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Summary 

Cancer has long been one of the leading causes of death in the industrial world. The 

main reason for its high mortality is due to inefficient early detection which results in 

the spread of cancer cells to other distant sites in the body, via a process known as 

metastasis. Since metastasis involves invasive and physical movements of cancer cells 

through the extra-cellular matrix and circulation system, cell mechanics has been 

extended to study cancer from a mechanistic perspective in order to better understand 

the pathophysiology of cancer. The potential applications of cell mechanics study on 

cancer not only include early cancer detection and diagnosis, but also better 

understanding of the underlying mechanisms of cancer metastasis and these can lead 

to better strategies in treating cancer. 

In view of the different physiological states cancer cells can undergo including being 

adherent and in suspension, we studied cancer cells in these two conditions. Firstly, A 

microfluidic device was designed to mimic cancer cells traversing capillaries and 

investigate their overall mechanical behavior and the role of nucleus in large 

deformation. Secondly, to further understand the structure-property relationship of 

cancer cells, micropipette was used to specifically probe the near surface mechanical 

properties , which was related to the underlying actin cortex, of suspended breast 

cancer cells. AFM indentation was used to probe the near surface mechanical 

properties of adherent breast cancer cells. The nucleus as an important structural 

component was first characterized in the context of cancer cells in this study. The 

corresponding cytoskeletal (actin) and nuclear structure was then investigated using 

confocal microscopy. Elastic moduli of both cell surface (including cytoskeleton) and 

isolated nucleus of non-malignant breast epithelial cells (MCF-10A) were twice 
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higher than their malignant counterparts (MCF-7), which was due to the change in 

corresponding structures. The similar elastic modulus of the isolated nuclei and that of 

the cell suggests that other than cytoskeleton, nucleus also contributes to the overall 

cellular mechanical properties.  

This study gives us a better understanding about the structure-property relationship of 

cell mechanics in the context of cancer cells. It demonstrates that besides 

cytoskeleton, nucleus also contributes to cancer cell mechanics. The potential 

application of cancer cell and nuclear mechanics is that it can possibly serve as 

another biomarker for cancer detection and diagnosis. 
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Chapter 1 Introduction 

Cancer has long been a life threatening disease with high mortality. The main reason 

for its high mortality is due to the inefficient early detection which results in the 

spread of cancer cells and the formation of new tumors in the other distant sites in the 

body. This process called metastasis involves invasive and physical movements of 

cancer cells through the extra-cellular matrix and circulation system, therefore cell 

mechanics has been applied to study cancer from a mechanistic perspective in order to 

better understand the pathophysiology of cancer. Understanding of cancer cell 

mechanics not only can help early cancer detection and diagnosis, but also give 

insight of the underlying mechanisms of cancer metastasis, which can lead to better 

strategies in treating cancer. 

 In this chapter, we will first explain the close connections between cancer metastasis 

and cell mechanics. In view of the importance of structure-property relationship of 

cancer cell mechanics, we will then review the components and structures of cells 

including cytoskeleton, nucleus and their connections. To take a step further, we will 

specifically review the nuclear structure of cancer cells and its deviation from normal 

nucleus. Finally, we will discuss besides cytoskeleton why we study nuclear 

mechanics in the context of cancer cells. Though the contribution of cytoskeleton to 

cell mechanics has been extensively studied, but not for nucleus, we believe that 

nucleus also plays an important role in overall cancer cell mechanics, especially in the 

context of cancer metastasis. 
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1.1 Cancer and metastasis  

Cancer is a class of diseases characterized by the unrestricted proliferation of 

abnormal cells and their ability to invade healthy body tissues and destroy them 

(limLee and Lim 2007). Cancer has long been one of the leading causes of death in 

the world and is presently responsible for about 25% of all deaths (Jemal, Murray et 

al. 2005). It is estimated that there will be about 15 million new cancer cases annually 

by 2020 worldwide (Lee and Lim 2007). For example, breast cancer is most common 

for female, as one in every eight woman develops breast cancer at some stage of their 

lives, and it causes about 15% of cancer deaths in women (Jemal, Murray et al. 2005).  

The reason for the high mortality of cancer is the lack of early detection which results 

in its spread to other distant sites in the body, via a process known as metastasis, 

which is the major cause of cancer related death. In the case of breast cancer 

diagnosis, the conventional mammogram has a size detection limit of only 3mm 

(Simon, Ibrahim et al. 2002), while other standard examinations for clinical diagnosis, 

like palpation, ultrasonography and needle biopsy, do not detect abnormal cell growth 

efficiently until they have become malignant or have metastasized (Du, Cheng et al. 

2007). Early detection of cancer before metastasis can make cancer easier to be 

treated successfully by excision since it is only restricted within a local region of the 

body. On the other hand, the chance for treating cancer which has metastasized is 

much lower. 

Metastasis, which is responsible for about 90% of death due to solid tumors (Gupta 

and Massague 2006), is a process involving the dissemination of cancer cells from a 

primary tumor to other sites in the body leading to the formation of new tumors at 
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those sites (Chambers, Groom et al. 2002). The metastasis process consists of several 

important steps as illustrated in Fig. 1.1:  

 

Fig. 1.1 Schematic diagram of cancer metastasis process showing the spread of cancer cells 
from a primary tumor to a distant site (Lee and Lim 2007). 

1. Intravasation: cancer cells leave the primary tumor and enter into the circulatory 

system by infiltrating into the blood vessel directly or through the lymphatic system. 

2. Transportation and arrest: cancer cells that survive in the blood vessel travel to 

other parts of the body until they are arrested in a particular region of the circulatory 

system. 

3. Extravasation: cancer cells invade into the surrounding tissue from the blood vessel 

where they are arrested. 
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4. Growth of new tumor: cancer cells survive in the new environment and initiate 

micrometastasis and then grow into new tumor accompanied by the development of 

new blood capillaries (angiogenesis). 

As we can see in the whole process of cancer metastasis, there is evidently a strong 

relation with mechanics. As cancer cells break away from the primary tumor, migrate 

through the extra-cellular matrix (ECM), infiltrate into the blood vessel, flow along in 

the blood stream, get arrested in a new position within the circulatory system, squeeze 

into the tissue and form a new tumor, they constantly exert mechanical force to the 

surrounding tissues or undergoes deformation when subjected to physiological flow 

conditions. Mechanics dominates the whole process, especially as cancer cells need to 

traverse through narrow blood capillaries and endothelial barriers in the circulatory 

system or tissue. 

In order to effectively combat against cancer, we not only have to find better and 

reliable methods for early detection, but also better understand the underlying 

mechanisms of cancer metastasis in order to develop new strategies to treat cancer. It 

is therefore necessary to investigate the disease from different aspects, and in our case 

we will do so from a mechanistic perspective due to its importance in cancer 

metastasis.   

1.2 Importance of mechanics in cancer metastasis 

The details of the metastasis process still remains largely unknown and is currently a 

hot topic for many researchers from different fields (Ding, Sunamura et al. 2001).  

The mechanical behavior of cancer cells is important as mechanical factors are known 

to play an important role in influencing the metastatic process (Chambers, Groom et 



 
Chapter 1 Introduction 

5 
 

al. 2002). Mechanical factors such as elasticity, cell adhesion and rheology affect the 

initial outcome of cancer cells after they have detached from a primary tumor site. For 

example, when normal cells become cancerous and metastatic, they are known to 

possess an increased propensity to migrate across the basal membrane and the 

endothelium to make their way into the circulatory system. Also, the efficient arrest of 

most circulating cancer cells at a secondary site is dependent on the relative sizes of 

the cancer cells and capillaries (Chambers, Groom et al. 2002). Altered genetic 

composition and protein expression in cancers are responsible for changes in 

intracellular structural and cellular deformability (Fuchs and Weber 1994; Suresh, 

Spatz et al. 2005). This not only affects cell motility, adhesion and interaction but also 

cell growth and division (Chen, Mrksich et al. 1997; Boudreau and Bissell 1998; 

Huang and Ingber 1999; Alberts, Johnson et al. 2002; Lodish, Berk et al. 2003).   

The arrest of cancer cells in the circulatory system is thought to be an essential step in 

metastasis. Some researchers proposed that this arrest is mainly due to mechanical 

entrapment of tumor cells in the microvasculature (Sugarbaker 1981; Barberaguillem, 

Alonsovarona et al. 1989; Morris, Macdonald et al. 1993; Cameron, Schmidt et al. 

2000; Ding, Sunamura et al. 2001; Mook, Van Marle et al. 2003). On the other hand, 

it is also reported that this process can be mediated by the inducible adhesion between 

cancer cells and specific endothelium (Enns, Gassmann et al. 2004; Gassmann, Enns 

et al. 2004; Krishnan, Bane et al. 2005).  

Ding et al. used in vivo microscopy to study the early events of liver metastasis. They 

confirmed that mechanical entrapment of a solid tumor cell promoted liver metastasis 

while no detectable adhesion molecules were involved. At the same time, they also 

found that lymphoma cells promoted liver metastasis through the arrest of P-selectin, 
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an adhesion molecule-mediated pathway (Ding, Sunamura et al. 2001). In addition, 

Hart et al. proposed that mechanical entrapment of cancer cells in capillaries and the 

organ-determined modulation of tumor growth are two mechanisms that regulate the 

specificity of metastatic patterns of transplantable rodent tumors (Hart 1982).  

An interesting phenomena observed by Gabor showed that mechanical trauma can 

induce a state of dormancy in cancer cells (Gabor and Weiss 1985). This offers a 

possible explanation for situations in which metastasis occurred years after an 

apparent successful primary tumor treatment (Chambers, Groom et al. 2002). This 

also indicates that mechanical deformation or entrapment may affect the outcome of 

those types of metastasis. 

However, other studies have shown that mechanical factors alone are not the only 

ones that affect the metastasis process (Cameron, Schmidt et al. 2000). Generally, 

three mechanisms called mechanical, specific adhesion and organ-determined 

modulation (“seed and soil”) all seem to contribute to this process and the 

mechanisms may be different for each specific type of cancer. However, the relative 

contribution of the three mechanisms may vary for different types of tumor  (Kieran 

and Longenecker 1983). And mechanical entrapment may play an important role in 

contributing to the initial step. 

As cancer metastasis is a complex process of a mechanical nature involving 

interactions of cancer cells with their surroundings, it is important to study metastasis 

from a mechanical point of view since this may shed light to understand the 

underlying mechanism. Cell mechanics, which investigates how cells sense, respond 

to and generate mechanical forces involved in different cellular functions, is of great 
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importance in understanding physiology and pathology. At the cellular level, we first 

need to understand the structure-property relation of cells.  

1.3 Structure and mechanical properties of cancer cells 

Before we attempt to understand the structure-property relationship of cancer cells, 

we will first take a look at the structure of a eukaryotic cell.  

 

Fig. 1.2 Schematic diagram of the structure of a eukaryotic cell (adapted from 
http://www.colorado.edu/kines/Class/IPHY3430-200/image/ShHP40201.jpg). 

A cell, as the basic unit of life, is composed of a mass of organelles with different 

functions enclosed by the plasma membrane. From an engineering point of view, the 

cell can be treated as a delicately “designed” machine with complicated functional 

materials. The structural components of this “machine” are the plasma membrane and 

the underlying cytoskeleton. The plasma membrane is a semi-permeable lipid bilayer 

which surrounds the whole cell and separates it from the extracellular environment. 

The cytoskeleton, which consists of microfilaments, intermediate filaments and 

microtubules, is a dynamic structure which maintains the integrity of the cell and 
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enables its motility. It plays important roles in cellular division and any form of 

communication with the environment. Fig. 1.2 shows the complex organization of 

functional and structural components of a eukaryotic cell. 

We take a close look at the structural components and their organization inside the 

cell. As shown in Fig. 1.3, the integrity of the cell, which can respond to mechanical 

stresses appropriately, is based on a large network of physically connected structural 

components starting from the ECM, via adhesion molecules and cytoskeleton to the 

nucleus (Houben, Ramaekers et al. 2007). This physical connection may serve as a 

channel to transmit the mechanical signals (stress and strain) received by the adhesion 

molecule from outside of the cell directly to the nucleus and regulate gene expression, 

via the process called mechanotransduction. Moreover, nucleus plays a pivotal role in 

regulating the cytoskeletal and adhesion structures in the cell by connections between 

nuclear structure and cytoskeleton through linker protein like Nesprins and SUN-

proteins (Houben, Ramaekers et al. 2007).  

 

Fig. 1.3 Schematic diagram of the integral network of a cell responding to mechanical loading 
(Houben, Ramaekers et al. 2007). 
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Mechanical properties of cancer cells have been studied using different biomechanical 

techniques like micropipette aspiration, atomic force microscopy (AFM) and optical 

stretcher, and it was found that most cancer cells are more deformable than their 

corresponding normal cells (Ward, Li et al. 1991; Thoumine and Ott 1997; Lekka, 

Laidler et al. 1999; Lekka, Lekki et al. 1999; Park, Koch et al. 2005; Suresh, Spatz et 

al. 2005). Moreover, there seems to be a direct correlation between an increase in 

deformability and the progression of a transformed phenotype from a non-malignant 

cell line into a malignant, and metastatic cell line, which can effectively be used as a 

biomarker to detect cancer (Ward, Li et al. 1991; Guck, Schinkinger et al. 2005).  

Some evidence has shown that the change in the deformability of cells as they 

transform from being non-malignant to malignant is the result of a change in the 

concentration and structure of cytoskeleton, which may also affect metastasis when 

cancer cells migrate through the ECM and endothelial barriers (Ward, Li et al. 1991; 

Thoumine and Ott 1997; Guck, Schinkinger et al. 2005; Suresh, Spatz et al. 2005; 

Suresh 2007). As a cell progresses to the cancerous state, the amount of F-actin is 

reduced, which is also accompanied by a reconstruction in cytoskeleton . In fact, 

cytoskeletal changes can result in changes in the overall mechanical property of the 

cell and also changes in their cellular functions (Lincoln, Erickson et al. 2004). 

However, the underlying molecular mechanism causing this cytoskeletal change is not 

fully understood. Moreover, the change in structure and mechanical property of 

nucleus and its contribution to cell mechanics during malignant transformation is not 

well studied. 
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1.4 Nuclear structure of cancer cells 

The nucleus is a major component of eukaryotic cells, which contains the 

chromosomes — the secret of life. Also, it is a site of major metabolic activities, 

including DNA replication, gene transcription, RNA processing and ribosome subunit 

maturation and assembly.  

Moreover, structure and mechanical properties of the nucleus plays an important role 

in the overall cellular mechanical behavior and mechanotransduction, and one 

pathway shows that mechanical stress may regulate gene expression through direct 

physical connections starting from the ECM, via adhesion molecules and cytoskeleton 

to the nucleus (Vaziri, Lee et al. 2006). Therefore, any change in the nuclear structure 

can cause impaired nuclear mechanics and alter the mechanotransduction pathway 

leading to some diseases like Emery-Dreifuss muscular dystrophy (Lammerding and 

Lee 2005; Lammerding, Fong et al. 2006). So, the mechanical property of the nucleus 

is an important factor in the mechanotransduction pathway as it determines the 

nuclear shape and its response to external mechanical stimulus, which may in turn 

regulate the transport action and the expression of nucleic acids and consequently 

affecting cellular function.  

Nucleus is separated from cytoplasm by a nuclear envelope. As shown in Fig. 1.4 

(Stuurman, Heins et al. 1998), the nuclear envelope consists of an inner nuclear 

membrane (INM), an outer nuclear membrane (ONM, an extension of rough 

endoplasmic reticulum (ER)) and nuclear lamina (Prokocimer, Margalit et al. 2006). 

INM and ONM join at the nuclear pore complexes (NPC), which allow for nuclear-

cytoplasmic transport. The nuclear lamina, which lies beneath the INM, is a dense 

network of lamins (lamin A/C and lamin B) plus lamin-associated proteins, which 
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plays an important role in supporting the nuclear structure, and also in organizing the 

nuclear envelope and chromatin (Vaziri and Mofrad 2007).  

 

Fig. 1.4 Schematic diagram of the structure of a nucleus (Stuurman, Heins et al. 1998). 

In the case of cancer cells, there is a dramatic change occurring in the nuclear 

architecture as they become malignant (Davie, Samuel et al. 1999; Spencer and Davie 

2000). Some of the existing studies have already shown characteristic differences in 

nuclear architectures of cancer cells compared with normal cells as shown in Fig. 1.5, 

which affect nuclear size and shape and chromatin texture as shown in table 1.1. 

Changes in the nuclear structure and its corresponding mechanical property may 

reveal insights into the process of malignant transformation and may provide a basis 

for the development of new diagnostic tools and therapeutics (Zink, Fischer et al. 

2004) . 
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Fig. 1.5 Nuclear structures of  (a) normal and (b) cancer cells (purple: lamina; green: 
heterochromatin; yellow: nucleoli) (Zink, Fischer et al. 2004). 

 

Table 1.1 List showing some differences between the nucleus of normal and cancer 
cells 

 Normal cells Cancer cells 
Nuclear shape Regular and ellipsoid 

shape 
Irregular and begin to fold 

Heterochromatin Fine layer Coarse aggregate 
Nucleoli  Smaller size or less, 

Number(1~3) 
Larger size or increase in 
number 

In the nuclear architecture, nuclear lamina is involved in many nuclear activities 

which are implicated in tumor formation including transcriptional activation, 

heterochromatin organization, senescence and apoptosis (Moss, Krivosheyev et al. 

