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Summary 

Turnip crinkle virus (TCV) and Nicotiana benthamiana are valuable models to 

investigate virus-host interaction. The detailed mechanisms of TCV replication and 

systematic movement in host plants are still not clear. To further understand the 

processes, two-dimensional electrophoresis (2-DE) coupled with mass spectrometry 

were used to reveal differentially expressed proteins from isolated protoplasts and 

chloroplasts of non-infected and TCV-infected N. benthamiana leaves. 

Fifteen differentially expressed proteins were identified and 8 were up-regulated, 

while 7 were down-regulated. These proteins were mainly involved in photosynthesis 

(RuBisCO, RuBisCO activase, chlorophyll a/b binding protein and ferredoxin-NADP 

reductase), stress response and detoxification (zinc protease, ascorbate peroxidase and 

heat shock protein 70), energy metabolism (adenylate kinase and ATP synthase), 

maintenance of pH (chloroplast carbonic anhydrase) and TCV coat protein. Real-time 

PCR results showed a down-regulation by 62% in TCV-infected N. benthamiana 

leaves, which confirmed the 2-DE results.  

In summary, TCV inhibits certain pathways and affects key functions of the 

plants such as photosynthesis and transcription. Plants resist by increasing protein 

degradation and detoxification. The 2-DE results of this study have provided us with a 

more comprehensive picture of plant virus-host interactions and have shed some light 

on the mechanism of virus infection. (195 words) 
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CHAPTER 1.   INTRODUCTION 

1.1   Turnip crinkle virus (TCV) 

Turnip crinkle virus (TCV) is a plant virus that belongs to the family of 

Tombusviridae and genus of Carmovirus. It has a wide host range which primarily 

consists of many members of the Brassicacae family. Symptoms of TCV infection on 

plants are local chlorotic lesions, systemic leaf mottling and crinkling 

(http://www.ictvdb.rothamsted.ac.uk/ICTVdB/).  

1.1.1   Viral genome 

TCV genome consists of a single-stranded, positive sense RNA molecule of 4054 

nucleotides. This single RNA molecule encodes five proteins (Carrington et al., 1989) 

(Figure 1.1). 

 

 

      Figure 1.1: TCV genome structure. The five open reading frames of TCV are: 

p28 and its readthrough product p88, responsible for viral replication; p8 and p9, required 

for viral movement; and p38, the coat protein.  

1.1.2   Structure and functions of coat protein 

The P38 protein translated from subgenomic RNA of TCV genome is a viral coat 

protein. It consists of 180 capsid protein subunits which make up to a total molecular 

weight of 38 kDa (Carrington et al., 1987). TCV coat protein can be divided into 

three main structural domains namely R (RNA-binding), S (shell), and P (protruding) 

P28  P88  P9

P8  P38 
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domain (Hogle et al., 1986).  

TCV coat protein is a multifunctional protein. Primarily, it acts as a structural 

protein in forming the virion. Besides, TCV coat protein also acts as a strong 

suppressor of RNA silencing. The 25-amino-acid fragment located at the N-terminus 

of its coat protein plays a vital role in suppressing RNA silencing (Thomas et al., 

2003). A study has suggested that the coat protein functions by suppressing a 

Dicer-like RNase found in plant cells (Qu et al., 2003).  

1.2  TCV infection mechanisms and host-virus interactions 

The mechanism that TCV replicates and systematically moves in the host plant is 

still not clear. However, the coat protein plays an important role in the infection and 

systematic movement (Kong et al., 1997). Point mutations in the coat protein can 

alter its secondary structure and affect the host-plant interaction (Lin & Heaton, 1999). 

Recent research also revealed that short internal sequences in a subviral RNA were 

involved in replication (Sun et al., 2005). Besides, two nuclear localization signals on 

p8 proved its nuclear localization and p8 also facilitated cell-to-cell movement of the 

virus (Cohen et al., 2000).  

Moreover, TCV-interacting protein (TIP) was discovered in Arabidopsis and the 

nuclear localization of TIP was blocked by the coat protein (Ren et al., 2005). 

Furthermore, Arabidopsis Di-17 is resistant to TCV infection as the N-terminus of the 

coat protein was an avirulent factor (Zhao et al., 2000).  
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1.3  Proteomics and advances in plant proteome 

1.3.1  Proteomics and its applications 

Proteins are the major executors of biological functions. Proteomics has been 

brought forward since 1996 with the intention of bridging the knowledge gap between 

genomes and living cells (Marc Wilkins et al., 1996). It is increasingly becoming 

more popular after the genomics wave. Similar to genomics, proteomics is also a form 

of systematic and large-scale analysis. However, instead of analyzing gene sequences, 

proteins are analyzed. Compared with the cellular genome, the proteome is dynamic 

and changes with time. Each cell or tissue type has its unique proteome even in the 

same organism. Moreover, the proteome changes in response to alteration of 

environmental conditions. The study of the dynamic proteomes has the potential to 

reveal new targets for intervention in disease processes (Persidis & Ze, 1998). 

Although proteomics has only been developed for less than fifteen years, it has 

many applications. Firstly, it can be used to annotate genomes, resulting in a better 

understanding of gene function and regulation (Hollywood et al., 2006). Secondly, it 

is useful in studying protein post-translational modifications (Kwon et al., 2006). 

Thirdly, it was widely applied to further understand protein localization and 

compartmentalization. Besides, proteomics is  used to screen for protein-protein 

interactions (Berggard et al., 2007). It also has the advantage in providing data in 

protein expression for example, perturbation of biological systems and disease 

progression.  
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Proteome analysis consists of three main steps: separation, identification, and 

quantification of proteins from biological samples. It includes both experimental 

techniques and application of bioinformatics.  

1.3.2  Advances in plant proteomic analyses 

With the accumulation of genomic data, proteomics is increasingly important for 

the study of plant functions. Proteome analysis sheds new light on the complex 

mechanisms of plant growth, development and interactions with the environment. 

The dominant analytical platform of proteomics has been the two-dimensional 

gel electrophoresis (2-DE) coupled to MS (Rossignol et al., 2006). As a powerful tool, 

2-DE offers high resolution and rapid development in data analysis software and MS 

hardware has made MS the preferred method for protein identification (Saravanan & 

Rose, 2004). Besides, techniques such as difference gel electrophoresis, 

isotope-coded affinity tags and stable isotope labeling of peptides and proteins are 

also used as alternatives (Julka & Regnier, 2004). 

However, there are still several challenges because plant cells are usually rich in 

proteases and they contain rigid cell walls, polysaccharides and various secondary 

compounds (Canovas et al., 2004). In addition, certain tissues contain some abundant 

proteins that are so dominant in protein samples that the detection of other low 

abundant proteins are quenched (Chen & Harmon, 2006). 

1.4   2-D electrophoresis method and mass spectrometry analysis 

2-DE coupled to MS constitutes an important platform utilized in plant proteome 
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analysis. They are widely used to analyze proteins and screen the proteome. 

1.4.1  2-D electrophoresis method 

The 2-DE is a form of gel electrophoresis that was first developed by O’Farrell 

(O'Farrell, 1975) and Klose (Klose, 1975a) in 1975. It is one of the leading techniques 

to separate individual proteins and document the patterns of gene expression in 

biological samples.  

2-DE separates the proteins by two properties in two dimensions. In the first 

dimension, proteins are separated according to different isoelectric points by 

isoelectric focusing electrophoresis (IEF). The introduction of immobilized pH 

gradient (IPG) greatly increased the sensitivity and lowered the discrepancies 

between calculated and experimental pI values to 0.001 pH units (Bjellqvist et al., 

1994). In the second dimension, protein molecules are separated on the basis of their 

molecular mass. The theoretical resolution has reached 10,000 spots per 2-D gel. 

2-DE can investigate thousands of proteins simultaneously from very small 

amount of material. Unlike liquid chromatography in proteomics which mainly 

performs analysis on peptides, 2-DE reveals a whole map of intact proteins, thus 

providing the information of the changes in protein expression levels, isoforms and 

post-translational modifications (Görg et al., 2004). The 2-DE spot patterns also 

enable the creation of a 2-D image databases. 

1.4.2  Mass spectrometry analysis 

The MS first generates charged molecules and then measures their 
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mass-to-charge ratios. With the introduction of two ionization methods: electrospray 

ionization (Fenn et al., 1989) and matrix-assisted laser desorption/ionization 

(MALDI), MS is a fast and effective method for the characterization of proteins. MS 

data can be matched with protein sequences in the databases and protein structures 

and functions can be predicted (Henzel et al., 1993). 

With the development of the detector and the ionization techniques, MS is much 

more sensitive and is able to deal with more complex samples. Furthermore, the 

precursor-ion selection module of tandem mass spectrometry (MS/MS) (Biemann, 

1988) can effectively isolate a single peptide (or a few peptides with the same m/z) 

from a complex mixture and remove the contribution of most other peptides to the 

sequence-analysis step. Moreover, with peptide mass fingerprint, proteins can be 

identified and recognized very quickly by comparing the fingerprinting patterns with 

the databases (Breitling et al., 2006). 

