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SUMMARY 

In my thesis, I test and demonstrate the utility and limitations of 

DNA sequences in species richness estimation, the identification of cryptic 

species, and the confirmation of widespread species. 

In my first chapter, four datasets of differing taxonomic groups and 

hierarchical rank are used to test the congruence and consistency of COI 

sequence-based species richness estimation. Two datasets came from 

coleopteran families, 1 from the dipteran Sepsidae, and 1 large dataset for 

all Metazoa was downloaded from Genbank. Species richness estimation 

based on DNA sequences and identification by taxonomic experts yielded 

very similar results while richness estimates usually differ greatly when 

parataxonomists and taxonomists are asked to evaluate the same 

samples. The boundaries of DNA distance-based delimitation and 

traditional species are often in conflict. 

In the second chapter, I use the techniques validated in the first 

chapter to estimate the species diversity of the Corethrellidae in Borneo. I 

test for species specificity in the phonotacic response of the flies towards 

synthetic pulsed tones and frog calls, but find no evidence for host 

specificity. The sampled and estimated α-diversity of corethrellid flies are 

both very high for the main field site and exceeds the species diversity of 

all studies of corethrellid diversity in the Neotropics.  



In the third chapter, I use COI to test for cryptic species in eight 

sepsid species with wide distributions in Asia. The species were sampled 

from 37 localities in 14 countries. I determine that all but one species are 

likely to be genuinely widespread with low intraspecific variation between 

populations. The exception, Allosepsis indica (Wiedemann, 1824) is likely 

to consist of at least six species, although the morphological differences 

between the species is continuous. In the other seven species, I determine 

population structure and rule out the hypothesis that movement of 

domesticated cattle secondarily introduced sepsids throughout Southeast 

Asia. 

In the fourth and fifth chapter, I use COI as supplementary 

information for taxonomic problems that remained unresolved after 

morphological study. I contributed to the discovery of a cryptic species by 

detecting an unexpected pattern of pairwise distance in specimens of 

Sepsis flavimana Meigen, 1826 that was indicative of two species. Further 

investigation revealed a cryptic species, Sepsis pyrrhosoma Melander & 

Spuler, 1917, which was previously synonymised with S. flavimana. The 

species status was further substantiated with reproductive isolation and 

behavioural data. In the fifth and final chapter, I use COI to confirm a 

surprising new record for the sepsid species Themira leachi (Meigen, 

1826). Specimens of what turned out to be T. leachi were collected from 

Sierra Cristal National Park, Cuba, 3,500 kilometres away from their 

previously known southernmost locality of Newfoundland, Canada. COI 

provided an independent source of data to confirm the species and 



identification and to rule out the existence of a cryptic species at the 

Neotropical locality.  

I generated 819 sequences of mt-COI in total for all analyses in two 

families of Diptera, the Sepsidae and Corethrellidae, at an average of 548 

bases per sequence.  
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GENERAL INTRODUCTION 

In a reply that was published in Nature, William T. Astbury 

reiterated his vision of a molecular biology as “an approach from the 

viewpoint of the so-called basic sciences with the leading idea of 

searching below the large-scale manifestations of classical biology for the 

corresponding molecular plan.” (Astbury 1961). Although primarily focused 

on the understanding of biology at the cellular level, the molecular biology 

has indirectly also brought about a revolution in the field of organismic 

biology. DNA sequencing is the most prominent among the various 

molecular techniques co-opted by organismic biologists. DNA sequence 

information has proved useful for phylogenetic inference and population 

studies, but is now also increasingly used in taxonomy and biodiversity 

research.  

The taxonomic crisis has contributed to the adoption of molecular 

information for phylogenetic inference, species identification, and species 

delimitation. Some authors argue that morphological analysis is 

unprofitable due to reasons such as the slow pace of taxonomic research 

(Janzen 2004; Tautz et al. 2003; Waugh 2007), chronic underfunding (Lee 

2000; Wheeler 2004), systematic marginalisation of taxonomists and 

taxonomic practice (Giangrande 2003). Furthermore, the urgency brought 

about by the extinction crisis has engendered broad acceptance of 

perfunctory alternatives in ecological and conservation studies, such as 

parataxonomy and taxonomic sufficiency (Maurer 2000; Terlizzi et al. 
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2003). To this end, DNA barcoding and DNA taxonomy have been 

proposed as a panacea to these problems. Proponents claim that a ca. 

650-base piece of the mitochondrial cytochrome oxidase c subunit 1 (COI) 

can solve many problems with species delimitation and identification. This 

was initially met with considerable scepticism (DeSalle et al. 2005; 

Hickerson et al. 2006; Lambert et al. 2005; Will et al. 2005; Will and 

Rubinoff 2004). However, there is now broad consensus that COI has 

great utility in helping to resolve some of the more pressing issues facing 

organismic biologists today (Moritz and Cicero 2004; Rubinoff 2006; 

Rubinoff and Holland 2005).  

Mitochondrial DNA has emerged as the workhorse of the molecular 

laboratory, particularly for studies of Metazoa. There are some prosaic 

reasons for this: mitochondrial sequences are far easier to obtain than 

nuclear sequences; mt-DNA exists in multiple copies per cell, there are 

few problems with heterozygosity, mt-DNA evolves faster, the 

accumulated mutations are largely neutral and can be used for dating 

(Rubinoff and Holland 2005). Although Roe and Sperling (2007) 

recommend that COI sequence length should be maximised for the 

purposes of DNA barcoding, Zhang (2007) shows that beyond 200 base 

pairs, COI delimitation success does not improve significantly, a view 

echoed by (Hajibabaei et al. 2006), making collection of COI data from 

even museum specimens potentially useful. 
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Here, I explore the use of COI for estimating the species richness of 

biodiversity samples and for helping to identify and provide support for the 

diagnosis of cryptic and widespread species. 

The first chapter focuses on the ability of COI to estimate the 

species richness in a sample of specimens. I compare the estimate based 

on of COI with the estimate from taxonomic experts. The datasets that are 

used in this test included aligned COI sequences of dipteran Sepsidae, 

coleopteran Dytiscidae and Curculionidae, as well as the Metazoa. I 

collaborated with Dr. Michael Balke to generate the sepsid dataset and 

was responsible for sequencing two-thirds of the 603 sequences. 

Information on the number of species in a habitat is important for 

conservation biology but the slow pace of identifying speciemens based on 

traditional techniques creates many problems. This has created the need 

for reasonably quick, accurate and cross-comparable way to estimating 

species richness (Blaxter 2004; Smith et al. 2005; Sodhi et al. 2004). 

Should COI-based estimates compare well to those based on identification 

by taxonomists, conservation biologists will no longer have to face the 

taxonomic impediment (Giangrande 2003), especially when dealing with 

hyperdiverse, understudied taxa.  

The second chapter is on the Corethrellidae of Borneo. I generated 

356 COI sequences from specimens collected in multiple field sites on 

Borneo. The first chapter revealed that DNA sequences could be used for 

species richness estimation. In this chapter I use this technique for 

estimating the species richness of this particularly hyperdiverse and 
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understudied family of parasitoid Diptera that specialises on feeding on 

frog blood (Borkent 2008). In the course of my laboratory work, I also 

devised two alternative methods for rapidly and efficiently extracting DNA 

from these very small and fragile insects (<2mm) without causing damage 

or discoloration to the voucher specimen. This is important because my 

genetic study will have to be followed up with morphological work and all 

too often voucher specimens are lost during DNA extraction. This is 

problematic because subsequent visits to the collecting localities often 

reveal that the habitat has been lost or modified, and new specimens can 

no longer be collected at the original locality.  

In chapter three, I test the prevalence of cryptic species in the 

widespread Southeast Asian members of the Sepsidae, and demonstrate 

the dangers of over-generalisation when discussing the prevalence of 

cryptic speciation. Mitochondrial DNA sequence information can be used 

to detect plastic, homoplastic or conserved morphology that may confound 

the identification of species. This has, in part, led to the rapid explosion of 

studies into cryptic species and speciation, as pointed out by (Bickford et 

al. 2007). Widespread species are usually suspected of harbouring 

multiple cryptic species due to potentially long periods of geographical 

isolation that increase intraspecific morphological and molecular variability 

(Wiens 1999), possibly to the point where speciation may have occurred. 

However, in this chapter I reveal that only one out of eight tested 

widespread species of Sepsidae contains cryptic species.  
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In chapters three and four, I discover the existence of cryptic 

species Allosepsis indica (Wiedemann, 1824) and Sepsis pyrrhosoma 

Melander & Spuler 1917 through the use of COI sequences, illustrating the 

benefits of collecting and maintaining a comprehensive molecular library 

for any taxonomic group. By sequencing new specimens as they arrive in 

the laboratory, I contributed to the taxonomic refinement of Sepsidae by 

earmarking those specimens that have unexpected genetic signatures. In 

chapter four, I collaborated with Y. Ang (who described and illustrated the 

morphology), T. S. H. Denise and M. R. Bin Ismail (who performed the 

behavioural and reproductive isolation experiments) to identify and 

resurrect the cryptic sepsid species Sepsis pyrrhosoma. The initial 

observation that led to the resurrection was observing that the COI 

sequences for specimens identified as Sepsis flavimana Meigen, 1826 

belonged to two distinctly different lineages. This manuscript is now in 

press in Zoologica Scripta (Tan et al. 2009). In chapter three, which has 

been published in Zootaxa, the COI sequences I generated for sepsid 

specimens collected from Sierra Cristal National Park in Cuba revealed 

that Themira leachi Meigen, 1826 is found in the Neotropical region, nearly 

3,500 kilometres south of its previously known southern limit of distribution 

in the New World. I worked with Y. Ang to publish this surprising finding 

(Ang et al. 2008). Both chapters demonstrate how DNA sequence and 

morphological information can complement each other.  

For this thesis, I sequenced a total of 819 COI sequences from two 

dipteran families, Corethrellidae and Sepsidae in total, performing all the 
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alignments, pairwise comparisons and phylogenetic analyses on these 

sequences for all chapters. The format of this thesis will be as follows: In 

chapters one, two, four and five, I use multiple first-person pronouns where 

appropriate, as the research and results were performed collaboratively. 

All chapters address independent issues in biodiversity studies and are 

intended to evolve into independent publications. I have therefore not 

written this thesis as a continuous narrative.  
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CHAPTER 1 

Use of the COI barcode for species 
richness estimation 
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1.1 INTRODUCTION 

Charismatic taxonomic groups such as birds, butterflies, mammals 

and now amphibians have traditionally dominated the study of 

conservation biology. Although the aesthetic appeal of charismatic groups 

works better for conservation aims, conservation biologists recognise the 

vital ecosystem functions that understudied and hyperdiverse groups play 

(Smith et al. 2009). One of the more visible examples of such groups is the 

invertebrates, which contain more than 97% of multicellular animal species 

diversity (Groombridge 1992), and are increasingly becoming conservation 

priorities because of the high extinction risks (Gaston and O'Neill 2004; 

Thomas et al. 2004) they face, not least due to the fact that we have very 

little idea of the true diversity and magnitude of ecological roles they play. 

Incorporating invertebrate data in biodiversity research is thus one of the 

most important challenges of modern conservation biology (Myers and 

Mittermeier 2003; Myers et al. 2000), particularly in conservation 

management and resource allocation, where species/habitat priorities 

have to be set and ranked in varying levels of priority. However, the 

obstacles faced in obtaining useful data on invertebrates are formidable, 

given that such taxa are often species-rich (Groombridge 1992; Myers and 

Mittermeier 2003) and have small ranges (Gaston et al. 1998; Trontelj et 

al. 2009; Zaksek et al. 2009). Specimens need to be collected and 

prepared before they can be identified. This can be a particularly labour-

intensive process. The number of taxonomic experts for most invertebrate 

groups is small and getting smaller (Wheeler 2004). Given these 
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problems, high-quality data that can be used confidently to guide 

conservation priorities are rare and there is a premium on finding novel 

ways to sort ecological samples to species. 

A novel source of data has become available in the form of DNA 

sequences, which is getting cheaper and faster to produce due to 

technological advances in sequencing technology. There is broad 

consensus that DNA will play a major role in how specimens are sorted 

and described, but to what extent does it replace the traditional taxonomic 

process is still a matter of some debate (Meier et al. 2008; Vogler and 

Monaghan 2007). Some authors promote the use of sequences for 

identifying described species only, i.e. DNA barcoding as proposed by 

(Hebert et al. 2003), while others envision a more significant role such as 

species identification as well as the determination of species boundaries 

(Tautz et al. 2003). Many studies have tested the efficacy of DNA 

sequences against morphology and usually find conflict between the signal 

provided by DNA and traditional data (Elias et al. 2007; Hickerson et al. 

2006; Meier et al. 2006; Meyer and Paulay 2005; Monaghan et al. 2006; 

Rubinoff and Holland 2005; Wahlberg et al. 2003). 

However, there is a distinction between the problems of using DNA 

(most commonly the mitochondrial cytochrome oxidase c subunit I (COI)) 

to identify species, and using it to estimate species richness in biodiversity 

samples. Does DNA do equally well (or badly) at both? Here, in order to 

answer this question, we compare the performance of COI in species 

richness estimates with those based on taxonomic expert identification. 
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In order to be adopted as a new tool for processing and analysing 

biodiversity samples, the new technique has to be able to outperform 

traditional methods in terms of equality, speed and cost, or any 

combination of the three. Currently, the most commonly used technique for 

determining species richnesss in biodiversity samples is parataxonomic 

sorting to ʻmorphospeciesʼ, i.e. by workers who are not taxonomic experts 

for the group in question, and may have varying levels of skill and ability in 

sorting (Basset et al. 2000). Several studies have compared the species 

richess estimates by taxonomists and parataxonomists for the same 

samples so as to quantify the quality of sorting by parataxonomists. The 

most comprehensive review of this by (Krell 2004) analysed 80 studies 

across a wide variety of invertebrates and found that the mean deviation 

between expert and parataxonomic species richness estimates was 32%, 

with a median of 22%. However, the cause for concern should be the 

extremely high variance in estimate congruence. Species richness 

estimates between experts and parataxonomists can range from identical 

to a difference of up to 117%. The accuracy of the estimates is hence 

unreliable (Abadie et al. 2008; Krell 2004). For 11 of studies, the 

morphospecies of parataxonomists were also compared to the species 

sorted by taxonomists. On average, only 69% (the median was 80%) of all 

species-level specimens were identical. These are the standards that DNA 

sequence-based sorting must surpass in order to be competitive. 

Here, we empirically test four datasets of different hierarchical 

levels and structure for the utility of COI in rapid assessments of species 
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diversity. For all datasets used in this study, taxonomic experts have 

already identified the specimens to species before their DNA was 

extracted and COI sequenced. The first dataset consists of 603 sequences 

for 76 species of Sepsidae (Diptera), sampled from across the distribution 

of this cosmopolitan family. The second dataset consists of 226 

sequences for 50 species of Trigonopterus weevils (Coleoptera) collected 

from one field site in Papua New Guinea. The third dataset consists of 1 

140 sequences of Australian representatives of the Dytiscidae diving 

beetles, covering their endemic Australian distribution almost completely. 

Lastly, we use a large Metazoan dataset with 35 371 sequences obtained 

from GenBank to test the generality of our findings. 

Various authors have proposed many analytical techniques for 

delimiting putative species based on their DNA sequences. However, we 

limit our methods to the objective-clustering algorithm first described in 

(Meier et al. 2006). This is because of the relatively large size of two of our 

datasets and the large proportion of singleton species.  

The objective-clustering algorithm (part of a DNA pairwise 

sequence analysis package SpeciesIdentifier (Meier et al. 2006)) uses 

pairwise distance thresholds to group sequences into clusters. All 

sequences in a cluster must have at least one sequence in the same 

cluster with which it has a pairwise distance below the user-defined 

threshold. Using this technique, we answer four questions in this study. 

Firstly, can COI estimates outdo parataxonomists in terms of quality, 

speed and/or cost? Secondly, is the species richness of a sample as 
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determined by a taxonomist similar to the species richness estimate 

determined by distance-based delimitation of DNA sequences? Thirdly, 

how congruent are the DNA sequence clusters with those of traditionally 

recognized species? Finally, we compare the results of different datasets 

for their consistency in the first two questions. 

1.2 MATERIALS AND METHODS 

1.2.1 Taxon and character sampling 

We use four aligned COI datasets in this study: Sepsidae (Diptera), 

Curculionidae and Dytiscidae (Coleoptera) and Metazoa. 

The first dataset consists of 603 sequences for 76 sepsid species, 

out of the ca. 300 described species. The samples came from multiple 

localities in four continents, excluding Antarctica. 48 species in the dataset 

had at least one conspecific sequence. All sepsids were identified using 

morphology by taxonomists R. Meier and Y. Ang. In order to obtain DNA 

sequences from specimens preserved in varying conditions and periods of 

time, we used a variety of molecular techniques. For some specimens, we 

used a direct PCR approach that eliminates formal DNA extraction and 

purification procedures. We removed flies from the storage tubes where 

they were preserved in 90-100% ethanol, and blotted them briefly on paper 

towels just long enough to drain off excess alcohol. The moist specimens 

were transferred into individual tubes of 8-well strip PCR tubes containing 

the master mix. In order to improve PCR success, we added 1µL of 

dissolved bovine serum albumin (Sinopharm Chemical Reagent Co. Ltd., 
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Shanghai, China at a concentration of 70µg/mL. BSA neutralizes PCR 

inhibitors that may have leached out from the tissues of the flies.  

For other specimens, we used a direct DNA extraction method. This 

method was most suitable for sepsids of moderate size (most Sepsis 

species). The flies were placed in 50 – 80 µL of TE buffer (10mM TRIS-CL, 

0.5mM EDTA pH 9.0) that have been eluted into 8-well strip PCR tubes or 

96-well plates. The tubes/plates were placed into a thermocycler and 

heated to 95oC for 15 minutes. During the heating, cells break down and 

release sufficient genomic DNA that it can be used as template for PCR or 

genomic amplification. The latter ensures that template DNA remains 

stable for long periods of time. I used 2 – 3 µL of DNA-enriched buffer to 

each reaction. The relative content and concentration of the reagents in 

the master mix are identical to those used in direct PCR. For particularly 

large species (Themira) and orange-coloured specimens (e.g. 

Australosepsis males, Allosepsis indica, Sepsis nitens), we extracted DNA 

from the left hind leg instead of the entire specimen. 

The PCR reactions were prepared in 25µL reactions containing 

0.1µL TaKaRa ExTaq (Kyoto, Japan), 2.5µL 10X buffer and 2µL 2mM 

dNTP mixture, which were also provided by TaKaRa, 1.22µL 10µM primer 

for both forward and reverse direction, and 16µL DNase-free sterile RO 

water (1st Base Pte. Ltd, Singapore, Singapore). The primers used are 

specified in (Lim 2007), with shorter primers being designed and used 

when the specimen was old and/or had been stored in suboptimal 

conditions. Cycling temperatures were: 95°C for three minutes to activate 
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the hot start polymerase, followed by 34 cycles of 95°C for 30 seconds 

(denaturation), 50°C for 30 seconds (annealing), and 72°C for one minute 

(extension). The amplification products were kept on hold at 15°C until 

they were retrieved for gel electrophoresis to confirm that the COI 

fragment had been successfully amplified. Five µL of the reaction mix was 

loaded into 1% agarose gel for this purpose.  Amplified products were 

purified using Bioline SureClean (Randolph, MA) and suspended in 

DNase-free water (1st BASE Pte. Ltd., Singapore, Singapore). Terminator 

sequencing reactions were then performed in both forward and reverse 

directions in 10µL volumes, using BigDye ver. 3.1 (Applied Biosystems, 

Foster, CA) used according to manufacturer specifications. A final 

purification was performed with Agencourt® CleanSEQ® kit (Agencourt 

Bioscience Corporation, Beverly, MA) before carrying out direct 

sequencing in an ABI PRISM® 3100 Genetic Analyzer (Perkin Elmer 

Applied Biosystems, Norwalk, CT). Sequences were edited and 

concatenated in Sequencher, before being aligned in ClustalX 2.01 

(Thompson et al. 1997).  

The second dataset of Trigonopterus weevils was published by 

(Riedel et al. 2009) and comprises 226 sequences from specimens 

collected off foliage and leaf litter along a transect (300-1520m) of the 

Cyclops Mountains in Papua New Guinea. These have been identified 

using morphological techniques by A. Riedel. 

