in some 

cross-sections. Taken together, these data show that NaF/NaN3 treatment does not block 

the synthesis of neutral lipids and the deposition of newly-synthesized neutral lipids into 

LDs. This result also gives additional supporting evidence that vesicular transport is not 

essential in LD biogenesis, because NaF/NaN3 has been shown to efficiently block 

vesicular transport (Vida and Emr, 1995; Hanson et al., 2002;).  

 

3.4 Summary 

These results clearly indicate that cytoskeleton and vesicular transport are not 

essential in LD formation. At this stage, we still cannot draw any conclusion that LD 

biogenesis is energy-independent, because NaF/NaN3 treatment may not completely 
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deplete the intracellular ATP store.  

It should be noted, however, that exogenous oleate was supplied to the cells in these 

experiments to promote the synthesis of LD. It is unknown whether cytoskeleton and/or 

vesicular transport have a role in LD biogenesis under normal growth conditions when 

the cells would not have access to an excess of oleate. It is possible that even if they are 

not directly involved in the deposition of neutral lipids into LDs, they might be required 

to transport the substrates for TAG and SE synthesis from other membrane compartments 

to the ER, for instance, DAG, free fatty acids, and sterols.  
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Chapter 4  

Genome-wide screening for yeast genes whose deletions result in 

defective accumulation of intracellular LDs 

 

The genome of the budding yeast S. cerevisiae has been completely sequenced 

(Goffeau et al., 1996). Based on that, a whole collection of gene deletion strains have 

been constructed (Winzeler et al., 1999) and are commercially available at the 

EUROSCARF (EUROpean Saccharomyces Cerevisiae ARchives for Functional analysis 

collection center. This makes possible the screen for genes whose deletion leads to a 

specific phenotype of interest by taking an approach of “reverse genetics”. Reverse 

genetics which proceeds in the opposite direction of classical forward genetics aims to 

identify the possible phenotypes that may result from alteration of a specific genetic 

sequence. It might be time-consuming and labor-intensive; however, it is a powerful 

method. In this study, we screened the entire collection of ~4700 haploid deletion strains 

of S. cerevisiae purchased from EUROSCARF to identify genes involved in intracellular 

LD accumulation.  

 

4.1 Nile red staining of LDs in the wild type yeast (BY4741) cells 

Nile red, 9-diethylamino-5H-benzo[α]phenoxazine-5-one, is a specific and excellent 

vital dye for intracellular LDs. The fluorescent color is dependent on the excitation 

wavelength, and varies from golden yellow (excitation at 450-500 nm) to orange-red 

(excitation at 515-560 nm) (Greenspan et al., 1985; Greenspan and Fowler, 1985). In this 

 57



 

study, golden yellow was chosen because it offers a better resolution of LDs in addition to 

a low background. Figure 4-1A shows the Nile red staining of cytoplasmic LDs in the 

wild type (hereafter WT) cells grown to early stationary phase. Considering that wide 

field fluorescence microscope was used in this study, microadjustment of the sample 

platform was performed whenever necessary to observe the out-of-focus LDs. Due to the 

same reason, the count of intracellular LDs was performed directly under the microscope. 

Because yeast cells accumulate LDs when they enter the stationary phase in response to 

nutrient limitation, WT cells and all the mutants were grown overnight to early stationary 

phase in this study, immediately followed by Nile red staining and fluorescence 

microcopy. Early-stationary-phase WT cells contain 5.16±2.18 LDs per cell on average 

(n=200) and approximately 80% of the cells accumulate 3 to 6 LDs. To be precise, 24% 

of the cells accumulate 3 LDs, 19% 4 LDs, 19% 5 LDs, and 17% 6 LDs.  

 

4.2 Genome-wide scan for genes whose deletions result in defective accumulation of 

cytoplasmic LDs 

Subsequently we screened the entire collection of ~4700 viable single deletion 

mutants to identify genes the deletion of which lead to defective accumulation of 

cytoplasmic LDs. Based on our observation that most mutants have around the same 

number of LDs as the WT cells, we arbitrarily categorized the strains of which the 

majority (>50%) cells accumulate less than 3 LDs as fld (few lipid droplets) mutants, and 

the strains of which the majority cells accumulate more than 7 LDs as mld (many lipid 

droplets) mutants. Among the mld mutants, some strains of which the majority cells 
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contain more than 11 LDs were labeled as strong phenotype (Figure 4-1). Genome-wide 

screening of the entire collection of viable single deletion strains led to a discovery of 16 

fld mutants and 117 mld mutants. Obviously, the percentage of fld strains among a total 

of 4850 viable deletion mutants (0.33%) is much smaller than that of mld strains (2.38%). 

No LD-null mutant was identified in this study. Table 4-1 summarizes the genes the 

deletion of which result in reduced accumulation of intracellular LDs, and Table 4-2 

summarizes the genes whose deletions result in accumulation of more intracellular LDs. 

Genes were grouped according to known or presumed function of their products. Genes 

whose deletions have reduced number of LDs encode: components of glycosylation 

machinery, enzymes seated on some metabolic pathways, proteins involved in protein 

biosynthesis, and miscellaneous proteins (Table 4-1). Genes whose deletions lead to 

increased quantity of LDs include members of the same groups discussed above; besides, 

genes whose products serve as channels and transporters, most of which belong to the 

vacuolar ATPase family, genes of cytoskeleton related proteins, genes encoding proteins 

responsible for DNA maintenance and chromatin structure, genes whose products 

involved in protein modification and degradation, genes encoding transcription factors, 

genes whose products implicated in vesicular trafficking, and some hypothetical or 

uncharacterized ORFs (Table 4-2). The number of intracellular LDs was confirmed at 

least three times by fluorescence microscopy when stained with Nile red. 
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Figure 4-1. Nile red staining of LDs in the WT cells and selected mutants. Bar, 10 μm. A WT 
cells. B. 3 selected fld strains (dga1, hem14, and cwh8). C. 3 selected mld strains (tgl3, snf1, and 
pmr1). Among them, pmr1 gives a strong phenotype. 
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Table 4-1. Genes identified in genome-wide 
screening for fld strains (16) 
Metabolic enzymes (4) 
COX5A, CYS4, DGA1, HEM14  
Protein glycosylation (1) 
CWH8  
Protein biosynthesis (5) 
RPP2B, RPL2B, RPL8B, RPL12B, RPL20A 
Transcription factors (1) 
HMO1  
Miscellaneous (5) 
BUD25, LTV1, NEM1, SPO7, SSD1 
 
 
ABOVE:     This table lists a total of 16 genes 
whose deletions result in decreased intracellular LDs. 
The number of genes in each group was indicated in 
parenthesis. Some genes may have different 
designations; our choice was made based on the 
frequency of their use in literature. Detailed gene 
information could be found at Saccharomyces Genome 
Database. 

RIGHT:      This table lists a total of 117 genes 
whose deletions demonstrate increased intracellular 
LDs, among which 14 give strong phenotype (indicated 
by *).  

 

Table 4-2. Genes identified in genome-wide 
screening for mld strains (117) 
Channels and transporters (5) 
FUI1, VMA6, VMA8, VMA13, VMA21 
Cytoskeleton organization (6) 
ARC18, ARP1, CNM67, NUM1, SPC72*, VRP1 
DNA maintenance / chromatin structure (9) 
EST1*, EST2*, EST3, POL32, MRE11, RAD27*,  
RAD50, RTT109, XRS2 
Metabolic enzymes (18) 
ADE3, ADE4, ADE5,7, ADE6, ADE8, ADE12, 
ELO3, ERG2, ERG3, ERG4, ERG5, ERG6, 
KGD1*, MET7, PFK2, RNR4, TGL3, TGL4 
Protein glycosylation (7) 
ANP1, ERD1, MNN10, MNN11, OCH1, OST4, 
PMR1* 
Protein biosynthesis (3) 
RPS12, RPS21B, RPS30B 
Protein degradation (4) 
DEF1, DOA10, HRD1, UBX1 
Protein modification (3) 
MAP1, MDM20, PPG1  
Protein / RNA transport (1) 
APQ12 
RNA modification and metabolism (3) 
DHH1, KEM1, REF2 
Signaling / Transcription factors (18) 
HPR1, MFT1, NOT5, PAF1, PGD1, PHO85,  
RLR1, ROX3*, RPB4, SNF1, SNF2, SNF6, 
SNF11, SRB2*, SRB5*, SSN3, SWI3, TAF14 
Vesicular transport (22) 
CHC1, SAC1, SWA2, VAM3, VPS1, VPS11, 
VPS15, VPS16, VPS18, VPS19, VPS27, VPS31, 
VPS33, VPS34, VPS39, VPS41, VPS43, VPS45, 
VPS53*, VPS54, VPS64, VPS66 
Hypothetical / uncharacterized ORF (10) 
YDL073W , YDR532C , YGL168W*, YKL037W , 
YJL075C,  YLL030C*, YLR358C, YOR041C, 
YPL183W-A, YPR087W*  
Miscellaneous (8) 
ARG82, BUD22, ELM1, GON7*, KRE6,  
MMS22, SPS1, TPD3 

 

4.3 Electron microscopic examination of the WT cells and selected mutants 

Under conventional electron microscope, LDs which appear electron-lucent can be 

easily identified. To further confirm that the fld mutants identified in this study contain 

fewer LDs and the mld mutants contain more LDs than the WT cells, we examined 3 fld 
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mutants, 3 mld mutants, 1 of which displays strong phenotype, together with the WT cells 

using transmission electron microscopy (TEM). It is noted that TEM only observe 

cross-sections of the yeast cells, and therefore it should not 

be used for counting the number of LDs contained in one single cell. However, because 

the mld mutants contain more LDs than the WT, the chance of the appearance of LDs in 

cross-sections of the mld mutants is higher than those of the WT. In addition, the average 

number of LDs per cross-sectioned mld mutant cell is more than that per cross-sectioned 

WT cell. The same logic applies to the fld mutants as well. 

Figure 4-2. Thin-section electron micrograph of WT cells and selected mutants. A WT cells. B. 
3 selected fld strains (dga1, hem14, and cwh8). C. 3 selected mld strains (tgl3, snf1, and pmr1). Bar, 2 
μm 
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WT cells and 6 selected mutants were fixed with 2.5% glutaraldehyde and postfixed 

with 2% (w/v) osmium tetroxide. The samples were subsequently dehydrated in a series 

of graded ethanol and embedded in Spurr's Resin. 80-nm ultrathin sections were stained 

with uranyl acetate and lead citrate and examined under a JEM-1230 Joel electron 

microscope. As shown in Figure 4-2, as many as 4 or 5 LDs could be observed in sections 

of the WT cells. The majority of sections of the fld strains contained less than 3 LDs and 

the size of LD could be much smaller than the WT cells. Most of the sections of the mld 

mutants contain more than 6 LDs. Some sections of the pmr1 strain even displayed 20 

LDs. These results are consistent with the data obtained through fluorescence microscopy. 

 

4.4 Neutral lipids analysis of 16 fld mutants 

The synthesis of the core lipids, TAG and SE, so far is known to be the major 

contributor in LD formation. Little is know about whether other factors/proteins are 

involved in LD formation. In this study, 16 strains were identified to have fewer LDs than 

the WT (Table 4-1). In order to see whether these deleted genes directly affect LD 

assembly without impingement upon neutral lipids synthesis, we quantitated the neutral 

lipids of these mutants. The result is shown in Figure 4-3. The data shows that 9 strains 

(hmo1, cox5a, dag1, hem14, cwh8, rpp2b, rpl8b, rpl12b, and bud25) have decreased TAG 

and SE, 4 strains (rpl2b, rpl20a, bud25, and nem1) have decreased TAG only, and 3 

strains (cys4, spo7, and ssd1) have decreased SE only. This suggests that reduced LD 

accumulation in these mutants is very likely the result of decreased neutral lipids 

synthesis. Therefore, these genes may not be directly involved in LD assembly.  
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Quantitation of neutral lipids
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Figure 4-3. Neutral lipids analysis of WT and fld strains. 

 

4.5 Conditions of endoplasmic reticulum stress stimulate LD formation in S. 

Cerevisiae 

Cumulative evidence indicates that ER is the site for LD biosynthesis (Murphy and 

Vance, 1999). However, no ER related signaling pathways have been identified to 

regulate or associate with the biogenesis of LDs. Through genome-wide screening, 117 

mld mutants were identified. Among these mutants, many are involved in endoplasmic 

reticulum (ER) stress.  

 

4.5.1 Mutants defective in N-linked glycosylation accumulated more LDs  

Physiologically ER stress can result from mutations of genes encoding glycosylation 

enzymes (Zhang and Kaufman, 2006). In this study, we found that seven mutants that 

affect protein glycosylation, anp1, erd1, mnn10, mnn11, och1, ost4, and pmr1, produce 

more LDs than the WT when cells enter stationary phase (Figure 4-4A). As shown in 

Table 4-3, these mutants contain significantly more LDs than the WT cells. In addition, 
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lipid analysis showed that compared with the WT, the mutants had elevated TAG and/or 

SE (Figure 4-4B). 

 

A. 

 
B. 

 
Figure 4-4. Mutants defective in protein glycosylation display more intracellular LDs. Cells 
were grown in YPD till early stationary phase. A. microscopic examination of LDs of WT, anp1, 
erd1, gas1, mnn10, mnn11, och1, ost4, and pmr1 cells. Bar, 10 µm. B. Quantitation of intracellular 
TAG and SE.  
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Table 4-3. The number of LDs of the WT cells and the mutants defective in protein glycosylation 
when cells were grown to stationary phase. 
Strains the average number of LDs 

WT 5.2±2.2 

anp1* 8.3±2.7 

erd1** 9.3±2.4 

mnn10* 7.9±1.9 

mnn11* 8.3±2.5 

och1*** 10.3±3.7 

ost4*** 10.2±3.1 

pmr1*** 11.9±2.8 

*, p<0.05; **, p<0.01; ***, P<0.001; all compared with the WT cells (n=100). 
 

4.5.2 Mutations in ERAD components resulted in more LD accumulation 

ER-associated protein degradation (ERAD) is responsible for the degradation of 

misfolded or unassembled proteins from the ER. The ERAD pathway translocates 

misfolded proteins back into the cytosol, where they are eliminated by the proteasome 

(Brodsky and McCracken, 1999). Walter and colleagues found that impaired ERAD leads 

to an accumulation of unfolded proteins in the ER, thus constitutively causing ER stress 

(Travers et al., 2000). In this study we also found that LD biosynthesis was increased 

when DOA10 or HRD1, nonessential genes required for ERAD, is disrupted (Figure 4-5). 

The average number of intracellular LDs was 7.3±2.1 and 6.9±1.7 (both p<0.05 compared 

with the WT 5.2 ± 2.2) for doa10 and hrd1, respectively. Meanwhile, doa10 displayed a 

35% increase of TAG and 60% increase of SE; hrd1 displayed a 30% increase of TAG 

and 40% increase of SE, all compared with the WT (Figure 4-5). 
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A 

 
 
Figure 4-5. ERAD mutants accommodate more LDs. A. Microscopic 
demonstration of intracellular LDs of WT, doa10 and hrd1 cells. Bar, 10 µm. B. 
Quantitation of TAG and SE of three strains. 

 

4.5.3 Tunicamycin and Brefeldin A treatment induced LD synthesis 

To further test whether ER stress causes LD accumulation, we experimentally induced 

ER stress by treating cells with the drug Tunicamycin (Tm), which inhibits N-linked 

glycosylation, and found that Tm treatment led to increased intracellular LD production. 

WT cells, grown to early exponential phase (OD600~0.5), were either harvested 

immediately or treated with Tm or an equivalent volume of DMSO (final 0.2% v/v). After 

1 h of incubation in the presence of Tm cells accumulated more LDs (3.1±1.3) compared 

with the group receiving no additional treatment (1.5±0.8, p<0.01). DMSO alone had no 

obvious effect on LD formation (Figure 4-6A). Lipid quantitation analysis showed that 

Tm treatment increased TAG and SE synthesis by 30% and 130% respectively (Figure 

4-6B). Furthermore, Tm treatment enhanced oleate induced LD synthesis. As shown in 

Figure 4-6, compared with the control group (YPD+DMSO), cells that were treated with 

Tm beforehand displayed more LDs and also a higher level of TAG and SE after the 
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addition of oleate. When the control group was incubated in the presence of 0.5 mM 

oleate for 1 h, the number of LDs per cell on average was 5.2±2.1, intracellular TAG was 

increased to as much as 6.5 times that of the YPD group, while SE synthesis was only 

elevated to as much as 1.5 times. In contrast, when the cells were pretreated with Tm for 

1 h, the average number of intracellular LDs after supplementation with oleate was 

9.1±2.9 (p<0.001), cellular TAG increased eightfold while SE increased fivefold (both 

compared to the YPD group).  

Similarly BFA induced neutral lipids synthesis and LD formation in erg6 cells as well 

(Figure 4-6). Since BFA cannot easily penetrate the cell wall of the WT cells, we selected 

the erg6 mutant. When the erg6 cells was incubated in the presence of 75 µg/ml BFA, the 

number of intracellular LDs per cell on average increased from 2.6±1.1 to 3.6±1.3 

(p<0.01), cellular TAG synthesis was elevated by 7 times and SE synthesis by 80%. In 

addition, when oleate was added into the medium, cells pretreated with BFA also 

synthesized more LDs compared with the control group (11.3±3.5 versus 6.3±2.8, 

p<0.001). Likewise, BFA treatment also accelerated oleate-induced intracellular TAG and 

SE synthesis. 

 

 

Figure 4-6 (next page). Tm treatment induces LD formation in the WT cells and BFA in erg6 
mutants at early log phase. 5 groups of cells were refreshed in YPD and grown for ~6 h at 30°C till OD600 
~0.5. Group 1 was harvested; group 2, 3, 4, 5 were added with 10 µg/ml of Tm (or 75 µg/ml of BFA) or an 
equivalent volume of DMSO (or ethanol). After 1 h incubation, group 2 and 3 were harvested while group 4 
and 5 were treated with 0.5 mM oleate for another 1 h. Fluorescence microscopy and lipid analysis were 
performed afterwards. A. Microscopic observation of cells and LDs. Bar, 10 µm. OA: oleate. B. 
Quantitation of intracellular TAG and SE. 
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4.5.4 Removal of ER stress condition by restoration of protein glycosylation alleviated the 

“fatty” phenotype 

To further verify our hypothesis that conditions of ER stress induce neutral lipids 

synthesis and LD formation, we studied whether the removal of ER stress could restore 

the defective LD accumulation. Pmr1p is a Ca2+ ATPase implicated in protein 

glycosylation; pmr1 mutants have defects in outer chain glycosylation (Rudolph et al., 

1989). Evidence suggested the defect is primarily due to the failure to transport Mn2+ into 

the secretory pathway and addition of Mn2+ greatly alleviates the glycosylation defect in 

pmr1 cells (Dürr et al., 1998). As expected, supplementation of Mn2+ effectively reduced 

the production of LDs in pmr1 mutants. As shown in Figure 4-7A and 4-7B, with the 

addition of gradually increased concentration of Mn2+, pmr1 cells began to decrease LD 

formation and synthesis of neutral lipids. When the concentration of Mn2+ was increased 

to 4.5 µM, its effect reached a plateau. Higher level of Mn2+ inhibited the growth of pmr1 

cells with 450 µM causing complete growth arrest. In contrast, supplementation of Mn2+ 

of equivalent concentrations to the WT cells did not result in any significant change either 

in the number of LDs (Figure 4-7C) or in the concentration of intracellular neutral lipids 

(Figure 4-7D). Nonetheless, 450 µM Mn2+ also caused slow growth of the WT cells. 

In summary, our data indicate that conditions of ER stress lead to LD formation. 1) 

Mutants either defective in protein glycosylation or ERAD displayed more LDs than the 

WT cells; 2) Agents that induce ER stress triggered LD synthesis; 3) Alleviation of ER 

stress via restoration of glycosylation decreased LD production. To our knowledge, this 

study offers the first link between a well established ER signaling pathway and LD 
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formation. 

