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Summary 
 
 

 The ΛCDM model is widely accepted by most scientists and has achieved 

success in explaining observations and predicting cosmological properties, but there 

remain intrinsic and serious problems associated with the existence of the 

cosmological constant. Inspired by the revelation of a local void, many authors have 

proposed various inhomogeneous models as alternatives to the ΛCDM model. 

Among those inhomogeneous models, Tomita’s model is a simple model, and in the 

late 1990s the model was shown to fit the Type Ia supernovae (Sne Ia) observations. 

In this work, Tomita’s model is reanalyzed using the SCP Union compilation, which 

is the latest Sne Ia dataset. We find that for Tomita’s model with an Einstein – de 

Sitter cosmology outside the local void and a zero cosmological constant density to 

provide a good fitting to the new data, the local void is on a scale of 1 Gpc, which is 

larger than the 200-Mpc scales from previous results. We then consider the Universe 

to be clumpy and find that the size of local void could be reduced if the clumpiness 

parameter α  is less than 1, and for 0.5α=  in particular, that the local void is about 

700 Mpc ( boundary 0.16z = ). In this work, we also find that the variations of the 

confidence contours and best-fit values with the model parameters are similar to 

those from Tomita’s earlier analysis, but we further prove that the variations in the 

choice of the matter density profile and the clumpiness parameter of the local void 

are not significant.  
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CHAPTER 1 

INTRODUCTION 

 

 Presently, with tremendous improvements of technology, astronomers can 

perform many observations with high accuracy. Type Ia supernovae (Sne Ia) 

observations, from which we can derive the magnitude – redshift relation, play 

important roles in constraining the cosmological parameters. In the late 1990s, the 

High-Redshift Supernova Search (HZS) [1, 2] and the Supernova Cosmology 

Project (SCP) [3] used Sne Ia observations to constrain the cosmological parameters. 

For a flat universe, the two teams found a model with 70% dark energy and 30% 

matter (the so-called Concordance Model). Similar results were found by further 

constraints from subsequent Sne Ia observations [4-8] and other independent 

observations, including the cosmic microwave background (CMB) anisotropy [9-

11], the baryon acoustic oscillation (BAO) [12], the integrated Sachs – Wolfe (ISW) 

effect correlations [13]. In addition, the Concordance Model can explain accurately 

the relative abundance of light elements in later epochs, the age of the Universe, and 

the existence and thermal form of the CMB radiation.  

 However, the Concordance Model encounters several unresolved and critical 

issues. First, the Lambda-Cold Dark Matter (ΛCDM) model in which the dark 

energy is in the form of a cosmological constant is widely accepted by most 

scientists. In the Concordance Model, the cosmological constant is extremely small: 

about122 orders smaller than the expected value from quantum field theory. The 
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value of the cosmological constant is also fine-tuned. In the ΛCDM model, structure 

formation originated from the primordial fluctuations  in a smooth background and 

grew into gravitationally bound systems such as galaxies and clusters. If the 

cosmological constant were slightly larger, the Universe would have expanded so 

fast that there would not have been t enough time for the formation of any 

gravitationally bound systems [14]. This is referred to as the cosmological constant 

problem. 

The second issue is concerning the dark energy density. In an expanding 

Universe, the matter density decreases as the inverse third power of the cosmic scale 

factor ( )3
m aρ −∝  and the cosmological constant energy density,  remains constant 

in time. It is therefore an exceptional coincidence that the magnitudes of the two 

densities are of the same order at present. This issue is usually called the cosmic 

coincidence problem. The observed dimming in the Sne Ia apparent magnitudes has 

been explained by an acceleration in cosmic expansion, driven by the dark energy. 

The onset of the accelerating expansion is concomitant with the beginning of 

structure formation and it has been argued by some cosmologists that the latter could 

be the reason for the former [15-17]. 

The last problem is concerning the nature of the dark energy. At this point, 

we are still unsure as to what the dark energy is; we are unsure of its properties, how 

it has originated, and the method to detect it.  There exist some models and theories 

of the dark energy but none of them is conclusive or proven by experiment (For a 

review, see [18]).  

With the problems listed above, it is natural to question the correctness of the 

ΛCDM model, both observationally and theoretically. Theoretically, a value of 
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0Λ=  may be more plausible than a minuscule one. In addition, based on the 

Cosmological Principle, the ΛCDM model assumes a spatially homogeneous and 

isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) metric for spacetime, 

which can be a good approximation in the early Universe when the density contrasts 

were very small. However, in later times when the Universe became more 

inhomogeneous with the presence of cosmic structures, ignoring the effect of 

inhomogeneity may lead to misinterpretation of the observational data and 

subsequently lead to the presence of a cosmological constant 0Λ≠ .  

Recently, analyses of the number count of galaxies [19] and Sne Ia [20] have 

provided evidences that we may live in a local void. In addition,  many voids with 

sizes of order Mpc and several huge nonlinear structures (notably, the Sloan Great 

Wall at 400 h  Mpc) have been revealed through surveys like the Sloan Digital Sky 

Survey (SDSS) and the 2dF Galaxy Redshift Survey (2dFGRS) [21, 22]. 

Furthermore, voids can account for the cold spots [23-25] and some features of low 

multipole anomalies in the CMB data [26, 27]. With the development of high 

precision observations, we must account for all these inhomogeneous effects in our 

considerations. 

In the realm of theoretical work, it was discovered that the metric averaging 

operation does not commute with the Einstein tensor calculating operation [28, 29]. 

In other words, we should use the exact metric to calculate the observable quantities 

and then take the average of the results, instead of the usual reversed procedure: take 

the average of the metric and then calculate the observable quantities from this 

averaged metric. In another work, Buchert found that in an inhomogeneous 

cosmology, the averaged quantities are subject to a set of modified Friedmann 
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equations – the Buchert equations – and the difference between the evolutions of 

homogeneous and inhomogenous models is characterized by a backreaction term 

due to the nonlinearity of the Einstein field equation [30-32]. Failure to account for 

the difference in overall dynamics between a perfect homogeneous Universe and an 

averaging one, or an underestimation of the selective light propagation effect in a 

clumpy Universe [33], could lead to incorrect conclusions of the nature of our 

Universe.  

Besides the averaging approach, several cosmologists have introduced 

different cosmological models with a local void to interpret the observational data 

without invoking the dark energy or the cosmological constant component [33-40] 

(for a more complete review, see [41]). Due to the quasi-isotropy observed in the 

CMB radiation, these authors abandoned the Copernican Principle and assumed that 

we live near the centre of a spherical local void. For mathematical simplicity, they 

described the local void using the popular spherically symmetric LTB metric [42-

44], which is an exact solution of the Einstein field equation. In these models, the 

inhomogeneity in energy density or structure distribution can affect light 

propagation, and the luminosity distance – redshift relation changes accordingly; by 

assuming an appropriate energy density profile, one can fit the Sne Ia data without 

dark energy. As of today, observational data is insufficient to distinguish different 

models, but can provide constraints on model parameters such as the size of the 

local void, matter density, and Hubble expansion rate. For example, Clifton et al. 

[45] found a local void of radius 1.3 Gpc, Garcia-Bellido and Haugboelle [38] found 

a local void of approximate size 2.5 Gpc, and Alexander et al. [34] found a minimal 

void of size about 350 Mpc, etc. Future observations may provide firmer constraints 
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on the size of the local void and rule out some of these models. 

Grounded on the local void revelation, in the late 1990s, Tomita’s [17, 36, 

46] simple model proposes a spherical local void on scales of about 200 Mpc (The 

details of the model will be discussed in Chapter 2). In this framework, the author 

showed that the HZS [1, 2] and the SCP data [3] could be fit without a cosmological 

constant. Since then, many years have passed, and more Sne Ia data have now been 

obtained with higher accuracy. Also, in his original analysis [35], Tomita did not 

take into account the light propagation effect in a clumpy Universe. In this study, we 

will reinvestigate Tomita’s model using the latest Sne Ia data, and we will also 

consider the general clumpy Universe in which the clumpiness (smoothness) 

parameter [47, 48] is different from unity. 

This thesis is organized as followed: in Chapter 2, we introduce the model, 

the distance formula and the Sne Ia data fitting method. In Chapter 3, we perform 

the data fitting and show the results, including the confidence contours and the best-

fit parameters, for both smooth and clumpy Universe. For comparison, we also 

consider a ΛCDM model with clumpiness effects in Chapter 3. In Chapter 4, we 

discuss the results and suggest possible future work. Chapter 5 is the thesis’ 

conclusion. Finally, in the Appendix, we attach all the Matlab code used in this 

study. All programs are totally built by us from the very beginning. 
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CHAPTER 2 

MODEL WITH A LOCAL VOID, THE LUMINOSITY DISTANCE-

REDSHIFT RELATION, AND THE SNE IA DATA FITTING  

 

2.1 Physical foundation of Tomita’s model 

In Chapter 1, it has been mentioned that we may live in a local void that is 

surrounded by huge nonlinear structures on scales of hundreds Mpc. Moreover, 

recent evidence shows that there exists anisotropy in the local Hubble flow [49], 

which would be a natural consequence if the local void is not completely spherical 

or we are not living right at the center. In addition, the value of local Hubble rate 

[50, 51] appears to be larger than the global value derived from the gravitational 

lensing and the Sunyaev – Zeldovich effect [52-55]. On this basis, Tomita [17, 36, 

46] proposed a simple, spherically symmetric inhomogeneous cosmological model 

with a local void. This model consists of two homogeneous regions, inner and outer, 

separated by a singular spherical shell with zero thickness. The local void’s matter 

density ( )m_inΩ  is smaller than the outer region’s matter density ( )m_outΩ , and the 

mass of the shell is also assumed to compensate for the inner region’s mass 

deficiency. The inner region can be easily corresponded to the local void and the 

shell corresponded to the filaments. 