The third dataset comprises of 1 140 sequences for 195 species of 

Australian Dytiscidae, representing the epigean species diversity that have 
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been sampled as part of a continent-wide, comprehensive study of several 

endemic radiations The specimens were identified using traditional 

techniques by taxonomists L. Hendrich and M Balke.  Two fragments of 

COI were amplified, the front (5ʼ) half with forward primer LCO-1460 5ʼ 

GGT CAA CAA ATC ATA AAG ATA TTG G 3ʼ and reverse primer HCO-

2198 5ʼ TAA ACT TCA GGG TGA CCA AAA AAT CA 3ʼ from (Folmer et al. 

1994), using a PCR annealing temperature of 50 - 55ºC. The back (3ʼ) half 

was sequenced using primers C1-J-2183 5ʼ CAA CAT TTA TTT TGA TTT 

TTT GG 3ʼ (forward) and L2-N-3014 5ʼ TCC AAT GCA CTA ATC TGC 

CAT ATT A3ʼ (reverse) (Simon et al. 1994). 

The last and biggest dataset originally comprised 49 000 metazoan 

COI sequences downloaded from GenBank and aligned (details in (Meier 

et al. 2008)). Selecting for all conspecific sequences with < 300 bp overlap 

yielded a final dataset of 35 371 sequences representing 10 772 metazoan 

species, with 4 599 species having at least one conspecific sequence.  

1.2.2 Alignment and analysis 

Different techniques were used to align the sequences in the 

different datasets, but all alignments were protein-translatable and gap-

free. The Metazoan dataset was the sole exception. In this dataset, 

sequences were aligned based on their amino-acid translations (Meier et 

al. 2008). 

All datasets were analysed in SpeciesIdentifier, part of the 

TaxonDNA ver. 1.5 alpha12 package 
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(http://code.google.com/p/taxondna/downloads/list) (Meier et al. 2006). All 

datasets were analysed at four different user-defined distance thresholds, 

from 1 – 4%. After each clustering analysis, SpeciesIdentifier provides a 

summary containing the number of clusters, specifications of the 

sequences within each cluster and their pairwise distances relative to all 

other sequences in the same cluster, as well as three output files that 

contain 1) The clusters that contain all the sequences of one species, i.e. 

congruent clusters in agreement with traditional taxonomy. 2) Multiple 

clusters where sequences for the same species has been split, i.e. split 

clusters. 3) Clusters that contain sequences of more than one species, i.e. 

lumped clusters. Some clusters were both split and lumped, with some of 

the sequences from a species A clustering together with sequences of 

another species B. In this scenario, species A has been split into multiple 

clusters, while species B has been lumped together with species A. 

1.3 RESULTS 

1.3.1 Congruence between DNA and taxonomic species richness 

estimates 

There was a very high level of congruence in species numbers 

determined by taxonomic experts and the number of COI clusters, 

especially at the commonly utilised thresholds of 2% and 3%. These two 

thresholds resulted in species estimates deviating less than 10% from the 

number of species quantified with taxonomic methods (Tables 1.1-1.4).  
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 Curculionidae 1% 2% 3% 4% 
Cluster / Species 129.6% 114.8% 109.3% 109.3% 
Perfect / Species 60.0% 77.4% 84.7% 84.7% 
Lumped / Species 0.0% 0.0% 0.0% 0.0% 
Split / Species 40.0% 22.6% 15.3% 15.3% 
Table 1.1: Relative performance of COI clusters to identified species in 
Trigonopterus weevils  
 

 Sepsidae 1% 2% 3% 4% 
Cluster / Species 132.9% 101.3% 97.4% 93.4% 
Perfect / Species 46.5% 60.5% 60.5% 60.5% 
Lumped / Species 13.2% 15.8% 14.5% 13.2% 
Split / Species 57.9% 25.0% 22.4% 19.7% 
Table 1.2: Relative performance of COI clusters to identified species in the 
Sepsidae  
 

 Dytiscidae 1% 2% 3% 4% 
Cluster / Species 132.0% 96.4% 92.8% 87.2% 
Perfect / Species 60.3% 72.3% 71.3% 68.7% 
Lumped / Species 7.9% 8.2% 9.2% 10.2% 
Split / Species 64.5% 15.9% 12.3% 8.2% 
Table 1.3: Relative performance of COI clusters to identified species in the 
Australian Dysticidae  
 

 Metazoa 1% 2% 3% 4% 
Cluster / Species 118.7% 106.6% 99.9% 94.5% 
Perfect / Species 77.9% 80.9% 79.2% 75.9% 
Lumped / Species 4.9% 4.9% 5.8% 6.7% 
Split / Species 36.0% 20.8% 14.9% 11.8% 
Table 1.4: Relative performance of COI clusters to identified species in the 
Metazoan sequences from Genbank  
 

Different datasets attained estimation optima at different thresholds, 

with Sepsidae (Table 1.2) and Dytiscidae (Table 1.3) having greatest 

congruence at 2% threshold, while the Curculionidae (Table 1.1) were still 

oversplit by COI at 4%. The Metazoan dataset (Table 1.4) showed very 

close matching between cluster and taxonomic species number at 3%, at 

99.9% the estimates were close to identical. In general, with a 2% 
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threshold, species richness estimates based on cluster differ by 1.3-

14.8%, with a mean deviation of 6.7% from those based on taxonomic 

identifications. At 3%, the congruence is 0.1-3%, with a mean deviation of 

4.79% from taxonomic identification. 

The deviation grew much more severe when either higher (4%) or 

lower (1%) thresholds were set (Tables 1.1-1.4) Predictably, setting a high 

threshold depressed cluster numbers by causing more sequences to lump 

together into single clusters, while setting a very low threshold inflated 

them by splitting up sequences within a cluster into multiple clusters. 

1.3.2 Congruence between taxonomic species and COI clusters 

There was much higher conflict between COI and taxonomic 

experts when it came to agreement of identity. At 2% and 3% thresholds, 

only 60.5-80.9% of the sequence clusters were congruent with species as 

circumscribed by taxonomists. Problematic clusters either did not contain 

all the sequences for a taxonomic species thus generating split clusters, 

and/or contained sequences from multiple species, otherwise known as 

lumped clusters. A higher threshold caused many closely related species 

to be lumped together, and a lower threshold caused splitting of clusters 

that belonged to species with high intraspecific variability. There were 

more split clusters than lumped clusters in all datasets at all thresholds.  
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1.4 DISCUSSION 

1.4.1 The relative performance of DNA and parataxonomy 

Our analyses of four COI datasets show that in every case, species 

richness estimates at a 3% pairwise distance threshold are within 10% of 

the estimate made by a taxonomist sorting the same samples. This 

answers the first question we asked about whether COI can outdo 

parataxonomy in terms of quality, speed and/or cost. The difference is 

obvious, since parataxonomic sorting was found to have a mean deviation 

of 32% (and a median of 22%) out of 80 studies. Contrast this to the 

results from our four datasets, with a mean deviation of 5.9% at the 3% 

threshold, and 4.2% at the 2% threshold. COI outperforms parataxonomy 

by a factor of at least 5. 

Krell considers the staggering inconsistency in the quality of sorting 

to be one of the most serious problems in parataxonomy (2004), as some 

samples were identical in species richness estimates when compared to 

taxonomists, while the results differed by up to 117% for other samples. 

The large range is likely to have led to the large standard deviations 

summarised in Krellʼs review (2004). This inconsistency makes 

generalising or comparing results across parataxonomy-based studies 

unreliable. Our COI datasets however, have a standard deviation of 0.03% 

to 3.3%, suggesting that DNA sequence-based estimates are much more 

predictable. However, due to the limited number of datasets in our study, 

we cannot be sure that our findings are definitive and general across 
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differing groups. Two studies that address related questions are those 

conducted by (Smith et al. 2005) and (Borisenko et al. 2008). Smith et al. 

tested the performance of COI clusters or molecular operational taxonomic 

units (MOTUs) in a biodiversity survey of Malagasy ants (2005). Initial 

sorting to genus level was conducted by parataxonomists, recognising 90 

morphospecies from 280 specimens in total. 268 individuals from these 

morphospecies were successfully sequenced for COI, to find 126 MOTUs 

at 2% clustering, and 117 MOTUs at 3% clustering. Hence, there is 71% 

and 76% congruence between morphospecies sorting of specimens by 

parataxonomists and MOTUs at 2% and 3% thresholds respectively. While 

this may not seem too wildly off the mark, comparisons between collection 

sites suggested that morphospecies sorting tend to lump similar species 

and consequently underestimated the β-diversity of species. In the other 

study, Borisenko et al. (2008) trapped mammals in Suriname and 

compared field identifications with those retrieved by DNA barcoding. The 

mammal species richness estimates between taxonomic experts and DNA 

sequences were very similar (74 species versus 73 DNA clusters).  

Hence, by making the relative comparisons of performance of 

parataxonomy versus DNA barcodes and taxonomy versus DNA 

barcodes, it seems clear that the quality of estimates for species richness 

is better for sequence-clusters, compared to sorting by parataxonomists. 

However, there are other more prosaic concerns, such as speed and cost. 

Unfortunately, these factors are much more difficult to predict across 

different studies. For instance, some biodiversity samples are 
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predominantly composed by a few very common species. Molecular 

analyses of such samples would be very expensive and time-consuming. 

In such cases, parataxonomists can do the job far more cheaply and 

efficiently. In other samples, sorting by morphology may be much more 

labour-intensive and time consuming, making molecular sequencing a 

more efficient alternative. It is likely that most studies in the future will use 

some combination of both techniques. In taxa that are more easily 

identified by morphology and/or difficult to obtain due to CITES regulations 

(generally the larger charismatic animals), morphology will suffice in their 

identification; groups that are more intractable in terms of identification by 

parataxonomists will become the domain of sequence-based sorting. For 

groups or subsets of samples that are generally unambiguous in their 

morphology, a small subsample per species should be included for 

molecular assessment. Sequences from the subsampled specimens can 

be used to confirm the morphospecies sorting. This strategy of 

subsampling from pre-sorted samples will likely be necessary for most 

studies due to the expensive and sometimes time-consuming nature of 

DNA sequencing (Riedel et al. 2009; Smith et al. 2005). With regard to 

cost, while technological process has lowered reagent and procedural 

costs considerably, manpower cost required to handle specimens is still 

very high (Meier et al. 2008). For instance, the process of vouchering and 

tissue extraction is difficult to automate, and furthermore, raw sequences 

produced still need to be processed by trained workers. Thus, we believe 

that the estimate of USD 10 per specimen will not decrease in the near 
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future. This implies that processing a biodiversity sample of 10 000 

specimens will require a molecular sequencing and analysis budget of at 

least USD 100 000.  

1.4.2 Congruence between DNA cluster content and species 

Our analyses show that DNA clusters do not perform nearly as well 

in determining species identity as recognised by taxonomic experts as 

they are at estimating species richness. The sobering reality is that a very 

large proportion of DNA clusters conflict with the species boundaries 

determined by taxonomic experts (Meier et al. 2006). Congruence is only 

observed for 60.5-80.9% (an average of 72.8% +/- 8.92%) for all clusters 

at 2% in our datasets, while at 3%, congruence ranges from 60.5-84.7% 

(an average of 73.9% +/- 10.52%) for all datasets (Tables 1.1-1.4). The 

remaining 20-40% of clusters are incongruent with traditional taxonomy 

because of they either lump multiple species together, or split a single 

species into multiple clusters, each containing only some of the 

sequences, or both. Overall, lumping was much less common than 

splitting, increasing as the defined-distance threshold increased. Given the 

moderate level of congruence between clusters and species, it is perhaps 

surprising that COI manages to produce such close estimates of species 

richness. However, it is not difficult to imagine that the ʻcounting errorʼ of 

lumped species (underestimation) and split species (overestimation) 

clusters partially cancel each other out.  
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Does parataxonomy manage to delimit species boundaries more 

effectively than COI? A review of the evidence shows this is not the case. 

For 11 samples, Krell was able to provide comparative information on the 

species units on the species units of parataxonomists and taxonomists 

(2004). He found that on average, only 69% (a median of 80%) of the units 

showed one-to-one correspondence. Hence, it appears that both COI 

clustering and parataxonomic sorting give a roughly similar results. Three-

way studies where biological samples are sorted by parataxonomists, 

taxonomic experts and sequenced would provide particularly useful data 

for a proper study looking at relative conflict and congruence between all 

three techniques. Unfortunately, they are currently absent in the scientific 

literature. We can only speculate on the sources of conflict. Other authors 

have observed widespread incongruence between traditional species and 

sequence clusters (Ferguson 2002). It is not surprising that using a 

distance threshold for delimited sequence clusters cannot usually yield 

taxonomic species units, given that the variability for COI is mostly found 

in neutral positions of the gene (Roe and Sperling 2007). There are two 

reasons for this: mitochondrial cytochrome oxidases are usually not a 

direct target of speciation mechanisms, and secondly, they are under 

strong stabilising selection. COI genetic distances will increase between 

species that have been separated by longer periods, reflecting the time of 

divergence. However, given that the most important test of any delimitation 

technique must be able to accurately distinguish between closely related 

sister species (Meier et al. 2008), COI will very likely fail to resolve 
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relationships in a significant proportion of cases. The only way threshold-

based clusters can be congruent with species is if speciation occurs in a 

regular, clocklike fashion (Meier et al. 2006). This seems very unlikely to 

reflect biological reality. 

1.5 CONCLUSION 

In this chapter, we present evidence that DNA sequences can be 

used to estimate the species richness in biodiversity samples. To do this, 

we collected four datasets of aligned COI sequences from different 

taxonomic groups and hierarchical levels: one family from Diptera 

(Sepsidae), two families from Coleoptera (Curculionidae and Dytiscidae), 

as well as the Metazoa. The estimate is generally within 10% of the 

estimate that would be provided by a taxonomic expert. DNA sequence-

based species richness estimates also outperform parataxonomy by a 

wide margin on both accuracy and consistency, making DNA estimates of 

species richness very attractive. However, other factors such as cost and 

speed must be taken into account, as must the tractability and feasibility of 

using morphology to reliably identify specimens in the biodiversity sample 

in question. Furthermore, there was reasonably strong conflict between 

COI distance-based delimitation in identifying specimens and those 

performed by trained taxonomists (around 20-40%). The conflict is 

approximately equivalent between parataxonomy and traditional 

taxonomy. Three-way studies where taxonomy, parataxonomy and DNA 

information are available for a single biodiversity sample would be 
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extremely useful in establishing the relative conflict between all three 

methods of biodiversity sample processing. It appears likely that 

competent species-level sorting of specimens will remain the sole purview 

of trained taxonomists.  Species richness estimation however, may be a 

matter of routine DNA sequencing in the future.  
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CHAPTER 2 

The Corethrellidae of Borneo: 
Species richness and acoustic 

specificity 
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2.1 INTRODUCTION 

2.1.1 Biogeography and life history 

Of the 14 extant haematophagous families within order Diptera 

(Lukashevich and Mostovski 2003), those within the suborder 

Culicomorpha (Amorim and Yeates 2006) were the first major group of 

arthropods to feed on the blood of vertebrates, i.e dinosaurs (Grimaldi and 

Engels 2005). Culicomorph families and members that have retained 

vertebrate haematophagy remain one of the greatest challenges to human 

health because they are vectors for many diseases. Most families have 

hence been the focus of much research. An exception is the family 

Corethrellidae Wood and Borkent, 1986, or the frog-biting midges. 

The Corethrellidae are distributed pan-tropically with the bulk of 

species diversity in tropical lowlands, although some species can be found 

as far north as southeast Canada, and as far south as New Zealand 

(Borkent 2008). Currently, 97 extant species from Corethrella Coquillett, 

1902 are known, of which more than half have been recently described in 

(Borkent 2008). The difficulty in describing these species lies in size and 

their rarity in malaise traps; corethrellid flies are very small, averaging less 

than two millimetres in length. The best understood fauna for Corethrella 

are the Nearctic and Neotropical regions (specifically Costa Rica) (Borkent 

2008) while there are only two described species from the Oriental region. 

The first is Corethrella calathicola Edwards, 1930 whose type locality is 

Singapore (Edwards 1930) and the second species is C. brunnea Borkent, 
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2008 that has been described from a single female specimen collected 

from a Malaise trap in Sarawak (Borkent 2008). It is very likely that most of 

the species in this group have yet to be discovered, given the small 

number of specimens that are known and the uneven collecting effort. 

Specifically, the Corethrella diversity in the Oriental and Australasian 

regions is likely to be extremely high given the large number of frog hosts.  

Although it was only recently that the Nematocera was abandoned 

as paraphyletic with respect to the Brachycera, the monophyly of the 

Culicomorpha has always been supported (Amorim and Yeates 2006). In 

1989, Wood and Borkent removed the monogeneric family Corethrellidae 

from the Chaoboridae in order to retain the monophyly of the latter. This 

decision was based on larval morphological characters that suggested a 

sister group relationship between Corethrellidae and the group consisting 

of both culicids and chaoborids. Like most of the Culicomorpha, this family 

is relatively old, and has a Gondwanan distribution (Borkent 2008; Borkent 

and Szadziewski 1991), with the earliest known fossils dating from the 

early Cretaceous (Lukashevich and Mostovski 2003). The interfamilial 

relationships have recently been supported by molecular data from nuclear 

genes (Bertone et al. 2008).  

As indicated by their common name, the Corethrellidae are thought 

to specialise on frogs, where females are nocturnal telmophagous (feeding 

from blood pools created by tissue laceration) parasitoids that locate their 

prey based on the vocalisations of male frogs (Borkent 2008; Camp 2006; 

McKeever and Hartberg 1980). Although there have been reports of blood 
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meals of avian or reptilian origin (Williams and Edman 1968), the accuracy 

of this information has been disputed (Borkent 2008, but see Camp 2006) 

for comments on barcoding host identity through cytochrome oxidase b 

(Cytb) sequences). There are also species known (c.f. Corethrella 

mckeeveri, McKeever & Colless, 1991), or thought to be (c.f. Corethrella 

alba Borkent, 2008) autogenous, based on the reduced character of their 

mandibular teeth. Laboratory raised adults of some species also 

demonstrated that some species are capable of facultative autogeny (c.f. 

C. appendiculata Grabham, 1906 and C. ranapungens Borkent, 2008) 

(Borkent 2008). Corethrellid larvae live in small pools or at the margins of 

larger water bodies with little to no disturbance, preferably vegetation-rich. 

They can also be found in phytotelmata, stagnant water collected in tires, 

or within the pitchers of some species of Nepenthes (Mogi and Yong 

1992). The larvae are predators and cannibals, feeding on rotifers, 

nematodes and culicomorph larvae (Borkent ; Cresswell 2000; Mogi and 

Chan 1996). They also exhibit surplus killing behaviour (Lounibos et al. 

2008), although it is not clear why. It has been suggested that the practice 

of killing is a form of kin selection and reduces competition. 

2.1.2 Acoustic specificity and Southeast Asian species diversity  

Only after the discovery that Corethrella exhibits phonotaxis 

towards their frog prey did a useful collecting method become available to 

study the group (Borkent 2008; McKeever 1977). Finding phonotactic 

behaviour in Corethrellidae was initially surprising because such behaviour 

is particularly challenging for small insects due to the small difference in 
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time and amplitude between the first incidence of detection of sound in the 

left and right hearing receptor. This difficulty is compounded with the 

limitations in rate of neuron signalling, as well as the challenging acoustic 

environment in which corethrellids live. Some research is now beginning to 

uncover the extent to which Corethrella is able to localise the host based 

on acoustic signals (Bernal et al. 2006), as well as the evolutionary 

implications of the costs of predator-eavesdropping (Bernal et al. 2007; 

Bretman and Tregenza 2007). Unfortunately, an explanation for the 

mechanism and physiology of the excellent hearing ability of Corethrella 

has remain elusive, but it is likely that the females in this group are using 

their antennal Johnstonʼs organ to listen for their prey, similar to how male 

mosquitoes use theirs to locate conspecific females (Gibson and Russell 

2006; Gopfert and Robert 2000).  

The study of peat swamps echoes that of the Corethrellidae, with 

both underappreciated and unevenly studied (Ng et al. 1994; Page 2002). 

In 1992, an IUCN wetlands programme workshop on integrated planning 

and management of tropical lowland peatlands concluded that the tropical 

peat swamps of Southeast Asia urgently needed more research (Rieley 

and Ahmad-Shah). This situation has been addressed to some extent for 

some parts of Southeast Asia, not so for others (Page 2002). Studies have 

flatly contradicted prior assumptions about peat swamp habitats being 

depauperate in species, mostly in blackwater fish species in the peat 

swamps of Peninsular Malaysia (Ng et al. 1994; Beamish et al. 2003). 