It should be noted that although these mutants all accumulated more LD than the WT, 

their impact on neutral lipids synthesis varied between strains. erd1, och1, and ost4 

mainly upregulated TAG synthesis, anp1, mnn10, and mnn11 mainly upregulated SE 

synthesis, while pmr1, hrd1, and doa10 upregulated both TAG and SE synthesis (Figure 

4-4 and 4-5). In addition, after Tm treatment, the increase of SE synthesis was more 

prominent than that of TAG synthesis, whereas BFA treatment appeared to have a greater 

impact on TAG synthesis (Figure 4-6). These results suggest that different types of ER 

stress may differ in their impact on neutral lipids synthesis. 

 

 

 

 

 

 

 

Figure 4-7 (next page). Addition of Mn2+ reduces the “fatness” of pmr1 cells. Cells were grown in 
YPD till early stationary phase (OD600~3-4) in the absence or presence of Mn2+ ranging from 4.5 nM to 4.5 
µM. Then cells were harvested, followed either by microscopic observation or lipid analysis. Addition of 
gradually increased concentration of Mn2+ decreased the neutral lipids synthesis and production of LD 
formation in pmr1 cells. However, equivalent concentrations of Mn2+ had no obvious effect on the WT cells 
in terms of neutral lipids synthesis and LD formation. A. Microscopic examination of LDs in pmr1 cells. 
Bar, 10 µm. B. Quantitation of intracellular neutral lipids of pmr1 cells. C. Microscopic examination of LDs 
in the WT cells. D. Quantitation of intracellular neutral lipids of the WT cells. 
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4.5.5 Stimulated LD production in conditions of ER stress was not Ire1p- dependent 

Since unfolded protein response (UPR), a signal transduction cascade that allows 

eukaryotic cells to respond to changing conditions in the ER, is activated whenever 

protein folding in the ER is compromised, we investigated whether LD formation in 

conditions of ER stress was part of UPR. Because UPR requires Ire1p, which senses the 

accumulation of unfolded proteins in the ER lumen and cues the information across the 

ER membrane (Patil and Walter, 2001), we set out to find out whether Ire1p was essential 

for LD formation in conditions of ER stress. We knocked out IRE1 from anp1, mnn10, 

mnn11, pmr1, and doa10 strains. All the double deletion mutants conveyed 

hypersensitivity to 0.5 μg/ml Tm (data not shown). However, both the level of neutral 

lipids and the quantity of intracellular LDs of double deletion mutants showed no 

significant difference from that of corresponding single deletion strains (Figure 4-8). 

Moreover, Tm treatment also led to elevated synthesis of neutral lipids and accelerated 

formation of LDs in ire1 cells. As seen in Figure 4-9, Tm treatment dramatically 

increased LD formation in exponentially growing ire1 cells and the number of LDs 

increased from 1.6±0.5 to 3.1±1.2 (p<0.01). In addition, TAG synthesis was elevated by 

10% and SE by 90%. Based on these two experiments, we conclude that LD formation in 

conditions of ER stress is not dependent on Ire1p. This shows that stimulated LD 

biosynthesis in conditions of ER stress is not part of UPR, although the scope of UPR is 

very broad and many aspects of secretory function are under the regulation of UPR 

(Travers et al., 2000). 
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Figure 4-8. Intracellular 
LDs and neutral lipids 
synthesis are not reduced 
after IRE1 was knocked 
out in strains defective 
either in protein 
glycosylation or ERAD. 
A. Microscopy of 
intracellular LDs of the WT 
and double deletion 
mutants. Bar, 10 µm. B and 
C, Analysis of cellular TAG 
and SE. Double deletion 
mutants were compared 
with the WT and their 
corresponding single 
deletion mutants.  



 

 

4.5.6. Enzymes catalyzing the synthesis of neutral lipids were not upregulated when LD 

formation was stimulated in conditions of ER stress.  

The stimulated synthesis of neutral lipids and LDs in conditions of ER stress could 

have many possible causes. Among them, the expression level of the enzymes catalyzing 

the synthesis of TAG and SE was examined. Are1p, Are2p, Dga1p, and Lro1p are the four 

enzymes catalyzing the final step of the formation of SE and TAG. To be precise, Are1p 

and Are2p are responsible for the formation of SE and a minor portion (about 5%) of TAG, 

while Dga1p and Lro1p are responsible for the majority of TAG synthesis (Mullner and 

Daum, 2004). In this study, we successfully raised antibodies against Are1p and Lro1p 

and used them to observe the cellular level of Are1p and Lro1p via immunoblotting when 

Figure 4-9. Tm treatment induces LD formation in ire1 cells. Cells were refreshed in YPD 
and grown for ~6 h at 30°C till OD600 ~0.6. Subsequently cells were either harvested or treated with 
10 µg/ml of Tm or an equivalent volume of DMSO for 1 h. A. Microscopic observation of cells and 
LDs. Bar, 10 µm. B. Quantitation of intracellular TAG and SE.  
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ER stress was initiated. As indicated in Figure 4-10A, Tm treatment did not upregulate 

the level of Are1p and Lro1p. In addition, both ERAD mutants and four selected protein 

glycosylation mutants that were found containing significantly more LDs in this study 

had a similar (or even lower) level of Are1p and Lro1p to (than) that of the WT cells. 

Furthermore, supplementation of Mn2+ reduced the “fatness” of pmr1, but failed to 

change the cellular level of Are1p and Lro1p (Figure 4-10B).  

Figure 4-10. Enzymes involved in neutral lipids synthesis are not upregulated in 
conditions of ER stress. A. Tm treatment did not increase the cellular level of Are1p and Lro1p. 
Vti1p served as a loading control. B. Strains defective either in protein glycosylation or ERAD had 
a similar or even lower level of Are1p and Lro1p. Restoration of glycosylation in pmr1 mutants by 
supplementation of Mn2+ didn’t lead to change of Are1p and Lro1p level. C. mRNA level of ARE1, 
ARE2, DGA1, and LRO1 were not significantly upregulated after Tm treatment. Total RNA was 
isolated, followed by RT-PCR analysis. Both ribosomal RNAs and ACT1 served as loading 
controls. D. mRNA level of ARE1, ARE2, DGA1, and LRO1 were not significantly upregulated in 
strains defective either in protein glycosylation or ERAD.  

 

Besides Are1p and Lro1p, Are2p and Dga1p are the other two enzymes involved in 

neutral lipids synthesis. We did not have antibodies against Are2p and Dga1p, and 

therefore we chose RT-PCR to compare the mRNA level of ARE2 and DGA1. First, we 
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compared the mRNA level of the WT cells before and after Tm treatment. As seen in 

Figure 4-10C, after Tm treatment, the mRNA level of ARE1 and LRO1 remained 

unchanged, which was consistent with our data that Tm treatment did not result in a 

significant change of Are1p and Lro1p, as shown in Figure 4-10A. Importantly, the 

mRNA level of ARE2 and DGA1 was not upregulated after Tm treatment as well.  

Furthermore, the mutants defective either in protein glycosylation or ERAD did not 

express a higher mRNA level of ARE1, ARE2, DGA1, or LRO1 than the WT cells (Figure 

4-10D). On the contrary, the mRNA level of ARE2 was even obviously lower in anp1 and 

mnn11. All our results, taken together, clearly demonstrate that enzymes involved in 

neutral lipids synthesis are not upregulated in conditions of ER stress, although these 

conditions lead to an elevated synthesis of LDs. This suggests that lipid trafficking from 

other cellular compartments to the ER and/or lipid synthesis in the ER per se is enhanced 

when the ER is under stress, and cells convert delivered and/or newly synthesized 

sterol/DAG/fatty acids into SE and TAG. 

 

4.5.7 The interesting cwh8 strain 

ich is also defective in protein glycosylation did not 

exh

phate (Dol-PP) phosphatase located in the ER 

me

Interestingly, cwh8 strain wh

ibit LD hyperaccumulation; instead this mutant produced significantly fewer LDs than 

WT cells. It appeared, therefore, that this strain vetoes the association between ER stress 

and LD synthesis. Is that really the case? 

Cwh8p encodes a dolichyl pyrophos

mbrane (Fernandez et al., 2001). Dol-PP phosphatase removes a phosphate from the 
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Dol-PP generated in the ER lumen by oligosaccharyltransferase that transfers 

oligosaccharides from Dol-PP onto nascent glycoproteins in the ER. Lack of Cwh8p 

results in an increase in cellular Dol-PP and a deficiency in Dol-PP-linked 

oligosaccharides (van Berkel et al., 1999).  Since overexpression of Rer2p, a key 

enzyme catalyzing a rate-limiting step in the de novo synthesis of Dol-P, and Sec59, a 

dolichol kinase, can partially restore the growth defect of cwh8, it suggests that Cwh8p 

plays a role in maintaining sufficient Dol-P levels that are required for efficient protein 

N-glycosylation in vivo (Fernandez et al., 2001).  

The cwh8 strain exhibits severe underglycosylation of many glycoproteins. Then why 

this strain displayed LD hypoaccumulation instead of LD hyperaccumulation? Could it be 

that the deletion of CWH8 impairs the expression or function of enzymes involved in 

neutral lipids synthesis? To test this possibility, I examined the incorporation of [3H]oleate 

into neutral lipids. As shown in Figure 4-11, in vivo incorporation of [3H]oleate into TAG 

and SE was severely impaired in cwh8 cells. The rate of [3H]oleate incorporation into 

neutral lipids of cwh8 cells was merely about one third that of WT.  

 

Then I checked the expression level of Are1p and Lro1p using antibodies produced in 

Figure 4-11. [3H]oleate incorporation into neutral lipids of WT and cwh8 cells. Cells were 
grown to mid-log phase, and pulsed with 1 µCi/mL of [3H]oleate for 30 min.  
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pro

4.5.8 ER stress may be responsible for LD overaccumulation in vma and vps mutants 

the 

ass

 laboratory. Remarkably, the expression levels of both Are1p and Lro1p in cwh8 

mutant were greatly reduced, as compared to that in WT cells. Expression of CWH8 gene 

inserted into the YCplac111 vector successfully restored the expression of Are1p and 

Lro1p in cwh8 cells (Figure 4-12).  

 

 

Previously I have shown that the expression level of Are1p and Lro1p in the o

Figure 4-12. Expression level of Are1p and Lro1p in WT strain, cwh8 strain, and cwh8 
strain transformed with YCplac111-CWH8 vector. Vti1p was a loading control. 

th

tein glycosylation mutants identified in this study was comparable to that in the WT 

cells (Figure 4-10). These data suggest that deletion of CWH8 gene on one hand causes 

protein underglycosylation, leading to ER stress which is supposed to induce LD 

synthesis; on the other hand, this deletion also leads to insufficient expression of enzymes 

involved in neutral lipids synthesis, which ultimately affects TAG and SE synthesis and 

blocks ER stress-induced LD synthesis. Therefore, although cwh8 cells exhibited LD 

hypoaccumulation, this does not contradict the link between ER stress and LD synthesis. 

 

4 mutants (vma6, vma8, vma13, and vma21) lacking proteins required for 

embly of vacuolar H+-ATPase accommodate more LDs than the WT cells (Table 4-2). 
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Vacuolar H+-ATPase functions to acidify organelles such as Golgi apparatus, endosomes, 

and vacuoles, and at the same time drives the antiporters for amino acids, Ca2+, and K+. 

Consequently, vacuolar H+-ATPase is involved in a variety of cellular processes such as 

endocytosis, vacuolar protein sorting and intracellular trafficking (Beyenbach and 

Wieczorek, 2006). Besides the vma strains, another 22 mutants with mutations in genes 

involved in vesicular protein trafficking displayed increased accumulation of LDs (Table 

4-2). Since these mutants inevitably affect the secretory pathway by one degree or another, 

soluble and membrane proteins which are synthesized on the rough ER and originally 

destined for secretion or localization to other organelles such as vacuoles may be blocked 

in the ER lumen, giving rise to increased ER load and ER stress. Therefore, 

hyperaccumulation of LDs observed in vma and vps mutants may be due to ER stress as 

well.  

 

4.6 LD synthesis is under transcriptional control 

ors displayed hyperaccumulation of 

LD

18 mutants lacking signaling/transcription fact

s (Table 4-2). Among them, 5 mutants are mutated in PGD1, ROX3, SRB2, SRB5, or 

TAF14, subunits of the RNA polymerase II mediator complex. Rox1, srb2, and srb5 even 

displayed strong phenotype. This suggests that this complex is extremely important in 

maintaining cellular lipid metabolism, although the molecular mechanism is unknown at 

this stage. Given that mediator is a central link in the enhancer-activator-mediator-pol 

II-promoter pathway, and the transduction of regulatory signals through this pathway is 

crucial for transcriptional activation in all eukaryotic organisms (Kornberg, 2005), it can be 
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concluded that controlled gene expression is indispensable for regulated LD metabolism. 

This conclusion is further corroborated by our observation that LDs overaccumulate in 

mutants lacking components of THO complex (hpr1, mft1, and rlr1), mutants lacking 

components of SWI/SNF complex (snf2, snf6, snf11, and swi3), and snf1. 

THO complex is required for transcription elongation (Chavez et al., 2000) and acts at 

the

mplex and SWI/SNF complex, snf1 also displayed 

inc

 interface between transcription and mRNP export (Jimeno et al., 2002). Its disruption 

leads to transcription elongation impairment and DNA hyperrecombination, indicating 

that THO complex is a functional unit in gene expression and genome stability (Chavez et 

al., 2000). SWI/SNF complex, another complex that affects LD accumulation, is an 

ATP-dependent chromatin remodeling complex (Cote et al., 1994). Chromatin remodeling 

is mandatory for transcriptional initiation because genomic DNA is packaged into 

chromatin, producing repressing effect on gene expression. Increasing evidence indicates 

that gene expression is regulated by means of permitting access of DNA-binding factors 

to DNA via chromatin remodeling.  

Besides the mutants of THO co

reased accumulation of LDs. Snf1 is an AMP-activated serine/threonine protein kinase 

which plays a critical role in the response to glucose depletion. In glucose-grown cells the 

regulatory domain of Snf1 autoinhibits the catalytic domain, and when glucose becomes 

limiting, the Snf4 activating subunit binds to the Snf1 regulatory domain and release the 

catalytic domain, thereby activating the transcription of glucose-repressed genes under 

conditions of glucose depletion (Jiang and Carlson, 1996; Carlson, 1999). Like its 

mammalian homolog AMP-activated protein kinase (AMPK) which, once activated, 
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switches off ATP-consuming anabolic pathways, such as cholesterol and fatty acids 

biosynthesis, and switches on ATP-producing catabolic pathways, such as fatty acid 

oxidation, the Snf1 complex acts as a key player in the response to glucose deprivation 

primarily by inducing expression of genes required for catabolic pathways that generate 

ATP (Hardie et al., 1998). Since the above-mentioned proteins are all general 

transcription factors, the fact that LDs hyperaccumulate in these mutants suggests that LD 

synthesis is under tight control. 

LD hyperaccumulation was also observed in pho85 strain. Pho85, a cyclin-dependent 

pro

uces the LD synthesis. 

Hm

tein kinase (CDK), was initially identified as a transcriptional repressor of PHO5, an 

acid phosphatase gene (Gilliquet et al., 1990), and later studies found that Pho85 is also 

involved in glycogen metabolism and the deletion of PHO85 resulted in 

hyperaccumulation of glycogen (Timblin et al., 1996). The result of this study suggests 

that Pho85 may also be involved in the regulation of LD synthesis. 

Unlike the other transcription factors, the deletion of HMO1 red

o1p is a family member of the high mobility group (HMG) proteins which associate 

with chromatin (Lu et al., 1996). Recently, it has been found that Hmo1p belongs to the 

ribosomal DNA transcription system (Gadal et al., 2002) and associates with promoters of 

many ribosomal protein genes (Hall et al., 2006). These reports may explain why the 

deletion of HMO1 leads to reduced accumulation of LDs since many mutants which 

affect the assembly of the large (60s) ribosomal unit synthesize fewer LDs than the WT 

(Table 4-1).  
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4.7 DNA maintenance and LD synthesis 

 increased LD accumulation encode proteins 

inv

4.8 Cell metabolism and LD accumulation 

ased LD accumulation and 4 genes whose 

del

 the pathway of the de novo biosynthesis of purine 

nuc

Nine genes whose deletions resulted in

olved in DNA maintenance (Table 4-1 and 4-2). Among these mld mutants, 3 strains, 

est1, est2, and rad27 display strong phenotype. Est1p and Est2p, together with Est3p, are 

required for telomerase activity in vivo (Taggart AK and Zakian, 2003). Rad27p is a 5’ to 

3’ endonuclease required for Okazaki fragment processing (Budd and Campbell, 1997). 

Among the other genes whose deletions lead to elevated accumulation of LDs, the 

products of MRE11, RAD50, and XRS2 comprise the RMX complex which functions in 

the repair of DNA damage (D'Amours and Jackson, 2002). Because these mutants affect 

DNA maintenance/chromatin structure, they might have negative impact on transcription. 

Thus the increased accumulation of LDs in these mutants is possibly also a result of 

inadequate modulation of transcription. 

 

18 genes whose deletions result in incre

etions result in reduced LD synthesis encode metabolic enzymes (Table 4-1 and Table 

4-2). This result is quite imaginable because LD synthesis is part of the interconnected 

cellular metabolic pathways, and therefore any perturbation in the other metabolic 

pathways may impact LD synthesis.  

Mutants lacking enzymes seated in

leotides, Ade3p, Ade4p, Ade5,7p, Ade6p, Ade8p, and Ade12p, demonstrated elevated 

LD synthesis. Neutral lipids analysis revealed that both TAG and SE synthesis were 
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Figure 4-13. Neutral lipids analysis of ade strains. 

upregulated, and the increase 

of TAG was more prominent 

than that of SE (Figure 4-13). 

The exact reason for this 

phenotype is not clear yet. 

One speculation is that these 

strains affect not only the synthesis of purine nucleotides, but also the relative amounts of 

ATP and GTP. Because oxidation of fatty acids can only occur after they form acyl-CoA 

through ATP-dependent acylation, it is possible that the rate of fatty acid oxidation is 

decreased in these strains. Since excessive fatty acids are harmful to the cell, they are 

channeled to the synthesis of neutral lipids which are deposited into the LDs.  

Five erg mutants which affect the synthesis of ergosterol were also found to contain 

mo

a of 

cyt

re LDs than the WT. Given that esterified ergosterol and esterified ergosterol 

precursors comprise one of the two classes of core components of the LDs, defect in 

ergosterol formation could seriously impact LD synthesis. In one possible way, lack of 

ergosterol may signal the cell to synthesize more ergosterol precursors which eventually 

become esterified and stored in LDs. In another possible way, the fact that at least two 

enzymes (Erg6p and Erg7p) in the ergosterol biosynthetic pathway localize to the LDs 

(Huh et al., 2003) suggests that LDs play an important role in ergosterol synthesis. 

Therefore, defect in ergosterol biosynthesis may require the overproduction of LDs.  

Among the fld mutants identified were cox5a and hem14. Cox5a is the subunit V

ochrome c oxidase, the terminal member of the mitochondrial inner membrane 
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electron transport chain (Cumsky et al., 1985). Although Cox5a has one functional 

isoform, it is predominantly expressed during aerobic growth. Therefore, decreased LD 

synthesis of cox5a suggests that proper function of electron transport chain is required for 

normal LD synthesis. HEM14 encodes a protoporphyrinogen oxidase, an enzyme in the 

heme biosynthetic pathway (Camadro and Labbe, 1996). Since heme is required for the 

assembly of yeast cytochrome c oxidase (Saltzgaber-Muller and Schatz, 1978), heme 

deficiency inevitably causes the hem14 strain unable to assemble cytochrome c oxidase, 

which eventually affects LD synthesis, similar to the cox5a strain. However, lack of heme 

also affects ergosterol synthesis (Gollub et al., 1977), which may contribute to the 

decreased LD formation in hem14 as well, as neutral lipids analysis shows that SE 

formation is almost completely abolished in this strain (Figure 4-3).  