1999). Deviation of the nuclear lamins and their associated proteins are thought to be 

an additional event involved in malignant transformation and tumor progression, 

which can be a potential novel targets for anti-cancer drug development (Prokocimer, 

Margalit et al. 2006). As we know, lamina, which compose of lamin A/C and lamin B, 

is the main structural component used to support and determine the nuclear shape and 

integrity (Dahl, Kahn et al. 2004; Lammerding, Schulze et al. 2004; Broers, Kuijpers 
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et al. 2005; Dahl, Scaffidi et al. 2006; Lammerding, Fong et al. 2006; Scaffidi and 

Misteli 2006; Stewart, Roux et al. 2007). In tumor cells, the main changes are aberrant 

localization and reduction in expression of lamins A/C, which are frequently 

correlated with cancer aggressiveness, proliferation rate and differentiation state. 

Lamin A/C has been found to be reduced in some skin cancers (basal cell and 

squamous cell) (Venables, McLean et al. 2001; Oguchi, Sagara et al. 2002), 

gastrointestinal tract neoplasms including adenocarcinoma of stomach and colon, lung 

cancer (Kaufmann, Mabry et al. 1991; Broers, Raymond et al. 1993), testicular germ 

cell tumors (Machiels, Ramaekers et al. 1997) and cancerous prostate tissues 

(Coradeghini, Barboro et al. 2006). Especially, it is also reduced in breast cancer 

(Moss, Krivosheyev et al. 1999). Consequently, we hypothesize that the mechanical 

properties of the cancer cell nucleus may change. One study showed that the nucleus 

of small-cell lung carcinoma is susceptible to crushing during biopsy possibly due to 

lack of proteins encoded by the lamin A/C gene (Zink, Fischer et al. 2004).  However, 

no quantitative studies have been performed. 

A method established by Beale in 1860 and used as a “gold standard” for detecting 

cancer is to examine unstained cell structure and look out for any variation in nuclear 

size and shape (Zink, Fischer et al. 2004). In our case, the possible change in 

mechanical properties of the nucleus can be a quantitative and more accurate method 

to help detect cancer. In addition, more detailed information on the mechanical 

properties of the nucleus is needed to understand its role in mechanotransduction and 

the structure-property relationship of the cancer cells as this may give insight on the 

process of malignant transformation.  
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1.5  Why study nuclear mechanics besides cytoskeleton in the context of 

cancer metastasis?  

Cytoskeletal structure, especially actin network, has been extensively studied and has 

been shown to play a crucial role in contributing to cell mechanics in different cell 

lines (Rotsch and Radmacher 2000; Nagayama and Matsumoto 2008). In the context 

of cancer cells, optical stretcher experiments (Guck, Schinkinger et al. 2005) and 

computational modeling (Ananthakrishnan, Guck et al. 2006) suggest that the 

increased deformability during the transformation of cells from nonmalignant to 

malignant is due to the change in cytoskeletal structure, especially actin structure. 

However, the structure and mechanical property of internal organelles like nucleus 

and its contribution to cell deformability is not well understood.  

It is crucial to understand nuclear structure as nucleus contributes to the overall 

mechanical properties of the cell indirectly through connecting to and regulating the 

cytoskeleton. As reviewed earlier, the nucleus plays a pivotal role in regulating the 

cytoskeletal and adhesion structures in the cell through connections between nuclear 

structure and cytoskeleton via linker protein like Nesprins and SUN-proteins 

(Houben, Ramaekers et al. 2007). It has been shown that alterations in the nuclear 

structure (lamina) consequently give rise to alterations in the cytoskeleton (Broers, 

Peeters et al. 2004). Studies have shown that there is a dramatic change occurring in 

the nuclear architectures as they transform from being normal to malignant cells 

(Holth, Chadee et al. 1998; Bosman 1999; Konety and Getzenberg 1999; Zink, 

Fischer et al. 2004; Prokocimer, Margalit et al. 2006). So it is possible that the change 

in the cytoskeletal structure, which is thought to be responsible to the change in 
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mechanical properties as cells transform from being non-malignant to malignant, is 

due to the nuclear structural changes in cancer cells. 

In addition, the nuclear structure and mechanical property might have direct 

contribution to cellular mechanical properties. As the nucleus is the stiffest and the 

largest organelle inside the cell (Dahl, Ribeiro et al. 2008), it is reasonable to assume 

that it may directly contribute to mechanical behavior of the cell in some situations as 

we know that the cell is a complex and heterogeneous material. As a major structural 

component in the cell, the nucleus occupies nearly 10% of the entire cell volume and 

in the case of cancer cells it occupies even more (Sommoggy, Wiendl et al. 1975; 

Mihailovic, Dordevic et al. 1999). It was found that the nucleus of bovine capillary 

endothelial cells is 9 times stiffer than cytoplasm (Maniotis, Chen et al. 1997), and the 

elasticity and viscosity of neutrophil nucleus is 10 times larger than that of cytoplasm 

(Dong, Skalak et al. 1991). Endothelial nucleus has an elastic modulus 10 times larger 

than the cytoplasm (Caille, Thoumine et al. 2002). Nuclei of articular chondrocytes 

are 3-4 times stiffer and nearly twice as viscous as the cytoplasm (Guilak, Tedrow et 

al. 2000). Therefore, the nucleus may play an important role in situations when a cell 

undergoes large compression, in which internal organelles like nucleus may dominate 

its mechanical behavior. In fact, some studies have shown that the nucleus may be the 

main contributor to the heterogeneity of the cell and may be a major compression-

bearing component of the cell (Caille, Thoumine et al. 2002; Zink, Fischer et al. 2004; 

Deguchi, Maeda et al. 2005), and also plays an important role in the maintenance of 

cellular strength (Houben, Ramaekers et al. 2007). 

In the context of cancer metastasis, cancer cells (HT-1080, with a diameter of near 

20μm) undergo extremely large deformation as they pass through small capillaries 
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with a diameter of around 3 to 8μm (Yamauchi, Yang et al. 2005). Under such 

conditions of large deformation, the heterogeneity exhibited by internal organelles 

like nucleus may become the main factor in contributing to the overall mechanical 

behavior of the cell. Based on the techniques used for the mechanical testing of cancer 

cells and the theory used to interpret the data, most of the current studies (Ward, Li et 

al. 1991; Thoumine and Ott 1997; Lekka, Laidler et al. 1999; Lekka, Lekki et al. 1999; 

Park, Koch et al. 2005) have been carried out in the region of small deformation and 

the cells have been treated as a homogenous material with elastic or viscoelastic 

properties. In those studies, it is reasonable to assume that when cells undergo small 

compression or stretching in physiological conditions, the near surface cytoskeletal 

structure of the cell plays a major role in determining their mechanical properties. 

However, they may not be applicable to cells undergoing large deformation and to the 

situations where heterogeneity or non-linear behavior of the cells may play a major 

role.  

Therefore, the structure and mechanical properties of the nucleus may contribute to 

the overall mechanical behavior indirectly by regulating the cytoskeleton and also 

directly by contributing to the heterogeneity of the cell which can be revealed at large 

deformation conditions. Thus more than cytoskeleton, it is of great importance to 

investigate the structure and mechanical properties of the cancer cell nucleus in terms 

of its contribution to cell mechanics in the context of cancer metastasis. However, few 

studies have been done on the nuclear structure and mechanical property and its 

contribution to cell mechanics, and none has been done in the context of cancer cells. 
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1.6 Objectives and scope of work 

Since cancer cell mechanics is very important for understanding the mechanistic 

mechanism of cancer metastasis, which can also be used as a biomarker for better 

cancer detection and diagnosis, it is crucial to investigate the structure-property 

relationship of cancer cells. Cytoskeleton has been recognized as one of the most 

important structures in contribution to cell mechanics, but besides that we are going to 

study nuclear mechanics as we believe it is also a major contributor to cell mechanics 

especially in the context of cancer metastasis. 

The structure and mechanical property of the nucleus is very important not only for 

understanding its role in regulating the whole cellular structure through connection 

with cytoskeleton, but also for its contribution to the heterogeneity of the cell as the 

nucleus is the largest and one of the stiffest organelles inside the cell. Moreover, the 

physical connections between nucleus and cytoskeleton indicate that nucleus may 

play an important role in mechanotransduction. Therefore, besides cytoskeleton it is 

also important to investigate the structure and mechanical properties of nucleus and its 

contribution to overall cancer cell mechanical behavior, which may also help in the 

understanding the mechanistic nature of cancer metastasis.  

Our interest is in studying the structure and mechanical properties of cancer cells, 

especially nuclear mechanics and its role in contributing towards the structure of the 

cell and its overall mechanical behavior in metastasis. Since many studies showed that 

dramatic changes occur in the nuclear structure especially lamina of cancer cells 

compared to that of normal cells, we hypothesize that there is a corresponding change 

in the mechanical properties of the nucleus as the cells become malignant. Moreover, 

the nucleus may have a potential role in directly affecting the overall mechanical 
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behavior of the cancer cells especially while these cancer cells undergo large 

compression when they are entrapped or are passing through endothelial barrier and 

traversing capillaries during migration and metastasis. 

Therefore, the aim of this project is to study the difference in the structure and 

mechanical property of non-malignant and malignant cells, which includes 

cytoskeleton and nucleus. Especially we will investigate nuclear structure and 

mechanical properties and understand its possible contribution to overall mechanical 

behavior of the cancer cells in the context of cancer metastasis.  

Specifically this project aims to: 

1. Model breast cancer cells traversing blood capillaries during hematogenous 

metastasis by flowing cancer cells through elastomeric microchannels, and 

investigate their cellular mechanical behavior and the role of nucleus in large 

deformation condition. 

2. Quantify the near surface mechanical properties of malignant human breast 

epithelial cells (MCF-7) and non-malignant human breast epithelial cells 

(MCF-10A) in suspension using micropipette aspiration and investigate their 

underlying actin structure differences. 

3. Investigate the structure and mechanical property of malignant human breast 

epithelial cells (MCF-7) and compare them with non-malignant human breast 

epithelial cells (MCF-10A) in adherent condition using atomic force 

microscopy and confocal microscopy. 

4. Quantify the mechanical properties of the isolated nucleus of MCF-10A and 

MCF-7 using atomic force microscopy and examine their lamin A/C structures 

using confocal microscopy. 
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By carrying out the above, we hope to find out:  

1. Whether there is any significant change in the mechanical property of the cell 

and its corresponding cytoskeletal structure as they become malignant, and 

2. Whether there is any significant change in the mechanical property of the 

nucleus as cells become malignant and its relation to overall cellular 

mechanical properties. 

In the next chapter, we will review previous work done on the mechanical properties 

of the cancer cells and cell nucleus and the techniques used in those studies. 
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Chapter 2 Literature Review  

A variety of techniques from micro to nano scale have been developed and widely 

used to investigate cellular mechanical properties of different cell types. 

In this chapter, we will first review the principles of different techniques including 

atomic force microscopy (AFM), micropipette aspiration, microfluidics. We will then 

review current studies on the mechanical properties of different types of cancer cells. 

Finally, we will review studies done on probing the mechanical properties of cell 

nucleus. 

2.1 Methods 

2.1.1 Micropipette aspiration 

Micropipette aspiration has long been widely used as one of the prevailing 

experimental techniques to study the mechanical properties of individual single cells 

(Lim, Zhou et al. 2006 a). Fig. 2.1 shows the schematic diagram of the micropipette 

aspiration set-up. The apparatus consists essentially of a hydrostatic system with two 

reservoirs, a precision syringe pump for adjusting the water level in one of the 

reservoirs (variable reservoir) to bring about a suction pressure. Fine movement of the 

micropipette was controlled by a micromanipulator.  

Basically, the technique involves exerting a hydrostatic suction pressure, ∆P, on the 

surface of a cell through a glass pipette of radius, Rp, and aspirating the cell into the 

pipette (Hochmuth 2000). By taking note of the aspirated length, L, the suction 

pressure used and the time taken, the time-dependent pressure-deformation 
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relationship can then be obtained and the mechanical properties of the cell determined 

(Zhou, Lim et al. 2005; Lim, Zhou et al. 2006 a) 

 

Fig. 2.1 Schematic diagram of the micropipette aspiration system set-up. 

Many studies have been carried out using the micropipette aspiration technique to 

investigate the overall mechanical properties of different types of cells such as 

erythrocytes, chondrocytes, leukocytes and endothelial cells (Chien, Sung et al. 1978; 

Schmid-Schonbein, Sung et al. 1981; Sato, Levesque et al. 1987; Jones, Ting-Beall et 

al. 1999; Ohashi, Hagiwara et al. 2006; Trickey, Baaijens et al. 2006) and isolated 

nucleus (Dahl, Kahn et al. 2004; Dahl, Engler et al. 2005; Rowat, Lammerding et al. 

2006).  

Besides experimental studies, a series of mechanical models have been developed to 

interpret the data (see (Lim, Zhou et al. 2006 a) for detailed review). Moreover, 

computational simulations like finite element method have been developed to analyze 
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the results obtained using micropipette aspiration and investigate their structure-

property relationship (Zhou, Lim et al. 2005; Vaziri and Mofrad 2007).  

One study even showed that the aspiration of the cell elongates the nucleus which 

suggests that the nucleus deformation may be involved in mechanotransduction via 

the transfer of strain through the actin microfilaments and microtubules and contribute 

to the overall mechanics of the cell (Ohashi, Hagiwara et al. 2006).  

2.1.2 Atomic force microscopy 

Atomic force microscopy (AFM) is currently a very powerful tool used in biological 

research as it can probe biological samples in their physiological environment. As 

shown in Fig. 2.2, the working principle of the AFM is based on a very sensitive 

cantilever which can sense forces at the pico-Newton scale between atoms on the 

sample surface and atoms on the cantilever tip. The relative position of the sample 

and the tip is controlled by a computer-controlled piezoelectric stage, and the 

deflection of the cantilever, due to the interaction between the tip and sample, is in 

turn detected by a laser beam reflected by the cantilever and recorded using a 

photodiode detector. By scanning the surface of the sample, high resolution image 

down to the nano-scale can be obtained. Also, the interaction forces between the 

sample and the tip can be measured right down to the pico-Newton range, which 

makes the AFM suitable for investigating molecular interactions.  
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Fig. 2.2 Schematic diagram of the working principle of the AFM: (a) shows the interaction of 
the atoms between the AFM tip and sample surface; (b) shows the set up of an AFM system 
(http://www.mih.unibas.ch/Booklet/Booklet96/Chapter3/Chapter3.html).  

AFM has been widely used in studies involving cell mechanics, like imaging and 

indentation and novel force measurement in molecular interaction.  

2.1.2.1 AFM imaging of cells 

The morphology of live cells (Henderson 1994; Hoh and Schoenenberger 1994; 

Legrimellec, Lesniewska et al. 1994; Hofmann, Rotsch et al. 1997; Braet, Seynaeve et 

al. 1998; Le Grimellec, Lesniewska et al. 1998; Bushell, Cahill et al. 1999; Tatsuo 

Ushiki 2000; Sinniah, Paauw et al. 2002; Braet and Wisse 2004; Pesen and Hoh 2005) 

or fixed cells (Legrimellec, Lesniewska et al. 1994; Pietrasanta, Schaper et al. 1994; 

Braet, Seynaeve et al. 1998; Weyn, Kalle et al. 1998; Sinniah, Paauw et al. 2002; 

Moloney, McDonnell et al. 2004; Pesen and Hoh 2005)  and cellular dynamics 

(Ushiki, Hitomi et al. 1999; Chen, Wang et al. 2004; McNally and Ben Borgens 2004) 

can be investigated using the high resolution imaging capabilities of the AFM. 

The major advantage of AFM compared with SEM is imaging under physiological 

aqueous condition without vacuum and the use of electrons. Although it is quite 

challenging due to the softness of the living cell, live cell imaging has been done on 

MDCK cells (polarized renal epithelial cells) (Hoh and Schoenenberger 1994; 
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Legrimellec, Lesniewska et al. 1994), chicken cardiocytes (Hofmann, Rotsch et al. 

1997), colon carcinoma cells, skin fibroblasts and liver macrophages (Braet, Seynaeve 

et al. 1998), CV-1 kidney cells (Le Grimellec, Lesniewska et al. 1998), human 

fibroblast (Bushell, Cahill et al. 1999), Rabbit corneal fibroblasts, Chang conjunctival 

cells, and transformed human corneal epithelial cells (Sinniah, Paauw et al. 2002). 

High resolution images of cell cortex of bovine pulmonary artery endothelial cells 

was also achieved (Pesen and Hoh 2005). Improvements have been made to optimize 

the AFM imaging on live cells, including decreasing imaging force to 20 -25 pN with 

indentation less than 10 nm (Le Grimellec, Lesniewska et al. 1998) and activate 

substrate to promote good adhesion between cell and substrate (Bushell, Cahill et al. 

1999). However, live cell imaging is comparatively difficult to carry out as the cell is 

very soft and usually does not adhere very well to the substrate. In light of this, Muys 

et al. proposed a technique which is known as “bioimprinttrade mark” to permanently 

capture a replica impression of biological cells by printing the cell onto 

Polydimethylsiloxane (PDMS) mold, and subsequently using the AFM to image the 

rigid medium of the PDMS mold. This method overcomes many difficulties used in 

conventional live cells imaging by transferring the cell topology onto a rigid medium 

and high resolution imaging of membrane morphological structures can be achieved 

(Muys, Alkaisi et al. 2006).  

