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Summary

Precision motion control is highly desirable in modern industries such as machine tools,

ultra-precision spindles, wafer probing and lithography, to achieve good positioning or

tracking performance with high speed and high accuracy. The requirements on these

motion control systems are clearly more stringent. However, due to their physical design

limitations, the accuracy and bandwidth of precision motion control systems are limited

by various nonlinear factors, such as stiction, friction and force ripples. The recently de-

veloped various “model-free” and “intelligent” control schemes have common drawbacks

of taking long time to learn or search for the optimal parameters. In fact, in current

practice, conventional auto-tunning PID control schemes, affiliated with model-based

feedback/feedforward nonlinear compensators, are still most popular choices to achieve

satisfying tracking performances with efficient and accurate models.

Since 1980s, the relay feedback technique has been widely used for linear system iden-

tification and controller auto-tunning, due to its simplicity and efficiency. In this thesis,

the efficient models are proposed and relay feedback methods are extensively applied

to identify the model parameters of various motion control systems. The modeling of

nonlinear force between to contacting surface of machine subparts, such as stiction and
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friction will be addressed in this thesis.

First, the modeling of stiction is addressed widely in pneumatic and hydraulic control

valves. Stiction generally leads to oscillation in control loops, which affects the product

quality, increase energy consumption and accelerates the equipment wear. Based on the

strength and weakness of various existing physical and data-driven stiction models, a

new data-driven stiction model is proposed. This model has simple two-layer, binary-tree

logic structure, and the model is able to deal with expanded type of stiction patterns,

including some special cases such as linear and pure deadzone.

Secondly, the limit cycle properties are analyzed for a class of system under triple-

relay feedback, especially the locations and the stability of limit cycles, using the time-

domain approach. This configuration directly maps to a Coulomb friction impeded

servo-mechanical system under dual-channel relay (DCR) feedback. Based on these

analysis, a new method is developed to identify the dynamical and friction parameters

accurately with only a single relay experiment.

Thirdly, a method is developed to model recently proposed, four-parameter friction

models using DCR. This four-parameter model is able to adequately describe the friction

property when the servo system runs in both high- and low-velocity modes. Four impor-

tant properties of oscillation induced under the DCR will be presented, based on which

insights for the selection of relay parameters can be drawn. Based on this, a systematic

set of procedures is developed to derive all the parameters of the model. This model

will be directly useful in the design of the feedback controller and feedforward friction

ix



compensator.

Finally, relay feedback is used to identify both friction force and force ripples caused

by the magnetic structures in permanent magnet linear motors (PMLMs). Since the

force ripples are not odd-symmetric, only biased limit cycles can be obtained in PMLM

under hysteretic relay feedback. To leverage on this type of limit cycles with both

harmonics and DC contents, dual-input describing functions are imported so that the

harmonic balance conditions are given. A set of explicit formulae is obtained for directly

computing the model parameters including friction and ripples with minimum number

of relay experiments.

In order to show the background and motivation of the research clearly, related liter-

ature reviews on relay feedback analysis, stiction models, and friction and force ripple

modeling techniques are given in the corresponding chapters. In addition, the simula-

tion and/or real-time experimental results are presented to verify the effectiveness of the

approaches throughout the thesis.
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ũ(t) with d = 1.2, D = 5, φ = 0. . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Input e(t) and output u(t) of the hysteretic relay and actual control signal
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Chapter 1

Introduction

1.1 Precision Motion Control Systems

Motion control is a core enabling technology for automation, in which the position and/or

velocity of a machine are controlled using some type of devices, such as pneumatic or

hydraulic control valves and modern electric motors. Today, the increasing requirements

of ultra-precision applications demand ever more accurate models in motion control

systems. Meanwhile, the high speed requirements of precision motion control desire

fast determination of controller parameters, while the relay feedback technique has been

widely used in autotuning of motion controllers. In this thesis, the development of

efficient modeling techniques for precision motion control systems are further studied

using relay feedback approaches.

1.1.1 Evolution of precision motion control systems

The history of precision engineering can be dated back to 300 B.C., when the float reg-

ulator mechanism was designed for realization of water clock function. The first servo

motor, the steam flyball governor was developed by James Watt in 1769, using the

1



principle of proportional feedback control. Its improved version, the commonly known

proportional-integral-derivative (PID) controller has been widely implemented in auto-

matic control systems since industrial revolution, in various mechanical and electrical

designs. Great leaps were made to the development of high precision machine tools

and instruments in the late 1800s and early 1900s by the ruling engineers for the man-

ufacture of scales, reticule and spectrographic diffraction grating. The microprocessor

has expanded to motion control application in the late 1970s. Since then, new power

electronic devices integrate into microprocessors in providing more efficient and power-

ful implementation of motion controllers. On-board logic circuitry became available for

servo drives or amplifiers to control motor commutation, current and velocity control.

The servo boards were analog with output voltage signals from the generators as a func-

tion of speed providing the precision velocity measurements for the servo system. The

requirements of high productivity demand not only accurate but also high speed mo-

tion controllers. Since 1980s, the Astrom-Hagglund PID autotuner, based on the relay

feedback technique, has been commercialized in industrial automation, which is able to

allow fast determination of the control system parameters [10]. In recent years, elec-

tronic control is become ever more proficient as new microprocessors, DSPs, and other

electronics devices supply the control platform with tremendous computing and process-

ing timing power. Advances in actuators, such as direct drive motors, linear motors, and

brushless motors are reducing traditional difficulties such as backlash, friction and par-

asitic system dynamics. Promising new materials such as ceramics and composites offer
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potential benefits in mechanical properties such as lower mass, improved damping, and

reduced thermal effects. The advances in sensors, due to primarily to new techniques

in optics, electronics and signal processing, give better feedback measurements. Today,

ultra-precision machine tools under computer control can position the tool relative to

the workpiece in a micron-scale accuracy.

1.1.2 Fields requiring precision control

The field of high-precision motion control is a subject attracting much research interest.

The precision control technology is strongly required in the broad fields such as precision

engineering, micromanufacturing, biotechnology, and nanotechnology.

Precision engineering is a set of systematized knowledge and principles for realizing

high-precision machinery [71]. While conventional machines such as turning machines,

drilling machines, milling machines etc. are still in use, the development of machining

processes to provide high precision components has introduced new machining via laser

cutting, hydrodynamic fluids, chemical substances, etc. Nowadays, there has been a

trend towards non-contact machining as apposed to contacting one [91], such as air-

bearing systems.

Micromanufacturing is the industry to design and fabricate the micro-devices in mi-

croelectronics. Micro-fabrication covers a range of manufacturing processes that pro-

duce patterns or layers of material to form microstructures. Lithography and Micro-

Electro-Mechanical-Systems (MEMS) are common examples of micro-fabrication pro-

cesses. Micro-assembly is another important process for precision engineering.
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Biotechnology is a technological application that uses biological systems, living organ-

isms, or derivatives thereof, to make or modify products or processes for specific use [99].

Modern biotechnology is often related to genetic alternation of living materials, such as

microorganisms, plants and animals, which requires manipulation of device with pre-

cision control in micrometer or even in nanometer scales, such as minimally invasive

surgery and intracytoplasmic sperm injection (ICSI) [76] etc.

Nanotechnology is to study, development and processing materials, devices and sys-

tems in which structure on a dimension of less than 100nm is required functional per-

formance. It covers nano-fabrication processes, he design, behaviors and modeling of

nanostructures, methods of measurement and characterization at the nanometer scale.

As ultra-precision manufacturing progresses enter the nanometer scale regime, nanotech-

nology may be deemed as a natural next step to precision engineering.

1.1.3 Architectures

Although the applications of precision motion control can be in various fields as in

the above overview, the basic architecture of a typical motion control system generally

contains [1]:

• A motion controller to generate motion profiles and close a position and velocity

feedback loop.

• A drive or amplifier to transform the signal from the motion controller into a higher

electrical current or voltage which is presented to the actuator.
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• An actuator such as a electric motor, hydraulic pump, air cylinder or linear actu-

ator for output motion.

• One or more sensors such as optical encoders, resolvers or Hall effect devices to

feedback the position and/or velocity of the actuator to the motion controller,

forming a closed-loop configuration.

• Mechanical components to transform the motion of the actuator into the desired

motion, including ball screw, gears, belts, shafting, linkages and linear and rota-

tional bearings.

Depending on the equipment functioning as motion controllers, the modern motion

control systems are further categorized as PC-based and stand-alone motion control

systems. The PC-based motion control systems either directly use the CPU of the PC

as the controller, or have the DSP control cards installed on the PC. Both of them

enable the easy monitoring and reconfiguration with some supporting software. Figure

1.1 shows the architecture of a PC-based X-Y table control system, with on-board DSP

control card [41]. The stand-alone motion control systems, just as their names imply,

use pre-programmed stand-alone programmable motion controllers for working in haz-

ardous or special environment. In this thesis, for research purposes, PC-based motion

control systems are mainly used in the experiments. However, the stand-alone setups

have also been widely used in industrial automation, or even medical treatment. One

example is a recently developed physiotherapy system in M & A Lab, NUS, using the
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Figure 1.1: Architecture of a PC-based X-Y table motion control system.

CompactRIOr stand-alone controller, enable the patient to do the customized physical

recovery exercises [20].

1.1.4 Control schemes

Although great leap has been made in control area, the precision motion control is chal-

lenging the control engineering to greater height. The control engineer needs to design

a suitable controller which will effectively achieved the desired system characteristics,

such as high precision, high speed requirements in precision motion control. However,

there are practical issues which limit the controller performance, such as saturation of

control efforts, uncertainty, noise and disturbances. Meanwhile, although great achieve-

ments have been reported on the development of advanced control techniques, limited
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DSP processing capability may require simpler control algorithms to reduce processing

time in lieu of higher sampling rates. Till now, the control schemes developed can be

generally categorized into feedforward control and feedback control.

Feedforward control Feedforward is a term describing an element or pathway within

a control system which passes a controlling signal from a source in the control system’s

external environment, often a command signal from an external operator, to load else-

where in its external environment. The feedforward controller responds to its control

signal in a pre-defined way, without any updated information on the status of the mo-

tion system. Feedforward controller can respond more quickly to known and measurable

kinds of disturbance, but cannot do much with indeterministic disturbance such as en-

vironmental noise [91].

The technique of using feedforward control always involves finding an appropriate

model of the system and enhancing the system performance by reacting to the predicted

error. In the other way of thinking, the disturbance model, such as friction model or force

ripple model, obtained in earlier procedures can be verified by the feedforward control,

by checking whether the error due to the disturbance has been greatly decreased.

Feedback control Feedback control deals with any derivation from desired system

behavior by measuring the system’s variable and react accordingly. Till today, there are

simply too many control schemes which have been proposed by researchers, the following

are some methods which have been applied to motion systems:
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• PID feedback control attempts to correct the error between a measured plant vari-

able and a desired setpoint by calculating and then outputting a corrective action

that can adjust the process accordingly and rapidly, to keep the error minimal.

• Gain scheduling is an approach to control of nonlinear systems that uses a family

of linear controllers, each of which provides satisfactory control for a different

operating point of the system [86].

• H∞/H2 control seeks to minimize certain weighting function to optimize system

performance [19].

• Sliding mode control, a form of variable structure control, is a nonlinear control

method that alters the dynamics of a nonlinear system by application of a high-

frequency switching control [33].

• Backstepping control is based on identified models and recursively working back-

wards to obtain a desired controller [56].

• Adaptive control involves self-adjustable control laws to cope with the systems

with slow-time-varying parameters, generally according to certain Lyapunov func-

tions [11].

• Intelligent control uses various AI computing approaches to design the controller,

such as fuzzy logic control [102], neural network control [49] and learning con-

trol [101] etc.
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Notice that the above basic control schemes can work together to form a more advanced

control schemes which may achieved better performance, such as feedforward-feedback

control [91], adaptive sliding mode control [82], adaptive back-stepping [57], etc.

1.1.5 Relay feedback techniques for precision motion control

The relay feedback technique has been introduced in control application since 1960s. Al-

though the theoretical studies of relay feedback systems have been made with great leaps

since 1970s, the applications of relay feedback are mainly limited to design of adaptive

controllers [11] and autotuning of PID controllers [10]. The principle behind relay-based

PID autotuning is simple; self-oscillation is generated with relay elements, from which

the system characteristics are inferred and subsequently used to tune the controller.

Recent research tries to use relay feedback systems for modeling of nonlinear hybrid sys-

tems, typically friction-impeded motion control systems, by the same basic principles.

In Figure 1.2, interconnections between precision motion control, system identification

and relay feedback are clearly shown in knowledge hierarchy. These knowledge points

will be reviewed systematically in later chapters.

1.2 Objectives and Challenges

The main objective of this thesis is to enhance the accuracy of the motion control systems

by proposing and identifying the models, including commonly nonlinearities such as

frictions and force ripples efficiently and accurately, with relay feedback approaches.

From above reviews and comparisons of commonly control schemes, PID controls, with
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its simplicity and efficiency, are still the most popular choice of controllers in motion

control system. However, the various nonlinearities limit the accuracy of the motion

control systems, since the conventional PID controllers are not able to handle time-

varying nonlinearities such as stiction, friction or force ripples well.

Although the various advanced control schemes have been developed to overcome these

nonlinear effects to improve the accuracy performance, these so-called “intelligent” con-

trol schemes have common drawbacks of heavy computational load or long-time learn-

ing processes, which may not be suitable for real-time applications. A more practical

choice may be model-based control schemes, i.e., identify the various linear and nonlinear

parameters within an appropriate model first, then apply the model-based feedforward-

feedback (or feedback only) control [94], so that desired closed-loop linear characteristics

are achieved while the nonlinear elements are eliminated. Thus, with this method, the

key steps are to propose efficient models with minimal parameters and then identify the

models parameters in efficient ways. The relay feedback approach, for its simplicity and

light-computational load, is a good candidate. However, due to dissimilarity of linear

and nonlinear systems, there are still great challenges in extending of relay feedback to

nonlinear system identification.

The representative challenges regarding model proposition and model identification in

motion control systems are given below.

Lack of simple, complete and user-friendly data-driven stiction model In in-

dustrial applications, control of valve’s opening and closing motion is commonly seen in
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process control. However, stiction (or stick friction) in control valve is common existing

phenomenon leading to oscillation in control loops, which affects the product quality,

increase energy consumption and accelerates the equipment weariness [105]. Existing

physical models on valve stiction, based on Newton’s 2nd law of motion requires too

many parameters to be known, which increases the difficulty in analysis. The recently

proposed data-driven stiction models for control valves only use simpler, fewer parame-

ters to describe the stiction behaviors. However, the existing models are either incom-

plete, inefficient or tedious to understand. The computer programmers require simple,

rigorous and efficient algorithms to describe such stiction behavior, so that the real-time

applications are achievable.

Inefficient usage of limit cycle information Existing relay-based methods on mod-

eling linear-nonlinear hybrid systems are mainly categorized into time domain based and

frequency domain based approaches. For the time domain approach, current existing

methods based on relay-feedback are mainly two-stage approaches, i.e., first identifying

the parameters in the linear portions with differential inputs, then least-square optimiza-

tions are applied to obtain the models of nonlinear portions. These two-stage approaches

are generally time-consuming and the information of limit cycles has not been fully uti-

lized in the identification process.

Heavy computational load with nonlinear least-square optimization For fre-

quency domain based approaches, the common approaches are by using describing func-
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tion (DF) analysis with harmonic balance conditions. Since this category of approaches

are based on quasi-linear approximations, the existing methods are mainly limited to sim-

ple, one-segment nonlinear models, such as Coulomb or Coulomb-viscous friction models.

For identification of multi-segment and more accurate friction models, no closed-form

identification formulae are available till now, since investigations of DFs of such nonlin-

ear elements usually involve solving of transcendant equations, which are not possible

in symbolic forms. To evade such difficulties, some of the existing methods use multi-

parameter nonlinear optimization with large volumes of data, where the advantages of

relay feedback are totally lost. Furthermore, the reliability of such approach is also a

doubt, since the estimation of parameters using multi-parameter nonlinear optimization

will generally converge to local minimum rather than global one.

Difficulty in modeling asymmetric nonlinearities For modeling of systems in-

volving strong force ripples, the usage of the relay-based methods currently encounters

greater difficulty. Force ripples are generally strong asymmetric, position dependent

nonlinearities [91]. Due to their position depending characteristic, the model obtained

based on one reference position is generally not applicable for another one, thus a fast,

efficient modeling method is highly demanded. Due to its asymmetric properties, the

self-excited oscillations by relay feedback are generally not symmetric as the case in fric-

tion modeling, but with strong bias. Although limit cycles with bias have been applied

in linear system identification, there are still great challenges to use bias limit cycles for

systems with nonlinearity.
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1.3 Contributions

Base on the objectives and challenges lists in the earlier section, the following contribu-

tions have been made in this thesis.

Two-layer binary tree data-driven model for valve stiction A new data-driven

stiction model for valve positioning systems is proposed in this thesis, with two-layer

binary tree structure. This binary tree model has advantage of strict logic and simple

structure, and it has close relationship with its physical counterpart. Thus, the diffi-

culty of understanding and implementation of existing-data driven model is conquered.

The logic behind the new model is carefully explained and illustrated. Simulations on

different typical valve control loops shows the practical appeals of proposed models.

Identifying friction-impended servo-mechanical systems with single relay ex-

periment The limit cycle oscillations arising for a class of linear systems under full

state triple-relays feedback configuration are investigated. Locations of resultant limit

cycles are derived which allow the exact time durations between two consecutive switch-

ings of relays to be determined via numerical computation. The stability of limit cycles

can be verified via the Jacobian of the Poincaré map. In motion control application,

this triple-relays feedback configuration maps directly to a servo mechanical systems

affected by Coulomb friction, under deliberate dual-channel relay (DCR) feedback. A

new method, leveraging on the presented analysis, is thus developed to identify the

dynamical friction parameters of the servo system accurately with only a single relay
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experiment, surpassing existing results. Simulation examples and real-time experiments

on a DC motor platform will show the effectiveness of proposed method.

Four-parameter friction modeling in position-encoded motion control sys-

tems with DCR feedback A recent proposed, two-segment, four-parameter friction

model is able to describe the friction behavior in both low-velocity mode and high-

velocity mode. A new, two-velocity-stage method is proposed to identify this model

using DCR setup under position feedback loop. With describing function approxima-

tion, limit cycle characteristics induced under DCR will be presented, based on which

the selection of relay parameters can be drawn. A systematic set of procedures to derive

all the parameters of the model will be furnished. The proposed modeling method min-

imizes the usage of multi-parameter, nonlinear optimization. The model will be directly

useful in the design of feedback controller and feedforward friction compensator. Sim-

ulations and real-time experiments are demonstrated to verify the effectiveness of this

new method.