Before the epoch of structure formation, the Universe could be considered 

homogeneous, so the expansion rate (Hubble rate) was identical everywhere in the 
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Universe. Later, due to gravitational instability, under- and over-dense regions such 

as galaxy clusters, filaments, and voids gradually appear. The over-density region 

has stronger gravitational attraction and, accordingly, it causes a larger deceleration 

of the expansion rate than the under-density region does. Consequently, the 

expansion rate in the over-density region is smaller than that in the under-density 

region. In Tomita’s model with a local void we have m_in m_outΩ <Ω , therefore, it is 

supposed that the inner Hubble rate ( )inH  is always larger than the outer one ( )outH . 

This assumption is in accord with the observations mentioned before. 

 

 

Figure 2.1  Tomita’s model: VI and VII are the inner and outer region respectively, C 
is the centre of the void, O is the observer, S is the light source, and z is the redshift. 
 

There seem to be some ambiguities in the assumptions made in Tomita’s 

model. First, the shell is assumed to be thickness-free. In fact, the shell does have 

thickness, but its width is very small comparing to the radius of local void, hence we 
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can ignore the shell thickness. We can similarly ignore the distance CO between the 

observer and the void’s centre (see Figure 2.1) because a large value of CO will 

cause a great CMB anisotropy which has not been observed. Therefore, for the rest 

of this thesis, the observer is assumed to be located at the centre. Beyond the local 

void, there exist many other under- and over-dense regions. Since most 

cosmological measurements are based on light propagation to us and are most 

strongly affected by the local void, for simplicity the outer region is assumed to be 

homogeneous to facilitate our computation.  

During the late 90’s of the last century, the accelerating expansion of the 

universe was discovered by two high redshift supernovae collaborations, the HZS 

[1, 2] and SCP [3]. The origin of this accelerating expansion has usually been 

ascribed to the influence of a nonzero cosmological constant in the ΛCDM 

framework. In this model, the accelerating expansion is a “real” phenomenon which 

is driven by the repulsive effect of the cosmological constant. Because the 

cosmological constant encounters aforementioned issues and its existence is, so far, 

not clearly evident, it may be necessary to search for different explanations in other 

ways, such as in the inhomogeneous framework.  

To explain accelerating expansion in the inhomogeneous framework, the key 

concept is that when we observe distant objects, we not only look far in space but 

also look back in time. Mathematically, the variation of the Hubble rate with respect 

to redshift is the combination of a time-varying term and a space-varying term:  

 
0 0 0 0

0

1

t t t t t t t t

dH r H t H H H
dz z r z t H r t= = = =

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ⎟⎜= + ≈ − ⎟⎜ ⎟⎜⎝ ⎠∂ ∂ ∂ ∂ ∂ ∂
 (2.1) 

In the last step, we have used the approximation for small distances: 
0

1r
z H

∂
=

∂
, but 
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the conclusion below is valid even for larger value of r . In the homogeneous 

models, the Hubble rate depends only on the time variable t , so an increase in H  at 

small z  corresponds to a positive value of H
t

∂
∂

 or an acceleration in the Universe’s 

expansion. However, in the inhomogeneous framework the Hubble rate depends not 

only on the time t  but also on the distance r , so a negative value of dH
dz

 could be 

explained by a variation toward high expansion rate at the distance near the observer 

( 0H
r

∂
<

∂
) without imperative invocation of 0H

t
∂

>
∂

, or accelerating expansion, as 

one in the homogeneous framework. In particular, for Tomita’s model, we can 

explain accelerating expansion as an apparent phenomenon: both regions in the 

model decelerate, but because the local void expands faster than the outer region, we 

perceive the Universe as if its expansion is accelerating. 

In Tomita’s model, to a good approximation, the metrics of spacetime in the 

two regions are presumed to be the homogeneous and isotropic FLRW metrics. The 

line-element is 

 

( ) ( )

( ) ( ) ( )
( )

2

2
222 2 2

2
1

j j j

j
j j j

j

ds g dx dx

dr
c dt a t r d

k r

μ ν

μν=

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎡ ⎤=− + + Ω⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪−⎪ ⎪⎪ ⎪⎩ ⎭

 (2.2) 

where  

 ,j I II=  corresponds to the inner and outer region; 

 gμν  is the metric of spacetime; 

 ( ), ,c a t r  are the light velocity, scale factor and radial comoving 
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coordinate in FLRW cosmology, respectively; 

 2 2 2 2sind d dθ θ ϕΩ = +  is the metric on a unit 2-sphere; 

 ( )1,0,1k = −  is the curvature parameter corresponding to open, flat 

and close FLRW Universe. 

2.2 Distances in Tomita’s model 

 In Sne Ia observations, the quantities we measure from supernovae are 

distances and redshifts. In this study, our aim is to test the Tomita’s model with the 

latest Sne Ia dataset and therefore, in this section, we will find the distance-redshift 

relation of this model. First we will derive the differential equation for the angular 

diameter distance, we then specify the initial conditions and solve the differential 

equation to find the angular diameter distance-redshift relation. 

 By definition, angular diameter distance ad  is proportional to the square root 

of the cross-sectional area A  of a bundle of light geodesics, whose evolution is 

described by the Sachs optical scalar equations. The first of the Sachs optical scalar 

equations is  [56]:  

 2 2 21 0
2

R k kμ ν
μν

θ
θ σ ω

λ
∂

+ + − + =
∂

 (2.3) 

In the equation above, , ,θ σ ω  are the expansion scalar, the shear, and the rotation of 

the bundle of light geodesics, respectively. λ  is the affine parameter along the light 

geodesics. Rμν is the Ricci tensor and xk
μ

μ

λ
∂

=
∂

 is the wave-vector of the light ray 

(the tangent vector of the light geodesics). In this work, unless noted explicitly, the 

Latin-based indexes , , ...i j k  are of the range ( )1, 2,3  and Greek-based indexes 
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, , , ...α β μ ν  are of the range ( )0,1, 2,3 . The expansion scalar θ  is a measure of the 

fractional rate of change of A  (see Chapter 2 of [57]), and it follows that  

 
( )1 2 2 a

a

A dA
A dA

θ
λ λ λ

∂ ∂∂
= = =

∂ ∂ ∂
 (2.4) 

For a bundle of light geodesics, the shear term represents the tendency of an 

initial circular cross section to be distorted into ellipse shape, and the rotation term 

represents its tendency to rotate. In Tomita’s model, due to the spherically 

symmetric metric and center located observer, the light ray travels along the path of 

constant inclination and azimuth angle in spherical coordinate system. Therefore, the 

shear and rotation term: 0σ ω= = . Eq. (2.3) then becomes: 

 21 0
2

R k kμ ν
μν

θ
θ

λ
∂

+ + =
∂

 (2.5) 

Substituting Eq. (2.4) into Eq. (2.5) and simplifying the equation, we get:  

 
2

2

1
2

a
a

d R k k dμ ν
μνλ

∂
=−

∂
 (2.6) 

Notice that the light path is null geodesic. We now have:  

 0g k kμ ν
μν =  (2.7) 

Substituting the Einstein field equation 4

8 1
2

GR T Tg g
cμν μν μν μν

π ⎛ ⎞⎟⎜= − +Λ⎟⎜ ⎟⎜⎝ ⎠
 into the 

right hand side of Eq. (2.6) and using the null condition in Eq. (2.7), we obtain:  

 
4

4 4

8 1
2

8 1 8
2

GR k k T Tg g k k
c

G GT k k Tg k k g k k T k k
c c

μ ν μ ν
μν μν μν μν

μ ν μ ν μ ν μ ν
μν μν μν μν

π

π π

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥= − +Λ⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞⎟⎜= − +Λ =⎟⎜ ⎟⎜⎝ ⎠

 (2.8) 

 For late time Universe, the radiation energy is very small comparing to other 

energy components. Therefore, we assume that the Universe only contains dark 
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energy in the form of a cosmological constant and irrotational dust behaving like an 

ideal fluid. The stress-energy tensor is 

 2

pT u u pg
cμν μ ν μνρ

⎛ ⎞⎟⎜= + +⎟⎜ ⎟⎜⎝ ⎠
 (2.9) 

where , ,u p ρ  are respectively the four-velocity, pressure and density of the fluid.  

In comoving coordinates we have  

 
2

0 0

;

; 0; ;

;

0;

m

m m

i

p p p p p c

u g u c

u

α
α

ρ ρ ρ

ρ

Λ

Λ Λ Λ

= +

= + = =−

= =−

=

 (2.10) 

 Also for late time, the Universe has evolved under gravitational instability 

from a homogeneous state into a clumpy state where matter accreted into different 

structures (such as galaxies, clusters, etc.) and the space between these matter 

clumps becomes a void of with low matter density. Light traveling through emptier 

space is more likely to be detect by observations; physically, the emptier a region, 

the more easily the photons travel through and arrive at the observer without being 

absorbed or scattered. Moreover, light from objects which lie behind galaxies is 

often contaminated, and thus data analyses usually remove these objects because of 

the large resulting uncertainty. This creates a bias in Sne Ia observations in favor of 

light which has travelled through emptier regions. Due to these reasons, we suppose 

that light reaching us mostly propagates through intergalactic medium. Therefore, all 

terms in Eq. (2.3) and Eq. (2.10) must be determined on light geodesics in the 

intergalactic medium. Assuming that the intergalactic medium has a mean matter 

density a fraction α  ( )0 1α≤ ≤  of the Universe’s mean matter density 
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 3
_ 0m mean Universe m aρ αρ αρ= =  (2.11) 

where 0mρ  is the mean matter density of the whole Universe at present, ( )a a t≡  is 

the scale factor, α  is the clumpiness parameter, Eq. (2.8) becomes 

 

4 4 2

2

4 2

0 00
4 2 3

8 8

8

88

m

m
m

G G pR k k T k k u u pg k k
c c c

cG u u k k
c c

GG u u k k k k
c c a

μ ν μ ν μ ν
μν μν μ ν μν

μ ν
μ ν

μ ν
μ ν

π π
ρ

ρπ
ρ ρ

π αρπ
ρ

Λ
Λ

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥= = + +⎟⎜ ⎟⎜⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜⎝ ⎠

= =

 (2.12) 

 Now, to find the time-component of the light wave-vector 0k , we use the 

geodesic equation (Eq. (9.47) in [58]) 

 1
2

gd dx dx dxg
d d x d d

β β γ
βγ

αβ αλ λ λ λ

⎛ ⎞ ∂⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠
 (2.13) 

 Where 
( )

( ) ( ) ( )
2

2 22 2 2
21, , , sin

1αβ θ
⎛ ⎞⎟⎜ ⎟⎜= − ⎟⎜ ⎟⎜ − ⎟⎜⎝ ⎠

a t
g diag a t r a t r

kr
 as in the line 

element (2.2). 