1.5  Real-time polymerase chain reaction (PCR) method 

Real-time PCR (or quantitative real time PCR) is based on the method of PCR 

but the amount of DNA is monitored during the process of PCR. It was first 

developed by Higuchi and associates (Higuchi et al., 1993) and is now widely used. 

Real-time PCR measures the time the fluorescent signal takes to reach the threshold 

and the fluorescent intensity is correlated with the amount of DNA. Therefore, the 

amount of starting DNA can be calculated even if it is very small. Furthermore, 

reverse transcription can be used with real-time PCR so that the RNA levels in the 
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cells can be measured (Bustin, 2000). 

Real-time PCR has several advantages. Firstly, it is very sensitive in the detection 

of DNA at extraordinarily low levels of expression. Secondly, it is precise enough to 

detect subtle gene expression changes (Luu-The et al., 2005). Moreover, compared 

with the time consuming northern blot, real-time PCR is relatively quick. 

1.6  Objectives 

1. To identify differentially expressed proteins between TCV-infected and 

non-infected N. benthamiana leaves using 2-DE and MS. 

2. To analyze gene expression in TCV-infected and non-infected N. benthamiana 

using real-time PCR in order to understand the effects of TCV infection on plant host 

at transcriptional level. 

3. To investigate the host response to TCV infection and to understand the 

mechanism(s) of virus-host interaction. 
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CHAPTER 2.  GENERAL MATERIALS AND 

METHODS 

2.1  Plant materials 

Nicotiana benthamiana was used as the host plant for systemic infection and as 

the starting material for protoplast production. All N. benthamiana plants were grown 

in the greenhouse under 16 h light/8 h dark at 25°C. 

2.2  Preparation and inoculation of plants 

About 0.5 g TCV-infected leaves were ground using inoculation buffer (0.05 M 

sodium phosphate, pH 5.8) and mixed with a small amount of carborundum.  N. 

benthamiana with 6-8 leaves were mechanically inoculated with the inoculum as 

described above. The inoculated plants were kept in the dark for 16 h.  

2.3  Isolation of protoplasts 

Fully expanded leaves were harvested from 3 weeks old N. benthamiana plants. 

The leaves were surface sterilized in 0.8% Clorox® (5.25% sodium hypochlorite) for 

10 min with constant agitation and washed with RO water for 3 times, 5 min each. 

The leaves were sliced into 1 mm strips and immediately put into an enzyme mixture 

[0.5 M mannitol, 22 mM KNO3, 0.5 mM MES, 1 μM KI, 10 mM CaCl2, 0.1 μM 

CuSO4, 0.75 mM KH2PO4, 0.5% cellulase R10 and 1% macerozyme R10 (Yakult 

Honsha, Japan), pH 5.7]. The mixture was then incubated for 8-10 h at 25°C in the 

dark. 

The protoplast mixture was gently siphoned up and down using a sterile pipette 
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until most protoplasts were released into the enzyme solution. The suspension was 

then filtered through 70 μm nylon screen to remove the debris. The filtrate was 

centrifuged at 100 g for 3 min, and the supernatant was removed carefully. The 

protoplasts were gently resuspended in washing solution (10 mM HEPES, 150 mM 

NaCl, 0.5 M Mannitol, 10 mM CaCl2, pH 5.7) and centrifuged at 100 g for 3 min. The 

protoplasts were washed and collected as described above until the supernatant 

became clear and were suspended in 4 ml washing solution. 

First 10 μl of the final suspension was taken out and diluted to 1 ml. The 

protoplasts were counted using the light microscope. Then the concentration and 

amount of the protoplasts were calculated.  

2.4  Isolation of chloroplasts 

Plants were placed in the dark for 24-36 h before the leaves were collected. Five 

grams of young green leaves were rinsed in cold 5% Clorox® for 4 min and washed 

with cold water for 3 times. The veins were cut off and the leaves were sliced into 

strips. Then they were blended in 30 ml isolation buffer [350 mM sorbitol, 50 mM 

Tris-HCl (pH 8.0), 5 mM EDTA, 0.1% BSA (w/v), 0.1% β-mercaptoethanol (v/v), 0.1% 

sodium ascorbate (w/v)]. The homogenate was filtered through the sieve and 70 μm 

nylon screens. Then the mixture was centrifuged with 3,000 g for 15 min at 4°C. The 

green pellet was resuspended in 5 ml washing buffer (350 mM sorbitol, 50 mM 

Tris-HCl (pH 8.0), 20 mM EDTA) and applied to a sucrose gradient (30%/45%/60%) 

with the top covered by 1 ml washing buffer. The sucrose gradient with sample was 
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centrifuged with 25,000 rpm for 1 h at 4°C. The dark green chloroplast band was 

aspirated and washed by 30 ml washing buffer. The resuspension was centrifuged 

with 6,000 g for 10 min at 4°C. Then the pellet was resuspended in 5 ml washing 

buffer. 

2.5  Western blot analysis 

The protein samples were mixed with 6×loading buffer [0.1 M Tris-HCl (pH 6.8), 

20% glycerol (v/v), 4% sodium dodecyl sulfate (SDS) (w/v), 5% β-mercaptoethanol 

(v/v), 0.2% bromophenol blue (w/v)] and heated for 5 min in boiling water bath. Then 

they were loaded on SDS-polyacrylamide gel (12% separating gel: 1.6 ml water, 

2.0 ml 30% acrylamide, 1.3 ml 1.5 M Tris-HCl (pH 8.8), 50 μl 10% SDS, 50 μl 10% 

ammonium persulfate (APS), 2 μl N, N, N', N'-tetramethylethylenediamine (TEMED); 

5% stacking gel: 1.36 ml water, 330 μl 30% acrylamide, 250 μl 1 M Tris-HCl 

(pH 6.8), 20 μl 10%SDS, 20 μl 10% APS, 2 μl TEMED). The electrophoresis was 

conducted with running buffer (25 mM Tris base, 192 mM glycine, 0.1% SDS) at 

100 V for 2 h. 

A suitable size of nitrocellulose membrane (GE Healthcare) was cut and wet in 

the transfer buffer (10% methanol, 0.01 M Tris base, 0.096 M glycine). Pre-wet 

sponges and filter papers were assembled with the gel and the membrane. The 

transferring was conducted in the mini-transblot (Bio-rad) at 100 V for at least 1 h 

with the cold pack. 

The membrane with proteins was immediately immersed in blocking buffer (5% 
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non-fat milk powder in phosphate buffered saline (PBS) buffer (10 mM sodium 

phosphate, pH7.2, 0.9% (w/v) NaCl)). After incubation for 1 h at room temperature or 

overnight at 4 °C, the membrane was transferred into 10 ml PBS buffer with primary 

antibody and incubated for 1 h at 25°C with constant shaking. The membrane was 

washed by PBS buffer for 10 min, 3 times before transferred into 10 ml PBS buffer 

with secondary antibody. After incubation for 1 h, the membrane was washed by PBS 

buffer for 10 min, 3 times.  

The membrane was developed in the freshly-made substrate [100 mM Tris-HCl, 

100 mM NaCl, 5 mM MgCl2 pH 9.5, 0.375 mg/ml nitro blue tetrazolium (NBT) 

(Sigma), 0.25 mg/ml 5-bromo-4-chloro-3-indolyl phosphate (BCIP) (Sigma)]. 

2.6  Protein extraction 

2.6.1  Extraction of total proteins from protoplasts 

Protoplasts were centrifuged at 100 g for 3 min. The supernatant was carefully 

removed and the pellet was transferred to a pre-chilled mortar. The pellet was 

homogenized in liquid nitrogen before the protein extraction buffer was added. The 

mixture was further ground to fine powder and was transferred to a new tube before 

being centrifuged at 200,000 g for 30 min at 10°C. The supernatant was transferred to 

a new tube and kept at -20°C.  

2.6.2  Extraction of total proteins from chloroplasts 

For 1 ml chloroplast suspension, 4 ml methanol was added. The mixture was 

vortexed and centrifuged for 10 s at 9000 g. Then the supernatant was transferred into 
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a new tube. After adding 1 ml water saturated chloroform, the sample was vortexed 

and centrifuged for 10 s at 9000 g. To separate the phase, 2 ml deionized water was 

added, and the sample was vortexed and centrifuged for 1 min at 9000 g. The upper 

phase (aqueous phase) was carefully removed and discarded, and then 3 ml methanol 

was added to precipitate the protein. After vortex, the mixture was centrifuged at 

9000 g for 2 min. The supernatant was removed and the pellet washed with 1 ml 95% 

(v/v) methanol twice, then the pellet was lyophilized and stored at -80℃. 

2.7  Protein assay 

Protein samples were quantified using the 2-D Quant Kit (GE Healthcare). 

Different amounts of bovine serum albumin (BSA) standard solution (0-60 μg) were 

prepared according to manufacturer’s instructions. Tubes containing 10 μl of the 

samples were prepared to be assayed.  

First, 500 μl of precipitant reagent were added to each tube and incubated for 

2 min with vortex mixing. Then 500 μl of co-precipitant reagent were added to each 

tube, mixed briefly, centrifuged at 12,000 g for 10 min and the supernatant was 

discarded. Copper solution (100 μl) and 400 μl distilled water were mixed into each 

tube. After the precipitated proteins were dissolved, 1 ml freshly-made working color 

reagent (color reagent A: color reagent B=100:1) was added into each tube and 

incubated at room temperature for 15 min.  

