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Summary

The cooperative and coordination control of multiple autonomous robots have re-

cently received a significant research interest. This research field is driven by both

commercial and military applications. A collection of simple autonomous robots of-

fers greater efficiency and operational freedom, comparing to single complicated robot

that performs multiple tasks. We use the term multi-agent system to refer to a group

of autonomous robots which work together to achieve the global task. The coop-

erative control of the multi-agent system has been addressed in number of research

papers, workshops, conferences. Also, a huge research funding has dedicated to this

subject, but this field is still in its infancy stages and poses significant theoretical and

technical challenges.

The key feature of the multi-agent system is that the group behavior of multiple

agents is not simply a summation of the individual agent’s behavior. The dynamics of

each individual and the interaction protocol among agents are very simple; however,

as a whole group they can perform complicated tasks and behaviors.

In this thesis, we mainly focus on the cooperative control of multi-agent systems.

Specifically, a decentralized cooperative control law for performing a specific formation

or coordination among a group of robots is studied and the required conditions for

achieving this task is investigated. We develop concrete theoretical foundations, and

vi



also implement the theoretical results in the practice.

This dissertation contributes to cooperative control of multi-agent systems from

both theoretical and practical perspectives. Firstly, several essential problems such

as controllability, observability and optimality are discussed. Secondly, a formation

control among a group of robots is implemented in practice. Specifically, current

dissertation provides a graph theoretical interpretation for the controllability property

of the multi-agent system. Moreover, a novel consensus observer strategy is proposed,

and sufficient and necessary conditions for observability of multi-agent system are

driven. Furthermore, a paradigm is introduced which offers a systematic assign the

communication weights among a group of robots. Finally, a formation control among

a group of three wheeled robots is implemented.
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Chapter 1

Introduction

Multi-robot systems are collection of autonomous robots with a certain degree of

capability. Compared to a single multi task robot, these systems provide higher

efficiency, robustness and operational capabilities. Multi-robot systems have potential

applications in surveillance, combat, distributed sensor network (DSN), autonomous

underwater vehicles and unmanned aerial vehicles. Thus, they have recently become

so popular [2], [79], [78]. Also, their cooperative control has recently received a

significant research interest [59], [55], [82]. In this dissertation, we use the terminology

of agent to refer a robot with limited capability. In addition, the expressions multi-

agent systems and multi-robot systems are used interchangeably.

Design and analysis of multi-agent system is a complicated task. The dynamics of

each individual not only depends on dynamics of its own, but also relays on behavior

of its adjacent agents. Moreover, the global behavior of a team is not simply a

summation of the individual agent’s behavior, but a sophisticated combination of

interacting sub modules.
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1.1 Motivation

Recent developments of enabling technologies such as communication systems, cheap

computation equipment and sensory platforms have greatly enabled the area of multi-

agent systems. This area has attracted significant attention worldwide [5], [3], [21],

[40], [52], [70]. A group of multi-agent system can perform higher efficiency and

operational capabilities, if there exists a kind of simple cooperation among agents.

The cooperative control of multi-agent systems is still in its infancy stages and

poses significant theoretical and technical challenges [88], [42]. The cooperative con-

trol of such complex networked systems has been highly inspired by biological systems

[68]. The research thread in cooperative control has branched into two main venues,

homogenous network, where all agents are identical to each other and heterogeneous

network, where there exist some agents with superior capabilities. From another point

of view, all researches in this field can be categorized into the following branches:

sensing, communication, computation and control. This reveals that multi-agent sys-

tem is a multi-disciplinary area of research including fields such as computer science,

engineering, mathematic, biology and control system theory in particular.

There exist so many interesting problems in area of multi-agent system which can

be solved using the well-founded control system theory. The interdisciplinary nature

of this research has helped the enrichment of control theory. The conjecture of mutual

interaction between the multi-agent systems and the control theory has opened new

areas such as symbolic control inside the control theory.

Besides to classical control theory, the graph theory has shown to be an effective
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tool for dealing with coordination control problem. The graph theory encodes the

local interaction topology. Moreover, it shades more light on the relation between

communication and control i.e. what kind of information topology we need to design

an appropriate control law or which kind of control strategy is required for an special

communication topology.

1.2 Nature Inspiration

In order to model, analyze and design of a multi-agent system, researchers commenced

to explore natural systems, where there exist plenty examples of such systems. These

natural systems are quite diverse and range from human society, where each agent

is a complex system, to physical particle systems, where each agent has no intelli-

gence [12]. There are several pioneer works [68], [12], [58], [2], [8]. Authors in [68]

investigated a flock of birds; they [68], analyzed this phenomenon and validated their

results with an animator. [12] proposed a simple model for system of biological parti-

cles. In their model, a particle is driven by both a constant term and a term from its

neighbors. Based on simulation results, they showed that the model could cause all

particles move in the same direction though there is no centralized coordinator. [58]

explored the grouping of animal in natural environments. They claimed that they

offered a dynamical model for the group size distribution affected by splitting and

merging [2].

Several researchers started to make the mathematical justification for natural in-

spired models. [29], provided a substantial result for convergence of the model similar
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to [12]. An extended version of the model in [12] is the so called consensus protocol,

discussed in [73]. [73] used this model for coordination of first order dynamics agents.

It also discusses about the robustness of this algorithm. Inspired by [68], [84] stud-

ied the stable flocking motion among a group of agents. They proposed a control

paradigm that ensures all agents, will be finally aligned with each other and have the

common heading direction. The research focus in this area is on two main streams,

homogenous system and heterogeneous system.

1.3 Homogenous network

1.3.1 Consensus Problem

There has been a considerable amount of work which contributed to analyze and

design of consensus problem. This problem is also known as agreement , rendezvous

and swarming problem in different situations. A group of agents reach consensus,

when all of the agents agree on the value. In control language, this agreement means

that all state variables asymptotically reach the desired state:

lim
t→∞

xi(t) = xd i = 1, . . . , N. (1.1)

The preliminary idea of consensus is to impose the same dynamics on informa-

tion state of each agent. If continuous communication is allowed among agents or

the communication bandwidth is large enough, then state of each agent is updated

using differential equation. Otherwise, the discrete model is applicable and states are

modified using difference equation. The most common type of agreement law [29],

4



[66] is given by

ui = −
∑

j∈Ni

wij(xi − xj), (1.2)

where Ni is the neighbor set of the agent i, wij ∈ R is the weight of the edge from

agent i to agent j. The weight factor wij can be evaluated from different angles. If the

topology is fixed over the time, weights are set to be constant. However, the topol-

ogy may evolve over the time [54], [53] and weights could be linear time-variant [46],

[65]. [65] considered the consensus among multiple agents with dynamically chang-

ing topologies under the confined information exchange. Authors in [46] claimed

that general formation can be achieved if convergence to a point is feasible; hence,

convergence of the system into the common point is discussed in [46].

The convergence of agreement law (1.2) is highly depend on algebraic topology

of the whole system. For instance, [83] proposed a paradigm for flocking motion.

They stated that flocking motion can be established, as long as the neighboring

graph remains connected. Hence, the connectivity of the whole topology plays a

crucial rule in convergence of the algorithm and must be considered in the design of

a proper controller. Importance of law convergence and its relation with connectivity

are discussed in several research articles. For instance, authors in [30] considered the

dynamic changing graph. They proposed an appropriate weights’ assignment to the

edges in the graphs which guarantees that the connectivity of graph. This problem

is further discussed in [91], where authors studied the preserving k-hop connectivity.

Based on the k-hop connectivity, agents are allowed to move unless they keep their

5



connection to agents within the k-hop limit. Authors in [92], proposed a hybrid

algorithm to preserve the connectivity, while [80] discussed about geometric analysis

of connectivity. Moreover, they introduced a function which measures the robustness

of local connectedness to variations in position.

While majority of works focused on agents with simple integrator dynamics, re-

cently some researchers have proposed more realistic dynamics for agents. [67] consid-

ered the agreement law (1.2) for l-th order system l > 3. They showed sufficient and

necessary conditions required for convergence of the whole system into the common

value. This problem is further discussed in [87], where authors explored the high order

dynamics under chain topology. Moreover, the convergence of system was discussed

under fixed and dynamic topology.

Under the frame work of homogenous systems, researchers are more concerned

about convergence of consensus law. Even though it is important that agents reach

the agreement, it could be more interesting to make agents keep a certain formation

or reconfigure them between different formations [11], [89], [34], [81].

1.4 Heterogeneous Network

In heterogeneous framework, the majority of agents follow the nearest neighbor law

(1.2), but a small group is not confined to this control law. These agents are usually

more equipped comparing to other agents. We refer to these advanced agents as

leaders and they are able to take the govern of the others. We refer to the rest of

agents as followers. This kind of structure, where agents are divided into two sets, is
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called leader-follower configuration.

A numerous formation control achieved based on leader-follower structure, where

either a real agent [14], [15] or a virtual agent [19], [20], [60], [42] takes the lead. For

instance, [19] proposes an algorithm for tracking of the desired trajectory.

1.4.1 Flocking, Swarming and Formation Control

Achieving an specific formation and developing a control law that guarantees for-

mation stability is the most important problems in multi-agent systems field [22],

[13], [41], [59]. The problem of formation control has been successfully addressed

when exploring swarm behaviors, where agents are coordinating based on potential

field [64], [23], or some averaging orientation [29], or simply following the leader [83],

[84]. Authors, in [84], achieved a stable flocking motion for a group of mobile agents

with double integrator dynamics. Moreover, authors in [85], made a relation between

the interaction topology to leader-to-formation stability problem. Under this setup,

rigidity becomes one of the important issues in formation keeping [71], [18], [4].

A further extension along this direction leads to controllability problem. This

problem has become focus of attention recently. Based on the well-developed control

theory, as far as system is controllable, it can be driven into any desired state. This

elegant result motivated researchers [86], [34], [89] and [49] to investigate the forma-

tion and reconfiguration problem of multi-agent problem as controllability problem.

