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SUMMARY 

Chinese and Asian Indians while both often described as “Asians”, show 

significant differences in the prevalence of Type 2 Diabetes Mellitus (T2DM) and insulin 

resistance. Thiazolidinediones act to improve the insulin sensitivity in T2DM. The main 

objective of this study was to assess the effect of Rosiglitazone on the insulin sensitivity 

of Asian type 2 diabetic patients of two different ethnic groups, Chinese and Indians. We 

measured the insulin sensitivity in Asian type 2 diabetic subjects using euglycemic 

hyperinsulinaemic clamp before and after 16 week treatment with 4 mg Rosiglitazone. 

We studied the effect of Rosiglitazone on anthropometry, glycaemic control and insulin 

sensitivity. We also studied various adipokines especially adiponectin in its different 

molecular weight forms and other biochemical changes, including dynamic changes in 

IGFBP-1.  

 

Eighteen Asian type 2 diabetic patients participated in the study.  All subjects 

underwent a euglycemic-hyperinsulinemic glucose clamp before and after completion of 

16-week Rosiglitazone treatment. The anthropometric and metabolic variables are 

measured. Total and high molecular weight (HMW) adiponectin, and IGFBP-1 were 

measured by commercially available ELISA kits. The various other adipokines were 

measured using a novel Bio-Plex ProTM Human Diabetes Assay. 

 

Our study showed that there was a significant ethnic difference in insulin 

sensitivity in response to Rosiglitazone in Asian Indian type 2 diabetic patients compared 

to Asian Chinese.  Indians had greater improvement in insulin sensitivity despite greater 

increase in total body weight and percent body fat, waist circumference and waist hip 
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ratio. There was no ethnic difference in improvement in glycaemic control measured by 

fasting plasma glucose, haemoglobin A1c between two ethnic groups.  

 

Asian Indians had higher levels of total adiponectin and lower levels of high 

molecular weight adiponectin compared to Chinese. However, Asian Indian type 2 

diabetic subjects had a lower Adiponectin index compared to Chinese. This would 

suggest that Adiponectin index may be a better indicator for insulin sensitivity in Asian 

type 2 diabetic subjects. Both ethnic groups showed a similar increase in the Adiponectin 

index after Rosiglitazone treatment but Asian Indians continued to have a significantly 

lower Adiponectin index than Chinese even after the treatment. There was an acute 

dynamic suppression of adiponectin, both total and high molecular weight, in both 

Chinese and Indian type 2 diabetic patients undergoing euglycemic hyperinsulinemic 

clamp. The suppression was similar before and after Rosiglitazone treatment in both 

ethnic groups. 

 

Asian type 2 diabetic patients had low levels of IGFBP-1 at the baseline despite 

having low levels of insulin. The dynamic changes seen in IGFBP-1 in relation to serum 

insulin (hysteresis loop) changed after Rosiglitazone treatment in both ethnic groups.  
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Chapter 1: Introduction 

The prevalence of diabetes has been increasing remarkably worldwide and is 

projected to rise further in the first quarter of this century. A recent WHO report 

estimated that the global burden of diabetes would more than double from 171 million in 

2000 to 366 million in 2030(Wild et al., 2004) . India is estimated to have almost 80 

million people with diabetes in 2030 from 31.7 million in 2000 and China is estimated to 

have 42.3 million in 2030 from 20.8 million in 2000. The country with the highest 

number of people with diabetes is estimated to be India followed by China (King et al., 

1998; King and Rewers, 1993; Wild et al., 2004). These ethnic groups, Chinese and 

Asian Indians, while both often described as “Asians”, are fast becoming the two most 

affected ethnic groups in the world in terms of diabetes.   

 

Epidemiological studies has shown consistently that people from the Indian 

subcontinent are peculiarly susceptible to diabetes mellitus and have a markedly 

increased predisposition to cardiovascular disease compared to Caucasians even when 

exposed to similar environmental condition (Joshi et al., 2007; Mather and Keen, 1985; 

McKeigue et al., 1989; Ramachandran et al., 1992; Swinburn et al., 1991). Singapore has 

a population with 3 major ethnic groups: Chinese, Malay and Indians. Singapore has one 

of the highest prevalence of type 2 diabetes mellitus in the world. According to the 

Singapore National Health survey 2004, the prevalence of diabetes in Singapore has 

increased from 1.9 % in 1975 to 8.2 % in 2004 (Ministry of Health, 2004; Tan et al., 

1999). There is also an ethnic difference in the prevalence of type 2 diabetes mellitus in 

Singapore. The prevalence is significantly higher among Indians compared to the other 

ethnic groups, Chinese and Malays (Hong et al., 2004). The risk of ischaemic heart 

disease associated with diabetes mellitus also differs between ethnic groups and the risk 
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in Indian is higher than for Chinese and Malays in Singapore (Heng et al., 2000; Yeo et 

al., 2006). This ethnic difference cannot be explained by differences in classical risk 

factors. 

 

The pathogenesis of Type 2 Diabetes Mellitus (T2DM) is thought to involve 

insulin resistance and insufficient insulin secretion from pancreatic beta cells. There is 

evidence that the relative contribution of these 2 pathogenic factors is different in the 

various ethnic groups (Laws et al., 1994; McKeigue et al., 1991). Asian Indians are 

significantly more insulin resistant than other ethnic groups and the risk of diabetes starts 

to increase rapidly at levels of body mass index or waist circumference well in the 

acceptable range of body mass index or waist circumference for Caucasians. Therefore, it 

is crucial to recognize insulin resistance especially in Asian Indians.  

 

The accurate, reliable and reproducible quantification of insulin resistance in vivo 

is clearly important for prevention, diagnosis, treatment, monitoring of the follow ups and 

evaluation of the response to drugs in these Asian Indians. The euglycemic 

hyperinsulinemic clamp technique is the gold standard method to measure insulin 

sensitivity because it directly measures insulin action on glucose utilization under steady-

state conditions (Bergman et al., 1985; Del Prato, 1999; Ferrannini and Mari, 1998). A 

number of simple indices have been developed using fasting plasma glucose and insulin 

concentrations to derive indices of insulin sensitivity from a mathematical model such as 

the homeostasis model assessment (HOMA) (Matthews et al., 1985), the fasting insulin 

resistance index (FIRI) (Duncan et al., 1995) and the quantitative insulin sensitivity check 

index (QUICKI)(Katz et al., 2000) or  index which measure their ratios (Rabasa-Lhoret 

and Laville, 2001). These indices are indirect methods of measuring insulin sensitivity. 
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Although there may be good correlation of the results on insulin sensitivity between these 

indices and euglycemic hyperinsulinemic clamp, none of the results obtained from these 

indices reveal the exact same information as the direct measurement of insulin sensitivity 

using euglycemic hyperinsulinemic clamp. In addition, in diabetic subjects, the 

correlation of these indices and the euglycemic hyperinsulinemic clamp was much lower 

than the non-diabetic population (Avignon et al., 1999; Matsuda and DeFronzo, 1999). 

Therefore, the results from these indices can provide a misleading evaluation in type 2 

diabetic patients where the fasting glucose and insulin levels may be very variable. 

Currently, the euglycemic hyperinsulinemic clamp technique is the most frequently 

applied technique and is accepted as the “gold standard” for the in vivo assessment of 

insulin sensitivity especially in diabetics (Bergman et al., 1985; Del Prato, 1999; 

Ferrannini and Mari, 1998). 

 

A previous study in my supervisor’s laboratory used the euglycaemic 

hyperinsulinaemic clamp technique to assess insulin sensitivity in healthy, lean, 

nondiabetic young Asians living in Singapore and demonstrated that insulin sensitivity 

was lower in Indians compared to Chinese and Caucasians (Liew et al., 2003). This 

ethnic difference in insulin sensitivity may explain the epidemiological observation that 

Asian Indians have a significantly higher prevalence of type 2 diabetes mellitus.  

 

Thiazolidinediones or peroxisome proliferator-activated receptor-gamma (PPARγ) 

agonists are a class of drugs for the treatment of T2DM, which act to improve the insulin 

sensitivity of peripheral tissues (adipose tissue, liver and skeletal muscle) (O'Moore-

Sullivan and Prins, 2002; Olefsky, 2000; Olefsky and Saltiel, 2000). Currently, 

Rosiglitazone and Pioglitazone are the only two main thiazolidinediones available. The 



                                                                                                    4 
 

thiazolidinediones increase peripheral glucose utilization in skeletal muscle, increase fatty 

acid uptake and reduce lipolysis in adipose cells. This ultimately leads to a reduction in 

fasting and post-prandial plasma glucose, insulin and circulating free fatty acid (FFA) 

levels, thus sparing the toxic effects of FFA and glucose on liver and muscle (Olefsky, 

2000).  

 

Thiazolidinediones has been shown to lower HbA1c and fasting plasma glucose 

levels when used as monotherapy or in combination with a sulfonylurea or metformin 

(O'Moore-Sullivan and Prins, 2002). Only a few studies have used the euglycaemic clamp 

to evaluate the effect of Rosiglitazone on the insulin sensitivity (Hallsten et al., 2002; 

Miyazaki et al., 2001b). The addition of Pioglitazone to sulfonylurea-treated type 2 

diabetic patients showed that Pioglitazone improved hepatic and peripheral tissue 

sensitivity to insulin and thereby decreased fasting and postprandial plasma glucose levels 

in type 2 diabetic patients (Miyazaki et al., 2001b). Rosiglitazone improves insulin 

responsiveness in resting skeletal muscle and doubles the insulin-stimulated glucose 

uptake rate during physical exercise in patients with T2DM. Among these few studies, the 

majority involved T2DM patients of Caucasian origins (Hallsten et al., 2002).  

 

Thiazolidinediones have also been shown to increase high density lipoprotein 

cholesterol (HDL-C) and reduce triglycerides. Rosiglitazone has been reported to increase 

low density lipoprotein  cholesterol (LDL-C) slightly, primarily the larger buoyant form, 

while decreasing small dense LDL-cholesterol (Lebovitz et al., 2001).  

  

Thiazolidinediones may also ameliorate the insulin resistance by promoting 

adipocyte differentiation and increasing the number of small adipocytes that are more 
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sensitive to insulin. In addition Thiazolidinediones favorably mediate the secretory profile 

of the adipokines. Thiazolidinediones upregulate adiponectin by generating small 

adipocytes that abundantly express and secrete adiponectin and/ or directly activating the 

adiponectin gene transcription (Picard and Auwerx, 2002; Smith, 2003; Spiegelman, 

1998). Adiponectin exerts a potentiating effect by binding to its receptor adiponectin 

receptor-1 and adiponectin receptor-2, leading to activation of AMPK, thereby decreasing 

gluconeogenesis in the liver and ameliorating insulin resistance(Tsuchida et al., 2004).  

 

Adiponectin is a recently described collagen-like adipocytokine synthesized by 

white adipose tissue. Adiponectin is abundant in human plasma, with concentrations 

ranging from 2 to 20μg/ml, thus accounting for approximately 0.01% of total plasma 

protein. This concentration is three orders of magnitude higher than concentrations of 

most other hormones (Arita et al., 1999).  

 

Adiponectin circulates in the plasma as trimeric, hexameric and high molecular 

weight (HMW) forms.  Previous studies have suggested that different isoforms of 

adiponectin have different biological activities (Pajvani et al., 2003; Tsao et al., 2003; 

Waki et al., 2003). Although there is controversy over the relative biological activities 

among these isoforms, studies have suggested that the HMW form may be more 

biologically active compared to other lower molecular weight forms. It has been shown 

that the adiponectin oligomer distribution, the ratio of high molecular weight to total 

adiponectin, rather than its absolute levels may be more correlated with insulin sensitivity 

(Pajvani et al., 2004).  

Many studies have shown a relationship between adiponectin and insulin 

sensitivity (Kubota et al., 2002; Takahashi et al., 2000). Lower plasma levels of 
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adiponectin have been documented in human subjects with obesity, type 2 diabetes 

mellitus, or coronary artery disease (Arita et al., 1999; Hotta et al., 2000; Kumada et al., 

2003). Studies have demonstrated that treatment with Rosiglitazone in type 2 diabetic 

patients increased plasma adiponectin levels (Yang et al., 2001) and also improved 

insulin sensitivity and glycemic control and thus may potentially protect them from 

macrovascular complications. 

 

Rosiglitazone has also been shown to decrease circulating leptin (Miyazaki et al., 

2004), resistin (Jung et al., 2005) and pro-inflammatory adipocytokines such as tumor 

necrosis factor-α (TNF- α), interleukin-6 (IL-6),  (Kim et al., 2007), (Miyazaki and 

Defronzo, 2008) and Plasminogen Activator inhibitor – 1 (PAI-1) levels (Dolezalova et 

al., 2007) in patients with T2DM. Thus, through actions to enhance insulin-mediated 

glucose uptake, through direct effects, or both, thiazolidinediones improve the metabolic, 

vasoactive, inflammatory, and thrombotic milieu to potentially retard the atherosclerotic 

process. These pleiotropic actions of thiazolidinediones have far-reaching implications 

because type 2 diabetes and cardiovascular complications, such as coronary heart disease 

and stroke, account for well over a third of all deaths in developed countries.  

 

The insulin like growth factors (IGFs) are present in most body fluids and 

circulate in the blood bound to specific binding proteins which modulate their activities 

(Baxter, 1993; Rajaram et al., 1997; Rosenfeld et al., 1990; Shimasaki and Ling, 1991). 

To date, a total of six IGF binding proteins (IGFBPs), IBFBP-1 to IGFBP-6 have been 

identified. They are a family of related soluble proteins that bind IGF with high 

specificity and affinity, and thereby regulate IGF dependent actions (Baxter, 2000; Firth 

and Baxter, 2002; Zapf, 1995).    
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Previous studies have suggested that IGFBP-1 concentrations are inversely related 

to insulin resistance or positively related to insulin sensitivity measured using either 

homeostatic model assessment of insulin resistance (HOMA-IR) or euglycemic 

hyperinsulinemic clamps. Studies in diabetic patients and non diabetic subjects have 

consistently suggested that IGFBP-1 is inversely correlated with increased levels of 

insulin and insulin resistance. However, with the exception of 1 early study (Suikkari et 

al., 1988), the studies done on the dynamic changes in IGFBP-1 levels were on non 

diabetic subjects. In addition, there are no studies done to determine the changes in 

IGFBP-1 and ethnic difference in response to insulin sensitizers. 

 

The effects of the thiazolidinediones on Asian populations with diverse ethnic 

groups have not been much studied. There is scarcity of data on metabolic parameters and 

responses to anti-diabetic medications in Asians compared to Western populations. In 

addition, there have not been any studies which investigated the possible ethnic difference 

in the response of subjects with T2DM to the administration of Rosiglitazone. Moreover, 

a previous study has shown a significant difference in insulin resistance between local 

non-diabetic Chinese and Indians. As thiazolidinediones act via the improvement of the 

insulin resistance of individuals with T2DM, it is conceivable that there is also an ethnic 

difference in its actions. To date, no published data is available on this issue.  
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Our present study aims to; 

1. To assess the effect of Rosiglitazone, a thiazolidinedione on the insulin sensitivity 

of T2DM patients of two different ethnic groups (Chinese vs. Indian) using the 

euglycaemic hyperinsulinaemic clamp. 

2. To assess the effects of Rosiglitazone on anthropometry, glycemic control, 

adiponectin and IGFBP-1 of T2DM patients of different ethnic groups. 
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Chapter 2: Literature Review 

2.1.  Ethnic Predisposition to Type 2 Diabetes 

The prevalence of diabetes in general and type 2 diabetes in particular, has 

increased over the years at an alarming rate in all Western countries. Similar trends have 

been observed in developing countries which are adopting a 'western life style'. This trend 

suggests the impact of environmental factors such as diet, obesity and physical activity on 

the pathogenesis of diabetes.  

 

The increase in diabetes varies in different ethnic groups. The WHO Ad Hoc 

diabetes report (1993) showed that within the chosen age range, diabetes was absent or 

rare (< 3%) in certain traditional communities in developing countries. Age-standardized 

prevalence varied from 3 to 10% in European populations and as high as 14 to 20% in 

migrant Asian Indian, Chinese, and Hispanic American populations. Type 2 diabetes was 

virtually unknown in rural Papua New Guinea (King and Rewers, 1993). In addition, 

studies conducted in multiethnic populations suggest that some ethnic groups such as 

Asian Indians might have a particular predisposition possibly on a genetic basis to 

develop type 2 diabetes when exposed to adverse environmental conditions. It is well 

known that Pima Indians of Arizona have the highest prevalence of Diabetes 

(Ramachandran et al., 1992). However these Pima Indians in Arizona, who are 

genetically related to those living in Northern Mexico, have a much higher prevalence of 

diabetes compared with the Mexican Pima Indians, 54% and 37% vs. 6% and 11% for 

men and women, respectively (Ravussin et al., 1994).  
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China, the largest developing country has experienced a fast socio-economic 

development in recent decades which has resulted in rapid modernization and 

urbanization. Simultaneously, the prevalence of diabetes in Chinese adults increased 

markedly. In the national diabetes surveys, the prevalence of diabetes in the Chinese adult 

population has increased from approximately 1% in 1980 to 2.5% in 1994 (Pan et al., 

1997). Then in the International Collaborative Study of Cardiovascular Disease in Asia 

conducted from 2000 to 2001, the prevalence had increased to more than 5%. In addition 

the results indicated that the prevalence was higher in urban, 7.8% compared to rural 

areas, 5.1% (Gu et al., 2003). Another population-based cross-sectional study of diabetes 

in Qingdao city showed a similar trend that prevalence was higher in the urban, 6.9%, 

compared to the rural population, 5.6% (Dong et al., 2005). Chinese in Hong Kong and 

Taiwan have 1.5 and 2.0 fold increased risk of diabetes compared to mainland 

counterparts, (Wong and Wang, 2006). Other national surveys consisting of Chinese in 

Singapore (Cutter et al., 2001; Thai et al., 1987) and Mauritius (Soderberg et al., 2005) 

showed 7-10% prevalence of diabetes which is comparable to those reported in other 

Chinese populations living in Westernized countries. 

 

India, the country with second largest population has also witnessed impressive 

economic and industrial development over the years. This industrialization has benefited 

the population in terms of a better living standard. However, the darker side of this 

advancement seems to be an increase in the incidence of lifestyle related disease, 

especially type 2 diabetes mellitus. A rising prevalence of type 2 diabetes has been noted 

in India since 1986 (Verma et al., 1986). A series of cross sectional surveys showed a 

rising trend in the prevalence of diabetes. The percentage of type 2 diabetic subjects 

increased from 5.2% in 1984 to 8.2% in 1995, 13.9% in 2000 and 18.6% in 2006 
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(Ramachandran et al., 1988; Ramachandran et al., 1992; Ramachandran et al., 1997). The 

prevalence of diabetes in southern India showed wide differences in the urban and the 

rural populations. Asian–Indians living in rural areas of India have a prevalence of 

diabetes of about 2.4%. Asian Indians living in urban India like areas of Madras have a 

prevalence of diabetes of about 8.2% (Ramachandran et al., 2008; Ramachandran et al., 

1992; Ramachandran et al., 2001; Ramachandran et al., 1997). A study from India 

(Tripathy et al., 1971) and the multicentre study by the Indian Council of medical 

Research (Ramaiya et al., 1990) have also shown a similar trend that the prevalence of 

diabetes is higher in urban areas compared to rural areas. 