The absorbance at 480 nm for each sample or standard solution was read. The 

standard curve was plotted according to the absorbance of BSA standard solutions 



13 
 

and protein concentration was estimated. 

2.8  2-D electrophoresis of proteins from plant leaves and protoplasts 

2.8.1  Rehydration of IPG Strips 

First, 340 μl IPG rehydration buffer solution (7 M urea, 2 M thiourea, 2% 

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 20 mM 

dithiothreitol (DTT), 0.5% IPG buffer, 0.002% bromophenol blue) was loaded to each 

well of the Dry Strip Tray (Amersham Bioscience). The 18 cm pH 3-10 IPG strip was 

placed into the Dry Strip Tray with gel-surface facing downward. The strip was 

covered with 1 ml cover oil (Amersham Bioscience) and incubated for at least 10 h. 

2.8.2  Isoelectric focusing 

The rehydrated strip was taken out of the Dry Strip Tray and put into the ceramic 

tray with gel-surface facing up. Two Milli-Q water dampened paper bridges were 

applied at both ends of the strip. The electrodes were placed onto the paper bridges to 

enable electrical connection. The loading cup was applied onto the gel near the 

positive electrode. After the tray was placed on the Ettan IPGphor 3 (GE Healthcare), 

60 μl sample solution (7 M urea, 2 M thiourea, 2% CHAPS, 20 mM DTT, 0.5% IPG 

buffer, 0.002% bromophenol blue) with 100 μg protein was loaded to the loading cup. 

Then 3 ml cover oil was applied on the gel and the lid of the Ettan IPGphor 3 was 

closed before starting the IEF. The program for IEF was set as follows: 200 V for 30 

min, 500 V for 30 min, 1000 V for 30 min, 1000-8000 V (gradient) for 30 min and 

8000 V for 3.5 h. After that the IPG strip was harvested and kept at -80 °C. 
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2.8.3  Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)  

The IPG strip was soaked in 10 ml DTT equilibration buffer (6 M urea, 75 mM 

Tris-HCl (pH 8.8), 29.3% glycerol, 2% SDS, 0.002% bromophenol blue, 1% DTT) 

for 15 min. Then the strip was transferred to 10 ml iodoacetate (IAA) equilibration 

buffer (6 M urea, 75 mM Tris-HCl (pH8.8), 29.3% glycerol, 2% SDS, 0.002% 

bromophenol blue, 2.5% IAA) for 15 min with constant shaking.  

After equilibration the strip was loaded onto a SDS-PAGE gel (22cm×20cm, 

12.5%: 14.52 ml double-distilled water, 14.68 ml 30% acrylamide, 10 ml 1.5 M 

Tris-HCl (pH8.8), 400 μl 10% SDS, 20 μl TEMED, 400 μl 10% APS) and sealed with 

sealing solution (25 mM Tris base, 192 mM glycine, 0.1% SDS, 0.5% agarose, 0.002% 

bromophenol blue). Protein marker was loaded at the end of the strip. 

The gel set was put into the vertical SDS-PAGE tank filled with SDS running 

buffer (25 mM Tris base, 192 mM glycine, 0.1% SDS). The program was set and the 

electrophoresis was conducted at 10 °C for 40 min at 15 mA/strip and 4 h at 

30 mA/strip. Then the polyacrylamide gel was harvested and put into the staining 

basin. 

2.8.4  Silver Staining of 2D Gels 

The gel was immersed in fix solution (50% methanol, 12% Acetic acid, 0.05% 

formalin) for at least 12 h. Then it was washed with washing solution (35% ethanol) 

for 20 min, 3 times. After washing, the gel was transferred to sensitizing solution 

(0.02% Sodium thiosulphate) for 2 min and washed with Milli-Q water for 3 times, 
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each time 1 min. The gel was incubated in staining solution (0.2% silver nitrate, 0.076% 

formalin) for 20 min with constant shaking. Followed by washing with Milli-Q water 

for 2 times, each time 1 min, the gel was developed in developing solution (6% 

sodium carbonate, 0.05% formalin, 0.0004% sodium thiosulphate). After the spots 

appeared on the gel, stop solution (1.46% ethylenediaminetetraacetic acid (EDTA)) 

was added to stop the developing reaction.  

2.9  In-gel digestion and Zip-tip® purification 

2.9. 1  In-gel digestion 

Each spot was cut from the gel and put into individual microfuge tubes. Washing 

buffer (150 μl) consisting 2.5 mM NH4HCO3, 50% acetonitrile (ACN) was added and 

the tubes were sealed with parafilm and kept overnight at 4°C.After incubation, the 

washing buffer was removed and 150 μl freshly made washing buffer was added. The 

mixture was vortexed and kept at 37°C for 10 min with constant shaking. The 

washing buffer was removed and the gel pieces were dried under vacuum in a Savant 

Speed Vac.  

First, 20 μl freshly made DTT solution (10 mM DTT, 100 mM NH4HCO3) was 

added to the dried gel pieces and the mixture was incubated for 1 h at 56°C with 

constant shaking. Then the gel pieces were treated with 20 μl freshly-made IAA 

solution (55 mM IAA, 100 mM NH4HCO3) for 45 min at room temperature. The 

tubes were kept in the dark with constant shaking. 

The gel pieces were treated with 100 μl of 100 mM NH4HCO3 at 37 °C for 10 
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min, followed by incubation with 100 μl ACN at room temperature for 10 min. This 

step was repeated for 3 times and the gel pieces were vacuum dried. An aliquot of 10 

μl trypsin solution (0.01μg/μl trypsin, 50 mM NH4HCO3) was added to each tube and 

incubated at 4°C for 30 min. The trypsin solution was removed and 10 μl 25 mM 

NH4HCO3 was added. The tubes were sealed with parafilm and incubated at 37°C for 

16 h. 

The mixture was centrifuged at 6,000 g for 10 min and the supernatant was 

transferred into new tubes. Then 10 μl freshly-prepared 0.1% trifluoroacetic acid 

(TFA) in 50% ACN was added into each tube before the tubes were sealed with 

parafilm. The mixture was sonicated in a water-bath sonicator for 15 min. Then it was 

centrifuged at 6,000 g for 10 min and the supernatants were collected and combined. 

The peptide solution was dried under vacuum and the pellet was washed with 50% 

ACN twice. The samples were stored at -20°C. 

2.9.2  Zip-tip® purification 

The samples were dissolved in 0.1% TFA. Firstly, 10 μl wetting solution (50% 

ACN) was aspirated and dispensed for 5 cycles to wet the column. Secondly, 10 μl 

double distilled water was aspirated and dispensed for 5 cycles to equilibrate the 

column. After that 10 μl sample solution was aspirated and dispensed for 10 cycles to 

bind the peptides with the column. Then 10 μl double distilled water was aspirated 

and dispensed for 5 cycles to wash the column. Thirdly, 5 µl elution buffer (0.1% 

TFA, 50% ACN) was aspirated and dispensed for 5 cycles to elute the samples. 
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Finally, the samples were dried under vacuum. 

2.10  Mass spectrometry analysis 

Firstly, 0.5 μl sample solution was mixed with 0.5 μl matrix solution (10 mg/ml 

α-cyano-4-hydroxycinamic acid (CHCA), 0.1% TFA, 50% ACN) and spotted onto a 

MALDI target plate (Applied Biosystems). After the plate was loaded into the ABI 

4700 Proteomics Analyzer MALDI-TOF/TOF mass spectrometer (Applied 

Biosystems), MS spectra were obtained with 1,000 laser shots per spectrum. Six 

external standards (mass standard kit for the 4700 Proteomics Analyzer calibration 

mixture, Applied Biosystems) spotted at the corners/edges of the MALDI target plate 

were used for plate calibration to ensure a mass accuracy within 50 ppm.  

After that, up to ten most intense ions from each MS spectrum were selected for 

MS/MS. The MS/MS analyses were performed using air, at collision energy of 1 kV 

and a collision gas pressure of 1x10-6 Torr. The MS/MS data were acquired with stop 

conditions so that 3,000-6,000 laser shots were combined for each spectrum. For 

MS/MS spectra that matched to certain peptide sequences but the MASCOT search 

(see below) results were not significant enough, more laser shots were manually 

acquired to improve the quality of the spectra. 

All of the MS and MS/MS spectra were combined to search against the National 

Centre for Biotechnology Information (NCBI) nonredundant database (NCBInr 

database, 7614964 sequences) using the software GPS ExplorerTM Version 3.6 and 

MASCOT 2.1 (Matrix Science). One missing cleavage was allowed and cysteine 



18 
 

carbamidomethylation, N-terminal acetylation and methionine oxidation were 

selected as variable modifications. Peptide mass tolerance was set to 150 ppm and 

fragment error tolerance was set to ±0.4 Da. Maximum peptide rank and minimum 

ion score C.I% (peptide) were set to 2 and 50 respectively.  