Roughly speaking, a multi-agent system is controllable if and only if a whole group

of agents can be steered to any desirable configurations under local information from

7



other followers and commands of the leaders.

The controllability problem of multi-agent systems has been investigated in the

literature for a while. Tanner proposed this problem in [86] and formulated it as the

controllability of a linear system, whose state matrices are induced from the graph

Laplacian matrix. Necessary and sufficient algebraic conditions on the state matrices

were given based on the well-established linear system theory. Even though we expect

that more information leads to better control design, Tanner showed that providing

the maximum information violates the controllability of the whole group. Under the

same setup, [33] offered a sufficient condition for a system to be controllable. It was

shown that the system is controllable if the null space of the leader set is a subset for

the null space of follower set. This result is further extended in [34], where authors

provided a necessary and sufficient condition. Authors in [34] claimed that a system

is controllable if and only if the Laplacian matrix of the follower set and the Laplacian

matrix of the whole topology have no common eigenvalues. Even though it is a strong

result, but the graphical meaning of these rank conditions related to the Laplacian

matrix remains as question. Motivated by this problem, several researchers started

exploring the controllability of multi-agent systems from the graph theoretical point of

view. For example, [62] proposed a notion of anchored systems showed that symmetry

with respect to the anchored vertices makes the system uncontrollable; moreover,

the relation of group automorphism and network controllability was discussed in

[63]. Authors in [31], introduced a new notation called leader-follower connectedness

and characterized some necessary conditions for the controllability problem based on

leader-follower connectedness. Most of the available results are focused on continues
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systems but [48] offered the analysis for controllability of a class of multi-agent systems

with discrete-time model. Besides fixed topology, the controllability problem under

switching topologies was discussed in [32], [47], [49].

Most of recent results provided just algebraic interpretation, there are few works

[89], [49] which offer graphical interpretation of these algebraic conditions. Authors,

in [89], consider the weighted graph. They assumed the graph to be weighted and

they can be freely assigned. Authors introduced a novel notion of multi-agent sys-

tems structural controllability and established a sufficient and necessary condition

accordingly.

1.4.2 Centralized Control vs. Decentralized Control

Information interaction among agents is the crucial issue in formation control. In

the most cases, the common assumption is that each agent has complete information

about the whole group [13], [44], [37]. This is a centralized way of formation con-

trol. However, this method suffers from several practical issues such as scalability

of group, communication bandwidth and sensors range constraints. As a result, re-

searchers have recently focused on decentralized approach to perform a coordination

or maintain a formation among a group of robots. There are plenty of research ar-

ticles which deal with decentralized control of multi-agent systems. For instance, [5]

addressed the problem of coordination control for multiple spacecraft. They proposed

the behavioral and virtual-structure approaches to multi-agent systems’ coordination

problem. Similarly, authors in [19] addressed the coordination control using a virtual
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vehicle method. Another distributed approach can be seen in [18], where authors

introduced systematic method for maintaining rigidity among mobile autonomous

vehicles. Authors in [70], studied the decentralized framework for formation stabi-

lization among a group of robots and explored the application of natural potential

functions in formation control. Authors in [82] investigated a novel decentralized

stability notion so called input-to-state stability. They analyzed the input-to-state

stability with help of primitive graphs. A practical of example of decentralized for

group of unmanned air vehicles (UAVs) was discussed in [6]. Based on decentral-

ized receding horizon control (RHC) scheme, authors in [6], proposed a decentralized

control paradigm which assures the collision avoidance.

Even though the local interaction solves some of the global interaction prob-

lems, there are plenty of challenges that need to be solved such as organizing proper

communication link, determining of local interaction based on global rule and task

scheduling in unknown terrain [35], [36], [38], [39], [10]. In addition, different forma-

tions are suitable for different occasions and this decision making mechanism have to

be employed in a distributed fashion.

1.4.3 Sensor Capalities

The formation or distributed control is not feasible unless each robot has clear per-

ception from its ambient environment and neighbor robots. Each individual robot

can collect data either by peer to peer communication with other robots, or relying

on sensor fusion. Since any physical sensor is limited by its range, the required in-
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Figure 1.1: Proximity graph

formation must be obtained either by direct observations or state estimation. For

instance, in Fig. 1.1, agent four serves as leader, while the rest of agents are follow-

ers. It is clearly depicted in Fig. 1.1 that agent four has direct access to states of

agent three for design of appropriate control strategy; however, it needs to indirectly

observe states of other agents. This problem is closely related to the observer design

in the control theory.

Motivated by this problem, several researchers have recently considered the ob-

servability problem for multi-agent systems [28], [27], [57]. In [27], the authors used

estimator to observe the leader’s state. Similarly, the authors in [28], designed the dis-

tributed observer for second-order follower-agents to estimate the velocity of leader.

Moreover, in [57], the authors studied the observer for the delay systems.

All the existing work focused on the estimation of the leaders’ state, while another

interesting question is whether or under what condition we can reconstruct the fol-

lowers’ state based on readings from the leaders. The motivation for this observability
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problem comes from the study of controller synthesis for leaders to herd all agents to

a desirable configuration. To design control signals for leaders, the operators need to

know all agents states. However, due to communication constraints the leader can-

not measures all agents states directly and it requires to estimates the states of the

agents just based on the readings from the leader. By saying a multi-agent systems is

observable from the leader, we mean that one can reconstruct all agents’ states just

based on the output reading from the leader. We consider in [90] the classical notion

of observability for a group of autonomous agents interconnected through the nearest

neighbor law. In addition, the sufficient and necessary conditions are presented from

both algebraic and graph theoretic perspectives. Similar problems were considered

in [50], where the authors specifically focused on the controllability and observabil-

ity of the two configurations, the cyclic topology and the chain topology, and their

interconnections.

1.5 Graph Theory

The graph theory has proved to be a useful tool for handling the control theory

problems [45], [16], [26] and multi-agent systems problems [75], [76], [56], [65], [46],

[21], [24].

For instance, while [21] made a connection between control theory and graph the-

ory to analyze the formation stabilization. Authors in [24] showed that rank of graph

Laplacian relates to connectivity . Similar results have been shown while studying the

convergence of agreement law [75]. Authors in [75], proposed a convergence analysis
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for agreement control based on properties of balanced graph. This idea is further

extended in [76], where a connection between performance of the nearest neighbor

law and the Fiedler eigenvalue of the graph Laplacian was established. Hence, the

graph topology not only determines the convergence, but also determines the per-

formance of the system. Within the same line, [73] considered a spatial adjacency

matrix for obtaining the formation among a group of agents which are equipped with

sensors of limited range. [65], discussed the dynamic topology and claimed that the

systems asymptotically converge to common value if union of interaction topologies

over some time intervals has a spanning tree. Moreover, [71] set a graph theoretic

framework which relates the uniqueness of graph realization to stability of formations.

The connectivity of graph has shown to be an important issue in multi-agent systems

[56], [91], [30]. For example. [56] introduces a paradigm for topology characterization

based on the connectivity graphs.

The application of the graph theory is not confined to this; it turns out that

some of the well-known control theory problem can be better expressed under graph

theoretic framework. Early effort in this area can be seen in [45] which offered more

general definition for controllability problem. Comparing to algebraic conditions,

graph theoretic conditions offers better insight into the problem. For instance, effort

of [45] has further continued by [49] which offers a neat graph theoretic result for

multi-agent systems controllability. This result has true privilege over other similar

existing result. It not only leads us to design of communication link, but also shades

more light on controllability of switching systems which is an open problem in hybrid

control area. Due to the importance of graph theory in our discussion, in this part
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some of the basic concepts of graph theory are presented.

1.5.1 Some Basic Notations in the Graph Theory

A weighted graph is an appropriate representation for the communication or sensing

links among agents because it can represent both existence and strength of each link.

The weighted graph G with N vertices consists of a vertex set V ={v1, v2, . . . , vN}

and an edge set I ={e1, e2, . . . , eN}, which is the interconnection links among the

vertices. Each edge in the weighted graph represents a bidirectional communication

or sensing media. The order of the weighted graph is denoted to be the cardinality

of its vertex set. Similarly, the cardinality of the edge set is defined as its degree. Two

vertices i and j are known to be neighbors if (i, j) ∈ e, and the number of neighbors

for each vertex is its valency. A graph is so called regular if all vertices have the same

degree. If all vertices of graph G are pairwise neighbor, then G is complete. A N

order complete graph is denoted by KN . An alternating sequence of distinct vertices

and edges in the weighted graph is called a path. The weighted graph is said to be

connected if there exists at least one path between any distinct vertices. A number

of edges of a path is its length.

The incidence matrix In of G is a |V| × |I| which is defined as

Inkl =















kij if node k is the head of edge l,

−kij if node k is the tail of edge l.
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The adjacency matrix, Aij, is defined as

Aij =















βij (i, j) ∈ e,

0 otherwise,

where βij 6= 0 stands for the weight of edge (i, j). Here, the adjacency matrix A is

|V| × |V| and |.| is the cardinality of a set.

Define another |V| × |V| matrix, D, called degree matrix, as a diagonal matrix

which consists of the degree numbers of all vertices.

The Laplacian matrix of a graph G, denoted as L(G) ∈ R|V|×|V| or L for simplicity,

is defined as

Lij =































∑

i 6=j wij i = j,

−wij (i, j) ∈ e,

0 otherwise.

The Laplacian matrix L can be expressed as

L = D−A.

It turns out that Laplacian matrix is a key to solve control agreement problem

[75], [24].