Concurrent friction and ripple modeling in servo-mechanical system using

hysteretic relay A new method to identify various linear and nonlinear parameters

in permanent-magnet linear motor, using a hysteretic relay feedback is proposed. To

leverage on the biased limit cycles generated by asymmetric nonlinearities due to force

ripples, the dual-input describing functions are imported. The explicit formulae, derived

from the harmonic balance condition, enable direct computation of model parameters
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with a minimum number of relay experiments. The practical appeal of proposed new

method is verified by simulations and real-time experiments on a tubular permanent

magnet linear motor.

1.4 Organization of Thesis

The thesis is organized as follows: In Chapter 2, with the review and comments of exist-

ing stiction models of motion control valves, a two-layer binary tree data driven model is

proposed for describing sticky valve behavior correctly and efficiently. In Chapter 3, the

relevant literature on the analysis of relay feedback system is reviewed first, and then a

time-domain based relay feedback technique is developed to model the friction-impended

servo-mechanical system by single relay experiment, using information of limit cycles’ lo-

cations. In Chapter 4, the frequency domain approach is selected instead of time-domain

approach, for solving more difficult modeling problems. After reviewing the existing fric-

tion models and friction modeling approach, a two-stage modeling method is developed

to identify two-segment and four-parameter friction model, using DCR feedback. Next,

in Chapter 5, the interest of application shifts to biased limit cycles instead of symmet-

ric limit cycles in previous chapters. Following by reviews on permanent magnet linear

motors and the force ripples arising from their physical design, a hysteretic relay based

modeling technique is proposed to concurrently model friction and force ripples in arbi-

trary reference position by dual-input describing function analysis. Finally, conclusions

and a few suggestions for future works are documented in Chapter 6.
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Chapter 2

Two-Layer Binary Tree Data-Driven

Model for Valve Stiction

2.1 Review of Stiction Models for Control Valves

A control valve is a device that starts, stops or regulates the flow of a fluid by adjusting

the position of a movable part. A control valve requires an actuator that is capable

of positioning the movable part to any value between the two extremes of fully open

and fully closed. Depending on source of power, the actuators of control valves can be

classified into pneumatic, electric and hydraulic types. However, the motion control of

valves is commonly far from precise, mostly due to the commonly encountered stiction

in associated with the control valves. The term, “stiction”, is formed by combination

of “stick” and “friction”. Specially, in control valves, stiction is represented as the force

necessary to be applied to a stem to put the valve in motion. The existence of stiction

will induce system oscillatory, which may further affect the product quality, increase

energy consumption and speed up the equipment weariness. From these points of view,

stiction is highly undesirable in control valves, and a suitable model for description of
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Figure 2.1: Normalized input-output behavior of a sticky valve.

the stiction behavior will greatly help to improve the accuracy of control valves.

2.1.1 Definition of stiction

Many literature have defined stiction in different ways [7] [47] [85] [53] [72] [79]. Based on

careful investigation of experimental data, a new definition of stiction has been proposed

by Choudhury, et al. [27], i.e., “stiction is a property of an element such that its smooth

movement in response to a varying input is preceded by a sudden abrupt jump called

the slip-jump. Slip-jump is expressed as a percentage of the output span. Its origin in a

mechanical system is static friction which exceeds the friction during smooth movement.”

The phase plot of the controller output (Operational Point or OP) versus actual valve

position (Manipulated Variable or MV) of a valve suffering from stiction can be described

as shown in Figure 2.1.

As illustrated in Figure 2.1, if there is no stiction, the valve will move along l0, which is
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linear and crosses the origin. However, since dynamic friction fD exist in the valve, with

the symmetric deadband 2fD, the valve will move along lf in the forward direction, and

it will move along lr in the reverse direction. Additionally, due to the existence of static

friction fS, the stickband J is presented. Thus, the valve may move along the bond line

ABCDEFGH with stick-slip behavior. Since the model is normalized, MV will jump

up (or down) to lf (or lr) for same amount J , after stick is conquered. The deadband

and stickband represent the behavior of the valve when it is static, though the input of

valve keep varying. The presence of slip jump is due to the abrupt increase of kinetic

energy from potential energy stored in the actuator due to high static friction when the

valve starts moving. However, it is difficult to estimate slip jump J from the output of

a overall system (Process Variable or PV) and the controller output (OP) data because

the slip jump in the valve output is filtered by the overall system dynamics. Some simple

relations of parameters can be observed from Figure 2.1.

S = fS + fD, (2.1)

J = fS − fD. (2.2)

where fS is maximum static friction and fD is kinetic friction.

2.1.2 Review of a typical physical model

In earlier years, physical models of valve stiction were adopted, which requires a number

of parameters to be known. In this section, a typical physical model [70] is formulated

for the control valve stiction, so that the relationship directly linked to the practical
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situation can be understood.

For a typical control valve, the simplified version of force balance equation [54], ac-

cording to Newton’s second law, can be written as

Mẍ = Fa + Fr + Ff , (2.3)

where M is the mass of the moving body, x is the relative stem position (PV), Fa = Au

is the force applied by pneumatic actuator where A is the area of diaphragm and u is

valve input signal (OP), Fr = −kx is the spring force where k is the spring constant [27].

The friction model Fs in (2.3), a summarized in [7] can be expressed with the following

piecewise equation,

Ff =







−Fcsgn(ẋ) − ẋFv if ẋ 6= 0

−(Fa + Fr) if ẋ = 0 and |Fa + Fr| ≤ Fs

−Fssgn(Fa + Fr) if ẋ = 0 and |Fa + Fr| > Fs

(2.4)

The first line of (2.4) concerns the the slip state of the valve, where Fc is Coulomb

friction and Fv is viscous friction. The second line is used for determining the static

friction when the valve is stuck, where Fs is the maximum static friction. The third line

represents the situation at the instance of break away. This model has been used for

discussion of limit cycles generated by friction in [73].

The obvious disadvantage with applying the model presented above to a generic valve

is the need to specify a rather large set of parameters. Parameters that need to be

specified are M ,Fs, Fc, Fv, k, A, a total of 6 parameters. Figure 2.2 shows the friction

force characteristics in which the magnitude of the moving friction is smaller than that

of the static friction. The friction force opposes velocity, as in (2.4), thus the force is
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negative when the velocity is positive.

Open-loop test Consider the above stiction model with Fv = 600, M = 1.5, k =

5 × 104, A = 0.05, and different sets of Fs and Fc will be chosen later to investigate

the properties of stiction. Figure 2.3 shows SIMULINK block diagram for open-loop

simulation. The block “Valve” is written in .m file according to (2.4). Since the discrete

solver is used, the exact zero velocity condition in (2.2) seldom occurs. In order to

observe the stick-slip properties of valves in the simulation, the condition is replaced by

|v| < δ, where δ is a small value. Moreover, to ensure that the output follows input in

linear range, a correction factor p is cascaded to the end of the valve position output.

Figure 2.4 shows various patterns, w.r.t. difference choice of Fs and Fc, namely, linear,

deadzone and stiction (only undershoot and no-offset cases). The linear pattern occurs
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Figure 2.3: Open-loop simulation block diagram for physical model.

when Fs = Fc = 0. When Fs = Fc 6= 0, the deadzone pattern can be observed from

MV-OP plot. When Fs > Fc > 0, the undershoot pattern of stiction is presented

since the valve experience a sudden jump when it starts moving, which is different from

deadzone pattern. When Fs > Fc = 0, the stiction without offset is detected since the

output follows input well unless the valve is static. The overshoot pattern of stiction is

practically not present in stick valve, because friction always resists motion.

Closed-loop test The closed-loop test can be applied to the above valve stiction

model cascaded with FOPDT system G(s) = 3e−5s/(5s + 1) under PI control feedback

C(s) = 0.1(s + 5)/s, with a step reference input r(t) = 10U(t), as shown in Figure 2.5.

Figure 2.6 gives the different (non)linear pattern observed from input-output waveforms,

as well as MV-OP plot, in the steady-state. Unlike the forced oscillation of open-loop

case, the oscillations in closed-loop are self-exciting. Since there are integrators in the

physical model, even the deadzone pattern will induce limit cycle [68] [74]. It may not

be easy to distinguish some of the patterns from waveforms in the left column, due to
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(b) Deadzone with Fs = 2000 and Fc = 2000.
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(c) Stiction (undershoot) with Fs = 2000 and Fc = 1000.
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Figure 2.4: Open-loop response pattern of the physical model. Left column: OP / MV

waveforms. Right column: MV-OP plot.
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Figure 2.5: Closed-loop simulation block diagram.

the integral control action and the dynamics of the plant. Meanwhile, the patterns of

MV-OP plot in closed-loop are somehow distorted, they can be viewed as the rotated

versions of their open-loop counterparts. The out-of-phase problem between MV and

OP can be greatly solved by the variable strength integral action PI controller [38].

2.1.3 Review of existing data-driven models

Recently, several data-driven models are proposed, which only use simple parameters to

describe the stiction behavior [21] [27] [43] [52]. However, some of the models are either

incomplete or tedious to understand.

Choudury et al.’s model The data-driven model proposed by Choudhury et al., as

shown in Figure 2.7 [27] [21], uses the stick band S and slip band J as parameters to

describe the above stiction behavior. This model can deal with most cases of stiction.

However, as stated in [43], this model cannot describe the behavior when stiction does

not exist, i.e., when fS = fD = 0. Moreover, if the controller output (OP) changes

direction, according to the model, the output within current instant is set to be stuck

directly. In practice, if the change of OP is large enough in the opposite direction, the

valve may overcome the stickband as well as deadband and slip inversely [21]. The logic
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(b) Deadzone with Fs = 2000 and Fc = 2000.
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(c) Stiction (undershoot) with Fs = 2000 and Fc = 1000.

60 80 100 120 140 160 180 200
2.6

2.8

3

3.2

3.4

3.6

3.8

4

Time (sec)

OP
MV

3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5
2.8

3

3.2

3.4

3.6

3.8

4

OP

M
V

(d) Stiction (no offset) with Fs = 2000 and Fc = 0.

Figure 2.6: Closed-loop response pattern of the physical model. Left column: OP / MV

waveforms. Right column: MV-OP plot.
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u(k)

u(k) > 0

u(k) < 100

∆u(k) = u(k) − u(k − 1)

sgn(∆u(k)) = sgn(∆u(k − 1))

∆u(k) = 0

stop = 1

us = u(k − 1)

y(k) = 0

y(k) = 100

stop = 1

|us − u(k)| < S

y(k) = u(k) − sgn(∆u(k)) ∗ (S − J)/2

|u(k) − us| > J

stop = 0
y(k) = y(k − 1)

Case 1: Lower saturation

Case 2: Upper saturation

Start stick

Update OP when valve is stuck

Case 4: Slip and move

Start slip
Case 3: Stick

Figure 2.7: Choudhury’s stiction model.
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conditions are frequently crossing with each other, making the model be tedious for

understanding and programming too.

Kano et al.’s model The model proposed by Kano et al. [52], as shown in Figure 2.8

removes these shortcomings of above. This model also describes the stiction behavior

via S and J . It memorizes the input when the valve changes the direction and assume

the valve stops, which is in line with Choudhury et al. model. However, an additional

internal variable d is used to memorize the actual direction of valve sliding. However,

the conditions of selection is still too many, and the time taken to determine the valve’s

position and moving status is relatively long.

He et al.’s model and its critical drawbacks He et al. [43] proposes a simplified

data-driven stiction model. Compared to Choudhury et al. model in [27] and Kano

et al. model [52], this model is formulated from a different perspective. It uses the

static friction fS and dynamic friction fD as model parameters, which brings the model

closer to the physical model, rather than the stick band S and slip jump J used in [27]

and [52]. This model uses a temporary variable cum u, the current accumulated force

compensated by friction, which greatly simplifies the algorithm.

However, the model proposed by He et al. can be simplified further. First, sgn(cum u−

fS) = sgn(cum u) if |cum u| > fS. Secondly, the internal variable ur can be simply

replaced by the updated cum u in either branch to reduce the complexity. After simpli-

fication, the model can be re-illustrated in Figure 2.9. Moreover, the original He et al.
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u(k) = 100
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u(k) ≥ 100

u(k) ≤ 0

∆u(k) = u(k) − u(k − 1)

∆u(k)∆u(k − 1) ≤ 0 AND stop = 0

stop = 0

us = u(k − 1)

stop = 1

d = −d −d[u(k) − us] > S

d[u(k) − us] > J

stop = 0

y(k) = u(t) − d(S − J)/2 y(k) = y(k − 1)

Moving in same direction

Tend to change direction

Memorize OP when valve is stuck
Assume stop first

Move in opposite direction

Slip again in the same direction

after stick (with sudden jump)

Case 1: Slip Case 2: Stick

Figure 2.8: Kano’s stiction model.
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cum u(k) = cum u(k − 1) + [u(k) − u(k − 1)]

|cum u(k)| > fS

cum u(k) = sgn(cum u(k)) × fD
uv(k) = uv(k − 1)

uv(k) = u(k) − cum u(k)

Case 1: Slip Case 2: Stick

Figure 2.9: He et al. stiction model after simplification.
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Figure 2.10: Open-loop behavior of He et al. model and Choudhury et al. model

(fS = 0.5, fD = 0.2).
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model has some limitations. Let’s trace the model behavior in the two consecutive in-

stants. As in Figure 2.9, if in current instant k, |cum u(k)| > fS, i.e., the valve overcomes

the static friction and starts moving, then cum u(k) is updated as cum u(k) = ±fD.

In the following instant, if the sampling period is small enough and the input changes

smoothly, then u(k+1) ≈ u(k), so that cum u(k+1) ≈ cum u(k) = ±fD at the starting

of the following instant k + 1. Generally speaking, |fD| < fS, so the valve will certainly

stick in the following instant k + 1, according to He et al. model.

For example, set u(t) = sin(0.1t), fS = 0.5 and fD = 0.2. The open-loop response of

the valve position (MV, or uv(k) in Figure 2.9) corresponding to the control signal (OP

or u(k)) is shown Figure 2.10, w.r.t. He et al. model as well as Choudhury et al. model.

Comparing Figure 2.10(a) with 2.10(b), the MV-OP plot is step-like by He et al. model,

while the plot follows similar paths as in Figure 2.1 by Choudhury et al. model.

Logically, since the valve has two states, stick and slip, there are four possible state

transitions, stick to slip, keep sticking, slip to stick and keep slipping. The main drawback

of He et al. model is that it only covers the first two possible state transitions. In [43],

it is assumed that the static friction affects every valve movement, so that the model is

applicable. However, when the valve keeps slipping, the model becomes inadequate.

2.2 Proposed Two-Layer Binary Tree Model for Valve

Stiction

Based on the review which will reveal the deficiencies and possible improved areas, a

simple, complete valve stiction model with two-layer binary tree logic is proposed in
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Figure 2.12: MV-OP plot of stiction with undershoot pattern.
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Figure 2.13: MV-OP plot of stiction with overshoot pattern.
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Figure 2.14: MV-OP plot of stiction with no offset pattern.

this chapter, as shown in Figure 2.11. This model extends the model proposed by He

et al., which addresses all possible state transitions, as well as different stiction patterns.

Define

u(k) =







1 if ũ(k) ≥ 1;

0 if ũ(k) ≤ 0;

ũ(k) otherwise,

(2.5)

where ũ(k) is the control signal in kth iteration, as degree of output span; while u(k) is

the actual control signal exerted on the valve, taking consideration of saturation effect.

According to Figure 2.11, the model first updates the value of cum u(k), additionally,

the direction of movement d(k) is obtained via sgn(cum u(k)) then, if Stop = 1, the

logic flows to the left branch, which determines the position of the valve if it is stuck in

the previous interval. The algorithm contained in the left branch is identical to He et al.
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model. In other words, He et al. model is part of the complete model being proposed

in this chapter. If cum u(k) is large enough to overcome the static friction fS, the valve

position uv(k) will be the controller output u(k) deducted by dynamic friction fD. The

cum u(k) is updated to be equal to ±fD, since when valve starts slipping, the force

being counteracted by friction is equal to ±fD (the sign depends on the direction of

movement d(k)). Additionally, the valve status flag Stop is updated to be 0 to indicate

that the valve switches to a slipping mode. Otherwise, the valve remains in the previous

position.

When the valve is in a slipping state, the condition to determine the status in the next

instant depends on the sign of fD, since the two pairs {fS, fD} and {S, J} have the

following relationships [52],

fS = (S + J)/2, (2.6)

fD = (S − J)/2. (2.7)

The various stiction patterns corresponding to S and J are discussed in [27]. Note that

fS > 0 since S > 0 and J > 0. The MV-OP pattern corresponding to fD can be

summarized as follows:

• fD > 0 (or S > J). Stiction with undershoot or pure deadzone.

• fD = 0 (or S = J). Stiction with no offset or linear.

• fD < 0 (or S < J). Stiction with overshoot.
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Pure deadzone and linear pattern can be seen as special cases of stiction pattern with

fS = fD > 0 and fS = fD = 0 accordingly. In what follows, the major three patterns:

stiction with undershoot, no offset and overshoot are discussed separately.

The MV-OP plot of stiction with undershoot pattern is shown in Figure 2.12. The

shading area in the MV-OP plane shows the region where |cum u| > fD. From this

figure, it can be observed that, if the valve is currently slipping, it will keep on slipping

as long as |cum u| > fD. Otherwise, it will change to stick mode. When the valve keeps

on slipping, cum u is updated to be d(k)×fD, while the actual valve displacement is the

offset between input u and updated cum u. When the valve changes to a stick mode,

the valve remains in the previous position and the status parameter Stop is set to be 1.

Figure 2.13 gives the MV-OP plot of stiction with overshoot pattern. Similar to the

undershoot case, the slipping valve will continue slipping as long as |cum u| falls into the

shading region, i.e., |cum u| < −fD. In this case, the cum u is updated by d(k)×(−fD).

The valve position is determined by the same equation as that in the undershoot pattern,

in both cases of keeping slipping and starting sticking.

The stiction without offset pattern is somewhat special. Figure 2.14 shows the MV-OP

plot in this case. The slipping valve will keep on slipping when the direction flag d has

the same sign over two consecutive sampling intervals. Since in the slipping mode, there

is no dynamic friction or fD = 0, the cum u is reset to be zero and the actual valve

position uv = u. The condition for determining the valve position when it changes from

slip to stick is identical to previous two cases.
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Combining the above three cases, the position of the valve when it is currently in

a slipping mode can be summarized in the right branch of Figure 2.11. A complete,

two-layer binary tree logic stiction model has been set up.

2.3 Simulation Study with the Proposed Stiction

Model

2.3.1 Open-loop simulation

To verify the proposed model, the simulation results of open-loop MV-OP plots of the

proposed models, under sinusoidal input, w.r.t. different fS and fD values are shown

in Figure 2.15, which is identical to the simulation results of Kano et al. data-driven

model [21] [52]. The simple data-driven model also shows similar behaviors with its

physical counterpart [21] [27]. Moreover, the model can cover all the five patterns

relating to the stiction, especially the linear pattern, which is not covered in [27].