Another alternative method is to fix the cells using different concentration of 

paraformaldehyde and glutaraldehyde or their mix (Weyn, Kalle et al. 1998; Moloney, 

McDonnell et al. 2004). One of the optimized fixative was 4% PFA (Moloney, 

McDonnell et al. 2004). Fixed cells can be imaged under dry or wet condition. Dried 

cells after strong fixation have a flattening cytoplasm and loss of nuclear structure, but 

showed clear cytoskeleton. On the other hand, wet fixed cells showed an overall 
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‘rounding’ morphology and ill-defined structure (Weyn, Kalle et al. 1998). After 

removing the plasma membrane, the internal organelle of dried cells like 

mitochondria, cytoskeletal network, nucleus and even nucleoli can be imaged by 

AFM with high resolution (Pietrasanta, Schaper et al. 1994). 

Generally, both live and fixed cell imaging have their own advantages. AFM image of 

living cells give morphology of the cells in their physiological condition, and reveal 

sub-membrane cytoskeletal elements (Hoh and Schoenenberger 1994; Braet, 

Seynaeve et al. 1998; Sinniah, Paauw et al. 2002), like stress fibers (Hofmann, Rotsch 

et al. 1997) and cell cortex (Pesen and Hoh 2005). The contrast in AFM imaging of 

live cells is contributed from the differences in local mechanical properties as plasma 

membrane deforms more than the underlying stiffer cytoskeletal filaments, which are 

in turn elevated and revealed in AFM image (Hoh and Schoenenberger 1994; Pesen 

and Hoh 2005). However, membrane structures, such as ruffles, lamellipodia, 

microvilli can only be clearly imaged for fixed cells (Hoh and Schoenenberger 1994). 

Dried cells were more easily and quickly imaged with better resolution than wet cells 

(live or wet fixed cells) (Weyn, Kalle et al. 1998). For example, Braet et al. used the 

AFM to investigate the surface and sub-membranous structures of live and fixed 

colon carcinoma cells (Braet, Seynaeve et al. 1998). AFM imaging of living cells 

revealed the presence of cytoskeleton, but detailed membrane structure can only be 

observed in the case of fixed cells.  

Besides static morphological studies, dynamic cellular behavior can also be 

investigated using the AFM. Ushiki et al. combined the AFM with a fluid chamber 

system, which provides fresh culture medium at a regulated temperature, to examine 

the cellular dynamics of the cell motion in the long time range (Ushiki, Hitomi et al. 
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1999). Chen et al. used the AFM to investigate the ultrastructure of living human 

bladder cancer cells and the dynamic change of single cancerous cell division, which 

is expected to help elucidate the mechanism of malignant transformation of normal 

bladder cells (Chen, Wang et al. 2004). AFM is also used by McNally et al. to image 

the dynamic architectures of developing neurons, and ‘real time’ images of the death 

process of the neuron were captured after physically manipulating the cell (McNally 

and Ben Borgens 2004).  

2.1.2.2 Measurements of cellular mechanical properties 

AFM offers unique advantages for investigating cell mechanics as it offers high 

resolution imaging and the ability to obtain measurements of the localized mechanical 

properties. By combining imaging and indentation modalities, and relating the spatial 

distribution of cell mechanical properties to the structure of the underlying 

cytoskeleton, Costa et al. proposed using the elastography of cells obtained from 

AFM as a disease marker (Costa 2003; Costa 2006).  

Typical AFM measurements include AFM indentation using a sharp tip (Rotsch, 

Braet et al. 1997; Rotsch, Jacobson et al. 1999; Lieber, Aubry et al. 2004) or a 

spherical probe (Mahaffy, Park et al. 2004; Smith, Tolloczko et al. 2005). Besides 

experimental studies, a lot of effort was put into interpreting the AFM indentation 

data. Costa used finite element model to investigate factors affecting AFM indentation 

such as depth, tip geometry, material nonlinearity and heterogeneity and derived the 

apparent elastic modulus as a function of those factors (Costa and Yin 1999).  

They also tried to use an alternative “pointwise modulus” approach to examine the 

indentation for subcellular mechanics of human aortic endothelial cells. They found 
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that there are two sets of material properties for two different regions, with Young’s 

modulus of 5.6 ± 3.5 kPa for regions prominent with linear structures, and 1.5±0.76 

kPa for adjacent regions (Costa, Sim et al. 2006).  

Besides adherent cells, AFM can also be used to study non-adherent cells like passive 

human leukocytes by mechanically immobilizing them in micro-fabricated wells 

(Rosenbluth, Lam et al. 2006).  

In addition to classical indentation modalities using a sharp tip, AFM was also used to 

measure bulk mechanical properties of cells on the larger length scale instead of the 

nano length scale by modifying the AFM tip from a sharp pyramid to a spherical bead 

of a different size. Canetta et al. modified the AFM probe to stretch cells thereby 

measuring their rheological properties (Canetta, Duperray et al. 2005). Lulevich et al. 

used the microsphere-modified AFM probes to compress the cell and measure the 

reaction force as shown in Fig. 2.3. The force and deformation curve showed a cubic 

relationship at small deformation (< 30%) with multiple peaks at 30%-70% 

deformation (Lulevich, Zink et al. 2006).  

 

Fig. 2.3 (A) Schematic of the cell compression experiment using a microsphere-modified 
AFM probe (B) Confocal image reveals the typical AFM probe position (Lulevich, Zink et al. 
2006). 
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2.1.3 Microfluidics studies 

Microfluidics is a novel in vitro method which can be used to mimic the flow 

behavior of cells in the micro-circulatory system.  

Microfluidic devices has been used to study hemorheology and hemolysis, like the 

deformation dynamics of erythrocyte under high shear stress (Zhao, Antaki et al. 

2006), the micro-rheology of erythrocytes as they pass through microchannels of 

dimensions similar to human blood capillaries (Sutton, Tracey et al. 1997) and the 

impact of impaired deformability of RBCs on the blood flow (Shevkoplyas, Yoshida 

et al. 2006). Blood diseases like malaria were also studied by using elastomeric 

microchannels (Fig. 2.4) which successfully mimicked the capillary blockage and 

“pitting” process of malaria infected RBCs (Shelby, White et al. 2003).  

 

Fig. 2.4 Schematic diagram showing the geometry of the microchannel and a RBC passing 
through the channel (Shelby, White et al. 2003). 

Chaw et al. used a microfluidic device to study the migratory and deformability 

capabilities of a single cancer cell. They showed that the cells were unable to migrate 

through a 3μm micro-gap, which suggested that the migratory capabilities might be 

governed by the deformability of the cells. Their experiment mimics in a way the 
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migration process of cancer cells through the endothelial barrier (Chaw, Manimaran et 

al. 2006).  

In 2006, Lee et al. have designed an on-chip erythrocyte deformability test using 

microfluidics to distinguish cancerous blood from normal blood (Lee, Bang et al. 

2007). They have defined useful parameters which are linked to the inherent 

deformability of the cancerous cells and plotted 2D and 3D graphs using these 

parameters. This proves to be effective as they can discriminate cancerous blood 

population from normal one with better sensitivity and reliability. 

Based on constriction geometry, flow rate, cell deformability, a microfluidic 

application to separate the RBCs from the suspending plasma was also proposed 

(Faivre, Abkarian et al. 2006). Microfluidics was also successfully used to filter 

circulatory tumor cells (CTCs) from blood mixture based on the different physical 

size and deformability of RBCs and tumor cells (Chen, Zhang et al. 2006; Tan, Yobas 

et al. 2009). 

2.2 Current studies 

2.2.1 Mechanical properties of cancer cells 

Mechanical properties of cancer cells have been studied using different biomechanical 

techniques like micropipette aspiration, atomic force microscopy (AFM) and optical 

stretcher, since it was found that most cancer cells are more deformable than their 

corresponding normal cells (Ward, Li et al. 1991; Thoumine and Ott 1997; Lekka, 

Laidler et al. 1999; Lekka, Lekki et al. 1999; Park, Koch et al. 2005; Suresh, Spatz et 

al. 2005). Moreover, there seems to be a direct correlation between an increase in 

deformability and the progression of a transformed phenotype from a non-malignant 
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cell line into a malignant, and metastatic cell line, which can effectively be used as a 

biomarker to detect cancer (Ward, Li et al. 1991; Guck, Schinkinger et al. 2005).  

Some evidence has shown that the change in the deformability of cells as they 

transform from being non-malignant to malignant is the result of a change in the 

structure of cytoskeleton, which may also affect metastasis when cancer cells migrate 

through extracellular matrix and endothelial barriers (Ward, Li et al. 1991; Thoumine 

and Ott 1997; Suresh, Spatz et al. 2005). However, the reason causing this 

cytoskeletal change is not fully understood.  

For example, Thoumine et al. used the micropipette aspiration technique to 

investigate the difference in mechanical properties of normal human dermal 

fibroblasts and SV40-transformed ones. They found that the apparent viscosity of 

transformed fibroblasts is 30% lower than that of normal fibroblasts, and transformed 

fibroblasts are more fragile than normal cells (Thoumine and Ott 1997). Ward et al. 

also used the same technique and found an increase in deformability as rat fibroblasts 

underwent transformation from non-malignant to malignant and metastatic cell line 

(Ward, Li et al. 1991).  

However, using micropipette aspiration, Wu et al. found that the elastic coefficients of 

hepatocellular carcinoma cells (HCC) were significantly higher than those of 

hepatocytes, which indicates that hepatocytes are more deformable than HCC cells 

(Wu, Zhang et al. 2000). They also investigated the different effects of cytoskeleton 

perturbing agents (colchicines and cytochalasin D) on the viscoelastic properties of 

both cell lines, which suggests the difference in the cytoskeleton structure is 

responsible for different mechanical property and function in these two types of cells 
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(Wu, Zhang et al. 1997; Wu, Zhang et al. 2000; Wu, Zhang et al. 2001; Zhang, Long 

et al. 2002). 

Besides studying drug effects, the role of p53 gene on deformability and metastasis of 

tumor cells were also investigated. Through micropipette experiments, it was found 

that murine erythroleukemia cells (MEL) transfected with wild-type p53 gene are 

stiffer than MEL and those transfected with mutant p53 genes, which suggested that 

they are more difficult to deform and migrate in vivo (Yao, Gu et al. 2003; Sun, Wang 

et al. 2004). 

Lekka et al. used the AFM to measure the elastic properties of different types of cells 

in their culture condition including normal cells and cancerous ones, and found that 

the Young’s modulus of normal cells was one order higher than cancerous ones 

(Lekka, Laidler et al. 1999). They also studied the effect of chitosan on the stiffness of 

non-malignant transitional ureter (HCV 29) and malignant transitional cell of urine 

bladder (T24). It was found that the treatment of chitosan can cause a decrease in the 

energy production of ATP and an increase in the Young’s modulus values (Lekka, 

Laidler et al. 2001).  

Lincoln et al. used the optical stretcher to characterize MCF-10, MCF-7 and 

modMCF-7 human breast epithelial cells and found that malignant cells can deform 

easier than non-malignant cells, and hence can be used as a marker for the diagnosis 

of cancer (Lincoln, Erickson et al. 2004; Wottawah, Schinkinger et al. 2005). 

Furthermore, Guck et al. demonstrated that the optical deformability is sensitive 

enough to distinguish between cells of different mechanical properties. Mechanical 

testing of MCF-10 (benign tumor), MCF-7 (adenocarcinoma, non-metastatic), MDA-

MB-231 (Highly metastatic) breast cell lines showed that the deformability of cells 
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increases from non-malignant to malignant cells and also from non-metastatic to 

metastatic state, which indicates the mechanical properties of cells can be correlated 

to malignant transformation (Guck, Schinkinger et al. 2005). However, they only 

provided a measure of the relative cell stiffness by defining “stiffness” to be in terms 

of the ratio of the dimensions of major and minor axes of the cell prior to and during 

stretching. They found that human cancerous breast cell could stretch to about 5 times 

more than their non-cancerous counterparts (Lincoln, Erickson et al. 2004). 

2.2.2 Mechanical properties of the cell nucleus 

As the importance of nuclear structure and its function in cells, especially in 

understanding mechanotransduction becomes apparent, an increasing number of 

studies have been carried out to investigate the structure and mechanical properties of 

the nucleus. For example, Guilak et al. (Guilak 2000; Guilak, Tedrow et al. 2000) 

used the technique of micropipette aspiration to study the viscoelastic properties of 

mechanically and chemically isolated nuclei of articular chondrocytes. They found 

that isolated nucleus behaves similar to the cytoplasm in that it can be treated as a 

viscoelastic solid material, but the nucleus is 3-4 times stiffer and twice as viscous as 

the cytoplasm, which suggests that the nucleus may contribute mainly to the 

inhomogeneity of the apparent mechanical properties of the whole cell. Also, the 

mechanically isolated nucleus has a significantly higher equilibrium modulus than the 

chemically isolated nucleus. This may be due to the partial disruption of the nuclear 

matrix of the membrane by the chemical which was used to isolate the nucleus.  

Micropipette aspiration was also used by Deguchi et al. to investigate the mechanical 

properties of the isolated endothelial nucleus under fluid shear stress, and was found 

to be significantly higher than that of the control nucleus in normal condition without 
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the presence of shear stress. Their results suggested that the structure of the nuclei had 

underwent remodeling due to the shear stress and the nucleus may be the main 

intracellular compression-bearing organelle (Deguchi, Maeda et al. 2005).  

In addition, Knight et al. used confocal microscopy to examine the nucleus 

morphology of chondrocyte compressed in alginate constructs. They found that the 

deformation of the nucleus is less than the cell and the deformation is reduced 

significantly after 25 minutes (Knight, Bravenboer et al. 2002).  

On the other hand, Tseng et al. used particle nanotracking to quantify the micro-

organization and the viscoelastic properties of the nucleus in Swiss 3T3 fibroblasts. 

They also found that the intranuclear region is stiffer than the cytoplasm and more 

elastic than viscous, which shows a type of strong solid-like behavior (Tseng, Lee et 

al. 2004).  

More information on nuclear mechanics is also needed to understand the force-

induced changes in gene expression and the subsequent remodeling of the nuclear 

architecture in the context of cell development and disease. Dahl et al. used 

micropipette aspiration combined with fluorescent labeling to study the structure of 

protein-lamin B in an isolated nucleus, which are shown to contribute to the 

viscoelastic properties of the isolated nuclei. By comparing the unswollen with the 

swollen nuclei, they showed that chromatin is a primary force-bearing element in 

unswollen nuclei, whereas lamina sustained much of the load for swollen nuclei (Dahl, 

Engler et al. 2005). Mutations on LMNA, the gene encoding A type lamins, can cause 

a premature aging disease known as Hutchinson-Gilford progeria syndrome. Their 

results have shown that reduced deformability of the nucleus can cause misregulation 

of mechanosensitive gene expression (Dahl, Scaffidi et al. 2006). 
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Besides experimental studies, Vaziri et al. used finite element modeling to study the 

mechanics of the nucleus in a micropipette aspiration experiment. In their model, the 

nucleoplasm is treated as a viscoelastic Maxwell material. On the other hand, the 

nuclear envelope, which comprises three layers, is modeled in such a way that the 

inner (first layer of the nuclear envelope) and outer nuclear membranes (second layer) 

are treated as a modified Maxwell material and nuclear lamina (third layer) is treated 

as a linear elastic material. This computational model is validated by comparing with 

the experimental results from Guilak and Denguchi (Vaziri and Mofrad 2007). Using 

a similar computational model, they also studied the AFM indentation carried out on 

an isolated nucleus, and the role of individual nuclear elements, namely inner and 

outer membranes, nuclear lamina, and nucleoplasm, as well as the loading and 

experimental factors such as the indentation rate and the probe angle (Vaziri, Lee et al. 

2006).  

2.3 Summary 

Standard techniques including AFM, micropipette aspiration and microfluidics have 

been used to investigate single cells or isolated nuclei. Although there have been 

many studies done to investigate the mechanical properties of cancer cells, there are 

relatively few studies carried out to investigate the structure and mechanical 

properties of the nucleus of cancer cell and its role in contributing to the cellular 

structure and mechanical behavior in the context of cancer cell mechanics and 

metastasis. 

Hence, it is important to obtain the structure-property relationship of the nucleus and 

its contribution to the overall cellular structure and mechanical behavior. 
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Chapter 3 Microfluidics Study of Breast Cancer Cells in Suspension 

3.1 Introduction 

Metastasis is the predominant cause of death in cancer. To effectively treat cancer, the 

cancer cells must be detected at the earliest possible stage before it metastasizes to 

other parts of the body. Hence, cell stiffness is proposed as a biomarker which can 

allow us to identify cancerous cells with high sensitivity so that it can be diagnosed 

and treated early. 

Moreover, understanding mechanical behavior of cancer cells may shed light on the 

mechanism of cancer metastasis. The mechanical behavior of cancer cells is important 

as mechanical factors are known to play an important role in influencing the 

metastatic process (Chambers, Groom et al. 2002). In the process of metastasis, 

cancer cells will undergo large deformation to traverse small capillaries and their 

deformability is an important factor. In another way, it is now known that the arrest of 

cancer cells at the site of target organs is essential for the success of metastasis. This 

trapping of cancer cells has been attributed to physical factors such as the relative 

sizes of cells and capillaries, the blood pressure in the organ and the deformability of 

the cells (Chambers, Groom et al. 2002; Yamauchi, Yang et al. 2005).  

