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SUMMARY 

 
 
The fate of adult leukemia still remains dismal with 5-year disease free survival 

(DFS) 2-37% for acute myeloid leukemia (AML).  The current treatment approach for 

AML is chemotherapy, which damages normal cells too and cause severe side 

effect. The focus of this thesis has been to develop novel therapeutic strategies 

targeting genetic and epigenetic abnormalities of AML or combination synergies by 

dissecting the molecular pathways, thus improving clinical outcome of patients with 

AML.  

 

Internal tandem duplications (ITDs) of fms-like tyrosine kinase 3 (FLT3) receptor play 

an important role in the pathogenesis of AML and represent an attractive therapeutic 

target.  We first demonstrate ABT-869, a multi-targeted receptor tyrosine kinase 

inhibitor (TKI) as a potent FLT3 inhibitor. ABT-869 demonstrates significant 

sequence dependent synergism with cytarabine and doxorubicin.  Low density array 

(LDA) analysis revealed the synergistic interaction involved in down-regulation of cell 

cycle and MAPK pathway genes. These findings suggest specific pathway genes 

were further targeted by adding chemotherapy and support the rationale of 

combination therapy.  Thus a clinical trial using sequence-dependent combination 

therapy with ABT-869 in AML is initiated.  

 

Neoangiogenesis plays an important role in leukemogenesis. We investigated the in 

vivo anti-leukemic effect of ABT-869 against AML with wild-type FLT3 using red 

fluorescence protein (RFP) transfected HL60 cells with in vivo imaging technology in 

mouse xenograft models.  ABT-869 showed a five fold inhibition of tumor growth and 

decreased p-VEGFR1, Ki-67 labeling index, VEGF and remarkably increased 
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apoptotic cells in the xenograft models compared to vehicle controls.  ABT-869 also 

reduced the leukemia burden and prolonged survival.  Our study supports the 

rationale for clinically testing an anti-angiogenesis agent in AML with wild type FLT3. 

 

we developed three isogenic resistant cell lines to FLT3 inhibitors. Gene profiling 

reveals up-regulation of FLT3LG and Survivin, but down-regulation of SOCS genes 

in MV4-11-R cells. Targeting survivin by shRNA induce apoptosis and augments 

ABT-869-mediated cytotoxicity. Sub-toxic dose of indirubin derivative (IDR) E804 

resensitize MV4-11-R to ABT-869 treatment in vitro and in vivo. Taken together, 

these results demonstrate that enhanced activation of STAT pathways and 

overexpression of survivin are the main mechanism of resistance to ABT-869, 

suggesting potential targets for reducing resistance developed in patients receiving 

FLT3 inhibitors. Our findings may indicate a common resistant mechanism in novel 

therapeutic era. 

 
So far, the FLT3 inhibitors as single agent in clinical trials only induce transient and 

mild response. Small molecule HDAC inhibitors (HDACi) have proven to be a 

promising new class of anticancer drugs. We demonstrated that  combining ABT-869 

with SAHA leaded to synergistic killing of AML cells with FLT3 mutations. To study 

the molecular mechanism of their interaction, we identified a core gene signature 

differentially induced more than two-fold by combination therapy in both cell lines. 

Modulation of PRL-3 expression level using genetic approaches or PRL-3 inhibitor, 

Pentamidine, demonstrated that PRL-3 played an essential role in the synergism 

ascribing from the combination with ABT-869 and SAHA. Our results suggest such 

combination therapies may significantly improve the therapeutic efficacy of FLT3 

inhibitors in clinic. 
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Chapter 1. Synergistic antileukemic effects between ABT-869 and 

chemotherapy involve downregulation of cell cycle regulated genes and c-

Mos-mediated MAPK pathway 

 

1.1. Introduction 

Internal tandem duplications (ITDs) of the fms-like tyrosine kinase 3 (FLT3), varying 

from 3 to ≥400 base pairs in the juxtamembrane d omain, are found in 20-25% of 

adult AML cases.1-3 In addition, activating point mutations in the second kinase 

domain occur in about 7% of adult AML patients.4 FLT3 mutations therefore are the 

most common genetic alteration in AML. Clinically, FLT3-ITD is associated with poor 

outcome, but the prognosis of FLT3 activating point mutation remains inconclusive.5-7 

 

FLT3-ITD mutations trigger strong autophosphorylation of the FLT3 kinase domain, 

and constitutively activate several downstream effectors such as the PI3K-AKT 

pathway, RAS-MEK-MAPK pathway, and the STAT5 pathway.8,9 FLT3-ITD mutations 

also suppress transcription factors associated with myeloid differentiation and 

apoptosis, including PU.1, CCAAT/enhancer-binding protein α (C/EBPα),10 

promyelocytic leukemia zinc finger (PLZF) protein,11 RUNX1/AML1,12 RSG213 and 

Foxo3a.14-16 On the other hand, FLT3-ITDs up-regulate proliferation associated 

genes like PIM1.17 Taken together, FLT3-ITDs simultaneously bring on several 

hallmarks of leukemogenesis18 by blocking myeloid differentiation, inducing signaling 

for uncontrolled proliferation, and producing resistance to apoptosis.  

 

The mainstream chemotherapy regime for AML is a combination of cytosine 

arabinoside (Ara-C) and anthracyclines such as doxorubicin (Dox).  Despite initial 

responses to chemotherapy, most adult AML eventually relapse.  Long-term disease 
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free survival is only 20-30%.  Thus, the development of novel therapeutic agents that 

target critical genetic aberrations holds promise for improving outcomes in patients 

with AML.   

 

ABT-869, a novel ATP-competitive tyrosine kinase inhibitor (TKI), is active against 

FLT3 kinase (IC50 = 4 nM) and other platelet-derived growth factor receptor (PDGFR) 

family members, as well as vascular endothelial growth factor (VEGF) receptors (IC50 

= 4, 66 and 4 nM for KDR, PDGFRβ and CSF-1R respectively), but less active 

against unrelated RTKs.19,20 Cellular assays and tumor xenograft models 

demonstrated that ABT-869 was effective in a broad range of cancers including small 

cell lung carcinoma, colon carcinoma, breast carcinoma, and MV4-11 tumors in vitro 

and in vivo.19,21 However, considering the complexity of the disease, monotherapy 

with ABT-869 is unlikely to deliver complete or lasting responses in AML.  

Furthermore, resistance to TKIs has been well described in patients treated with 

imatinib mesylate monotherapy for chronic myelogenous leukemia (CML).22 

Combination regimens including ABT-869 and conventional chemotherapy may 

potentially reduce resistance and achieve better outcomes for AML patients.   

 

A combination approach has also been pursued with other TKIs.  It has been 

reported that combination of SU11248 with Ara-C or Dox exerted synergistic effects23 

and CEP-701 showed in vitro sequence-dependent synergistic cytotoxic effects on 

FLT3-ITD leukemia cells when combined with chemotherapy.24 In this study, the 

sequence-dependent synergism was attributed to CEP-701 induced cell cycle arrest 

and it was speculated that the sequential treatment first induced pro-apoptotic 

signals, then withdrew pro-survival signals.25  Studies of the molecular mechanisms 

on synergistic interactions are needed for better understanding the full potential of 
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combination therapy.  The chemical structure of ABT-869 (N-[4-(3-amino-1H-indazol-

4-yl)phenyl]-N1-(2-fluoro-5-methylphenyl) urea) is different from SU11248 (3-

Substituted indolinoneindolinone) and CEP-701 (Indolocarbazole)19 suggesting that 

the therapeutic efficacy of ABT-869 can not be extrapolated from the experience of 

related compounds.  Hence, the clinical applications of ABT-869 will greatly benefit 

from better understanding of the molecular mechanism of the compound in sole or 

combination therapies both in vitro and in vivo. 

 

We here, for the first time, present further characterization of molecular mechanism 

of G1-phase cell cycle arrest and apoptosis caused by ABT-869 as a single agent 

and the potential mechanism of synergism with the cytotoxic agents Ara-C and Dox 

in vitro and in vivo.   

 

1. 2. Materials and methods 

1.2.1. Cell lines and primary patient samples 

MV4-11 and MOLM-14 cells were cultured with RPMI1640 (Invitrogen, Carlsbad, CA) 

supplemented with the addition of 10% of fetal bovine serum (FBS, JRH Bioscience 

Inc, Lenexa, KS) at density of 2 to 10 x 105 cells/ml in a humid incubator with 5% 

CO2 at 37ºC.  

 

Bone marrow (BM) blast cells (>90%) from newly diagnosed AML patients were 

obtained at National University Hospital (NUH) in Singapore with informed consent. 

Three samples were confirmed to harbor a 36, 60/78 (two duplicated fragments 

detected), 62 bp ITDs of FLT3 gene respectively and one had D835Y (GAT -> TAT 

at codon 835) point mutation. Thawed cells were cultured in EGM™-2 medium 

(Cambrex, Walkersville, MD) supplemented with SingleQuots® (Cambrex) growth 
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factors, cytokines  (hFGF, hEGF, Hydrocortisone, GA-1000 , VEGF, R3-IGF-1) with 

or in absence of drug incubation.  

 

1.2.2. ABT-869 and chemotherapy reagents 

ABT-869 was kindly provided by Abbott Laboratories (Chicago, IL). For in vitro and in 

vivo experiments,  ABT-869 was prepared as published before.21  Clinical grade Ara-

C (100 mg/mL, Pharmacia, WA, Australia) and Dox (2 mg/mL, Pharmacia) were 

diluted just before use. The MEK inhibitor U0126 was purchased from Promega and 

dissolved in DMSO at concentration of 10 mM as stock. It was further diluted before 

use.  

 

1.2.3. Cell viability assays 

Leukemic cells were seeded in 96-well culture plates at a density of 2 × 104 viable 

cells/100 µl/well in triplicates, and were treated with ABT-869, chemotherapeutic 

agents or combination therapy. Colorimetric CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (MTS assay, Promega, Madison, WI) was used to determine the 

cytotoxicity. The absorbance of each well was recorded at 490 nm using an 

Ultramark® 96-well plate reader (Bio-Rad, Hercules, CA). The percentage of viable 

cell was reported as the mean of optical density (OD) of the treated wells divided by 

the mean of OD of DMSO control wells after normalization to the signal from wells 

without cells.  IC50 was determined by MTS assay and calculated with CalcuSyn 

software (Biosoft, Cambridge, UK). Each experiment was triplicated. 

 

1.2.4. Combination index and isobologram analysis   

The calculation of combination index (CI)  and isobolograms with the CalcuSyn 

software  was described previously.26  Briefly, the CI values were calculated 
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according to the levels of growth inhibition (Fraction affected, Fa) by each agent 

individually and combination of ABT-869 with Ara-C or Dox or U0126. Isobolograms, 

which indicate the equipotent combinations of different dose (ED50, ED75 and ED90, 

etc), were used to illustrate synergism (CI <1), antagonism (CI >1) and additivity (CI 

= 1). Constant ratio combinations of the two drugs at 0.25x, 0.5x, 1x, 2x and 4x of 

their ED50 was used. Three independent studies were conducted for each 

combination. 

 

1.2.5. Immunoblot analysis 

Preparation of the cell lysate and immunoblotting were performed as previously 

described.26 Antibodies used were as follows: anti-cyclins D and E, anti-Bcl-xL, anti-

Bcl2, anti-BAD, anti-BAX, anti-BAK, anti-poly (ADP-ribose) polymerase (PARP), anti-

cleaved PARP, anti-caspase-3, anti-cleaved caspase-3, anti-caspase-7, and anti-

cleaved caspase-7 from Cell Signaling Technology (CST, Danvers, MA); anti-Actin, 

anti-p21, anti-p27, anti-p53, anti-CDK2, and anti-CDK4 from Santa Cruz 

Biotechnology (Santa Cruz, CA). Rabbit anti-human c-Mos oncoprotein polyclonal 

antibody was purchased from Chemicon (Temecula, CA).  

 

1.2.6. Low density Array (LDA) 

Gene expression profiling was investigated with custom PCR-based analysis using 

TaqMan® Low Density Arrays (LDA; Applied Biosystems, Foster City, CA).27 RNA 

was extracted from cells using Purescript RNA isolation kit (Genetra systems, 

Minneapolis, MN). First strand cDNA was synthesized with SuperScript® III First-

Strand Synthesis SuperMix (Invitrogen). PCR amplification was performed in the 

7900HT Fast Real-time System (Applied Biosystems). The LDA array was custom 

made with TaqMan® Gene Expression Assays, which allows the simultaneous 
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measurement of expression of 384 genes in a single sample. Each sample was 

duplicated. The target genes include anti- and pro-apoptotic genes, cell cycle 

regulated genes, DNA damage genes, stress gene, PI3K/AKT pathway, MAPK 

pathway, JAK/STAT pathway, mTOR pathway, VEGF pathway, NOTCH pathway, 

WNT pathway, NFκB pathway, invasion and metastasis related genes, oncogenes,  

as well as housekeeping genes.  Sequence Detection System (SDS) 2.2.1 software 

(Applied Biosystems) was used to perform relative quantitation (RQ) of target genes 

using the comparative CT (∆∆CT) method.  

 

1.2.7. shRNA studies 

Expression ArrestTM Human retroviral pSM2 shRNAmir individual constructs CCND1 

(clone ID: V2HS_88365) and c-Mos (clone ID: V2HS_36817) shRNA, as well as non-

silencing shRNA control (RHS1707) were purchased from Open Biosystems 

(Huntsville, AL). The Expression ArrestTM Human retroviral shRNAmir individual 

constructs are form the laboratory of Dr. Greg Hannon at Cold Spring Harbor 

Laboratory (CSHL) which created an RNAi Library comprised of multiple short-

hairpin RNAs (shRNAs) specifically targeting annotated human genes. RetroPack 

PT67 cells (Clontech, Mountain View, CA) were seeded into a 6-well plate at 60-80% 

confluence (4 x 105 cells/well) 24 hours before transfection, 5 µg of each shRNA 

vector and 10 µl of Lipofectamine 2000 (Invitrogen) were used for transfection.  PT67 

cells were diluted and plated after transfection 24 hours in culture medium with 2 

µg/ml puromycin (Clontech). After 1 week selection, the large, healthy colonies were 

isolated and transferred into individual plates. Filtered medium containing viral 

particles together with 6 µg/ml polybrene were used for infecting MV4-11 cells (2 x 
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106) respectively. Cultures were replaced with fresh medium postinfection 24 hours, 

and then subjected to immunoblot and cell viability assay. 

 

1.2.8. Xenograft mouse model 

Female severe combined immunodeficiency (SCID) mice (17-20 g, 4-6 weeks old) 

were purchased from Animal Resources Centre (Canning Vale, Australia). 

Exponentially growing MV4-11 cells (5×106) were subcutaneously injected into loose 

skin between the shoulder blades and left front leg of recipient mice.  All treatment 

was started 25 days after the injection, when the mice had palpable tumor of 300-

400 mm3  average size, Ara-C was intraperitoneally (I.P.) injected at 10 mg/kg/day 

for consecutive 4 days.  ABT-869 was administrated at 15 mg/kg/day by oral gavage 

daily.  In the combination group. Ara-C was given 4 days, followed by ABT-869 daily 

for 26 days.  Each group comprised of 10 mice.  

 

The length (L) and width (W) of the tumor were measured with callipers, and tumor 

volume (TV) was calculated as TV = (L×W2)/2.  The protocol was reviewed and 

approved by Institutional Animal Care and Use Committee in compliance to the 

guidelines on the care and use of animals for scientific purpose.  

 

1.2.9. Immunohistochemistry (IHC) 

Tissue fixation and procedure of Hematoxylin and eosin staining were processed as 

described previously.26  The sources and conditions of the primary antibodies were 

as following: p-STAT5 (Tyr694, 1:50, Epitomics, Burlingame, CA), p-AKT (Ser473, 

1:200, CST), p-ERK1/2 (Tyr204, 1:50, Santa Cruz), VEGF (1:100, Lab Vision, CA), 

cleaved PARP (1:50, CST). The anti-PIM1 antibody (clone 19F7) has been 

previously described.28 The slides were counterstained in hematoxylin for 30 
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seconds and mounted with cover slides. The images were analyzed by a Zeiss 

Axioplan 2 imaging system with AxioVision 4 software (Zeiss, Germany). 

 

1.2.10. Statistical analysis 

Number of viable cells, tumor volume, and survival time were expressed in mean ± 

standard deviation (SD).  Tumour volume reduction of the treatment groups was 

compared to the untreated control group by Student’s t-test, and P values of < 0.05 

were considered to be significant. Survival analysis was performed by Kaplan-Meier 

analysis (SPSS, ver.12). Survival curves of the treatment groups were compared to 

the untreated control group, and statistical significance were given in log-rank test (P 

< 0.05).  

 

1.3. Results 

1.3.1. Molecular signaling pathways of cell cycle arrest and apoptosis induced 

by ABT-869 treatment 

ABT-869 profoundly inhibited FTL3-ITD AML cell proliferation (MV4-11, MOLM-14 

and TF1-ITD), but minimally inhibit growth of FLT3 wide type cells, including HEL 

(M5), KG-1 (M1), NB4 (M3), NOMO-1 (M5), HL60 (M2) and U937 (M5)  (Figure 1.1).  

ABT-869 induced G1 cell cycle arrest and apoptosis in both MV4-11 and MOLM-14 

(Figure 1.2).  We further analysed the molecular mechanisms of ABT-869 induced 

cell cycle arrest and apoptosis.  Key cell cycle-regulated proteins were analyzed by 

immunoblotting.  In MV4-11 and MOLM-14 cells, ABT-869 modulated the G1/S 

transition regulators in a time-dependent fashion as it entirely down-regulated cyclins 

D and E by 16h and induced the expression of p21waf1/Cip progressively.  The 

increasing expression of cyclin E in MV4-11 cells at 4h, in MOLM-14 cells at 1h and 

cyclin D in MOLM-14 cells at 8h after drug exposure could be due to the fact that 
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cells intended to progress to S phase at the early time points.29  The expression of 

cyclin-dependent kinase (CDK) 2 and 4 was relatively stable.  p27kip1 was increased 

and maximal in MV4-11 at 16h and in MOLM-14 at 8h after treatment (Figure 1.3A). 

These data suggested that simultaneous terminal reduction of cyclins D and E, the 

key G1/S cyclins, and progressive increases in cyclin dependent kinase inhibitors 

(CDKIs) p21waf1/Cip, p27kip1 contributed to the blockage of G1/S progression induced by 

ABT-869.  