We only want to find 0k  so we substitute the index 0α=  into Eq. (2.13):  

 
( )

0 0

0

00

0

0

0

1
2

1
2

1
2

1
2

gd dx dx dxg
d d x d d

d dxg g k k
d d

d ctdk g k k
c dt d

c g k kdk
dt k

β β γ
βγ

β

α α
αα

α α
αα

α α
αα

λ λ λ λ

λ λ

λ

⎛ ⎞ ∂⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠

⎛ ⎞⎟⎜ ⎟⇔ =⎜ ⎟⎜ ⎟⎜⎝ ⎠

⇔ − =

⇔ − =

�

�

�

 (2.14) 

From the form of gαβ  above, it follows that 0, 2 ii
ag diag g
aαβ

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠
�� , substituting this 
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expression into the right hand side of Eq. (2.14), the equation becomes:  

 
0

0

i i

ii
dk k k acg
dt k a

=−
�

 (2.15) 

From Eq. (2.7) we derive the relation:  

 0 0
00

i i
iig k k g k k=−  (2.16) 

Therefore, Eq. (2.15) becomes 

 
0

0dk ack
dt a

=−
�

 (2.17) 

Separate the variables and integrate both sides of Eq. (2.17), we find  

 

0
0

0 , .

dx Ck
d a

x ct C const

λ
≡ =

≡ ≡

 (2.18) 

Since λ  is an affine parameter, we could multiply λ  by a constant factor without 

affecting the physical results, hence the constant C  could be chosen arbitrarily. If 

we choose 
0

cC
H

=  (Hubble radius), Eq. (2.18) then becomes:  

 0

0

ck
H a

=  (2.19) 

Substitute Eq. (2.19) into Eq. (2.12), we have:  

 
( )

( )

2

0
2 3

0

0
52

0

5
0

8

3
3 8

3 1

m

m

m

G cR k k
c a H a

aH G

z

μ ν
μν

π αρ

ρ α
π

α

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠

=

= Ω +

 (2.20) 

Where 0mΩ  is the present matter density in the unit of the critical density, in the last 
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step, we have also used the relation 11 z
a

+ = . Substituting Eq. (2.20) into Eq. (2.6), 

we now have  

 ( )
2

5
02

3 1
2

a
m a

d z dα
λ

∂
=− Ω +

∂
 (2.21) 

 To obtain the differential equation of the angular distance ad  with respect to 

the redshift z , we must find the relation between the affine parameter λ  and the 

redshift z . From (2.19), we have:  

 
( )0

1dt
d H a tλ

=  (2.22) 

Differentiating both sides of the equation 
( )
11 z

a t
+ = , we have  

 
( )
( )2

a t
dz dt

a t
=−

�
 (2.23) 

Combining (2.22) and (2.23), we have  

 

( )
( ) ( )

( )

2
0

2
0

1a t
dz d

a t H a t

H d
H a t

λ

λ

=−

=−

�

 (2.24) 

In FLRW cosmology, 

 0 0 0
0 03 2

1m mH H
a a

Λ
Λ

Ω −Ω −Ω
= +Ω +  (2.25) 

Hence, Eq. (2.24) becomes  

 

( )
( )

( ) ( ) ( )( )

3 2
0 0 0 0

2

2 3 2
0 0 0 0

1

1 1 1 1

m m

m m

a adz
d a t

z z z

λ
Λ Λ

Λ Λ

Ω +Ω + −Ω −Ω
=−

=− + Ω + +Ω + −Ω −Ω +

 (2.26) 



  16 

Therefore 

( ) ( )

( ) ( ) ( )( )
( )2 3 2

0 0 0 01 1 1 1

a aa

a
m m

dd dd zd dz
d dz d

dd z
z z z

dz

λ
λ λ λ

Λ Λ

∂
= =

∂

=− + Ω + +Ω + −Ω −Ω +

 

Differentiate equation above with respect to λ , we have 

 

( )

( )

( ) ( ) ( )

22

2 2

2
4

2

3 2
0 0

1

11 2 1 1 3 2 2
2

aa a

a

a
m

d dd ddd dz
d dz dz d

d dz F
dz

ddz F z z
dz

λ
λ λ λ

Λ

⎛ ⎞∂ ⎟⎜= = ⎟⎜ ⎟⎜⎝ ⎠∂

= +

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤+ + + + Ω + + − Ω⎨ ⎬⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭

 (2.27) 

where       

( )( ) ( )2
0 01 1 2mF z z z zΛ≡ +Ω + −Ω +          (2.28) 

Substituting Eq. (2.27) into Eq. (2.21), simplifying the resulting equation, and 

adding the index ,j I II=  to specify the inner and outer region, we obtain the 

differential equation for angular diameter distance in Tomita’s cosmology, which 

also take into account the clumpiness along path:  

 

( )
( )

( ) ( ) ( )

( )

2
1

0 02

1
0

2 1 1 1 3 2 2
1 2

3 1 0
2

j j
a aj j j j

mj jj

j j j
m a

d d d d
z z F

z dzd z

z F dα

−
Λ

−

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤+ + + Ω + + − Ω⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪+⎪ ⎪⎩ ⎭

+ Ω + =

 (2.29) 

 Eq. (2.29) is a second order differential equation and solving this equation 

analytically is quite difficult, so we will solve it numerically. In the following, we 

determine the necessary initial conditions for solving this differential equation. 
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 First, we have the junction conditions at the shell:  

 1 1 1
I IIz z z= ≡  (2.30) 

 
1 1

I II

I II
a az z z z

d d
= =

=  (2.31) 

To find the angular diameter distance
 
in the inner region I, we solve Eq. (2.28) using 

the initial conditions:  

 
0

00

0I

I

I
a z

I
a
I I

z

d

dd c
dz H

=

=

⎧⎪ =⎪⎪⎪⎪⎨⎪⎪ =⎪⎪⎪⎩

 (2.32) 

Finding the angular diameter distance in the outer region II is slightly more 

complicated. First, we solve Eq. (2.29) using the conditions:  

 
1 1

00

II I

II

II I
a az z z z

II
a
II II

z

d d

dd c
dz H

= =

=

⎧⎪ =⎪⎪⎪⎪⎪⎨⎪⎪⎪ =⎪⎪⎪⎩

 (2.33) 

and find the value 
1

II

II
a
II

z z

dd
dz

=

 (2.34). Then by using (2.34) and (2.31) as initial 

conditions, we solve Eq. (2.28) for ( )II II
ad z  in the range ( )1,z +∞ . The final angular 

diameter distance is defined as: 

 ( )
( )

( )

1

1

  for 

 for 

I
a

a II
a

d z z z
d z

d z z z

⎧⎪ ≤⎪⎪=⎨⎪ >⎪⎪⎩
 (2.35) 

The luminosity distance is readily calculated by the relation:  

 ( ) ( ) ( )21L ad z z d z= +  (2.36) 
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2.3  Cosmological constraints using Sne Ia samples 

 In observations, astronomers prefer using distance modulus μ  to express the 

distance. This quantity is related to the luminosity distance by the formula  

 5log 25
Mpc

Ld
μ

⎛ ⎞⎟⎜= ⎟+⎜ ⎟⎜ ⎟⎜⎝ ⎠
 (2.37) 

 Alternatively, the distance modulus μ  is determined from two empirically 

defined quantities, absolute magnitude M  and apparent magnitude m  of a luminous 

object: 

 m Mμ= −  (2.38) 

The apparent magnitude m  is commonly measured in the B-band spectrum. 

 From Eq. (2.37) we could theoretically derive values of distance modulus 

from luminosity distance calculated in Eq. (2.36). Besides, from Eq. (2.38) we also 

have observationally determined values. Therefore, we can fit the distance modulus 

to the Sne Ia sample, find the goodness-of-fit and constrain the model parameters 

using Bayesian analysis: 

 
( )( )2

obs, the2
2

1

N
i i

i i

zμ μ
χ

σ=

−
=∑  (2.39) 

where  

 ( )obs, the,i izμ μ  are the observed and theoretically derived distance modulus, 

 N  is the number of Sne Ia in the sample, 

 iσ  is the measurement error of the distance modulus at redshift iz  

The corresponding probability distribution function (PDF) is proportional to the 

exponent of 2 2χ− :  
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 ( ) 21pars exp
2

p χ
⎛ ⎞⎟⎜∝ − ⎟⎜ ⎟⎜⎝ ⎠

 (2.40) 

where pars are cosmological parameters of the model. 