As reviewed earlier, prior work on breast cancer cells includes using a dual-beam 

optical stretcher to study the deformability of single suspended human epithelial 

breast cancer cell (Guck, Schinkinger et al. 2005). The cell was first trapped using the 

optical forces from two divergent laser beams which gave a zero net force and the cell 

was held stationary. The trapped cell was subsequently stretched along the laser beam 

axis when a higher laser power was applied. They found that cancerous MCF-7 breast 

epithelial cells deformed more than the normal MCF-10 breast epithelial cells.  
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Lincoln et al. had also used the optical stretcher to deform cells and their results 

showed that cancer cells stretched significantly five times more than normal cells and 

metastatic cancer cells could stretch up to twice as much as non-metastatic cancer 

cells (Lincoln, Erickson et al. 2004). This could mean that optical deformability could 

be used as a biomarker to differentiate cancer cells from healthy cells, and could even 

distinguish metastatic from non-metastatic cancer cells. Lincoln et al. later improvised 

the setup and combined both optical stretcher and microfluidic cell delivery system to 

give a novel microfluidic optical stretcher (Lincoln, Schinkinger et al. 2007). They 

then performed experiments on MCF-10A and modMCF-7 cells (cancerous breast 

epithelial cell which are highly metastatic) to study their time-dependent response to a 

constant stress. Their results showed that modMCF-7 cells displayed a higher relative 

axial strain than normal MCF-10A cells. 

Although the optical stretcher has the ability to probe the mechanical properties of a 

single suspended cell as a whole, a drawback however is that the forces imposed on 

the cell by the laser is not sufficiently large enough to promote significant 

deformability which is necessary to simulate in vivo conditions encountered by 

migrating cancer cells (Suresh 2007). Moreover, the direct exposure to a laser beam 

and its effects on the cells is another limitation of the technique (Suresh 2007). Hence, 

there is a need to search for alternative techniques which can allow us to study the 

mechanical properties of single cells in physiological conditions. Microfluidic 

technology has emerged as an attractive alternative because it can provide an 

environment to mimic in vivo processes such as migration of cells through capillaries 

during metastasis and study the overall cell mechanical behavior as a whole.  
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In this chapter, in an attempt to compare the overall deformability of benign and 

cancerous breast epithelial cells under large deformation, we created an in vitro 

capillary-like microenvironment using microfluidics to mimic the behavior of breast 

cancer cells as they traversed the capillaries during metastasis. By taking quantitative 

measurements of several flow parameters such as entry time, elongation index and 

transit velocity, we seek to distinguish cancer cells from healthy cells based on their 

differences in deformability using microfluidics. Moreover, the importance of nuclei 

in the cellular mechanical behavior is demonstrated as cancer cells undergo large 

deformation. This chapter lays the foundation for further studies on the structure and 

mechanical properties of cancer cells and isolated nucleus. 

3.2 Methods 

3.2.1 Cell culture and preparation of cell samples 

MCF-10A is a standard model non-cancerous human mammary epithelial cell and is 

derived from the benign breast tissue of a 36-year-old woman with fibrocystic disease. 

MCF-7 corresponds to a human adenocarcinoma cell line whereby the cell is 

cancerous and it is derived from the mammary gland of a 69-year-old female 

Caucasian. These are gifts from the A*STAR’s Institute of Microelectronics 

(Singapore) and the life science institute, National University of Singapore 

(Singapore), respectively. 

MCF-7 cell lines were cultured in DMEM (Dulbecco’s Modified Eagle’s Medium) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin 

(Invitrogen, USA), while MCF-10A was cultured in MEGM (mammary epithelial 

growth medium). Both cell lines were maintained at 37 °C in a 95% air / 5% CO2 

incubator (SANYO, Japan). Cells were cultured until 80% confluent and subsequently 
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harvested using trypsin. They were then washed with their culture medium, 

centrifuged down and resuspended in their medium. Cells in a suspension state were 

then used for the microfluidics experiments. 

3.2.2 Live nuclear labeling 

For live nuclear labeling, cells were incubated with 1 µM Hoechst 33342 stain for 10 

minutes at 37 °C, and then washed twice in PBS. After that, cells were harvested for 

microfluidics experiments using trypsin as described in section 3.2.1.  

3.2.3 Microfluidics device fabrication 

A silicon wafer master mould which consists of the design of the microfluidic channel 

was fabricated using electron beam and lithography techniques (Institute of 

Microelectronics, Singapore). Poly (dimethylsiloxane) (PDMS) was first pre-mixed 

with a curing agent (Sylgard 184, Dow Corning) in the ratio of 10:1 and then poured 

onto the silicon wafer master mould and degassed in a desiccator. After the PDMS 

has been cured at 80 °C for 2 hours, it is peeled off from the master and 2 holes were 

punched in each reservoir using a modified syringe tip (0.5 mm diameter) as shown in 

Fig. 3.1 The PDMS channels were subsequently bonded tightly onto glass coverslips 

using an air plasma machine (Harrick Plasma Cleaner, USA).  

 

Fig. 3.1 The bonded PDMS microchannel is 150 μm in length and has a square cross section 
area of 10 μm × 10 μm.  
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3.2.4 Pressure differential system setup 

The burette setup (Fig. 3.2) that was used to drive the cells through the channel was 

based on the working principles of a manometer. Briefly, the pressure generator setup 

involves the use of 2 identical burettes held at the same level with a retort stand. The 

burettes were filled with phosphate buffer solution (PBS) and the pressure generated 

in the microfluidic channels was governed by a simple mathematical equation: 

ghP ρ=∆                        (3.1) 

where P∆  is the pressure difference between the burettes, h  is the height difference 

of PBS between the burettes, ρ is the density of 1× PBS and g  is the gravitational 

acceleration. 

 

Fig. 3.2 Diagram of the PBS column-based microfluidic system. 
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The bonded PDMS microchannel was connected to the burette setup and syringes 

using interconnect tubes through the punched holes. It was then mounted onto the 

stage under an inverted light microscope with mercury lamp attached (Leica DC 500, 

Germany). The aperture setting was set at 40× throughout the course of this study to 

give us large field of vision and good resolution at the same time. 

A high speed camera (Quantum 512SC, USA) was mounted onto the microscope and 

imaging software MetaMorph (Molecular Devices, Sunnyvale, CA, version 7.1) was 

used to capture and process the video images. Differential interference contrast (DIC) 

was selected to enable easy identification of cells passing through the channel.  

Before the sample was injected into the microchannel, the PDMS reservoirs and 

microchannel were filled with a diluted solution of bovine serum albumin (BSA) (4% 

wt) at 37◦C. It was then left to stand for 1 hour. The reservoir and the microchannel 

were coated with BSA to prevent any non-specific adsorption of the cells to the 

channel wall during the course of the experiment. 

3.2.5 Cell flow parameters 

Several parameters which may be useful for assessing the deformability of cells 

during metastasis have been defined. A tracking application in MetaMorph will be 

used to track the movement of the cell in real time as it squeezes into and through the 

microchannel. Based on the distance-to-origin profile plotted for each cell, the 

parameters can then be obtained from the graph. Listed below are short descriptions 

of the defined parameters. 
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3.2.5.1 Transit Velocity 

Transit velocity (equation 3.2) is the average velocity of the cell when passing 

through the microchannel. It is calculated from the equation :  

Transit velocity  transittransit tLV /=                                         (3.2) 

Where L  is distance travelled by the cell and transitt  is the time for the cell to travel 

the same distance L . 

3.2.5.2 Entry time 

Entry time (equation 3.3) is defined as the time taken for the cell to deform and enter 

the microchannel: 

Entry time   ifentry TTT −=                                                 (3.3)   

where iT is the time when the cell touches the microchannel before entering, and fT  is 

the time when the cell has just wholly deformed into the microchannel but has not 

transverse the channel yet. 

3.2.5.3 Elongation index  

Elongation index (equation 3.4) is the ratio of the elongated length of each deformed 

single cell in the microchannel ( l ) to the initial diameter of the cell before squeezing 

into the channel ( D ): 

   Elongation index  DlEI /=             (3.4) 
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3.3 Results and discussion 

MCF-7 and MCF-10A cells were driven to transverse through PDMS microchannels 

of 150 μm in length and square cross section area of 10 μm by 10 μm. The pressure 

difference used is a height of 5cm PBS (490.5Pa) and at room temperature of 22oC - 

24oC. 

3.3.1 Typical distance-to-origin cell profile  

A distance-to-origin cell profile represents the distance travelled by the cell with time 

as it squeezes and flows through a microchannel. A typical profile would be similar to 

the one shown in Fig. 3.3 In this example, the MCF-7 cell has an entry time of 0.858 

seconds. From the graph, this corresponds to a non-linear entry time region before 

0.858 seconds and an eventual straight linear portion after the entry time. This means 

that the cell was travelling across the microchannel with a constant transit velocity 

after it has fully deformed into the channel. 

 

Fig. 3.3 Plot of a distance-to-origin profile of a single typical MCF-7 cell. 

The profile can be further subdivided into two regions, the entry region and the region 

of transit across the microchannel for a more detailed analysis. 
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3.3.1.1 Entry time region 

 

Fig. 3.4 Plot showing the entry time region of a single typical MCF-7 cell. 
 

 

Fig. 3.5 Optical images showing the entry of a single MCF-7  cell into  a 1 0μm by 1 0 μm 
microchannel (Scale bar represents 10 µm). 

Fig. 3.4 shows a magnified view of the period of cell entry and Fig. 3.5 shows the 

corresponding snap shots of the MCF-7 cell squeezing into the microchannel. When 

the cell first touches the channel as shown in Fig. 3.5 (a), the time is set to zero and 

this corresponds to the origin of the graph shown in Fig. 3.4. 

From Fig. 3.4, we can see that the profile can be further divided into three distinct 

portions. Firstly, as the cell is squeezed into the microchannel as shown in Fig. 3.5 (a), 

the graph begins with a steep slope and this gradually decreases. This means that the 

cell initial entry velocity into the channel is the highest at the beginning but slows 

down as the cell attempts to squeeze into the channel. The entry velocity may slow 

down due to the increased resistance encountered by the cell. This initial non-linear 
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portion corresponds to the optical images shown in Fig. 3.5 (a) and (b). 

This non-linear region lasts only for a short duration and it is followed immediately 

by a linear region with a gentler slope. This linear portion of the graph is also the 

longest in the entire entry-time region. This region matches the optical images in Fig. 

3.5 (b) and (d) which showed the main part of the cell squeezing into the channel. 

This region of the graph may correspond to the nucleus possibly squeezing into the 

channel because the nucleus is known to be stiffer than the cytoplasm and will take a 

longer time to deform into the microchannel (Smith, Tolloczko et al. 2005; Vaziri and 

Mofrad 2007).  

Lastly, the slope increases again at the final region, corresponding to an increased 

entry velocity at the end. This may be due to the remaining cytoplasm deforming into 

the microchannel after the nucleus has fully entered the channel. This final region is 

represented by Fig. 3.5 (d) to (e) and the instantaneous time at the position of the cell 

in Fig. 3.5 (e) corresponds to the entry time after the whole cell has fully deformed 

into the channel. 

3.3.1.2 Linear region 

  

Fig. 3.6 Plot showing the transit region of a typical MCF-7 cell travelling through the length 
of the microchannel. 
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As shown in Fig. 3.6, after the cell has fully entered the channel, the curve will follow 

a linear region. This indicates that the deformed cell was moving at almost constant 

velocity along the microchannel. Thus, the transit velocity will be equivalent to the 

gradient of the trend line, which is 131.85μm/sec.  

From Fig. 3.7, it can be observed that once the cell is deformed inside the channel, it 

will maintain the elongated shape throughout as it transverse across the microchannel. 

 
 

Fig. 3.7 Optical images showing the position of a typical deformed MCF-7 cell in the 
microchannel at different frames (Scale bar represents 10 µm). 
 

3.3.1.3 Comparison of distance-to-origin profiles between MCF-7 and MCF-10A 

   

Fig. 3.8 Plot showing the comparison of distance-to-origin profile of MCF-7 and MCF-10A. 
The cells are chosen such that their sizes are approximately similar as this will give a better 
comparison. 
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From Fig. 3.8, the general shape of the profiles of the two types of cells is similar.  It 

will always begin with a long entry region, followed by a steep linear transit region. 

The long entry region can also be further subdivided into 3 distinct portions as 

mentioned in 3.1.1, characterized by a long linear slope at the centre. 

As shown in Fig. 3.8, the entry region for MCF-10A is much longer, which means 

that the cell takes a longer time to deform completely into the channel.  As the cell 

sizes are roughly the same for both cell types, this may indicate that MCF-10A is less 

deformable than MCF-7. This is consistent with the results shown by Guck et al. who 

performed an experiment using the optical stretcher and found that cancerous MCF-7 

breast epithelial cells deformed more than the benign MCF-10 breast epithelial cells 

with the same laser intensity (Guck, Schinkinger et al. 2005). Hence, cancerous MCF-

7 cells are more deformable than benign MCF-10A cells. 

However, the linear portion of the graph in the transit region for MCF-10A has 

similar gradients as compared with MCF-7. Hence, this may suggest that the transit 

velocities of the two types of cells may be similar, even though their entry time varies 

greatly. This will be discussed in more details in section 3.3.4. 

3.3.1.4 Quantitative analysis of parameters 

A sample size of 50 cells from MCF-7 and MCF-10A were collected for analysis. The 

experimental conditions used are pressure height difference of 5cm PBS and 

temperature at 22oC – 24oC. To validate the defined parameters as mentioned earlier, 

their distribution was employed as a means of studying the deformability between 

MCF-7 and MCF-10A. The distributions of these parameters such as entry time, 

transit velocity and the elongation index were measured and summarized in Table 3.1. 
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Statistical analysis was performed using the Student’s independent t-test for the entry 

time, the elongation index and the transit velocity. Statistical significance was 

accepted at p <0.05. Evaluation shows that the entry time and elongation index for the 

MCF-7 and MCF-10A cell lines were statistically different but transit velocity 

between these two cell lines were statistically the same. This shows that there is 

actually a difference in entry time and elongation index between these two cell types 

which may be due to the differences in their cell stiffness. 

Table 3.1 Evaluation of cell deformability by Entry time, Elongation index, Transit 
velocity using t-tests 

 
 Entry time (±SE) 

(sec) 
Elongation index 
(±SE) 

Transit velocity (±SE) 
(μm/sec) 

MCF -7 0.433 (±0.045) 1.281(±0.01505) 177.3(±9.836) 

MCF-10A 1.698(±0.201) 1.231(±0.01191) 187.0(±7.920) 

P(<0.05) , 
N=50 cells 1.07364E-07 0.01917 0.4441 

3.3.2 Cell elongation 

 

Fig. 3.9 Plot showing the scatter plot of elongation index against cell size. 
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From Fig. 3.9, it was observed that MCF-7 cells generally have higher elongation 

indices as compared with MCF-10A for the same cell sizes. As the elongation index 

provides information on the elasticity and stiffness of cell in the direction of the 

stretch, this indicates that cancerous MCF-7 cells elongate more in the microchannel 

as compared to benign MCF-10A cells. This result is also consistent with findings by 

Lincoln et al. who have used the optical stretcher to stretch both MCF-7 and MCF-

10A cell lines. They have found that MCF-7 cells can stretch five times more than 

normal cells (Lincoln, Erickson et al. 2004). 

3.3.3 Entry time 

The entry time was also plotted against the elongation index as shown below. 

Elongation index was used as it will normalize the size of the cell and this allows us 

to make a fair comparison of the entry time between MCF-10A and MCF-7. 

 

Fig. 3.10 Plot showing the scatter plot of the entry time against elongation index. 
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steeper than MCF-7. This indicates that MCF-10A on average has a longer entry time 

as compared to MCF-7. This is consistent as benign MCF-10A cells were known to 

be stiffer than cancerous MCF-7 cells and will therefore take a longer time to squeeze 

into the microchannel.  

However, it is important to note that the parameter entry time depends on both the cell 

deformability and the friction encountered by the cell during its entry into the 

microchannel. Hence, transit velocity was measured and analyzed between these two 

cell lines in the following section which acts as a control and provide information on 

the friction encountered by these cells. 

3.3.4 Transit velocity 

 

Fig. 3.11 Plot showing the scatter plot of transit velocity against elongation index. 

Fig. 3.11 shows a plot of transit velocity against elongation index for MCF-7 and 

MCF-10A cell lines. From the graph, most of the points are actually randomly 

scattered in the transit velocity region ranging from 100 to 300 μm/sec. This seems 

unusual as it is first thought that a bigger cell would have a bigger cell surface area in 

contact with the channel wall. This would lead to increased friction and may slow 
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down the transit velocity significantly. However, experimental data shows that cell 

size and cell type do not actually have a clear relationship with the cell transit velocity 

across the channel. This result is consistent with the work done by Lee et al. who have 

also studied the transit velocity of cancerous blood using a microfluidics chip (Lee, 

Bang et al. 2007). In their work, the transit velocities of the deformed cancerous red 

blood cells were measured through the microchannel and most of the points were 

randomly scattered when transit velocity was plotted against elongation index. Hence, 

this may suggest that transit velocity is independent of cell size when the cells are 

flowing through the microchannel. 

This indicates that the BSA coating of the channel wall was effective. The PDMS 

reservoirs and microchannel were incubated with BSA (4% wt) for 1 hour before the 

experiment. This is to prevent any non-specific adsorptions of the cells to the 

reservoirs so that the cells can flow smoothly. The coating may also help to reduce 

friction between the deformed cells in the channel with the channel walls, making the 

effect of friction negligible.  Hence, transit velocity will not be affected considerably 

by the cell size. 

As cancerous MCF-7 cells are more deformable, the deformed cells will exert less 

pressure on the channel wall and there will be less friction between the cell surface 

and the channel wall. For the stiffer MCF-10A cells, they will exert a higher pressure 

when deformed inside the channel, leading to a higher friction between the cells and 

the channel walls. The average transit velocities of MCF-7 and MCF-10A cells were 

then calculated from the samples and shown in Fig. 3.12. It turned out that the average 

velocities for MCF-7 and MCF-10A are quite similar even though cancerous MCF-7 

cells are more deformable than benign MCF-10A.  
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Fig. 3.12 Histogram showing the average transit velocities of MCF-7 and MCF-10A. 