 

Singapore has moved from the third world to the first world in terms of 

significantly elevating the standard of living of the population. This rapid transformation 

has presented important health challenges, such as a 4-fold increase in diabetes prevalence 

from 1.9% in 1975 to 8.2% in 2004. Singapore has a population with 3 major ethnic 

groups: Chinese (75.2%), Malay (13.6%) and Indians (8.8%). These Chinese and Indians 

were migrants from their native countries dating back to the 19th and 20th centuries. Of 

the Indians, 80% originate from the southern states of India. There has been an increasing 

prevalence of diabetes in Singapore from 1.99% in 1975 to 4.7% in 1984 and further 

increase to 8.2% in 2004 (Cheah et al., 1985; Hong et al., 2004; Thai et al., 1987). The 

increase in prevalence occurred in Chinese (4% in 1984 to 7.1% in 2004), Malays (7.6% 

in 1984 to 11% in 2004) and Indians (8.9 % in 1984 to 15.3% in 2004). The most 

prominent increase was in the Indians with an increase of 72%. This may indicate a 

genetic predisposition among the Indians, in addition to the effect of migration, as a high 

prevalence of diabetes has been found among migrant Asian Indians in many countries 

(Anand et al., 2000; Mather and Keen, 1985; Samanta et al., 1987; Simmons et al., 1989) 
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It is now well recognized that Asian Indians and Migrant Indians have a higher 

incidence of T2DM.  In addition, when Asian Indians do develop T2DM, the risk of 

cardiovascular complications is higher. The incidence of coronary artery disease in 

migrant Indians living in the United Kingdom and United States is estimated to be about 

1.5 to 10 folds higher compared to Caucasians and other ethnic groups (McKeigue, 1992; 

McKeigue et al., 1989). Similar findings have been reported from studies in Singapore. 

Indians had a significantly higher mortality from ischaemic heart disease than Malay and 

Chinese (Bhalla et al., 2006; Heng et al., 2000; Hughes et al., 1997; Hughes et al., 1990a; 

Tan et al., 1999) (Lee et al., 2008).  

 

The high prevalence of T2DM and cardiovascular disease in migrant and urban 

Asian Indians is not completely explained by the classical risk factors such as 

hypertension, hyperlipidemia, and smoking (McKeigue et al., 1989; Simmons et al., 

1992; Verma et al., 1986).  Some of the bad outcomes in Indians were attributed to the 

greater prevalence of diabetes mellitus (Hughes et al., 1990a; Hughes et al., 1990b). 

Therefore, these studies also point out the important issue that although 'westernization' 

has an important impact on the increasing prevalence of diabetes across all ethnic 

populations, there is an ethnic predisposition or susceptibility to develop diabetes. This 

susceptibility might be explained by factors related to genetic defects in either insulin 

action and/or insulin secretion. 
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2.2.  Ethnic Difference in Insulin Sensitivity 

T2DM is characterized by varying degrees of insulin resistance, and impaired β-

cell function.  Insulin resistance is characterized by failure of target organs to respond 

normally to action of insulin. Insulin resistance includes a central component which is 

incomplete suppression of hepatic glucose output and a peripheral component which is 

impaired insulin mediated glucose uptake in skeletal muscle and adipose tissue 

(DeFronzo, 1988; Pittas et al., 2004). Individuals with T2DM form a heterogeneous 

population. Certain patients have a predominant problem of insulin resistance while in 

others, β-cell dysfunction predominates. It has been suggested that the relative 

contribution of these 2 core pathogenic factors varies in different ethnic groups (Banerji 

and Lebovitz, 1992). In a large percentage of African Americans, beta cell dysfunction 

rather than insulin resistance has been reported to play an important role. On the other 

hand, Asian Indians have been shown to be significantly more insulin resistant than any 

other ethnic group (McKeigue, 1992). South Asian immigrants have a higher insulin 

resistance and hyperinsulinemia (Cruickshank et al., 1991; Dowse et al., 1990; McKeigue 

et al., 1991; Mohan et al., 1986; Snehalatha et al., 1994).  

 

The UK Prospective Diabetes Study assessed the clinical and biochemical 

variables and prevalence of complications at diagnosis of diabetes in T2DM patients, of 

whom 82% were white Caucasian, 10% Asian of Indian origin, and 8% Afro-Caribbean. 

The study observed that newly diagnosed patients with T2DM of Asian origin were more 

insulin resistant and had better beta cell function compared to other ethnic groups in the 

study (UKPDS, 1994). A large cohort of migrants from South Asians living in London 

compared their insulin levels in the fasting state and during a standard oral glucose 
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tolerance test with an indigenous UK population living in similar environmental 

conditions. The results demonstrated that there is excessive insulin resistance in Asian 

Indians, compared to Caucasians, even in the absence of obesity (McKeigue et al., 1991).  

Similar data were obtained in a group of Asian Indians living in United States using a 

somatostatin suppression test to measure insulin sensitivity. Asian men and women had 

increased glucose and insulin responses to oral glucose tolerance tests and had 

approximately 60% higher steady-state plasma glucose levels during the insulin 

suppression test, consistent with insulin resistance (Laws et al., 1994). 

 

Among the different ethnic groups Chinese, Malay and Asian Indians living in 

Singapore, Indians are more prone to central obesity, insulin resistance, and are more 

glucose intolerant than Malays or Chinese. Although Malays had the highest body mass 

index, Indians had a higher waist hip ratio than Malays and Chinese (Hughes et al., 

1997). A previous study from Singapore demonstrated that there is an ethnic difference in 

Insulin sensitivity among healthy individuals. The study was done in 3 different ethnic 

groups, Caucasian, Chinese and Indian. The subjects were healthy, lean, non-diabetic 

volunteers.  They were all less than 30 years, BMI less than 25 and had no first-degree 

family history of diabetes. Subjects of each ethnic group were closely matched for their 

BMI, age, and physical activity. All subjects underwent the 40 mU/min/m2 euglycaemic 

hyperinsulinaemic clamp to assess insulin sensitivity. The results showed that among 

these non-diabetic subjects of different ethnic groups living in Singapore, Asian Indians 

have a  lower insulin sensitivity compared to Chinese and Caucasians (Liew et al., 2003). 
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2.3. Adipose Tissue 

Adipose tissue is composed of adipocytes embedded in a loose connective tissue 

meshwork containing adipocyte precursors, fibroblasts, immune cells, and various other 

cell types.  

2.3.1. Adipose Tissue as Energy Storage Depot 

Adipose tissue has traditionally been considered to be an energy storage depot. It 

allows excess energy to be stored as in the form of triglycerides. When the energy is 

needed elsewhere in the body, for example, during fasting, starvation or long-term 

exercise, these triglycerides would be released in the form of non-esterified fatty acids 

which are oxidized mainly in skeletal muscle to provide energy. Through its lipid storing 

capacity involving balanced lipogenesis and lipolysis, the adipocytes limit an abnormal 

increase in plasma non-esterified fatty acids, which are widely accepted as an important 

etiologic factor in the initiation of insulin resistance and metabolic syndrome and T2DM 

(Ahima and Flier, 2000; McGarry, 2002; Mohamed-Ali et al., 1998; Wajchenberg, 2000). 

 

2.3.2. Adipose Tissue as Active Endocrine Organ 

Adipose tissue is regarded increasingly as an active endocrine organ rather than 

just a storage depot. In addition to regulating energy homeostasis, it is now known that 

adipose tissue secretes a number of metabolically and hormonally active substances. 

These adipocyte specific proteins appear to have a similar structure to cytokines and 

therefore they have been collectively called “adipokines” or “adipocytokines”, These 

adipokines play an important role in whole body metabolism (Kershaw and Flier, 2004) 

and are involved in diverse metabolic processes including food intake, regulation of 

energy balance, insulin action,  lipid and glucose metabolism, regulation of blood 
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pressure, angiogenesis and vascular remodeling, inflammation, coagulation and 

atherosclerosis (Antuna-Puente et al., 2008; de Ferranti and Mozaffarian, 2008; Ferroni et 

al., 2004). The role of these adipokines may be either endocrine or autocrine. These 

adipokines; adiponectin, leptin, tumor necrosis factor-α (TNF-α), resistin,  interleukin-6 

(IL-6) and plasminogen activator inhibitor -1 (PAI-1) may have important roles in obesity 

and insulin resistance. Adiponectin is the only adipose specific protein which is 

negatively regulated in obesity and insulin resistance. 

 

2.3.3. Adipokines and Insulin Resistance 

Insulin resistance is a condition characterized by a failure of target organs to 

respond normally to insulin (DeFronzo, 1988; Pittas et al., 2004). When increased insulin 

secretion is no longer sufficient to prevent hyperglycemia, it progresses to T2DM. 

 

Dysregulation of adipokines production with alteration of fat mass in obesity and 

insulin resistance has been implicated in their metabolic and cardiovascular 

complications. Certain adipokines like adiponectin and leptin exert beneficial effects on 

energy balance, insulin action and vasculature. Conversely, excessive production of fatty 

acids, leptin, resistin and pro-inflammatory adipokines like TNF-α, IL-6, and PAI-1, is 

deleterious. In insulin resistant individuals, excessive production of TNF-α, IL-6, or 

resistin diminishes insulin action in muscles and/or in liver, while increased PAI-1 

secretion favors impaired fibrinolysis. Weight loss is associated with a decrease in serum 

levels of these adipokines except adiponectin which is increased with weight loss 

(Wajchenberg, 2000; Yamamoto et al., 2002).  
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2.3.3.1.  Adiponectin 

Adiponectin is secreted specifically and abundantly in adipose tissue. It is also 

referred as adipocyte complement-related protein (Acrp 30), gelatin-binding protein-28 

and adiponectin Q (Maeda et al. 1996, Nakano et al. 1996).  

 

Adiponectin was first characterized in mice as a transcript selectively expressed 

during differentiation of preadipocyte into mature adipocytes (Pajvani and Scherer, 2003). 

The human homolog was subsequently identified as the most abundant transcript in 

human adipose tissue (Maeda et al., 1996). The human adiponectin gene was mapped to 

chromosome 3q27, a region highlighted as a genetic susceptibility locus for T2DM and 

metabolic syndrome (Vasseur et al. 2003). 

 

2.3.3.1.1. Plasma membrane receptors  

The effects of adiponectin are mediated through two distinct receptors termed 

adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2). These two 

adiponectin receptors are predicted to contain seven transmembrane domains, but are 

structurally and functionally distinct from G-protein-coupled receptors (Yamauchi et al., 

2003a). AdipoR1 is expressed abundantly in skeletal muscle, whereas adiponectin 

receptor 2 AdipoR2 is expressed predominantly in the liver. AdipoR1 has affinity to 

globular adiponectin and AdipoR2 has affinity to both globular and full-length 

adiponectin. Similar to adiponectin, expression of both receptors was decreased in mouse 

models of obesity and insulin resistance (Tsuchida et al., 2004; Yamauchi et al., 2007). 
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2.3.3.1.2. Molecular structure of Adiponectin 

Adiponectin belongs to the collagen super family sharing significant homology 

with complement factor C1q and collagen VIII and X (Hu et al., 1996). The basic 

structure is a 247 amino acid protein with four domains: an amino-terminal signal 

sequence, a variable region, a collagenase domain  and a carboxy-terminal globular 

domain (Chandran et al., 2003; Scherer et al., 1995). 

 

Adiponectin may exist as a full length or a smaller globular fragment. A research 

group reported that a small amount of globular adiponectin was detected in human plasma 

and that the globular fragment was generated by proteolytic cleavage of adiponectin by an 

enzyme secreted from activated monocytes and/or neutrophils (Fruebis et al., 2001). 

Globular adiponectin exists as trimers, whereas full length adiponectin exists as at least 3 

isoforms of oligomers; trimeric, hexameric and high molecular weight (HMW) forms. 

Suppression of AdipoR1 by RNA interference markedly reduces the globular adiponectin 

binding, whereas suppression of AdipoR2 by RNA interference largely reduces the full 

length adiponectin specific binding (Kadowaki and Yamauchi, 2005; Yamauchi et al., 

2003a).  

 

A study has demonstrated that globular adiponectin could ameliorate insulin 

resistance and beta-cell degranulation, and can also protect against atherosclerosis in vivo 

in an animal model (Yamauchi et al., 2003b). However, the pathophysiological 

importance of this globular form in human remains to be determined. 
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2.3.3.1.3. Multimerization of Adiponectin 

Adiponectin undergoes post translational modification within the adipocyte into 

multimeric forms including low molecular weight (LMW) trimers, middle molecular 

weight (MMW) hexamers and high molecular weight (HMW) forms. The basic building 

block of the adiponectin is a tightly associated trimer. Monomeric adiponectin has not 

been observed in the circulation and appears to be confined to the intracellular 

compartment of adipocytes. Oligomer formation of adiponectin depends on disulphide 

bond formation mediated by Cys-39 of the variable region (Fig 1). Three monomers form 

a trimer through association between their C-terminal globular domains and stabilized by 

the triple helix formation of the collagenous domains. A hexamer is formed through 

disulphide bond formation at the Cys39 residue. High  molecular weight multimers are 

formed by non-covalent higher-order interactions (Chandran et al., 2003). Four to six 

trimers associated to form high molecular weight isoforms (Berg et al., 2002; Liu et al., 

2008) (Fig 2). 
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Figure 1.  The domain structures of  monomeric adiponectin 
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Figure 2.   Model for assembly of adiponectin complexes  
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A growing body of evidence suggests that different forms of adiponectin possess 

distinct and different biological activities (Waki et al., 2003; Wang et al., 2006). The 

relative distribution of adiponectin among these multimeric forms may be correlated with 

insulin sensitivity (Pajvani et al., 2004; Phillips et al., 2003).  An earlier study showed 

that trimeric adiponectin, but not hexameric or high molecular weight forms, could 

activate AMP activated protein kinase (AMPK) in skeletal muscle (Tsao et al., 2003). On 

the other hand, high molecular weight adiponectin has been proposed to be the 

biologically active form of the hormone and responsible for suppression of endogenous 

glucose production (Pajvani et al., 2004) and for the protection of endothelial cells from 

apoptosis (Kobayashi et al., 2004).  

  

Diabetic db/db mice have a lower percentage of high molecular weight 

adiponectin despite similar levels of total adiponectin compared with phenotypically 

normal heterozygous and wild type. Diabetic patients have a significantly decreased high 

molecular weight to total adiponectin ratios compared with lean controls (Pajvani et al., 

2004).  

 

It has been proposed recently that the complex distribution, but not the absolute 

amount of total adiponectin determines the insulin sensitivity. A new index, SA, the ratio 

of the high molecular weight forms to the total adiponectin had a stronger correlation with 

insulin sensitivity than did total adiponectin levels, at both baseline values and after 

thiazolinedione treatment (Pajvani et al., 2004). The total adiponectin in the index equals 

the sum of the high molecular weight and lower molecular weight forms that is hexamers 

and trimers. Furthermore, administration of the high molecular weight form, but not the 

lower molecular weight forms of adiponectin into adiponectin knock-out mice resulted in 
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dose-dependent reductions in serum glucose levels. These data suggests that the high 

molecular weight form is superior to total adiponectin in predicting insulin resistance and 

the metabolic syndrome trait cluster (Hara et al., 2006; Lara-Castro et al., 2006; von 

Eynatten et al., 2007).  

 

2.3.3.1.4. Mechanism of action 

Insulin sensitizing action 

Adiponectin exerts a potent insulin-sensitizing effect through binding to its receptors 

AdipoR1 and AdipoR2, leading to activation of AMP-activated protein kinase and 

peroxisome proliferator activated receptor-apha (PPAR-α). Both adiponectin and 

adiponectin receptors are downregulated in obesity-linked insulin resistance (Tomas et 

al., 2002; Yamauchi et al., 2002). 

 

In the liver, stimulation of AMP-activated protein kinase by full length adiponectin leads 

to decreased expression of gluconeogenic enzymes which account for its glucose 

lowering effect in vivo (Combs et al., 2004; Yamauchi et al., 2003b). In skeletal muscle, 

activation of AMP-activated protein kinase by globular or full length adiponectin causes 

increased expression of proteins involved in fatty acid transport, fatty acid oxidation 

resulting in enhanced fatty acid oxidation and decreased triglyceride accumulation. 

Excessive tissue triglyceride accumulation has been proposed to be a major causative 

factor for insulin resistance in skeletal muscle (Hegarty et al., 2003). Therefore reduction 

of triglycerides by adiponectin might be a major contributor for the insulin sensitizing 

activity of this adipokine. 
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Targeted disruption of AdipoR1 leads to the abrogation of adiponectin-induced 

AMPK activation, and increased endogenous glucose production and insulin resistance. 

Knockout of AdipoR2 caused decreased activity of PPAR-α signaling pathways and 

insulin resistance. Simultaneous disruption of both AdipoR1 and AdipoR2 abolished 

adiponectin binding and actions, resulting in increased glucose intolerance and insulin 

resistance compared with the single knockout models (Yamauchi et al., 2007).  

 

In addition to liver and muscle, adiponectin can also act in an autocrine manner on 

adipocytes. It can antagonize the inhibitory effect of TNF-α on insulin stimulated glucose 

uptake (Wu et al., 2003) and block the release of insulin resistance inducing factors from 

adipocytes (Dietze-Schroeder et al., 2005) 

 

Anti-atherogenic Action 

Adiponectin possesses direct anti-atherogenic properties (Fasshauer et al., 2004; 

Lam and Xu, 2005). It can inhibit monocyte adhesion to endothelial cells and foam cell 

transformation from macrophages in vitro (Funahashi et al., 1999; Ouchi et al., 1999). 

Both the adenovirus mediated overexpression of full length adiponectin (Okamoto et al., 

2002) and transgenic overexpression of globular adiponectin (Yamauchi et al., 2003b) 

have been shown to inhibit atherosclerotic lesion formation. On the other hand, disruption 

of the adiponectin gene results in increased neointimal thickening in response to external 

vascular injury (Kubota et al., 2002; Matsuda et al., 2002). Thus, adiponectin may have a 

protective role against atherosclerosis (Kubota et al., 2002; Maeda et al., 2002).  
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Anti-inflammatory Action 

Insulin resistance is the key primary defect underlying the development of T2DM. 

It is associated with a state of low grade inflammation (Hotamisligil, 2006; Wellen and 

Hotamisligil, 2005). TNF-α is a typical cytokine that plays a major role in inflammation. 

Adiponectin strongly suppress the production of potent proinflammtory cytokine TNF-α 

in macrophages. Treatment of cultured macrophages with adiponectin inhibits their 

phagocytic activity and production of TNF-α significantly (Yokota et al., 2000). 

Therefore, adiponectin is an important negative regulator in immune and inflammatory 

system and may be involved in terminating inflammatory responses by its inhibitory 

functions.  

 

2.3.3.1.5. Difference in ethnicity 

There is an ethnic difference in adiponectin levels. Previous studies have 

demonstrated that adiponectin concentrations are lower in South Asians (Abate et al., 

2004; Valsamakis et al., 2003). In  a study of South Asian and Caucasian women who 

were matched for age, body mass index, waist circumference, both total and high 

molecular weight adiponectin concentrations were significantly lower in the South Asian 

group (Martin et al., 2008). The fact that these differences were not explained by 

differences in percent body fat indicates that factors other than adiposity must play a role 

in determining adiponectin levels in these subjects (Weyer et al., 2001). 
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2.3.3.1.6.  Insulin and Adiponectin 

One of the hormones implicated in the regulation of adiponectin expression is 

insulin (Scherer et al., 1995). Treatment of 3T3-L1 adipocytes with insulin suppresses 

adiponectin gene expression and insulin reduces the level of adiponectin mRNA in a 

dose- and time-dependent fashion (Fasshauer et al., 2002).  

 

There is a known inverse relationship between adiponectin and endogenous 

insulin levels (Hotta et al., 2000; Weyer et al., 2001; Yamamoto et al., 2002). Since 

insulin resistance is associated with hyperinsulinemia, the relationship between 

adiponectin levels and insulin sensitivity also implies an inverse relationship between 

adiponectin and insulin levels. Thus, it is possible that the chronic hyperinsulinemia 

associated with insulin-resistant states leads to downregulation of adiponectin 

concentrations. A few studies have shown that adiponectin levels were suppressed below 

basal levels in both diabetic and non-diabetic subjects during a hyperinsulinemic 

euglycemic glucose clamp, (Brame et al., 2005; Mohlig et al., 2002; Yu et al., 2002). 