For example, if all weights are set to unity, the adjacency matrix and the Laplacian

matrix of a graph shown in Fig. 1.2 can be written as :

A =































0 0 0 1 1

0 0 1 0 1

0 1 0 0 0

1 0 0 0 1

1 1 1 1 0































L =































2 0 0 −1 −1

0 2 −1 0 −1

0 −1 1 0 0

−1 0 0 2 −1

−1 −1 −1 −1 4






























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Figure 1.2: A graph on V={1, 2, 3, 4, 5} and edge set

I ={(1, 4), (1, 5), (4, 5), (5, 2), (2, 3)}

It can be easily verified that the Laplacian matrix has several interesting proper-

ties:

1. It is positive semi-definite matrix and its spectrum has following order

λN ≥ λN−1 ≥ ... ≥ λ2 ≥ λ1 = 0

where λi is the i-th ordered eigenvalue of the graph. The multiplicity of zero

eigenvalue of a graph equals its connected components

2. The laplacian of a graph does not depend on its orientation

3. The laplacian is not only non-negative but also symmetric.

4. The topology is connected if and only if λ2 > 0

5. If the topology G is connected, then the null space of L is span{1}, where 1

denotes a vector with all unit entries.

6. For a graph G with N vertices

∑

i

λi < N

if and only if G has no isolated vertices.
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7. if λi = 0 and λi+1 6= 0 then G has excatly i+ 1 connected components.

1.6 Contributions

This thesis has several important contributions to area of multi-agent systems coop-

erative control. It contributes to this area from both theory and practice. Several

fundamental issues related to multi-agent systems are discussed in this dissertation

which helps us in analysis and design of multi-agent systems. We focus on two pro-

found properties of multi-agent systems controllability and observability. In contrast

to the existing literatures on this topic, we investigate the problem from graph theory

point of view and establish a connection between graph theory and these fundamental

properties. Some sufficient and necessary conditions for observability and controlla-

bility of multi-agents are obtained which shade light on design of communication

link.

Despite existing literatures, we study the multi-agent systems under a weighted

graph topology. Under this setup, a novel notion of multi-agent systems structural

controllability is proposed. It is clearly shown that for multi-agent systems are struc-

turally controllable if and only if the communication topology remains connected.

Hence, as far as there exists a connected communication link among agents, multi-

agent systems can be configured into any desired configuration.

Due to the sensors’ constraint, information collection from agents may not be

feasible all the time. However, availability of states is a necessary fact for design

of proper control law. Motivated by this problem, we focused on the estimation
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problem of multi-agent systems. A novel notion of multi-agent systems observability

is proposed as an extension to the well-known observability notion. The observability

problem for multi-agent systems is investigated from algebraic point of view and

observability property of some well-known topology such as the path graph or the

complete graph is discussed. Besides algebraic point of view, the problem is also

discussed from graph theory prespective. A novel notion of structural observability is

proposed and a required sufficient and necessary condition is obtained. It turns out

that the connectivity of communication topology is both necessary and sufficient for

a system to be observable.

It is clear that controllability and observability notion purely depend on the topol-

ogy of communication link. Hence, an optimal solution for configuring the topology

is proposed. Our algorithm determines a set of the best weight among a plenty of

possible weight meanwhile it guarantees the final desired states.

This dissertation is not just confined to theoretical results. The structural con-

trollability of multi-agent systems is implemented on a group of wheeled robots with

a leader and the experiment results are reported.

1.7 Organization

This dissertation consists of two parts. First, the problem of formation control is

studied from theoretical point of view. The formation control problem is stated

as controllability problem for multi-agent systems. Several interesting problems are

discussed under this part. In Chapter 2, we introduce a problem of structural control-
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lability for multi-agent systems. Consequently, a sufficient and necessary condition

for structural controllability of multi-agent systems are proposed. The problem is

studied from graph theoretic perspective which is quite novel. A controllable system

can be steered into any desired configuration, but design of an appropriate control law

requires availability of state variables. However, due to the communication limitation,

availability of a state variable is not always feasible. Motivated by this problem, an

observability problem for multi-agent systems is studied in Chapter 3. The proper

controller is proposed to drive all the agents into the favorite destination. In Chapter

4, a method is proposed for the design of connection weights among the agents. This

method not only guarantees the reachability of the final destination, but also tries to

keep the control effort given to whole system, at the minimum possible level.

In last part, we mainly focus on practical implementation of result obtained in

first part. A group of three e-puck robots is used as test bench. The leader-follower

approach is obtained, where one of agents serves as the leader and the rest two are

followers. Each robot is equipped with limited computation and sensing capabilities

this makes the test bench suitable for exploring the swarm configuration.
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Chapter 2

Structural Controllability of Multi-Agent

Systems

2.1 Introduction

In this chapter, the controllability problem for a group of multi-agent system is inves-

tigated. In particular, the case of a single leader under a fixed topology is considered.

Moreover, the graph is assumed to be weighted and one may freely assign the weights.

Under this setup, the system is controllable if one may find a set of weights so as to

satisfy the classical controllability rank condition. It turns out that this controlla-

bility notation purely depends on the topology of the communication scheme, and

the multi-agent system is controllable if and only if the graph is connected. Further-

more, we propose an optimal control based control scheme to steer the followers to

desired configurations. Finally, some simulation results and numerical examples are

presented to illustrate the approach.

The rest of the chapter is structured as follows. In the next section, a new nota-

tion, structural controllability for multi-agent systems is proposed, and the problem

studied in this chapter is formulated. In Section 2.3, a necessary and sufficient con-

dition for the structural controllability problem is given. In Section 2.4, an optimal
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control based control law is designed for the leader to steer the followers into the de-

sired configurations. Section 2.5 presents some numerical examples to illustrate the

derived theoretical results and design methods. Finally, the chapter concludes with

comments and plans for our further work.

2.2 Problem Formulation

Our objective in this chapter is to control N agents based on the leader-follower

framework. We specifically will consider the case of a single leader and fixed topology.

Without loss of generality, assume the N -th agent serves as the leader and take

commands and controls from outside operators directly, while the rest N − 1 agents

are followers and take controls as the nearest neighbor law.

Mathematically, each agent’s dynamics can be seen as a point mass and follows

ẋi = ui. (2.1)

The control strategy for driving all follower is

ui = −
∑

j∈Ni

wij(xi − xj), (2.2)

where Ni is the neighbor set of the agent i, and wij is weight of the edge from agent

i to agent j. On the other hand, the leader’s control signal is not influenced by the

followers and need to be designed, which can be represented as

ẋN = uN .

In other words, the leader affects its nearby agents, but it does not get directly affected
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from the followers since it only accepts the control input from an outside operator.

For simplicity, we will use z to stand for xN in the sequel.

According to the algebraic graph theory [9], it is known that the whole system

can be written in a compact form








ẋ

ż









=









Aaq Baq

0 0

















x

z









+









0

uN









. (2.3)

Or, equivalently














ẋ = Aaqx+Baqz

ż = uN

(2.4)

where Aaq ∈ R(N−1)×(N−1) and Baq ∈ R(N−1)×1 are both sub-matrices of the cor-

responding graph Laplacian matrix L. The matrix Aaq reflects the interconnection

among followers, and the column vector Baq represents the relation between followers

and the leader.

The problem is whether we can find a weighting scheme, i.e., set values for wij,

such that it is possible to drive these agents to any configuration or formation (if the

states stand for the positions of agents) by properly designed control signals uN for

the leader. This is related to the controllability of the system (2.4). Once the weights

wij are all selected and fixed, the system (2.4) is reduced to a LTI system and its

controllability can be directly answered by the well-developed linear system theory,

see e.g. [1]. Actually, a special case when all weights wij = 1 (an unweighed graph)

has been investigated in the past literature, e.g., [86]. However, Tanner in [86] showed

that the complete graph is uncontrollable as illustrates in the following example.

Example 1 Consider a multi-agent system with six agents, whose communication
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Figure 2.1: A complete graph with 6 vertices.

topology is a complete graph with six vertices as shown in Fig. 2.1. Following the

formulation in [86] that the matrices Aaq and Baq in (2.4) can be written as

Aaq =

































5 −1 −1 −1 −1

−1 5 −1 −1 −1

−1 −1 5 −1 −1

−1 −1 −1 5 −1

−1 −1 −1 −1 5

































, Baq =

































−1

−1

−1

−1

−1

































. (2.5)

It is not difficult to see that this pair is uncontrollable. This is quite counter intu-

itive, since the complete graph is an ideal case which provides the maximum informa-

tion for the control purpose. It should be the case that more information exchanges

among agents imply better control performances. The problem seems to be how we

use this information. To treat all available information in an equal way seems not be

a good choice. One should use the information in a selective way. This motivates us

to impose different weights according to the information resources.

With the set-up in (2.4), a set of weight can be assigned such that the controlla-
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bility rank is satisfied; for instance, the pair (Aaq, Baq) can be written as

Aaq =

































7 −2 −2 −2 −1

−2 9 −3 −2 −2

−2 −3 13 −5 −3

−2 −2 −5 11 −2

−1 −2 −3 −2 8

































, Baq =

































−1

−2

−5

−3

−1

































. (2.6)

One can check that this (Aaq, Baq) pair is controllable.

This example motivates us to give a more general definition for controllability of

multi-agent systems as follows.

Definition 1 The linear system Σ in (2.4) is said to be structurally controllable if

and only if there exists wij 6= 0 which can make the system (2.4) controllable.

Here, we are especially interested in a necessary and sufficient condition on the

graphical topology of a multi-agent system to make it structurally controllable. That

is, under exactly what condition of the graph that we can always find a weighting

scheme wij so as to make the multi-agent system (2.4) controllable.

2.3 Structural Controllability

First, a lemma on controllability of (2.4) when weights are fixed is due.

Lemma 1 For the system (2.4) with a fixed weighting wij, the following statements

are equivalent:

i) The system (2.4) is controllable.
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Figure 2.2: Topology G

ii) The controllability matrix

U =

[

Baq AaqBaq . . . AN−1
aq Baq

]

.

is of full row rank.

iii) The controllability Gramian matrix

W (t0, tf) =

∫ tf

t0

eAaqτBaqB
T
aqe

AT
aqτdτ

is nonsingular for all t > 0.

iv) The matrix

[

Aaq − λI Baq

]

has full row rank for all eigenvalues λ of Aaq.

The above lemma is a direct consequence of the well-known linear systems theory,

see e.g., [1], due to the fact that the system (2.4) is reduced to a LTI system once

weighting is fixed; however, for the structural controllability of multi-agent system

we need the following definitions from [45].