The experimental data have shown that the average velocities of these two cell lines 

are similar despite the difference in cell stiffness. This indicates that the frictions 

encountered by these two cell linings are actually similar. It may be due to the BSA 

coating which reduces the friction significantly between the channel walls and the 

area of the cell in contact with them.  

Hence, measurement of the transit velocities of cells across the microchannel serves 

as a control to study the friction encountered by the cells. From the results, it can be 

shown that the friction encountered by MCF-7 and MCF-10A are similar as both type 

of cells have similar transit velocities despite having different stiffness.  

This also allows us to eliminate the friction factor in the analysis of entry time. As the 

entry time of cells depends on the cell deformability and the friction encountered by 

the cell, it can now be concluded that entry time is affected mostly by the cell stiffness 

of MCF-7 and MCF-10A. Thus, it can be inferred that MCF-7 cells are more 

deformable than MCF-10A based on the difference in the entry time. It can also be 
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concluded that entry time is a useful parameter to distinguish the differences in 

deformability between these two cell lines. 

3.3.5 Role of nuclei in large deformation of cancer cells  

 

Fig. 3.13 Optical images showing the nucleus undergoing large deformation when the cell 
(MCF-7) passes through the microchannel (bright region in the center showing the stained 
nucleus, and the outer boundary showing the cell).  

Breast cancer cells with fluorescence labeled nucleus were passed through the same 

microchannel and the deformation of nucleus was monitored. As shown in Fig. 3.13, 

the nucleus undergoes extremely large deformation from a round shape (Fig. 3.13 A) 

to an elongated shape (Fig. 3.13 F) when the cell squeezes into the microchannel. The 

nucleus is relatively large as it occupies almost half space of the whole cell as seen in 

A B 

C D 

E F 
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Fig. 3.1.3 B - E. This experiment mimics the cancer cell nucleus undergoing large 

deformation when the cancer cell traverse small capillaries which is consistent with in 

vivo studies by Yamauchi et. al (Yamauchi, Yang et al. 2005). Most importantly, this 

experiment demonstrates the importance of nucleus in the overall deformability of 

cancer cells as how nuclei deform will affect significantly how fast breast cancer cells 

get squeezed into the channel. The deformability of cancer cell nucleus will be 

investigated in the later chapter. 

3.4 Conclusions 

Here, an in vitro capillary-like microenvironment was created using microfluidic 

technology to mimic the cells traversing small capillaries and study the overall 

deformability of breast cancer cells under large deformation. Benign breast epithelial 

cells (MCF-10A) and cancerous breast cells (MCF-7A) were driven by static pressure 

to deform and pass through a micro-fabricated fluidic channel. Quantitative 

parameters such as entry time, elongation index and transit velocity, which were 

related to the deformability of the cell, were defined and measured quantitatively 

using MetaMorph software and a high-speed camera.  

The two different cell lines were found to have similar transit velocities. This 

indicates that transit velocity is not affected by the cell size and cell type. It also 

suggests that friction encountered by cells of different stiffness may be the same in the 

microchannel.  MCF-10A cells were also found to have higher entry times than MCF-

7 cells of similar cell sizes.  As friction does not affect the different cell types, it 

shows that the entry time is only affected by the deformability of the cells. Hence, 

MCF-10A is stiffer than MCF-7 cells based on the difference in entry times. These 
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results were consistent with past studies which also investigated the deformability of 

breast cancer cells using other techniques.  

2D graphs using entry time, transit velocity and elongation index were also plotted 

and showed a synergistic effect as there is a clear distinction between the scattered 

data points of MCF-7 and MCF-10A. This is useful as it indicates that the simple 

microfluidic design used is able to distinguish the difference in stiffness between 

benign MCF-10A cells and cancerous MCF-7 cells with 2D plot involving the defined 

parameters. Hence, cell deformability as demonstrated in microfluidics can potentially 

serve as a useful biomarker to identify cancerous cells from a sample population and 

thus have the potential for use in cancer diagnostic applications. 

Especially, the importance of nucleus in the cellular mechanical behavior is 

demonstrated. However, in this study, cancer cells undergo large deformation and 

reflect their overall cellular mechanical properties when they pass through the 

microchannel, which are generally contributed by the whole cellular structure. To 

further understand structure-property relationship of cancer cells, specifically probing 

different parts of cancer cells especially nucleus and investigate their underlying 

structure is needed. 
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Chapter 4 Micropipette Aspiration Study of Breast Cancer Cells in 

Suspension 

4.1 Introduction 

In the previous chapter, microfluidics study, which mimics breast cancer cells 

traversing capillaries, gives us a good comparison of overall deformability between 

MCF-7 and MCF-10A at high throughput. However, it is a relative comparison of the 

overall mechanical behavior under large deformation. And it is an integrated 

deformability contributed from the whole cell, which cannot be attributed to specific 

cellular structural components. To better understand the structure-property 

relationship of breast cancer cells, probing the mechanical property of breast cancer 

cells in different parts and investigating its corresponding structural components is 

needed.  

Studying the structure-mechanical property relationship of living cells can contribute 

towards better understanding of cell physiology and pathophysiology as they are 

known to change during the onset of certain diseases including cancer. As reviewed in 

the previous chapter, the deformability of normal and cancerous breast epithelial cells 

was first investigated by Lincoln et al. and Guck et al. using the optical stretcher 

(Guck, Ananthakrishnan et al. 2000; Guck, Ananthakrishnan et al. 2001; Lincoln, 

Erickson et al. 2004; Guck, Schinkinger et al. 2005). However, they only provided a 

measure of the relative cell stiffness by defining “stiffness” to be in terms of the ratio 

of the dimensions of major and minor axes of the cell prior to and during stretching. 

They found that human cancerous breast cell could stretch to about 5 times more than 

their non-cancerous counterparts (Lincoln, Erickson et al. 2004). In our study 

presented in the previous chapter, microfluidics study showed consistent results as 
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theirs. But it still only gives us a relative cellular deformability defined by how fast a 

cell deform into a microchannel. Moreover, as cells undergo large deformation when 

they pass through the microchannel, the difference in overall deformability could not 

be easily attributed to any specific cellular structure.  

To better understand cancer cell mechanics and its role in cancer metastasis, it is 

important to investigate its underlying structural change compared with normal cells. 

Altered genetic composition and protein expression in cancer are responsible for 

changes in intracellular structure and cellular deformability (Fuchs and Weber 1994; 

Suresh, Spatz et al. 2005). This not only affects cell motility, adhesion and interaction 

but also cell growth and division (Chen, Mrksich et al. 1997; Boudreau and Bissell 

1998; Huang and Ingber 1999; Alberts, Johnson et al. 2002; Lodish, Berk et al. 2003).   

To better understand structure-mechanical property relationship of cancer cells, the 

aim of this chapter is to probe the near surface mechanical property of breast cancer 

cells using micropipette aspiration and investigate its corresponding underlying actin 

structure. Benign and cancerous breast cells were aspirated into pipettes of different 

sizes at room and physiological temperatures, while filamentous actins, which are 

major components of the cytoskeleton, were imaged using confocal microscopy.  

4.2 Methods 

4.2.1 Preparation of cell samples 

Cell culture and sample preparation were the same as that for microfluidics 

experiment, as details in section 3.2.1. Cells in suspension were then used for the 

micropipette aspiration experiments. 
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4.2.2 Confocal fluorescence imaging 

For confocal fluorescence imaging, the cells were seeded on 12 mm coverslips and 

then incubated for half an hour after they had adhered on the coverslips while still 

preserving their spherical shape. The cells on coverslips were fixed using 4% 

paraformaldehyde (Sigma-Aldrich, USA) for 15 minutes. After washing the cells 

three times with PBS, the cells were permeabilized using 0.2% Triton-X 100 (Bio-

Rad Laboratories, USA) for 10 minutes. Finally, the filamentous actin (F-actin) was 

labeled with 0.1 µg/ml TRITC-Phalloidin (Sigma-Aldrich, USA) for 30 minutes and 

subsequently the nuclei were labeled with 5µg/ml DAPI (Sigma-Aldrich, USA) for 5 

minutes. Fluorescence images were taken using a confocal microscope (Nikon 

TE2000, Japan). 

4.2.3 Micropipette aspiration setup 

The micropipette aspiration system used in this chapter is, in principle, similar to 

those used by others (see (Hochmuth 2000) for review). As shown in Fig. 4.1, the 

apparatus consists essentially of a hydrostatic system with two reservoirs, a precision 

syringe pump (Cole-Parmer, USA) for adjusting the water level in one of the 

reservoirs (variable reservoir) to bring about a suction pressure, a pressure transducer 

and a micropipette holder on a microscope stage. The cell suspension was placed in a 

glass chamber with side openings, obtained by sandwiching six layers of parafilm 

between two glass coverslips. The openings allow two micropipettes to enter the 

chamber from opposite sides. Fine movement of the micropipette was controlled by a 

micromanipulator (Eppendorf AG, Germany). Suction pressures can then be applied 

to the surface of a cell through a micropipette by simply adjusting the water level in 

the variable reservoir. The suction pressure used was measured from a pressure 
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transducer which has a resolution of 2.5 Pa (Validyne Engineering Corp., USA). The 

cells were viewed with an inverted microscope system (Leica, Germany), using a 63 

times objective (NA = 0.7). Microscopic images were taken with a digital camera 

(Leica, Germany). Image dimensions were analyzed with the IM 1000 Leica imaging 

software. Image acquisition was started simultaneously with the aspiration of the cell. 

To carry out the tests at physiologic temperature, the glass chamber was filled with a 

cell suspension and placed on a heating stage which is connected to a temperature 

controller (Leica, Germany).  

 

Fig. 4.1 Schematic diagram of the micropipette aspiration system set-up. 

Micropipettes with diameters ranging from 6–9 μm were made from borosilicate glass 

capillaries with an outer and inner diameters of 1.00 mm and 0.75 mm, respectively 

(World Precision Instruments, USA). The glass capillaries were first heated and 

pulled with a micropipette puller (Sutter Instrument, USA), and forged in a 
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microforge (ALA Scientific Instruments Inc., USA). The tips of the glass pipettes 

were coated with Sigmacote (Sigma Chemical Co., USA), which forms a hydrophobic 

thin film to prevent cell adhesion.   

4.2.4 Data analysis of micropipette aspiration 

The mechanical properties of living cells such as erythrocytes, chondrocytes, 

leukocytes and endothelial cells have been measured using micropipette aspiration 

(Chien, Sung et al. 1978; Schmid-Schonbein, Sung et al. 1981; Sato, Levesque et al. 

1987; Jones, Ting-Beall et al. 1999) and it remains as one of the prevailing 

experimental techniques used to assess the mechanical properties of cells (Guck, 

Schinkinger et al. 2005).  

 
Fig. 4.2 (a) Typical sequential images of a MCF-10A cell undergoing a ramp test at suction 
pressure rate of 60 ml/hr and (b) a schematic diagram showing the aspiration of a cell using a 
micropipette.  

(a)

(b)
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The technique basically involves exerting a hydrostatic suction pressure, ∆P, on the 

circular surface of a cell through a glass pipette of radius, Rp, and aspirating the cell 

into the pipette (Hochmuth 2000) (see Fig. 4.2). By taking note of the aspirated length, 

L, the suction pressure used,  ∆P, and the time taken, the time-dependent pressure-

deformation relationship can then be obtained and the mechanical properties of the 

cell determined (Zhou, Lim et al. 2005; Lim, Zhou et al. 2006 a). 

Because we are using large pipettes and small deformation, homogeneity is assumed 

to be still valid. In micropipette aspiration, the elastic moduli of cells are often derived 

from experimental results through the use of suitable mechanical models. In our case, 

the linear elastic half-space model (Theret, Levesque et al. 1988), which assumes that 

the cell behaves like an incompressible elastic medium with a half-space, was used to 

determine the apparent shear moduli of both MCF-7 and MCF-10A. In the half-space 

model (Theret, Levesque et al. 1988), using a pipette of radius RP, the distance the cell 

is aspirated or projection length, LP, is proportional to the aspiration pressure, ∆P, and 

inversely proportional to the apparent elastic shear modulus, G, of the cell. The model 

can be written as equation 4.1 or 4.2: 

0.334
2

p P
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L P P
R G Gπ

Φ ∆ ∆
= ≈ , or                                           (4.1) 
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P
P L

PRG 334.0                                                    (4.2) 

where ΦP is a function of the ratio of pipette wall thickness to pipette radius. Here, ΦP 

≈ 2.1 for the pipettes used in this study (Zhou 2006). The half-space model is 

attractive because the elastic modulus can be easily quantified from the aspiration data 
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(Theret, Levesque et al. 1988), and its ability to yield a consistent estimation of the 

modulus during micropipette aspiration tests when comparing between non-adherent 

cells of a similar geometry and under identical probing conditions (Theret, Levesque 

et al. 1988; Zhou, Lim et al. 2005; Zhou 2006). 

4.3 Results and discussion 

Aspiration tests on MCF-10A were carried out at room temperature of 21 °C. 

Different pipettes, ranging from 6–9 μm in diameter, were used in our study. The 

mean diameter of the total cell distribution used was 16.80 ± 1.95 μm (mean ± SD, 

number of cells used = 201). 

4.3.1 Elastic shear modulus and effects of pipette size 

A loading rate of 1/30 cm H2O/s (60 ml/hr) was adapted for the aspiration tests since 

this value of the loading rate will produce results with higher consistency, and will 

enable the ramp test to be performed in the shortest time possible. The suction 

pressure on the cells was linearly ramped up from 0 to 15 mm H2O in an one minute 

duration, and an image was captured at every one second interval. For each cell that 

was aspirated using a pipette of a known diameter, the projection length, Lp, was 

measured and plotted against the aspiration pressure, ∆P (see Fig. 4.3 (a)). The slope 

of the Lp–∆P relation was determined. A mean slope value, S, was subsequently 

obtained using more than 15 cells. The dependence of S on pipette diameter for MCF-

10A is shown in the right panel of Fig. 4.3 (b) with each data point representing an 

average of 15–20 cells. 
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Fig. 4.3 Plots of (a) Lp against ∆P and (b) S against pipette diameter for MCF-10A at room 
temperature. Error bars indicate standard deviation (n = 20 cells). For illustrative purposes, 
only the behavior for 2 typical cells are shown in the plot of Lp against ∆P. 

Similarly, aspiration tests on MCF-7 were carried out at room temperature of 21 °C 

using pipettes with diameter 6–9 μm. The mean diameter of the total cell distribution 

of MCF-7 was 17.90 ± 1.99 μm (mean ± SD, number of cells tested = 172). The slope 

of the Lp–∆P relation (see Fig. 4.4 (a)) was subsequently obtained for each of the cell 

that was aspirated. The dependence of S on pipette diameter for MCF-7 is shown in 

Fig. 4.4 (b) with each data point representing an average of 15–20 cells. 

Fig. 4.4 Plots of (a) Lp against ∆P and (b) S against pipette diameter for MCF-7 at room 
temperature. Error bars indicate standard deviation (n = 20 cells). For illustrative purposes, 
only the behavior for 2 typical cells is shown in the plot of Lp against ∆P.  

The apparent elastic shear modulus was then calculated for both the MCF-7 and 

MCF-10A cell lines at room temperature for each pipette diameter using the fact that 

G = 0.334Rp/S (from the half-space model) where S is the slope of the Lp–∆P relation 
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obtained at the corresponding pipette diameter in the half-space model. The results are 

shown in Fig. 4.5. 

 
Fig. 4.5 Plot of the apparent elastic shear modulus of MCF-10A and MCF-7 against pipette 
diameter at room temperature (Error bars indicate standard deviation, *: p < 0.01).  

It can be observed that the apparent elastic shear modulus of MCF-10A was found to 

be between 155–158 Pa while that of MCF-7 was found to be between 80–86 Pa 

using pipettes with diameters between 6–9 μm. An analysis of variance (ANOVA) 

statistical test was performed to check that the three data sets for these two cell lines 

obtained using pipettes of different sizes were distinguishable. The average value of 

the apparent elastic shear modulus of MCF-10A determined using pipette size with 

diameter 6–9 µm was 157 Pa while that of MCF-7 was 82 Pa. Thus, MCF-7 was 

found to be about 2 times more deformable than MCF-10A at room temperature in 

terms of the average value of the apparent elastic shear modulus. A Student’s t-test 

assuming unequal variance was used to check that the differences between MCF-10A 

and MCF-7 were indeed significant (p < 0.01). These results are consistent with what 

we found in chapter 3 that MCF-7 cells are more deformable than MCF-10A cells. 
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4.3.2 Actin structures 

In light of these results and the fact that cancer is a disease which is known to alter the 

cytoskeleton (Guck, Schinkinger et al. 2005), confocal microscopy was subsequently 

used to image filamentous actin (F-actin) in MCF-10A and MCF-7 in an attempt to 

obtain insight into the structure of the cytoskeleton in benign and cancerous cells. For 

both types of breast cells MCF-10A and MCF-7, F-actin was labeled with TRITC-

Phalloidin and the nucleus labeled with DAPI. Images were then taken using a 

confocal laser scanning microscope (Eclipse C1si, Nikon, Japan) and they are shown 

in Fig. 4.6. Clearly, the benign MCF-10A (see Fig. 4.6 (b)) has higher concentration 

of actin network than its malignant counterpart, MCF-7 (see Fig. 4.6 (a)), especially at 

the peripheral region, which showed a thicker layer of actin cortex. Our results are 

consistent with other group, which also showed that suspended MCF7 has lower 

amount of F-actin as compared with MCF-10A (Kim, Park et al. 2008). This change 

in the cytoskeletal content such as F-actin and structure of a cell will result in a 

change in its mechanical properties. With the onset of metastasis, the cytoskeleton is 

known to deteriorate from a regular and ordered structure to become irregular and 

compliant (Guck, Schinkinger et al. 2005). In this early stage of metastasis process, 

the cytoskeleton undergoes restructuring and the amount of constituent polymers 

making up the cytoskeleton, is reduced as well (Benzeev 1984; Rao and Cohen 1991; 

Cunningham, Gorlin et al. 1992; Katsantonis, Tosca et al. 1994; Moustakas and 

Stournaras 1999). In addition, both MCF-7 and MCF-10A has a generally large 

nucleus, which will be studied in the later chapters. 
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(a)     (b) 

Fig. 4.6 Fluorescence confocal images showing the actin filaments (red) and nucleus (blue) in 
(a) cancerous MCF-7 and (b) benign MCF-10A (Scale bar represents 5 µm). 