 

4.9 The assembly of ribosome and LD formation  

osome assembly have defective 

acc

8 mutants lacking proteins required for rib

umulation of LDs. Interestingly, 5 strains which affect the assembly of the large 

subunit (60S) synthesize fewer LDs (Table 4-1), while 3 strains which affect the assembly 

of the small subunit (40S) synthesize more LDs (Table 4-2), all compared with the WT. It 

is known that eukaryotic ribosomes contain approximately 78 different ribosomal proteins, 

46 of the large subunit and 32 of the small subunit (Mager et al., 1997), but the function 

of individual proteins has not been clearly understood. Therefore, it remains to be 

established that how LD synthesis is affected in these mutants.  
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Chapter 5 

Ylr404wp, an endoplasmic r embrane protein, regulates 

 

The molecular mechanism underlying LD biogenesis is still elusive. It is known that 

neu

LD formation, I 

scre

.1 The ylr404w phenotype 

 morphologically distinct LDs  

hose intracellular 

LD

eticulum m

the morphology of lipid droplets 

tral lipids are synthesized at the ER, but how lipids are finally packaged into LDs and 

how LDs acquire their protein compositions remains yet to be established. To achieve this 

goal, search of proteins that are involved in LD assembly is mandatory.  

In an effort to identify genes whose product may be involved in 

ened the entire collection of single gene deletion mutants and found 117 mld mutants 

and 16 fld mutants. In addition, I also discovered that Ylr404wp, a protein of unknown 

function, regulates the morphology of LDs.  

 

5

5.1.1 ylr404w cells synthesize

Through genome-wide screening, I identified the ylr404w strain w

s are morphologically distinct from those of the WT cells. When grown in rich 

medium until stationary-phase, WT cells usually accommodated 3 to 6 LDs, which were 

about 0.2-0.4 μm in diameter and were almost spherical in shape, as shown by Nile red 

staining and fluorescence microscopy (Figure 5-1a). In contrast, LDs observed in ylr404w 

cells were very irregular in terms of quantity, shape, and size. Based on the quantitative 

and morphological difference between LDs, ylr404w cells could be categorized into 3 
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classes. The first class took up 20 to 30 percent of the total cell population and contained 

one or several LDs that were almost spherical in shape and were about 0.5 to 1.5 μm in 

diameter (hereafter termed supersized LDs) (Figure 5-1b, as indicated by arrow), which 

means that the volume of the largest LD of the ylr404w cells was about 50 times that of 

the largest LD of the WT cells. Among this class of cells, 5%-10% of the total population 

contained only one observable LD. The second class took up 50 to 70 percent of the cell 

population and contained an amorphous aggregation of neutral lipids in addition to 

several small LDs which were about 0.1-0.4 μm in diameter (Figure 5-1c&d, amorphous 

neutral lipid aggregation as indicated by arrow head). The neutral lipid aggregation was 

very likely to be a heap of LDs which were closely apposed to one another. The 

remaining 5 to 10 percent of the cells belonged to the third class. This class contained 

many loosely scattered and weakly stained tiny LDs which had a diameter of less than 0.1 

μm (Figure 5-1e).  

This phenotype of ylr404w was not only observed in stationary phase cells, but also in 

log phase cells. When refreshed in rich medium until log phase, most of the WT cells 

contained 2 or 3 LDs, which were smaller than those of stationary phase, about 0.1 μm in 

diameter (Figure 5-1a’). As for ylr404w cells, they still could be classified into 3 classes 

based on the quantity, shape, and size of LDs. The first class usually contained one LD, 

which was 0.3 to 0.6 μm in diameter (Figure 5-1b’, as indicated by arrow). The second 

class contained an amorphous aggregation of neutral lipids. But compared to their 

stationary-phase counterpart, this neutral lipid aggregation was smaller and more weakly 

stained (Figure 5-1c’, as indicated by arrow head). The third class either contained no 
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observable LDs, or several tiny ones (Figure 5-1b’). The proportion of these 3 classes 

among the total cell population and their relative ratio varied between batches of cell 

culture. Generally, the third class took up more than 50 percent, while the other two 

classes shared the remaining 50 percent.  

 

Figure 5-1. The ylr404w cells synthesize 
morphologically distinct LDs. Both WT and 
ylr404w cells were grown in YPD medium until 
stationary phase (OD600~6.0, left panel) or until 
log phase (OD600~0.6, right panel). Subsequently 
cells were stained with 20 μg/ml Nile red and 
immediately observed for LDs under fluorescence 
microscope. (a and a’) micrographs of the WT 
cells; (b-e, b’, and c’) micrographs of the ylr404w 
cells. Unlike WT cells which contain small and 
regular-shaped round LDs, ylr404w cells contain 
larger spherical LDs (b, c, and b’, as indicated 
with arrow), or amorphous aggregation of neutral 
lipids (c, d, and c’, as indicated with arrowhead), 
or many loosely scattered tiny LDs (e). Bar, 5 μm.
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In order to achieve a better resolution of LDs and to have a better understanding of the 

nature of the amorphous neutral lipid aggregation observed in some cells, we performed 

transmission electron microscopy (TEM) for the WT and ylr404w strains. Cells were 

grown in rich medium until stationary phase, harvested, fixed with 2.5% glutaraldehyde, 

and postfixed with 2% (w/v) osmium tetroxide. The samples were subsequently 

dehydrated in a series of graded ethanol and embedded in Spurr's Resin. 80-nm ultrathin 

sections were stained with uranyl acetate and lead citrate and examined under a 

JEM-1230 Joel electron microscope. Under TEM, LDs appear electron-lucent and thus

can be easily identified. As seen in Figure 5-2a, one typical cross-section of a WT cell 

contained 5 LDs, which were round and were about 0.2 to 0.4 μm in diameter. The 

cross-sections of ylr404w cells could again be divided into 3 classes in the same manner 

as previously used. Some cross-sections displayed one or several large LDs, which were

either round or oval (Figure 5-2, b-e). Consistent with the result of fluorescence

microscopy, some LDs could have a diameter of up to 1.5 μm (Figure 5-2d). In sections

which displayed several LDs, these LDs very often clumped together and were not clearly

demarcated (Figure 5-2, d&e). This phenomenon was further observed in the second class

of cross-sections, in which many smaller LDs stayed very close to one another and 

formed aggregations (Figure 5-2, f&g). These aggregations were reminiscent of the 

 

 

 

 

 

 

amorphous neutral lipid clump observed under fluorescence microscopy (Figure 5-1, 

c&d). Class 3 cross-sections contained many tiny LDs, most of which had a diameter of 

less than 0.1 μm and were loosely scattered. This confirmed our observation of LDs in 

Figure 5-1e. 
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Figure 5-2. Conventional transmission electron microscopy (TEM) of WT and ylr404w cells. 
own in YPD to stationary phase, fixed with 2·5% (v/v) glutaraldehyde and 2% (w/v) 
ide, and subjected to electron microscopy. LDs are seen as electron-transparent droplets. 

a) TEM of WT cells. This typical cross-section of WT cells contains 5 LDs with a diameter of about 0.2 
to 0.4 μm which appear round in shape and clearly demarcated. b-i) TEM of ylr404w cells. The 
cross-sections of ylr404w cells either display one or several supersized LDs (b, c, d, e), or an 
aggregation of small LDs which clump together (f & g), or loosely scattered tiny LDs with a diameter 
less than 0.1 μm. The tiny LDs can also be observed in other cross-sections (b-g). Bar, 1 μm.  

Cells were gr
osmium tetrox
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5.1.2 LDs of the ylr404w cells grown in synthetic complete medium and 

oleic medium 

Images have been shown that ylr404w cells synthesize distinctly three types of LDs. 

Figure 5-3. Culture media affect LD morphology in ylr404w cells. WT and ylr404w cells were 
grown until stationary phase in YPD medium (A&D), synthetic complete medium (B&E), YPO medium 
(C&F), or YPDO medium (G). The preparation of medium was described in Materials and Methods. Cells 
were harvested, stained with Nile red, and observed by fluorescence microscopy. A-C) Nile red staining of 
WT cells. LDs of WT cells hyperaccumulated when the medium was changed from YPD (A) to synthetic 
complete medium (B), or to YPO medium (C). D-G) Nile red staining of ylr404w cells. ylr404w cells 
accumulated supersized LDs (arrow) as well as aggregation of small LDs (arrowhead) when cultured in 
YPD medium (D). In contrast, more than 80% of the cells accumulated only supersized LDs when grown 
in synthetic complete medium, whereas more than 95% accumulated only aggregation of small LDs when 
grown in YPO medium (E). Bar, 5 μm.  



 

In stationary phase, there are supersized LDs with a diameter of 0.5-1.5 μm, tiny LDs 

with a diameter of less than 0.1 μm, and amorphous aggregations of intermediate-sized 

LDs. But how these LDs which differ greatly from one another are produced in the same 

mutant? Do they represent three stages of LD formation in this mutant? Is there a 

common mechanism responsible for their formation? With these questions in mind, we 

subjected the mutant to conditions that lead to the proliferation of LDs, so that we may 

observe some changes of LDs in different growth conditions.  

Yeast cells demonstrated marked proliferation of LDs when they were grown in 

synthetic medium (an independent observation in this study), or in oleic acid medium 

(Binns et al., 2006), compared with those cultured in YPD rich medium. As shown in 

Figure 5-3, A-C, a remarkable increase of LD formation, both in terms of quantity and 

size, could be observed in WT cells if the culture medium was changed from YPD 

medium to synthetic complete medium, or to YPO medium. But interestingly, when the 

ylr404w strain was incubated in synthetic complete medium, the average number of LDs 

did not increase, but rather decreased. As previously stated and also shown in Figure 5-3D, 

when ylr404w cells were grown in YPD medium, they not only accumulated one or 

several supersized LDs per cell, but also amorphous aggregations of intermediate-sized 

LDs, which may have a number of more than 20. In addition, less than 10% of the cells 

contained only one LD. When the culture medium was changed to synthetic complete 

medium, more than 60% of the cells contained only one large LD, and 20% contained two 

increased: when ylr404w cells were grown in YPD medium, the 

or several LDs. Accompanying the decrease in their quantity, the average size of the 

supersized LDs 
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sup

ain (Figure 5-3G), which 

sug

ersized LDs had an average diameter of 0.81±0.21 μm (n=101); when the cells were 

cultured in synthetic medium, the average diameter changed to 1.17±0.19 μm (n=99). 

Moreover, Amorphous LD aggregations were only observed in about 10% of the cells 

(Figure 5-3E). In contrast, when ylr404w cells were cultured in oleic acid medium, more 

than 95% of the cells accumulated amorphous aggregations of LDs. The supersized LDs 

observed frequently in YPD medium and more frequently in synthetic complete medium 

became a rare incidence in YPO medium (Figure 5-3F). However, when the mutant was 

cultured in YPDO medium, the supersized LDs appeared ag

gested that the disappearance of these supersized LDs was not a result of the presence 

of oleic acid, but rather through some unknown mechanism. 

 

5.1.3 LDs of the ylr404w cells fuse in vivo 

The mechanism underlying the appearance of the supersized LDs observed in the 

ylr404w strain, particularly when the mutant was cultured in the synthetic complete 

medium, could have four possibilities. First, it may be that many small- or 

intermediate-sized LDs fuse into one large LD. Second, if the “budding from the ER 

membrane” is a correct model for LD biosynthesis, LDs that effectively bud from the ER 

in the WT cells might fail to bud in this mutant. Consequently, many small LDs remain in 

the two leaflets of the ER membrane and ultimately meet with one another, becoming one 

large LD. Third, LD biosynthesis might go through the “fission” step in WT cells, by 

which cells censor the size of LDs and undergo fission if the censored LDs are considered 

as too large. The ylr404w strain might somehow lose this capability. Last, enzymes 
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catalyzing the synthesis of neutral lipids might be extremely concentrated in one or 

several domains of the ER in the ylr404w strain. According to the delivery model 

proposed by Robenek et al. (2006), newly synthesized neutral lipids are delivered into the 

nearest LDs. Therefore, concentrated synthesis of neutral lipids might eventually lead to 

the appearance of the supersized LDs observed in the ylr404w strain.  

However, the fact that not only did the ylr404w cells synthesize supersized LDs, but 

some of them also synthesized small and tiny LDs, which were either loosely scattered or 

clumped together, suggests that the last two possibilities are least probable. If there are 

subdomains of neutral lipids synthesis within the ER membrane, there should not be the 

third class of ylr404w cells in which many tiny LDs are loosely scattered in the cytoplasm. 

Similarly, inhibition of the fission of LDs also cannot account for the origination of these 

ny LDs. In addition, no direct evidence has ever been obtained for LD fission. Therefore, 

es.  

ti

we focused our attention on the first two possibiliti

Could it be that LDs fail to bud from the ER membrane and eventually form the 

supersized ones? To examine this possibility, we need to have a close look at the spatial 

relations of the LDs and the ER by means of TEM. If the second possibility is true, we 

should be able to observe the supersized LDs confined in the two leaflets of the ER 

membrane. However, under TEM, all the supersized LDs lay outside of the ER. As seen 

in Figure 5-4, there was no detectable neutral lipids accumulation within the ER 

membrane leaflets. Between the ER and the supersized LD lay one vacuole. In fact, the 

LD was so large that it severely compressed this vacuole, resulting in the close apposition 

of the two opposite ends (×150K). If these supersized LDs should remain between the ER 
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membrane leaflets, I believe they would greatly reduce the volume of the ER lumen, 

thereby severely impairing the normal function of the ER.   

 

 

Figure 5-4. The spatial relationship between LDs and the ER in the ylr404w cells under TEM.

tetroxide, and subjected to electron microscopy. LDs which appear electron-transparent lie outside of the 

the close apposition of the opposite ends of the vacuolar membrane (arrow). No neutral lipids accumulation

 
Cells were grown in YPD to stationary phase, fixed with 2·5% (v/v) glutaraldehyde and 2% (w/v) osmium 

ER. One vacuole lies between the ER and the two LDs. One LD severely compresses the vacuole, leading to 
 

could be observed between the two leaflets of the ER membrane (arrowhead). V, vacuole.  
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Then we were left with the only possibility, namely, fusion of small LDs into large 

ones. Since the appearance of the supersized LDs was more common in the cells grown in 

the synthetic complete medium than those grown in YPD medium, the ylr404w cells were 

subsequently cultured in the synthetic complete medium until mid-log phase (OD600~1.5), 

stained with Nile red, and examined for fusion of LDs under microscope. The reason why 

I chose mid-log phase was that more than 60% of the cells cultured in synthetic complete 

medium contained only one large LD, which clearly indicated that fusion had already 

completed in these cells if fusion really occurred. Under fluorescence microscope, cells in 

which two or several LDs lay close together were targeted. Amazingly, in some of these 

cells (about 10% of the targeted cells), I did observe the fusion of LDs. It started from the 

approaching of one LD toward the other, and finished after a new and larger LD appeared. 

This process was very fast and completed within seconds. To record the fusion of LDs, I 

collected images at a one-second interval until the fusion process completed. The series of 

images taken during the fusion of LDs are shown in Figure 5-5A and are also edited into 

movie format with Macromedia Flash MX 2004 (Movie, in vivo LD fusion). Figure 5-5 

B&C show another two examples of LD fusion except that the images were taken before 

and after the fusion of LDs.  
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5.1.4 LDs isolated from the ylr404w cells fuse in vitro 

Based on our observation that fusion of LDs occurred in log-phase ylr404w cells, we 

further supposed that LDs in stationary-phase ylr404w cells also possess the ability to 

fuse with one another. Since over 60% of the cells contained only one LD, there was no 

chance for this one LD to fuse with another one. Therefore, we need to use the in vitro 

system. 

Tgl3p, a TAG lipase of S. cerevisiae, exclusively localizes to LDs (Athenstaedt and 

Daum, 2003). To mark the LDs, we expressed the GFP-tagged Tgl3p in the WT and 

ylr404w strains. As shown in Figure 5-6A, the Tgl3p-GFP was targeted to the LDs both in 

the WT and in the ylr404w strains. Besides displaying a characteristic ring-like 

distribution, Tgl3p-GFP in the ylr404w cells also demonstrated punctate signals, which 

were reminiscent of the tiny LDs. 

Figure 5-5. Fusion of LDs occurs in ylr404w cells and this process requires only several 
seconds. Cells were grown in synthetic complete medium until mid-log phase (OD600~1.5), stained with 
Nile red, spotted on glass slides and covered with a coverslip. Under the microscope, cells in which two 

were collected at a one-second interval until the fusion process completed. B and C) another two 
examples of LD fusion. The images were taken before (1) and after the fusion (2). Bar, 5 μm. 

or several LDs lay close together were selected. A) The process of LD fusion in ylr404w cells. Images 
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B 

C 

Figure 5-6 LDs isolated from ylr404w cells Fuse in vitro. A) Tgl3p-GFP exclusively localizes to 

overexposed. B) LDs isolated from ylr404w cells Fuse in vitro, and this process does not require 

in PBS. Subsequently they were incubated at 30°C for 3 h. The images were taken before (0 min) and 

do not apparently fuse. 

LDs both in WT and ylr404w strains. In order to show tiny LDs in ylr404w cell, large LDs were 

cytosolic proteins or energy. Tgl3p-GFP tagged LDs were isolated from ylr404w cells and resuspended 

after incubation (180 min, a-c). a-c represent different types of fusion. C) LDs isolated from WT cells 

 

WT and ylr404w cells harboring the Tgl3p-GFP-expression vector were cultured in 
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synthetic selection medium until stationary phase (OD600~4.5) and were subsequently 

subjected to isolation of LDs. The detailed procedure was described in Materials and 

Methods. Isolated LDs were immediately resuspended in cytosol purified from the WT 

cells, cytosol purified from the ylr404w cells, cytosol purified from the LD-deficient 

QKO strain (are1Δare2Δdga1Δlro1Δ), or in PBS buffer. The reaction mixture was 

incubated at 30°C for 3 h. Before the incubation, LDs isolated from the ylr404w cells 

which had a diameter of 0.5-1.5 μm were evenly distributed in the reaction system, and 

they did not form aggregations. To our surprise, after 3 h incubation, whatever the LDs 

were suspended in, many of them clumped to form aggregations. Remarkably, some LDs 

displayed a diameter of ~10 μm. Obviously these LDs resulted from the fusion of the 

isolated LDs. Figure 5-6B shows the LDs suspended in PBS before (0 min) and after the 

incubation (180 min, a-c).  

LDs isolated from the WT cells, on the other hand, did not demonstrate obvious 

fusion (Figure 5-6C). It is noteworthy to mention, however, that this does not prove that 

isolated wild-type LDs cannot fuse. It is possible that our in vitro system was not 

sensitive enough to detect the fusion of LDs.  

 

5.1.5 In vivo LD fusion in the ylr404w cells is filament actin-dependent 

It was previously suggested that LDs of NIH3T3 cells undergo 

microtubule-dependent fusion (Bostrom et al., 2005). To study whether the fusion of LDs 

of the ylr404w cells requires microtubule, I treated the mutant with 15 µg/ml nocodazole 

or an equivalent amount of DMSO. After 1 h incubation, cells were either subjected to 
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ant

tin after 1 h treatment of Lat-A was confirmed by Rhodamine 

pha

umulated several small LDs which were 

loosely distributed and appeared irregular in shape and had a “diameter” of 0.1-0.2 μm. 

d not 

blo

itubulin immunofluorescence or Nile red staining, or treated with 0.5 mM oleate for 

another 1 h, followed by Nile red staining. As seen from Figure 5-7A, microtubule 

structure was completely disrupted in cells incubated in the presence of nocodazole for 1 

h, but remained intact in cells of the control group. Nile red staining before and after 

oleate treatment showed that cells incubated in the presence of 0.5 mM oleate synthesized 

much larger LDs. More importantly, microtubule disruption due to nocodazole treatment 

did not block the formation of supersized LDs, which suggested that the fusion of LDs 

was not microtubule-dependent. 

