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Summary 

Tbx2 is a member of the T-box family of transcription factors that function 

during embryonic development and organogenesis in all metazoans. In addition to the 

growing body of recent findings about roles of Tbx2 during cancer progression, study 

of the gene function during embryonic development is also essential. In this study, we 

characterize functions of the paralog tbx2a during embryonic development using 

zebrafish as a model.  

tbx2a was cloned and mapped to Chromosome 5. Analysis of tissue 

distribution of tbx2a transcripts revealed a number of conserved domains and species 

specific domains. tbx2a was consistently expressed in the pharyngeal endoderm and 

gene knock-down led to a total loss of pharyngeal arches, which suggests its 

indispensable role in this region. The pharyngeal apparatus is a conserved structure 

across species. It develops into the jaw and gills in fish, and numerous structures in 

the human neck and face. While there are many human disorders of the face and neck, 

the genes and molecular mechanisms responsible are largely unknown. This work 

used zebrafish as a model to explore the function of tbx2a during pharyngeal arch 

development. This well-structured organ is constituted by derivatives from all three 

embryonic germ layers – endoderm pouches, mesodermal cores and neural crest cells. 

We showed that although tbx2a expression was mostly restricted to the endodermal 

pouches, gene knock-down led to a total loss of pharyngeal arches in a p53-

independent manner. We provided evidence for a cell-autonomous role of tbx2a 

during specification of the endodermal pouches, which affects the whole pharyngeal 

apparatus. Furthermore, we identified a secondary effect of tbx2a on other 

components such as mesodermal cores, neural crest cells (NCCs) and epibrachial 
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ganglia. We did not observe any changes in patterning of migratory NCCs in the 

absence of tbx2a; instead, their cartilage differentiation was strongly affected. Finally, 

we demonstrated that knock-down tbx2a resulted in cell apoptosis within pharyngeal 

arches. Taken together, we hope the understanding provided about the role of tbx2a 

during pharyngeal arch development in zebrafish could be extended for studying 

human disorders in the face and neck. 

Our data strongly support the hypothesis that the endodermal pouches play a 

leading role during the development of pharyngeal arches. Analysis of expression 

pattern showed that tbx2a is also expressed in other endodermal derivatives such as 

swim bladder, anterior gut and liver. Thus, there could be a common mechanism 

where tbx2a acts to regulate the development of all endoderm-budding organs.  

Finally, in the appendix, we briefly demonstrate the function of tbx2a in 

hypothalamus patterning and neurogenesis. We provide preliminary data to show that 

Tbx2a might inhibit shh expression to promote the fate of posterior hypothalamus as 

well as neurogenesis in this region.  
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1.1 Overview of T-box genes  

T-box is a family of genes encoding transcription factors with a unique and 

evolutionarily conserved DNA-binding domain, namely the T-box domain (Bollag et 

al., 1994). All of member of the T-box family typically recognize palindromic T boxes 

of the target genes, however these may differ depending on a particular T-box protein 

(Kispert and Herrmann, 1993). For example, Xbra can bind to two half sites arranged 

head-to-head (TCACACCTAGGTGTGA) while Eomesodermin cannot. Conversely, 

Eomesodermin can bind to two core motifs arranged head-to-tail 

(TCACACCTaaatTCACACCT) while Xbra cannot (Conlon et al., 2001). This family 

of genes has been found to play important roles during embryogenesis. In fact, a 

number of mutations in T-box genes have been characterized to be involved in human 

developmental syndromes such as Ulnar-mammary (Bamshad et al., 1997), 

Holt_Oram (Basson et al., 1997; Li et al., 1997) and DiGeorge (Jerome and 

Papaioannou, 2001; Yagi et al., 2003).  

 

 

 

 

 

 

 

Tbx2 is one of the relatively recent additions to the T-box family, but it is 

actively studied since it is not only implicated in organogenesis but also in 

carcinogenesis (Rowley et al., 2004; Jerome_Majewska et al., 2005; Bilican and 

Goding., 2006). Tbx2 is deregulated in pancreatic, breast and melanoma cancers 

Scheme 1:. General structure of T-box transcription factors. Members of 
T-box family are typical with a conserved DNA binding domain_T-box, 
transactivation domain is at C-terminus, N-terminus may interact with 
cofactor. Adapted from Minguilon and Logan, (2003) 

DNA binding/Dimerization 
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(Mahlamaki et al., 2002; Sinclair et al., 2002; Packham and Brook, 2003; Vance et al., 

2005). Its function in carcinogenesis has been supported by the findings suggesting 

that Tbx2 regulates cellular proliferation and/or survival by inhibiting downstream 

targets such as p19ARF, p16INK4a  and p21, which in turn negatively affect expression 

of one of the most important anti-apoptotic genes encoding Tp53 (Jacobs et al., 2000; 

Lingbeek et al., 2002; Prince et al., 2004). Also, tbx2 has been implicated in cell 

adhesion by regulating the gap junction connexin43_cx43 (Borke, 2003; Chen, 2004), 

and collagen, type I, alpha 2_col1a2 (Teng et al., 2007). Microarray analysis of Tbx2-

overexpressing fibroblasts suggests that Tbx2 is upstream of factors responsible for 

osteogenesis (Chen et al., 2001). Whereas many studies suggest that Tbx2 negatively 

represses transcription of target genes (Carreira et al., 1998; Smith et al., 1999), Chan 

et al. (2001) observed that overexpression of Tbx2 caused Col1a2 up-regulation in 

mouse NIH3T3 fibroblasts and down-regulation in rat OS17/2.8 osteoblastic cell line. 

This suggests that Tbx2 regulatory outcomes could vary upon cell type or tissue 

contexts. Although these cellular findings have contributed to the body of basic 

knowledge about tbx2 functions, animal models are required as a comprehensive 

study system for further investigation of roles of this gene during embryonic 

development.  

Thus far, there is still no report on the link between TBX2 mutations with any 

human disorders. This could be due to the prenatal lethality of the mutants which 

suffer from cardiac insufficiency, as demonstrated in the tbx2 null mouse (Harrelson 

et al., 2004; Plagemen and Yutzey, 2005). Therefore, it is necessary to utilize animal 

models to study functions of this gene during normal embryonic development. By 

using mouse, it has been found that Tbx2 is involved in development of limb (King et 
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al., 2006), heart (Plageman and Yutzey, 2005) and mammary gland (Rowley et al., 

2004).  

Over the last two decades, the zebrafish has been accepted as a useful model, 

which complements other model vertebrate animals such as mice, chick and frogs 

(Lieschke and Currie, 2007; and elsewhere). From the moment this gene has been 

discovered in the zebrafish (Dheen et al., 1999) until now zebrafish researchers have 

obtained evidence of its developmental role in the heart, eyes, and ears (Gross et al., 

2005; Ribeiro et al., 2007; Chi et al., 2007; Snelson et al., 2008), which is compatible 

with studies in mammals mentioned above. Interestingly, due to partial genome 

duplication, tbx2 in zebrafish is represented by two paralogs - tbx2a and tbx2b (Dheen 

et al., 1999; Fong et al., 2005). Genomic sequence comparison reveals that tbx2a and 

tbx2b contain 100% of the conserved sequence of the T-box domain (Dheen et al., 

1999; this study). Comparison of tbx2a and tbx2b expression patterns demonstrated 

some similarity and some divergence of expression domains, suggesting the 

possibility that tbx2a and tbx2b may play partially redundant and partially distinct 

roles during development. Given the diversity of developmental roles of tbx2 in 

vertebrates, the divergence of these two genes in zebrafish provides a convenient way 

of tackling them individually. That in turn would lead to a more complete 

understanding of tbx2 function, supplementing that from other species. Recently, 

several studies have focused on one of the two genes without referring to the 

redundant roles. During specification of the eye, tbx2a knock-down has been found to 

affect only the dorsal eyes (Gross et al., 2005). In early neurogenesis, tbx2b has been 

shown to drive the process of cell migration into the neural plate (Fong et al., 2005). 

In the heart, tbx2a has been reported to be indispensable for cardiac chamber 

formation (Ribeiro et al., 2007). Moreover, Chi et al. (2007) identified foxn4 as a 
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direct regulator of tbx2b expression and atrioventricular canal formation in zebrafish 

heart. Most recently, Snelson et al. (2008) have characterized a nonsense mutation in 

the tbx2b gene and found that Tbx2b regulates parapineal asymmetry by specifying 

the correct number of parapineal cells.   

However, not all developmental roles of tbx2 have been studied. Harrelson et 

al. (2004) while characterizing the gene function in the heart using the Tbx2 null 

mouse, also reported a defect in the pharyngeal arches. So far, there has been no study 

exploring the role of tbx2 in this region. In this study, we present for the first time a 

systematic investigation of the role of tbx2a during organogenesis of the pharyngeal 

apparatus. We observed a consistent expression of tbx2a in the pharyngeal arches 

from around 22 hpf (hour post fertilization) onwards. Importantly, morpholino-

mediated tbx2a gene knockdown led to abnormal development of the pharyngeal 

apparatus, which suggests a crucial role of tbx2a in this set of organs. Moreover, tbx2 

expression in the pharyngeal arches is conserved in all vertebrate models: mouse 

(Harrelson et al., 2004), chick (Gibson-Brown et al., 1998), Amphibia (Hayata et al., 

1999). Kimmel et al. (2001) compared patterning of the early branchiomeres in the 

zebrafish, which represents actinopterygians, and recognized a similarity with that of 

distantly related sacropterygians such as the Amphibia, birds, and mammals. Thus, 

zebrafish as a representative of the larger group of gnathostomes (Pisces, Amphibia, 

Avia and Mammalia) is a good model for studying pharyngeal arch development. 

Despite the consistent and prominent expression of tbx2 during development of the 

pharyngeal arches, the developmental roles of this gene in this part of the body remain 

unknown.  

Although mature mammals including humans do not possess functional 

pharyngeal arches for respiration as fish do, they do develop this apparatus during 
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early stages of development that later gives rise to the lower jaw and many structures 

of the face and neck (reviewed by Schoenwolf et al., 2009). Despite a high rate of 

birth defects of the face and neck in human, only a few have been shown to be caused 

by faulty genes and signaling pathways – TBX1 (DiGeorge syndrome), retinoic acid 

metabolism, FGF (fibroblast growth factor) and SHH (Sonic Hedgehog) signaling 

pathways, etc (reviewed by Schoenwolf et al., 2009). Using animal models to study 

gene function during development will hopefully uncover conserved developmental 

mechanisms and help us understand the underlying cause of such birth defects in 

humans. Due to the evolutionarily conserved nature of gene function, our findings on 

tbx2a during embryogenesis are important for understanding human anomalies of the 

face and neck. However, a full understanding of these matters will require additional 

studies in other animal models.  
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1.2 Overview of development of the pharyngeal arches 

Segmented pharyngeal apparatus is a common feature of all chordates 

(Schaeffer, 1987). For feeding and respiration, the vertebrate pharyngeal apparatus 

has evolved with complicated modifications recruiting the contribution of all three 

embryonic germ layers. Each of the pharyngeal arches has its own function (reviewed 

by Graham, 2001). The most anterior first arch (mandibular) forms the lower jaw. The 

second arch (hyoid) plays a role as the jaw support (hyoid), and the more posterior 

arches become gill bearing in teleosts or associated with the throat in amniotes. 

However, maybe due to the shift in usage of respiratory organs from pharyngeal gills 

to lungs in tetrapods, the number of caudal segments was reduced from 5 in teleosts to 

3 in amniotes (reviewed by Graham, 2001; Schoenwolf et al., 2009). 

The pharyngeal apparatus can be described as a series of bulges located on the 

lateral surface of the head that develop into pharyngeal arches with a repeated 

structure for each mature arch. The central most is the mesodermal core which is 

encapsulated by neural crest cells. Endoderm marks the inner covering, whereas the 

ectoderm marks the outer covering for the arch. The three germ layer derived 

components also give rise to their own derivatives to facilitate the full function of the 

apparatus as a whole. The innermost endoderm establishes the pouches separating the 

arches; and forms the thyroid, parathyroid and thymus (Cordier and Haumont, 1980). 

The ectoderm forms the epidermis and the sensory neurons of the epibranchial ganglia 

(Couly and Le Douarin, 1990). The neural crest cells develop into skeletal elements 

and connective tissue of the arches while the mesodermal cores form musculature 

cells (Noden, 1983; Coulyet al., 1993; Trainor et al., 1994).  

The three embryonic germ layers contribute to the structure of the arches by 

working out their own movement and specification which in turn bring them into 
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more intimate contact to provide the anatomical basis for signalling interactions 

(Kimmel et al., 2001). The pharyngeal endoderm branches into slits or out-pockets 

which extend dorsoventrally to reach the ectoderm. Around the same time, neural 

crest cells migrate from the dorsal neural tube toward out-pocketing endodermal 

pouches and wrap round the mesodermal cores (Kimmel et al., 2001; Cerny et al., 

2004). Vertebral pharyngeal apparatus is highly evolved with innervating nerves 

connected to the central nervous system for conveying sensation and receiving 

controlling signals. Epibranchial placode induction is a crucial step during pharyngeal 

neurogenesis since it requires active interaction with the surrounding tissues including 

the pharyngeal endoderm (Webb and Noden, 1993).  

Previous studies have proposed a central role for neural crest cells in the 

development of the pharyngeal arch (Noden, 1983; Köntges and Lumsden, 1996). 

However, as mentioned, pharyngeal arch development is an orchestra of several 

complicated processes contributed by all three germ layers.  

1.2.1 The contribution of the neural crest cells to pharyngeal development  

Neural crest cells (NCCs) are a population of migratory embryonic cells from 

the border between ectoderm and neural plate (Le Douarin and Kalcheim, 1999). 

They diversify into many cell types that include pharyngeal neural crest (Le Douarin 

and Kalcheim, 1999). To become pharyngeal cartilage, these NCCs have to go 

through the journey from the dorso-lateral edge of the closing neural folds to the 

future pharyngeal arches by migration under intrinsic and extrinsic signals (reviewed 

by Noden, 1983; Graham, 2001).  

The NCCs were long held to play a master role during pharyngeal arch 

development until mounting evidence of the leading role of the endodermal pouches 

forced a revision (Graham et al., 2005). Nevertheless, the NCCs are still an important 
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and indispensable component of the complete pharyngeal arches (Kimmel et al., 

2001). The pharyngeal NCCs migrate in a conserved manner in all vertebrates, 

separately in three main streams: trigeminal, hyoid and postotic (Lumsden et al. 1991; 

Schilling & Kimmel, 1994; Horigome et al. 1999; Trainor, 2002). The trigeminal 

stream which arises from the posterior midbrain and the anterior hindbrain segments, 

rhombomeres 1 and 2 will populate the first arch (the lower jaw). The hyoid which 

emigrates from the central hindbrain region, primarily from rhombomere 4 

contributes to the second arch. The rest - the caudal branchial arches are contributed 

by the postotic crest cells from the caudal hindbrain, rhombomere 6 and 7. This prior 

separation of the migratory crest cells into streams seems to be a prerequisite to the 

organisation of the future pharyngeal apparatus. Fate-mapping experiments in chick 

(Köntges & Lumsden, 1996) as well as in axolotl (Cerny et al, 2004) have shown that 

these NCC streams never inter-mix. Noden (1983) observed that if the avian midbrain 

or anterior hindbrain NCCs were heterotopically transplanted into the more caudal 

hindbrain region, it would produce a duplication of the first arch. This experiment 

suggested that the premigratory NCCs might carry intrinsic positional information, at 

least at this early stage, for their future skeletal development. However, Couly et al. 

(2002) based on transplantation experiment of the anterior endoderm argued that the 

fate of the pharyngeal NCCs is plastic to the skeletal element identity, meaning the 

positional signals are dependent on the external environment - the endoderm. 

Piotrowski and Nusslein-Volhard (2000) also highlighted the patterning role of the 

endoderm in zebrafish; so did Veitch et al. (1999) in chick. However, a study in 

mouse suggested that head mesoderm might play a role in segmentation of the 

neuroectoderm, including NCCs (Trainor & Krumlauf, 2000; Trainor et al., 2000). 

Cerny et al. (2004) with a study in axolotl argued that intrinsic signals might be 
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effective during the early migrating stage to maintain the three streams of NCCs; 

however, once intimate contacts with endoderm and mesoderm occur, extrinsic 

signals should take over the role of directing the NCC differentiation.  

1.2.2 Chondrogenesis – cartilage formation 

The mesenchymal core is formed internally by the mesodermal core and 

externally by NCCs (Kimmel, 2001). These mesenchymal cells are chondro-

progenitors which will undergo steps of differentiation to build up cartilage. After 

committing to the chondrogenic fate, pre-chondrocytes differentiate into chondrocytes 

and then to early chondroblasts. From that, the cartilage anlagen are formed so as to 

pre-frame the future skeletal elements. Through each step, they may acquire a specific 

histological feature, cellular activity and especially, gene expression profile (reviewed 

in Lefebvre and Smits, 2005). In the first step, prechondrocytes turn off expression of 

mesenchymal markers and start to express col2a1 and subsequently other cartilage 

markers col9a1, col9a2, col9a3 and col10a1. The type II collagen is the most 

abundant in the framework of the cartilage matrix. sox9 is expressed in chondrogenic 

mesenchymal cells even before condensation and maintained in prechondrocytes and 

chondroblasts. It is turned off when chondroblasts start prehypertrophy (Wright et al., 

1995; Ng et al., 1997; Zhao et al., 1997). pax1/9 is also expressed in the same 

chondrogenic stage with that of sox9. Inactivation of sox9 in mouse or sox9a in 

zebrafish leads to the same result in which pre-chondrogenic cores are formed 

normally but they cannot proceed with chondroblast differentiation (Akiyama et al., 

2002; Yan et al, 2002). Chondrogenesis consists of multiple steps, so there should be 

more transcription factors to be characterized in future.  

To dissect the role of tbx2a during pharyngeal arch development, it is 

important to resolve the question of whether the gene is involved in pharyngeal neural 
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crest patterning and/or differentiation/cartilage formation as an intrinsic signal or 

upstream of extrinsic signals. 

1.2.3 The role of the endoderm pouches during pharyngeal arch formation 

Previously, pharyngeal arch malformation was conventionally attributed as a 

consequence of defects in neural crest specification. However, some mutants that 

exhibit malformed pharyngeal arch e.g. vgo (tbx1-/-) possess normally patterned NCCs 

(Piotrowski et al., 2003), arguing for the possibility that the pharyngeal apparatus is 

patterned by components other than NCCs.  