 In Tomita’s model there are 7 parameters: Hubble constant and matter 

density in the inner and outer region, in 0 out 0 in 0 out 0, , , ,I II I II
m mH H H H≡ ≡ Ω ≡Ω Ω ≡Ω  

outer dark energy density in the form of cosmological constant, 0
II

λ ΛΩ ≡Ω (Because 

( ) ( )2 2

0 0 0 03 3I I II IIH HΛ ΛΛ= Ω = Ω , the inner dark energy density could be directly 

calculated from the outer one by the formula: 
2 2

0 out
0 0

0 in

II
I II

I

H H
H H λΛ Λ

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟Ω = Ω ≡ Ω⎜ ⎜⎟ ⎟⎜ ⎜ ⎟⎟ ⎜⎜ ⎝ ⎠⎝ ⎠
), the 

redshift of the local void boundary, 1z , and the clumpiness parameter, α . In order to 

compare Tomita’s model with the observational data from supernovae samples, we 

must find the magnitude – redshift relation of the Tomita’s model. This requires us 

to numerically solve the second order differential equation (2.29) repeatedly, for 

different values of the parameter set ( )in out in out, , , , , 1,H H zλ αΩ Ω Ω  over the physical 

range of the parameter space. It is indeed too complicated, if not to say impossible, 

for contemporary computational power to solve the differential equation numerous 

times if we keep fitting 7 parameters simultaneously. Therefore, we will follow [35, 

36] and consider some specific values of out inR H H≡ , 1z , inΩ , and α , hence 

reduce the number of free parameters to three. We then compute the probability 

( )out ,p λΩ Ω  by marginalizing the likelihood ( )out in, ,p HλΩ Ω  over the inner Hubble 

constant inH  (the “nuisance” parameter), 

 ( ) ( )out out in in, , ,p p H dHλ λΩ Ω = Ω Ω∫  (2.41) 
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where  

 ( )
( )

( )

2
out in

out in
2

out in out in

1exp , ,
2, ,

1exp , ,
2

H
p H

H d d dH

λ

λ

λ λ

χ

χ

⎛ ⎞⎟⎜− Ω Ω ⎟⎜ ⎟⎜⎝ ⎠
Ω Ω =

⎛ ⎞⎟⎜− Ω Ω Ω Ω⎟⎜ ⎟⎜⎝ ⎠∫
 (2.42) 

or equivalently,  

 ( ) ( )2 2
out out in in

1, 2 ln exp , ,
2

H dHλ λχ χ
⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜Ω Ω =− − Ω Ω ⎟⎟⎜ ⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠⎝ ⎠∫  (2.43) 

 We use ( )2
out , λχ Ω Ω  to plot the confidence contours. The pair ( )out , λΩ Ω  

corresponding to 2
minχ  is the best-fit value of the model. 

 There have been many Sne Ia compilations, with the SCP Union compilation 

(Table 11 in [8]) being the most updated by far. Contrasting many previous 

compilations which combined various datasets of different lightcurve fitting 

functions and analysis procedures, SCP Union compilation uses only one method for 

all the Sne Ia samples it includes. Therefore, it is also the most self-consistent 

dataset up to now. In this work, our data fitting mainly uses the SCP Union 

compilation. Following Kowalski et al. [8], throughout this work we employ only 

307 Sne Ia which pass the 3σ  outlier cut. The reason of this outlier cut selection is 

explained in section 4.3 of Kowalski et al. [8]. 
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CHAPTER 3 

DATA FITTING AND THE RESULTS 

 

 In this chapter, we will show that the Tomita’s model can fit the SCP Union 

compilation even without the cosmological constant component. Besides, it is found 

that standard parameters used in Tomita’s paper [35] are inconsistent with the new 

dataset, and new standard parameters are found accordingly. We will also 

investigate the variation of the best-fit values and confidence contours with the 

model parameters, in both smooth and clumpy Universe. 

3.1  Standard parameters 

 As mentioned in previous section, we will use some specific values of 

out inR H H≡ , 1z , inΩ , and α . In Table 1, we list some matter density profiles 

which will be used in this thesis. For profiles A, it satisfies the condition that the 

outer matter density is always greater than the inner matter density. In addition, it is 

also consistent with the local matter density obtained from other measurements: 

m_local 0.3Ω ≈  (in critical density unit). Tomita, in his paper [35], has used profile A 

as standard for data fitting. Apart from profile A, profile B has the same matter 

density 
( )2

0
0

3
8

j
j

H
G

ρ
π

=Ω  for both inner and outer region and Profile C, D have 

different constant values of inner matter density. 
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Profile inΩ  

A in out out in out2  if  0.6;  0.3  if  0.6Ω =Ω Ω < Ω = Ω ≥  
B 2

in out RΩ =Ω  
C in out0.3Ω = ∀ Ω  
D in out0.2Ω = ∀ Ω  

 

Table 1.  Four matter density profiles 
 

 First, we consider matter density profile A and a smooth Universe ( 1α= ). 

Applying the data-fitting method described in Section 2.3 and using Matlab (the 

code is shown in the Appendix I), we vary parameter R  and 1z  and find the values 

0.69R =  and 1 0.23z =  give a good fit to the new SCP Union dataset, with zero 

cosmological constant density and flat Einstein – de Sitter cosmology outside the 

local void. This result resolves the puzzle of cosmological constant and it accords 

closely with the flat Universe from CMB observations. In the rest of this chapter, we 

will use these parameter values as our standard parameters.  

 
Figure 3.1  68.3% and 95.4% confidence contours in out λΩ −Ω  plane, for 0.69R = , 

1 0.23z = , matter density profile A and 1α=  
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 In Figure 3.1, the contours of 68.3% and 95.4% confidence levels (CLs) are 

plotted. As expected, the contours centre at ( ) ( )out , 1,0λΩ Ω = . The minimum 2χ  is 

316.04 with 305 degrees of freedom. Accordingly, the goodness-of-fit is about 32%, 

which is quite a good fit. The best-fit values corresponding to the minimum 

( )2
out in, , Hλχ Ω Ω  are ( ) ( )0.18 0.28 0.7

out in 0.19 0.29 0.7, , 1.02 ,0.04 ,68.7Hλ
+ + +
− − −Ω Ω =  where the errors 

include only the statistical uncertainties. As can be seen, our derived best-fit local 

Hubble parameter is in good agreement with the observational measurement from 

the Hubble Space Telescope Project [51]: 8
872 km s.MpcH +

−= . 

To visualize the fitting, in Figure 3.2 we plot the residual Hubble diagram for 

our best-fit model and the binned observational data (SCP Union compilation), 

assuming H0 = 68.5 km/s/Mpc. Here we use uniform and unbiased binning with a 

fixed value of 10n zΔ = , where n  is the number of Sne Ia in a redshift bin and zΔ  

is the bin width. For the Sne Ia in each bin, we calculate the weighted mean of their 

redshifts 
i

z , residual distance modulus 
i

μΔ  and standard deviation 
i

σ  as 

follows:  

 
( )

( ) ( )

2
Milne,

1 1

22
1

1

1, ,
11

i i

i i

N N

j j j j
j j

Ni i i N
i

jjj
j

z
z

N

μ μ σ
μ σ

σσ

= =

=
=

−
= Δ = =
∑ ∑

∑∑
 (2.44) 

Where iN  is the number of Sne Ia in ith bin; Milne,, ,j j jμ σ μ  are respectively the 

observational distance modulus, standard deviation and theoretical distance modulus 

in empty Milne Universe at redshift jz . 

 After binning, we have seven bins for the SCP Union compilation with the 

means in each bin listed in Table 2. We also plot the ΛCDM model in the same 
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figure for comparison. Matlab programs for this process is provided in the 

Appendix. 

 
Bin initial finalz z−  z  μΔ  σ  
1 0 – 0.174 0.044 – 0.0188 0.0175 
2 0.174 – 0.388 0.317    0.0672 0.0267 
3 0.388 – 0.531 0.463    0.1182 0.0269 
4 0.531 – 0.702 0.610    0.0868 0.0282 
5 0.702 – 0.927 0.809    0.0712 0.0382 
6 0.927 – 1.300 1.035 – 0.0374 0.0579 
7 1.300 – 1.551 1.391 – 0.1911 0.1472 

 
Table 2.  Redshift range, weighted mean of redshift, distance modulus and standard 
deviation of each bin of SCP Union compilation.  
 

 
 
Figure 3.2  The zμΔ −  diagram for Tomita’s model with the standard parameters 
and the ΛCDM model, compared to the binned observational data. The dotted 
horizontal line corresponds to the empty Milne Universe. 

 

In Tomita’s earlier analyses [35], the older datasets were used and the 

standard parameters were ( ) ( )1, 0.80,0.08R z =  for matter density profile A. For 

comparison, in Figure 3.3 we plot the new confidence contours for these former 
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standard parameters. From the figure we see that the point ( ) ( )out , 1,0λΩ Ω =  lies far 

beyond the 2σ  confidence  region. Thus, with the former standard parameters, a 

model with zero cosmological constant and flat cosmology in the outer region is 

ruled out at 2-sigma level. The local void size and Hubble rate’s disparity associated 

with the former standard parameters are simply too small. 

 
Figure 3.3  68.3% and 95.4% confidence contours in out λΩ −Ω  plane, for 0.80R = , 

1 0.08z = , matter density profile A and 1α= . 
 

 To see how tight the parameters constraint has changed since the first 

analyses by Tomita up to present by ours, in Figure 3.4, we plot the 95.4% 

confidence level contours for three different datasets: the Riess 98 sample [1, 2] 

which is used by Tomita in his earlier analyses [35] with 50 Sne Ia, the Gold sample 

[6] with 182 Sne Ia, and the SCP Union compilation [8] with 307 Sne Ia. The 

standard parameters in Figure 3.1 are used. Our calculations show that 95.4% CL 

confidence contour’s area of the SCP Union compilation is about 60% that of the 
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Gold sample, which is about 11.5 times less than that of the Riess 98 sample. As 

expected, when the number of Sne Ia increases from one dataset to another, the 

constraint tightens progressively. 