 

Figure 1.1. ABT-869 showed different effects on a spectrum of AML cell lines. 
Values are presented as the mean +/- SD (n = 3). (A) Effect of ABT-869 on 
proliferation determined by MTS assay of numerous leukemia cell lines after a 48 
hour exposure. ABT-869 showed impressive inhibition on TF1-ITD, MV4-11 and 
MOLM-14 cells compared to other non-FLT3 mutated cell lines.  (B) MV4-11 and 
MOLM-14 cells were exposed to ABT-869 at a concentration of 5 nM for 0, 24 and 
48 hours. ABT-869 displayed inhibition on MV4-11 and MOLM-14 cell proliferation in 
a time-dependent manner. 
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To elucidate the mechanisms of ABT-869 induced apoptosis of FLT3-ITD-AML cells, 

the expression of several apoptosis associated proteins was examined. Proapoptotic 

BAD was gradually increased in MV4-11 cells and intensively increased after 

exposure to ABT-869 for 8h in MOLM-14 cells.  In both cell lines, ABT-869 

augmented the expression of proapoptotic proteins BAK and BID, and decreased the 

expression of anti-apoptotic Bcl-xL protein in a time-dependent manner. Cleaved BID 

could be visualized as early as 1 hour after ABT-869 treatment.  Another anti-

apoptotic protein Bcl2 was not altered. ABT-869 also transiently induced the 

expression of p53 immediately after 1h drug exposure. The protein level of BAX was 

increased in only in MV4-11 cells at 16h post treatment, not in MOLM-14 cells  

(Figure 1.3B). After incubation with ABT-869, cleavage of effector caspase 7 was 

detected in MV4-11 at 1h and in MOLM-14 at 4h and increased in a time-dependent 

fashion thereafter.  However, cleaved caspase 3 was more prominently observed in 

MV4-11 cells than in MOLM-14 cells. Cleavage of PARP was also observed in both 

cells (Figure 1.3B).  
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Figure 1.2. ABT-869 induced G0/G1 cell cycle arrest and apoptosis of MV4-11 
and MOLM-14 cells.  (A) FACS analysis of cell cycle distributions after MV4-11, 
MOLM-14 and HL60 treated with ABT-869 at concentration of 0, 5, and 10 nM for 24 
hours. The bar graph indicated the percentage of cell number in each cell cycle 
phase. This experiment was triplicated.  HL60 cell line was used as control. In MV4-
11 and MOLM-14 cells, the percentage of G0/G1 cells were significantly increased 
after ABT-869 treatment (p < 0.05). (B) Flow cytometric analysis of apoptosis by 
Annexin V-FITC/PI double staining in MV4-11 and MOLM-14 cells treated with ABT-
869 at concentration of 0, 5, and 10 nM for 48 hours. The quadrants-R1, R2, R3 and 
R4 demonstrated the cells were in the condition of viable (double negative), early 
apoptosis (Annexin V+, PI-), late apoptosis (Annexin V+, PI+) and death (double 
positive) respectively.   The percentage of Annexin V positive cell number are in the 
right bar figure. 
 

 
 
Figure 1.3. The molecular mechanisms of cycle arrest and apoptosis induced 
by ABT-869 treatment in MV4-11 and MOLM-14 cells.  MV4-11 and MOLM-14 
cells were exposed with ABT-869 6 nM and 9 nM respectively for 0, 1, 4, 8 and 16 
hours, then washed, lysed and subjected to 12% SDS-PAGE. Western blots were 
detected with indicated antibodies for the assessment of the expression level 
changes in (A) cell cycle regulated proteins and (B) apoptosis regulated proteins.  -
Actin was used to confirm equal loading protein of each sample. C-BID and C-PARP 
referred to cleaved-BID and cleaved-PARP respectively. 
 
 

1.3.2. Simultaneous treatment with ABT-869 and chemotherapeutic agents 

Prior to studying the combination effect, the efficacy of Ara-C and Dox as single 

agent was first confirmed.  The IC50 of Ara-C on MV4-11 and MOLM-14 cells at 48 h 

were 450 and 250 nM respectively, and the IC50 of Dox for these two cell lines were 

350 and180 nM respectively. MV4-11 and MOLM-14 cells were treated with ABT-869 

and in combination with either Dox or Ara-C, then assayed for cell survival by MTS 

A B 
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assay. As shown in the Figure 1.4A, the effect of combining ABT-869 and Ara-C at 

their ED50 or ED75 approximated the respective theoretic additive values indicated by 

the diagonals. In contrast, combining ABT-869 and Ara-C at their ED90 

concentrations resulted in a value that fell far to the right of the diagonal in MV4-11 

cells, but not in MOLM-14 cells.  These data suggest that at lower doses there is an 

additive or mildly synergistic interaction, while at higher doses the two agents might 

interact in an antagonistic manner.26  All of the combination results of ABT-869 and 

Dox were to the lower left of the diagonals, indicating synergistic effects (Figure 

1.4B).  

 

1.3.3. Sequence-dependent interactions between ABT-869 and chemotherapy 

We next employed a sequence-dependent method as described by Levis et al.24 

MV4-11 and MOLM-14 cells were treated with ABT-869 at various doses for 24h, 

and after washing then followed by addition of Ara-C or Dox incubation for 48h.  

Isobologram analysis for both cell lines showed that the combination values were 

located on the diagonal (ED50) and far right of the diagonals (ED75 and ED90) (Figure 

1.4C). This indicated that pretreatment with ABT-869 antagonized the cytotoxicity of 

Ara-C. But, pretreatment with ABT-869 followed by Dox appeared to have both 

antagonistic (ED50) and synergistic (ED75 and ED90) effects in MV4-11 cells (Figure 

1.4D, left isobologram) and have essentially antagonism in MOLM-14 cells (Figure 

1.4D, right isobologram).    

 

Lastly, chemotherapy followed by ABT-869. MV4-11 and MOLM-14 cells were 

exposed to Ara-C or Dox for 24h, and washed out then transferred into medium 

containing ABT-869 for an additional 48h. Synergistic effect of pretreatment with Ara-

C or Dox, followed by ABT-869 were consistently identified at ED50, ED75 and ED90 
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points (Figure 1.4E and 1.4F). The CI values obtained for ABT-869 in combination 

with Ara-C and Dox employing three sequences are shown in Table 1.  To determine 

whether the combination therapy produce synergism in induction of apoptosis, the 

Annexin-V/PI double staining was used to assess MV4-11 cells treated with Ara-C 

followed by ABT-869. The CI values at ED50, ED75 and ED90 were 0.56, 0.50, and 

0.38 respectively which indicated synergism. These data illustrated that pretreatment 

with chemotherapy followed by ABT-869 produced synergistic effects on inhibition of 

proliferation and induction of apoptosis.  

 

To further validate findings in cell lines, patient samples with either FLT3-ITD (Pt#1, 

2, 3), FLT3-D835Y point mutation (Pt#4) or wild-type FLT3 (Pt#5, 6, 7) were treated 

with Ara-C 24h first, followed by ABT-869. Primary cells were incubated with either 

ABT-869 (20, 40, 80, 160, 320 nM), or Ara-C (100, 200, 400, 800, 1600 nM) alone 

and in combination. The CI values of these patient samples with FLT-ITD and D835Y 

mutations ranged from 0.67 to 0.08, indicative of synergism between the two agents 

on a primary AML specimen with FLT3-ITD or D835Y point mutation. In contrast, the 

combination of Ara-C and ABT-869 on 3 patient samples with wild-type FLT3 didn’t 

produce a synergistic effect (CI values between 0.9 to 1.2).  
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Figure 1.4. Conservative isobolograms showing the interactions among three 
different models of combination with ABT-869 and chemotherapeutic agents 
on the proliferation of MV4-11 and MOLM-14 cells. The drug concentration unit is 
nM. The diagonal lines linking up the ED50, ED75 and ED90 values of two drugs 
represent the theoretic additive lines. Synergism is indicated by the ED points 
located on the lower left of the diagonal. Antagonism is implied by ED points located 
on the upper right above the diagonal. Additive effects are indicated by when the ED 
points fall on the diagonal.  These results were generated by CalcuSyn software for 
(A) simultaneous combination of ABT-869 with Ara-C,  (B) simultaneous combination 
of ABT-869 and Dox , (C) pretreatment with ABT-869 first followed by Ara-C, (D) 
pretreatment with ABT-868 first followed by Dox, (E) pretreatment with Ara-C first in 
addition of ABT-869, (F) pretreatment with Dox first in addition of ABT-869. The 
results are from 3 representative independent experiments.   
 
 
Table 1.1. Combination index (CI) values in three models of ABT-869 and 
chemotherapeutic agents. Chemotherapy first followed by ABT-869 produced best 
synergistic interaction among the 3 different combinations.   

            
            Simultaneous                  ABT-869 first                 Chemotherapy first                
               CIs at                                 CIs at                                     CIs at               
      ED50      ED75      ED90        ED50      ED75      ED90     ED50      ED75     ED90 

ABT-869       
+ Ara-C 

MV4-
11 0.75 0.92 1.14 0.90 1.20 1.65 0.62 0.41 0.27 

  
MOLM-
14 0.93 0.80 0.69 2.00 1.70 1.60 0.82 0.72 0.62 

ABT-869    
+ Dox 

MV4-
11 0.59 0.64 0.70 1.13 0.85 0.64 0.69 0.67 0.65 

    
MOLM-
14 0.73 0.70 0.69 1.53 1.62 1.76 0.80 0.75 0.65 
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The CI values were calculated based on the combination wide range of dose with ABT-869 
and chemotherapeutic agents. Only the values for the combination of their typical dose of 
ED50, ED75 and ED90 were showed. The results represented the means of 3 different 
experiments.   
 
 
1.3.4. Inhibition of cell cycle related genes and MAPK pathway played an 

important role in the synergistic mechanism 

To address the underlying molecular mechanism of the synergism between ABT-869 

and chemotherapy, we utilized a real-time PCR-based approach to profile the gene 

expression between MV4-11 cells treated with combination therapy (Ara-C followed 

by ABT-869) and single agent therapy.  The significantly down-regulated gene 

clusters in combination therapy contained probes for genes involved in cell cycle 

regulation and the MAPK pathway as compared to Ara-C or to ABT-869 treatment 

alone (Table 1.2). Among all the affected genes, CCND1 and Moloney murine 

sarcoma viral oncogene homolog (c-Mos) were the two most significantly 

downregulated. To examine their functional roles in the synergistic manifestation, 

Western blot analysis confirmed that combination treatment also significantly 

decreased CCND1 and c-Mos at the protein level, as well as blockage of the MAPK 

pathways, indicated by reduced phosphorylation of ERK protein (Figure 1.5A). 

Specific inhibition of CCND1 (approximately 80% reduction) and c-Mos 

(approximately 60%) by shRNAs was confirmed by immunoblot analysis (Figure 3B, 

right panel). Essentially, silencing either CCND1 or c-Mos remarkably potentiated 

ABT-869 induced inhibition to a similar degree as combination therapy (Ara-C 100 

nM followed by ABT-869) when compared to control shRNA treatment (p<0.01) 

(Figure 1.5B). To further validate the importance of MAPK pathway, we used a ERK 

inhibitor U0126 in combination of ABT-869 in 3 different sequences. The IC50 of 

U0126 on MV4-11 is 14 µM. Both sequence-dependent combinations (ABT-869 first 
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or U0126 first) produced synergism (Figure 1.5C, middle and right isobolograms). 

When the two drugs given simultaneously, it achieved synergistic effect at IC50 and 

IC75 and additive effect at IC90 (Figure 1.5C, left isobologram). These data provide 

further evidences that MAPK signaling transduction pathway, specifically via 

MEK/ERK pathway, is critical for the synergism. 

 

In addition, we investigated whether PI3K/AKT, another important pro-survival 

signaling pathway was involved in combination therapy or not. Western blot revealed 

that the reduction of p-AKT was more obvious in ABT-869 alone than the 

combination, suggesting this pathway is not the mechanism for the synergistic effect 

in combination studies.  

 
Table 1.2.  LDA analysis revealed that combination therapy further down-
regulated genes involved in cell cycle regulation and MAPK pathway. 
 

 

*IDs denote the TaqMan® Gene Expression Assays. Comb: Combination therapy (Ara-C 
followed by ABT-869). Ctrl: DMSO Control. Minus numbers indicated decreased fold of 
expression. 
 
 

                                                                          Fold Changes
Genes and ID Comb vs ABT-869 ABT-869 vs Ctrl Comb vs Ara-C Ara-C vs  Ctrl
Cell cycle 
ATM-Hs00175892_m1 -1.6 ± 0.1 1.1 ± 0.1 -1.5 ± 0.1 1.1 ± 0.1
RB1-Hs00153108_m1 -1.5 ± 0.1  -1.1 ± 0.1 -1.5 ± 0.1  1.0 ± 0.1
CCND1-Hs00277039_m1 -37 ± 4.2  -2.2 ± 0.1 -12.2 ± 3  -3.3 ± 0.4
CCND2-Hs00277041_m1 -1.8 ± 0.1 -1.4 ± 0.1 -1.9  ± 0.1 -1.3 ± 0.1
FOXO3A-Hs00818121_m1 -2.2 ± 0.1 1.5 ± 0.1 -1.5 ± 0.1 -1.1 ± 0.1
MAD1L1-Hs00269119_m1 -1.5 ± 0.1 1.0 ± 0.1 -1.6 ± 0.1  1.1 ± 0.1
PRKDC-Hs00179161_m1 -1.9 ± 0.2  -1.1 ± 0.1 -2.1 ± 0.1 1.0 ± 0.1
CDK7-Hs00361486_m1 -1.5 ± 0.1  -2.4 ± 0.1 -1.5 ± 0.1 -2.3 ± 0.1
MAPK pathway
FGFR4-Hs00242558_m1 -2.0 ± 0.1  -2.3 ± 0.1 -1.5 ± 0.1  -2.0 ± 0.1
MOS-Hs00271264_s1 -4.6 ± 0.4  -2.1 ± 0.1 -71.4 ± 9.2 17 ± 3.7
NRAS-Hs00180035_m1 -1.5 ± 0.1 1.1 ± 0.1 -1.5 ± 0.1 1.1 ± 0.1
KRAS-Hs00270666_m1 -1.6 ± 0.1  1.1 ± 0.1 -1.5 ± 0.1  1.0 ± 0.1
SRC-Hs00178494_m1 -2.1 ± 01.  -1.2 ± 0.1 -1.5 ± 0.1 -1.3 ± 0.1
MAPK1-Hs00177066_m1 -2.3 ± 0.1  -2.0 ± 0.2 -2.1 ± 0.1  -1.7 ± 0.1
MAPK8-Hs00177083_m1 -2.0 ± 0.1  1.7 ± 0.1 -1.5 ± 0.1  1.4 ± 0.1
MAP4K1-Hs00179345_m1 -1.5 ± 0.1  1.3 ± 0.1 -1.7 ± 0.1  1.3 ± 0.1
FOS-Hs00170630_m1 -1.5 ± 0.1 -2.3 ± 0.1 -1.5 ± 0.1 -2.2 ± 0.1
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Figure 1.5. CCND1 and c-Mos played important roles in the molecular 
mechanisms of synergistic effect by combination therapy. (A) MV4-11 cells 
were treated with DMSO control, ABT-869, Ara-C and combination therapy (Ara-C 
followed by ABT-869), then subjected to immunoblot analysis. (B) Silencing either c-
Mos or CCND1 by shRNA augment the cell proliferation inhibition with ABT-869. 
MV4-11 cells treated with control, c-Mos or CCND1 shRNA separately, then 
exposured to ABT-869 at various dosage or Ara-C 100 nM followed by ABT-869. 
MTS assay was used to assess the growth inhibition. (C) Conservative isobolograms 
of ABT-869 in combination with U0126 in 3 different sequences.  MV4-11 cells were 
treated with ATB-869 at concentration of 1.5, 3, 6, 12, 24 nM or U0126 at 
concentration of 3.5, 7, 14, 28, 56 µM simultaneously or sequentially (ABT-869 first 
or U0126 first) in a same fashion as ABT-869 in combination with chemotherapy.  
CalcuSyn software was used to generated the isobologram for simultaneous 
treatment (left panel), ABT-869 first followed by U0126 (middle panel) and U0126 
first followed by ABT-869 (right panel). All CI values at IC50, IC75 and IC90 of the 3 
combinations were shown in the table at bottom. The results are from 3 
representative independent experiments. 
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1.3.5. In Vivo Efficacy of ABT-869, alone or in combination with cytotoxic 

drugs, for treatment in MV4-11 mice xenografts 

Based on the in vitro results, the optimal combination sequence (chemotherapy 

followed by ABT-869) was studied in vivo. Tumors in mice treated with Ara-C alone 

showed an initial growth delay during chemotherapy treatment, then grew at the 

same rate as those in the vehicle control group (Figure 1.6). In the ABT-869 

monotherapy group, a complete response (no palpable tumor) was observed in 2/10 

mice by day 35 and in all mice by day 39.  In the combination group, a complete 

response was observed in 6/10 mice at day 35 and in all mice by day 39. All 

treatments were stopped at day 54. The anti-tumor effects of ABT-869 or the 

combination were significantly better when compared to Ara-C alone or control 

(p<0.001). The combination therapy resulted in faster reduction of tumor burden 

compared to ABT-869 treatment alone (p=0.03) and more complete responders as 

compared to ABT-869 treatment alone. We did not observe any adverse side effects 

in the treatment groups in terms of behavior or body weight changes.   

 

Figure 1.6. Combination therapy achieved a faster reduction of established 
tumor volume than ABT-869 single agent or Ara-C treatment. 
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1.3.6. Molecular events following in vivo treatment of MV4-11 tumors with ABT-

869  

In addition to a reduction of tumor volume, ABT-689 demonstrated significant 

biochemical effects on MV4-11 xenografts tumor.  Histological examination of tumor 

specimens showed treated samples to be less cellular, compared to samples from 

mice treated with vehicle only (Figure 1.7A). A 15 mg/kg/day dose of ABT-869 

effectively reduced p-STAT5 (Figure 1.7B), p-AKT (Figure 1.7C), p-ERK1/2 (Figure 

1.7D), and PIM1 (Figure 1.7E), all of which are reported to be important FLT3 

downstream effectors. In addition, the expression of VEGF was profoundly reduced 

in the treated tissue (Figure 1.7F). Cleavage of PARP was increased after the 

treatment (Figure 1.7G).  Together, these data supported that the in vivo biological 

effect of ABT-869 is associated with the inhibition of multiple pathways including 

FLT3, STAT5, AKT, MAPK, and angiogenesis. 