The pharyngeal endodermal pouches arise from the anterior endodermal 

bulges on the lateral surface of the pharynx. These bulges are pushed out to reach the 

ectoderm and extend along the proximo-distal axis as a pocket consisting of two 

halves. The anterior half faces one arch in front and the posterior half is in contact 

with the contiguous arch behind. The pouches are chronologically formed. In 

zebrafish, the first pouch is formed at around 17hpf, and then consecutively with 2 

hour-intervals (Kimmel et al., 2001). All the pouches are fully formed at around 

30hpf. To date, there are accumulating lines of evidence for the leading role of 

endodermal pouches, but not the NCCs, during pharyngeal development. Strikingly, 

Veitch et al. (1999) demonstrated in chick that endoderm pouch identity is unchanged 

in the absence of NCCs so that the pharyngeal arches are still formed. In the study, the 

neural tube was removed before production of NCCs, but the expression patterns of 

endodermal pouch markers were normally maintained. Zebrafish cas (defective in 

Sox-related factor Casanova) and bon mutants (defective in homeobox transcription 

factors Mixer/Bonnie and clyde), which affect Nodal signalling, do not develop 

endoderm and possess a weak trace of mesoderm (Dickmeis et al., 2001; Kikuchi et 

al., 2001; Kikuchi et al., 2000). As a result, the pharyngeal arch cartilages disappear in 
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these mutants although neural crest migration is not affected (David et al., 2002). 

Rescue experiment with endoderm-derived cells confirmed the solitary role of the 

endoderm. In the same study, it was found that Fgf3 is important for the endoderm to 

control the chondrogenic fate of the NCCs. Other evidence is provided by the studies 

in zebrafish vgo mutant, which carries a mutation in the locus of tbx1 (Piotrowski et 

al., 2003), an orthologue of human TBX1 – a key factor in DiGeorge deletion 

syndrome (DGS) (Jerome and Papaioannou, 2001; Lindsay et al., 2001; Merscher et 

al., 2001). vgo exhibits undeveloped pharyngeal arches (Piotrowski & Nusslein-

Volhard, 2000). Despite the fact that the NCCs are formed normally and migrate to 

the prospective pharyngeal area, the pharyngeal cartilages fail to form in the caudal 

arches and become fused together in the first two arches. That was attributed to defect 

in the endodermal pouches (Piotrowski & Nusslein-Volhard, 2000). The anterior 

endoderm is not segmented and the pouches are not formed. Study in Tbx1-/- mice also 

recognized the same defects as in vgo fish. The mice also have defective endodermal 

pouches which lead to malformation in their derivatives such as the parathyroid, 

thymus and aortic arches_the major blood vessels of the pharyngeal arches (Garg et 

al, 2001; Zhang et al., 2005). In chick, it was found that specific ablation of particular 

domains of the pharyngeal endoderm accordingly leads to the failure of future neural 

crest-derived skeletal elements (Couly et al., 2002). Conversely, the orientation of the 

additional skeletal element will follow the orientation of the ectopically transplanted 

endodermal pouch. Altogether, there are lines of convincing evidence that 

development of the pharyngeal arch relies on instructional cues from endoderm 

pouches.  

The leading role of the endodermal pouches may reflect the evolutionary 

origin of the segmented pharyngeal patterned from endoderm prior to the contribution 
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of the NCCs. Recently, Rychel and Swalla (2007) recognized a highly conserved 

expression pattern of genes, such as soxE, type II collagen and pax1/9, regulating 

pharyngeal cartilage development in lancelets, tunicates, hemichordates and 

vertebrates. Importantly, in hemichordates pharyngeal endodermal cells are able to 

secrete cartilage, whereas in lancelets, all three germ layer derived cells contribute to 

cartilage formation. It suggests that the endodermal pouch structure is the most 

evolutionarily primary structure in pharyngeal arch development (Graham et al., 

2005). Moreover, it is noticed that alterations of the pharyngeal apparatus during the 

evolution of vertebrates highly correlate with modifications to the pharyngeal 

endoderm. Indeed, the number of arches is determined by the number of endodermal 

pouches. There is a general trend in the reduction of arch number; whereas lampreys 

possess nine arches developing from nine endodermal pouches, most teleosts have 

seven and this number is decreased to five in amniotes (reviewed by Graham et al., 

2005). Altogether, evolutionary evidence strongly supports the hypothesis about the 

leading role of the endodermal pouch during pharyngeal arch development.  

1.2.4 Role of endodermal pouches during neurogenesis in epibranchial placodes  

The endodermal pouches do not only regulate cartilage formation but also 

induce neurogenesis of the pharyngeal arches. Pharyngeal arches are innervated by 

cranial nerves associated with sensory ganglia. The sensory ganglia are of dual 

embryonic origin; they derive from NCCs and neurogenic placodes (Ayer Le Lievre 

and Le Douarin, 1982; D’Amico-Martel and Noden, 1983). Originally, placodes are 

generated by focal thickening of ectoderm (Webb and Noden, 1993). They include 

dorsolateral placodes, which are close to the neural tube and epibranchial placodes, 

which are dorsally and caudally adjacent to the endoderm pouches (Webb and Noden, 

1993; Begbie et al., 1999). In zebrafish, each placode is associated with a respective 
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pharyngeal arch: the facial placode with the second arch, the glossopharyngeal 

placode with the third arch, and four vagal placodes with the four posteriormost 

arches. It has been hypothesized that the induction of these two types of placodes 

(dorsolateral and epibranchial) is dependent on their proximity to the external signals 

from surrounding tissues. Begbie et al. (1999) has shown in chick that epibranchial 

placodes can be induced by endodermal pouches. The induction signal is shown to be 

Bmp7 secreted by endodermal pouches. This study also shows that epibranchial 

placode induction is strongly independent of NCCs. These authors show that upon the 

removal of NCCs before migration, the epibranchial placodes are still normally 

patterned. Recently, Holzschuh et al. (2005) have provided evidence in which the 

pharyngeal endoderm defective mutants casanova (cas, sox23-/-) and van gogh (vgo, 

tbx1-/-) exhibit failure in inducing epibranchial placodes but not dorsolateral placodes. 

They further show that BMP signaling (Bmp2b and Bmp5) from the endodermal 

pouches is required for epibranchial neurogenesis. Mosaic analyses on cas and 

acerebellar (ace, fgf8-/-) mutants also suggest a role for pharyngeal endoderm during 

pharyngeal neurogenesis (Nechiporuk et al., 2005). Fgf3 and Fgf8 have been 

identified as important signalling molecules secreted by endoderm to regulate the 

process of epibranchial neurogenesis (Crump et al., 2004). Taken together, 

endodermal pouches may serve as a signalling centre providing cues for epibranchial 

placode induction, an important process during the pharyngeal arch development. 

1.2.5 Endodermal pouch patterning and morphogenesis 

Studies in mice suggest that retinoic acid synthetic enzyme 

Retinaldehydespecific dehydrogenase type2 (raldh2) plays a role during patterning of 

the pharyngeal endoderm (Niederreither et al., 1999; Wendling et al., 2000). This 

mechanism may be conserved in zebrafish since neckless mutant (raldh2-/-) is also 
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defective in the endoderm with a corresponding failure to form the caudal arches 

(Begemann et al., 2001). Moreover, a deficiency in vitamin A which results in the 

inactivation of retinoic acid signalling can cause malformed pharyngeal pouches in 

chick (Quinlan et al., 2002). Independent from retinoic acid signalling, the role of 

tbx1 is also evident in pharyngeal endoderm patterning. Indeed, vgo (tbx1-/-) mutant 

lacks all caudal endodermal pouches, and in turn all caudal pharyngeal arches are not 

formed.  

Even when pharyngeal endoderm is patterned successfully into discrete initial 

out-pockets, if the pouches fail to enter the next step of morphogenesis then 

development of the pharyngeal arches will still be affected (Graham, 2001). The 

morphogenesis of the pharyngeal endodermal pouch is the process in which the pouch 

extends along the dorsoventral axis into a narrow slit-like shape. Throughout the 

extension process, it has been noticed that f-actin is highly accumulated and form 

actin cables covering the apical region of the inner surface of the pouch pockets, but 

not the outer surface or the interpouch endoderm (Quinlan et al., 2004). These actin 

cables are connected via N-cadherin-based adherens junctions. The importance of 

these actin cables has been established by blocking their formation with cytochalasin 

D, leading to disruption of the narrow slit-like morphology of the pouches. The cables 

may function in a mechanical manner by providing a constraining force to direct the 

movement of the double sided sheet of endodermal cells (Quinlan et al., 2004). 

Double reduction of Fgf8 and Fgf3 has been shown to regulate pharyngeal endoderm 

morphogenesis and affect formation of the pharyngeal cartilages (Crump et al., 2004). 
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1.3 Aims of study 

Although tbx2 has not yet been linked to any human disorders, developmental 

roles of this gene are being gradually discovered in animal models. This study was 

initiated with a desire to understand the role of tbx2a in the development of 

pharyngeal arches in zebrafish. Despite the high number of human birth defects 

affecting the face and neck, the genetic and molecular mechanisms responsible are 

largely unknown (Schoenwolf et al., 2009). We noticed that the pharyngeal 

expression of tbx2 is conserved across species including mouse, chick, frog and fish 

(Chapman et al., 1996; Gibson-Brown et al., 1998; Hayata et al, 1999; Ruvinsky et 

al., 2000; this study). Moreover, dysmorphic pharyngeal arches have been 

documented in Tbx2 null mice (Harrelson et al., 2004) without detailed analysis. In 

view of the expression of tbx2a in the developing pharyngeal apparatus, we aimed for 

a functional analysis based on morpholino-based gene knockdown to answer the 

following questions:  

(1) Does Tbx2a play a developmental role in the specification of pharyngeal 

arches? 

(2) If it does, what is a specific role of tbx2a in endodermal pouches? 

(3) Is tbx2a involved in specification of the NCC and mesodermal cores and 

further differentiation into cartilage?  

(4) Does tbx2a play a role during differentiation of epibranchial placodes?  

(5) Is tbx2a acting as an anti-apoptotic factor in the pharyngeal arches?   
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2.1 Molecular applications 

2.1.1. Isolation of total RNA from zebrafish tissue and RNA agarose gel 

electrophoresis  

Fish embryos subjected to RNA isolation using RNeasy® mini kit (Qiagen, 

Germany) ranged from blastula stage to 5 dpf. 30 embryos without chorions were 

collected into 1.5 ml Eppendorf tubes without any trace of excess liquid. They were 

immediately disrupted in 50 μl of denaturing guanidine isothiocyanate (GITC, which 

inactivates RNases) containing buffer namely RLT with a disposable polypropylene 

pestle (Sigma). Another 300μl of RLT buffer was added into the tube and the total 

lysate was homogenized by passing through a syringe fitted with a 30-gauge needle 

(BD Biosciences). The procedure was continued according to the manufacturer’s 

instructions with on-column DNase digestion using the RNase-Free DNase Set 

(QIAGEN, Germany). First, the lysate was spun down and the supernatant was 

transferred to 350 μl of 70% ethanol for binding onto the RNeasy mini spin column. 

The column was washed with 350 μl of RW1 buffer before addition of 80 μl of 

RNase-free DNAse (QIAGEN, Germany) incubation mix and allowed to stand at RT 

for 15min. The DNase digestion was followed by washing with 350 μl RW1 buffer 

and 500μl of RPE buffer. Total RNA was eluted in 40μl of RNase-free water and 

then aliquoted to be stored at –20ºC for further use. 

Total RNA integrity could be checked by 1.8% native agarose gel 

electrophoresis in 1X TBE buffer (0.089 M Tris Base, 0,089 M Borate and 0,002 M 

EDTA, pH 8.0). RNA sample was denatured in Gel Loading Buffer II (Ambion, 

USA) containing 95% formamide, 18 mM EDTA, 0.025% xylene cyanol, 0.025% 
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bromophenol blue, 0.025% SDS at +800C for 5 minutes, followed by quenching on 

ice for 2 minutes before being loaded to the wells.   

2.1.2 Determination of DNA and RNA concentration 

1.7μl of purified RNA or DNA was taken for quantification by optical density 

reading of the absorbance at 260 nm (A260) in a spectrophotometer ND-1000 UV/Vis 

(NanoDrop Technologies). The ratio between the absorbance values at 260 and 280 

nm gives an estimate of DNA and RNA purity. Pure DNA usually has an A260/A280 

ratio of 1.8-1.9 in 10 mM Tris-HCl, pH 8.5, while pure RNA has an A260/A280 ratio of 

1.9-2.1 in 10 mM Tris-HCl, pH 7.5.    

2.1.3 One step RT-PCR 

Qiagen® OneStep RT-PCR kit (QIAGEN, Germany) contains a formulated 

combination of recombinant heterodimeric enzymes of Omniscript and Sensiscript 

reverse transcriptases, and is chemically modified HotStar Taq DNA polymerase. 

This kit was used to perform cDNA synthesis and subsequent PCR together in one 

PCR tube using the following program:  

Step 1: cDNA synthesis at 50°C for 30 min 

Step 2: Initial PCR activation at 94°C for 15 min   

Step 3: Amplification for 25-35 cycles of  

- Denaturation: 94°C for 45 sec  

 - Annealing: 55 to 63°C for 45 sec (vary according to particular primers) 

 - Extension: 72°C for 30 sec to 2 min (1 min for each 1 kb) 

Step 4: Final extension at 72°C for 10 min  

The reaction mix was composed of 100 μg of total RNA, 5 units RNAse 

inhibitor, 2 mM dNTP mix (400 μM of each dNTP), 0.6μM of each primer, 5X 
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QIAGEN OneStep RT-PCR Buffer containing 12.5 mM MgCl2, and water was added 

to make up 50μl of total reaction mix.  

2.1.4 Preparation of genomic DNA 

In this study, genomic DNA was isolated from zebrafish embryos for the 

purpose of checking nucleotide sequence of intron-exon junctions in order to design 

morpholino oligos. 20 embryos at 1 dpf were collected and lysed in 500 μl of lysis 

solution [7 M Urea, 0.3 M NaCl, 0.02 M EDTA, 0.05 M Tris-HCl, pH 8.0, 1% N-

lauroylsarcosine]. The lysate was then incubated at +370C for 30 minutes. An equal 

volume of phenol/chloroform/isoamyl alcohol (25:24:1) (Fluka) was added and 

followed by additional extraction with an equal volume of chloroform (BDH). 

Genomic DNA was precipitated with an equal volume of 2-propanol (Merck), washed 

with 70% ethanol (Merck). The precipitate was allowed to dry and resuspended in an 

appropriate volume of 10 mM Tris-HCl, pH 8.5. 1 μl of genomic DNA was taken for 

quantification by optical density reading using Nanodrop/spectrophotometer (UV-

1601, Shimadzu, Japan). It was then aliquoted and stored at –20ºC for further use. 

2.1.5 Standard PCR 

Template DNA used for PCR can be genomic DNA, plasmid constructs or 

from single bacterial colonies. Reactions were performed in Programmable Thermal 

Controller PTC-100 (MJ Research Inc. USA) according to established protocol using 

the HotStarTaq® DNA Polymerase Kit (QIAGEN, Germany). For PCR products of 

high fidelity and high specificity from genomic and plasmid DNA, Expand High 

Fidelity PCR System (Roche Applied Science, Germany) was used.  The reactions 

were carried out for 35 cycles.  

Step 1: Denaturing at 94°C for 2 min   
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Step 2: Amplification for 30-35 cycles of  

- Denaturation: 94°C for 45 sec  

 - Annealing: 55 to 63°C for 45 sec (vary according to particular primers) 

 - Extension: 72°C for 30 sec to 2 min (approximately 1 min for each 1 kb) 

Step 3: Final extension at 72°C for 5 min  

The reaction samples were stored at 4°C until further analysis or directly 

subjected to purification using QIAquick PCR Purification Kit (QIAGEN, Germany). 

5 volumes of Buffer PB were added to 1 volume of PCR mix, and applied onto a spin 

column. After washing with 0.75 ml of Buffer PE, the purified PCR product was 

eluted with 20-30 μl of sterile water or TE buffer and stored at –20ºC for further use. 

2.1.6 Restriction endonuclease digestion of DNA 

Restriction enzyme digestion was employed for digesting PCR products and 

plasmids for cloning, screening recombinant clones, and linearizing plasmid 

constructs of cDNA fragments for probe synthesis.  All the restriction enzymes used 

in the study were purchased from New England Biolabs or Promega (USA). Most of 

the digestions were performed at 37°C or 25°C for 2 hours, with proper restriction 

buffers, with or without BSA according to manufacturer’s instructions. One unit of 

enzyme was used to digest 1 μg of plasmid DNA. For thorough digestion of DNA 

fragments e.g. for cloning, a further dilution of enzyme was made (20 times instead of 

the standard of 10 times) and incubation time was extended to 6 hours. After 

digestion, CIP (calf intestinal alkaline phosphatase) was added to the reaction mix to 

prevent recircularization or religation of linearized plasmid by dephosphorylation of 

the 5-phosphorylated ends of DNA.  
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2.1.7 Agarose Gel Electrophoresis of DNA  

A mixture of different DNA fragments can be separated and checked and on 

1% agarose gel. The agarose powder was dissolved in 1X TAE (0.04M Trisacetate; 

0.001M EDTA) by heating. After the solution was cooled to 60°C, ethidium bromide 

was added to a final concentration of 0.5 μg/ml before the agarose gel was casted. 

DNA samples were mixed with loading dye [(0.25% (w/v) Bromophenol blue, 0.25% 

(w/v) Xylene cyanol FF, 15% (v/v) Ficoll Type 4000, 120 mM EDTA in H2O]  and 

loaded to the wells of the gel submerged in 1X TAE. Voltage of 1-5 V/cm was 

applied during the electrophoresis. 1 or 10 kb DNA ladder molecular weight marker 

(New England BioLabs, Inc.) was loaded in parallel with the DNA samples to 

determine approximate size of DNA fragments.  

2.1.8 Recovery of DNA fragments from Agarose gel 

DNA fragments of interest were excised and purified using the QIAquick Gel 

Extraction Kit (QIAGEN, USA) according to the manufacturer’s instructions. The 

DNA fragments could be PCR products, linearized plasmids, or digestion products. 

Briefly, 3 volumes of buffer QG was added to each volume of agarose and incubated 

at 50 °C until the gel slice had completely dissolved and then loaded into a QIAquick 

spin column. The column was washed with 0.75 ml of Buffer PE before being eluted 

with 30 μl of H2O to obtain purified DNA fragment and the DNA stored at -20°C. 

2.1.9 DNA ligation     

The PCR products generated with Taq polymerases which have an extra 

Adnosine nucleotide added to both ends were ligated into the pGEM®-T Easy vector 

(Promega, USA) which contains Thymidine nucleotides at both ends. Reaction was 

mixed according to manufacturer’s instructions and carried out overnight at +40C. For 
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the ligation of both blunt and cohesive ended DNA fragments into other vectors, we 

used T4 DNA ligase (New England BioLabs, Inc.) with supplied buffer. The reactions 

were carried out overnight at +160C. For blunt end ligation, ligase enzyme was 

increased to 10 times in comparison with that in cohesive-end ligation. The 

insert:vector molar ratio was set at at least 3:1.  