Subsequently I determined whether actin was required for the fusion of LDs of the 

ylr404w cells. The experimental procedure to study the role of the filament actin (F-actin) 

in LD fusion was similar to the study of microtubule except that Latrunculin A (Lat-A) 

was used to disrupt F-actin instead of nocodazole which specifically break microtubule 

structure. Disruption of F-ac

lloidin staining (Figure 5-7B). Subsequently cells were incubated in the presence of 

0.5 mM oleate for another 1 h, followed by Nile red staining. It was evident that oleate 

treatment after F-actin disruption could not lead to the formation of the supersized LDs in 

the majority of cells. Instead these cells acc

As for cells of the control group, the treatment of an equivalent amount of DMSO di

ck the oleate-induced formation of the supersized LDs (Figure 5-7B). Taken together, 

it is very likely that F-actin is essential for LD fusion in this mutant. 

To rule out the probability that F-actin disruption exerts its effect on LD synthesis 

 100



 

instead of on LD fusion, we performed the Lat-A treatment and oleate incubation in the 

WT cells. As shown in Figure 5-7C, Lat-A treatment also resulted in disruption of F-actin 

in the WT cells, however, it did not lead to significant change of oleate-induced LD 

synthesis, both in terms of morphology and quantity. Therefore, it is almost certain that 

the inability of the ylr404w cells to synthesize the supersized LDs after F-actin disruption 

indicates that the fusion of LDs in this mutant is F-actin mediated. 
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Figure 5-7. Fusion of LDs in the 
ylr404w strain requires filament actin 
(F-actin), but not microtubule. A) LD 
Fusion in the ylr404w cells is not 
dependent on microtubule. ylr404w cells 
were grown in YPD until log phase 
(OD600~0.6), and treated with 15 µg/ml 
nocodazole (d-f) or an equivalent 
amount of DMSO (0.15% v/v, a-c). After 
1 h incubation, cells were either 
subjected to antitubulin 
immunofluorescence (a and d) or Nile 
red staining (b and e), or treated with 0.5 
mM oleate for another 1 h, followed by 
Nile red staining (c and f). B) LD Fusion 
in the ylr404w cells requires intact 
F-actin. Log-phase ylr404w cells were 
treated with 100 µM Latrunculin A (j-l) 
or an equivalent amount of DMSO (2% 
v/v, g-i) for 1h. Subsequently cells were 
subjected to Rhodamine phalloidin 
staining (g and j) or Nile red staining (h 
and k), or treated with 0.5 mM oleate for 
another 1 h, followed by Nile red 
staining (i and l). C) Disruption of 
F-actin by Latrunculin A in WT cells 
does not greatly affect the synthesis or 
morphology of LDs. Drug treatment and 
fluorescence microscopy were the same 
as in B). 



 

5.2 Functional and structural analysis of Ylr404wp 

Why do cells mutated in the ORF YLR404W demonstrate LD fusion? What is the 

function of the protein product of YLR404W? How dose Ylr404wp prevent LD fusion in 

the WT cells? To answer these questions, I carried out functional and structural studies of 

Ylr404wp. 

 

5.2.1 YLR404W complements the ylr404w phenotype  

 

     1 - ATGAAAATCAATGTATCCCGTCCATTACAGTTTTTACAATGGAGTTCATATATTGTTGTT - 60  
     1 - M  K  I  N  V  S  R  P  L  Q  F  L  Q  W  S  S  Y  I  V  V   - 20  

 

    61 - GCATTTCTGATACAATTGCTAATCATTCTTCCTTTATCGATCTTAATATATCACGATTTT - 120  

    21 - A  F  L  I  Q  L  L  I  I  L  P  L  S  I  L  I  Y  H  D  F   - 40  

 

   121 - TACCTAAGACTATTACCTGCCGATTCCTCTAACGTAGTCCCCCTTAATACGTTCAACATT - 180  

    41 - Y  L  R  L  L  P  A  D  S  S  N  V  V  P  L  N  T  F  N  I   - 60  

 

   181 - TTAAATGGCGTACAATTTGGTACAAAATTCTTCCAATCTATTAAAAGCATTCCGGTAGGT - 240  

    61 - L  N  G  V  Q  F  G  T  K  F  F  Q  S  I  K  S  I  P  V  G   - 80  

 

   241 - ACAGATCTGCCGCAAACAATAGACAATGGCTTATCACAGTTAATCCCCATGCGTGACAAC - 300  

    81 - T  D  L  P  Q  T  I  D  N  G  L  S  Q  L  I  P  M  R  D  N   - 100  

 

   301 - ATGGAATACAAGCTCGATCTAAACCTACAGCTTTATTGCCAGAGCAAAACTGACCATTTA - 360  

   101 - M  E  Y  K  L  D  L  N  L  Q  L  Y  C  Q  S  K  T  D  H  L   - 120  

 

   361 - AATTTAGACAATTTGTTAATTGATGTTTACAGAGGTCCAGGCCCGCTATTGGGTGCTCCT - 420  

   121 - N  L  D  N  L  L  I  D  V  Y  R  G  P  G  P  L  L  G  A  P   - 140  

 

   421 - GGAGGAAGTAACAGCAAAGATGAAAAAATCTTTCACACTTCTAGACCTATTGTCTGCCTC - 480  

   141 - G  G  S  N  S  K  D  E  K  I  F  H  T  S  R  P  I  V  C  L   - 160  

 

   481 - GCACTGACGGATTCCATGTCGCCTCAGGAGATCGAACAACTAGGCCCATCACGTCTAGAC - 540  

   161 - A  L  T  D  S  M  S  P  Q  E  I  E  Q  L  G  P  S  R  L  D   - 180  

 

   541 - GTTTACGATGAAGAATGGCTAAATACAATAAGAATAGAGGACAAAATATCGTTAGAGTCT - 600  

   181 - V  Y  D  E  E  W  L  N  T  I  R  I  E  D  K  I  S  L  E  S   - 200  

 

   601 - TCATATGAAACAATCTCGGTGTTCTTGAAAACGGAGATTGCCCAAAGAAATCTAATAATA - 660  

   201 - S  Y  E  T  I  S  V  F  L  K  T  E  I  A  Q  R  N  L  I  I   - 220  

 

   661 - CATCCAGAAAGTGGGATTAAGTTTAGGATGAATTTTGAGCAGGGATTAAGAAACTTGATG - 720  

   221 - H  P  E  S  G  I  K  F  R  M  N  F  E  Q  G  L  R  N  L  M   - 240  

 

   721 - CTTCGAAAAAGATTTTTATCTTATATTATTGGCATTTCAATTTTCCATTGCATAATATGT - 780  

   241 - L  R  K  R  F  L  S  Y  I  I  G  I  S  I  F  H  C  I  I  C   - 260  

 

   781 - GTACTTTTTTTTATCACAGGTTGCACTGCATTCATTTTTGTTAGAAAGGGTCAGGAAAAA - 840  

   261 - V  L  F  F  I  T  G  C  T  A  F  I  F  V  R  K  G  Q  E  K   - 280  

 

   841 - TCCAAGAAACATAGCTGA - 858  

   281 - S  K  K  H  S  *          

Figure 5-8. Nucleotide sequence and deduced amino acid sequence for YLR404W. 
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YLR404W is located on chromosome 12 of S. cerevisiae. Before this study, it was still 

an 

 gene YLR404W complemented the ylr404w phenotype. 

Two Ylr404wp-expression vectors were constructed. First, a 1.4 Kb fragment 

fore the stop codon of 

YLR404W was subcloned into the HindIII- and BamHI-cleaved YCplac111-GFP plasmid 

in which the GFP coding sequence was inserted between the BamHI and EcoRI restriction 

sites, such that Ylr404wp was C-terminally GFP-tagged. Second, The coding sequence of 

YLR404W including the stop codon was inserted between the BamHI and EcoRI sites of 

the pYEX 4T-1 plasmid, such that Ylr404wp was N-terminally GST-tagged and was 

under the control of copper promoter. The ylr404w strain was transformed with either one 

of the two constructs or their corresponding empty vectors, and grown in synthetic 

selection media until stationary phase. Subsequently cells were stained with Nile red and 

observed under microscope. As seen in Figure 5-9, ylr404w cells transformed with the 

empty YCplac111 -GFP or pYEX 4T-1 still synthesized supersized LDs, while those 

transformed with YCplac111-YLR404W-GFP or pYEX 4T-1-YLR404W synthesized 

several small LDs, resembling the WT cells. Since YLR404W complemented the ylr404w 

phenotype, a conclusion was reached that the deletion of YLR404W was responsible for 

the formation of supersized LDs in the ylr404w strain. 

 

uncharacterized ORF encoding a putative 285-amino acid protein (Figure 5-8). In 

order to confirm that the ylr404w phenotype was indeed caused by the deletion of 

YLR404W, I transformed this mutant with vectors expressing Ylr404wp and tested 

whether the

containing the natural promoter and the coding sequence be
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Figure 5-9. Transformation of YLR404W gene complements the ylr404w phenotype. 
Transformed ylr404w cells were grown in appropriate selection media until stationary phase, followed 
by Nile red staining and fluorescence microscopy. A) Cells were transformed either with YCplac111 
vector alone or with YCplac111-YLR404W-GFP. B) Cells were transformed either with pYEX 4T-1 
vector alone or with pYEX 4T-1-YLR404W.  

 

5.2.2 Ylr404wp is an integral ER membrane protein 

To understand the molecular function of Ylr404wp, I first examined its subcellular 

localization. For this purpose, ylr404w cells transformed with 

YCplac111-YLR404W-GFP were used. As shown in Figure 5-10A, these cells expressed 

a ~60kDa protein recognized by anti-GFP rabbit serum, corresponding to the GFP-tagged 

Ylr404wp. In contrast, lysate prepared from cells transformed with the empty YCplac111- 

GFP did not show such a band. To gain insights into the intracellular localization of 

Ylr404wp, differential centrifugation experiments were performed. Cell extracts prepared 

from ylr404w cells expressing GFP-tagged Ylr404wp were fractionated by centrifugation 

at 13 000 g for 10 min, resulting in P13 pellet and S13 supernatant fractions, which were 

further probed with anti-GFP. Immunoblotting analysis showed that similar to ER protein 
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Dpm1, GFP-tagged Ylr404wp was predominantly found in the P13 fraction, which 

contains membranes derived from the ER, plasma membrane, vacuoles, mitochondria and 

nuclei (Figure 5-10B). To better define the subcellular distribution of Ylr404wp, cell 

extracts were subjected to continuous sucrose density gradient analysis. Thirteen fractions 

were collected from top to bottom (1-13) and probed for the presence of GFP-tagged 

Ylr404wp and Dpm1 (ER) by immunoblotting. For Ylr404wp, a distribution pattern 

coincided with that of Dpm1 was observed, confirming the ER localization of Ylr404wp 

(Figure 5-10C). 

To further examine the localization of Ylr404wp in the ER, we observed by 

fluorescence microscopy the GFP signal of the Ylr404wp-GFP fusion protein. As shown 

in Figure 5-10D, Ylr404wp-GFP was found exclusively on the ER membrane. This 

observation plus the results described above provide strong evidence that Ylr404wp is an 

ER membrane protein. 

Membrane proteins can be classified into two categories: integral and peripheral. To 

examine the nature of the association of Ylr404wp with the ER membrane, equal aliquots 

of a P13 fraction were treated with 1% triton X-100, 6 M urea, 0.1M Na2CO3 PH 11, 1 M 

NaCl, or lysis buffer (mock) respetively on ice for 30 min, and then centrifuged at 

100,000 g for 45 min resulting in S (supernatants) and P (pellets), which were 

subsequently probed for the presence of Ylr404wp-GFP. As shown in Figure 5-10E, 

Ylr404wp-GFP was solubilized by 1% triton, however, it was not affected by treatments 

with 6 M urea, 1 M NaCl and 0.1 M Na2CO3 PH 11, which dissociate peripheral 

membrane proteins only. Thus, Ylr404wp is an integral ER membrane protein. 
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Figure 5-10. Ylr404wp is an integral endoplasmic reticulum (ER) membrane protein. A) 
ylr404w cells transformed either with YCplac111 vector alone or with YCplac111-YLR404W-GFP were 

 and immunoblotted with anti-GFP. The molecular weight of Ylr404wp-GFP is about 60 KD.  B) 
Differential centrifugation fractionation analysis of yeast proteins. Cells expressing Ylr404wp-GFP 
were spheroplasted and subjected to differential centrifugation as described in Materials and Methods. 

anti-Dpm1. C) Cells expressing Ylr404wp-GFP were lysed in STED buffer using glass beads and a 500 
g supernatant was loaded on the top of a continuous sucrose gradient (10-53%) and centrifuged at 

with anti-GFP and anti-Dpm1. D) Fluorescence microscopy. GFP signal shows the localization of 
GFP-tagged Ylr404wp; DAPI shows the nucleus. Bar, 5 μm. E). Membrane extraction. The P13 fraction 

150,000g again resulting in pellet (P) and supernatant (S). Mock: treatment with lysis buffer only.  

lysed

The 13,000 g pellet (P13) and soluble fraction (S13) were analyzed by immunoblot using anti-GFP and 

100,000 g for 15h. Fractions were collected from the top, separated by SDS-PAGE and immunoblotted 

of Ylr404wp from ylr404w cells was treated with the indicated reagents on ice and centrifuged at 

 

 

5.2.3 Cytosolic segments are not essential for the function of Ylr404wp in 
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preventing the formation of supersized LDs 

An integral membrane protein always has a unique orientation in the membrane, 

which determines the protein’s function. In this study, we found that yeast strain lacking 

Ylr404wp, an ER integral membrane protein, accumulated supersized LDs, which almost

certainly result from the fusion of many small LDs. In order to better understand the role 

of Ylr404wp in LD synthesis, I decided to determine its topology. 

First, a computer-based approach was taken to identify the transmembrane domains. 

Specifically, 3 prediction models (TMHMM, HMMTOP, and SOSUI) were used. The 

result shows that all 3 models agreed that Ylr404wp contains two transmembrane helices 

(Table 5-1). In addition, according to TMHMM and HMMTOP prediction, both 

N-terminus and C-terminus are cytosolic. 

 

Table 5-1 Prediction of transmembrane helix in Ylr404wp by TMHMM, HMMTOP, and SOSUI.  
Model Reference Result 

 

TMHMM Krogh et al., 2001 inside      1    12 
TMhelix     13    35 
outside     36   251 
TMhelix    252   274 
inside     275   285  

HMMTOP Tusnady and Simon, 1998
Tusnady and Simon, 2001

inside      1    16 
TMhelix     17    36 
outside     37   248 
TMhelix    249   273 
inside     274   285 

SOSUI Hirokawa et al., 1998 TMhelix     15    37 
TMhelix     248   270 

 

Consistent with this prediction, Kim et al. (2003) previously provided evidence that 

the C-terminus of Ylr404wp is cytosolically oriented. In their study, they chose a dual 

Suc2/His4C topology reporter to examine whether a protein’s C-terminus is in the cytosol 

or in the ER lumen. SUC2 gene of this reporter encodes a segment of invertase containing 
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eight N-glycosylation acceptor sites. When this domain is localized in the ER lumen, the 

fusion protein becomes heavily glycosylated. The histidinol dehydrogenase activity of the 

His

that the C-terminus is 

cyt

main, is essential for Ylr404wp’s function in 

preventing the fusion of LDs. For this purpose, I made four constructs that expressed 

C-terminus (Ylr404wp-1-274), N first transmembrane helix 

(Ylr404wp-37-285), and C-term d transmembrane helix 

(Ylr404wp-1-253), respectively h of these mutant proteins is 

in he e roteins was confirmed by 

immunoblotting against GST (Figure 5-11B). As shown in Figure 5-11C, both Ylr404wp 

lacking N-term

4C moiety converts histidinol to histidine only when it is localized in cytosol. Thus, 

only cells expressing fusion proteins with the reporter domain in the cytosol can grow on 

histidine-free media supplemented with histidinol. Since the yeast strain expressing the 

Ylr404wp-Suc2/His4C fusion protein could grow on histidine-free media supplemented 

with histidinol but did not glycosylate the reporter, it indicated 

osolic. Given that Ylr404wp is predicted to be a double-pass membrane protein and 

hence N-terminus and C-terminus have the same orientation, we may reach a conclusion 

that this protein’s N-terminus is also in the cytosol. 

LDs lie outside of the ER. It is, therefore, tempting to determine which protein 

segment, cytosolic termini or luminal do

different G  truncated Y ps lacking N-terminus (Ylr404wp-12-285), ST-tagged lr404w

-terminus plus the 

inus plus the secon

. T e schematic diagram 

shown Figure 5-11A. T xpression of these p

inus and that lacking C-terminus could restore the normal LD formation in 

the ylr404w mutant, suggesting that neither N-termial nor C-terminus is essential for this 

protein’s function. In contrast, both transmembrane helices are indispensable for its 
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normal activity, because constructs expressing GST- Ylr404wp-37-285 and GST- 

Ylr404wp-1-253 could not rescue the mutant from producing supersized LDs. 

Considering that transmembrane domains determine a targeted integration of proteins into 

the membrane, we may conclude that both transmembrane helices of Ylr404wp are 

required for the correct location of its luminal domain. Therefore, it is possible that 

Ylr404wp’s function depends on the luminal segment. This will be further discussed in 

section 5.3. 

 

 

Figure 5-11 Neither 
N-terminus nor C-terminus 

function in LD formation. 

GST-tagged Ylr404wp and its 
four truncated variants. B). 

above-mentioned five 
proteins as confirmed by 

anti-GST. Dpm1 serves as a 

1, GST-Ylr404wp-1-253;  
2, GST-Ylr404wp-1-274;  

4, GST-Ylr404wp-37-285;  
5, GST-Ylr404wp. 

with pYEX4T-1 empty vector 
or constructs that express the 

grown to stationary phase, 

and fluorescence microscopy. 

is essential for Ylr404wp’s 

A). Schematic diagrams of 

The expression of the 

immunoblotting against 

loading control. 

3, GST-Ylr404wp-12-285;  

C). ylr404w cells transformed 

indicated proteins were 

followed by Nile red staining 
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5.2.4 Overexpression of Ylr404wp does not further reduce the size of LDs 

Deletion of YLR404W resulted in the formation of supersized LDs in the ylr404w 

mutant, indicating that Ylr404wp is implicated in LD formation. But what will become of 

the size of LDs when this protein is overexpressed? Will the LDs be even smaller? To 

answer this question, I experimentally induced the overexpression of Ylr404wp. In the 

construct pYEX 4T-1-YLR404W, the expression of the GST-Ylr404wp fusion protein is 

under the control of CUP1 promoter, which can be induced in the presence of copper 

sulfate. As shown in Figure 5-12B, addition of 100 μM copper sulfate significantly 

increased the amount of GST-Ylr404wp (Dpm1 was used as a loading control). However, 

this marked elevation of Ylr404wp’s intracellular concentration did not lead to significant 

change of the size of LDs (Figure 5-12A), suggesting that the overexpression of 

Ylr404wp could not further reduce the size of LDs.  

 

5.3 Sequence homologs of Ylr404wp 

 

Figure 5-12. Overexpression of Ylr404wp does not lead to morphological change of LDs. To 
induce the overexpression of Ylr404wp, ylr404w cells transformed with pYEX4T-1-YLR404W were 
cultured in the presence of 100 μM CuSO4. A) Nile red staining. B) The expression level of 
GST-Ylr404wp. Dpm1 serves as a loading control. 
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ns 

protein Prediction Model Result 

Table 5-2, Prediction of transmembrane helices by TMHMM, HMMTOP, and SOSUI in protei
that exhibit sequence similarity to Ylr404wp. * denotes a weakly predicted transmembrane helix. 