 

1.4. Discussion 

Multi-targeted TKIs including FLT3 inhibitors are promising targeted therapeutics for 

leukemia harboring FLT3 mutations. In this study, we further dissected the molecular 

mechanisms for ABT-869 on proliferation and apoptosis.  We then demonstrated the 

importance of sequence specific synergistic effect in combining targeted therapy 

such as ABT-869 with chemotherapy in cell lines and primary AML cells containing 

either FLT3-ITD or FLT3-D835Y.  Our findings highlighted the “sequence specific” 

feature of TKIs which has been suggested with other TKIs.24 The greatest synergism 

occurs when the cytotoxic agents were administered first, followed by ABT-869. 

We observed cleaved caspase 3 mainly in MV4-11 cells. It has recently been 

reported that caspase 3 is responsible for DNA fragmentation and morphologic 
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changes, while caspase 7 is responsible for the loss of cellular viability.30 MV4-11 

which has both alleles with mutated FLT3, is more sensitive to ABT-869 than MOLM-

14 which has one allele with FLT3-ITD and the other allele with wild type.  

 

 

Figure 1.7. In vivo effect of ABT-869 on MV4-11 tumor xenograft model. SCID 
mice with established MV4-11 xenograft were treated with vehicle or ABT-869. 
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Excised tumor pieces were embedded in paraffin and stained with either (A) H & E or 
immunostained with (B) p-STAT5, (C) p-AKT, (D) p-ERK1/2, (E) PIM-1,  (F)VEGF 
and (G) cleaved (C)-PARP. The magnification of all pictures is 400x. Arrows indicate 
that necrosis with fat replacement in this area. 
 
   

Furthermore, this current study, for the first time, demonstrates that the synergism of 

combination therapy is due to down regulation of cell cycle regulated genes and 

genes in MAPK pathway. Combination treatment not only completely inhibits 

phosphor-ERK1/2, but also results in decreased expression of wild type ERK1, which 

likely also contributes to inhibition of MAPK pathway.  In addition to its well-described 

function in G1 to S phase progression, CCND1 overexpression has been found in a 

variety of cancers including B-cell lymphoma, multiple myeloma and breast cancer, 

thus CCND1 is also regarded as an oncogene.31  The c-Mos proto-oncogene 

product, a serine/threonine kinase, is a strong activator of the MAPK pathway, which 

is important for oocyte maturation.32,33 In somatic cells, constitutive expression of c-

Mos in mouse fibroblasts leads to neoplastic transformation.34 Deregulated 

expression of c-Mos has been discovered in various human cancer cell lines and 

primary patient samples, including neuroblastoma,35 thyroid medullary carcinoma36 

and non-small lung carcinomas.37 It is noteworthy that increased levels of CCND1 is 

found in both c-Mos transformed cells and c-Mos transgenic mice.34 The MAPK 

pathway is a major regulator of cell survival and proliferation and its activation is well 

documented in leukemia.38 These observations are in line with our results with LDA, 

immunoblot and shRNA analysis and U0126 inhibitor.  Most interestingly, our data 

suggest that targeting cell cycle genes, notably CCND1 and c-Mos mediated 

MAPK/MEK/ERK pathway could be the main mechanism of the synergistic 

interactions between chemotherapy and ABT-869.   
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For simultaneous combinations, ABT-869 and Ara-C together only achieved an 

additive effect, while ABT-869 and Dox together produced synergism. SU11248, 

another FLT3 inhibitor, also was found to synergistically interact with Ara-C or Dox in 

vitro when given concurrently23.   In contrast, pretreatment with ABT-869 followed by 

chemotherapy yielded an undesirable antagonistic effect. The antagonism observed 

could result from G1-phase cell cycle arrest and the removal of cells in the S-G2/M 

boundary by ABT-869, resulting in more cells under quiescent condition. Ara-C is a 

phase-specific agent that is most active against cells in S-phase.  In contrast, Dox is 

active against cells during multiple phases of the cell cycle.39 Collectively, 

pretreatment with ABT-869 would make subsequent chemotherapy less efficacious. 

In agreement with our data, antagonism has been reported with pretreatment with 

CEP-701, another FLT3 inhibitor, followed by Ara-C or etoposide.24  

 

The animal experiment provided further evidence to support that chemotherapy 

followed by ABT-869 is the sequence of choice for combination. The in vivo IHC 

study showed that ABT-869 has vigorous biological activities against FLT3 signaling 

pathways, demonstrated by the pronounced inhibition of several main FLT3 

downstream targets. ABT-869 also reduced the expression of VEGF in the MV4-11 

tumors. VEGF specifically promotes the proliferation of endothelial cells and is a 

major regulator of tumor angiogenesis in vivo.  Because ABT-869 is a multi-target 

kinase inhibitor, the inhibitory effect of non-FLT3 targets such as VEGF could also 

contribute to the reduction of MV4-11 tumor in vivo. These findings highlight the 

critical role of in vivo animal models in the preclinical development of TKIs.   

 

Our data demonstrates the ability of ABT-869 to interact synergistically with 

chemotherapy in a sequence-dependent manner and reveals the mechanism of 
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synergy as further suppression of cell cycle regulated genes and the c-Mos mediated 

MAPK/MEK/ERK pathway.  These observations will help to define the optimal 

combination therapy for future clinical trials in AML.  
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Chapter 2.  In vivo activity of ABT-869, a multi-target kinase inhibitor, against 

acute myeloid leukemia with wild-type FLT3 receptor 

 

2.1. Introduction 

Neoangiogenesis plays an important role in tumorigenesis, as well as 

leukemogenesis.1 Vascular endothelial growth factor (VEGF)-A is a major 

angiogenesis regulator, promoting hematopoietic stem cell (HSC) survival and 

repopulation by an internal autocrine loop manner.2 It binds and activates two 

receptor tyrosine kinases, VEGFR1 (FLT1) and VEGFR2 (KDR, FLK1). The binding 

affinity of VEGFR1 is about 4 to 6 times higher that of VEGFR2,3,4 but this receptor 

has only weak tyrosine kinase activity.5 The expression of VEGF and its receptors 

are detected in a variety of hematological malignancies, including acute 

lymphoblastic leukemia,6 acute myeloid leukemia,7,8 myelodysplastic syndromes 

(MDS),9 chronic leukemias,10,11 lymphoma12,13 and multiple myeloma (MM).12,14 In 

AML, a number of studies have suggested a possible autocrine/paracrine pathway 

between VEGF and its receptors, which contributes to poor survival of a subset of 

leukemias and to progression of the disease.7,15-18 It has been documented that this 

binding subsequently activates multiple pathways, including PI3K/AKT,16,17  MAPK,17 

NFκB.17 The expression of VEGFR1 is found to be more common in hematological 

malignancies than VEGFR2.14,19  Furthermore, based upon data from a mouse 

xenograft model, VEGFR1 is responsible for the homing and survival of ALL cells in 

bone marrow and for the onset of extramedullary disease. 19 It also has been 

demonstrated that VEGFR1+ hematopoietic stem cells (HSCs), but not VEGFR2+, 

are responsible for differentiation, mobilization and reconstitution of hematopoiesis.20 

Recently, a novel concept of “premetastatic niche” was proposed based upon the 

observation that VEGFR1+ bone marrow HPC is an initiator of a cluster of cells in 
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the tissue at common sites of metastasis before the metastatic tumor cell arrives.21 

So VEGFR1 could possess broader function in normal hematopoiesis and 

leukemogenesis than VEGFR2.  

 

Targeting VEGF/VEGFR receptors appears to be an alternative approach for treating 

AML. Several small molecular inhibitors are under clinical development. SU11248, a 

multi-target inhibitor against FLT3, c-kit, PDGFR and VEGFR1 and 2, is reported to 

induce clinical response with short duration in AML patients with FLT3 mutant or wild 

type in two phase I studies.22,23  PTK787/ZK 222584, targeting VEGFR1/2/3, the 

platelet-derived growth factor receptor (PDGFR) and c-kit, induces complete 

remission in about 30% of patients with AML when combined with chemotherapy.24 

The early clinical trial data, although preliminary, demonstrates that disrupting 

VEGF/VEGFRs signaling pathways is potential clinically efficacious.  

  

 ABT-869, a novel ATP-competitive tyrosine kinase inhibitor (TKI), is active against 

vascular endothelial growth factor VEGFRs, as well as PDGFR family members 

(FLT3, c-kit, CSF-1R) and others, but less active against unrelated RTKs.25,26 

Cellular assays and tumor xenograft models demonstrated that ABT-869 was 

effective in a broad range of cancers including small cell lung carcinoma, colon 

carcinoma, breast carcinoma, and MV4-11 tumors in vitro and in vivo. 25,26  We have 

reported that ABT-869 induced significant apoptosis in cells with FLT3 mutation in 

vitro (IC50 value of 4nM) and profound antileukemic effect in a mouse xenograft 

model.27 However, in vitro ABT-869 only shows minimal cytotoxic effect on AML cells 

with wild type FLT3. 27 Based on the preclinical studies suggesting the role of VEGF 

pathways in leukemogenesis, it is likely that the antileukemic effect of ABT-869 will 
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be best evaluated in vivo.  In this report, we specifically test the in vivo therapeutic 

benefit of ABT-869 in a wild type FLT3 and VEGFR1+ AML cell line, HL60.   

 

2.2. Materials and methods 

2.2.1. Cell culture and establishment of a fluorescent protein labeled leukemia 

cell line  

HL60, a wild type FLT3 AML cell line, was cultured in 90% RPMI1640 (Invitrogen, 

Carlsbad, CA) with 10% of fetal bovine serum (FBS, JRH Bioscience Inc, Lenexa, 

KS).  Cells were maintained in density of 2 x 105 to 10x105 cells/ml in a humid 

incubator with 5% CO2 at 37ºC.  HL60 cells were transfected with pDsRed2-C1 

vector (Clontech, Mountain View, CA) using Nucelofector device (Amaxa AG, 

Germany ) according to the manufacturer’s protocol. Briefly, 5 x 106 cells were mixed 

with 5 µg of pDsRed2-C1 vector and 100 µl of Solution-V, transferred to a cuvette. 

The program T-019 was used to transfect the cells in the Nucelofector device. After 

transfection, cells were immediately transferred into a 6-well plate containing 

prewarmed (37ºC) complete medium.  After 24 hours post-transfection, the cells 

were spun into pellets and resuspended in new medium containing 1 µg/ml G418 

(Invitrogen) for positive clone selection.  The positive cells were monitored with Nikon 

fluorescent microscope. The antibiotic selection lasted for 3 weeks and was followed 

by the serial dilution method over a one month period to establish a long term stable 

clone with red fluorescence protein (RFP), designated as HL60-RFP.  

 

2.2.2. Drug preparation 

ABT-869 was prepared weekly prior to in vivo study as details in method in part I.28  

 

2.2.3. Xenograft leukemia models 
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2.2.3.1. Subcutaneous model: Female Balc/c nude mice were purchased from 

Animal Resources Centre (ARC, Canning Vale, Australia). Exponentially growing 

HL60-RFP cells (5×106) with >95% viability were washed in 1 x PBS twice and 

subcutaneously injected into loose skin between the shoulder blades and left front 

leg of recipient mice from both control and ABT-869 treated groups. The treatment 

was initiated 15 days after tumor cell implantation, when the mice had palpable 

tumor of 100-200 mm3 average size.  ABT-869 was administrated at 15 mg/kg/day 

by oral gavage daily for consecutive 21 days for the study group.  Mice in control 

group were given oral gavage with the diluents of the study drug as vehicle control.  

The measurements of tumors were taken by conventional callipers method, as well 

as monitored by using OV100 imaging system every other day. There were 10 mice 

for each group.  

 

2.2.3.2. Bone marrow transplantation model: Female non-obese diabetic-severe 

combined immunodeficiency (NOD/SCID) mice (4-6 weeks old) were purchased from 

ARC. As a standard procedure to improve the engraftment efficiency, mice were 

given Endoxan® (Cyclophosphamide, Baxter Oncology GmbH, Germany) 150 

mg/kg/day for two day followed by one rest day before leukaemia cells were injected. 

Ten million of HL60-RFP cells were washed in 1 x PBS twice and inoculated into 

mice via tail vein injection for both control and treatment groups.  ABT-869 was 

administrated at 15 mg/kg/day by oral gavage daily for consecutive 22 days. There 

were 10 mice for each group. Three mice of each group were sacrificed for sampling  
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blood for FACS analysis after 1 week of treatment. The remaining 7 mice of each 

group were used for long term survival analysis.   

 

Mice were closely monitored for weight, loose fur, hatch back, paralysis of hind legs 

and tumor size was measured serially. For tumor size measurements, the length (L) 

and width (W) of the tumor were measured with callipers, and tumor volume (TV) 

was calculated as TV = (L×W2)/2. The mice were sacrificed at the onset of weakness 

or paralysis of back limbs, fur erection, incapacitating macroscopic tumors, sluggish 

behaviour or curved disfiguration of the spine. The protocol was reviewed and 

approved by Institutional Animal Care and Use Committee in compliance to the 

guidelines on the care and use of animals for scientific purpose.  For statistical 

comparisons P value was calculated using a 2-tailed t test. 

 

2.2.4. Visualization of treatment efficacy in living mice 

The Olympus Small Animal Imaging System OV100 (Olympus Corp., Tokyo, Japan) 

was used to monitor tumor development and treatment efficacy in living mice.29   The 

imaging was captured with a CCD camera and directly processed with Cell software 

(Olympus Biosystems, Tokyo, Japan).  

 

2.2.5. Cell staining, antibodies, and flow cytometry  

For flow cytometry, cells extracted from mouse bone marrow (BM) were washed in 1 

x PBS with 1% bovine serum albumin (BSA), filtered through  0.45 µm BD Cell 

Strainer  (BD Biosciences, San Jose, CA) and blocked with 2% human AB serum for 

10 minutes on ice, and stained with monoclonal antibodies in PBS + 1% BSA for 20 

minutes on ice. Antibodies used were anti-human CD45-FITC and isoptype control 

IgG2a-FITC (BD Biosciences). Red blood cells were lysed with BD lysis buffer. Flow 
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cytometric analysis was performed on a FACS Calibur instrument (BD Biosciences) 

and analyzed with CellQuest software (BD Biosciences). For each experiment, a 

total of 10,000 events were analyzed.  

 

2.2.6. Immunohistochemistry (IHC) 

Tissue preparation and antigen retrieveal was performed as decrscribed in Part I, 

Section 1.2.9.  Slides were then incubated with a panel of primary antibodies. The 

sources and conditions of the primary antibodies were as following: VEGFR1 (1:50, 

Chemicon, Temecula, CA) p-VEGFR1 (Tyr1213, 1:50, Calbiochem, San Diego, CA), 

Ki-67 (1:50, Neomarkers, Fremont, CA), VEGF (1:100, Lab Vision, Fremont, CA). 

The slides were counterstained in hematoxylin for 30 seconds and mounted with 

cover slides. For microvessel density (MVD) analysis, paraffin embedded tumor 

sections were stained with von Willibrand factor (vWF) endothelial cell marker 

(1:100, Chemicon) Measurement of microvessel density was performed as 

previously described [30]. Briefly, tissue sections were screened under the 

microscope, randomly selected six hotspots of microvessel dense fields were 

evaluated under high power field (hpf, x200). Mean microvessels count in six fields 

was taken as microvessel density which was expressed as microvessels / hpf. The 

images were analyzed by a Nikon fluorescence microscopy TE2000-S (Nikon Corp., 

Japan)  
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2.2.7. TUNEL assay 

DeadEndTM FLuorometric TUNEL System (Promega, Madison, WI) was used to 

detect apoptosis in tissue samples based on the manufacturer’s protocol. Briefly, 

pretreated paraffin-embedded tissues were fixed with 4% PFA for 15 minutes, 

washed in 1xPBS twice. The tissues then permeabilized with 20 µg/ml Proteinase K 

solution, repeated fixative and wash steps. After equilibration, nucleotide mix and 

rTdT enzyme were added and DAPI nuclear staining dye was applied as 

counterstaining. The slides were mounted with cover slides. Green fluorescence of 

apoptotic cells (fluorescein-12-dUTP) in a blue background was detected by a Nikon 

fluorescence microscopy TE2000-S. 

  

2.2.8. Statistical analysis 

Tumor volume reduction of the treatment groups was compared to the untreated 

control group by Student’s t-test, and P values of < 0.05 were considered to be 

significant. Survival analysis was performed by Kaplan-Meier analysis (SPSS, 

ver.14.0). Survival curves of the treatment groups were compared to the untreated 

control group, and statistical significance were given in log-rank test (P < 0.05).  

 
2.3. Results 

2.3.1. Establishment of stable HL60-RFP cell line 

The pDsRed2-C1 transfected HL60 cells were serially diluted and seeded in 96-well 

plates with 1 µg/ml G418. The selected HL60-RFP cells have a stable, noticeably 

bright FRP fluorescence after numerous passages without the selective antibiotics 

(Figure 2.1). The excitation/emission wave length of DsRed2 is 558 nm/583 nm.  To 

compare the characteristic of the transfected clone with the parental line, HL60-RFP 

and HL-60 were then subjected to in vitro cytotoxic (MTS) assay31 and xenograft 
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model study.  There was no significant difference between the IC50 values for 

doxorubicin (360 vs. 357 nM) and cytosine arabinoside (560 vs. 557 nM). 

Furthermore, in the xenograft model, there is no significant difference in tumor 

growth rate and capacity of bone marrow engraftment between these two cell lines. 

These tests suggest that HL60-RFP is characteristically representing its parental 

line.  

 

 
 
Figure 2.1. Stable human leukemia HL60 clone with high expression of RFP in 
vitro. Stable HL60-RFP cells and the parental HL60 cells were spun down onto a 
glass slid using a Shandon Cytospin4 (Thermo Scientific, Inc., Waltham, MA) at 
1,000 rpm for 5 minutes, then fixed with 4% paraformaldehyde (PFA). Pictures were 
taken with Olympus FV300 confocal microscopy (Olympus Corp.). Bar = 20 µm. 
 
2.3.2. ABT-869 inhibited the HL60-RFP xenograft tumor progression 

 Tumors in mice treated with vehicle control continued to grow to an average of 

4231.2 ± 430 mm3 at day 38 (Figure 2.2A).In contrast to in vitro findings, in vivo ABT-

869 therapy significantly reduced the progression of tumor to 829.5 ± 210 mm3 

(p<0.001 compared to the control group).  