 

 
Figure 3.4  95.4% confidence level contours for Riess 98 sample, Gold sample 
(2007), and SCP Union compilation (2008), for 0.69R = , 1 0.23z = , matter density 
profile A, and 1α=  
 

3.2  Variation of confidence contours with model parameters 

In this section, we follow Tomita’s earlier analyses [35] and examine the 

variation of the confidence contours as the model parameters vary from their 

standard values. We vary the parameters as follows: Hubble parameters ratio 

( )0.65,0.69,0.73R = , boundary redshift ( )1 0.21,0.23,0.25z =  and inner matter 

density profile = ( )A, B, C, D  (See Table 1 for detail). The variation in confidence 

contours are examined and explained, and generally, our conclusions are similar to 

Tomita’s. 
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In Figure 3.5, we plot the 68.3% and 95.4% confidence contours for 

0.65R = , 0.69 and 0.73, assuming 1 0.23z = , 1α=  and matter density profile A. 

As seen from the figure, when R  increases the confidence contours move in the 

direction of decreasing outΩ  and increasing λΩ . We perceive this variation because 

as the Hubble contrast R  approaches 1, the level of inhomogeneity of the model 

falls off, and the confidence contours approach that of the homogeneous 

Concordance model (Figure 11 in Ref. [8]). 

 

 
Figure 3.5  68.3% and 95.4% CL contours in out λΩ −Ω  plane, for 

( )0.65,0.69,0.73R = , 1 0.23z = , matter density profile A and 1α=  
 

Next, we vary 1z  about the standard value 1 0.23z =  and explore the 

variation of the confidence contours with 1z . We obtain Figure 3.6 below (refer to 

the Appendix for the Matlab programming codes). We find that the confidence 

contours have a tendency to move toward larger best-fit outΩ  and λΩ  as 1z  
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increases. Increasing 1z  in effect increases the size of the local void, and 

consequently the local void is less dense than the outer region. Apparently, when the 

size of the low-density local region increases, the total density of the outer region 

has to increase accordingly for the Hubble diagram to maintain a good fit to the Sne 

Ia data. 

 
Figure 3.6  Confidence contours at 68.3% and 95.4% CL in out λΩ −Ω  plane for 

0.69R = , ( )1 0.21,0.23,0.25z = , matter density profile A and 1α=  

 To understand the variation of the contours in Figure 3.6, we plot the 

residual Hubble diagrams for various combinations of 1z , outΩ  and λΩ  and show 

them in Figure 3.7. Note that most of the Sne Ia (over 95%) of the Union 

compilation lie within the redshift range (0, 1.3), therefore we shall concentrate on 

the changes in this part of the residual Hubble diagram. We assume that all the 

observational data points are on the curve which corresponds to the standard 

parameter case. As can be seen from Figure 3.7, when 1z  increases, the residual 
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Hubble diagram shifts downward; when outΩ  and λΩ  increase, the residual Hubble 

diagram shifts upward, which almost compensates the downward shift due to the 

increase in 1z . Accordingly, in Figure 3.6, when 1z  increases, the confidence 

contours have to move toward higher values of outΩ  and λΩ  to get a good fit. Matlab 

program for generating Figure 3.7 is shown in the Appendix IV. 

 
 

Figure 3.7  The zμΔ −  diagram of Tomita’s model with four different sets of 
parameters. The horizontal line corresponds to the empty Milne Universe. 
 
 

R  1z  outΩ  λΩ  2
minχ  

0.65 0.23 0.21
0.221.17+

−  0.31
0.330.19+

−−  317.51 
0.69 0.21 0.19

0.210.95+
−  0.28

0.310.19+
−−  316.54 

0.69 0.23 0.18
0.191.02+

−  0.28
0.290.04+

−  316.04 
0.69 0.25 0.17

0.181.09+
−  0.26

0.270.26+
−  315.42 

0.73 0.23 0.16
0.170.90+

−  0.24
0.260.24+

−  314.66 
 

Table 3.  Best-fit outΩ  and λΩ  with 1σ  statistical errors,  and 2
minχ  for different 

values of R  and 1z . 

 In Table 3, we list the best-fit outΩ , λΩ  and minimum 2χ  for the confidence 

contours in Figures 3.5 and 3.6. The 2χ  per degree of freedom (dof = 305) only 
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varies a little from one model to another. 

Up to now, we only use profile A for data fitting. This fact could lead us to 

incorrect conclusions if fitting results are sensitive to this particular choice. 

Therefore, for completeness, we also examine the best-fit values and confidence 

contours for various other matter density profiles. Figure 3.8 below shows the 

contours of four matter density profiles A, B, C, D (see Table 1) and Table 4 

summarizes their best-fit values. Interestingly, profile C (with constant in 0.3Ω = ) 

and A have the same best-fit values and their contours almost overlap. Profile B 

(with different inner and outer Hubble constant but homogeneous matter density) 

and profile D (with constant in 0.2Ω = ) give best-fit values and confidence contours 

only slightly different from that of profile A. Apparently, the confidence contours 

only vary little and therefore, our results are not sensitive to a specific choice of the 

matter density profile. 

 
Figure 3.8  Confidence contours at 95.4% CL in out λΩ −Ω  plane for 4 matter 
density profiles (A, B, C, D) assuming 0.69R = , 1 0.23z = , and 1α=  
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Profile outΩ  λΩ  2
minχ  

A 0.18
0.191.02+

−  0.28
0.290.04+

−  316.04 
B 0.20

0.221.01+
−  0.31

0.350.06+
−  317.28 

C 0.18
0.191.02+

−  0.28
0.290.04+

−  316.04 
D 0.18

0.201.00+
−  0.27

0.300.00+
−  315.49 

 
Table 4.  Best-fit outΩ  and λΩ  with 1σ  statistical errors, and 2

minχ  for different 
matter density profiles 
 

3.3  The ΛCDM model with clumpiness effect 

 In previous chapter, we argued that our Universe is in fact clumpy and the 

light travelling to us mostly propagates through intergalactic medium of a mean 

matter density smaller than mean value of the whole Universe. The ratio between 

these two mean matter densities is called clumpiness parameter and denoted by 

Greek character α . This quantity varies between two extremes: 0α=  corresponds 

to the totally empty intergalactic medium and 1α=  corresponds to a smooth 

Universe. Apart from that, we know the ΛCDM model can not give a good fitting 

without a non-zero cosmological constant density. So a question is put forward: 

whether a ΛCDM model taking clumpiness effect into account could explain Sne Ia 

data without a troublesome cosmological constant or not? In this section, we will 

find the answer to this issue by performing an examination on the variation of 

confidence contours of the clumpy ΛCDM model with four values of clumpiness 

parameter ( )0.25,0.50,0.75,1.00α= . 

 Equation (2.29) for calculating angular diameter distance is generally 

established for both clumpy and smooth Universe with FLRW metric, thus it is 

correct not only for Tomita’s model but also even for ΛCDM model. Therefore, 

distance modulus – redshift relation in ΛCDM model with clumpiness could be 
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derived from Eq. (2.29) in which the index j  indicating different regions is 

removed and the initial conditions become 
0

0a z
d

=
=  and 

0 0

a

z

dd c
dz H=

= . We use 

the fitting method in section 2.3 to plot the confidence contours and show the results 

in Figure 3.9 (Matlab program is provided in the Appendix).  

 As seen from Figure 3.9, when clumpiness parameter α  decreases, the 

constraining value of the cosmological constant density ( λΩ ) does not fall off, but 

instead,  rises up. Hence, with above tendency of cosmological constant density, we 

readily realize that adding clumpiness effect to the ΛCDM model is unable to mimic 

cosmological constant in interpreting Sne Ia data and accelerating expansion. This 

conclusion, which is drawn from observational evidence, coincides with Teppo 

Mattsson’s theoretical work given in [59]. 

 

 
Figure 3.9  68.3% and 95.4% CL contours of -includedα  ΛCDM model in 

out λΩ −Ω  plane for four values of clumpiness parameter ( )0.25,0.50,0.75,1.00α=  
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3.4  Clumpy Universe and local void’s size 

 In previous parts, we have reasoned that our Universe is not smooth and 

possibility of 1α<  is likely. For Tomita’s model with a local void, earlier analyses 

[35] with the old Sne Ia data only considered the distance modulus – redshift 

relation in smooth Universe ( )1α=  so we do not know what happening to fitting 

results in clumpy Universe. Therefore, the case of 1α<  should be taken into 

consideration. In this section, we will investigate this general case using the latest 

released Sne Ia data, SCP Union compilation. 

First, we examine the model with identical clumpiness parameters for both 

the inner and outer region in outα α α= ≡  and 1α< . We vary parameter α  = (0.25, 

0.50, 0.75, 1.00) while keeping the other parameters unchanged. In Figure 3.10, we 

plot the 68.3% CL contours corresponding to the four different values of α  listed 

above. 

 
Figure 3.10  68.3% CL contours in out λΩ −Ω  plane for 4 values of clumpiness 
parameter ( )0.25,0.50,0.75,1.00α= , with 0.69R =  and 1 0.23z = . 
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In general, as α  decreases, the confidence contour widens or in the other 

words, the constraint on outΩ  and λΩ  loosens; the contour also shifts towards larger 

best-fit outΩ  and λΩ  (refer to Table 5). Apparently, when we reduce α , the light will 

travel through a more dilute medium, increasing densities to keep the product αρ  

constant is thus a plausible way to achieve a good fitting as before. This helps to 

explain the shift of the confidence contours and best-fit values. Interestingly, the 

contour also shifts in the same direction when we increase the local void size 1z  in 

the previous case. Hence, by considering 1α< , we can reduce the constrained value 

of local void size 1z . For example, for 0.5α= , a smaller local void size 1 0.16z =  

is able to provide a reasonably good fit to the SCP Union compilation for 

( ) ( )out , 1,0λΩ Ω ≈  (see Figure 3.11 and Table 5). 