2.3.2 Closed-loop simulation on a valve-controlled FOPDT sys-

tem

As shown in Figure 2.5, to analyze the closed-loop behavior of FOPDT systems with

sticky pneumatic control valve, the PI controller, data-driven model of valve and system

model G(s), form a negative feedback loop, under reference input of unit step r(t) =

U(t), where C(s) = 0.1(s + 5)/s, G(s) = 3e−5s/(5s + 1). The simulation results of

controller output (OP) versus valve position (MV) are given in Figure 2.16, while their

results of OP versus PV are given in Figure 2.17. The presence of stiction of the data-

driven model causes the limit cycle of PV in steady state, similar to the situation with

36



80 100 120 140 160 180 200

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

OP
MV

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

OP

M
V

(a) Linear with fS = 0 and fD = 0.
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(b) Deadzone with fS = 0.25 and fD = 0.25.
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(c) Stiction (undershoot) with fS = 0.35 and fD = 0.15.
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(d) Stiction (no offset) with fS = 0.5 and fD = 0.

80 100 120 140 160 180 200
−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

OP
MV

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

OP

M
V

(e) Stiction (overshoot) with fS = 0.4 and fD = −0.1.

Figure 2.15: Open-loop response pattern of the new model with u(t) = sin(0.1t). Left

column: OP / MV waveforms. Right column: MV-OP plot.
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(b) Deadzone with fS = 0.25 and fD = 0.25.
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(c) Stiction (undershoot) with fS = 0.35 and fD = 0.15.
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(d) Stiction (no offset) with fS = 0.5 and fD = 0.
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(e) Stiction (overshoot) with fS = 0.4 and fD = −0.1.

Figure 2.16: Closed-loop response pattern of the new model in a valve-controlled FOPDT

system. Left column: OP / MV waveforms. Right column: MV-OP plot.
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(e) Stiction (overshoot) with fS = 0.4 and fD = −0.1.

Figure 2.17: Closed-loop response pattern of the new model in a valve-controlled FOPDT

system. Left column: OP / PV waveforms. Right column: PV-OP plot.
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the physical model. Compared with the physical model in [21], [27], the most obvious

difference is that the deadzone model does not excite limit cycles [68], since there is

no integrator in the data-driven model. The PV-OP plots are also listed in Figure

2.17. Except the linear and deadzone cases, one can hardly tells the difference between

the three categories of the stiction pattern from the elliptical PV-OP plot with sharp

turn around. Generally speaking, the PV-OP plot is not a reliable diagnostic for valve

faults, since the PV-OP plot ignores some nonlinearities due to low-pass properties of

the system. Thus, if the valve position data is available, the use of MV-OP plot is

encouraged. Otherwise, some qualitative stiction detection method may be used to

analyze the stiction behavior [26].

2.3.3 Closed-loop simulation on a valve-controlled integral sys-

tem

In this part, the closed-loop simulation is performed on a valve-controlled integral system

G(s) = 1/s with same stiction model, controller and reference input as the concentration

loop. The results are shown in Figure 2.18 and 2.19. Compared with the earlier case of

FOPDT system, it is observed that the limit cycle exists in the deadzone nonlinearity

since there is at least one integrator in the overall system. The MV-OP plots clearly show

various cases of valve nonlinearities, while the PV-OP plots show elliptical loops with

sharp turns around. Similarly, the PV-OP plots are not reliable for valve diagnostics in

level loops.
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(d) Stiction (no offset) with fS = 0.5 and fD = 0.
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(e) Stiction (overshoot) with fS = 0.4 and fD = −0.1.

Figure 2.18: Closed-loop response pattern of the new model in a valve-controlled integral

system. Left column: OP / MV waveforms. Right column: MV-OP plot.
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(a) Linear with fS = 0 and fD = 0.
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(b) Deadzone with fS = 0.25 and fD = 0.25.
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(c) Stiction (undershoot) with fS = 0.35 and fD = 0.15.
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(d) Stiction (no offset) with fS = 0.5 and fD = 0.
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(e) Stiction (overshoot) with fS = 0.4 and fD = −0.1.

Figure 2.19: Closed-loop response pattern of the new model in a valve-controlled integral

system. Left column: OP / PV waveforms. Right column: PV-OP plot.
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2.4 Conclusion

In this chapter, several stiction models of control valve positioning systems proposed

by earlier researchers are first reviewed and compared. Based on this, a simple, two-

layer binary tree logic structure data-driven stiction model is proposed. It includes He

et al. incomplete model as a part of the new model. It can describe various stiction

patterns with only two external parameters, i.e., static friction fS and dynamic friction

fD, which are closely related to the physical model. The open-loop and closed-loop

simulation realized on different system models shows the correctness and effectiveness

of the proposed stiction model. The data-driven stiction model can be used to replace

the physical valve model for simulation and design to evaluate the performance of valve

control systems in the presence of stiction.
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Chapter 3

Friction-Impeded System Modeling

by Analysis of a Class of Full State

Relay Feedback Systems in Time

Domain

3.1 Introduction

Relay control systems differ from continuous and sampled-data ones by the fact that they

contain discontinuous relay elements. Due to their simplicity, quick action and consider-

able power amplification, the applications have been widely expanded to various domains

of technology. In order to explain the motivations and illustrate the contributions more

clearly, the literature reviews on analysis of relay feedback system are given first.

Relay(s) Plant
r e u y

_
+

Figure 3.1: The simplest form of RFS.
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Figure 3.2: Variations of relay elements. (a) Relay without hysteresis. (b) Relay with

hysteresis. (c) Relay with deadzone.

3.1.1 Review of relay feedback systems

Application of relay apparatus can be tracked back to 1950s, when it is used as amplifiers.

In 1960s, relay feedback were firstly applied to adaptive control [98], an example is the

adaptive missile roll control system proposed in [36]. The simplest form of relay feedback

system is shown in Figure 3.1. The most important application of relay feedback system

(RFS) is design of auto-tuners for PID controllers [9] [10] [105], where continuous cycling

of controlled variable is generated from the relay experiment and the important model

information can be directly extracted from it. Compared with the conventional Ziegler-

Nicols tuning, the sustained oscillation generated in the relay experiment is in a control

manner and a very efficient way, i.e. a one-shot solution. The simplicity of the tuning

mechanism makes relay based auto-tuner a great success. The various of commonly used

single relay elements are shown in Figure 3.2, including single-valued relay, hysteresis

relay and deadzone relay. To increase the degree-of-freedom of tuning, dual-channel

relay (DCR) feedback is developed in [35].

However, compared with other subfields of control engineering, theoretical develop-
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ment of RFSs is far behind the practical applications. Phase-plane analysis is the clas-

sical technique which is applicable to investigate the existence and stability of limit

cycles [42] of second-order systems. The analysis of RFS using describing function (DF)

approximation has received great attention since 1960s [12] [36]. The DF is applicable to

a rough estimation of location of limit cycles with harmonics balance conditions [83] and

it has been extended to analyze the stability of limit cycles, as in [3]. Control auto-tuners

have been developed based on the identification of ultimate gain and frequency with a

DF approach, resulting in an inaccurate estimation of critical point under some circum-

stance. In order to overcome the above weaknesses, the Tsypkin locus is introduced

by describing the nonlinearities with infinite series of frequency components [98]. The

Tsypkin locus is further applied to investigate the force oscillations and subharmonic

oscillations in simple first-order-plus-dead-time (FOPDT) systems [60].

On the other hand, the time-domain methods for investigation of RFSs are based on

the analysis of differential equations (DEs) with discontinuous terms [34]. These special

kinds of DEs may exhibit such phenomena as non-uniqueness of solutions, chattering,

fast switching, sliding modes, bifurcations and chaos. The existence of solutions had

been studies for systems having input-output forms in [37]. It is known that relay

feedback systems often possess limit cycles. However, establishing the exact conditions

for existence of limit cycles only limits to certain kinds of RFSs till today. The stability

of limit cycles is another important issue since most applications of RFSs are based

on stable limit cycle oscillations. The elegant criteria for the local stability of limit
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cycles are investigated in [8] [63] by perturbations of the Poincare map. In [39], a

method to compute the bound of local stability is given. The limit cycle stability for

more complicated patterns such as sliding motions is further investigated in [51]. If

the system starts from arbitrary set point, the RFS will be driven to converge to the

periodic motions, then the RFS has the global stability of limit cycle. The study of the

global stability of RFS with two switchings per period is given in [40]. The complete

discussion of hysteresis relay feedback of certain linear systems, including of FOPDT

and second-order type-1 systems are discussed in [61] [100] [104].

3.1.2 Motivations and novelty of new method

In recent years, the relay feedback approach has also been extended beyond tuning

of controllers to the identification of commonly encountered nonlinearities in practical

systems, such as friction [7] [15] [23] [92]. The properties of limit cycle oscillations

generated due to friction are further investigated in [66] [73]. In [23] [55] [92], friction

models are identified based on the DF analysis. A two-relay configuration is used in [15],

where inner and outer relays switch asynchronously, to generate oscillations based on

which a Coulomb friction model is identified. However, this approach requires open-

loop and closed-loop two-phase identification with multiple sets of experiment data. Step

response analysis is used in their works along with recursive least square for identification

of the model parameters, while the characteristics of relay switchings have not been fully

utilized for system modeling.

For systems involving multiple relays, there remain open issues to address and resolve,
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including switching conditions, locations and stability of limit cycles under specific forms

of multiple relays feedback. In this chapter, a class of linear systems under a triple-relay

feedback will be analyzed. The locations and the stability of limit cycles arising from this

system will be discussed in Section 3.2. This class of systems relates directly to servo-

mechanical system operating with Coulomb friction under Dual-Channel Relay (DCR)

feedback [35] [92]. Thus, the analysis results are leveraged on to fulfill an application to

identify the friction parameter as well as system dynamics via limit cycle analysis in the

time-domain. In this new method proposed, by observation of critical switching points

in limit cycle oscillation, it is able to numerically solve all the system model parameters

within just one single relay experiment data. In addition, it releases the requirement of

having a sinusoidal-like output signal associated with DF-based identification method

as in [23] [55] [92]. Simulation examples and real-time experiments show the practical

appeal of the proposed methods.

3.2 Triple-Relay Feedback System

The configuration of triple-relay feedback system is shown in Figure 3.3. The linear

system is essentially a third-order system comprising of a first-order portion ẏ = αy+βu,

in series with two integrators. Three feedback relays RA, RB and RC are connected to

each state of the system. This configuration relates to a typical servomechanical system

experiencing Coulomb friction, under deliberate DCR feedback as will be shown in [92].

Set x1 = y, x2 =
∫ t

0
(x1) dt, x3 =

∫ t

0
(x2) dt. Under triple-relay feedback, the effective
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Figure 3.3: System under triple-relay feedback apparatus: standard form.

control signal u is governed by the following equation,

u(t) = −h1sgn(x1) − h2sgn(x2) − h3sgn(x3). (3.1)

By defining the augmented state vector x = [x3, x2, x1]
T, the augmented state-space

form of the linear portion of the system can be represented as

ẋ = Ax + Bu, (3.2)

x1 = C1x, (3.3)

x2 = C2x, (3.4)

x3 = C3x, (3.5)
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where

A =





0 1 0

0 0 1

0 0 α



 , (3.6)

B =





0

0

β



 , (3.7)

C1 =
[

0 0 1
]

. (3.8)

C2 =
[

0 1 0
]

, (3.9)

C3 =
[

1 0 0
]

. (3.10)

Meanwhile, note that x2 = ẋ3 = C3ẋ = C3Ax+C3Bu = C3Ax. Similarly, x1 = C1A
2x.

Thus, C2 = C3A, and C1 = C3A
2.

In the ensuing sections, the switching conditions, locations and stability of limit cycles

arising from the configuration of Figure 3.3 will be analyzed. These are fundamental

issues which need to be addressed to better facilitate the subsequent application to

system modeling.

3.2.1 Locations of limit cycles in triple-relay feedback systems

The study of the limit cycle oscillations arising from the triple-relay feedback system of

Figure 3.3 will be restricted to the case of simple oscillation, which is defined as one

comprising of switching due to a relay is followed by one and only one switching from

the other relays before its next switch. This restriction is also usually referred to as the

condition of no additional switching [98].

Define the switching plane where the outputs of the three relays change as S1 := {x :
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Figure 3.4: Sequence of switching arising from the triple-relay feedback.

51



C1x = 0}, S2 := {x : C2x = 0}, and S3 := {x : C3x = 0}. Since x1 leads x2 by a

phase of π/2 and x2 leads x3 by the same amount, relays RA, RB and RC will switch

sequentially within a half period of periodic oscillations. Thus, the assumption of simple

oscillations is reasonable when the system goes into steady state oscillation. Under this

condition, since the control u arises from three branches of switching sources, and every

branch contributes two possible values, there are six possible states during the steady

state oscillation.

The following theorem determines the location of limit cycles in the triple-relay feed-

back system.

Theorem 3.1. For the augmented state-space system in the form (3.2)∼(3.8) under

feedback (3.1), if there exists an odd symmetric and periodic trajectory with period T =

2l∗ = 2(l1 + l2 + l3), and the trajectory traverses planes S3, S1 and S2 at t = 0, t = l1,

and t = l1 + l2 accordingly with initial condition x1(0
+) < 0, x2(0

+) < 0 and x3(0
+) < 0,

then l1, l2 and l3 are given by

f1(l1, l2, l3) = C1(I + Φ∗)−1(Γ1u1 − Φ1Φ3Γ2u2 − Φ1Γ3u3) = 0, (3.11)

f2(l1, l2, l3) = C2(I + Φ∗)−1(Φ2Γ1u1 + Γ2u2 − Φ1Φ2Γ3u3) = 0, (3.12)

f3(l1, l2, l3) = C3(I + Φ∗)−1(Φ2Φ3Γ1u1 + Φ3Γ2u2 + Γ3u3) = 0. (3.13)
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subject to I + Φ∗ being non-singular, where

Φj = eAlj ∀ j = 1, 2, 3, (3.14)

Γj =

∫ lj

0

eAτB dτ ∀ j = 1, 2, 3, (3.15)

Φ∗ =

3
∏

i=1

Φi. (3.16)

The control uj ∀ j = 1, 2, 3 at the three stages within half of the period, are respectively

given by

u1 = h1 + h2 + h3, (3.17)

u2 = −h1 + h2 + h3, (3.18)

u3 = −h1 − h2 + h3. (3.19)

Furthermore, the solution x(t) must satisfy the following conditions within the time

interval (0, 2l∗):

x1(t) = C1x(t)

{

< 0 for 0 < t < l1 and l1 + l∗ < t < 2l∗

> 0 for l1 < t < l1 + l∗
, (3.20)

x2(t) = C2x(t)

{

< 0 for 0 < t < l2 and l2 + l∗ < t < 2l∗

> 0 for l2 < t < l2 + l∗
, (3.21)

x3(t) = C3x(t)

{

< 0 for 0 < t < l∗

> 0 for l∗ < t < 2l∗
. (3.22)

Proof of Theorem 3.1. Note that the trajectory will traverse S3 at t = l1+ l2+ l3 again by

symmetry. Define xi,j,k as the value of xi at the kth switching instant of the jth period of

oscillation. Then, under the condition of no additional switching, the sequential chart of

switching instants and variation of relative parameters is depicted in Figure 3.4. In this
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figure, for simplicity, x1 < 0, x2 < 0 and x3 < 0 are simply abbreviated as (−,−,−). In

this way, the state variable x for different switching states is listed for ease of analysis.

The traversing points xi,j,k in system (3.2)∼(3.8) are related to xi,j+1,k by the same

function P , w.r.t. the same k:

xi,j+1,k = P (xi,j,k) . (3.23)

In fact, P is the Poincaré Map [42] on the switching plane S1 (or S2 or S3). In the

case of periodic oscillations, the traversing point x∗ of the trajectory with S1 is fixed.

Furthermore, if the periodic oscillation is odd symmetric, x1,j,m = −x1,j,m+3, ∀m =

1, 2, 3. Similar properties exist for other switching planes S2 and S3.

The solution x(t) for 0 < t ≤ l1 with control u1 and initial condition x(0) is given

by x(t) = eAtx(0) +
∫ t

0
eA(t−τ)B dτu1. For simplicity, set x(0) = a, x(l1) = b, and

x(l1 + l2) = c. Thus, at t = l1, b = eAl1a+
∫ l1

0
eAτB dτu1 which can be simply written as

b = Φ1a + Γ1u1. (3.24)

Inferring from the symmetric property of oscillation, x(l∗) = −x(0) = −a. Then,

considering the time intervals l1 < t < l1 + l2, and l1 + l2 < t < l∗, it follows that

c = Φ2b + Γ2u2, (3.25)

−a = Φ3c + Γ3u3, (3.26)

where Φj , Γj , uj ∀j = 1, 2, 3 are defined in (3.14)∼(3.19). Note that Φ1, Φ2 and Φ3

commutes. (3.17)∼(3.19) can be obtained from Figure 3.4 under the simple oscillation

condition.
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Solving the equation set (3.24)∼(3.26) yields

a = −(I + Φ∗)−1(Φ2Φ3Γ1u1 + Φ3Γ2u2 + Γ3u3), (3.27)

b = (I + Φ∗)−1(Γ1u1 − Φ1Φ3Γ2u2 − Φ1Γ3u3), (3.28)

c = (I + Φ∗)−1(Φ2Γ1u1 + Γ2u2 − Φ1Φ2Γ3u3). (3.29)

Conditions x1(l1) = 0, x2(l1 + l2) = 0 and x3(l
∗) = 0 will give rise to the equations

(3.11)∼(3.13). Equations (3.20)∼(3.22) can be obtained from Figure 3.4, which shows

the change of signs of key state variables at the switching instants. The above theorem

is given to allow numerical computation of the duration l1, l2 and l3 of the three stages

of half period of oscillation, so that the locations of the limit cycles can be determined.

Compared to DF analysis which can only approximate the period of the resultant limit

cycle, Theorem 3.1 is able to provide the exact time duration between two consecutive

switchings in the triple-relay feedback system.

3.2.2 Local stability of limit cycles in triple-relay feedback sys-

tems

In practical application, only the stable limit cycles are useful for autotuning and system

modeling since they need to be immune to random noise and perturbation. In Section

3.2.1, the limit cycles have been located for a class of relay feedback system. For further

investigating their local stability, the Jacobian W 2 of the Poincaré map P is imported.

Physically, it shows the variation of states after one period of oscillation w.r.t. the

perturbed initial states. For the case of odd symmetric oscillation, the Jacobian W
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w.r.t. half of the period suffices for the analysis, while the Jacobian w.r.t. the full

period is given by W 2.

The following theorem gives the expression for W and the condition for local stability

of limit cycles.

Theorem 3.2. Under condition of no additional switching, the Jacobian W 2 of the

Poincaré map P is given by

W =

(

I −
v3C3

C3v3

)

Φ3

(

I −
v2C2

C2v2

)

Φ2

(

I −
v1C1

C1v1

)

Φ1, (3.30)

where v1 = Ab + Bu1, v2 = Ac + Bu2, and v3 = −Aa + Bu3, with various notations in

Theorem 3.1 are inherited. The limit cycle is locally stable iff all the eigenvalues of W

are inside the unit circle.