TMHMM inside      1    14 
TMhelix     15    37 
outside     38   240 
TMhelix    241   263 
inside     264   281  

HMMTOP inside      1    16 
TMhelix     17    36 
outside     37   248 
TMhelix*    194   210 
inside     211   240 
TMhelix    241   261 

Kpol

SOSUI 
outside     262   281 

_1002p3 

TMhelix     18    40 
TMhelix     242   264 

TMHMM inside      1    14 
TMhelix     15    37 
outside     38   240 
TMhelix    241   263 
inside     264   273  

HMMTOP inside      1    16 
TMhelix     17    37 
outside     38   237 
TMhelix    238   262 

CAGL0M09933g 

SOSUI 
inside     263   273 
TMhelix     16    38 
TMhelix     241   263 

TMHMM inside      1    14 
TMhelix     15    37 
outside     38   227 
TMhelix    228   250 
inside     251   261  

HMMTOP inside      1    11 
TMhelix     12    36 
outside     37   226 
TMhelix    227   251 
inside     252   261 

SOSUI 

AER072Wp 

TMhelix     15    37 
TMhelix     228   250 

TMHMM inside      1    14 
TMhelix     15    37 
outside     38   207 
TMhelix    208   230 
inside     231   232  

HMMTOP inside      1    16 
TMhelix     17    41 
outside     42   204 
TMhelix    205   229 
inside     230   232 

CAH02060 

SOSUI TMhelix     16    38 
TMhelix     206   228 
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To identify the sequence homolog tein’s predicted amino acid 

sequence was analyzed by BLAST se abase using protein-protein 

BLAST algorithm (search date, Oct f proteins that exhibited a 

significant (E-values≤1e-4) similarity to Ylr404wp included a hypothetical protein 

Kpol_1002p3 of Vanderwaltozyma po ts (487), Expect = 2e-47), a 

hypothetical protein CAGL0M09933 a  (Score = 174 bits (442), 

 4e- 072Wp of As  58.5 bits (140), Expect = 

5e-07), an unnamed protein product (accession No., CAH02060) of Kluyveromyces lactis 

(Score = 50. ), Expect =  In se four proteins were 

predicted to be double-pass integral e luding Kpol_1002p3 which 

was also very likely a double-pass t based on the prediction by 

PROMALS alignment 
 
Ylr404wp                        1  MKINVSRPLQFLQWSSYIVVAFLIQLLIILPLSILIYHDFYLRLLPADSS---NVVPLNTFNI-------   60 

Kpol_1002p3                     1  MLVNVTRPLQLLQWSSYIAITCLVQLLIILPLSILIFHDFYARLLPPDSS---QWVPLSTSNT-------   60 

CAGL0M09933g                    1  MKFNLTRPLQIAQWVSYILGVGILQIVVILPLAVLLFHDFYTRLLPSDSS---VWVPLDNFNS-------   60 

2p3       EKFD--QYIDRI DNGLSQMIPLRDYILYKMDLDYKFYCLK--DSVNRG-----  117 

     K--QGIVCV NGL HSLD----------A  117 

     SWTV----PFD----LRVI TSH------------  101 

AER072Wp                       71  MWSMDLWRRSVSPQDVKST FDQ------------  119 

 

Ylr404wp                      129  VYRGPGPLLGAPGGSNSKD RLDVYDEEWLNTIRI  192 

Kpol_1002p3                   118  -YKSPLDTLQLRVSVATTD EKEWQNHIDI  184 

CAGL0M09933g                  118  IGNSKGTDLQYAVVSLSDD QP EVLRNEWLNSLSL  181 

CAH02060          --RPIE-----AVTLSID LPL KKDVINDFKF  153 

AER072Wp          --EPIH-----VVTVEVT LATRIQHEFENRLQL  171 

 

Ylr404wp                      193  EDKISLESSYETISVFLKT SG YIIGISIFHCIICVL  262 

Kpol_1002p3                   185  EDKISIDPDVVKIYYDFIP HIFGTLVCYVIISTL  254 

CAGL0M09933g                  182  EDIADISPQLENIEISIDL YIIGTAVFYISLSFI  251 

CAH02060                      154  G--FPVNPDNKRIRIDLKD HLLGTLLFASLISSC  217 

AER072Wp                      172  PD-ILLSADTRMVNVTIQS HILGTTLFVGVISAW  236 

 

Ylr404wp                     F--FITGCTAFIFVRKGQ-

Kpol_1002p3        255  F--SVTGVLSFYLVNQKEL

CAGL0M09933g                  252  F--VITCMATFLIFTKVY-

   FLLSFTGVFSYIVMA----

   FYISFSIAFMVIGFLRGA-

 

Figure 5-13. Sequence alignment of Ylr404wp and ia PROMALS. Amino acids 
in red are identical and those in blue are hig range bars represent two 
transmembrane domains. Black bars are regi ct udy. 

CAH02060                        1  MKINVSIPLQAARWFSYLLILICIEIIFILPLSNLLWIDFINRLIPNNRM---HVIPLSNMAN-------   60 

AER072Wp                        1  MQINVLGPVQWVPWATYAAVILWVQVVVILPLATVLWQDFYSQLLPSESLFERQLRPVKAPASAAGSVNN   70 

 

Ylr404wp                       61  LNGVQFGTKFF--QSIKSIPVGTDLPQTIDNGLSQLIPMRDNMEYKLDLNLQLYCQSKTDHLNLDNLLID  128 

Kpol_100              61  FDF----

  -NASGLNTRF

SIDKPLPPIL

CAGL0M09933g 

CAH02060       

             61

             61

SPDKQLPGLKP SQPIALRCHTNYKLDMKLEFYC

ANV---TSTKENEIRSDIPL------DVTLNLGIYC

PPS---AAQEQLAVQSGIR------YLLVIDLQLQC

EK---IFH-TSRPIVCLALTDSMSPQEIEQL-G-PS

DDVSTVIYRRNIPIVCIRDTDSISTEGLSKI-G-PNRLKVF

SN---LFYRYR VICRNQ-GATNVLEGNNH-A-KSRM

VSKTV            102  -

            120  -

DN------PRK VCFDN---LNFLSSRFN-GFDS

AQ------TESFTVTCFPG---VEHAMRSPWTA-QP

EIAQRNLIIHPE IKFRMNFEQGLRNLMLRKRFLS

GSPSMHLKFDPKSGARYRMEFQQGFRNIMLRWRKLT

PNSNGEILLEPTSGILLRRSFEQGLRNWMLRRWRTT

YTEDYLLSY---INVQFSVKYT-GFRKFLLSWRRTC

TARLRFGHR---SAYSLSMQVG-GIRYAMLHWYRTC

   263

           

----E-KSKKHS  285 

ATGTG-TDTKT-  281 

----G-KHQKQ-  273 

-  CAH02060         

AER072Wp         

            218

            237

----------- 232 

----GAKNTKS 261 -  

 its homologs v
hly similar between species. O
ons sele ed for mutagenesis st

s of Ylr404wp, the pro

arches of the NCBI dat

ober, 2007). The list o

lyspora (Score = 192 bi

g of C ndida glabrata

Expect = 42), AER hbya g ypii (Score =oss

4 bits (119 1e-04). terestingly, all the

membran  proteins, inc

ransmem rane protein b
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TMHMM and SOSUI (Table 5-2), indicating it is highly likely that these proteins and 

Y

To further study their sequence relationsh  I carried out a multiple sequence 

a nd the result 

is shown in Figure 5-13. Apparently

tr idues in the 

lu nction in LD 

s minal region really accounts for this 

p acid deletions and single amino acid 

c ed 

mutagenesis. Among the 14 recombinant variants (44-46D (deleted), L44D, L45D, P46L, 

105

lr404wp are of the same family. 

ip,

lignment for these five proteins using PROMALS (Pei and Grishin, 2007) a

, amino acids of the N-terminus and two 

ansmembrane helices display better homology, followed by several res

minal segment. Because both termini seem not essential for Ylr404wp’s fu

ynthesis, in order to determine whether the lu

rotein’s function, I performed multiple amino 

hanges to two of these residues (amino acids 44-46 and 105-113) by site-direct

-113D, L105D, D106A, L107D, N108A, L109D, Q110A, L111D, Y112D, C113T), 

except N108A and Q110A, the other 12 mutants obliterated the rescue effect of Ylr404wp 

in the ylr404w strain, no matter these mutants were expressed by pYEX 4T-1(Figure 

5-14A) or YCPlac111 vector (Figure 5-14B). GFP signals showed that N108A and Q110A 

maintained Ylr404wp’s localization to the ER membrane, while the other variants formed 

spherical protein bodies whose nature remains to be determined at this stage (Figure 

5-14C). This set of data not only implied that the luminal region is essential for the 

protein’s function, but also provided support that the aforesaid four proteins are homologs 

of Ylr404wp. 
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A 

B 



 

C 

Figure 5-14. Site-directed 
mutagenesis (SDM) of 
Ylr404wp. A) SDM was 
performed as indicated using 
pYEX 4T-1-YLR404W. 
Transformed ylr404w cells were 
stained with Nile red for 
observation of LDs. B&C) 
SDM was performed using 
YCplac111-YLR404W-GFP. 
Transformed cells were 
subjected to Nile red staining 
(B) or examination of the 
localization of Ylr404wp-GFP 
(C).  
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However, no mammalian homologs of Ylr404wp were identified via protein-protein 

BLAST searches. The organisms hosting the above-mentioned five proteins including 

Ylr404wp are all under the order of Saccharomycetales (Fungi › Dikarya › Ascomycota › 

Saccharomycotina › Saccharomycetes › Saccharomycetales). Given that these species are 

far from mammals, it is probable Ylr404wp and its mammalian homologs only share 

certain motifs. To identify these proteins, I performed Position-Specific Iterated BLAST 

searches. The result showed that Ylr404wp and several mammalian FOXD4 proteins 

share the same PGPLLGAP motif (Figure 5-15). However, none of these proteins were 

predicted to be integral membrane proteins by TMHMM, HMMTOP, and SOSUI. In 

addition, this PGPLLGAP motif is even not found in the four identified sequence 

homologs of Ylr404wp. Therefore, these FOXD4 proteins were very unlikely to be of the 

same family as Ylr404wp. To verify my prediction, I performed multiple amino acid 

deletions and single amino acid changes to this motif, and found that none of them 

affected the biological activity of Ylr404wp (Figure 5-16A) or changed its subcellular 

localization (Figure 5-16B), which indicated that this motif is not essential and these 

proteins are not Ylr404wp’s homologs.  

Besides these FOXD4 proteins, human seipin which is responsible for the 

Berardinelli–Seip congenital lipodystrophy syndrome and its mammalian homologs were 

also identified by Position-Specific Iterated BLAST query. Is this class of proteins closely 

related with Ylr404wp? Do they function similarly as Ylr404wp? These questions will be 

addressed in Chapter 6.  
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>Ylr404wp [Saccharomyces cerevisiae]                      133  PGPLLGAP  140 

> FOXD4 protein (Accession No., AAI03887) [Homo sapiens]    228  PGPLLGAP  235 

> 

> FOXD4 protein (Accession No., AAQ72339) [Gorilla gorilla]   233  PGPLLGAP  240 

Figure 5-15. An identical motif observed both in Ylr404wp and mammalian FOXD4 proteins. 

mutagenesis was performed using 

to Nile red staining (A) or examination of the localization of 

FOXD4 protein (Accession No., AAQ72341) [Pan troglodytes]  233  PGPLLGAP  240 

 

Figure 5-16. The PGPLLGAP motif is not essential for 
Ylr404wp’s function in LD formation. Site-directed 

YCplac111-YLR404W-GFP as indicated. Transformed 
ylr404w cells were grown to stationary phase and subjected 

Ylr404wp-GFP (B). 
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.4 Biochemical characterization of ylr404w strain 

Does the composition of the LDs of the ylr404w cells differ from that of the WT cells? 

With this question in mind, I performed lipid analysis for the mutant as well as lipid and 

proteomic characterization of the LDs isolated from the ylr404w strain and from the WT 

strain. 

5.4.1 Lipid analysis of the ylr404w strain 

Total lipid extraction from the lyophilized yeast cells as well as separation and 

quantitation of neutral lipids was performed as described in Materials and Methods. Both 

WT and ylr404w cells were cultured in synthetic complete medium, harvested, and 

lyophilized. The dry cell pellets were weighed and subsequently subjected to total lipids 

extraction. Different components of the cellular lipids were separated using thin layer 

chromatography (TLC). Neutral lipids were derivatized, followed by densitometric 

scanning. The result of neutral lipids quantitation is shown in Figure 5-17. When cells 

5

Figure 5-17. Lipid analysis of WT and 
ylr404w cells. A&B, Quantitation of cellular 
TAG and SE. Cells were either grown to 
stationary phase (A) or log phase (B). C) 
[3H]oleate incorporation into TAG and SE in 
log-phase WT and ylr404w cells.  
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were grown to stationary phase, compared with the WT, ylr404w cells synthesized 30% 

more TAG and 10% more SE (Figure 5-17A). For log phase, ylr404w cells contained 

110% more TAG and 90% more SE than WT (Figure 5-17B). This was consistent with 

the fact that the ylr404w strain accumulated fewer but much larger LDs than the WT.  

Since the enzyme ACAT catalyzes the synthesis of SE (Yang et al., 1996) and 

DGAT/PDAT the synthesis of TAG (Sorger and Daum, 2003), to test if the increased 

synthesis of neutral lipids was caused by elevated enzyme activity, oleate incorporation 

assay was subsequently performed to compare the rate of incorporation of oleate into 

neutral lipids between the WT and the mutant. Both strains were refreshed in synthetic 

complete medium and grown to log phase (OD600~0.8). Then cells were pulsed with 1 

µCi of [3H]oleic acid per ml cell culture at 30°C for 30 min with shaking, followed by 

lipid extraction and separation of lipid components by TLC. Incorporation of label into 

neutral lipids was determined by scintillation counting. The result is shown in Figure 

5-17C. Unexpectedly, ylr404w strain incorporated 10% less oleate into TAG than the WT, 

but two times of oleate into SE as that of the WT. This result suggests that ACAT and 

DGAT/PDAT activity is uncoupled with the elevated neutral lipids synthesis of the 

ylr404w strain. Therefore, other regulatory pathway(s) should exist in this mutant. 

 

5.4.2 Lipid and protein compositions of the LDs isolated from the ylr404w 

cells 

To test whether the compositions of the LDs of the ylr404w cells is remarkably 

different from those of the WT, I isolated the LD-rich fraction from the two strains via 



 

Ficoll gradient centrifugation, extracted lipids and proteins, and made comparisons of 

the

d the plate was stained with iodine vapor. As shown in Figure 5-18, there was no 

significant difference between the WT strain and the ylr404w strain in terms of gross lipid 

compositions of LDs. Lipids extracted from LD-rich fractions isolated from both strains 

contained all the major lipid components: TAG, SE, free fatty acids, sterols, and 

phospholipids.  

 

 

To study whether the protein compositions of the LD-rich fraction of the ylr404w 

strain differ greatly from those of the WT strain, solubilized proteins were separated by 

ir compositions between the LD-rich fractions isolated from the two strains. 

Extraction of lipids and solubilization of LD-associated proteins were performed as 

described in Materials and Methods. Lipid components were subsequently separated via 

TLC an

Figure 5-18. Gross profiling of lipids extracted from LDs isolated from WT and ylr404w cells 
via thin layer chromatography (TLC).  
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SDS-PAGE. I stained the protein bands using an Invitrogen MS-compatible silver stain 

kit. All the major protein bands were carefully excised and tandem mass spectrometry 

(MALDI-TOF MS) was subsequently carried out for peptide sequence determination. The 

protein patterns of LDs isolated from the two strains are shown in Figure 5-19 and 

pro

is an 

acyl-coenzymeA:ethanol O-acyltransferase that plays a role in medium-chain fatty acid 

thetic enzymes (McCammon et al., 1984; Gachotte et al., 1999). Ayr1p is an 

NA

teins identified by MALDI-TOF MS in Table 5-3. Altogether 13 proteins were 

identified in the LD-rich fraction isolated from the WT cells and 14 proteins from that of 

the ylr404w strain. The presence of ER resident proteins (indicated by letters in italic, 

Table 5-1), Kar2p, Pdi1p, Cwh41p, and Pmt1p (Rose et al., 1989; Noiva and Lennarz, 

1992; Jiang et al., 1996; Strahl-Bolsinger et al., 1993) in the LD-rich fraction could result 

from the contamination of the ER; it is very unlikely to completely separate ER from LDs 

by gradient centrifugation because they are closely associated with each other. Among the 

other proteins, 7 proteins (indicated by letters in bold) could be detected in LD-rich 

fractions of both strains. These proteins were Tgl4p, Eht1p, Tgl3p, Yim1p, Erg6p, Ayr1p, 

and Erg27p. Their association with LDs has been previously reported (Athenstaedt et al., 

1999; Athenstaedt et al., 2006). Except that the function of Yim1p is yet to be determined, 

the other 6 proteins are involved in lipid metabolism. Tgl3p and Tgl4p are TAG lipases 

(Athenstaedt and Daum, 2003; Athenstaedt and Daum, 2005). Eht1p 

ethyl ester biosynthesis (Saerens et al., 2006). Erg6p and Erg27p are ergosterol 

biosyn

DPH-dependent 1-acyl dihydroxyacetone phosphate reductase involved in 

phosphatidic acid biosynthesis (Athenstaedt and Daum, 2000).  
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Besides the above-mentioned 7 proteins, Faa1p, Sac1p and Kes1p were also detected 

in the LD-rich fraction of the WT cells. Their association with LDs has been reported in 

ano

ese three proteins were not detected in the LD-rich fraction of the 

ylr404w cells. Instead, another four proteins, Pma1p, Eno2p, Tdh1p, and Tdh2p, were 

identified. Eno2, Tdh1p, and Tdh2p are enzymes that functions during glycolysis and 

gluconeogenesis (McAlister and Holland, 1982; McAlister and Holland, 1985). Their 

association with LDs might suggest that glucose metabolism is altered in the ylr404w 

strain. Pma1p is a plasma membrane H+-ATPase (Serrano et al., 1986). Previously it has 

not been reported that Pma1p associates with LDs. The functional relevance of this 

association in ylr404w cells should be characterized in the immediate future.  

 

 

 

ther yeast strain Yarrowia lipolytica (Athenstaedt et al., 2006). Faa1p is a long chain 

fatty acyl-CoA synthetase required for fatty acid activation (Duronio et al., 1992). Sac1p 

is a lipid phosphoinositide phosphatase involved in protein trafficking and secretion 

(Hughes et al., 2000). Kes1p which is also named Osh4 is an oxysterol binding protein 

(Fang et al., 1996). The presence of Sac1p and Kes1p suggests that LD has a role in 

intracellular trafficking.  

In contrast, th
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WT ylr404w 

Figure 5-19. Protein 
pattern of LDs. 

WT and ylr404w cells 
were separated by 

of the protein bands is 

Tables 5-1. 

Proteins isolated from 

SDS-PAGE. Numbering 

the same as shown in 

Band(s) Protein(s) Mw (KDa) Band Protein(s) Mw (KDa) 

1, 2 Cwh41p 96 1,2 Pma1p 100 

3, 4, 8 Faa1p 78 2 Pmt1p 93 

9 Tgl4p 102 6, 8 Eht1p 51 

10, 12 Eht1p 51 9 Yim1p 42 

13 Yim1p 42 12 Tdh1p, Tdh2p 36, 36 

16-18 Ayr1p 33 15 Erg27p 40 

5 Kar2p 74 3, Kar2p 74 

6 Pdi1p 58 4 Pdi1p 58 

7 Sac1p 71 5 Tgl4p 102 

10 Kes1p 49 7 Tgl3p, Eno2p 74, 47 

11 Tgl3p 74 9-11 Erg6p 43 

13-15 Erg6p 43 13, 14 Ayr1p 33 

19 Erg27p 40    

 
Table 5-3. Proteins of LD-rich fractions isolated from the WT and ylr404w strains identified by 
MS (MALDI-TOF MS). Proteins were separated by SDS-PAGE, and protein bands excised and analyzed 

strains. Letters in italic are ER resident proteins, which may suggest the contamination of ER in the LD-rich 
fractions.  