 

2.3.3.1.7.  Studies in experimental animals 

Data obtained from animal models suggest that a reduction of adiponectin 

expression is associated with obesity, insulin resistance and T2DM (Hu et al., 1996). 

Obese mice had lower level of adiponectin mRNA transcripts in white adipose tissue than 

in wild type mice indicating that adiponectin is downregulated in obesity.  Adiponectin-

deficient mice exhibited insulin resistance and glucose intolerance (Kubota et al., 2002; 

Maeda et al., 2002; Nawrocki et al., 2006). In contrast, adiponectin transgenic mice 

showed amelioration of insulin resistance and diabetes (Yamauchi et al., 2003b) and 
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suppression of endogenous glucose production (Combs et al., 2004). Administration of 

recombinant adiponectin, either full length or in the form of its isolated globular head, 

exerts glucose lowering effects and ameliorates insulin resistance in mice models of 

obesity or diabetes (Berg et al., 2001; Fruebis et al., 2001; Shimomura et al., 1999; 

Yamauchi et al., 2001). In rhesus monkeys, the low level of  plasma adiponectin levels 

preceded the development of insulin resistance and diabetes and the plasma adiponectin 

decreased in parallel to the progression of insulin resistance and overt type 2 diabetes 

(Hotta et al., 2001).  Therefore, low plasma adiponectin may contribute to the 

pathogenesis of insulin resistance and diabetes mellitus in animals (Diez and Iglesias, 

2003) and adiponectin may play a protective role against insulin resistance (Ma et al., 

2002; Maeda et al., 2002). 

 

2.3.3.1.8.  Clinical Studies on Adiponectin 

Adiponectin, Adiposity and Insulin resistance 

There is strong inverse correlation between plasma levels of adiponectin and 

measures of adiposity including body mass index and total fat mass (Trujillo and Scherer, 

2005). Unlike most adipokines, adiponectin levels in the circulation are paradoxically 

decreased in obese subjects (Arita et al., 1999). Weight reduction by gastric partition 

surgery or caloric restriction leads to an increase in adiponectin (Yang et al., 2001).  

 

In addition, body fat distribution appears to be another important determinant of 

adiponectin production. Intra-abdominal fat is an independent negative predictor of 

plasma adiponectin (Gavrila et al., 2003). Adiponectin mRNA and adiponectin protein 

level in intra-abdominal fat are much lower than in subcutaneous fat in both lean and 

obese individuals (Trujillo and Scherer, 2005) 
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Low plasma levels of adiponectin are observed in individuals with insulin 

resistance and type 2 diabetes mellitus (Bacha et al., 2004; Hivert et al., 2008; Hotta et 

al., 2000; Weyer et al., 2001)  and coronary artery disease (Ouchi et al., 1999).  

 

Hyperinsulinemic euglycemic studies showed that plasma level of adiponectin is 

positively correlated with basal and insulin stimulated glucose disposal (Stefan et al., 

2002) but  inversely associated with basal and insulin stimulated hepatic glucose 

production (Stefan et al., 2003) suggesting a role of adiponectin as an endogenous insulin 

sensitizer in humans. 

 

In a study performed in Caucasians and Pima Indians, plasma adiponectin 

concentrations were shown to be correlated negatively with percent body fat, waist-to-

thigh ratio, and fasting insulin level and 2 h glucose concentration and adiponectin levels 

were correlated positively with insulin-stimulated glucose disposal in both ethnic groups. 

However, multivariate analysis demonstrated that hypoadiponectinemia was more 

intensively related with the degree of insulin resistance and hyperinsulinemia than to the 

degree of adiposity or glucose intolerance (Weyer et al., 2001).  

 

Prospective studies indicated that lower adiponectin levels were associated with a 

higher incidence of T2DM (Krakoff et al., 2003; Lindsay et al., 2002; Mather et al., 

2008; Snehalatha et al., 2003; Snijder et al., 2006). A case-control study in Pima Indians 

showed that subjects with low levels of adiponectin are more likely to develop T2DM 

than those with high levels of adiponectin (Lindsay et al., 2002). Prospective studies from 

Chennai, India obtained similar data that a low serum adiponectin level was a strong 

predictor of future development of diabetes (Krakoff et al., 2003; Snehalatha et al., 2003). 
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The Diabetes Prevention Program determined the association of baseline or intervention-

associated change in adiponectin levels with progression to diabetes. The results showed 

that a low adiponectin level is associated independently with development of diabetes and 

is a powerful marker of diabetes risk in subjects at high risk for diabetes, even after 

adjustment for weight. An increase in adiponectin levels in the lifestyle and placebo 

groups was associated with a reduction in diabetes risk (Mather et al., 2008). 

 

 

2.3.3.2. Other adipokines 

2.3.3.2.1.  Role of Leptin in insulin resistance 

Leptin is another adipokine produced by adipocytes and secreted into circulation. 

In the healthy state the circulating leptin concentration varies in proportion to adipose 

mass. Activation of leptin receptors in hypothalamus decreases food intake and increases 

energy expenditure in fat and muscle. Demonstration of the role of leptin in body weight 

homeostasis was provided by a mutation in obese (ob) gene in mouse model. Friedman 

discovered that ob/ob mice are leptin deficient and lose weight following leptin treatment 

(Zhang et al., 1994). Similarly, three massively obese children with no functional leptin 

are currently successfully treated with leptin (Farooqi et al., 2002). However, the fact that 

adipose tissue leptin concentration is increased in the obese individuals, except in leptin 

deficient subjects, led to the concept of leptin resistance. Obese humans are typically 

leptin resistant and have higher than normal concentration of leptin. Leptin resistance in 

human has two components; impaired transport of leptin across the blood brain barrier 

and impaired signaling via hypothalamic leptin receptors (Scarpace and Tumer, 2001).  
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Both leptin deficient and leptin resistant obese rodents exhibit insulin resistance. 

This is rapidly ameliorated by leptin administration in leptin deficient mice suggesting 

that leptin is insulin sensitizing hormone (Lazar, 2005; Schwartz and Porte, 2005). 

Therefore, the reduced responsiveness to leptin in leptin resistance may also play a role in 

causing insulin resistance. Hyperleptinaemia has been advocated as a component of the 

insulin resistance syndrome, and the insulin–leptin axis may play a coordinating role in 

this syndrome (Leyva et al., 1998). Leptin promotes fatty acid oxidation and reduces fat 

accumulation in non adipose tissues, thereby increasing insulin sensitivity (Muoio et al., 

1997; Shimabukuro et al., 1997). This effect is mediated by activation of the AMP-

activated kinase by leptin through a direct effect on skeletal muscles and indirectly 

through the hypothalamic sympathetic nervous system (Minokoshi et al., 2002).  

 

2.3.3.2.2.  Role of Tumor Necrosis Factor-α in Insulin Resistance 

TNF-α was the first adipokine proposed to represent a molecular link between 

obesity and insulin resistance (Hotamisligil, 2000; Moller, 2000). It was shown to be 

overexpressed in adipose tissue from several strains of obese rodents and decreased with 

weight loss and improvement of insulin sensitivity (Hotamisligil et al., 1993). TNF-α 

expression is higher in visceral fat of rodents than in subcutaneous fat (Das et al., 2004). 

TNF-α has been shown to alter insulin signaling in culture cells and in vivo. TNF-α 

activates the serine/threonine kinases that phosphorylate and impair the key elements in 

the insulin signaling pathway (Borst, 2004) and opposes the action of insulin. Therefore it 

was suggested that TNF-α is secreted from the adipose tissue to the circulation form 

where it reaches the targets such as muscle and liver and causes insulin resistance.  
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However, circulating levels of TNF-α are very low compared with concentrations 

required to induce insulin resistance when infused into rats (Lang et al., 1992). Tissue 

levels of TNF-α are several orders of magnitude higher than circulating levels (Borst and 

Bagby, 2004) while some studies have shown that circulating TNF-α is elevated in obese 

and insulin resistant subjects (Tsigos et al., 1997). Therefore, a study suggested that 

locally produced TNF-α may contribute to insulin resistance in either one or both 

mechanisms. Firstly, obesity may cause insulin resistance by increasing TNF-α 

expression in targets such as muscle. This concept is supported by the result that diet 

induced obesity in rat is accompanied by reduced insulin stimulated glucose transport  

together with an increase in TNF-α expression in the muscle. Alternatively, obesity may 

increase TNF-α expression in adipose tissue leading to the release of other cytokines that 

are causing systemic insulin resistance into the circulation. In adipose tissue, TNF-α 

increases PAI-1 and adipsin gene expression and decreases the adiponectin levels (Ruan 

et al., 2002) 

 

Thiazolidinediones suppress TNF-α gene expression in white adipose tissue and 

prevent TNF-α induced insulin resistance in rat. Recently, a study in 

hypercholesterolemic rabbits reported that administration with Pioglitazone for 4 weeks 

significantly decreased serum TNF-α level in these rabbits (Wu, 2008).  

 

2.3.3.2.3.  Role of Resistin in Insulin Resistance 

The adipokine resistin was first described in 2001. This protein is secreted by 

mouse adipocytes and has been implicated in the development of insulin resistance. An 

earlier study reported that resistin was increased in plasma of mice with diet induced and 

genetic form of obesity (Steppan et al., 2001). On the other hand, resistin mRNA levels 
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were reported to be decreased in white adipose tissue of rodents (Le Lay et al., 2001; 

Way et al., 2001a). Administration of resistin in normal mice impairs glucose tolerance 

and insulin action, and administration of anti-resistin antibody improved blood glucose 

and insulin action in animal models of obesity induced insulin resistance (Steppan et al., 

2001). Infusion of resistin in the rat was shown to induce severe hepatic insulin resistance 

by an increased rate of endogenous glucose production. Therefore, it has been suggested 

that resistin selectively may impair the inhibitory action of insulin on endogenous glucose 

production (Rajala et al., 2003). 

 

However, the role of resistin in obesity associated insulin resistance has become 

controversial because some studies suggested that obesity and insulin resistance are 

associated with decreased resistin expression (Juan et al., 2001; Milan et al., 2002; Way 

et al., 2001a). In addition, treatment of rodent models with thiazolidinediones has 

produced an inconsistent pattern of regulation. Thiazolidinediones reduce the gene and 

protein expression of resistin in some but not in other studies (Milan et al., 2002; Rajala 

et al., 2003; Way et al., 2001a). 

 

The human homologue of murine resistin has been identified but its sequence and 

expression in adipose tissue is quite different from that in the rodent. Thus it is not clear 

whether this protein plays a significant role in the development of insulin resistance in 

human (Savage et al., 2001). However, there are evidences that Rosiglitazone, a 

thiazolidinedione, decreased the plasma resistin levels in patients with T2DM (Jung et al., 

2005). It is consistent with the initial report that serum concentrations of resistin in mice 

were decreased by treatment with Rosiglitazone and with another human study of T2DM 

patients treated with Pioglitazone (Bajaj et al., 2004a). 
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2.3.3.2.4.  Role of Interleukin-6 in insulin resistance 

IL-6 is a pleiotropic circulating cytokine that has important roles in inflammation, 

host defense and response to tissue injury (Papanicolaou et al., 1998). It is one of the 

several proinflammatory cytokines that has been implicated in the development of insulin 

resistance. IL-6 is secreted by many cell types and its production from adipose tissue 

represents 10 to 30% of circulating levels. The facts that IL-6 increases hepatic glucose 

production when administered to human subjects and opposes the action of insulin led to 

the suggestion that its increased secretion may play a role in insulin resistance. 

 

IL-6 causes release of non-esterified fatty acids in the liver (Gabay and Kushner, 

1999) and  increases circulating  fatty acids from adipose tissue which exerts an adverse 

effect on insulin sensitivity (Boden and Shulman, 2002) . In addition, administration of 

IL-6 in healthy volunteers induced an increase in blood glucose (Fernandez-Real and 

Ricart, 2003), probably by reducing resistance to insulin action. In vitro, IL-6 has been 

shown to impair insulin signaling (Senn et al., 2002; Senn et al., 2003). IL-6 may also 

exert its adverse effects by decreasing secretion of adiponectin by adipose tissue 

(Fasshauer et al., 2003).  

 

There is also some conflicting evidence on the role of IL-6 in insulin resistance. 

Acute IL-6 administration did not impair glucose homeostasis in healthy individuals 

(Steensberg et al., 2003). Moreover, IL-6 deficient mice were not protected from 

development of glucose intolerance (Wallenius et al., 2002). In addition, circulating IL-6 

is elevated approximately two fold in obese insulin resistant subjects but the relationship 

is not strong though statistically significant (Kern et al., 2001; Pradhan et al., 2001; 
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Vozarova et al., 2001). Taken together, these data suggests that IL-6 may play a role in 

insulin resistance although there is some evidence to the contrary. 

 

2.3.3.2.5. The role of PAI-1 in insulin resistance 

PAI-1 is known to be expressed in adipose tissue but acts predominantly in the 

vasculature. Hyperinsulinemia is also associated with high PAI-1 levels in both obesity 

and T2DM (Juhan-Vague and Alessi, 1997). PAI-1 is an inhibitor of fibrinolysis and its 

increased level is considered a contributor to the procoagulant state associated with the 

accelerated cardiovascular risk of T2DM. A reduction in fibrinolytic activity in T2DM is 

primarily due to elevated PAI-1 levels (McGill et al., 1994; Schneider and Sobel, 1991).  

 

In human adipocytes, insulin directly stimulates PAI-1 production. Recent studies 

conducted in mice and humans have demonstrated that hyperinsulinaemia increases PAI-

1 mRNA expression in abdominal subcutaneous adipose tissue (Calles-Escandon et al., 

1998; Koistinen et al., 2000; Morange et al., 1999). Therefore, PAI-1 could be a link 

between obesity, insulin resistance and cardiovascular disease. 

 

  Thiazolidinediones have been shown to reduce plasma PAI-1 concentrations 

(Freed, 2000a; Gottschling-Zeller et al., 2000; McGill et al., 1994; Potter, 1990).   
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2.4. IGF Binding Protein-1 and Insulin Sensitivity 

2.4.1. Insulin-like Growth Factors I and II 

The insulin-like growth factors (IGFs), IGF-I and IGF-II are structurally similar to 

proinsulin and are two highly homologous side chain polypeptides of approximately 

7kDa molecular mass. They were first identified in 1957 and were originally named 

sulfation factors (Salmon and Daughaday, 1957). They were renamed somatomedin 

(Daughaday et al., 1972) and subsequently IGFs (Daughaday and Rotwein, 1989). The 

IGF gene has been mapped to chromosome 12 in humans  (Rotwein et al., 1986) and the 

IGF-II gene to chromosome 11p15.5, just 3’ to the  insulin gene (Bell et al. 1985). 

 

2.4.2.  Insulin-like Growth Factor Binding Proteins (IGFBPs) 

Circulating IGFs are bound to carrier proteins known as IGF binding proteins 

(IGFBPs). The existence of IGFBPs was first suggested in mid seventies (Zapf et al., 

1975). It was soon suggested that these serum carrier proteins have at least two functions; 

prolongation of half life of circulating IGFs, and neutralization of  their metabolic effects 

(Zapf et al., 1979). To date, a total of six IGF binding proteins (IGFBPs), IGFBP-1 to 

IGFBP-6 have been identified. They are a family of related soluble proteins that bind IGF 

with high specificity and affinity, and thereby regulate IGF dependent actions (Baxter, 

2000; Firth and Baxter, 2002; Zapf, 1995). These IGFBPs are related and share sequence 

homology.   
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2.4.3. IGFBPs and Insulin Sensitivity 

IGFBP-1 has been shown to modulate the short term effects of IGFs (Firth and 

Baxter, 2002). Elevation of insulin suppresses the production of IGFBP-1 from the liver 

and thus decreases the circulating level of IGFBP-1 leading to increase bioavailability of 

IGFs (Holly, 1991; Suikkari et al., 1988). Therefore, free IGF-1 concentrations are 

inversely related to IGFBP-1 concentrations (Katz et al., 2002). IGF-1 is a potent factor 

preventing apoptosis of vascular smooth muscle (Bennett et al., 1995). Overexpression of 

IGFBP-1 had a favorable effect on vascular endothelial function and blood pressure 

homeostasis in transgenic mice (Wheatcroft et al., 2003) 

 

Previous studies have suggested that IGFBP-1 concentrations are inversely related 

to insulin resistance or positively related to insulin sensitivity measured using either 

homeostatic model assessment of insulin resistance (HOMA-IR) or euglycemic 

hyperinsulinemic clamps  (Liew et al., 2005; Maddux et al., 2006).  

 

Liew et al (2005) demonstrated the dynamic interaction between IGFBP-1 and 

insulin concentrations during euglycemic hyperinsulinemic clamps in Chinese, Indians 

and Caucasians who were young, non-obese and non diabetic individuals living in 

Singapore. The study showed that Asian Indian subjects had relatively higher insulin 

resistance and lower fasting IGFBP-1 levels which both have been shown to be associated 

with cardiovascular disease. This adverse combination of insulin resistance and lack of 

protection of circulating IGFBP-1 may contribute to the higher prevalence of type 2 

diabetes and cardiovascular disease in Asian Indians (Liew et al., 2005). 
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Studies in diabetic patients and non diabetic subjects have consistently suggested 

that IGFBP-1 is inversely correlated with increased levels of insulin and insulin 

resistance. However, with the exception of 1 early study (Suikkari et al., 1988), the 

studies done on the dynamic changes in IGFBP-1 levels were on non diabetic subjects. In 

our present study, we measured the IGFBP-1 levels during euglycemic hyperinsulinemic 

clamp to study the dynamic changes and changes in IGFBP-1 level in response to insulin 

sensitizer Rosiglitazone in T2DM patients. 

 

2.5. Thiazolidinediones 

The thiazolidinediones are a class of oral antidiabetic agents that exert their 

glucose lowering effect by targeting insulin resistance. Thiazolidinediones were 

discovered during the screening of a number of compounds for lipid lowering effects. 

They were noted to decrease hyperglycemia and hyperinsulinemia in rodent models of 

insulin resistance. Three thiazolidinediones, Troglitazone, Rosiglitazone and 

Pioglitazone, have been studied extensively and used clinically to treat T2DM in human. 

Troglitazone was removed from the market in 2000 due to liver toxicity leading to hepatic 

failure and death. Currently, Rosiglitazone and Pioglitazone are the only two 

thiazolidinediones available for clinical use. 

 

Thiazolidinediones act as peroxisome proliferator activated receptor gamma 

(PPARγ) agonists. The three thiazolidinediones have significantly different binding 

affinity for the peroxisome-proliferator–activated receptors (PPARγ). Rosiglitazone has 

the greatest binding affinity followed by Pioglitazone with intermediate and Troglitazone 

with least binding affinity. The binding affinity correlates reasonably well with the 
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therapeutic doses that are effective in treating insulin resistant T2DM in human (Lehmann 

et al., 1995).  

 

The peroxisome proliferator activated receptors are a subfamily of the nuclear-

receptor superfamily (Chawla et al., 2001).  Peroxisome proliferator activated receptors 

are ligand activated transcription factors that regulate gene expression in response to 

ligand binding. Various fatty acids serve as endogenous ligands for PPARs (Barbier et al., 

2002; Berger and Moller, 2002). To date, three PPARs; PPARα, PPAR δ and PPARγ 

have been identified. PPARα is expressed predominantly in the liver, heart, and muscle, 

as well as in the vascular wall (Barbier et al., 2002). Fibrates act as full or partial PPARα 

agonists. PPARα activation enhances free fatty acid oxidation, controls expression of 

multiple genes regulating lipoprotein concentrations, and exerts anti-inflammatory effects. 