 

Using OV100 imaging system, tumor volume was constructed from the primary 

tumor imaging in two dimensions (mm2) as shown in Figure 2.2B.  The average 

HL60 

HL60-
RFP  

   RFP Channel            Bright Field  



34 
 

tumor volume was 435 ± 39 mm2 in the control group and 195.7 ± 27 mm2 in the 

ABT-869 treated group. The two sets of measurement obtained by calipers and 

OV100 imaging system showed a good correlation coefficient between these two 

measurements (R=0.97). Subsequent consecutive whole body imaging of HL60-RFP 

tumors in living mice were taken and the tumor growth and progression were 

quantified with imaging analysis. Figure 2.3A and 2.3B shows the consecutive 

images acquired from one mouse in each group at different time points.  

 

Under high magnification (x0.8), we observed that ABT-869 treated mice showed 

paleness of tumor surface as compared to control group after 2 weeks’ treatment, 

suggesting reduced vascular structure. The retardation of tumor progression is 

accompanied with a decrease in neoangiogenesis, which was visually apparent. To 

validate this observation by OV100 imaging system, IHC analysis of intratumor MVD 

was performed, which is widely used method for quantification of angiogenesis and 

neovascularization.  As shown in Figure 2.3C, the “hotspots” MVD was significantly 

lower in ABT-869 treated tumor than in vehicle tumor (mean MVD 31.2 ± 9 vs 114.7 

± 12, p < 0.001). 
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Figure 2.2. The effects of ABT-869 on HL60-RFP tumor growth in vivo. (A) 
Tumor volume curves were constructed with measurements taken by conventional 
calliper. (B) Tumor volume curves were plotted with measurements taken by OV100 
Small Animal Imaging System determined by the fluorescent direct-view images. 
Arrows indicate treatment start.   
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Figure 2.3. Sequential real-time whole-body fluorescence imaging of HL60-RFP 
tumor growth in living mice. (A) Mice were treated with vehicle control. (B) Mice 
treated with ABT-869 (15 mg/kg/day). Arrow-pointed pictures show the direct view of 
distribution of blood vessel network on the tumor surface in the two representative 
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mice. There is less of a tumor vessel network in ABT-869 treated mice. BF: bright 
field channel. RFP: RFP channel. (C) Staining of microvessels (hotspots, brownish 
staining) in vehicle control and ABT-869 treated tumor samples by anti-vWF 
immunostaining (original magnification x200). The right bar figure represents mean 
MVD of six hotspots in vehicle control and ABT-869 treated tumor samples.   
 
 

2.3.3. ABT-869 prolonged survival in the HL60-RFP murine bone marrow 

transplantation model 

The effect of ABT-869 was further evaluated in a systemic leukemia model. 

Treatment was started 3 weeks after tail vein injection of HL60 cells.  FACS analysis 

of mouse bone marrow samples demonstrated that human CD45 positive cells were 

significantly reduced in the ABT-869 treated group (Figure 2.4A-B). The results 

showed that the average numbers of CD45 positive cells were 55 ± 23% and 13 ± 

6% respectively (p=0.03).  ABT-869 treatment also prolonged the survival of mice 

with HL60 tumors. Kaplan-Meier analysis revealed that the survival time was 

significantly prolonged in the ABT-869-treated group when compared to the control 

group (Median survival, 39 vs. 29 days; p<0.001, Figure2. 4).  
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Figure 2.4. The effects of ABT-869 on NOD/SCID mice with systemic leukemia. 
See “Materials and Methods” for intravenous cell injection and treatment details. (A) 
Representative FACS profiles from vehicle control and ABT-869 treated mice. (B) 
Bar graph of average percentage of human CD45 positive cells in bone marrows 
from 3 vehicle controls and ABT-869 treated mice at 1 week’s time point. (C) Seven 
mice in each group were used for the construction of the survival curves. 
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2.3.4. In vivo biological efficacy of ABT-869 

To further study the observed different sizes of tumors between treated and control 

groups, we performed histological examination of tumor specimens. Figure 2.5A 

shows treated samples to be less cellular, compared to samples from mice treated 

with vehicle only.  A 15 mg/kg/day dose of ABT-869 effectively inhibited the 

expression of p-VEGFR1 (Figure 2.5C) and Ki-67 (Figure 2.5D), a common 

proliferative marker. The level of VEGFR1 was not varied significantly between 

control and treated samples (Figure 2.5B). The Ki-67 labeling index, calculated as 

the percentage of positive staining cells of total nucleated cells in a x400 field 

(average of 5 x400 fields) was 95 ± 1.8 vs 58 ± 1.7 (p <0.001) for vehicle control and 

ABT-869 treated samples respectively.  In addition, the expression of VEGF was 

significantly reduced in the treated specimens (Figure 2.5E). Furthermore, tunnel 

assay revealed induction of cellular apoptosis in the treated tumor samples (Figure 

2.6).  Together, these data support that the in vivo biological effect of ABT-869 is 

associated with the inhibition of neoangiogenesis.  
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Figure 2.5. In vivo effect of ABT-869 on HL60-RFP tumor xenograft model. Nude 
mice with established HL60-RFP xenograft were maintained with vehicle or ABT-
869. Excised tumor pieces were embedded in paraffin and stained with either (A) H 
& E or immunostained with (B) VEGFR1, (C) p-VEGFR1, (D) Ki-67, or (E) VEGF.   
The original magnification of all inserted pictures is 400x.  
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Figure 2.6. ABT-869 treatment induced apoptosis in the in vivo tumor samples. 
Apoptosis was measured by TUNEL assay and analyzed by a Nikon fluorescence 
microscopy TE2000-S. Apoptotic cells were catalytically incorporated with 
fluorescein-12-dUTP and DAPI dye was used as nuclear counterstaining.  Green 
staining represents apoptotic cells. 
 
 

2.4. Discussion  

AML, a rapid porgressive disease, remains an arduous task for oncologists. A large 

body of evidences indicates bone marrow neoangiogenesis, orchestrated by different 

angiogenic growth factors, implicates the pathogeneisis of AML. VEGF and its 

receptors are major regulators in neogangiogenesis in AML.1,14,32,33   In this report, 

we demonstrate that ABT-869 is effective in vivo against HL60-RFP in subcutaneous 

implant and bone marrow transplantation xenograft models. The molecular 

mechanism of the antileukemic effect of ABT-869 may involve the blockage of the 
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VEGF/VEGFR1 activation loop, and the induction of apoptosis resulting in inhibition 

of neoangiogenesis in leukemia.  

 

The imbalance of pro-angiogenic molecules and anti-angiogenic molecules 

(angiogenic switch) is a classic model for tumor development and metastasis.32,33 

Angiogenesis inhibitors have been extensively investigating for the treatment of 

“angiogenesis-dependent” diseases, most demonstrated in solid tumors and more 

recently including hematological malignancies.14,34  VEGF/VEGFR loops are the key 

modulators regulating physiological and pathological angiogenesis. So dysregulation 

of these signaling pathways therefore play a pivotal role in the leukemogenesis and 

therapeutic failure.  A study of Fragoso et al. revealed VEGFR1 activation promotes 

leukemic cells migration to an extramedullary site by actin polymerization and lipid 

raft formation, and increases cell proliferation in vitro and in a murine model.19  

VEGFR1 is the most common and abundant VEGF receptor expressed in leukemia 

cell lines and primary patient samples including CML, ALL and AML.19,35 The 

preferable expression pattern highlights the important role of VEGFR1/VEGF loop in 

the pathogenesis of leukemia. It is worthy of note that prior studies have shown 

VEGFR119 and VEGF production36 play a crucial role in bone marrow homing and 

engraftment of leukemia cells in NOD/SCID mice.  Since ABT-869 inhibits VEGFR1 

and VEGF in vivo, this also could potentially contribute to its antileukemic effect, 

although the treatment was started 3 weeks after inoculation of leukemia cells, 

Taken together, as a consequence of blockage of this activation by ABT-869, the 

results obtained from our in vivo studies support the concept that the therapeutic 

potential of multi-target kinase inhibitors like ABT-869 is not limited to patients with 

FLT3 mutations, but potentially can be expanded to those with activation of a 

VEGFR/VEGF loop.  
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Besides the VEGFR1/VEGF pathway, intervening with the VEGFR2 and VEGFR3 

receptors has also shown efficacy in AML. A report from Santos et al demonstrates 

the existence of internal (private) and external VEGF/VEGFR2 (KDR) in a subset of 

AML. Blocking both pathways simultaneously produces a synergistic effect by 

decreasing cell viability.17 It has also been reported that interaction between 

VEGF/VEGFR3 (FLT4) induces leukemia cell proliferation, survival and resistance to 

chemotherapy by switching the Bcl-2/Bax ratio, whose balance precisely determines 

whether cells undergoing survival or apoptosis.37 On the other hand, a VEGF 

antagonist soluble (NRP-1) has been shown to inhibit angiogenesis and growth in a 

localized murine model and prolongs survival rate in a systemic leukemia model as 

compared to mice treated with control vector.37  Exposure of AML cells to VEGF 

induces cells resistant to chemotherapy by upregulation of Mcl-1, an anti-apoptotic 

protein.38  Furthermore, we can not exclude the possibility of additional targets such 

as PDGFR family by ABT-869, contributing to its biological activity, as observed in 

BIBF1120, a indolinone derivative multi-targeted compound. 39  

 

In addition to conventional measurement with caliper, our study employed a real-time 

whole-body imaging technology40,41 to monitor RFP labeled tumor growth, as well as 

neoangiogenesis consecutively in the living mouse. Measurements obtained by 

caliper are subjective and may be affected by the operator, which causes increased 

variances. In contrast, the significant advantage of using live imaging system is to 

obtain quantitative measurements objectively. It offers a valuable opportunity to 

directly visualize the neoangiogenesis on the tumor surface and observe the drug 

response measured by inhibition of tumor growth and reducing of blood vessel 

network continuously without sacrifice mice, as exemplified in this study.  The 



44 
 

approach described here may be useful to test the activities of novel anti-cancer 

compound, as well as chemotherapy drugs.      

 

Collectively, using both implanted tumor model and systemic leukemia model, we 

have demonstrated that ABT-869 inhibits tumor growth and prolongs survival of mice 

bearing HL60 cells. Our results suggest ABT-869 might represent a promising novel 

agent to the current therapy approaches or combination with conventional cytotoxic 

drugs for the treatment of wild type FLT3-AML.  
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Chapter 3. Enhanced activation of STAT pathways and overexpression of 

survivin confer resistance to FLT3 inhibitors and could be therapeutic targets 

in AML 

 
3.1. Introduction 
 

Internal tandem duplication (ITD) in juxtamembrane (JM) and point mutation PM in 

the kinase domain (KD) of fms-like tyrosine kinase 3 (FLT3) are common genetic 

lesions in acute myeloid leukemia (AML).1-5 Recently, additional point mutations were 

identified in the extracellular domain and JM domain by high-throughput DNA 

sequencing.6 

 

FLT3 mutations induce receptor dimerization and autophosphorylation of the KD, in 

turn, resulting in constitutive activation of phosphoinositide 3-kinase (PI3K-AKT), 

RAS-MEK-mitogen-activated protein kinase (MAPK), and signal transducers and 

activators of transcription (STAT) 5 pathways.1-5  On the biological level, it leads to 

uncontrolled cell proliferation, blockage of differentiation and cell survival.  Therefore, 

FLT3 mutations play an important role in leukemogenesis, and represent attractive 

therapeutic targets. 1,2,4,5 A number of small molecule tyrosine kinase inhibitors (TKIs) 

are currently undergoing different phases of clinical development.7 Although most 

FLT3 inhibitors show potent efficacy in vitro with IC50 values in the nanomole range, 

the majority of patients only have moderate and transient responses.8 Furthermore, 

under prolonged therapy with TKIs, leukemic cells could develop resistance to FLT3 

inhibitors when used as monotherapy. This is exemplified by the resistance 

phenomenon to imatinib mesylate (Gleevec), the first small molecule kinase inhibitor 

for the treatment of chronic myeloid leukemia (CML) harboring the BCR-ABL fusion 

oncogene. The identification of point mutations in the ATP binding site or gene 
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amplification of BCR-ABL from imatinib-resistant CML patients9 promoted 

researchers to investigate the role of acquired mutations in resistance to FLT3 

inhibitors.  

 

Mutations in the ATP-binding pocket have been identified through PCR-based 

mutagenesis screening in murine Ba/F3-FLT3-ITD cells and selected for growth in 

the presence of PKC412,10 or in a resistant Ba/F3-FLT3-ITD cell line developed by 

coculture with SU5416.11  Resistance to PKC412 resulting from the N676K point 

mutation in the FLT3 kinase domain has been described in a clinical trial patient.12  

Human leukemia cell lines are valuable disease models. Piloto O et al. used long-

term exposure of human leukemia cell lines, including MOLM-14 (AML-M5, one 

allele wild-type and the other FLT3-ITD allele), Hb1119 (ALL, FLT3-D836H) and 

SEM-K2 (overexpression of wild-type FLT3), to FLT3 inhibitors, CEP-5214 and CEP-

701, to generate 6 resistance human cell lines.13 Selection of activating Ras 

mutations has been found in 2 out of 6 FLT3 inhibitor resistant cell lines, but no point 

mutation in the FLT3 kinase domain was found in all 6 resistant cell lines.13   

 

To further investigate other potential mechanisms of resistance to multi-targeted 

TKIs, we developed three resistant cell lines (designated as MV4-11-R1, -R2, -R3) 

by long-term coculture of the human leukemia cell line, MV4-11 (AML, both allele 

FLT-ITD), with ABT-869, a multi-targeted TKI with activity against FLT3.14 We also 

explored the combination of ABT-869 with other small molecule inhibitors to 

overcome resistance and thereby potentially provide novel treatments in vitro and in 

vivo.  

 

3.2. Materials and Methods 
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3.2.1. Small molecular inhibitors and reagents 

ABT-869, a multi-targeted TKI with activity against FLT3, was kindly provided by 

Abbott Laboratories (Chicago, IL). For in vitro and in vivo experiments,  the 

preparation for ABT-869 was previously published.15 Indirubin derivative (IDR) E804, 

Tyrene CR4, AG490, AG1296, JAK3 Inhibitor II, NU6140 and FLT3 inhibitor III were 

purchased form Calbiochem (Gibbstown, NJ) and dissolved in dimethyl sulfoxide 

(DMSO) before use. SU5416 and 5-aza-deoxycytidine (5-aza) were purchased from 

Sigma-Aldrich (St. Louis, MO). Human FLT3 ligand was obtained from Pepro Tech 

Inc. (Rocky Hill, NJ).  

 

3.2.2. Cell lines and development of resistant cell lines 

Human MV4-11 cells were cultured with RPMI1640 (Invitrogen) supplemented 

with10% of fetal bovine serum (FBS, JRH Bioscience Inc, Lenexa, KS) at density of 

2 to 10 x 105 cells/ml in a humid incubator with 5% CO2 at 37ºC. Log phase growing 

MV4-11 cells were cocultured with increasing concentration of ABT-869 for 3 

months. Three parallel experiments were performed in parallel for selection of 

resistant lines. These resistant lines were grown in normal medium without ABT-869 

for at least 48 hours before experiments.   

 

3.2.3. Cell viability assays 

Leukemic cells were seeded in 96-well culture plates at a density of 2 × 104 viable 

cells/100 µl/well in triplicates, and were treated with small molecular inhibitors. 

Colorimetric CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS assay, 

Promega, Madison, WI) was used to determine the cytotoxicity as described 
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previously15.  IC50 values were determined by MTS assay and calculated with 

CalcuSyn software (Biosoft, Cambridge, UK). Each experiment was in triplicate. 

 

3.2.4. Flow cytometric analysis 

For analysis of MRP1 and MDR expression, two million cells were fixed and stained 

according to the manufacture’s instruction and analyzed with a Dako Cytomation 

Cyan LX (DakoCytomation Denmark A/S, Denmark) flow cytometer, using Summit 

(v4.3) software. For apoptosis assays, annexin V-FITC binding assay (BD 

Pharmingen, San Diego, CA) was used as recommended by the manufacturer.   For 

cell cycle analysis, one million cells were fixed, stained with Propidium Iodide (PI, BD 

Pharmingen) and analysed by flow cytometry. 

 

3.2.5. Western blot analysis 

Preparation of the cell lysate and immunoblotting were performed as previously 

described.16 Antibodies used were as follows: anti-FLT3, anti-p-FLT3, anti-p-STAT1 

(Tyr701), anti-p-STAT3 (Tyr705, clone 3E2), anti-p-STAT5 (Tyr694), anti-STAT1, 

anti-STAT3, anti-STAT5, anti-Survivin, anti-poly (ADP-ribose) polymerase (PARP), 

anti-cleaved PARP, from Cell Signaling Technology (CST, Danvers, MA) and anti-

Actin, anti-LRP, anti-MRP1, anti-MDR, IgG Isotype control from Santa Cruz 

Biotechnology (Santa Cruz, CA).  

 

3.2.6. Low density Array (LDA) 

Gene expression profiling was investigated with custom real-time PCR-based 

analysis using TaqMan Low Density Arrays (LDA; Applied Biosystems, Foster City, 

CA) as described  in the Chapter 1.15   
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3.2.7. Reverse transcription (RT)-PCR and Real-time quantitative (RQ)-PCR 

The primers and RT-PCR conditions for survivin analysis were adopted from 

Mahotka et al.17  Sequences of primers for survivin RQ-PCR were described 

before.18 The sequences of primers of STAT3 for RQ-PCR were as follows: STAT3-

RQ forward: 5’-CCTGAAGCTGACCCAGGTAGC-3’; STAT3-RQ reverse: 5’- forward: 

5’-CACCTTCACCATTATTTCCAAACTG-3’. Sequences of primers of SOCS1, 

SOCS2 and SOCS3 for RQ-PCR were published before.19 Power SYBR® Green 

PCR Master Mix was used as recommendation by the manufacturer (Applied 

Biosystems).  GAPDH was used as internal control.  SDS 2.2.1 software (Applied 

Biosystems) was used to perform relative quantitation (RQ) of target genes using the 

comparative CT (∆∆CT) method.  

 

3.2.8. Transfection 

Human STAT3 cDNA was purchased from Open Biosystems (Huntsville, AL) and 

cloned into pEGFP vector (Clontech, Mountain View, CA). MV4-11 cells were 

transfected with pEGFP control vector, and pEGFP-STAT3 separately using 

Nucelofector device (Amaxa AG, Germany) according to the manufacturer’s protocol. 

Briefly, 3 x 106 cells were mixed with 2 µg of vector and 100 µl of Solution-L, 

transferred to a cuvette. The program Q-001 was used to transfect the cells in the 

Nucelofector device. After transfection, cells were immediately transferred into a 6-

well plate containing prewarmed (37ºC) complete medium.  After 48 hours post-

transfection, the cells were spun into pellets and followed by RNA extraction, cDNA 

synthesis and RQ-PCR analysis for gene expression.  