2.1.10 Transformation 

To prepare competent cells (E.coli strain XL1-Blue or DH5α), a single host 

bacterial colony was picked and cultured in 3 ml LB, overnight at 240 rpm, 37°C. 0.2 

ml of the saturated culture was next inoculated into 50 ml LB in a 500 ml flask at 

37°C, 240 rpm until it reached exponential phase when A600 is approximately 0.5 

(approximately 3 hrs). The bacterial culture was harvested by centrifugation at 5000 

rpm for 10 min at 4°C. The cell pellet was re-suspended in 5 ml of ice-cold TSB 

solution [85% (v/v) LB broth, 5% (v/v) DMSO, 10% (w/v) PEG (Av molecular 

weight 3,350), 10 mM MgCl2, 10 mM MgSO4] and incubated on ice for 10 minutes 

before use. 200 μl of the freshly made competent cells was used in each 

transformation reaction. The rest was transferred into 1.5 ml tubes in aliquots (100 μl 

each) and snap-frozen in liquid nitrogen. These aliquots can be stored at -80°C up to 

several months. 

Transformation was carried out with ice-chilled 2 μl out of 10 μl of ligation 

reaction added into an aliquot of competent cells and mixed by gentle pipetting. After 

placing on ice for 30 min, cells were heat shocked by placing tubes into a +420C 

water bath for 90 secs and immediately back on ice for 2 min. To allow the bacterial 

cells to recover, 900 μl pre-warmed LB medium containing 20 mM glucose was 

added to the cells and placed on a shaker at 250 rpm, 370C for 1 hour. For 
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transformation of plasmid constructs, that recovery step was omitted. Next, the 

bacterial culture mix was then spun down and the pellet was re-suspended in 300 μl. 

It was then split into 1/10 and 9/10 portions and plated onto two separate LB plates 

supplemented with appropriate antibiotics in order to obtain proper density of 

transformant colonies. For blue/white screening of recombinants, 40 μl of 20 mg/ml 

Xgal and 10 μl of 0.1 M IPTG were added to the bacterial suspension before being 

plated onto LB agar plates. The following day, colonies were picked for screening of 

the insertion by PCR. One primer from the plasmid vector, and the other from the 

insert were used to amplify the inserted fragment. PCR products were checked with 

agarose gel electrophoresis to visualize the insert with the desired orientation. To 

avoid false positives, the number of PCR cycles was limited to 30. 

2.1.11 DNA sequencing reaction 

DNA sequencing was performed using BigDye™ Terminator chemistry. The 

reaction mix included 4 μl of Terminator Ready Reaction Mix, 200-500 ng of double 

strand DNA, and 1 μl of either forward or reverse primer (0.2 μg/μl), with water in a 

total volume of 10 μl. PCR was performed on PTC-200 Peltier Thermal Cycler (MJ 

Research) with the following cycle sequencing conditions: (1) 960C, 1 min; (2) 960C, 

10 secs; (3) 500C, 10 sesc; (4) 600C, 4 min. Steps 2 to 4 were repeated 25 times. Ramp 

between steps 2, 3 and 4 was 10C/sec. Post cycle sequencing purification was 

performed using DyeEx™ 96 Kit (QIAGEN, Germany). Sequenced products were 

separated and analyzed using ABI 3700 Automated DNA Sequencer (PE Applied 

Biosystems, USA). 
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2.1.12 In vitro synthesis of 5’ capped mRNA 

Tbx2a full-length cDNA was cloned into the pGEM-T Easy vector and sub-

cloned into expression vector pFLAG-CMV™-5a. Template plasmid DNA was 

thoroughly linearized with the appropriate restriction enzyme downstream of the 

insert and subsequently checked with agarose gel electrophorensis before being 

purified with the QIAquick PCR Purification Kit (QIAGEN, Germany). 

The mMESSAGE mMACHINE® Kits (Ambion, USA) was use to synthesize 

capped mRNA in vitro in 20 μl total volume [1 μg linearized plasmid, 2X NTP/CAP, 

10X buffer, and the appropriate enzyme, i.e., either SP6, T7 or T3 RNA polymerase]. 

The synthesized mRNA was purified with the RNeasy® Mini Kit (QIAGEN, 

Germany) according to RNA Cleanup protocol. The size and integrity of synthesized 

mRNA was examined by agarose gel electrophoresis. 

2.1.13 In vitro synthesis of labeled antisense RNA 

Antisense RNA labelled with fluorescein-12-UTP (FITC) or digoxigenin-11-

UTP (DIG) was synthesized in vitro using the MEGAscript® Kits (Ambion, USA). A 

mixture of 1 μg linearized DNA template, 4 μl 10X DIG or FITC RNA Labeling Mix 

(Roche Applied Science, Germany), 2 μl appropriate enzyme mix (either T3, T7 or 

SP6) and 2 μl 10X reaction buffer, 0.25 μl of RNase inhibitor (40 U/μl) (Promega, 

USA) in a total volume of 20 μl was incubated at +370C for 4 hours. The size and 

quality of synthesized RNA was checked by agarose gel electrophoresis. After 

confirmation of RNA fragment on agarose gel, 1 μl RNase-free DNase was directly 

added to stop reaction by digesting the template DNA at +370C. After 15 minutes of 

DNA template digestion, synthesized antisense RNA was purified using the RNeasy® 

Mini Kit (QIAGEN, Germany). In brief, the sample volume was topped up to 100 μl 

https://www.sigmaaldrich.com/sigma/datasheet/e7523dat.pdf
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with RNase-free water. RLT buffer with β-mercaptoethanol was added and mixed 

gently. It was subsequently mixed with 250 μl of 96-100% ethanol. The mixture was 

then applied onto RNeasy mini spin column. After a spin down, the column was 

washed with 500 μl of RPE buffer. The RNA was eluted with 30-50 μl of Rnase-free 

water and stored at -80°C. 

2.1.14 Design of Antisense Oligonucleotides (morpholinos) 

Morpholino oligos (MOs) obtained from Gene Tools, LLC are short chains of 

Morpholino subunits. Each subunit is comprised of a nucleic acid base, a morpholine 

ring and a non-ionic phosphorodiamidate intersubunit linkage. Morpholinos act via a 

steric block mechanism (RNAse H-independent) and with their high mRNA binding 

affinity and exquisite specificity they yield reliable and predictable outcomes. 

Designing of morpholinos in this study were optimized according to manufacturer 

guidelines: (1) Standard length of Morpholinos is 25 nucleotides with minimal self-

complementarity (less than 4); (2) There are no more than 7 total guanines or more 

than 3 contiguous guanines in a 25-mer oligo for water solubility; (3) Negative 

control MOs with 4 or 5 bases changes in the experimental design is sufficient to 

eliminate specific binding activity; (4) To minimize the possibility of non-specific 

effects, 3 MOs complementary to non-overlapping sequences of the studied gene were 

designed. MO sequences are listed in Table 1.  

MOs were resuspended from lyophilized powder, and then diluted to a 1 mM 

stock in 1X Danieau’s solution and stored at -80°C. The MOs were diluted to the 

appropriate concentration and these were injected according to the injection protocol 

described in section 2.2.2.  
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Prior to synthesis, all the sequences of MOs designed were double checked 

carefully by sequencing the genomic fragments containing those MO binding sites.  

2.2 Embryological applications 

2.2.1 Fish maintenance 

Zebrafish (Danio rerio) were raised and maintained in the fish facility of the 

Institute of Molecular and Cell Biology (Singapore) according to instructions by 

Westerfield (1995). Fish were fed three times per day with brine shrimps and the 

photoperiod cycle was kept for 14 hrs of daylight and 10 hrs of darkness. Crosses 

were set after the third meal of the day in the evening with dividers which were 

removed the following morning to stimulate spawning behaviour. Embryos were then 

collected with a sieve, rinsed gently and then kept in 1X egg water (10% NaCl, 0.3% 

KCl, 0.4% CaCl2, 1.63% MgSO4) at 28.50C. Live embryos were staged by 

examination under a dissecting stereomicroscope (Leica, Germany) according to 

Kimmel et al. (1995). To inhibit pigment formation 0.2 mM 1-phenyl-2-thiourea 

(PTU) was added to the egg water at 16 hours post fertilization but not later than 22 

hpf. For anesthetizing, 0.2% solution of 3-aminobenzoic acid ethyl ester, containing 

Tris buffer, pH 7.0, was used. This study used the wild type AB strain (Oregon), the 

mutant line oepz1 (Zhang et al., 1998), and the transgenic line ET ET33-1B produced 

from enhancer trap screening (Parinov et al., 2004). 

2.2.2 Microinjection into 1-cell stage embryos 

Injection needles were pulled from borosilicate glass capillaries with 0.50 mm 

internal diameter and filament (Sutter Instruments, BF100-50-10) using a 

Flaming/Brown micropipette puller (Sutter Instruments Co, P-97).  The needles were 

clipped with a blade to an appropriate opening for desired injection volumes. The 
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needle was plugged into a needle holder connected to a nitrogen-fed picolitre gas 

injector (PLI-100, Havard Apparatus, Medical Systems Corp., USA). All the 

injections were performed manually for quick and flexible manipulation.  

For 1-cell stage embryos, the injection volume was always set to a maximum 

dose of 2 nl/embryo. Morpholinos and mRNA samples were diluted at desired 

concentrations in 1X Danieu solution (58 mM NaCl; 0.7 mM KCl; 0.4 mM MgSO4; 

0.6 mM Ca(NO3)2; 0.5 mM HEPES, pH 7.6). Fertilized eggs with chorions were 

placed on a glass slide and stabilized by withdrawing excess water with laboratory 

lint-free tissue paper (KimWipes). Solutions were injected into the cytoplasmic 

stream of 1-2 cell stage zebrafish embryos using a MPPI-2 pressure injection system 

(Applied Scientific Instrumentation, USA), under dissecting microscope. Injected 

zebrafish embryos were raised in 1X egg water. 

2.2.3 Single cell microinjection at 16-cell stage 

An agar moulded chamber with multiple wells (1.5 mm per well) for single cell 

injection was made with 2% agarose in 1X egg water. It can be kept at 4°C for re-use. 

Fertilized eggs were allowed to develop to 4-cell stage and then gently dechorionated 

with a pair of 25-gauge needles. A glass pipette was used to transfer dechorionated 

embryos (20 embryos) into the wells, which were filled with egg water earlier. All the 

embryos were oriented such that the blastomeres faced the right side (for right handed 

persons). Injections were performed free-hand, i.e. without the aid of a 

micromanipulator. Injection solutions included 70 kD fluorescein dextran dye as a 

tracer with or without mRNA. For single blastomere, injection volumes do not exceed 

200 pl. The embryos were then transferred into agarose-coated plates with 1X egg 

water and observed under a UV dissecting microscope to remove improperly injected 

embryos. Thereafter, embryos were allowed to develop at 28°C to the desired stages.  
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2.2.4 Use of Anesthetic to Immobilize Embryos 

Live embryos older than 19 hpf are able to twitch and move so that affects the 

process of imaging. To facilitate mounting and imaging, Tricaine (3-amino benzoic 

acidethylester) was used to anesthetize the embryos. Tricaine solution was made by 

dissolving 400 mg of Tricaine (Sigma, USA) powder in 97.9 ml of sterile water and 

the pH was adjusted to 7 using Tris pH 8.0. For final solution, 5 μl of Tricaine 

solution was added into a 6 cm Petri dish with selected embryos in egg water. The 

embryos were immobilized shortly and ready for manipulation. 

2.2.5 Embryo collection and fixation 

Zebrafish embryo develops in a chorion which was removed manually with a 

pair of 26-gauge hypodermic needles. Embryos were then collected into 1.5 ml tube 

and placed on ice for 10 min before being fixed with 4% PFA (paraformaldehyde) 

/PBS (0.8% NaCl; 0.02% KCl; 0.0144% Na2HPO4; 0.024% KH2PO4, pH 7.4) for 6 

hours at room temperature or overnight at 4°C. Embryos younger than 15 hpf were 

dechorionated after fixation. The embryos were then washed with PBST (0.1% 

Tween-20 in PBS) twice for 1 min each followed by four thorough washes, 20 min 

each on Nutator (CLAY ADAMS® Brand, Becton Dockinson, USA) at room 

temperature. After this step, embryos are ready for cryostat sectioning. For whole-

mount immunostaining, embryos were treated for 10 to 20 minutes in -20°C pre-

chilled acetone prior to incubation with antibodies.   

2.2.6 Proteinase K treatment 

For embryos older than 14 somites (16 hpf), proteinase K treatment is required 

to enhance permeability of the tissue by partially digesting cellular proteins. 

Efficiency of proteinase treatment depends on the size of embryos, treatment duration 
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(since surface tissues are digested better than the deeper tissues), as well as batches of 

enzyme. For each new batch, the enzyme efficiency was determined by testing on 

embryos of different stages for different durations. The standard protocol suggested 

10 μg/ml proteinase K. However, we found the treatment with 7.5 μg/ml proteinase K 

for extended durations gave a better result. Basically, embryos at 24, 30, 48 and 72 

hpf were exposed to 7.5 μg/ml proteinase K solution for 10, 20, 30 and 40 min 

respectively. To stop the proteinase K reaction, the proteinase K solution was 

completely removed, and the embryos were fixed again in 4% PFA/PBS for 1 hour at 

room temperature. Embryos were then washed carefully in PBST twice for 1 min each 

and four times for 20 min each. After this step, embryos can be used for in situ 

hybridization (ISH) and Alcian Blue staining. 

2.2.7 Prehybridization 

500 μl of prehybridization buffer [50% formamide; 5X SSC; 50 μg/ml 

heparin; 500 μg/ml tRNA; 0.1% Tween-20; pH 6.0 (adjusted by citric acid)] was used 

for 30 embryos in each 1.5 ml tube. Tubes were placed into a circulating water bath 

(Julabo, Germany) set at 68°C. Incubation time was at least 4 hrs but not longer than 

overnight, otherwise embryos turned brownish. The prehybridized embryos can be 

kept in -20°C up to 3 months. 

2.2.8 Hybridization 

Probe sensitivity may vary from gene to gene. However, for most probes used 

in this study, probe concentrations were standardized by one formula which is 

according to our own observation. For each hundred μl of hybridization solution, 

amount (ng) of DIG-labelled probe was calculated by multiplying the probe length 

(Kilo base pairs) and 100. For example, if a probe is 3 Kilo base pairs, then 300 ng of 
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that probe was used for each hundred μl of hybridization solution. For fluorescein-

labelled probe, the amount was slightly increased.  

Probe in hybridization solution was denatured by incubation at 80°C for 5 

min, followed by 5 min on ice. 15 selected embryos were placed in a 1.5 ml 

Eppendorf tube with the original prehybridization solution removed and replaced with 

hybridization solution. The reaction was incubated overnight at 68°C in a circulating 

water bath. The following morning, the embryos were incubated in four changes of 

washing solution containing a decreasing percentage of formamide in 2X SSCT (each 

wash solution contains 25% less formamide than the previous one).  All washes were 

performed in the 68°C water bath for a period of 15 min per wash. This was followed 

by the fifth wash with 2X SSCT without formamide for 30 min. The two final washes 

were with 0.2X SSCT at 68°C for 15 min each.  

Subsequently, the embryos were washed twice with PBST (PBS with 0.1% 

Tween20) at room temperature for 5 minutes each. 

2.2.9 Preparation of Preabsorbed Anti-DIG and Anti-Fluorescein Antibody 

To decrease the staining background and to increase signal-to-noise ratio, 

sheep anti-DIG-AP and anti-Fluorescein-AP antibodies (Boehringer Mannheim, 

Germany) were diluted to 1:200 and 1:50 respectively in MAB [Maleic Acid Buffer; 

0.1 NaCl, 0.15 M maleic acid, pH 7.5, 0.1% Tween-20] containing 5% blocking 

reagent (Roche, Germany) and incubated with disrupted pieces of 4% PFA fixed 

zebrafish embryos on a nutator at 4°C overnight. The mixture was then spun down, 

and the antibody contained supernatant was transferred to a new tube and stored as 

stock solution in 4°C up to 3 months. Working solution was made by further dilution 

to 1:3000 for anti-DIG-AP antibody and 1:500 for anti-Fluorescein-AP antibody with 
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PBS in 5% blocking reagent (Roche Applied Science, Germany), 10 μl of 0.5 M 

EDTA (pH 8.0) and 5 μl of 10% sodium azide in a final volume of 10 ml to prevent 

bacterial growth. Used antibody solution was stored at 4°C and can be reused several 

times. 

2.2.10 Incubation with pre-absorbed antibodies 

Embryos from previous washing step were transferred from 68°C water bath 

onto the nutator and subjected to two washes with MAB prior to incubation with 

blocking solution [5% blocking reagent in MAB] for 2h at RT or overnight at 4°C. 

After removing the blocking solution, the embryos were incubated with preabsorbed 

antibody at 4°C overnight. 

2.2.11 DIG or Fluorescein Staining 

The following day after antibody incubation, the antibody solution was 

transferred into another tube and stored in 4°C for reuse. Embryos were then washed 

4 times, 20 min each in MAB on the nutator at RT. This was followed by 3 washes of 

5 min each in detection buffer (100 mM Tris pH9.5, 50 mM MgCl2, 100 mM NaCl, 

0.1% Tween-20). In situ signal for alkaline phosphatase can be detected with NBT-

BCIP (Sigma-Aldrich, USA) or fast red tablet (Roche Biochemicals, Switzerland). 

NBT-BCIP color substrate development was performed in the presence of 0.3375 

μg/ml of nitroblue tetrazolium (NBT) and 0.175 μg/ml of 5-bromo, 4-chloro, 3-indolil 

phosphate (BCIP) dissolved in detection buffer. Fast red staining solution was 

prepared by dissolving 1/2 of the fast red tablet (Roche Biochemicals, Switzerland) in 

1 ml detection buffer (100 mM Tris pH8.2, 50 mM MgCl2, 100 mM NaCl) and 

clarified by centrifugation before mixing with an equal volume of Naphthol AS-MX 

phosphate (Sigma, MO, USA) solution (500 μg/ml in fast red detection buffer). 
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Colour development was kept in the dark at RT and monitored occasionally under 

light microscopy until the desired intensities were achieved. The staining reaction was 

stopped by a 2X 5 min PBS wash followed by 4% PFA fixation for a minimum period 

of 30 min before storing the appropriately stained embryos in PBS containing 50% 

glycerol overnight for further processing such as whole-mount imaging or cryostat 

sectioning. 

2.2.12 Two-colour whole mount in situ hybridization  

For two-colour whole mount Akaline Phosphatase based in situ hybridization, 

two distinct RNA probes labelled with DIG or Fluorescein with the a ratio of 1.5:1 

Fluorescein to DIG (since Fluorescein detection is less sensitive than DIG) were 

applied on the same embryos. The hybridization step was performed prior to the DIG 

detection as described in section 2.2.8. Thereafter, NBT-BCIP staining buffer was 

removed and the embryos were washed with MAB twice for 10 min. To inhibit the 

phosphatase activity of anti-DIG antibody, the embryos were incubated with glycine 

buffer (0.1 M, pH 2.2) for 1 hour at RT.  