 

by MALDI-TOF MS. Letters in bold are proteins identified in LD-rich fractions of both WT and ylr404w 
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Chapter 6 

Seipin, mammalian functional homolog of Ylr404wp 

 

Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive syndrome 

characterized by a near complete absence of adipose tissue since birth, acanthosis 

nigricans, severe insulin resistance, marked hypertriglyceridemia, and early-onset 

diabetes mellitus (Garg, 2000). Recently, mutations in the 1-acylglycerol-3-phosphate 

O-acyltransferase 2 (AGPAT2) gene linked to chromosome 9q34 were found to be 

resp

AGPAT2 catalyzes acylation of lysophosphatidic acid to phosphatidic acid, an 

essential reaction in the biosynthetic pathway of TAG and phospholipids from 

glycerol-3-phosphate (Agarwal and Garg, 2003). Unlike AGPAT2, the molecular function 

of seipin remains largely obscure and it does not exhibit sequence homology with 

AGPAT2. Seipin may have several isoforms because northern blot analysis has shown 

that BSCL2 gene gives rise to at least three different mRNAs with sizes ranging from 1.8, 

onsible for the CGL1 subtype (Garg et al., 1999; Agarwal et al., 2002), and mutations 

in the Seipin gene (also termed BSCL2) linked to chromosome 11q13 for CGL2 subtype 

(Magre et al., 2001). Both subtypes display marked lack of metabolically active adipose 

tissue located at most sc, intermuscular, bone marrow, intraabdominal, and intrathoracic 

regions, but CGL2 shows more severe deficiency of body fat; even mechanical adipose 

tissues become scarce in the palms, soles, orbits, scalp, and periarticular regions (Simha 

and Garg, 2003). In addition, CGL2 patients have an increased prevalence of mild mental 

retardation and cardiomyopathy (Agarwal et al., 2003).  
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2.0 to 2.4 kb (Magre et al, 2001) and two peptides with 398 or 462 amino acids (Lundin 

et al., 2006). The 2.0 kb mRNA is exclusively expressed in brain and testis, but the 1.8 

and 2.4 kb mRNAs are ubiquitously expressed.  

 

Sequence homology searches show that human seipin has homologs in many species, 

Homo_sapiens                    1  ----------MVN--DP----------PVPALLWA-QEVGQVL----AGR--------------ARRLLL   29 

Mus_musculus                    1  ----------MVN--DP----------PVPALLWA-QEVGHVL----AGR--------------ARRLML   29 

Rattus_norvegicus               1  ----------MVN--DP----------PVPALLWA-QEVGHVL----AGR--------------ARRLML   29 

Xenopus_laevis                  1  --------------------------------------MGLLM----FLR--------------ARRLFL   14 

Danio_rerio                     1  ----MQSSTEELNSED-----------------SGVQDVGPQI----RGLVVEILETMSDLLVWMRRKAV   45 

Drosophila_melanogaster         1  MNILLRLIVFAL---DPLGLGRRFLIRPAVNLGWNVYDRVRSKADEKVGT--------------VRELVL   53 

Saccharomyces_cerevisiae        1  ---------MKINVSR-----------PLQF---------------------------------LQWSSY   17 

 

Homo_sapiens                   30  QFGVLFCTILLLLWVSVFLYGSFYYSYMPT-VSHLSPVHFYYRTDCDSSTTSLCSFPVANVSLTK-----   93 

Mus_musculus                   30  QFGVLFCTILLLLWVSVFLYGSFYYSYMPT-VSHLSPVHFHYRTDCDSSTASLCSFPVANVSLAK-----   93 

Rattus_norvegicus              30  QFGVLFCTILLLLWVSVFLYGSFYYSYMPT-VSHLSPVHFYYRTDCDSSTASLCSFPVANVSLTK-----   93 

Xenopus_laevis                 15  QAAIFLCVLILLLWVSVFLYGSFYYSYMPT-VKYSSPVHYQYSSTCEPPPGILCSFPTANVSLLR-----   78 

Danio_rerio                    46  EMVIIICVILLVFWVALFLYGSFYYSFMPT-ANFVAPVNFFHRTDCPSPHHPMCSFPMANVSLLK-----  109 

Drosophila_melanogaster        54  RLGLIAFAVVLIIWLAVFMYAAFYYVYMPA-ISHTRPVHMQFKTCLET--STPCTFPHAHVSLT------  114 

Saccharomyces_cerevisiae       18  IVVAFLIQLLIILPLSILIYHDFYLRLLPADSSNVVPLN-TFNILNGV--QFGTKFFQSIKSIPVGTDLP   84 

 

Homo_sapiens                   94  ----GGRDRVLM--YGQPYRVTLELELPESPV--NQDLGMFLVTI-----------SCYTRGGRIISTSS  144 

Mus_musculus                   94  ----SGRDRVLM--YGQPYRVTLELELPESPV--NQDLGMFLVTV-----------SCYTRGGRIISTSS  144 

Rattus_norvegicus              94  ----SGRDRVLM--YGQPYRVTLELELPESPV--NQDLGMFLVTV-----------SCYTRGGRIISTSS  144 

Xenopus_laevis                 79  ----NNRDRVLI--HGQPYRISLELQLPESTV--NQDLGMFMVTM-----------SCYTRGGKQISYTA  129 

Danio_rerio                   110  ----NGKHQVMT--YGQPYQITLKLEMPESPT--NQQLGMFLVTI-----------TPYSKAGQIIGVSS  160 

Drosophila_melanogaster       115  -----KKQQLLM--VGQAYKVIVNIDMPESPQ--NLELGMFMVCA-----------EMRDYDSMLRGHSC  164 

Saccharomyces_cerevisiae       85  QTIDNGLSQLIPMRDNMEYKLDLNLQLYCQSKTDHLNLDNLLIDVYRGPGPLLGAPGGSNSKDEKIFHTS  154 

 

Homo_sapiens                  145  RSVMLHYRSDLLQMLDTLVFSSLLLFGFAEQKQLLEVELYADYRENSYVPTTGAIIEIHSKRIQLYGAYL  214 

Mus_musculus                  145  RSVMLHYRSQLLQVLDTLLFSSLLLFGFAEQKQLLEVELYSDYRENSYVPTTGAIIEIHSKRIQMYGAYL  214 

Rattus_norvegicus             145  RSVMLHYRSQLLQMLDTLVFSSLLLFGFAEQKQLLEVELYSDYRENSYVPTTGAIIEVHSKRVQMYGAYL  214 

Xenopus_laevis          130  RSAMLHYKSPLLRTMETLASSPLLLLGFSEQKQSLEVELYPEYREDSYV VRIEIYTAEL  199       PTVGAVIQVQS

Danio_rerio       161  RSA GTLVFSPMF EQKQSVTVELFSEFK MLEIHAPNIQIY            MLHYRSSLLQTL LSGMS DDSYKPTVGA KANL  230 

Drosophila_melanog  165  RSA STWVLSPL QQVPVEIFSRYL VEIQSQKIQaster      MMRYRSPLIRMI YVLGWKEEF EERQHPITDVY FYTVTL  234 

Sac

 

charomyces_cere    155  RPI TDSMSPQEIEQLGPS YDEEWLNTIRIEDKIS FLKTEIAQ-- L  218 visiae   VCLAL RLDV- LESSYETISV ---RN

Homo_sapiens         215  RIH -----FTGLRYLLY MTCAFIGVASNFTFLSVI QWVWGGIWPRHRF NI  274          AH---- NFP VLFS-YM SLQV

Mus_musculus         215  RIH -----FTGLRYLLYN MTCAFVGVASNFTFLSVI QWVWGAVWPRHRFSL NI  274          AH---- FP VLFS-YM QV

Rattus_norvegicus     215  RIH -----FTGLRYLLY TCAFVGVASNFTFLSVI QWVWGAVWPRHRF NI  274         AH---- NFPM ALFS-YM SLQV

Xenopus_laevis       200  RVH -----FTGIRYLLYH VTSAVIGISSNFIFLSVL QWGFG----RTRLR- DV  252          AY---- FP VLLS-YL --

Danio_rerio          231  YIF -----FTGIRYLLY LISALMGVMTNFTFLSLI QFNLNGRQFRRKA EE  290          AH---- QFP IVLS-FL RMQQ

Drosophila_melanog    235  HIV -----FTGLRYIMF VLSAIVAISTNLFFILVV HWSDAKWLH---- Y  290 aster    AD---- NWP FLLS-WY SVQIK

Saccharomyces_cere    219  IIH FRMNFEQGLRNLML FLSYIIGISIFHCIICVL AFIFVRKG----- -  277 

 

visiae   PESGIK RKR FFITGCT -----

Homo_sapiens         275  RKR VQRRISA---HQPGPEG ESTPQSDVTEDGESPEDP TEGQLSEEEKPDQQP GE  338          DNSRKE QE SG--- LS

Mus_musculus          275  RQR APRRISR---HQPG -QESTQQSDVTEDGESP KPEK  334         DNSHHG --- EDPSG---TEGQLSEEE RPLNGE 

Rattus_norvegicus    275  RQR AQRRISR---HQPG----QASTQQSDVTEDGESPEDP TEGQLSEEEKPEKQP GE  334          DNSGHG SG--- LN

Xenopus_laevis        253  QQR AETRPES---FSQ- -TEDKDQSDTETIGQND QVVQNISSD- --  307         TRNVRG --- TDSQGAQQTET ----

Danio_rerio          291  MDE ---DLFD---DPSE IPENVDTMDCNSAD DVTGEDSDDS KD  345          ID---- PHDRGI MEES-----IP RELT

Drosophila_melanog    291  ARL ---SLEPGVIHSKASSL DDD-------------- ---LVAYSDKSDIAD G-  330 

haromyces_cere          --- -------------- ---------------- -----      

aster    TK---- RDD ----- VG

Sacc visiae  ------ ---- ---------------- ------ 

 

Homo_sapiens          339  EEL GSGSWEDA-ALLTE ASASAPVLETLG LRQRPTCSSS--- 8         EPEASD ANLPAPAP SSEPAGGA   39

Mus_musculus          335  EEQ --GSWEDA-ALLTE TSASASALAP------ QRPTCSSS--- 3         EPEASD ANPP ---ETLGSLR   38

Rattus_norvegicus     335  GEQ --GSWEDA-ALLTE ALAP------------ QRQTCSSS--- 7         EPEASD ASTS ---ETLGSLR   37

Xenopus_laevis       308  --- ----------LDTD AQFSA------------- -----LHQRSAQSSSN--  329          ------ SN ---

Danio_rerio          346  EPI ETILRRR-------------HLSQDSLQAPQVLT--ETTDKNYYRVGVCSSS---  391          CEDGNE

Drosophila_melanogaster       331  ---------DTLSDVDADDLVLVKKSRSGK---------------RESPDALRKRPTKKTTADH  370 

Saccharomyces_cerevisiae      278  -----------------------------------------------------QEKSKKHS---  285 

 

Figure 6-1. Sequence alignment of seipin and Ylr404wp via PROMALS. Amino acids in red 
are identical and those in blue are highly similar across all seven species. Yellow-shaded amino 
acids are either identical or highly similar between human and other species besides those in red 
and blue, including A212P. Orange bars represent two transmembrane domains.  
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including Drosophila melanogaster (fl  (zebrafish), Xenopus laevis 

(African quence 

nalysis of Ylr404wp via Position-Specific Iterated BLAST indicates that Ylr404wp has 

12%

in is 

280 

n 

 to be 

n 

04wp and seipins have many 

sim icted 

ze to the 

2). 4) 

y), Danio rerio

clawed frog), Mus musculus (mouse) and Rattus norvegicus (rat). Now se

a

 identity and 27% or 28% similarity with human, rat, and mouse seipin. Sequence 

alignment of these proteins via PROMALS is shown in Figure 6-1. Apparently seip

highly conserved from human to rat, and to mouse. The region that covers the first 

amino acids of human seipin is 88% identical among rat, mouse, chimpanzee and huma

homologs (Agarwal and Garg, 2004). In addition, like Ylr404wp which is predicted

a double-pass integral membrane protein, human seipin and its homologs also share this 

feature (Table 6-1). Consistent with this prediction, localization studies showed that 

human seipin is an integral membrane protein of the ER (Windpassinger et al., 2004). 

More recently, a membrane topology study suggests that the N- and C-terminal tails of 

human seipin are located in the cytosol, while the central loop is in the ER lumen (Lundi

et al., 2006).  

Although Ylr404wp does not have a strong sequence identity with these proteins, it 

still appears to belong to the seipin family, given that Ylr4

ilar characteristics: 1) they are all membrane proteins. In addition, they are pred

to have two transmembrane helices. 2) Both Ylr404wp and human seipin locali

ER. 3) Topology analysis suggests that Ylr404wp and human seipin consists of 

cytosolically oriented N- and C-terminal tails and a luminal central loop (Figure 6-

Whereas Ylr404wp is involved in LD dynamics, the loss of function of human seipin 

leads to lipodystrophy. 
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Table 6-1, Prediction of transmembrane helices by TMHMM and HMMTOP in human seipin and
its homologs. * denotes a weakly predicted transmembrane helix. 

Model 

 

protein Prediction Result 

TMHMM TMhelix     27    49 
TMhelix     236   258 

Human seipin 
(AAH12140, 398aa) 

HMMTOP TMhelix     31    55 
TMhelix     238   262 

TMHMM TMhelix     27    49 
TMhelix     225   247 

R
(A

TMhelix     235   259 

at seipin 
AH89942, 377aa) 

HMMTOP TMhelix     31    55 

TMHMM TMhelix     27    49 
TMhelix     236   258 

M
(NP_032

TMhelix     218   240 

ouse seipin 
170, 383aa) 

HMMTOP TMhelix     31    55 
TMhelix     235   259 

TMHMM TMhelix     12    34 F
(L

rog seipin 
OC734949, 329aa) 

HMMTOP TMhelix     18    42 
TMhelix     220   244 

TMHMM TMhelix     48    70 
TMhelix     249   271 

Z
(A

TMhelix     248   271 

ebrafish seipin 
AI52256, 391aa) 

HMMTOP TMhelix     47    71 

TMHMM TMhelix     58    80 F
(N

ly seipin 
P_570012, 370aa) TMhelix*     175   192 

TMhelix     250   272 
HMMTOP TMhelix     55    79 

TMhelix     251   275 

 

Figure 6-2. Topology model of Ylr404wp and seipin based on the prediction of 
transmembrane helices by TMHMM. 
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To verify this possibility, I amplified human seipin from cDNA BC012140 (398

amino acids) and AF052149 (462 amino acids, with 64 amino acids extended at the 

putative N-terminus) and mouse seipin from cDNA BC061689 (443 amino acids), and 

inserted them into the YCplac111 vector under the control of yeast MET3 promoter. 

Remarkably, expression of human and mouse seipin successfully complemented the 

defect in LD morphology in ylr404w cells (Figure 6-3). When ylr404w cells were 

cultured in defined medium, 80% of the cell population contained one or two supsersized 

LDs with an average diameter of 1.21±0.19 (n=117). After cells were transformed with 

vectors that expressed human or mouse seipin, the supersized LDs disappeared, and cells

synthesized many small LDs with an average diameter of 0.43±0.05 (n=106), resemb

the feature of WT cells. This experiment indicates that human and mouse seipin can 

complement the function of Ylr404wp.  

 

 

ling 

 

Subsequently, I examined the effects of point mutations in seipin that are implicated 

in lipodystrophy and motoneuron disorders. A212P has been identified as a missense 

mutation leading to CGL (Magre et al., 2001), whereas two heterozygous missense 

Figure 6-3. Expression of human and mouse seipin in ylr404w cells rescues the defect in 

YCPlac111 vector under the control of MET3 promoter. ylr404w cells carrying vectors that 
ed 

LD morphology. Gene sequences encoding human and mouse seipin were inserted into 

express human or mouse seipin were cultured in defined medium until stationary phase, stain
with Nile red and examined by fluorescence microscopy. Bar, 5 μm. 
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mutations resulting in the amino acid substitutions N88S and S90L are held accountable 

echanism fect the gl

causes aggregates form ng to n passinger et al., 2004). 

eriphera thy mig bance in lipid metabolism 

of motor neuron cells (Agarwal and Gar

Interestingly, expre 8S an rescued the defects in LD 

igure 6-4 t that t n seipin implicated in 

lipid metabolism disorder (A212P) coul LD morphology in 

ylr404w cells gives add dence of Ylr404wp. The 

8S and S ot affe c in regulating LD 

morphology might sugg ripher y not a result of 

disturbance in lipid metabolism. 

Lastly, expression of the highly conserved 280 amino acids region of seipin rescued 

the defects in LD morphology (Figure 6-4). This result may provide additional evidence 

that the functional domain of Ylr404wp and seipin is located in the ER lumen.  

 

Recently, Ory’s group reported that contrary to our expectation, small interference 

for distal hereditary motor neuropathy (dHMN) and silver syndrome (SS). One 

speculative m  is that N88S and S90L af ycosylation of seipin, which 

ation leadi eurodegeneration (Wind

Alternatively, p l neuropa ht result from the distur

g, 2004).  

ssion of N8 d S90L, but not A212P 

morphology (F ). The fac he mutant form of huma

d not restore the normal 

itional evi that seipin is a homolog 

finding that N8 90L do n ct the fun tion of seipin 

est that pe al neuropathy is probabl

Figure 6-4. Expression of the highly conserved (amino acids 1-280) region of seipin and 
various seipin mutants in ylr404w cells. Bar, 5 µm 
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A-mediated knockdown of AGPAT2 did not reduce the cellular level of phosphat

acid (PA); rather phosphatidic acid (PA) was elevated by 3-fold in TAG-depleted 

adipocytes with AGPAT2 knockdown, suggesting that impaired AGPAT2 activity does 

not impair overall PA synthesis or utilization of PA for phospholipid synthesis, but o

affects availability of PA for TAG synthesis (Gale et al., 2007). This result prompted

speculation that AGPAT2 controls adipogenesis through modulation of the synthes

phospholipids (Gale et al., 2007). Since mutations in AGPAT2 and BSCL2 cause similar 

clinical manifestations, we wondered if aberrant phospholipids metabolism may underlie

the cellular defects for both conditions. Lipid species from WT and ylr404w whole cell 

extracts were analyzed by ESI tandem mass spectrometry.  
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Figure 6-5. Fatty acyl profiling of phospholipids and TAG of WT and ylr404w cells. A&B, 
Relative total amount of phosphatidyl inositol (PI), phosphatidyl ethanolamine (PE), 
phosphotidyl serine (PS), and phosphatidyl choline (PC), as well as phosphatidic acid 
(PA) extracted from WT and ylr404w cells cultured in YPD medium (A) or SC medium 
(B). C&D, phospholipid profiles of WT and ylr404w cells cultured in YPD medium (C) or 
SC medium (D). E, Fatty acid profiles of polar lipids of WT and ylr404w cells cultured in 
SC medium. F, TAG profiles of WT and ylr404w cells cultured in SC medium. n=4. 

 

As seen in Figure 6-5 A&B, the level of PA only increased slightly in ylr404w cells, 

no matter cells were cultured in YPD medium (Figure 6-5A) or SC medium (Figure 6-5B). 