Definition 2 The pair (Aaq, Baq) in (2.4) is said to be reducible if they can be written
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into the form below;

Aaq =









Aaq11 0

Aaq21 Aaq22









, Baq =









0

Baq22









, (2.7)

where Aaq11 ∈ R
p×p , Aaq21 ∈ R

(N−1−p)×p, Aaq22 ∈ R
(N−1−p)×(N−1−p) and Baq22 ∈

R
(N−1−p).

It was shown in [45] that the controllability matrix for this structure cannot be

of the full row rank no matter how one chooses the weighting wij. Hence, the system

(2.4) is not structurally controllable under this situation.

Another obviously uncontrollable scenario is captured as follows.

Lemma 2 [45] The system (2.4) is not structurally controllable if the matrix

[Aaq, Baq], which is N − 1×N matrix, can be written as

Q =









Q11

Q22









, (2.8)

where Q22 is of (N − 1 − p) × N and Q11 is of p × N with at most p − 1 nonzero

entries and the rest of columns are all zero.

Interestingly, except these two obviously uncontrollable scenarios, the system (2.4)

will be structurally controllable as the following lemma states.

Lemma 3 [45] The pair (Aaq, Baq) is structurally controllable if and only if it is

neither reducible nor writable into the form of (2.8) in Lemma 2.

Our next task is to interpret the above results in a graph theory point of view.

It has been shown in [9] that the relation of a pair (Aaq, Baq) can be depicted in a
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pictorial representation and the notion of flow structure plays an important role here.

Hence, we introduce some necessary notations which we need for further discussions

in this chapter.

Definition 3 The pair (Aaq, Baq) matrix can be represented by a digraph, defined as

a flow structure, F, with vertex set V ′ = {v′1, v
′
2, ..., v

′
N}. There exists an edge from v′i

to v′j in the flow structure if and only if Aaq(j, i) 6= 0 and an edge from v′N to v′i if

and only if Baq(i) 6= 0.

Remark 1 Directions of links in flow structure has no dependence on the sign of

their corresponding entries in matrix Aaq.

For example, the flow structure for the graph shown in Fig. 2.2 is depicted in Fig.

2.3. There are some well known flow structure that have interesting controllability

properties, such as the flow structure of an ordered vertex set V ′ ={v′1, v
′
2, ..., v

′
n} with

a sequence of edges, where terminal vertex of each edge is initial point for the following

edge. This is known as a stem [45], as depicted in Fig. 2.4. The corresponding state

matrices for a stem, denoted as (A∗
aq, B

∗
aq), can be written as

A∗
aq =

































0 ∗ 0 . . . 0

...
. . .

. . .

0 ∗

0 · · · 0

































, B∗
aq =

































0

0

0

...

*

































,

where the symbol ∗ is used to represent the unknown but nonzero elements that

depends on the weighting for edges. This falls into the controllable canonical form,
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Figure 2.3: Flow graph

Figure 2.4: Stem

so the controllability is obvious for a stem structure.

Another interesting structure grows from a stem. If the vertex v′n of a stem

structure coincides with v′2, the structure is called a bud [45] and its corresponding

flow structure is shown in Fig. 2.5. For a bud, the corresponding pair (A∗
aq, B

∗
aq) can

be written as

A∗
aq =

































0 ∗ 0 . . . 0

...
. . .

. . .

0 ∗

∗ · · · 0

































B∗
aq =

































0

0

0

...

*

































.

A union of a stem S and buds Bi, 1 ≤ i ≤ d, is called a cactus if none of the buds

Bi share a common initial vertex in S. A set of mutually disjoint cactus is called a

cacti, as illustrated in Fig. 2.6.

Based on these notations, we have the following sufficient condition to characterize

the structural controllability of the multi-agent system (2.4).
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Figure 2.5: Bud

Figure 2.6: Cacti

Proposition 1 The multi-agent system (2.4) is structurally controllable if its corre-

sponding flow structure can be spanned by a cacti.

Proof: Suppose that the graph can be spanned by a union of mutually disjoint

cactus Ci, 1 ≤ i ≤ p. Under this scenario all edges equal to zero except those

pertaining with one cacti. With the help of the permutation matrix, A∗
aq can be

written in form I as
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while B∗
aq has the structure in the form of ;

























0

0

...

*

























.

Hence, the matrix
[

A∗
aq − λiI B∗

aq

]

has generic full row rank for all λi, 1 ≤ i ≤ N ,

which implies the structural controllability.

The above result is a direct application of some known structural controllabil-

ity results for linear systems in [45] through the introduction of the flow structure.

What does this imply in the original graph? The following theorem answers this and

provides a nice graphical interpretation.

Theorem 1 The multi-agent system (2.4) under the communication topology G is

structurally controllable if and only if G is connected.

Proof: Necessity: Assume that the graph G is disconnected. For simplicity, we

will prove by contradiction for the case that there exists only one disconnected agent.

There are two possibilities: First, this isolated agent is the leader. Then, Baq is a

null vector in this case , and the system is uncontrollable no matter what the weights

are. Secondly, the isolated agent is one follower. For this case, (A∗
aq, B

∗
aq) is reducible,

which implies uncontrollability. Both cases end with a contradiction, so the necessity

holds. The proof can be straightforwardly extended to more general cases with more

than one disconnected agents.
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Sufficiency: For the sufficiency part, we show that a connected graph cannot be

written either in a reducible form or in the form of (2.8). Note that wij 6= 0 if and

only if wji 6= 0. Then, (A∗
aq, B

∗
aq) is in a reducible form if and only if A∗

aq is of a block

diagonal matrix, this implies that the graph is disconnected. This contradicts with our

assumption on the graph connectivity. On the other hand, the graph contains isolated

vertex if and only if D matrix contains zero diagonal elements. So, (Aaq, Baq) pair

can be written in the form of (2.8) in Lemma 2 if and only if it has a group of isolated

agents. Therefore, according to Lemma 3, the graph is structurally controllable.

Example 2 A star graph is shown in Fig. 2.7. It is assumed that the central agent

which is denoted with bold point in Fig. 2.7 serves as the leader and reset are just

followers. This structure can be steered to any desired configuration because leader

has direct access to all followers. Under the notion of structural controllability one

can find a set of weight to make controllability rank condition satisfied; for example,

the pair can be written as

Aaq =

























1

5

3

2

























Baq =

























−1

−5

−3

−2

























Another interesting phenomenon is demonstrated in the following example.

Example 3 The graph shown in Fig. 2.8. The middle agent, depicted with bold

dot is the leader. It is claimed in [53] that symmetry with respect to the sufficient

condition for a system to be uncontrollable. However, under the setup in (2.4), pair
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Figure 2.7: Star graph

Figure 2.8: Symmetrical structure

(Aaq, Baq) can be written as the following form:

Aaq =









































3 −2 0 0 0 0

−2 7 −4 0 0 0

0 −4 4 0 0 0

0 0 0 6 −2 −3

0 0 0 −2 2 0

0 0 0 −3 0 3
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





































Baq =









































0

−1

0

−1

0

0









































2.4 Optimal Control Law

In this section, we present an optimal control scheme to drive the system into its

desired position.

The control law given to the leader minimizes the following performance index

J =
1

2
(x(tf )− xd)

TP(x(tf )− xd) +
1

2

∫ tf

t0

[(xd − x)TQ(xd − x) + uT
NRuN ]dt,
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where xd stands for the desired final position at the final time tf , and Q > 0, R > 0

and P > 0 are specification matrices. It can be shown that solution is in the form of

z = −Ξ, (2.9)

where Ξ is gained by solving the following equations

−Ḣ = AT
aqH +HA−HBaqR

−1BT
aqH +Q, H(tf) = P

M(t) = R−1BTH

−Ṡ = (Aaq − BaqM)TS +Q, S(tf) = Pxd(tf )

Ξ = −Mx + R−1BT
aqS,

(2.10)

where x = [x1, x2, ..., xN−1].

Next, the proposed optimal control law with and the well-known Gramian integral

control paradigm are compared. And, their corresponding performances are further

investigated.

Example 4 The control law in (2.9) is deployed for the x position convergence of

a group of five agents shown in Fig. 2.1 and use the weights in Example 1. The

control effort shown in Fig. 2.9(b) is quite negligible comparing to Fig. 2.9(a). The

Fig. 2.9(a) depicts control input just based on Gramian integral. Moreover, the x

positions trajectory for both Gramian integral and (2.9) are depicted in Fig. 2.10 and

Fig. 2.11, respectively. Since the displacement in Fig. 2.11 is reasonable, each agent
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(a) Control effort from Gramian intergral
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(b) Control effort from control law (2.9) with total time of five second

Figure 2.9: Control effort from two control strategy

under control (2.9) will behave more efficiently to reach its desired position. However,

the draw back for (2.9) is that equation (2.10) which need to be calculated offline.
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Figure 2.10: The x position trajectory based on the Gramian integral input
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Figure 2.11: The x position trajectory based on the optimal law (2.9)

2.5 Numerical Examples

In this section, we give some numerical examples to illustrate the theoretical results

demonstrated in the earlier sections. In section 2.3 we just mentioned the controllabil-

ity for one dimensional case. However, all the results can be readily extended to higher
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dimensions by Kronecker product, as argued in [86]. In this section, we will consider

the formation control among a group of agents on the plane, while each agent’s state

is of three dimensions, the x, y positions and its heading angle. Assume that inter-

connected topology is as depicted in Fig. 2.2, where the vertex v1 is selected to be

the leader and the remaining three are followers. Thus, the corresponding (Aaq, Baq)

with proper weighting selections is

Aaq =

















5 −1 −2

−1 4 −2

−2 −2 4

















, Baq =

















−1

−3

0

















.