2.11  Real-time PCR analysis 

2.11.1  Plant RNA extraction 

Plant tissue sample (100 mg) was homogenized with liquid nitrogen and added to 

1 ml TRIzol® reagent (Invitrogen). The suspension was incubated for 5 min at room 

temperature before 200 μl chloroform was added. The sample was then mixed 

vigorously by shaking for 15 s and then incubated at room temperature for 3 min. The 

aqueous phase was transferred to a new tube followed by centrifugation with 12,000 g 

for 10 min at 4 °C. RNA was precipitated by mixing 0.5 ml isopropanol with the 

aqueous phase. The sample was centrifuged with 12,000 g for 10 min at 4 °C 

followed by incubation at room temperature for 10 min. The pellet was washed with 1 

ml 75% ethanol and centrifuged at 12,000 g for 1 min at 4 °C before it was dried and 

dissolved in RNase-free water. 

2.11.2  cDNA synthesis and amplification 

For each reverse transcription reaction, 1 μg RNA, 2 μl 5×RT buffer 

(Invitrogen), 0.8 μl 10 mM dNTP, 0.2 μl 50 units/μl Murine Leukemia Virus Reverse 

Transcriptase, 0.2 μl 100 μmol reverse primer of both of the actin gene and the 

ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) gene and 5.6 μl H2O 
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were added and mixed. The cDNA synthesis was then performed for 1 h at 42°C. The 

reaction was stopped by incubation at 80°C for 10 min. 

2.11.3  Real-time PCR analysis of cDNA 

Real-time PCR was carried out using the ABI 7700 (Applied Biosystems), 

according to the manufacturer's instructions. The mixture was denatured at 95°C for 

10 min and 40 cycles of reactions were carried out. For each cycle of real-time PCR, 

the conditions were as follows: 95°C for 15 sec, and 60°C for 1 min. The cycle 

threshold (Ct) was recorded and the relative fold change was calculated based on the 

Ct value. 

2.12  DNA sequencing 

For one sequencing reaction, 10 μl mixture containing 0.25 μg of DNA template, 

1.6 pmol of primer, and 4 μl of BigDye terminator reaction mixture (ABI PRISM TM 

Dye terminator Cycle Sequencing Ready Reaction Kit) was made and vortexed fully. 

The sequencing reaction was performed on the GeneAmp PCR machine for 25 cycles 

and each cycle was as follows: 96 °C for 10 sec, 50 °C for 5 sec, 60 °C for 4 min; 

rapid thermal ramp to 4 °C and hold. The mixture after the reaction was precipitated 

by ethanol and was dried under vacuum in a Savant Speed Vac. The sample was then 

run on the ABI PRISM 3100 automated sequencer.  
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CHAPTER 3.  PRESENCE OF TCV COAT PROTEIN IN 

PROTOPLASTS AND CHLOROPLASTS FROM 

INFECTED NICOTIANA BENTHAMIANA LEAVES 

3.1  Introduction 

In order to search for the differentially expressed proteins involved in TCV 

infection, and to find out the general mechanism of the host-virus interaction, 

comparing proteins expressed in TCV-infected and non-infected N. benthamiana can 

be achieved by 2-DE analysis.  

Protoplasts are cells with their cell walls removed. Protoplast isolation was first 

developed in 1960s (Cocking, 1960). It has wide-ranging applications including RNA 

transformation (Rathus & Birch, 1992), transient expression (Cormeau et al., 2002; 

Teulieres et al., 1991) and protoplast fusion (Ohgawara & Kobayashi, 1991). By 

expressing foreign genes, protoplast system is used to investigate the protein-protein 

interaction (Subramaniam et al., 2001) and virus-host interaction (McLean et al., 

1995). Moreover, it is more convenient to extract the proteins from the protoplasts. 

Therefore, protoplast system is widely used in the plant proteomic study (Davey et al., 

2005). 

Chloroplasts are bilayer membrane organelles and powerhouses in plants. They 

conduct photosynthesis by converting solar energy and carbon dioxide to oxygen and 

sugar. Photosynthesis is divided into two parts: light reactions and light-independent 

reactions (Calvin cycle). Without photosynthesis, there would be no life on earth. 
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Therefore, chloroplasts are very important as energy transformers. 

In this Chapter, 3-week-old N. benthamiana was inoculated with TCV and the 

leaves were harvested after the virus made the systematic movement. The protoplasts 

and chloroplasts were isolated from N. benthamiana leaves using the method 

mentioned before. Presence of TCV CP in protoplasts and chloroplasts isolated from 

infected N. benthamiana leaves is confirmed by western blot analysis. 

3.2  Results 

3.2.1  Inoculation of N. benthamiana and western blot analysis 

Chlorotic spots were observed on the inoculated leaves after 1 week post 

inoculation (wpi). With the virus movement, symptoms such as vein clearing and 

stunting appeared at 3 wpi. In addition, local lesions and leaf crinkling were also 

observed. The expression of TCV CP in N. benthamiana was confirmed by western 

blot (Figure 3.1 Lane 2). 

3.2.2  Protoplasts isolation and western blot analysis 

Protoplasts were isolated as mentioned in Chapter 2 and the concentration was 

calculated. A drop of protoplast suspension (10 μl) was loaded onto a 

haematocytometer and the number of cells was counted under the light microscope. 

The amount of protoplasts was calculated according to the concentration and the 

volume. For 2 g of N. benthamiana leaves, around 107 protoplasts could be harvested. 

 The existence of TCV CP is confirmed in N. benthamiana leaves and protoplasts; 

moreover, the amount of CP in protoplasts is even higher than that in leave tissue 
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(Figure 3.1 Lanes 2 & 4).  

3.2.3 Chloroplast isolation and western blot analysis 

Chloroplasts were isolated from N. benthamiana leaves using the method mentioned 

in Chapter 2. According to the western blot result (Figure 3.2), the existence of TCV 

CP is confirmed in the TCV-infected N. benthamiana chloroplasts. 

3.3  Discussion 

After inoculation, TCV CP gradually accumulated in the N. benthamiana as 

reflected by the western blot and the local lesion on the leaves. The amount of CP 

increased rapidly during the first 2 wpi and the increase was gradual after 2 wpi 

(Figure 3.3). After 4 wpi, the plant showed retarded growth and flowering. The leaves 

were not suitable for the 2-DE because of the presence of large amount of secondary 

metabolites.  

Interestingly, the TCV CP transgenic N. benthamiana stopped showing visible 

symptoms after 4 wpi, suggesting that the CP-mediated resistance suppressed the 

virus replication. Moreover, because of the homologous expression of TCV-CP, the 

suppressor activity of TCV CP was silenced in the transgenic plants (Vasudevan et al., 

2008). 
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Figure 3.1 Western blot analyses of TCV-infected N. benthamiana leaves and 
protoplasts using anti-TCV CP antibody. M: Fermentas Page Ruler prestained 
protein ladder; lane 1: total protein from non-infected N. benthamiana leaves; lane 2: 
total protein from TCV-infected N. benthamiana leaves; lane 3: total protein from 
protoplasts of non-infected N. benthamiana leaves; lane 4: total protein from 
protoplasts of TCV-infected N. benthamiana leaves. 
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Figure 3.2 Western blot analyses of TCV-infected chloroplasts from N. 
benthamiana leaves using anti-TCV CP antibody. M: Fermentas Page Ruler 
prestained protein ladder; lane 1: protein from TCV-infected N. benthamiana leaves; 
lane 2: protein from non-infected N. benthamiana chloroplasts; lane 3: protein from 
TCV-infected N. benthamiana chloroplasts. 
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Figure 3.3 Western blot analyses of TCV-infected N. benthamiana leaves with 
different wpi using antibody against TCV CP. M: Fermentas Page Ruler Prestained 
Protein Ladder; lane 1: negative control (total protein from healthy N. benthamiana 
leaves); lane 2: Positive control (total protein from TCV-infected N. benthamiana 
leaves); lane 3: total protein from N. benthamiana leaves before TCV inoculation; 
lane 4: total protein from N. benthamiana leaves at 3dpi; lane 5: total protein from N. 
benthamiana leaves at 2wpi; lane 6: total protein from N. benthamiana leaves at 
4wpi. 
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There was larger amount of CP present in the isolated protoplasts than 

TCV-infected N. benthamiana leaves (Figure 3.1 Lanes 2 & 4). It is probably due to 

less debris in the protoplasts because the cell wall was removed earlier. Furthermore, 

the protoplasts were easier to homogenize,  thus alleviating protein degradation. 

Therefore, protoplast was a good experimental material for the 2-DE, as compared to 

the use of leaf tissues. 

TCV coat protein is the structural and functional virus protein, and it also acts as 

a strong suppressor of RNA silencing. Therefore, western blot of TCV CP can reveal 

the virus amount in the host plants. Protein was extracted when the virus reached the 

largest amount in N. benthamiana leaves. The host-virus interaction would be most 

apparent in that stage. 