To develop the second colour, the embryos were first washed with MAB four 

times for 10 min each and then incubated in blocking buffer (5% Blocking reagent in 

MAB at room temperature for 1 hr. Embryos were subsequently incubated with anti-

Fluorescein-AP antibody overnight at 4°C. The following day, embryos were washed 

with MAB prior to detection step with Fast Red in pH 8.2 buffer as described in 

section 2.2.11. The stained embryos were also stored in PBS containing 50% glycerol 

at 4°C. 
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2.2.13 Whole-mount Immunohistochemical staining 

After fixation with 4% PFA/PBST, additional treatment with -20ºC cold 

acetone (to remove lipids from cell membrane) for 5 minutes was done to improve the 

penetration of antibodies into the tissue. The embryos were then washed rapidly with 

deionised water once and PBST three times, 10 minutes each. This was followed by 

two washes in MAB, 20 min each and blocked with 5% blocking reagent for 1 hr on a 

nutator at RT. Primary antibodies were not pre-absorbed. They were diluted 1:200 (or 

as recommended by the manufacturer) in MAB containing blocking solution. For 

double colour staining, the two primary antibodies added at the same time must be 

raised in different species (e.g one from mouse and the other from rabbit). The 

incubation with selected embryos was on the Nutator at 4°C overnight. The following 

day, the embryos were washed 4 times, 20 min each in MAB, pH7.4 prior to 

incubation with the appropriate secondary antibodies (1: 200 dilution) which were 

pre-adsorbed in MA blocking solution. Secondary antibodies used were Alexa Fluor 

488 F(ab')2 fragment of goat anti-mouse/rabbit IgG and/or Alexa Fluor 594 F(ab')2 

fragment of goat anti-mouse/rabbit IgG (Invitrogen) (1:500). Incubation was done 

overnight at 4ºC or 2-3 hours at RT, in the dark. The staining of secondary antibody 

labeled with fluorescent Alexa Fluor dye was monitored under a fluorescence 

dissection microscope. Alexa Fluor 488 was observed under a blue filter (450-490 

nm), and Alexa Fluor 594 was observed under a yellow filter (546 nm). When it 

reached the desired intensity, the embryos were washed two times with MA buffer, 

pH7.4 on a nutator at RT and fixed in 4% PFA/PBST for 1 hour. Thereafter, embryos 

were stored in 50% glycerol in PBS and ready for con-focal imaging.  
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2.2.14 Alcian Blue Cartilage Staining  

Adopted from Neuhauss (Neuhauss et al., 1996), the Alcian Blue staining 

protocol was modified accordingly. Embryos at 3, 4 or 5 dpf (without pigments by 

PTU treatment) were collected into 1.5 ml tube and kept on ice for 10 min. After 

removing excess water, embryos were fixed in 4% PFA/PBST on nutator overnight at 

4°C or 6 hours at RT. After washing in PBST 4 times, 20 min each, embryos were 

digested with proteinase K (as described in section 2.2.6) for better exposure of the 

cartilage elements to the dye. Next, embryos were briefly fixed with 4% PFA and 

extensively washed with PBST. The treated embryos were then stained for 4 hours in 

0.1% Alcian Blue dissolved in acidic ethanol (70% ethanol, 5% concentrated 

hydrochloric acid). Stained embryos were then washed extensively in acidic ethanol, 

re-hydrated and stored in PBS containing 50% glycerol before photography.  

2.2.15 Cryostat section 

Caps of 1.5 ml Eppendorf tubes were cut out and used as containers for 

mounting the stained or fixed embryos (without trace of excess liquid) in 50°C pre-

warmed 1.5% bactoagar containing 5% sucrose in PBS. A common syringe needle 

was used to position the embryo while the agar solidified. The agar block was then 

picked out and cut into a pyramid shape with a razor blade. The block was then 

transferred into 30% sucrose solution and allowed to stand at 4°C overnight or until 

the agar block sank to the bottom of the tube. Next, the block was taken out and 

excess liquid was absorbed with tissue paper before being placed on the surface of a 

layer of frozen tissue freezing medium (Reichert-Jung, Germany) on a pre-chilled 

tissue holder. It was then coated with one drop of freezing medium (without bubbles) 

and frozen in liquid nitrogen until the block had solidified completely. The frozen 

block was placed into a cryostat chamber (Leica, Germany) for 30 min to be 
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equilibrated with the temperature of the chamber which is at –25ºC. 10 to 15 μm thick 

sections were cut with Leica CM1900 Cryostat machine (Leica, Germany). The 

sections were collected onto pre-warmed Polysine™ slides (Menzel-Glaser, 

Germany) which were then dried on a 42°C hotplate for 30 min. The sections were 

briefly rinsed with PBST and ready for further processing (e.g Tunel staining), 

otherwise a cover slip was placed on the slide with several drops of 50% glycerol/PBS 

and sealed with nail polish.  

2.2.16 Cell death assay by Tunel staining 

TUNEL in situ cell death detection kit, florescein (Roche) involves labeling of 

the 3'-hydroxyl DNA ends generated during DNA fragmentation by means of terminal 

deoxynucleotidyl transferase (TdT) and labeled dUTP (fluorescein). It was used on 

cryostat sections of 3 dpf embryos or 2 dpf wholemount embryos.  

The embryos were collected and fixed in 2% PFA ON at 4°C. After washing 

off PFA with PBST (PBS with 0.1% Tween 20), embryos were subjected to 

sectioning as described in section 2.2.15. Section specimens collected on Polysine™ 

slides (Menzel-Glaser, Germany) were fixed again in 2% PFA at RT for 1 hour before 

Tunel assay. Specimens were prepared for one set of negative control and one set for 

experiment. It was followed by a dehydration step by dripping onto the slides with 

50%, 70%, 95% and 100% Methanol (in PBS); each solution was kept on the slides 

for 5 min. It was followed by 3 washes with PBST, 5 min each. Specimens were then 

permeabilized in freshly made 0.1% Sodium Citrate in PBST for 15 min, at RT. After 

washing with PBST 3 times, the specimens were ready for detection step. For 

wholemount embryos, incubation in 100% acetone at -20°C for 10 min and proteinase 

K treatment are required prior to permeabilization.  
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Specimens especially cryo-sections were first coated with BigDye™ mix 

(used for gene sequencing) to block unspecific binding of the enzyme. Thereafter, the 

TUNEL mix [450 μl labelling solution, 50 μl enzyme] was applied onto the 

specimens and the reaction was kept in the dark. After 30 min, they were checked 

under a dissecting microscope with UV. Wholemount embryos are required longer 

time of staining. Until the desired signal was obtained, the specimens were fixed with 

2% PFA prior to imaging.  

2.2.17 Photography Using Upright Light Microscope 

To facilitate whole mount photography, a chamber was made by placing 2 

stacks of 1-5 small cover glasses, which are held together with a tiny trace of 

Permount in between, on both sides of a 25.4 x 76.2 mm microscope glass slide. A 

selected embryo was transferred to the chamber in a small drop of 50% glycerol/PBS. 

All the manipulations on the embryo were done with a needle fit into a syringe. A 22 

x 44 mm cover slip with a small drop of the same buffer was placed over the embryo. 

The orientation of the embryo was adjusted by gently moving the cover slip. 

Embryos which were previously treated with proteinase K and stored in 50% 

glycerol/PBS were easily detached from the yolks by needles therefore could be 

mounted as flat specimens. For Alcian blue stained embryos which were injected with 

70kD fluorescein dextran dye, the pharyngeal apparatus was isolated and also 

mounted as a flat specimen. A glass pipette with a blunt opening, achieved by brief 

exposure to a Bunsen flame, was used to transfer the specimens onto a slide. A small 

fragment of cover slip (approximately 3 x 3 mm) was cut and carefully put over the 

specimen without introducing bubbles. Excess water was withdrawn with tissue 

paper. Photos were taken using a camera mounted on an AX-70 microscope 

(Olympus, Japan) or an Axiophot2 photomicroscope (Zeiss, Germany) with software 
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supplied by the manufacturers or Kodak Gold 400ASA film. For imaging of the 70 

kD fluorescein dextran dye labelled pharyngeal apparatus, the specimens were 

visualized with a Leica MZ FLIII stereomicroscope (Leica, Germany) equipped for 

UV epifluorescence viewing. Overlapping of images and measuring of relative areas 

were performed using Adobe® Photoshop CS2. 

2.2.18 Photography using Confocal Microscopy  

For live confocal imaging, embryos were anesthetized as described in section 

2.2.4. One or several of them were transferred to a 35 mm external diameter dish with 

12 mm internal, optical clearance (1 mm deep well).  They were then mounted by 

pipetting 0.5% low-temperature melting agarose with 0.016% tricaine and PTU. 

Embryos mounted in the imaging chamber still maintained heartbeat and circulation 

throughout the imaging period.  

Confocal images were acquired using a Zeiss LSM510 scanning laser (Carl 

Zeiss Inc., Germany) using 488 nm excitation and 510-550 nm band-pass filters. 

Serial optical sections were taken at desired intervals using a 10X Plan-Neofluar 0.3 

objective. Raw image collection and processing were performed using the LSM510 

Software (Carl Zeiss Inc., Germany). Combined images were made on Adobe® 

Photoshop CS2. 
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2.3 Cloning of tbx2a gene  

The full-length tbx2a was cloned with a pair of primers (table 2) which were 

based on the sequence published by ENSEMBLE project (http://www.ensembl.org), 

transcript ID ENSDART00000024207, at Chromosome 5: 50,031,583-50,038,526 

reverse strand,t 

http://www.ensembl.org/Danio_rerio/Transcript/Exons?db=core;g=ENSDARG0

0000018025;r=5:50031583-50038526;t=ENSDART00000024207. The fragment 

amplified by Taq polymerase was cloned into pGEM＠ T Easy (Promega, USA) by A-

T ligation. The construct was then used for probe synthesis. To make a construct for 

mRNA synthesis, tbx2a full-length fragment without the stop codon was subcloned 

into expression vector pFLAG-CMV™-5a.   

We used the BLAST program (Altschul et al., 1990) on the NCBI web server 

(http://www.ncbi.nlm.nih.gov) for checking cloned sequences. Sequences were 

managed and manipulated with DNASTAR Lasergene v6.0 software (DNASTAR 

Inc.). ImageJ software was used to estimate dot intensity for DNA bands on agarose 

gel picture. Motif search was done with MyHits© 2003-2009 (http://myhits.isb-

sib.ch/cgi-bin/clustalw). 

 

 

 

 

 

 

http://www.ensembl.org/
http://www.ensembl.org/Danio_rerio/Transcript/Exons?db=core;g=ENSDARG00000018025;r=5:50031583-50038526;t=ENSDART00000024207
http://www.ensembl.org/Danio_rerio/Location/View?db=core;g=ENSDARG00000018025;r=5:50031583-50038526;t=ENSDART00000024207
http://www.ensembl.org/Danio_rerio/Transcript/Exons?db=core;g=ENSDARG00000018025;r=5:50031583-50038526;t=ENSDART00000024207
http://www.ensembl.org/Danio_rerio/Transcript/Exons?db=core;g=ENSDARG00000018025;r=5:50031583-50038526;t=ENSDART00000024207
https://www.sigmaaldrich.com/sigma/datasheet/e7523dat.pdf
http://www.ncbi.nlm.nih.gov/
http://myhits.isb-sib.ch/cgi-bin/clustalw
http://myhits.isb-sib.ch/cgi-bin/clustalw
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Table 1: Sequences of Morpholino oligos designed and used for tbx2a gene 

 MOs Sequences Purposes 

1 I1e2 GGAAACATTCTCCTATGGACGAAAG Target acceptor site at intron 1 

2 I1e2 
mismatch 

cGAAACAcTCgCCTAcGGACcAAAG 

(lower cases denote replaced bases) 

Mismatch control for i1e2  

3 E1i1 AGACCTTACCTTCCTGATTTAGTGA Target donor site at intron 1 

4 I5e6 TTGTCTTCTGGAAAAACAAATGTTA Target acceptor site of intron 5 

5 p53 MO GCGCCATTGCTTTGCAAGAATTG 

(Langheinrich et al., 2002) 

Target ATG  

 

 

 

 

Table 2: Sequences of primers for cloning tbx2a gene and for verifying MOs 

 Primers Sequences Purposes 

1 4Tbx2a(-3)Fw61 GCTATGGCTTATCACCCTTTTC Forward primer to 
amplify full length 
tbx2a 

2 4Tbx2aRv60 GAAGTTTTGCGCTTTATGTCACA Reverse primer to 
amplify full length 
tbx2a 
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3.1 Cloning tbx2a cDNA 

 A fragment containing the full-length tbx2a (approximately 2.1 kb) was 

cloned based on sequence information obtained from the Ensembl database 

http://www.ensembl.org/Danio_rerio/Gene/Summary?g=ENSDARG000000018025). 

This sequence was subsequently compared with that stored in the NCBI database 

(http://www.ncbi.nlm.nih.gov). Blast result shows the fragment is mapped to Locus 

NW_001879028 with 7 hits (7 exons), Danio rerio chromosome 5 genomic contig, 

reference assembly based on Zv7_scaffold474 (Griffiths-Jones, 2006; Griffiths-Jones, 

2004; Lowe and Eddy, 1997), 

 http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?list_uids=189519532. The identity 

rates are 99% for the first two hits (first two exons) and 100% for the last five hits 

(last five exons). The sequences of the first two hits were confirmed by sequencing 

the fragment containing the first two exons. Tbx2a shares 80% full-length and 100% 

T-box sequence identity with Tbx2b. The sequence obtained was listed in Scheme 2a, 

2b, 2c on the following pages (red line marks the 1st exon sequence, green line marks 

T-box domain).  

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?list_uids=189519532
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Scheme 2a: Sequence of tbx2a gene from nucleotide (nu) 1 to 560 (red line marks 
premature transcript resulted from i1e2 MO binding. Green line marks T-box encoded 
sequence expanded from partial exon 1, entire exon 2, 3 and partial exon 4) 
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 Scheme 2b: Sequence of tbx2a gene from nu 561 to 1330  
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Scheme 2c: Sequence of tbx2a gene from nu 1331 to 2031  
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3.2 Overall analysis of tbx2a expression pattern 

To investigate the spatio-temporal tissue distribution of tbx2a during the early 

development of zebrafish embryos, we conducted whole-mount in situ hybridization 

(WISH) using a full-length antisense digoxigenin (DIG)-labeled riboprobe. tbx2a 

transcript was not maternally detected either by Reverse Transcription Polymerase 

Chain Reaction (RT-PCR) or WISH (data not shown). Only after 11 hpf was tbx2a 

mRNA present in the dorsal eye primodia and otic placodes. tbx2a has a similar 

expression pattern with that of pax2.1 featuring the two lateral stripes of the 

intermediate mesoderm. These will develop into the pronephric epithelia later 

(Drummond et al., 1998). However, the expression of tbx2a is more posteriorly 

restricted. In the forebrain, tbx2a expression was detected in the ventral diencephalon. 

Also at this stage, there was a weak expression in the mesoderm lateral to the otic 

placode domain. These domains were maintained until 14 hpf (Fig. 1A). 

From 20 hpf, low level of tbx2a transcript started to appear in the ventral 

posterior rhombomere 2 (Fig. 1B, C), where it increased at later stages (Fig. 1E). We 

carried out triple staining to demonstrate that tbx2a-positive domain was flanked by 

fgfr3-positive rhombomere 1 (Friedrich et al, 2001) and krox20-positive rhombomere 

3 (Oxtoby and Jowett, 1993) (Fig. 1F). Later, the expression in pronephric ducts was 

present posteriorly at the anus (Fig. 1D) while extending towards the anterior 

compartment of the ducts (Fig. 1E). Around 1 dpf, tbx2a expression newly marked 2 

stripes of cells proximal to the eyes (Fig. 1E). These cells later became mandibular 

and hyoid arch mesenchyme. tbx2a was also detected in the olfactory bulbs, pectoral 

fin buds and anterior gut. The expression in the dorsal eyes, ears, rhombomere 2 and 

ventral diencephalon was maintained during the course of larval development. By 28 

hpf, tbx2a transcript was found in pharyngeal arches. In addition, the transcript 
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marked a thin layer of cells lining on the yolk that would form the common cardinal 

vein (Fig. 1G).  

At 48 hpf, the expression was markedly detected in the liver at the level of 

second somite (Fig. 2C). It was also found in the swim bladder primordium, which is 

homologous to lungs of terrestrial animals (Fig. 2D). This is consistent with tbx2 

expression in the lungs of chick and mouse (Table 3). There was also a faint staining 

in the vagal motor nucleus (Fig. 1I). In the fins, tbx2a transcript was proximally 

restricted (Fig. 2A), whereas its paralog tbx2b appeared in both the distal and 

proximal part of the fins (Fig. 2B). Moreover, expression of tbx2a and tbx2b also 

differs in the hypothalamus (data not shown). That means although the two paralogs 

share 80% cDNA identity, the full-length probes are specific. In the heart, tbx2a was 

locally expressed in the valves (Fig. 2E). By this time, the expression in the eyes 

seemed to decrease while that in the pharyngeal arches became stronger (Fig. 1H, 1I 

and 2G, 2H). In the ears, tbx2a transcript marked the developing cristae (Fig. 2F). 