In addition, it was noted that the standard deviation in the shear modulus of MCF-10A 

at each pipette diameter is larger than that of MCF-7, inferring that the population 

variance of MCF-10A cells is larger than MCF-7. Nevertheless, MCF-10A is still 

commonly compared with MCF-7 because MCF-10A expressed many of the 

characteristics of normal breast epithelial cells and they are easy to culture. More 

importantly, MCF-10A and MCF-7 have been the standard model cell lines used in 

the study of breast cancer (Tait, Soule et al. 1990; Johnson, Torri et al. 1999; Wang, 

Lee et al. 2001). 

4.3.3 Temperature effects 

To investigate the effect of temperature on the mechanical properties of benign and 

malignant breast cells, the aspiration experiments were again repeated at physiologic 

temperature of 37 °C for both MCF-10A and MCF-7. In this case, the mean diameter 

of the total cell distribution for MCF-10A was 17.9 ± 2.6 µm (number of cells tested = 

99) while that for MCF-7 was 18.1 ± 1.96 µm (number of cells tested = 81). The shear 

elastic modulus results obtained at 37 °C are shown in Fig. 4.7 together with those  
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Fig. 4.7 Plot of the apparent elastic shear modulus of MCF-10A (n = 99) and MCF-7 (n = 81) 
determined using pipettes of various diameters at room and physiologic temperatures (Error 
bars indicate standard deviation, N=20) (*: p < 0.05, **: p < 0.005). 

obtained at room temperature to facilitate easy comparison. 

At 37 °C, the apparent elastic shear modulus of MCF-10A was found to be between 

90–130 Pa while that of MCF-7 was found to be between 53–59 Pa using pipettes 

with diameters between 6–9 µm. Thus, increasing the temperature decreases the 

apparent elastic shear moduli of both MCF-10A and MCF-7. Therefore our results 

showed that the apparent elastic shear moduli for both MCF-10A and MCF-7 obtained 

at 37 °C are lower than those obtained at room temperature. A Student’s t-test 

assuming unequal variance was used to check that the differences between the 

apparent elastic shear modulus at 37 °C and room temperature were indeed 

distinguishable and significant. 

The cytoskeleton is a dynamic structure which is polymerized and is in a state of 
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constant association and dissociation (Lodish, Berk et al. 2003). At higher temperature, 

the rate of cytoskeleton association and dissociation may increase, and this may lead 

to a more active remodeling of the cytoskeleton. Thus, the cytoskeletal structure may 

become more compliant which results in a change in the overall elasticity of the cell. 

Fig. 4.7 also shows that the apparent elastic shear moduli decrease with increasing 

pipette diameter at 37 °C. However, an ANOVA statistical test was carried out to 

check this behavior and the differences in the apparent elastic shear modulus were 

found to be insignificant. 

The results obtained might suggest that the increased deformability exhibited by 

MCF-7 when compared with MCF-10A can facilitate the tumor cells to squeeze more 

easily into or out of the vasculature or lymphatics and possibly facilitating the 

intravasation and extravasation processes during metastasis, since circulating tumor 

cells (CTCS) do move in the blood vessels (Tan, Yobas et al. 2009).  

4.4 Conclusions 

In this chapter, standard quantification technique micropipette aspiration was utilized 

to specifically probe the near surface elastic modulus of suspended benign (MCF-10A) 

and cancerous (MCF-7) breast epithelial cells (n=201) under small deformation. 

Effects of temperature and using pipettes of different sizes were also investigated. Our 

results show that malignant breast epithelial cells are more deformable than their non-

malignant counterparts and both of them become more compliant as temperature 

increases from room temperature to physiological temperature. 

At room temperature, the increased deformability exhibited by MCF-7 may be 

attributed to the fact that its underlying cytoskeletal contents and structure are 
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different from that of MCF-10A, which were brought about by the malignant 

transformation process (Guck, Schinkinger et al. 2005). The higher temperature might 

have brought about a remodeling of the cytoskeleton leading to the structure of the 

cytoskeleton becoming more dynamic, which alters the elasticity of both MCF-10A 

and MCF-7. Hence, tumor breast epithelial cells are more deformable than normal 

breast cells at the physiological temperature of 37 °C as compared to that at room 

temperature. 

Currently, there is very little understanding of how changes in the structure and 

biomechanical properties of cancer cells can contribute to cancer metastasis. A critical 

step in metastasis is the intravasation process, which involves primarily the migration 

of malignantly-transformed cells from a primary tumor site into circulation. Results 

obtained in this study have shown that malignant cells have less concentration and 

less organized actin structure as benign cells and become more deformable. The 

acquired increased deformability may then allow them to squeeze through 

surrounding tissue matrix that restricts their movement, thereby promoting the critical 

processes such as intravasation and extravasation of the metastatic cascade. This 

chapter demonstrates the difference in sub-membrane actin structure of breast cancer 

cells as compared with normal cells, which offers one of the reasons why cancer cells 

become more deformable and migrate more easily through small capillaries in the 

process of metastasis. 
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Chapter 5 AFM Indentation Study of Adherent Breast Cancer Cells 

5.1 Introduction 

In previous chapters, microfluidics was first utilized to investigate the overall 

deformability of breast cancer cells in suspension under large deformation condition. 

Then micropipette aspiration was utilized to specifically probe the near surface 

mechanical property (shear modulus) of suspended breast cancer cells, which was 

then attributed to the underlying actin cortex structure. However, both microfluidics 

study and micropipette aspiration experiment investigate cellular mechanical 

properties in their suspended state. 

Breast cancer cells in suspension are usually in a spherical shape as we saw in 

previous chapters. However, they need to adhere to a substrate to grow, divide, and 

migrate. In the context of cancer metastasis, cancer cells which detach from the 

primary tumor and migrate through extra-cellular matrix and endothelial barriers are 

in an adherent state, while they are in suspended state when they infiltrate into the 

blood vessel and get transported in the blood stream. To comprehensively understand 

mechanical behavior of cancer cells in different physiological conditions, we need to 

characterize their mechanical properties not only in suspension but also in their 

adherent state.  

With the recent advances in biomechanics and nanotechnology, a variety of 

experimental techniques have been developed to study single cell mechanics. For 

example, biophysical tools and techniques such as atomic force microscopy (Lekka, 

Laidler et al. 1999; Lekka, Laidler et al. 2001; Park, Koch et al. 2005), micropipette 

aspiration (Ward, Li et al. 1991; Zhang, Long et al. 2002), and the optical stretcher 

(Lincoln, Erickson et al. 2004; Guck, Schinkinger et al. 2005) have been used to 



Chapter 5 AFM indentation study of adherent breast cancer cells  

70 
 

probe the mechanical property of different types of cells (see (Van Vliet, Bao et al. 

2003; Lim, Zhou et al. 2006 a; Lee and Lim 2007) for reviews). Also, mechanical 

models have been developed to study the mechanical properties of these cells (Lim, 

Zhou et al. 2006 b). Among them, micropipette aspiration and optical stretcher are 

designed to study cells in suspension. Here, we chose AFM to study breast cancer cell 

at adherent condition. 

AFM has long been established as a versatile tool for imaging and measuring 

nanoscale elastic properties of adherent living cells (Radmacher, Fritz et al. 1996; A-

Hassan, Heinz et al. 1998). In addition, AFM has been applied to investigate the 

mechanical properties of ex vivo cancer cells obtained from patients (Cross, Jin et al. 

2007). Lekka et al. used the atomic force microscope (AFM) to study the elasticity of 

normal human bladder epithelial cells (Hu609 and HCV29) and cancerous ones 

(Hu456, T24 and BC3726) by AFM indention of these cells (Lekka, Laidler et al. 

1999). They found that normal cells are an order of magnitude stiffer than normal 

cells, which was attributed to the reorganization of the cytoskeleton.  

As reviewed earlier, Lincoln et al. were the first to investigate the deformability of 

non-malignant and malignant human breast epithelial cells using the optical stretcher 

(Lincoln, Erickson et al. 2004; Guck, Schinkinger et al. 2005).  However, optical 

stretcher including our studies in the previous chapters using microfluidics and 

micropipette aspiration only investigated mechanical properties of cells in suspension. 

No studies on mechanical properties of adherent breast cancer cells (MCF-10A and 

MCF-7) have been done. 

The objective of this chapter is to investigate the cytoskeletal structure and 

mechanical properties of non-malignant (MCF-10A) and malignant (MCF-7) human 
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breast epithelial cells in adherent state using AFM and confocal microscopy. We will 

quantify and compare the apparent Young’s modulus of these cells and investigate 

their corresponding sub-membrane cytoskeletal structures. In addition, the effects of 

different loading rates during indentation will be presented. 

5.2 Methods 

5.2.1 Cell culture and sample preparation 

Cell culture was the same as that for microfluidics and micropipette aspiration 

experiments as details in section 3.2.1. For the indentation studies, cells harvested 

from the subculture were seeded on sterilized 12 mm coverslips (Heinz glass, 

Germany) and kept in a 6-well microplate (IWAKI, Japan) which would stay in the 

incubator for 2–3 days prior to indentation. The medium was changed one day after 

seeding to clear any dead cells on the coverslip.  

5.2.2 Confocal fluorescence imaging 

For confocal fluorescence imaging, the coverslips with cells seeded on them were 

prepared using a protocol which is similar to the protocol adapted for indentation 

studies (5.2.1). The staining protocol was the same as described in section 4.2.2. 

5.2.3 AFM indentation  

A Nanoscope IV multimode AFM with a picoforce scanner (Digital Instruments Inc., 

USA) was used to carry out the experiments. For AFM contact mode imaging, a 

silicon nitride AFM tip with a spring constant of 0.01 N/m was used. For AFM 

indentation, a modified silicon nitride AFM cantilever (NovaScan, USA) having a 

spring constant of 0.01 N/m with a 4.5 μm diameter polystyrene bead adhered to the 
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tip was used to indent the cells. A spherical bead indenter was used here instead of a 

sharp tip to get better assessment of cell elasticity by averaging over a larger cell 

surface area with a well-defined contact geometry (Mahaffy, Park et al. 2004; Smith, 

Tolloczko et al. 2005). In addition, smaller local strains applied arising from the 

spherical bead can reduce the possibility of nonlinear or destructive deformation to 

the cell (Dimitriadis, Horkay et al. 2002). During the experiment, the glass coverslip 

was mounted on the AFM stage and the cells were kept in their culture medium using 

a standard fluid cell (Digital Instruments Inc., USA). A heater (Digital Instruments 

Inc., USA) was used to maintain the sample at physiological temperature (37 ºC) 

during indentation. 

Indentation was carried out at the cell centre using different loading rates from 0.03 to 

1  Hz.  Th e ramp  size u sed  in  th is stu dy was 3  μm (Costa 2003) and an indentation 

force of 0.2 nN was applied during the tests in order to ensure that a small 

deformation was exerted on the cell and minimize any substrate contributions.  

 5.2.4 Data analysis 

Fig. 5.1 schematically depicts the indentation carried out on the centre of a cell using 

a 4.5 µm diameter bead attached to an AFM cantilever. The relationship between the 

indentation depth and Z stage position is also illustrated (Indentation depth = Z – 

cantilever deflection). Fig. 5.2 shows the relative deflection versus indentation depth 

curve. 
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Fig. 5.1 (a) Schematic of the indentation of a cell using a 4.5 µm diameter spherical probe. (b) 
An illustration showing that the indentation depth is given by the difference between the z 
stage position and the cantilever deflection. 

 

Fig. 5.2 Plot of relative cantilever deflection versus indentation depth curve obtained from the 
approaching curve of the AFM indentation experiment. 
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The Young’s modulus was subsequently determined using Hertz’s contact model, 

since this model is able to account for the geometry of the spherical probe (Costa 

2003; Smith, Tolloczko et al. 2005) used in this present study and it has been used 

extensively in other AFM studies to evaluate the Young’s modulus of cells (Rotsch, 

Jacobson et al. 1999; Costa 2003). Here, Hertz’s model is used to study the small 

deformation behavior of a cell being indented by a hard axisymmetric indenter 

(Mahaffy, Park et al. 2004): 

( )
3

213
4 δ

ν
REF

−
=                                            (5.1) 

where F is the indentation force, E  is the Young’s modulus to be determined, ν is the 

Poisson ratio, R  is the radius of the spherical bead, and δ  is indentation depth. The 

cell was assumed incompressible and a Poisson ratio of 0.5 was used (Costa 2003). 

Before we use Hertz’s model to extract the Young’s modulus, we must first determine 

the contact point. Contact point is defined as the point where the probe first makes 

contact with the cell surface and the cantilever starts to deflect. As the initial 

deflection after the contact point is small and nonlinear for a soft sample, it will be 

difficult to determine the contact point (Dimitriadis, Horkay et al. 2002). Accurate 

identification of the contact point is very crucial in correctly calculating the Young’s 

modulus using Hertz’s model (Costa 2003; Crick and Yin 2007). As we can see in the 

relative deflection versus indentation depth curve, the noise level is also a factor 

which will affect the accurate determination of the contact point and possibly give rise 

to any error in the calculation of the Young’s modulus. So we develop a method to fit 

the experiment data to get the contact point and obtain Young’s modulus at the same 

time while reducing the native noise effect. 
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From the principle of AFM indentation, we know that: 

kCDF ⋅=                                                          (5.2) 

0RDRDCD −=                                                     (5.3) 

0RIDRID −=δ                                                     (5.4) 

where CD  is the AFM cantilever deflection, k is the spring constant of the cantilever, 

RD is the relative deflection of the cantilever, RID is the relative indentation depth, 

and ( 0RID , 0RD ) is the coordinates of the contact point. Substituting (5.2), (5.3), (5.4) 

into (5.1), we can get: 
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A straight line is used to fit the region before the contact point as theoretically, there 

is no cantilever deflection in that region. Combining this with (5.5), we have (5.6) 

which can be used to fit the data and get parameters including the contact point ( RID ,

0RD ) and Young’s modulus E  as shown in Fig. 5.3. 
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Fig. 5.3 Graph illustrating curve fitting using a theoretical line to detect he contact point. 

This method provides a very good fit to the experimental data and it also allows for 

the systematic determination of the contact point. Moreover, noise is reduced 

significantly based on the theoretical model and no possible filter induced error is 

introduced (Nyland and Maughan 2000). 

5.3 Results and discussion 

This section presents the results obtained from the AFM indentation carried out on 

two human breast cell lines MCF-10A (benign) and MCF-7 (malignant), using 

different loading rates. Also, the sub-membrane structures of these cells were 

investigated using both AFM and confocal fluorescence microscopy. The effect of 

using different loading rates on the apparent elasticity of these cells and the structure-

mechanical property correlation will be subsequently discussed. 
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5.3.1 Apparent Young’s modulus and effects of loading rates  

As the contact point has been identified using the method described in section 2.2, the 

relative deflection versus relative indentation depth curve can be converted to a plot 

of indentation force against indentation depth. Fig. 5.4 shows the force versus 

indentation depth curves at different loading rates (from 0.03 Hz to 1Hz). These 

curves describe the apparent elasticity of the cell according to the loading rate in a 

qualitative way. For the same amount of force applied, the indentation depth 

decreases as the loading rate was increased from 0.03 to 1 Hz. This suggests that cells 

appear to be stiffer at a higher loading rate, which will be described in detail later.  

 

Fig. 5.4 Indentation force versus indentation depth curves of MCF-10A cells at 
different loading rates. 

To investigate the loading rate effect, the apparent Young’s modulus calculated 

according to the method described in section 2.2 was used to characterize the 

elasticity of the cells. Apparent Young’s modulus at different loading rates is used to 

characterize cell elasticity due to the viscous contributions of the cellular mechanical 

response (Costa and Yin 1999; Lieber, Aubry et al. 2004). The dependence between 
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the apparent Young’s modulus and the loading rates used in this present study for 

both MCF-10A and MCF-7 at the physiological temperature of 37 ºC was shown in 

Fig. 5.5. It is evident that higher values of the apparent Young’s modulus were 

associated with an increased loading rate for both MCF-10A and MCF-7. The cells 

appear to be stiffer when probed using a higher loading rate due to the contribution of 

cell viscosity (Maksym, Fabry et al. 2000; Fabry, Maksym et al. 2001; Alcaraz, 

Buscemi et al. 2003; Desprat, Richert et al. 2005; Smith, Tolloczko et al. 2005; Trepat, 

Grabulosa et al. 2005; Roca-Cusachs, Almendros et al. 2006). Previous indentation 

works (see (Lekka, Laidler et al. 1999; Lekka, Lekki et al. 1999; Park, Koch et al. 