However, the richness of species assemblages within peat swamps varies 
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widely (Beamish et al. 2003; Page 2002). Furthermore, no agreement has 

been reached with regard to how to define peat swamp forests and it is 

likely that different forests in Southeast Asia that are currently categorised 

as peat swamp are ecologically distinct.  

The two objectives of my study were to 1) Uncover the species 

diversity and 2) acoustic specificity behind the Corethrellidae in the peat 

swamps of Brunei and other localities in Borneo.  

Due to the very small size of the Corethrella, their morphology was 

relatively difficult to observe. Proper taxonomic work requires that the 

specimens be dissected and individually slide mounted, which was not 

possible given the large number of specimens and my lack of expertise in 

culicomorph dissection and morphology.  In order to circumvent the 

problems of using only parataxonomy to delimit my samples, I chose the 

barcoding fragment of mitochondrial cytochrome c oxidase I (COI) as 

proposed in the previous chapter. The main advantage of COI is that 

sequences are available for many species and that the gene is easily 

amplified. Furthermore the gene is variable enough to distinguish relatively 

recently diverged lineages. The challenge was to extract COI information 

from the flies that preserves the specimen for future slide mounting and 

species description where necessary. While there is a great range of 

extraction methods available (Nishiguchi et al. 2002), many of them may 

destroy or damage the specimen. Although non-destructive DNA 

extraction protocols have been reported, they too were problematic here 

either because they require the perforation of the insectʼs cuticle or leg 
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removal (Rochlin et al. 2007), which is difficult to perform on the 

Corethrella specimens or involve immersing the specimen for hours in a 

solution of proteolytic enzymes, which renders the specimen fragile, 

colourless and useless for future taxonomic work. By modifying a protocol 

by (Grevelding et al. 1996), I devised two non-destructive methods for 

extracting genomic DNA from individual specimens while preserving the 

morphological integrity of specimen vouchers for future taxonomic work 

such as the description of new species, which will be performed by Dr. Art 

Borkent, who recently published a definitive monograph on the 

Corethrellidae (Borkent 2008).  

2.2 MATERIALS AND METHODS 

2.2.1 Sampling habitat and localities 

Initial reconnaissance sampling in Singapore (Upper Pierce, behind 

Singapore Island Country Club) with a Rana baramica Boettger, 1901 

acoustic lure led to the capture of a single individual. After that, our 

sampling efforts of the Corethrella were focused in Brunei. There, samples 

of Corethrella were trapped with acoustic lures and processed by U. Grafe 

and H. Ahmadsah from the Universiti Brunei Darussalam. These samples 

were shipped over preserved in 95% ethanol, already sorted to 

morphotype. I went to Brunei on two separate occasions for collecting 

expeditions and to design experiments testing the acoustic specificity of 

the Corethrella, from 17 May to 23 May 2008 and 19 April to 24 April 2009. 
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While there, I sorted all the specimens I collected to morphotype and 

preserved them for molecular analysis upon return to Singapore 

The habitats sampled were mixed peat swamp (kerangas and 

kerapa) forests. Brunei is estimated to have a ground cover of peat land of 

13.5% (Rieley and Ahmad-Shah 1992).  Sampling of Corethrella was 

conducted in the Belait district along Labi road (114°30ʼE, 4°35ʼN), as well 

as in the Temburong district (115°09ʼE, 4°33ʼN) in Brunei. In Sarawak, 

collection was done in Lanjak Entimau (112° 4'E, 1° 28'N) and Gunung 

Mulu (113° 55'E, 4° 23'N) forest reserves. Specific localities in Brunei are 

given in Table 2.1. 

District Site 
Belait Labi 
Tutong Tasek Merimbun 
Temburong Sungei Baki, Sungei Esu, Sungei Mata Ikan, Sungei 

Apan, Ashton trail 
Table 2.1: Sampled localities in Brunei 

Most of the collecting occurred at the Labi site over a significant 

period of time. Other sites in Brunei and Sarawak were sampled as single 

events. All sampling was conducted between the 1900 – 2200 hours. We 

used two different types of sampling:  acoustic lures, as well as collecting 

flies off the frog hosts.  

2.2.2 Acoustic Lures 

Prior experiments by Borkent and Camp used acoustic lures of frog 

calls, (mostly Hyla gratiosa LeConte, 1856) (Borkent 2008; Borkent and 

Belton 2006; McKeever and French 1991) or synthetic calls with dominant 
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frequencies of 420 Hz (Camp 2006). The upper limit in frequency that 

Corethella can detect thus remains unknown. This is an important issue as 

many species of frogs have dominant frequencies much higher than those 

used by Camp (2006). In our study we replayed recorded calls of Rana 

baramica, and Rana glandulosa Boulenger, 1882. Synthetic tones of 2.5 

kHz were generated in 150ms pulses to test the attraction of Corethrella to 

a simple tone at a frequency that is thought impossible for culicomorphs to 

detect via their Johnstonʼs organ.  

We used Saul Mineroff Electronics (SME–AFS) portable field 

speakers (Elmont, NY) for acoustic lure trapping, which was set to 

broadcast at 100dB in a playback loop for 45 minutes per session. These 

were placed atop BG-Sentinel mosquito traps (Regensburg, Germany), 

right next to the opening. Set-ups were placed in areas of the peat swamp 

where we could not hear any competing frog calls. Flies that were 

attracted to the acoustic stimulus would fly towards the speakers, only to 

be sucked through the opening of the mosquito trap by a vacuum 

generated by a battery-operated fan. Black mesh bags collected the 

trapped Corethrella and bycatch. The insects were placed into individual 

plastic screwtop vials.  

2.2.3 Collecting off frogs 

We also located calling frogs in the undergrowth of the kerangas. 

After finding a frog, we visually inspected it with a dimmed headlamp for 

Corethrella. Once the presence of these parasitoids was confirmed, we 
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swiftly covered the Corethrella-infested frog with a coffee sock or a plastic 

ziplock bag and swept rapidly around it in a sideways figure-of-eight 

fashion. Flies were consequently aspirated into plastic vials. All vials and 

containers were frozen overnight at –20°C before sorting to 

morphospecies, based on physical variables such as size, shape, colour 

and the scale patterning on wings and legs.  

Sorting to morphospecies was carried out under a light microscope 

based on physical variables such as size, shape, colour and the scale 

patterning on winds and legs (Grafe et al. 2008). I obtained 10 

morphotypes (I – X) from such sorting of the samples by my collaborators. 

The morphotypes and quantity sorted are listed in Table 2.2. We 

consequently labelled and preserved the morphotypes in 95% ethanol, 

replacing them in -20°C until they were removed for further analysis. In 

order to test these morphotypes against COI information, I subsampled 

specimens from each type according to their relative abundance for 

molecular analysis. In total, 432 specimens were chosen for DNA 

sequencing. 

Type I II III IV V VI VII VIII IX X 
Freq. 1831 715 74 28 6 3 2 2 2 2 
Table 2.2: Frequency of morphotypes sorted 

2.2.4 DNA amplification and sequencing 

For the DNA sequencing, I developed two molecular techniques 

that allowed for fast results at low cost, while leaving the specimen intact. 
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These methods are the direct PCR method and the direct extraction 

method. 

In the direct polymerase chain reaction (PCR) method, PCR 

reactions are prepared in 22µL reactions containing 0.1µL TaKaRa 

ExTaq (Kyoto, Japan), 2.5µL 10X buffer and 2µL 2mM dNTP mixture 

(TaKaRa), 1.22µL 10µM primer for both forward and reverse direction, and 

13µL DNase-free sterile RO water (1st Base Pte. Ltd, Singapore, 

Singapore). Instead of template DNA, I removed the flies from storage 

tubes where they were preserved in 100% ethanol and blotted them briefly 

on paper towels just long enough to drain off excess alcohol. As fully dried 

specimens will float on the master mix due to surface tension, they were 

immediately transferred into 8-well strip PCR tubes containing the master 

mix. It was not necessary to pierce the cuticule. However, in order to 

improve PCR success, I also added 1µL of dissolved bovine serum 

albumin (Sinopharm Chemical Reagent Co. Ltd., Shanghai, China) at a 

concentration of 70µg/mL. BSA binds with PCR inhibitors that may have 

remained in the template DNA due to the modified extraction process.  

In the direct extraction method, which can also be modified to 

further extract template DNA from specimens that have been processed 

via direct PCR, individual Corethrella specimens are placed in 15 – 20 µL 

of TE buffer (10mM TRIS-CL, 0.5mM EDTA pH 9.0) that have been eluted 

into 8-well strip PCR tubes or 96-well plates. The tubes/plates are placed 

into a thermocycler and heated to 95°C for 15 minutes. During the heating, 
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cells break down and release sufficient genomic DNA into the buffer that it 

can be used as template for PCR or genomic amplification. The latter 

ensures that template DNA remains stable for long periods of storage. I 

used 2 – 3 µL of DNA-enriched buffer to each reaction. The relative 

content and concentration of the reagents in the master mix are identical to 

those used for direct PCR.  

The temperature protocol for PCR was as follows: Three minutes at 

95°C followed by 34 cycles of 94°C for 30 seconds, 52°C or 55°C for 30 

seconds, and extension of 72°C for one minute. The first cycle of three 

minutes at 95°C that denatures the antibody that inhibits ExTaq also 

serves to leach sufficient template mtDNA from the flies to produce 

successful amplifications. Multiple primers were used, as there was 

differential success between morphotypes. I used a range of primers from 

different authors, as well as designing my own. The list of primers is 

provided in Table 2.3. The most useful primers were C1-J-1718/C1-N-

2329 (Simon et al. 1994), which amplifies a region of COI frame-shifted 

about a 100 base pairs downstream of the LCO-1460/HCO-2198 (Folmer 

et al. 1994). After amplification, Corethrella specimens were removed from 

buffer or PCR mix and vouchered in 80% ethanol.  
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Source Primer Sequence Orientation 
(set) 

C1-J-
1718 

5ʼ GGA GGA TTT GGA AAT TGA TTA 
GTT CC 3ʼ 

Forward (1) 

C1-N-
2329 

5ʼ ACT GTA AAT ATA TGA TGA GCT 
CA 3ʼ 

Reverse (1) 

TY-J-
1460  

5ʼ TAC AAT TTA TCG CCT AAA CTT 
CAG CC 3ʼ 

Forward (2) 

(Simon et al. 
1994) 

C1-N-
2191  

5ʼ CCC GGT AAA ATT AAA ATA TAA 
ACT TC 3ʼ 

Reverse (2) 

LCO-
1490 

5ʼ GGT CAA CAA TCA TAA AGA TAT 
TGG 3ʼ 

Forward (3) (Folmer et al. 
1994) 

HCO-
2198 

5ʼ TAA ACT TCA GGG TGA CCA AAA 
AAT CA 3ʼ 

Reverse (3) 

cLCO 5ʼ TTG GAA CTT CTT TAA GTT TA 3ʼ Forward (4) Designed 
primers cHCO 5ʼ TCA AAA TAA ATG TTG GTA TAA 

AAT AGG 3ʼ 
Reverse (4) 

Table 2.3: List of primers used for amplifying COI in this study 

Amplification success was checked using agarose gel 

electrophoresis. Reactions that supplied clear bands were then purified 

using Bioline SureClean (Randolph, MA) according to manufacturer 

specifications. The purified product was cycle-sequenced with the same 

primers for PCR in terminator reactions using BigDye Terminator ver. 3.1 

(Applied Biosystems, Foster, CA). A final purification was performed with 

Agencourt® CleanSEQ® kit (Agencourt Bioscience Corporation, Beverly, 

MA) before carrying out direct sequencing in an ABI PRISM® 3100 

Genetic Analyzer (Perkin Elmer Applied Biosystems, Norwalk, CT).  

2.2.5 Sequence alignment and analysis 

Sequences were edited, checked for accuracy (e.g., translatable to 

amino acid sequence), and concatenated in Sequencher 4.0 (Gene Codes 

Corporation, Ann Arbor, MI). I used ClustalX 2.0.1 (Thompson et al. 1997) 

with default opening and extension costs for aligning the sequences, which 

served as my source of molecular data for the study.  
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As with Chapter 1 of my thesis, in order to meaningfully examine 

the congruence between morphotype and molecular clusters, I used a 

range of threshold distances to delimit the COI clusters. As elaborated in 

the previous chapter, this gives an estimate of cluster number that 

encapsulates the upper and lower bound of species richness. Here I use 

pairwise distances to delimit clusters, with an objective clustering threshold 

distance of 3% (Meier et al. 2006). I also delimited clusters at 2%, 4% and 

5% to observe how distinct the clusters were from each other. 

The idea of objective clustering differs from the tree-based 

identifications first introduced by Hebert because of its explicit treatment of 

triangle inequalities (Hebert et al., 2003). Objective clustering allows for 

threshold violations within clusters as long as every sequence within that 

cluster possesses a neighbour with pairwise distance below the threshold 

(Meier et al. 2006). Clusters were consequently used in place of 

morphotypes to estimate sampling completeness and to discover the α-

diversity of Corethrella in Labi peat swamp forest.  

Sequences were loaded into SpeciesIdentifier (as part of the 

TaxonDNA package) (Meier et al. 2006), and the objective cluster 

algorithm used to determine how many clusters there were within the 

subsampled morphotypes. I used a range of threshold distances (from 2 – 

5%) to delimit clusters due to the inherent arbitrariness of the conventional 

3% intraspecific distance threshold, as discussed in the previous chapter.  

We also conducted a sample-based assessment of species 
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richness on samples collected from the Belait district (Labi peat swamp), 

which was subsampled for molecular analysis 77 times, substituting 

clusters (3% threshold limit) for species. Other areas did not have enough 

sampling replicates. This was performed in EstimateS ver. 8 (Colwell 

2006). The program parameters were set as follows: 50 randomised runs 

were performed on the dataset without replacement, and the classic 

formula for bias correction in Chao1 and Chao2 was used based on 

programme recommendations. All other parameters were set at 

programme default.   

 

2.3 RESULTS 

In addition to collecting Corethrella off peat swamp frogs R. 

baramica and R. glandulosa, we collected them from rainforest frog 

species: Ansonia longidigita, Inger, 1920 Megophrys nasuta Schlegel, 

1837, Metaphrynella sundana Peters, 1867, Limnonectes leporinus 

Andersson, 1923 and Philautus hosii Boulenger, 1895.  

Flies were relatively undamaged after DNA extraction and 

amplification, as can be seen in Figure 2.1. 
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Figure 2.1: ♀, morphotype I COI Cluster K (Table 2.4), darkfield image 
taken with the Visionary Digital Imaging System, courtesy Yuchen Ang.  

 

Excluding sequencing or PCR failures, I obtained 356 COI 

sequences after subsampling from the 10 morphotypes, with an average 

of 546 bases per specimen. Aligning these sequences produced a gap-

free 654-base alignment. Common morphotypes have been sub-sampled 

for molecular sequencing more often, in order to test the molecular 

diversity hidden by morphologically similar specimens.  

2.3.1 α- and β- diversity of COI and morphotypes 

Clustering at the conventionally established threshold distance of 

three percent generated 27 clusters, one of which turned out to be a mis-

sorted culicid specimen (Uranotaenia sp. Lynch Arribálzaga, 1891), also 
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known to be phonotactically attracted to frog vocalisations (Borkent and 

Belton 2006). The 26 COI clusters have almost doubled the number of 

morphospecies obtained during the initial sort. Table 2.4 provides 

information on the morphotypes and genetic clusters.  

Cluster NIndividuals Morphotype Locality Stimulus 
A 1 IV Labi R. glandulosa  
B 1 (Unsorted) Singapore R. baramica 
C 1 VI Labi R. baramica 
D 1 VI Labi R. baramica 
E 1 VI Labi R. baramica 
F 1 VI Labi  
G 1 VI Labi On R. baramica 
H 1 VI Labi R. glandulosa 
I 1 X (Culicid) Labi R. baramica 
J 1 II Lower Apan On M. nasuta 
K 157 I Labi, Tasek 

Merimbun 
, R. baramica, R. 
glandulosa  

L 1 (Unsorted) Sulawesi Bufo sp.? 
M 85 II Labi , R. baramica, R. 

glandulosa 
N 1 II Labi R. baramica 
O 13 IV Labi , R. glandulosa 
P 1 IV Labi R. glandulosa 
Q 45 II, III, V, VII Apan, Ashton Trail, 

Mulu, Labi, Lanjak 
Entimau 

, R. glandulosa On L. 
leporinus, M. 
sundana, and P. hosii  

R 1 IV Lanjak Entimau  
S 2 III Lanjak Entimau  
T 2 III, IV Labi  
U 16 I, II Mata Ikan, Lanjak 

Entimau 
  
On M. nasuta, and A. 
longidigita 

V 6 II, IX Baki, Esu, Ashton 
Trail 

On M. nasuta 

W 7 I, III Lower Apan, Baki, 
Lanjak Entimau 

On P. hosii and L. 
leporinus 

X 6 I Labi , R. glandulosa 
Y 1 VIII Labi  
Z 1 VIII Labi R. baramica 
AA 1 X Labi  
Table 2.4: Morphotypes and 3%-delimited COI clusters. Species in bold 
denotes collection off the frog. The symbol ʻʼ represents a pulsed pure 
tone. 
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Most putative species of corethrellids are rare. Out of the 26 

clusters, 10 are represented by single sequences, with two additional 

clusters being doubletons. The singletons are also conflicting quite 

strongly with their assigned morphotypes, either being split into multiple 

distinct clusters, or being lumped in a single cluster. Multiply sampled 

morphotypes and clusters were equally attracted to the calls of different 

frog species (K and M), frog calls and pulsed pure tones (K, M, O, Q and 

X). Hence I did not find Corethrella flies exhibiting species specificity in 

their phonotactic response to different acoustic stimuli. 

In order to establish an upper and lower bound for the approximate 

species diversity of Corethrella, I performed objective clustering over a 

range of threshold distances from 2% - 5%, generating a range of clusters 

as shown in Table 2.5 below. The relatively lower rate of splitting and 

clumping is probably due to undersampling. 

Threshold NClusters Clusters split/lumped relative to 3% threshold 
2% 28 K1, K2 & W1, W2 
4% 24 (U, V), (G, H) 
5% 22 (U, V), (G, H) & (Q, S) 
Table 2.5: Threshold distances and the clumped/split clusters.  

 

2.3.2 Estimates of species richness and species turnover 

All estimators gave us similar patterns, with the trend lines 

converging very closely to each other. Here we show non-parametric 

diversity estimators Chao1, Chao2 and ACE and ICE. As discussed in 

(Colwell 2006), the diversity indices tend to converge as samples 
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accumulate. The graph (Fig. 2.2) is almost linear, and far from reaching an 

asymptote, a common phenomenon observed in tropical arthropods 

(Gotelli and Colwell 2001). Based on the current information, the 

corethrellid diversity cannot be estimated but will exceed 43 species in the 

kerangas and kerapa forests in Labi peat swamp alone.  

 
Figure 2.2: Corethrella species accumulation curves for Belait district 

I could not utilise β- diversity estimators for species turnover due to 

the very uneven and infrequent sampling events between localities. 

However, the rate of new clusters obtained per sampling effort was very 

high, as was the number of unique clusters obtained in each locality. 

Individuals in cluster Q were the most widespread, having been collected 

from both Brunei and Sarawak, in two separate localities each (Table 2.6). 
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Locality District (No. 
Sampling 
Events) 

No. of 
Clusters 
at 3% 

No. of 
Unique 
Clusters 

Overlaps 
Cluster? 

Shared Locality 

K  Tutong Belait (77) 18 16 
Q Temburong, 

Lanjak Entimau, 
Gunung Mulu 

Tutong (3) 1 0 K Belait 
Q Belait, Lanjak 

Entimau, Gunung 
Mulu 

Brunei 

Temburong 
(10) 

5 3 

U Lanjak Entimau 

Q Belait, 
Temburong, 
Gunung Mulu 

Lanjak 
Entimau (10) 
 

5 3 

U Temburong 

Sarawak 

Gunung Mulu 
(2) 

1 0 Q Belait, 
Temburong, 
Lanjak Entimau 

Sulawesi ? (1) 1 1 N. A. 
Singapore Upper Pierce 

(1) 
1 1 N. A. 

Table 2.6: The number and geographical uniqueness of COI 3% distance-
delimited clusters, which approximate species. 