In summary, tbx2a is expressed in many domains that are evolutionarily 

conserved in mouse, chick and frog (Table 3). These are: heart, nasal pits (olfactory 

region), neurohypophysis, hindbrain, eyes, otic vesicles, pharyngeal region, 

pronephros and gut, the pectoral fin buds (limbs) and swim bladder (lungs). The 

expression in fin and swim bladder provides the molecular evidence to support the 

notion that these teleost structures could be homologous to tetrapod limbs and lungs, 

respectively. It also suggests a common ancestral origin of these organs during 

evolution of teleost and tetrapod.  
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Figure 1: Expression pattern of tbx2a during larva development. (A) Lateral view at 
14 hpf shows expression domains in the dorsal eye primodia, otic placodes, pronephric 
primodia, and ventral diencephalon which are maintained after initiation at 11 hpf. (B, 
C) Dorsal view of 20 hpf embryo shows staining in rhombomere 2 and lateral mesoderm 
where it was initiated at 14 hpf. (D) Expression in the anus (lateral view). (E) Dorsal 
view of 26 hpf embryo shows the additional expression domains in the nasal pits, 
primodia of mandibular arch, pectoral fins,  pronephric ducts, swim bladder as well as 
the existing domains. (F) Co-staining with fgfr3 (r1) and krox20 (r 3, 5) confirms tbx2a 
staining in the ventral r2 (arrow). (G) Dorsal view at 30 hpf, arrow points r2, arrowheads 
mark common cardinal vein. (H) Dorsal view at 48 hpf reveals staining in pharyngeal 
arches, liver, gut and pectoral fin buds. (I) Anterior Lateral view at 48 hpf shows 
staining in eye, ear and vagal nuclei. Abbreviations: a: anus; ba: branchial arches; ccv: 
common cardinal vein; e: ear; g: gut; r: retina; r: rhombomere; ht: hypothalamus; li: 
liver; lm: lateral mesoderm; n: nose; pf: pectoral fin; pn: pronephric ducts; sb: swim 
bladder; v: vagal nucleus; wm: wholemount; wt: wild type. 
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Figure 2: The detailed analysis of tbx2a expression at 54 hpf.  
                 All the images are anterior to the left.  
(A) tbx2a is restricted to the distal part (arrow), (B) whereas tbx2b in both distal and 
proximal parts of the pectoral fins (arrows), (C) liver (arrow) at the level of second somite 
dashed lines) of 54 hpf (D) swim bladder at 54 hpf (E) heart at 54 hpf (F) ear, stars 
indicate developing cristae, (G) pharyngeal arches on the lateral view and (H) dissected 
pharyngeal arches in the ventral view. 
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Zebrafish Organ/tissue Mouse Chick Frog 
Tbx2b Tbx2a 

Gut-Muscle 
Heart 
Limbs/fins 
        Hindlimb 
        Forelimb 
Lungs/Swim bladder 
       Mesenchyme 
       Epithelium 
Mandible mesenchyme 
Nervous system (CNS) 
        Hindbrain 
        Neurohypophysis 
Nervous system (PNS) 
        Dorsal root ganglia 
        Trigeminal ganglia  
Notochord 
Olfactory region (Nasal pit) 
Optic vesicle 
         Neural retina 
Otic vesicle 
         Epithelium 
         Mesenchyme 
Pharyngeal region 
          Pouch epithelium 
          Arch mesenchyme 
Pinnae of ear  
Rib Cartilage 
Pronephros 
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+ 
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Table 3: Comparison of expression between zebrafish tbx2a and zebrafish tbx2b and tbx2 
of mouse, chick and frogs. Comparison based on Chapman et al., 1996; Gibson-Brown et al., 
1998; Hayata et al, 1999; Ruvinsky et al., 2000; this study.  
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3.3 Investigation of Specificity of Morpholino-based knock-down 

3.3.1 Design and testing MOs 

Morpholino antisense oligonucleotides (MOs) were designed to target 

complementary sites which are either in the 5’UTR to block translation initiation in 

the cytosol or at splicing junctions to modify pre-mRNA splicing. Both targeting 

methods in theory can interfere with gene function. However, the efficiency of splice 

site-directed MOs can be evaluated by RT-PCR and sequencing for aberrant 

transcripts. In this study, two anti-sense morpholino oligos targeting two different 

splicing sites were designed: 

- e1i1 MO targeting the donor site of intron 1; and 

- i1e2 MO targeting the acceptor site of intron 1. 

We carried out pan-embryonic injection for the two MOs. E1i1 MO prevented the 

splicing activity of intron 1 (Fig. 3A), resulted in an immature transcript that retained 

intron 1. RT-PCR analysis showed that the abnormal transcript is 0.7 kb bigger than it 

should, precisely the size of intron 1 (Fig. 3C).  Sequence analysis of the abnormal 

fragment (red asterisk in Fig. 3C) confirmed the presence of intron 1 by blasting to 

Ensembl database. Moreover, the presence of an in-frame stop codon at the beginning 

of intron 1 (black box in Fig 3A) would produce a non-functional peptide lacking the 

T-box and 3’-activation domain (illustrated by Scheme 3). 
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mRNA 

Pre - mRNA 

Premature mRNA 

1.5 kb 

1.0 kb

5’ UTR Intron 1 Intron 3Intron 2 
Exon 3 Exon 1 Exon 2 Exon 4 

Intron 1
Exon 3Exon 2 Exon 4Exon 1 

e1i1 

B 

0.5 pmole e1i1 48 hpf  lateral

Figure 3: MO e1i1 prevents intron 1 splicing. (A) The diagram illustrates the genomic 
structure of tbx2a pre-mRNA included 759 bp 5’ UTR plus exon1, 700 bp intron 1, 268 bp 
exon 2, 545 bp intron 2, 147 bp exon 3, 519 bp intron 3, 77 bp exon 4, 92 bp intron 4, 167 bp 
exon 5, 1459 bp intron 5, 605 bp exon 6, 324 bp intron 6 and 1491 bp exon 7 plus 3’ UTR. 
The binding of e1i1 to the donor site of intron 1 blocks excision of intron 1. This results in 
the retention of intron 1 in the premature transcript. A stop codon within intron 1 (black box) 
terminates the translation of the mature transcript at the exon 1. (B) Lateral view of live e1i1-
injected embryo at 48 hpf with heart edema, curved body, smaller ears and eyes, etc, albeit at 
a higher dose than that of i1e2. (C) Amplified mature transcripts of e1i1-injected embryos 
with primers extending from 5’ UTR to exon 5 and flanking intron 1 ran on 0.8% agarose 
gel. Whereas only one mature transcript in the WT, an additional larger transcript is present 
in the e1i1-injected sample (asterisk). Sequencing reveals the intron 1 in the larger transcript 
containing the stop codon (black box – diagram A). Using 2-log DNA ladder (0.1-10.0Kb) 
from New England Biolabs. Abbreviation: bp: base pair, kb: kilo base pairs 
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I1e2 MO was designed to bind to the acceptor site of intron 1 to interfere with 

the normal splicing activity of intron 1. We predicted that the donor site of intron 1 

would omit the acceptor site of intron 1, instead joined with alternative acceptor sites 

of downstream introns during splicing process. Although multiple reverse primers 

were used to amplify variable fragments extending from exon 1 toward exon 6 (data 

not shown), only one prominent abnormal transcript was amplified (Fig. 4C) with 

primers flanking exon 2. On agarose gel, the size of that transcript is 0.3 kb smaller 

than the normal transcript whereas the actual size of exon 2 is 268 bp. Sequencing 

revealed a continuous sequence reading from exon 1 to exon 3, omitting the entire 

exon 2 (Fig. 4A). Interestingly, the removal of exon 2 from the premature mRNA 

introduced a stop codon (black box in Fig. 4A) immediately at the beginning of exon 

3. Therefore, both e1i1 MO and i1e2 MO should produce similar non-functional 

translated products encoded by only exon 1 (illustrated in Scheme 3).  
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5’UTR 
Intron 1 Intron 3 Intron 2

Exon 1 Exon 2 Exon 4 

Exon1 Exon 3 Exon 4

i1e2

Figure 4: i1e2 MO causes excision of exon 2. (A) binding of i1e2 to acceptor site of 
intron 1 causes the excision of a fragment containing intron 1, exon 2 and intron 2, and 
results in the joining of exon 1 and exon 3 in the mature transcript. A stop codon (TAA-
black box) is newly introduced at the beginning of exon 3 by the frame shifting. (B) Live 
i1e2-injected embryo at 48 hpf exhibits heart edema, curve body, smaller ears, smaller 
eyes, etc. (C) Amplified mature transcripts of i1e2-injected embryos with primers flanking 
the sequence from nucleotide 627 to 1300 ran on 0.8% agarose gel. Only one mature 
transcript in the WT, while an additional smaller transcript in i1e2-injected sample. 
Matching with sequencing result, the additional transcript is one exon-2-length (~0.3 kb) 
shorter than the normal one. 
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i1e2/e1i1 

Scheme 3: Activity of e1i1 and i1e2 MOs. Both e1i1 and i1e2 MOs lead to the 
same non-functional translated products encoded by only exon 1, without T-box 
transcription domain and 3’-terminal transactivation domain. (Adapted and 
modified from Minguilon and Logan, (2003).  
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3.3.2 Selection of the most effective MO 

It is noticeable that e1i1 MO and i1e2 MO have different optimal 

concentrations. So, we set out to compare the efficacy of the two MOs by semi-

quantitative RT-PCR of the residual normal transcription product. After RT-PCR, 

amplification products from both the control and MO transcripts were analyzed on 

agarose gel. We injected 0.3 pmole/embryo for i1e2 MO and 0.5 pmole/embryo for 

e1i1 MO. RT-PCR result showed that the normal transcript decreased by about 76% 

in i1e2 MO morphants, and 47% in e1i1 MO morphants (Fig. 5; Chart 1). These 

estimations were obtained by using ImageJ software to read the intensity of the bands 

on the agarose gel image. It strongly suggests that i1e2 MO possesses a higher 

working efficacy than e1i1 MO.  

To make sure alternative targeting site produced the same phenotype, we 

designed another morpholino to target acceptor site between intron 5 and exon 6 

(namely i5e6 MO) in order to disrupt the trans-activation domain and create a 

dominant negative form of tbx2a (data not shown). Indeed, the i5e6 morphants 

(embryos injected with i5e6 MO) displayed defects in the pharyngeal arches, eyes, 

heart, and ears. The general phenotype of i5e6 morphants resembled that of i1e2 and 

e1i1 morphants. Previously, tbx2a expression in the heart was shown and this gene 

found indispensable for cardiac chamber formation (Ribeiro et al., 2007). During 

specification of the eye, tbx2a knock-down has been found to affect only the dorsal 

eyes (Gross et al., 2005). Therefore, the phenotype of the tbx2a morphants is highly 

relevant to its expression pattern and others’ functional studies. In conclusion, with 

multiple MOs causing very similar phenotype, we are confident that we are not 

dealing with non-specific effects. Subsequent experiments were performed with i1e2 

MO.   
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Chart 1: Comparison the efficacy between i1e2 and e1i1 

(i1e2)       (e1i1)                         (WT) 

Decreased by  

Figure 5: Comparison the efficacy of i1e2 and e1i1. (i1e2) shows 
normal transcript was decreased by 76% in i1e2-injected embryos at 0.3 
pmole/embryo. (e1i1) removes 47% of the normal transcript even at 
higher dose (0.5 pmole/embryo). (i1e2 + e1i1) Combination of i1e2 (0.25 
pmole/embryo) and e1i1 (0.25 pmole/embryo) causes a deficiency of 64% 
of transcripts; (WT) normal transcript in WT embryos. β-tubulin as 
internal control.   

   76%        47%        64%         0% 

(i1e2 + e1i1)  
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tbx2a 
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3.3.3 Pan-embryonic Injection of MOs  

In order to determine the best working concentration, we worked on a range of 

MO concentrations. The best concentration is the one that produced specific 

phenotype without any toxicity effect. Injection results are in agreement with those 

obtained from semi-quantitative RT-PCR. E1i1 MO has working concentration of 0.5 

pmole/embryos, whereas i1e2 and i5e6 MO worked at 0.05-0.1 pmole/embryo. The 

more effective MO (i1e2 MO) as shown by RT-PCR required lower concentration to 

produce the same phenotype compared to the weaker MO (e1i1 MO). In the range of 

0.1-0.8 pmole/embryo, 100% of i1e2 MO injected embryos produced consistent 

phenotype (more than 10 batches, 50 embryos/batch). 

To avoid injection errors in subsequent experiments with i1e2 MO, we did not 

apply the lowest working dose but a slightly higher dose of 0.2-0.3 pmole/embryo. 

The MO-injected embryos displayed defects in accordance with the expression 

pattern, yet still survived up to 7 dpf. They have smaller overall size, smaller ears, 

malformed anus and heart edema. The yolk sacs of the morphants seem to be bigger 

in comparison with those of wild-type fish. Pigmentation was delayed in the early 

stage of 2 dpf, however it recovered from later stage onward. Swim bladders were not 

developed in the morphants. Interestingly, pharyngeal arches were dramatically 

dysmophic. The loss of pharyngeal arches was maintained throughout the course of 

embryonic development.  

 

 

 

 



Chapter 3 – Results 
 

   59

3.3.4 Analysis of the downstream target of Tbx2  

To confirm MO based knock-down effect, a known downstream target gene of 

Tbx2 was examined. The cx43 promoter has been shown to be repressed by Tbx2 

(Borke et al., 2003; Chen et al., 2004). In zebrafish, we learned from the study of 

Chatterjee et al., (2005) that cx43a is also expressed in the branchial arches from 3 

dpf onwards, which is later than tbx2a. The up-regulation of cx43a in the i1e2 MO 

morphants is clearly shown by in situ staining. Interestingly, an ectopic expression of 

cx43a was observed in the ventral diencephalon of the morphants (8 of 10 embryos 

tested, Fig. 6D) where tbx2a is expressed. Although this up-regulation of cx43a was 

obtained with a higher dose of MO (0.5 pmol/embryo), the data demonstrate the 

regulatory loop between cx43a and tbx2a and the MO used is effective in depleting 

Tbx2a function.  
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Figure 6: Downstream target cx43a employed to test MO specificity Compared 
to control (A), cx43a expression increases in i1e2 morphants  (arrows at eyes, 
notochord, midbrain) (B). Especially, ectopic expression of cx43a in the ventral 
diencephalon (broken circle) (D), where tbx2a is present (E) 

A B

C D E

WT          cx43a 24 hpf dorsal                i1e2                          tbx2a 

WT                             cx43a lateral  24 hpf                               i1e2 
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3.4 tbx2a expressed in endodermal pouches of the branchial arches  

Each pharyngeal arch is a complicated structure that is made up of all three 

germ layers’ derivatives: mesodermal core, neural crest cells (NCCs) and endodermal 

pouch. By lateral view, if the seven arches could be anatomically imagined as a row 

of seven books, endodermal pouches would be constituted by the covers of the books; 

pages adjacent to the covers would be the NCCs derivatives, the most inner pages of a 

book would be the mesodermal core.  

To get a closer look at the expression of tbx2a in the branchial arches, we 

carried out sagittal sectioning. tbx2a was found to mark the thin boundaries in 

between the rods of arches (Fig. 7A, B, C). Specifically, we found tbx2a expression in 

both the anterior and posterior halves of each pouch. However, this expression did not 

extend along the full length of the pouches, being restricted to the ventral part (Fig. 

7C). The expression of tbx2a in the pharyngeal apparatus is maintained to 3 dpf (Fig. 

7D, E, F). Thus, tbx2a is restricted to the pharyngeal endoderm. 

To localize markers of mesodermal core or NCCs in respect of tbx2a 

expression domains, we performed two-color WISH. sox9a is a specific marker for 

mesodermal core within the arches (Yan et al., 2005). Our two-color WISH staining 

showed that tbx2a was excluded from the sox9a domain (Fig. 7G). Next, we co-

stained tbx2a with the neural crest marker dlx2a (Akimenko, 1994) and found that 

tbx2a appeared at the borders of dlx2-positive domain; these fine borders are 

endodermal pouches (Fig. 7H). tbx2a was also confirmed to be expressed in the 

endodermal pouches by co-localization with endodermal pouch specific marker 

nkx2.3 (Fig. 7I), whose expression in the arch started at 28 hpf and persisted until 3 

dpf or later (Lee et al., 1996).  
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The tbx2a paralog, tbx2b (Dheen et al., 1998) is also expressed in the 

pharyngeal arches (Fig. 8A). However, expression patterns of these two genes differ. 

tbx2b staining labels the mesodermal cores at the proximal part of the pharyngeal arch 

(Fig. 8B). At the distal part, tbx2b is restricted to endodermal pouches (Fig. 8C). The 

difference in tissue distribution may lead to divergent functions of tbx2a and tbx2b 

within the pharyngeal arches. In this study, we focus on functional analysis of tbx2a 

which possesses discrete pattern within the endodermal pouches.  
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48 hpf sox9a/tbx2a sagittal         dlx2a/tbx2a, sagittal           nkx2.3/tbx2a ventral

tbx2a 48 hpf      ventral                                lateral                               sagittal

tbx2a         60 hpf  ventral                    3 dpf ventral                  3 dpf sagittal 

A B C

D E F

G H I

Figure 7: Tbx2a expression is restricted to the pharyngeal endodermal pouches.  

(A) Ventral view of 2 dpf embryo shows expression of tbx2a in the pharyngeal arches. (B) 
Lateral view shows the expression was restricted to the two-cell layer thick endodermal 
pouches (arrowheads). (C) Sagittal section shows tbx2a staining is in more ventral part of 
endodermal pouches. (D) The expression is maintained up to 60 hpf and decreased by 
3dpf (E, F).  

(G) Sagittal section reveals expression of sox9a (purple) in mesodermal cores and tbx2a 
(red) in ventral pouches of 48hpf embryo. (H) Sagittal section shows mesenchyme (dlx2-
purple) flanked by endodermal pouches (tbx2a-red) (I) tbx2a staining (red) overlaps with 
endodermal pouch specific marker (nkx2.3,purple).  
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C 

tbx2b 48 hpf          ventral                                 sagittal section 

Figure 8: Expression of tbx2b in the pharyngeal arches. (A) tbx2a is expressed in the 
pharyngeal arches by ventral view.  Sagittal sections show tbx2b is expressed in the 
mesodermal cores (B) and in the distal part of endodermal pouches (C). 
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3.5 tbx2a is indispensable for pharyngeal arch development 

3.5.1 Alcian Blue staining reveals cartilage defect in tbx2a morphants 

The tbx2a morphants exhibited a loss of cartilage in not only for the five 

posterior arches but also the mandibular and hyoid arches. Alcian blue is a copper 

phthalcyanin dye which can bind to the extra-cellular matrix of chondrocytes. 

Chondrogenic cartilage is first detected at 54 hpf (Schilling and Kimmel, 1997). To 

demonstrate the pharyngeal arch phenotype in morphants, we performed Alcian Blue 

staining on both the WT and morphant embryos (3 and 4 dpf). Co-injection of p53 

MO was to avoid off-target effect described as neural death caused by the activation 

of p53 signaling in the MO-injected embryos (Robu et al., 2007) There was no blue 

staining of chondrocytes in the morphants (with or without co-injection of p53 MO, 

0.4 pmole/embryo) on both stages 3 dpf  and 4 dpf (Fig. 9), suggesting that the 

formation of neural crest-derived cartilages was disturbed upon the absence of tbx2a 

(on both the WT and p53 morphant background), and this loss was maintained until 

later development.  
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Figure 9: Cartilage staining by Alcian blue. Alcian blue stains 
pharyngeal cartilage of all seven arches in the wild type or p53 morphant 
or mismatch MO of i1e2 (A - 3 dpf, C - 4 dpf), but not in /e1i1/i1e2/i5e6 
morphants on the background of either WT or p53 morphant (B – 3 dpf, 
D – 4 dpf).  
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3.5.2 tbx2a plays a role in development of endodermal pouches 

Pharyngeal arch development requires the contribution of all three germ 

layers. However, there is increasing evidence of the leading role of pharyngeal 

endoderm during this process. It has been shown in chick that endodermal pouches 

and arches developed normally in the absence of neural crest (Veitch et al., 1999). 