 
Figure 3.11  68.3% and 95.4% CL contours in out λΩ −Ω  plane for the model  with 
standard parameters (dotted line) and with 0.5α= , 0.77R =  and 1 0.16z =  (solid 
line).  
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α  outΩ  λΩ  2
minχ  

0.25 0.45
0.452.34+

−  0.40
0.420.75+

−  313.36 
0.50 0.32

0.321.68+
−  0.35

0.350.42+
−  314.25 

0.75 0.23
0.241.28+

−  0.30
0.320.20+

−  315.25 
1.00 0.18

0.191.02+
−  0.28

0.290.04+
−  316.04 

0.50 0.29
0.301.01+

−  0.33
0.350.06+

−  314.66 
 
Table 5.  Best-fit outΩ  and λΩ  with 1σ  statistical errors, and 2

minχ . For the first four 
rows, 0.69R =  and 1 0.23z = ; for the last row, 0.77R =  and 1 0.16z = . 
 

 Altogether, there is a correlation between the clumpiness parameter α  and 

the size of the local void 1z , and an independent measurement of any of the two 

parameters is required to break this degeneracy. 

 As defined, clumpiness parameter is the ratio of mean matter density of 

intergalactic medium to the whole Universe’s at a specific time. In the late time, due  

to gravitational instability, the number of cosmic structures is getting more and 

more. Accordingly the intergalactic space is getting emptier. Consequently, the level 

of clumpiness increases according to time and thus clumpiness parameter must be a 

function of redshift z . The larger the redshift z , the greater the value of clumpiness 

parameter α . Since objects in the local void are at smaller redshifts than those of 

outer region and the mean matter density of the local void inΩ  is less than outer 

region’s outΩ , in the following part we assume that the clumpiness parameters in 

each region are constant for simplicity and the one of the local void is always less 

than or equal to that outside the local void. In the next, to investigate the variation of 

confidence contours as well as best-fit values in this general case with Sne Ia data, 

we alter the clumpiness parameters as follows: inα = (0.25, 0.50, 0.75, 1.00) for 

out 1.00α =  and inα = (0.25, 0.50) for out 0.50α = . The results are shown in Figure 
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3.12 and 3.13, and Table 6 lists the corresponding best-fit values. 

 
Figure 3.12  68.3% and 95.4% CL contours in out λΩ −Ω  plane for 
{ } ( ){ }in out, 0.25,0.50,0.75,1.00 ,1.00α α = , assuming 0.69R = , 1 0.23z = . 
 

 
Figure 3.13  68.3% and 95.4% CL contours in out λΩ −Ω  plane for 
{ } ( ){ }in out, 0.25,0.50 ,0.50α α = , assuming 0.69R = , 1 0.23z = . 
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inα  outα  outΩ  λΩ  2
minχ  

0.25 0.50 0.31
0.331.68+

−  0.34
0.370.42+

−  314.28 
0.50 0.50 0.32

0.321.68+
−  0.35

0.350.42+
−  314.25 

0.25 1.00 0.18
0.191.01+

−  0.27
0.290.02+

−  315.88 
0.5 1.00 0.19

0.191.01+
−  0.28

0.280.02+
−  315.93 

0.75 1.00 0.19
0.181.01+

−  0.27
0.290.04+

−  315.99 
1.00 1.00 0.18

0.191.02+
−  0.28

0.290.04+
−  316.04 

 
Table 6.  Best-fit outΩ  and λΩ  with 1σ  statistical errors, and 2

minχ  for 
{ } ( ){ }in out, 0.25,0.50,0.75,1.00 ,1.00α α =  and  { } ( ){ }in out, 0.25,0.50 ,0.50α α = , 
assuming 0.69R = , 1 0.23z =  

 It is found that in both cases of out 0.5α =  and 1, the confidence contours and 

best-fit values are almost unchanged as varying the value of clumpiness parameter 

of the local void. This is apparently true for other values of inα  as well as outα . 

Therefore, we conclude the clumpiness of the local void has little effect on the Sne 

Ia data fitting. Moreover, in combination with Figure 3.10, we deduce that the 

variation of outα  has a much stronger impact than inα  on the constraint of the model 

parameters.  

 To summarize, in this section we have investigated the Tomita’s model in 

clumpy Universe in both cases: in outα α α= ≡  and in out 1α α≤ ≤ . In the first case, 

we find that the fitting results are very sensitive to the value of α  and there exists a 

degeneracy between α  and 1z . Particularly, the constrained local void size 1z  could 

be smaller if the value of the clumpiness parameter is indeed less than 1. For 

example, with 0.5α= , the local void boundary’s redshift is 1 0.16z = . In the 

second case, in out 1α α≤ ≤ , the clumpiness of the local void is proven to affect little 

on the data fitting whereas the value of outα  has a strong impact on the constraint of 

the model parameters. 
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CHAPTER 4 

DISCUSSION 

 

In this work, we study an inhomogeneous model proposed by Tomita. It is an 

easily visualized, simple inhomogeneous model, based on the likely fact that we are 

living in a local void surrounded by a wall of galaxies. The simplified assumption 

that the inner and outer region are homogeneous makes the model easily examined 

and analyzed.  

In our Sne Ia constraints on the Tomita’s model, we assume an Einstein-de 

Sitter (E-dS) cosmology outside the local void and found a low best-fit Hubble 

constant 0.5h∼ . In a recent study, H. Alnes, M. Amarzguioui and Ø. Grøn [37] 

showed that an Einstein-de Sitter (E-dS) cosmology with a low value of 0.5h∼  

could fit the location of first peak in the CMB power spectrum. In another study, P. 

Hunt and S. Sarkar [60] demonstrated that if the primordial power spectrum is 

enhanced in the region of second and third acoustic peak, then an E-dS universe 

with 0.44h∼  will match the Wilkinson Microwave Anisotropy Probe (WMAP) [9, 

10] data. The E-dS models with other different additional assumptions [38, 61] have 

been showed to fit the WMAP data. Therefore, our Sne Ia constraint on Tomita’s 

model is likely to conform with observations from cosmic microwave background 

radiation, and further studies need to be done to verify this speculation. 

In this work, we also found that current observations are still insufficient to 

distinguish the ΛCDM model and Tomita’s model. To discriminate Tomita’s model 
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over ΛCDM model, more detailed observations and investigations are needed to find 

solid evidences that we live in a local void. A local void, with smaller matter density 

in comparison to the outside, could be detected by counting galaxies up to very large 

distances and over a wide area in the sky. With this observation, we can also 

estimate the scale of the local void size and put a more stringent constraint on the 

matter density difference between the two regions.  

In addition, more precise Sne Ia observations can be conducted to distinguish 

the residual Hubble diagram of Tomita’s model and ΛCDM model. In particular, 

due to the existence of the shell, the residual Hubble diagram of Tomita’s model 

(Figure 3.2 and 3.7) contains a “sharp” transition between the inner and outer region 

in the redshift range of 0.1 to 0.4 approximately, therefore more precise Sne Ia 

observations in this redshift range will support or reject the local void in Tomita’s 

model. Moreover, the disparity between the Hubble diagrams is large at high 

redshifs, therefore more precise Sne Ia observations at high redshifts are necessary, 

although high-redshift Sne Ia are usually very faint and hard to observe precisely.  

Lastly, we need to emphasize that the Tomita’s model that we consider in 

this work is not truly a realistic model. It is simply a toy model, used to prove the 

idea that non-linear structures play a role in the interpretation of cosmological data. 

Future work can carry out a more realistic and careful investigation on the 

inhomogeneous model. For example, future fitting can consider a non-spherical 

local void and an off-center observer. In addition, one can consider the shell’s 

thickness and, accordingly, the effect of shell’s mass on surrounding spacetime and 

the shell’s impact on light propagation through the transitional region. An even more 

practical model may have a smooth transitional region. Furthermore, the clumpiness 
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parameter α , where _mean Universeρ αρ= , should be a function of redshift z . For 

example, recently in T. Mattsson’s model [59] the author  assumed 

( ) ( ) ( )FLRWH z z H zβ= ( )( )1zβ ≥ , where ( )FLRWH z  represents the usual Hubble 

rate in Friedmannian Universe and the local expansion rate depends on the local 

matter density, we can also make similar assumption to the Tomita’s model.  
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CHAPTER 5 

CONCLUSIONS 

 

As of today, there have been many attempts to prove that cosmic 

inhomogeneity is able to mimic dark energy in some cosmological observations. 

Many have considered the LTB model, and fitted the Sne Ia data without the 

cosmological constant. Nevertheless, to better demonstrate that the accelerating 

expansion of the universe is only an apparent phenomenon caused by 

inhomogeneous distribution of matter in space, some have considered other more 

realistic cosmological models [60-67]. 

In this thesis, we consider a simple inhomogenous model with a local void 

(proposed by Tomita), and our aim is to update the Sne Ia constraint using the latest 

SCP Union supernovae compilation. For the model to fit the latest Sne Ia data, it has 

been found by others that the local void has to be large, on scales of Gpc [37, 38, 

45]. In our work, we find that the small local void on scale of about 200 Mpc from 

an early constraint does not fit well to the SCP Union supernovae compilation when 

( ) ( )out , 1,0λΩ Ω = . When ( ) ( )out , 1,0λΩ Ω =  is a pre-requirement, we find the best-fit 

parameters 0.69R =  and 1 0.23z = , correspond to a large local void on scale of 

about 1 Gpc. Although the existence of the large void in the universe is physically 

unlikely (according to standard theory of structure formation), there have been a lot 

of observational evidences [19-22] for the existence of voids, and recently Hunt and 
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Sarkar [68] have argued the credibility of dismissing local void on the ground of 

being inconsistent with the standard theory of structure formation.  