 

Based on observed species richness, the Belait district of Brunei 

was the richest. This is most probably due to better sampling, with 

specimens sequenced from 77 samples. These formed 18 clusters, 16 of 

them unique to Belait alone (Table 2.6). There is a correlation between 

sampling effort and diversity, since Temburong and Lanjak Entimau each 

have specimens in 5 distinct clusters from 10 sampling events, while areas 

such as Tutong and Gunung Mulu, which were only sampled twice or 

thrice, obtained specimens that fell into a single cluster. As the Sulawesi 

and Singaporean specimen were collected opportunistically, they are only 

significant for being completely distinct from all the Bornean samples. 
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2.4 DISCUSSION 

2.4.1 Corethrella species diversity 

Even without thorough taxonomic treatment, the signal from 

morphology and DNA clearly indicate that the corethrellid species diversity 

of Borneo, and likely Southeast Asia is orders of magnitude higher than 

what is currently known. This confirms the preliminary prediction by 

(Borkent 2008) about Southeast Asia potentially matching the Neotropical 

region in terms of species diversity. Here I show that the species diversity 

from acoustic-lure trapping single kerangas forest site in Brunei matches 

that from the most species-rich locality sampled from Costa Rica by 

(Borkent 2008). He reports trapping 10 species of Corethrella from Carara 

National Park, which is known to have 14 species. We have approximately 

18 species from Labi alone (Table 2.4), none of which have been 

described, although they were recognisably distinct from morphologically 

similar Corethrella species from Japan and the New World, (Borkent 2008; 

Borkent, pers. comm.). Furthermore, based on α-diversity estimations, 

there may be twice as many species of Corethrella in Labi alone (Fig. 2.2). 

This works out to at least 43 parasitoid species for a locality that has less 

than a quarter of this species diversity in anuran host species (Grafe, pers. 

comm). This is particularly surprising given that estimates of species 

based on Chao1 and Chao2 are conservative in the face of inadequate 

sampling (Chao et al. 2009). The degree of species overlap between 
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habitats is also not very high; the species in the most exhaustively 

sampled locality of Labi in the Belait district shared only 2 species with 

other districts in Brunei or Sarawak. This is a further indication of either 

high species endemism or thoroughly incomplete sampling.  

Expanding on anuran diversity outside Brunei, there are currently 

over 138 anuran species known from Borneo (Inger and Lian 1996) with a 

flurry of papers describing more species in the past 13 years (Das 2005, 

2008; Das and Haas 2003, 2005; Inger et al. 2001; Matsui et al. 2007; 

Stuebing and Wong 2000). It is thus likely that the anuran diversity of 

Borneo has not been exhaustively documented. If we extrapolate 

parasitoid Corethrella diversity based on the diversity of their hosts, it is 

likely that the diversity of Corethrella may be even higher than here 

estimated. 

2.4.2 COI and morphotype conflict 

Even without sequencing all Corethrella specimens, COI clusters 

indicate a much higher level of diversity than suggested by morphospecies 

sorting. Furthermore, the morphotypes were not reliably sorted because 

similar morphotypes were split or lumped into different COI clusters 

through the range of selected threshold distances. The unreliability of 

parataxonomic sorting has been an issue of some concern, especially for 

biodiversity (Krell 2004) and ecological studies (Bortolus 2008). Inaccuracy 

may be particularly expected for taxa such as Corethrella that are very 

small with most useful morphological details only being apparent to 
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taxonomic specialists. This echoes the problems of other groups that are 

difficult to distinguish because of difficulties in obtaining useful 

morphological characters (Besansky et al. 2003). 

2.4.3 Hearing capacity and specificity in Corethrella 

The high rate of unique COI sequences led us to hypothesise that 

this may indicate host-specificity. We therefore modified our sampling 

methods to include pulsed tones of different frequencies. Although 

sampling is still incomplete at the time of thesis writing, preliminary 

experiments on maximally attractive frequencies in Brunei have shown that 

the Corethrella can and do exhibit positive phonotacic behaviour towards 

pulsed pure tones at 3kHz and higher, although the number of collected 

specimens is smaller at high frequency. We also cannot detect species 

specificity in the attraction of Corethrella to the range of pulsed tones, 

partially because most specimens that are collected are singleton. The 

most abundant corethrellid type that clusters in K and M (Table 2.4) have 

been collected from Labi in pulsed tone traps spanning the range from 

1.5kHz to 5kHz. Furthermore, multiple kinds of acoustic stimuli (calls, pure 

tones, etc.) can attract individuals belonging to the same cluster (Table 

2.4). However, there may be a further host of criteria that a corethrellid 

female requires before she feeds (Borkent 2008). It is also possible that 

the Corethrella flies may be attracted to frog calls of multiple species, even 

landing on them, but they refrain from feeding because of the 

chemosensory cues are wrong (Grafe, pers. comm.). Our observation of 

non-specificity is in agreement with reports in the literature that indicate 
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that rock music, zebra finch, and mole cricket songs are effective acoustic 

lures for neotropical Corethrella (Camp 2006).  

The closest well-studied example of a dipteran parasitoid that is 

able to locate her host via acoustic localisation is that of tachinid Ormia 

orchracea Bigot, 1889 (Robert et al. 1996), although it is also known in 

tsetse ((Tuck et al. 2009) and sarcophagid flies (Robert et al. 1999; Yack 

2004). However, these taxa utilise tympanal hearing (similar to the 

mechanism used by humans), which is currently thought to be the only 

form of hearing that can reliably detect far-field sounds (Yack 2004). 

However, Corethrella, and all culicomorph midges practice antennal 

hearing, which is thought to be capable of only detecting low-frequency, 

near-field sounds (Robert 2005), although it is clear that the call of a Rana 

baramica (dominant frequency ~2.7kHz) is neither low-pitched, nor are the 

males occurring at a high enough density for their calls to be considered 

near-field. Furthermore, they are positioned approximately 2 metres above 

ground (pers. obs.), making the task of localisation more difficult as it 

becomes a matter of triangulating the location of a small frog 

approximately 30-70 mm in length in 3-dimensional space. Furthermore, in 

a 1978 experiment by Mangold, both Corethrella and Ormia were both 

attracted to the calls of Gryllus crickets (Mangold 1978). A recent paper by 

Roberts extends the hearing thought possible by mosquitoes over much 

higher frequencies (Robert 2009), providing some evidence for that the 

performance of antennal hearing is on par with that of tympanal hearing.   
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A point of note is the antennal posture of the Corethrella as they 

approach their hosts. Unlike culicids, observations of female Corethrella 

approaching their anuran prey in the field or in field photographs show 

them to have their antennae extended outwards perpendicular to their 

body, a phenomenon confirmed by my collaborator (Ulmar Grafe, pers. 

comm.). This has not been recorded in the literature, but may prove 

significant with regards to increasing acoustic sensitivity by extending the 

time differential between the detection of acoustic signal between the left 

and right antennal receptor.  

2.4.4 Ecological interactions and the extinction crisis 

Corethrella are also threats to anuran health by being vectors of 

disease, specifically trypanosomes (Johnson et al. 1993). This is 

analogous to the human public health crisis of malaria, spread by the 

disease vector, the culicid Anopheles gambiae. This association between 

Corethrella, trypanosomes and anurans is likely to be very old (Borkent 

2008; McKeever and French 2000). Sexual signalling costs of anurans 

include: 1) The exertions of visible display, in this case the energetic 

expense of sustained vocalisations 2) The threat of a predator 

ʻeavesdroppingʼ on the signal 3) Trypanosome infection by Corethrella 

vectors, which stresses the male immune system, and 4) hypovolemia 

from a considerable number of Corethrella feeding on a small host (see 

Camp 2006 for a back of envelope estimation). These factors may 

compound the high level of environmental stress known to accelerate 

extinction in amphibians (Alford et al. 2007; Pounds et al. 2007; Rohr et al. 
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2008; Skerratt et al. 2007; Wake and Vredenburg 2008). As specialists on 

anurans, the Corethrellidae are also in imminent danger of catastrophic 

extinctions (Dunn et al. 2009; Koh et al. 2004; Sodhi et al. 2004). 

2.5 CONCLUSION 

The Corethrellidae are a very fascinating taxon with an interesting 

life history and remarkable phonotactic sensibility. Unfortunately, they 

remain poorly studied. Here, I report the high diversity of undescribed 

Corethrella species in Borneo, based on sampling in Brunei and to a 

lesser extent in Sarawak. A large number of undescribed species is 

confirmed based on morphology and COI sequences. The large difference 

in species numbers based on COI and morphotype is an issue of some 

concern and provides further evidence for the lack of precision in 

parataxonomic sorting. With preliminary sampling in Sarawak and Brunei 

generating a surprisingly high species richness estimate (Table 2.6), it can 

only mean that an exhaustive series of trapping in Borneo will lead to an 

exponential increase in Corethrella species with the species diversity 

being even higher for Southeast Asia. As a point of natural historic interest, 

it is a pity that so little is known about a group which seems to be 

ecologically so varied, as given the current rate of species extinction of 

anurans, the Corethrella are sure to follow suit.  

 

 



  52 

CHAPTER 3 

Do sepsid species with wide 
distributions in Southeast Asia 

contain cryptic species? 
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3.1 INTRODUCTION 

The phenomenon of cryptic species hiding within species formerly 

considered to have a widespread distribution has recently attracted much 

attention (Bickford et al. 2007). Given that most cryptic species are 

detected based on DNA sequences, technological advances in molecular 

biology initiated this revolution. Sequences are now routinely used to re-

examine species boundaries (see Singh 2003 for review). Sequencing is 

most frequently used in those cases where morphological information has 

shown to be inconclusive (Gaubert et al. 2005; Mutanen 2005). It is often 

the DNA barcode gene region (mitochondrial cytochrome oxidase c 

subunit I (COI)) that is used to investigate whether there are deep 

divergences between groups of sequences formerly thought to belong to 

one species. Despite all problems with interpreting DNA sequence 

information for taxonomic purposes, COI and other molecular markers are 

currently the best tool for discovering hidden diversity in taxa that are 

suspected to include cryptic species (Blaxter et al. 2004; Gomez et al. 

2007; Lukhtanov et al. 2009), overwhelmingly diverse taxa (Lin et al. 

2009), or reunite life stages and genders of taxa which are extremely 

dimorphic (Johnson et al. 2009). Chapter 4 will discuss an example of how 

COI helped to discover and resurrect cryptic species, Sepsis pyrrhosoma 

Melander & Spuler 1917 where it was previously synonymised within a 

morphologically plastic species, Sepsis flavimana Meigen 1826. This case 

is sadly rare, as many published studies that report finding cryptic species 

do not follow up with formal descriptions.  
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I will here follow the definition of cryptic species as proposed by 

Bickford et al. 2007; i.e., that they are multiple species that have been 

classified as a single nominal species at any point in time because of the 

difficulty or unreliability in distinguishing them by traditional means. 

Beyond the inherent value of good taxonomic practice, studies of cryptic 

species can be used as sources of information for broader scientific 

purpose. Firstly, cryptic species are useful for phylogeographic and 

speciation studies (Lohman et al., 2008; Wirta, 2009) because they are 

closely related enough to trace recent history. Establishing the 

geographical boundaries of cryptic species originating (Lukhtanov et al. 

2009) from within a widespread species with large distributions can also 

help date the emergence of barriers of reproductively isolate populations 

(Willett and Ladner, 2009; Zaksek et al., 2009). Secondly, the existence 

and ecological functions of cryptic species are a significant issue in 

conservation biology (Garcia-Mudarra et al., 2009; Thum and Harrison, 

2009; Vialatte et al., 2008), particularly in the management and 

preservation of functional ecosystems and genetic diversity (Giangrande, 

2003; Milankov et al., 2008). Finally, the detection of cryptic species can 

be crucial when the species in question are of significance to humans, 

such as pest species (Collins and Paskewitz, 1996; Vogler et al., 2008), 

biological control (Beard, 1999; Stouthamer et al., 1999) and medicinal 

leeches (Siddall et al., 2007). Misidentifying species boundaries can have 

numerous negative effects.  

The frequency of cryptic species in widespread Southeast Asian is 
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currently poorly undestood. Many studies either exclude Southeast Asia 

due to lack of data, (such as Moritz et al. 2000, a study on rainforest 

dynamics), or researchers have resorted to creative methods to obtain 

specimens from the region; e.g., by sampling ornamental Southeast Asian 

fish species from the pet trade that were dead-on-arrival (Steinke et al. 

2009). Currently, the best-sampled taxa are herptiles, which have been 

extensively studied (Inger and Voris 2001; Stuart et al. 2006). The lack of 

study for other groups is unfortunate, given the geological history and 

events during the Pleistocene and Holocene that have shaped the 

distribution of Southeast Asiaʼs fauna and flora (Lambeck 2004; 

Sathiamurthy and Voris 2006; Soares et al. 2008), making it a valuable 

field site to investigate speciation (Beehler 2001; Holloway 2003). 

Furthermore, Southeast Asia is a biodiversity hotspot (Brooks et al. 2002), 

which means that the status and validity of species is an urgent concern 

for conservation management.  

One problem with studying the literature on cryptic species is 

publication bias. Studies finding new cryptic species are usually published, 

while research revealing the existence of genuinely widespread tramp 

species is less likely to be published (see (Balke et al. 2009; Errard et al. 

2005; Le Breton et al. 2004) for exceptions). Studies revealing the 

existence of genuine widespread species lacking cryptic lineages may 

thus contribute to a  ʻfile drawerʼ problem (Csada et al. 1996). A publication 

bias against non-significant results may have implications on our 

understanding and inference of the mechanisms of speciation and 



  56 

biogeography. Hence, I propose that regardless of what a study of 

widespread species reveals, the results should be published. 

Here, I study eight species of Sepsidae, a family of synanthropic 

commensal Diptera. They are small black flies that are commonly found on 

mammal dung (Pont and Meier 2002). This means that the study of the 

species boundaries of widespread Southeast Asian members must also 

compensate for the confounding influence for secondary introduction of 

sepsid species based on the movement of domesticated cattle, which 

were domesticated twice independently in Eurasia about 8,000 - 10,000 

years ago (Bruford et al. 2003; Loftus et al. 1994). Here, I use DNA 

barcodes on identified sepsid flies that are widely distributed in this region 

to test whether they contain cryptic species or are widespread tramp 

species.  

3.2 MATERIALS AND METHODS 

3.2.1 Collection and identification 

Eight widespread species of sepsids were collected from a total of 

37 localities, representing 14 countries in Southeast Asia such as Brunei, 

Cambodia, Indonesia, Malaysia, Philippines and Thailand as well as 

Australia, China, India, Pakistan, Papua New Guinea, Taiwan, the Union of 

the Comoros, and the United Arab Emirates where these widespread 

species are also found. The species are Allosepsis indica (Wiedemann, 

1824), Australosepsis frontalis Walker, 1860, Australosepsis niveipennis 

Becker, 1903, Meroplius fasciculatus Brunetti, 1909, Parapaleosepsis 
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plebeia (Meijere, 1906), Sepsis coprophila Meijere, 1906,Sepsis dissimilis 

Brunetti, 1909, and Sepsis nitens Wiedemann, 1824 (See Appendix for list 

of specimens and locality information). Flies were collected off bovine 

dung by sweep netting before being killed in absolute ethanol. Some 

females were also retained to set up cultures, in order to perform 

behavioural observations and mating experiments. The latter was relevant 

when morphology and COI seem to yield conflicting signal. Sepsid 

taxonomists identified male individuals to species based on morphological 

diagnostic characters, most commonly found on the sexually dimorphic 

foreleg. 

I also included three unidentified and possibly new species of 

Sepsis Fallen, 1810. In order to test for congruence between morphology 

and COI of the Sepsis species, a single-blind experiment was performed 

on three groups of sepsids with distinct genetic barcodes. A sepsid 

taxonomist was asked to sort individual specimens preserved in 95% 

ethanol from five COI clusters to species based on morphology. The 

morphology-based identifications were then compared with the results of 

clustering. 

3.2.2 DNA extraction, amplification, sequencing and alignment 

Only individuals of sepsid males or females that could be identified 

to species (females of genus Australosepsis can be identified to species 

based on the presence of wingspots) were used for molecular analysis. 

They were extracted using a mix of protocols, including a modified CTAB 
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protocol (Lim 2007), along with non-destructive methods detailed in 

chapter 1, based on the protocol I devised in chapter 2. The rest of the 

specimen was then relabelled and vouchered in 80% ethanol. 

The target sequence was the barcoding region of COI. Primers 

were used as in (Lim 2007), with shorter primers being designed and used 

when the specimen was old and/or had been stored in suboptimal 

conditions, as they are easier to amplify (Lim 2007). PCRs were performed 

in 25µL reactions, including 100ng/mL of template DNA and primer, buffer 

and dNTP concentrations added based on manufacturer 

recommendations. The only modification was that I halved the amount of 

TaKaRa ExTaq (Kyoto, Japan). Cycling temperatures were: 95°C for 

three minutes to activate the hotstart polymerase, followed by 34 cycles of 

95°C for 30 seconds (denaturation), 50°C for 30 seconds (annealing), and 

72°C for one minute (extension). The PCRs were kept at a holding 

temperature of 15°C until they were retrieved for gel electrophoresis to 

confirm that the COI fragment had been successfully amplified. 5µL of the 

reaction mix was loaded into 1% agarose gel for this purpose.  Amplified 

products were purified using Bioline SureClean (Randolph, MA) and 

suspended in DNase-free water (1st BASE Pte. Ltd., Singapore, 

Singapore). Terminator sequencing reactions were then performed in both 

forward and reverse directions in 10µL volumes, using BigDye ver. 3.1 

(Applied Biosystems, Foster, CA) used according to manufacturer 

specifications. A final purification was performed with Agencourt® 

CleanSEQ® kit (Agencourt Bioscience Corporation, Beverly, MA) before 
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carrying out direct sequencing in an ABI PRISM® 3100 Genetic Analyzer 

(Perkin Elmer Applied Biosystems, Norwalk, CT). Sequences were edited 

and concatenated in Sequencher, before they were aligned in ClustalX 

2.01 (Thompson et al. 1997). No gaps were observed. The dataset was 

then used for the following analyses. Balke M contributed half of the 

sepsid sequences used in this analysis.  

3.2.3 Pairwise and phylogenetic analysis 

Similar to the method used in the previous chapter on Corethrella 

sequences, I used the objective-clustering algorithm in SpeciesIdentifier to 

determine how many species were falling into congruent clusters 

(terminology following (Meier et al. 2006)). The threshold limit set ranged 

from 2% - 4% for the datasets. I followed up on A. indica, which showed 

abnormally high distances, by defining distances of up to 7%. 

For ease of analysis, sequences were split up into three datasets, 

based on the sepsid phylogeny in (Su et al. 2008) Each dataset also 

included outgroups that were selected based on Su et al. (2008). The 

datasets included the species as listed in Table 3.1. The unidentified 

Sepsis species will henceforth be labelled as Sepsis sp. A, Sepsis sp. B, 

and Sepsis sp. C.  

 

 

 



  60 

 Dataset #1 Dataset #2 Dataset #3 
Outgroup Meroplius 

fukuharai 
Toxopoda 
sp. 

Dicranosepsis 
emiliae 

M. fasciculatus A. indica A. frontalis 
 P. plebeia A. niveipennis 
  S. nitens 
  S. dissimilis 

Widespread 
species 

  S. coprophila 
  S. sp. A 
  S. sp. B 

Unidentified 
species 

  S. sp. C 
Table 3.1: The three datasets of widespread species with their outgroups, 
which were selected from sister clades according to the phylogeny by (Su 
et al. 2008) 

 

Both Maximum Likelihood and Maximum Parsimony trees (ML and 

MP trees respectively) can be used to infer whether phylogenetic structure 

exists between the populations. In conjunction with information on genetic 

divergence, this would indicate whether the populations of sepsids existed 

before the introduction of domestic cattle. Parsimony analysis to determine 

the genetic structure of the populations was performed in TNT ver. 1.1 

(Goloboff et al. 2008), under the following settings: New tech search at 

level 65, best tree to be found 10 times. Support was determined with 

jackknife resampling under the same settings for 250 replicates. Likelihood 

analyses were also performed in GARLI (Zwickl 2006), after MrModelTest 

(Posada and Crandall 1998) considered the GTR + I + Γ to be the best 

model under AIC and LRT criteria. This model was utilised, along with 10 

000 generations. Support was obtained via bootstrap support for 100 

replicates under the same settings.  
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3.3 RESULTS 

3.3.1 Dataset 

I obtained 270 sequences of all widespread species, with an 

alignment 733 bases long. The alignment was gap-free and could be 

translated into amino acid sequence. Most widespread species were split 

into multiple clusters at 1% (A. indica, A. niveipennis, P. plebeia, S. 

coprophila, and S. dissimilis) but fell into single monospecific clusters at 

thresholds >1% (Table 3.2). Australosepsis niveipennis and S. dissimilis 

remained split into 2 clusters at 2%, but both cases were due to very 

distinct COI sequences in specimens from the Union of the Comoros.  