 

Human full-length of survivin cDNA was obtained from Open Biosystems and cloned 

into lentivirus pLVX-puro vector (Clontech) within EcoRI/BamHI site. The construct 
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was validated by sequencing. The production and harvest of high titer lentivirus was 

performed using Lenti-X™ HT Packaging System (Clontech) as recommended by 

the manufacturer.  MV4-11 cells were infected with pLVX-puro-Survivin lentivirus 

particulars and selected in culture medium containing gradually incrementally 

increased concentration of puromycin ranging from 400 ng/ml to 2 µg/ml for three 

weeks. The stable transfectant cell line was designated as “MV4-11-Survivin..  

 

3.2.9. Short-hairpin (shRNA) studies 

A pool of survivin (RHS4529-NM_001168) shRNA, as well as non-silencing shRNA 

control (RHS1707) was purchased from Open Biosystems. RetroPack PT67 cells 

(Clontech) were seeded into a 6-well plate at 60-80% confluence (4 x 105 cells/well) 

24 hours before transfection, 5 µg of each shRNA vector and 10 µl of Lipofectamine 

2000 (Invitrogen) were used for transfection. PT67 cells were diluted and plated after 

transfection for 24 hours in culture medium with 2 µg/ml puromycin (Clontech). After 

1 week selection, the large, healthy colonies were isolated and transferred into 

individual plates. Filtered medium containing viral particles together with 6 µg/ml 

polybrene were used for infecting cells (2 x 106) respectively. Twenty-four hours 

postinfection, cultures were replaced with fresh medium and subjected to 

immunoblot and cell viability assay. 

 

3.2.10. Chromatin immunoprecipitation (ChIP) assay  

ChIP assays were done by using CHIP-IT Express Kit from Active Motif (Carlsbad, 

CA). Briefly, log-phase growing MV4-11-R cells were incubated with 37% 

formaldehyde to cross-link protein-DNA complexes. The cross-linked chromatin was 

then extracted, diluted with lysis buffer and sheared with Enzymatic Shearing 
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Cocktail (Active Motif). Ten µL of total sheared chromatin was used as positive 

control in PCR analysis. The remaining chromatin was divided into equal amount for 

immunoprecipitation with either anti-Stat3 or anti-IgG (negative control) polyclonal 

antibody (Santa Cruz Biotechnology) on magnetic beads. The immunoprecipitates 

were eluted, reversed cross-linked and treated with Proteinase K. Purified DNA was 

subjected to PCR with primers specific for a region (nucleotides 1821-2912) in 

human the Survivin promoter (GenBank accession number U75285). The 

sequences of the PCR primers used are as follows: pSurvivin forward primer, 5’-

CTGGCCATAGAACCAGAGAAGTGA-3’; pSurvivin reverse primer, 5’-

CCACCTCTGCCAACGGGTCCCGCG-3’.  

 

3.2.11. Xenograft mouse model 

Female Blab/C nude mice (17-20 g, 4-6 weeks old) were purchased from Animal 

Resources Centre (Canning Vale, Australia). Exponentially growing MV4-11-R cells 

(5×106) were subcutaneously injected into loose skin between the shoulder blades 

and left front leg of recipient mice.  All treatments were started 10 days after the 

injection, when the mice had palpable tumors of an average size of approximately 

200 mm3. ABT-869 was administrated at 15 mg/kg/day by oral gavage daily.15,20  IDR 

E804 was prepared and given the same as ABT-869, but at dose of 10 mg/kg/day.  

In the combination group, mice were treated with both compounds at the same dose 

as monotherapy.  Treatments lasted for 14 days. Each group was comprised of 10 

mice.  

 

The length (L) and width (W) of the tumor were measured with callipers, and tumor 

volume (TV) was calculated as TV = (L×W2)/2.  The protocol was reviewed and 



54 
 

approved by Institutional Animal Care and Use Committee in compliance to the 

guidelines on the care and use of animals for scientific purpose.  

 

3.2.12. Immunohistochemistry (IHC) 

Tissue fixation followed by Hematoxylin and eosin staining were done as described 

previously.16  Sources and incubation conditions for the primary antibodies were as 

follows: anti-Survivin (clone 71G4, CST), anti-Ki-67 (Neomarkers, Fremont, CA) and 

anti-cleaved PARP (CST). The slides were counterstained in hematoxylin for 30 

seconds and mounted with cover slides. The images were analyzed by a Zeiss 

Axioplan 2 imaging system with AxioVision 4 software (Zeiss, Germany). 

 

3.2.13. Statistical analysis 

Number of viable cells, tumor volume, and survival time were expressed in mean ± 

standard deviation (SD). Tumour volume reduction of the treatment groups was 

compared to the untreated control group by Student’s t-test, and P values of < 0.05 

were considered to be significant.  

 

3. 3. Results 

3.3.1. Long term coculture of MV4-11 cells with ABT-869 resulted in cross-

resistance to other FLT3 inhibitors 

Human leukemia MV4-11 cells with both alleles FLT-ITD were cocultured with 

gradually increasing concentration of ABT-869 for 3 months. Three separate cultures 

were performed in parallel, resulting in 3 resistant lines, designated as MV4-11-R1, 

MV4-11-R2 and MV4-11-R3. In addition, MV4-11-R represents a pool of MV4-11-R1, 

-R2, and –R3.  
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The MTS assay and CalcuSyn software were used to determine the cytotoxic effects 

of ABT-869, FLT3 inhibitor III, AG1296 and SU5416 on resistant lines and the parent 

MV4-11 cell line. The IC50 values of ABT-869 on resistant lines was about 9 times 

higher than parent MV4-11 cells. Furthermore, the resistant lines were cross-

resistance to structurally unrelated FLT3 inhibitors (Table 3.1). Similarly, annexin V 

binding assay revealed that the resistant lines were also resistant to ABT-869-, FLT3 

inhibitor III-, AG1296- and SU5416-induced apoptosis as compared to the parent 

MV4-11 cells.   
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Table 3.1. Comparison the potency (IC50 values) of ABT-869 and other 
structurally unrelated FLT3 inhibitors for inhibiting the proliferation of 
MV4-11, MV4-11-R, MV4-11+FLT3 ligand and MV4-11-Survivin cells.   

  
 

 
 
 

Notes: Cells were seeded in 96-well culture plates at a density of 2 × 104 viable 
cells/100 µl/well in triplicates, and were treated with each compound for 48h. 
Colorimetric MTS assay was used to determine the cytotoxicity. IC50 was determined 
by MTS assay and calculated with CalcuSyn software (Biosoft, Cambridge, UK). 
Each experiment was in triplicate. *FLT3 ligand 50 ng/ml.  

 
 

3.3.2. Overexpression of FLT3, p-FLT3 receptor or multi-drug resistant related 

proteins, or mutations in KD were not responsible for resistance to FLT3 

inhibitors in MV4-11-R 

To investigate the mechanisms of drug resistance, immunoprecipitation and Western 

blot analysis were performed to compare the expression of the wild type FLT3 and p-

FLT3 receptor in resistant lines with parent MV4-11 cells. This analysis 

demonstrated that their expression level were similar (Figure 3.1A). Western blot and 

flow cytometric analysis were used to determine the expression of multi-drug 

resistant related proteins.  Lung-resistance protein (LRP, Figure 3.1B) was not 

upregulated in MV4-11-R cells. Multi-drug resistance protein (MDR, Figure 3.1B) was 

expressed 10-folds higher in both MV4-11-R and parental MV4-11 as compared to 

isotype controls. MDR-related protein (MRP1, Figure 3.1B) was not detected in MV4-

11 and the resistant lines.  

 

                                                                                                       IC50 (nM)                                 
Drugs Structure MV4-11 MV4-11-R MV4-11+FLT3 ligand* MV4-11-Survivin
ABT-869 3-aminoindazole 6 52 40 > 200
FLT3 Inhibitor III 5-phenyl-2-thiazolamine 26 83 1300 713
AG 1296 tyrphostin 1657 > 7,000   > 7,000 > 10,000
SU5416 3-substitued indolinone 270 3039 3076 > 10,000
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Treatment of MV4-11-R cells with ABT-869 still lead to inhibition of FLT3 

phosphorylation (Figure 3.1C), but it was not completely abolished as in MV4-11 

parental cells under the same treatment condition.  

 

 

Figure 3.1. Comparison of the expression of phosphorylated FLT3 receptor, 
total FLT3 receptor and multi-drug resistant related proteins (LRP, 
MRP1 and MDR) among the parental MV-11 and resistant lines. R1, R2 
and R3 induicate MV4-11-R1, MV4-11-R2 and MV4-11-R3 respectively. 
(A) Immunoprecipitation (IP) and immunoblot analysis reveals that there is no 
significant difference in the expression of p-FLT3 and FLT3 receptor among 
MV4-11 and MV4-11-R1, -R2 and –R3. IP was performed using anti-FLT3 
antibody, followed by Western blot with anti-p-Tyrosine antibody. The same 
blot was then stripped and reprobed with anti-FLT3 antibody. (B) Western 
blot and FACS analysis found the expression of LRP, MRP1 and MDR was 
not varied significantly among MV4-11 and MV4-11-R1, -R2 and –R3. (C) 
MV4-11 and MV4-11-R cells were treated with ABT-869 at dose of 0, 5, 10, 
20 nM for 1 hour. IP and Western blot were performed as the same way as 
described above.   
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3.3.3. Identification of enhanced activation of STAT pathways and 

overexpression of survivin in the resistant lines 

To explore possible novel mechanisms of resistance, we utilized a real-time PCR-

based approach to profile and compare the gene expression among MV4-11 cells 

and the 3 resistant lines. The list of all differentially expressed genes more than 2-

fold among them was shown in Table 3.2. Based upon low density array analysis, 

FLT3 ligand (FLT3LG) and BIRC5 (Survivin) were up-regulated about 2-fold, while 

suppressor of cytokine signaling (SOCS) family (SOCS-1, -2, -3) were down-

regulated 2-fold (Table 2). Consistent with the transcriptional changes, FLT3LG and 

survivin also were elevated and SOCS1 and SOCS2 were reduced at the protein 

level by Western blot analysis (Figure 3.2A). The level of decrease reduction in 

SOCS1 and SOCS2 expression was quantified by densitometry analysis.   

 

Table 3.2.   Differentially expressed genes in MV4-11-R vs MV4-11 
   

Gene - ID* RefSeq Fold Change 
Upregulation list    
BIRC5-Hs00153353_m1 NM_001012271.1 2.05 
FLT3LG-Hs00181740_m1 NM_001459.2 2.38 
ABL2-Hs00270858_m1 NM_005158.3 4.17 
ADK-Hs00417073_m1 NM_001123.2 2.22 
AMOT-Hs00611096_m1 NM_133265.2 41.67 
AQP3-Hs00185020_m1 NM_004925.3 2.75 
ATF3-Hs00231069_m1 NM_001030287.2 2.40 
AXL-Hs00242357_m1 NM_001699.3 3.97 
CCNA1-Hs00171105_m1 NM_001111045.1 2.33 
CCNB1-Hs00259126_m1 NM_031966.2 3.52 
CCNB2-Hs00270424_m1 NM_004701.2 2.02 
CDC25C-Hs00156411_m1 NM_022809.1 2.01 
CDC2-Hs00176469_m1 NM_001786.2 2.11 
CRISPLD2-Hs00230322_m1 NM_031476.1 2.06 
CXCL12-Hs00171022_m1 NM_199168.2 27.00 
EGF-Hs00153181_m1 NM_001963.3 10.33 
FIGF-Hs00189521_m1 NM_004469.2 4.67 
GATA1-Hs00231112_m1 NM_002049.2 2.29 
GTSE1-Hs00212681_m1 NM_016426.4 2.12 
MAF-Hs00193519_m1 NM_005360.3 35.00 
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MKI67-Hs00606991_m1 NM_002417.3 2.17 
PDGFC-Hs00211916_m1 NM_016205.1 2.07 
PGF-Hs00182176_m1 NM_002632.4 4.54 
PLK1-Hs00153444_m1 NM_005030.3 2.35 
TNFRSF12A-Hs00171993_m1 NM_016639.1 2.84 
VEGFC-Hs00153458_m1 NM_005429.2 11.33 
WT1-Hs00240913_m1 NM_024424.2 3.27 
ZNF331-Hs00218578_m1 NM_018555.4 2.96 
Downregulation list   
SOCS1-Hs00705164_s1 NM_003745.1 -2.01 
SOCS2-Hs00374416_m1 NM_003877.3 -2.43 
SOCS3-Hs00269575_s1 NM_003955.3 -2.38 
AES-Hs00171280_m1 NM_198970.1 -2.04 
AFF1-Hs00610550_m1 NM_005935.1 -6.57 
ANG;RNASE4-
Hs00265741_s1 NM_001145.2 -2.31 
BAMBI-Hs00180818_m1 NM_012342.2 -4.09 
BBC3-Hs00248075_m1 NM_014417.2 -3.17 
DUSP1-Hs00610256_g1 NM_004417.2 -2.67 
EGR1-Hs00152928_m1 NM_001964.2 -2.22 
EGR2-Hs00166165_m1 NM_000399.2 -2.26 
ETS1-Hs00428287_m1 NM_005238.2 -3.05 
FER-Hs00245497_m1 NM_005246.1 -2.32 
FGF7;FLJ30435-
Hs00173565_m1 NM_002009.2 -16.15 
FGFR4-Hs00242558_m1 NM_213647.1 -2.61 
FOS-Hs00170630_m1 NM_005252.2 -4.45 
HLA-DPA1-Hs00410276_m1 NM_033554.2 -19.08 
HLA-DRA-Hs00219578_m1 NM_019111.3 -12.98 
ICAM1-Hs00277001_m1 NM_000201.1 -2.27 
ICAM2-Hs00609563_m1 NM_000873.2 -2.22 
IRF1-Hs00233698_m1 NM_002198.1 -2.56 
KLF4-Hs00358836_m1 NM_004235.3 -2.97 
MLL;GAS7-Hs00245902_m1 NM_201432.1 -2.56 
NCOR2-Hs00196955_m1 NM_001077261.1 -2.40 
NGFRAP1-Hs00276273_s1 NM_206915.1 -3.81 
NOTCH1-Hs00413187_m1 NM_017617.2 -3.42 
NTRK3-Hs00176797_m1 NM_001007156.1 -235.85 
PTEN-Hs00829813_s1 NM_000314.4 -2.04 
RGS2-Hs00180054_m1 NM_002923.1 -2.01 
SMAD1-Hs00195432_m1 NM_001003688.1 -409.84 
TGFA-Hs00177401_m1 NM_003236.1 -7.31 
TP53I3-Hs00153280_m1 NM_147184.1 -2.19 
*ID denotes the TaqMan Gene Expression Assays  
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Since the SOCS family is a negative regulator of STAT pathway,21 we hypothesize 

that that STAT pathways would be up activated in the resistant lines. Indeed, 

Western blot analysis confirmed the overexpression of p-STAT1, p-STAT3 and p-

STAT5 in the resistant lines compared to the parent MV4-11 (Figure 3.2B), which 

suggest that STAT activity is constitutively enhanced in the resistant lines. It is 

interesting to note that wild type STAT1, but not wild type STAT3 and STAT5, was 

also increased in the resistant lines, which likely resulted from intensified STAT1 

activity (p-STAT1), since STAT1 itself has been identified as one of the STAT1 target 

genes (Figure 3.2B). In addition to the STAT pathways, PI3K/AKT and MAPK 

signaling pathways also play an important role in promoting cell survival and 

proliferation; however, p-AKT and p-ERK1/ERK2 were not overexpressed in the 

resistant lines (Figure 3.2B).   

 

Aberrant methylation of SOCS genes have been reported in AML and solid tumors, 

19,22 so we further determined whether this epigenetic changes caused 

downregulation of SOCS genes in MV4-11-R cells. The expression of SOCS1, 2, 

and 3 genes was restored by the demethylating agent 5-aza treatment in MV4-11-R 

cells, but essentially not changed in MV4-11 parental cells, suggesting SOCS 

promoters in MV4-11 parental cells are not sensitive to demethylating therapy 

(Figure 3.2C).   

 

We have looked at the 3 most widely studied survivin splice variants,17 and RT-PCR 

analysis showed that all 3 transcripts appeared to be upregulated with the normal 

transcript (431 bp) as the dominant transcript in the resistant lines (Figure 3.2D), 

however, the expression of other variants is unknown in our resistant lines.23 
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Figure 3.2. Validation of FLT3LG, survivin and SOCS1 and SOCS2 expression 
and STAT pathway overactivation at the translational level, RQ-PCR 
quantification of SOCS gene family and confirmation of normal 
transcript of Survivin in MV4-11-R cells. MV4-11 and MV4-11-R cells were 
washed, then lysed and subjected to 10% to 12% SDS-PAGE. Western blots 
were detected with the indicated antibodies for the assessment of expression 
level changes in (A) FLT3LG, survivin, SOCS1, and SOCS2. Densitometric 
analysis was performed using Amersham Image Scanner with LabScan 
ImageQuant TL Software (Amersham Biosciences, Piscataway, NJ). The 
protein levels of SOCS1 and SOCS2 were normalized with each respective 
actin level. (B) Western blot analysis of STAT, AKT and MAPK pathway 
molecules.  (C) MV4-11 parental and MV4-11-R cells were seed at density of 
2 x 105/ml in 10 ml culture medium and treated with PBS control and 3 µM 
(final concentration) of 5-aza. Fresh medium was changed and new drug was 
added everyday. After 3 days, cells were harvested, washed with 1 x PBS 
twice. Then the pellets were lysed, followed by RNA extraction and RQ-PCR. 
(D) RT-PCR confirmed the overexpression of Survivin transcripts in resistant 
lines. The size of normal transcript is 431 bp and two other transcript 
variants-Survivin-2B and Survivin-∆Ex3 are 500 bp and 329 bp respectively 
(upper panel). GAPDH was used as internal control (lower panel).  
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3.3.4 Upregulation of survivin in MV4-11-R cells resulted in changes in cell 

cycle and apoptosis 

Survivin has dual roles in suppressing apoptosis and modulating cell cycle.24 We 

sought to investigate the influence of upregulated survivin on cell cycle and 

apoptosis in MV4-11-R cells. After serum deprived for 48 hours, MV4-11 parental 

cells and MV4-11-R cells were transferred into complete medium for additional 24 

hours. Flow cytometric analysis revealed that MV4-11 parental cells had a 

significantly decreased S phase population (6.5% vs 17.8%, p < 0.01), but a 

dramatically increased G2/M phase population (49.6% vs 20.3%, p < 0.01) as 

compared to MV4-11-R cells. 