Proof : Consider a trajectory with initial condition x(0) = a. If the initial value a varies

within the switching plane S3 by δa, i.e., C3(a + δa) = 0. If x(t) reaches the switching

plane S1 at time l1 and the control signal u(t) = u1 for t ∈ (0, l1), it yields

x(l1) = eAl1(a + δa) +

∫ l1

0

eA(l1−τ)Bu1 dτ. (3.31)

Set F (l1) = eAl1(a + δa), G(l1) =
∫ l1

0
eA(l1−τ)Bu1 dτ , so that x(l1) = F (l1) + G(l1).

If x(t) reaches the switching plane S1 at time l1 + δl1, i.e., some perturbations exist

due to the variation of initial conditions,

x(l1 + δl1) = eA(l1+ δl1)(a + δa) +

∫ l1+ δl1

0

eA(l1+ δl1−τ)Bu1 dτ

= F (l1 + δl1) + G(l1 + δl1). (3.32)
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The following properties are useful for further analysis:

∫ t

0

eA(t−τ) dτ =

∫ t

0

eAτ dτ, (3.33)

A

∫ t

0

eAτ dτ = eAt − I, (3.34)

AeAt = eAtA. (3.35)

Using a first-order Taylor series expansion, together with (3.33)∼(3.35), it yields

F (l1 + δl1) = F (l1) +
∂

∂l1
F (l1) δl1 + O(δ2)

= eAl1(a + δa) + eAl1A δl1(a + δa) + O(δ2)

= Φ1(I + A δl1)(a + δa) + O(δ2).

G(l1 + δl1) = G(l1) +
∂

∂l1
G(l1) δl1 + O(δ2)

= Γ1u1 +
∂

∂l1

(
∫ l1

0

eAτ dτBu1

)

δl1 + O(δ2)

= Γ1u1 +
(

eAl1 − I
)

Bu1 δl1 + Bu1 δl1 + O(δ2)

= (I + A δl1)Γ1u1 + Bu1 δl1 + O(δ2).

Thus,

x(l1 + δl1) = Φ1(I + A δl1)(a + δa) + (I + A δl1)Γ1u1 + Bu1 δl1 + O(δ2)

= b + Φ1 δa + (Ab + Bu1) δl1 + O(δ2). (3.36)

Set v1 = ẋ(l1) = Ab + Bu1, which is the velocity of the trajectory at time l1. Since

x(l1 + δl1) is on the switching plane S1, C1x(l1 + δl1) = 0. By ignoring the higher order

terms O(δ2),

C1Φ1 δa + C1v1 δl1 = 0.
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Note that the condition

C1v1 > 0 (3.37)

must hold to satisfy the switching direction condition if there is a symmetric limit cycle.

Hence,

δl1 = −
C1Φ1

C1v1
δa. (3.38)

Substituting (3.38) into (3.36), it follows that

x(l1 + δl1) = b +

(

I −
v1C1

C1v1

)

Φ1 δa + O(δa2). (3.39)

Similarly, consider the time interval t ∈ (l1, l1+l2), the trajectory starts at x(l1) = b on

S1 and eventually reaches x(l1+l2) = c on S2, under the control torque u2. Similar to the

previous interval, the final state x(l1+l2) is investigated with perturbation corresponding

to the initial condition b with a small variation δb, yielding

x(l1 + δl1 + l2 + δl2) = c +

(

I −
v2C2

C2v2

)

Φ2 δb + O(δb2), (3.40)

where v2 = ẋ(l1 + l2) = Ac + Bu2. The switching direction is given by

C2v2 > 0. (3.41)

In the same way, within the time interval t ∈ (l1 + l2, l1 + l2 + l3), the trajectory starts

at x(l1 + l2) = c on S2 and eventually reaches x(l1 + l2 + l3) = −a on S3, under the

control torque u3. Thus,

x(l1 + δl1 + l2 + δl2 + l3 + δl3) = −a +

(

I −
v3C3

C3v3

)

Φ3 δc + O(δc2), (3.42)
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where v3 = ẋ(l1 + l2 + l3) = −Aa + Bu3. The switching direction is given by

C3v3 > 0. (3.43)

From (3.39) and (3.40),

δb =

(

I −
v1C2

C2v1

)

Φ1 δa, (3.44)

δc =

(

I −
v2C3

C3v2

)

Φ2 δb. (3.45)

Substitute (3.44)∼(3.45) into (3.42), it follows

x(l1 + δl1 + l2 + δl2 + l3 + δl3) = −a + W δa + O(δ2), (3.46)

where the Jacobian W w.r.t. half period of oscillation is given by

W =

(

I −
v3C3

C3v3

)

Φ3

(

I −
v2C2

C2v2

)

Φ2

(

I −
v1C1

C1v1

)

Φ1.

Similar to the analysis in [8], the limit cycle is stable if and only if |λ(W )| < 1.

Remark 3.1. One eigenvalue of the matrix (I − v1C1/C1v1)Φ1 is zero with right eigen-

vector Φ−1
1 v1.

This states that the perturbation in the velocity of the state at time l1 + δl1 due to δa

is removed. Thus, it guarantees that the trajectory is just traversing the switching plane

S1 at t = l1 + δl1. Similar properties can be extended to the matrices (I −v2C2/C2v2)Φ2

and (I − v3C3/C3v3)Φ3.

For convenience, set W1 = (I − v1C1/C1v1)Φ1, W2 = (I − v2C2/C2v2)Φ2 and W3 =

(I − v3C3/C3v3)Φ3. Hence, W = W3W2W1, and the following remarks can be stated.
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Remark 3.2. |λ(W )| < 1 does not imply that |λ(W1)|, |λ(W2)|, |λ(W3)| are all within

the unit circle.

Remark 3.2 states that although the condition of having eigenvalues of W1, W2 and W3

within the unit circle is sufficient for stability of limit cycles, it can be hardly satisfied

in most cases. In other words, even if some (or all) eigenvalues of W1, W2 or W3 are

outside the unit circle, all eigenvalues of W may still within the unit circle. Physically,

the triple-relay feedback system can be seen as a switching system. The stable of the

overall trajectory need not be granted by the stability of individual segment.

Remark 3.3. λ(W3W2W1) = λ(W1W3W2) = λ(W2W3W1).

Remark 3.3 states that the result of stability of limit cycle is independent of initial

point on the trajectory of a certain limit cycle.

A systematic set of procedures has thus been realized for examining the stability of

limit cycles arising in the three-relay feedback systems, and they are summarized as

follows:

1. Find l1, l2 and l3 by Theorem 3.1, check the conditions of (3.20)∼(3.22).

2. Compute v1, v2, v3 and check the conditions of (3.37), (3.41) and (3.43).

3. Compute W and verify |λ(W )| < 1 by Theorem 3.2.

3.2.3 Simulation and discussions

Example 3.1. Consider a system ẋ = −2x + 20u, under the triple-relay feedback as in

Figure 3.3, where h1 = 1, h2 = 5 and h3 = 3.
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The augmented system can be represented as ẋ = Ax + Bu, and [x1, x2, x3]
T =

[C1, C2, C3]
Tx, where

A =





0 1 0

0 0 1

0 0 −2



 , B =





0

0

20



 ,

C3 =
[

1 0 0
]

, C2 =
[

0 1 0
]

, C3 =
[

0 0 1
]

.

Numerical calculations with Theorem 3.1 gives only one set of positive solutions l1 =

0.0147, l2 = 0.2777 and l3 = 0.3022 for (3.11)∼(3.13). Thus, the limit cycle has period

T = 2(l1 + l2 + l3) = 1.1892. Furthermore,

a =





0

−4.5029

−2.6903



 , b =





−0.0667

−4.5226

0



 , c =





−0.8854

0

29.8282



 ,

and

C3v3 = 4.5029, C2v2 = 29.8282, C1v1 = 180.0097.

The Jacobian of the Poincaré map can be computed from Theorem 3.2 as

W =





0 0 0

−0.5975 −0.7249 −0.0250

14.5198 1.2994 0.3715



 .

The eigenvalues of W are 0, −0.6944 and 0.3410. It can be concluded that the limit

cycle is locally stable with period T = 1.1892 according to Theorem 3.2. In addition,

although W1, W2 and W3 all have at least one eigenvalue outside the unit circle, all the

eigenvalues of W are still within the unit circle.

The trajectory of the limit cycle and its projections on the x1−x2, x2−x3 and x1−x3

planes are shown in Figure 3.5.

61



−50

0

50

−5

0

5
−1

−0.5

0

0.5

1

 

x
1

Limit cycle trajactroy w.r.t. x
1
 ,  x

2
 and  x

3

x
2

 

x 3

−30 −20 −10 0 10 20 30
−5

0

5

Limit cycle trajectory: x
1
 − x

2
 plane projection

x
1

x 2

−5 0 5
−1

−0.5

0

0.5

1

Limit cycle trajectory: x
2
 − x

3
 plane projection

x
2

x 3

−30 −20 −10 0 10 20 30
−1

−0.5

0

0.5

1

Limit cycle trajectory: x
1
 − x

3
 plane projection

x
1

x 3

Figure 3.5: Trajectory of state variables in the limit cycle.
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Figure 3.6: Servo-mechanical system with friction under DCR feedback.

3.3 System Modeling using Limit Cycle’s Locations

The configuration of Figure 1 is akin to a servo-mechanical system experiencing Coulomb

friction under deliberate dual-channel relay (DCR) feedback . The DCR is first proposed

in [35], and it is used for the identification of a friction model within a typical servo-

mechanical system configuration [92] via relay experiments. It consists of a parallel

intentional relay construct acting on the linear portion of the dynamic system. The

second feedback relay RC, which is cascaded to an integrator, provides a second degree

of freedom to adjust the frequency of oscillation and ensure that the phase lag of the

oscillation does not exceed π.

3.3.1 Modeling methodology

As shown in Figure 3.6, a typical second order linear positioning system

ẋ1 = αx1 + βu; (3.47)

ẋ2 = x1 (3.48)
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experiencing the effect of the Coulomb friction f = h1sgn(x1), under the intentional

DCR feedback apparatus [35] [92]

v = −h2sgn(x2) − h3sgn(x3). (3.49)

where ẋ3 = x2, is equivalent to the three-relay feedback system which is discussed in the

previous section. The actual control signal u fed to the linear system is

u = v − f = −h1sgn(x1) − h2sgn(x2) − h3sgn(x3). (3.50)

The describing function based modeling technique is applied in [92] by simply assuming

the position signal has a sinusoidal form, an assumption which ceases to be valid when

better accuracy is required. In this proposed new method, instead of using the overall

period of fundamental harmonic, the switching behavior of limit cycle will be leveraged to

identify the system parameters based on the location of resultant limit cycles according

to Theorem 3.1.

In the position feedback system under study, the position signal x2 and the input signal

v from the DCR are measurable. Under the condition of simple oscillation, without loss

of generality, select the instant when the DCR switches to the maximum value as the

starting time t0. Inferring from the nature of integration, when x2 (position) reaches

the maximum value, the time instant then can be denoted as t1 for relay RA with

x1 (velocity) as input to switch from a positive to negative state. Furthermore, the

switching instants t2 and t3 of RB and RC are directly observed from v. In this way, the

durations between two consecutive switchings l1 = t1 − t0, l2 = t2 − t1 and l3 = t3 − t2 in
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the limit cycle are known. By Theorem 3.1, with just one relay experiment, it is possible

to estimate the model parameters, i.e., h1, α and β by numerically solving the set of

equations (3.11)∼(3.13). For convenience, (3.11)∼(3.13) can be rewritten as

f1(θ, ϕ) = C1 b(θ, ϕ) = 0; (3.51)

f2(θ, ϕ) = C2 c(θ, ϕ) = 0; (3.52)

f3(θ, ϕ) = C3 a(θ, ϕ) = 0, (3.53)

where a, b, c are the state vectors when the trajectory traverses the switching planes

as defined in (3.27)∼(3.29), θ = [α, β, h1]
T is the identifying parameter vector, and

ϕ = [l1, l2, l3, h2, h3]
T is the experiment data vector.

However, due to the nonlinear nature of the equation set, it is useful to use additional

characteristics of the oscillations to increase the robustness of the parameter estimation.

To this end, it may be noted that when the trajectory traverses the switching plane S1 at

time t1, not only the switching condition x1 = C1b = 0 is satisfied, but also the position

x2 is measurable denoted as x2,b = C2b. Similarly, when the trajectory traverses S3 at

time t3, an additional condition x2,a = −C2a holds. Hence, another two equations are

given

f4(θ, ϕ) = C2 b(θ, ϕ) − x2,b = 0; (3.54)

f5(θ, ϕ) = −C2 a(θ, ϕ) − x2,a = 0. (3.55)

Now, numerically solve θ from (3.51)∼(3.55) are achieved using the Gauss-Newton

iterative method [50], with an initial guess of parameters θ0 = [α0, β0, h1,0]
T.

65



For the vector function F = [f1, f2, f3, f4, f5]
T , the Jacobian Jθ of F , w.r.t. θ at θ = θi

at the ith iteration, is defined as

Jθ,i =







∂f1

∂α

∂f1

∂β

∂f1

∂h1

...
...

...
∂f5

∂α

∂f5

∂β

∂f5

∂h1

.







∣

∣

∣

∣

∣

∣

∣

θ=θi

(3.56)

The incremental ∆θi at ith iteration, is solvable from

JT
θ,i Jθ,i ∆θi = −Jθ,i Fi. (3.57)

where Fi is the value of function vector at the ith iterative based on current guess of

parameters’ value. The parameter vector is updated as

θi+1 = θi + ∆θi. (3.58)

The iterative search for the parameters terminates when |∆θi| < ε, where ε is a small

positive value. The function ‘lsqnonlin’ in MATLAB optimization toolbox provides a

ready implementation of Gauss-Newton algorithm [67]. To avoid the situation of the

gradient-based optimization indulging in a local minimum, different sets of initial guess

values may be used.

This approach is a closed-loop approach based on position feedback information only.

Thus, it has advantage of low cost and high noise immunity in practical applications. In

addition, the time-domain based method releases the constraint to have sinusoidal-like

output waveform in DF based method [23] [92]. Instead, the approach only require the

switching information from arbitrary stable limit cycles. Thus, it is able to identify all

the model parameters efficiently with a single relay experiment.
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3.3.2 Simulation and discussion

Example 3.2. Consider the second-order positioning system ẍ = αẋ + βu, under the

effect of friction simulated via the following models

1. f = fcsgn(ẋ),

2. f = (fs − fc) exp(−(ẋ/vs)
2) + fcsgn(ẋ) + fvẋ.

fs, fc and fv denote the static, Coulomb and viscous friction coefficient accordingly, vs

denotes the Stricbeck velocity. The proposed approach in this chapter is amenable to

the first friction model comprising of only a Coulomb friction component. The second

friction model includes other friction characteristics and it is included in the simulation

study to test the robustness of this estimation method. The parameters used in the

two friction models are: fs = 0.6, fc = 0.5, fv = 0.05, vs = 0.5, and the linear portion

parameters are set as α = −4, β = 40. Through the simulation, the efficiency and

accuracy of estimating the model parameters (Coulomb friction fc (i.e. h1) as well as

linear system parameters α and β) using DCR apparatus will be verified as shown in

Figure 3.6.

The Coulomb-friction only model is first simulated, and the gains of DCR are selected

as h2 = 0.8, h3 = 1. The steady state oscillation resulting from the relay feedback is

shown in Figure 3.7. By Theorem 3.1, the starting time t0 corresponds to the instant

of relay control signal v switching to its maximum amplitude. Although the velocity is

not assumed to be measurable, the RA switching instant t1 can still be tracked from the
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Figure 3.7: Limit cycle with the first friction model. Top: Output signal x. Mid:

DCR signal v. Bottom: Actual input signal u fed to linear portion (not measurable in

practice).
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time the position signal reaches its minimum. The switching instants t2, t3 of RB and

RC are detectable from the relay control signal v. Thus, the respective time durations

required for modeling are obtained as l1 = t1 − t0 = 0.0119, l2 = t2 − t1 = 0.2097,

l3 = t3 − t2 = 0.2324, x2,b = −0.8817, x2,a = 0.8752. By (3.51)∼(3.58), starting

from initial guess of θ0 = [−8, 80, 0.8]T , the parameters are identified as α̂ = −4.0081,

β̂ = 39.9558 and f̂c = 0.4978 after just five iterations, which are very close to their true

values, as shown in Figure 3.8.

Next, the second friction model is used for simulation. Figure 3.9 shows the simulation

results of selected waveforms in the system during steady state oscillation, with the same

gains of relays as h2 = 0.8 and h3 = 1. l1, l2 and l3 are now observed as 0.0084, 0.1406

and 0.1560. The additional position information x2,b, x2,a for modeling are obtained as

−0.3925 and 0.3902 respectively. As shown in Figure 3.10, by using the Gauss-Newton

iterative method, starting from initial guess of θ0 = [−8, 80, 0.8]T , after five iterations,

the parameters are identified as α̂ = −6.2520, β̂ = 39.3470 and f̂c = 0.4730. β̂ and f̂c

are close to the actual values. The apparent deviation from its true value of α̂ is not

due to inaccuracy arising from the identification process. The model structure used in

this chapter does not include a viscous friction component. Thus, the equivalent effect

of viscous friction fvẋsimulated is absorbed into the time constant of the dynamics of

the servo system, so that the model is able to account for the viscous friction dynamics

via a modified linear portion. It can be verified that this is indeed true by checking if

α̂ ≈ α − βfv
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. Indeed, α̂ is close to −6 consistent with the simulation results.

3.4 Real-Time Experiment on a DC Motor

To illustrate the effectiveness of proposed method, real-time experiments are carried out

on a LJ Electronic MS15 DC Motor platform, as shown in Figure 3.11. The DC Motor

accepts the analog input voltage to generate different rotation speeds. In the proposed

method, only the position signal is required, which is provided by the on-shaft poten-

tiometer. With PC-based National Instrument (NI) Data Acquisition (DAQ) Card and

LabVIEW virtual instrument platform, the front panel or user interface is integrated

with the background program into a single development platform. MATLAB optimiza-

tion toolbox is also used for data analysis [67]. Figure 3.12 further illustrates the block

diagram of the experiment setup. For conducting the experiment, a virtual instrument

(VI) program is built using LabVIEW based on the DCR feedback configuration of Fig-

ure 3.6. Note that the potentiometer in this DC motor is attached to the slave shaft,

rather than the master one, and the ratio of angular velocity between them are 1 : 9.

The gains of the DCR are selected according to the properties of DCR gains in [23],

such that the angular displacement of the slave shaft does not exceed ±2π, for correctly

detecting the position signal.