PPARα agonists prevent or retard atherosclerosis in mice and humans. PPARδ is 

expressed in many tissues, with the highest expression in the skin, brain, and adipose 

tissue. In PPARδ  null mice, these tissues display alterations such as delayed wound 

closure and diminished myelination (Michalik et al., 2003). PPARγ is expressed most 

abundantly in adipose tissue but is also found in pancreatic beta cells, vascular 

endothelium, and macrophages (Dubois et al., 2000; Willson et al., 2001). Its expression 

is low in tissues that express predominantly PPARδ, such as the liver, the heart, and 

skeletal muscle. PPARγ receptors have two subtypes. PPARγ2 is found in high 

concentrations in adipocytes. PPARγ 1 is found in muscle and its concentration is about 

10 to 15 percent that of PPARγs in adipocytes (Kruszynska et al., 1998). PPARγ2 is a 

splice variant of PPARγ1 containing 30 additional amino terminal amino acids (Willson 

et al., 2000) 
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2.5.1. Mechanisms of Action of Thiazolidinediones 

The potent insulin sensitizing effect of thiazolidinediones is mediated through the 

activation of peroxisome-proliferator–activated receptor gamma (PPARγ). PPARγ 

comprise 2 major parts; a ligand binding domain and a DNA binding domain. They are 

associated with a series of co-repressor factors whose presence inhibits their activity. 

PPARγ are transcriptionally active as heterodimers with retinoid X receptors, RXR. Upon 

binding of a ligand such as thiazolidinedione to the PPAR, the receptor forms a 

heterodimer with the RXR and produces an active complex. This process is enhanced by 

the recruitment of co-activator factors and the dismissal of the co-repressors. The active 

PPARγ–ligand complex binds to a PPAR response element of DNA and leads to the 

transcription of the downstream target genes involve in glucose and lipid metabolism 

(Willson et al., 2001). The transcription of genes involved in glucose and lipid 

metabolism promote insulin-mediated glucose utilization in skeletal muscle, suppress 

endogenous hepatic glucose production, increase fatty acid uptake and reduce lipolysis in 

adipose tissues. This ultimately leads to a reduction in fasting and post-prandial plasma 

glucose, insulin and circulating free fatty acid (FFA) levels (Olefsky, 2000).  

 

Although the role of PPARγ in glucose and lipid metabolism is well documented, 

the tissue specific effect of PPARγ expression and the crucial site(s) of action of 

thiazolidinedione are complex. The dominant function of PPARγ in adipocyte 

differentiation and the role of PPARγ as the molecular target for thiazolidinediones 

suggest a crucial role of adipose tissue in their mechanism of action. This view is 

strengthened by the observation that PPARγ is expressed at much higher level in adipose 

tissue than in muscle (Kliewer et al., 1994; Tontonoz et al., 1994). Therefore it is 

suggested that PPARγ activation in decreasing insulin resistance may be secondary to its 
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primary effect on adipose tissue, rather than the direct effect on muscle. On the other 

hand, there are certain data to support a direct action of PPARγ on muscle. The selective 

deletion of PPARγ in muscle leads to a profound state of insulin resistance which 

indicates that PPARγ acts directly as an important control point in skeletal muscle, 

regulating its activity to respond to insulin. Thiazolidinediones improve insulin action on 

glucose transport in muscle in vitro (Ciaraldi et al., 1990) and improve insulin sensitivity 

in insulin resistant transgenic mice in which most adipose tissue has been ablated (Burant 

et al., 1997). These studies on thiazolidinediones indicate the role of PPAR as a direct 

target for the skeletal muscle insulin sensitizing effects of these agents. 

 

2.5.2. Effect of Thiazolidinediones on Adipose Tissue 

Adipocytes normally respond to insulin by increasing glucose uptake, triglyceride 

synthesis and reducing free fatty acid release via inhibition of lipolysis. The adipocyte 

population ranges from small, newly differentiated highly insulin responsive adipocytes 

to large, lipid-filled, relatively insulin resistant adipocytes. The composition and overall 

insulin responsiveness of adipocytes is, therefore, in a dynamic equilibrium, reflecting the 

relative rates of pre-adipocyte differentiation, adipocyte maturation and adipocyte loss by 

apoptosis. In insulin resistant states, such as T2DM, adipocytes consist of a high 

proportion of large-lipid filled adipocytes. These enlarged insulin resistant adipocytes 

have diminished capacity to store fat, secrete excessive amount of inflammatory 

cytokines and fail to secret normal amount of insulin sensitizing adipokines.  

 

When thiazolidinediones bind to PPAR-γ, it acts on preadipocytes to differentiate 

into small insulin sensitive adipocytes (Spiegelman, 1998) and block the lipolysis which 

in turn promote the insulin dependent glucose uptake into adipose tissue and muscle 



                                                                                                    41 
 

(Miyazaki et al., 2001b; Picard and Auwerx, 2002; Smith, 2003). These insulin sensitive 

adipocytes have more capacity to store fatty acids and decrease free fatty acid in the 

circulation and thus sparing the toxic effects of free fatty acid and glucose on other 

insulin-sensitive tissues such as skeletal muscle and the liver, and possibly pancreatic beta 

cells, from the harmful metabolic effects of high concentrations of free fatty acids 

relieving them from the burden of lipotoxicity and glucotoxicity. Consistent with this, 

thiazolidinediones lower circulating free fatty acid concentrations and triglyceride content 

in the liver, in patients with T2DM (Bajaj et al., 2004b; Carey et al., 2002; Mayerson et 

al., 2002; Tiikkainen et al., 2004). Metformin increases insulin sensitivity in the liver 

without changing its fat content in patients with T2DM (Tiikkainen et al., 2004). In 

addition, PPAR-γ activation by thiazolidinediones mediates the adipokine release 

favourably and cause apoptosis of these large insulin resistant adipocytes. This may lead 

to improvement in insulin signalling in insulin sensitive tissues.(Arner, 2003)  

 

2.5.3.  Effect of Thiazolidinediones on Skeletal Muscle 

In normal nondiabetic subjects, 80% of insulin stimulated glucose disposal occurs 

in skeletal muscle (DeFronzo et al., 1983; DeFronzo et al., 1985; Frayn et al., 1989; 

Olefsky, 2000). Treatment of non-diabetic subjects or those with T2DM with 

Rosiglitazone or Pioglitazone increases insulin-stimulated glucose uptake in peripheral 

tissues (Bajaj et al., 2004b; Miyazaki et al., 2001a; Miyazaki et al., 2002a; Nolan et al., 

1994).   

 

The effect of thiazolidinediones in reducing insulin resistance is supported by 

clinical data from euglycemic hyperinsulinemic clamp studies and from estimates 

obtained from the homeostasis model assessment method demonstrating clinically 
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relevant improvement in insulin sensitivity (Carey et al., 2002; Lebovitz et al., 2001; 

Nolan et al., 1994; Rosenblatt et al., 2001; Yamasaki et al., 1997). To evaluate the effect 

of thiazolidinediones on insulin sensitivity, a few studies have performed euglycaemic 

hyperinsulinemic clamp, which is a gold standard in the assessment of insulin sensitivity. 

The majority of these studies involved patients with T2DM of Caucasian origins. A 

randomized double-blind, placebo-controlled study which evaluated the effect of the 

addition of Pioglitazone to sulfonylurea-treated type 2 diabetic patients showed that 

Pioglitazone improves hepatic and peripheral tissue sensitivity to insulin and thereby 

decreases fasting and postprandial plasma glucose levels in type 2 diabetic 

patients(Miyazaki et al., 2001b). A comparative study to compare the effects of 

Rosiglitazone and metformin, on muscle insulin responsiveness at rest and during 

exercise in patients with type 2 diabetes reported that Rosiglitazone but not metformin 

improves insulin responsiveness in resting skeletal muscle and doubles the insulin-

stimulated glucose uptake rate during physical exercise in patients with T2DM (Hallsten 

et al., 2002).   

 

2.5.4. Effect of Thiazolidinediones on Liver 

The effect and mechanism of thiazolidinediones on the liver is still debated. 

Although thiazolidinediones improve insulin sensitivity, fasting endogenous glucose 

production has been reported to be both reduced (Bajaj et al., 2003; Miyazaki et al., 

2001a; Miyazaki et al., 2003) and unchanged compared to basal values (Miyazaki et al., 

2001b). In perfused rat livers as well as isolated hepatocytes, thiazolidinediones acutely 

inhibit the rate of glucose production by reducing gluconeogenesis (Adams et al., 1998; 

Nishimura et al., 1997; Raman and Judd, 2000). Thiazolidinediones reduce the 

gluconeogenesis by promoting the inactivation of key liver enzymes involved in 
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gluconeogenesis pathway such as phosphoenolpyruvate carboxykinase, glucose 6 

phosphatase and pyruvate carboxylase (Way et al., 2001b). However recent studies 

directly measure gluconeogenesis  in vivo in type 2 diabetic patients before and after 

treatment with Rosiglitazone or Pioglitazone using tritiated glucose.[2H2] showed that 

thiazolidinediones decrease endogenous glucose production via inhibition of 

gluconeogenesis (Basu et al., 2008; Gastaldelli et al., 2007a; Juurinen et al., 2008; Smiley 

and Umpierrez, 2007; Tiikkainen et al., 2004). 

 

2.5.5. Effect of Thiazolidinediones on Pancreatic beta cells 

Insulin resistance has been shown to have adverse effects on beta-cells, including 

hypertrophy, apoptosis and those caused by lipotoxicity and glucotoxicity (Rhodes, 2005; 

Walter and Lubben, 2005).  

Recent studies suggest that thiazolidinediones may have direct beneficial effects 

on pancreatic beta-cells (Gastaldelli et al., 2007b; Walter and Lubben, 2005). 

Troglitazone, demonstrated improvements in insulin secretion in isolated pancreatic islets 

from Wistar rats and a hamster beta-cell line (Bollheimer et al., 2003; Masuda et al., 

1995). A report using db/db mice suggests that long-term treatment with Pioglitazone is 

effective in decreasing hyperglycemia, protecting against beta-cell damage and improving 

glucose-induced insulin secretion (Miyazaki et al., 2002b; Wallace et al., 2004). It was 

also reported that in human islets, Rosiglitazone inhibits islet cell apoptosis, and may 

have the potential role to decrease beta-cell apoptosis in T2DM and reduce loss of beta-

cell mass (Lin et al., 2005). Therefore, thiazolidinediones are well known to ameliorate 

hyperinsulinemia as a result of decreased insulin resistance.  
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2.5.6. Effects of Thiazolidinediones on Lipids 

Diabetic dyslipidemia is related to insulin resistance and is one of the major risk 

factors for cardiovascular morbidity and mortality (Gilling et al., 2002; Haffner and 

Miettinen, 1997; Henry, 1998; Taskinen, 2003). Dyslipidemia associated with insulin 

resistance and T2DM is characterized by elevated triglyceride and decreased HDL-C 

concentrations (Brunzell and Hokanson, 1999; Ginsberg, 2000; Krauss, 2004; Siegel et 

al., 1996). The level of LDL-C is often similar to that in nondiabetic individuals (Garg, 

1998). However, there is an increase in proportion of small, dense and potentially more 

atherogenic LDL-C particles (Garvey et al., 2003). The small, dense LDL particles are 

more susceptible to oxidation, potentially more atherogenic and associated with an 

increase risk in the development of cardiovascular disease (Festa et al., 1999). In addition 

to LDL-C, elevated triglyceride level and reduced HDL-C levels are both risk factors for 

coronary heart disease.(Ginsberg, 2001; Shepherd et al., 1995; Study, 1994) 

Thiazolidinediones possess the potential to alter lipid profile. Both animal models 

and human clinical trials have demonstrated an improvement in dyslipidemia from 

thiazolidinediones. Thiazolidinediones improve dyslipidemia primarily by increasing 

HDL-C (van Wijk et al., 2003), LDL protein particle size (Tack et al., 1998) and 

decreasing the triglyceride level. It has been suggested that Rosiglitazone and 

Pioglitazone differ in their effects on blood lipids and lipoproteins. Several studies have 

shown that treatment with Pioglitazone is associated with a greater beneficial effect on 

blood lipid levels than treatment with Rosiglitazone (Boyle et al., 2002; Khan et al., 2002; 

King, 2000; LaCivita and Villarreal, 2002; Shaffer, 2000). Studies with Rosiglitazone 

showed greater increases in triglycerides and LDL-C. An open label randomized 

comparison of Rosiglitazone and Pioglitazone in patients previously treated with 

Troglitazone, conversion to Pioglitazone was associated with significant improvements in 
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all lipid levels, whereas conversion to Rosiglitazone led to significant increases in all lipid 

levels despite similar weight gain and improvement in glycemic control in both groups 

(Khan et al., 2002). As dyslipidemia is an important risk factor for atherosclerosis, 

differential therapeutic modulation on lipid levels by Pioglitazone and Rosiglitazone may 

confer a different level of protection from cardiovascular disease in patients with T2DM. 

 

2.5.7. Effect of Thiazolidinediones on Anthropometry 

2.5.7.1. Body Weight 

Weight gain has been identified as a class effect of the thiazolidinediones. 

Thiazolidinediones lead to an increase in body weight of 3 to 4 kg over the first 24 weeks 

of treatment (Barnett, 2002; Lebovitz, 2002; Martens et al., 2002). In placebo controlled 

double blind clinical studies, dose dependent increases in mean body weight have been 

observed in type 2 diabetic patients with all thiazolidinediones, either as monotherapy or 

in combination with other antidiabetic agents (Aronoff et al., 2000; Einhorn et al., 2000; 

Gomez-Perez et al., 2002; Kipnes et al., 2001; Lebovitz et al., 2001; Raskin et al., 2001; 

Rosenstock et al., 2006) 

 

Weight gain associated with thiazolidinediones treatment may vary greatly 

depending on the individual and on the treatment regimen employed. When 

thiazolidinediones are combined with suphonylureas or insulin, weight gain is more 

pronounced (Einhorn et al., 2000; Fonseca et al., 2000; Martens et al., 2002; Raskin et 

al., 2001) whereas weight changes may be reduced or even absent in combination with 

metformin (Fonseca et al., 2000). 
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The increase in body weight has been attributed to expansion of the subcutaneous 

fat depot, and in some patients to edema, whereas the mass of visceral fat remains 

unchanged (Carey et al., 2002) or decreases (Miyazaki et al., 2002a). Expansion of the 

subcutaneous fat depot is caused by increased adipocyte differentiation. Activation of 

PPAR-γ leads to production of smaller insulin sensitive adipocytes predominantly in the 

subcutaneous adipose tissue compartments. This is likely to contribute to the weight gain 

that has been observed in animal and human studies (Martens et al., 2002). In addition, 

thiazolidinediones associated weight gain is accompanied by increase in plasma volume. 

Due to this potential plasma volume expansion, thiazolidinediones are not recommended 

in patients with heart failure (Nesto et al., 2004). Patients with rapid increase in the 

weight gain are monitored for fluid accumulation and volume related events such as 

oedema and congestive heart failure. 

 

 

2.5.7.2. Fat distribution 

In animal model of diabetes and clinical studies, thiazolidinediones reduced the 

hepatic fat together with improvement in insulin sensitivity (Bajaj et al., 2003; Carey et 

al., 2002; Kuhlmann et al., 2003; Uto et al., 2005). In 16 week placebo controlled study 

of effect of Rosiglitazone on insulin sensitivity, 95% of the increase in adiposity 

associated with Rosiglitazone treatment occurred in peripheral or non abdominal region.  

 

In a randomized placebo controlled study to assess effect of Troglitazone on fat 

distribution, subjects with visceral fat accumulation were randomly assigned to receive 

either 200 or 400 mg per day of Troglitazone or placebo for 12 weeks. The change in the 

abdominal fat distribution was evaluated using computed tomographic scanning (CT 



                                                                                                    47 
 

scan). After treatment for 12 weeks, the ratio of visceral fat area to subcutaneous fat area 

ratio decreased in the Troglitazone groups due to decreased visceral fat area and 

subcutaneous fat area (Nakamura et al., 2001). A study evaluated the effects of 

Rosiglitazone and metformin monotherapy for 26 weeks on adipose tissue insulin-

stimulated glucose uptake in patients with T2DM. Adipose tissue masses were quantified 

using magnetic resonance imaging before and after the treatment. In the Rosiglitazone 

group, the visceral fat mass also decreased significantly vs. placebo whereas the 

abdominal subcutaneous fat depot remained essentially unchanged (Virtanen et al., 2003).  

 

Furthermore, Rosiglitazone was found to decrease hepatic fat by 45% relative to 

placebo accompanied by significant improvement in insulin sensitivity and glycemic 

control (Carey et al., 2002). A study with Pioglitazone treatment for 24 weeks further 

supports the depot specific effect in which body fat increase by 3.9 kg without changes in 

visceral fat (Smith et al., 2005). Weight gain, was coupled with a statistically significant 

decrease from baseline in the waist/hip ratio. These findings are supported by data from 

other studies in which thiazolidinediones either reduced or had neutral effects on the 

mean waist-hip ratio compared to baseline  despite increases in body weight, indicating 

an increase in peripheral rather than central fat mass (Fonseca et al., 2000; Lebovitz et al., 

2001; Shadid and Jensen, 2003).  
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2.5.8. Effect of Thiazolidinediones on Adipokines 

Thiazolidinediones, favorably mediate the adipokines release from the adipose 

tissue, upregulating insulin sensitizing adiponectin and downregulating proinflammatory 

mediators leading to improvement of insulin sensitivity in muscle and liver (Stumvoll, 

2003). 

2.5.8.1. Effect on Adiponectin 
Adiponectin expression and secretion was demonstrated to be upregulated by 

thiazolidinediones (Combs et al., 2002; Maeda et al., 2001; Yu et al., 2002), and HMW 

adiponectin is the predominant form of adiponectin increased by thiazolidinediones 

(Pajvani et al., 2004). Thiazolidinediones normalized or increased adiponectin mRNA 

expression and adiponectin secretion in adipose tissue of obese mice (Maeda et al., 2001). 

Thiazolidinediones also enhanced adiponectin promotor activity and restored inhibitory 

effect of TNF-α on this promotor (Diez and Iglesias, 2003) .  

 

Human studies have replicated the finding in animal models that thiazolidinedione 

treatment enhances endogenous adiponectin production. Treatment with Troglitazone for 

12 weeks in mildly overweight subjects with glucose intolerance significantly increased 

the plasma adiponectin concentration in a dose-dependent way (Maeda et al., 2001). 

Troglitazone treatment for 3 months was also accompanied by an increase in adiponectin 

levels in diabetic patients, in lean and obese non-diabetic subjects (Yu et al., 2002). In a 

randomized double-blind placebo controlled trial performed in type 2 diabetic patients, 6 

month Rosiglitazone treatment was accompanied by a more than 2-fold increase in 

plasma adiponectin levels (Yang et al., 2002). Similar results have been reported with 

Pioglitazone (Hirose et al., 2002).  
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2.5.8.2. Effect on other cytokines 
Adipokines such as leptin, tumour necrosis factor-α, interleukin-6 and resistin have been 

implicated in the pathogenesis of T2DM. Compared to adiponectin, studies on these 

adipokines are fewer especially human studies. Generally, it is shown that the levels of 

these adipokines are decreased or at least, not changed after treatment with 

thiazolidinediones. 

 

2.5.8.2.1. Leptin 

Thiazolidinediones reduced the expression of the human Leptin promoter in 

primary adipocytes, (De Vos et al., 1996; Kallen and Lazar, 1996). A double-blind, 

placebo-controlled study evaluated the effect of Pioglitazone therapy on circulating 

adipocytokine levels in type 2 diabetic patients reported that plasma leptin concentration 

did not change significantly (Miyazaki et al., 2004). 