The western blot showed two apparent bands and it is probably due to the 

degradation during the protein extraction. Thus during the sample preparation of the 

2-DE, protease inhibitor mixture was used to minimize the degradation.  
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CHAPTER 4.   2-DE OF PROTEINS EXTRACTED 

FROM PROTOPLASTS OF NON-INFECTED VERSUS 

TCV-INFECTED NICOTIANA BENTHAMIANA LEAVES 

4.1  Introduction 

To find differentially expressed proteins between non-infected N. benthamiana and 

TCV-infected N. benthamiana, proteins extracted from the protoplasts need to be 

separated and compared. Since first developed in 1975 (Klose, 1975b; O'Farrell, 1975), 

2-DE has become one of the standard procedures in proteomic research. It can provide 

the full network of a complete set of proteins in a given sample at a specified time (Issaq 

& Veenstra, 2008). With IPG of the IEF strips (Gorg et al., 1988), separation of proteins 

were greatly improved. After several  modifications (Gorg et al., 2000; Klose & Kobalz, 

1995) and combination with various staining methods (Patton, 2002) , 2-DE has become 

a widely used method.  

Furthermore, 2-DE combined with MS allows for the identification of the proteins in 

the cellular responses. With the development of the MS technique (Bjellqvist et al., 1994) 

and more protein data entered into the databases, proteins can be identified more easily 

even without the whole genome information. 

Firstly, total cellular proteins were extracted from the TCV-infected and non-infected 

N. benthamiana protoplasts. Then the expression patterns of the cellular proteins were 

obtained by 2-DE and silver staining. After that, comprehensive analyses of proteins 

associated with TCV infection were focused on the differently expressed proteins. Finally, 



28 
 

protein spots with different intensities were processed for MS/MS analysis and the data 

were searched against NCBInr database. 

4.2  Results 

4.2.1  Extraction of total proteins from protoplasts  

Total cellular proteins were extracted using the method mentioned in Chapter 2 from 

TCV-infected and non-infected N. benthamiana protoplasts. A linear standard curve was 

obtained by plotting absorbance at 480 nm versus amount of BSA (Figure 4.1).  

4.2.2 2-DE of protoplast protein 

For TCV-infected and non-infected N. benthamiana protoplast protein, three 

biological replicates from both TCV-infected and non-infected N. benthamiana 

protoplasts were used and the 2-DE method was optimized to better separate the proteins. 

Proteins (100 μg) were first loaded onto a pH 3–10NL IPG strip for the first dimensional 

separation and then by 12.5% SDS-PAGE for the second dimensional separation. After 

that the resulting gels were stained with silver nitrate to reveal the protein spots. Each 

biological replicate was used twice to run the 2-DE. The developing time was 90s. The 

stained gels were scanned and compared (Figures 4.2, 4.3 and 4.4). 
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Figure 4.1  Standard curve s of protein quantification assay. 
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Figure 4.2 2-DE gels of non-infected N. benthamiana and TCV-infected N. benthamiana leaf protoplast protein. Proteins were extracted from leaf 

protoplasts and resolved with 2-DE with 18cm pH 3-10NL strips and 12.5% PAGE gels and spots were visualized with silver staining. 
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Figure 4.3 A representative 2-DE map of proteins extracted from protoplasts of 
non-infected N. benthamiana leaves and analysis of the proteome profile. Labeled 
spots represent proteins with significant changes. Spots labeled with blue color 
showed lower expression in TCV-infected N. benthamiana. 
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Figure 4.4 A representative 2-DE map of proteins extracted from protoplasts of 
TCV-infected N. benthamiana leaves the analysis of the proteome profile. Labeled 
spots represent proteins with significant changes. Spots labeled with red showed 
higher expression in TCV-infected N. benthamiana. 
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4.2.3 Identification of differentially expressed proteins 

Among the proteins found with expressions that were significantly different between 

the two samples, 18 spots were identified. Seven spots (Figures 4.4 and 4.5) with higher 

expression in TCV-infected N. benthamiana were the coat protein of TCV (spots 12-15, 

18), L-ascorbate peroxidase (spot 16), triose phosphate isomerase cytosolic isoform-like 

(spot 17). Eleven spots (Figures 4.3 and 4.5) which showed lower expression in 

TCV-infected N. benthamiana were RuBisCO (spots 6, 8-11), RuBisCO activase 2 (spot 

3), RuBisCO activase (spots 4-5), Hsp70 (spot 1), chloroplast carbonic anhydrase (spot 7), 

ATP synthase CF1 alpha subunit (spot 2). Detailed information of these identified 

proteins (spot number, protein name, GenInfo Identifier, protein score and searched pI 

and Mr are listed in Table 4.1).  
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Figure 4.5 Spots with significant change. Spots 1-11 showed lower expression 
whereas spots 12-18 showed higher expression in TCV-infected N. benthamiana,  
 

 
 
 



35 
 

 

Table 4.1 Differentially Expressed Proteins between TCV-infected and non-infected N. benthamiana protoplast. 

Spot no.1 Protein name GenInfo Identifier2 Protein score3 Searched pI4 Searched Mr (kDa) 

1    hsp70             gi|20559     259    5.07     71 

2   ATP synthase CF1 alpha subunit     gi|169794058    150     5.22     56 

3    RuBisCO activase 2, chloroplast precursor   gi|12643758    535    8.14    48 

4   Ribulose-bisphosphate carboxylase activase  gi|100380    584    5.01    26 

5   RuBisCO activase         gi|445628     307    5.50     43 

6   RuBisCO large subunit       gi|87204408    343    6.46     50 

7   Chloroplast carbonic anhydrase      gi|62865753    233    7.02    21 

8   RuBisCO large subunit       gi|13559967    280    6.33     52 

9     RuBisCO large subunit       gi|87204408    268    6.46     50 

10   RuBisCO large subunit       gi|87204408    268    6.46     50 
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…CONTINUED 

Spot no.1 Protein name GenInfo Identifier2 Protein score3 Searched pI4 Searched Mr (kDa) 

11    RuBisCO large subunit       gi|87204408    464    6.46     50 

12   TCV coat protein         gi|82706242    342    9.31    38 

13   TCV coat protein         gi|32263862    321    9.39    38 

14   TCV coat protein          gi|32263862    289    9.39    38 

15   TCV coat protein          gi|82706242    446    9.31    38 

16   L-ascorbate peroxidase       gi|804973    148    5.32    27 

17   Triose phosphate isomerase cytosolic isoform-like gi|77745458    167    5.73    27 

18   TCV coat protein          gi|82706242    187    9.31    38 

1. Spot numbers are consistent with that presented in Figure 4.1 and 4.2. 2. GenInfo Identifier: sequence identification number by 
GenBank; 3. Protein Score: generated by MS identification platform; a search with protein score over 100 was regarded as a significant 
match. 4: pI and Mr are derived from search results generated by the MS platform. 
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4.3   Discussion 

In this study, 2-DE was used to assess the leaf response at protein level in 

TCV-infected N. benthamiana via comparing with the leaf proteome of non-infected N. 

benthamiana. The identified proteins can be categorized into several groups based on 

their major cellular functions (Table 4.2), such as stress response and detoxification, 

carbohydrate metabolism and energy metabolism. The major cellular functions of the 

identified proteins and the cellular processes they are involved in are discussed below: 

Stress response and detoxification 

Heat shock proteins (HSP) are a class of proteins actively synthesized as part of 

the response to stress, such as infection, starvation, exposure of the cell to toxins or 

water deprivation. HSPs are found in virtually all living organisms and also function 

as intra-cellular chaperones for other proteins. It helps proteins adopt native 

conformations and correct misfoldings (Sharma & Masison, 2009). HSP 70 can also 

control virus replication (Santoro, 1994). It was induced by reactive oxygen species 

(ROS) under stresses (Timperio et al., 2008). The gene expression level of Hsp 70 is 

up-regulated with phytoplasma infection(Carginale et al., 2004) in Prunus armeniaca. 

However, in this study, Hsp70 (spot 1) was down-regulated in TCV-infected N. 

benthamiana leaves. It is possible that the transcription of Hsp is induced while the 

translation of Hsp is suppressed by virus. Over-expression of Hsp 70 can increase the 

cellular resistance to environmental stresses (Kabakov et al., 2006). Therefore, with 

Hsp 70 down-regulated, the resistance of plants to infection will also decrease 
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because stresses make the infection easier. If virus suppresses Hsp proteins, the ROS 

would cause more damages and plants would be more susceptible to virus. So the 

suppression of Hsp 70 could be one tactic of TCV. Furthermore, Hsp 70 homolog 

encoded by beet yellows closterovirus functions in cell-to-cell movement of a plant 

virus (Peremyslov et al., 1999). The mechanism that Hsp increase upon virus 

infection could be that plant can sense individual properties of particular proteins 

when expressed at high levels and response to the protein accumulation (Aparicio et 

al., 2005) 

Another spot is identified as L-ascorbate peroxidase (spot 16) which was 

down-regulated in TCV-infected N. benthamiana leaves. Ascorbate peroxidases 

control the hydrogen peroxide concentration in cells and can attenuate the damaging 

effects of ROS (Batkova et al., 2008; Dabrowska et al., 2007). It is essential to 

maintain the antioxidant system and protects plants from stresses (Shigeoka et al., 

2001). Ascorbate peroxidase plays an important role in the detoxification of H2O2 in 

higher plants, producing dehydroascorbate and water from H2O2 and ascorbate. Its 

gene expression is induced in a hot pepper that is resistant to one bacterial pathogen 

(Yoo et al., 2002). Therefore it is possible that virus can suppress ascorbate 

peroxidase in susceptible plants. In addition, this enzyme helps plants increase 

tolerance to stresses such as chilling (Kaniuga, 2008) and water stress (Flexas et al., 

2006). Since stress and virus infection are close related, the suppression of ascorbate 

peroxidase can decrease the resistance and make plant further susceptible to virus. 
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However, study shows that it is  inhibited by salicylic acid and 

2,6-dichloroisonicotinic acid which are two inducers of plant defense responses 

(Durner & Klessig, 1995). It is also inhibited by benzothiadiazole which is another 

inducer of plant defense (Wendehenne et al., 1998). Moreover, cytosolic ascorbate 

peroxidase is suppressed during pathogen-induced PCD in tobacco (Mittler et al., 

1998). On the other hand, ascorbate peroxidase is induced after the onset of necrosis 

in tobacco (Fodor et al., 1997). Therefore, ascorbate peroxidase is probably 

differentially regulated during different stages of virus infection. 