3.4.1 Parameter estimation

By selecting h2 = 0.5 and h3 = 0.8; the experiment results of limit cycles of DC motor

position signal under DCR feedback is shown in Figure 3.13, with a sampling period
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Figure 3.13: Limit cycle in the DC motor experiment by the DCR feedback h2 = 0.5,

h3 = 0.8. Solid line: Waveform of relay signal. Dotted line: waveform of DC motor

position.

of 10ms. The various data required for modeling are extracted from the oscillation as

l1 = 0.025, l2 = 0.270, l3 = 0.330, x2,a = 1.250 and x2,c = −1.402. Starting from

θ0 = [−3, 30, 0.3]T , by Gauss-Newton method, the system parameters are identified as

α = −6.3935, β = 52.4523, h1 = 0.1456 after just four iterations, as illustrated in Figure

3.14.

3.4.2 Model verification via feedback compensation

With the model identified, a full-state feedback linearization controller is designed to

verify the adequacy of model parameters thus obtained. Due to the placement of velocity

and position sensor, a gain of 9 exists between velocity and position signals obtained, as

shown in Figure 3.12. Thus, in the velocity loop model, ẍ = αẋ + β̄u, where β̄ = β/9,

and u = v − f , f is the friction force.

With the identified model α , β , fc , in order to achieved the tracking of the trajectory
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Figure 3.15: Design of feedback controller with compensation.

profile xd, set w = αẋ + β̄ [v − fcsgn(ẋ)], or

v = β̄−1(w − αẋ) + fcsgn(ẋ), (3.59)

so that ẍ ≈ w. Define the tracking error as e(t) = x(t) − xd(t), so that ė = ẋ − ẋd and

ë = ẍ − ẍd . If w is is defined as

w = ẍd − k1e − k2ė, (3.60)

Then the following closed-loop error dynamics is achieved

ë + k2ė + k1e = 0. (3.61)

For comparison purpose, define the controller without the friction compensator as

v = β̄−1(w − αẋ), (3.62)
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Figure 3.16: Tracking error with model-based feedback controller. Solid line: with

friction compensation. Dashed line: without friction compensation.

while w is defined as in (3.60).

In the experiment, the desired time-varying trajectory is defined as xd(t) = 4.5 sin(0.2πt).

By applying the control scheme in (3.59) and (3.60), with the parameters obtained from

identification α̂ = −6.39, ˆ̄β = β̂/9 = 5.823, f̂c = 0.1456 and select k1 = 5.5 and

k2 = 14.5. The control scheme without friction compensation as in (3.60) and (3.62),

with the same parameters values, is also investigated for comparison purposes. The

tracking error and the control signals are shown in Figure 3.15 and 3.16 accordingly.

From these two figure, it is able to observe that, by applying similar control efforts,

with the model-based friction compensation scheme, the root-mean-square (RMS) of

the tracking error is drastically reduced from 0.1881 to 0.0613, using the model param-

eters obtained in the previous phase. The remaining error can be attributed mainly to

unmodeled dynamics of the DC motor.
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3.5 Conclusion

A systematic analysis of the properties of limit cycles arising in a class of commonly

encountered systems under full-state triple-relay feedback is done in this chapter. The

locations of limit cycles can be determined by the numerical method proposed, which

gives the exact duration between two consecutive relay switchings. The local stability

of limit cycles can be further assessed using the Jacobian of Poincaré Map. The results

are applied to modeling of servo-mechanical systems experiencing Coulomb friction as

the configuration considered can be mapped to an equivalent case of such systems under

DCR feedback. Simulation and real-time experiment have verified the applicability of

the new method.
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Chapter 4

Identification of Four-Parameter

Friction Model with Dual-Channel

Relay Feedback

4.1 Introduction

The designs and applications of motion control systems have been closely related to

investigation of friction between contact surfaces of machine’s subparts. Thus, this

chapter starts from brief review of the the history of science of friction, or tribology.

4.1.1 Review of friction and friction models

Friction is the force resisting the relative lateral (tangential) motion of solid service.

Humans has tried to make use of friction between two rough stones to lay fires since

stone ages. In ancient Egypt, workers learned to put heavy stones on wooden sledges so

that easier transportation of these stones is achieved due to much reduced friction during

rolling. The usage of friction was even applied to design a complicated loom machine

for figure weaving in silk handicraft industry in the Ming Dynasty of China (1368-

1644 A.D.) [84]. The classical understanding of friction was continually investigated
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in [29] [6] [28] et al., their findings are summarized in the following laws:

1. The force of friction is directly proportional to the applied load.

2. The force of friction is independent of the apparent area of contact.

3. Kinetic friction is independent of sliding velocity.

The laws above describe the behaviors of so-called Coulomb friction. The relay-type

Column friction model in Figure 4.1(a) is a simple, but efficient one to describe friction

behavior when the motion is non-stuck and in medium speed. In order to describe

friction behavior under different moving condition, various other friction models are

developed. For the motion with high speed, the viscous friction needs to be considered,

thus the Coulomb+viscous friction model is set up, as shown in Figure 4.1(b). For

motion involving sticking behavior, the ideal of static friction is introduced, forming the

most common used friction model in Engineering: the static+Coulomb+viscous friction

model [69] [77], as shown in Figure 4.1(c). For example, this friction model is used for

setting up physical model of valve positioning system, where strong skip-slip behavior

is observed, as shown in Chapter 2, as well as in [27].

The increasing demands on the precision engineering boost the modeling of friction

in an more accurate way. As the machine accelerates from zero velocity, the friction

will first drop from maximum static friction to Coulomb friction, and then increase due

to the viscousity, forming the negative-viscous+Coulomb+viscous friction model [17], as

shown in Figure 4.1(d). This model may be approximated as a four-parameter segmental
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viscous + Coulomb + viscous: Form B.

hard-nonlinearity type model [55], as shown in Figure 4.1(e), which is easier for further

analysis by decomposition.

The above models approximate the friction force as a function of steady state velocity.

For more accurate investigation of friction behavior, various the dynamic friction mod-

els, such as LuGre Model and Maxwell Slip Model are proposed [31] [87] [58] [5] [32] and

discussed [44] [45] [78] [48], which consists the internal variables for describing the memo-

rial properties of friction force. However, till now, it is still difficult to use these models

for compensation since the state variables of the models are generally not measurable

while the identification of the model parameters remains a challenge.
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In the theoretical investigation of property of friction, the describing function analysis

approximate the friction as a quasi-linear element, from which the limit cycle amplitude

and frequency can be estimated [12]. For a more accurate analysis in time domain, the

concepts of set-valved theorems and differential equations with discontinuous right hand

side are imported, so that solutions of ordinary differential equations can be extended

to this kind of discontinued nonlinearity [34].

4.1.2 Review of existing friction modeling techniques

As mentioned in Chapter 3, applications of relay feedback techniques to automatic tun-

ing of controllers have been widely explored since the 1980s [10]. Today, many industrial

controllers are equipped with such automatic tuning features in different forms [94]. The

basis of such an approach is simple and efficient; a sustained oscillation of a controlled

variable is first excited through relay feedback, from which the characteristics of the

system can be inferred and subsequently used to tune the controller. Besides identifying

and tuning the linear plants [100], new applications have arisen where relay feedback is

used to identify nonlinear models since 1990s. In [16], [92], [95] and Chapter 3 of this

thesis, approaches using relay feedback for the identification of simplified friction models

for servo-mechanical systems are presented. However, the simplified models considered

in these works comprise only at most of either or both the Coulomb and viscous fric-

tion components only. When the servo-mechanical system operates bi-directionally, or

it operates over a wide range of velocity including low velocities, these simplified friction

models can become rather inadequate when the other friction components, such as static
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friction and the Stribeck effect, are not considered and yet they become dominant at low

velocities [24]. Friction compensation via inadequate models can still incur large track-

ing errors. In recent years, different techniques, either black-box or white-box based, are

proposed for precise friction modeling. In [97], black-box friction modeling via Radial-

Based Function (RBF) neural networks is applied to piezoelectric motor control. In [96],

the RBF network is designed in parallel with a iterative learning control (ILC), modeling

the nonlinear part while iteratively adjusting the reference signal, hence the error conver-

gence rate is greatly improved. White-box modeling approaches, such as those using the

frequency response for dynamic friction modeling [45] and relay-based method for two-

segment, four-parameter friction modeling with a velocity feedback loop [55], are also

proposed in recent years. In [25], binary multi-frequency signal is imported for open-loop

identification of friction in frequency domain. In [45], the frequency response function

technique is applied to identify the dynamic friction model by augmenting it with the

plant, linearizing and simplifying it to a lower dimension model. However, some parame-

ters are still coupled after identification, which may result in difficulties for model-based

compensation. The applicability is also limited by the requirement of large volume of

experiment data and prerequisite of open-loop stability. Theoretical research on multiple

relay feedback systems has extended application of RFSs from single relay structures to

multiple ones [62] [63]. For identifying friction models with more than one parameter,

Dual-Channel Relay (DCR) feedback systems have been proposed [35] [92] [95] so that

additional degree-of-freedom is enjoyed.
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4.1.3 Motivations and novelty of new approach

The four-parameter friction model as in Figure 4.1(e) is proposed and identified in [55]

with DCR feedback apparatus. However, explicit formulas to extract these parameters

efficiently from the data collected from finite sets of relay experiments are not available,

yet such efficient ways of computing model parameters from the data obtained with

relay feedback experiments are trademarks of this highly popular approach in process

control. Instead, a nonlinear-least-square (NLS) method is used in their method to

estimate the four parameters. However, the estimated parameters can be significantly

different from the actual parameters, the extent of which greatly depends on the initial

conditions. Moreover, the approach requires extensive data to yield results, and in

addition, the approach is based on a velocity feedback loop and thus, it inherits the

usual problem of noise sensitivity when the velocity measurements have to be observed

from the position signal. To overcome this problem, the low-pass filter is used, which

increases the complexity of their identification method.

In the new approach, the same four-parameter model of [55] is used. However, the

velocity feedback used in [55] is replaced by the position feedback, thus eliminating

the need to have an additional filter. Furthermore, the new approach is formulated to

circumvent the problem and remove the necessity to search for the multiple parameters

simultaneously in the optimization process. Instead, a systematic approach is adopted

to run the relay experiments with the servo-mechanical system operating first under a

low velocity mode, and subsequently, a high velocity mode. In this way, a set of explicit
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formulas derived based only on describing function analysis are obtained to extract the

parameters very efficiently from data. Only the boundary lubrication velocity is obtained

through a single parameter optimization based on the same set of data available from

the same experiments. As the bounds are known and there is only a single parameter

variation in the optimization process, the difficulties with [55] do not exist in the method.

The properties of the DCR apparatus will be analyzed and presented in the method,

and based on these properties, proper selection of the relay amplitudes is done to yield

adequate oscillations necessary in each phase of the procedures. Based on the system

model obtained, a control scheme of incorporating a PID feedback controller with a

feed-forward friction compensator is developed and demonstrated to give better tracking

performance. All the results are supported by simulation and real-time experiment.

4.2 System Model

The dynamics of a servo-mechanical system is described using a nonlinear mathematical

model:

u(t) = Keẋ + Ri(t) + Ldi(t)/dt, (4.1)

f(t) = Kf i(t), (4.2)

f(t) = mẍ(t) + f̄load(t) + f̄nl(t), (4.3)

where u(t) and i(t) are the time-varying motor terminal voltage and armature current,

respectively; x(t) is the motor position; f(t) and f̄load are the developed force and the

applied load force respectively, f̄nl is nonlinearity affecting the developed force. In the
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Table 4.1: Parameters of the linear motor.

Parameters Physical meaning Units

Kf Force constant N/Amp

R Resistance Ohms

Ke Back EMF vol/m/sec

L Armature inductance mh

m Mass of moving part Kg

servo-mechanical system concerned in this chapter, friction force f̄fric and the remaining

small and unaccounted dynamics f̄res are presented. Thus,

f̄nl = f̄fric + f̄res. (4.4)

Other parameters are described in Table 4.1.

Since the electrical time constant is much smaller than the mechanical one, the tran-

sient delay due to the electrical response is ignored. The following equivalent model is

obtained after simplification

ẍ = (aẋ + u − ffric − fload − fres)/b, (4.5)

where a = −Ke, b = mR/Kf , ffric = Rf̄fric/Kf , fload = Rf̄load/Kf , and fres = Rf̄res/Kf .

Let ũ = u− ffric − fload − fres, τ = −b/a, and K = −1/a. The transfer function of the

linear portion of the servo-mechanical system is shown to be

Gp(s) = X(s)/Ũ(s) = K/ [s(τs + 1)] . (4.6)

The friction force is usually modeled as an odd nonlinearity with different types of

friction components. The complexity and required accuracy of the model mainly depends
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Figure 4.2: Four-parameters friction model.

on the application domain. When the system operates essentially in the high-velocity

mode, a two-parameters friction model, which takes into account the Coulomb friction fc

and viscous friction fv [7], [92] is adequate enough. However, when the system operates

in the low-velocity or a bi-directional mode, a more accurate and elaborate model, which

considers the static friction fs, the Coulomb friction fc, viscous friction fv as well as the

Stribeck effect, will become necessary [7], [55].

The generalized friction force f , discussed in the method, is a summation of friction

force ffric and loading force fload. If the loading force is dependent of the direction of

motion, fload is described as fload = flsgn(ẋ). The generalized four-parameter friction

model as shown in Figure 4.2 is expressed as

f =

{

f1sgn(ẋ) if |ẋ| < δ,

[f2 + f3(|ẋ| − δ)] sgn(ẋ) if |ẋ| ≥ δ,
(4.7)

where f1 is the generalized maximum static friction, f2 is generalized Coulomb friction,
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f3 is associated with the viscosity constant and δ is the lubrication boundary velocity

(LBV), where f1 = fs + fl, f2 = fc + fl, f3 = fv.

4.3 DCR Feedback System

The DCR feedback structure, as shown in Figure 4.3(a), has been used for the iden-

tification of friction model as well as the parameters of the linear dynamical part of

a servo-mechanical system [35], [92]. The configuration of DCR has been discussed in

Chapter 3.

For the convenience of further discussion, an equivalent circuit is shown in Figure

4.3(b) which segregates the full feedback system into a linear portion and a nonlinear

portion. The linear portion contains the system dynamics and DC gain, while the

nonlinear portion includes the actual frictional and load forces SR, as well as the two

intentional relays FR1 and FR2 in use. The Describing Function (DF) of the equivalent

relay (NER) is simply the sum of the individual DFs due to the feedback relays (NFR1),

(NFR2) and the inherent system relay (NSR), i.e.,

NER = NFR1 + NFR2 + NSR, (4.8)

where NFR1(A) = 4h1/(πA), NFR2(A) = −4jh2/(πA). Similar to [55], the nonlinear

friction element in the four-parameter friction model of Figure 4.2 is approximated with

quasi-linear elements by using the following DFs [36], [83], as shown in Figure 4.4

NSR(A, ω) = NA(A) + NB(A, ω) − NC(A, ω), (4.9)
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Figure 4.3: The DCR apparatus. (a) Original Setup. (b) Equivalent system.
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where

NA(A) = 4jf1/(πA), (4.10)

NB(A, ω) =















0 , ωA < δ

2jf3ω

π



cos−1

(

δ

ωA

)

−
δ

ωA

√

1 −

(

δ

ωA

)2


 , ωA ≥ δ

(4.11)

NC(A, ω) =











0 , ωA < δ

4j(f1 − f2)

πA

√

1 −

(

δ

ωA

)2

, ωA ≥ δ
(4.12)

Remark 4.1. The DFs (NB and NC) are frequency dependent, compared to those in [55],

since the inherent relay due to friction is pre-cascaded with a differentiator. This arises

because position feedback is used in the method, instead of the velocity feedback used

in [55]. ♦

Remark 4.2. The DFs (NB and NC) are piecewise continuous, and ωA is an approxi-

mation of the velocity amplitude. This is reasonable the DF analysis assumes a sinusoidal

input x(t) = A sin(ωt) which, after differentiation and before input to the relay element,

becomes ẋ(t) = ωA cos(ωt). ♦

4.4 Limit Cycles in the DCR Feedback System

To propose new identification method, in this section, some properties of limit cycles

induced in this DCR feedback system are investigated.

Property 4.1. For the DCR system in Figure 4.3(a), if a limit cycle exists, its ampli-

tude A(h1, h2) will decrease (or increase) with an increase in h1 (or h2); the oscillation
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Figure 4.5: Location of limit cycles under DCR feedback.

frequency ω(h1, h2) will increase (or decrease) with an increase in h1 (or h2). ♦

Proof of Property 4.1: Two separate cases, corresponding to ωA < δ and ωA ≥ δ, will

be discussed.

1) When ωA < δ, from the friction model in (4.7), the nonlinear model is approximated

as a simple relay nonlinearity. The DF of the equivalent relay is now simplified to

NER(A) = 4h1/(πA) − 4jh2/(πA) + 4jf1/(πA). (4.13)

The frequency response of the linear portion of the system is

Gp(jω) = K/ [jω(jωτ + 1)] . (4.14)

As shown in Figure 4.5, by describing function analysis, the sustained oscillation occurs

when

Gp(jω) = −1/NER(A), (4.15)
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with the point P as the location of limit cycle. Substitute (4.13) and (4.14) into (4.15),

it follows that

4h1/(πA) + 4j(f1 − h2)/(πA) = ω2τ/K − jω/K. (4.16)

Comparing the real part and imaginary part yields

ω = h1/[τ(h2 − f1)]. (4.17)

A = 4Kτ(h2 − f1)
2/(πh1). (4.18)

From (4.17) and (4.18), it is observed that when h1 increases, ω will increase and A will

decrease; when h2 increases, ω will decrease and A will increase.

2) When ωA > δ, the DF of nonlinear portion NER(A, ω) is expressed as

NER(A, ω) = 4h1/(πA) − 4jh2/(πA) + NSR(A, ω), (4.19)

where NSR(A) = NA(A) + NB(A) − NC(A), and

NA(A) = 4jf1/(πA),

NB(A) = 2jf3ω/π
[

cos−1 (δ/ωA) − δ

√

1 − (δ/(ωA))2/(ωA)
]

,

NC(A) = 4j(f1 − f2)

√

1 − (δ/(ωA))2/(πA).

It is difficult to solve Gp(jω) = −1/NER(A) here, since the function is transcenden-

tal and a closed-form solution is not available. Thus, the DF approximation technique

is applied to develop an approximate expansion of the exact DF, so that the prob-

lem becomes analytical. Using the approximation formulas proposed in [36], when the

odd-nonlinearity y(u) is pre-cascaded with an differentiator, it follows that the DF is
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approximated by

N(A, ω) ≈ j
2

3A

[

y (Aω) + y

(

Aω

2

)]

. (4.20)

By (4.20)

NA(A) ≈ 4jf1/(3A), (4.21)

NB(A, ω) ≈ jf3 (ω − 4δ/(3A)) , (4.22)

NC(A, ω) ≈ 4j(f1 − f2)/(3A). (4.23)

NER1(A) ≈ 4h1/(3A), (4.24)

NER2(A) ≈ −4jh2/(3A), (4.25)

and

NER(A, ω) = NER1(A) + NER2(A) + (NA(A) + NB(A, ω) − NC(A, ω)). (4.26)

Substitute (4.21)∼(4.25) into (4.26), and applying (4.16), yields

ω = h1(f3K + 1)/ [τ(h2 − f0)] . (4.27)

A = pKτ(h2 − f0)
2/

[

h1(f3K + 1)2
]

. (4.28)

where f0 = f2 − f3δ, p = 4/π ≈ 4/3. Note that it needs h2 − f0 > 0 to hold to excite

a limit cycle oscillation (see Property 4.3). From (4.27), ω will increase if h1 increases,

or h2 decreases. From (4.28), when h1 increases, A will decrease; when h2 increases, A

will increase. �

Property 4.1 discusses the limit cycle properties within the regions Av < δ and Av ≥ δ.