Species ∑ Individuals Max % distance 1% 2% 3% 4% 
A. indica 69 16.61 10 6 6 6 
A. frontalis 65 2.54 1 1 1 1 
A. niveipennis 20 3.33 2 2 1 1 
M. fasciculatus 14 1.05 1 1 1 1 
P. plebia 15 1.96 2 1 1 1 
S. coprophila 13 1.72 2 1 1 1 
S. dissimilis 22 3.58 3 2 1 1 
S. nitens 29 1.49 1 1 1 1 
S. sp. A 6 1.87 2 1 1 1 
S. sp. B 6 0.37 1 1 1 1 
S. sp. C 11  2.04 1 1 1 1 
Table 3.2: List of species, the number of specimens sampled, the 
maximum pairwise distance and the number of clusters for each species at 
the defined thresholds.  

 

The groups produced by naïve morphological sorting of the 

unidentified Sepsis specimens were congruent with the results of objective 

sequence clustering through the range of distances defined, from 1-4%. 



  62 

The single exception was S. sp. A, which was collected in a single locality, 

but was split into 2 clusters at 1%.  

Table 3.3 shows the number of clusters for A. indica at a range of 

thresholds from 2% - 7%. Of the now 11 species, only individuals of 

Allosepsis indica show unexpectedly large pairwise COI distances (Table 

3.3), at a puzzling magnitude that approaches family-level distances in the 

Calyptratae (Kutty, pers. comm.). However, there appear to be no distinct 

morphological differences between the genetically distinct populations, 

indicating that these individuals may belong to multiple, cryptic species.  

Clusters 2% 3% 4% 5% 6% 7% 
Split A. indica 

(6): 
Clades 
A, B, C, 
D, E, F 

A. indica 
(6):  
Clades 
A, B, C, 
D, E, F 

A. indica 
(6):  
Clades 
A, B, C, 
D, E, F 

A. indica 
(6):  
Clades 
A, B, C, 
D, E, F 

A. indica 
(5): 
Clades 
A+C, B, 
D, E, F 

A. indica 
(3): 
Clades 
A+B+C, 
D+E, F 

Table 3.3: The number of A. indica clusters delimited from 2-7%. The 
number in brackets denotes the number of clusters. Clades A-F refer to 
the distinct monophyletic A. indica groups in Fig 3.1.   

 

As both ML and MP trees were congruent in their hypotheses of 

intraspecific relationships, both likelihood bootstrap and parsimony 

jackknife support values have been mapped on the strict consensus tree 

obtained from the parsimony analysis. Support <60 was discarded. These 

support values, with likelihood bootstrap above the branch, parsimony 

jackknife below (Fig 3.1 – 3.8) indicate which populations have support. 

Due to the large size of the datasets #2 and #3, the trees were trimmed to 

depict each widespread species separately.  
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3.3.2 Sepsid population trees 

 

Figure 3.1: Consensus maximum parsimony tree for A. indica. Clusters A-
F are denoted with corresponding forelegs of male A. indica, showing the 
morphological continuum 
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Figure 3.2: Consensus maximum parsimony tree for A. frontalis 
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Figure 3.3: Consensus maximum parsimony tree for A. niveipennis 
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Figure 3.4: Consensus maximum parsimony tree for M. fasciculatus 
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Figure 3.5: Consensus maximum parsimony tree for P. plebeia 
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Figure 3.6: Consensus maximum parsimony tree for S. coprophila 
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Figure 3.7: Consensus maximum parsimony tree for S. dissimilis 
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Figure 3.8: Consensus maximum parsimony tree for S. nitens 
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Refer to Figure 3.1 (page 63): Cluster analysis of Allosepsis indica 

resulted in 6 distinct clades A-F, which were more than 5% apart from 

each other. This result is recovered in both parsimony and likelihood 

analyses. There is hence very strong signal from COI that multiple cryptic 

species exist in what is now referred to as A. indica. However, as shown 

by the pictures of male forelegs from representatives of all six groups, 

there is a morphological continuum. The largest pairwise distance is found 

between ʻTerengganu Iʼ and the Bornean samples (Batu Kitang+Brunei), at 

16.61%. 

Refer to Figure 3.2 (page 64): Australosepsis frontalis has the tree 

with the poorest resolution. The only geographically isolated group 

recovered with support is for specimens from Borneo (Sarawak and 

Brunei). The two most divergent sequences are between ʻSulawesi 6ʼ and 

Philippine ʻMt Camagong 167ʼ, at 2.54%.    

Refer to Figure 3.3 (page 65): Unlike its sister species, A. 

niveipennis has much more geographical structure, with support for both 

Australian (New South Wales) and Taiwanese populations. All A. 

niveipennis from Asia and the Middle East (UAE: United Arab Emirates) 

were sister to an individual collected from the Comoros islands, off the 

eastern coast of Africa. This individual was also more than 2% apart from 

all other specimens causing the split clusters in Table 3.2. The two most 

divergent sequences are between Australian ʻNew South Wales Aʼ and the 

sequence ʻComoros IIIʼ, at 3.33% 
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Refer to Figure 3.4 (page 66): Although parsimony analysis 

retrieved a monophyletic group of M. fasciculatus, there was no support for 

population differentiation between the Sumatra+Java specimens, and 

those from Sulawesi. The two most divergent sequences are ʻSulawesi 7ʼ 

and ʻGHSNP 141ʼ from West Sumatra, at 1.05%.  

Refer to Figure 3.5 (page 67): Populations of P. plebeia from two 

populations from southwest (Perth) and southeast (New South Wales) and 

Papua New Guinea show very defined structure. Although the separation 

of haplotypes between the two landmasses was recovered by 

phylogenetic analyses, there was no support. However, there was support 

for the isolation of Papuan and New South Wales populations. The 

sequences with the greatest pairwise distance are New South Wales IV 

and Goroka I, at 1.96% 

Refer to Figure 3.6 (page 68): Sepsis coprophila exhibits the 

strongest population structure between populations, with strong support for 

unique population haplotypes between Sumatra and Sulawesi, in contrast 

to M. fasciculatus. The two most divergent sequences are ʻSulawesi 1ʼ and 

all the samples ʻBukit Tingeiʼ from West Sumatra, at 1.72%.  

Refer to Figure 3.7 (page 69): Support for S. dissimilis can be found 

for the populations on West Sumatra (Bukit Tingei + Padang Pariaman), 

as well as the distinctly isolated group from the Comoros islands. This is 

similar with the results for A. niveipennis. The Comoros specimens of S. 

dissimilis were also responsible for the split clusters in Table 3.2 at 2% 
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threshold limit, as with A. niveipennis. There is also support that links 

haplotypes from India (Tamil Nadu) and southern Thailand (Trang). The 

two most divergent sequences are ʻGrand Comoros Iʼ and West Sumatran 

ʻBukit Tingei 050ʼ, at 3.58% 

Refer to Figure 3.8 (page 70): Sepsis nitens specimens from China 

(Guizhou), India (Tamil Nadu) and Pakistan (Tanda Saeed) were 

recovered together with support. The other supported cluster comes 

mainly from one locality in West Sumatra (Padang Pariaman), with the 

inclusion of one specimen from another locality on from the same region. 

The two most divergent sequences are between ʻSulawesi 1ʼ and ʻPadang 

Pariaman 244ʼ. 

In general, while most sepsids exhibit geographical stratification to 

a greater (P. plebeia, S. coprophila) and lesser (A. frontalis, M. 

fasciculatus) degree, there is very little consistency in haplotype isolation 

in geographic localities between species.   

3.4 DISCUSSION 

3.4.1 Cryptic species and reporting bias 

In this study, I selected seven species of sepsids that have a 

species range throughout Southeast Asia, along with P. plebeia, which has 

an Australasian distribution. I find that out of the eight species, only A. 

indica has multiple, cryptic species within what was previously considered 

to be a single, widespread species. The seven other sepsid species are 
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morphologically relatively uninform and fall into species-specific clusters 

when a comprehensive COI dataset is analyzed. There is hence no 

evidence for the presence of cryptic species.  

Allosepsis indica is possibly one of the easiest sepsid species from 

Southeast Asia to identify. Both males and females are usually the largest 

sepsids found on ruminant dung, with yellowish-orange bodies (although 

smaller individuals may be brownish-black). The males also possess very 

distinct foreleg morphology, specifically a large protrusion with 4 spines 

arranged radially around the tip (see Fig. 3.1). Due to their very distinct 

appearance, I did not initially suspect that there would be multiple cryptic 

species within A. indica. However, molecular data for populations from 

throughout Southeast Asia indicate that there may be at least six species, 

represented by extremely distinct molecular clusters (See Fig. 3.1). Each 

cluster is at least 5% away from all others (Table 3.3). Could COI 

information be misleading about species boundaries in this species? There 

is evidence from reproductive isolation experiments using live cultures 

from representatives of 4 out of the 6 clusters to support the signal from 

DNA (Denise S. H. T., pers. comm.). This suggests that for A. indica, 

molecular data are more indicative of species status (under the 

reproductive species concept) than morphology.  

DNA provides an independent and discrete source of information for 

comparative analysis with morphology. While other sources of information, 

such as reproductive isolation, acoustic information and behaviour may 

also be useful in distinguishing species, they are generally much more 
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difficult to obtain. This has been the main factor leading to the dramatic 

upswing in the number of published studies on multiple cryptic species 

from single, supposedly widespread species for taxa where non-

morphological signals are used for intersexual communication. While 

valuable, these studies are likely leading to a publication bias that gives 

the impression that widespread species routinely contain cryptic species.. 

This may lead to an overrepresentation of the strength of the scientific 

phenomenon in question. The pervasiveness and potential ramifications of 

this problem has been discussed in the fields of medical and ecological 

research, especially with regard to its impact on downstream meta-

analyses and systematic reviews that attempt to uncover greater patterns 

and trends by evaluating published studies (Jennions and Mÿller 2002; 

Silvertown and McConway 1997). 

Two recent meta-analyses that have been published clearly 

illustrate the pitfalls of attempting to discover trends without careful 

consideration. In 2007, (Pfenninger and Schwenk 2007) conducted a 

meta-analysis based on 2207 studies of cryptic metazoan species sourced 

from the Zoological Record™ database from 1978 – 2006. Based on the 

patterns revealed by their data, they concluded that cryptic species were 

likely to be distributed equally in all biogeographical regions and taxonomic 

groups, directly contradicting the conjectures made by (Bickford et al. 

2007). This startling result was refuted recently, by (Trontelj and Fišer 

2009), who reveal serious methodological errors in the analyses by 

Pfenniger and Schwenk (2007). Upon reanalysis after correcting for study 
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intensity and taxon size, they found that the proportion of cryptic species 

varied up to two orders of magnitude. They further elaborated that cryptic 

diversity can arise out of a multitude of factors specific to the genus and 

environment. Even with reanalysis, the authors cast doubt on the accuracy 

of the conclusions of meta-analysis, given the very recent increase in the 

number of studies and the bias toward studies conducted in temperate 

regions. I would argue that publication bias is another factor that needs to 

be taken into consideration. 

3.4.2 Widespread species and population structure 

The widespread sepsids did not show strong or consistent 

intraspecific population structure. This is likely due to small intraspecific 

pairwise COI distances and the lack of haplotype sorting between 

geographically distinct populations. For the most part, there was only weak 

population-level signal within the species, usually with one or two 

populations being distinct from the rest; e.g., A. frontalis: the Bornean 

population. Two examples of species with very distinct populations are A. 

niveipennis and S. dissimilis. The distinct populations are both from the 

Union of the Comoros, which is off the coast of East Africa. This 

immediately suggests that the genetic distances are due to the extremely 

long period of geographic separation between the African and Southeast 

Asian populations. This contrasts with a study conducted on another 

widespread synanthropic dipteran species, Musca domestica, which 

exhibits surprising spatial diversity and geographic structure (Cummings 

and Krafsur 2005).  
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3.4.3 Synanthropic introduction alongside domesticated ruminants 

The widespread sepsid species examined in this study are 

predominantly found throughout Southeast Asia on pats of dung left by 

domesticated cattle. The larvae feed on the dung thus providing a potential 

mechanism of human-assisted dispersal. This is testable by generating a 

phylogeny based on COI sequences to detect whether individuals from 

geographically distant populations are genetically undifferentiated. This 

can be observed in the species A. frontalis and S. dissimilis. Both have 

been collected from a range of localities and show no recoverable 

geographical populations with the exception of a Bornean group in A. 

frontalis (Fig. 3.2), and a distinct clade in the Comoros islands for of S. 

dissimilis (Fig. 3.7).  

Other species A. niveipennis, M. fasciculatus, P. plebeia, S. 

coprophila and S. nitens, exhibit at least two or more isolated populations 

with bootstrap/jackknife support (Figs 3.3-3.6, 3.8). This is consistent with 

long periods of geographic separation and may indicate that there were 

already pre-existing native populations of these sepsids before the 

introduction of domesticated ruminants. The earliest record of locally 

domesticated Southeast Asian cattle is recorded at 3,500 years ago 

(Mohamad et al. 2009), only later adapting to exploit their dung as a food 

source. Furthermore, there are native cattle throughout Southeast Asia 

such as the banteng, gaur, anoa and kouprey (Lenstra and Bradley 1999), 

which may have been the original source of breeding substrate for these 

sepsids. Interestingly, there are no native ruminants in P. plebeiaʼs species 
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range, although it shows strong population segregation between parts of 

Australia and Papua New Guinea (Fig 3.5). However, this species is 

known to be a generalist and may have bred in marsupial dung prior to the 

introduction of ruminants. 

3.4.4 Recolonisation and genetic drift 

Positing genetic segregation of populations in geographically 

distinct locations rests on the assumption of independent evolution of COI 

haplotype over long periods of spatial isolation, such as by genetic drift 

and/or local selection events (Scheiner 1993). Over longer time scales, it is 

easy to imagine an allopatric speciation event arising from such a 

scenario, otherwise known as the vicariance model of speciation, as 

proposed by (Nelson and Platnick 1981). 

However, the geological history of the region is complicated and 

there have been long periods with fluctuating sea levels during the 

Pleistocene and Holocene (Lambeck 2004; Sathiamurthy and Voris 2006). 

This implies that land bridges between different islands were formed at 

every glacial maximum, allowing geographically distinct populations to re-

colonise each other. This periodic admixture of populations would 

eliminate haplotype sorting built up over periods of isolation while sea 

levels are high. This could also explain the lack of differentiation in most 

populations, while genetic bottlenecks or strong positive selection events 

in local habitats would generate a monophyletic COI haplotype shared 

among all or most members of specific populations of sepsid species.  
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In our study, most widespread sepsid species turn out to be 

taxonomically sound single species (A. frontalis, A. niveipennis, S. 

coprophila, S. dissimilis, S. nitens, M. fasciculatus and P. plebeia). Only 

one species contains multiple cryptic species (A. indica). Searching for 

cryptic species in the Sepsidae is complicated by the fact that many sepsid 

species also exhibit considerable morphological plasticity based on the 

environment (Pont and Meier 2002). This indicates that in the case of 

cryptic species, only integrative and iterative studies incorporating 

elements of morphology, DNA, reproductive isolation and behaviour are 

capable of distinguishing between truly cryptic species (Castroviejo-Fisher 

et al. 2009; Fonseca et al. 2008; Tan et al. 2009) and discovering their 

biogeographic and evolutionary history (Garcia-Mudarra et al. 2009; 

Mathews 2006; Padial et al. 2009; Padial and de la Riva 2009; Trontelj et 

al. 2009; Wirta 2009).  

Negative results are often not published. In the case of widespread 

species, a reverse search of the literature to that done by (Vialatte et al., 

2008) in ISI Web of Science (http://scientific.thomson.com/products/wos) 

and Zoological Record Plus (http://www.csa.com/factsheets/zooclust-set-

c.php) using the phrases ʻwidespread speciesʼ or ʻtramp speciesʼ and 

excluding ʻcryptic speciesʼ in title, abstract and keywords found only 1337 

references, even when timespan was set to all years. This is a third of the 

number of cryptic species studies published in the last fifty years.  
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3.5 CONCLUSION 

The rapid rise in publications on cryptic species can be linked to the 

adoption of DNA sequencing technology by evolutionary biologists 

(Bickford et al. 2007). Cryptic species are interesting as test cases for 

biogeographic and speciation hypotheses; however there may be an 

overemphasis on the existence of cryptic species, possibly due to a 

publication bias where non-significant findings (i.e., widespread species 

are truly widespread) are not reported.  I test this using COI in 7 

widespread Southeast Asian and 1 Australasian species in Sepsidae, a 

synanthropic commensal family of Diptera, and find evidence that only 

nominal species A. indica is actually composed of multiple cryptic species.  
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CHAPTER 4 

From ʻcryptic speciesʼ to integrative 
taxonomy: sequences, morphology 

and behaviour support the 
resurrection of Sepsis pyrrhosoma 

(Diptera: Sepsidae) 
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4.1 INTRODUCTION 

DNA sequence data have recently gained much popularity in 

taxonomic research and it is generally acknowledged today that they 

provide important evidence for delimiting species (Meier et al. 2008; Vogler 

and Monaghan 2007). DNA data can now be generated at a fast rate, with 

relatively low cost, and by personnel lacking the taxon-specific knowledge 

required for morphological research (Lee 2000; Scotland et al. 2003; 

Vogler and Monaghan 2007). However, increasingly the widespread use of 

DNA sequences has also created problems in the form of so-called ʻcryptic 

speciesʼ that are now routinely proposed whenever morphology and DNA 

sequence evidence – at least initially – yield different inferences about 

species boundaries (Bickford et al. 2007). The use of the term ʻcryptic 

speciesʼ implies that the unit is already properly diagnosed as a species. 

However, this is rarely so and in most cases a resolution of the conflict 

between morphology and DNA sequence information is not even 

attempted. As a consequence, such ʻcryptic speciesʼ are accumulating in 

the literature and interfere with a proper classification and the assessment 

of biodiversity. Here we demonstrate how an iterative process based on 

multiple sources of data can move a ʻcryptic speciesʼ from being only a 

putatively new species-level taxon to being formally recognized as a 

species based on sufficient evidence (see also: (de Leon et al. 2006; 

Dorchin et al. 2009; Gomez et al. 2007; Mehdiabadi et al. 2006; Page et al. 

2005; Petersen et al. 2007). 
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It is sometimes assumed that this process only requires enough 

data, but this is not necessarily the case, as the same data may yield 

different species inferences under different species concepts (Denise et al. 

2008; Laamanen et al. 2003). Many authors avoid this issue – presumably 

due to the vitriol related to species concept discussions. However, it is 

precisely when data are in disagreement that it is important to be explicit 

about species concepts, because in these cases species concepts can 

matter (Tan et al. 2009). Here we suggest that the best solution is applying 

a two-step process: one can first evaluate the available data based on the 

species concept that is favoured by the authors. Afterwards, the same 

data can be discussed under alternative species concepts (Laamanen et 

al. 2003). This approach will ensure that species are clearly defined given 

that the authorsʼ opinion based on their species concept will be binding 

under nomenclatural rules. At the same time the treatment is transparent 

and allows proponents of alternative species concept to draw their own 

conclusions. 

Most species in entomology are recognized based on morphological 

characters. Sepsid flies are no exception, but the use of morphology for 

some species can be problematic because of the bewildering amount of 

phenotypic variability present in this family (Pont and Meier 2002). In 

sepsids most of this variability is related to environmental factors, such as 

the amount of food available to the larvae (Meier 1995). In these cases 

DNA sequences are particularly useful for clarifying species boundaries, 

because the sequences are not affected by the environmental variables. In 
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other cases the observed intraspecific variability is at least partially genetic 

(Reusch and Blanckenhorn 1998). Here, DNA sequences can still be used 

as additional evidence, but any observed sequence variability across 

allopatric populations can be difficult to interpret (Ang et al. 2008; Memon 

et al. 2006; Petersen et al. 2007) because recently diverged species can 

share barcodes and may thus be incorrectly lumped into one species 

(Meier 2008; Meier et al. 2006). Similarly, allopatric populations within old 

species may have distinctly different sequences and DNA evidence may 

erroneously suggest that they should be split into multiple species (Meier 

2008; Meier et al. 2008). 

Here we demonstrate the value of an iterative approach using 

multiple sources of data by clarifying the species boundaries of Sepsis 

flavimana Meigen, 1826. Such use of multiple data sources for confirming 

cryptic species remains rare in the literature (but see (de Leon et al. 2006; 

Dorchin et al. 2009; Gomez et al. 2007; Mehdiabadi et al. 2006; Page et al. 