 

2.5.8.2.2. TNF-α & IL-6 

Thiazolidinediones suppress TNF-α gene expression in white adipose tissue and 

prevent TNF-α induced insulin resistance in rat. Recently, a study in the rabbits with 

hypercholesterolemia reported that administration with Pioglitazone for 4 weeks 

significantly decreased serum TNF-α level in  rabbits (Wu, 2008). A study to determine 

the effect of Rosiglitazone on circulating adipokines showed that Rosiglitazone lowers 

the plasma concentrations of inflammatory markers and adipokines, resistin, TNF-α and 

IL-6  and increases plasma adiponectin levels in patients with T2DM (Kim et al., 2007). 

A study which compared the effect of 3 month Rosiglitazone and Pioglitazone treatment 

also showed that both thiazolidinediones reduce TNF-α significantly (Miyazaki and 

Defronzo, 2008) 
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2.5.8.2.3. Resistin 

Rosiglitazone decreased the plasma resistin levels in patients with T2DM (Jung et 

al., 2005). This was consistent with the initial report of that the serum concentrations of 

resistin in mice were decreased by treatment with Rosiglitazone  and with another human 

study of type 2 diabetic patients treated with Pioglitazone (Bajaj et al., 2004a). 

 

2.5.8.2.4. PAI-1  

Thiazolidinediones have been shown to reduce plasma PAI-1 concentrations 

(Freed, 2000a; Gottschling-Zeller et al., 2000; McGill et al., 1994; Potter, 1990).  

Rosiglitazone reduces PAI-1 secretion by adipocytes and may also modulate insulin-

mediated PAI-1 production (Harte et al., 2003). Therefore, the effect of 

thiazolidinediones on reducing circulating PAI-1 levels as observed in clinical studies 

may be explained by their effect on adipose tissue. However, the effect of 

thiazolidinediones reducing circulating PAI-1 in type 2 diabetic patients is not consistent 

in the clinical studies. (Davidson et al., 2007; Dolezalova et al., 2007; Fonseca et al., 

1998; Freed, 2000b; Potter, 1990; Reynolds et al., 2007). Some of the studies showed that 

PAI-1 levels decreased (Dolezalova et al., 2007; Reynolds et al., 2007) but some studies 

reported that no difference in the plasma level of PAI-1 (Davidson et al., 2007) after the 

treatment with thiazolidinediones. 
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2.5.9.  Adverse Effects of Thiazolidinediones 

2.5.9.1. Hepatotoxicity 

Severe hepatotoxicity, such as those which led to the withdrawal of Troglitazone 

from the market, has not been observed with Rosiglitazone and Pioglitazone. For both of 

these agents, data from randomized controlled studies with large number of patients did 

not suggest elevation of serum markers of liver function in thiazolidinediones treated 

subjects compared to placebo (Reynaert et al., 2005; Scheen, 2001). Further, both these 

agents have been associated with a decrease in alanine aminotrasferase levels in patients 

with non-alcoholic steatohepatitis (Reynaert et al., 2005). Recent clinical trials supported 

this effect in patients with T2DM or impaired glucose tolerance and the effect was 

attributed to improvement of liver steatosis (Dormandy et al., 2005; Gerstein et al., 2006; 

Reynaert et al., 2005).  

 

2.5.7.2. Weight gain 

The best documented adverse effect of thiazolidinediones is weight gain and is 

considered as the class effect of thiazolidinediones. Thiazolidinediones increase body 

weight in type 2 diabetic patients either as monotherapy or in combination with other 

antidiabetic agents (Fonseca, 2003; Lebovitz, 2002; Lebovitz and Banerji, 2001; Tack and 

Smits, 2006) and recent long term clinical trials have confirmed this adverse effect of 

thiazolidinediones (Dormandy et al., 2005; Gerstein et al., 2006; Kahn et al., 2006). In 

any case, as weight increase with thiazolidinediones is coupled to reductions in waist 

circumference and waist to hip ratio it was considered not to be associated with increased 

risk for cardiovascular disease (Lebovitz, 2002; Lebovitz and Banerji, 2001; Sarafidis et 

al., 2005; Zimmet, 2002) 
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2.5.7.3. Fluid retention 

Fluid retention with thiazolidinediones can lead to pedal edema, deterioration of 

pre-existing heart failure and pseudo-anemia (Lebovitz and Banerji, 2001; Nesto et al., 

2004). Therefore thiazolidinediones are not recommended in patients with heart failure. 

When used as monotherapy, the incidence of pedal edema ranges from 3 to 5% for each 

of the thiazolidinediones; when thiazolidinediones are combined with sulfonylurea or 

metformin this incidence is even higher, and is highest when Thiazolidinediones are 

combined with insulin (about 15%) (Nesto et al., 2004). Some studies reported that the 

slight edema is easily reversible with diuretics (Lebovitz, 2002; Lebovitz and Banerji, 

2001) while some reported that it is resistant to diuretic therapy and reverses only with 

drug withdrawal (Stolar and Chilton, 2003). 

 

2.5.7.4. Bone density and fracture risk 

In an observational cohort study involving 61 people with T2DM (aged 70–79 

years), use of Pioglitazone or Rosiglitazone was associated with bone loss from the 

greater trochanter, lumbar spine and whole body in women but not in men (Schwartz et 

al., 2006). A double-blind randomized controlled trial with recently diagnosed T2DM and 

followed for a median of 4 years, found an significant increased incidence of fracture in 

women taking Rosiglitazone as monotherapy (9.30%) compared with metformin (5.08%) 

and glibenclamide (3.47%) (Kahn et al., 2006). Most of the additional fractures were in 

the humerus, hand or foot.  

 

Pioglitazone had a fracture incidence of 1.9 fractures per 100 patient years in 

women treated with Pioglitazone compared to 1.1 fractures per 100 patient years in 

women on comparator therapy (Takeda, 2007). Most of the excess fractures were in the 



                                                                                                    53 
 

forearm, hand and wrist, foot, ankle, fibula and tibia (i.e. not the hip and spine, the typical 

sites in post-menopausal osteoporosis). No increased risk of fracture was identified in 

men.  

 

2.5.7.5. Effects of Thiazolidinediones on Markers of Cardiovascular Risk  

The Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication 

(DREAM) study showed Rosiglitazone increases the likelihood of regression to 

normoglycaemia in individuals with impaired fasting glucose or impaired glucose 

tolerance or both (2006). However, this trial showed no clear benefit on cardiovascular 

outcomes at 3 years. The rate of all cardiovascular events was non-significantly higher in 

the Rosiglitazone group, (P=0.08), and there was a significant increase in heart failure in 

the Rosiglitazone group compared with placebo (Heneghan et al., 2006).  

 

In the A Diabetes Outcome Progression Trial (ADOPT) trial, Rosiglitazone was 

associated with a higher risk of cardiovascular events (including congestive heart failure) 

than glyburide, but had a similar risk with metformin (Kahn et al., 2006).  

 

The safety of Rosiglitazone was questioned further in a recent meta-analysis 

which found that Rosiglitazone was associated with a significant increase in myocardial 

infarction and an increased risk of death from cardiovascular causes that approached 

statistical significance (Nissen and Wolski, 2007). Forty-two studies of Rosiglitazone vs. 

placebo or other anti-hyperglycemic agents of at least 24 weeks duration were included 

and, overall, Rosiglitazone was associated with a statistically significant 43% increase in 

risk for myocardial infarction (P=0.03) and a non-statistically significant 64% increased 

risk of death from cardiovascular causes (P=0.06). These findings gained enormous 
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attention, although the study was limited by a number of factors. The most important of 

those limitations were the absence of patient-level data, the relatively short follow-up of 

the studies for cardiovascular outcomes, the small number of events, the fact that most of 

the studies were not designed to assess cardiovascular outcomes making misclassification 

possible, and the fact that 27 of the 42 included trials were not published.  

 

Further concerns about thiazolidinediones were raised when the Action to Control 

Cardiovascular Risk in Diabetes (ACCORD) trial was terminated early after patients in 

the intensive treatment arm, 91% of whom received Rosiglitazone, were at significantly 

increased risk of death especially from cardiovascular disease.  

 

In contrast, the Prospective Pioglitazone Clinical Trial in Macrovascular Events 

(PROactive) study which monitored cardiovascular outcomes in type 2 diabetic patients 

at high risk for cardiovascular events treated with Pioglitazone demonstrated a beneficial 

trend for reduced cardiovascular events and a significant reduction in combined 

myocardial infarction, stroke, and all-cause mortality. After a mean follow-up of about 

34.5 months, Pioglitazone treatment resulted in a non-significant 10% reduction in the 

primary composite endpoint and a significant 16% reduction in the main secondary 

endpoint of all-cause mortality, non-fatal myocardial infarction and stroke combined 

compared to placebo (Dormandy et al., 2005).  

 

In a meta-analysis on the effect of Pioglitazone on cardiovascular outcome, a total 

of 19 trials with treatment duration of 4 months to 3.5 years were included. Pioglitazone 

was associated with a significant reduction of 18% in the risk of a composite endpoint of 
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death, myocardial infarction or stroke. In contrast, Pioglitazone was associated with a 

41% increased risk of serious heart failure (Lincoff et al., 2007). 

 

The ongoing Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of 

glycaemic in Diabetes (RECORD) study, the first prospective study designed to assess 

the cardiac outcomes of Rosiglitazone in patients with diabetes, should help to answer 

these questions regarding the safety of Rosiglitazone when results are available in 2009. 

Results of a recent interim analysis of this trial showed there was no evidence of any 

increase in death from either cardiovascular causes or all causes from Rosiglitazone but it 

was associated with an increased risk of heart failure (Home et al., 2007). 

  

Considerable number of studies suggests that both Rosiglitazone and Pioglitazone 

possess important pleiotropic cardiovascular properties, helping towards improvement of 

lipid profile, blood pressure lowering, redistribution of body fat away from the central 

compartment, microalbuminuria regression, decrease of C-reactive protein and PAI-1 

levels, and others. On the other hand, these agents are characterized by an important side 

effect profile, including fluid retention, weight gain and, in rare cases, heart failure 

deterioration. 

 

Taken together, it seems overall risks and benefits derived from these agents should be 

carefully monitored. As treatment of type 2 diabetes remains a very difficult task and as 

thiazolidinediones have both important beneficial and adverse properties, careful 

evaluation of outcome of clinical trials along with upcoming and future evidence in this 

field is necessary to fully elucidate this important issue for benefit of the diabetic patients. 
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Chapter  3.  Materials and Methods 

3.1.  Subjects 

We recruited 18 subjects, 9 Chinese and 9 Indians type 2 diabetic subjects for our 

study. They were recruited from the Outpatient Diabetes Clinic of National University 

Hospital. The subjects were between age 35 year and 61 years. The duration of diabetes 

for each subject was less than 10 years. All the subjects had stable glycaemic control 

which was defined by having less than a 2% fluctuation of haemoglobin A1c in the 

preceding 6 months. They all had haemoglobin A1c values from 7% to 10%. All patients 

were on diet control and two oral hypoglycemic agents, metformin and glipizide. The 

patients who had been treated previously with insulin or thiazolidinediones were excluded 

from the study. None of the subjects require active titration of their oral hypoglycaemic 

agents in the prior 6 months or during the study period.  

 

In selecting the ethnicity of the subjects, both parents of the subjects needed to be same 

ethnic group, either Chinese or Indian. The subjects of mixed descent were excluded. 

Patients were in good general health without any evidence of cardiac, hepatic, renal or 

other chronic diseases, as determined by history, physical examination and routine blood 

chemistry. In the initial screening, the patients with significant renal impairment, which 

was defined by having serum creatinine more than 130 μmol/L, with significant liver 

impairment, defined by having liver enzymes more than 2 times that of upper limit of 

normal value, and with significant congestive cardiac failure defined by New York Heart 

Association Classification more than grade 2, were excluded from the study.  
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The written informed consent was obtained from each patient prior to participation in the 

study. The study protocol was approved by the Domain Specific Review Board, National 

Health Care Group and Health Science Authority of Singapore. The study was conducted 

at the National University Hospital, Singapore. 

 

3.2. Study Design 

The study was a longitudinal open-label study to evaluate the effects of 

Rosiglitazone on 2 ethnic groups, Chinese and Indian with type 2 diabetes mellitus. The 

subjects were given 4 mg of Rosiglitazone once a day for 16 weeks. There were 4 visits in 

total. Visit 1 was to review the patients on their eligibility of the study.  

The medical history, physical examination, routine blood chemistry and review of 

medication history were done by the physician to make sure the patients met the inclusion 

criteria. The written informed consent was obtained if the patients met the inclusion 

criteria. Visit 2 took place two weeks after the first visit and was to perform the baseline 

euglycemic hyperinsulinemic clamp. Patients were given instructions to come after 

overnight fasting and were also told not to take anti diabetic medication on the day of the 

clamp. Anthropometric measurement; body weight, height, waist, hip, percentage body 

fat and fat free mass, was done. Blood was withdrawn before the clamp for the baseline 

blood levels of Haemoglobin A1C, fasting plasma glucose and Insulin and for the 

measurement of adipokines. All patients underwent 80mU/kg/min hyperinsulinemic 

euglycemic study to assess the base line insulin sensitivity before starting the 

Rosiglitazone treatment. Visit 3 took place eight weeks after initiation of Rosiglitazone 

treatment. This visit was to monitor the haemoglobin A1C level and to review the patients 

to make sure patients did not develop the side effects of Rosiglitazone. Visit 4 took place 
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16 weeks after initiation of Rosiglitazone treatment. This visit was to perform the second 

and final hyperinsulinemic euglycemic glucose clamp after completion of Rosiglitazone 

treatment. The same procedures as in visit 2 were performed. 

 

3.3. Anthropometric measurements 

3.3.1. Body Mass Index (BMI) 

Weight and height were measured using standard procedures. The patients were 

allowed to wear light clothing but not shoes during the measurements. Body weight was 

measured by using a standard electric weighing machine and measured to nearest 0.1 kg. 

Body height was measured using a stadiometer and measured to the nearest 1 cm. Body 

mass index was calculated by using the following formula. 

Body mass index (kg/m2) = Weight in kg/ (Height in meter)2   

 

3.3.2. Waist Hip Ratio (WHR)  

Waist and hip circumferences were measured using the same non-elastic tape 

measure.Waist circumference was measured at the narrowest perpendicular 

circumference between the lower costal margin and the iliac crest. Hip was measured at 

the widest circumference between waist and the thigh. Waist-Hip ratio was calculated by 

using the following formula.  

Waist-Hip ratio = Waist circumference in cm/ Hip circumference in cm. 
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3.3.3. Percentage Body Fat and Fat Free Mass 

Percentage body fat and fat-free mass were measured using a Tanita body 

composition analyzer (model TBF-300GS; measurement frequency: 50 kHz; Tanita 

Corporation, Japan) using Bioelectrical Impedance Analysis technique. Patients were told 

to empty their bladder 30 minutes before the Bioelectrical Impedance Analysis. The 

subjects had to stand up straight on the electrodes and remained stable until completion of 

the measurement.  

 

3.4. Euglycaemic, Hyperinsulinaemic Clamp  

The insulin sensitivity was assessed by using the hyperinsulinaemic euglycaemic 

clamp technique.  Patients came to the study centre after a  ten hour overnight fast. One 

polythene cannula was inserted to an antecubital vein of the patient for the infusion of 

20% dextrose solution and insulin.  The second cannula was inserted into the contra-

lateral antecubital vein for the regular blood sampling during the hyperinsulinaemic 

euglycaemic clamp. 20% dextrose solution was given by Baxter Volumetric Infusion 

Pump (Flo-Gard® 6210, Baxter Healthcare, U.S.A) and insulin was given a using 

Terumo Syringe Pump (Terufusion® TE-331, Terumo Medical Corporation, Japan). 

 

Baseline blood samples were taken in the morning of the day before starting the 

hyperinsulinaemic euglycaemic clamp. After baseline blood samples were taken, insulin 

was infused at a constant infusion rate of 80mU/min per body surface area for the 

duration of the clamp of 2 hours. The insulin was infused to bring down the glucose 

concentration to a euglycemic level which we set at 90mg/dl. The plasma glucose 
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concentration was measured every 5 minutes after the start of insulin infusion. A variable 

infusion of 20% dextrose was adjusted manually to maintain a constant blood glucose 

concentration at 90 mg/dl with a coefficient of variation less than 5% throughout the 

clamp. Blood glucose concentration was determined by frequent blood sampling at 5 

minutes intervals in whole blood by a glucose oxidase technique (Yellow Spring glucose 

analyzer). Plasma samples were collected at 30 minutes, 60 minutes, 90 minutes, 120 

minutes and 180 minutes for the determination of insulin, adiponectin and 

proinflammatory adipokines and IGFBP-1concentrations. 

 

3.4.1. Data interpretation from Hyperinsulinemic Euglycemic Glucose 
Clamp 

Steady-state concentrations of glucose and insulin were defined as the respective 

levels measured during the last 30 minutes of the clamp with a coefficient of variation 

less than 5%.  

The mean value of the glucose infusion rate (mg/min/kg) during the final 30 

minutes of the clamp was defined as insulin-mediated glucose uptake which is the direct 

measurement of insulin sensitivity.  

 

3.4.2. Blood Sample Storage 

The blood samples obtained from euglycemic hyperinsulinemic clamps were processed 

by centrifugation at 2000 x g for 10 minutes at 4ºC. Serum samples were then aliquoted 

and stored at -70ºC.   
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3.5. Measurement of Adiponectin 

3.5.1. Measurement of Total Adiponectin 

Total adiponectin concentrations were measured by commercially available 

enzyme linked immunosorbent assay (LINCO Research, Missouri, U.S.A.). The intra-

assay and inter-assay coefficient of variations were 7.4% and 8.4%. 

3.5.1.2. Data Acquisition and Interpretation 
The enzyme activity was measured spectrophtometrically by SUNRISETM 

Absorbance Reader (TECAN group limited, Switzerland).  The absorbance was read at 

450 nm and 590 nm in a plate reader within 5 minutes after assay procedure. The results 

of unknown samples were calculated with Magellan reader software (TECAN group 

limited, Switzerland) by using 4- parameter logistic function.  

 

3.5.2. Measurement of High Molecular Weight Adiponectin 

High molecular weight adiponectin concentrations were measured by commercially 

available enzyme linked immunosorbent assay (LINCO Research, Missouri, U.S.A.).  

The coefficient of variations of intra-assay was less than less than 2.4% and that of inter-

assay was less than 5.5%. Sample digestion was required before the assay procedure to 

remove hexameric and trimeric forms of adiponectin in samples and allow for specific 

measurement of high molecular weight adiponectin.  

3.5.2.1. Data Acquisition and Interpretation 
The enzyme activity was measured spectrophtometrically by SUNRISETM Absorbance 

Reader (TECAN group limited, Switzerland).  The absorbance was read at 450 nm and 

590 nm in a plate reader within 5 minutes after assay procedure. The results of unknown 
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samples were calculated with Magellan reader software (TECAN group limited, 

Switzerland) by using 4- parameter logistic function.  

 

3.6. Measurement of Other Adipokines 

3.6.1. Leptin, Resistin, TNF-α, IL-6 and PAI-1 

The measurement of other adipokines; Leptin, Resistin, TNF--α and IL-6 and 

PAI-1 was done by using a novel Bio-Plex ProTM Human Diabetes Assay (Bio-Rad 

Laboratories, Inc, USA) 

3.6.1.1. Assay Procedure 

The assays were done in duplicates. 50 µl of diluted standards, assay controls and 

unknown samples was added to appropriate wells of the filter plate containing 50 µl of 

coupled magnetic beads which are antibody coated fluorescent beads. The filter plate was 

put on a microplate shaker set at 1,100 rpm for 30 seconds, and incubated at room 

temperature, approximately 25ºC for 2 hours at 300rpm.  