However, it does not reflect the changes in limit cycle properties when Av crosses δ. This
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phenomenon will be illustrated in Property 4.4.

Property 4.2. Under the constraints of a describing function analysis, the velocity

amplitude will increase with h2, but it is invariant with h1. ♦

Proof of Property 4.2: Using a describing function analysis, Av ≈ ωA. Two cases,

ωA < δ and ωA ≥ δ will be discussed accordingly.

1) When ωA < δ, from (4.17) and (4.18), the velocity amplitude is expressed as

ωA = K(h2 − f1). (4.29)

From (4.29), Av will increase (or decrease) if h2 increases (or decreases), but Av is not

affected much by varying h1.

2) When ωA ≥ δ, from (4.17)∼(4.18),

ωA = h1K
2τp/ω. (4.30)

From (4.30) and (4.27), it follows that

ωA = ph1K/ω = p(h2 − f0)K/[τ(f3K + 1)]. (4.31)

From (4.31), it is noted that ωA is not affected much by h1, but it increases with h2. �

Property 4.1 and 4.2 are summarized in Table 4.2 for quick reference.

Property 4.3. For the system with DCR structure as in Figure 4.3(a), under a describ-

ing function analysis, a necessary condition of existence of the limit cycle is h2 > f1. ♦
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Table 4.2: Change of limit cycle via tuning of relay gains.

Relay gains A ω Av

h1 ր ց ր =

h2 ր ր ց ր

Proof of Property 4.3: Two cases, ωA < δ and ωA ≥ δ will be discussed accordingly.

1) When ωA < δ, from (4.16), since A, ω, τ and K are all positive, it is necessary for

h2 > f1 to hold for the imaginary part of LHS to be negative.

2) When ωA ≥ δ, from (4.21)∼(4.26),

4h2/(3A) − 4f2/(3A) + 4f3δ/(3A) = ω/K + f3ω > 0, (4.32)

yielding

h2 > f2 − f3δ = f0. (4.33)

Note that f1 > f2 > f0 physically. However, this necessary condition when ωA ≥ δ is

too conservative and it may be tightened.

From above analysis, when ωA < δ, h2 should be larger than f1 to excite the limit cycle.

Meanwhile, from Property 4.2, the velocity amplitude Av ≈ ωA increases monotonically

w.r.t. h2. Thus, when ωA ≥ δ, h2 should still be larger than f1. Thus, h2 > f1 is a

tighter necessary condition within the whole velocity span. �

Property 4.3 provides a simple guideline for tuning the DCR gains to attain a sustained

limit cycle oscillation. i.e., if the choice of h2 does not excite the limit cycle, h2 is

increased till the limit cycle appears.
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Property 4.4. Assume the initial values of h1 and h2 result in Av < δ in steady state.

When h2 increases so that Av > δ, the amplitude of oscillation A will increase abruptly

while the frequency of oscillation ω will reduce abruptly. ♦

Proof of Property 4.4: Suppose h1 is fixed, and h2 is increased such that ωA → δ−

and the limit cycle is stable. Next, h2 increases by a small increment ∆, which results

in ωA > δ. From (4.17) and (4.18), the ratio of the frequencies of limit cycle after and

before the variation is

lim
∆→0

w2/w1 = (1 + f3K) lim
∆→0

(h2 − f1)
2/(h2 + ∆ − f0)

2. (4.34)

Note that when Aω → δ−, from (4.29),

h2 = δ/K + f1. (4.35)

Substituting (4.35) into (4.34) will yield

lim
∆→0

w2/w1 = (1 + f3K)δK−1/(δK−1 + f1 − f2 + f3δ)

< (1 + f3K)δK−1/(δK−1 + f3δ) = 1. (4.36)

This means ω will reduce abruptly with small variation of h2 when ωA crosses δ.

Similarly, from (4.18) and (4.28), the ratio of amplitudes of limit cycle after and before

the small increase in h2

lim
∆→0

A2/A1 = (1 + f3K)−2 lim
∆→0

(h2 + ∆ − f0)
2/(h2 − f1)

2. (4.37)
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Substituting (4.35) into (4.37), it follows that

lim
∆→0

A2/A1 =
[

(δK−1 + f1 − f2 + f3δ)/((1 + f3K)δK−1)
]2

>
[

(δK−1 + f3δ)/((1 + f3K)δK−1)
]2

= 1. (4.38)

This means A will increase abruptly with a small variation of h2 when ωA crosses δ. �

Property 4.4 is rational physically, since when velocity exceeds δ, the friction abruptly

decreases and the torque increases abruptly, so that the system has larger displacement

vibration in this case compared with that when ωA < δ. This property provides a

simple way to check whether the gains of DCR keeps the amplitude of velocity below δ

at steady state.

4.5 Four-parameter Friction Modeling using DCR

Feedback

The proposed procedure to yield the system model from relay feedback experiments can

be deemed to comprise of two phases.

4.5.1 Low-velocity mode: Static friction identification

As discussed in the previous section, if the amplitude of velocity is kept below δ, (i.e.,

ωA < δ holds), the DF of the friction model can be simplified as NSR(A) = 4jf1/(πA),

which is frequency independent. Thus, it is possible to estimate the generalized static

friction model if ωA < δ.

In order to identify K, τ , and f1, two relay experiments are to be conducted with the

system operating in low-velocity mode with ωA < δ. The amplitudes and frequencies of
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limit cycles are A1, A2 and ω1, ω2 accordingly, and the gains of relays are represented

as h11, h21, h12 and h22 accordingly, where hij denotes the gain of the ith relay during

the jth experiment. Following the procedures (4.13)∼(4.15), it follows that

K = π(ω2A2 − ω1A1)/[4(h22 − h21)], (4.39)

f1 = (h21ω2A2 − h22ω1A1)/(ω2A2 − ω1A1). (4.40)

Since there are four equations but only three unknowns, two equations are given to

compute τ . An averaging approach is used, so that

τl = 2K
[

h11/(A1ω
2
1) + h12/(A2ω

2
2)

]

/π, (4.41)

where τl is the time constant of the linear dynamics of the system estimated in this first

phase, with the system operating in a low velocity mode.

It is efficient to estimate the three parameters explicitly via (4.39)∼(4.41). However,

the estimation is based on the assumption that ωA < δ.

From a practical application viewpoint, there are two other considerations, apart from

meeting the velocity requirement. First, it is noted that the frequency of oscillation ω

should not be too large so as to reduce the sensitivity to noise and the need to use a

higher sampling frequency. Secondly, the amplitude A of the output signal should not be

too small to maintain an adequate signal-to-noise ratio (SNR). Property 4.2 shows that

to meet the low velocity requirement, h2 can be chosen to be relatively small. However,

Property 4.1 shows that a reduced h2 will increase the oscillation frequency and reduce

the amplitude of position signals; both of these phenomenons may cause difficulties in a
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practical application. However, a smaller h1 can be chosen to cushion these effects, since

with a smaller h1, the amplitude of position signal can be increased and the frequency

of oscillation can be decreased, while still maintaining the same velocity, according to

Property 4.2. Properties 4.3 and 4.4 provide guidelines on the choice of gains to ensure

that the limit cycle exists with Av < δ.

In summary, systematic set of procedures to select appropriate relay gains in the low-

velocity experiments, from the properties investigated in Section 4.4, are prescribed as

following:

1. Select a small enough h2 to ensure Av < δ, by Property 4.2.

2. Select a small h1 to reduce ω and increase A while maintain small Av and an

adequate SNR, by Property 4.1.

One may run this first phase of the relay experiments to operate the servomechanical

system at as low a speed as sustainable and subsequently verify if the assumption holds

after δ is obtained (Section 4.5.3).

4.5.2 High-velocity mode: Coulomb and viscous friction iden-

tification

When a servo-mechanical system operates in the high velocity mode, the dominant

friction components influencing the motion are the Coulomb and viscous friction com-

ponents. From Figure 4.2, the two-parameters friction model has been used as a good

approximation of the four-parameters model. The second phase of the experiment will
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aim to extract the two parameters of this model. The intersection f0 of line l2 and the

f -axis is computed as f0 = f2 − δf3. Thus, the friction model is expressed as

f = [f0 + f3|ẋ|] sgn (ẋ) . (4.42)

Once f0 and f3 are determined, the remaining parameters f2 and δ are related by f2 =

f3δ + f0.

Similar to the procedures depicted in the last section, the DF of the equivalent relay

(NER) is simply the sum of the individual DFs due to the feedback relays (NFR1),

(NFR2) and the inherent system relay (NSR), i.e., NER = NFR1 + NFR2 + NSR, where

NFR1(A) = 4h1/(πA), NFR2(A) = −4jh2/(πA), NSR(A, ω) = j (4f0/πA + ωf3). Thus,

NER(A, ω) = 4h1/(πA) + j [4(f0 − h2)/(πA) + ωf3] . (4.43)

Under relay feedback, the amplitude and oscillating frequency of the resultant limit

cycle is approximately given by the solution to (4.15). By varying h1 and/or h2, two re-

lay experiments are conducted, yielding three explicit formulas from which the unknown

time constant τ , generalized Coulomb friction f0 and viscous friction f3 are computed,

since the static gain K has already been estimated during the first phase of the experi-

ment.
[

f0

f3

]

=

[

4/(πA1) ω1

4/(πA2) ω2

]−1 [

4h21/(πA1) − ω1/K

4h22/(πA2) − ω2/K

]

, (4.44)

where hij denotes the gain of the ith relay in the jth experiment.

From the same data set, the time constant τh of the linear dynamics canis also esti-
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mated in the high-velocity mode.

τh = 2K
[

h11/(A1ω
2
1) + h21/(A2ω

2
2)

]

/π. (4.45)

Then, an average value of the time constant τ is computed from τl and τh as τ =

(τl + τh)/2.

It should be noted that an additional step can be taken to improve the estimation

accuracy associated with this describing function approach which assumes a sinusoidal

input. The velocity waveform is not sinusoidal generally but closer to an repeated

isosceles triangle waveform in this mode. As shown in Figure 4.6, assuming the amplitude

of the position signal is A, and approximating the velocity signal as a repeating isosceles

triangle waveform, the amplitude of velocity signal Av signal is more accurately expressed

as

Av ≈ 4ωA/π. (4.46)

For this reason, a correction factor of 4/π can be multiplied to the second term in NSR,

to improve the estimation accuracy of DF, yielding N̄SR(A, ω) = j [4f0/(πA) + 4ωf3/π] .

Thus, N̄ER(A, ω) = 4h1/(πA) + j [4(f0 − h2)/(πA) + 4ωf3/π] . With this correction fac-

tor, f0 and f3 can be identified as

[

f0

f3

]

=

[

4/(πA1) 4ω1/π

4/(πA2) 4ω2/π

]−1 [

4h21/(πA1) − ω1/K

4h22/(πA2) − ω2/K

]

. (4.47)

After the second phase, two parameters f2 and δ are left, but f2 is computed from

f2 = f0 + δf3, after δ is obtained through an optimization process in Section 4.5.3.
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ẋ

ẋ
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4.5.3 Estimating the boundary lubrication velocity by opti-

mization

The boundary lubrication velocity δ is estimated via an offline optimization process.

This will be a single parameter optimization process, since the other friction parameters

f0, f1 and f3 are now known and f2 is a function of δ only too, i.e., f2 = f0 + δf3.

The harmonic balance condition is rewritten as NER(A, ω) = −1/Gp(jω), since the

reciprocal of Gp(jω) is more easily computed than NER(A, ω). The objective is to locate

a parameter δ̂ which will minimize a performance index

J(δ̂) =

m
∑

n=1

{

[

Re(NER(An, ωn, δ̂)) + Re (1/Gp(jωn))
]2

+
[

Im(NER(An, ωn, δ̂)) + Im (1/Gp(jωn))
]2

}

, (4.48)

where Gp and NER are expressed as in (4.14) and (4.19), m is the total number of

data sets from the relay experiments. The optimization process will sweep δ over a

range and identify the optimal δ as the value which minimizes J . From Figure 4.2, a

bound is further fixed for δ as 0 < δ < δu, where δu = (f1 − f0)/f3. Compared to

the estimation of four parameters concurrently via optimization as in [55], the single

parameter optimization proposed here which is done offline on existing data sets is far

more efficient and reliable.

Remark 4.3. δ is the velocity threshold, separating the low and high velocity modes of

the two phases of experiments. Thus, to estimate δ accurately, data samples should be

taken from both sets of experiments, with ωA < δ and ωA > δ. ♦
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Figure 4.7: Investigation of limit cycles of x(t) with choices of different relay gains.

4.6 Simulation

To elaborate the modeling phases systematically and to highlight the accuracy achiev-

able, consider a servo-mechanical system described as Gp(s) = 10/[s(0.2685s + 1)] with

the four friction parameters given by f1 = 0.6, f2 = 0.5, f3 = 0.01 and δ = 0.1.

4.6.1 Limit cycle variation with relay gains

This subsection will highlight how the limit cycle oscillations in the system can vary

with different choice of relay gains, and how the guidelines given by the properties of

the relay in Section 4 can be used to position the two phases of the relay experiments

in the proper velocity range.
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Figure 4.8: Investigation of limit cycles of ẋ(t) with choices of different relay gains.

Property 4.1 is verified through the simulation results as shown in Figure 4.7. Compar-

ing Figure 4.7(a) with Figure 4.7(b), it is observed that when h1 increases, A decreases

and ω increases, while h2 behaves in the opposite manner. Similarly, Figure 4.8(a) and

Figure 4.8(b) show the validity of Property 4.2, i.e. the oscillation amplitude of velocity

is invariant with h1, but it increases with h2.

Moreover, four sets of relay gains are selected to show four different scenarios as

depicted in Figure 4.9(a)∼4.9(d).

In the first scenario as depicted in Figure 4.9(a), h2 < f1 and no sustainable limit

cycle oscillation occurs (Property 4.3).

Figure 4.9(b) shows the scenario when the gains of the relay are sufficiently small to
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Figure 4.9: Four limit cycle scenarios w.r.t. different choices of relay gains.
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maintain Av < δ. In this case, the output signal x(t) exhibits a relatively fast switching

phenomenon, and it has a sinusoidal waveform. The velocity signal has a triangular-

shape periodic waveform.

Figure 4.9(c) presents the scenario when the gains of the relay are still kept small,

but now Av > δ, the frequency of the waveform x(t) decreases significantly while its

amplitude increases significantly. Now, x(t) has a triangular-shape periodic waveform,

while ẋ(t) resembles a pulse train (Property 4.4).

Figure 4.9(d) shows the scenario when the gains of the relay become relatively larger

and Av > δ. The limit cycle becomes fast-switching again, and the velocity waveform

has recovered the triangular-shape waveform.

The second scenario corresponds to the first phase of the modeling experiment. The

fourth scenario corresponds to the second phase of the modeling experiment. From the

velocity diagrams, it also shows that the velocity waveforms are more similar to isosceles

triangle waveforms in these two scenarios. Thus, (4.47) will give better estimation results

than (4.44).

4.6.2 Phase 1: Low velocity mode

Following the tuning procedures proposed in Section 4.5, by choosing h11 = 0.01, h21 =

0.605, h12 = 0.01 and h22 = 0.603, the position signals obtained fall in the second

scenario, and it yields ω1 = 8.763, A1 = 7.58× 10−3 and ω2 = 14.06, A2 = 2.599× 10−3.

By (4.39)∼(4.41), the static friction parameter is correctly identified as f̂1 = 0.6001,

while the linear dynamics parameters are identified as K̂ = 9.9382 and τ̂l = 0.2399.
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Table 4.3: Summary of parameter estimation.

Parameter True Estimated Error

f1 0.6000 0.6001 0.017%

f2 0.5000 0.4865 2.700%

f3 0.0100 0.0129 29.000%

δ 0.1000 0.0900 10.000%

K 10.0000 9.9382 0.618%

τ 0.2685 0.2557 4.770%

4.6.3 Phase 2: High velocity mode

In this phase, both DCR gains h1 and h2 should be large enough to ensure that the

velocity is higher than the boundary lubrication velocity δ, as well as to keep the os-

cillation frequency sufficiently high. Choosing h11 = 5, h21 = 3, h12 = 3 and h22 = 2,

two relay experiments are conducted, yielding ω1 = 8.5023, A1 = 3.23 and ω2 = 8.5486,

A2 = 1.935. Through (4.45) and (4.44), the parameters are successfully identified as

τ̂h = 0.2714, f̂0 = 0.4853 and f̂3 = 0.0166. The estimation of f3 can be further improved

by applying (4.47) rather than (4.44), yielding f̂3 = 0.0129. The final estimation of the

time constant is τ̂ = (τ̂l + τ̂h)/2 = 0.2557.

4.6.4 Estimation of δ via optimization

The boundary lubrication velocity δ is identified using the optimization method discussed

in Section 4.5.3. Six sets of relay experiment data are used with the system operating

in both the low and high velocity modes. The bounds for δ are worked out to be within

(0, (f̂1 − f̂0)/f̂3), i.e., (0, 8.89). Using the optimization method discussed in Section
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4.5.3, the optimal δ̂ within (0, 8.89) which will minimize the loss function J(δ̂) is found.

With all other parameters being identified after the two phases, δ is correctly identified

as δopt = 0.09 with the corresponding minimum performance index Jmin = 149.87. It

should be noted that this optimization is done offline on existing sets of data, so there

is no need to run extensive and additional experiments for this purpose. Finally, after δ̂

is obtained, f̂2 is directly obtained as f̂2 = f̂0 + f̂3δopt = 0.4865.

The actual and estimated values of parameters are compared in Table 4.3.

4.7 Real-Time Experiments

To illustrate the effectiveness of the proposed method, real-time experiments are carried

out on a precision 3D cartesian robotic system [91], as shown in Figure 4.10. Every axis

of the robot is driven by a linear electric motor manufactured by Anorad Co., USA.

The dSPACE control development and rapid prototyping system, in particular, the

DS1103 board, is used. dSPACE integrates the whole development cycle seamlessly into

a single environment. MATLAB and SIMULINK are directly used in the development

of the dSPACE real-time control system. This experiment aims to identify the friction

parameters of Y-axis servo. For simplicity, the X-axis and Z-axis are fixed on desired

positions so that the weight of the loads is evenly distributed on two tracks of the Y-axis,

and the disturbance to the Y-axis displacement due to the sliding of other two axis is

negligible.