Some desired formation such as horizontal line, vertical line and triangular shape
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Figure 2.12: Horizontal line formation. Heading control effort (solid line), X position

control effort (dashed line), Y position control effort (dotted line). Initial position

(circle), final position (diamond), the leader (square)

are applied to this topology. The initial position and final position are denoted with

circle and diamond, respectively. The leader is denoted by a square, and is deployed
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Figure 2.13: Vertical line formation. Heading control effort (solid line), X position

control effort (dashed line), Y position control effort (dotted line). Initial position

(circle), final position (diamond), the leader (square)
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Figure 2.14: Triangular shape formation. Heading control effort (solid line), X posi-

tion control effort (dashed line), Y position control effort (dotted line). Initial position

(circle), final position (diamond), the leader (square)
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with the control strategy (2.9) with

P =

















0.1 0 0

0 0.1 0

0 0 0.1

















,Q =

















0.1 0 0

0 0.1 0

0 0 0.1

















,R = 1.

Based on this parameters, numerical methods can be used to solve equation (2.10).

And, it is the same for all dimensions, but their initial and final condition may be

different.

The optimal control input for the x position, y position and heading are depicted

with the dashed line, the dotted line and the solid line, correspondingly. The mag-

nitude of control effort needed for the heading is relatively large comparing to the

positioning control efforts. Also, the final positions have slightly drifted from the

desired one because the optimal control input is bounded within a reasonable re-

gion. On the other hand, exact positioning can be achieved by the Gramian integral

input. However, Example 2 showed that the Gramian integral method produces a

considerably large control effort. And, this is the drawback for this method.

2.6 Conclusion

In this chapter, the controllability problem for multi-agent systems interconnected via

a fixed weighted topology was investigated. A novel notion of multi-agent structural

controllability was proposed, and a necessary and sufficient condition was derived ac-

cordingly. It was shown that the connectivity is not only necessary, but also sufficient

for structural controllability of interconnected systems. The simulation results seem
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promising and underscores their theoretical counterparts.

Assuming more than one leader in a group and high order dynamics realizations

for each agent are our future challenges.
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Chapter 3

Observability of Multi-Agent Systems

3.1 Introduction

The cooperative control of multi-agent systems has recently become a hot research

topic. This area has largely been inspired by natural swarms such as fish schooling,

bees flocking and ant colonies, see e.g., [58]. Design of a convenient strategies for local

interaction among agents is the most important challenges in this area. The most

popular distributed control laws is nearest neighbor law. The neighbor law for each

agent is established on average between agent’s information and that of its neighbors

[83]. This interesting control strategy has recently been discussed in literature as

consensus problem.

Consensus is more considered about stability problem, but although it is impor-

tant to keep rigid formation, it could be more important to make multi-agent systems

reconfigurable between different formations. The main question is that whether agents

can be steered to any desired configuration or not. Several researchers have made con-

nections between latter problem and well-established control theory. [86], [89], [34],

[31]. They modified the consensus law’s structure and recomposed it as a controlla-

bility problem; subsequently, some sufficient and necessary algebraic conditions was
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introduced.

Compared to the controllability problem, there exists very few literatures that

discussed about the observability problem and observer design issue for multi-agent

system. In [27], the authors used estimator to observe the immeasurable and time-

varying states of leader. It was shown that the agents can follow the leader if the

acceleration of the leader is known. This work is further extended in [28], where au-

thors designed a distributed observer for estimation of leader’s velocity under switch-

ing topology. Moreover, in [57], authors studied an observer-based multi-agent system

with communication time delay. The model discussed in [57] is a general state space

model, and the consensus problem is extended from state feedback to the output feed-

back case. In [25], the authors proposed a reduced-order estimator for observer-based

control of multi-agent system. Even though the algorithm in [25] is decentralized,

but there is no information exchange among agents.

In this chapter, we will focus on the observability issues of multi-agent systems.

We assume that the multi-agent system is under the leader-follower framework while

all interactions between agents and outside operators are though the leaders. We

further assume that the underneath communication topologies are time-invariant and

only there exists a single leader for the whole group. First, the classical notion of

observability for dynamical systems is considered, and an algebraic necessary and suf-

ficient condition for the observability is presented. However, some counter intuitive

examples under this setup are found, which motivate us to propose a new observ-

ability definition, called structural observability. The multi-agent system is said to
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be structurally observable if there exists a set of weights which can make the system

observable. It is shown that the proposed structural observability presents a general-

ization of the traditional observability, and is more suitable for multi-agent systems

since it has a clear graphical interpretation. It turns out that the multi-agent system

is structurally observable if and only if the communication topology forms a connected

graph.

The outline of the chapter is as follows. In Section 3.2, the problem studied in this

chapter is formulated; moreover, new notions of multi-agent observability and multi-

agent structural observability are proposed and sufficient and necessary conditions are

provided for each. The controller for steering the system into its desired configuration

is designed in Section 3.3. Section 3.4 provides a numerical example to illustrate the

derived theoretical results. Finally, Section 3.5 closes the chapter with comments and

pointing into our future works.

3.2 Multi-Agent Observability

Objective in this chapter is to observe the followers’ states under the leader-follower

framework. A case of fixed topology and single leader is specifically investigated. We

assume that there exists an agent which serves as the leader, while the rest of agents

are followers and take controls from the nearest neighbor law.

Consider N point mass agents with first order dynamics

ẋi = ui, i = 1, ..., N, (3.1)
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where xi is denoted to be state of each agent and can have arbitrary dimension but

all agents are required to have same dimension. Although the analysis that follows

is valid for any dimension, for sake of simplicity we will present the one-dimensional

case. All expressions can be readily generalized to any dimension case via Kronecker

product.

Without loss of generality, we assume that the N -th agent serves as the leader

and takes commands and controls from outside operators directly,

ẋN = uN , (3.2)

while other N − 1 agents are followers and take controls as the nearest neighbor

law:

ui = −
∑

j∈Ni

wij(xi − xj), (3.3)

where Ni is the neighbor set of the agent i, wij ∈ R is weight of the edge from

agent i to agent j.

The N -th agent has a freedom to choose arbitrary control input and an operator

can deploy different control strategies to the leader. Based on the well-known linear

system theory [1], the leader needs all followers’ states for design of an appropriate

control strategy. However, not all agents can establish at least a communication link

to the leader. Thus, there exist some followers which are not able to communicate

with the leader directly. This phenomenon can be captured as

yi = λiNqiNxi, (3.4)
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where qiN is weight of edge from agent i to the leader. The leader just has access

to yi; hence, it needs to estimate followers’ states. Based on observed states, the

leader design an appropriate control law consequently. It can be clearly seen from

Fig. 3.1 that the leader requires a topology map for design of control law, meanwhile

it accepts commands from the operator.

The algebraic graph theory [24] helps us to rewrite the system dynamics (3.1),

(3.2), (3.3), (3.4) into the matrix form :































ẋ = Aaqx+Baqz

ż = uN

y = Caqx

, (3.5)

where z = xN , Aaq ∈ R(N−1)×(N−1) and Baq ∈ R(N−1). The matrix Aaq reflects

followers’ interconnection and vectors Baq and Caq represent the relation between

followers and the leader.

Definition 4 The linear system Σ in (3.5) is observable if and only if following

observability matrix is full column rank.

O =

































−Caq

CaqAaq

−CaqA
2
aq

...

(−1)nCaqA
n−1
aq

































.

In the following, the observability problem is solved from both algebraic and graph

theoretic point of views. Firstly, algebraic tools are used to explore the problem; sec-
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Figure 3.1: The leader based observer

ondly, a new notion of multi-agent systems structural observability is introduced and

multi-agent systems observability problem is investigated from graph theory perspec-

tive.

3.2.1 Algebraic Condition

Theorem 2 A class of multi-agent systems is observable if and only if the following

holds:

1. The eigenvalues of Aaq are all distinct

2. The eigenvectors of Aaq are not reciprocal to Caq

Proof: The matrix Aaq is symmetric; thus, it can be expressed as Aaq = SJST ,

where S is orthonormal matrix and J is diagonal matrix consisting of the eigenvalues
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of Aaq. The observability matrix is

O =

































−Caq

CaqAaq

−CaqA
2
aq

...

(−1)nCaqA
n−1
aq

































. (3.6)

O can be rewritten as:

O =

































−Caq

CaqSJS
T

−Caq(SJS
T )2
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(−1)nCaq(SJS
T )n−1

































, (3.7)

this can be reduced into

O =

































−CaqS

CaqSJ

−CaqSJ
2

...

(−1)nCaqS(J)
n−1

































ST . (3.8)

Since S is rank efficient, it does not affect the rank of right side of (3.8)and we
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only discuss about the rank matrix O.

O =

































−CaqS

CaqSJ

−CaqSJ
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(−1)nCaqS(J)
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































. (3.9)

Since matrix J is a diagonal and nonsingular, the multiplication of J with a vector

will be scaling along its dimensions. In order to maintain (3.9) full rank, each element

of CaqS should be nonzero. Moreover, the distinctiveness of the eigenvalues of Aaq

guaranties the observability of system (3.5).

It can be induced from Theorem 2 that observability property of system (3.5) is

related to the topology of interaction graph. This motivates us to investigate the

observability properties of some well-known graphs.

Proposition 2 The system (3.5) is unobservable if there is an isolated agent among

followers.
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Proof: Without loss of generality, we assume that the (N − 1)-th is isolated, then

Caq =

[

∗ . . . ∗ 0

]

Aaq =








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
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0 . . . 0 1
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
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





.

It is quite obvious that the last column of O contains all zeros. Thus, (3.5) is unob-

servable.

Proposition 3 A path PN is observable.

Proof: For simplicity, we prove this for a case which wij = wji = qiN = 1. Thus,

for a path graph PN the pair (Aaq, Caq) can be written as

Caq =

[

0 . . . 0 1

]

Aaq =












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The rank of O can readily be obtained from simple computation,

rank(O) = rank




























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


















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






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
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















= N

Hence, a path is observable.

Example 5 Consider a multi-agent system with six agents, whose communication

topology is a complete graph with six vertices as shown in Fig. 2.1. The leader has

access to all followers and it just does summation among followers data to observe

the followers’ states. The following pair of (Aaq, Caq) fails to satisfy the condition in

Theorem 1; hence, a complete graph is not controllable under unity weights’ assign-

ment.