 

The filter plate was decanted and vacuum filtered. 25μl each of detection antibody 

was added to the wells and the filter plate was put on a microplate shaker set at 1,100 rpm 

for 30 seconds, and incubated for 30 minutes at 300rpm. 50μl of streptavidin-

phycoerythrin was added to each well and then, the filter plate was put on a microplate 

shaker set at 1,100 rpm for 30 seconds, and incubated at room temperature, approximately 

25ºC for 10 minutes at 300rpm. The filter plate was decanted and vacuum-filtered after 

each incubation. 125μl each of assay buffer was added to the wells and put on a shaker 
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set at 1,100 rpm for 30 seconds and read the plate by Bio-Plex array reader (Bio-Rad 

Laboratories, Inc, USA). 

 

3.6.1.2. Data Acquisition and Interpretation 

Samples and controls were read at a high RP1 target setting in Bio-Plex array reader.  

High RP1 is the fluorescent channel recommended for quantification of low 

concentrations of adipokines as it provides greater sensitivity. The filter plate was 

checked visually to make sure all the well are filled with assay buffer and then, was 

placed in the Bio-Plex microplate platform. Data was analyzed subsequently using the 

Bio-Plex ManagerTM software, version 3. In calculating the concentration of the unknown 

samples from the standard curve, the standard curve is build upon a five parameters 

logistic equation that corrects for asymmetry in the curve shape.  

 

3.7. Measurement of IGFBP-1 

Serum IGFBP-1 levels were determined by Enzyme linked immunosorbent assay 

from Medix Biochemica, Finland using monoclonal antibody specific to IGFBP-1. The 

intra- and inter assay coefficients of variation were 4.3% and 6.5% respectively. 

To study the dynamic interaction between IGFBP-1 and Insulin in Chinese and 

Asian Indians before and after Rosiglitazone treatment,  IGFBP-1 levels were measured 

at base line, 90 minute and 120 minute after infusion of insulin and 180 minute of 

euglycemic hyperinsulinemic clamp in both ethnic groups, Chinese and Asian Indians 

before and after Rosiglitazone treatment.  
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The 90 minutes and 120 minutes after insulin infusion represented the steady state 

of euglycemic hyperinsulinemic clamp and 180 minute levels represent the insulin level 

60 minutes after stopping of exogenous insulin infusion. 

 

3.7.1. Data Acquisition and Interpretation 

The enzyme activity was measured spectrophtometrically by SUNRISETM 

Absorbance Reader (TECAN group limited, Switzerland).  The absorbance was read at 

414 nm in a plate reader within 5 minutes after assay procedure. The results of unknown 

samples were calculated with Magellan reader software (TECAN group limited, 

Switzerland) by using 4- parameter logistic function.  

 

3.8. Other Biochemical Analysis 

Routine blood chemistry such as full blood count, urea and electrolytes and creatinine, 

liver function test, fasting lipid profile, serum insulin and HbA1c were done in the 

Department of Laboratory Medicine, National University Hospital of Singapore.  
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3.9. Statistical Analysis 

Statistical analysis was performed by SPSS 16.0 (Statistical Package for Social 

Science). Data reported throughout this thesis are mean±SE unless otherwise stated. 

Variables which do not conform to a normal distribution were log-transformed prior to 

analysis. For each measured variable, the effect of treatment was calculated by the 

changes of the variable over 16 weeks against the baseline values in each group and in 

between two groups, Chinese and Indian. Paired sample T test was used to compare the 

pre and post Rosiglitazone treatment value of the variables in each ethnic group. 

Independent two-sample T test was used to compare the magnitude of the changes of 

variables in each ethnic group. A two-tailed significance value p of < 0.05 was considered 

statistically significant.  
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Chapter 4. Results 

Eighteen Asian type 2 diabetic patients were participated in our study. 9 patients 

were of Chinese ethnicity and 9 patients were of Indian ethnicity. All the patients had 

both parents of the same ethnicity either Chinese or Indian. Patients were all in good 

general health without any evidence of cardiac, hepatic, renal or other chronic diseases, as 

determined by history, physical examination and routine blood chemistry. All patients 

were on diet control and two oral hypoglycemic agents, metformin and glipizide. None of 

the subjects required active titration of their oral hypoglycemic agents in the prior 6 

months before participation in the study or during the study period.  

4.1.  Demographic Characteristics of the Study Population 

The baseline demographic characteristics of the patients are shown in Table 1. 

The patients were between age 35 year and 61 years. The mean age ± SE of Chinese and 

Indians were 51 ± 2 years and 48 ±3 years respectively (p>0.05). The mean duration of 

diabetes ± SE for Chinese was 9±2 years and Indians was 11±3years (p>0.05). The mean 

body weight ± SE in Chinese was 73.9±3.9 Kg and was 69.9±3.8 Kg in Indians (p>0.05). 

The body mass index ± SE was 26.4±1.0 Kg/m2 in Chinese and 25.8±1.1 Kg/m2 in 

Indians (p>0.05). The mean waist circumference± SE and mean waist hip ratio in Chinese 

was 95.6±3.0 cm and 0.96±0.02, and 92.7±3.6cm and 0.94±0.03 in Indian respectively 

(p>0.05). The systolic and diastolic blood pressure in Chinese was 126±3 mmHg and 

78±2 mmHg, and 129±3 mmHg and 79±3 mmHg in Indians (p>0.05). The mean ±SE of 

percentage body fat was similar in Chinese and Indians with the mean of 30±3% in 

Chinese, and 29±3% in Indian respectively (p >0.05). None of these values were 

significantly different between 2 ethnic groups, Chinese and Indians (p >0.05). 
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Table 1.  Baseline demographic characteristics of 2 ethnic groups 

  
Chinese (N=9) Indian (N=9) 

p 
Mean±S.E Mean±S.E 

Age (years) 51±2 48±3 NS 

Duration (years) 9±2 11±3 NS 

Total body weight (Kg) 73.9±3.9 69.9±3.9 NS 

BMI (kg/m2) 26.4±1.0 25.8±1.1 NS 

Waist circumference(cm) 95.6±3.0 92.7±3.6 NS 

Waist hip ratio 0.96±0.02 0.94±0.03 NS 

SBP (mmHg) 126±3 129±3 NS 

DBP (mmHg) 78±2 79±3 NS 

% Body Fat (%) 30±3 29±3 NS 
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4.2. Metabolic Characteristics of 2 Ethnic Groups 

The baseline biochemical characteristics of patients are shown in Table 2. At the 

baseline, the fasting plasma glucose and the haemoglobin A1c of the 2 ethnic groups were 

not significantly different between Chinese and Indians. The mean fasting plasma glucose 

was 189.9±12.6 mg/dl in Chinese and 178.8±14.5 mg/dl in Indians (p>0.05). All the 

subjects had stable haemoglobin A1c in the preceding 6 months and had haemoglobin 

A1c values ranging from 7% to 10%. The mean haemoglobin A1c±SE was 8.7±0.3 % 

and 8.8±0.4 % in Chinese and Indians (p>0.05). 

 

The mean total cholesterol ±SE was 4.04±0.23mmol/L in Chinese compared to 

4.64±0.17 mmol/L in Indians (p>0.05). The mean triglyceride ±SE in Chinese was 

slightly higher than Indians that is 1.56±0.18 mmol/L compared to 1.37±0.16 mmol/L 

(p>0.05). The mean high density lipoprotein cholesterol ±SE in Indian was lower, 

0.99±0.05mmol/L compared to 1.02±0.08mmol/L in Chinese (p>0.05). None of these 

differences were statistically significant between the two ethnic groups. However, low 

density lipoprotein cholesterol was significantly higher in Indians compared to Chinese 

(p=0.003). The mean low density lipoprotein cholesterol ±SE was 3.03±.13 mmol/L in 

Indian compared to 2.31±0.16 mmol/L in Chinese. 
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Table 2. Metabolic characteristics of 2 ethnic groups 

  
 Chinese (N=7) Indian (N=7) 

p 
          Mean±S.E              Mean±S.E  

Fasting Plasma Glucose  189.9±12.6              178.8±14.5  NS 

HbA1c (%) 8.7±0.3 8.8±0.4 NS 

Cholesterol (mmol/L) 4.04±0.23 4.64±0.17 NS 

TG (mmol/L) 1.56±0.18 1.37±0.16 NS 

HDL-C (mmol/L) 1.02±0.08 0.99±0.05 NS 

LDL-C (mmol/L)             2.31±0.16                 3.03±.13 0.003 
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4.3. Ethnic Difference in Anthropometry after 16 week Rosiglitazone 

Treatment 

4.3.1. Changes in Total Body Weight 

 

At the baseline, total body weight was not significantly different between the 2 

ethnic groups. At the end of 16 week Rosiglitazone treatment, the total body weight 

increased significantly in Indians (p=0.012) whereas no significant change was observed 

in Chinese. The mean total body weight ± SE before and after Rosiglitazone treatment 

was 69.9±3.8 vs. 71.5±3.9 Kg in Indians and was 73.9±3.9 vs. 74.9±3.8 Kg in Chinese 

(Fig 3). However, there was no significant ethnic difference in these changes between the 

2 ethnic groups (p>0.05).
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Figure 3. Changes in total body weight after 16 week Rosiglitazone treatment 
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4.3.2. Changes in Body Mass Index 

 

At the baseline, body mass index was not significantly different between the 2 

ethnic groups. At the end of 16 week Rosiglitazone treatment, the body mass index 

increased significantly in Indians (p =0.012) whereas no significant change was observed 

in Chinese.  The mean body mass index ± SE before and after Rosiglitazone treatment 

was 25.8±0.9 vs. 26.4± 1.0Kg/m2 in Indians and was 26.4± 1.0 vs. 26.7±0.9 Kg/m2 were 

in Chinese (Fig 4). However, there was no significant ethnic difference in the changes 

between the 2 ethnic groups (p >0.05). 
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Figure 4. Changes in body mass index after 16 week Rosiglitazone treatment 
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4.3.3. Changes in Waist Circumference 

 

At the baseline, the waist circumference was similar in 2 ethnic groups. There 

were slight changes in the waist circumference in both Indians and Chinese at the end of 

16 week Rosiglitazone treatment but the changes were not statistically significant. The 

mean waist circumference ± SE before and after Rosiglitazone treatment was 92.7±3.6 vs. 

94.9±4.1 cm in Indians and was 95.6±3.0 vs. 94.6±4.4 cm were in Chinese (Fig 5). 

However, although the changes were in different directions, there was no statistically 

significant ethnic difference in changes between the 2 ethnic groups (p>0.05). 
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Figure 5. Changes in Waist circumference after 16 week Rosiglitazone 
treatment 
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4.3.4. Changes in Waist Hip Ratio 

 

At the baseline, waist hip ratio was not significantly different between the 2 ethnic 

groups. At the end of 16 week Rosiglitazone treatment, there were slight changes in the 

waist hip ratio in Indians and Chinese. The mean waist hip ratio ± SE before and after 

Rosiglitazone treatment was 0.94±0.03 vs. 0.95±0.03 in Indian and was 0.96 ± 0.02 cm 

vs. 0.92 ± 0.03 were in Chinese (Fig 6). However, although the changes were in different 

directions, these were not significantly different between the 2 ethnic groups (p>0.05). 
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Figure 6. Changes in Waist Hip Ratio after 16 week Rosiglitazone treatment 
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4.3.5. Changes in Percentage Body Fat 

 

At the baseline, the percentage body fat was not significantly different between 

the 2 ethnic groups. At the end of 16 week Rosiglitazone treatment, the percentage body 

fat increased in both Chinese and Indians. However, the increase was only significant in 

Indians (p=0.008) and not in Chinese. The mean percentage body fat ± SE before and 

after Rosiglitazone treatment was 29.3±3.3% vs. 33.3±3.2% in Indians and was 30.4 ± 

2.5% cm vs. 32.1±1.2% were in Chinese (Fig 7). However, there was no statistically 

significant ethnic difference in changes between the 2 ethnic groups. 



                                                                                                    79 
 

20

25

30

35

40

1

Pe
rc

en
ta

ge
 b

od
y 

fa
t (

%
)

Chinese before Chinese after Indian before Indian after

*

 

Figure 7. Changes in body fat percentage after 16 week Rosiglitazone 
treatment 
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4.4.  Changes in Glycemic Control after 16 week Rosiglitazone 

Treatment 

4.4.1.  Changes in Fasting Plasma Glucose Levels 

At the baseline, fasting plasma glucose was not significantly different between the 

2 ethnic groups. At the end of 16 week Rosiglitazone treatment, there was a significant 

decrease in fasting plasma glucose levels in both ethnic groups. The mean fasting plasma 

glucose ± SE before and after Rosiglitazone treatment was 178.8±14.5 vs.  

125±10.9mg/dl (p=0.008) in Indians and was 189.9±12.6 vs. 143.44±9.8 (p=0.012) in 

Chinese. The decrease in fasting plasma glucose after treatment was 28% in Indians and 

23% in Chinese compared to baseline (Fig 8). However, the changes were not 

significantly different between the 2 ethnic groups. 
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Figure 8. Changes in fasting plasma glucose after 16 week Rosiglitazone 
treatment 
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4.4.2. Changes in Haemoglobin A1c 

At the baseline, haemoglobin A1c was not significantly different between the 2 

ethnic groups. At the end of 16 week Rosiglitazone treatment, there was a significant 

decrease in haemoglobin A1c in both ethnic groups. The mean fasting plasma glucose ± 

SD before and after Rosiglitazone treatment was 8.8±0.43 vs. 7.4±0.4% (p=0.008) in 

Indians and was 8.6±0.4 vs. 7.6±0.5 (p=0.008) in Chinese (Fig 9). However, the changes 

were not significantly different between the 2 ethnic groups (p>0.05). 
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Figure 9.  Changes in HbA1c after 16 week Rosiglitazone treatment 
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4.4.3. Changes in Fasting Plasma Insulin Levels 

At the baseline, there was no significant difference between the 2 ethnic groups in 

their fasting insulin levels at baseline. At the end of 16 week Rosiglitazone treatment, 

there was a significant increase in insulin levels in both ethnic groups. The mean fasting 

plasma insulin ± SD before and after Rosiglitazone treatment was 5.2±0.4 vs. 11.0±3.2 

mU/L in Indians (p=0.011), and was 4.36±0.5 vs. 9.6±4.3 mU/L (p=0.028) in Chinese 

(Fig10). However, the changes were not statistically significant between the 2 ethnic 

groups (p>0.05).  
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Figure 10. Changes in fasting insulin after 16 week Rosiglitazone treatment 
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4.5. The Changes in the Lipid Profile after 16 week Rosiglitazone 

There were no significant changes in lipid profile after 16 week Rosiglitazone 

treatment (Fig 11 and Fig 12). At the end of 16 week Rosiglitazone treatment, Cholesterol 

and triglycerides increased slightly in both Indians and Chinese compared to base line. 

The mean total cholesterol ±SE before and after Rosiglitazone treatment were 4.64±0.17 

vs. 4.87±0.32 mmol/ in Indians (p>0.05) while it increased from 4.04±0.23 vs. 4.24±0.31 

mmol/L in Chinese (p>0.05). The mean triglyceride ±SE increased from 1.37±0.16 to 

1.53±0.23 mmol/ in Indians (p>0.05), while in Chinese, it increased from 1.56±0.18 to 

1.82±0.32 mmol/L before and after Rosiglitazone treatment (p>0.05).  

In Chinese, there was a slight increase in HDL and almost no change in LDL. The 

mean HDL ±SE increased from 1.02±0.08 to 1.08±0.08mmol/L (p>0.05) and the mean 

LDL±SE changed from 2.31±0.16 to 2.33±0.22mmol/L (p>0.05) before and after 

Rosiglitazone treatment respectively. 

In Indians, there was almost no change in HDL but there was a slight increase in 

LDL. The mean HDL ±SE was 0.99±0.05 and 0.98±0.04 mmol/L (p>0.05) and the mean 

LDL ±SE was 3.03±0.13 and 3.20±0.25 mmol/L (P>0.05) before and after Rosiglitazone 

treatment. 

However, none of the changes in plasma lipid profile were significantly different 

between Chinese and Indians (p>0.05). 
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Figure 11. Changes in lipid profile in Chinese after 16 week Rosiglitazone 
treatment 
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Figure 12. Changes in lipid profile in Indians after 16 week Rosiglitazone 
treatment 
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4.6. Changes in Insulin Sensitivity after 16 week Rosiglitazone  

Treatment 

Steady-state concentrations of glucose and insulin were defined as the respective 

levels measured during the last 30 minutes of the euglycemic hyperinsulinemic clamp 

with a coefficient of variation less than 5%. The mean value of the glucose infusion rate 

during the steady state of the clamp was defined as the insulin-mediated glucose uptake of 

the tissues, in other words glucose disposal rate which is the direct measurement of 

insulin sensitivity.  

 

The glucose disposal rate was normalized for body weight to account for 

differences in body weight among subjects and was expressed as mg/min/kg. At baseline, 

Indians had a lower insulin sensitivity compared to Chinese but the difference between 2 

ethnic groups was not statistically significant. At the end of 16 week Rosiglitazone 

treatment, the insulin sensitivity increased significantly in both Indians and Chinese. The 

mean insulin sensitivity measured by glucose disposal rate ± SE before and after 

Rosiglitazone treatment was 3.25±0.69 vs. 5.93±0.97 mg/kg/min in Indians (p=0.008) and 

was 3.64±1.02 vs. 4.83±1.09 mg/kg/min (p=0.008) in Chinese (Fig 13). The magnitude of 

increase in insulin sensitivity was much greater in Indians compared to Chinese (112% 

vs. 50%) despite the greater increase in body weight, body mass index, waist 

circumference and percentage body fat in Indians after Rosiglitazone treatment. The 

ethnic difference in the magnitude of changes in insulin sensitivity in response to 

Rosiglitazone treatment between Indian and Chinese was statistically significant 

(p=0.025). 
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Figure 13. Ethnic difference in insulin sensitivity normalized for body weight 
(mg/min/kg) 

 

P=0.008
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The glucose disposal rate was normalized for fat free mass (FFM) to account for 

differences in percentage body fat among subjects and was expressed as mg/min/FFM. At 

the end of 16 week Rosiglitazone treatment, the insulin sensitivity corrected for fat free 

mass increased significantly in both Indians and Chinese. The mean insulin sensitivity 

measured by glucose disposal rate ± SE before and after Rosiglitazone treatment was 

4.56±0.95 vs. 9.0±1.47 mg/min/FFM in Indians (p=0.008) and was 5.16±1.35 vs. 

7.48±1.53mg/min/FFM (p=0.011) in Chinese. The magnitude of increase was also greater 

in Indians compared to Chinese (127% vs. 67%) (Fig.14). However, the difference in 

insulin sensitivity corrected for percentage body fat, in response to Rosiglitazone 

treatment between 2 ethnic groups was not statistically significant (p>0.05). 
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Figure 14. Ethnic difference in insulin sensitivity normalized for fat free mass 
(mg/min/FFM) 
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4.7. Changes in Adiponectin 

4.7.1. Baseline Fasting Adiponectin levels 

Total adiponectin and high molecular weight adiponectin levels were measured at 

baseline before Rosiglitazone treatment. The adiponectin index was calculated from the 

ratio of high molecular weight to total adiponectin. This adiponectin index has been 

reported to have greater correlation with insulin sensitivity (Pajvani and Scherer, 2003). 

 

At base line, total adiponectin levels were higher in Indians, 4.1±0.7µg/ml 

compared to 4.0±0.5µg/ml in Chinese (p>0.05). However, high molecular weight 

adiponectin levels were higher in Chinese, 1.7±0.2µg/ml compared to Indian, 

1.5±0.3µg/ml (p>0.05). The adiponectin index which is the ratio of high molecular 

weight to total adiponectin was significantly lower in Indians, 0.3±0.02 compared to 

Chinese, 0.40±0.01. The difference in the adiponectin index at baseline was statistically 

significant between 2 ethnic groups (P=0.03). 
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4.7.2. Acute Adiponectin Changes during Euglycemic 
Hyperinsulinemic Clamp:  

4.7.2.1. Effect of insulin on circulating adiponectin levels 

During the euglycemic hyperinsulinemic clamp, insulin was infused at a constant 

infusion rate of 80mU/min per body surface area for the duration of 2 hours. 