2005; Petersen et al. 2007). As with many similar cases in recent literature 

(Bickford et al. 2007), our taxonomic problem started with finding 

unexpectedly high levels of COI divergence between what appeared to be 

allopatric populations that were collected from various locations in North 

America. Based on recently published identification keys (Ozerov 2000; 

Pont and Meier 2002) these specimens all keyed out to one species, S. 

flavimana. This particular species is one of the most morphologically 

variable sepsids, with much of its variability related to size (Mayden 1999; 

Munari 1983; Pont and Meier 2002). Not surprisingly, this species has 



  85 

spawned a large number of synonyms (Ozerov 2005). Among others 

(Ozerov 2000)) synonymised four Nearctic species with S. flavimana when 

revising the North American fauna (S. vicaria Walker, 1849, S. pyrrhosoma 

Melander and Spuler, 1917, S. melanopoda Duda, 1926 and S. kertezsi 

Duda, 1926).  

However, the unexpectedly high level of genetic variability that we 

found within the North American populations of what appeared to be S. 

flavimana motivated us to re-investigate the morphology in order to test 

whether these genetically distinct populations may also be morphologically 

distinct. As additional sources of data, we were also able to study the 

mating behaviour and test for reproductive isolation based on cultures that 

we had established for two genetically distinct populations from North 

America and Europe. We then apply all these data to four species 

concepts that represent the main categories of concepts in the literature 

(Wheeler and Meier 2000); i.e., those based on reproductive isolation, 

monophyly, diagnosability, and on a mixture of criteria. We argue for the 

use of reproductive isolation as a criterion for determining the number of 

species. However, we also discuss the number of species that would be 

obtained under competing concepts. 

4.2 MATERIALS AND METHODS 

4.2.1 Collection, rearing and morphology 

 Sepsis ʻflavimanaʼ specimens were collected from six American 

populations (from Raleigh, NC, New Orleans, LA, New York, Palmyra, VA, 
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and Athens and Dyar Pasture, GA) and stored in 100% ethanol for 

subsequent morphological and genetic study (Table 1).  

 

 

S. flavimana 

(North America) 

S. flavimana 

(Europe) 

S. pyrrhosoma 

(North America) 

S. flavimana      
(North America) 

0.00-0.52%   

S. flavimana      
(Europe) 

1.69-2.87% 0.00-1.70%  

S. pyrrhosoma    
(North America) 6.14-7.04% 6.17-7.65% 0.00-1.62% 

Table 4.1: Uncorrected pairwise genetic distances between and within and 
between Sepsis flavimana and S. pyrrhosoma morphotypes. 

 

In addition, live specimens from New Orleans (LA, USA), Kevelaer (NRW, 

Germany), and Ahrensfelde (Schleswig-Holstein, Germany) were reared in 

laboratory cultures using sucrose syrup as a carbohydrate source and cow 

dung as a breeding substrate. Cow dung was initially frozen at -80˚C for 

several days to kill any insects infesting the dung prior to collection. Fly 

cultures were maintained at 25-28˚ C in 2l plastic containers. Compound 

microscopy and high-fidelity microscopic photography (Visionary Digital ™ 

BK+ system using a Canon EOS D1 Mark III fitted with Infinity Optics K2 

Long Distance Microscope on CF4P3 objective settings) were used to 

study the morphology of specimens from all eight localities in detail. 

4.2.2 DNA sequences 

We amplified and sequenced a 778bp fragment of cytochrome 

oxidase c subunit I (COI) including the DNA barcoding region from 50 
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individuals representing multiple populations of five nominal Sepsis 

species (S. biflexuosa, S. duplicata, S. flavimana, S. fissa, and S. 

ʻpyrrhosomaʼ) with S. fissa designated as outgroup based on (Su et al. 

2008). Genomic DNA was extracted from tissues using a modified CTAB 

extraction protocol (Shajahan 1995). The cycling conditions for the PCR 

started with an initial denaturation at 95oC (3 mins), followed by 5 cycles of 

1 min at 95oC, 1 min annealing at 44oC, 1.5 min extension at 72oC and 30 

cycles utilizing an annealing temperature of 48oC. As primers we used 

mtd8: 5ʼ CCA CAT TTA TTT TGA TTT TTT GG 3ʼ and mtd12: 5ʼ TCC AAT 

GCA CTA ATC TGC CAT ATT A 3ʼ. All sequences were aligned with 

CLUSTALX 2.01 (Thompson et al. 1997) and the alignment was free of 

indels. 

4.2.3 Phylogenetic analyses 

Maximum likelihood and maximum parsimony were used to infer the 

gene-tree for the COI of S. ʻflavimanaʼ populations and related species. A 

new technology parsimony search was implemented in TNT 1.1 (Goloboff 

et al. 2008 )with search level 55; the minimum tree length was found 10 

times. Node support was assessed through jackknife resampling, with 

absolute frequency differences and 36% character deletion for 250 

replicates. A maximum likelihood bootstrap tree was obtained with GARLI 

0.951 (Zwickl 2006). Using the Akaike Information Criterion (AIC), 

MrModeltest (Nylander 2004) selected the GTR + Γ + I model for COI. The 

analysis was automatically terminated if the log likelihood did not improve 

by 0.01 or more after 50,000 generations. Support was obtained as 
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maximum likelihood bootstrap with 250 replicates under the same settings. 

4.2.4 Observations of mating behaviour 

 Virgin flies were obtained from each culture by isolating a petri dish 

of larvae-infested dung from the laboratory colony in an empty container 

and segregating males and females within six hours of ecclosion. Sepsid 

flies, at least in the flavimana group, acquire sexual maturity after two to 

five days (pers. obs.). Flies were thus assumed to be sexually mature after 

five days as adults. To examine and compare behavioural elements 

between populations, one virgin male was introduced to a 3.5cm plastic 

petri dish containing a single virgin female, and the behaviour of both flies 

was recorded at 7X – 15X magnification with an analogue video recorder 

attached to a trinocular Leica MZ16A microscope. Recordings began upon 

introduction of both flies and ended either after successful copulation or 

after 60 minutes if copulation did not occur. The analogue recordings were 

then digitised and analysed frame-by-frame (25 frames per second) using 

the video editing software Final Cut Pro (Apple Computer, Inc. 2005).  

Behavioural elements were then recorded to facilitate comparisons among 

populations.  Ten and 12 mating trials were replicated and recorded for the 

two populations from North America and Europe respectively. 

4.2.5 Determination of reproductive isolation 

 To examine the reproductive compatibility between populations of 

S. ʻflavimanaʼ, we attempted to mate males and females from different 

continents. Five sexually mature virgin flies of each sex were placed in 
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rearing containers under conditions identical to those in which cultures 

from individual collection localities live and breed successfully. Male and 

female flies originated from different continents, and the following 

reciprocal pairings were attempted: Ahrensfelde ♂ × New Orleans ♀; 

Ahrensfelde ♀ × New Orleans ♂. We also examined reproductive 

compatibility between the two European populations: Ahrensfelde ♂ × 

Kevelaer ♀ and Ahrensfelde ♀ × Kevelaer ♂. No flies died during the 

course of these trials. Each of these five male × female pairings was thrice 

replicated. The breeding substrate in each container (a 7cm petri-dish 

containing cow dung) was examined every other day for the presence of 

fertilized eggs or larvae. Substrate with fertilized eggs or larvae was 

removed and placed in separate containers for pupation of larvae. Where 

hybrid flies were obtained, they were again segregated by sex within one 

day of ecclosion to maintain their virginity. We then attempted to back-

cross these hybrids with virgin flies from their parental cultures. To 

ascertain whether flies from failed back-crossing trials were fertile, we 

attempted to mate them with other flies from their own respective 

populations. 

4.3 RESULTS 

4.3.1 Morphology 

We found two discrete morphotypes among the North American 

specimens that could be distinguished by a suite of morphological 

characters. One morphotype was indistinguishable from all European 
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specimens of Sepsis flavimana, while the other morphotype has the 

following distinguishing features (Fig. 4.1): (1) the flies are consistently 

lighter in colour (especially on the thoracic pleura, face, gena and legs cf. 

Fig 2. A, G vs. H); (2) the male fore-tibia lacks a distinct ventro-basal bump 

on the tibia (C) as compared to the European morphotype (J); (3) the 

epandrium and base of the surstylus of the male is light in colour and only 

the tip is dark (lateral view A, dorsal view F); (4) the surstylus has a sub-

medial tooth (D). Features 1 and 2 are consistent with the description of S. 

pyrrhosoma by Melander and Spuler (1917) which mentions that the 

species is “largely reddish along the sides” with “face and cheek 

yellowish,” and with a male fore tibia “slightly decreasing in size towards 

the tip and bearing a very weak and setulose tubercle on the underside 

near the base.” Features 1–3 are also visible on the holotype of S. 

pyrrhosoma (W. Mathis, pers. comm.). For convenience, we refer to this 

as the ʻpyrrhosomaʼ morphotype. Some North American specimens from 

Palmyra, VA, and Dyar Pasture, GA, are morphologically indistinguishable 

from European S. flavimana, and are henceforth referred to as the 

ʻflavimanaʼ morphotype. 
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Figure 4.1: A–G. Sepsis pyrrhosoma (♂ unless otherwise noted). A. 
Habitus, lateral view, showing hypopygium (hyp). B. Fore-femur, posterior 
view. C. Fore-tibia, posterior view. D. Surstylus, dorsal view. E. Thorax, 
lateral view, showing pruinosity pattern on postprotonotum (ppn), 
preepisternum (pest), anepisternum (aepst), ketepisternum (kepst), 
anepimeron (aepm), katatergite (kat), meron (m) and metepimeron 
(mepm). F. Postabdomen, ventral view, showing 4th sternite (4th st.) and 
hypopygium. G. ♀ habitus, lateral view. H–K. Sepsis flavimana (♂). H. 
Habitus, lateral view, showing hypopygium. I. Fore-femur, posterior view. 
J. Fore-tibia, posterior view. K. Surstylus, dorsal view. Scale bars (A, E, G, 
H): 1mm; (B, C, F, I, J): 0.5mm; (D, K): 0.1mm 
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4.3.2 Molecular data 

We obtained COI barcode sequences of ca. 778 bp from 50 

specimens (GenBank accession numbers EU435804, EU435807, 

EU435808, EU435818, GQ354410, GQ388730-GQ388774). The 

parsimony analysis of these data found 125 trees with a length of 211 

steps and the sequences for all species formed strongly supported 

monophyletic clusters. The two morphotypes were monophyletic 

sistergroups with strong support; this result was mirrored in the maximum 

likelihood analysis (see Fig. 4.2).  
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Figure 4.2: Consensus tree of Sepsis flavimana group. Parsimony 
jackknife percentiles are given above branches and maximum likelihood 
bootstrap percentiles below.  

 

Uncorrected pairwise distances between the two morphotypes from North 

America ranged from 6.1–7.0%. However, distances within morphotypes 

were considerably smaller: 0.0–0.5% in the ʻflavimanaʼ morphotype and 
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0.0–1.6% in the ʻpyrrhosomaʼ morphotype. Distances between the 

European S. flavimana and American ʻflavimanaʼ morphotypes were 1.7–

2.9%, while distances between ʻpyrrhosomaʼ morphotypes from North 

America and all other ʻflavimanaʼ morphotypes (from both Europe and 

North America) were 6.2–7.7%. The distances between European S. 

flavimana populations were 0.0–1.7% (Table 1). 

4.3.3 Behavioural observations and reproductive isolation trials 

 The mating behaviour of the pyrrhosoma morphotype differs from 

that of European S. flavimana in several respects. In S. flavimana, the 

male proboscis only touches the female on the dorsal region of the thorax, 

while in the pyrrhosoma morphotype the male proboscis is used to 

stimulate the female ocelli instead (Table 2). The video evidence for these 

differences can be viewed from 

http://evolution.science.nus.edu.sg/pyrrhosoma_clips.html or 

http://www.youtube.com/watch?v=0ypmqN8t_Xw 

http://www.youtube.com/watch?v=eO4ZZAuacRI).  
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Behavioural Elements S. flavimana S. pyrrhosoma 

male mid-leg tarsi curl 

male hind-leg tap of female 
abdomen 

substance transfer (from male 
hind-leg to female thorax) 

male mid-leg rub of female 
thorax  

observed in both species 

degree of female resistance 
(shaking) 

violent and 
persistent mild and sporadic  

separation after copulation  
prolonged struggle 
to break genital 
contact  

rapid 

precopulatory surstylus 
stimulation  absent  present and 

prolonged  

location of male proboscis 
contact with female 

dorsal part of 
female thorax  female ocelli 

Mating success (virgin trials) 33.3 %a 100%b 

Table 4.2: Qualitative comparison of behavioural elements observed in S. 
flavimana and S. pyrrhosoma (virgin) mating trials. Na  = 12; Nb = 10 

 

Lower resolution video-clips have also been uploaded as supplementary 

information. In addition, males of the pyrrhosoma morphotype were 

observed to stimulate the postabdomen of females with their surstylus 

prior to copulation, but this behaviour was absent in S. flavimana. During 

copulation, S. flavimana females constantly shook their bodies, but this 

apparent resistance to mating was not as violent or obvious in the 

pyrrhosoma morphotype, where female body shakes were sporadic and 

less energetic. Prolonged struggles lasting five or more seconds were 
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consistently observed during genital decoupling between S. flavimana 

individuals. In contrast, separation was prompt in the pyrrhosoma 

morphotype, with males typically requiring only two quick about-turns to 

disengage from the female. Finally, the mating success rates of virgin the 

pyrrhosoma morphotype were much higher than in S. flavimana.  

Mating trials reveal no potential for gene flow between the two 

species, since hybrid offspring were produced in only one direction 

(Ahrensfelde S. flavimana ♀ × pyrrhosoma morphotype from New Orleans 

♂) and these hybrids failed to produce viable offspring regardless of 

whether they were mated with other hybrids or with either parent species 

(backcrosses; Table 3).  

 Mass Crossings Back Crossing 

Ahrensfelde ♂ × New Orleans ♀ ✕ (N/A) 

Ahrensfelde ♀ × New Orleans ♂ ✔ ✕ 

Ahrensfelde ♂ × Kevelaer ♀ ✔ ✔ 

Ahrensfelde ♀ × Kevelaer ♂ ✔ ✔ 

Table 4.3: Results of the hybridisation experiments 

To demonstrate that our laboratory conditions were sufficient to 

foster mating between reproductively compatible flies, we successfully 

crossed S. flavimana from the two European populations. 

4.3.4 Taxonomic conclusion 

Morphology, genetic data, behavioural differences, and reproductive 

isolation support the presence of two morphologically and biologically 
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distinct North American taxa. There are four available North American 

names that are currently under synonymy with S. flavimana. The oldest 

name is Sepsis vicaria Walker, 1849. However, the identity of this species 

remains uncertain because the type material consists of females only 

(Ozerov 2000) and only the weakest morphological character that 

distinguishes the pyrrhosoma morphotype from S. flavimana could 

potentially be studied (lighter colour than in S. flavimana). The second 

oldest name is Sepsis pyrrhosoma Melander and Spuler 1917. A male 

lectotype was designated by Zuska in 1967 (Ozerov 2000) and the curator 

of the Smithsonian, Dr. W. Mathis, confirmed that the type is of the 

pyrrhosoma morphotype with regard to color, the male fore-tibia, and 

surstylus morphology. We therefore here resurrect S. pyrrhosoma from 

synonymy and re-describe the species. 

4.3.5 Species re-description 

Sepsis pyrrhosoma Melander and Spuler, 1917 

Family SEPSIDAE 

Sepsis pyrrhosoma Melander & Spuler 1917: Fig. 14. 

Holotype in National Museum of Natural History (NMNH), 

Washington, DC, USA. Ozerov (2000: 116) provides the following 

informations on the type: ♂ of Sepsis pyrrhosoma (designated by Ozerov 

1998: 87), labelled “Lafayette Ind[iana].[,] Jul[y]”, “A[.]L[.] Melander 

Collection 1961”, “Type Sepsis pyrr[h]osoma Mel[ander]. & Sp[uler]. J. 
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Zuska 1967”, “Lectotypus ♂ Sepsis pyrrhosoma Melander, Spuler, 1917: 

25. design. A. Ozerov, 1994”, “Sepsis flavimana Mg. ♂ A.L. Ozerov det., 

January, 1994.  

Other examined material. ♂♂♀♀ ex culture established from ♀♀ 

from grassland along Leake Avenue near Mississippi River, New Orleans, 

LA), ca. 5m ASL, 29˚ 55' 48.34" N 90˚ 8' 4.17" W 2008 (Coll. R. Meier); in 

Raffles Museum of Biodiversity Research, Singapore (RMBR). Additional 

specimens were obtained from Raleigh, NC, New York and Athens, GA.  

Etymology. The specific name first given by Melander and Spuler in 

their original description of the species (Melander & Spuler 1917), is 

derived from the combination of the Greek πυρο (pyro; fire) and σώμα 

(soma; body), an indication towards the reddish hue of the flyʼs body. The 

gender is neutral. 

Distribution. Apparently limited to the South-eastern regions of 

North America, Indiana, Louisiana, Georgia, North Carolina, Virginia, and 

Pennsylvania. 

Diagnosis. Adult Sepsis pyrrhosoma resemble lightly coloured 

specimens of S. flavimana. However, S. pyrrhosoma can be consistently 

distinguished from the latter by the following characters. While S. 

flavimana (H) is always black to dark brown in thorax and head colour, S. 

pyrrhosoma (A, G) is mostly reddish to yellow on the pleura and abdominal 

sections as well as on the face and gena. Fore-femora of S. pyrrhosoma 

are also consistently light yellow (B), while S. flavimana invariably retains a 
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dark brown region dorsally (I). Colour is the only way to potentially 

distinguish ♀ S. pyrrhosoma (G) from ♀ S. flavimana morphologically, but 

this character is unreliable for old and/or alcohol-preserved specimens. 

Additional characters in the male are: (1) the fore-tibial ventro-basal bump 

is always slight or non-existent in S. pyrrhosoma (C), bearing small, weak 

bristles, while S. flavimana (J) has a distinct bump with longer and thicker 

bristles; (2) The hypopygium of S. flavimana (H) is entirely black with a 

smooth, beak-like surstylus (K) while S. pyrrhosoma possesses a yellow 

hypopygium with only the surstylus darkened apically (A, F). (3) The S. 

pyrrhosoma surstylus bears sub-medial inward-facing protrusions not 

present in S. flavimana (cf. D & K). 

The original description of Sepsis pyrrhosoma by (Melander and 

Spuler 1917) and Spuler (1917) was brief. The following is a more detailed 

description of the adult based on the specimens recently collected from 

North America. 

  Colour (A–D, G). Similar in both sexes. Vertex and occipital region 

black, frons and facial ridge dark brown. Parafacial, facial carina and gena 

light brown to yellow. Pedicel and 1st flagellomere brown, arista black. 

Clypeal margins black. Scutum and subscutellum black. Postprotonotum 

and pleural areas mostly yellowish red, except for the dorsal margin of the 

anepisternum, pleural wing process, meron, metepisternum and dorsal 

half of katepisternum, which are dark brown. All coxae and trochanters 

light yellow, as are fore-femora and tibiae. All tarsi are light yellow except 

for the 4th and 5th tarsomeres, which are black. Mid and rear femora 



  100 

infuscate on the dorsal and ventral side medio-distally, while tibiae are 

brown to dark brown basal-medially. Abdomen with a cupreous tinge, 

yellowish red except for dorsal regions of tergites and all sternites, which 

are dark brown. Epandria and cerci yellow, surstylus yellow but black 

apically.  

Pruinosity (E). Similar in both sexes. Head glossy except for 

occipital region, gena and face, which is moderately pruinose with 

macrotrichia. Scutum, pronotum and scutellum also moderately pruinose. 

Subscutellum and anatergite glossy except for sparse microtrichia near 

margins. Proepisternum similarly glossy with microtrichia limited to dorsal 

and ventral margins. Microtrichia also present on posterior margin of 

anepisternum, anterior, dorsal and posterior areas of anepimeron. 

Katepisternum and meron heavily pruinose, while katatergite medium 

pruinose. Metepimeron with a shiny patch ventrally. 

Head (A, G). Similar in both sexes. Roundish, facial carina short 

and shallow. Parafacial and gena narrow. With two subvibrissal bristles 

and numerous short setae along lower genal margin. Numerous 

supracervical setae present. Eyes maroon, roundish but posteriorly 

compressed on dorsal and ventral sides. Postcellar setae ¾ of ocellar 

setae, both divergent. Outer vertical setae ½ the size of the inner vertical 

setae. Pedicel bearing setae along apical margin with  1 dorsal bristle. 