Carbohydrate Metabolism 

As the most abundant protein in leaves, RuBisCO is a key enzyme in the Calvin 

cycle, it catalyzes the carboxylation (with carbon dioxide) or the oxygenation (with 

oxygen) of ribulose-1,5-bisphosphate (RuBP). In this study, 5 differential spots were 

identified as RuBisCO (spots 6, 8-11). RuBisCO activity is affected by various 

stresses and photosynthetic efficiency can be greatly decreased. Specific transcription 

factors regulate the differential gene expression (Saibo et al., 2009) of the 

photosynthesis related genes. Activities of RuBisCO and other Calvin cycle enzymes 

are also very sensitive to heat stress (Demirevska-Kepova & Feller, 2004). Moreover, 

the activation state of RuBisCO is suggested as a limiting factor in photosynthesis 

(Salvucci & Crafts-Brandner, 2004). RuBisCO decreases with the effect of Albugo 

candida in Arabidopsis thaliana (Tang et al., 1996). Net photosynthetic rate decreases 

under the effects of pathogen such as Thrips tabaci (Dai et al., 2009). Cucumber 
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mosaic virus also results in decreased photosynthesis in cucumber and tomato leaves 

(Song et al., 2009). It showed that photosynthesis would be inhibited by pathogen 

infection. But not all virus suppress photosynthesis, TMV strain PV42 did not impair 

photosynthetic acclimation and even enhanced it in some treatments (Balachandran et 

al., 1994). RuBisCO activity substantially decreases while light reactions are slightly 

changed in grapevine fan leaf virus-infected tobacco, showing that decreased 

RuBisCO is the main limitation factor of photosynthesis in virus-infect tobacco 

(Sampol et al., 2003). 

Interestingly, in 2-DE results, only RuBisCO large subunit showed decrease 

while the small subunit did not show any changes. The RuBisCO holoenzyme is 

assembled from eight chloroplast-encoded large subunits and eight nuclear-encoded 

small subunits. Study shows that during oxidative stress, synthesis of large subunit 

stops and newly synthesized small subunits are rapidly degraded, therefore, assembly 

of new RuBisCO holoenzyme is inhibited (Knopf & Shapira, 2005). Moreover, the 

structure of RuBisCO large subunit changes and can not bind the small subunit 

(Cohen et al., 2005). Excess small subunits would cause the degradation. The 

different pathways of synthesis are probably responsible for the different responses of 

large subunit and small subunit.  

Triose phosphate isomerase (spot 17) is an important enzyme in glycolysis. It 

catalyzes the reversible interconversion of the dihydroxyacetone phosphate and 

D-glyceraldehyde 3-phosphate. Triose phosphate isomerase is down-regulated in rice 
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mutants which is susceptible to Magnaporthe oryzae (Ryu et al., 2009) and 

up-regulated in some cancer cells (Zhang et al., 2005) and cells under stress (Dihazi 

et al., 2005). Therefore it is induced under stresses or pathogen infection which is 

consistent with the 2-DE result that it is up-regulated in TCV-infected N. benthamiana 

leaves. Although triose phosphate isomerase is up-regulated, however, it is not the 

rate-limiting enzyme in glycolysis. The mechanism whether the up-regulation is due 

to virus induction or host plant defense is still not clear. Since triose phosphate 

isomerase is believed to be regulated by abscisic acid in the plant (He & Li, 2008) and 

abscisic acid is involved in plant defense to pathogens (Mauch-Mani & Mauch, 2005), 

there should be relationship between virus infection and up-regulation of triose 

phosphate isomerase. 
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Table 4.2  Proteins identified with differential expression in N. benthamiana protoplasts with TCV infection. 

 

 
Proteins that are up-regulated 

with TCV infection 

Proteins that are down-regulated 

with TCV infection 

Virus protein TCV coat protein  (spots 12-15, 18) - 

Stress response and detoxification L-ascorbate peroxidase (spot 16) Hsp70 (spot 1) 

Carbohydrate Metabolism 
Triose phosphate isomerase cytosolic 

isoform-like (spot 17) 
RuBisCO (spots 6, 8-11) 

Protein processing - 
RuBisCO activase 2 (spot 3), RuBisCO 

activase (spots 4-5) 

Maintenance of pH - Chloroplast carbonic anhydrase (spot 7) 

Energy Metabolism - ATP synthase CF1 alpha subunit (spot 2) 
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Protein processing 

RuBisCO activase (RCA) is a member of ATPase family and has two isoforms in 

N. benthamiana (Salvucci et al., 1987). It maintains and regulates the activity of 

RuBisCO. In this study, three spots are identified as RuBisCO activase, one spot is 

RuBisCO activase 2 (spot 3), the other two spots are RuBisCO activase (spots 4-5) 

and they are all down-regulated in TCV-infected N. benthamiana leaves. RCA 

responses to stresses such as drought (Demirevska et al., 2008), high temperature 

(Hendrickson et al., 2007; Salvucci, 2007; Salvucci et al., 2001) and salt stress (Feng 

et al., 2007). Although there is no previous report about the protein amount change 

with virus infection, since photosynthesis is affected by virus infection (Bechtold et 

al., 2005), RuBisCO activase is probably to be suppressed directly or indirectly by the 

virus. 

Maintenance of pH 

Chloroplast carbonic anhydrase (Spot 7) is the enzyme that catalyses the 

reversible hydration of carbon dioxide. Its primary function is to maintain acid-base 

balance and to transport carbon dioxide. It is affected by salt stress (Siddiqui et al., 

2008), aluminum stress (Ali et al., 2008) and cadmium stress (Hayat et al., 2007). 

With carbonic anhydrase gene silenced, pathogen grew faster in N. benthamiana 

(Restrepo et al., 2005). Therefore its suppression may be caused by virus and can 

increase the susceptibility of plant to virus. Chloroplast carbonic anhydrase also binds 

to salicylic acid and plays a role in the hypersensitive defense response (Slaymaker et 
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al., 2002). Therefore the suppression may be also due to the plant resistance response. 

Energy Metabolism 

ATP synthase CF1 alpha subunit (Spot 2) is the one of many subunits of the 

catalytic domain (F1 complex) of ATP synthase. ATP synthase is down-regulated 

under salt stress (Chen et al., 2009), low temperature (Liang et al., 2007) and heat 

stress(Majoul et al., 2003). It would be damaged by ROS (Lawlor & Tezara, 2009). 

ATP synthase is up-regulated in virus-resistant shrimp (Zhao et al., 2007) and 

down-regulated in virus-infected shrimp (Wang et al., 2006). Marek's disease virus 

phosphorylated polypeptide makes ATP content in mitochondria greatly reduced 

(Piepenbrink et al., 2009). Therefore it is suppressed by virus infection and the energy 

metabolism efficiency would also decrease. 

Most differentially expressed proteins are related to the carbohydrate metabolism 

and photosynthesis (Table 4.2). Five down-regulated spots in TCV-infected N. 

benthamiana leaf protein were identified as RuBisCO. Moreover, the RuBisCO 

activase, which regulates the RuBisCO activity, is also down-regulated with virus 

infection. RCA relies on ATP to activate the RuBisCO, but with the down-regulation 

of ATP synthase, RCA cannot obtain sufficient ATP to complete the activation of 

RuBisCO. Therefore, with lower amount and decreased activity of RCA, the activity 

of RuBisCO would decrease. Furthermore, with less RuBisCO and lower activity, the 

photosynthesis efficiency would become lower in the TCV-infected N. benthamiana 

than in the healthy N.benthamiana.  
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Besides, ROS, which increases under stress, will cause significant damage to cell 

structures. Three identified differential proteins; HSP 70, ascorbate peroxidase and 

ATP synthase are related to ROS. For example, ascorbate peroxidase, which is 

essential to the detoxification of H2O2, can attenuate the effects of ROS. With 

decreased expression of ascorbate peroxidase, ROS may cause severe damage to the 

cells.  

Some identified proteins are known to be regulated by hormones, such as triose 

phosphate isomerase and RuBisCO activase. Many hormones are related to the 

plant-pathogen interaction (Kazan & Manners, 2009; Kovac et al., 2009; 

Robert-Seilaniantz et al., 2007). Hormones can trigger some signal transduction 

pathways (Robert-Seilaniantz et al., 2007), but the underlying mechanism is not clear. 