Several relay experiments are conducted according to the procedures described in
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(a) (b)

Figure 4.10: Experiment set-up. (a) 3D cartesian robotic system. (b) Computer control

platform.

Section 4.5. The unit of displacement is set to be mm. The motor parameters are

identified as K = 579.8480 and τ = 0.6794, while the friction parameters are identi-

fied as f1 = 0.3067, f2 = 0.2688, f3 = 1.1087 × 10−4 and δ = 14.5. Typically, two

patterns of oscillation with choices of different relay gains, under influence of static

and Coulomb/viscous frictions accordingly, are shown in Figure 4.11 and 4.12, which

correspond to Scenario 2 and 4 as discussed in Section 4.6.

With the model parameters, a linear feedback controller is commissioned and the

feedforward model-based friction compensator is properly initialized as illustrated in

Figure 4.13. Since the tracking trajectory is time-varying sinusoidal, and the system

itself is a type-1 system, integral controller is not necessary. By selecting controller

parameters as kp = 0.005, kd = 0.001, Figure 4.14(b) shows the tracking error under

the feedback-feedfoward control scheme to a sinusoidal reference r(t) = 50 sin t (unit in
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Figure 4.11: Input and output signal with h1 = 0.06, h2 = 0.33 (low velocity mode).
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Figure 4.12: Input and output signal with h1 = 0.12, h2 = 0.45 (high velocity mode).
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Figure 4.13: PID controller with friction pre-compensator.

mm). For a fair comparison, the tracking performance under same feedback controller

but without feedforward friction compensator is shown in Figure 4.14(a). And it can

be concluded that the tracking performance under normal linear feedback controller is

not satisfactory, since under the effects of friction, the linear controller cannot cope with

bidirectional, time-varying trajectory well. With adding in the model-based friction

compensator, the maximum tracking error is reduced from 0.3mm to 0.06mm. Clearly,

a significant improvement in reduction of the tracking error is achieved with the friction

compensator. The remaining error may be due to ripple forces and other unmodeled

uncertainties in the linear motor.

4.8 Conclusion

In this chapter, a new approach for the estimation of friction parameters in servomechan-

ical systems has been developed using a DCR apparatus. A two-segment, four-parameter

friction model is considered, since it is able to describe friction behavior of long-distance

travel machine more precisely. Four important properties related to limit cycles in this

114



0 5 10 15 20
−400

−200

0

200

400

Time (sec)
E

rr
or

 (u
m

)

(a)

0 5 10 15 20
−400

−200

0

200

400

Time (sec)

E
rr

or
 (u

m
)

(b)

Figure 4.14: Closed-loop tracking performance. (a) Without friction compensator. (b)

With friction compensator.

DCR feedback apparatus are investigated, which form the foundations of the two-phase

identification procedures. A position feedback loop is used, instead of velocity feedback

one. Hence, no additional filter is required. With closed-loop relay experiments, this

method is able to identify most of model parameters by sets of explicit formulae, mini-

mizing the use of nonlinear optimization and reducing the computational intensity. The

model obtained is also directly applicable to a fine-tune linear controller with a feed-

forward friction compensator, which results better tracking performance. Results from

the simulation and real-time experiment have verified the applicability of the proposed

method. However, the four-parameter friction model being identified in this chapter does

not consider friction force under a zero-velocity condition. For the machine in the sticky

states, a dynamical friction model is recommended since it will be better to describe the
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system behavior more precisely [10] [45]. Where the static feedforward controller cannot

achieve perfect tracking, due to existence of other unmodeled uncertainties; an adaptive

sliding controller can be considered to ensure the tracking error is within the predeter-

mined boundary [89]. The model parameters in the adaptive controller can be initialized

by the values obtained from relay-based identification method, so that tracking errors

will attenuate faster. For other types of permanent magnet linear motors (PMLMs)

beyond the U-channel linear motors using in the 3-D Cartesian Robot System in this

chapter, the strong force ripples are presented besides friction. In next chapter, the

existing DF identification method will be extended to cope with such nonlinearity.
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Chapter 5

Modeling and Compensation of

Ripples and Friction in Permanent

Magnet Linear Motors using

Hysteretic Relay Feedback

5.1 Introduction

Permanent magnet linear motors (PMLMs) are now widely used in the precision man-

ufacturing industries since among the electric motor drives, they are probably the most

suitable choice for applications involving high-speed, high-precision motion control [91].

The main benefits of a PMLM include the high force density achievable, low thermal

losses and the high precision and accuracy associated with the simplicity in mechanical

structure. PMLM is designed by cutting and unrolling their rotary counterparts, result-

ing in a flat linear motor that produces linear force, as opposed to torque. Compared to

asynchronous linear induction motors, PMLM incorporates rare earth permanent mag-

nets is able to develop much higher flux without significant heating. Compared with

their rotary counterparts, the linear motors require no indirect coupling mechanisms
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like ball-screwing, which greatly reduce the contact type nonlinearities, such as friction

and backlash, especially when they are used with aerostatic or magnetic bears. However,

as trade-off to the direct drive benefit, the tolerance towards the effects of uncertainties

and external disturbances is diminished [13]. Therefore, a reduction of these effects,

either through proper physical design or via the control system, is of paramount impor-

tance if high-speed and high-precision motion control is to be achieved. This chapter

just aims to model and compensate force ripples and friction in a typical PMLM, with

assistant of hysteretic relay feedback.

5.1.1 Design of PMLM

There are several designs of PMLMs available commercially today, mainly force-platen,

U-channel and tubular, etc [93].

Force-platen linear motor Force-platen linear motor, as shown in Figure 5.1 [80],

consists of a moving platen and a stationary platen. The moving platen consists of

induction coils with winding and iron core, while permanent magnets are placed on

the stationary platen oriented at a right angle to the thrust axis, but slightly skewed

in the vertical plane to reduce the thrust ripple. Force-platen motors feature a low-

height profile and a wide range of available size. The application include automobile

and machine tools applications where high continuous and peak forces are required.

However, an iron core results in strong “coggy” movement due to the presence of detent

(or cogging) force. The thermal energy also induces due to eddy current in iron core
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Figure 5.1: Force-platen linear motor.

which are a function of motor velocity. For efficient heat dissipation, the forced cooling

is required in stringent applications. In addition, the magnetic flux is not fully utilized

in force-platen design. And the installation process is relatively complex due to the

requirement of precise air gap for generating consistent output force.

U-channel linear motor The U-channel linear motor has two parallel magnet track

facing each other between the plates [2] [75]. Figure 5.2 shows a typical X-Y table driven

by U-channel linear motors, which is made by Winnermotor Inc. The 3-D cartesian

robotic system used in Chapter 4 experiment is designed with U-channel linear motor

too. In such design, the forcer is supported by the magnet track by a bearing system. The

forcers are ironless. This assembly has low mass, allowing for very high acceleration. The

ironless forcer also ensures little cogging force is generated between forcer and magnet

track. This design of linear motor has reduced magnetic flux leakage compared with

force-platen design, since the magnets face each other and are housed in a U-shaped

channel. This also minimizes the risks of being trapped by external powerful magnets.
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Figure 5.2: U-channel linear motor.

Furthermore, U-channel linear motors offer cost effective solution for long travel length

motion control since there is no precision air gap requirements between the forcer and

the plate. The major drawback of this design includes low-stiffness of the epoxy-filled

armature plate which might lead to resonance under servo control in high acceleration

applications.

Tubular linear motor This design of linear motor consists of a stationary thrust

rod and a moving thrust block. One of the example is the LD3810 tubular motor, as

shown in Figure 5.3. The thrust rod is a permanent magnet while the thrust block is an

electromagnet winding. This design confers several advantages compared with the other

linear motor types by its radial symmetry of the tubular geometry. First, the attractive

force between the translator and stator are minimized by such geometry. Second, The

linear force are maximizes by the perpendicularity between the circular windings in the

thrust block and the magnetic flux pattern. Third, eddy current losses are insignificant

due to the slot-less design. Furthermore, the thrust block is design to serve as a radiator
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Figure 5.3: Tubular linear motor.

for passive cooling. The installation is simpler by its relatively large allowance of air gap.

However, the current commercial tubular linear motor has tall over-height. Moreover,

since in this design, the only point of supporting the stator is at the ends, there will

always be a limit to length before the deflection in the bar causes the magnets to contact

the forcer. In later part of this chapter, the force ripple and friction will be modeled and

subsequently compensated in one tubular PMLM.

5.1.2 Force ripples in PMLMs and existing modeling tech-

niques

Specifically, the two major nonlinear phenomenon faced by a PMLM are the force rip-

ples and friction. Force ripples are strong, position dependent forces arising from the

magnetic structure of a PMLM. The two primary components of the force ripple are the

cogging (or detent) force and the reluctance force. The cogging force arises as a result of

the mutual attraction between the magnets and iron cores of the translator [18]. Notice

that this force exists even in the absence of any winding current and it exhibits a periodic
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relationship with respect to the position of the translator relative to the magnets. The

reluctance force is due to the variation of self-inductance of the windings with respect

to the relative position between the translator and the magnets. Thus, it also has a

periodic relationship with the translator-magnet position.

As mentioned in various designs of PMLMs in Section 5.1.1, force ripple is highly

undesirable in motion control, since it will create “bumps” along the direction of mo-

tion. Additionally, frictional force arises from the contact between the translator and the

track [7]. The limit cycle oscillation induced by friction causes small tracking errors in

steady states, and it also limit the achievable closed-loop bandwidth [73]. Through alter-

nate mechanical and material design, force ripples and friction may be kept to tolerable

levels, but these approaches can be expensive and compromise on other specifications.

An alternate approach is to suppress these nonlinear effects through the control system.

Till now, the control schemes proposed to compensate force ripples and friction can be

classified into model-free and model-based ones. In [46] [65] [89] [90] [103], robust adap-

tive schemes are proposed to compensate friction and force ripples in PMLMs. In [88],

a dither compensatory signal is generated based on a ripple model, which is identified

using a simplex-optimized method. In [59] [96], learning controllers based on neural net-

works are applied to linear motors. An iterative learning controller (ILC) is formulated

and applied in [106] with a regulated chatter, while a state-periodic adaptive compen-

sation scheme is proposed in [4]. In [107], an adaptive feedforward controller employing

a recursive least square (RLS) algorithm is proposed to identify and compensate the
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force ripples in PMLM. However, the common drawback for these so called intelligent

schemes is that it takes much time to learn and search the optimal parameters. In in-

dustrial applications, this drawback may not be acceptable and tuning and returning of

controllers must be done efficiently. In this chapter, a relay feedback approach will be

leveraged for modeling of the force ripples and friction present in a PMLM.

5.1.3 Motivations and novelty of new approach

Since 1980s, the application of relay feedback techniques to automatic tuning of con-

trollers have been widely explored [10]. The limit cycles generated from RFS have been

widely used in linear controller tuning [100] and identification of simple nonlinear friction

models [16] [92]. In Chapter 4, a more complex, two-segment, four-parameter friction

model [22] [23] [55] has been successfully identified, which includes Stricbeck effect in low-

velocity mode with DCR feedback system. However, all the above relay-based methods

are applicable only to identification of symmetric odd nonlinearities. For even nonlinear-

ities, these methods cease to be applicable since the classical sinusoidal-input describing

functions (SIDF) are not able to describe the biased limit cycles due to existence of even

nonlinearities [36] [81]. The force ripple is one such even nonlinear phenomenon, which

is usually represented as a single dominant harmonic of the load position, is not a pure

odd-symmetric sine function generally [89]. If SIDF is still used to identify the force

ripple strength, the reference point needs to be precisely adjusted to the positions with

minimal force ripples, which is time-consuming. Otherwise, biased and asymmetrical

limit cycle oscillations appear in the position signa with relay feedback, as observed by
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simulations and experiment results in this chapter.

In this chapter, a new method is presented for the first time to model simultaneously

both the force ripples and friction in the PMLM using a hysteretic relay, in addition

to the linear dynamical parameters of the motor, by importing the dual-input describ-

ing function (DIDF) [36], which is able to handle sinusoid-alike limit cycle with bias,

for model identification. The DIDF for the overall nonlinearities present in the feed-

back system, including the hysteretic relay added is derived. With this setup, all the

system parameters, including the linear and nonlinear ones, are efficiently identified

with only two relay experiments using a set of explicit formulae. Based on the correct

model parameters, a simple model-based PD-feedforward compensation control scheme

is commissioned to achieve improved tracking performance. Simulations and real-time

experiments on a multiprocessor-dSPACE-controlled tubular PMLM platform have ver-

ified the applicabilities of this new method .

5.2 Overall PMLM Model

Consider a comprehensive model of PMLM, which combines the mechanical and elec-

trical dynamics as in (4.1)∼(4.3). The nonlinear forces fnl in PMLM are represented

as

fnl = fripp(x) + ffric(ẋ) + fres(t). (5.1)

where ffric and fripp represent the friction and force ripple accordingly; fres can be con-

sidered to be any other residual forces not considered, possibly arising from model un-
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certainty and system disturbances present. It is assumed that fres is much smaller than

ffric and fripp, so that it can be ignored.

The frictional force ffric is represented by Coulomb and viscous friction components

(with friction model parameters f̄1 and f̄2)

ffric = f̄1sgn(ẋ) + f̄2ẋ. (5.2)

The force ripple fripp is represented by a single dominant spatial frequency Ω sinusoidal

function with phase shift φ.

fripp = C sin(Ωx + φ) = C̄1 cos(Ωx) + C̄2 sin(Ωx). (5.3)

In addition, since the electrical time constant is much smaller than the mechanical

one, the dynamics due to electrical induction is omitted. Thus, the following equation

describing the final model can be obtained

ẍ = −

(

KeKf + f̄2R

RM

)

ẋ +
Kf

RM

[

u −
f̄1R

Kf

sgn(ẋ)
C̄1R

Kf

cos(Ωx) −
C̄2R

Kf

sin(Ωx)

]

. (5.4)

Set a = (KeKf + Rf̄2)/(RM); b = Kf/(RM); f = f̄1R/Kf ; C1 = C̄1R/Kf ; C2 =

C̄2R/Kf . Furthermore, introduce

ũ = u − fsgn(ẋ) − C1 cos(Ωx) − C2 sin(Ωx), (5.5)

so that the linear portion can be written as the following transfer function

G(s) = X(s)/Ũ(s) = b/[s(s + a)]. (5.6)

In this chapter, a intentional hysteretic relay feedback apparatus is added to induce

oscillations from which to identify the system parameters, as shown in Figure 5.4. The
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Figure 5.4: The hysteretic relay used for identification.

hysteretic relay is defined by [100] as

u =

{

D if e > d, or (e ≥ −d and u(t−) = D)

−D if e < −d, or (e ≤ d and u(t−) = −D)
, (5.7)

where e = −x under assumption of zero reference input, without loss of generation. The

full model, in a block diagram form, is illustrated in Figure 5.5.

5.3 Model Identification

In this section, the approach to identify the parameters associated with the full model

presented in (5.5) and (5.6) will be elaborated. First, an equivalent block diagram model

of PMLM will be presented, which segregate cleanly the linear and nonlinear parts of the

model. DIDF will be used to approximately describe each of the nonlinear component

in the block diagram, and subsequently combined into an overall DIDF. Then, with a

harmonic balance analysis, explicit equations to obtain all the model parameters from

resultant oscillations will be provided.
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Figure 5.5: PMLM under hysteretic relay feedback.

5.3.1 Dual-input describing function (DIDF) for nonlinear por-

tion of PMLM model

Since e = −x, (5.5) can be written as

ũ = u + fsgn(ė) − C1 cos(Ωe) + C2 sin(Ωe). (5.8)

In other words, the overall system shown in Figure 5.5 can be converted to the equivalent

form of Figure 5.6, so that the linear portion and nonlinear portion are cleanly segregated

to facilitate subsequent harmonic balancing for parameter estimation.

In the equivalent system, the system nonlinearities, as well as the intentional relay,

all use the error signal as the input, similar to [23]. In general, due to non-zero phase

φ of force ripple in (5.3), there exists an even nonlinearity in the form of the cosine

term. This causes asymmetrical oscillation. The simple sinusoidal-input describing

function (SIDF), assuming symmetric sinusoidal input, is not able to describe such

even nonlinearity. Thus, the dual-input describing function (DIDF) will be used in this
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section to approximate each of the nonlinear component. In all of these approximations,

a biased sinusoidal input e(t) = A sin ωt + B is assumed, where A is amplitude, ω is the

oscillating frequency and B is the bias [36].

Consider first the force ripple nonlinearity fripp = −C1 cos Ωe+C2 sin Ωe. The following

theorem gives the DIDF of this nonlinearity.

Theorem 5.1. The DIDF of nonlinearity fripp = −C1 cos Ωe + C2 sin Ωe under biased

sinusoidal input e = A sin ωt + B is given by NAR(A, B) and NBR(A, B), where

NAR(A, B) =
2

A
[C1 sin(ΩB) + C2 cos(ΩB)] J1(ΩA); (5.9)

NBR(A, B) =
2

B
[−C1 cos(ΩB) + C2 sin(ΩB)] J0(ΩA); (5.10)

where

Jn(z) =
1

π

∫ π

0

cos(nθ − z sin θ)dθ, n ∈ N, (5.11)

is a Bessel function of the first kind of order n w.r.t. z.♦

Proof of Theorem 5.1: First, consider the cosine nonlinearity in the force ripple, i.e.,

fr1 = C1 cos Ωe, under biased sinusoidal input e = A sin θ + B, where θ = ωt. The

general equation for the limit cycle DIDF for a memoryless nonlinearity yields

NAC(A, B) =
C1

πA

∫ 2π

0

cos [Ω(A sin θ + B)] sin θ dθ

=
C1

πA

∫ π

0

[cos(ΩA sin θ + ΩB) − cos(ΩA sin θ − ΩB)] sin θ dθ

=
2C1 sin(ΩB)

πA

∫ π

0

sin(ΩA sin θ) sin θ dθ

=
C1 sin(ΩB)

πA

∫ π

0

[cos(ΩA sin θ + θ) − cos(ΩA sin θ − θ)] dθ

= −2C1 sin(ΩB)J1(ΩA)/A. (5.12)
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The DIDF relating to the bias term is given by

NBC(A, B) =
1

2πB

∫ 2π

0

C1 cos[Ω(A sin θ + B)] dθ

=
C1

2πB

∫ π

0

[cos(ΩA sin θ + ΩB) + cos(ΩA sin θ − ΩB)] dθ

=
C1 cos(ΩB)

πB

∫ π

0

cos(ΩA sin θ) dθ

= C1 cos(ΩB)J0(ΩA)/B. (5.13)

Next, consider the sine nonlinearity in the force ripple, i.e., fr2 = C2 sin Ωe, under

biased input e = A sin θ + B, where θ = ωt. Similar to the cosine nonlinearity, it yields

NAS(A, B) =
C2

πA

∫ 2π

0

sin [Ω(A sin θ + B)] sin θ dθ

=
C2

πA

∫ π

0

[sin(ΩA sin θ + ΩB) + sin(ΩA sin θ − ΩB)] sin θ dθ

=
2C2 cos(ΩB)

πA

∫ π

0

sin(ΩA sin θ) sin θ dθ

=
C2 cos(ΩB)

πA

∫ π

0

[cos(θ − ΩA sin θ) − cos(−θ − ΩA sin θ)] dθ

= 2C2 cos(ΩB)J1(ΩA)/A. (5.14)

Similarly, for the bias term,

NBS(A, B) =
1

2πB

∫ 2π

0

C2 sin[Ω(A sin θ + B)] dθ

=
C2 sin(ΩB)

2πB

∫ π

0

[sin(ΩA sin θ + ΩB) − sin(ΩA sin θ − ΩB)] dθ

=
C2 sin(ΩB)

πB

∫ π

0

cos(ΩA sin θ) dθ

= C2 sin(ΩB)J0(ΩA)/B. (5.15)

Noting that NAR = −NAC + NAS and NBR = −NBC + NBS, Theorem 5.1 is proofed.�
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In Theorem 5.1, notice that B is the bias of the error signal, which has opposite sign

to the bias of the position signal x.