2005)) carried out on other types of cancerous cells and fibroblasts did not take into 

account this dependence of the apparent Young’s modulus on the loading rate. Our 

study shows that the loading rate used needs to be carefully considered when 

characterizing cell elasticity using AFM indentation, because the apparent Young’s 

modulus characterized in different studies may not be comparable due to this effect. 

At the physiological temperature of 37 ºC, the apparent Young’s modulus of MCF-

10A is about 1.5 times higher than that of MCF-7 at the same value of the loading rate.   

 

Fig. 5.5 Plot of the apparent elastic modulus against loading rate for MCF-10A and MCF-7 at 
37 ºC (Error bars indicate standard deviations).  
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5.3.2 Temperature effect 

 

Fig. 5.6 Apparent elastic modulus of MCF-10A and MCF-7 cells tested at different 
temperatures and at a loading rate of 0.1 Hz. Error bars indicate standard error and n denotes 
the number of samples tested. 

Fig. 5.6 shows the stiffness of cells, determined using indentation, at both room 

temperature and 37oC. It can be observed that the apparent elastic modulus is smaller 

at a higher temperature. For MCF-10A at 37 ºC, the apparent elastic modulus is about 

1.6 times smaller than the corresponding value at room temperature. In addition, we 

can also observe that MCF-7 is more deformable than MCF-10A at both 24 ºC and 37 

ºC. Thus it is evident that temperature does have an effect on the mechanical 

properties of cells and it needs to be taken into account during probing cell elasticity. 

The temperature effect is consistent with what we observed in our micropipette 

aspiration experiments, which means temperature has an effect on cell mechanics 

whether they are in suspended state or adherent state. 

Actin is a major component of the cellular cytoskeleton system (actin filament, 

intermediate filament, microtubule) and contributes significantly to the mechanical 

properties of the cell. In addition, actin structure is a highly dynamic structure and is 

strongly correlated with dynamic events such as migration and proliferation (McGrath 
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and Dewey 2006). The reduced stiffness of both benign and cancerous cells as 

temperature increases may be attributed to the remodeling of the actin structure and a 

change occurring in its dynamic state due to the temperature change. 

5.3.3 Structure-property relationship 

In this section, we seek to establish a structure-mechanical property-disease 

correlation in the context of malignant transformation of breast epithelial cells. Cell 

mechanics can indicate the state of the cellular cytoskeletal structure and dictates its 

function (Elson 1988; Lekka, Laidler et al. 2001). Organization of the cytoskeleton is 

also an important reflection of cellular mechanical organization (Heidemann, 

Lamoureaux et al. 2000; Ingber 2000). Actin filaments, microtubules and intermediate 

filaments are three major components of the cellular cytoskeleton. In particular, actin 

filaments can form contractile bundles called stress fibers with one end inserted into 

the plasma membrane forming focal adhesion points. Hence, there is a close relation 

between cell mechanics and cellular cytoskeleton. The cytoskeletal structure just 

beneath the cell surface membrane forms the region of interest which we would like 

to study, as our indentation imposed is minute with force in the pico-newton range 

(200 pico-newtons) and deformation in the nanometer level (below 500nm in depth). 

5.3.3.1 AFM imaging 

Contact mode AFM imaging was used to investigate the central region of a typical 

live MCF-7 and MCF-10A cell (Fig. 5.7). AFM can be used as an indenter and also a 

powerful high resolution imaging tool. Basically AFM is a mechanically sensitive 

surface probe, and local mechanical property differences on the sample can lead to 

differential surface deformation and contribute to image contrast. During the raster 
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scan of the AFM imaging, the AFM tip will press against the soft cell membrane into 

the cytosol until the membrane is supported by the underlying stiffer structures, which 

results in the sub-membrane structures appearing elevated and showing up in the 

deflection images (Hofmann, Rotsch et al. 1997; Rotsch, Jacobson et al. 1999). Hence 

AFM images of live cells can reveal the sub-membranous structure, in particular the 

stiffer filamentous structures that may be present.  

    
(a)                                                                          (b) 

 

    
(c)                                                                      (d) 

 
Fig. 5.7 AFM deflection image (mechanically based contrast) of a (a) MCF-7 and (b) MCF-
10A cell and the central region of a (c) MCF-7 and (d) MCF-10A cell (Scale bar represents 5 
µm). 
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The AFM deflection images shown in Fig. 5.7 provide a picture of the cellular 

mechanical organization of the sub-membrane structure. Cancerous MCF-7 cells have 

a rounded morphology (Fig. 5.7 (a)), while benign MCF-10A cells have an elongated 

shape (Fig. 5.7 (b)). We can see in Fig. 5.7 (d) which shows the AFM image of MCF-

10A that there are well aligned stiffer filamentous structures protruding below the 

membrane. While in MCF-7 (Fig. 5.7 (c)), we cannot see such filamentous structures 

but only disorganized ridges can be observed. This may explain why MCF-10A is 

stiffer than MCF-7 as there is an enhanced filamentous structure organized under the 

cell membrane to support the MCF-10A cells but not for MCF-7. Presumably, the 

observed filamentous structures are actin stress fibers as actin structure is the major 

component of cytoskeleton which localizes underneath the cellular membrane (Lekka, 

Laidler et al. 1999).  

5.3.3.2 Confocal fluorescence imaging  

In this section, we chose to further investigate the actin structure of cytoskeleton as 

the structures observed in AFM image (Fig. 5.7 (d)) are most possibly stress fibers. 

The observed filamentous structure in MCF-10A which composed of long filaments 

across the whole cell possesses the feature of stress fibers. In addition, actin 

filamentous structure is a major component of the cellular cytoskeleton system which 

contributes significantly to the mechanical properties of the cell (Janmey 1998). 

Studies have shown that the actin network formed by actin filaments or stress fibers 

plays a crucial role in the mechanical stability of live cells (Rotsch, Braet et al. 1997; 

Rotsch and Radmacher 2000). Also it is localized at the periphery of the cell near the 

membrane, which is the region of interest of our nanometer level deformation on the 

cell surface. In order to have a better insight of the actin structure of these two cell 
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lines, we studied the fluorescence confocal images of MCF-10A and MCF-7 in which 

F-actin was labeled with TRITC-Phalloidin (red) and the nucleus labeled with DAPI 

(blue). 

   
                                                      (a)                                                   (b)                           

   
                                                      (c)                                                    (d)                           

   
                                                      (e)                                                    (f) 
Fig. 5.8 Confocal microscopy planes of F-actin (red) in fixed (a, c, e) MCF-7 and (b, d, f) 
MCF-10A cells at different section, (a) (b): basal section, (c) (d): medium section, (e) (f): 
apical section (Scale bar represents 10 µm). 
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From the confocal fluorescence images of F-actins from the basal section to the apical 

section in MCF-7 and MCF-10A (see Fig. 5.8), it can be seen that generally MCF-

10A possesses a more pronounced network of actin filaments than MCF-7. In MCF-

10A, F-actin is more localized on the peripheral region (see Fig. 5.8 (d)) and form 

organized parallel filamentous structure. On the contrary, the actin structure in MCF-7 

is a more disorganized and cross-linked network with no striations although there are 

fewer actin filaments existing at the basal plane of the cell. This may imply that 

malignant cells are generally in a more ‘relaxed’ state while non-malignant cells tend 

to be in a more pre-stressed state (Kumar, Maxwell et al. 2006). Our fluorescence 

images showed that there is a reduction in the organized actin filaments in MCF-7 and 

it may be one reason that MCF-7 is more deformable than MCF-10A.  

In addition, there is a well-aligned actin filamentous structure at the apical plane of 

the MCF-10A cell (Fig. 5.8 (f)), while in the MCF-7 cell, F-actin seems to be a 

randomly organized network (Fig. 5.8 (e)). In particular, we can see in Fig. 5.8 (b) 

that the actin filaments on the basal section are not parallel to the actin filaments on 

the apical section shown in Fig. 5.8 (f). However, the actin filaments on the apical 

section (Fig. 5.8 (f)) are parallel to the long axis of the spreaded cell which is the 

same as those filamentous structures shown in AFM image (Fig. 5.7 (d)). This is an 

indication that for MCF-10A the sub-membrane filamentous structures observed in 

AFM images are stress fibers composed of actin filaments. We can also see similar 

features for MCF-7 as the disorganized actin network in the apical section in Fig. 5.8 

(e) manifest in AFM image (Fig. 5.7 (c)) in terms of random ridges. By comparing 

apical plane images in Fig. 5.8 (e) (f) with the AFM images in Fig. 5.7, we can see 

quite similar features for both MCF-7 and MCF-10A, which is another indication that 

sub-membranous structures can be revealed by AFM. This finding is also consistent 
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with other studies, which show that in adherent cells such as fibroblasts, chicken 

cardiocytes and glial cells, the filamentous structure visualized by AFM corresponds 

to actin stress fibers (Henderson, Haydon et al. 1992; Hofmann, Rotsch et al. 1997; 

Rotsch and Radmacher 2000). Our AFM images and confocal fluorescence images 

show that MCF-10A cells have more well-defined stress fibers than MCF-7 cells, 

which exhibits a stronger actin filamentous network in MCF-10A. This is a significant 

change in cellular structural feature as benign human MCF-10A breast epithelial cells 

transform to malignant MCF7 cells, which may be one of the reasons for the 

corresponding change in the mechanical property.  

Interestingly, AFM images of more motile cells like rat liver macrophages show that 

such filamentous structures cannot be found (Rotsch, Braet et al. 1997), and more 

motile fibroblasts have a less pronounced network of stress fibers (Rotsch, Jacobson 

et al. 1999; Rotsch and Radmacher 2000). The presence of less filamentous structures 

in MCF-7 suggests that malignant human breast epithelial MCF-7 cells have a high 

potency to migrate like the findings for other motile cells, which is also an important 

difference between cancer cells and normal cells.     

5.4 Conclusions 

In this chapter, atomic force microscopy (AFM) indentation was carried out to 

characterize the elasticity of benign (MCF-10A) and cancerous (MCF-7) human 

breast epithelial cells at their adherent condition. In addition, AFM imaging and 

confocal fluorescence imaging were used to further investigate their corresponding 

sub-membrane cytoskeletal structure. Our results show that malignant (MCF-7) breast 

cells have an apparent Young’s modulus about twice lower than that of their non-

malignant (MCF-10A) counterparts at physiological temperature (37 ºC), and their 
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apparent Young’s modulus increase with loading rate. The confocal and AFM images 

both show a significant difference in the organization of their sub-membrane actin 

structures, which might contribute to their difference in mechanical properties.  

Moreover, an improved method was developed to analyze the indentation curves of 

MCF-10A and MCF-7 cells based on Hertz’s model. Although assumptions like 

homogeneous, isotropic, linear elastic material cannot be exactly fulfilled when 

applying the Hertz’s model to analyze data obtained from the AFM indentation 

experiments carried out on cells, it is currently the most accepted model and many 

studies showed that it is able to describe the experimental data sufficiently under 

small deformation (Kuznetsova, Starodubtseva et al. 2007). Also in our study, we 

found that Hertz’s model can fit our experimental data very well and this model is 

sufficient to give us a relatively good comparison between the apparent elasticity of 

MCF-7 and MCF-10A cells at the same loading rate.  

In addition, loading rate effect is an important factor which needs to be considered 

during AFM indentation test. Apparent Young’s modulus instead of “absolute” 

Young’s modulus is used to characterize and compare the relative elasticity of the 

cells at different loading rates. Our indentation results which were obtained using 

different loading rates, continued to show that cancerous MCF-7 is more deformable 

than benign MCF-10A at different loading rate. 

Cancerous MCF-7 cells are more deformable than non-malignant MCF-10A cells due 

to the oncogenic transformation process causing a change in cellular structure. The 

reduced stiffness of these cancer cells compared with benign ones may be partially 

contributed by a significant reduction in the amount of well-defined actin filaments or 

their bundles (stress fibers), which results in a weaker cytoskeletal structure. The 
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combination of AFM (both as indenter and high resolution imaging tool) and 

fluorescence microscopy has proven to be very useful in studying the mechanical 

property and corresponding structures. In particular, AFM image which is force-based 

in nature can be used to investigate the cellular sub-membrane structure like stress 

fibers.  

Our work demonstrates that there is a structural change in the actin network of cancer 

cells in adherent condition, which is also seen in previous chapter as they are in 

suspension. This change may aid in facilitating easy migration and invasion during 

metastasis. However, the difference in cytoskeletal structure may only be one of the 

reasons causing the change in cellular mechanical property and internal cellular 

components such as the nucleus will be further studied. 
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Chapter 6  AFM Indentation Study of Isolated Nuclei of Breast 

Cancer Cells 

6.1 Introduction 

As shown in previous chapters, near surface mechanical properties of breast cancer 

cells both in suspension and in adherent condition have been probed using 

micropipette aspiration and AFM, respectively. The underlying cytoskeletal structures 

(actin cortex) have been investigated using confocal microscopy, and the difference in 

actin structure contributes to the difference in the mechanical properties probed. 

However, as we discussed in the introduction and microfluidic study chapters, nucleus 

is also an important contributor to the overall mechanical behavior of cancer cells. So 

we first characterize the mechanical properties of isolated nucleus and compare that 

with the whole cell. 

Nucleus is known to be the most important organelle inside the cell as it contains the 

‘secret of life’ (DNA) and it is a site of major metabolic activities, including DNA 

replication, gene transcription, RNA processing and ribosome subunit maturation and 

assembly. More than its functional role, nucleus has gradually been found also to be 

important as a structural component inside the cell. Consequently, nuclear mechanics 

has attracted more and more attention in recent years (Lammerding J 2007; Dahl, 

Ribeiro et al. 2008). Nucleus has been found to play an important role in contributing 

to the whole cell mechanical behavior (Caille, Thoumine et al. 2002; Sugitate, Kihara 

et al. 2009). Moreover, experimental findings suggest that nucleus is directly involved 

in mechanotransduction (Dahl, Ribeiro et al. 2008). As evidence already show that 

there are physical connections from the surface adhesion molecule (integrin receptor) 

to the cytoskeleton (actin filament) and finally the nucleus (Maniotis, Chen et al. 
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1997). This physical connection may serve as a channel to transmit the mechanical 

signals (stress or strain) received by the adhesion molecule, from outside of the cell 

directly to the nucleus and regulate gene expression. Therefore, any change in the 

nuclear structure can cause impaired nuclear mechanics and alter the 

mechanotransduction pathway leading to certain diseases. One typical example is 

laminopathies, which are a group of diseases caused by the mutation of the nuclear 

lamin A/C gene leading to impaired mechanical integrity of nucleus.  

Understanding the nuclear mechanics and its contribution to cell mechanics, of 

course, will be the first step in revealing the role of nucleus in mechanotransduction 

and the pathology of certain disease related to malfunction of nucleus. 

As reviewed in chapter 1, nucleus is separated from cytoplasm by a nuclear envelope. 

The nuclear envelope consists of an inner nuclear membrane (INM), an outer nuclear 

membrane (ONM, an extension of rough endoplasmic reticulum (ER)) and nuclear 

lamina (Prokocimer, Margalit et al. 2006). The nuclear lamina, which is the major 

structural component of nuclear envelope, is a dense network of lamins plus lamin-

associated proteins lying beneath the INM. Lamins are part of the intermediate 

filament (IF) gene family and are thought to be the evolutionary progenitors of IF 

proteins. The IF gene super family comprises five groups with about 60 members. 

Group I-IV are cytoplasmic IF, and lamins belongs to the group V IF family. Lamins 

are classified into types A and B according to their difference in biochemical 

properties, expression pattern and behavior during mitosis (Stuurman, Heins et al. 

1998). A-type lamins, which include lamin A and C, are products of alternative 

splicing from the LMNA gene, and B-type lamins are encoded by 2 separate genes, 

LMNB1 and LMNB2. Type B lamins are present in all mammalian cells as they are 
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essential for cell viability, but type A lamins are developmentally regulated. Type A 

lamins are absent in human embryonic stem cells, but are expressed only after cells 

differentiate and generally increased during terminal differentiation and grow arrest 

(Prokocimer, Margalit et al. 2006). 

Lamins are very important in their contribution to nuclear structure. They not only 

determine nuclear integrity, but are also involved in numerous nuclear functions. 

Especially, A-type lamins play a major role in maintenance of nuclear shape (Dahl, 

Scaffidi et al. 2006; Lammerding, Fong et al. 2006; Scaffidi and Misteli 2006), 

stability (Dahl, Kahn et al. 2004; Lammerding, Schulze et al. 2004; Broers, Kuijpers 

et al. 2005) and structural integrity (Broers, Kuijpers et al. 2005; Lammerding, Fong 

et al. 2006; Stewart, Roux et al. 2007). Moreover, lamins regulate and support protein 

complexes involved in gene expression, nuclear positioning (Meaburn and Misteli 

2007), DNA replication, transcription and repair (Parnaik and Manju 2006), and aging 

(Scaffidi and Misteli 2006). 

In the context of cancer, the nuclear lamina is involved in many nuclear activities 

which are implicated in tumor formation including transcriptional activation, 

heterochromatin organization, senescence and apoptosis (Moss, Krivosheyev et al. 

1999). It has been found that there are dramatic changes in nuclear architecture 

including nuclear size and shape, numbers and sizes of nucleoli, and chromatin 

texture, during malignant transformation (Zink, Fischer et al. 2004). In fact, the 

irregularity of cancer nucleus was observed long time ago and it was quite a common 

feature for many types of cancer. Nuclear morphology analysis has been used to 

detect certain type of cancer since the 19th century (Zink, Fischer et al. 2004). 

Deviation of the nuclear lamins and their associated proteins are thought to be an 
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additional event involved in malignant transformation and tumor progression, which 

can be a potential novel target for anti-cancer drug development (Prokocimer, 

Margalit et al. 2006). 