Hyperinsulinemia was associated with a significant acute reduction in both total and high 

molecular weight adiponectin levels during the steady state of euglycemic 

hyperinsulinemic clamp compared to pre-clamp levels.  

4.7.2.1. Acute changes in total adiponectin 

Before Rosiglitazone treatment, the mean±SE of total adiponectin at baseline and 

at steady state after infusion of insulin were 4.1±0.7 vs. 3.7±0.6µg/ml µg/ml in Indians 

(p>0.05) and 4.0±0.5 vs. 3.6±0.4µg/ml in Chinese (p=0.021) respectively (Fig 15). 

Similar results were obtained at the end of 16 week Rosiglitazone treatment, the 

mean±SE of total adiponectin at baseline and at steady state after infusion of insulin were 

8.9±1.3 vs.7.5±1.3µg/ml in Indians (p=0.008) and 8.6±0.8 vs. 6.8±0.7µg/ml in Chinese 

(p=0.011) respectively (Fig 16).  The suppression of total adiponectin levels was greater 

in both ethnic groups after Rosiglitazone treatment. In Indians, the acute suppression of 

total adiponectin levels at steady state euglycemic hyperinsulinemic clamp was 10% 

before Rosiglitazone treatment and 16% after Rosiglitazone treatment. In Chinese, the 

acute suppression of total adiponectin levels at steady state euglycemic hyperinsulinemic 

clamp was 10% before Rosiglitazone treatment and 21% after Rosiglitazone treatment. 

There was no difference in insulin induced acute suppression of total adiponectin between 

the 2 ethnic groups (p>0.05)  



                                                                                                    95 
 

1.0

3.0

5.0

7.0
T

ot
al

 a
di

po
ne

ct
in

 le
ve

ls
 ( μ

g/
m

l)

Chinese-Basal state
Chinese-Steady state

Indians-Basal state
Indians - Steady state

*
*

 

Figure 15. Acute changes in Total adiponectin before 16 week Rosiglitazone 
treatment 
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Figure 16.  Acute changes in Total adiponectin after 16 week Rosiglitazone 
treatment 
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4.7.2.2. Acute changes in high molecular weight (HMW) adiponectin  

Induced Hyperinsulinemia during the euglycemic hyperinsulinemic clamp also 

suppressed high molecular weight adiponectin acutely. Before Rosiglitazone treatment, 

the mean±SE of HMW adiponectin at baseline and at steady state after infusion of insulin 

were 1.5±0.3 vs. 1.2±0.3µg/ml µg/ml in Indians (p=0.011) and 1.7±0.2vs 1.4±0.2µg/ml in 

Chinese (p>0.05) respectively (Fig 17). At the end of 16 week Rosiglitazone treatment, 

the levels of high molecular weight adiponectin at baseline and at steady state after 

infusion of insulin were 4.3±0.7 vs. 3.2±0.7µg/ml in Indians (p=0.008) and 5.3±0.5 vs. 

4.4±0.7µg/ml in Chinese (p=0.028) respectively (Fig 18).  However, there was no 

significant difference in insulin induced acute suppression of total adiponectin between 

the 2 ethnic groups (p>0.05).  
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Figure 17.   Acute changes in high molecular weight adiponectin before 16   
week Rosiglitazone treatment 
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Figure 18.  Acute changes in high molecular weight adiponectin after 16- 
week Rosiglitazone treatment 
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4.7.3. Changes in Fasting Adiponectin Levels after 16 week 
Rosiglitazone treatment 

At the completion of 16 week Rosiglitazone treatment, both total and high 

molecular weight adiponectin levels increased significantly in both Indians and Chinese. 

The adiponectin indices were also increased in both ethnic groups. 

 

Total adiponectin levels increased similarly in Indians and Chinese. The mean ± 

SE of total adiponectin was 4.1±0.7 vs. 8.9±1.3µg/ml (p=0.008) in Indians and 4.0±0.5 

vs. 8.6±0.8µg/ml (p=0.007) in Chinese respectively before and after 16 week 

Rosiglitazone treatment (Fig 19).  

 

However, the increase in HMW adiponectin levels was greater in Chinese. The 

mean±SE of HMW adiponectin was 1.5±0.3 vs. 4.3±0.7µg/ml (p=0.008) in Indians and 

1.7±0.2 vs. 5.3±0.5µg/ml (p=0.007) in Chinese respectively (Fig 20) before and after 16 

week Rosiglitazone treatment.   
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Figure 19. Changes in Total adiponectin and high molecular weight adiponectin in 
Indians after 16 week Rosiglitazone treatment 
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Figure 20. Changes in Total adiponectin and high molecular weight 
adiponectin in Chinese after 16 week Rosiglitazone treatment 
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The changes in adiponectin index were 0.42±0.02 vs. 0.63±.04 (p=0.007) in 

Chinese compared to 0.34±0.03 vs. 0.47±.02 (p=0.027) in Indians before and after 

Rosiglitazone treatment (Fig 21). The adiponectin index is still significantly lower in 

Indians compared to Chinese after Rosiglitazone treatment (p=0.015). The increase in 

adiponectin index was greater in Chinese (49%) compared to Indians (41%). However, 

the differences in adiponectin levels in response to Rosiglitazone treatment were not 

significant between Chinese and Indians (P>0.05). 
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Figure 21. Changes in Adiponectin Index after 16 week Rosiglitazone 
treatment 
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4.8. Changes in the other adipokines 

4.8.1. Changes in Fasting Leptin levels 

At baseline, there was no significant difference in leptin levels between Chinese 

and Indians. At the end of 16 week Rosiglitazone treatment, there was a decrease in 

fasting leptin levels in both ethnic groups. The mean fasting leptin ± SE before and after 

Rosiglitazone treatment was 4.53±1.55 vs.  1.25±0.28 ng/ml in Indians and was 

4.48±1.52 vs. 1.82±0.66 ng/ml in Chinese before and after Rosiglitazone treatment. The 

decrease of fasting leptin value after treatment compared to baseline was significant only 

in Indians (p =0.046) and not in Chinese (Fig 22). However, the changes were not 

statistically significant between Chinese and Indians (p>0.05). 
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Figure 22. Changes in fasting Leptin (ng/ml) after 16 week Rosiglitazone 
treatment 
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4.8.2. Changes in Fasting Resistin Levels 

At baseline, resistin levels between Chinese and Indians were similar and not 

significantly different. At the end of 16 week Rosiglitazone treatment, there was a small 

decrease in fasting resistin levels in Chinese but almost no change in Indians. The mean 

fasting resistin±SE before and after Rosiglitazone treatment was 1.36±0.13 vs.  1.31±0.13 

ng/ml in Indians and was 1.14±0.11 vs. 1.01±0.10 ng/ml in Chinese before and after 

Rosiglitazone treatment. The decrease of fasting resistin was statistically significant 

(p=0.028) only in Chinese (Fig 23). However, the changes were not statistically 

significant between Chinese and Indians (p>0.05). 
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Figure 23. Changes in fasting Resistin (ng/ml) after 16 week Rosiglitazone 
treatment 
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4.8.3. Changes in Fasting Tumor Necrosis Factor alpha (TNF-α) Levels 

At baseline, TNF-α levels between Chinese and Indians were not significantly 

different. At the end of 16 week Rosiglitazone treatment, there was a small decrease in 

fasting TNF-α levels in Chinese but almost no change in Indians. The mean fasting TNF-

α±SE before and after Rosiglitazone treatment was 12.50±1.37 vs. 11.63±0.93 pg/ml in 

Chinese and was 11.22±0.70 vs. 11.30±0.90 pg/ml in Indians before and after 

Rosiglitazone treatment (Fig 24). However, the changes in fasting resistin after 

Rosiglitazone treatment were not statistically significant in both ethnic groups (p>0.05). 

There was no significant ethnic difference in changes in TNF-α between Chinese and 

Indian (p>0.05). 
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Figure 24 Changes in fasting Tumor Necrosis Factor-alpha (ng/ml) after 
16 week Rosiglitazone treatment 
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4.8.4. Changes in Fasting Interleukin-6 (IL-6) Levels 

At baseline, interleukin-6 levels between Chinese and Indians were similar. At the 

end of 16 week Rosiglitazone treatment, there was a decrease in interleukin-6 level in 

both ethnic groups but the decrease was minimal in Chinese. The decrease in fasting 

interleukin-6 levels in Indians was statistically significant (p=0.04). The mean fasting 

interleukin-6±SE before and after Rosiglitazone treatment was 7.58±0.45 vs.  6.56±0.16 

pg/ml in Indians and was 7.93±0.49 vs. 7.79±0.60 pg/ml in Chinese before and after 

Rosiglitazone treatment (Fig 25). However, the changes were not statistically significant 

between 2 ethnic groups (p>0.05). 
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 Figure 25. Changes in fasting Interleukin-6 (pg/ml) after 16 week Rosiglitazone 
treatment 
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4.8.5. Changes in Fasting Plasminogen Activator Inhibitor – 1 (PAI-1) 
Levels 

At the baseline, Plasminogen Activator inhibitor–1 levels in Chinese and Indians 

were similar and not significantly. At the end of 16 week Rosiglitazone treatment, there 

was a decrease in fasting PAI-1 levels in both Chinese and Indians. The mean fasting 

TNF-α±SE before and after Rosiglitazone treatment was 5.27±0.93 vs.  5.09±0.84 ng/ml 

in Chinese and was 5.23±0.85 vs. 4.95±0.81 ng/ml in Indians before and after 

Rosiglitazone treatment (Fig 26). However, the decrease in fasting resistin in both ethnic 

groups was not statistically significant (p>0.05) and also there was no significant ethnic 

difference in changes in PAI-1 between 2 ethnic groups (p>0.05). 
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Figure 26. Changes in fasting Plasminogen Activator Inhibitor-1 (ng/ml) after 16 
week Rosiglitazone treatment 
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4.9.    Changes in Insulin-Like Growth Factor Binding Protein-1 
(IGFBP-1) 

We measured IGFBP-1 in 2 different ethnic groups, 9 Chinese and 9 Asian Indian 

diabetic subjects during euglycemic hyperinsulinemic clamp before and after 

Rosiglitazone treatment. In 8 subjects out of 18, 4 subjects in each ethnic group, the levels 

of IGFBP-1 were below the lowest standard range (0.45ng/ml), the lowest level of 

IGFBP-1 which can be measured by our assay.  

 

We studied the dynamic interaction between IGFBP-1 and insulin level during 

euglycemic hyperinsulinemic clamp and the changes in IGFBP-1 level in response to 

Rosiglitazone. 

 

4.9.1. Baseline Fasting IGFBP-1 Levels 

Despite having low fasting insulin levels, our subjects had low fasting IGFBP-1 

levels at baseline. Indians had lower levels of IGFBP-1, mean±SE of 2.00±0.39 ng/ml 

compared to 3.28±0.68 ng/ml in Chinese at baseline before Rosiglitazone treatment.  The 

baseline IGFBP-1 levels were not different significantly between the two ethnic groups 

(p>0.05) 
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4.9.2. The Dynamic Interaction between IGFBP-1 and Insulin Level 

Before Rosiglitazone treatment, we observed the dynamic changes in IGFBP-1 

levels in relation to serum insulin (Hysteresis loop). The dynamic suppression is observed 

at 90 minutes and 120 minutes after insulin infusion compared to baseline in both Chinese 

and Indians. However, the suppression is lost at 180 minutes which is 60 minutes after 

stopping of insulin infusion. The dynamic changes were observed in both Chinese and 

Indians (Table 3, Figure. 27 and 29).   

 

After the Rosiglitazone treatment, we observed the dynamic changes in IGFBP-1 

levels in relation to serum insulin. The dynamic suppression pattern of IGFBP-1 by 

Insulin was observed at 90 minutes and 120 minutes and extended to 180 minutes (Table 

4, Figure. 28 and 30). This suppression pattern is consistent with that of the normal 

healthy non diabetic individuals, described by Liew et. al.  

 

The dynamic changes in IGFBP-1 levels were not different significantly between 

two ethnic groups (p>0.05) 
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Table 3. IGFBP-1 levels (ng/ml) during euglycemic hyperinsulinemic clamp before 
Rosiglitazone treatment 

IGFBP-1 levels (ng/ml)  Chinese Indians

Mean±SE Mean±SE
(N=5 ) (N=5  )

Before Rosiglitazone treatment 

0 min      3.28±0.68 2.00±0.39

90 min 2.17±0.50 1.36±0.57

120 min 1.28±0.22 1.07±0.47

180 min 3.10±1.31 1.58±0.92

Table 4. IGFBP-1 levels (ng/ml) during euglycemic hyperinsulinemic clamp after 
Rosiglitazone treatment 

IGFBP-1 levels (ng/ml)  Chinese Indians

Mean±SE Mean±SE
(N=5 ) (N=5  )

After Rosiglitazone treatment 

0 min 3.55±0.83 2.56±0.41

90 min 2.97±0.54 2.20±0.71

120 min 2.78±0.52 1.99±0.85

180 min 1.92±0.37 1.38±0.54
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Figure 27. Relationship between IGFBP-1 and insulin in Chinese during the 
euglycemic clamp- before 16 week Rosiglitazone treatment 
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Figure 28. Relationship between IGFBP-1 and insulin in Chinese during the 
euglycemic clamp- after 16 week Rosiglitazone treatment 
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Figure 29. Relationship between IGFBP-1 and insulin in Indian during the 
euglycemic clamp- before 16 week Rosiglitazone treatment 
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Figure 30. Relationship between IGFBP-1 and insulin in Indian during the 
euglycemic clamp- after 16 week Rosiglitazone treatment 
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4.9.3. The Changes in IGFBP-1 level in response to Rosiglitazone 

At the end of 16 week Rosiglitazone treatment, IGFBP-1 levels increased in both 

Chinese and Indian. The mean IGFBP-1 level ± SE before and after Rosiglitazone 

treatment was 2.00±0.39 vs. 2.56±0.41 cm in Indians (26% increase from baseline) and 

was 3.28±0.68 vs. 3.55±0.83 ng/ml (6% increase from baseline) in Chinese. (Figure 31) 

Although the magnitude of changes between the 2 ethnic groups was different, 26% in 

Indians and 6% in Chinese, the changes was not statistically significant (p>0.05).  
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Figure 31. Changes in fasting IGFBP-1 after 16 week Rosiglitazone treatment 
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Chapter 5. Discussion and Conclusion 

The main objective of this study was to assess the effect of Rosiglitazone on the 

insulin sensitivity of Asian type 2 diabetic patients of two different ethnic groups, 

Chinese and Indians. We measured the insulin sensitivity in Asian type 2 diabetic subjects 

using euglycemic hyperinsulinaemic clamp before and after 16 week treatment with 4 mg 

Rosiglitazone. We studied the effect of Rosiglitazone on anthropometry, glycaemic 

control and insulin sensitivity. We also studied various adipokines especially adiponectin 

in its different molecular weight forms and other biochemical changes, including dynamic 

changes in IGFBP-1. Our study demonstrated and defined novel ethnic differences in 

some of the parameters, and ethnic similarities in others. 
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5.1. Ethnic differences in insulin sensitivity in response to 

Rosiglitazone 

Many clinical studies showed the effect of thiazolidinediones on insulin 

sensitivity. (Carey et al., 2002; Lebovitz et al., 2001; Nolan et al., 1994; Rosenblatt et al., 

2001; Yamasaki et al., 1997). Among these clinical studies, only a few have performed 

euglycemic hyperinsulinaemic clamp which is the gold standard in assessing insulin 

sensitivity, and the majority of the patients are from Caucasian origin (Hallsten et al., 

2002; Miyazaki et al., 2001b).   

 

There are no previous studies which have shown such an ethnic variation in 

response to any insulin sensitizer in Western populations. Our study is the first study to 

determine the ethnic differences in response to Rosiglitazone. In this study, we observed a 

significant ethnic difference in insulin sensitivity between Chinese and Indians, in 

response to 16 week Rosiglitazone treatment.  

 

Before Rosiglitazone treatment, Indian subjects had a lower insulin sensitivity 

compared to Chinese subjects despite having similar body weight, waist circumference 

and percentage body fat.  Insulin sensitivity increased significantly both in Chinese and 

Indian Asian type 2 diabetic patients after 16 week Rosiglitazone treatment. However, the 

magnitude of changes in insulin sensitivity after Rosiglitazone treatment was significantly 

greater in Indians despite greater increase in total body weight and percentage body fat 

(Chapter 4.6).  
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We observed that Indians had greater a significant increase in body weight and 

percentage body fat compared to a non-significant increase in Chinese at the completion 

of Rosiglitazone treatment.  Clinically, we did not observe any signs of fluid retention, 

either oedema or signs of heart failure clinically from the history or physical examination 

in our subjects.  No significant changes were observed in waist circumference and the 

waist hip ratio which are the markers of central obesity or visceral fat in both ethnic 

groups (Chapter 4.3). Therefore, the significant increase in body weight could be 

attributable to significant increase in percentage body fat due to expansion of 

subcutaneous fat depot. Our findings are in consistent with the findings from other studies 

in which thiazolidinediones had neutral effects on the mean waist circumference and 

waist hip ratio compared to baseline despite increase in body weight, indicating an 

increase in peripheral rather than central fat mass.  

 

In addition, the changes in adipocytes reflected by their secretory profile of 

adiponectin and proinflammatory adipokines in Indians and Chinese were similar and had 

no statistically significant difference (Chapter 4.8).  

 

Therefore, our study is unable to define the cause of the difference in insulin 

sensitivity after completion of Rosiglitazone treatment in Chinese and Indians. However, 

our sample size is small, and thus we cannot exclude various mechanisms suggested by in 

vitro and other studies, which have primarily suggested changes in adipocyte populations 

(Chapter 2.5.1). 
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Another possibility for the difference in insulin sensitivity is the effect of PPAR-γ 

on muscles. Studies have demonstrated that skeletal muscle is the major site of insulin 

resistance in type 2 diabetes using euglycemic hyperinsulinemic clamp. (DeFronzo et al., 

1983; DeFronzo et al., 1985; Frayn et al., 1989; Olefsky, 2000). The glucose uptake 

increases progressively in healthy subjects in response to physiologic increase in plasma 

insulin concentration. In contrast, the onset of insulin action is delayed and the amount of 

glucose taken up by the skeletal muscle is markedly decreased in type 2 diabetic subjects, 

even though the insulin infusion is continued for additional 60 min to allow insulin to 

express its biologic function fully. These results provide strong evidence that skeletal 

muscle is a major site of insulin resistance in type 2 diabetic subjects (DeFronzo et al., 

1985).  

 

The PPAR-γ, molecular targets of thiazolidinediones are present in skeletal 

muscle at only about 10% of the level of these receptors at adipose tissue (Kruszynska et 

al., 1998; Vidal-Puig et al., 1997). Thiazolidinediones have been found to enhance 

glucose transport even in cultured muscle cells, arguing against a necessary role for 

adipocytes in their action (Ciaraldi et al., 1990). Similarly, transgenic mice in which 

adipose tissue has been ablated and which are insulin-resistant and hyperglycemic despite 

their lack of fat, displayed a striking improvement in insulin sensitivity when treated with 

thiazolidinediones, (Burant et al., 1997). In mice, targeted deletion of PPARγ in adipose 

tissue does not induce insulin resistance in muscle (He et al., 2003). The deletion of 

muscle-specific PPARγ caused severe insulin resistance in muscle with milder defects 

observed in adipose tissue and liver (Hevener et al., 2003) and thiazolidinediones did not 

increase skeletal muscle insulin sensitivity in these animals. These findings indicate that 
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muscle PPAR-γ plays a crucial role in insulin sensitivity and thiazolidinediones can 

stimulate muscle PPAR-γ directly.  