In addition, there was no significant difference in the cellular levels of four major classes 

of phospholipids, i.e., phosphatidyl inositol (PI), phosphatidyl ethanolamine (PE), 

phosphotidyl serine (PS), and phosphatidyl choline (PC). 
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Interestingly, there was a shift from long-chain (18:1) to medium/short-chain (16:0, 

14:0, 12:0) fatty acid incorporation into all major phospholipids due to the deletion of 

YLR404W (Figure 6-5 C&D). This change was even more pronounced when cells were 

cultured in SC medium than in YPD medium. For instance, when cells were cultured in 

YPD medium, compared with WT, ylr404w cells displayed 23%, 18%, 37%, and 30% 

decrease of PI18:1/16:0, PI18:1/16:1, PI16:0/18:1, and PI16:1/18:1, respectively, together 

with 17%, 62%, and 46% increase of PI16:0/12:0, PI14:1/16:0, and PI12:0/18:0, 

respetively (Figure 6-5C). When cells were cultured in SC medium, ylr404w cells 

displayed 18%, 44%, 32%, and 41% decrease of PI18:1/16:0, PI18:1/16:1, PI16:0/18:1, 

and PI16:1/18:1, respectively, and 116%, 108%, and 136% increase of PI16:0/12:0, 

PI14:1/16:0, and PI12:0/18:0, respetively (Figure 6-5D and Table 6-2).  

 

Table 6-2. Normalized intensity of seven phosphatidyl inositol (PI) subspecies of ylr404w cells 
relative to WT and their difference. – and + denote decrease and increase, respectively. 

YPD medium SC medium Lipid 
subspecies ylr404w cells 

relative to WT 
 

difference 
ylr404w cells 
relative to WT 

 
difference 

PI18:1/16:0 77% -23% 82% -18% 
PI18:1/16:1 82% -18% 56% -44% 
PI16:0/18:1 63% -37% 68% -32% 
PI16:1/18:1 70% -30% 59% -41% 
PI16:0/12:0 117% +17% 216% +116% 
PI14:1/16:0 162% +62% 208% +108% 
PI12:0/18:0 146% +46% 236% +136% 
 

 

Fatty acyl profiles of polar lipids confirmed the long-chain to medium/short-chain 

shift in acyl chain pattern of phospholipids in ylr404w cells. When cells were cultured in 

SC medium, polar lipids of ylr404w cells incorporated 24% less FA18:1, but 20% more 



 

FA16:0, 64% more FA14:0, and 85% more FA12:0 than those of WT cells (Figure 6-5 

E).  

Remarkably, TAG profiles of ylr404w cells displayed this long-chain to 

medium/short-chain shift as well (Figure 6-5 F). In addition, phospholipid and TAG 

profiles of LDs isolated from ylr404w cells also showed this shift in their acyl chain 

pattern (Figure 6-6 A-C). 
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Figure 6-6. Phospholipids and TAG profiles of LDs isolated from WT and ylr404w cells 
cultured in SC medium. A. Phospholipid profiles. B&C, TAG profiles of LDs isolated from WT 
(B) and ylr404w cells (C). n=4. 
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Chapter 7 

ryotic 
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Discussion 
 

7.1 Lipid droplets, new discovery of an old cellular component 

Studies of LDs carried out in the past 10 years show that LDs exist in all euka

organisms as well as in some prokaryotes. Prokaryotes that have been known to produce 

LDs include Rhodococcus and Streptomyces (Alvarez and Steinbüchel, 2002). LD

distinct from the other cellular organelles. First, while all other organelles

aqueous-cored compartments, LDs consist of a hydrophobic core of neutral lipids. Second, 

the other organelles are delineated by a phospholipid bilayer, whereas LDs by a 

monolayer of phospholipids.  

In the past, LDs were thought to be inert, storing neutral lipids and providing 

substrates for synthesis of some specific lipophilic substance. Now we understand that the 

function of LDs is rather multi-faceted and complicated. They are actively involved in 

immune response, viral replication, and protein quality control and disposal. We m

even imagine that LDs play more roles in cellular processes which will be unveiled in the 

near future with the advancement in molecular and biochemical techniques. 

Very recently, Oloffson and colleagues reported the association of three SNAREs with 

LDs: VAMP4, syntaxin5 and SNAP-23 (Boström et al., 2007). In their study, a 

significant amount of VAMP4, syntaxin5 and SNAP-23 was associated with oleic 

acid-induced LDs. SNAP-23, which lacks a membrane-spanning sequence, required 

palmitoylation for its association with LDs. Moreover, coimmunoprecipitation 

experiments showed that VAMP4, syntaxin5 and SNAP-23 form a distinct complex. 
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Functionally, short interfering RNA (siRNA) and the overexpression of a dominant 

negative SNAP-23 construct resulted in decreased LD fusion rate and reduced size of 

LDs, suggesting that VAMP4, syntaxin5 and SNAP-23 are required for LD fusion. This 

study demonstrates for the first time that homotypic fusion between LDs uses SNAREs, 

which greatly broadens our understanding of LD cell biology and opens a new research 

area for LDs.  

Furthermore, studies into the pathogenesis of LD-associated devastating human 

diseases, such as atherosclerosis, type 2 diabetes, and fatty liver, have reached a new level. 

The emerging concept is that in obesity the TAG storage capacity of adipose tissue 

overflows, thereby releasing free fatty acids and resulting in accumulation of TAG in 

non-adipose tissues (Unger et al., 2003).  

In summary, recent advances in LD research has tremendously changed our view of 

LDs. LDs are an independent organelle ubiquitously found in eukaryotic organisms. In 

addition, LDs are not simple inert storage depots; rather they are actively involved in 

many cellular processes. Most importantly, LDs are associated with many devasta ng 

human diseases. LD research has become urgent and indispensable due to the recent 

ramatic increase in obesity and diabetes.  

 

 

.2 Endoplasmic reticulum, the factory of LD production 

In this study, in an effort to identify genes that affect intracellular LD accumulation, I 

creened the entire collection of yeast viable single gene deletion mutants for changes in 

ti

d

7

s
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the quantity and morphology of LDs, and identified 16 fld mutants and 117 mld mutants. 

Genes whose deletions have reduced Ds encode: proteins responsible for 

DNA maintenance and chromatin s nents of glycosylation machinery, 

nzymes seated on some metabolic pathways, proteins involved in protein biosynthesis, 

and miscellaneous proteins (Table 4-1). Genes whose deletions lead to increased quantity 

of LDs include members of the same groups discussed above; besides, genes whose 

products serve as channels and transporters, most of which belong to the vacuolar ATPase 

family, genes of cytoskeleton related proteins, genes encoding proteins responsible for 

DNA maintenance and chromatin structure, genes whose products involved in protein 

modification and degradation, genes encoding transcription factors, genes whose products 

implicated in vesicular trafficking, and some hypothetical or uncharacterized ORFs (Table 

4-2). 

In terms of function, the scope of the identified genes is very broad and many 

categories have been discussed in Chapter 4. A very important finding of this study is that 

a link between ER stress and LD synthesis likely exists. First, mutants defective in protein 

glycosylation, ERAD, vacuolar H+-ATPase assembly and vesicular protein trafficking 

display more LDs than the WT cells; all these mutants cause ER stress. Second, 

alleviation of ER stress via restoration of glycosylation decreases LD production. Third, 

Tunicamycin and Brefeldin A, agents that induce ER stress, induce LD synthesis as well. 

Moreover, the reason that S. cerevisiae cells accumulate LDs when they enter stationary 

phase, particularly in response to nitrogen limitation (Willison and Johnston, 1985), might 

also be due to ER stress, because nutrient deprivation proves to induce ER stress by 

 number of L

tructure, compo

e
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causing protein misfolding, similar to mutations in the genes encoding secretory proteins 

and differentiation of professional secretory cells (Rutkowski and Kaufman, 2004). 

Although cwh8 cells which exhibit severe underglycosylation of many glycoproteins 

do not show LD hyperaccumulation, this does not veto the association between ER stress 

and LD synthesis. It has been shown in Chpater 4 that lack of Cwh8p significantly 

reduces the intracellular levels of Are1p and Lro1p. Accordingly, we may conclude that 

deletion of CWH8 gene on one hand causes protein underglycosylation, leading to ER 

stre

 ER stress, yeast cells activate both unfolded 

pro

r 4, deletion of IRE1 gene from the strains 

defective in protein glycosylation or ERAD did not reduce the accumulation of LDs. In 

addition, Tunicamycin that induces ER stress triggered LD synthesis in ire1 strain as well. 

re1p independent. 

Con

ss which is supposed to induce LD synthesis; on the other hand, this deletion also 

leads to insufficient expression of enzymes involved in neutral lipids synthesis, which 

ultimately affects TAG and SE synthesis and blocks ER stress-induced LD synthesis.  

 

It has been proposed that to cope with

tein response (UPR) and inositol response (IR), which results in increased synthesis of 

ER protein-folding factors and of enzymes participating in phospholipid biosynthesis, 

respectively (Cox et al., 1997). It is generally agreed that UPR requires Ire1p, but 

evidence suggests that IR is not completely dependent on Ire1p (Stroobants et al., 1999).  

In this study, I examined whether elevated LD synthesis in conditions of ER stress 

was Ire1p dependent. As shown in Chapte

These experiments suggest that ER stress-induced LD formation was I

sistently, I found that enzymes participating in neutral lipids synthesis were not 
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upregulated in conditions of ER stress, suggesting that ER stress-induced neutral lipids 

synthesis and LD formation is not necessarily part of UPR. Currently it is still not clear 

how LD synthesis is induced in conditions of ER stress and what is the signaling 

pathway(s), but one thing is certain: it is the ER that synthesizes TAG and SE, the LD 

core components, which are subsequently incorporated into LDs. The link between ER 

stress and LD synthesis once again signifies the importance of the ER in LD formation.  

 

The ER is central to many essential cellular functions. Contiguous with the nuclear 

envelope membrane, it forms a membranous network in the cell that is the major site of 

lipid biosynthesis and is the entry point into the secretory pathway. Being an important 

calcium store, the ER also functions in cellular signal transduction cascades. Because of 

its central role in both lipid and protein export, the ER can be considered the common 

ancestor of all membranes downstream in the secretory pathway, including the Golgi, 

secretory vesicles, the lysosome, and the plasma membrane. Now evidence is mounting 

that the ER is also the ancestor of peroxisomes (Kunau, 2005) and LDs (Murphy, and 

Vance, 1999).  

Considering that the ER is the factory of LD production, we may have to pay close 

attention to the ER in our journey to search for factors that affect LD synthesis, 

particularly for proteins that are directly involved in LD formation.  

 

 

7.3 Ylr404wp/Seipin regulates the morphology of LDs 

 143



 

A major finding of this study is the identification of Ylr404wp/seipin as a determinant 

of the morphology of yeast LDs. LDs of the ylr404w cells were morphologically distinct 

from those of WT cells. When grown in rich medium until stationary-phase, WT cells 

usu

ete 

m dium, the relative ratio of cells accumulating “supersized” LDs to those accumulating 

am

intr

ally displayed 3 to 6 LDs under the microscope. These LDs were between 0.2-0.4 μm 

in diameter and were almost spherical in shape, as shown by fluorescence microscopy and 

electron microscopy. Strikingly, up to thirty percent of the total population of ylr404w 

cells contained one or few “supersized” LDs that were spherical in shape and were about 

0.5 to 1.5 μm in diameter. About sixty percent of the ylr404w population contained an 

amorphous aggregation of small- or intermediate-sized LDs. The remaining ~10% of the 

ylr404w cells contained many loosely scattered and weakly stained tiny LDs which had a 

diameter of less than 0.1 μm. More strikingly, when cultured in synthetic compl

e

orphous LD clump increased dramatically. More than 80% of the ylr404w cells 

displayed only one or two “supersized” LDs, while amorphous aggregation of many small 

LDs that were common in cells cultured in YPD media were only observed in about 10% 

of the cells grown in synthetic complete medium.  

The existence of morphologically distinct LDs within the same deletion mutant is 

iguing. However, it does suggest enhanced fusion activities of LDs in the mutant cells: 

the small, discrete LDs may represent the newly synthesized LDs which tend to aggregate 

before eventually fuse into a “supersized” LD. Consistent with this hypothesis, when 

ylr404w cells were cultured in the synthetic complete medium until mid-log phase 

(OD600~1.5), fusion of LDs was observed in 10% of the targeted cells in which two or 
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several LDs lay close together. The fusion process started from the approaching of one 

LD toward the other, and finished after a new and larger LD appeared. This process was 

very fast and completed within seconds. No fusion events were observed in WT cells.  

Moreover, LDs isolated from ylr404w cells demonstrated enhanced fusion activity in 

vitro as well. Purified LDs from both WT and ylr404w cells were left in PBS buffer and 

examined by microscopy before and after 180 minutes. Whereas LDs from WT cells 

remained scattered and unchanged in size, LDs from ylr404w cells formed aggregates or 

fused into huge lipid inclusions. These experiments clearly show that the lack of 

Ylr

n. 

h 

 to 

UI). 

f 

ER 

iated and that the ER has a propensity to enwrap around LDs, I initially 

tho

mine this probability, 

two truncated Ylr404wp were constructed, which lacked N-terminus and C-terminus 

respectively. Surprisingly, the result showed that neither terminus is essential for 

404wp leads to enhanced fusion of LDs in this mutant.  

 

Ylr404wp is a protein of 285 amino acids with two predicted transmembrane domai

Localization studies show that Ylr404wp is an integral ER membrane protein, whic

again signifies the great importance of the ER in LD formation. Ylr404wp is predicted

span the ER membrane twice by 3 prediction models (TMHMM, HMMTOP, and SOS

Moreover, a previous topology study showed that both the N-terminus and C-terminus o

Ylr404wp are cytosolically oriented (Kim et al., 2003). Considering that LDs and the 

are closely assoc

ught that Ylr404wp might have direct interaction with LDs, and that by this interaction 

LDs were held in the vicinity of the ER. When cells were mutated in YLR404W, LDs 

became unstable and displayed tendency to form aggregation. To exa
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Ylr404wp’s function in maintaining the normal morphology of LDs, which also suggested 

tha

tein CAGL0M09933g of Candida 

gla

t the functional domain of this protein is in the ER lumen. Consistent with the 

prediction, targeted multiple amino acid deletions and single amino acid substitution in 

the luminal domain completely obliterated the rescue effect of Ylr404wp in the ylr404w 

mutant.  

How does Ylr404wp whose functional domain is in the ER lumen affect LD 

morphology? One probability is that Ylr404wp exerts its effect though a yet-unidentified 

interaction partner which in turn has direct association with LDs. However, based on our 

result that LDs isolated from ylr404w cells can fuse in vitro in the absence of cytosolic 

proteins and ATP, it is more likely that the physical property of LD components, i.e., 

phospholipid surface and/or neutral lipids core, has been altered in this mutant, resulting 

in LD clustering and formation of “supersized” LDs. 

Further studies are needed to determine the role of Ylr404wp in LD assembly. In this 

study sequence homologs of Ylr404wp were sought, so that via comparison we might 

have some clue to the function of this protein in question. Sequence homology search 

suggested that four double-pass transmembrane proteins (Kpol_1002p3 of 

Vanderwaltozyma polyspora, a hypothetical pro

brata, AER072Wp of Ashbya gossypii, an unnamed protein product (accession No., 

CAH02060) of Kluyveromyces lactis) are very likely homologs of Ylr404wp. However, 

none of them have been characterized before. Besides these proteins, Ylr404wp also 

displays some similarity to mammalian seipins which are also predicted to span the ER 

membrane twice. A very important finding of this study is that expression of human and 

 146



 

mouse seipin in the ylr404w mutant fully rescued its defect in LD morphology, 

confirming that seipin is an ortholog of Ylr404wp. Since seipin is mutated in type 2 

congenital generalized lipodystrophy (CGL2), this result suggests a new link between LD 

assembly and lipodystrophy. 

Sequence alignment of seipin from four species, including human, mouse, rat and 

chimpanzee, has revealed several interesting features (Agarwal and Garg, 2004). First, the 

highly conserved region of 280 amino acids begins at the N-terminal end, and is 88% 

identical across the four species. Second, one isoform of human seipin (AF052149) could 

extend at least another 64 residues at the putative N-terminus. Third, whereas the 

C-terminal regions are variable among species, a CAAX-motif sequence (CSSS) at the 

C-terminus is well preserved. I have shown in this study that expression of the first 280 

amino acids of human seipin successfully rescued the defect of LD morphology in 

ylr404w mutant cells. Based on this result as well as sequence alignment, I predict that 

the functional domain of seipin/Ylr404wp falls within this region. Consistent with the 

prediction, all the identified seipin mutants that result in CGL are mutated within amino 

acid 1-280. Among these mutations are F63fsX75, F100fsX111, F105fsX111, 

F105fsX112, F108fsX113, R138X, ΔV99-S146, A212P, F213fsX232, F224fsX225, and 

F224ΔY225-Q271fsX288 (Magre et al., 2001), F101fsX111 and F213fsX231 (Van 

Maldergem et al., 2002), W259X (Heathcote et al., 2002), F53fsX93, F64fsX91, L227X, 

and G271fsX283 (Agarwal et al., 2003), R275X (Ebihara et al., 2004), and E189X (Jin et 

al., 2007). Interestingly, one point mutations of human seipin that is implicated in 

lipodystrophy (A212P) also abolished its rescue effect in ylr404w cells, suggesting 
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defective LD morphology/assembly and CGL2 are connected.  

Human seipin mutations are also implicated in the etiology of distal hereditary motor 

neuropathy and Silver syndrome. Two heterozygous missense mutations resulting in 

amino acid substitutions N88S and S90L were identified and these two amino acid 

substitutions were thought to affect glycosylation of seipin and result in protein aggregate 

formation leading to neurodegeneration (Windpassinger et al., 2004). In this study I 

sho

omal recessive disorder, is 

cha

wed that these two mutations did not affect the function of seipin in LD assembly, 

which may suggest that motorneuron disease is not associated with defective lipid 

metabolism.  

 

 

7.4 Congenital generalized lipodystrophy and LD formation 

Congenital generalized lipodystrophy, a rare autos

racterized by near complete absence of adipose tissue from birth. Affected individuals 

have marked insulin resistance, hypertriglyceridemia and acanthosis nigricans, and 

develop early-onset diabetes mellitus. Genetic studies revealed that two genes, when 

mutated individually, cause CGL. AGPAT2 linked to chromosome 9q34 is responsible for 

CGL1 subtype (Agarwal et al., 2002), and BSCL2 (encoding seipin) linked to 

chromosome 11q13 is responsible for CGL2 subtype (Magre et al., 2001).  

Recently, the gene mutated in fatty liver dystrophy (fld) mice which carry features of 

human lipodystrophy was isolated and named Lpin1 (Péterfy et al., 2001). Subsequent 

studies revealed that the protein product of Lpin1, lipin-1, is a phosphatidic acid 
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phosphatase (PAP-1). Carman’s group purified PAP-1 activity from Saccharomyces 

cerevisiae and through amino acid sequencing, identified it as Smp2p, the yeast ortholog 

of lipin (Han et al., 2006). Subsequently, mammalian lipin-1 and its two isoforms, lipin-2 

and lipin-3, were characterized to act as PAP-1 enzymes (Donkor et al., 2007).  

 

AGPATs catalyze acylation of lysophosphatidic acid to phosphatidic acid, and lipins 

subsequently convert phosphatidic acid to DAG (Figure 7-1). Since both enzymes are 

extremely important in biosynthesis of TAG, human congenital generalized lipodystrophy 

caused by AGPAT2 mutation and mouse fatty liver dystrophy caused by Lpin1 mutation 

might be attributed in part to insufficient TAG synthesis. Supporting this speculation, both 

AGPAT2 and lipin-1 were identified as major isoform of AGPAT and lipin, respectively, 

in adipose tissue. Human AGPAT has five isoforms, namely, AGPAT1 through AGPAT5. 