 

Furthermore, there were 4.5 times more dead cells in MV4-11 cells than in MV4-11-

R cells as determined by the trypan blue dye exclusion method at the end of serum 

depletion 48 hours. Taken together, these results suggest that overexpression of 

survivin in MV4-11-R cells leads to accelerated S phase shift and resistance to 

apoptosis. 

 

3.3.5. FLT3 ligand mediated STAT activities and survivin expression 

To mimic the overexpression of FLT3LG in the resistant cells, we cultured the parent 

MV4-11 cells with increasing concentration of FLT3 ligand in the cell culture for 48 

hours. Additional FLT3 ligand stimulation fairly elevated the expression level of p-

STAT1, p-STAT3 and p-STAT5 (Figure 3.3A). The expression of survivin was also 

increased in a concentration-dependent manner in response to FLT3 ligand 

stimulation (Figure 3.3A). To test if leukemia cells can be protected by FLT3 ligand, 

we treated MV4-11 cells with the same panel of FLT3 inhibitors in the presence of 50 

ng/ml of FLT3 ligand in culture medium for 48 hours. Adding FLT3 ligand rendered 
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MV4-11 cells resistance to all the FLT3 inhibitors tested, though the degree of  IC50 

increment varied (Table 3.1). 

 

The FLT3 ligand exists in membrane-bound and soluble forms, which are both 

biologically active. To test whether secreted soluble form of FLT3 ligand by MV4-11-

R cells contributes to resistance, we first harvested conditioned medium from MV4-

11-R cells incubated in complete medium for 12 hours, Then, MV4-11 cells were 

washed twice with 1xPBS and cultured in conditioned medium for 2, 4 and 6 hours, 

followed by Western blot analysis. As shown in Figure 3.3B, incubation in 

conditioned medium resulted in elevated expression of p-FLT3, p-STATs and 

survivin.  

 

To investigate the effect of downregulation of FLT3 ligand, MV4-11-R cells were 

treated with a FLT3 ligand neutralizing antibody for 48 hours, and cell viability was 

analyzed. Figure 3.3C showed the viable cell number was significantly decreased 

and apoptotic cell number was significantly increased in FLT3 ligand neutralizing 

antibody treated samples as compared to untreated or isotype control treated 

samples. As expected, in neutralizing antibody treated samples, the expression of p-

FLT3, p-STATs and survivin was reduced (Figure 3.3D).  

 

These data suggest that FLT3 ligand plays an important role in mediating the 

resistance to FLT3 inhibitors.   
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Figure 3.3. The effect of FLT3LG on activity of STAT signaling pathway and the 
expression of survivin. (A) MV4-11 cells were cultured with FLT3 ligand for 
48h, then were washed, lysed and subjected to either IP of p-FLT3 receptor 
as described in Figure 1 or 10% to 12% SDS-PAGE. (B) MV4-11 cells were 
cultured in conditioned medium for 0, 2, 4, and 6 hours. Cells were then 
washed, lysed and followed by IP and immunoblot analysis. (C) MV4-11-R 
cells were treated with FLT3LG neutralizing antibody and istotype control 
antibody for 48 hours. Viable cells and apoptotic cells were counted by by the 
trypan blue dye exclusion method. (D) After counting, cells were then 
washed, lysed and followed by IP and immunoblot analysis. Densitometric 
analysis was performed for p-STAT5 using Amersham Image Scanner with 
LabScan ImageQuant TL Software. 
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3.3.6. Modulation of survivin expression influenced drug sensitivity  

To demonstrate the critical role of survivin in the regulation of resistance, we used a 

pool of shRNA to specially target survivin. Western blot analysis confirmed specific 

inhibition of survivin by approximately 80% with the pool of survivin-shRNAs (Figure 

3.4A,). Silencing survivin remarkably potentiated ABT-869-induced apoptosis in 

MV4-11-R cells when compared to control shRNA treatment (p < 0.001). On the 

contrary, MV4-11 parental cells, in the presence of IC50 dose of ABT-869, are not 

sensitive to Survivin-shRNA (p > 0.05)  (Figure 3.4B). 

 

To further confirm the role of survivin in drug resistance, we evaluated the effect of 

overexpression of survivin in transfected MV4-11 parental cells. The stable 

transfectants (MV4-11-Survivin) showed overexpression of survivin protein (Figure 

3.4C). MTS assays revealed an exceptional increase in resistance to the panel of 

FLT3 inhibitors in MV4-11-Survivin cells (Table 3.1). 

 

Taken together, these data unequivocally demonstrated that survivin is crucial in 

mediating resistance to FLT3 inhibitors.   
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Figure 3.4. Knockdown of Survivin potentiated ABT-869 induced apoptosis in 
MV4-11-R cells.  (A) MV4-11-R cells were treated with non-target control 
shRNA or Survivin shRNA pools for 48h, and then harvested for Western blot 
analysis. Actin level served as loading controls. Densitometric analysis was 
performed using Amersham Image Scanner with LabScan ImageQuant TL 
Software. The level of survivin was normalized with each actin level.  (B) 
Following knockdown, MV4-11-R cells were treated with ABT-869 at dose of 
50, 100, 200 nM and MV4-11 parental cells were treated with ABT-869 at 
dose of 5, 10 and 20 nM for 48 h.  As residual expression of survivin persists 
after treatment of survivin shRNA, it may provide some level of protection 
from a full scale apoptosis.   Apoptosis was measured by Annexin V-FITC 
binding assay. p-values demonstrate the comparison between survivin-
shRNA and control-shRNA treated group. All p-values of MV4-11-R samples 
are less than 0.001. All p-values of MV4-11 samples are greater than 0.05. 
Means for three replicated experiments; bars represent standard deviation 
(SD). (C) Immunoblot analysis of the survivin protein level in MV4-11-Survivin 
and MV4-11 vector control cells.  

 

3.3.7. Indirubin derivative (IDR) E804 induced apoptosis through inhibition of 

STAT pathway and survivin and sensitized MV4-11-R to ABT-869 

Next, we screened a panel of small molecule inhibitors of CDKs, SRC, BCR-ABL, 

and JAKs including IDR E804, Tyrene CR4, AG490, JAK3 Inhibitor II, and NU6140. 

We found that MV4-11-R cells are most sensitive to IDR E804, an inhibitor of SRC-
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STAT3 pathway, using MTS assay (data not shown). IDR E804 treatment dose-

dependently induced MV4-11-R cells to undergo apoptosis (Figure 3.5A). Western 

blot analysis also showed that IDR E804 inhibited the expression of p-STAT1, p-

STAT3, p-STAT5 and completely blocked survivin (Figure 3.5B). It is worthy to note 

that IDR E804 completely inhibits survivin in the absence of complete inhibition of p-

STATs, This apparently incongruous inhibition could be due to the fact that survivin 

expression is regulated in a cell cycle dependent manner and rapidly decline in 

G1/G0 phase and IDR E804 significantly arrested MV4-11-R cell in G1/G0 phase 

(p<0.01). Furthermore, cleaved PARP, a hallmark of apoptosis, was detected at 

concentrations of 100 nM and higher (Figure 3.5B). Notably, IDR E804 did not inhibit 

FLT3-ITD kinase activity (Figure 3.5B), so its cytotoxicity to MV4-11-R cells was 

derived specifically from targeting STAT pathway and survivin.  The IC50 value of 

ABT-869 in MV4-11-R decreased from 52 to 6 nM calculated by CalcuSyn software 

in the presence of a sub-therapeutic concentration (2 nM) of IDR E804, suggesting a 

synergistic effect (Figure 3.5C, p<0.01).  Whereas, the same combination treatment 

did not augmented the inhibition effect in MV4-11 parental cells as compared to ATB-

869 alone (Figure 3.5C, p>0.05). These results are in accordance with the data 

obtained by shRNA study as above.  In order to confirm the molecular mechanism of 

synergism via targeting STAT-Survivin pathway, we further tested the effect of lower 

doses of IDR E804 on MV4-11-R cells, IDR E804 from 2 to 20 nM inhibited the STAT 

activities and the expression of survivin in a dose-dependent fashion.  About 23% 

reduction of survivin was observed at 2 nM of IDR E806 as compared to the control 

treatment. 

 



68 
 

 

 

 

 

 

 



69 
 

 

 

Figure 3.5.  IDR E804 induced apoptosis and sensitized MV4-11-R to ABT-869. 
(A) Two million cells of MV4-11-R were treated with either DMSO control or 
IDR E804 at concentrations of 100 and 200 nM for 48h. Cells were then 
washed and stained with Annexin-V-FITC for apoptosis assay. The shown 
graphs represent 3 independent experiments. (B) MV4-11-R cells (10 x 106) 
were cultured with DMSO control or IDR E804 at concentrations of 50, 100, 
200, 400 nM for 48 h. The IP of p-FLT3 receptor was performed as in Figure 
1.  Cells were washed, lysed and subjected to 10% to 12% SDS-PAGE. 
Western blots were detected with the indicated antibodies for the assessment 
of the expression level changes in STAT pathway molecules and Survivin, 
PARP, and cleaved PARP. Actin was used as a loading control.  (C) MV4-11-
R and MV4-11 cells were treated with various concentrations of ABT-869 
alone or together with 2 nM IDR E804 for 48h. MTS assay was used to 
determine the viable cell number. Means are shown for three replicated 
experiments. (D) After parental MV4-11 cells were transiently transfected with 
pEGFP empty vector or pEGFP-STAT3 for 48h, RNA was extracted, followed 
by cDNA synthesis and relative quantification by RQ-PCR. The baseline 
expression of STAT3 and survivin in MV4-11 cells transfected with pEGFP 
vector was set as 1.0. The relative quantification of STAT3 in MV4-11 cells 
transfected with pEGFP-STAT3 was 354.6 ± 35 from 3 independent 
experiments. (E) ChIP assays were done using anti-STAT3 antibody or 
control anti-IgG antibody. PCR primers for the survivin gene promoter were 
applied to detect promoter fragment in immunoprecipitates. PCR controls 
included total sheared chromatin (total input), DNA isolated through the 
negative control IgG-ChIP and no DNA at all (H2O). 

 

3.3.8. Survivin was a direct target of STAT3 
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We examined whether STAT3 directly regulated survivin. In transient transfection 

studies with pEGFP-STAT3, we showed that forced expression of STAT3 in MV4-11 

cells induced expression of survivin about 30-fold calculated by relative quantification 

RQ-PCR, as compared to pEGFP vector (Figure 3.5D). To test whether STAT3 could 

bind the survivin promoter, we performed ChIP assays in MV4-11-R cells. The 

amplified survivin promoter DNA was present in chromatin immunoprecipitated with 

an anti-STAT3 antibody (Figure 3.5E).  

 

3.3.9. In vivo efficacy of IDR E804 in combination with ABT-869 for treatment of 

MV4-11-R mouse xenografts 

Based on the in vitro results that IDR E804 could sensitize the resistant line to ABT-

869, we tested the combination of IDR E804 and ABT-869 in a subcutaneous mouse 

xenograft model in vivo. MV4-11-R tumors in mice treated with vehicle control 

developed rapidly up to 3569 ± 619 mm3 after two weeks.  Growth of tumors in mice 

treated with a single agent (ABT-869 or IDR E804) was reduced to 2189 ± 211 mm3 

and 1588 ± 368 mm3, respectively  (Figure 3.6A). However, in the combination 

group, tumors size did not increase and was kept at 158 ± 16 mm3 throughout the 

course of treatment. The anti-tumor effects of the combination were significantly 

better when compared to single agent or control (all p<0.001).  

 

In addition to reducing TV by about 22-fold compared to vehicle control, combination 

therapy demonstrated significant biochemical effects on MV4-11-R xenografts tumor. 

Histological examination of tumor specimens showed that ABT-869 alone had 

minimal impact on the expression of survivin (Figure 3.6B, top panel) whereas IDR 

E804 alone  triggered a modest decrease in survivin-positive cells (brown color) 

compared with tumors from vehicle control. However, the combination therapy 
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markedly inhibited the number of survivin-positive cells compared with either single 

agent treatment (Figure 3.6B, top panel, Figure 3.6C, left panel, all p<0.001). In 

agreement with these data, a significant decrease in expression of Ki67 (Figure 3.6B 

and 3.6C, middle panels) and an increase in the number of cleaved PARP-positive 

cells (Figure 3.6B, bottom panel, Figure 3.6C, right panel) were observed in tumor 

sections from ABT-869 plus IDR E804–treated mice compared to tumors from mice 

receiving either treatment alone. Together, these data demonstrate a potent in vivo 

anti-leukemic effect of ABT-869 in combination with IDR E804 and support the 

potential clinical utility of combing ABT-869 with inhibitors of the STAT signaling 

pathway in the treatment of TKI-resistant AML.  
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Figure 3.6.  In vivo effect of combination therapy on the MV4-11-R tumor 
xenograft model. (A) Combination of ABT-869 with IDR E804 achieved 
impressive regression of tumor growth compared to either vehicle control or 
single treatment (ABT-869 or IDR E804) alone (all p<0.001). (B) Excised 
tumor pieces from each group were embedded in paraffin and stained with 
anti-survivin (S), anti-Ki67 (K) and anti-cleaved PARP (C). Photographs are 
representative of similar observations in 3 different mice receiving same 
treatment. (C) Quantitative analysis of the expressions of survivin, ki67 and 
cleaved PARP in IHC sections from each group shown in (B). The survivin 
index, ki67 index and cleaved PARP were calculated as the percentage of 
positive staining cells of total nucleated cells in a 400x field. A total of 10 
fields for each index were counted. Bars indicate SD.  Statistical comparison 
and associated p values are indicated by the broken lines in each 
photograph.  

 

3.4. Discussion 

FLT3 mutations represent one of the most common genetic lesions in AML. FLT3 

inhibitors, like CEP-701, PKC412, MLN518, SU11248, or ABT-869 are in different 

phases of clinical development as monotherapy or in combination studies.1,2,4,5,7,8,15  

It is predictable that patients could develop resistance to RTK inhibitors after a long 

period of monotherapy as suggested by the clinical use of Gleevec. A number of 

point mutations in the KD were identified in murine Ba-F3-FLT3-ITD cells  which led 

to resistance to these agents.10,25 It is also found that overexpression of FLT3-ITD 

proteins in one resistant subline of Ba-F3-ITD lead to resistance to PKC412.26 

 

However, so far, acquired point mutations are a rare event in patient samples in 

FLT3 inhibitor clinical trials.12 Here, for the first time, we report the enhanced 

activation of STAT pathway and overexpression of survivin as a novel mechanism of 

resistance to ABT-869 and other FLT3 inhibitors. The resistance can be overcome 

by inhibition of the STAT pathway or by targeting survivin, thereby inducing MV4-11-

R cells to undergo apoptosis and resensitizing them to ABT-869 in vitro and in vivo.  
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We first excluded the overexpression of multi-drug resistant-related efflux proteins 

such as MDR, MRP1, by flow cytometric analysis and LRP by Western blot analysis 

in our MV4-11-R1, -R2, -R3 cell lines. We also did not find point mutations in the 

FLT3 KD by sequencing analysis. In addition, overexpression of total FLT3 receptors 

was not evident in the resistant lines. These results are consistent with the findings 

from Piloto et al. where three different human leukemia cell lines and various FLT3 

inhibitors were used.13 

 

STAT pathways have been intensively investigated in cancer biology, because they 

regulate an array of fundamental cell functions such as survival, proliferation, 

differentiation, apoptosis and immunity.27  Aberrant activation of STAT pathways, 

particularly STAT3, STAT5 and less frequency STAT1, has been found in the 

majority of solid tumors and hematological malignancies, including AML.28,29  We 

demonstrated hypermethylation of SOCS genes correlating lower expression status 

and restored expression by 5-aza treatment in MV4-11-R cells, indicating the 

epigenetically regulated, transcriptional silencing plays an important role in the 

development of resistance. SOCS proteins are the part of key pathways that 

negatively regulate STAT signaling.21  SOCS inhibits STAT pathways either by 

directly competing for binding with STAT proteins to receptor complex, or by 

degradation of upstream JAK kinase or competing binding with JAK protein.30  So 

overactivation of STAT pathways in MV4-11-R cells results from, at least in part, 

decreasing expression of SOCS molecules as revealed by LDA analysis, rendering 

their resistance to FLT3 inhibitors. The observation that the activity of PI3K/AKT and 

MAPK pathways are not enhanced in the resistant lines relative to the parent MV4-

11 cells further supports the importance of STAT-mediated resistance in MV4-11-R 

cells.  
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Both soluble and membrane-bound FLT3 ligand isoforms are biologically active. 

FLT3 ligand in conjunction with other cytokine growth factors, like granulocyte 

colony-stimulating factor (G-CSF), granulocyte macrophage-CSF (GM-CSF) and 

thrombopoietin (TPO), stimulates survival, proliferation, and differentiation of 

hematopoietic stem and progenitor cells (HSPC).31 Specifically, FLT3 ligand has 

potent direct-acting stimulating/costimulating activities on myeloid stem/progenitor 

cells.32 Compelling evidence shows that the existence of an autocrine FLT3LG/FLT3 

loop promotes proliferation and prevents apoptosis of primary AML blasts and AML 

cell lines.33-35  In MV4-11-R cells, upregulation of FLT3 ligand triggers a stronger 

autocrine reaction, thus further enhancing STAT pathway activity and survivin 

expression, which is supported by observations of elevated phosphorylated proteins 

and survivin in the parental MV4-11 cells stimulated with FLT3LG in a cell culture 

system.  

 

Survivin (encoded by BIRC5), the smallest member of inhibitor of apoptosis protein 

(IAP) family,36 has been identified as the fourth most highly expressed transcript in 

cancer 37 and is one of the most cancer-specific molecules. Survivin is detected in a 

broad spectrum of different types of tumors, but is undetectable in most terminally 

differentiated normal tissues,24 except a number of normal tissues, particularly those 

high proliferative and self renewal rates, i.e., hematopoietic cells, neuronal stem 

cells, keratinocyte, and mucosal epithelial cells.23,38  Survivin antagonizes apoptosis 

through stabilization of X-linked IAP (XIAP), another member of IAP family, against 

proteasomal degradation.24 Overall, strong survivin expression has been associated 

with shorter disease-free or overall survival in the majority of patients with 

hematological malignancies and solid tumors.18,24,38,39 Moreover, survivin proves to 
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be a direct downstream target gene in BCR-ABL positive cells.40,41 Several studies 

indicate survivin plays an important role in resistance to (1) paclitaxel in ovarian 

cancer,42 (2) antiandrogen therapy in prostate cancer,43 and (3) doxorubicin in thyroid 

cancer.44 Here we demonstrate that increased expression of survivin contributes to 

acquired resistance to a molecularly targeted therapy (a FLT3 inhibitor), expanding 

its role in mediating resistance to conventional chemotherapy. Survivin has been 

identified as a direct target of the STAT3 transcription factor in primary effusion 

lymphoma,45 breast cancer46 and endothelial cells stimulated with interleukin-11 (IL-

11).47  Now we confirm this relationship in AML, and provide further understanding 

that STAT3 directly binds and regulates the survivin promoter. The continuous 

activation of STAT3 signaling in the FLT3 inhibitor-resistant AML cells enhances the 

expression of survivin and grants resistance to apoptosis.  