Aaq =

































5 −1 −1 −1 −1

−1 5 −1 −1 −1

−1 −1 5 −1 −1

−1 −1 −1 5 −1

−1 −1 −1 −1 5

































, Caq =

































−1

−1

−1

−1

−1

































′

. (3.10)

Although the condition in Theorem 1 is strong and easy to check, it does not provide

any insight into the problem from graph theory point of view. It is crucial that

this problem be explored from graph topology perspective because graph theoretic

approach is not only more intuitive, but also provides some required condition for
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establishment of communication topology. Hence, apart from algebraic conditions,

we investigate required condition from graph topology perspective.

3.2.2 Structural Observability

Our result in this section is inspired by results in area of descriptor systems [16].

Definition 5 The linear system Σ in (3.5) is said to be structurally observable if and

only if there exists a set of wij 6= 0 which can make the system (3.5) observable.

Here, we are interested to observe that under which topology we can always find a

set of weights to make the system observable.

Definition 6 The pair (Aaq, Caq) in (3.5) is said to be reducible if they can be written

into the form below;

Caq =

[

0 Caq22

]

,

Aaq =









Aaq11 Aaq12

0 Aaq22









,

(3.11)

where Aaq11 ∈ R
p×p , Aaq12 ∈ R

p×(N−1−p), Aaq22 ∈ R
(N−1−p)×(N−1−p) and Caq22 ∈

R
(N−1−p).

One can verify that regardless of the choice of weights, the observability matrix

for this structure cannot be full column rank. Thus, system (3.5) is not structurally

observable.

Another famous unobservable structure can be expressed as the following lemma.
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Lemma 4 The system (3.5) is not structurally observable if the matrix [Caq, Aaq],

which is N − 1×N matrix, can be written as

[Caq, Aaq] =

[

P11 P22

]

, (3.12)

where P22 is of N × (N − 1− p) and P11 is N × p with at most p− 1 nonzero entries

and the rest of rows are all zero.

Apart from these structures, the well-known linear system [16] guarantees that there

exists at least a set of weight which can make the system (3.5) observable.

Lemma 5 The pair (Caq, Aaq) is structurally observable if and only if it is neither

reducible nor writable into the form (3.12).

The theory of linear structural system helps us to a give general answer for structural

observability of networked systems but we need to establish a linkage between these

lemmas from linear descriptor systems and graph theory. The following theorem

establishes this linkage and interprets these lemmas into graph theory language.

Theorem 3 The multi-agent system (3.5) with the communication topology G is

structurally observable if and only if G is connected.

Proof: Necessity: Assume that the graph G is disconnected. For simplicity, we

will prove by contradiction for the case that there exists only one disconnected agent.

There are two possibilities: First, this isolated agent is the leader. Then, Caq is a

null vector in this case , and the system is uncontrollable no matter what the weights

are. Secondly, the isolated agent is one follower. For this case, (Caq, Aaq) is reducible,
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which implies uncontrollability. Both cases end with a contradiction, so the necessity

holds. The proof can be straightforwardly extended to more general cases with more

than one disconnected agents.

Sufficiency: For the sufficiency part, we show that a connected graph cannot

be written either in a reducible form or in the form of (3.12). Note that wij 6= 0

if and only if wji 6= 0. Then, (Caq, Aaq) is in a reducible form if and only if Aaq

is of a block diagonal matrix, which implies that the graph is disconnected. This

contradicts with our assumption on the graph connectivity. On the other hand, the

graph contains isolated vertex if and only if D matrix contains zero diagonal element.

So, (Caq, Aaq) pair can be written in the form of (3.12) in Lemma 4 if and only if

it has a group of isolated agents. Therefore, according to Lemma 5, the graph is

structurally observable.

Remark 2 The notion of multi-agent system structural observability offers the pos-

sibility of weights’ assignment and it gives more degree of freedom in setup of commu-

nication topology among multi-agent systems. Thus, it is the more general definition

compared to multi-agent system observability notion. For instance, there are cases

in which a system fails to satisfy condition in Theorem 1. However, one can design

weights to make the system observable. This is further illustrated in the following

example.

Example 6 Consider a multi-agent system with four agents, whose communication

topology is shown in Fig. 3.2. If all the edges’ weight are assigned to unity, the

matrices Aaq and Caq can be written as
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Figure 3.2: A multi-agent system with four agents, where bold agent serves as the

leader .

Aaq =

















3 −1 0

−1 4 −1

0 −1 3

















, Caq =

















−1

−1

−1

















′

. (3.13)

It can be easily determined that this pair is unobservable. However, under struc-

tural observability setup, a set of weights can be assigned such that the observability

condition is satisfied; for instance, the pair (Aaq, Caq) can be chosen as the following

observable pair:

Aaq =

















5 −2 0

−2 6 −3

0 −3 4

















, Caq =

















−1

−2

−5

















′

. (3.14)

3.3 Output Feedback Controller for Multi-Agent

systems

An output feedback control strategy is used to steer followers into their final des-

tinations in finite time. The well-known Kalman filter based observer is chosen to
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estimate the states. The observer has the following dynamics:

˙̂x = Aaqx̂+BaquN +K(y − ŷ),

ŷ = Caqx̂,

where K is Kalman filter gain, calculated as:

K = PCTR−1,

where P is positive definite solution of the following Riccati equation,

PAT
aq + AaqP − PCT

aqR
−1CaqP +Q = 0,

where Q is positive definite matrix

Based on observed states, a state feedback controller can be designed as:

z = −Λx. (3.15)

Above equation tends to minimize the following cost function

J(x, u, Z, L) =

∞
∫

0

(xTZx+ zTLez)dt,

where Z and Le are semi positive definite and positive definite matrices, respectively.

The parameter Λ can be readily obtained from the Riccati equation :

PeAaq + AT
aqPe − PeBaqL

−1
e BT

aqPe + Z = 0.

And,

Λ = L−1
e BTPe.
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3.4 Numerical Example

In this section we present a numerical example on how the output feedback controller

can be used in order to control a group of an interconnected system into its defined

destination. Simulation results shows that how an interconnected system can perform

a specific formation when the leader has partial access to followers’ positions. A group

of multi-agent systems consists of ten agents is depicted in Fig. 3.3 and the agent

number ten is selected to be leader. An operator must regulate motion of the leader

such that the interconnected system can be herded to the desired position. Our

objective is to steer followers from y = 0 to y = 5 just based on partial information.
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The system (3.5) can be expressed as

Aaq =



































































1 0 0 0 0 0 0 −1 0

0 5 −1 0 0 0 −1 0 −1

0 −1 2 0 0 −1 0 0 0

0 0 0 3 0 0 0 0 0

0 0 0 0 2 0 0 −1 −1

0 0 −1 0 0 2 0 0 −1

0 −1 0 0 0 0 2 0 −1

−1 0 0 0 −1 0 0 4 0

0 −1 0 0 −1 −1 −1 0 5



































































,

Baq =

[

0 −2 0 −3 0 0 0 −2 −1

]T

,

Caq =

[

0 −1 0 −1 0 0 0 −1 1

]

.

The Kalman estimator is used to observe the y position of the group of robots shown

in Fig. 3.3. The design parameters of R and Q are set to 1 and 2, respectively.

The actual position and observer result are depicted in Fig. 3.4. Comparing

Fig. 3.4(a) and Fig. 3.4(b) reveals that the estimated parameters are quite close

to their actual counterpart. Then, based on estimated states of leader, operator can

design the appropriate controller to steer system into the desired state. Optimal state

feedback is one of the best possible solutions. Design parameters Z, Le are set to the

following values:
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Figure 3.3: The observable structure consisting of ten vertices and vertex ten is the

leader.

Le = 1, Z =

























1 0

1

. . .

0 1

























9×9

.

Followers initial positions are shown in Fig. 3.6. The leader of group shown in

Fig. 3.3 deploys the optimal control law (3.15) to its followers. This control signal

is shown in Fig. 3.5. At t = 16, the system reached the desired position as shown

in Fig. 3.7. It can be seen from Fig. 3.7 that the system has successfully performed

the required task, while the control effort given to the system, Fig. 3.5, is finite and

implementable.
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(a) Actual y position trajectory of group of ten agents in Fig. 3.3
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y Position estimation

(b) The observer output trajectory of group of ten agents in Fig. 3.3

Figure 3.4: Observer output trajectory versus actual trajectory

3.5 Conclusion

In this chapter, we investigated the observability problem for multi-agent systems

under a leader. In addition, the interconnection topology assumed to be weighted. It

was demonstrated interconnected topology affects the observability of overall system.

Some new notions for observability of multi-agent systems were provided and sufficient
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Figure 3.5: Optimal control effort deployed to the leader
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Figure 3.6: The initial position for the followers (t=0)

and necessary conditions were driven, consequently. Under the novel notion of multi-

agent system structural observability, it was shown that the connectivity of graph is

not only necessary, but also sufficient for observability. The simulation results seems

promising and underscore the theoretical part.
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Figure 3.7: The final position for the followers (t=16)
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Chapter 4

Weights’ Assignments Among a Group of

Multi-Agent Systems

4.1 Introduction

The main objective of this chapter is to design an optimal solution for weights’ as-

signment in formation and reconfiguration control among a group of robots. The

optimal solution must keep the control effort given to the whole system at its mini-

mum possible level and guarantees that the desired configuration can be reached. In

particular, the case of a single leader under a time-varying topology is considered. In

contrast to the existing literature on this topic, we assume that the graph is weighted

and time-varying; moreover, weights can be assigned freely. Under this setup, there

are plenty of possible weights. However, determining a set of the best weights re-

mains as an open problem because the control effort given to the agents must be

minimized meanwhile the final desired states must be assured. In this chapter, the

problem of weights’ assignment is discussed and formulated using the optimal control

theory. The optimal control strategy is designed based on minimization of an index

function and a solution is found using Hamilton-Jacobi-Bellman equations. Finally,

some simulation results are presented to illustrate the approach.
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4.2 Main Result

In this chapter, we use the same problem formulation as Chapter 3. It is assumed

that each agent has first order dynamics; moreover, there exists an agent which could

accept commands from outside operator. The leader also collects the information from

followers for sake of proper control law design. Following the problem formulation in

Chapter 3, on can get the whole systems dynamics as the following matrix form :































ẋ = Aaqx+BaqxN

ẋN = uN

y = Caqx

, (4.1)

where Aaq ∈ R(N−1)×(N−1) and Baq ∈ R(N−1)×1 are both sub-matrices of the cor-

responding graph Laplacian matrix L. The matrix Aaq reflects the interconnection

among followers, and the column vector Baq, Caq represents the relation between

followers and the leader.