 With the latest Sne Ia dataset, we have also re-investigated the variation of 

confidence contours and best-fit values on model parameters, and the results of our 

investigation are in general similar to that of Tomita’s previous investigation using 

an older dataset. We have also proven that the choice of matter density profile does 

not strongly affect our results. 

 In this study, we also consider the more general case that 1α< . We find that 

the results of data fitting strongly depend on the value of α , such that the smaller 

the value of α , the smaller the best-fit size of the local void. Besides, we also 

investigate different clumpiness parameters for different regions ( )in outα α≠  and 

show that the value of inα  does not affect the fitting as much as outα  does. 

 In this work we only use the Sne Ia data to constrain the model parameters. 

Future studies can confront the model with other independent observations such as 

CMB, BAO, BBN (Big Bang Nucleosynthesis), etc., to cross-check the model, 

break the degeneracy and provide a tighter constraint to the parameters.  
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Appendix: Matlab programs 

 

I.  Matlab programming codes for finding best-fit outΩ , λΩ , minimum 2χ  and 

plotting corresponding confidence contours of Tomita’s model with a set of 

specific values of out inR H H≡ , 1z , inΩ , and α .1 

1. Main program 

clear all;close all;clc; 

% load data file 

data=load('SCPUnion.txt');  

z=data(:,1); 

muy=data(:,2);  

sigma_muy=data(:,3); 

% --------- 

% set parameters 

c=3e5; 

z1=0.23;       % redshift of boundary; 

z_max=max(z); 

alpha=1;            % clumpiness parameter; 

% in case of in outα α≠ , replace above statement with values of alpha_in and 

% alpha_out 

R=0.69;             % Hubble rates' ratio 

omega_min=0; omega_max=2;     % omega_out's value range 

delta_omega=0.01;             % omega_out's jump step 

lambda_min=-1;lambda_max=1;  % omega_lambda's value range 
                                                 
1 Thereafter, we use the standard values of parameters 1, ,R zα and matter density profile. For other 
cases, we simply change the old values by the new ones.  
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delta_lambda=0.01;           % omega_lambda's jump step 

H_min=60;H_max=80;           % Hubble rate's value range 

delta_H=0.1;                 % Hubble rate's jump step 

% --------- 

i=0; 

for omega_out=omega_min:delta_omega:omega_max 

    % set matter density profile A 

    if omega_out>0.6 

        omega_in=0.30; 

    else 

        omega_in=omega_out/2; 

    end 

    %--------- 

    i=i+1; 

    j=0; 

    for lambda_out=lambda_min:delta_lambda:lambda_max 

        j=j+1; 

        lambda_in=lambda_out*R^2;   

        poly1=[omega_in,1+2*omega_in-lambda_in,2+omega_in-2*lambda_in,1]; 

        poly2=[omega_out,1+2*omega_out-lambda_out,2+omega_out-...   

        2*lambda_out,1]; 

        sol_poly1=find_pos_sol(sort(roots(poly1))); 

        sol_poly2=find_pos_sol(sort(roots(poly2))); 

        counter1=count(sol_poly1,z1); 

        counter2=count(sol_poly2,z_max); 

        if counter1~=0 || counter2~=0 

            chisq(i,j)=9999; 

        else 

            da_in=da1(omega_in,lambda_in,1,c,alpha,z1); % change “alpha” in this 

    % statement into “alpha_in” in case of in outα α≠  

 ini_condition=inicond(da_in,omega_out,lambda_out,R,c,alpha,z1);  
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 % change “alpha” in above statement into “alpha_out” in case of in outα α≠    

 da_out=da2(omega_out,lambda_out,ini_condition,alpha,z1,z_max); 

            sign=0; 

            for k=1:length(z) 

                if z(k)<=z1 

                    DL(k)=distance(da_in,z(k)); 

                else 

                    DL(k)=distance(da_out,z(k)); 

                end 

                if DL(k)<0 

                    sign=1; 

                    break; 

                end 

            end 

            if sign==1 

                chisq(i,j)=9999; 

            else 

                l=0; 

                for H_in=H_min:delta_H:H_max 

                    H_out=H_in*R; 

                    l=l+1; 

                    chisqH(l)=0; 

                    for m=1:length(z) 

                        if z(m)<=z1 

                           muy_prd=5*log10(DL(m)/H_in)+25; 

                        else 

                          muy_prd=5*log10(DL(m)/H_out)+25; 

                        end 

                        chisqH(l)=chisqH(l)+(muy_prd-muy(m))^2/sigma_muy(m)^2; 

                    end 

                end 

                A=exp(-chisqH/2); 
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                chisq(i,j)=-2*log(trapz(A)*delta_H); 

            end 

        end 

    end 

end 

%--------- 

% confidence contours plot 

x=omega_min:delta_omega:omega_max; 

y=lambda_min:delta_lambda:lambda_max; 

[xx,yy]=meshgrid(x,y); 

minchisq=min(min(chisq)); 

[i,j]=find(chisq==minchisq); 

zz=transpose(chisq-minchisq); 

[cc1,hh1]=contour(xx,yy,zz,[1,2.30,6.18]); % the contour corresponding to 2 1χΔ =   

               % is used for determining the statistical 

               % errors of outΩ  and λΩ . 

sprintf('%s:%f\n%s:%f\n%s:%f','best-fit omega_out',x(i),'best-fit...    

    omega_lambda',y(j),'minimum chisquare',minchisq) 

2. Sub-functions of the main program 

a. function find_pos_sol 

% find real, positive and different elements in the matrix sol_poly 

function result=find_pos_sol(sol_poly) % sol_poly is the solutions of a polynomial 

switch length(sol_poly) 

    case 0 

        result=[]; 

    case 1 

        if abs(imag(sol_poly))<1e-6 && sol_poly>0 

            result=sol_poly; 

        else 

            result=[]; 
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        end 

    case 2 

        if abs(imag(sol_poly(1)))>1e-6 || sol_poly(1)<0 

            result=sol_poly(2); 

            if abs(imag(sol_poly(2)))>1e-6 || sol_poly(2)<0 

                result=[]; 

            end 

        else 

            result=sol_poly(1); 

            if abs(imag(sol_poly(2)))<1e-6 && sol_poly(2)>0 

                result=sol_poly; 

            end 

        end 

    case 3 

        if abs(imag(sol_poly(1)))>1e-6 || sol_poly(1)<0 

            result=[sol_poly(2) sol_poly(3)]; 

            if abs(imag(sol_poly(2)))>1e-6 || sol_poly(2)<0 

                result=sol_poly(3); 

                if abs(imag(sol_poly(3)))>1e-6 || sol_poly(3)<0 

                    result=[]; 

                end 

            elseif abs(imag(sol_poly(3)))>1e-6 || sol_poly(3)<0 

                    result=sol_poly(2); 

            end 

        else 

            result=sol_poly;         

            if abs(imag(sol_poly(2)))>1e-6 || sol_poly(2)<0 

                result=[sol_poly(1) sol_poly(3)]; 

                if abs(imag(sol_poly(3)))>1e-6 || sol_poly(3)<0 

                    result=sol_poly(1); 

                end 

            elseif abs(imag(sol_poly(3)))>1e-6 || sol_poly(3)<0 
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                result=[sol_poly(1) sol_poly(2)]; 

            end 

        end 

end 

result=real(result); 

switch length(result) 

    case 2 

        if result(1)==result(2) 

            result=result(1); 

        end 

    case 3 

        if result(1)==result(2) 

            if result(2)==result(3) 

                result=result(1); 

            else 

                result=[result(1),result(3)]; 

            end 

        else 

            if result(2)==result(3) 

                result=[result(1) result(3)]; 

            else 

                if result(1)==result(3) 

                    result=[result(1) result(2)]; 

                end 

            end 

        end 

end 

b. Function count 

%count the number of elements of sol_poly satisfied sol_poly<z 

function counter=count(sol_poly,z) 

counter=0; 
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for k=1:length(sol_poly) 

    if sol_poly(k)<=z 

        counter=counter+1; 

    end 

end 

c. Function da1 

% solving diffential equation of angular diameter distance in region I from z_min=0 

% to z_max=z1 

function sol1=da1(omega_in,lambda_in,H01,c,alpha,z1) 

f1=@(z)(1+omega_in*z)*(1+z)^2-lambda_in*z*(2+z); 

dy=@(z,y)[y(2);-(2/(1+z)+1/2*(1+z)*(omega_in*(1+3*z)+2-2*lambda_in)/f1(z))*... 

     y(2)-3/2*omega_in*alpha*(1+z)/f1(z)*y(1)]; 

options=odeset('RelTol',1e-4,'AbsTol',1e-7); 

sol1=ode45(dy,[0 z1],[0;c/H01],options); 

d. Function inicond 

% finding initial conditions of the angular diameter distance in region II 

function result=inicond(sol1,omega_out,lambda_out,ratio,c,alpha,z1) 

bcda21=ratio*deval(sol1,z1,1); 

bcda22=c; 

f2=@(z)(1+omega_out*z)*(1+z)^2-lambda_out*z*(2+z); 

daode=@(z,y)[y(2);-(2/(1+z)+1/2*(1+z)*(omega_out*(1+3*z)+... 

     2-2*lambda_out)/f2(z))*y(2)-3/2*omega_out*alpha*(1+z)/f2(z)*y(1)]; 

dabc=@(ya,yb)[ya(2)-bcda22;yb(1)-bcda21]; 

dajac=@(z,y)[0,1;-3/2*omega_out*alpha*(1+z)/f2(z),-(2/(1+z)+1/2*... 