 

STAT pathways and survivin play a pivotal role in oncogenesis and have been 

validated as targets for cancer therapy.48,49 Targeting survivin by shRNA induced 

apoptosis and augmented ABT-869-mediated toxicity in MV4-11-R cells. On the 

contrary, overexpression of survivin in MV4-11 cells leads to remarkable resistance 

to the panel of FLT3 inhibitors.  These results are consistent with the previous finding 

that silencing survivin by RNA interference (RNAi) restores sensitivity to doxorubicin 

in resistant thyroid cancer cells.44 IDR E804 has been shown to inhibit the SRC-

STAT3 pathway and to down-regulate survivin in breast cancer cells.50  In our study, 

treatment with IDR E804 prompts MV4-11-R cells to undergo apoptosis as 

demonstrated by an increase in Annexin-V binding assay and in the 89-KD fragment 

of PARP, which is responsible for DNA breakage. The inhibitory effect of IDR E804 is 

not only on STAT3 activity, but it also abolishes STAT1 and STAT5 activity, which 

could possibly reinforce its cytotoxicity to MV4-1-R cells. A sub-therapeutic 



77 
 

concentration of IDR E804 signifcantly resensitizes MV4-11-R cells to ABT-869 

treatment. This synergism is not evident in the parental MV4-11 cells. The animal 

experiments provide further evidence to support the therapeutic benefit of targeting 

STAT pathways and survivin. The dramatically inhibition of tumor growth in mice 

treated with the combination therapy is correlated with almost complete 

disappearance of survivin expression and signifcantly increased expression of 

cleaved PARP, as well as a decrease in the number of Ki67-positive (an indictor of 

proliferation) cells in tumor specimens from the combination therapy group compared 

to either single agent treatment alone.  

 

The in vitro co-culture resistance model mimics the clinical practice of targeted 

agents given on a chronic dosing schedule.  it recapitulates to a certain extent the 

clonal heterogeneity in clinical tumors where resistant clones emerge as oligo-clonal 

population and eventually expand, and therefore may reflect the natural course of 

many cancers which later relapse after initial therapy.  However, it may also signify 

underlying clonal heterogeneity and other potential resistance mechanism(s) are yet 

to be identified. 

 

In conclusion, our results suggest a novel mechanism of resistance to the FLT3 

inhibitor ABT-869. In this model depicted in Figure 3.7, upregulation of FLT3 ligand 

and methylation silencing of the SOCS family integrate to enhance STAT signaling 

activity and overexpression of survivin, in turn suppressing apoptosis and promoting 

survival, which leads to a resistant phenotype. Understanding the mechanism of 

resistance to FLT3 inhibitors could help develop new antileukemic agents or uncover 

compelling combinations. Our data strongly support the combination of FLT3 

inhibitors with agents targeting STAT pathway or survivin such as small molecular 
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inhibitors or shRNA and may represent a novel strategy to minimize resistance or 

resensitize resistant cells to FLT3 inhibitors in AML patients with FLT3-ITD mutation.  

 

 

 

Figure 3.7.  A model of enhanced STAT activation and overexpression of 
survivin leading to resistant phenotype in MV4-11-R cells.  
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Chapter 4.  The combination of HDAC Inhibitors and a FLT-3 inhibitor, ABT-

869, induce lethality in acute myeloid leukemia cells with FLT3-ITD 

synergistically through PRL-3 downregulation 

 
4.1. Introduction 
 
Acute myeloid leukemia (AML) is a heterogeneous clonal disease characterized by 

relentless overgrowth of immature myeloid blasts. Internal tandem duplication of fms-

like tyrosine kinase 3 (FLT3-ITD) mutation occurs in about 25% of AML patients and 

is associated with poor prognosis.1-4 Various FLT3 inhibitors of different chemical 

structure are under clinical investigation for the treatment of AML patients with FLT3 

mutations. In contrast to their impressive potency in cell culture system, current FLT3 

inhibitors as single agent in clinical trials predominantly induce transient reduction of 

peripheral blasts, but not bone marrow blasts.5 Combination with other small 

molecule drugs represents a promising strategy to improve therapeutic efficacy of 

FLT3 inhibitors in clinic.  

 

Histone acetylation and deacetylation, controlled by the balance of histone 

acetyltransferase (HAT) and histone deacetylase (HDAC), play a key role in 

regulating gene expression by changing chromatin structure.6,7 Small molecule 

HDAC inhibitors (HDACi) have proven to be a promising new class of anticancer 

drugs against hematological malignancies, as well as solid tumors.8,9 Suberoylanilide 

hydroxamic acid (SAHA, Vorinostat) is the first HDACi that obtained US FDA 

approval for the treatment of relapsed or refractory cutaneous T-cell lymphoma 

(CTCL).10 SAHA has been shown to alter several key genes involved in the 

regulation of cell cycle, apoptosis and differentiation, notably including the induction 
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of p21WAF1,11 TBP-2,12 TGFβ receptors type I,13 ASK1,14 Bim,15  and reduction of 

TRX,12 nuclear factor-kappaB,16 and c-Myc.17   

 

As a potent HDACi, SAHA has also been examined in a combinatory fashion with 

other different class of anticancer agents in acute leukemias. Combination of SAHA 

with cyclin-dependent kinase (CDK) inhibitor flavopiridol results in marked apoptosis 

through the downregulation of short-lived pro-survival proteins XIAP and Mcl-1 in 

U937 leukemia cell and primary AML cells.18 Co-exposure of  17-allylamino- 17-

demethoxygeldanamycin (17-AAG), a HSP90 antagonist, with SAHA induces 

profound mitochondrial damage and apoptosis through the inactivation of ERK 

activity and a block in p21WAF1 induction in U937, HL60 and Jurkat leukemia cells.19 

Furthermore, inactivation of Akt and activation of c-Jun N-terminal kinase (JNK) has 

been identified as the mechanism of synergistic antileukemic effect between 2-

medroxyestradiol (2-ME) and SAHA in leukemia cell lines and primary human 

leukemia cells.20 These data suggests that combination of SAHA with different types 

of antitumor therapies might engage distinct molecules and signaling transduction 

pathways.   

 

ABT-869, a multiple receptor tyrosine kinase inhibitor, inhibits FLT3 phosphorylation 

and signaling and is now in active clinical cancer therapeutic development.21 We 

previously reported that synergism between ABT-869 and chemotherapy results from 

disruption of cell cycle-regulated genes and MAPK pathway.22 We hypothesized that 

combining ABT-869 with HDACi would lead to synergistic killing of AML cells with 

FLT3 mutations. In this study, we show that this combination have synergistic anti-

leukemic activity in both conventional as well as stroma co-culture system. We 

further investigated the potential underlying molecular mechanisms for this 
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synergism. This study identified PRL-3, a metastasis-associated gene, as an 

important mediator of drug resistance and the suppression of PRL-3 was an 

important mechanism for the synergism between ABT-869 and SAHA.  

 
4.2. Materials and Methods 
 
4.2.1. Cell lines and primary patient samples 
 
MV4-11 and MOLM-14 cells were cultured with RPMI1640 (Invitrogen, Carlsbad, CA) 

supplemented with the addition of 10% of fetal bovine serum (FBS, JRH Bioscience 

Inc, Lenexa, KS) at density of 2 to 10 x 105 cells/ml in a humid incubator with 5% 

CO2 at 37ºC. Bone marrow (BM) blast cells (>90%) from newly diagnosed AML 

patients were obtained at National University Hospital (NUH) in Singapore with 

informed consent. Three samples harboring FLT3-ITD mutation were reported 

previously.22 Thawed cells were cultured in EGM™-2 medium (Cambrex, 

Walkersville, MD) supplemented with SingleQuots® (Cambrex) growth factors, 

cytokines  (hFGF, hEGF, Hydrocortisone, GA-1000 , VEGF, R3-IGF-1) with or in 

absence of drug incubation.  

 

4.2.2. Drugs and chemicals 

ABT-869 was kindly provided by Abbott Laboratories (Chicago, IL). ABT-869 was 

dissolved in DMSO at concentration of 10 mM as stock kept in -20ºC. SAHA was 

purchased from BIOMOL (Plymouth Meeting, PA). Valproic acid (VPA) and 

Pentamidine was supplied by Sigma-Aldrich (St. Luis, MO).   

 

4.2.3. Cell proliferation assays 

Leukemic cells were seeded in 96-well culture plates at a density of 2 × 104 viable 

cells/100 µl/well in triplicates, and were treated with ABT-869, SAHA, VPA or 
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combination therapy. Colorimetric CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (MTS assay, Promega, Madison, WI) was used to determine the 

cytotoxicity. The absorbance of each well was recorded at 490 nm using an 

Ultramark® 96-well plate reader (Bio-Rad, Hercules, CA). The percentage of viable 

cell was reported as the mean of optical density (OD) of the treated wells divided by 

the mean of OD of DMSO control wells after normalization to the signal from wells 

without cells.  IC50 was determined by MTS assay and calculated with CalcuSyn 

software (Biosoft, Cambridge, UK). Each experiment was triplicated.  

 

4.2.4. Human Stromal cell coculture system 

HS-5 human stromal cells were seeded at 1x105 per well in a 24-well plate one day 

in advance. MV4-11 and MOLM-14 cells were seeded at 4 x105
 in a cell culture insert 

(Becton Dickinson Labware, Franklin Lakes, NJ) placed into the 24-well plate with 

HS-5 cells, followed by treatment with various concentrations of ABT-869 and SAHA 

alone or in combination. After incubation for 48 hours, leukemia cells were subjected 

to MTS assay.  

 
4.2.5. Combination index calculation   
 
The calculation of combination index (CI) was analysed with the CalcuSyn software. 

Briefly, the CI values were calculated according to the levels of growth inhibition 

(Fraction affected, Fa) by each agent individually and combination of ABT-869 with 

SAHA or VPA. CI <1 illustrates synergism, and CI >1 indicates antagonism and 

additivity CI = 1. Constant ratio combinations of the two drugs at 0.25x, 0.5x, 1x, 2x 

and 4x of their ED50 was used. Three independent studies were conducted for each 

combination. 

 
4.2.6. Apoptosis assay 
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MV4-11 and MOLM-14 cells were cultured in the presence of either ABT-869, SAHA 

alone or in combination for 48 hours. Cells were washed twice with 1xPBS, stained 

with Annexin V/Propidium Iodide (PI, BD PharMingen, San Jose, CA), and 

immediately analyzed by flow cytometry.  

 
4.2.7. Western blot analysis 
 
Preparation of the cell lysate and immunoblotting were performed as previously 

described.24  Antibodies used were as follows: anti-acetylated H3, anti-acetylated H4, 

anti-poly (ADP-ribose) polymerase (PARP), and anti-cleaved PARP from Cell 

Signalling Technology (CST, Danvers, MA); anti-Actin, anti-p21, from Santa Cruz 

Biotechnology (Santa Cruz, CA).  

 
4.2.8. Microarray study  
 
For the microarray experiments, MV4-11 and MOLM-14 cells were treated with 

DMSO control, ABT-869 3 nM, SAHA 6 µM and combination therapy for 24 hours. 

Cells were then washed in PBS and high-quality total RNA was extracted RNeasy 

Midi Kit, according to the manufacturer’s instruction (Qiagen, Valencia, USA). RNA 

quantity, quality, and purity were assessed with the use of the RNA 6000 Nano 

assay on the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara CA, USA).  

 

Gene expression profiling was performed using Affymetric U133plus2.0 gene chip 

(Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s protocol. The 

scanned data was processed using MicroArray Suite version 5.0 (MAS) 

(Affymetrix).The gene expression data was then log-transformed, median centered 

and analysed using the Genespring GX 7.3.1 software (Agilent Technologies). 

Sequential filtering was employed to select genes for subsequent analysis. First, 
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non-expressed probesets (assigned an absent or marginal flag by MAS) were 

excluded. The remaining probesets were subjected to ANOVA across the samples. 

The probesets with significant variation with a corrected p-value of less than 0.05 

after multiple testing corrections using the Benjamini and Hochberg methods were 

used for subsequent comparative analysis. Three lists of genes with 2 fold or more 

difference in gene expression between treatment and control will be generated as 

follows: ABT-869 alone versus DMSO control, SAHA alone versus DMSO control 

and ABT-869 plus SAHA versus DMSO control. These gene lists were then analyzed 

using Venn Diagram to identify genes that are uniquely differentially expressed in the 

ABT-869 and SAHA combination. This analysis is done separately for the MV4-11 

and MOLM-14 cell lines and the final gene lists are genes that are unique to the 

ABT-869 and SAHA combination in both cell lines.  

 

The gene lists were also subjected to network analysis using a web-based software 

Metacore (Genego Inc, St Joseph, MI). Metacore contains an interactive, manually 

annotated database derived from publications on proteins and small molecules that 

allows for representation of biological functionality and integration of functional, 

molecular, or clinical information. Several algorithms to enable both the construction 

and analysis of gene networks are integrated as previously described.24 

 
4.2.9. Real-time quantitative (RQ)-PCR 
 
A number of related genes identified from microarray analysis, including PRL-3, 

MND1, ZNF85, S100A8, were validated by RQ-PCR. The primers were designed 

with PirmerQuestSM (Integrated DNA Technologies, Coralville, IA, USA). The 

sequences of these primers were summarized in Table 1. Power SYBR® Green 

PCR Master Mix is used as recommendation by the manufacturer (Applied 



88 
 

Biosystems, Foster City, CA).  β-actin was used as internal control.  SDS 1.4 

software (Applied Biosystems) is used to perform relative quantitation (RQ) of target 

genes using the comparative CT (∆∆CT) method. 

 
4.2.10. Construction and infection of PRL-3-expression vector 
 
The human full-length cDNA of PRL-3 was purchased from Open Biosystems 

(Huntsville, AL) and inserted into EcoRI/BamHI sites of lentivirus pLVX-puro vector 

(Clontech, Mountain View, CA), This pLVX-puro-PRL3 construct was validated by 

sequencing. Plasmid vectors were transfected into HEK 293T/17 packaging cells 

(ATCC) using LentiphosTM HT protocol (Clontech, PT3984-2) as recommended by 

the manufacturer. High-titer viral particle-containing medium were harvested 48 hr 

after transfection and used to infect MV4-11 cells with 10 µg/mL polybrene. Two 

days after infection, cells were transferred to fresh medium constituting 90% 

RPMI1640, 10% Tet System Approved FBS (Clontech) and 2 µg/mL puromycin 

(Millipore, Billerica, MA) for selection of transduced cells.   

 

Table 4.1.  The sequences of primers used in real-time PCR.   
 
 

 

 
 
4.3. Results 
 
4.3.1. Synergistic cytotoxicity of combination of ABT-869 and SAHA in 
leukemia 
  

Gene                   Forward Primer                               Reverse Primer
PRL-3 5'-AGA AGG ATG GCA TCA CCG TTG T-3' 5'-ACT TCA TCC CGC TCT CAA TAA GCG-3'
ORC1L 5'-TTC TCG GAG ATC ACC TCA CCT TCT-3' 5'-AGCTGC AAT TCG GGT TCT CAG GAT-3'
ZNF85 5'-TAC AGA AAC CTG GTC TTC CTG GGT-3' 5'-ATA TTC TGC TCC GGC CAA AGG TCT-3'
MND1 5'-GGA GAA GAT TGC TCC CAA AGA GAA AGG C-3' 5'-TTC CGA TCC TCT CAC AGT CAA CCA-3'
LMO4 5'-GTC CCG GGA GAT CGG TTT CAC T-3' 5'-ATG GGA TCC ACC TGT GAT GAA CAA A-3' 
β-Actin 5'-ATG TGG CCG AGG ACT TTG ATT-3' 5'-AGT GGG GTG GCT TTT AGG ATG-3'
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We first determined the effect of HDACi on MV4-11 and MOLM-14 cells. Leukemia 

cell lines were treated with SAHA at increasing doses of 1 to 16 µM or VPA at 

escalating concentration of 250 µM to 4 mM for 48 hours. MTS assays were used to 

determine the inhibition of cell proliferation. The ED50 of SAHA on MV4-11 and 

MOLM-14 were 11 µM and 9 µM respectively as determined by CALCUSYN 

software. The ED50 of VPA on MV4-11 and MOLM-14 were 1 and 2.3 mM 

respectively. Then, we set about determining whether concurrent exposure of MV4-

11 and MOLM-14 cells to ABT-869 and SAHA would result in enhanced cytotoxicity. 

As shown in Fig.4.1, the CI values at ED50, ED75 and ED90 ranged from 0.6 to 0.87, 

indicating synergistic effect. To confirm that the interaction was not specific to SAHA, 

we further examined the combination of ABT-869 with VPA in these two cell lines. 

Again, the CI values arrayed from 0.16 to 0.73, representing highly synergistic to 

synergistic interactions (Fig.4.1).  

 
A ABT-869+SAHA in MV4-11

CI:   0.60    0.68    0.87         

ED50 ED75 ED90

B

CI:   0.79   0.72   0.67         

ED50 ED75 ED90

ABT-869+SAHA in MOLM-14

C ABT-869+VPA in MV4-11

CI:   0.16    0.31   0.61         

ED50 ED75 ED90

D
ABT-869+VPA in MOLM-14

CI:   0.79    0.72   0.67        

ED50 ED75 ED90
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Figure 4.1.  Antileukemic effect of combination of ABT-869 with SAHA or 

VPA on leukemia cell lines with FLT3-ITD mutations. Combination 
indexes (CIs) quantitatively described the interactions between ABT-
869 and SAHA in MV4-11 cells (A), MOLM-14 cells (B), as well as the 
interactions between ABT-869 and VPA in MV4-11 cells (C), MOLM-
14 cell (D).   The X-axis is CI values and Y-axis is inhibitory effect by 
the combination of two drugs. ED stands for effect dosage. The CI 
values at ED50, ED75 and ED90 values of two drugs were inserted into 
the figures. These results were generated by CalcuSyn software. 
Synergism is defined as the combination of two agents produces 
greater than expected additive effect (CI < 1), antagonism as smaller 
than expected additive effect (CI >1 ) and  as additive effect (CI = 1).   
(E) Percentage of apoptosis induced by ABT-869 alone, SAHA alone, 
and combination treatment. The experiments were triplicated.  