However, when endodermal pouches are ablated, NCCs are unable to differentiate 

further into cartilages and bones. In amphibians, endoderm has been shown to 

influence the differentiation of chondrocytes (Seufert and Hall, 1990). In zebrafish, 

cas and oep mutants lacking endoderm (Alexander et al., 1999) display defect in 

cartilages of all pharyngeal arches (David et al., 2002). tbx1 is present in the 

endodermal pouches; its mutant van gogh has been shown to be defective primarily in 

the endodermal pouches and secondarily in the morphology of arch cartilages, which 

are misshaped or fused together (Piotrowski and Nusslein-Volhard, 2000; Piotrowski 

et al., 2003). All these studies have demonstrated the role of endodermal pouches in 

cueing the paths for the NCCs to follow and assemble into discrete pharyngeal arches.  

As seen in the sagittal section (Fig. 7C), tbx2a staining is restricted to the 

endodermal pouches and very minor diffusion in the neural crest domain, but not in 

the mesodermal cores. The question is whether tbx2a controls the normal induction 

and/or morphogenesis of the endodermal pouches. To answer, we checked several 

genetic markers specific for the pharyngeal endoderm. nkx2.3 has been known to be 

specifically expressed in the five clefts between the six pharyngeal arches (Lee et al., 

1996). It marks both rostral and caudal halves of the endodermal pouches. By the 

ventral view, nkx2.3 clearly showed the five pouches in the morphant (Fig. 10B) as 

nicely as in the control (Fig. 10A), suggesting that endodermal pouch induction is 

unaffected by tbx2a knock-down. However, by the lateral view, the nkx2.3 labeling 
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was restricted to the distal portion. That suggests a failure to elongate along the 

proximodistal axis that, in turn, may lead to the failure to inter-digitate with the neural 

crest-derived cartilage.  

We utilized the transgenic line ET33-1B produced from transposon mediated 

enhancer trap screening (Parinov et al., 2004; illustrated in Suppl. Fig. 1). The 

enhancer trap is GFP-tagged, driven by a minimal promoter of keratin4. The line 

ET33-1B was generated from the line ET33 by remobilization of Tol2, and is GFP-

positive in the endodermal pouches at 2 dpf (Fig. 10E). Tbx2a morphants of ET33-1B 

displayed disorganization of all the pouches compared to controls (Fig. 10F). pea3 is 

an ETS family transcription factor (Roehl and Nüsslein-Volhard, 2001) and is 

expressed in endodermal pouches. Consistent with the above observation, pea3 

expression in the morphants indicated defects in the endodermal pouches: some of 

them disappeared (arrowheads in Fig. 11B) whereas others were disordered (asterisk 

in Fig. 11B).  

Thymus primordium appears in zebrafish larva from 54 hpf as a derivative of 

the caudal half of endodermal pouch 3 (Gordon et al., 2001). rag1 is expressed in 

maturing B and T lymphocytes of the thymus (Willett et al., 1997). WT embryos from 

4 dpf express rag1 (Fig. 12A). However, in the morphants rag1-positive thymus 

primordium was not present (Fig. 12B), suggesting that development of lymphocytes 

may be disturbed or the thymus structure itself is affected. Hence, our data showed 

that although the induction of pharyngeal endoderm is normal, its subsequent 

differentiation is strongly affected.  
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WT                             nkx2.3 ventral  48 hpf                                i1e2 

WT                            nkx2.3 sagittal section  48 hpf                      i1e2

WT                      ET33-1B gfp sagittal 48 hpf                                i1e2

Figure 10: Endodermal pouch morphogenesis is affected by tbx2a knock-
down. Ventral view of endodermal pouches labelled with nkx2.3 riboprobe 
shows patterning in both WT (A) and morphant (B). (C) endodermal pouches in 
the morphant (D) fail to extend along D-V axis. Moreover, the dorsal gfp-
positive endoderm in ET33-1B (E) is malformed in the morphant (F). 
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Figure 11: pea3 is expressed in the posterior endodermal pouches (A-arrows) 
demonstrates in the morphant (B) the defect of the endodermal pouches which are 
undeveloped (arrowhead) or malformed (asterisc).  

WT                                      pea3 sagittal 48 hpf                                    i1e2

* *
A B

Figure 12: rag1 is expressed in the thymus primordium (A-broken line oval), but it is 
absent in the morphant (B).  

WT                                             rag1 lateral 4dpf                                        i1e2

A B
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Supplementary figure 1: (A) ET33-1B has been mapped onto the chr.16: 
31,804,358-31,808,630. The ET33-1B insertion is 5’ tre upstream of rhbdl2 
(ENSDARG00000069833), rhomboid, veinlet-like 2 (Drosophila), serine-type 
endopeptidase activity, the activator of EGF signaling. According to Thisse and 
Thisse (2004) rhbdl2 is expressed in the epidermis, otic placode, otic vesicle, 
pectoral fin, peripheral olfactory organ, pharyngeal arches, which are capitulated by 
GFP expression of ET33-1B (from 2 dpf onwards, shown in B, C). In the 
pharyngeal arches, GFP is expressed in the mesodermal cores (D-green arrows) and 
distal part of endodermal pouches (E-black arrows). 

 Sagittal                                    ET 33-1B   3dpf                               Ventral 

 2 dpf                                      ET 33-1B lateral                                     3 dpf  

A

B 

D 

C

E 



Chapter 3 – Results 
 

   72

3.5.3 tbx2a-depletion causes defect in mesodermal cores  

ET33-1B embryos possess a strong GFP expression in the entire pharyngeal 

arches, cleithrum and swim bladder (Fig. 13A). To have a better view of GFP 

expression in the arches, we sectioned ET33-1B embryos and visualized with gfp 

riboprobe staining. The staining showed gfp transcript located in mesodermal cores 

within each pharyngeal arch (Suppl. Fig. 1D) and endodermal tissue in between the 

arches (arrows in Fig. 10E and Suppl. Fig. 1E). However, the GFP expression was 

restricted to the distal half of the arch from the mid-line (Suppl. Fig. 1E, arrows), but 

not the entire length of the arch. ET33-1B embryos injected with i1e2 MO 

demonstrated the ablation of the arches. At the lowest working dose of 0.1-0.2 

pmole/embryo, injected embryos retained minor trace of GFP expression in the almost 

depleted madibular and hyoid arches (Fig. 13D). The ablation of GFP expression in 

the arches suggests that mesoderm core may be affected in the event of tbx2a knock 

down.  

 

 

 

 

 

 

 

 

 



Chapter 3 – Results 
 

   73

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Illustration of tbx2a knock down effect on pharyngeal development in ET33-
1B transgenic line. (A) Lateral view of live ET33-1B larva shows GFP-positive pharyngeal 
arches and cleithrum. (B) In i1e2 morphant GFP is absent in the pharyngeal arches, but 
maintained in the cleithrum. Ventral view of 4dpf ET33-1B larvae shows GFP-positive 
pharyngeal arches in the control (C) but only traces of mandharibular and hyoid arches in 
the morphant (D). Abbreviations: ba – branchial arches, cl - cleithrum, ma – mandibular, h – 
hyoid 
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To determine if the phenotype was a result of mesodermal defect, we checked 

some other specific markers for this component. sox9a is express in the central core of 

the arch (Fig. 14A, C). Thus, it can be used as a marker for mesoderm-derived 

component in the pharyngeal arch. This loss of sox9a expression within the branchial 

arches (Fig. 14B, D) supports the lack of cartilage elements observed in the morphant 

larvae. Similarly, expression of another mesodermal core specific marker, runx2b 

(Flores et al., 2004; Flores et al., 2006) in morphants was affected in a similar manner 

(Fig. 15A, B). In addition, both tbx2b and pea3 staining were lost in the mesodermal 

cores of morphants (Fig. 15C, E, D, F).  

Since all the mesodermal markers were still present at a certain level of 

expression (black asterisks, Fig. 14D, 15D), The finding led us to the conclusion that 

tbx2a knock-down was interfering with the mesodermal core, but not its induction. 

All together, data available suggest that tbx2a may play a non cell-autonomous role 

during specification of skeletal progenitors within the pharyngeal arches. 
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WT                       sox9a/tbx2a  48 hpf sagittal section                      i1e2

WT                                 sox9a/tbx2a 48 hpf ventral                          i1e2 

Figure 14: tbx2a knock-down affected patterning of mesodermal cores. In 
comparison with the control (A-ventral; C-sagittal section) sox9a staining in the 
morphants (B-ventral, D: sagittal section) specifically disminished (D-black 
asterisks) in the pharyngeal arch domain whereas still remained in the 
neurocranium (arrow).  
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WT                               runx2b 48 hpf ventral                                  i1e2 

WT                        tbx2b sagittal section 48 hpf                              i1e2 

Figure 15: Molecular markers revealed deficiency of cell differentiation in the 
mesodermal cores in absence of Tbx2a. runx2b expressed in the mesodermal 
cores (A) is absent in the morphant (B). Similarly, tbx2b (C) as well as pea3 (E) 
staining reveal changes in the mesodermal cores in the morphants (D, F)  

WT                        pea3 sagittal section 48 hpf                               i1e2 
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3.5.4 tbx2a knock down does not affect hindbrain patterning and development of 

NCCs 

As shown above, the pharyngeal arch phenotype observed in tbx2a morphants 

was not a direct result of Tbx2a on mesoderm specification. Since tbx2a is also 

expressed in some neural crests cells bordering the endodermal pouches especially in 

the region of the first pouch (Fig. 7C), there may be a possibility that neural crest 

specification or differentiation is contributing to the over all malformation of the 

arches. The patterning defect in neural crest-derived structures in pharyngeal arches 

may originate from changes in hindbrain organization. hoxa2 is expressed in the 

hindbrain domain from rhombomeres 2 to 5. It is also expressed in the streams of 

NCCs originated from that rhombomere region in the second and more posterior 

pharyngeal arches (Prince et al., 1998). We checked the expression of hoxa2 at early 

(Fig. 16A, B) and late developmental stages (Fig. 16C, D, E, F). The morphants 

displayed no significant changes in hoxa2 expression in the hindbrain (Fig. 16B, D) 

and in the migratory and post-migratory NNC (Fig. 16D, F). Similarly, we obtained 

the same result for krox20 staining whereby there is no change in the expression 

domain specific to rhombomeres 3 and 5 (data not shown).  The results suggest that 

tbx2a does not play a role in hindbrain patterning and development of NCCs.  
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Figure 16: Knock-down of tbx2a does not affect the early hindbrain 
patterning.  hoxa2 staining labels the rhombomeres 2 to 5 and streams of 
NCCs in the WT early (A-lateral) and later on (C-lateral). These normal 
pattern is maintained in the morphants (B-lateral-24 hpf) and (D-lateral-48 
hpf). The normal patterning of the neural crest streams which continue 
migrating into the pharyngeal arch region are shown both in WT (E) and 
morphant (F).  
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NCCs are induced during gastrulation at the neural plate border and begin to 

separate from the other neuronal cell types in this territory by expressing neural crest 

specific genes. Neural crest-derived cartilage is one of three components building up 

the pharyngeal arches. Since tbx2a morphants displayed defective cartilage in the 

arches, we checked several genetic markers involved in neural crest development.  

foxD3 is expressed during initial stage of neural crest specification and later 

on, during differentiation (Odenthal and Nusslein-Volhard, 1998; Kelsh et al., 2000a, 

b). There were no significant difference in foxD3 expression between control and 

morphant at 12 hpf and later (data not shown). With hoxa2, we followed neural crest 

migration until 2 dpf. Hoxa2 positive NCCs in both morphant and wild type (Fig. 

16E, F) migrated to the pharyngeal region.  

Similarly, dlx2a expression was examined. By 24 hpf, NCCs migrating as 

streams of cells were dlx2 positive. At 0.8 pmole MO (Fig. 17C), morphants still 

displayed three distinctive groups of NCCs (Fig. 17A). It was noted that the third 

group of cells, by this stage (24 to 26 hpf), would normally be separated into 2 

subgroups by the endodermal pouch (arrow in Fig. 17A). We allowed the morphants 

to develop 2-4 hours further than controls to rule out developmental delay that is 

common to many morphants. However, in the morphants, the third group of NCCs 

failed to separate (arrows in Fig. 17B, C). This is consistent with defects in 

endodermal pouch development shown earlier. dlx2a staining of morphants at 48 hpf 

revealed the presence of post migrating NCCs in the pharyngeal region (Fig. 18A, B). 

The sagittal sections showed clumps of dlx2-positive NCCs segregated into seven 

groups in accordance to the seven arches. Even though there were traces of post-

migratory NCCs in the morphant, they did not seem to be well segregated by 

undeveloped endodermal pouches (tbx2a transcript in red for endodermal pouches in 
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Fig. 18D). Overall, our data suggest that tbx2a is not essential for the normal 

patterning and migration of NCCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dlx2 dorsal 26 hpf     WT                   i1e2 0.3 pmole                     0.8 pmole

A B C

Figure 17: The early neural crest markers show normal induction of neural 
crest. (A) dlx2a labels three main streams of migratory neural crests at 26 hpf. (B) 
These streams are normally formed in the morphant (0.3 pmole) or (C, 0.8 pmole). 
The arrows point the third stream is segregated in the WT (A), but not in the 
morphants (B, C).  
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WT                                 dlx2a ventral 48 hpf                                      i1e2 

WT                            dlx2a/tbx2a sagittall 48 hpf                                i1e2 

Figure 18:  Post migratory neural crests in the pharyngeal region at 
48hpf. (A) Streams of NCCs labelled with dlx2a riboprobe migrate into seven 
pharyngeal arches. (B) There are still traces of NCCs that arrive in the 
posterior arches (arrow) in the morphants. (C) Sagittal section show streams 
of NCCs (dlx2a-purple) separated into discrete arches by endodermal pouches 
(tbx2a-red). (D) In the morphant streams of NCCs still strongly express dlx2a, 
but seem to be fused (asterisk, D) due to the undeveloped endodermal 
pouches.  
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3.5.5 Neural crest differentiation is affected 

In the previous section, we have provided lines of evidence for the notion that 

the induction and migration of neural crests are not affected under the absence of 

Tbx2a caused by the splice morpholino i1e2 MO. However, to have cartilage tissue 

established, the NCCs must be committed to differentiate after arriving at their 

destination from 54 hpf onwards (Schilling and Kimmel, 1997). So, we asked if those 

unaffected crests in the morphants are able to carry on with the normal process of 

differentiation.  

pax9 is the transcription factor which appears in endodermal pouches and 

plays a role during chondrogenesis in mouse (Neubüser et al., 1995). In zebrafish, 

pax9 appears in the mesenchymal tissue (Nornes et al., 1996; this study). pax9 has 

been known as a marker for the initial step of neural crest differentiation (reviewed by 

Lefebvre and Smits, 2005; Rychel and Swalla, 2007). We analyzed pax9 transcript 

distribution in the morphants in comparison with that of the controls. It was noticed 

that the expression pattern of pax9 was strongly affected in the tbx2a morphants (Fig. 

19B). Instead of appearing as bilateral stripes at the distal parts of the seven arches as 

in the control (Fig. 19A), pax9 is positive in only one or two disorganized stripes far 

away from the midline (Fig. 19B). This malformation suggests that tbx2a-depletion 

interferes with the initiation of chondrogenesis, which means the transdifferentiation 

of the NCCs is affected in the tbx2a morphants.  
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WT                             pax9 ventral 54 hpf                            i1e2 

A B

Figure 19: Cartilage differentiation is severely affected in tbx2a 
morphants. (A) pax9 starts to express at the onset of chondrogenesis in 
the pharyngeal arches (54 hpf). (B) In the morphant, pax9 pattern is 
altered and does not show discrete stripes unlike that in the WT.  
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3.5.6 The differentiation of epibranchial ganglia is affected upon endodermal 

defect caused by tbx2a knock-down 

Epibranchial ganglia are formed in close association with endodermal pouches 

and the number of ganglia is matched with the number of pouches. It was shown that 

ganglia development is dependent on endodermal pouch morphology and molecular 

signals (David et al., 2002; Nechiporuk et al., 2005). In this study, we have 

demonstrated the role of tbx2a in endodermal pouch patterning. We now extend the 

analyses to the epibranchial ganglia. phox2b (Fig. 20A, B) and phox2a (Fig. 20C, D) 

(Pattyn et al., 1997) expression revealed consistent defects in epibranchial ganglia in 

i1e2 MO morphants (Fig. 20B, D). We observed subsets of ganglia which were 

diminished in size and in level of expression of specific markers phox2a/2b. We also 

examined neuronal markers at earlier stage when contact between the endodermal 

pouches and the epibranchial placodes is not fully established. Staining of ngn1 

(neurog1_Zebrafish Information Network; Korzh et al., 1998; Andermann et al., 

2002) (Fig. 20E, F) and sox3 (Kan et al., 2004; Sun et al., 2007) (Fig. 20G, H) at 24 

hpf showed no obvious change in their expression patterns in the morphants compared 

to the controls. Therefore, the early induction of these epibranchial arches was not 

affected; however, the later specification could be secondary to endodermal pouch 

defect. 
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Figure 20: tbx2a morphants exhibit defect in epibranchial ganglia differentiation. 
All the images are lateral view. Epibranchial placode differentiation is affected in 2 
dpf embryos. phox2b expressed in differentiating placodes (A) reveals that the distal 
parts of the placodes are affected (B, arrows). phox2a labelling the epibranchial 
placodes (C) are also affected in the morphant (D). However, early neuronal marker 
ngn1 expressed in the early eipibranchial placodes from the early stage of 24 hpf (E) 
is almost unaffected in the morphant (F). Similarly, sox3 expression pattern (G) is 
also maintained in the morphant at the early stage (H). 

WT                                         ngn1 lateral 24 hpf                                  i1e2

WT                                       sox3 lateral 24 hpf                                  i1e2 
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WT                                      phox2b lateral 48 hpf                                i1e2 

WT                                  phox2a lateral 54 hpf                                     i1e2
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We looked into motor neuron development in the morphants in greater detail 

using the islet1 GFP transgenic line coupled with Zn5 immunohistochemistry staining 

of DM-GRASP, an adhesion molecule expressed on the surface of a subset of 

growing motor neurons and early endodermal cell-types (Fashena and Westerfield, 

1999). Compared to controls (Fig. 21A), the morphants (Fig. 21B) displayed motor 

neurons that migrated laterally toward the pharyngeal arches but failed to form axons 

and innervate pharyngeal arches. Hence, the failure to innervate target pharyngeal 

aches in tbx2a morphants is probably a result of defective pharyngeal pouches.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WT                                         Islet1 / Zn5 lateral 2 dpf                                     i1e2
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Figure 21: Tbx2a knock-down causes defect in three epibranchial placode-derived 
sensory ganglia (VII, XI, X) in the islet1-GFP transgenic larvae are visualized with GFP 
immuno-staining in green (broken arrows). Endodermal pouches are visualized by Zn5 
immuno-staining in red. In the control (A) sensory ganglia (VII, XI, X) send processes that 
grew between the endodermal pouches and innervate pharyngeal arches. (B) In the 
morphant, the processes of three ganglia reach the pharyngeal arches but fail to innervate.   
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3.5.7 Cell Death and Cell proliferation  

To determine if the defect in the pharyngeal arches of the tbx2a morphants 

was correlative with cell apoptosis, we applied TdT mediated dUTP nick-end labeling 

(TUNEL) assay on 2 dpf embryos and confocal imaging for a close look at the arch 

region. In the control specimens (Fig. 22B – WT, C – p53 MO injected), very few 

apoptotic cells were detected. Conversely, there was an obvious increase in apoptosis 

in the i1e2 morphant specimen (arrowheads in Fig. 22D). Even with the co-injection 

of p53 MO, the morphants still exhibited specific cell death in the pharyngeal arches 

(fig. 22E), which means the cell death in pharyngeal arches is a specific effect of 

tbx2a MO and independent from p53 signaling. The assay was repeated on three 

different sets of embryos (three each of WT and morphant embryos). In general, the 

data suggest that tbx2a-knock down caused p53-independent apoptosis and may be an 

indirect consequence of the pharyngeal arch defect or vice versa.  