Flagellomere in profile long-oval, rounded apically, almost twice as long as 

wide. Aristae dorsal and bare. Larger specimens tend to have a 

disproportionately larger head compared to other specimens. 
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  Thorax (A, E, G). With the following paired setae:  1 postprotonotal 

setae, 2 notopleural setae, 1 supraalar setae, 2 postsutural dorsocentral 

setae,  1 anepisternal setae and  1 apical scutellar setae. Anepisternal 

setulae absent. Scutellum compressed, more than twice as wide as is 

long. 

Abdomen (A, D, F, G). Tergites (t) similar in both sexes; all with 

relatively long setulae at discal and marginal regions. Syntergite 1+2 with 

1-2 pairs lateral marginal bristles, proceeding t3 – 5 with 1 pair, t6 with 

none. Spiracles 1 & 2 in intersegmental membrane, spiracles 3 – 5 on 

margin of tergite plate, spiracles 6 and 7 within t7. Abdomen is slightly 

constricted after syntergite (synt) 1+2. Sternites (st) well defined, with s4 

bearing 2–3 rows of strong setae posteriorly (F). Bristles are more 

prominent in males than females. ♂ terminalia – Symmetrical surstyli short 

and angulate, decussating and fused to epandrium (D, F); with inward 

protrusion medially (D). Cercal lobes fused, each with 1 translucent apical 

seta.  

Legs (A–C, G). ♂ fore-legs: slightly enlarged femur bearing one 

large ventral (v) bristle at the middle and a slight tubercle bearing four to 

six shorter bristles on posterio-ventral side (B). Fore-tibia slim with a very 

slight basal bump bearing a row of weak bristles (C). Mid-femur with one 

large and long anterior-ventral (av) bristle in center. Mid-tibia with two 

smaller bristles av, centrally and preapically, one small dorsal (d) bristle 

preapically; apex with bristles except on d region. Hind-femur without 

distinct bristles; hind-tibia with one small d bristle preapically, one to two 
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small av bristles apically. Hind-tibia bearing very faint region of 

osmoterium on anterior-dorsal region medially. ♀ fore-legs simple and 

unmodified. Mid- and rear-femur without bristles. Mid-tibia with one small v 

bristle on median, one small av bristle preapically, with apice similar to ♂. 

Rear-tibia similar to ♂ but without osmoterial region.  

Wing (A, G). Elongate, longer than abdomen. Veins bare except for 

a few minute setulae on ventro-basal side of stem vein. Wing entirely 

covered with microtrichia, with oblongish pterostigma at tip of R2+3. Anal 

lobe well developed, A2 not reaching wing margin. Upper calypter brown 

with long thin setae on margin. Lower calypter absent. Halter creamy to 

yellow. 

4.4 DISCUSSION 

Our study of the species boundaries of Sepsis pyrrhosoma 

demonstrates how multiple sources of data can be used to resolve the 

status of so-called cryptic species that have been suggested by 

unexpectedly large genetic distances within a single nominal species. Our 

approach is iterative in that unexpected genetic variability prompted 

renewed morphological evaluation. This re-evaluation uncovered 

consistent morphological characters that distinguish S. flavimana and S. 

pyrrhosoma. However, this morphological evidence initially appeared 

weak, because many Sepsis species exhibit considerable size variability 

that is known to be correlated with differences in body colour and other 

important diagnostic features such as fore-legs, and claspers (Pont & 
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Meier 2002). Sepsis pyrrhosoma could therefore be easily mistaken as a 

S. flavimana which probably explains why the former had been 

synonymised. In order to further strengthen the morphological and genetic 

evidence for our hypothesis that S. pyrrhosoma is a valid species, we 

studied the mating behaviour and reproductive isolation and the 

morphological evidence corroborates the presence of two distinct taxa. 

Overall, a case of initial conflict between morphology and DNA sequences 

turned into a case of concordance that was further strengthened with 

additional data. Note that we are not proposing that such an extensive 

repertoire of data needs to be collected for all cases. We believe that such 

detailed study will only be needed for the relatively small number of taxa 

where different data sources initially appear to be in conflict (e.g., 

Laamanen et al. 2003; Petersen et al. 2007). 

As pointed out earlier, ultimately decisions on species boundaries 

depend on which species concept is used, and as pointed out by many 

authors, there are a large number of species concepts. For example, 

(Mayden 1999; Paterson 1985) lists 22 different concepts, but fortunately 

this bewildering diversity can be pared down by either grouping similar 

concepts into categories and/or only considering concepts that are used 

regularly. We would argue that the four main categories of species 

concepts are covered in Wheeler and Meier (2000): (1) concepts based on 

reproductive isolation or cohesion typified by the Biological Species 

Concept (Mayr 2000) and the Hennigian Species Concept (Meier and 

Willmann 2000); (2) concepts based on monophyly, as represented by the 
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Phylogenetic Species Concept sensu (Mishler and Theriot 2000); (3) 

concepts based on the diagnosability of populations, such as the 

Phylogenetic Species Concept sensu Wheeler and Platnick (Wheeler and 

Platnick 2000); and (4) concepts using a mixture of criteria, such as the 

Evolutionary Species Concept sensu Wiley & Mayden (Wiley & Mayden 

2000).  

Reproductive isolation is the core criterion for both Biological and 

Hennigian species concepts, and all evidence suggests that S. flavimana 

and S. pyrrhosoma are reproductively isolated. Furthermore, these species 

are likely to be sympatric. Sepsis flavimana were collected at Dyar 

Pasture, GA, which is only 28km south of Athens, GA, where S. 

pyrrhosoma were collected, and it is likely that there is appropriate 

breeding substrate (dung) between these two localities although the two 

species appear to prefer different substrates. Sepsis flavimana is 

predominantly found on cow dung (Pont & Meier 2002) while S. 

pyrrhosoma has only been collected on dog dung (Raleigh, NC; Athens, 

GA) or in localities where dog dung is the most likely breeding substrate 

(New Orleans, LA).  

The phylogenetic species concept sensu Wheeler & Platnick (2000) 

defines species as populations with a unique combination of characters. If 

S. pyrrhosoma and S. flavimana are considered separate populations then 

each has a unique combination of characters as well as distinct COI 

barcodes. We can thus defend S. pyrrhosoma and S. flavimana as 

separate phylogenetic species. However, it can be argued that this 
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conclusion is based on a priori decisions on which taxa form populations 

because population-aggregation analyses require such a-priori decisions 

on population boundaries. Alternatively, one could have treated all North 

American specimens in the flavimana/pyrrhosoma complex as one 

population; i.e., the characters that are here interpreted as being species 

species-specific would have been treated as traits with population-level 

variability and only one species would have been recognized (Laamanen 

et al. 2003; Tan et al. 2008). The phylogenetic species concept sensu 

Mishler and Theriot is also likely to recognize S. pyrrhosoma as a separate 

species because it forms a biologically distinct, reproductively isolated 

monophyletic unit. These features — distinct biology and reproductive 

isolation — also likely render S. pyrrhosoma a distinct species under the 

evolutionary concept. We believe that the application of various species 

concepts to a dataset similar to ours will often support the same 

conclusion. Furthermore, although we believe that all authors should have 

a preferred species concept, proponents of different species concepts may 

often come to the same conclusion; i.e., those authors that are afraid of 

criticism when applying a particular species concept may have less to fear 

than they may think. 

The only species concept that would have to come to a conflicting 

conclusion is the recognition concept, which defines species as units that 

share a common fertilization system (Paterson 1985). The decisive step in 

this species concept is the recognition of the other specimens as being 

mating partners. As such S. pyrrhosoma and S. flavimana would belong to 
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the same species because they can successfully mate and produce (albeit 

infertile) offspring. Note that this species concept would also lead to the 

synonymisation of numerous other sepsid species, because males of 

many species are known to initiate mating with all females of 

approximately right size.  

4.5 CONCLUSION 

 We here demonstrate how ʻcryptic speciesʼ proposed based on 

genetic evidence can be resolved using multiple sources of data. We 

argue that these units either have to be rejected or formally recognized, or 

else ʻcryptic speciesʼ will overwhelm the systematic literature. We also 

demonstrate that systematists can treat the ʻspecies-concept problemʼ 

without having to fear the vitriol that is often related to discussing 

competing concepts. We believe that for most species many concepts are 

likely to arrive at the same conclusion. Finally, we have to acknowledge 

that in collecting the data for resurrecting S. pyrrhosoma the North 

American S. flavimana emerged as a potential new ʻcryptic speciesʼ based 

on the genetic evidence. We believe that with the widespread use of DNA 

sequences such cases will become very common. As one taxonomic 

problem is resolved another appears based on the newly gathered data. In 

this sense, DNA sequences will not speed-up taxonomic research, but will 

lead to the estimation of more accurate species boundaries based on a 

more satisfactory amount of data. 
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CHAPTER 5 

Morphology and DNA sequences 
confirm the first neotropical record for 
the holarctic sepsid species Themira 

leachi Meigen, 1826 (Diptera: 
Sepsidae) 
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5.1 INTRODUCTION 

Even for the most cosmopolitan of species, climate frequently presents 

effective barriers for dispersal. Many eurytopic and synanthropic species go 

extinct when introduced into a new climatic zone. For example, translocated 

ants remain in sheltered environments reminiscent of their home climate 

(McGlynn 1999). Here we report the occurrence of a primarily Holarctic 

dipteran species, Themira leachi Meigen, 1826, in Neotropical Cuba. This 

discovery suggests that the species may have a large disjunct distribution, as 

the next closest record lies almost 3,500 km to the north in Nearctic 

Newfoundland, Canada (Ozerov 1998). 

The genus Themira comprises 35 species and belongs to the relatively 

small clade of the cosmopolitan dung-fly family Sepsidae (Ozerov 2005). The 

genus is primarily distributed in the Holarctic, with only four species bordering 

on other biogeographic regions (Meier 2007; Ozerov 1998; Pont and Meier 

2002). Themira leachi has been recorded throughout Northern Europe, 

spanning eastwards through Asiatic Russia and Mongolia. (Ozerov 1998) 

added the species to the Nearctic fauna by reporting specimens from Northern 

Canada.  

5.2 MATERIALS AND METHODS 

Recently, five specimens (four males, one female) were collected from 

dung in Cuba (2002: Pinares de Mayarí pine forest, Sierra Cristal National 

Park, ca. 650m ASL). The morphology of the males suggested that they are 

Themira leachi, but since this record is so far beyond the known range of the 
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species, we used detailed morphological study and DNA sequencing to 

confirm this preliminary identification. Line drawings were prepared for the 

Cuban specimen in order to compare them to drawings for European 

specimens. In addition, we generated high-resolution color-photographs of the 

habitus and important diagnostic structures for European and Cuban 

specimens with a Visionary DigitalTM Plus Lab System, using a Canon EOS 

40D with a mounted Infinite K2 Long Distance Microscope (CF4 objective at 

position 1 and 3). For the images at the highest magnification, a 10X Olympus 

objective was used (position 3). 

A ca. 660 bp piece of the COI gene was sequenced for four Cuban 

specimens using the DNA extraction, amplification, and sequencing protocols 

described in (Su et al. 2008). These sequences were submitted to Genbank 

(EU831274 – EU831277) and compared to a known sequence of T. leachi 

from Europe (Genbank: EU435823) as well as COI sequences for ten other 

Themira species (Su et al. 2008).  

5.3 RESULTS 

 The pairwise distances between the European specimens and those 

we sequenced from Cuba ranged from 0.5% to 0.8%.  

Detailed morphological investigations reveal that the Cuban specimens 

are indeed very similar to specimens from Europe and consistent with 

Ozerovʼs (1998) and Meier and Pontʼs (2002) diagnoses. Forelegs, sternites 

and hypopygiums were used for comparison; Cuban and European specimens 

are shown in Figure 5.1.  
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Figure 5.1: Morphology of Themira leachi from Cuba (photographed A-F; 
drawn M-R) and Europe (photographed G-L). Habitus: A, G; fore-femoral 
modifications (anterior view): B, H; fore-femoral modifications (posterior 
view): C, I; fore-tibial modifications (anterior view): D, J; abdomen (lateral 
view, sternite bristles removed): E, K, N; abdomen(ventral view, sternite 
bristles removed): F, L, M; fore-femur (anterior view): O; fore-tibia (anterior 
view): P; hypopygium (dorsal view, setulation omitted): Q; 4th sternite 
(dorsal view): R. Scale bars for A, G: 1mm; B-D and H-J: 0.1mm; E, F, K, 
L: 0.5mm 

 

The fore femora and tibiae of both specimens possess similar 

modifications whose function and co-evolution with female wings have been 

discussed in the recent literature [on femur: c.f. B & H (anterior view), C & I 

(posterior view); on tibia: c.f. D & J; (Ang et al. 2008; Ingram et al. 2008; 
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Puniamoorthy et al. 2008). The 4th sternite and hypopygium can be seen on 

the abdomen and are also very similar in structure and diagnostic for T. leachi 

(lateral view: c.f. E & K; ventral view c.f. F & L). Even more striking are the 2nd 

and 3rd sternites, which are well developed and have been modified into a 

raised, anteriorly open crater on the 2nd sternite and a pronounced protrusion 

on the 3rd sternite. These sternite modifications are unique to T. leachi and the 

only difference between the specimens is minor (a more pronounced and 

hook-like ventral protrusion on the 4th sternite of the European specimen). 

5.4 DISCUSSION  

Overall, the foreleg, sternite, and hypopygium morphology are very 

similar between the European and Cuban specimens of T. leachi and suggest 

the presence of only one species. 

Recent studies of morphologically uniform species with wide 

distributions have suggested that such species frequently contain ʻcrypticʼ 

species that can be discovered once DNA sequence data become available 

(Bickford et al. 2007). We thus compared the Cuban and European specimens 

with regard to the mitochondrial gene COI. Pairwise distances between the 

European and Cuban sequences were 0.5% to 0.8%. Whether such distances 

are typical for inter- or intraspecific variability can be judged when they are 

compared to a distribution of distances for closely related species in Themira 

((Meier et al. 2006; Memon et al. 2006; Petersen et al. 2007). Based on the 

known sequences for ten Themira species, the mean interspecific distance for 

closest relatives is 6.2% and only one species pair [T. lucida  (Staeger in 
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Schiødte) vs. T. flavicoxa Melander & Spuler] has distances below those 

observed between the Cuban and European T. leachi. However, T. lucida and 

T. flavicoxa are morphologically distinct (Ozerov 1998) while we did not find 

any significant morphological differences between the Cuban and European 

specimens of T. leachi.  

Given that the Cuban specimens are almost certainly T. leachi, the lack 

of North American records south of Newfoundland is surprising. The Nearctic 

Sepsidae have been extensively sampled (Meier, 2007) and Ozerov (1998) 

identified all material from major museum collections for his revision of 

Themira, which focused on the North American fauna. He did not find any T. 

leachi south of Newfoundland. One may speculate that the species was 

introduced to Cuba as a synanthrophic commensal given that humans 

commonly transport arthropods to new areas (Jenkins 1996; Kobelt and 

Nentwig 2008; Smith et al. 2007) and Pinares de Mayarí is only 10km south of 

Nipe bay. Themira leachi, however, is not particularly common (Meier, pers. 

comm.) and trade volumes would favor an introduction to the USA instead of 

Cuba.  

The alternative to introduction is that Themira leachi genuinely occurs 

in Cuba, which may surprise given the relatively few species that are shared 

between the Holarctic Region and Neotropical Cuba. It may also surprise 

because the majority of Themira species require relatively cool temperatures 

(Meier and Pont 2000). However, T. leachi is also known from some 

subtropical/Mediterranean localities (e.g., Hungary, Italy, Russian South 

Primore; Ozerov, 2005) and the climate of Pinares de Mayarí which consists 
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of a large ridge differs significantly from that of the surrounding lowlands. 

Observations by (Carabia 1945) suggest that it is similar to a cloud forest with 

relatively low temperatures and continuous moisture even during the 

traditionally dry Cuban winter months. These cooler temperatures could 

explain why T. leachi may be able to survive in the tropics. Also, while a 

number of Themira species rely on specific media such as waterfowl or cow 

dung for breeding, T. leachi has less specific substrate requirements and can 

survive on a variety of decaying material, from decomposing vegetation to 

various types of excrement (Pont and Meier 2002). The occurrence of T. 

leachi in Cuba nevertheless remains puzzling and more information should be 

collected.  
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OVERALL CONCLUSIONS 

This thesis explores the ways COI can be used to estimate species 

richness or complement to complement traditional taxonomic research by 

providing an independent source of information. The latter is particularly 

important when traditional methods fail to provide conclusive results. 

In the first and second chapter, COI was used to estimate species 

richness. My first chapter used four datasets from 3 arthropod families, 

namely the Sepsidae (Diptera), Curculionidae and Dytiscidae (Coleoptera) 

to test the congruence between taxonomic identification and sequence-

based species estimation. Species richness estimates for COI were very 

similar to those from taxonomic experts, with a deviation of less than 10% 

in all cases at both 2% and 3% thresholds. Contrast this with the 

performance of parataxonomy, with a mean deviation of 32% from the 

estimates made by taxonomic experts. $Krell. However, the use of COI for 

biodiversity studies comes with a caveat; it delimits specimens in a 

manner incongruent with the species as determined by taxonomic 

expertise. Only 60-80% of all DNA-delimited clusters are also species 

based on traditional techniques (Meier et al. 2006). However, the reliable 

species richness estimation of COI means that groups that are 

hyperdiverse and receive very little taxonomic attention can still be studied, 

with useful results.  

I utilised this in the second chapter in order to investigate the 

species diversity of Bornean Corethrellidae. The parasitoid dipteransare a 
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very poorly understood monogeneric tropical clade. While the 

Corethrellidae have very interesting life history and adaptations to help 

them find their anuran hosts, they are very poorly studied outside of the 

Nearctic and Neotropical regions. Here, I used COI to test the validity of 

morphospecies sorting, finding strong conflict between DNA and 

parataxonomy. I estimated the number of Corethrella species sampled in 

my main study site, Labi peat swamp in Brunei Darussalam, and found 

that it was richer in Corethrella species than the current most Corethrella-

diverse locality in the Neotropical Carara National Park, Costa Rica. 

Specimens sampled from the Bornean locality form 18 clusters at 3%, 

while Carara National Park is known to have 14 species. I further used the 

information from COI clusters to estimate the α-diversity based on non-

parametric species richness estimators and found that there leas are more 

than  43 species in Labi peat swamp alone. 

My third and fourth chapters involve COI as an exploratory tool and 

an additional source of data to analyse sepsid species with known 

widespread distributions. The goal was to test whether these widespread 

species contain cryptic species. I use eight species of widespread sepsids 

in Southeast Asia and Australasia in the third chapter, and determine that 

most widespread species in the Sepsidae are truly widespread, with low 

intraspecific distances between even very geographically distant 

populations. I find one species, Allosepsis indica, to have large disjunct 

distances, although morphological characters are continuous between 

populations which have very high pairwise distances for COI.. Data from 
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reproductive isolation seems to agree with the results of COI. I also 

discuss and discard the hypothesis that the observed distribution of these 

species is due to secondary introduction by the movement of domesticated 

cattle, based on the population structure observed in my analyses of COI. 

Instead it is more likely that the observed results are due to natural 

vicariance and genetic drift.  

In the fourth chapter, I discover an unexpected pattern of COI 

pairwise distances within a sample of Sepsis flavimana. Upon further 

investigation and using information from morphology, behaviour, and 

reproductive isolation, a cryptic species, Sepsis pyrrhosoma, is 

resurrected from synonymy. 

In the fifth chapter, I use COI as a tool to confirm a species 

hypothesis made based on morphology. The specimens of the species in 

question, Themira leachi, had been collected in Sierra Cristal National 

Park, Cube, approximately 3500km south of its known distribution in the 

New World (Newfoundland, Canada). Here, COI was used to confirm that 

the Cuban specimens is not a cryptic species with similar morphology.  