Quantitation of mRNA levels of five AGPAT isoforms revealed that in adipose tissue 

AGPAT2 was expressed twofold more than AGPAT1. In liver expression of AGPAT2 and 

AGPAT1 was almost at the same level. In skeletal muscle AGPAT1 was expressed 

1.8-fold more than AGPAT2. Expression of the other three isoforms was barely detectable 

(Agarwal et al., 2002). As for lipin-1, using tissues from fld mice, it was determined that 

it accounts for all PAP-1 activity in white and brown adipose tissue, and skeletal muscle, 

the metabolic tissues with the highest levels of lipin-1 expression (Donkor et al., 2007). 

Activity in liver of fld mice, however, was normal (Donkor et al., 2007) or reduced by 

50% (Harris et al., 2007), suggesting compensation by another member(s) of the lipin 

protein family. Consistent with this possibility, lipin-2 is normally expressed at 
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substantial levels in liver of WT and fld mice, and lipin-3 is upregulated by fourfold in 

the liver of fld mice (Donkor et al., 2007).  

Furthermore, enhanced lipin expression in adipose tissue promotes obesity (Phan and 

Reue, 2005). Lipin-1 expression driven by adipocyte fatty acid binding protein (aP2) 

regulatory element was used to produce transgenic mice with elevated lipin-1 expression 

in adipose tissue. On a chow diet, adipose-specific transgenic mice had similar body 

weights to control littermates. On a high-fat diet, however, adipose-specific transgenic 

mice gained weight much faster than non-transgenic mice, despite equivalent food intake. 

They displayed a 40% increase in body weight after 6 weeks on the diet; the increase in 

non-transgenic mice was only 20%. In addition, they had a normal number of adipocytes, 

but increased TAG storage and increased expression of lipogenic genes, including 

cetyl-CoA carboxylase and DGAT. In light of these findings that while lipin-1 

nic mice gives 

rise ogously, 

 

wn of 

ystrophy is 

o). Decreased 

TA

a

deficiency produces lipodystrophy, enhanced lipin-1 expression in transge

 to obesity, it appears that lipin-1 levels determines TAG synthesis. Anal

AGPAT2 activity is also required for TAG mass accumulation in mature adipocytes and

lipid accumulation was attenuated by 50% in adipocytes with stable knockdo

AGPAT2 (Gale et al., 2006).  

 

However, lipodystrophy is more than reduced TAG synthesis. Lipod

characterized by a marked lack of adipose tissue (both cells and lipid carg

G synthesis only affects lipid loading of adipocytes. Therefore, one question arises, 

why mutation of AGPAT2 or Lpin1 impairs differentiation of preadipocytes into 
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adipocytes? Here I discuss the latest findings concerning the role of AGPAT2 and lipin-1 

in adipogenesis. 

 

Figure 7-1. The role of AGPAT and PAP-1 in synthesis of phospholipids and TAG. AGPAT, 
1-acylglycerol-3-phosphate acyltransferase; PAP-1, phosphatidic acid phosphatase; DGAT, 
sn-1,2-diacylglycerol acyltransferase; CDS, CDP-DAG synthase. R

During adipogenesis (differentiation of preadipocytes into adipocytes), a cascade of 

transcriptional factors coordinate this process. Over the past two decades, attention has 

centered on the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) 

and CCAAT-enhancer binding proteins (C/EBPs). PPARγ, the ‘master regulator’ of 

1, R2, and R3 are acyl chains. R  4
represents a choline or ethanolamine group. R5 is an inositol group. X=H, Na, K, Ca, etc.  
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adipogenesis, is necessary for adipogenesis, and crucial signalling pathways in 

adipogenesis, both pro-adipogenesis and anti-adipogenesis, converge on the regulation of 

PPARγ expression or activity (Rosen and MacDougald, 2007). C/EBP family members 

are

erence RNA-mediated knockdown of AGPAT2 expression 

prevents appropriate early induction of PPARγ and C/EBPβ, and delays expression of 

mu

 also very important for adipogenesis. The temporal expression of C/EBPs indicates 

that early induction of C/EBPβ and C/EBPδ leads to induction of C/EBPα. Knockdown of 

C/EBPα resulted in near-complete loss of white adipose tissue in mice (Linhart et al., 

2001), indicating a key role for this factor in adipose tissue development. However, 

C/EBPs cannot function independently in the absence of PPARγ. First, C/EBPβ cannot 

induce expression of C/EBPα in the absence of PPARγ (Zuo et al., 2006). In addition, 

ectopic expression of C/EBPα cannot rescue adipogenesis in Pparg–/– fibroblasts (Rosen 

et al., 2002).  

Evidence suggested that lipin expression preceding PPARγ is critical for adipogenesis 

(Phan et al., 2004). Using primary mouse embryonic fibroblasts isolated from fld mice, 

lipin deficiency was shown to prevent induction of key adipogenic genes, including 

PPARγ and C/EBPα. In 3T3-L1 preadipocytes, prior to the induction of PPARγ and 

C/EBPα, transient lipin expression was detected at 10 h into the differentiation program. 

Similarly, AGPAT2 mRNA expression is induced 30-fold during adipocyte 

differentiation, and small interf

ltiple adipocyte-related genes, including genes involved in glucose uptake (GLUT4), 

fatty acid metabolism (ACSL1 and AP2), TAG storage (perilipin), and energy 

homeostasis (adiponectin) (Gale et al., 2006). Based on these data, AGPAT2 and lipin-1 
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may on one hand contribute to TAG synthesis, on the other hand promote adipogenesis 

by activating PPARγ and C/EBPs.  

 

How does BSCL2 mutation lead to lipodystrophy? This remains an open question. 

Human BSCL2 is most highly expressed in brain and testes (Magre et al., 2001), similar 

to its mouse homolog Gng3lg (Downes et al., 1998). High expression of BSCL2 mRNA in 

the brain led to speculation that lack of body fat in patients with BSCL2 mutation might 

be due to hypothalamopituitary dysfunction (Magre et al., 2001). However, an alternative 

hypothesis proposed that lipodystrophy in patients with BSCL2 mutations is due to the 

direct disruption of adipocyte differentiation, based on semiquantitative 

reverse-transcription PCR results that BSCL2 mRNA level in adipose tissue is twofold 

greater than that in liver, and that skeletal muscle poorly expresses BSCL2. Accordingly, 

the activity of PPARγ and/or C/EBPs should be impaired in BSCL2 mutation as in 

AGPAT2 mutation and Lpin1 mutation.  

Phenotypic study disclosed that CGL2 (due to BSCL2 mutation) not only had marked 

lack of metabolically-active adipose tissue from subcutaneous areas, intraabdominal and 

intrathoracic regions, and bone marrow, but also displayed paucity of mechanical adipose 

tissue in the orbits, palms, soles, scalp, and peri-articular regions; in contrast, CGL1 (due 

to AGPAT2 mutation) only displayed paucity of metabolically-active adipose tissue 

(Sim d 

3). 

re 

ha and Garg, 2003). In addition, CGL2 patients had an earlier onset of diabetes, an

higher prevalence of mild mental retardation compared with CGL1 (Agarwal et al., 200

These differences indicate that the influence of seipin on adipogenesis is even mo
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profound than that of AGPAT2. Considering that the differentiation of preadipocy

humans to white adipocytes could proceed either towards metabolically

mechanical adipocytes (Klaus, 1997), the BSCL2 mutation should affect the process of

differentiation more proximally compared with AGPAT2 mutation.  

In S. cerevisiae, SMP2 (homolog of Lpin1) mutation caused reduced levels of PAP

enzyme activity, leading to increased accumulation of phosphatidic acid and reduced 

production of DAG and its derivative TAG (Han et al., 2006). Deletion of SLC1 (y

AGPAT) does not greatly affect TAG synthesis due to the presence of a redundant 

(Athenstaedt and Daum, 1997; Benghezal et al., 2007). In contrast, deletion of YLR404W

the yeast ortholog of BSCL2, resulted in a significant increase of neutral lipids synthe

(30% increase of TAG and 10% increase of SE when cultured in YPD medium til

stationary pha

tes in 

-active or 

 

-1 

east 

SLC4 

, 

sis 

l 

se). This raises a possibility that seipin mutation mainly impairs 

differentiation of preadipocytes into adipocytes without reducing TAG synthesis. To test 

this possibility, a genetic BSCL2 knockout mice/rats model is desired for future research.  

 

Intriguingly, we observed that there is a shift from long-chain (18:1) to 

medium/short-chain (16:0, 14:0, 12:0) fatty acid incorporation into all major 

phospholipids as well as TAG due to the deletion of YLR404W. Although it is yet to be 

determined whether this shift accounts for fusion of LDs, the role of Ylr404wp in 

phospholipid metabolism itself is worth investigating, considering the great importance of 

phospholipids in a variety of cellular processes.  

Fatty acyl chain pattern of phospholipids and TAG could be affected by many factors 
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along their synthesis pathways, including 1) availability of fatty acids which is 

determined by de novo fatty acid synthesis and fatty acid supplementation, 2) conversion 

of fatty acids to acyl-CoA, 3) stepwise acylation of 

sn-glycerol-3-phosphate/1,3-dihydroxyacetone phosphate and 

sn-

 in all major phospholipids (Benghezal et al., 

200

 

1-acyl-glycerol-3-phosphate, as well as acylation of DAG (into TAG), 4) remodeling 

of acyl chain pattern of phospholipids (Given that phosphatidic acid is the key 

intermediate in phopholipid synthesis as well as in TAG synthesis, phospholipid 

remodeling can also affect acyl chain pattern of TAG).  

Phospholipid remodeling by acyl chain exchange mainly proceeds via deacylation to a 

lysophospholipid intermediate, followed by acyl-CoA dependent reacylation with an 

acyltransferase. Recently Slc4p (also named Lpt1p, Ale1p, and Lca1p) was identified as 

the major lysophospholipid acyltransferase in yeast, which prefers incorporating 

unsaturated acyl chains into phospholipids in vitro (Jain et al., 2007; Riekhof et al., 2007; 

Tamaki et al., 2007). However, deletion of SLC4 did not lead to a shift of acyl chains 

from long-chain to medium/short-chain

7). Therefore, phenotypic acyl chain pattern of phospholipids and TAG due to 

YLR404W deletion may not result from phospholipid remodeling.  

The sn-1 position of phospholipids and TAG is acylated by Gat1p and Gat2p in yeast 

using sn-glycerol-3-phosphate/1,3-dihydroxyacetone phosphate as substrate. 

Subsequently, the sn-2 postion is acylated by Slc1p and Slc4p using 

sn-1-acyl-glycerol-3-phosphate (lysophosphatidic acid) as substrate. Preference for 

unsaturated fatty acids has been reported for Gat1p and Gat2p (Zheng and Zou, 2001), 
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and for Slc4p, but none of the single gene deletion mutants, gat1, gat2, slc1, and slc4, 

displays a major change in the fatty acyl pattern of phospholipids and TAG (Zheng and 

Zou, 2001; Benghezal et al., 2007). Therefore, if there is probability that the change from 

long-chain to medium/short-chain fatty acyls of phospholipids and TAG is due to 

defective acylation, Ylr404wp must have direct or indirect interaction with at least two 

acy

light of the fatty acyl profiles of polar lipids extracted from ylr404w cells (Figure 6-5 E). 

Ma

ltransferases.  

Conversion of fatty acids to acyl-CoA is catalyzed by acyl-CoA synthases (ACS). The 

yeast S. cerevisiae has 6 ACS enzymes, Faa1p through Faa4p, Fat1p and Fat2p. Faa1p is 

quite abundant and accounts for most of the long chain ACS activity (Faergeman et al., 

2001). The presence of Faa1p is detected on the plasma membrane, mitochondria, as well 

as LDs (Black and DiRusso, 2007). In this study, however, proteomics of LDs isolated 

from ylr404w cells suggested that Faa1p might be missing from this fraction. If this result 

is reproducible, the dissociation of Faa1p from LDs might contribute to the shift from 

long-chain to medium/short-chain of acyl chain pattern of phospholipids and TAG.  

De novo fatty acid synthesis needs to be considered as a possible cause as well, in 

ny factors could be involved in this process. For instance, the expression level and 

activity of stearoyl-CoA 9-desaturase (Ole1) could affect the synthesis of FA18:1 (Stukey 

et al., 1990).  

 

 

7.5. Future studies 
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During the same period of this study, Goodman’s group independently found that 

Ylr404wp is a homolog of human seipin and it modulates LD assembly in the budding 

yeast (Szymanski et al., 2007). Combining their study and ours, we should be able to 

draw a conclusion that the function of seipin is well conserved from yeast to human, 

indicating a fundamental role for this protein. Since seipin mutation is implicated in 

lipodystrophy and Ylr404wp plays a key role in regulating LD assembly and 

phospholipid homeostasis, it is very necessary to explore their molecular functions. 

YLR404W deletion leads to fusion of LDs, producing ‘supersized’ LDs. It remains to 

be established whether the change of acyl chain pattern of phospholipids/TAG accounts 

for 

ssed. Third, the acyl 

cha

the phenotype and how Ylr404wp regulates phospholipids/TAG metabolism. 

Specifically, in order to show whether the shift from long-chain to medium/short-chain 

fatty acid incorporation into phospholipids/TAG is due to defective acylation, the 

expression level of acyltransferases, including Gat1p, Gat2p, Slc1p, and slc4p, requires to 

be examined in ylr404w mutant and WT strain. Second, the missing of Faa1p from the 

LD-rich fraction isolated from ylr404w cells remains to be confirmed. If Faa1p is really 

dissociated from LDs due to lack of Ylr404wp, the cause of dissociation should be 

investigated. In addition, whether dissociation of faa1p from LDs attributes to acyl chain 

pattern of phospholipids/TAG in ylr404w cells needs to be addre

in pattern of phospholipids/TAG after fatty acid complementation should be probed in 

order to show whether de novo fatty acid synthesis is responsible for the phenotypic 

change of phospholipids/TAG. Fourth, previously I have shown that ylr404w cells 

displayed a faster incorporation of oleate into SE but a slower incorporation of oleate into 
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TAG than WT cells (Figure 5-17C). It remains to be determined whether this is specific 

for oleate and if ylr404w cells could incorporate C14:0 and C16:0 much faster than C18:1 

(oleate) into phospholipids/TAG.  

Since a lack of Ylr404wp results in a change in acyl chain pattern of phospholipids, 

which might be the cause of LD fusion, it is of great interest to examine other organelles, 

since acyl chain pattern of phospholipids might have detrimental effect on membrane 

thickness, intrinsic curvature, and fluidity, which ultimately affects the physical 

pro

asma 

me

 model is desired. Using this model, the role of seipin in adipogenesis will 

be explored. In addition, understanding the role of seipin in the assembly of mammalian 

LDs is desirable.  

perties of membranes and dynamic processes such as membrane fusion and fission.  

It is also of interest to look for the interaction partner(s) of Ylr404wp. In addition, as I 

have shown that LD fusion in ylr404w cells is actin-dependent, effort is needed to 

determine how actin plays a role in LD fusion and which actin-related proteins are 

involved in this process.  

In contrast to the missing of Faa1p, I detected the presence of Pma1p in the LD-rich 

fraction of ylr404w cells but not of WT cells. Experiments should be carried out to 

confirm this result. If this turns out to be reproducible, this means Pma1p, the pl

mbrane P-type H+-ATPase that pumps protons out of the cell (Serrano et al., 1986), 

can be relocated to LDs. physiological relevance of this relocation should be investigated.  

In addition to necessary Ylr404wp research in the S. cerevisiae, seipin-centered 

studies should also be carried out in animals and human. First of all, a genetic seipin 

knockout mice
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7.6

ator 

of t

. Summary 

In order to identify genes that affect LD dynamics in S. cerevisiae, I screened the 

entire collection of viable yeast single-gene deletion mutants and identified 16 strains 

with decreased accumulation of LDs and 117 strains with increased accumulation of LDs. 

The scope of the identified genes is very broad, but a link between ER stress and LD 

synthesis likely exists. 

A novel yeast protein (Ylr404wp) was identified which appears to be a key regul

he cellular dynamics of LDs. Deletion of YLR404W causes increased level of neutral 

lipids, clustering of LDs and formation of enlarged (supersized) LDs. Increased neutral 

lipids in WT cells often lead to a (dramatic) increase in the number but not the size of 

LDs. Therefore, the appearance of “supersized” LDs in ylr404w cells are unlikely to be 

caused by a moderate increase in neutral lipids. Rather, the physical property of the 

surface of LDs might have been altered in ylr404w cells due to changes in phospholipids, 

which may facilitate the clustering and fusion of LDs. In support of this, LDs isolated 

from ylr404w cells can aggregate and fuse without the supply of ATP and cytoplasmic 

proteins. Our data also highlight the role of Ylr404wp in determining the size of LDs. The 

average size of LDs in adipocytes is much larger than that in liver or muscle cells under 

normal physiological conditions. It would be interesting to see if seipin is involved in the 

regulation of the size of LDs in mammallian cells.  

Results described herein show for the first time that seipin and its homologues 

modulate the formation and especially fusion of the LDs. Importantly, our data suggest 
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that changes in phospholipid metabolism may be the unifying theme for both CGL1 and 

CGL2. This study identified a key regulator for the formation of LDs and provided novel 

insights into the molecular function of an important disease protein. Furthermore, it will 

open up new avenues of research for uncovering the molecular mechanisms underlying 

LD

 

 

 

 fusion and adipogenesis. 
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Appendix 

Abstracts of two published papers 

1. 

Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, Brown AJ, Wenk MR, Parton RG and 

Yang H. (2008). Fld1p, a functional homologue of human seipin, regulates the size of 

lipid droplets in yeast. Journal of Cell Biology. In press.  

 

Lipid droplets (LDs) are emerging cellular organelles that are of crucial importance in 

cell biology and human diseases. We present here our screen of ~4700 Saccharomyces 

evisiae cer mutants for abnormalities in the number and morphology of LDs; we identify 

(“supersized”) LDs, and 

which are associated with 

ajor phospholipids in fld1Δ cells. These results suggest that an 

portant in human adipogenesis. 

17 fld (for few lipid droplets) and 116 mld (for many lipid droplets) mutants. One of the 

fld mutants (fld1) is due to deletion of YLR404W, a previously uncharacterized open 

ading frame. Cells lacking FLD1 contain strikingly enlarged re

LDs from fld1Δ cells demonstrate significantly enhanced fusion activities both in vivo and 

o. Interestingly, expression of human seipin, mutations in in vitr

Berardinelli-Seip Congenital Lipodystrophy and motoneuron disorders, rescues 

LD-associated defects in fld1Δ cells. Lipid profiling reveals alterations in acyl chain 

ompositions of mc

evolutionarily conserved function of seipin in phospholipid metabolism and LD formation 

ay be functionally imm
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2. 

Fei W, Alfaro G, Muthusamy BP, Klaassen Z, Graham TR, Yang H, Beh CT. (2007). 

Genome-Wide Analysis of Sterol-Lipid Storage and Trafficking in Saccharomyces 

 Cell doi:10.1128/EC.00386-07. cerevisiae. Eukaryotic

 

The pandemic of lipid-related disease necessitates a determination of how cholesterol 

and other lipids are transported and stored within cells. The first step in this determination 

is the identification of the genes involved in these transport and storage processes. Using 

genome-wide screens, we identified 56 yeast genes involved in sterol-lipid biosynthesis, 

intracellular trafficking, and/or neutral-lipid storage. Direct biochemical and cytological 

examination of mutant cells revealed an unanticipated link between secretory protein 

glycosylation and triacylglycerol (TAG)/steryl ester (SE) synthesis for the storage of 

lipids. Together with the analysis of other deletion mutants, these results suggested at 

least two distinct events for the biogenesis of lipid storage particles: a step affecting 

neutral lipid synthesis, generating the lipid core of storage particles, and another step for 

particle assembly. In addition to the lipid storage mutants, we identified mutants that 

affect the localization of unesterified sterols, which are normally concentrated in the 

plasma membrane. These findings implicated phospholipase C and the protein 

phosphatase Ptc1p in the regulation of sterol distribution within cells. This study 

identified novel sterol-related genes that define several distinct processes maintaining 

sterol homeostasis. 
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