   (1+z)*(omega_out*(1+3*z)+2-2*lambda_out)/f2(z))];   

solinit=bvpinit(linspace(0,z1,11),[bcda21;bcda22]); 

options=bvpset('RelTol',1e-4,'AbsTol',1e-7,...     

     'Fjacobian',dajac,'BCJacobian',@dabcjac); 

sol=bvp4c(daode,dabc,solinit,options); 

dda2dz=deval(sol,z1,2); 

result=[bcda21;dda2dz]; 



  54 

%--------- 

            % jacobian dabcjac for solving differential equation 

            function [dbcdya,dbcdyb]=dabcjac(ya,yb) 

            dbcdya=[0,1;0,0]; 

            dbcdyb=[0,0;1,0]; 

            %--------- 

e. Function da2 

% solving the diffential equation of angular diameter distance  in region II from 

% z_min=z1 to z_max=z_max 

function sol2=da2(omega_out,lambda_out,inicond,alpha,z1,z_max) 

f2=@(z)(1+omega_out*z)*(1+z)^2-lambda_out*z*(2+z); 

dy=@(z,y)[y(2);-(2/(1+z)+1/2*(1+z)*(omega_out*(1+3*z)+2-...    

  2*lambda_out)/f2(z))*y(2)-3/2*omega_out*alpha*(1+z)/f2(z)*y(1)]; 

options=odeset('RelTol',1e-4,'AbsTol',1e-7); 

sol2=ode45(dy,[z1,z_max],inicond,options); 

f. Function distance 

% calculating the luminosity distance and its derivative at redshift z with angular  

% diameter distance in (0,z1) given by da 

function [dl ddl_dz]=distance(da,z) 

sol=deval(da,z); 

dl=(1+z)^2*sol(1); 

ddl_dz=2*(1+z)*sol(1)+(1+z)^2*sol(2); 

 

II.  Matlab codes for binning observational data (SCP Union compilation) and 

plotting corresponding zμΔ −  diagram 

% finding the boundary points of each bin with n*delta(z)=Const 

% calculating the mean of redshift, delta distance modulus and sigma 

% plotting the diagram with error bars. 

clear all;close all;clc; 

data=load('SCPUnion.txt'); 
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z=data(:,1); 

muy=data(:,2); 

sigma_muy=data(:,3); 

z_max=max(z); 

c=3e5; 

H0=68.5; 

% --------- 

% find the boundary points of bins 

C=10;  

delta_C=0.1; 

sign1=1; 

count=1; 

zr=0; 

binpoint(1)=zr; % left boundary of the first bin 

delta_z=0.00001; 

while (sign1==1) 

    z0=zr; 

    sign2=1; 

    while (sign2==1) 

        zr=zr+delta_z;      % running variable 

        lgt=length(find((z0<=z)&(z<=zr))); 

        if lgt*(zr-z0)>C-delta_C&&lgt*(zr-z0)<C+delta_C 

            sign2=0; 

        end 

        if zr>z_max 

            sign1=0; 

            sign2=0; 

        end 

    end 

    count=count+1; 

    binpoint(count)=zr; 

end 
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binpoint % boundary points of bins. 

% --------- 

% calculating average of z, delta_muy and sigma_muy in each bin. 

lgt_bp=length(binpoint); 

for i=1:lgt_bp-1 

    a=find((binpoint(i)<=z)&(z<=binpoint(i+1))); 

    sum_z=0; 

    sum1=0; 

    sum2=0; 

    for j=1:length(a) 

        sum_z=sum_z+z(a(j)); 

        N_empty=5*log10(c/H0*z(a(j))*(1+z(a(j))/2))+25; 

        sum1=sum1+(muy(a(j))-N_empty)/sigma_muy(a(j))^2; 

        sum2=sum2+1/sigma_muy(a(j))^2; 

    end 

    avg_z(i)=sum_z/length(a);      % average of redshift z  (in ith bin)  

    avg_delta_muy(i)=sum1/sum2;    % average of delta distance modulus μΔ  

    avg_sigma_muy(i)=sqrt(1/sum2);`% average of distance modulus dispersion σ  

end 

avg_z 

avg_delta_muy 

avg_sigma_muy 

errorbar(avg_z,avg_delta_muy,avg_sigma_muy,'*'); 

 

III.  Matlab codes for plotting the residual Hubble diagram of the homogeneous 

ΛCDM model 

clear all;close all;clc; 

z=0.01:0.01:2.3; 

c=3e5; 

omega=0.287;  % matter density 

lambda=0.713; % dark energy density in the form of a cosmological constant 
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omega_k=1-omega-lambda; 

for i=1:length(z) 

    N_empty(i)=5*log10(c*(1+z(i))*sinh(log(1+z(i)))); 

    N_LCDM(i)=5*log10(c*(1+z(i))*quad(@(x)1./sqrt((1+x).^2.*(1+omega.*x)-… 

             x.*(2+x).*lambda),0,z(i))); 

end 

delta_N=N_LCDM-N_empty; 

plot(z,delta_N); 

 

IV.  Matlab codes for plotting the residual Hubble diagrams of Tomita’s model 

clear all;close all;clc; 

z=0.01:0.001:2.3; 

c=3e5; 

zmax=max(z); 

omega_in=0.3; 

omega_out=1; 

ratio=0.69; 

lambda_out=0; 

lambda_in=lambda_out*ratio^2; 

z1=0.23; 

alpha=1; 

%---------------- 

poly1=[omega_in,1+2*omega_in-lambda_in,2+omega_in-2*lambda_in,1]; 

poly2=[omega_out,1+2*omega_out-lambda_out,2+omega_out-2*lambda_out,1]; 

sol_poly1=find_pos_sol(sort(roots(poly1))); 

sol_poly2=find_pos_sol(sort(roots(poly2))); 

counter1=count(sol_poly1,z1); 

counter2=count(sol_poly2,zmax); 

sum=0; 

if counter1~=0 || counter2~=0 
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    disp('not meaningful value of pair (omega_out;lambda_out). Please change … 

         another pair'); 

else 

    da_in=da1(omega_in,lambda_in,1,c,alpha,z1); 

    inicondition=inicond(da_in,omega_out,lambda_out,ratio,c,alpha,z1); 

    da_out=da2(omega_out,lambda_out,inicondition,alpha,z1,zmax); 

    sign=0; 

    for i=1:length(z) 

        if z(i)<=z1 

            DL=distance(da_in,z(i)); 

        else 

            DL=distance(da_out,z(i)); 

        end 

        if DL<0 

            sign=1; 

            break; 

        else 

            N_Tomita(i)=5*log10(DL); 

        end 

    end 

    if sign==1 

        disp('not meaningful value of pair (omega_out;lambda_out). Please change …

         different pair'); 

    else 

        % Calculating distance modulus of the empty homogeneous Milne Universe 

        for i=1:length(z) 

            N_empty(i)=5*log10(c*(1+z(i))*sinh(log(1+z(i)))); 

        end 

        for i=1:length(z) 

            if z(i)<=z1 

                delta_N(i)=N_Tomita(i)-N_empty(i); 

            else 
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                delta_N(i)=N_Tomita(i)-N_empty(i)-5*log10(ratio); 

            end 

        end 

        plot(z,delta_N);grid on; 

    end 

end 

 

V.  Matlab codes for finding best-fit outΩ , λΩ , minimum 2χ  and plotting 

corresponding confidence contours of ΛCDM model taking clumpiness effect 

into account 

clear all;close all;clc; 

% load data file 

data=load('SCPUnion.txt'); 

z=data(:,1); 

muy=data(:,2); 

sigma_muy=data(:,3); 

% --------- 

% set parameters 

c=3e5; 

z_max=max(z); 

alpha=0.25; 

omega_min=0;omega_max=2; 

delta_omega=0.1; 

lambda_min=0;lambda_max=3; 

delta_lambda=0.1; 

H_min=60;H_max=80; 

delta_H=0.1; 

%--------- 

i=0; 

for omega=omega_min:delta_omega:omega_max 

    i=i+1; 
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    j=0; 

    for lambda=lambda_min:delta_lambda:lambda_max 

        j=j+1; 

        poly1=[omega,1+2*omega-lambda,2+omega-2*lambda,1]; 

        sol_poly1=find_pos_sol(sort(roots(poly1))); 

        counter=count(sol_poly1,z_max); 

        if counter~=0 

            chisq(i,j)=9999;  

        else 

            DA=da1(omega,lambda,1,c,alpha,z_max); 

            for k=1:length(z) 

                DL(k)=distance(DA,z(k)); 

            end 

            l=0; 

            for H0=H_min:delta_H:H_max 

                l=l+1; 

                chisqH(l)=0; 

                for k=1:length(z) 

                    muy_prd=5*log10(DL(k)/H0)+25; 

                    chisqH(l)=chisqH(l)+(muy_prd-muy(k))^2/sigma_muy(k)^2; 

                end 

            end 

            A=exp(-chisqH/2); 

            chisq(i,j)=-2*log(trapz(A)*delta_H); 

        end 

    end 

end 

%--------- 

% confidence contours plot 

x=omega_min:delta_omega:omega_max; 

y=lambda_min:delta_lambda:lambda_max; 

[xx,yy]=meshgrid(x,y); 
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minchisq=min(min(chisq)); 

[i,j]=find(chisq==minchisq); 

zz=transpose(chisq-minchisq); 

[cc1,hh1]=contour(xx,yy,zz,[1,2.30,6.18]); 

sprintf('%s:%f\n%s:%f\n%s:%f','best-fit omega_out',x(i),... 

       'best-fit omega_lambda',y(j),'minimum chisquare',minchisq) 

 

 