The third, fourth and fifth chapters illustrate how DNA can be of 

great value to even morphologically-trained taxonomic experts. Through 

comparing and analysing sequences of COI, I have helped to filter 

hundreds of specimens and to earmark individuals whose morphology and 

molecular signal are in conflictand needed additional study. This approach 

is exemplified in Allosepsis indica, Sepsis pyrrhosoma and Themira leachi.  
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Going forward, there remains much work to be done with regard to 

species richness estimation via the use of COI. Our analysis of the 

performance of COI clusters needs confirmation from additional COI 

datasets. The datasets can be used to further test the consistency of COI-

based estimates of species richness to those of taxonomic experts for 

different taxonomic groups. Three-way studies where parataxonomists and 

taxonomists study specimens before the samples are sequenced for COI 

would be particularly useful, as they would allow for a comparison of the 

congruence and conflict between different techniques for estimating 

species richness. A good candidate for this would be the samples of 

Corethrella that I described in the second chapter. These specimens have 

already been sorted to morphotypes by parataxonomists and sequenced, 

and are awaiting formal description by the taxonomic expert, A. Borkent. 

After this is accomplished, the Bornean Corethrella dataset could be used 

to test whether the species richness estimates and species boundaries 

delimited by parataxonomy or COI are more or less congruent with the 

conclusions made by taxonomic experts.  

With regards to the Corethrellidae, a systematic, concerted effort to 

inventory their diversity in Southeast Asia is urgently needed. The danger 

is that the rate of species description and collection may not catch up to 

the rate of extinction, especially since there is only one active taxonomist 

for this enigmatic family and many frog species are in the process of going 

extinct. The two cosmopolitan groups of Diptera examined in this paper 

are likely to face very different fates. While the synanthropic saprophagous 
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Sepsidae and the anuran parasitoid Corethrellidae are strongly associated 

to vertebrate groups Bovinae and Anura respectively, it is not likely that 

sepsid species will find themselves with a lack of substrate in the future. 

The same cannot be said of the Corethrella species found in the peat 

swamps of Borneo, as both their hosts (Wake and Vredenburg 2008) and 

their habitats (Rieley and Ahmad-Shah 1992) are severely threatened. As 

parasitoids that feed on endangered hosts in threatened habitats, the 

Corethrellidae exemplify a group of invertebrates that is particularly 

vulnerable to extinction (Dunn et al. 2009; Koh et al. 2004). This is the 

reason why every effort has to be made to set rigorous standards and field 

collection expeditions must attempt to collect as much information about 

species and localities as possible (Dayrat 2005; Valdecasas et al. 2008).. 

This is now happening with bio-imaging and non-invasive DNA extraction 

and sequencing.  
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APPENDIX 

 

Taxa ID Locality Country Bases 

Allosepsis indica I Brunei Brunei 713 

Allosepsis indica II Brunei Brunei 712 

Allosepsis indica I Angkor Wat Cambodia 531 

Allosepsis indica II Angkor Wat Cambodia 662 

Allosepsis indica III Angkor Wat Cambodia 662 

Allosepsis indica IV Angkor Wat Cambodia 681 

Allosepsis indica V Angkor Wat Cambodia 681 

Allosepsis indica I Guizhou China 530 

Allosepsis indica II Guizhou China 620 

Allosepsis indica III Guizhou China 594 

Allosepsis indica IV Guizhou China 488 

Allosepsis indica I Yunnan China 646 

Allosepsis indica I Alleppy India 624 

Allosepsis indica II Alleppy India 595 

Allosepsis indica IV Alleppy India 584 

Allosepsis indica 225 Padang Pariaman Indonesia 554 

Allosepsis indica 226 Padang Pariaman Indonesia 557 

Allosepsis indica 227 Padang Pariaman Indonesia 452 

Allosepsis indica 228 Padang Pariaman Indonesia 568 

Allosepsis indica 239 Padang Pariaman Indonesia 503 

Allosepsis indica 241 Padang Pariaman Indonesia 509 

Allosepsis indica A PadangPariaman Indonesia 631 

Allosepsis indica C Padang Pariaman Indonesia 657 

Allosepsis indica D Padang Pariaman Indonesia 684 



  138 

Allosepsis indica E Padang Pariaman Indonesia 504 

Allosepsis indica F Padang Pariaman Indonesia 653 

Allosepsis indica I Sulawesi Indonesia 534 

Allosepsis indica II Sulawesi Indonesia 354 

Allosepsis indica V Sulawesi Indonesia 587 

Allosepsis indica II Batu Kitang Malaysia 679 

Allosepsis indica III Batu Kitang Malaysia 679 

Allosepsis indica I Forest Research Institute 
Malaysia Malaysia 561 

Allosepsis indica I Fraser Hill Malaysia 463 

Allosepsis indica II Fraser Hill Malaysia 447 

Allosepsis indica I Ipoh Malaysia 417 

Allosepsis indica III Johor Malaysia 516 

Allosepsis indica V Johor Malaysia 559 

Allosepsis indica VI Johor Malaysia 582 

Allosepsis indica VII Johor Malaysia 497 

Allosepsis indica I Malacca Malaysia 537 

Allosepsis indica K Malacca Malaysia 664 

Allosepsis indica  Pulau Tioman Malaysia 639 

Allosepsis indica Ex Pulau Tioman Malaysia 647 

Allosepsis indica ExII Pulau Tioman Malaysia 662 

Allosepsis indica ExIII Pulau Tioman Malaysia 646 

Allosepsis indica III Selangor Malaysia 669 

Allosepsis indica IV Selangor Malaysia 682 

Allosepsis indica V Selangor Malaysia 619 

Allosepsis indica CII Terengganu Malaysia 628 

Allosepsis indica CIII Terengganu Malaysia 631 

Allosepsis indica CIV Terengganu Malaysia 674 

Allosepsis indica CV Terengganu Malaysia 659 

Allosepsis indica CVI Terengganu Malaysia 670 
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Allosepsis indica CVII Terengganu Malaysia 644 

Allosepsis indica I Terengganu Malaysia 566 

Allosepsis indica II Terengganu Malaysia 596 

Allosepsis indica III Terengganu Malaysia 606 

Allosepsis indica IV Terengganu Malaysia 672 

Allosepsis indica V Terengganu Malaysia 683 

Allosepsis indica WCI Terengganu Malaysia 664 

Allosepsis indica WCII Terengganu Malaysia 686 

Allosepsis indica WCIII Terengganu Malaysia 641 

Allosepsis indica WCIV Terengganu Malaysia 633 

Allosepsis indica WCV Terengganu Malaysia 608 

Allosepsis indica I Krabi Thailand 599 

Allosepsis indica II Krabi Thailand 617 

Allosepsis indica III Krabi Thailand 646 

Allosepsis indica IV Krabi Thailand 663 

Allosepsis indica V Krabi Thailand 631 

Australosepsis 
frontalis 259 Brunei Brunei 508 

Australosepsis 
frontalis 260 Brunei Brunei 385 

Australosepsis 
frontalis 261 Brunei Brunei 508 

Australosepsis 
frontalis II Angkor Wat Cambodia 532 

Australosepsis 
frontalis 18 Bukit Tingei Indonesia 575 

Australosepsis 
frontalis 19 Bukit Tingei Indonesia 575 

Australosepsis 
frontalis 20 Bukit Tingei Indonesia 575 

Australosepsis 
frontalis 21 Bukit Tingei Indonesia 575 

Australosepsis 
frontalis 120 Bukit Tingei Indonesia 712 
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Australosepsis 
frontalis 121 Bukit Tingei Indonesia 712 

Australosepsis 
frontalis 122 Bukit Tingei Indonesia 712 

Australosepsis 
frontalis 123 Bukit Tingei Indonesia 712 

Australosepsis 
frontalis 252 Gunung Halimun Salak 

National Park Indonesia 508 

Australosepsis 
frontalis 255 Gunung Halimun Salak 

National Park Indonesia 575 

Australosepsis 
frontalis  Kalimantan Indonesia 628 

Australosepsis 
frontalis I Kalimantan Indonesia 619 

Australosepsis 
frontalis II Kalimantan Indonesia 592 

Australosepsis 
frontalis 175 Padang Pariaman Indonesia 641 

Australosepsis 
frontalis 242 Padang Pariaman Indonesia 506 

Australosepsis 
frontalis 249 Padang Pariaman Indonesia 475 

Australosepsis 
frontalis 250 Padang Pariaman Indonesia 536 

Australosepsis 
frontalis 248 Padang Pariaman Indonesia 533 

Australosepsis 
frontalis 4 Sulawesi Indonesia 530 

Australosepsis 
frontalis 6 Sulawesi Indonesia 658 

Australosepsis 
frontalis I Batu Kitang Malaysia 649 

Australosepsis 
frontalis II Batu Kitang Malaysia 678 

Australosepsis 
frontalis III Batu Kitang Malaysia 679 

Australosepsis 
frontalis IV Batu Kitang Malaysia 682 
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Australosepsis 
frontalis V Batu Kitang Malaysia 678 

Australosepsis 
frontalis VI Batu Kitang Malaysia 632 

Australosepsis 
frontalis  Ipoh Malaysia 568 

Australosepsis 
frontalis II Ipoh Malaysia 604 

Australosepsis 
frontalis IV Ipoh Malaysia 659 

Australosepsis 
frontalis I Malacca Malaysia 594 

Australosepsis 
frontalis  Pulau Tioman Malaysia 561 

Australosepsis 
frontalis II Pulau Tioman Malaysia 519 

Australosepsis 
frontalis IV Pulau Tioman Malaysia 659 

Australosepsis 
frontalis 4 Mt. Camagong Philippines 620 

Australosepsis 
frontalis 5 Mt. Camagong Philippines 620 

Australosepsis 
frontalis 6 Mt. Camagong Philippines 620 

Australosepsis 
frontalis 7 Mt. Camagong Philippines 620 

Australosepsis 
frontalis 8 Mt. Camagong Philippines 638 

Australosepsis 
frontalis 9 Mt. Camagong Philippines 638 

Australosepsis 
frontalis 10 Mt. Camagong Philippines 634 

Australosepsis 
frontalis 11 Mt. Camagong Philippines 634 

Australosepsis 
frontalis 13 Mt. Camagong Philippines 634 

Australosepsis 
frontalis 14 Mt. Camagong Philippines 634 
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Australosepsis 
frontalis 15 Mt. Camagong Philippines 543 

Australosepsis 
frontalis 16 Mt. Camagong Philippines 627 

Australosepsis 
frontalis 17 Mt. Camagong Philippines 636 

Australosepsis 
frontalis 164 Mt. Camagong Philippines 541 

Australosepsis 
frontalis 165 Mt. Camagong Philippines 622 

Australosepsis 
frontalis 166 Mt. Camagong Philippines 622 

Australosepsis 
frontalis 167 Mt. Camagong Philippines 552 

Australosepsis 
frontalis 168 Mt. Camagong Philippines 622 

Australosepsis 
frontalis 182 Mt. Camagong Philippines 641 

Australosepsis 
frontalis 183 Mt. Camagong Philippines 565 

Australosepsis 
frontalis I Taiwan China 631 

Australosepsis 
frontalis II Taiwan China 546 

Australosepsis 
frontalis III Taiwan China 529 

Australosepsis 
frontalis 6 Chiang Mai Thailand 607 

Australosepsis 
frontalis 7 Chiang Mai Thailand 548 

Australosepsis 
frontalis I Trang Thailand 546 

Australosepsis 
frontalis II Trang Thailand 566 

Australosepsis 
frontalis III Trang Thailand 626 

Australosepsis 
niveipennis A New South Wales Australia 609 
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Australosepsis 
niveipennis B New South Wales Australia 614 

Australosepsis 
niveipennis C New South Wales Australia 684 

Australosepsis 
niveipennis D New South Wales Australia 691 

Australosepsis 
niveipennis 290 Brunei Brunei 567 

Australosepsis 
niveipennis I Calicut India 604 

Australosepsis 
niveipennis II Calicut India 535 

Australosepsis 
niveipennis III Calicut India 421 

Australosepsis 
niveipennis I Batu Kitang Malaysia 677 

Australosepsis niveipennis Pulau Tioman Malaysia 655 

Australosepsis 
niveipennis II Pulau Tioman Malaysia 660 

Australosepsis 
niveipennis III Pulau Tioman Malaysia 624 

Australosepsis 
niveipennis III Taiwan China 658 

Australosepsis 
niveipennis V Taiwan China 642 

Australosepsis 
niveipennis VI Taiwan China 547 

Australosepsis 
niveipennis VII Taiwan China 509 

Australosepsis 
niveipennis 4 Chiang Mai Thailand 627 

Australosepsis 
niveipennis 5 Chiang Mai Thailand 678 

Australosepsis 
niveipennis I Grand Comoros Union of the 

Comoros 512 

Australosepsis  
niveipennis United Arab Emirates United Arab 

Emirates 682 

Meroplius  Gunung Halimun-Salak Indonesia 666 
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fasciculatus National Park 

Meroplius 
fasciculatus 139 Gunung Halimun-Salak 

National Park Indonesia 640 

Meroplius 
fasciculatus 140 Gunung Halimun-Salak 

National Park Indonesia 707 

Meroplius 
fasciculatus 141 Gunung Halimun-Salak 

National Park Indonesia 707 

Meroplius 
fasciculatus 142 Gunung Halimun-Salak 

National Park Indonesia 707 

Meroplius 
fasciculatus 143 Gunung Halimun-Salak 

National Park Indonesia 707 

Meroplius 
fasciculatus 126 Sawahlunto Indonesia 627 

Meroplius 
fasciculatus 1 Sulawesi Indonesia 597 

Meroplius 
fasciculatus 2 Sulawesi Indonesia 589 

Meroplius 
fasciculatus 3 Sulawesi Indonesia 574 

Meroplius 
fasciculatus 4 Sulawesi Indonesia 586 

Meroplius 
fasciculatus 5 Sulawesi Indonesia 455 

Meroplius 
fasciculatus 6 Sulawesi Indonesia 568 

Meroplius 
fasciculatus 7 Sulawesi Indonesia 573 

Parapaleosepsis 
 plebeia A New South Wales Australia 696 

Parapaleosepsis 
plebeia B New South Wales Australia 703 

Parapaleosepsis 
plebeia C New South Wales Australia 707 

Parapaleosepsis 
plebeia D New South Wales Australia 693 

Parapaleosepsis 
plebeia III New South Wales Australia 706 
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Parapaleosepsis 
plebeia II Perth Australia 560 

Parapaleosepsis 
plebeia III Perth Australia 607 

Parapaleosepsis 
plebeia IV Perth Australia 638 

Parapaleosepsis 
plebeia V Perth Australia 639 

Parapaleosepsis 
plebeia VI Perth Australia 626 

Parapaleosepsis 
plebeia K Woollogong Australia 665 

Parapaleosepsis 
plebeia I Goroka Papua New 

Guinea 572 

Parapaleosepsis 
plebeia II Goroka Papua New 

Guinea 589 

Parapaleosepsis 
plebeia IV Goroka Papua New 

Guinea 554 

Parapaleosepsis 
plebeia eX Goroka Papua New 

Guinea 512 

Sepsis coprophila 55 Bukit Tingei Indonesia 597 

Sepsis coprophila 56 Bukit Tingei Indonesia 627 

Sepsis coprophila 57 Bukit Tingei Indonesia 627 

Sepsis coprophila 58 Bukit Tingei Indonesia 627 

Sepsis coprophila 59 Bukit Tingei Indonesia 721 

Sepsis coprophila 60 Bukit Tingei Indonesia 721 

Sepsis coprophila 61 Bukit Tingei Indonesia 720 

Sepsis coprophila 62 Bukit Tingei Indonesia 720 

Sepsis coprophila 63 Bukit Tingei Indonesia 727 

Sepsis coprophila 65 Bukit Tingei Indonesia 727 

Sepsis coprophila 1 Sulawesi Indonesia 718 

Sepsis coprophila 2 Sulawesi Indonesia 579 

Sepsis coprophila 3 Sulawesi Indonesia 563 

Sepsis dissimilis I Tamil Nadu India 544 
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Sepsis dissimilis 50 Bukit Tingei Indonesia 441 

Sepsis dissimilis 178 Citeureup Indonesia 622 

Sepsis dissimilis 179 Citeureup Indonesia 625 

Sepsis dissimilis 176 Pariaman Indonesia 624 

Sepsis dissimilis 177 Pariaman Indonesia 624 

Sepsis dissimilis 3 Sulawesi Indonesia 578 

Sepsis dissimilis B07 Batu Kitang Malaysia 552 

Sepsis dissimilis  Ipoh Malaysia 532 

Sepsis dissimilis I Malacca Malaysia 412 

Sepsis dissimilis I Goroka Papua New 
Guinea 494 

Sepsis dissimilis 172 Mt. Camagong Philippines 585 

Sepsis dissimilis 173 Mt. Camagong Philippines 585 

Sepsis dissimilis 174 Mt. Camagong Philippines 585 

Sepsis dissimilis 180 Mt. Camagong Philippines 622 

Sepsis dissimilis 181 Mt. Camagong Philippines 623 

Sepsis dissimilis 184 Mt. Camagong Philippines 623 

Sepsis dissimilis 2 Chiang Mai Thailand 543 

Sepsis dissimilis I Trang Thailand 547 

Sepsis dissimilis III Trang Thailand 618 

Sepsis dissimilis I Grand Comoros Union of the 
Comoros 533 

Sepsis dissimilis IV Grand Comoros Union of the 
Comoros 560 

Sepsis nitens I Guizhou China 552 

Sepsis nitens II Tamil Nadu India 571 

Sepsis nitens III Tamil Nadu India 627 

Sepsis nitens 144 Bukit Tingei Indonesia 707 

Sepsis nitens 145 Bukit Tingei Indonesia 707 

Sepsis nitens 146 Bukit Tingei Indonesia 677 

Sepsis nitens 147 Bukit Tingei Indonesia 707 
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Sepsis nitens 148 Bukit Tingei Indonesia 707 

Sepsis nitens 205 Bukit Tingei Indonesia 581 

Sepsis nitens 206 Bukit Tingei Indonesia 530 

Sepsis nitens 207 Bukit Tingei Indonesia 581 

Sepsis nitens 211 Bukit Tingei Indonesia 580 

Sepsis nitens 69 Citeureup Indonesia 546 

Sepsis nitens 70 Citeureup Indonesia 547 

Sepsis nitens 282 Citeureup Indonesia 464 

Sepsis nitens 283 Citeureup Indonesia 464 

Sepsis nitens 284 Citeureup Indonesia 464 

Sepsis nitens 169 Pariaman Indonesia 641 

Sepsis nitens 170 Pariaman Indonesia 641 

Sepsis nitens 171 Pariaman Indonesia 641 

Sepsis nitens 202 Pariaman Indonesia 580 

Sepsis nitens 244 Pariaman Indonesia 495 

Sepsis nitens 1 Sulawesi Indonesia 566 

Sepsis nitens 2 Sulawesi Indonesia 566 

Sepsis nitens 3 Sulawesi Indonesia 567 

Sepsis nitens 4 Sulawesi Indonesia 567 

Sepsis nitens 5 Sulawesi Indonesia 572 

Sepsis nitens I Ipoh Malaysia 601 

Sepsis nitens  Tanda Saeed Pakistan 664 

Sepsis sp. A 157 Bukit Tingei Indonesia 539 

Sepsis sp. A 158 Bukit Tingei Indonesia 529 

Sepsis sp. A 207 Bukit Tingei Indonesia 560 

Sepsis sp. A 213 Bukit Tingei Indonesia 594 

Sepsis sp. A 214 Bukit Tingei Indonesia 553 

Sepsis sp. A I Sukabumi Indonesia 594 

Sepsis sp. B 125 Sawahlunto Indonesia 594 
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Sepsis sp. B 127 Sawahlunto Indonesia 594 

Sepsis sp. B 278 Sawahlunto Indonesia 616 

Sepsis sp. B 279 Sawahlunto Indonesia 616 

Sepsis sp. B 280 Sawahlunto Indonesia 618 

Sepsis sp. B 281 Sawahlunto Indonesia 541 

Sepsis sp. C 81 Citeureup Indonesia 643 

Sepsis sp. C 82 Citeureup Indonesia 644 

Sepsis sp. C 83 Citeureup Indonesia 581 

Sepsis sp. C 84 Citeureup Indonesia 577 

Sepsis sp. C 87 Citeureup Indonesia 579 

Sepsis sp. C 159 Citeureup Indonesia 675 

Sepsis sp. C 160 Citeureup Indonesia 627 

Sepsis sp. C 161 Citeureup Indonesia 627 

Sepsis sp. C 163 Citeureup Indonesia 539 

Sepsis sp. C 201 Citeureup Indonesia 529 

Sepsis sp. C 1 Chiang Mai Thailand 627 

 

 

 

 

 



 

 

 

 

 

 

 

“Well Johnnie why don't you go poke your barcoder into it and find out.”1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
1 Stephen Cameron, Daniel Rubinoff and Kipling Will. 2006. “Who will actually use DNA 
barcoding and what will it cost?” Systematic Biology 55(4): 855 – 847. 
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