Carbohydrate metabolism is not only related to energy metabolism, it also 

influences symptom development in virus-infected Arabidopsis thaliana (Handford & 

Carr, 2007). Plant is a whole organism and the pathways are related to each other. In 

healthy plants, homeostasis is kept and when virus infects, the intruder would trigger 

many pathways (Figure 4.6). Virus infection triggers signal transduction first and 

increased ROS production will affect cell homeostasis and cause stresses and generate 

some toxins. Therefore plant has stress responses, and the toxins have to be detoxified. 

ROS also causes programmed cell death (PCD), which can prevent the virus spread. 

The stresses, toxins and PCD all can suppress carbohydrate metabolism and 

photosynthesis. The suppressed energy metabolism will stimulate more PCD. To 
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summarize, the pathways in the plants are so complicated and closely related that 

virus infection affects most of them. Plant adjusts its physiology to keep the 

homeostasis and virus utilizes plant to express what it needs. The interaction between 

them also evolved during the evolution of the plant and the virus themselves. 
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Figure 4.6 The pathways that virus affects in plant. 
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CHAPTER 5.  2-DE OF PROTEINS EXTRACTED FROM 

CHLOROPLASTS OF NON-INFECTED VERSUS 

TCV-INFECTED NICOTIANA BENTHAMIANA LEAVES 

5.1  Introduction 

Chloroplasts conduct photosynthesis by converting solar energy and carbon 

dioxide to oxygen and sugar. Its functions are regulated by many environmental 

stresses and virus infections. As an example, virus infection will disrupt chloroplasts 

(Zhou et al., 2008) and block transport pathways from the chloroplast to the cytosol 

(Loebenstein, 2006). Cucumber mosaic virus alters the ultrastructure of chloroplasts 

(Chen et al., 2007). Peach latent mosaic viroid can even inhibit chloroplast 

development in the early stage (Rodio et al., 2007).  

As shown in the 2-DE of TCV-infected and non-infected N. benthamiana 

protoplasts, virus infection down-regulated the RuBisCO and RuBisCO activase. 

These two enzymes are key enzymes in the Calvin cycle. In other words, the 

functions of chloroplasts are affected. However, the interactions between the 

chloroplasts and the TCV-infected plants are still not clear. To investigate which 

proteins are affected in chloroplasts and how chloroplasts react to the TCV infection, 

2-DE of proteins from non-infected and TCV-infected N. benthamiana chloroplasts was 

performed. After that, comprehensive analyses of proteins associated with TCV infection 

were focused on the differently expressed proteins.  

5.2  Results 
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5.2.1 Extraction of total proteins from chloroplasts  

Proteins of TCV-infected and non-infected N. benthamiana chloroplasts were 

extracted using protocols as mentioned in Chapter 2. Then the protein assay was used 

to determine the concentration of the protein samples. The protein amount and 

concentration were calculated according to the standard curve (Figure 5.1). 

5.2.2  2-DE of chloroplast proteins and protein expression profile  

Three biological replicates were performed and 2-DE was optimized to better separate 

the proteins and Proteins (20 μg) were first loaded onto a pH 4-7 IPG strip for the first 

dimensional separation followed by 12.5% SDS-PAGE for the second dimensional 

separation. The gels were then stained with silver nitrate to reveal the protein spots 

(Figures 5.2 and 5.3). The developing time was 2 min. 
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Figure 5.1  Standard curve of the protein quantification assay. 

 

 

 

 

 

 

 

 

 

 

y = ‐0.004x + 0.457
R² = 0.991

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60

A
b
so
rb
an
ce
 a
t 
4
8
0
n
m

Amount of BSA (μg)

Standard Curve



51 
 

 

 

 

 

 

 

 
Figure 5.2 A representative 2-DE map of proteins from chloroplasts of 
non-infected N. benthamiana and the analysis of the proteome profile. Spots 
labeled with blue color showed lower expression in TCV-infected N. benthamiana 
compared with those in non-infected N. benthamiana. 
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Figure 5.3 A representative 2-DE map of proteins from chloroplasts of 
TCV-infected N. benthamiana and the analysis of the proteome profile. Spots 
labeled with red color showed higher expression in TCV-infected N. benthamiana 
compared with those in non-infected N. benthamiana. 
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5.2.3 Identification of differentially expressed proteins in the chloroplast 

 Eleven spots with significant changes were identified. Eight spots with higher 

expression in TCV-infected N. benthamiana were putative zinc protease (spot 22), 

hypothetical protein AnaeK_0416 (Spot 26), Ferredoxin--NADP reductase (spots 

23-25), photosystem I light-harvesting chlorophyll a/b-binding protein (spot 27), 

23-kDa polypeptide of photosystem II oxygen-evolving complex (spot 28) and 

fkbp-type peptidyl-prolyl cis-trans isomerase 2 (spot 29). Three spots which showed 

lower expression in TCV-infected N. benthamiana were identified as well; they were 

Chlorophyll A-B binding protein (spots 20 and 21) and adenylate kinase (spot 19). 

Detailed information of these identified proteins (spot number, protein name, GenInfo 

Identifier, protein score and searched pI and Mr) are listed in Table 5.1. 

5.3  Discussion 

The identified proteins can be categorized into several groups based on their 

major cellular functions, such as Protein degradation, Photosynthesis and energy 

metabolism (Table 5.2). The major cellular functions of the identified proteins and the 

cellular processes they are involved in are discussed below: 
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Table 5.1  Differentially Expressed Proteins between TCV-infected and non-infected N. benthamiana chloroplast proteins. 

Spot no.1 Protein name GenInfo Identifier2 Protein score3 Searched pI4 Searched Mr (kDa) 

 

19 Adenylate kinase  gi|225355115 53 5.19 23 

20 Chlorophyll A-B binding protein gi|7271945 174 5.59 18 

21 Chlorophyll A-B binding protein gi|7271945 160 5.59 18 

22 Putative zinc protease gi|27734210 62 5.65 49 

23 Ferredoxin--NADP reductase gi|3913651 139 8.37 40 

24 Ferredoxin--NADP reductase gi|3913651 244 8.37 40 

25 Ferredoxin--NADP reductase gi|3913651 192 8.37 40 
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…CONTINUED 

Spot no.1 Protein name GenInfo Identifier2 Protein score3 Searched pI4 Searched Mr (kDa) 

 

26 Hypothetical protein AnaeK_0416 gi|197120836 62 4.73 10 

27 Photosystem I light-harvesting chlorophyll 

a/b-binding protein 

gi|493723 71 5.83 26 

28 RNA polymerase sigma-70 factor gi|84515072 61 9.21 24 

29 fkbp-type peptidyl-prolyl cis-trans isomerase 2 gi|223530783 91 9.28 24 

 
1. Spot numbers are consistent with those presented in Figures 5.3 and 5.4. 2. GenInfo Identifier: sequence identification number by 
GenBank; 3. Protein Score: generated by MS identification platform; a search with protein score over 50 was regarded as a significant 
match. 4: pI and Mr are derived from search results generated by the MS platform. 
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Protein degradation 

Virus infection is closely related to protein metabolism. A model that virus can 

reorganize the ER and increase protein degradation was proposed previously (Ju et al., 

2005). Microarray analysis also showed that virus infection affected protein 

degradation in Arabidopsis (Marathe et al., 2004). On the other hand, increase in the 

protein degradation may also be the one of many resistance strategies for the plants to 

fight against the virus (Martin et al., 2003). Zinc protease (spot 22) is a 

metalloproteases and participates in proteolysis. Some zinc proteases have roles in 

cell signaling (Shih et al., 2008). This is the first time to have this protein identified in 

virus-infected plant proteome. Although there is no data about this protein in 

virus-infected plant, other proteases are proved to take part in host-virus interaction. 

Plant vacuolar protease mediates virus-induced hypersensitive cell death (Hatsugai et 

al., 2004). A plasminogen-activating protease even controls the development of 

primary pneumonic plague (Lathem et al., 2007). Virus infection may trigger cell 

signaling pathways and increase the protein degradation. 

Protein processing 

Peptidyl-prolyl cis-trans isomerase is a family of enzymes. It catalyzes the 

cis-trans isomerization of proline imidic peptide bonds in oligopeptides and 

accelerates the folding of proteins. It is related to oxidative stress (Hong et al., 2002) 

and may also take part in other stress responses. Although the response pathway can 

not be deduced, at least we can know that protein processing is related to the virus 
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infection. 

Photosynthesis 

There are two differentially expressed enzymes related to photosynthesis: 

ferredoxin-NADP reductase (Spots 23-25) and chlorophyll a/b-binding protein (spots 

20 and 21). Ferredoxin-NADP reductase belongs to the family of oxidoreductases and 

catalyzes the oxidation of ferredoxin. Chloroplast ferredoxin plays an important role 

in plant cells by participating in many pathways. Environmental stresses cause the 

ferredoxin decline (Tognetti et al., 2007) and the ferredoxin-NADP reductase is 

possible to increase as a response to the ferredoxin starvation. It is also the first time 

to detect ferredoxin-NADP reductase as a differentially expressed protein in 

virus-infected plant. 