The absence or low levels of type A lamins are often observed in many types of 

human hematological malignancies. For non-hematological malignancies, the main 

changes are aberrant localization and reduction in expression of lamins A/C, which 

are frequently correlated with aggressiveness of cancer, proliferation rate and 

differentiation state. Lamin A/C has been found to be reduced in some skin cancers 

(basal cell and squamous cell) (Venables, McLean et al. 2001; Oguchi, Sagara et al. 

2002), gastrointestinal tract neoplasms including adenocarcinoma of stomach and 

colon, lung cancer (Kaufmann, Mabry et al. 1991; Broers, Raymond et al. 1993), 

testicular germ cell tumors (Machiels, Ramaekers et al. 1997), cancerous prostate 

tissues (Coradeghini, Barboro et al. 2006). And it is also reduced in breast cancer 

(Moss, Krivosheyev et al. 1999). However, they are not sufficiently specific to be 

used in histopathological diagnosis (Bosman 1999).  

Based on these studies, we hypothesize that there is a corresponding change in 

mechanical properties of nuclei of cancer cells when compared to normal cells. 

Another common feature in cancer cell nuclei is their enlarged size compared to those 

of normal cell (Mihailovic, Dordevic et al. 1999). Studies have shown that the nucleus 

plays an import role in the mechanical properties of the whole cell (Caille, Thoumine 

et al. 2002; Zink, Fischer et al. 2004; Deguchi, Maeda et al. 2005). While in the 

context of cancer metastasis, cancer cells migrate and traverse in blood vessels and 

small capillaries, the whole cell and its nucleus undergoes extremely large 

deformation, as shown in the in vivo study (Yamauchi, Yang et al. 2005) and also our 
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microfluidic study which mimics the process of cancer cells traversing small 

capillaries (Hou, Li et al. 2009). Therefore for cancer cells, their enlarged and 

structurally modified nuclei could play a more significant role in contribution to their 

mechanical behavior and subsequently the outcome of metastasis. 

Therefore it is important to characterize the mechanical properties of cancer cell 

nucleus, as it will contribute not only towards understanding of the structural change 

of nuclei in malignant transformation and subsequent cancer detection, but also shed 

light on their contribution to cell mechanics and its role in cancer metastasis.  

However, as reviewed in chapter 2, so far no studies have been done to investigate the 

nuclear mechanics in the context of cancer cells. In this chapter, AFM indentation was 

used to characterize the elasticity of isolated nuclei of benign (MCF-10A) and 

cancerous (MCF-7) human breast epithelial cells. The underlying lamina (lamin A/C) 

structure of both cell types was also investigated by confocal microscopy to 

understand its possible contribution to the mechanical property of nucleus. The 

decrease in elasticity of nuclei of malignant cells compared with non-malignant cells 

gives us a quantitative biomarker to assist cancer detection. Also it provides us with a 

better insight in terms of contribution of nucleus to cell mechanics.   

6.2 Materials and methods 

6.2.1 Cell culture 

Cell culture was the same as that described in section 3.2.1. Cells harvested from the 

subculture were seeded and kept in a 6-well microplate which was then placed in the 

incubator for 2–3 days until confluent before nuclear isolation. The medium was 

changed one day after seeding to clear any dead cells.  
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6.2.2 Nuclear isolation  

The procedure is adapted from (Thoumine, Ott et al. 1999; Caille, Thoumine et al. 

2002): 

1. Confluent MCF-7 (or MCF-10A) cells grown in 6-well chamber are rinsed once 

with PBS. 

2. Cells are treated for 5 min with 1 ml of a 0.01% Igepal CA-630 (a non-ionic 

detergent, Sigma), 1% citric acid solution in water. Nuclei are expelled while the 

cytomatrix remains adherent.  

3. The medium is collected, mixed with 5 ml PBS, and centrifuged at 300 g for 5 min.  

4. The nuclei-rich pellet is resuspended in PBS, 60 to 100 µl suspended nuclei 

solution was dropped onto a 12 mm coverslip for 1h and the nuclei will stick to the 

coverslip.  

      

(A)                                                                (B) 

Fig. 6.1 (A) Bright field and (B) fluorescence image (DNA stained with DAPI) of isolated 
nuclei (MCF-7). 
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As shown in Fig. 6.1, isolated nuclei with DNA stained using DAPI showed that the 

nuclear isolation procedure is reliable to get clean and intact isolated nuclei. 

6.2.3 Confocal fluorescence imaging 

For fluorescence staining, coverslips with isolated nucleus seeded on them were fixed 

by cold methonal for ten minutes at -20°C. After washing with PBS, the samples were 

incubated with Image-iT FX signal enhancer (Invitrogen) for 30 minutes at room 

temperature, and followed by incubation with 10% goat serum for 1 h at room 

temperature. Then samples were incubated with primary antibody rabbit polyclonal 

lamin A/C (H-110) (Santa Cruz, USA) for 1 h at room temperature, and followed by 

incubation with secondary antibody Alexa Fluor 488 goat anti-rabbit IgG for 1 h at 

room temperature. Finally samples were labeled with 5µg/ml DAPI (Sigma-Aldrich, 

USA) for 5 minutes. Fluorescence images were taken using a confocal microscope 

(Nikon TE2000, Japan). 

6.2.4 AFM indentation and data analysis 

For indentation studies, isolated nuclei were seeded onto a 12mm coverslip and 

incubated at room temperature for 1 hour for the nuclei to adhere to the substrate. For 

AFM indentation on isolated nuclei (as shown in Fig. 6.2), the same protocol as AFM 

indentation on cells was used, as details in section 5.2.3. For indentation data analysis, 

refer to section 5.2.4.  
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Fig. 6.2 Schematic of AFM indentation on an isolated nucleus using a 4.5 µm diameter 
spherical probe. 

6.3 Results and discussion 

6.3.1 Consistency of AFM indentation on isolated nucleus 

To test the consistency of our AFM indentation on nucleus, we repeatedly indent the 

same location of the nucleus and see whether there is any change in the force-

indentation depth curve. Fig. 6.3 shows that the force-indentation depth curves for 

both MCF-10A and MCF-7 highly overlap with each other after repeatedly 

indentation at 0.3Hz for more than fifteen times. These results suggest that our 

experiment is highly reproducible and that there is no permanent damage or plastic 

deformations induced by the AFM probe. Also these results suggest that nuclei 

behave generally in an elastic manner within the condition of our test, which is 

consistent with other studies (Guilak, Tedrow et al. 2000). Interestingly, the 

reproducibility was still maintained even when we used very large force (0.8 nN 

indetation force with about 1µm indentation depth). However, the current Hertz’s 



Chapter 6 AFM indentation study of isolated nuclei of breast cancer cells 

96 
 

model that we have used will not apply to large deformation (the large deformation 

region deviate from Hertz’s model prediction). So for better comparison, we chose to 

extract the apparent elastic modulus based on the region below 200 pN, which is the 

same as that for the whole cell indentation. 

 
 

Fig. 6.3 Indentation force versus depth curve of repeated indentations (n=20) at the same 
location of an isolated nucleus using the same force (0.2 nN). 
 

 

 

Fig. 6.4 Indentation force versus depth curve of repeated indentations (n=20) at the same 
location of a isolated MCF-7 nucleus using increasing force (0.2, 0.4, 0.8, 2 nN) and at 0.3 
Hz. 

As shown in Fig. 6.4 repeated indentation using increasing force again confirmed the 

reproducibility of AFM indentation as there is no hysteresis in force-depth curves. We 

can also see that isolated nuclei of MCF-7 appear more deformable than that of MCF-

Isolated MCF-10A nuclei 

Isolated MCF-7 nuclei 
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10A, as less deformation of the formers compared with the later using the same 

indentation force. 

6.3.2 Apparent Young’s modulus of isolated nucleus of MCF-7 and MCF-10A 

Based on the above analysis, we extracted the apparent Young’s modulus and 

compare between MCF-10A and MCF-7. As shown in Fig. 6.5, we can see that at 

different loading rates, MCF-10A nuclei appear twice stiffer than MCF-7 nuclei. A 

Student’s t-test assuming unequal variance was used to check that the differences 

between MCF-10A and MCF-7 nuclei were indeed significant (p < 0.01). Also 

apparent Young’s modulus increases with the loading rate due to the viscoelastic 

nature of nucleus, which is also reported in other studies (Guilak, Tedrow et al. 2000; 

Dahl, Engler et al. 2005). The distinct difference in deformability of isolated nucleus 

of MCF-10A and MCF-7 can serve as an indicator to differentiate cancer cells from 

normal cells. 

 

Fig. 6.5 Comparison between apparent Young’s modulus of isolated nucleus of MCF-10A and 
MCF-7. 
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6.3.3 Lamin A/C structure of nucleus 

To understand the possible reason underlying the difference in the mechanical 

property of nucleus of MCF-10A and MCF-7, we stained and investigated the lamin 

A/C structure of isolated nucleus of both types of cells. Lamin A/C was chosen as 

studies have shown that they play an important role in determining nuclear mechanics 

(Lammerding, Fong et al. 2006). Aberrant localization and reduction in expression of 

lamins A/C were observed in many malignancies (Prokocimer, Margalit et al. 2006). 

Many studies have reported that there is reduction in lamin A/C expression during 

malignant transformation of different types of cells (Kaufmann, Mabry et al. 1991; 

Broers, Raymond et al. 1993; Machiels, Ramaekers et al. 1997; Venables, McLean et 

al. 2001; Oguchi, Sagara et al. 2002; Coradeghini, Barboro et al. 2006) including 

breast cancer (Moss, Krivosheyev et al. 1999). All these reasons make lamin A/C a 

most promising target structure which might contribute to the difference that we have 

observed between the stiffness of isolated nuclei of MCF-10A and MCF-7. As shown 

in Fig. 6.6, lamin A/C is uniformly distributed at the peripheral region of isolated 

nucleus of MCF-10A, while not for MCF-7. Especially, we have also analyzed the 

intensity profile of one typical section of the fluorescence image. In isolated nucleus 

of MCF-10A, there is high concentration of lamin A/C at the peripheral region than 

inside. While in isolated nucleus of MCF-7, the level of intensity is lower compared 

with that of MCF-10A and it is not highly concentrated at the peripheral. Generally, 

lamin A/C of isolated nucleus of MCF-10A has higher intensity and higher 

concentration at the peripheral region than that of MCF-7, which might contribute to 

their difference in stiffness.  
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Fig. 6.6 Lamin A/C structure of isolated nucleus of (A) MCF-10A and (B) MCF-7 (intensity 
profile corresponds to the line section of fluorescence image). 

However, another possible reason is the chromatin inside the nucleus as studies have 

shown that it is a force-bearing element inside the nucleus (Dahl, Engler et al. 2005). 

Therefore, the internal structural change including chromatin and associated proteins 

during malignant transformation might also contribute to the observed difference in 

deformability, which needs further studies.  

6.3.4 Comparison with whole cell indentation 

Most interestingly, as we compare apparent Young’s modulus of isolated nuclei with 

our previous results on that of the cells in chapter 5, we found that the stiffness we 

characterized for the nuclei was very close to the cell. As shown in Fig. 6.7, apparent 

Young’s modulus of isolated nuclei is, in general, statistically insignificant compared 

to that of the cell for both MCF-10A and MCF-7, except for one isolated case of 

MCF-10A at 0.1 Hz. While most studies showed that stiffness of isolated nuclei is 4 

(A)                                                                   (B)
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to 10 times stiffer than the whole cell (cytoplasm) (Dong, Skalak et al. 1991; 

Maniotis, Chen et al. 1997; Guilak, Tedrow et al. 2000; Caille, Thoumine et al. 2002). 

So we believe in our previous cell indentation experiments, the nuclei inside the cell 

also contribute significantly to the mechanical property although it was measured 

under small deformation. However, the cytoskeleton (including cytoplasm) does 

contribute to cell mechanics in different aspects. As we can see the trend of increased 

apparent Young’s modulus is higher in cell than in nucleus, which suggests that the 

cell is more viscous than the nucleus. Higher viscosity of the whole cells compared 

with the nuclei might contribute from cytoskeleton or cytoplasm. However, further 

studies including computational modeling is needed. 

 

Fig. 6.7 Comparison between apparent Young’s modulus of isolated nuclei and cells of both 
MCF-10A and MCF-7 (*: p > 0.1, **: p < 0.05, N ≈ 20).  
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6.4 Conclusions 

In the chapter, mechanical property of isolated nucleus of cancer cells was 

characterized using AFM indentation based on previous established protocol. 

We reported for the first time that there is a decrease in elasticity of isolated nuclei of 

malignant breast cells compared with that of non-malignant ones. Considering the fact 

that absence or low levels of type A lamins are often observed in many types of 

human hematological malignancies, the related decrease of nuclear stiffness can be 

quite promising as a distinct feature of malignancy. Our study showed that 

characterization of mechanical properties of cancer nucleus using AFM is a robust 

method to distinguish malignant breast cells from nonmalignant ones. A method 

established by Beale in 1860 and used as a “gold standard” for detecting cancer is to 

examine unstained cell structure and look out for any variations in nuclear size and 

shape (Zink, Fischer et al. 2004). In our case, the possible change in mechanical 

properties of the nucleus can be a quantitative and more accurate method to help 

detect cancer. The application of this study for clinical samples has a high potential. 

Alteration in the composition of nuclear lamins and nuclear mechanics are potential 

novel targets for future anti-cancer therapy, which also provides a basis for 

development of new diagnostic tools. 

In addition, more detailed information on the mechanical properties of the nucleus is 

needed to understand its role in mechanotransduction and its role in mechanical 

behavior of cancer cells may provide insight on the process of malignant 

transformation and metastasis.  
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It is interesting to see that the stiffness of the isolated nuclei is very close to the 

stiffness of the cells characterized using the same technique. However, there is a 

notable difference in their viscosity evident by their different response to the loading 

rates. In our previous study we have monitored the change in actin structure 

comparing two cell lines which contributes to their difference in mechanical property. 

But this study gives us a more comprehensive understanding about the contribution of 

underlying cellular structures to cell mechanics. Both nucleus and cytoskeleton (actin) 

contribute to cell mechanics but probably in different aspects. The nucleus might 

contribute more to the cell elasticity while the cytoskeleton (or cytoplasm) contributes 

to the viscous response of the cell. However, a more thorough understanding requires 

computational modeling. 
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Chapter 7 Conclusions and Future Work 

This thesis focused on probing the structure-mechanical property relationship of 

breast cancer cells (MCF-7 and MCF-10A). These cancer cells at different 

physiological conditions including suspension and adherent condition were studied 

using different techniques including microfluidics, micropipette aspiration and AFM. 

Besides actin structure, which is considered as a major contributor to cell mechanics, 

the importance of another internal cellular component nucleus, which also contributes 

to cancer cell mechanical behavior especially in the context of cancer metastasis, was 

proposed and investigated. 

7.1 Conclusions 

Malignant breast epithelial cells (MCF-7) were found almost twice more deformable 

than non-malignant breast epithelial cells (MCF-10A) both at suspended and adherent 

state, which might facilitate easier migration through tissues and endothelial barrier 

and traversing through small capillaries. 

There is a distinct difference in the actin structure of MCF-10A and MCF-7, both at 

suspended and adherent conditions. In suspended condition, MCF-10A has a thicker 

and concentrated actin cortex than MCF-7. While in adherent condition, MCF-10A 

was found to have significantly more actin stress fibers than MCF-7 especially on the 

top layer of the cell. 

Temperature was found to have a significant effect on cellular mechanical properties. 

As temperature increase from room temperature to physiological temperature (37 ºC), 

both MCF-7 and MCF-10A become more deformable. 
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Isolated nuclei of MCF-7 were found twice more deformable than that of MCF-10A 

and there is corresponding change in the lamin A/C distribution, which might be used 

as another quantitative biomarker for cancer detection. 

Both the whole cell and isolated nucleus of MCF-7 were found to be twice more 

deformable than that of MCF-10A, and apparent elastic modulus of nucleus 

characterized by AFM indentation was very close to that of the whole cell, which is 

different from other reports. Both these facts suggest that nucleus also play a 

significant role in contributing to the overall cancer cell mechanics. 

As breast epithelial cells become malignant, both cytoskeletal structure (actin) and 

nuclear structure (lamin A/C) undergoes significant changes, and both contribute to 

the overall deformability of cancer cells. 

7.2 Future work 

The work in this thesis points to better understanding about structure-mechanical 

property relationship of cancer cell mechanics, which is the contribution of internal 

organelle nucleus to overall cellular mechanical behavior in the context of cancer 

metastasis. Moreover, it also gives potential applications in cancer detection and 

diagnosis. Future work can include the following: 

1. Computational modeling to systematically study the contribution of different 

cellular components, especially the nucleus to overall cell mechanics. To 

understand how the cytoskeleton and nucleus contribute specifically to cellular 

mechanical behavior in terms of elasticity and viscosity. 

2. In view of the close connections between the cytoskeleton and nucleus, and that 

the mechanical property of nucleus is very close to that of the whole cell observed 
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in this work, how cytoskeleton and nucleus regulate each other and play a role in 

contributing to the overall cell mechanics and mechanotransduction. 

3. We studied how nucleus contributes to the overall cell deformability when they 

are passively deformed by passing them through the microchannel. The 

fundamental and interesting question is how the nucleus adapts or deforms and 

affects migration when cells actively move through the tissues or endothelial 

barriers in the context of cancer metastasis. 

4.  Clinical studies on the mechanical properties of nuclei of cancer cells will further 

confirm the potential application of this study as a biomarker to help cancer 

detection and diagnosis. 
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