Our objective is to design a paradigm that can minimize the control effort given to

the whole group. In section next the optimal control approach is used for solving this

problem. In sequel, we assume that the communication topology remains connected

during the whole maneuver. This assumption guarantees that the system is both

observable and controllable; moreover, it assures the existence of the solution.

4.2.1 Cost Function Definition

Let Σ represent the system in (4.1).
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Definition 7 The linear time-invariant system Σ is said to be structurally control-

lable if and only if there exists a set of fixed wij which can make the system Σ con-

trollable.

Definition 8 The linear time-invariant system Σ is said to be structurally observable

if and only if there exists a set of fixed wij which can make the system Σ observable.

Lemma 6 The multi-agent system Σ under the fixed communication topology G ′ is

structurally controllable if and only if G ′ is connected.

Proof: See the proof in Chapter 2.

Lemma 7 The multi-agent system Σ under the communication fixed topology G ′ is

structurally observable if and only if G ′ is connected.

Proof: See the proof in Chapter 3.

The next step is to design the global optimal control strategy which can put into

account whole dynamics. Moreover, it should be able to minimize the control effort

given to each agent.

Let us define the following index function for overall system:

J =

T
∫

0

[

(Aaqx)
T
Q(Aaqx) + xTSx+ uNRuN

]

dt+(x(T )− xf )
T
E (x(T )− xf ) , (4.2)

where xf stands for the desired final position at the final time T , and Q > 0,

S > 0 and R > 0 are specification matrices.

Remark 3 The cost function introduced in (4.2) is in a quadratic form. It is cho-

sen such that it minimizes the control effort given to the whole system. It not only

minimizes the leader’s control effort, but also penalizes followers’ control signals.

63



4.2.2 Hamiltton-Jacobi-Bellman(HJB) Equations

The problem of finding the minimum value for the general cost function, can be

solved by help of HJB set of equations. This method is applicable to the general

finite horizon case [17]. Assume a system with the following dynamics

Ẋ = f(t, X, u), (4.3)

The objective is to minimize the the following cost function

J =

T
∫

0

g(t, X, u)dt+ λ(X(T )). (4.4)

A set of HJB equations can be written for solving the optimal problem in (4.3) and

(4.4):

−
∂W

∂t
(t, X) = min

u∈U
Ξ(t, X, u)

W (T,X) = λ(X(T ))

u∗ = argmin
u∈U

{Ξ(t, X, u)} (4.5)

where W is so called value function.

Ξ(t, X, u) = g(t, X, u) +
∂W

∂X
(t, X)f(t, X, u).

The solvability of the above minimization problem is depend on whether the PDE

can be solved or not. In another word, one needs to find the value function W such

that it satisfies the PDE.
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4.2.3 Optimal Control Problem for Multi-Agent Systems

The HJB equations can be rewritten for the system given in (4.1):

−
∂W

∂t
(t, X) = min u ∈ UΞ(t, X, u)

W (T,X) = x(T )TEx(T ) + φ(T ) (4.6)

Ξ(t, X, u) = (Aaqx)
TQ(Aaqx) + xTSx+ uNRuN +

∂W

∂x
(Aaqx+Baqu). (4.7)

Existence of a solution : The existence of solution to the above minimization

problem can be guaranteed if certain controllability and observability conditions are

satisfied [43]. Moreover, it was just shown that as long as the topology graph G ′

remains connected, the controllability and observability requirement are both realized.

Thus, the existence of solution for this minimization problem is guaranteed.

The above minimization problem has the optimal control law in the form of:

u∗ = −
1

2
R−1(

∂W

∂x
)T , (4.8)

and one of the possible choice for W can be expressed as

W = −
1

2
xTK(t)x+ φ(t). (4.9)

The following Lemma shows how parameter K can be calculated such that the PDEs

in (4.6) and (4.7) have solutions.

Theorem 4 Assume that the group of agent has first order dynamics, and are con-

nected through the nearest neighbor law. The following control law would minimize

the cost function (4.2).

u∗ = −
1

2
R−1(

∂W

∂x
)T , (4.10)
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where K(t) satisfies the following equation:

−K̇ = 2(S + AT
aqQAaq) +

KTR−1K

2
K(T ) = 2E. (4.11)

Proof: Equation (4.7) can be written as:

Ξ(t, X, u∗) = (Aaqx)
TQ(Aaqx) + xTSx+ u∗

NRu∗
N +

∂W

∂x
(Aaqx+Baqu) = −

∂W

∂t
(t, x).

(4.12)

By substituting W and u∗
N from (4.9) and (4.10; one gets

−xT K̇

2
x−φ̇ = X(Aaqx)

TQ(Aaqx)+xTSx+(−
1

2
R−1(

∂W

∂x
)T )TR(−

1

2
R−1(

∂W

∂x
)T )+Aaq,

(4.13)

this can be written into a compact form:

−xT K̇

2
x− φ̇ = (Aaqx)

TQ(Aaqx) + xTSx+
xTKTR−1Kx

4
+ Aaq. (4.14)

By comparing the corresponding terms in xTx, we get

−K̇ = 2(S + AT
aqQAaq) +

KTR−1K

2
. (4.15)

On the other hand, final condition can be verified as follows

Again by comparing corresponding term in x(T )Tx(T ),

K(T ) = 2E. (4.16)

This completes the proof.
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Figure 4.1: A system consists of four agent and agent four serves as the leader

Remark 4 The problem of weights’ assignment can be solved by help of Theorem

1. The optimal law (4.10) can be replaced in (4.1); hence, entries of matrix Aaq are

updated, or in another word weights among the agents are modified such that not only

the leader’s control effort becomes optimum, but also the control effort given to the

whole system is optimized.

The result in Remark 2 is further illustrated in the next section

4.3 Numerical Example

In this section, we give a numerical examples to illustrate the theoretical results

demonstrated in the earlier sections. Assume topology as shown in Fig. 4.1 which

consists of three followers and a leader. We assume that x represents each agent’s

position. The dynamics of whole system can be written as the following:
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















ẋ1

ẋ2

ẋ3

















=

















0.25 −0.25 0

−0.25 0.5 −0.25

0 −0.25 0.25

































x1

x2

x3

















+

















−1

−1

−1

















u. (4.17)

Design parameters are set as below:

Q =

















1

1

1

















, E =

















0.1

0.1

0.1

















,

R = 1, S =

















0.875 0.1875 −0.0625

0.1875 0.6250 0.1875

−0.0625 0.1875 0.8750

















One can write (4.11) for above setup as

− ˙K =2I +
K2

2
I K(T ) = 20I, (4.18)

where I is the identity matrix. Above problem can be easily solved as

K = −2I tan(2t− c),

where c can be obtained from the boundary condition. Henceforth, the feedback law

can be written as

W = −
1

2
(x2

1 + x2
2 + x2

3)k + φ(t)

∂W

∂x
= −

















x1

x2

x3

















k
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u∗ = −
1

2












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Where k is a diagonal element of the matrix K.
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Consequently, we get
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where X =

[

x1 x2 x3

]T

. The above equation illustrates how the optimal solution

in Theorem 1 can assign weights among a group of connected agents. The system

(4.17) initiates from random initial conditions in 2D space and under the control law

(4.19), all the followers are forced to converge into the origin within the finite time

t = 2.

The system in (4.17) is exposed to the optimal control law (4.19). The states

trajectory is depicted in Fig. 4.3. It is clearly shown in Fig. 4.4 that how followers

are moving in 2D space till they reach the desired point. In Fig. 4.4 initial positions

are marked by plus sign and the destination is illustrated by star sign. It can be seen

from Fig. 4.4 that the proposed control strategy is capable of driving the system into

its desired position. Furthermore, the control effort given to the system is shown in
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Figure 4.2: The optimal control effort (4.19) given to the system (4.17).
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Figure 4.3: X position trajectory of the system (4.17) this is driven by the optimal

law (4.19) and design parameters (4.3).

Fig. 4.2. Investigating Figures 4.2 and 4.4 reveals that not only the desired formation

is obtained, but also control efforts given to the system is quite negligible. This

supports that the optimal law in (4.19) has modified the weights such that control

effort given to the system is optimized.
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Figure 4.4: The X-Y position trajectory of the system (4.17). Followers’ initial posi-

tions (plus), final positions (star).

4.4 Conclusion

In this chapter, the optimal control paradigm was proposed for weights’ assignment

among multi-agent systems. It was assumed that system is under a leader. The prob-

lem of weights’ assignment was written as an optimal control problem; henceforth,

index function was minimized with the help of HJB equations. Finally, simulation re-

sults were introduced which underscore their theoretical counterpart. Our approach

guarantees that after the weights’ assignment the whole group can reach the final

destination. However, since the resultant system becomes time-variant, the controlla-

bility property of a new system must be further investigated. In addition, the model

assumed for each agent can be modified to the general state space dynamics. We op-

timized the system with respect to the weights. Another interesting research question

could be optimization of the system with respect to the topology.
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Chapter 5

Implementation

5.1 Introduction

This chapter describes the software and hardware development for performing a for-

mation among a group of the e-puck robots. The coordination control problem in-

troduced in early chapters is implemented in practice and experimental results are

reported. The test bench consists of the three e-puck robots where one of them serves

as the leader and the rest are followers. Our experimental results are carried out en-

tirely on physical robot without human interference. The leader herds the group into

its desired destination. The control of autonomous robot has been addressed in sev-

eral literatures [6], [7]; however, in our current work we adapted the classical concept

from linear system theory and based on this we have implemented a formation control

among group of robot in a systematic way.