For the hysteretic relay given by (5.7) under the biased sinusoidal input e = A sin ωt+

B, the DIDF is given by

NAH(A, B) =
2D

πA
̟(d, A, B)− j

4Dd

πA2
, (5.16)

NBH(A, B) =
D

πB
υ(d, A, B), (5.17)

where

̟(d, A, B) =

√

1 −

(

d + B

A

)2

+

√

1 −

(

d − B

A

)2

; (5.18)

υ(d, A, B) = sin−1 d + B

A
− sin−1 d − B

A
. (5.19)

For the Coulomb friction nonlinearity fc(ė) given by fc = fsgn(ė), with the biased

sinusoidal input e = A sin ωt + B, the DIDF is given by

NAF (A, ω) = 4jf/(πA); (5.20)

NBF = 0. (5.21)

Here, the bias constant B is eliminated by the differentiator. Thus, the DIDF is equal

to the SIDF as discussed in [23].

The overall DIDF of the nonlinear portion is thus given by

NA = NAH + NAR + NAF ; (5.22)

NB = NBH + NBR. (5.23)
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Figure 5.6: Equivalent block diagram.

5.3.2 Parameter estimation from harmonic balance

Note that the linear portion of PMLM model is a type-1 system. Thus, under the

assumption of the existence of a biased sinusoidal limit cycle oscillation, the harmonic

balance condition is given by [36] as

NA(A, B, ω) G(jω) = −1; (5.24)

NB(A, B, ω) = 0. (5.25)

With (5.24)∼(5.25), together with (5.9)∼(5.23), the following three equalities can be

established,

4Dd/(πA2) = ωα + 4f/(πA); (5.26)

−2D̟/π = −Aω2β + 2 sin(ΩB)J1(ΩA)C1 + 2 cos(ΩB)J1(ΩA)C2; (5.27)
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−Dυ/[πJ0(ΩA)] = − cos(ΩB)C1 + sin(ΩB)C2, (5.28)

where α = a/b, β = 1/b. Define Aj as the value of A obtained from the jth experiment,

so as Dj, dj, ̟j, υj, Bj and ωj. Since five parameters are required to be identified,

but only three equations are available, a minimum of two sets of relay experiments are

required which can be obtained by varying the hysteretic relay parameters.

From (5.26), f and α are identified by

α =
4(D1d1A2 − D2d2A1)

πA1A2(ω1A1 − ω2A2)
; (5.29)

f =
A2

1ω1D2d2 − A2
2ω2D1d1

A1A2(ω1A1 − ω2A2)
. (5.30)

C1 and C2 can be identified from (5.28) as

C1 =
J0(ΩA2) sin(ΩB2)D1υ1 − J0(ΩA1) sin(ΩB1)D2υ2

π sin[Ω(B2 − B1)]J0(ΩA1)J0(ΩA2)
, (5.31)

C2 =
J0(ΩA2) cos(ΩB2)D1υ1 − J0(ΩA1) cos(ΩB1)D2υ2

π sin[Ω(B2 − B1)]J0(ΩA1)J0(ΩA2)
. (5.32)

β is identified from (5.27) as

β =

2
∑

j=1

[Dj̟j + π sin(ΩBj)J1(ΩAj)C1 + π cos(ΩBj)J1(ΩAj)C2] /(πAjω
2
j ). (5.33)

Thus, a and b are finally obtained by a = α/β and b = 1/β.

5.3.3 Extraction of frequency components from DFT

Compared with the methods proposed in [23] [55] [92], the new method induces a bias

term B in the limit cycle due to the presence of an even nonlinearity with respect to the

input signal. This bias arises from asymmetry in the limit cycle. Thus, the amplitude

and bias of the oscillation may not be directly obtained from the oscillation accurately
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especially when the asymmetric is severe. Instead, discrete Fourier transform (DFT) [64]

can be applied to obtain the fundamental frequency, based on which A and B can be

extracted.

Without loss of generality, a peak-to-peak, N -samples segment es(n) consisting of

an exact m periods of limit cycles is taken from e(t), so that the spectrum leakage is

avoided. The bias B is estimated as the mean value of the periodic segment es(n) of

e(t), or equivalently, the spectral component E(0) divided by the sample size N ,

B =
1

N

N−1
∑

n=0

es(n) = es(n) = E(0)/N (5.34)

Since m periods of signal segment is available, the amplitude A of fundamental frequency

component is estimated as twice the real part of mth spectral components normalized

by the sample size N ,

A =
1

N

N−1
∑

n=0

es(n)

[

exp

(

−j
2πnm

N

)

+ exp

(

j
2πnm

N

)]

=
2

N

N−1
∑

n=0

es(n) cos

(

2πnm

N

)

= 2 es(n) cos (2πnm/N).

= 2Re [E(m)] /N, (5.35)

5.4 Simulation

Consider the PMLM model of (5.5)∼(5.6), with parameters set as

a = 4, b = 40, Ω = 0.2π, f = 0.4, C = 1. (5.36)

The sampling interval of simulation is fixed as 0.1 ms. This section will first highlight
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how the limit cycle oscillations are affected with different position phase shift φ. By

choosing φ = 0 and φ = π/6, biased and unbiased limit cycles are observed in Figure

5.7 and Figure 5.8, accordingly, with the same fixed relay parameters d = 1.2, D = 5.

When φ = 0, there is no cosine term in the model of ripple nonlinearity, and the

limit cycle is symmetric with period T . When φ = π/6, non-odd ripple nonlinearity

fr = sin(0.2πx + π/6) is present, the duty time T+ and T− of high and low values of

the relay output are not equal, and biased limit cycle oscillations occur.

In the following part, in order to verify the effectiveness of the new method, the

parameters of hysteretic relay are chosen as d1 = 1.2, D1 = 5, d2 = 0.8, D2 = 3, to

identify the system model of (5.5)∼(5.6), with same parameter set as in (5.36), with

φ = π/6. The simulation results for the two limit cycles within five periods are shown

in Figure 5.8 and Figure 5.9 accordingly. The asymmetry and bias in the oscillation are

evident in these figures.

DFT is first applied to complete cycles of e(t), beginning from when e(t) is at maximum

value and ending five complete periods later. The spectrum of the signals are shown in

Figure 5.10. A and B can be obtained from (5.34)∼(5.35). In this way, the frequency and

amplitude of the fundamental harmonics, and DC bias are obtained as ω1 = 10.2834,

A1 = 2.4639, B1 = 0.1222, ω2 = 10.2099, A2 = 1.4819, B2 = 0.1763. With the

explicit equations given in (5.29)∼(5.33), the system parameters are correctly identified

as a = 4.0089, b = 39.4076, C1 = 0.4423, C2 = 0.8810, and f = 0.4107. Table 5.1

also shows that the error of estimation can be kept to be about 10% and below, which
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Table 5.1: Summary of simulation results.

Parameter Actual Estimated Error %

a 4.0 4.0089 0.22

b 40.0 39.4076 -1.48

C1 0.5000 0.4423 -11.54

C2 0.8660 0.8810 1.73

f 0.4 0.4107 -2.67

demonstrates the efficiency and applicability of the proposed method. From (5.31) and

(5.32), the formulae of computing C1 and C2 only differ with each other by terms of

sin(ΩB) and cos(ΩB). The error of estimation of C1 is larger than C2 since the gradient

of sin(ΩB) is steeper compared to cos(ΩB), when ΩB is relatively small.

5.5 Real-Time Experiments

To illustrate the effectiveness of proposed method, real-time experiments are conducted

on a PMLM at Singapore Institute of Manufacturing Technology (SIMTech), as shown

Figure 5.11, using the dSPACE Alpha Combo multiprocessor control system with MAT-

LAB Simulink Real-time Workshop. In this dual-DSP system, the dSPACE DS1004

DSP board is used for computational intensive tasks associated with execution of con-

trol algorithms; while the DS1003 DSP board is able to deal efficiently with all the

necessary I/O tasks. Both boards are real-time interface enables and configured to give

optimal performance via the decentralization. The overall block diagram of Simulink

program used in this experiment is shown in Figure 5.12.

135



47 47.5 48 48.5 49 49.5

−1.2
0

1.2

Time (sec)

e(
t)

47 47.5 48 48.5 49 49.5

−5

0 

5 

Time (sec)

u
(t

)

47 47.5 48 48.5 49 49.5
−10

−5

0

5

10

Time (sec)

ũ
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Figure 5.7: Input e(t) and output u(t) of the hysteretic relay and actual control signal

ũ(t) with d = 1.2, D = 5, φ = 0.

46.5 47 47.5 48 48.5 49

−1.2

0   

1.2 

Time (sec)

e(
t)

46.5 47 47.5 48 48.5 49

−5

0 

5 

Time (sec)

u
(t

)

46.5 47 47.5 48 48.5 49

−5

0

5

Time (sec)

ũ
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Figure 5.8: Input e(t) and output u(t) of the hysteretic relay and actual control signal

ũ(t) with d = 1.2, D = 5, φ = π/6.
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Figure 5.10: Spectrums of limit cycles near the DC region with m = 5. Left: with

d = 1.2, D = 5, φ = π/6, N = 29295. Right: with d = 0.8, D = 3, φ = π/6, N = 32615.
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Figure 5.11: The PMLM used in this experiment.

5.5.1 Identification of the spatial cogging frequency

In the first part of experiment, the spatial cogging frequency Ω is identified from the

velocity curve with a step voltage input to the PMLM. Figure 5.13 and Figure 5.14

shows the open-loop response of the PMLM with different input voltages. From these

two figures, after the initial transience, an almost constant velocity trend is observed in

the position signals. However, due to the existence of force ripples, the actual velocity

signal manifests a periodic oscillating behavior about a mean level. Denote the mean

velocity in the steady state as v, the period of the velocity oscillation as Tv, then the

spatial cogging frequency (in rad/m) can be simply measured as

Ω =
2π

vTv

. (5.37)
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Figure 5.12: The Simulink program for experiment.

24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
0

2

4
x 10

5

Time (sec)

x
(t

)

24.2 24.4 24.6 24.8 25 25.2 25.4 25.6 25.8 26
0

1

2

x 10
5

Time (sec)

ẋ
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Figure 5.13: Position x(t) (in µ m) and velocity ẋ(t) (in µ m/s) of the PLMM with

u = 0.3 V.

Form Figure 5.13, Tv = 0.2744 sec and v = 0.18388 m/sec. Hence, by (5.37), Ω is esti-

mated as 124.39 rad/m. Similarly, from Figure 5.14, Tv = 0.1620 sec, v = 0.3154 m/sec,

and Ω is obtained as 122.97 rad/m. Thus, the spatial cogging frequency is identified as

Ω = 123.68 rad/m by taking the mean value of above two.
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ẋ
(t

)

Figure 5.14: Position x(t) (in µm) and velocity ẋ(t) (in µ m/s) of the PLMM with

u = 0.5 V.

5.5.2 Parameter estimation

To estimate the model parameters of the selected model of PMLM, choose d1 = 5 ×

10−4 m, D1 = 0.6 V, d2 = 8×10−4 m and D2 = 0.7 V. The sampling period for experiment

is set to 4 ms, and the reference position is set on the 7 cm from the homing position.

The results of inputs and outputs of hysteristic relay over five periods of oscillations are

shown in Figure 5.15 and Figure 5.16 accordingly. From these figures, the oscillation

frequencies are ω1 = 28.3537 rad/sec and ω2 = 28.560 rad/sec. Figure 5.17 shows the

spectrum of the window with five periods of e(t) near the DC region, from which, it

can be concluded that it is appropriate to approximate the steady oscillating signals by

their dominant fundamental frequency components plus DC biases. By (5.34)∼(5.35),

the limit cycle parameters are obtained as A1 = 2.4317× 10−3 m, B1 = 1.4552× 10−3 m,

A2 = 3.4978 × 10−3 m and B2 = 1.6905 × 10−3 m. With the explicit equations given in

(5.29)∼(5.33), the system parameters are identified as a = 6.474, b = 4.284, C1 = 0.199,
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Figure 5.15: Input e(t) (in µ m) and output u(t) (in V) of the hysteretic relay with

d = 0.5 mm, D = 0.6 V.

C2 = −0.303, and f = 0.042.

5.5.3 Model compensation

To verify the model obtained, a linear feedback controller is commissioned and the

feedforward model-based nonlinear compensator is initialized as shown in Figure 5.18.

The desired moving profile is set as xd = 0.02 sin(2πt) (unit in m). After fine tuning, the

linear PID feedback controller is set as kp = 0.0243 V/µ m, ki = 0, kd = 0.00013 V sec/µ

m, with the feedforward controller settings based on the parameters estimated earlier,

the tracking error are shown in Figure 5.19(a). For a fair comparison, the tracking

performance is tested with same linear feedback controller but without the ripple and

friction compensation. The results are shown in Figure 5.19(b). By comparing the above

two compensation results, it is able to observe that the maximum tracking errors are
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Figure 5.16: Input e(t) (in µ m) and output u(t) (in V) of the hysteretic relay with

d = 0.8 mm, D = 0.7 V.
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Figure 5.17: Spectrums of limit cycles near the DC region with m = 5. Left: with

d = 0.5 mm, D = 0.6 V, N = 277. Right: with d = 0.8 mm, D = 0.7 V, N = 275.
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Figure 5.18: Design of compensation scheme, with combination of feedback control ufb

and feedforward control uff.

reduced dramatically from 15 µ m to less than 4.7 µ m (or around 70% improvement),

which also verify the validity of the model parameters obtained in Section 5.5.2.

5.6 Conclusion

A new relay-based identification method has been developed to identify the model pa-

rameters in permanent magnet linear motor (PMLM), including models for force ripples

and friction. Due to existence of non-odd, force ripple nonlinearity in PMLM, biased

limit cycles are observable from the symmetric hysteretic relay feedback. Dual-input

describing function is thus imported for analysis of bias limit cycles within the relay

feedback system to establish a harmonic balance condition. Based on this condition, a

set of explicit formulae is derived for direct computation of model parameters. Simula-

tion results and real-time experiments have demonstrated the simplicity and effective-

ness of the proposed modeling method. The validity of the model is also verified via
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Figure 5.19: Tracking performance of control schemes. (a) With nonlinear feedforward

compensation. (b) Without nonlinear feedforward compensation.

model-based compensation, which achieves a superior tracking performance compared

to classical linear feedback control without nonlinearity compensation.
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Chapter 6

Conclusions

Various nonlinear factors exist in the actuators of motion control systems, such as control

valves and electric linear motors, which affect the their performance. It is important to

model their behaviors and use appropriate control schemes to eliminate these effects and

increase the precision of the motion control systems. The contributions from this thesis

are summarized and the recommended future works are also given in this chapter.

6.1 Summary of Contributions

Efficient models and fast identification methodologies have been developed for motion

control systems using relay feedback approaches. First, to improve the behavior descrip-

tion of sticky control valve, a two-layer binary tree data-driven stiction model has been

proposed. The model is able to completely describe the various of categories of stiction

behavior in control valve, with simple logic structures.

Secondly, the locations of limit cycles and stability of limit cycles are analyzed in a class

of linear systems with full-state and triple-relay feedback. In practice, the triple-relay

feedback configuration maps directly to a servo-mechanical system affected by Coulomb
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friction, under deliberate of DCR feedback. A new method, leveraging on the presented

analysis, is thus to identify the dynamical and friction parameters of the servo system

accurately with only a single relay experiment, surpassing existing results.

Thirdly, by describing function analysis, the properties of limit cycles within servo-

mechanical systems impended by a recently proposed four-parameter friction model

are carefully investigated. These properties are directly useful for tuning the DCR

gains, so that sets of explicit formulae are derived to obtain most of model parameters

using experiments of both low and high velocity modes in position feedback loop, with

minimum usage of NLS. This improvement greatly releases the computational intensity

and increases the robustness of estimation.

Finally, force ripples in PMLM together with friction with hysteretic relay feedback are

modeled with hysteretic relay feedback. Due to force ripples’ asymmetric nonlinearity,

biased limit cycles are observed under relay feedback. Thus, instead of using conventional

SIDF, the DIDF is introduced to correctly describe nonlinear characteristics under biased

limit cycles. From here, harmonic balance conditions are set up, so that explicit formulae

are given for directly computing the all the linear and nonlinear model parameters in

PMLM, including Coulomb friction and force ripples.

In this thesis, extensive simulations and experiment results have been furnished to

illustrate the effectiveness of the proposed model or modeling methods.
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6.2 Suggestions for Future Works

Regarding modeling motion control systems with relay feedback approach, although

above contributions have been made in this thesis, there are some topics remaining

unsolved till now. Thus, the suggestions for future works are given below.

To identify more complicated state-dependent friction models In this thesis,

differential friction models are identified, from single parameter one to multi-parameter

one. However, these models are all static models, which are static functions with respect

to velocities. One of hot research topics is identification of dynamic friction models such

as Dahl model [30], LuGre model [31] and Maxwell slip model [5], which have internal

states to describe the deflection of bristles between to contacting surfaces. However,

the challenges arisen from unmeasurable internal states of such friction models cause

difficulty in model-based compensations. Some existing methods of adaptive control

generally do not guarantee the convergence of model parameters to their true valve, if

the PE condition is not satisfied.

To use forced oscillations instead of self-excited oscillations Due to its sim-

plicity for analysis, the self-excitation oscillations are commonly used in the relay-based

identification methods proposed in this thesis and other publications. However, such self-

excited oscillation disturbs the normal operations of the system and causes increase wear

and tear of system components [60]. In some situation, the constraints of self-excited

oscillations can be released by forced-oscillations or even subharmonic oscillations [14]

147



due to their lower amplitudes [98]. However, there is few application example of force

oscillations on the nonlinear system identification till now, due to the theoretical anal-

ysis of forced-oscillation is only limited to FOPDT linear systems currently [60]. The

application of forced-oscillations may be possible if the analysis is extended to higher

order linear systems or even nonlinear systems.
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