Chlorophyll a/b-binding protein balances the excitation energy between 

photosystems I and II. Its gene expression changes in response to drought and saline 

habitats (Wang et al., 1998), and also to the light stress (Potter et al., 1996). However, 

chlorophyll analysis suggests that the suppression of light reactions is a minor effect 

of virus infection (Sampol et al., 2003). It is possible because the change of 

chlorophyll a/b-binding protein could not be detected on the 2-DE gels of total 

protoplast proteins, but the difference appeared on the gels of chloroplast proteins of 

which chlorophyll a/b-binding protein is much more enriched. Although there is no 

evidence that it is related to virus infection, the stresses caused by virus may also 

affect the chlorophyll a/b-binding protein. 
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Transcription 

RNA polymerase is an essential enzyme and controls the transcription. After 

infection, virus needs to synthesize its own proteins and RNA, so the transcription 

level will increase. Some antiviral proteins mainly inhibit virus transcription (Habjan 

et al., 2009). In chloroplasts, photosynthesis is suppressed by virus and RuBisCO is 

down-regulated, therefore, as a response, the transcription level is possible to increase 

to make up the decrease in the photosynthesis enzymes. 

Energy Metabolism 

Adenylate kinase controls the interconversion between ADP and ATP, so it is a 

key enzyme in energy metabolism. It regulates multiple intracellular and extracellular 

energy-dependent and nucleotide signaling processes, so it is very sensitive in stress 

response (Dzeja & Terzic, 2009). Hepatitis C virus RNA helicase consists of three 

structural domains and two of them have an adenylate kinase like fold, including a 

phosphate-binding loop in the first domain (Kim et al., 1998). 

The pathways to which these proteins belong are also closely related in 

chloroplasts. First, photosynthesis generates energy from light, and then adenylate 

kinase provides energy supply. Transcription and protein degradation keep the 

homeostasis. When virus infects the plant and enters chloroplasts, photosynthesis is 

suppressed so energy supply is not enough. Transcription level is up-regulated by 

plant to make up the decrease in photosynthesis or by virus to transcribe the host 

genes which are useful to virus. After virus triggers ROS and PCD by signal 
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transduction cascades, protein degradation is up-regulated. If plant can recognize 

virus protein, protein degradation would also be activated. 

Among proteins identified above, several lack the information about plant-virus 

interaction. One reason is that plant material is N. benthamiana that does not have full 

genome information in databases. Proteins have to be identified by homolog 

alignment. The other reason is that chloroplast is seldom studied separately in 

proteomic analysis. 2-DE results showed the effectiveness of the method we use. 

More differentially expressed proteins can be identified and with the information of 

compartment alization, the mechanisms of biological processes can be further 

understood.  

To sum up, virus infection affects many pathways such as protein degradation, 

photosynthesis and energy metabolism in chloroplasts. Plants also respond to the 

infection and trigger more pathways. The mechanism is still not clear because the 

relationship between the host and virus may be very complicated.  
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Table 5.2 Proteins identified with differential expression in N. benthamiana with TCV infection. 

 

 
Proteins that are up-regulated 

with TCV infection 

Proteins that are down-regulated 

with TCV infection 

Protein degradation zinc protease (spot 22) - 

Protein processing 
fkbp-type peptidyl-prolyl cis-trans isomerase 2 

(spot 29) 
- 

Photosynthesis 
Ferredoxin--NADP reductase (spots 23-25), 

Chlorophyll a/b-binding protein (spot 27) 

Chlorophyll a/b binding protein (spots 

20-21) 

Transcription RNA polymerase sigma-70 factor (spot 28) - 

Energy Metabolism - Adenylate kinase (Spot 19) 
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CHAPTER 6.  REAL-TIME PCR OF DOWN-REGULATED 

RUBISCO GENE IN NON-INFECTED VERSUS TCV-INFECTED 

NICOTIANA BENTHAMIANA LEAVES 

6.1  Introduction 

Real-time PCR was first developed by Higuchi (Higuchi et al., 1993) and has 

several advantages. As a rapid and sensitive technique to reveal the RNA level, it is 

also widely used in plant gene expression investigations (Aime et al., 2008; Desmond 

et al., 2008).  

During evolution, plants have developed some kinds of defense mechanisms to 

respond to viral infection (Lu et al., 2008; Qu & Morris, 2005). For example, if 

pathogen was recognized by the plant and the resistance (R) gene was triggered, 

hypersensitive response will take place (Gan et al., 2009; Kamoun et al., 1999). It 

induces PCD (Hofius et al., 2007; Khurana et al., 2005), activates several signal 

transduction pathways (Rathjen & Moffett, 2003; Romero-Puertas et al., 2004) and 

causes necrotic local lesions to avoid systematic infection (Kuta & Tripathi, 2005). 

RuBisCO, the most abundant protein in the leaves, also catalyzes the key enzyme 

in the Calvin cycle. It is highly conserve among plants. In the 2-DE mentioned above, 

5 spots were identified as RuBisCO’s large subunit. The expression was 

down-regulated at the protein level, but the change at transcription level is still 

unknown. Some transcription factors are known to regulate the gene expression of the 

photosynthesis related genes (Saibo et al., 2009). 
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In this Chapter, RNA from non-infected N. benthamiana and TCV-infected N. 

benthamiana was extracted and cDNA was generated from the RNA. Real-time PCR 

was performed to compare the transcription level of RuBisCO large subunit gene. 

6.2  Results 

6.2.1  Synthesis of the Real-time PCR primers of RuBisCO large subunit gene 

Total RNA was extracted and reverse-transcribed as described in Chapter 2. Since 

RuBisCO large subunit gene is highly conserve among plants, the real-time PCR 

primer from rice (Yan et al., 2006) was tried on N. benthamiana cDNA. After PCR 

reaction, there was an apparent band around 0.6 kb and this band was excised from 

agarose gel and purified for DNA sequencing. The sequencing result showed that it 

was a RuBisCO large subunit gene fragment.  

Primers for RuBisCO large subunit: 

Forward primer: 5’-GCAGGTACATGCGAAGAAATG-3’ 

Reverse primer: 5’-TCACAAGCTGCGGCTAGTTC-3’ 

Primers for N. benthamiana actin: 

Forward primer: 5’-CTTGAAACAGCAAAGACCAGC-3’ 

Reverse primer: 5’-GGAATCTCTCAGCACCAATGG-3’ 

6.2.2  Real-time PCR of RuBisCO large subunit 

Total RNA was extracted from non-infected N. benthamiana and TCV-infected N. 

benthamiana leaves. The cDNA was generated by reverse transcription as mentioned 

above. Real-time PCR was performed in triplicate and the fold change was calculated 
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based on the Ct values (Tables 6.1 & 6.2). All data were normalized to N. 

benthamiana actin expression levels as previously described (Livak & Schmittgen, 

2001). To normalize the RT-PCR, one endogenous reference gene (actin) was used in 

each experiment. Results were expressed as a threshold cycle (Ct) value. Each RNA 

sample was assayed in triplicate and their Ct and standard deviation values were 

averaged. The RuBisCO large subunit expression showed a decrease by 62% in N. 

benthamiana with TCV infection (Figure 6.1). 

6.3  Discussion 

The RuBisCO large subunit gene expression was largely down-regulated in 

TCV-infected N. benthamiana (Figure 6.1). This is consistent with the 2-DE results in 

which 5 spots were down-regulated in TCV-infected N. benthamiana and identified as 

RuBisCO large subunit. Therefore, the virus infection affects the RuBisCO 

expression beginning from the transcription level. Many other signal transduction 

pathways may also be affected. 

RuBisCO is a key enzyme in the Calvin cycle and plants cannot utilize the carbon 

dioxide without it. Therefore, although TCV suppresses its transcription, the 

expression cannot be shut down, or else the plant cannot live and the virus will not be 

able to replicate. On the other hand, plant also develops PCD and causes necrotic 

local lesions to avoid systematic infection (Kuta & Tripathi, 2005).  
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Table 6.1 Ct value of the Real-time PCR. 

 Non-infected N. benthamiana TCV-infected N. benthamiana

Sample 1 2 3 1 2 3 

Actin 20.34 21.07 19.43 20.97 22.05 20.46 

RuBisCO large subunit 24.88 25.63 24.86 26.68 28.5 27.02 

ΔCt 4.54 4.56 5.43 5.71 6.45 6.56 

 

 

Table 6.2 Comparison of RuBisCO large subunit gene expression in 

TCV-infected N. benthamiana with non-infected N. benthamiana. 

 Non-infected N. benthamiana TCV-infected N. benthamiana 

ΔCt 4.84 6.24 

s 0.51 0.46 

ΔΔCt 1.4 

2 -ΔΔCt 0.38 
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Figure 6.1 Comparison of RuBisCO large subunit gene expressions in 
non-infected versus TCV-infected N. benthamiana. RuBisCO large subunit gene 
showed apparent down-regulation in TCV-infected N. benthamiana. 
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show great down-regulation in the 2-DE analysis. It is possible that the amount of 

RuBisCO is mainly regulated by the large subunit, or the virus affects more on the 

large subunit gene expression than on the small subunit. 

Plant-pathogen interaction makes a balance between them so that virus can stay 

in the plant for a long time. It is very complicated and many pathways are involved in 

the relationship. Furthermore, with evolution more efficient ways will be developed 

by both the host and the pathogen. 
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