Cells rapidly divide during embryogenesis. These cells could be detected via 

the expression of phospho-histone 3 (pH3) - a mitotic cell marker (Wei et al., 1998). 

Indeed, we find that the ability to initiate cell division is not reduced in tbx2a 

morphants (Fig 23). Therefore, the data suggest that although tbx2a is not required for 

cell proliferation, it may be important for cell viability.  
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Figure 22: Cell death TUNEL in situ staining on 48 hpf embryos. Broken 
rectangulars indicate the pharyngeal arch region. Images on left side are dark 
(A) Lateral view of embryo stained with tbx2a to locate pharyngeal arch region. 
(B, B’) WT embryo shows very few dead cells. (C, C’) p53 MO-injected embryos 
exhibit similar pattern as in WT. (D, D’) i1e2 morphant exhibit cell death in CNS 
and pharyngeal arches, (E, E’) co-injection of p53 MO does not rescue pharyngeal 
cell death in i1e2 morphants, number of dead cells still appear obviously higher 
compared to the controls. 
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 Green 488                            WT pH3 lateral 48 hpf                            bright          

  Green 488                          i1e2 pH3 lateral 48 hpf                                bright       

A B

C D

Figure 23: Tbx2a knock-down does not affect cell proliferation. Embryos were 
stained using anti-pH3 Green 488 Monoclonal antibody to detect proliferating cells. (A, 
C): fluorescent image; (B, D): composite fluorescent/bright field image. All embryos are 
shown in lateral view at the pharyngeal arch region. The number of pH3-positive cells in 
the control (A or B) is roughly the same with that in the morphant (C or D). Estimation 
was done using Image-J.    
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3.5.8 Tissue-specific knock-down of tbx2a in the endoderm of pharyngeal arches 

Multiple attempts to rescue the i1e2 MO morphant phenotype with tbx2a 

mRNA were unsuccessful even though a range of concentrations were tested. We co-

injected the lowest dose of i1e2 MO at 0.15 pmole (the lowest dose that would 

produce a phenotype) with tbx2a mRNA at 20 pg, 35 pg and 50 pg. This negative 

outcome is likely due to the dose sensitive nature of Tbx2a – over-expression of 

Tbx2a might produce phenotypes that masked a rescue (data not shown). As such, 

working out the precise dosage of MO and mRNA turned out to be very challenging.  

What we needed was a method to affect endodermal pouches selectively. We 

could then demonstrate that the phenotype observed with tbx2a MO is indeed 

specific. The zebrafish receptor kinase Taram-A is a type I subunit of the TGF-β 

receptor. It is expressed in presumptive endomesodermal cells during gastrulation 

(Renucci et al., 1996). Peyrièrat et al. (1998) have shown that constitutively active 

Taram-A (Taram-A*) can direct progenitors of the marginal blastomere at 16-cell 

stage (Fig. 24A) to develop as anterior endodermal derivatives. We employed this 

technique to direct tbx2a knocked-down cells to the endodermal pouches.  

0.6 pg Taram-A* mRNA (Peyrièrat et al., 1998) was injected into one single 

marginal blastomere at the 16 cell stage together with 70kD fluorescine dextran. More 

than 50% (n = 30/55, from 3 batches) of injected embryos exhibited labeled cells in 

the endodermal pouches and the embryos developed normally (as shown in Peyrièrat 

et al., 1998, and illustrated in Fig. 24B). An advantage of this technique is that labeled 

pouches were found on one side of the body, leaving the other side as a control (Fig. 

24B). It should be noted that there was no toxicity effect of Taram-A* mRNA at 
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0.6pg. We checked all 0.6pg Taram-A* injected embryos by Alcian blue staining and 

found none with cartilage defect (data not shown).  

0.05 pmole i1e2 MO was co-injected with 0.6 pg Taram-A* mRNA and 70kD 

dextran into one of the marginal blastomeres at 16-cell stage (illustrated in Fig 24A). 

For examination, we selected approximately 50% of the total 55 injected embryos 

(from 3 batches) which were clearly labeled at around 30 hpf. These injected embryos 

were allowed to develop until 3 dpf. By staining with Alcian blue, all of these 

embryos exhibited cartilage defect on the injected side, where five branchial arches 

fail to develop (crosses in Fig. 24C). In addition, dextran-labeled cells were not found 

in endodermal pouches. In view of previous findings with TUNEL assay, this could 

be the result of cell death in the arch region. 

In summary, our analysis has provided systematic and substantial evidence for 

the roles of tbx2a during specification of pharyngeal arches. We have shown that 

tbx2a is initially required to regulate morphogenesis of endodermal pouches, and 

subsequently affect the development of mesodermal cores and differentiation of 

NCCs. Interestingly, the loss of tbx2a in the endoderm pouches also affects 

differentiation of the ventral part of epibranchial placodes. Altogether, our data 

strongly support the central role of endodermal pouch during specification of 

pharyngeal arches.  
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Figure 24: Knock-down of Tbx2a in branchial arches causes their 
anomaly. (A) The injection of a single marginal blastomere at 16-cell stage. 
This blastomere gave rise to the future endoderm. In presence of tar* mRNA 
all descendants became endodermal, which resulted in the specifically labelled 
endodermal pouches (B) on left-hand side only_illustrated by green drawn 
lines. (C) Tissue specific knock-down of tbx2a in the endodermal pouches on 
the left-hand side caused absence of the posterior branchial arches (crosses). 
The Alcian bule stained pharyngeal arches are marked with blue lines. (D) 
Bright field imaging of (C) 
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4.1 Morpholinos designed specifically disrupt tbx2a translation 

tbx2a is not maternally expressed and is only detectable after 10 hpf by both 

WISH and RT-PCR. It has been shown in mammalian cells that Tbx2 contains serine 

residues 336, 623 and 675, located within the DNA binding domain (T-box domain), 

which are phosphorylation targets for p38 MAPK – mitogen-activated protein kinase 

(Abrahams et al., 2007). These residues are conserved across vertebrate species. The 

T-box domain is encoded by a part of exon 1, and complete exons 2, 3 and 4 (shown 

in Chapter 3) and is a good target for splice-targeting MOs. In addition, Tbx2a has a 

C-terminal trans-activation domain that is required for protein-protein interaction and 

is essential for its function (Minguilon and Logan, 2003). The 5' terminus encoded by 

exons 5 and 6 is also a potential target for MOs. The three MOs designed (e1i1, i1e2, 

i5e6) all produced a single class of phenotype which is consistent with the expression 

pattern of tbx2a. Of these, MO i1e2 is the most efficient, consistently producing 

specific phenotype at the lowest dose (0.05-0.1 pmole/embryo). The interference of 

i1e2 leads to a peptide of less than 100 amino acids that lacks a functional T-box 

domain. An estimation of efficiency of morpholino-dependent reduction of tbx2a 

transcript by RT-PCR (Fig. 5) showed reduction of transcript. This RT-PCR result is 

not in conflict with the more intense WISH staining (Fig. 14D and 18D) which could 

be attributed to the possibility that WISH staining may also pick up signal from both 

normal and abnormal transcripts.  

More importantly, we have confirmed the phenotype on the background of 

p53 morphants, which strongly ruled out the off-target effects of MOs described by 

Robu et al., (2007). Also, with the considerably low concentration (0.1 

pmole/embryo) employed in this study, tbx2a MO is not expected to produce severe 

off-target effects.  
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4.2 Tbx2a is indispensable for morphogenesis of endodermal pouches  

 The expression of tbx2 in the pharyngeal arches is conserved across species 

(Table 3, Chapter 3). This suggests an important role for the gene in the development 

of this organ. We report in this study that tbx2a is involved in the morphogenesis of 

endodermal pouches. Since tbx2a is not expressed in the endodermal pouches at early 

stages, we are not surprised that the induction and segmentation of the endodemal 

pouches are normal in the morphants. With the endoderm-specific marker nkx2.3, it is 

clearly shown that endoderm can be segmented into distinct slits or pouches. 

However, these pouches either failed to expand along the dorso-ventral axis towards 

to the ectoderm or they are broken and disorganized in tbx2a morphants. This is also 

illustrated by the marker pea3, and by the GFP pattern of the transgenic line ET33-

1B. While pouches are successfully induced to bud from the lateral walls of the 

pharynx, with endodermal cells of the pouch extending along the proximo-distal axis 

(seen clearly from ventral perspective as six nkx2.3 positive discrete pouches), they 

failed to migrate dorso-ventrally, and are stuck on the horizontal axis instead. So, 

although tbx2a is not involved in endodermal segmentation, it is required for pouch 

outgrowth. Previously, Quinlan et al. (2004) have shown that an accumulation of F-

actin at the apical surface of cells in the pouch is necessary to direct and constrain the 

movement of endodermal cells into a narrow group with a slit-like shape (reviewed by 

Graham et al., 2005). Because N-cadherin connects to the actin cables, it is possible 

that it is also involved in the regulation of pouch morphogenesis. T-box transciption 

factors have been shown to regulate cell adhesion molecules (e.g cx43) and play roles 

in cell migration (reviewed by Smith, 1999). Fong et al. (2005) have reported the role 

of the paralog tbx2b in cell adhesion, within the context of Wnt signaling, during the 

migration of cells into the neural plate. It would be interesting to determine whether 
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during formation of the endodermal pouches, tbx2a regulates expression of cell 

adhesion molecules. This might be a constitutive part of the tbx2a-dependent 

mechanism regulating morphogenesis of pharyngeal arch endoderm. Given the fact 

that earlier it was shown that depending on developmental situation Tbx2 acts 

downstream of Nodal signaling during notochord development (Dheen et al., 1999) 

and downstream of Wnt signaling during formation of the neural plate (Fong et al., 

2005), it is of interest to determine within which signaling pathway Tbx2a acts during 

morphogenesis of the endodermal pouches of pharyngeal arches. 

tbx1 is another t-box gene also expressed in endodermal pouches and van gogh 

(vgo, tbx1-/-) mutant exhibits pharyngeal skeletal defects as a result of the defect in 

endodermal pouches (Piotrowski et al., 2003). In addition, that study observed a 

fusion of neural crest-derived cartilage in the posterior arches of the mutant. tbx2a 

morphants also display defect in endoderm pouch morphogenesis, however cartilage 

deriving from post-migratory NCCs does not form in the position of pharyngeal 

arches. Our observation was confirmed on the p53 morphant background, in which 

the Alcian blue stained cartilage was totally lost, ruling out off-target effects of the 

MO (Robu et al., 2007). Therefore, tbx2a possibly functions as an inducer of 

endoderm-derived secreted signals necessary to trigger specification of NCCs towards 

the chondrogenic fate. Moreover, the absence of the thymic differentiation marker 

rag1 (Willett et al., 1997) revealed a defect in the third pharyngeal pouch where the 

thymus is derived from (Gordon et al., 2001). Altogether, the data strongly support 

the role of tbx2a in the development of the endodermal pouches. 

It has been hypothesized that endodermal pouches play a leading role in 

pharyngeal arch development (reviewed by Graham et al., 2003 and 2005). In 

contrast, Cerny et al. (2004) have shown that instead of the endodermal pouch, the 
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epidermis could direct the navigation of NCCs in axolotl. Our study on tbx2a function 

within the endodermal pouches provides molecular evidence in support of the idea 

that the endodermal pouches play a leading regulatory role in the development of 

pharyngeal arches. 

4.3 Tbx2a acts upstream of endoderm-derived signals regulating cartilage 

development 

sox9a, runx2b, tbx2b, pea3, and ET33-1B gfp transcripts normally present in 

the mesodermal cores are reduced or lost in tbx2a morphants. Although the GFP 

expression in tbx2a MO-injected ET33 embryos disappears from the pharyngeal 

region, it is nevertheless present in other cartilaginous structures like the cleithrum. 

Similarly, while sox9a expression is vastly diminished in the pharyngeal elements of 

the morphants, its expression is normal in the neural cranium. These observations are 

also indicative of the specificity of the MO used in this study. Therefore, it is highly 

possible that the mesodermal cores of the pharyngeal arches themselves are not 

developed properly or strongly diminished in tbx2a morphants, which may in turn 

contribute to the failure in cartilage formation. 

In parallel, we would like to discuss the role of NCCs in cartilage formation. 

The normal expression of markers early on at 24 hpf, as well as later on at 48 hpf 

(dlx2a, hox2a), strongly suggests that neural crest induction and migration is not 

perturbed by the absence of tbx2a. In other words, NCCs are able to reach the future 

pharyngeal arches. We also checked the expression pattern of crestin, a specific 

marker for all migratory and post-migratory NCCs (Luo et al., 2001). Its expression in 

the morphants is similar to that in the wild type controls (data not shown). The data 

clearly demonstrates that tbx2a is not required for neural crest induction and 

migration. This is consistent with studies done in vgo mutants where in the face of 
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endodermal pouch defect, neural crest induction and migration is not affected. 

However, the NCCs in vgo mutants were unable to assemble into discrete arches.  

Kimmel et al. (2001) described that in zebrafish the NCCs migrate from 

outside into the primordia of pharyngeal arches to wrap around the mesodermal cores. 

They referred to these cores as ectomesenchymal cores that will give rise to cartilage 

and then endochondral bones. Cerny et al. (2004) also demonstrated similar 

movement in axolotl. They further highlighted that the first sign of endodermal pouch 

appeared only after the first pharyngeal neural crest stream reached the endoderm at 

the ventral level. In our study, by 2 dpf, dlx2a-positive post-migratory NCCs are 

present as discrete patches at the first two arches and mildly decreased at the posterior 

arches in the morphants. Having noticed that endodermal pouches were malformed 

and mesodermal cores were not developed by that stage in the tbx2a morphants, we 

interpret that migration of NCCs to the pharyngeal arch area is independent from 

development of mesodermal cores and endodermal pouches. Altogether, our 

observation is compatible with that of Kimmel et al. (2001) and Cerny et al. (2004).   

Although the migration of NCCs is normal, chondrogenesis from 44 hpf 

onward is strongly affected in tbx2a morphants. That was demonstrated by the strong 

negative effect of the i1e2 MO on expression of sox9a and runx2b, both early markers 

for mesoderm-derived chondrogenesis (Yan et al., 2005; Flores et al., 2006). In 

mammals, the Sox9 protein binds to a chondrocyte-specific enhancer within the intron 

of col2a1, and plays a role as an upstream activator (Bell et al., 1997; Ng et al., 1997). 

In fact, col2a1 expression in the zebrafish sox9a mutant jellyfish (jef) has been 

reported to be affected (Yan et al., 2002). It is also highlighted that jef has normal 

prechondrogenic cores however progression into differentiated cartilage from 54 hpf 

onward is affected (Schilling and Kimmel, 1997). This is different from tbx2a 
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morphants which do not possess normal prechondrogenic cores, which has been 

demonstrated with other markers such as runx2b, pea3. Therefore, it is suggested that 

tbx2a may affect the chondrogensis earlier than the chondrogenic markers shown 

(sox9a, runx2b, pea3).  

Fgf signaling has been proposed to play a role of a general endodermal 

regulator governing neural crest migration and trans-differentiation into cartilage 

(Crump et al, 2004). In contrast to Fgfs, Tbx2a affects the NCCs later and this is more 

obvious at the trans-differentiation stage after arriving at their destined segments.  

Altogether, the defects in mesodermal cores and cartilage specification can be 

attributed to the disruption of tbx2a endogenously in the endodermal pouches. Even 

though the post-migratory NCCs are present in the future pharyngeal arches, we 

found that they are not able to proceed with cartilage differentiation. This event is 

coupled with undeveloped mesodermal cores. Hence, this supports the idea that an 

interaction between these two components (NCCs and mesodermal cores) is necessary 

for chondrogenesis or cartilage formation to take place (Sperber et al., 2008). It also 

means that post-migratory neural crest differentiation is strongly dependent on 

environmental influence.  

4.4 tbx2a knock-down indirectly affects pharyngeal neurogenesis  

A number of cranial sensory ganglia are derived from two sources: the NCCs 

and the placode, the border region between the epidermis and neural plate. In this 

study, we report no defect found during specification and migration of NCCs in the 

morphants. However, phox2a and phox2b positive epibranchial ganglia are 

dramatically reduced. And yet, tbx2a is not expressed in these structures. A previous 

study in zebrafish has revealed that pharyngeal neurogenic differentiation in the 
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ectoderm commenced within a few hours of endodermal contact (Holzschuh et al., 

2005), which suggests a direct interaction arising from proximity of these tissues. 

phox2a-positive ganglia consist of the proximal and distal parts. The distal part is 

adjacent to the pharyngeal pouch and has been hypothesized to depend on signals 

from the pharyngeal pouch (Holzschuh et al., 2005). The expression pattern of phox2a 

in tbx2a morphants is similar to that in vgo mutant (Holzschuh et al.a, 2005), where 

the distal part is affected. As shown by our analysis of the islet1-GFP transgenic line, 

three epibranchial placode-derived sensory ganglia (VII, XI, X) fail to innervate the 

pharyngeal arches of morphants at 48 hpf (Fig. 21B). Hence, the perturbation of 

epibranchial neurogenesis in the tbx2a morphants is likely to result from the defect in 

the endoderm. Thus, our data is entirely consistent with the role of endoderm 

signaling on epibranchial neurogenesis (Begbie et al., 1999; Holzschuh et al., 2005; 

Nechiporuk et al., 2005; Trokovic et al., 2005).  

However, tbx2a is not involved in the early specification of epibranchial 

placodes. Indeed, ngn1 which is present prior to phox2a/2b and regulates all sensory 

ganglia in zebrafish (Andermann et al., 2002) exhibits a normal expression pattern in 

the morphants. The sox3-positive epibranchial placodes (Sun et al., 2007) are also 

unaffected. Therefore, these observations strongly suggest that the early initiation of 

placodes is independent from tbx2a in the endoderm. This is expected due to the fact 

that the contact between epibranchial placodes and endoderm is not fully established 

at this early stage.  