 

Our Asian Indian subjects had greater significant increase in insulin sensitivity 

compared to Chinese. There were no significant changes in anthropometry between two 

ethnic groups. They had similar improvement in secretory profile of adipocytes.  

Therefore, we are unable to conclude that the difference in insulin sensitivity between 

Chinese and Indians after completion of Rosiglitazone treatment was from adipocytes. 

Our present finding may suggest that the skeletal muscle would be a major site of insulin 

resistance in Asian Indians and the possible mechanism of ethnic difference in insulin 

sensitivity in response to Rosiglitazone may be due to its direct action on PPAR-γ in 

skeletal muscle. Rosiglitazone may act directly on skeletal muscle PPARγ and increase 

the glucose disposal rate by the skeletal muscle leading to greater improvement in insulin 

sensitivity in Asian Indians. 
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5.2.  Ethnic Variation in Adiponectin 

5.2.1. Plasma Levels of Adiponectin  

In our study, we found that the adiponectin index (the ratio of high molecular 

weight to total adiponectin) in Indian was significantly lower compared to Chinese at the 

baseline before Rosiglitazone treatment. Our Indian subjects had a higher level of total 

adiponectin and had a lower level of high molecular weight adiponectin compared to 

Chinese at the baseline before Rosiglitazone treatment (Chapter 4.7.1).  

 

Our study is the first to study the ethnic variation in adiponectin in Asian type 2 

diabetic patients, Chinese and Indians. Previous studies showed that there is an ethnic 

difference in adiponectin levels in South Asians compared to Caucasians (Abate et al., 

2004; Valsamakis et al., 2003). Weiyer et al showed that the adiponectin levels are 

significantly lower in Pima Indians compared to Caucasians and remained significant 

after adjustment for adiposity. The ethnic difference in adiponectin levels was consistent 

in normal, impaired glucose tolerant and diabetic subjects. The previous studies did not 

measure high molecular weight adiponectin (Weyer et al., 2001). 

 

In 2003, Waki et al. and Pajvani et al. suggested that different isoforms of 

adiponectin have different biological activities and the ratio of high molecular weight to 

total adiponectin may be a particular sensitive marker of the biological activity of 

adiponectin. In 2004, Pajvani reported that complex distribution, not the absolute 

amounts, between these two oligomeric forms (HMW to LMW) is critical in determining 

insulin sensitivity (Pajvani et al., 2004).  
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Consistent with Pajvani, our Asian Indian subjects who were more insulin 

resistant had higher levels of total adiponectin compared to Chinese and had lower levels 

of high molecular weight adiponectin compared to Chinese. Thus, there was a significant 

ethnic difference in adiponectin index between Indians and Chinese at baseline. Similar 

findings were observed in our subjects after 16 week Rosiglitazone treatment. Therefore, 

in our Asian population, complex distribution (Adiponectin index) measured by the ratio 

of high molecular weight to total adiponectin was a better indicator for insulin sensitivity. 

 

5.2.2. Chronic Changes in Adiponectin in Response to Rosiglitazone 

 

We observed that both total and high molecular weight adiponectin increased 

significantly in Indians and Chinese at the end of 16 week Rosiglitazone treatment. The 

adiponectin index also increased significantly in both ethnic groups (Chapter 4.7.3).  

 

When Rosiglitazone binds to PPARγ receptors, these receptors act on insulin 

resistant large adipocytes. The receptors then potentiate the redistribution of these 

adipocytes into smaller mature insulin sensitive adipocytes (Spiegelman, 1998) and 

favorably modify the secretory profile of these insulin sensitive adipocytes (Arner, 2003). 

This leads to increased secretion of insulin sensitizing adiponectin while reducing 

proinflammatory adipokines which induce insulin resistance.  

 

In our study, Indians had a greater increase in body weight and percentage body 

fat at the end of Rosiglitazone treatment. Therefore, we anticipated observing the greater 
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increase in magnitude of changes in total and high molecular weight adiponectin in 

Indians, as Rosiglitazone upregulates adiponectin. Surprisingly, the magnitude of the 

changes in both total and high molecular weight adiponectin levels and adiponectin index 

were similar in both Indians and Chinese (Chapter 4.7.3).  Thus, as we have mentioned 

earlier, we cannot conclude that the difference in insulin sensitivity we saw was due to 

changes in adipocytes. However, our sample size is small, and this may still be an 

important factor. 

 

5.2.3. Dynamic Suppression of Adiponectin during Euglycemic 

Hyperinsulinemic clamp 

 

We observed the acute suppression of both total and high molecular weight 

adiponectin levels during the steady state of euglycemic hyperinsulinemic clamp 

compared to baseline. The acute suppression by hyperinsulinemia at steady state during 

euglycemic hyperinsulinemic clamp was consistent both before and after Rosiglitazone 

treatment in our Asian type 2 diabetic subjects (Chapter 4.7.2).  

 

The hormone implicated in the acute regulation of adiponectin expression is 

insulin (Scherer et al., 1995). Insulin can exert an acute effect on adipocytes to decrease 

the production and /or secretion of adiponectin. There is a known inverse relationship 

between adiponectin and endogenous insulin levels (Hotta et al., 2000; Weyer et al., 

2001; Yamamoto et al., 2002). The chronic hyperinsulinemia associated with insulin-

resistant state leads to downregulation of adiponectin concentrations (Yu et al., 2002).  
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Two studies have shown that total adiponectin levels were suppressed below basal 

levels in non-diabetic subjects (Brame et al., 2005; Mohlig et al., 2002) during a 

hyperinsulinemic euglycemic glucose clamp. Only one study showed a similar 

suppression of total adiponectin in type 2 diabetic subjects (Yu et al., 2002) in Caucasian 

population. While our results are consistent with previous findings, these studies did not 

study the dynamic suppression of high molecular weight adiponectin. Our study is the 

first study to show dynamic suppression of hyperinsulinemia on both total and high 

molecular weight adiponectin levels in Asian type 2 diabetic patients during euglycemic 

hyperinsulinemic clamp.   
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5.3.  Ethnic Similarity in Insulin Secretion 

 

Our study showed that Rosiglitazone can enhance the insulin secretion 

significantly in type 2 diabetic patients with low insulin level while improving their 

glycaemic control. However, the difference in the changes between Chinese and Indians 

was not statistically significant (Chapter 4.4.3). 

 

Most of the human studies, type 2 diabetic subjects had higher levels of insulin at 

baseline and showed a decrease in fasting insulin after thiazolidinedione treatment, either 

with Rosiglitazone or Pioglitazone treatment along with improvement in glycaemic 

control and insulin sensitivity (Bloomgarden, 2005). A study conducted in Japanese 

population, there were type 2 diabetic patients with lower insulin level (<5.0 mU/L) and 

Pioglitazone improved the glycaemic control in such patients (Kawamori et al., 2007). In 

consistent with Kawamori’s finding, Asian type 2 diabetic patients in our study, both 

Indians and Chinese, had low fasting insulin level at baseline. It could be the reflection of 

the deterioration and exhaustion of beta cell to secrete insulin to compensate 

hyperglycemia in type 2 diabetes. 

 

Only one study by Kutoh et al reported that Pioglitazone treatment increased 

fasting plasma insulin level in the drug naïve Japanese type 2 diabetic patients with low 

insulin levels at the baseline (Kutoh, 2007). In consistent with the finding by Kutoh et al, 

there was a significant increase in insulin secretion in our subjects at the end of 16 week 

Rosiglitazone treatment. However, the magnitude of the increase in insulin secretion was 

similar and there was no statistically significant difference between 2 ethnic groups.  



                                                                                                    132 
 

  Insulin resistance has been shown to have adverse effects on beta-cells by 

inducing hypertrophy, apoptosis and the adverse effects on beta cells imposed by 

lipotoxicity and glucotoxicity (Rhodes, 2005; Walter and Lubben, 2005). Recent studies 

suggested that insulin sensitizer thiazolidinediones may have direct beneficial effects on 

pancreatic beta-cells (Gastaldelli et al., 2007b; Walter and Lubben, 2005). Troglitazone 

improves insulin secretion in isolated pancreatic islets from Wistar rats and a hamster 

beta-cell line (Bollheimer et al., 2003; Masuda et al., 1995). Long-term treatment with 

Pioglitazone is effective in protecting against beta-cell damage and improving glucose-

induced insulin secretion in db/db mice (Miyazaki et al., 2002b; Wallace et al., 2004). 

Rosiglitazone inhibits islet cell apoptosis, and reduce loss of beta-cell mass in human 

islets (Lin et al., 2005).  

 

 

This benefit which may be due to preservation of beta-cell function by 

Rosiglitazone appears to be clinically and statistically significant in both Chinese and 

Indians. In addition, the enhanced insulin levels in response to Rosiglitazone in our 

subjects could also be linked to amelioration in chronic insulin resistance that can damage 

or reduce the beta-cell function. The glucotoxicity and lipotoxicity imposed by chronic 

insulin resistant state could be eliminated by Rosiglitazone and it may relieve the burden 

of pancreatic beta cells.  As a consequence, there is improvement in beta-cell function 

leading to restoration of insulin secretory capacity. Therefore our study suggests that 

Rosiglitazone may improve and restore beta-cell function in Asian type 2 diabetic patients 

with low insulin levels.   
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5.4.  Ethnic Variation in IGFBP-1 levels 

5.4.1. Plasma Levels of IGFBP-1 

In our study, Asian Indians type 2 diabetic subjects had lower fasting IGFBP-1 

levels compared to Chinese both at baseline and after Rosiglitazone treatment.  However, 

no significant difference was found in IGFBP-1 levels between Chinese and Indian 

(Chapter 4.9.1). In 2005, Liew et al demonstrated the effect of ethnicity on IGFBP-1 in 3 

different ethnic groups, Chinese, Indians and Caucasians and found that Indians had 

lower IGFBP-1 levels compared to Chinese. Liew study was conducted in lean, healthy, 

young non diabetic subjects and our study is the first to study the ethnic variation in 

IGFBP-1 in Asian type 2 diabetic subjects. 

Despite having low fasting insulin levels at baseline, our subjects had the lower 

levels of IFGBP-1 at baseline.  
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5.4.2. Chronic Changes in IGFBP-1 in Response to Rosiglitazone 

At the end of 16 week Rosiglitazone treatment, there was an increase in fasting 

insulin levels in Asian type 2 diabetic subjects, both Chinese and Indians (Chapter 4.9.3). 

The fasting IGBP-1 levels increased parallel with the increase in fasting insulin. However 

the changes were not statistically significant.  Our study is the first to study the changes in 

IGFBP-1 levels in response to Rosiglitazone in Asian type 2 diabetic patients of Chinese 

and Indians. 

 

The regulation of IGFBP-1 synthesis and secretion by insulin is through the effect 

of insulin on the liver which is the source of IGF binding proteins (Brismar et al., 1994). 

Insulin suppresses plasma concentration of IGFBP-1(Cotterill et al., 1993; Snyder and 

Clemmons, 1990; Young and Clemmons, 1994). High insulin level is the indicator of 

insulin resistance in non diabetic subjects and most of the type 2 diabetic subjects and 

IGFBP-1 levels are low in these subjects. Previous studies have consistently suggested 

that IGFBP-1 is inversely correlated with increased levels of insulin and insulin resistance 

measured using HOMA-IR or insulin sensitivity measured using euglycemic 

hyperinsulinemic clamp (Liew et al., 2005; Maddux et al., 2006; Suikkari et al., 1988). 

 

 

In our type 2 diabetic subjects, unlike most of type 2 diabetic subjects, had low 

levels of fasting insulin which would be the reflection of beta cell exhaustion in secreting 

insulin to compensate hyperglycemia. Both Chinese and Indian subjects had low fasting 

IGFBP-1 levels at baseline despite having low level of insulin. At the end of 16 week 

Rosiglitazone treatment, there was an increase in fasting insulin levels in both ethnic 

groups which would be attributable to restoration of beta cell function. The fasting IGBP-
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1 levels increased parallel with the increase in fasting insulin.  These data suggests the 

insulin resistant state rather than absolute insulin level suppress the IGFBP-1 suppression 

in Asian type 2 diabetic subjects. 

 

5.4.3. Dynamic Suppression of IGFBP-1 during Euglycemic 

Hyperinsulinemic Clamp 

 

The studies on the dynamic changes in IGFBP-1 levels were mostly performed in 

non diabetic subjects (Liew et al., 2005; Maddux et al., 2006) with the exception of 1 

study (Suikkari et al., 1988).  Our study showed the dynamic suppression of IGFBP-1 by 

insulin during euglycemic hyperinsulinemic clamp and compared the suppression of 

before and after Rosiglitazone in Chinese and Indians (Chapter 4.9.2). 

 

We observed the dynamic suppression of IGFBP-1 during hyperinsulinemic state 

in Asian Indian and Chinese type 2 diabetic patients at baseline. In 2005, Liew et al 

showed that there was a consistent dynamic suppression of IGFBP-1 level in steady state 

during euglycemic hyperinsulinemic state until 60 minutes after the end of insulin 

infusion.  In our subjects before Rosiglitazone treatment, we observed the dynamic 

suppression of IGFBP-1 levels during steady state of euglycemic hyperinsulinemic 

glucose clamps in both Chinese and Indians. However, the suppression is lost at 180 

minutes which is 60 minutes after stopping of insulin infusion. The lost of suppression 

was observed in both Chinese and Indians. This lost of suppression would be due to 

component of hepatic insulin resistance by the subjects whereby the insulin resistant liver 
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could not respond to the suppression induced by the level of endogenous insulin after 

stopping of insulin infusion.  

 

After the Rosiglitazone treatment, the dynamic suppression pattern of IGFBP-1 by 

Insulin restored and the suppression was observed at 90 minutes and 120 minutes and 

extended to 180 minutes (Table 4, Figure. 28 and 29). This suppression pattern is 

consistent with that of the normal healthy non diabetic individuals, described by Liew et. 

al. These data suggested that the response of liver to the action of insulin was better after 

Rosiglitazone treatment.  This would be the reflection of improvement of hepatic insulin 

sensitivity in our subjects. However, the changes between the two ethnic groups were not 

statistically significant. 
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5.5. Ethnic similarity in Glycemic Control in Response to 

Rosiglitazone 

 There were no data on ethnic variation in glycaemic control in response to 

Rosiglitazone. Our study showed that the glycaemic control in Asian type 2 diabetic 

subjects as measured by reductions in fasting plasma glucose (FPG) concentration and the 

percentage of glycated haemoglobin (HbA1c), significantly improved in both Chinese 

and Indians. Both the fasting plasma glucose and haemoglobin A1c were significantly 

lower compared to baseline in both Indians and Chinese at the end of Rosiglitazone 

treatment. The degree of decrease in FPG levels after Rosiglitazone treatment was 

slightly greater in Indians (29%) compared to Chinese (23%). The similar trend was 

observed in HbA1c values, (16% in Indians vs. 14% in Chinese) (Chapter 4.4). Although 

we found the trend of greater improvement in Indians, the differences in changes were not 

high enough to indicate that there were ethnic differences in response to Rosiglitazone 

between Chinese and Indians in achieving glycemic control in both ethnic groups. 
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5.6.  Ethnic Variation in Lipid profile in Response to Rosiglitazone 

 

Our data showed that there were no significant changes in lipid profile after 16 

week Rosiglitazone treatment (Chapter 4.5). At the end of 16 week Rosiglitazone 

treatment, Cholesterol and triglyceride increased slightly in both Indians and Chinese 

compared to base line. In Chinese, there was a slight increase in HDL and almost no 

change in LDL. In Indians, there was almost no change in HDL but there was slight 

increase in LDL. However, none of the changes in plasma lipid profile were significantly 

different between Chinese and Indians. 

The data from our study suggested that our Asian type 2 diabetic subjects 

benefitted from Rosiglitazone treatment and did not experience the adverse effect of 

Rosiglitazone. 
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5.7.  Changes in Proinflammatory Adipokines 

 The baseline levels of proinflammatory adipokines (Leptin, Resistin, Tumor 

Necrosis Factor-α, Interleukin 6 and PAI-1) in Indians and Chinese were similar. The 

reduction in these inflammatory adipokines was observed after 16 week Rosiglitazone 

treatment (Chapter 4.8). Indians had significant reduction in Leptin and Inter Leukin-6 

and Chinese had significant reduction in Resistin after Rosiglitazone treatment. Tumor 

necrosis factor α and Plasminogen Activator inhibitor–1 had non-significant slight 

changes in response to 16-week Rosiglitazone treatment.  

 

The significant reduction in Leptin and IL-6 in Indians and in Resistin in Chinese 

may link to suppression of proinflammatory adipokines in response to improvement in 

Insulin sensitivity after Rosiglitazone treatment. However, the reduction was not 

consistent across these proinflammatory adipokines in each ethnic group. Therefore these 

data suggest that changes in these proinflammatory adipokines in our Asian type 2 

diabetic subjects in our study did not explain the difference in Insulin sensitivity between 

2 ethnic groups in response to Rosiglitazone. 
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Chapter 6.  Conclusion 

We have performed a longitudinal open-label study on 2 ethnic groups, Chinese 

and Indian with type 2 diabetes mellitus, to evaluate the effects of Rosiglitazone on the 

insulin sensitivity, anthropometry, glycemic control, lipid profile, adiponectin and 

IGFBP-1 of T2DM patients using the euglycaemic hyperinsulinaemic clamp. 

We conclude that; 

1. There was a significant ethnic difference in insulin sensitivity in response to 

Rosiglitazone in Asian Indian type 2 diabetic patients compared to Asian Chinese.   

2. Indians had greater improvement in insulin sensitivity despite greater increase in total 

body weight and percent body fat, waist circumference and waist hip ratio.  

3. There was no ethnic difference in improvement in glycaemic control measured by 

fasting plasma glucose, haemoglobin A1c between two ethnic groups.  

4. Asian Indian type 2 diabetic subjects had a lower Adiponectin index compared to 

Chinese. Both ethnic groups showed a similar increase in the Adiponectin index after 

Rosiglitazone treatment but Asian Indians continued to have a significantly lower 

Adiponectin index than Chinese even after the treatment 

5. There was an acute dynamic suppression of adiponectin, both total and high 

molecular weight, in both Chinese and Indian type 2 diabetic patients undergoing 

euglycemic hyperinsulinemic clamp. The suppression was similar before and after 

Rosiglitazone treatment in both ethnic groups. 
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6. Asian type 2 diabetic patients had low levels of IGFBP-1 at the baseline despite 

having low levels of insulin.  

7. The dynamic changes seen in IGFBP-1 in relation to Serum insulin (hysteresis loop) 

changed after Rosiglitazone treatment in both ethnic groups.  

 

The sample size of our study is small and therefore it is hard to extrapolate the findings. 
It would be beneficial to have studies in future to continue euglycemic hyperinsulinemic 

clamp and to study the profile of adipokines and inflammatory cytokines of Chinese and 

Indian T2DM patients in larger study population to postulate possible mechanism of 

ethnic difference in response to Rosiglitazone. The studies to identify polymorphism of 

genes related to insulin resistance i.e. PPARϒ gene or adiponectin gene would be helpful 

to evaluate the effect of polymorphism on clinical variables in Chinese and Indian T2DM 

patients. 

 

TZDs target insulin resistance, the core defect of T2DM. The good glycemic control 

obtained with TZDs has not been matched by any other class of drugs, including in some 

cases, even by insulin. Therefore TZDs can be the first line drug in treating Asian Indians 

are at high risk for type 2 diabetes and premature cardiovascular disease compared to 

other ethnic group. We believe that the finding of our study would shed a light in 

management of type 2 diabetes in Asian populations and pave a way to prevent or delay 

the development T2DM and its complication in this high risk group. 
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