The outline of this chapter is as following. Firstly, the hardware structure of an

e-puck robot is introduced. Secondly, the software preparation for implementing a

program on the e-puck robot is given. Finally, in the last section, those theoretical

results from early chapter are implemented in real world application. This chapters

concludes with conclusion and our further research directions.
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Figure 5.1: E-puck

5.2 Hardware

The hardware of the e-puck robot is discussed in this section. And, different parts

of this robot are presented. It is clearly demonstrated that how available sensors on

e-puck robots can be exploited to perform a localization method.

The e-puck robot was originally designed by Michael Bonani and Francesco Mon-

dada at the ASL laboratory of Prof. Roland Siegwart at EPFL (Lausanne, Switzer-

land). It is an open source product in both software and hardware. There are several

companies active in production of this product. The e-puck robot and its different

parts are clearly depicted in Fig. 5.1. The e-puck beneficiates from a neat and flexible

design; moreover, there are several noncommercial software dedicated to the e-puck

robot.

The e-puck robot uses dsPIC as its processor core. This series of microcontrollers
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Figure 5.2: E-puck block diagram

are produced by the Microchip company. There are several softwares offered by

Microchip to facilitate use of dsPIC processor (www.mirochip.com). The e-puck robot

also features a large number of sensors and actuators, described in Table. 5.1. The

interconnection among different parts of robot is shown in Fig. 5.2.

The e-puck robot is equipped by two high precision stepper motors. These motors

are driven using differential steering system. With help of this steering system, the

robot can be easily localized in a terrain.

5.2.1 Localization

The well-known method of odometry can localize the e-puck robot in smooth terrain

using data from actuators for localization. In our case stepper motors’ pulses can be
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Size, weight 70 mm diameter,55 mm height, 150 g

Battery autonomy 5Wh LiION rechargeable battery providing about3 hours autonomy

Processor dsPIC 30F6014A @ 60 Mhz ( 15 MIPS) 16 bit DSP microcontroller

Memory RAM: 8 KB; FLASH: 144 KB

Motors 2 stepper motors with a 50:1 reduction gear, resolution: 0.13 mm

Speed Max: 15 cm/s

Mechanical structure Transparent plastic body supporting PCBs, battery and motors

IR sensors 8 infra-red sensors measuring ambient light

Camera VGA color camera with resolution of 480x640 (typical use: 52x39)

Microphones 3 omni-directional microphones for sound localization

Accelerometer 3D accelerometer along the X, Y and Z axis

LEDs 8 independent red LEDs on the ring, green LEDs in the body

Speaker On-board speaker capable of WAV and tone sound playback

Switch 16 position rotating switch on the top of the robot

PC connection Standard serial port up to 115 kbps

Wireless Bluetooth for robot-computer and robot-robot wireless communication

Remote control Infra-red receiver for standard remote control commands

Table 5.1: Features of the e-puck robots

used to estimate the position over time. Based on odometry, position of each robot

can be estimated relative to starting location. It is clearly known that the odometry

method is sensitive to errors. Hence, the system’s error will be accumulated if the

terrain is not well designed or equipments are not calibrated. The geometry of robot
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Figure 5.3: Geometry of the e-puck robot

is presented in Fig. 5.3. Based on the robot geometry, localizing the e-puck robot

becomes a trivial robotic question [61]. After a discussion about the e-puck robot’s

dynamics, next section introduces programming of the e-puck robot.

5.3 Software

This section discusses about programming of e-puck robots. The Microchip company

has developed a MPLAB IDE, development package, which can handle programming

a large series of PIC microcontrollers. The C language is the most efficient language

for low level programming. Hence, this language is chosen for our implementation

purpose. Several setups need to be done for programming of the e-puck robot. There

are three steps for programming of the e-puck robot:

1. Make a project in MPLAB IDE.

2. Compile the code.
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Figure 5.4: Project wizard, step 1, select device

3. Program via Bluetooth.

5.3.1 Creating a Project

At first a project and workspace must be created in MPLAB IDE. There must be

only one project in workspace at a time. Each project contains several files such as

source code, linker script files and etc. MPLAB IDE project wizard helps to create a

new project.

1. Create a new project (Project>Project Wizard).

2. Select a device as dspic30F6014 (see Fig. 5.4 ).

The MPLAB IDE needs a C compiler to produce desired output file. Thus,

the software C30 should be installed and patched to the MPLAB IDE. The

Toolsuite includes the required files that will be used.
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Figure 5.5: Project wizard, step 2, select language Toolsuite

3. From the activate Toolsuite pull-down menu, select Microchip C30 Toolsuite

(see Fig. 5.5).

4. Name the project.

5. Add files to the project.

After the project wizard completes, the main C file must be added to the

project. In addition to software setup, device configurations must be modified.

Following configuration parameters need to be set as:

• Oscillator: XT w/PLL 8x

• Watchdog Timer: Disabled

This setup is clearly depicted in Fig. 5.6.

6. Build the project(Make>Project)

The program is ready to download when “BUILD SUCCEEDED” display.
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Figure 5.6: Configuration bits

5.3.2 Programming of the E-puck Robot

The e-puck robot can be programmed through Bluetooth communication link. To do

so, the e-puck robot and computer should be firstly paired. Each e-puck robot has

a specific Bluetooth ID for communication. The e-puck robot establishes Bluetooth

communication to PC with this ID. The ID is printed on each individual robot, as

shown in Fig. 5.7. Once the communication link has been established between a com-

puter and the e-puck robot, the e-puck robot is recognized as serial communication.

The PC can communicates with the e-puck via this dummy serial communication.

The “Tiny Bootloader” is an application program which helps to download a program

into the e-puck robot through a dummy serial port. The user should browse the cor-

responding .hex file and burn the flash memory. The main screen of Tiny Bootloader

is shown in Fig. 5.8.
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Figure 5.7: Bluetooth ID

Figure 5.8: Tiny Bootloader main page

5.4 Implementation Results

In previous sections a tutorial about programming of the e-puck robot is given. This

section discusses about implementation of theoretical results introduced early chap-

ters of this dissertation.
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Figure 5.9: Communication topology among the e-puck robtos

Figure 5.10: Initial position of e-puck robots

A group of three e-puck robots is chosen as the test bench. These robots are

selected to obtain a certain formation. The communication topology among robot is

depicted in Fig. 5.9. An agent number two serves as leader and sends the required

commands to followers. The mission is to perform a line formation among robots.

All the robots are aligned in vertical line as shown in Fig. 5.10. The mission is to

form a horizontal line at the end of maneuver. Moreover, robots must have a same

heading at the end of the maneuver. It is assumed that the initial position of each

robot is known. Hence, the position of each robot can be easily measured with help

of odometry. The trajectory of followers are demonstrated in Fig. 5.11, where initial
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Figure 5.11: Followers’ trajectory in implementation

Figure 5.12: Final position of e-puck robots

and final positions are demonstrated by rectangular and diamond, respectively. The

determination of the leader’s position become a trivial task since it can be controlled

directly. Based on our problem formulation, followers’ position is our main focus. At
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the end of maneuver, our group of robots successful obtains the desired formation, as

demonstrated in Fig. 5.12. The team of robots achieves its defined task and fulfills

the formation requirement.

5.5 Conclusion

In this chapter, the implementation of controllability of multi-agent system theory on

real world application was discussed. It was shown that with help of a simple control

law a formation control among robots can be obtained in real application. Moreover,

a comprehensive introductory to the e-puck robot and its programming were given.

Even though our results was successfully applied in practice, but there are several

interesting problems still unsolved. The formation control algorithm will be more

robust if there exist several leaders among agents; moreover, a high order dynamics

could replace a mass point dynamics for each agent. In addition, even though the

cooperation among robots was achieved for a group of three, the results need to be

tested on larger group of robots to test the scalability of our algorithm. The optimality

of solution also need be tested in practice.
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Chapter 6

Conclusions

Several challenges involved with multi-agent systems cooperative control were ad-

dressed in this dissertation. This thesis contributed to the area of multi-agent sys-

tem by solving some fundamental challenges such as controllability and observability.

The multi-agent systems were investigated from both theory and practice. Moreover,

the systematic paradigm for configuration of communication topology was proposed.

And, the practical implementation of results was reported.

Firstly, the controllability problem for multi-agent systems for a fixed weighted

topology was studied. We introduced the novel notion of multi-agent system struc-

tural controllability and derived a necessary and sufficient condition accordingly. The

connectivity of topology is both necessary and sufficient for structural controllability

of interconnected systems.

Secondly, the observability of multi-agent system for a single leader case was in-

vestigated. We showed that the interaction topology directly affects the observability.

The classical notion of observability was extended to multi-agent systems observabil-

ity and a sufficient and necessary condition was obtained. However, some counter

intuitive examples showed the need for the general definition of observability. Thus,

We proposed a new observability definition, called structural observability. It was
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illustrated that the connectivity of graph is not only necessary, but also sufficient for

structural observability.

Thirdly, we focused on design of a systematic paradigm for weights’ assignment

in multi-agent systems. This problem was formulated as an optimal control problem.

In order to solve the optimal control problem, the general cost function was written.

Then, the cost function was minimized with help of HJB functions.

Finally, the idea of controllability for multi-agent systems was implemented in

practice. We used the group of e-puck robot to emulate our idea. In our experiment,

there was only a leader which led the group and two followers. The implantation

results were promising and offered opportunity for more research.

As the direction for future work, there are several interesting opportunities. Due

to the complexity of analysis, we just focused on the agents with simple integrator

dynamics; however, it is more interesting to discuss observability and controllability

problem for a group of agents with the general state space dynamics. Moreover, a

group of robots is more robust, when there exist more than one leader in the group.

Our results can be further extended for multi-leader case. From optimization point

of view, the optimization of the multi-agent system with respect to the topology is a

significant research question.
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