 
Because SAHA is more potent than VPA, we chose SAHA as a representative 

HDACi in the rest of the study. To determine whether the combination therapy 

produce synergism in induction of apoptosis, the Annexin-V/PI double staining was 

used to assess MV4-11 and MOLM-14 cells treated with ABT-869 and SAHA. 

Although exposure of MV4-11  and MOLM-14 cells to either ABT-869 or SAHA alone 

at indicated doses did not induce significant Annexin-V positive cells, the 

combination therapy stimulated a marked increase in apoptosis in both cell lines. 

(p<0.01, Fig.4.1E).  

 

HDAC inhibitors have been shown to induce total acetylated H3, acetylated H4 and 

the expression of p21, a cell cycle G1 inhibitor, in various cancer cells.12 We therefore 
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assessed the effect of different treatments on these molecules in MV4-11 and 

MOLM-14 cells. As shown in Fig.4.2, significant upregulation of acetylated H3 and 

acetylated H4 protein was observed in both SAHA and combination treatment, but 

not in ABT-869 single treatment. As expected, markedly increased levels of p21 

proteins was induced by SAHA in MV4-11 and MOLM-14 cells. It is interested to note 

that combination treatment did not induce p21 expression in MV4-11 cells, but 

stimulated a moderate increase in MOLM-14 cells. Importantly, individual drug 

exposure leaded to modestly cleaved PARP, in contrast, a remarkable cleaved 

PARP occurred in cotreatment of ABT-869 and SAHA, indicating a marked lethality 

as cleavage of PARP is a hallmark of apoptosis cascade.   

 

Ctrl       ABT      SAHA   Comb

Actin43 KDa

MV4-11

Acetyl-H317 KDa

Acetyl-H411 KDa

21 KDa p21

FL PARP

C-PARP

116 KDa

89 KDa

43 KDa

17 KDa

11 KDa

21 KDa

116 KDa

89 KDa

MOLM-14
Ctrl       ABT      SAHA   Comb

 

Figure 4.2.  Western blot analysis of acetylation of H3, H4 and expression of 
p21, cleaved PARP in MV4-11 and MOLM-14 cells. Actin was used 
as loading control.  

 

We tested whether the interactions in cell lines also were validated in primary human 

leukemia. Primary cells from 3 patient with FLT3-ITD were incubated with either 

ABT-869 (20, 40, 80, 160, 320 nM), or SAHA (100, 200, 400, 800, 1600 nM) alone 

and in combination. The CI values of these patient samples with FLT-ITD mutations 

are 0.50 to 0.82, indicative of synergism between the two agents on a primary AML 

specimen with FLT3-ITD mutation.  
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4.3.2. Effect of ABT-869 plus SAHA on MV4-11 and MOLM-14 and stromal cell 

coculture system 

The bone marrow microenvironment acts as a sanctuary site for leukemia cells, by 

providing survival signals, secretion of growth factors, proangiogenesis factors and 

direct adhesion molecule interactions.25 Therefore, bone marrow stroma-mediated 

effect could play a role in the less-than-expected potency of FLT3 inhibitors in clinical 

trials. A membrane separated coculture system was used to mimic the bone marrow 

microenvironment. In the presence of human HS-5 stromal cells, both MV4-11 and 

MOLM-14 displayed moderate a degree of resistance to ABT-869 alone, or SAHA 

alone as compared to conventional culture condition. However, co-treatment of MV4-

11 and MOLM-14 cells with ABT-869 and SAHA in HS-5 stromal cell coculture 

system achieved similar cytotoxicity as that accomplished in the absence of HS-5 

stromal cells (Fig.4.3A-D, p < 0.01).  

 

Taken together, these results support the notion that co-expsoure of SAHA could 

overcome bone marrow stroma-mediated resistance to FLT3 inhibitors.  
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Figure 4.3.  Effects of ABT-869 plus SAHA on stromal mediated resistance of 
MV4-11 and MOLM-14 cells. (A) Proliferation assay showing 
treatment of MV4-11 cells with ABT-869 and SAHA in absence of 
human stromal cell HS-5. (B) Proliferation assay showing treatment of 
MV4-11 cells with ABT-869 and SAHA in presence of human stromal 
cell HS-5. (C) Proliferation assay showing treatment of MOLM-14 cells 
with ABT-869 and SAHA in absence of human stromal cell HS-5. (D) 
Proliferation assay showing treatment of MOLM-14 cells with ABT-869 
and SAHA in presence of human stromal cell HS-5. Data shown 
represents means of three independent experiments ± SD.  

  
 

Taken together, these results support the notion that coexpsoure of SAHA could 

overcome leukemia cells acquired or bone marrow stroma-mediated resistance to 

FLT3 inhibitors.  

 
4.3.3. Identifying core gene signature crucial for the synergism between ABT-
869 and SAHA 
 
To elucidate the molecular mechanism of the synergistic lethality between ABT-869 

and SAHA, we compared the gene expression profiles of MV4-11 and MOLM-14 

cells treated with DMSO control, ABT-869, SAHA and combination therapy using 



94 
 

Affymetrix microarray platform. We focused on delineating a core set of gene 

signature unique and common to the combination therapy in both MV4-11 and 

MOLM-14, which could reveal important molecular insights into the therapeutic 

synergy we observed. Table 4.2 summarized the core gene signature differentially 

induced more than two-fold by combination therapy in both cell lines. The expression 

changes of some of the genes including PTP4A3 (Phosphatase of regenerating liver-

3, PRL-3), ORC1L, MND1, ZNF85 and LMO4 were confirmed by RQ-PCR on mRNA 

level (Fig.4A-E). To further validate the gene expression changes caused by 

combination therapy, Western blot analysis was performed for PRL-3.  

 

When these genes were analyzed using a network analysis tool, a network 

connecting several protein products of these genes can be constructed through a 

single intermediate molecule that is not in our list. Interestingly, this network 

suggests that over-expression of IFI16 lead to the activation of p53 which usually will 

trigger PTP4A3 over-expression as a pro-survival feedback signal to p53’s pro-

apoptotic signal (Figure 4.5). In our case, PTP4A3 is downregulated which may lead 

to potentiation of pro-apoptotic signals resulting in the synergism between SAHA and 

ABT-869.  
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Figure 4.4.  Real-time quantitative-PCR validation of some gene changes in 
the core gene signature identified by microarray studies. (A) RQ-
PCR quantification of PRL-3 gene.  (B) RQ-PCR quantification of 
OCRL1 gene.  (C) RQ-PCR quantification of MND1gene.  (D) RQ-
PCR quantification of ZNF85 gene. (E) RQ-PCR quantification of 
LMO4 gene.   
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Figure 4.5.   Metacore network analysis of core gene signature which is 

common in combination treatment in both MV4-11 and MOLM-14 
cells. Green line arrow indicates positive stimulation and red line 
arrow represents inhibition. 

 

 
Table 4.2.  The list of core gene signature identified by Affymetrix microarray 

studies of    MV4-11 and MOLM-14 cells treated with combination of 
ABT-869 and SAHA. 

 
 

 
 
 

Probe ID Gene Name Description Expression Change
1553743_at FAM119A family with sequence similarity 119, member A Downregulation 
212975_at DENND3 DENN/MADD domain containing 3 Downregulation 
209695_at PTP4A3 protein tyrosine phosphatase type IVA, member 3 Downregulation 
205085_at ORC1L origin recognition complex, subunit 1-like (yeast) Downregulation 
223700_at MND1 meiotic nuclear divisions 1 homolog (S. cerevisiae) Downregulation 
206572_x_at ZNF85 zinc finger protein 85 Downregulation 
225362_at FAM122B family with sequence similarity 122B Downregulation 
209608_s_at ACAT2 acetyl-Coenzyme A acetyltransferase 2 (acetoacetyl Coenzyme A thiolase) Downregulation 
221750_at HMGCS1 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble) Downregulation 
206632_s_at APOBEC3B apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B Downregulation 
213008_at KIAA1794 KIAA1794 Downregulation 
226817_at DSC2 desmocollin 2 Downregulation 
214297_at CSPG4 Chondroitin sulfate proteoglycan 4 (melanoma-associated) Downregulation 
228385_at DDX59 DEAD (Asp-Glu-Ala-Asp) box polypeptide 59 Downregulation 
1553972_a_at CBS cystathionine-beta-synthase Downregulation 
226181_at TUBE1 tubulin, epsilon 1 Downregulation 
1560023_x_at --- CDNA FLJ37333 fis, clone BRAMY2020106 Downregulation 
204072_s_at FRY furry homolog (Drosophila) Upregulation 
209205_s_at LMO4 LIM domain only 4 Upregulation 
228315_at --- CDNA clone IMAGE:5261213 Upregulation 
206332_s_at IFI16 interferon, gamma-inducible protein 16 Upregulation 
208966_x_at IFI16 interferon, gamma-inducible protein 16 Upregulation 
226030_at ACADSB acyl-Coenzyme A dehydrogenase, short/branched chain Upregulation 
202917_s_at S100A8 S100 calcium binding protein A8 (calgranulin A) Upregulation 
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4.3.4. PRL-3 protected cells from apoptosis induced by ABT-869, SAHA alone 
or the combination therapy 
 
PRL-3, a metastasis-associated gene, has been demonstrated to be oncogenic in 

several types of solid tumors. The finding that PRL-3 was significantly downreguated 

by combination therapy in both MV4-11 and MOLM-14 stimulated us to further 

explore the role of PRL-3 in synergistic cytotoxicity. We established a PRL-3 over-

expressing cell line, MV4-11-pLVX-puro-PRL3 and a control cell line, MV4-11-Vector 

Control. Cells were treated with ABT-869, SAHA at different concentration, or their 

combination for 48 hr, and the growth inhibition was then examined. As shown in 

Fig.4.6, cells transduced with PRL-3 were more resistant not only to ABT-869, SAHA 

single agent, but also to the combination therapy, as compared with cells transduced 

with empty vector.   
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Figure 4.6.  The effect of overexpression of PRL-3 in MV4-11 cells. MV4-11 
cells were transfected with vector control or pLVX-puro-PRL3 vector. 
Cells were treated with either ABT-869 alone, SAHA alone or 
combination therapy. MTS assay was used to determine the cell 
proliferation in different treatments. Data shown represents means of 
three independent experiments ± SD.  
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4.3.5. Targeting PRL-3 enhanced ABT-869-mediated cytotoxicity to MV4-11 and 
MOLM-14 
 
We next tested the effect of targeting PRL-3 on ABT-869-mediated cytotoxicity in 

MV4-11 and MOLM-14 cells. Pentamidine, an anti-protozoa drug used in clinical for 

leishmaniasis, has been discovered as an inhibitor of PRL phosphatases with 

anticancer activity.26 Therefore, we examined the effect of Pentamidine in these two 

leukemia cell lines. Pentamidine dose-dependently inhibited proliferation of MV4-11 

and MOLM-14 cells with both IC50 around 3 µM after 72 hour incubation as 

determined by MTS assay. To further confirm the role PRL-3 in the synergism, we 

evaluated the effect of targeting PRL-3 by Pentamidine in ABT-869-mediated 

cytotoxicity. It is noteworthy that both MV4-11 and MOLM-14 cells were showed 

significantly increased cytotoxicity to ABT-869 in presence of 1 µM of Pentamidine, 

as compared to ATB-869 treatment alone (p < 0.001 in both cell lines, Fig.4. 7). 
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Figure 4.7.     Pentamidine potentiating ABT-869-mediated cytotoxicity on MV4-
11 and MOLM-14 cells. Cells were treated with ABT-869 alone or in 
additional of 1 µM of Pentamidine for 72 hours. MTS assay was used 
to determine the relative cytotoxicity of different treatments. Data 
shown represents means of three independent experiments ± SD.  

 
 

4.3.6. Association between PRL-3 expression and FLT-ITD mutation in AML 

Oncomine is a web-based cancer microarray database, including 10000+ cancer 

transcriptome profiles.  A search of the Oncomine database (January 09) revealed 

that PRL-3 was significantly overexpressed in FLT3-ITD positive AML as compare in 

FLT3-ITD negative AML (Figure 8, study name: Valk_leukemia, 78 vs 206 cases, p-

value: 1.2E-07),28 indicating the association between PRL-3 expression and FLT-ITD 

mutation. Hence, it may suggest a potential role of PRL-3 in the poor prognosis of 

patients with FLT3-ITD mutation.  
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Figure 4.8. Comparison of PRL-3 expression between FLT3-ITD negative 
(Class 1) and FLT3-ITD positive (Class 2) AML patients. The box 
plot was generated by Oncomine based on the study of Valk P, et al. 
(reference 28) 

 

4.4. Discussion 
 
FLT3 mutations represent one of the most common genetic abnormalities in AML.  

More than dozen FLT3 inhibitors have been developed since the discovery of FLT3 

mutations in 1996.5,29 Although they generally lack sustainable efficacy in most 

clinical trials when utilised as monotherapy, several FLT3 inhibitors are now actively 

evaluated in combination with other therapeutic agents in preclinical and clinical 

trails. On the other hand, HDACi have shown anticancer effect against a broad range 

of solid tumors and hematological malignancies, and the first HDAC inhibitor, SAHA 

(Zolinza™, Merck & Co.) has been approved by the FDA for cutaneous T-cell 

lymphoma.7,10 The antitumor activities of HDACi are generally ascribed to changes in 
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gene expression by modification of histone or non-histone protein acetylation. 

However, the precise molecular mechanisms of HDACi, such as SAHA, remain 

unclear. Herein, we demonstrate that ABT-869 and SAHA or VPA induced 

synergistically antileukemic effect against FLT3-ITD positive cell lines as well as 

primary AML patient cells. Furthermore, the combination therapies overcome stroma-

mediated resistance to ABT-869 single agent. Importantly, we further identify a core 

gene signature, including a metastasis-associated gene PRL-3, which is responsible 

for the synergism.  

 

The PRL-3 (also known as PTP4A3) gene encodes a 22-kDa tyrosine phosphatase 

that has been implicated in tumorigenesis and metastasis.30,31 Saha et al.32 

uncovered a dramatically differential expression pattern of PRL-3 between primary 

and metastatic colorectal carcinomas (CRCs). This landmark study reported 

exceptionally higher expression of PRL-3 in liver metastatic CRCs as compared to 

non-metastatic CRCs and normal colon epithelium.32  Mechanistic studies reveal that 

PRL-3 functions as an initiator of neoplastic angiogenesis by recruiting endothelial 

cells33 and stimulates invasion and motility of tumor cells through activating Rho 

family of small GTPases such as RhoA and RhoC.34 Increasing activities of Src 

kinase and PI3K/AKT signaling pathway via negative feedback regulation of C-

terminal Src kinase (Csk) and PTEN tumor suppressor gene respectively by PRL-3 

also contribute to its oncogenic role.35-37  Recently, PRL-3 is identified as a 

downstream target gene of p53 and dose-dependently regulates cell-cycle 

progression, highlighting a fundamental role of PRL-3 in tumor development.38  In 

contrast to extensive studies in solid tumors, the role of PRL-3 in hematological 

malignancies is less appreciated. To our knowledge, only one study reported that 

PRL-3 promotes human multiple myeloma (MM) cell migration and overexpression in 
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a subsets of MM patients assessed by gene expression profiling.39 Herein, for the 

first time, we show that modulation of PRL-3 expression plays an important role in 

synergistically antileukemic effect of co-treatment of ABT-869 and SAHA in FLT3-

ITD positive AML. Importantly, there is a close association between PRL-3 

expression and FLT-ITD mutation in AML as revealed by a study of Valk P et al.28 in 

Oncomine database. However, the potential role of PRL-3 in the FLT3-ITD positive 

leukemogenesis and exact mechanism(s) of mediating drug resistant remain elusive 

and are under further investigation in our group.     

 

Amongst the other genes constituting the signature, there are other interesting 

candidates. It is well known that cell proliferation is tightly regulated and uncontrolled 

cell proliferation leads to development of cancer. The origin recognition complex 

(ORC) is a highly conserved protein complex composed of 6 subunits in eukaryotic 

cells and is the primary recognition protein for DNA replication.40 In our core gene 

signature identified in this study, human ORC1L [ORC, subunit 1-like (yeast)] gene is 

significantly downregulated by combination therapy. ORC1L appears to control the 

cell growth and the initiation of DNA replication through E2F1 (E2F transcription 

factor 1)-Rb (retinoblastoma protein) network, which is essential for cell-cycle G1/S 

phase transition.41  Importantly, silencing OCR1 by RNA interference inhibits 

proliferation of vascular smooth muscle cells.42 Taken together, these data support a 

role for the suppression of ORC1L in contributing synergism in this study.    

 

IFI16 is a member of the HIN-200 (hematopoietic interferon-inducible nuclear 

antigens with 200 amino acid repeats) family of cytokines, which has been implicated 

in the regulation of cellular senescence-associated cell growth arrest and 

differentiation of myeloid progenitor cell.43,44 Studies have indicated that increased 
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expression of IFI16 are associated with  inhibition of colony formation and cell growth 

or increased apoptosis in bone and cartilage tumor cell,45 head and neck squamous 

cell carcinoma,46 prostate cancer,47 medullary thyroid cell48 and breast cancer cell.49 

Specifically in hematopoietic system, ectopic expression of Notch signaling induces 

G0/G1 cell-cycle arrest followed by apoptosis in human erythroleukaemic TF-1 cells, 

as well as normal CD34+ cord blood cells. Investigation of the mechanism reveals it 

is associated with upregulation of IFI-16 expression, but not modulation of other cell-

cycle regulators such as p15, p16, p21, p27, CDK4 or CDK6.50 In this regard, it may 

be that upregulation of IFI-16 could promote apoptosis, thereby facilitating the 

synergistic killing of MV4-11 and MOLM-14 cells.  

 

Our observations provide a molecular basis for synergism of combination of ABT-

869, a FLT3 inhibitor, with SAHA, a HDAC inhibitor, in FLT3-ITD positive AML cell 

lines and primary AML patient samples and reveal that the alteration of core gene 

signature including downregulation of PRL-3, OCR1L, ACAT2 and upregulation of 

IFI16, to name a few, contributes the potentiation. Our results also demonstrate that 

the cotreatment of ABT-869 and SAHA can overcome acquired resistance or stroma-

mediated resistance to ABT-869 single agent raising the possibility that such 

combination therapies may significantly improve the therapeutic efficacy of FLT3 

inhibitors in clinic.  
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