Our study has shown that tbx2a within the endodermal pouches of pharyngeal 

arches may play a key role upstream of signals involved in the neurogenic 

differentiation of epibranchial placodes at the later stage, but not at the early induction 

stage. Several signaling molecules such as Bmps and Fgfs within the pharyngeal 
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endoderm have been hypothesized to be involved in epibranchial neurogenesis 

(Holzschuh et al., 2005; Nechiporuk et al, 2005). It has been shown in chick that 

Bmp2-mediated upregulation of tbx2 is involved in the development of the heart 

(Yamada et al., 2000) and hypothalamus (Manning et al., 2006). Thus, Tbx2a might 

be functioning within the context of Fgf or Bmp signaling.  

4.5 tbx2a knock-down is correlated to apoptosis in the pharyngeal arches  

Using confocal microscopy, we did not detect a difference in the number of 

proliferating cells (pH3+) between the controls and morphants (n=3). However, 

TUNEL assay clearly show an increase in apoptosis specific to the pharyngeal arch 

region of the tbx2a morphants co-injected with p53 MO. As reported by Harrelson et 

al., (2004) p53 signaling is unaffected in tbx2 null mice. Therefore, we think that cells 

destined to contribute into endodermal pouches are unable to migrate properly, which 

in turn triggers cell death in a p53-independent manner. Although the signaling 

pathway involved was not characterized in this study, our data suggest that tbx2a is 

required for cell survival within the pharyngeal arch region.  

4.6 Chimaeric morphants: tissue specific gene knock-down 

tbx2a expression is present in both pharyngeal endoderm and anterior 

neuroectoderm rather early in the hindbrain rhombomere 2 (14 hpf), and subsequently 

at rhombomere 4 and vagal motor nuclei later on (48 hpf). We have shown that 

pharyngeal neural crest migration and specification are not affected in the tbx2a 

morphants. Besides, we also checked pigment cells – one of neural crest derivatives in 

the morphants with two specific markers: dopachrome tautomerase_dct (Kelsh et al, 

2000b) and crestin (Rubinstein et al., 2000), and found no major difference between 

the WT and morphants (data not shown). Thus, despite the presence of tbx2a in the 
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hindbrain, neural crest derivatives were unaffected in the morphants. This is to be 

expected, since tbx2a is not expressed in the pre-migratory NCCs and/or tbx2a may 

play a redundant role in respect to tbx2b in the hindbrain. In contrast, we were able to 

demonstrate that the tissue-specific ablation of tbx2a within the pharyngeal endoderm 

after 1/16 injection resulted in cartilage deficiency. Therefore, it is conclusive that the 

loss of pharyngeal arches is solely attributed to the defect in the pharyngeal 

endoderm.  

Although we have obtained some understanding about the role of tbx2a in 

regulating endodermal pouch morphology and its indirect effect on the 

chondrogenesis of the pharyngeal arches, downstream signals involved in this process 

are unknown thus far and must require further investigation.  

4.7 Possible divergent functions of tbx2a and tbx2b during pharyngeal arch 

development 

In the mouse, Tbx2 is expressed in the pharyngeal arch region. Nevertheless, it 

has not been described which germ layer Tbx2 is restricted to as well as its specific 

function in this organ. In chick, tbx2 is known to express in both pharyngeal pouch 

epithelium and mesenchyme. However, in zebrafish the two paralogues, tbx2a and 

tbx2b are expressed in a complementary manner in the pharyngeal arch. For example, 

while tbx2a is restricted to the endodermal pouches, tbx2b is in the arch mesenchyme.  

It would be interesting to identify the role of tbx2b in the pharyngeal arches. The split 

in expression of two tbx2 probably results in the separation of their functions. This 

developmental situation is useful for dissecting the role of the respective genes in 

each compartment. This may be helpful in attempts to reveal the interaction of various 

compartments of the arch during its development. In the case of tbx2a, we established 

that the gene is not involved in neural crest patterning but can affect the overall 
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development of the pharyngeal arches including chondrogenesis and epibranchial 

neurogenesis by affecting the morphogenesis of the endodermal pouches.  
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4.8 Conclusion 

Our study revealed a role for tbx2a during development of the endodermal 

components of pharyngeal arches. Detailed description of its expression pattern 

revealed a number of domains where the expression was conserved between different 

species while highlighting domains that are species-specific. This provided the 

foundation for subsequent functional analysis. 

From the functional analysis, we have shown for the first time these important 

findings: 

1. tbx2a is indispensable for morphogenesis, but not induction, of the pharyngeal 

endodermal pouches.  

2. The defect in endodermal pouches in turn affects the process of development 

of the mesodermal cores.  

3. Neural crest induction and migration are independent from tbx2a in the 

endoderm and mesodermal core. However, the later event of differentiation of 

mesenchymal cells (NCCs and mesodermal cells) into cartilage was severely 

affected in the absence of tbx2a.  

4. It highlights a role for tbx2a in the endodermal pouches for the patterning of 

epibranchial placodes.  

5. Importantly, our data suggest that cell death in the absence Tbx2a correlates to 

the phenotype observed in tbx2a gene knock-down.  

Thus far, there has been no knowledge of how tbx2 is involved in development 

of the pharyngeal arches in mammals. Our study suggests a local impact of tbx2a 

within the endoderm. It is important to analyze the function of other t-box genes 

during pharyngeal arch development and hopefully shed more light on the roles of 
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endodermal pouches in comparison with that of mesodermal cores and NCCs 

(illustrated in scheme 4).  

Moreover, the fact that tbx2a is also found in other endodermal derivatives 

such as liver, swim bladder and anterior gut (shown in this study) has triggered a 

critical question of whether tbx2a acts via a common mechanism to regulate the 

development of endoderm-budding organs.  
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Scheme 4: Summary of function of tbx2a in the pharyngeal arches. tbx2a knockdown 
causes dysmorphic endodermal pouches autonomously. Subsequently, neural crest and 
mesodermal core differentiation are undeveloped as the secondary defect. Pharyngeal 
neurogenesis is also affected. Altogether, they contribute to the total loss of pharyngeal arches. 

Endodermal pouch 

 Sensory ganglia 

 Epibranchial placode NCCs 

Mesodermal core 
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The hypothalamus is derived from the most ventral region of the anterior 

diencephalon. Although the initial step of hypothalamic identity induction and the 

migration of hypothalamic precursors in zebrafish has been extensively characterized 

(Woo and Fraser, 1995; Varga et al., 1999), the molecular mechanisms that underline 

later induction and patterning as well as differentiation processes are rather limited. 

So far, there have been separate lines of evidence suggesting involvement of 

Hedgehog (Hh), Nodal and Wnt signalling pathways in hypothalamus development. 

Hh is required for induction the anterior hypothalamus; whereas Nodal is required for 

the posterior hypothalamus (Chiang et al., 1996; Mathieu et al., 2002). In 2006 Lee et 

al. shown that the transcription factor of Canonical Wnt signaling - Lef1, specifically 

regulates posterior hypothalamus neurogenesis. In our study, we identified a 

conserved expression of tbx2a in the posterior ventral hypothalamus, and we sought 

to investigate whether tbx2a is involved in hypothalamus patterning and neurogenesis. 

We also examined if tbx2a acts through known signalling pathways in the 

hypothalamus. 

App.1 Specific tbx2a expression pattern suggests a role in hypothalamus 

development 

tbx2a transcript appeared in the anterior ventral diencephalon and the eyes at 

around 11 hpf (App. Fig. 1A). By 24 hpf, it remained in that region which was 

excluded from the adenohypophyseal anlage, as demonstrated by double staining with 

adenohypophysis specific marker_lim3 (Glasgow et al., 1997; App. Fig. 1C, D). This 

restriction is sufficient to cover the neurohypophysis domain. From 30 hpf, as the 

developing forebrain folded, tbx2a positive domain developed into the posterior 

ventral hypothalamus (App. Fig. 1E). At 48 hpf, cross sections through the most 

posterior hypothalamus revealed expression in the mitotic cells restricted to the 
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medial region, and in post-mitotic cells spreading to the lateral region (App. Fig. 1G). 

In the more anterior section, we found tbx2a expression in the mitotic cells and at the 

most ventral part that constituted the neurohypophysis (App. Fig. 1F). Outside the 

hypothalamus, tbx2a was also present in rhombomeres 2, and 6, and the vagal nerve 

nucleus (App. Fig. 1H, I). However, we focused on the hypothalamic expression of 

tbx2a which was conserved during early development and therefore suggests an 

important role in this region. 

To approach the functional study, we utilized the morpholino (MO) 

oligonucleotides which had already been characterized previously, i1e2 MO.  
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Appendical Figure 1: The expression pattern of tbx2a. 
During development tbx2a is expressed in the ventral posterior hypothalamus. A, B, C, D, 
E - lateral views; D - ventral view; I - dorsal view. A, B, E, H, I - single color WISH with 
anti-tbx2a probe. C, D-magenta - tbx2a, red - lim3; G, F-cross-section at the positions 
marked in H. 
Abbreviations: h - hours post fertilization; ahp - adenohypophysis; ht - hypothalamus; pht - 
posterior hypothalamus; vn - vagus nerve nucleus. Numbers define rhombomeres.  
Scale bar, 50 μm.  
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App. 2 Tbx2a is involved in anterior-posterior patterning of the hypothalamus 

tbx2a is first expressed during the early stage of the ventral diencephalon 

formation (11 hpf). Therefore, it is critical to determine whether tbx2a is involved in 

induction of the hypothalamus. For that, one of the earliest specific markers of 

hypothalamic induction, nk2.1a (Rohr et al., 2001) has been employed. We did not 

find any change in nk2.1a expression in the morphants (App. Fig. 2B) in comparison 

with that of control embryos (App. Fig.2A). So, the hypothalamus is normally 

induced in tbx2a morphants.  

Following induction, the hypothalamus is patterned into sub-domains. In the 

hypothalamus, at 24 hpf shh expression is restricted to the anterior dorsal domain 

(reviewed in Wilson and Houart, 2004) whereas we found tbx2a restricted to the 

ventral domain. Therefore, it is suggested that shh and tbx2a expression are non-

overlapping but complementary with each other. Varga el al., (2001) and Mathieu et 

al., (2002) have shown that interference with Hh pathway in the anterior 

hypothalamus led to an elimination of molecular markers in the anterior dorsal 

hypothalamus and an expansion of the posterior ventral hypothalamus. The role of Hh 

expression in the anterior domain could be interpreted to simultaneously promote an 

anterior fate, and inhibit expansion of the posterior domain. We postulated that tbx2a 

is expressed in a complementary manner with shh expression domain, subsequently 

we asked if tbx2a plays a role in the patterning of the hypothalamus. Since there was 

an ectopic expansion of shh toward the posterior domain in tbx2a morphants (App. 

Fig. 3B), we expected this to result in an up-regulation of anterior hypothalamic 

markers and down-regulation of posterior ones. rx3 (Chuang et al., 1999) is a specific 

marker for the anterior hypothalamus, whereas emx2 (Morita et al., 1995) is a marker 

for the posterior part. In morphants, the two markers showed opposite changes. 
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Compared to controls (App. Fig. 2C), rx3-positive domain in the morphants (App. 

Fig. 2D) was broader and extended to the posterior territory. In contrast, emx2 

expression domain was significantly reduced in the morphants (App. Fig. 2F). These 

data could be improved upon with double in situ hybridization of these two markers. 

That would allow us to evaluate relative changes in sizes between the complementary 

anterior and posterior domains. Nevertheless, these preliminary data strongly hint at a 

function of tbx2a as an upstream repressor of shh signaling for the specification of 

anterior and posterior hypothalamic fate (App. Scheme 1). In addition, our finding 

highly supports the study in mouse by Jeong and Epstein (2003). They have shown 

that T-box binding site residing in the intron 2 of Shh is required for the repression of 

Shh in regions of the brain where its transcript is not normally present.  
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WT                                       24 hpf  nk2.1                                      i1e2 

A B 

ht ht 

Appendical Figure 2: tbx2a has effect on hypothalamus patterning but 
not on induction.  

A, C, E - controls; B, D, F - morphants. All specimen are in lateral view.  

(A, B)  nk2.1 expression is unchanged in the morphant  

(C, D) The morphant (D) exhibits extended anterior sub-domain labelled by 
rx3. 

(E, F)  emx2 reveals a contrast pattern of rx3 expression. In the morphant 
(F) the posterior domain positive for emx2 is diminished or even lost in the 
most ventral part.    

Abbreviations: ht - hypothalamus; mhb - midbrain-hindbrain boundary; apt 
– anterior hypothalamus; pht - posterior hypothalamus; t - telencephalon.  
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Appendical Figure 3: Morpholino-mediated knockdown of tbx2a caused an 
increase in expression of markers shh and fgf3 in the hypothalamus. A, C, 
E - controls; B, D, F - morphants. All specimens are in lateral view.  

Abbreviations: ht - hypothalamus; mhb - midbrain-hindbrain boundary; poa - 
preoptic area; pht - posterior hypothalamus; t - telencephalon.  
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Appendical Scheme 1: Expression domain of genes in the hypothalamus. (A) tbx2a 
expression domain is in the ventral diencephanlon, broader than fgf3 and non-overlapping 
with lim3 or shh domains. (B) tbx2a knock-down causes an ectopic expression of shh in the 
ventral diencephalon, expansion of fgf3 from the most ventral up to the dorsal, expansion of 
anterior marker rx3 and elimination of posterior marker emx2.   
ht - hypothalamus; mhb - midbrain-hindbrain boundary; poa - preoptic area; pht - posterior 
hypothalamus; t - telencephalon.  
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App. 3Tbx2a may act through Shh and Fgf3 to regulate 

adenohypophysis development 

Another function of shh signaling has been shown in adenohypophyseal 

induction and patterning (Sbrogna et al., 2003). We examined whether tbx2a is also 

important for development of this organ. Adenohypophysis is also known as the 

posterior pituitary gland and originated from non-neural ectoderm; whereas 

neurohypophysis (anterior pituitary gland) is from the infundibulum, a ventral 

structure of the diencephalon. It has been shown that over-expression of shh resulted 

in an expansion of adenohypophyseal markers (Sbrogna et al., 2003). As above, we 

showed that shh is upregulated in tbx2a morphants. lim3 is an anterior pituitary 

specific marker (Glasgow et al., 1997). A majority of tbx2a morphant embryos (n = 

8/15) displayed extended lim3 expression domain even though the morphants were 

generally shorter than controls (App. Fig. 4A, B). To countercheck the phenotype, we 

over-expressed tbx2a with 50 pg/embryo of tbx2a mRNA. 6 out of 15 embryos 

examined had reduced lim3 expression domain (App. Fig. 4C, D). This observation 

supports the notion that tbx2a may act through shh signaling to regulate 

adenohypophysis development.  

In addition to shh, fgf3 has been reported to be involved in pituitary 

development (Herzog et al., 2004). Thus, we checked fgf3 expression in the tbx2a 

morphants. In controls, fgf3 was expressed in the most ventral cell layers in the 

diencephalons (App. Fig. 3C). However, its expression expanded to the whole 

hypothalamus in the morphants (App. Fig. 3F). This suggests that tbx2a may act as a 

negative regulator of fgf3. It has been shown that transcriptional activation of pituitary 

genes was affected in lia mutant (fgf3-/-), suggesting that lim3 is required for early 

steps of adenohypophyseal specification (Herzog et al., 2004). However, there was no 
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report for the reverse whereby an increase in fgf3 signaling resulted in the up-

regulation of pituitary markers and enlarged pituitary anlage. Thece data shown in this 

study revealed that the enlargement of adenohypophyseal anlage in tbx2a morphants 

could be a result of the up-regulation of shh and/or fgf3 expression in the 

hypothalamus. If our hypothesis is correct, then ectopic over-expression of tbx2a 

should lead to eliminated expression domains of shh and fgf3, and support the idea 

that shh and fgf3 function downstream of tbx2a in regulating the development of the 

pituitary. However, whether shh and fgf3 act dependently or independently in this 

scenario is unclear.  
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WT                               lim3 lateral 48 hpf            tbx2a mRNA 50 

WT                              lim3 lateral 54 hpf                              i1e2 

Appendical Figure 4: tbx2a plays a role in the development of the 
adenohypophysis 
A, C - controls; B, D - morphants. All specimens are in lateral view, stained 
with adenohypophyseal marker lim3. 

(A, B) tbx2a knock-down caused an expansion in adenohypophyseal anlage 

(C, D) tbx2a mRNA over-expression caused a reverse effect.  
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App. 4 Tbx2a may regulate local neurogenesis of the posterior hypothalamus 

through shh signaling 

The patterning step is followed by neurogenesis that generates populations of 

neurons in specific domains. Therefore an alteration of patterning might have effects 

on neurogenesis. Given the action of tbx2a knock-down on AP hypothalamus 

patterning, we next assessed the effect of tbx2a on neurogenesis. sox3 is a proneural 

gene expressed during the earliest step of neurogenesis (Kan et al., 2004). At 24 hpf, 

its expression in the morphants is moderately weaker compared to controls (App. Fig. 

5A, B). However, its expression recovered by 48hpf (App. Fig. 5C, D). The 

expression of a later neural marker, dlx2a (Akimenko et al., 1994), was specifically 

reduced in the posterior ventral hypothalamus at 24 hpf where tbx2a is normally 

expressed (App. Fig. 6B). This loss of dlx2 expression remained until a later stage 

(App. Fig. 6C, D). Similar result was obtained with islet1 at 48 hpf (App. Fig. 7E, F). 

Altogether, although manipulation of tbx2a mildly affects the expression of sox3, it 

does have a significant effect later on in neural differentiation in the posterior ventral 

hypothalamus. 

In conclusion, these preliminary data support the hypothesis that tbx2a plays a 

role during hypothalamus patterning and neurogenesis via fgf3 and/or shh signaling. It 

remains to be seen if the inhibition of shh and/or fgf3 signaling will rescue the 

phenotype caused by tbx2a knock-down. This would provide further support for our 

hypothesis.   
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WT                                       48 hpf sox3 lateral                                              i1e2 

WT                                           24 hpf sox3 lateral                                          i1e2 

Appendical Figure 5: tbx2a overexpression does not affect expression of the early 
neural marker sox3. A, C - controls; B, D - morphants. All specimens are in lateral view, 
stained with sox3 
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Appendical Figure 6: tbx2a knock-down affects neural differentiation markers 
in the posterior hypothalamus. A, C, E- controls; B, D, F - morphants. All the 
specimens are in lateral view 
(A, B) dlx2a expression exhibits a specific loss in the hypothalamus of the 
morphants. 
(C, D) This pattern is retained up to later stage 48 hpf.   
(E, F)  islet1 expression is affected and almost disappeared in the posterior 
hypothalamus of the morphants 
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